


Lecture Notes in Computer Science 4112
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Danny Z. Chen D. T. Lee (Eds.)

Computing and
Combinatorics

12th Annual International Conference, COCOON 2006
Taipei, Taiwan, August 15-18, 2006
Proceedings

13



Volume Editors

Danny Z. Chen
University of Notre Dame
Department of Computer Science and Engineering
Notre Dame, IN 46556, USA
E-mail: chen@cse.nd.edu

D. T. Lee
Academia Sinica Taiwan
Institute of Information Science
No 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
E-mail: dtlee@iis.sinica.edu.tw

Library of Congress Control Number: 2006929860

CR Subject Classification (1998): F.2, G.2, I.3.5, C.2.3-4, E.1, E.5, E.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-36925-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-36925-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11809678 06/3142 5 4 3 2 1 0



Preface

The papers in this volume were selected for presentation at the 12th Annual
International Computing and Combinatorics Conference (COCOON 2006), held
on August 15-18, 2006 in Taipei, Taiwan. Previous meetings of this conference
were held in Xi’an (1995), Hong Kong (1996), Shanghai (1997), Taipei (1998),
Tokyo (1999), Sydney (2000), Guilin (2001), Singapore (2002), Big Sky (2003),
Jeju Island (2004), and Kunming (2005).

In response to the Call-for-Papers, 137 extended abstracts were submitted
from 27 countries and regions, of which 52 were accepted (including a merged
paper from two extended abstracts). The submitted papers were from Argentina
(1), Australia (2), Bangladesh (1), Brazil (1), Canada (7), China (23), Germany
(3), Denmark (1), France (2), UK (4), Greece (1), Hong Kong (1), Israel (4), India
(11), Italy (1), Japan (12), North Korea (1), South Korea (23), Lebanon (1),
Latvia (1), The Netherlands (2), Russian Federation (1), Sweden (2), Singapore
(1), Taiwan (17), Ukraine (1), and USA (12).

The papers were evaluated by an international Program Committee con-
sisting of Alberto Apostolico, Tetsuo Asano, Jin-Yi Cai, Amitabh Chaudhary,
Bernard Chazelle, Danny Z. Chen, Siu-Wing Cheng, Francis Chin, Kyung-Yong
Chwa, Peter Eades, Sandor Fekete, Rudolf Fleischer, Mordecai Golin, Michael
Goodrich, Xiaodong Hu, Oscar H. Ibarra, Hiroshi Imai, Ming-Yang Kao, Naoki
Katoh, Rolf Klein, Ming-Tat Ko, D.T. Lee, Chi-Jen Lu, Shuang Luan, Joseph
S.B. Mitchell, Bernard Moret, Rajeev Motwani, David Mount, Kunsoo Park,
Frank Ruskey, Michiel Smid, Chuan Yi Tang, Takeshi Tokuyama, Vijay V. Vazi-
rani, Jie Wang, Lusheng Wang, Peter Widmayer, Xiaodong Wu, Jinhui Xu,
Yinfeng Xu, Louxin Zhang, and Hong Zhu. Each paper was evaluated by at
least three Program Committee members, with possible assistance of the exter-
nal referees, as indicated by the referee list found in these proceedings. There
were more acceptable papers than there was space available in the conference
schedule, and the Program Committee’s task was very difficult. In addition to
the selected papers, the conference also included two invited presentations by
Franco P. Preparata and Mikhail J. Atallah.

We thank all Program Committee members and the external referees for
their excellent work, especially given the demanding time constraints. It was a
wonderful experience to work with them. We also thank the two invited speakers
and all the people who submitted papers for consideration: They all contributed
to the high quality of the conference.

Finally, we thank all local organizers, colleagues, and the system team of
the Institute of Information Science who worked tirelessly to put in place the
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logistical arrangements of the conference and to create and maintain the web sys-
tem of the conference. It was their hard work that made the conference possible
and enjoyable.

August 2006 Danny Z. Chen and D.T. Lee
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The Unpredictable Deviousness of Models

Franco P. Preparata

Department of Computer Science, Brown University
franco@cs.brown.edu

The definition of computation models is central to algorithmic research. A model
is designed to capture the essential features of the technology considered, dis-
pensing with irrelevant and burdensome details. In other words, it is a judicious
compromise between simplicity, for the ease of analysis, and fidelity (or reflec-
tivity), for the value of the derived predictions. The achievement of this double
objective has unleashed an enormous amount of valuable algorithmic research
over the years.

However, the pursuit of simplicity may filter out details, once deemed
irrelevant, which may later reassert their significance either under technologi-
cal pressure or under more careful scrutiny. In such instances, the results may
be invalidated by the inadequacy of the model, Examples of this situation, drawn
from computational geometry, parallel computation, and computational biology,
will be reviewed and examined in detail.

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Security Issues in Collaborative Computing 
(Abstract of Keynote Talk) 

Mikhail J. Atallah 

Department of Computer Science 
Purdue University 

CERIAS, Recitation Bldg, West Lafayette, IN 47907, USA 
mja@cs.purdue.edu 

Even though collaborative computing can yield substantial economic, social, and 
scientific benefits, a serious impediment to fully achieving that potential is a 
reluctance to share data, for fear of losing control over its subsequent dissemination 
and usage. An organization’s most valuable and useful data is often proprietary/ 
confidential, or the law may forbid its disclosure or regulate the form of that 
disclosure. We survey security technologies that mitigate this problem, and discuss 
research directions towards enforcing the data owner's approved purposes on the data 
used in collaborative computing. These include techniques for cooperatively 
computing answers without revealing any private data, even though the computed 
answers depend on all the participants’ private data. They also include computational 
outsourcing, where computationally weak entities use computationally powerful 
entities to carry out intensive computing tasks without revealing to them either their 
inputs or the computed outputs. 



A Simplicial Approach for Discrete
Fixed Point Theorems

(Extended Abstract)

Xi Chen1 and Xiaotie Deng2,�

1 Department of Computer Science, Tsinghua University
xichen00@mails.tsinghua.edu.cn

2 Department of Computer Science, City University of Hong Kong
deng@cs.cityu.edu.hk

Abstract. We present a new discrete fixed point theorem based on a
novel definition of direction-preserving maps over simplicial structures.
We show that the result is more general and simpler than the two re-
cent discrete fixed point theorems by deriving both of them from ours.
The simplicial approach applied in the development of the new theorem
reveals a clear structural comparison with the classical approach for the
continuous case.

1 Introduction

There has recently been a sequence of works related to fixed point theorems in a
discrete disguise, started with the seminal work of Iimura [13] which introduced
a crucial concept of direction-preserving maps. Iimura, Murota and Tamura [14]
corrected the proof of Iimura for the definition domains of the maps. With a
different technique, Chen and Deng introduced another discrete fixed point the-
orem in order to achieve the optimal algorithmic bound for finding a discrete
fixed point for all finite dimensions [2]. In [15], Laan, Talman and Yang designed
an iterative algorithm for the discrete zero point problem. Based on Sperner’s
lemma which is fundamental for deriving Brouwer’s fixed point theorem, Friedl,
Ivanyosy, Santha and Verhoeven defined the black-box Sperner problems. They
also obtained a

√
n upper bound for the two-dimensional case [11], which is also

a matching bound when combined with the lower bound of Crescenzi and Sil-
vestri [8] (mirroring an early result of Hirsch, Papadimitriou and Vavasis on the
computation of 2D approximate fixed points [12]). On the other hand, Chen and
Deng [6] showed that the two theorems, that of Iimura, Murota and Tamura [14],
as well as that of Chen and Deng [2], cannot directly derive each other.

In this article, we derive a new discrete fixed point theorem based on simplicial
structures and a novel definition of direction-preserving maps. We show that both
previous discrete fixed point theorems can be derived from this simpler one.

The simplicial structure, together with Sperner’s Lemma, has played an im-
portant role in establishing various continuous fixed point theorems. Our focus
� Work supported by an SRG grant (No. 7001838) of City University of Hong Kong.

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 3–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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on the simplicial structure in the study of the discrete version will help us gain
a full and clear understanding of the mathematical structures and properties
related to discrete fixed point theorems. Furthermore, even for continuous fixed
point theorems, discrete structural propositions are needed to derive them. Our
study would provide a unified view of the fixed point theorem, both discrete and
continuous, instead of treating them with ad hoc techniques. Our simplicial ap-
proach unveils the mystery behind the recent results on discrete fixed points and
settles them under the same mathematical foundation as the classical continuous
fixed point theorems.

The discrete nature of the fixed point theorem has been noticed previously,
mainly due to the proof techniques of Sperner’s lemma [16]. The recent effort in
direct formulation of the discrete version of the fixed point theorem would be
especially useful in the complexity analysis of related problems. The recent work
in characterizing the complexity of Nash Equilibria, by Daskalakis, Goldberg,
Papadimitriou [9], Chen and Deng [3], Daskalakis and Papadimitriou [10], Chen
and Deng [4], has been based on another innovative formulation of the 2D (or
3D) discrete fixed point problem, where a fixed point is a collection of four [7]
(or eight [9]) corners of a unit square (or cube). It’s difficult to generalize such
a formulation to high dimensional spaces, since a hypercube has an exponential
number of corners, which is computationally infeasible. Instead, a simplicial def-
inition has been necessary in extending those results to a non-approximability
work obtained recently [10].

We first introduce notations and definitions with a review of previous works
of Murota, Iimura and Tamura [14], as well as Chen and Deng [2]. The simplicial
model is then introduced in section 3 and the fundamental discrete fixed point
theorem is proved in section 4. In section 5, we present the discrete Brouwer’s
fixed point theorem for simplicial direction-preserving maps, with the theorem
of Murota, Iimura and Tamura [14] derived as a simple corollary. In Section 6,
we give an explicit explanation for the definition of bad cubes in [2] and show
that, the theorem of Chen and Deng is a special case of the fundamental fixed
point theorem. Finally, we conclude in section 7.

2 Preliminaries

2.1 Notations and Definitions

Informally speaking, map F (or function f ) is hypercubic direction-preserving
on a finite set X ⊂ Zd if for every two neighboring points in X , their directions
given by F (or f ) are not opposite. The neighborhood relation considered here
is defined by the infinity norm.

Definition 1 (Hypercubic Direction-Preserving Maps). Let X be a finite
subset of Zd. Map F from X to Rd is said to be hypercubic direction-preserving
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on X if for every two points r1, r2 ∈ X with ||r1 − r2||∞ ≤ 1, we have (Fi(r1)−
r1i ) (Fi(r2) − r2i ) ≥ 0, for all i : 1 ≤ i ≤ d.
Definition 2 (Hypercubic Direction-Preserving Functions). Let X be a
finite subset of Zd. Function f from set X to { 0,±e1,±e2...±ed−1,±ed } is said
to be hypercubic direction-preserving if for every two points r1, r2 ∈ X such that
||r1 − r2||∞ ≤ 1, we have ||f(r1) − f(r2)||∞ ≤ 1.

Point r ∈ X is called a fixed point of F (or f ) if F(r) = r (or f(r) = 0).

2.2 The Fixed Point Theorem of Murota, Iimura and Tamura

Murota, Iimura and Tamura proved in [14] that every hypercubic direction-pre-
serving map from an integrally convex set X to X must have a fixed point. Here
we use X to denote the convex hull of finite set X ⊂ Zd.

Definition 3 (Integrally Convex Sets). Finite set X ⊂ Zd is integrally con-
vex if for all x ∈ X, x ∈ X ∩N(x) where N(x) = { r ∈ Zd | ||r − x ||∞ < 1 }.
Theorem 1 ([14]). Let X be an integrally convex set in Zd, then every hyper-
cubic direction-preserving map F from X to X has a fixed point in X.

2.3 The Fixed Point Theorem of Chen and Deng

Given a hypercubic direction-preserving function f on a lattice set Ca,b ⊂ Zd,
Chen and Deng proved in [2] that if the number of bad (d − 1)-cubes on the
boundary of Ca,b is odd, then f must have a fixed point in Ca,b.

Definition 4. Lattice set Ca,b ⊂ Zd is defined as Ca,b = { r ∈ Zd | ∀ 1 ≤ i ≤
d, a ≤ ri ≤ b }. For every r ∈ Zd and S ⊂ { 1, 2 ... d } with |S | = d − t, the
t-cube Ct ⊂ Zd which is centered at r and perpendicular to S is defined as Ct =
{ p ∈ Zd

∣∣ ∀ 1 ≤ i ≤ d, if i ∈ S, then pi = ri. Otherwise, pi = ri or ri + 1 }.
Definition 5 (Bad Cubes). A 0-cube C0 ⊂ Zd is bad relative to function f if
f(C 0) = {e1 }. For 1 ≤ t ≤ d− 1, a t-cube Ct ⊂ Zd is bad relative to f if :

1. f(Ct) = { e1, e2... et+1 };
2. the number of bad (t− 1)-cubes in Ct is odd.

Theorem 2 ([2]). Let f be a hypercubic direction-preserving function on Ca,b ⊂
Zd, if NB, i.e. the number of bad (d − 1)-cubes on the boundary of Ca,b is odd,
then f must have a fixed point r in Ca,b such that f(r) = 0.

Although the theorem itself is succinct, the definition of bad cubes seems a little
mysterious and lacks a satisfactory explanation. In section 6, we will use the
fundamental discrete fixed point theorem for the simplicial model to resolve this
puzzle.
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3 Simplicial Direction-Preserving Maps and Functions

In this section, we introduce simplicial direction-preserving maps and functions
based on simplicial structures. Let X be a finite set in Rd. Here we only con-
sider nondegenerate cases where X ⊂ Rd is a convex d-polytope. For standard
definitions concerning polytopes, readers are referred to [17] for details.

Definition 6. A simplicial decomposition S of C ⊂ Rd is a collection of sim-
plices satisfying: 1). C = ∪ S∈SS; 2). For any S ∈ S, if S′ is a face of S, then
S′ ∈ S; 3). For every two simplices S1, S2 ∈ S, if S1 ∩ S2 
= ∅, then S1 ∩ S2 is
a face of both S1 and S2.

Definition 7. Let X be a finite set in Rd. A simplicial decomposition S of set
X is a simplicial decomposition of X such that for every S ∈ S, VS ⊂ X, where
VS is the vertex set of simplex S.

Given a simplicial decomposition S of X, we use FS to denote the set of
(d−1)-simplices on the boundary of X, and BX to denote the set of points on the
boundary of X : FS = { (d− 1)-simplex S ∈ S | S ⊂ F and F is a facet of X },
and BX = { r ∈ X | r ∈ F and F is a facet of X }.
Definition 8 (Simplicial Direction-Preserving Maps). A simplicial direc-
tion-preserving map is a triple M = (F , X,S). Here X is a finite set in Rd and
S is a simplicial decomposition of X. Map F from X to Rd satisfies for every
two points r1, r2 ∈ X, if there exists a simplex S ∈ S such that r1, r2 ∈ VS , then
(Fi(r1) − r1i ) (Fi(r2) − r2i ) ≥ 0, for all i : 1 ≤ i ≤ d.
Definition 9 (Simplicial Direction-Preserving Functions). A triple G =
(f,X,S) is said to be a simplicial direction-preserving function if X is a finite
set in Rd, S is a simplicial decomposition of X, and function f from set X to
{ 0,±e1, ... ± ed } satisfies for every two points r1, r2 ∈ X, if there exists S ∈ S
such that r1, r2 ∈ VS, then ||f(r1) − f(r2)||∞ ≤ 1.

In other words, for every two neighboring points in X , their directions given by
map F (or function f) can’t be opposite. The only difference with the hypercu-
bic model is that the neighborhood relation is now defined by simplices in the
simplicial decomposition S instead of unit d-cubes in Zd.

4 The Fundamental Discrete Fixed Point Theorem

In this section, we present the fundamental discrete fixed point theorem which
is both simple and powerful. Any simplicial direction-preserving function which
satisfies the boundary condition of the theorem must have a fixed point.

Definition 10 (Bad Simplices). Let G = (f,X, S ) be a simplicial direction-
preserving function, where X ⊂ Zd. A t-simplex S ∈ S where 0 ≤ t ≤ d is said
to be bad (relative to function G) if f(VS) = { e1, e2, ... et+1 }, where VS is the
vertex set of S. We use NG to denote the number of bad (d−1)-simplices in FS .
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Lemma 1. For any simplicial direction-preserving function G = (f,X,S ), if
there exists no fixed point in X, then NG is even.

Proof. Firstly, one can show that for every (d − 1)-simplex S ∈ S, if S ∈ FS ,
then there exists exactly one d-simplex in S containing S. Otherwise, there are
exactly two such simplices. Using this property, the parity of NG is same as the
one of the following summation:∑

d-simplex Sd ∈ S

∣∣∣ { bad (d− 1)-simplices in Sd
} ∣∣∣.

As G is direction-preserving and has no fixed point, the number of bad (d− 1)-
simplices in Sd is either 0 or 2. Therefore, the summation above must be even.

We now get the fundamental theorem as a simple corollary of Lemma 1.

Theorem 3 (The Fundamental Discrete Fixed Point Theorem). Let
G = (f,X,S) be a simplicial direction-preserving function. If NG, i.e. the num-
ber of bad (d − 1)-simplices on the boundary is odd, then G must have a fixed
point r ∈ X such that f(r) = 0.

5 The Discrete Brouwer’s Fixed Point Theorem

In this section, the fundamental discrete fixed point theorem will be employed
to prove a fixed point theorem concerning simplicial direction-preserving maps.
It can be recognized as a discrete version of Brouwer’s fixed point theorem. It
states that for any simplicial direction-preserving map from some finite set to
its convex hull, there must exist a fixed point in the definition domain.

We will also derive the theorem of Murota, Iimura and Tamura as a simple
corollary. Actually, the one derived here is much stronger than theirs.

5.1 Preliminaries

We use ek to denote the kth unit vector of Zd where ekk = 1 and eki = 0 for all
i : 1 ≤ i 
= k ≤ d.
Definition 11. For every (d − 1)-simplex S ∈ FS , we let eS be the unit vector
which is outgoing and perpendicular to S. For all r ∈ X and rS ∈ S, we have
eS · (r − rS) ≤ 0.
S ∈ FS is visible from point r /∈ X if eS · (r − rS) > 0 for some rS ∈ S.

Construction 1 (Extension of Simplicial Decomposition). Let X ⊂ Rd

be a finite set and S be a simplicial decomposition of X. For every point r /∈ X,
we can add new simplices into S and build a simplicial decomposition S′ of set
X ′ = X ∪ {r} as follows. For every (d − 1)-simplex S ∈ FS visible from r, we
add d-simplex conv(S, r) and all its faces into S. One can check that S′ is a
simplicial decomposition of X ′, and S ⊂ S′.
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Given a simplicial direction-preserving map M = (F , X,S), we can convert it
into a direction-preserving function G = (f,X,S) as follows.

Construction 2. Given a simplicial direction-preserving map M = (F , X,S),
we can build a simplicial direction-preserving function G = (f,X,S) as follows.
For every r ∈ X, if F(r) = r, then f(r) = 0. Otherwise, let i : 1 ≤ i ≤ d be the
smallest integer such that Fi(r) − ri 
= 0, then f(r) = sign(Fi(r) − ri)ei.

5.2 The Key Lemma

Lemma 2. Let M = (F , X,S ) be a simplicial direction-preserving map where
F is from X to X, and G = (f,X,S ) be the function constructed above, then
either f has a fixed point in BX or NG is odd.

Proof (Proof Sketch). Let n = max r∈X,1≤i≤d |ri |, then we can scale down X
to be X ′ ⊂ (−1, 1)d where X ′ = { r/(n+ 1), r ∈ X }. We also get a simplicial
decomposition S′ of X ′ from S using the one-to-one correspondence between X
and X ′, and a map F ′ from X ′ to X ′ where F ′(r) = F((n+ 1)r)

/
n+ 1.

Let G′ be the function constructed from map M ′ = (F ′, X ′,S′), then it is
easy to check that NG = NG′ . Therefore, we only need to prove the lemma for
maps M = (F , X,S) with X ⊂ (−1, 1)d. From now on, we always assume that
X ⊂ (−1, 1)d.

If f has a fixed point in set BX , then the lemma is proven. Otherwise, we
extend (by applying Construction 1 for d times) G = (f,X,S) to be a new
function G∗ = (f∗, X∗,S∗) such that X ⊂ X∗, X∗ = [−1, 1]d and S ⊂ S∗.
After proving that G∗ is simplicial direction-preserving, we show the following
two properties of G and G∗ :

Property 1. NG∗ is odd;

Property 2. NG ≡ NG∗ (mod 2),

and the lemma is proven.
Details of the proof can be found in the full version [1].

5.3 The Discrete Brouwer’s Fixed Point Theorem

From Construction 2, every fixed point of function f is also a fixed point of map
F . By Theorem 3 and Lemma 2, we get the following theorem immediately.

Theorem 4 (The Discrete Brouwer’s Fixed Point Theorem). For every
simplicial direction-preserving map M = (F , X,S) such that F maps X to X,
there must exist a fixed point in X.

Now we prove the fixed point theorem of Murota, Iimura and Tamura [14] as a
direct corollary of Theorem 4.

Lemma 3 (Property of Integrally Convex Sets [14]). For every integrally
convex set X, there exists a simplicial decomposition S of X, which satisfies for
every x ∈ X, letting Sx ∈ S be the smallest simplex containing x, then all of its
vertices belong to N(x) = { r ∈ Zd | ||r − x ||∞ < 1 }.
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Let F be a hypercubic direction-preserving map from integrally convex set X ⊂
Zd to X , and S be a simplicial decomposition of X which satisfies the condition
in Lemma 3, then one can check that M = (F , X,S) is a simplicial direction-
preserving map from X to X. By Theorem 4, we know that there is a fixed point
of F in X .

Moreover, the argument above shows that the theorem of Murota, Iimura
and Tamura can be greatly strengthened. Actually, map F is not necessary to
be hypercubic direction-preserving. Being simplicial direction-preserving relative
to some simplicial decomposition of X is sufficient to ensure the existence of a
fixed point in X .

6 An Explanation for the Definition of Bad Cubes

Chen and Deng [2] defined the badness of (d − 1)-cubes relative to hypercubic
direction-preserving functions in d-dimensional space, and showed that for any
hypercubic direction-preserving function f on Ca,b ⊂ Zd, if the number of bad
(d − 1)-cubes on the boundary is odd, then f must have a fixed point in Ca,b.
While the theorem itself is succinct, the definition of bad cubes seems a little
mysterious and lacks a satisfactory explanation. In this section, we will use the
simplicial model developed in section 3 and 4 to resolve this puzzle.

First, we add extra points into the lattice set Ca,b ⊂ Zd and construct a
simplicial decomposition for the new set Da,b, where Ca,b = Da,b. Then, we
extend the hypercubic direction-preserving function f on Ca,b to be a simplicial
direction-preserving function on Da,b. Finally, we prove that the parity of NB

is same as NG, where NB is the number of bad (d − 1)-cubes and NG is the
number of bad (d − 1)-simplices on the boundary. In this way, we show that
Chen and Deng’s theorem [2] is a special case of the fundamental discrete fixed
point theorem.

6.1 Preliminaries

Definition 12. A convex subdivision P of a finite set X ⊂ Rd is a collection of
convex d-polytopes such that: 1). X = ∪ P∈PP , and for every polytope P ∈ P,
all of its vertices are drawn from X; 2). For every two polytopes P1, P2 ∈ P, if
P1 ∩ P2 
= ∅, then P1 ∩ P2 is a face of both P1 and P2.

Definition 13. Let P be a convex t-polytope in Rd and VP be its vertex set. The
center point cP of polytope P is defined as cP =

∑
r∈VP

(r/|VP |). Obviously, we
have cP ∈ P and cP /∈ VP .

For example, let C ⊂ Zd be a t-cube centered at r ∈ Zd and perpendicular to
T , then the center point c of C satisfies that ck = rk for every k ∈ T , and
ck = rk + 1/2 for every k /∈ T .

Let P be a convex subdivision of set X in Rd. We now add extra points r ∈ X
into X and construct a simplicial decomposition S′ for the new set X ′. Details
of the construction are described by the algorithm in Figure 1.
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1: S ′ = { {r} | r ∈ X } and X ′ = X

2: for any t from 1 to d do
3: for any F that is a t-face of some d-polytope in P do
4: add the center point cF of F into X ′

5: for any (t − 1)-simplex S ∈ S ′ and S ⊂ F do
6: add every face of t-simplex conv(S, cF ) into S ′

Fig. 1. The Construction of S ′ and X ′

Every lattice set Ca,b ⊂ Rd has a natural convex subdivision P where P =
{C | d-cube C ⊂ Ca,b }. Using Figure 1, we get a simplicial decomposition S of

Da,b =
{
r ∈ Rd

∣∣∣ ∀ 1 ≤ i ≤ d, a ≤ ri ≤ b and ∃ r′ ∈ Zd, r = r′/2
}
.

6.2 Extension of Hypercubic Direction-Preserving Functions

Let f be a hypercubic direction-preserving function on Ca,b, we now extend it
onto set Da,b as follows. For every r ∈ Da,b −Ca,b, assume it is the center point
of t-cube C ⊂ Ca,b. If 0 ∈ f(C), then f(r) = 0. Otherwise, let 1 ≤ t ≤ d be
the largest integer such that f(C) ∩ {±et} 
= ∅, then f(r) = et if et ∈ f(C) and
f(r) = −et if −et ∈ f(C). One can prove the following two properties.

Property 1. Let f be a hypercubic direction-preserving function on Ca,b ⊂ Zd,
then G = (f,Da,b,S) is a simplicial direction-preserving function.

Property 2. If the extended function G = (f,Da,b,S) has a fixed point in Da,b,
then the original function must have a fixed point in Ca,b.

6.3 The Nature of Bad Cubes

We are ready to give an explicit explanation for the definition of bad cubes.

Lemma 4. Let f be a hypercubic direction-preserving function on Ca,b ⊂ Zd

and G = (f,Da,b,S) be the extend function. For every t-cube Ct in Ca,b where
0 ≤ t ≤ d− 1, it is bad relative to f iff the cardinality of the following set is odd:

SCt =
{
t-simplex S ∈ S is bad relative to G

∣∣∣ S ⊂ Ct
}
.

Proof. We use induction on t. The base case for t = 0 is trivial.
For t > 0, we assume the lemma is true for case t − 1. Let c be the center

point of Ct, then the way we build simplicial decomposition S implies that{
t-simplex St ⊂ Ct

}
=
{

conv(St−1, c), St−1 ∈ S is on the boundary of Ct
}

where St−1 is used to denote (t− 1)-simplices in S.
Firstly, we prove that, if t-cube Ct ⊂ Zd is not bad, then |SCt | is even. If

0 ∈ f(Ct), then f(c) = 0. As each t-simplex in Ct has c as one of its vertices,
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SCt = ∅ and we are done. Similarly, we can prove if f(Ct) ∩ {±ek} 
= ∅ where
k > t + 1, then SCt = ∅. If ek /∈ f(Ct) where 1 ≤ k ≤ t + 1, then for every
t-simplex S ⊂ Ct, ek /∈ f(VS), and thus, SCt = ∅. Otherwise, we have f(Ct) =
{ e1, ..., et+1 }, and thus f(c) = et+1. Because Ct is not bad, the number of bad
(t− 1)-cubes on the boundary of Ct is even. Using the induction hypothesis on
t − 1, a (t − 1)-cube is bad iff the number of bad (t − 1)-simplices in it is odd.
As a result, the number of bad (t− 1)-simplices on the boundary of Ct is even.
Using the equation in the first paragraph, we know |SCt | is even too.

On the other hand, we prove if Ct is bad, then |SCt | is odd. Since f(Ct) =
{ e1, ..., et+1 }, we have f(c) = et+1. As the number of bad (t− 1)-cubes on the
boundary of Ct is odd, the number of bad (t− 1)-simplices on the boundary of
Ct is also odd, according to the induction hypothesis on case t − 1. Using the
equation in the first paragraph again, we know |SCt | is odd.

We now get Lemma 5 as a direct corollary of Lemma 4.

Lemma 5. The parity of NB ( the number of bad (d− 1)-cubes on the boundary
of Ca,b ) is same as the one of NG ( the number of bad (d − 1)-simplices on the
boundary of Da,b ).

With Property 1, 2 and Lemma 5 above, Chen and Deng’s theorem can be
immediately derived from the fundamental discrete fixed point theorem.

7 Concluding Remarks

In this paper, we generalize the concept of direction-preserving maps and char-
acterize a new class of discrete maps over simplicial structures. The fundamental
discrete fixed point theorem is then proposed, which is based on the counting
of bad (d − 1)-simplices on the boundary. The power of this theorem is demon-
strated in two ways. First, it is applied to prove the discrete Brouwer’s fixed
point theorem which is much more general than the one of Murota, Iimura and
Tamura. Second, we resolve the puzzle of bad cubes, and show that the bound-
ary condition of Chen and Deng’s theorem is exactly equivalent to the one of
the fundamental theorem.

Our work would immediately imply the corresponding discrete concept of
degree. It would be an especially interesting problem to study the case when the
fixed point is defined in the recent model of a set of points. An immediate follow-
up research direction is to understand other concepts and theorems related to
degree. A clear understanding would definitely advance the state of art of the
numerical computation of related problems, such as the case of discrete fixed
points versus approximate fixed points [2].
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Abstract. The selection problem of m highest ranked out of n candi-
dates is considered for a model while the relative ranking of two can-
didates is obtained through their pairwise comparison. Deviating from
the standard model, it is assumed in this article that the outcome of a
pairwise comparison may be manipulated by the two participants. The
higher ranked party may intentionally lose to the lower ranked party
in order to gain group benefit. We discuss incentive compatible mecha-
nism design issues for such scenarios and develop both possibility and
impossibility results.

1 Introduction

Ensuring truthful evaluation of alternatives in human activities has always been
an important issue throughout the history. In sport, in particular, such an issue
is vital and the practice of the fair play principle has been consistently put
forth at the foremost priority. In addition to reliance on the code of ethics and
professional responsibility of players and coaches, the design of game rules is an
important measure to make fair play enforced. The problem of tournament design
consists of issues such as ranking, round-robin scheduling, timetabling, home-
away assignment, etc. Ranking alternatives through pairwise comparisons is the
most common approach in sports tournaments. Its goal is to find out the ‘true’
ordering among alternatives through complete or partial pairwise comparisons,
and it has been widely studied in the decision theory.

In [4], Harary and Moser gave an extensive review of the properties of round-
robin tournaments, and introduced the concept of ‘consistency’. In [7], Rubin-
stein proved that counting the number of winning matches is a good scheme to
rank among alternatives in round-robin tournaments; it is also the only scheme
that satisfies all the nice rationality properties of ranking. Jech [5] proposed a
ranking procedure for incomplete tournaments, which mainly depended on tran-
sitivity. He proved that if all players are comparable, i.e. there exists a beating
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chain between each pair of players, then the ranking of players under a spe-
cific scheme uniquely exists. Chang et al. [1] investigated the ability of methods
in revealing the true ranking in multiple incomplete round-robin tournaments.
Works have also been done on evaluating the efficiency and efficacy of ranking
methods. Steinhaus [8] proposed an upper bound for the number of matches re-
quired to reveal the overall ranking of all players. Mendonca et al. [6] developed
a methodology for comparing the efficacy of ranking methods, and investigated
their abilities of revealing the true ranking.

Such studies have been mainly based on the assumption that all the players
play truthfully, i.e. with their maximal effort. It is, however, possible that some
players cheat and seek for group benefit. For example, in the problem of choosing
m winners out of n candidates, if the number of winning matches is the only
parameter considered in selecting winners, some top players could intentionally
lose some matches when confronting their ‘friends’, so the friends could earn a
better ranking while the top players remain highly ranked. Such problems will
be the focus of our study: Is there an ideal protocol which allows no cheating
strategy under any circumstances, even when a majority of players, possibly
many with high ranks, form a coalition to help lower ranked players in it?

The problem, that is, choosingm winners out of n players, is studied under two
models. Under both models, a coalition will try to have more of its members be
selected as winners than that under the true ranking. For the collective incentive
compatible model, its only goal is to have more members be selected as winners,
even by sacrificing some highly ranked players who ought to be winners. For
the alliance incentive compatible model, it succeeds not only by having more
winners, but also by ensuring the ones who ought to win remain winners, i.e.
no players sacrifice their winning positions in order to bring in extra winners.
Under both models, our objective is to find an incentive compatible protocol if
it exists, or to prove the non-existence of such protocols.

We will formally introduce the models, notations and definitions in Section
2. In Section 3, we discuss the collective incentive compatible model and prove
the non-existence of incentive compatible protocols under it. In Section 4, we
present an incentive compatible selection protocol under the alliance incentive
compatible model. Finally, we conclude with remarks and open problems.

2 Issues and Definitions

Firstly, we describe a protocol which is widely used in bridge tournaments, the
Swiss Team Protocol. Using it as an example, we show collaboration is possible
to improve the outcome of a subgroup of players, if the protocol is not properly
designed.

2.1 Existence of Cheating Strategy Under the Swiss Team Protocol

The Swiss Team protocol chooses two winners out of four players. Let the four
players P4 = {p1, p2, p3, p4} play according to the following arrangements. After
all the three rounds, two of them will be selected as winners.
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- Assign a distinct ID in N4 = {1, 2, 3, 4} to each player in P4 by a randomly
selected indexing function.

- In round 1, player (with ID) 1 vs. player 2, and player 3 vs. player 4.
- In round 2, two winners of the first round play against each other, and so

as the two losers. The player continuously wins twice will be selected as the
first winner of the whole game; the player continuously loses twice will be
out. Therefore, there are only two players left.

- In round 3, the two remaining players play against each other. The winner
will be selected as the second winner of the whole game.

Suppose the true capacity of the four players in P4 is p1 > p2 > p3 > p4 and we
consider the case in which p1 and p3 form a group. Their purpose is to get both
winning positions by applying a cheating strategy, while the winners should be
p1 and p2 according to the true ranking. Under the settings of the Swiss Team
Protocol described above, the probability of this group {p1, p3} having effective
cheating strategies is non-negligible. Following is their strategy.

- Luckily, the IDs assigned to p1, p2, p3 and p4 are 1, 2, 3 and 4 respectively.
- In round 1, p1 plays against p2 and p3 plays against p4. p1 and p3 win.
- In round 2, p1 plays against p3 and p2 plays against p4. In order to let p3

be one of the winners, p1 loses the match to p3 intentionally. p3 will then be
selected as the first winner for winning twice. In the other match, both p2
and p4 play truthfully and p2 wins.

- In round 3, p1 and p2 play against each other, and p1 wins. Therefore, p1
is selected as the second winner.

By applying the cheating strategy above, the group of bad players {p1, p3} can
break the Swiss Team protocol by letting p1 confront p2 twice, and earn an extra
winning position.

2.2 Problem Description

Suppose a tournament is held among n players Pn = {p1...pn} and m winners
are expected to be selected by a selection protocol. Here a protocol fn,m is a
predefined function to choose winners through pairwise competitions, with the
intention of finding m players of highest capacity. When the tournament starts,
a distinct ID in Nn = {1...n} is assigned to each player in Pn by a randomly
picked indexing function I. Then a match is played between each pair of players.
The competition outcomes will form a tournament graph [2], whose vertex set
is Nn and edges represent results of all the matches. Finally, the graph will be
treated as input to fn,m, and it will output a set of m winners.

Assume there exists a group of bad players play dishonestly, i.e. they might
lose a match on purpose to gain overall benefit of the whole group, while all the
other players always play truthfully, i.e. they try their best to win matches. We
say that the group of bad players gains benefit if they are able to have more
winning positions than that according to the true ranking. Given knowledge of
the selection protocol fn,m, the indexing function I and the true ranking of all
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players, the group of bad players tries to find a cheating strategy that can fool
the selection protocol and gains benefit.

The problem is considered under two models in which the characterizations
of bad players are different. Under the collective incentive compatible model, bad
players are willing to sacrifice themselves to win group benefit; while the ones
under the alliance incentive compatible model only cooperate if their individual
interests are well maintained in the cheating strategy.

Our goal is to find an incentive compatible selection protocol, under which
players or group of players maximize their benefits only by strictly following the
fair play principle, i.e. always play with maximal effort. Otherwise, we prove the
inexistence of such protocols.

2.3 Formal Definitions

When the tournament begins, an indexing function I is randomly picked and a
distinct ID I(p) ∈ Nn is assigned to each player p ∈ Pn. Then a match is played
between each pair of players, and results are represented as a directed graph G.
Finally, G is feeded to the predefined selection protocol fn,m, to produce a set
of m winners W = fn,m(G) ⊂ Nn.

Definition 1 (Indexing Function). An indexing function I for a tournament
attended by n players Pn = {p1, p2, ...pn } is a one-to-one correspondence from
Pn to the set of IDs: Nn = {1, 2, ...n}.
Definition 2. A tournament graph of size n is is a directed graph G = (Nn, E)
such that, for any i 
= j ∈ Nn, either edge ij ∈ E (player with ID i beats player
with ID j ) or edge ji ∈ En. We use Kn to denote the set of all such graphs.

A selection protocol fn,m which chooses m winners out of n candidates is a
function from Kn to {S ⊂ Nn and |S | = m }.
The group of bad players not only know the selection protocol, but also the
true ranking of players. We say a bad player group gains benefit if it has more
members be selected as winners than that according to the true ranking.

Definition 3 (Ranking Function). A ranking function R of is a one-to-one
correspondence from Pn to Nn. R(p) ∈ Nn represents the underlying true ranking
of player p among the n players. The smaller, the stronger.

Definition 4 (Tournament). A tournament Tn among n players Pn is a pair
Tn = (R,B), where R is a ranking function from Pn to Nn and B ⊂ Pn is the
group of bad players.

Definition 5 (Benefit). Given a protocol fn,m, a tournament Tn = (R,B), an
indexing function I and a tournament graph G ∈ Kn, the benefit of the group of
bad players is

Ben(fn,m, Tn, I, G) =
∣∣∣{ i ∈ fn,m(G), I−1(i) ∈ B}∣∣∣− ∣∣∣{p ∈ B, R(p) ≤ m}∣∣∣.
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Given fn,m, Tn and I, not every graph G ∈ Kn is a feasible strategy for the
group of bad players. First, it depends on the tournament Tn = (R,B), e.g. a
player pb ∈ B cannot win player pg /∈ B if R(pb) > R(pg). Second, it depends
on the property of bad players which is specified by the model considered.

We now, for each model, characterize tournament graphs which are recognized
as feasible strategies. The key difference is that a bad player in alliance incentive
compatible model is not willing to sacrifice his own winning position, while a
player in the other model fights for group benefit at all costs.

Definition 6. Given fn,m, Tn = (R,B) and I, a graph G ∈ Kn is c-feasible if

1. For every two players pi, pj /∈ B, if R(pi) < R(pj), then I(pi)I(pj) ∈ E;

2. For all pg /∈ B and pb ∈ B, if R(pg) < R(pb), then edge I(pg)I(pb) ∈ E.

Graph G ∈ Kn is a-feasible if it is c-feasible and also satisfies

3. For every bad player p ∈ B, if R(p) ≤ m, then I(p) ∈ fn,m(G).

A cheating strategy is then a feasible tournament graph G that can be employed
by the group of bad players to gain positive benefit.

Definition 7 (Cheating Strategy). Given fn,m, Tn and I, a cheating strategy
for the group of bad players under the collective incentive compatible (alliance
incentive compatible ) model is a graph G ∈ Kn which is c-feasible (a-feasible )
and satisfies Ben(fn,m, Tn, I, G) > 0.

We ask the following two natural questions.

Q1: Is there a protocol fn,m such that for all Tn and I, no cheating strategy
exists under the collective incentive compatible model?

Q2: Is there a protocol fn,m such that for all Tn and I, no cheating strategy
exists under the alliance incentive compatible model?

In the following sections, we will present an impossibility proof for the first
question, and design an incentive compatible protocol for the second model.

3 Incentive Compatible Protocol Under the Collective
Incentive Compatible Model

In this section, we prove the inexistence of incentive compatible protocol under
the collective incentive compatible model. For every fn,m, we are able to find a
large number of tournaments Tn where cheating strategy exists.

Definition 8. For all integers n and m such that 2 ≤ m ≤ n − 2, we define a
graph Gn,m = (Nn, E) ∈ Kn which consists of 3 parts, T1, T2 and T3.

1. T1 = {1, 2, ...m− 2}. For all i < j ∈ T1, edge ij ∈ E;
2. T2 = {m− 1,m,m+ 1}. (m− 1)m, m(m+ 1), (m+ 1)(m− 1) ∈ E;
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Fig. 1. Tournament Graph G9,5

3. T3 = {m+ 2,m+ 3, ...n}. For all i < j ∈ T3, edge ij ∈ E;
4. For all i′ ∈ Ti and j′ ∈ Tj such that i < j, edge i′j′ ∈ E.

Players in T1 and T3 are well ordered among themselves, but the ones in T2 are
not due to the existence of a cycle. All players in T1 beat the ones in T2 and
T3, and all players in T2 beat the ones in T3. Sample graph G9,5 is shown in
Figure 1. Proof of Lemma 1 can be found in the full version [3].

Lemma 1. For every fn,m where 2 ≤ m ≤ n − 2, if Tn = (R,B) satis-
fies that B = {pm−r+1...pm+1, pm+2} where r ≥ 2 and R(pi) = i for all
1 ≤ i ≤ n, then there exists an indexing function I such that Gn,m is a cheating
strategy.

Corollary 1. For every fn,m where 2 ≤ m ≤ n−2, if Tn = (R,B) satisfies that
B = R−1 (m− r + 1 ...m+ 1,m+ 2) where r ≥ 2, then there exists an indexing
function I such that Gn,m is a cheating strategy.

Corollary 2 can be derived from Lemma 1 immediately. Figure 2 shows the true
ranking of a tournament Tn in which a cheating strategy exists.

By Lemma 2, one can extend Corollary 2 to Theorem 1 below.

Lemma 2. Given fn,m and I, if G ∈ Kn is a cheating strategy for tourna-
ment Tn = (R,B), and there exist players pb ∈ B and pg /∈ B such that
R(pb) = R(pg)+1 ≤ m, then graph G remains a cheating strategy of T ′

n = (R′, B)
where R′(pb) = R(pg), R′(pg) = R(pb) and R′(p) = R(p) for every other
player p.

Theorem 1. For every fn,m where 2 ≤ m ≤ n − 2, if Tn = (R,B) satis-
fies: 1). at least one bad player ranks as high as m − 1; 2). the ones ranked
m + 1 and m + 2 are both bad players; 3). the one ranked m is a good player,
then there always exists an indexing function I such that Gn,m is a cheating
strategy.

Theorem 1 describes a much larger class of tournaments in which cheating strat-
egy exists. An example of such tournaments is shown in Figure 3.
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Top m players

Bad players Good players

Fig. 2. An Example of Tournaments

Top m players

Bad players Good players

Fig. 3. An Example of Tournaments

4 Incentive Compatible Protocol Under the Alliance
Incentive Compatible Model

In this section, we answer question Q2 for arbitrary n and m. We prove that
whether a successful protocol exists is completely determined by the value of
n − m. When n − m ≤ 2, cheating strategies can always be constructed, and
thus we prove the inexistence of ideal protocol. When n−m ≥ 3, we present a
selection protocol f∗n,m under which no cheating strategy exists.

4.1 Inexistence of Selection Protocol When n − m ≤ 2

Definition 9. We define two classes of tournament graphs, graph G∗
n for any

n ≥ 3 and graph G′
n for any n ≥ 4. Their structures are similar to Gn,m.

- For G∗
n, T1 = { 1, 2, ... n− 3 }, T2 = {n− 2, n− 1, n } and T3 = ∅ with edges

(n− 2)(n− 1), (n− 1)n, n(n− 2) ∈ G∗
n. Graph G∗

6 is shown in Figure 4.

- For G′
n, T1 = { 1, 2, ... n− 4 }, T2 = {n− 3, n− 2, n− 1} and T3 = {n} with

edges (n− 3)(n− 2), (n− 2)(n− 1), (n− 1)(n− 3) ∈ G′
n. Sample graph G′

7
is shown in Figure 5.

By the following two lemmas, no ideal protocol exists when n − m ≤ 2. The
proofs can be found in the full version [3].

Lemma 3. For every fn,m where n−m = 1 and m ≥ 2, if Tn = (R,B) satisfies
B = { p1, p2, ... pn−2, pn } and R(pi) = i for all 1 ≤ i ≤ n, then there exists an
indexing function I such that graph G∗

n is a cheating strategy for the group of
bad players under the alliance incentive compatible model.

Lemma 4. For every fn,m where n−m = 2 and m ≥ 2, if Tn = (R,B) satisfies
B = { p1, p2, ... pn−3, pn−1, pn } and R(pi) = i for all 1 ≤ i ≤ n, then there exists
an indexing function I such that graph G′

n is a cheating strategy for the group
of bad players under the alliance incentive compatible model.

4.2 Selection Protocol f ∗
n,m for Case n − m ≥ 3

In this section, we’ll first introduce some important properties of tournament
graphs. Then a selection protocol f∗n,m will be described for case n−m ≥ 3. Fi-
nally, we prove that for any tournament Tn and indexing function I, no cheating
strategy exists for the group of bad players.
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Fig. 4. Tournament graph G∗
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Fig. 5. Tournament graph G′
7

Definition 10. A directed graph G is said to be strongly connected if there’s a
directed path between every pair of vertices. Any maximal subgraph of G that is
strongly connected is called a strongly connected component of graph G.

Let G ∈ Kn be a tournament graph. We use G1... Gk to denote its strongly
connected components which satisfy that for all u ∈ Gi and v ∈ Gj such that
i < j, edge uv ∈ G. The proof of Lemma 5 below can be found in [2].

Definition 11. A directed graph G of order n ≥ 3 is pancyclic if it contains a
cycle of length l for each l = 3, 4, ... n, and is vertex-pancyclic if each vertex v
of G lies on a cycle of length l for each l = 3, 4, ... n.

Lemma 5. Every strongly connected tournament graph is vertex-pancyclic.

Corollary 2. Let G be a tournament graph with strongly connected components
G1... Gk. If there is no cycle of length l in G, then |Gi | < l for all 1 ≤ i ≤ k.

Our protocol f∗n,m described in Figure 6 is an algorithm working on tournament
graphs. The algorithm checks whether 3 |n−m.

- When n−m ≡ 1 (mod 3), if there exists a cycle of 4 vertices, delete all the
vertices in the cycle; otherwise, delete the lowest ranked vertex in G. As a
result, we have n′ − m ≡ 0 (mod 3) where n′ is the number of remaining
candidates after deletion.

- When n −m ≡ 2 (mod 3), if there exists a cycle of 5 vertices in G, delete
all the vertices in the cycle; otherwise, delete the two lowest ranked vertices.
Similarly, it can also be reduced to the case of n′ −m ≡ 0 (mod 3).

- When n − m ≡ 0 (mod 3), if there exist cycles of 3 vertices, continuously
delete them until either 1) no such cycle exists, then choose the m highest
ranked ones as winners; or 2) there’re m vertices left, then choose all of the
remaining candidates as winners.

The proof of the following theorem can be found in the full version [3].

Theorem 2. For all Tn, I and a-feasible graph G, Ben(fn,m, Tn, I, G) ≤ 0.
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1: Ensure n − m ≥ 3 and graph G ∈ Kn

2: let G1, G2, ... Gk be the strongly connected components of graph G = (Nn, E )
3: if n − m ≡ 1 (mod 3) then
4: if there exists a cycle C of length 4 in G then
5: delete all the 4 vertices in C from graph G

6: else
7: let t be the smallest vertex ( integer) in Gk, and delete vertex t from G

8: endif
9: else if n − m ≡ 2 (mod 3) then

10: if there exists a cycle C of length 5 in G then
11: delete all the 5 vertices in C from graph G

12: else if |Gk | = 1
13: let t1 ∈ Gk and t2 be the smallest vertex ( integer) in Gk−1, delete t1, t2

14: else
15: let t1 and t2 be the two smallest vertices ( integers) in Gk, delete t1, t2

16: end if
17: end if
18: while the number of vertices in G is larger than m do
19: if there exists a cycle C of length 3 in G then
20: delete all the 3 vertices in C from graph G

21: else
22: vertices can be sorted as k1 ... km′ such that kikj ∈ E, ∀ 1 ≤ i < j ≤ m′

23: output set { k1, k2, ... km } and return
24: end if
25: end while
26: output all the remaining vertices in G and return

Fig. 6. Details of Selection Protocol f∗
n,m

5 Conclusion Remarks

In this article, we discussed the possibility of an incentive compatible selection
protocol to exist, by which the benefits of either individual players or a group
of players are maximized by playing truthfully. Under the collective incentive
compatible model, our result indicates that cheating strategies are available in
at least 1/8 tournaments, if we assume the probability for each player to be in
the bad group is 1/2. On the other hand, we showed that there does exist an
incentive compatible selection protocol under the alliance incentive compatible
model, by presenting a deterministic algorithm.

Many problems remain and require further analysis. Under the first model,
could the general bound of 1/8 be improved? Could we find good selection pro-
tocols in the sense that the number of tournaments with cheating strategies is
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close to this bound? Though we have proved the inexistence of ideal protocol
under this model, does there exist any probabilistic protocol, under which the
probability of having cheating strategies is negligible?

Finally, we’d like to raise the issue of output truthful mechanism design. In
our model, an output truthful mechanism would output a list of k players, each
of which is among the top k players in the true ranking. It would be interesting
to know whether there is such a mechanism or not. For a related problem we are
going to describe next, this is possible. Consider a committee of 2n+1 to select
one out of candidates. The expected output is the one favored by the majority
of the committee. The following protocol will return the true outcome but not
everyone will vote truthfully: After the voting, a fixed amount of bonus will be
distributed to the voters who voted for the winner. Using this mechanism, every
committee member will vote for the candidate favored by the majority though
not everyone likes him or her.
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Abstract. We examine how to induce selfish heterogeneous users in a
multicommodity network to reach an equilibrium that minimizes the so-
cial cost. In the absence of centralized coordination, we use the classical
method of imposing appropriate taxes (tolls) on the edges of the network.
We significantly generalize previous work [20,13,9] by allowing user de-
mands to be elastic. In this setting the demand of a user is not fixed a
priori but it is a function of the routing cost experienced, a most natural
assumption in traffic and data networks.

1 Introduction

We examine a network environment where uncoordinated users, each with a
specified origin-destination pair, select a path to route an amount of their re-
spective commodity. Let f be a flow vector defined on the paths of the network,
which describes a given routing according to the standard multicommodity flow
conventions. The users are selfish: each wants to choose a path P that minimizes
the cost TP (f). The quantity TP (f) depends typically on the latency induced
on P by the aggregated flow of all users using some edge of the path.

We model the interaction of the selfish users by studying the system in the
steady state captured by the classic notion of a Wardrop equilibrium [19]. This
state is characterized by the following principle: in equilibrium, for every origin-
destination pair (si, ti), the cost on every used si− ti, path is equal and less than
or equal to the cost on any unused path between si and ti. The Wardrop principle
states that in equilibrium the users have no incentive to change their chosen
route; under some minor technical assumptions the Wardrop equilibrium concept
is equivalent to the Nash equilibrium in the underlying game. The literature on
traffic equilibria is very large (see, e.g., [2,6,5,1]). The framework is in principle
applicable both to transportation and decentralized data networks. In recent
years, starting with the work of Roughgarden and Tardos [17], the latter area
motivated a fruitful treatment of the topic from a computer science perspective.
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The behavior of uncoordinated selfish users can incur undesirable conse-
quences from the point of view of the system as a whole. The social cost function,
usually defined as the total user latency, expresses this societal point of view.
Since for several function families [17] one cannot hope that the uncoordinated
users will reach a traffic pattern which minimizes the social cost, the system
designer looks for ways to induce them to do so. A classic approach, which we
follow in this paper, is to impose economic disincentives, namely put nonneg-
ative per-unit-of-flow taxes (tolls) on the network edges [2,12]. The tax-related
monetary cost will be, together with the load-dependent latency, a component
of the cost function TP (f) experienced by the users. As in [3,20] we consider the
users to be heterogeneous, i.e., belonging to classes that have different sensitivi-
ties towards the monetary cost. This is expressed by multiplying the monetary
cost with a factor a(i) for user class i. We call optimal the taxes inducing a user
equilibrium flow which minimizes the social cost.

The existence of a vector of optimal edge taxes for heterogeneous users in
multicommodity networks is not a priori obvious. It has been established for
fixed demands in [20,13,9]. In this paper we significantly generalize this previous
work by allowing user demands to be elastic. Elastic demands have been studied
extensively in the traffic community (see, e.g., [10,1,12]). In this setting the
demand di of a user class i is not fixed a priori but it is a function Di(u) of
the vector u of routing costs experienced by the various user classes. Demand
elasticity is natural in traffic and data networks. People may decide whether
to travel based on traffic conditions. Users requesting data from a web server
may stop doing so if the server is slow. Even more elaborate scenarios, such as
multi-modal traffic, can be implemented via a judicious choice of the demand
functions. E.g., suppose that origin-destination pairs 1 and 2 correspond to the
same physical origin and destination points but to different modes of transit,
such as subway and bus. There is a total amount d of traffic to be split among
the two modes. The modeler could prescribe the modal split by following, e.g.,
the well-studied logit model [1]:

D1(u) = d
eθu1+A1

eθu1+A1+eθu2+A2
, D2(u) = d−D1(u)

for given negative constant θ and nonnegative constants A1 and A2. Here u1
(resp. u2) denotes the routing cost on all used paths of mode 1 (resp. 2).

For the elastic demand setting we show in Section 3 the existence of taxes that
induce the selfish users to reach an equilibrium that minimizes the total latency.
Note that for this result we only require that the vector D(u) of the demand
functions is monotone according to Definition 1. The functions Di(u) do not
have to be strictly monotone (and therefore invertible) individually, and for some
i 
= j, Di(u) can be increasing while Dj(u) can be decreasing on a particular
variable (as for example in the logit model mentioned above). The result is stated
in Theorem 1 and constitutes the main contribution of this paper. The existence
results for fixed demands in [20,13,9] follow as corollaries. Our proof is developed
over several steps but its overall structure is explained at the the beginning of
Section 3.1.
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We emphasize that the equilibrium flow in the elastic demand setting satisfies
the demand values that materialize in the same equilibrium, values that are not
known a priori. This indeterminacy makes the analysis particularly challenging.
On the other hand, one might argue that with high taxes, which increase the
routing cost, the actual demand routed (which being elastic depends also on the
taxes) will be unnaturally low. This argument does not take fully into account
the generality of the demand functions Di(u) which do not even have to be
decreasing; even if they do they do not have to vanish as u increases. Still it is
true that the model is indifferent to potential lost benefit due to users who do
not participate. Nevertheless, there are settings where users may decide not to
participate without incurring any loss to either the system or themselves and
these are settings we model in Section 3. Moreover in many cases the system
designer chooses explicitly to regulate the effective use of a resource instead
of heeding the individual welfare of selfish users. Charging drivers in order to
discourage them from entering historic city cores is an example, among many
others, of a social policy of this type.

A more user-friendly agenda is served by the study of a different social cost
function which sums total latency and the lost benefit due to the user demand
that was not routed [10,11]. This setting was recently considered in [4] from a
price of anarchy [14] perspective. In this case the elasticity of the demands is
specified implicitly through a function Γi(x) (which is assumed nonincreasing
in [4]) for every user class i. Γi(di) determines the minimum per-user benefit
extracted if di users from the class decide to make the trip. Hence Γi(di) also
denotes the maximum travel cost that each of the first di users (sorted in order of
nonincreasing benefit) from class i is willing to tolerate, in order to travel. In the
full version of the paper we show the existence of optimal taxes for this model.
We demonstrate however that for these optimal taxes to exist, participating
users must tolerate, in the worst-case, higher travel costs than those specified by
their Γ (·) function.

In this extended abstract we omit many technical details. A full version of the
paper is available as AdvOL-Report 2006/02 at http://optlab.mcmaster.ca/

2 Preliminaries

The model: Let G = (V,E) be a directed network (possibly with parallel edges
but with no self-loops), and a set of users, each with an infinitesimal amount
of traffic (flow) to be routed from an origin node to a destination node of G.
Moreover, each user α has a positive tax-sensitivity factor a(α) > 0. We will
assume that the tax-sensitivity factors for all users come from a finite set of
possible positive values. We can bunch together into a single user class all the
users with the same origin-destination pair and with the same tax-sensitivity
factor; let k be the number of different such classes. We denote by Pi, a(i) the
the flow paths that can be used by class i, and the tax-sensitivity of class i, for
all i = 1, . . . , k respectively. We will also use the term ‘commodity i’ for class i.
Set P .= ∪i=1,...,kPi. Each edge e ∈ E is assigned a latency function le(fe) which
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gives the latency experienced by any user that uses e due to congestion caused by
the total flow fe that passes through e. In other words, as in [3], we assume the
additive model in which for any path P ∈ P the latency is lP (f) =

∑
e∈P le(fe),

where fe =
∑

e�P fP and fP is the flow through path P . If every edge is assigned
a per-unit-of-flow tax be ≥ 0, a selfish user in class i that uses a path P ∈ Pi

experiences total cost TP (f) equal to
∑

e∈P le(fe)+a(i)
∑

e∈P be hence the name
‘tax-sensitivity’ for the a(i)’s: they quantify the importance each user assigns to
the taxation of a path.

A function g : Rn → Rm is positive if g(x) > 0 when x > 0. We assume that
the functions le are strictly increasing, i.e., x > y ≥ 0 implies le(x) > le(y), and
that le(0) ≥ 0. This implies that le(fe) > 0 when fe > 0, i.e., the function le is
positive.

Definition 1. Let f : K → Rn, K ⊆ Rn. The function f is monotone on K if
(x− y)T (f(x) − f(y)) ≥ 0, ∀x ∈ K, y ∈ K. The function f is strictly monotone
if the previous inequality is strict when x 
= y.
In what follows we will use heavily the notion of a nonlinear complementar-
ity problem. Let F (x) = (F1(x), F2(x), . . . , Fn(x)) be a vector-valued function
from the n-dimensional space Rn into itself. Then the nonlinear complementar-
ity problem of mathematical programming is to find a vector x that satisfies the
following system:

xTF (x) = 0, x ≥ 0, F (x) ≥ 0.

3 The Elastic Demand Problem

In this section the social cost function is defined as the total latency
∑

e fele(fe).
We set up the problem in the appropriate mathematical programming framework
and formulate the main result for this model in Theorem 1.

The traffic (or Wardrop) equilibria for a network can be described as the
solutions of the following mathematical program (see [1] p. 216):

(TP (f) − ui)fP = 0 ∀P ∈ Pi, i = 1 . . . k
TP (f) − ui ≥ 0 ∀P ∈ Pi, i = 1 . . . k∑

P∈Pi

fP −Di(u) = 0 ∀i = 1 . . . k

f, u ≥ 0

where TP is the cost of a user that uses path P , fP is the flow through path
P , and u = (u1, . . . , uk) is the vector of shortest travel times (or generalized
costs) for the commodities. The first two equations model Wardrop’s principle
by requiring that for any origin-destination pair i the travel cost for all paths in
Pi with nonzero flow is the same and equal to ui. The remaining equations ensure
that the demands are met and that the variables are nonnegative. Note that the
formulation above is very general: every path P ∈ Pi for every commodity i has
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its own TP (even if two commodities share the same path P , each may have its
own TP ).

If the path cost functions TP are positive and the Di(·) functions take non-
negative values, [1] shows that the system above is equivalent to the following
nonlinear complementarity problem (Proposition 4.1 in [1]):

(TP (f) − ui)fP = 0 ∀i, ∀P ∈ Pi (CPE)
TP (f) − ui ≥ 0 ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP −Di(u)) = 0 ∀i
∑

P∈Pi

fP −Di(u) ≥ 0 ∀i

f, u ≥ 0

In our case the costs TP are defined as
∑

e∈P le(fe)+a(i)
∑

e∈P be, ∀i, ∀P ∈ Pi,
where be is the per-unit-of-flow tax for edge e, and a(i) is the tax sensitivity
of commodity i. In fact, it will be more convenient for us to define TP slightly
differently:

TP (f) :=
lP (f)
a(i)

+
∑
e∈P

be, ∀i, ∀P ∈ Pi.

The special case where Di(u) is constant for all i, was treated in [20,13,9].
The main complication in the general setting is that the minimum-latency flow f̂
cannot be considered a priori given before some selfish routing game starts. At an
equilibrium the ui achieve some concrete value which in turn fixes the demands.
These demands will then determine the corresponding minimum-latency flow f̂ .
At the same time, the corresponding minimum-latency flow affects the taxes we
impose and this, in turn, affects the demands. The outlined sequence of events
serves only to ease the description. In fact the equilibrium parameters materialize
simultaneously. We should not model the two flows (optimal and equilibrium) as
a two-level mathematical program, since there is no the notion of leader-follower
here, but as a complementarity problem as done in [1].

Suppose that we are given a vector u∗ of generalized costs. Then the social
optimum f̂∗ for the particular demands Di(u∗) is the solution of the following
mathematical program:

min
∑
e∈E

le(f̂e)f̂e s.t. (MP)

∑
P∈Pi

f̂P ≥ Di(u∗) ∀i

f̂e =
∑

P∈P:e∈P

f̂P ∀e ∈ E

f̂P ≥ 0 ∀P
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Under the assumption that the functions xle(x) are continuously differentiable
and convex, it is well-known that f̂∗ solves (MP) iff (f̂∗, μ∗) solves the following
pair of primal-dual linear programs (see, e.g., [8, pp. 9–13]):

min
∑
e∈E

(
le(f̂∗

e ) + f̂∗
e

∂le
∂fe

(f̂∗
e )
)

f̂e s.t.

(LP2)

max
∑

i

Di(u∗)μi s.t.

(DP2)∑
P∈Pi

f̂P ≥ Di(u∗), ∀i μi ≤
∑
e∈P

(
le(f̂∗

e ) + f̂∗
e

∂le
∂fe

(f̂∗
e )
)

∀i, P ∈Pi

f̂e =
∑

P∈P:e∈P

f̂P , ∀e ∈ E μi ≥ 0 ∀i

f̂P ≥ 0, ∀P

Let the functions Di(u) be bounded and set K1 := maxi maxu≥0{Di(u)} + 1.
Then if n denotes |V | the solutions f̂∗, μ∗ of (LP2), (DP2) are upper bounded
as follows f̂∗P ≤ Di(u∗) < K1, ∀P ∈ Pi μi ≤ ∑e∈P

(
le(f̂∗e ) + f̂∗e

∂le
∂fe

(f̂∗e )
)
<

n ·maxe∈E max0≤x≤k·K1{le(x)+x ∂le
∂fe

(x)}, ∀i. It is important to note that these
upper bounds are independent of u∗.

We wish to find a tax vector b that will steer the edge flow solution of (CPE)
towards f̂ . Similarly to [13] we add this requirement as a constraint to (CPE): for
every edge e we require that fe ≤ f̂e. By adding also the Karush-Kuhn-Tucker
conditions for (MP) we obtain the following complementarity problem:

fP (TP (f) − ui) = 0, ∀i, P TP (f) ≥ ui, ∀i, P

ui(
∑

P∈Pi

fP − Di(u)) = 0, ∀i
∑

P∈Pi

fP ≥ Di(u), ∀i

(GENERAL CP)
be(fe − f̂e) = 0, ∀e fe ≤ f̂e, ∀e

(
∑
e∈P

(le(f̂e) + f̂e
∂le
∂fe

(f̂e)) − μi)f̂P = 0, ∀i, P
∑
e∈P

(le(f̂e) + f̂e
∂le
∂fe

(f̂e)) ≥ μi, ∀i, P

μi(
∑

P∈Pi

f̂P − Di(u)) = 0, ∀i
∑

P∈Pi

f̂P ≥ Di(u), ∀i

fP , be, ui, f̂P , μi ≥ 0, ∀P, e, i

where fe =
∑

P�e fP , f̂e =
∑

P�e f̂P .
The users should be steered towards f̂ without being conscious of the con-

straints fe ≤ f̂e; the latter should be felt only implicitly, i.e., through the cor-
responding tax be. Our main result is expressed in the following theorem. For
convenience, we view Di(u) as the ith coordinate of a vector-valued function
D : Rk → Rk.

Theorem 1. Consider the selfish routing game with the latency function seen
by the users in class i being TP (f) :=

∑
e∈P le(fe) + a(i)

∑
e∈P be, ∀i, ∀P ∈ Pi.

If (i) for every edge e ∈ E, le(·) is a strictly increasing continuous function with
le(0) ≥ 0 such that xle(x) is convex and continuously differentiable and (ii) Di
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are continuous functions bounded from above for all i such that D(·) is positive
and −D(·) is monotone then there is a vector of per-unit taxes b ∈ R

|E|
+ such

that, if f̄ is a traffic equilibrium for this game, f̄e = f̂e, ∀e ∈ E. Therefore f̄
minimizes the social cost

∑
e∈E fele(fe).

3.1 Proof of the Main Theorem

The structure of our proof for Theorem 1 is as follows. First we give two basic
Lemmata 1 and 2. We then argue that the two lemmata together with a proof
that a solution to (GENERAL CP) exists imply Theorem 1. We establish that
such a solution for (GENERAL CP) exists in Theorem 2. The proof of the
latter theorem uses the fixed-point method of [18] and arguments from linear
programming duality.

The following result of [1], can be easily extended to our case:

Lemma 1 (Theorem 6.2 in [1]). Assume that the le(·) functions are strictly
increasing for all e ∈ E, D(·) is positive and −D(·) is monotone. Then if more
than one solutions (f, u) exist for (CPE), u is unique and f induces a unique
edge flow.

Lemma 2. Let (f∗, b∗, u∗, f̂∗, μ∗) be any solution of (GENERAL CP). Then∑
P∈Pi

f∗P = Di(u∗), ∀i and f∗e = f̂∗e , ∀e ∈ E.

Let (f∗, b∗, u∗, f̂∗, μ∗) be a hypothetical solution to (GENERAL CP). Then f̂∗

is a minimum latency flow solution for the demand vector D(u∗). Moreover
f∗e ≤ f̂∗e , ∀e ∈ E. After setting b = b∗ in (CPE), Lemma 1 implies that any
solution (f̄ , ū) to (CPE) would satisfy f̄e = f∗e and ū = u∗. Therefore f̄e ≤ f̂∗e ,
∀e ∈ E. Under the existing assumptions on le(·), We can show (proof omitted)
that any equilibrium flow f̄ for the selfish routing game where the users are
conscious of the modified latency TP (f) := lP (f)

a(i) +
∑

e∈P b
∗
e, ∀i, ∀P ∈ Pi, is a

minimum-latency solution for the demand vector reached in the same equilibrium.
Therefore the b∗ vector would be the vector of the optimal taxes. To complete
the proof of Theorem 1 we will now show the existence of (at least) one solution
to (GENERAL CP):

Theorem 2. If fele(fe) are continuous, convex, strictly monotone functions for
all e ∈ E, and Di(·) are nonnegative continuous functions bounded from above
for all i, then (GENERAL CP) has a solution.

Proof. We provide only a sketch of the proof. See the full paper for de-
tails. (GENERAL CP) is equivalent in terms of solutions to the comple-
mentarity problem (GENERAL CP′) (proof omitted). The only difference
between (GENERAL CP) and (GENERAL CP′) is that TP (f) =

∑
e∈P ( le(fe)

a(i) +

be) is replaced by TP (f̂) =
∑

e∈P ( le(f̂e)
a(i) + be) in the first two constraints.

To show that (GENERAL CP′) has a solution, we will follow a classic proof
method by Todd [18] that reduces the solution of a complementarity problem
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to a Brouwer fixed-point problem. In what follows, let [x]+ := max{0, x}. If φ :
Rn → Rn with φ(x) = (φ1(x), φ2(x), . . . , φn(x)) is a function with components
φ1, . . . , φn defined as

φi(x) = [xi − Fi(x)]+,

then x̂ is a fixed point to φ iff x̂ solves the complementarity problem xTF (x) =
0, F (x) ≥ 0, x ≥ 0. Following [1], we will restrict φ to a large cube with an
artificial boundary, and show that the fixed points of this restricted version of
φ are fixed points of the original φ by showing that no such fixed point falls on
the boundary of the cube.

Note that for (GENERAL CP) x = (f, u, b, f̂ , μ). We start by defining the
cube which will contain x. LetKf̂ := maxi maxu≥0{Di(u)}+1, Kf := Kf̂ , Kμ :=
n ·maxe∈E max0≤x≤k·Kf̂

{le(x)+x ∂le
∂fe

(x)}. Let S be the maximum possible entry
of the inverse of any ±1 matrix of dimension at most (k+m)×(k+m), where m
denotes |E| (note that S depends only on (k+m).) Also, let amax = maxi{1/a(i)}
and lmax = maxe{le(k · Kf )}. Then define Kb := (k + m)Smamaxlmax + 1,

Ku := n ·
(
maxe∈E,i∈{1,...,k}

{
le(k·Kf )

a(i)

}
+Kb

)
+ 1.

We allow x to take values from the cube {0 ≤ fP ≤ Kf , P ∈ P}, {0 ≤ ui ≤
Ku, i = 1, . . . k}, {0 ≤ be ≤ Kb, e ∈ E}, {0 ≤ f̂P ≤ Kf̂ , P ∈ P}, {0 ≤ μi ≤
Kμ, i = 1, . . . k}. We define φ = ({φP : P ∈ P}, {φi : i = 1, . . . , k}, {φe : e ∈
E}, {φP̂ : P ∈ P}, {φî : i = 1, . . . k}) with |P| + k +m+ |P| + k components as
follows:

φP (f, u, b, f̂ , μ) = min{Kf , [fP + ui − TP (f̂)]+} ∀i,∀P ∈ Pi

φi(f, u, b, f̂ , μ) = min{Ku, [ui +Di(u) −
∑

P∈Pi

fP ]+} i = 1, . . . , k

φe(f, u, b, f̂ , μ) = min{Kb, [be + fe − f̂e]+} ∀e ∈ E
φP̂ (f, u, b, f̂ , μ) = min{Kf̂ , [f̂P + μi −

∑
e∈P

∂le
∂fe

(f̂e)]+} ∀i,∀P ∈ Pi

φî(f, u, b, f̂ , μ) = min{Kî, [μi +Di(u) −
∑

P∈Pi

f̂P ]+} i = 1, . . . , k

where fe =
∑

P�e fP , f̂e =
∑

P�e f̂P . By Brouwer’s fixed-point theorem, there
is a fixed point x∗ in the cube defined above, i.e., x∗ = φ(x∗). In particular we
have that f∗P = φP (x∗), u∗i = φi(x∗), b∗e = φe(x∗), f̂∗P = φP̂ (x∗), μ∗i = φî(x

∗) for
all P, P̂ ∈ P , i = 1, . . . , k, e ∈ E.

Following the proof of Theorem 5.3 of [1] we can show that

f̂∗P = [f̂∗P +μ∗i −
∑
e∈P

(le(f̂∗e )+f̂∗e
∂le
∂fe

(f̂∗e ))]+, ∀P μ∗i = [μ∗i +Di(u∗)−
∑

P∈Pi

f̂∗P ]+, ∀i

f∗P = [f∗P + u∗i − TP (f̂∗)]+, ∀P. (1)

Note that this implies that (f̂∗, μ∗) satisfy the KKT conditions of (MP) for u∗.
Here we prove only (1) (the other two are proven in a similar way). Let f∗P = Kf
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for some i, P ∈ Pi (if f∗P < Kf then (1) holds). Then
∑

P∈Pi
f∗P > Di(u∗), which

implies that u∗i +Di(u∗)−
∑

P∈Pi
f∗P < u

∗
i , and therefore by the definition of φi

we have that u∗i = 0. Since TP (f̂∗) ≥ 0, this implies that f∗P ≥ f∗P +u∗i −TP (f̂∗).
If TP (f̂∗) > 0, the definition of φP implies that f∗P = 0, a contradiction. Hence
it must be the case that TP (f̂∗) = 0, which in turn implies (1).

If there are i, P ∈ Pi such that f∗P > 0, then (1) implies that u∗i = TP (f̂∗) =∑
e∈P

le(f̂∗
e )

a(i) +
∑

e∈P b
∗
e. In this case we have that u∗i < Ku, because u∗i = Ku ⇒∑

e∈P
le(f̂∗

e )
a(i) +

∑
e∈P b

∗
e = n ·

(
maxe∈E,i∈{1,...,k}

{
le(Kf )

a(i)

}
+Kb

)
+ 1 which is a

contradiction since b∗e ≤ Kb. On the other hand, if there are i, P ∈ Pi such that
f∗P = 0, then (1) implies that u∗i ≤ TP (f̂∗). Again u∗i < Ku, because if u∗i = Ku

we arrive at the same contradiction. Hence we have that

u∗i = [u∗i +Di(u∗) −
∑

P∈Pi

f∗P ]+, ∀i. (2)

Next, we consider the following primal-dual pair of linear programs:

min
∑

i

∑
P∈Pi

fP
lP (f̂∗)
a(i)

s.t. (LP*) max
∑

i

Di(u∗)ui −
∑
e∈E

f̂∗
e be s.t.

(DP*)∑
P∈Pi

fP ≥ Di(u∗) i = 1, . . . , k ui ≤ lP (f̂∗)
a(i)

+
∑
e∈P

be ∀i, ∀P ∈Pi

fe =
∑

P∈P:e∈P

fP ∀e ∈ E be, ui ≥ 0 ∀e∈E,∀i

fe ≤ f̂∗
e ∀e ∈ E

fP ≥ 0 ∀P

From the above, it is clear that f̂∗ is a feasible solution for (LP*), and (u∗, b∗)
is a feasible solution for (DP*). Moreover, since the objective function of (LP*)
is bounded from below by 0, (DP*) has at least one bounded optimal solution
as well. There is an optimal solution (û, b̂) of (DP*) such that all the b̂e’s are
suitably upper bounded:

Lemma 3 (folklore). There is an optimal solution (û, b̂) of (DP*) such that
b̂e ≤ Kb − 1, ∀e ∈ E.
Let f̂ be the optimal primal solution of (LP*) that corresponds to the optimal
dual solution (û, b̂) of (DP*). Exploiting the fact that (f̂ , û, b̂) is a saddle point for
the Lagrangian (see e.g. [16]) of (LP*)-(DP*) we can show (derivation omitted)
that

b∗e = [b∗e + f∗e − f̂∗e ]+, ∀e ∈ E. (3)

Equations (1),(2),(3) imply that (f∗, u∗, b∗, f̂∗, μ∗) is indeed a solution of (GEN-
ERAL CP′), and therefore a solution to (GENERAL CP). The proof of
Theorem 2 is complete.
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Abstract. We consider the online auction problem in which an auction-
eer is selling an identical item each time when a new bidder arrives. It
is known that results from online prediction can be applied and achieve
a constant competitive ratio with respect to the best fixed price profit.
These algorithms work on a predetermined set of price levels. We take
into account the property that the rewards for the price levels are not
independent and cast the problem as a more refined model of online
prediction. We then use Vovk’s Aggregating Strategy to derive a new al-
gorithm. We give a general form of competitive ratio in terms of the price
levels. The optimality of the Aggregating Strategy gives an evidence that
our algorithm performs at least as well as the previously proposed ones.

1 Introduction

We consider the online auction problem proposed by Bar-Yossef, Hildrum, and
Wu [3]. This models the situation where an auctioneer is selling single items in
unlimited supply to bidders who arrive one at a time and each desires one copy.
A particularly interesting case is for a digital good, of which infinitely many
copies can be generated at no cost. Precisely, when each bidder t arrives with
bid mt, the auctioneer puts a price rt on the item and sells a copy to the bidder
at price rt if rt ≤ mt and rejects the bidder otherwise. The auctioneer is required
to compute the price rt prior to knowing the values mt,mt+1, . . .. Below we give
a formal description.

Definition 1 (Online Auction A). For each bidder t = 1, 2, . . . , T ,

1. Compute (randomly) a price rt.
2. Observe the bid mt > 0.
3. If rt ≤ mt, then sell to bidder t at price gA,t = rt.
4. Otherwise, reject bidder t and gA,t = 0.

The total profit of the auction A is GA,T =
∑T

t=1 gA,t.

The goal of the auction is to make the total expected profit E[GA,T ] as much as
the best fixed price profit, denoted OPT, no matter what the bidding sequence
is. Note that OPT = max1≤k≤T km(k), where m(k) is the kth largest bid.

� This work was done while the author was at Tohoku University.
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We first assume that the smallest value l and the largest values h of the
bids in the auction are known. Discretizing the range [l, h] with a finite set of
price levels h ≥ b(1) > b(2) > · · · > b(N) = l, we have the problem reduced
to an online prediction game with expert advice [4,5,8,9]. We use b(i) = lρN−i

for some ρ > 1 with N = O(ln(h/l)) so that b(1) ≥ h/ρ. The idea is to in-
troduce an expert for each price level b(i) who always recommends the price
b(i). We can now use a number of expert-advice algorithms to achieve the to-
tal profit as much as that of the best expert, which is larger than OPT/ρ by
the choice of the set of price levels. Blum, Kumar, Rudra, and Wu employ the
Hedge or the Randomized Weighted Majority algorithm [9,5] and give a lower
bound of

E[GHedge,T ] ≥ lnα
α− 1

(
OPT
ρ

− h

lnα
ln(logρ(h/l) + 1)

)
on the total profit [1], where α > 1 is a parameter of the Hedge algorithm. Blum
and Hartline improve the additional loss term to O(h) by using the Following
Perturbed Leader (FPL) approach with a slight modification [2]. They call the
modified version the Hallucinated-Gain (HG) algorithm and give the following
bound

E[GHG,T ] ≥ (1 − δ)
(

OPT
ρ

− 2h
(

2
δ

ln ν(ρ) +
ν(ρ)
δ2

(1 − δ)ν(ρ) + 1
))
,

where ν(ρ) =
⌊
logρ 2

⌋
+ 1 and δ ∈ [0, 1] is a parameter of the HG algorithm.

Moreover, the HG algorithm can be further improved so that it does not need
to know l and h at a cost of only O(h) additional loss.

In this paper, we first observe that, unlike the typical expert-advice setting,
the rewards for the experts are not uniformly bounded. That is, the reward
for expert i is either 0 or b(i). So we could improve the algorithms using non-
uniform risk information as in [7]. Furthermore, we have a further advantage
in that the rewards for the experts are not independent. More precisely, when
the bid mt lies in (b(i + 1), b(i)], then all experts j with j ≥ i get rewards b(j)
and others get no rewards. In other words, there are only N possible outcomes
to be considered. Taking this advantage into account, we give a more refined
model of online prediction and apply Vovk’s Aggregating Strategy [10] to derive
a new algorithm called the Aggregating Algorithm for Auction (AAA). We give
its profit bound1 given by

E[GAAA,T ] ≥ c(α,B)
(

OPT
ρ

− 1
lnα

ln(logρ(h/l) + 1)
)
,

where α > 1 is a parameter of the AAA and c(α,B) is a complicated function of
α and B = {b(1), . . . , b(N)}. It seems that the bound is somewhat better since it
has only an O(log log(h/l)) additional loss term, but in order to make c(α,B) a
constant, we need to choose α that depends on h so that it quickly converges to
1 Actually we obtain a tighter form of bound.
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1 as h is large. Unfortunately, we have not succeeded to give a useful expression
for c(α,B) to compare the profit bound with that of the HG algorithm, but it is
better than the Hedge bound by the optimality of the Aggregating Strategy. We
conjecture that the AAA performs as well as the HG algorithm. Numerical com-
putation shows that the bound of the AAA outperforms others for sufficiently
large ranges [l, h] with l = 1 and h ≤ 1014.

2 Online Prediction Game and the Aggregating Strategy

We will show that online auction can be modeled as an online prediction game to
which the Aggregating Strategy can be applied. The Aggregating Strategy is a
very general method for designing algorithms that perform optimally for various
games. In this section, we describe the strategy with its performance bound in
a generic form.

First we describe a game that involves the learner (an algorithm), N experts,
and the environment. A game is specified by a triple (Γ,Ω, λ), where Γ is a
fixed prediction space, Ω is a fixed outcome space, and λ : Ω × Γ → [0,∞]
is a fixed reward function. (Note that the game is often described in terms of
a loss function in the literature.) At each trial t = 1, 2, . . . , T , the following
happens.

1. Each expert i makes a prediction xi,t ∈ Γ .
2. The learner combines xi,t and makes its own prediction γt ∈ Γ .
3. The environment chooses some outcome ωt ∈ Ω.
4. The learner gets reward λ(ωt, γt) and experts i get reward λ(ωt, xi,t).

The total reward of the learner A is RA,T =
∑T

t=1 λ(ωt, γt) and that of expert
i is Ri,T =

∑T
t=1 λ(ωt, xi,t). The goal of the learner A is to make predictions so

that its total reward RA,T is not much less than the total reward of the best
expert max1≤i≤N Ri,T .

Now we give the Aggregating Strategy that derives an algorithm called the
Aggregating Algorithm (AA) for each specific game. The AA uses a parameter
α > 1. For each trial t, the AA assigns to each expert i a weight vi,t given by

vi,t =
vi,1α

Ri,t−1∑N
j=1 vj,1α

Rj,t−1
, (1)

where Ri,t−1 =
∑t−1

q=1 λ(ωq, xi,q) is the sum of the rewards that expert i has
received up to the previous trial. Initial weights vi,1 can be set based on a
prior confidence on the experts. Typically the uniform prior (vi,1 = 1/N) is
used. When given predictions xi,t from experts, the AA predicts a γt ∈ Γ
given by

γt = arg sup
γ∈Γ

inf
ω∈Ω

λ(ω, γ)

logα

∑N
i=1 vi,tα

λ(ω,xi,t)
. (2)

The next theorem gives a performance bound of the AA.
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Theorem 1 ([10]). For any outcome sequence (ω1, . . . , ωT ) ∈ Ω∗,

RAA,T ≥ c(α) logα

N∑
i=1

vi,1α
Ri,T ≥ c(α) max

1≤i≤N

(
Ri,T − ln(1/v1,i)

lnα

)
,

where

c(α) = inf
v,x

sup
γ∈Γ

inf
ω∈Ω

λ(ω, γ)

logα

∑N
i=1 viα

λ(ω,xi)
, (3)

where v = (v1, . . . , vN ) ranges over all probability vectors of dimension N and
x = (x1, . . . , xN ) ranges over all possible predictions of experts.

3 The Game for Online Auction

Now we give the game (Γ,Ω, λ) reduced from the online auction problem. We first
fix a finite set of price levels B = {b(1), . . . , b(N)} with h ≥ b(1) > · · · > b(N) = l
as options to choose from.

The prediction space Γ is the set of probability vectors of dimension N . The
prediction γt = pt = (pt(1), . . . , pt(N)) ∈ Γ in the tth trial is interpreted as the
way of choosing price rt in the auction, i.e., letting rt = b(i) with probability
pt(i). For each 1 ≤ i ≤ N , we define an expert who always recommends the
option b(i). Formally, we let xi,t = ei(∈ Γ ), where ei is the unit vector whose
ith component is 1.

The outcome space Ω is the set of vectors whose ith component represents
a reward for the ith option, which is either 0 (for the case where mt < b(i)) or
b(i) (for the case where mt ≥ b(i)). Moreover, if the option b(i) gets a positive
reward, then all the options b(j) with j ≥ i get positive rewards as well. Thus,
we have only N possible reward vectors and

Ω =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(b(1), b(2), . . . , b(N − 1), b(N)),
(0, b(2), . . . , b(N − 1), b(N)),

...
(0, 0, . . . , 0, b(N))

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Let bi = (0, . . . , 0, b(i), . . . , b(N)) so that Ω = {b1, . . . , bN}. If the bid mt lies in
the interval (b(i+ 1), b(i)] in the auction, then let the tth outcome be ωt = bi in
the reduced game.

Finally, our reward function is λ(bi,p) = bi · p =
∑N

j=i b(j)p(j). Under the
reduction just described, it is easy to see that E[gA,t] = λ(bi,pt) if the bid mt is
in (b(i+ 1), b(i)], and so we have E[GA,T ] = RA,T . Similarly, the total profit of
a single sales price b(i) equals Ri,T . So, Theorem 1 implies that the AA for the
auction achieves profit nearly as large as the best single price sales maxiRi,T

in the set B. Moreover, if we choose b(i) = lρN−i, then, no matter what the
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optimal price r∗ ∈ [l, h] is, there exists a b(j) with b(j) ≤ r∗ < b(j + 1) = ρb(j)
and so we have OPT/ρ ≤ Rj,T ≤ maxiRi,T . Therefore, the AA achieves profit
nearly as large as OPT. We call this algorithm the Aggregating Algorithm for
Auction (AAA).

4 The Aggregating Algorithm for Auction

In this section we show how the AAA works by giving the weights vt it maintains
and the prediction pt in a closed form. First we rewrite (1) and (2) in terms of
the notations used in our auction game as

vi,t =
vi,1α

b(i)τi,t−1∑N
j=1 vj,1α

b(j)τj,t−1
, (4)

where τi,t = #{1 ≤ q ≤ t | mt ≤ b(i)} is the number of trials up to t in which
the price b(i) receives reward, and

pt = arg sup
p∈Γ

min
1≤k≤N

bk · p
logα

(
1 +
∑N

i=k vi,t(αb(i) − 1)
) . (5)

Note that the Hedge algorithm predicts with qt(i) = vi,t for determining the
price at trial t. (More precisely, the normalized parameter α1/b(1) is used instead
of α in (4) [3].) The rest is to show the prediction of the AAA.

Theorem 2. Let

dk,t = logα

(
1 +

N∑
i=k

vi,t(αb(i) − 1)

)

for 1 ≤ k ≤ N with the convention dN+1,t = 0. Then,

pt(i) =
1

b(i) (di,t − di+1,t)∑N
k=1

1
b(k) (dk,t − dk+1,t)

attains the supremum of (5).

Proof. Note that we want to solve

pt = arg sup
p∈Γ

min
1≤k≤N

∑N
i=k b(i)p(i)
dk,t

. (6)

We first claim that for any p ∈ Γ ,

min
1≤k≤N

∑N
i=k b(i)p(i)
dk,t

≤ 1∑N
k=1

1
b(k) (dk,t − dk+1,t)

. (7)
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Fig. 1. The Hedge prediction qt(N) and the AAA prediction pt(N) for the lower price

Let M denote the r.h.s. of the above inequality. We prove the claim by con-
tradiction. Assume on the contrary that the claim does not hold, i.e., for any
1 ≤ k ≤ N , there exists a positive Δk > 0 such that∑N

i=k b(i)p(i)
dk,t

=M +Δk.

Then we have

p(k) =
1
b(k)
(
(M +Δk)dk,t − (M +Δk+1)dk+1,t

)
=
M(dk,t − dk+1,t)

b(k)
+
Δkdk,t

b(k)
− Δk+1dk+1,t

b(k)

>
M(dk,t − dk+1,t)

b(k)
+
Δkdk,t

b(k)
− Δk+1dk+1,t

b(k + 1)

since b(k) > b(k + 1). Summing up the both sides over all 1 ≤ k ≤ N , we get

N∑
k=1

p(k) > 1 +
Δ1d1,t

b(1)
> 1,

which contradicts the fact that p is a probability vector. So (7) holds.
On the other hand, the prediction p ∈ Γ with

p(i) =
1

b(i) (di,t − di+1,t)∑N
k=1

1
b(k) (dk,t − dk+1,t)

clearly satisfies the equality of (7). This implies that this prediction p attains
the supremum. ��
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The prediction of the AAA can be viewed as a nonlinear transformation of the
Hedge prediction qt(i). Figure 1 illustrates the transformation for N = 2, α = 1.5
and various sets of price levels B = {b(1), b(2)}. We fix b(1) = 10.

From the figure we can see that the AAA puts more weight on the lower price
b(N) when qt(N) is small. This is reasonable since the lower price is more likely to
get reward. Curiously the weight on b(N) gets larger when b(N) gets closer to b(1).

5 The Performance Bound of the AAA

In this section, we give the performance bound of the AAA by showing c(α) in
terms of the set B of price levels. In what follows, we write c(α,B) to explicitly
specify B. From the proof in Theorem 2, we can rewrite c(α) of (3) as

c(α,B) = inf
v∈Γ

1∑N
k=1

1
b(k) (dk − dk+1)

, (8)

where

dk = logα

(
1 +

N∑
i=k

v(i)(αb(i) − 1)

)
Theorem 3. Let (r1, . . . , rN ) and (s1, . . . , sN ) be the probability vectors in Γ
defined as

ri =
(

1
b(i)

− 1
b(i− 1)

)
b(N),

si =
(

1
αb(i) − 1

− 1
αb(i−1) − 1

)
(αb(N) − 1)

with the convention that b(0) = ∞. Then

c(α,B) =
b(N) lnα

D(r||s) + b(N) lnα
, (9)

where D(r||s) =
∑N

i=1 ri ln(ri/si) is the Kullback-Leibler divergence.

Proof. The problem is to maximize the denominator of (8)

f(v) =
N∑

k=1

1
b(k)

(dk − dk+1)

subject to v ∈ Γ . First we relax the constraint and find the maximum of f(v)
subject to

∑N
i=1 v(i) = 1. Then we will show that the maximizer v∗ lies in

the feasible solution, i.e., v∗(i) ≥ 0 for all i. Since f is concave, the set of
equations

∂

∂v(j)

(
f(v) + t

(
N∑

i=1

v(i) − 1

))

= −(αb(j) − 1)
j∑

k=1

(
1
b(k)

− 1
b(k − 1)

)
1

1 +
∑N

i=k(αb(i) − 1)v(i)
+ t = 0
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for 1 ≤ j ≤ N and
∑N

i=1 v(i) = 1 give the maximizer. It is straightforward to
show that the solution is

v∗(j) =
F (b(j), b(j − 1)) − F (b(j + 1), b(j))

t(αb(j) − 1)

and

t = F (b(N + 1), b(N)) =
1/b(N)

1 + 1/(αb(N) − 1)
,

where b(N + 1) = −∞ and

F (x, y) =
1
x − 1

y
1

αx−1 − 1
αy−1

.

We can show that F (a, b) < F (b, c) for any a < b < c with b > 0. This gives
v∗(j) > 0.

Plugging v∗ into f(v), we have the theorem. ��

6 Numerical Comparisons of the Performance Bounds

To compare the bound of the AAA with those of the Hedge and the HG al-
gorithms, we need to give a useful form of c(α,B) with b(i) = lρN−i for N =
�logρ(h/l)�+1. We have not succeeded to derive such an expression. So we show
numerical experiments to compare the performance bounds. Recall that

E[GHedge,T ] ≥ lnα
α− 1

OPT
ρ

− h

α− 1
ln
(
logρ(h/l) + 1

)
,

E[GHG,T ] ≥ (1 − δ)OPT
ρ

− 2h(1 − δ)
(

2
δ

ln ν(ρ) +
ν(ρ)
δ2

(1 − δ)ν(ρ) + 1
)
,

E[GAAA,T ] ≥ c(α,B)
OPT
ρ

− c(α,B)
lnα

ln
(⌊

logρ h/l
⌋

+ 1
)
.

We fix l = 1 and adjust the parameters of the algorithms so that the first terms
of the bounds are all equal to (1/(2ρ))OPT. Thus, the bounds are all of the form
of

E[GA,T ] ≥ 1
2ρ

OPT − gA(h)h

for some functions gA. Note that gHG(h) = O(1) and gHedge(h) = O(log log h)
by definition. Figure 2 shows how fast the functions gA(h) grow for the three
algorithms.

Although gAAA seems to be slightly increasing, the value is much smaller
than gHedge and gHG for a reasonable range of h. In fact, for a typical choice of
ρ = 1.01, gHG is a large constant (17.97) while gAAA ≤ 0.5 for log log h ≤ 3.5. It
is interesting to note that the Hedge has a better bound than the HG bound in
typical cases. We may improve the bound by using a tighter bound of Theorem 1
and choosing carefully the initial weights v1,i.
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On Indecomposability Preserving Elimination
Sequences
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Abstract. A module of a graph is a non-empty subset of vertices such
that every non-module vertex is either connected to all or none of the
module vertices. An indecomposable graph contains no non-trivial mod-
ule (modules of cardinality 1 and |V | are trivial). We present an algorithm
to compute indecomposability preserving elimination sequence, which is
faster by a factor of |V | compared to the algorithms based on earlier
published work. The algorithm is based on a constructive proof of Ille’s
theorem [9]. The proof uses the properties of X-critical graphs, a gener-
alization of critical indecomposable graphs.

Keywords: Module, indecomposable graph, critically indecomposable
graph, elimination sequence.

1 Introduction

A non-trivial module (Fräissé [7]) of an undirected graph is a proper subset with
2 or more vertices such that each vertex outside the subset is either connected
to all vertices in the subset or to none. If each maximal module is replaced by
a single vertex, then we get an indecomposable or prime or base-level graph.
There are many graph algorithmic problems whose solution on indecomposable
graphs will imply a solution on general graphs. These include the problems in
domination, matching, coloring, optimal spanning tree, graph isomorphism etc.
Therefore the study of indecomposable graph is very significant (see [11, 8, 16,
15, 12]).

Schmerl and Trotter [14] have studied critical indecomposable graphs in which
deletion of any vertex transforms the graph into a decomposable graph. In [6]
Dubey et.al. generalized this concept to X-critical graphs for any vertex sub-
set X , where both G and G(X) are indecomposable but G(V − {v}) is de-
composable for all v ∈ V − X . So the critically indecomposable graphs are
∅-critical.

An ordered sequence of vertices of a graph, v1, v2, v3, . . ., is said to be an
elimination sequence preserving a property P if that property remains valid
in the graph after deletion of each vertex of the sequence in that order. Such
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sequences are useful in induction based proofs and iterative algorithms (see [14,
5, 4, 1]). In general an indecomposability preserving elimination sequence does
not exist, since there are indecomposable graphs from which no vertex can be
deleted without making the graph decomposable (i.e. critically indecomposable
graphs). A generalization of elimination sequence considers a sequence of sets
of vertices instead of single vertices. A result by Schmerl and Trotter [14] says
that every indecomposable graph contains a pair of vertices which can be deleted
without losing indecomposability. A further generalization of this result is due to
Ille [9] which states that if the graph has an indecomposable induced-subgraph
then such a pair of vertices can be extracted from the outside of that subgraph.
Therefore, we can always construct an indecomposability preserving elimination
sequence in which up to two vertices are eliminated at each step. In general, we
can define an elimination sequence in which an initial subsequence has single
vertices and the remainder has pairs. Such a sequence can also be viewed as a
sequence of pairs, except at most one singleton element.

Based on Ille’s result one can search a pair of vertices which leaves the graph
indecomposable after elimination. Many papers [3, 10] discuss an O(n +m) al-
gorithm to test indecomposability of a graph, where n denote the number of
vertices and m denotes the number of edges. Therefore by searching a pair to
eliminate we can construct an elimination sequence which preserves indecom-
posability in O(n3(n + m)) time. In this paper we present an O(n2(n + m))
algorithm which uses the structure of X-critical graphs.

The most efficient algorithm to test indecomposability uses an approach based
on modular decomposition and works in O(n +m) time ([3, 10, 2]). These al-
gorithms try to construct modular decomposition of graphs in linear time. The
O(n + m logn) algorithm presented in Cournier and Habib [2] based on con-
structing induced indecomposable subgraphs for the test of indecomposability,
gives an elimination sequence as a byproduct. It starts from an indecomposable
subgraph G(P4) and at each step adds one or two vertices while preserving in-
decomposability, till entire graph is constructed. Here we present an elimination
sequence which contains at most one single-vertex (at first) and remaining are
all pairs. Such a sequence can be used in fast algorithms for problems such as
perfect-matching, 3-coloring etc, see [5]. The sequence generated by Cournier
and Habib cannot be used in these algorithms because it does not guarantee
elimination sequence containing pairs.

Contribution of this paper. We describe an algorithm to compute a com-
mutative elimination sequence which has O(n2) time complexity. The existance
of such sequence was established in [6]. Following it we present a proof of the
uniqueness of this sequence. Then we give an alternative (constructive) proof
of Ille’s theorem which leads to an O(n + m) algorithm to compute a pair of
vertices which can be eliminated while preserving X-criticality. Using these two
algorithms we have an O(n2(n +m)) algorithm to compute an elimination se-
quence for arbitrary indecomposable graph, which is the following computa-
tion. Given an indecomposable graph G with indecomposable subgraph G(X),
it computes 2-sets D1, . . . , Dk which are mutually exclusive, Di ⊂ V −X , and
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G(V −D1−. . .−Dj) are indecomposable for all j and |V −X−D1−. . .−Dk| ≤ 5.
The similar computation based on the original theorem by Ille involves explicit
search and costs O(n3(n+m)).

1.1 Basic Definitions and Results

In this paper we shall deal with undirected graphs only. If G = (V,E) is a graph
and W ⊆ V , then G(W ) will denote the induced subgraph on W . A vertex set
M ⊆ V is called a module if for all x, y ∈ M and z ∈ V −M (x, z) ∈ E iff
(y, z) ∈ E. A module M is said to be non-trivial if 2 ≤ |M | ≤ |V | − 1. A graph
is said to be prime or indecomposable if it has no non-trivial module. Note that
a set M is a module in graph G, then it is also a module in G, the complement
of G.

Let G = (V,E) be a graph and X ⊂ V such that G(X) is indecomposable.
Then for any vertex y ∈ V −X , only one of the following three cases are possible:
(i) G(X ∪ {y}) is indecomposable, (ii) G(X ∪ {y}) is decomposable with the
unique module {y, z} for some z ∈ X , and (iii) G(X∪{y}) is decomposable with
the unique module X . We partition the vertices of V −X based on these cases.
If it is case (i), then y belongs to a class denoted by extn(X), in case of (ii) y
belongs to a class denoted by eqX(z), finally in the third case y belongs to a
class denoted by [X ]. We denote this partition by C(V −X,X).

If a graphG = (V,E) is indecomposable and its induced subgraphsG(V −{x})
are decomposable, for all x ∈ V , then G is said to be critically indecomposable.
Schmerl and Trotter [14] have shown that the class of bipartite graphs given by
({ai : 1 ≤ i ≤ k}, {bi : 1 ≤ i ≤ k}, {(ai, bj) : i ≤ j}) with k > 1, and their
complements are the only critically indecomposable graphs. It is easy to see that
if G is indecomposable or critically-indecomposable, then so is G.

The concept of critically indecomposable graphs is generalized in [6]. Let
G = (V,E) be an indecomposable graph and X ⊂ V such that G(X) is also
indecomposable. If G(V − {x}) is decomposable for all x ∈ V − X , then G is
said to be X-critical. Therefore critically indecomposable graphs are ∅-critical.

1.2 Indecomposable Subgraphs

A basic theorem proved in [13, 14] states that every indecomposable graph with
at least 4 vertices has a set of 4 vertices such that induced subgraph on it is also
indecomposable. They also show that an induced indecomposable subgraph can
be expanded to a larger indecomposable induced subgraph.

Theorem 1. [14] Let G = (V,E) be an indecomposable graph. If X is a subset
of V such that G(X) is indecomposable and 3 ≤ |X | ≤ |V | − 2, then there exists
a pair of vertices a, b ∈ V −X such that G(X ∪ {a, b}) is indecomposable.

Let an indecomposable graph G have an indecomposable induced subgraph
G(X). Using the above result we can see there exists either a single or a pair
of vertices in V −X which can be eliminated while preserving indecomposability.
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Formally, there is a vertex set Y , X ⊂ Y ⊂ V , such that G(Y ) is also indecom-
posable and 1 ≤ |V − Y | ≤ 2. A stronger result proved by Ille [9] follows which
states that there always exists a pair which can be eliminated.

Theorem 2. [9] If G and an induced subgraph G(X) are indecomposable and
|V − X | ≥ 6 then there exists a pair {a, b} ∈ V − X s.t. G(V − {a, b}) is
indecomposable.

This result establishes the existence of an indecomposability preserving elim-
ination sequence D1, D2, . . . , Dk, where for all i, j Di ∩ Dj = ∅ for i 
= j,
|Di| = 2, Di ⊂ V −X , each graph G(V −D1 − . . .−Di) is indecomposable, and
|V −D1 − . . .−Dk −X | ≤ 5.

The proof of the theorem is non-constructive. Therefore an indecomposable
subgraph G(V − {a, b}) can be discovered by trying each pair {a, b} and using
the linear indecomposability test, in O(n2(n+m)) time. The cost of computing
an elimination sequence by this method would be O(n3(n+m)). We shall present
some results onX-critical graphs which will allow us to construct this elimination
sequence in O(n2(n+m)) time.

2 Computing Elimination Sequences

2.1 Computing Elimination Sequences in X-Critical Graphs

Let G = (V,E) be an X-critical graph and x ∈ V − X . Then it is shown in
[6] that G(V − {x}) has unique module, either of size |V | − 2 or of size 2. If
G = (V,E) is an X-critical graph and x, y is a pair of vertices in V − X such
that G(V − {x, y}) is also X-critical, then {x, y} is called a locked pair in G. It
is easy to verify, see [6], that at least one of the vertices of the pair is from class
eqV −{x,y}(z) for some z ∈ V −{x, y}. The other will be either from eqV −{x,y}(z′)
for some z′ ∈ V −{x, y} or from (V −{x, y}). Following result from [6] establishes
the existence of commutative elimination sequence in X-critical graphs.

Theorem 3. [6] If G = (V,E) is an X-critical graph, then vertices of V −X
can be partitioned into pairs {x1, y1}, . . . , {xk, yk} such that G(V −{xj1 , yj1 , . . . ,
xjs , yjs}) is also X-critical for any subset {j1, . . . , js} of {1, 2, . . . , k}.
In this section we present an algorithm to compute such a commutative elim-
ination sequence for X-critical graphs. This algorithm is similar to the O(n +
m logn) algorithm by Cournier and Habib [2].

Lemma 1. A commutative elimination sequence for an X-critical graph can be
computed in O(n2).

Algorithm 1 computes the commutative elimination sequence of an X-critical
graph. Starting from Y = X , iteratively expand Y till it becomes equal to V ,
identifying one locked pair in each step. This results into an elimination sequence
but not necessarily commutative. Therefore in the last step the newly constructed
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pair, in some cases, exchanges elements with one of the previously constructed
pair. The basic technique is based on computing C(Y, V − Y ), introduced in [2].
If C denotes C(V −Y, Y ) and x ∈ V −Y , then update(C, a) computes C(V −Y −
{a}, Y ∪ {a}) from C(V − Y, Y ).

Data: X-critical graph G, set X
Result: Commutative elimination sequence
C = C(V − X, X);1

/* extn(X) will be empty. */
Y = X;2

for i = 1 to (|V | − |X|)/2 do3

C′ = C;4

Select any vertex ai from some class eq(u) of C;5

C = update(C, ai);6

bi = An arbitrary vertex from extn(Y ∪ {ai});7

C = update(C, bi);8

if ai ∈ eq(u) and bi ∈ eq(v) in C′ and (u, v) = (aj , bj) for some j < i then9

(aj , bj) = (ai, v) and (ai, bi) = (u, bi);10

end11

end12

Algorithm 1: Computation of a commutative elimination sequence

Let G(Y ) be an X-critical subgraph of G which is itself X-critical. Let ai be a
vertex in V − Y . Then due to Theorem 1 and X-criticality of G, G(Y ∪ {ai}) is
not indecomposable so C(V −Y −{ai}, Y ∪{ai}) is not defined. In the algorithm
it denotes a generalization of the original classification. In addition to the original
three types of classes, one more class is defined to be eq(ai, u). Suppose graph
G(Y ∪ {ai}) is decomposable with the unique module {ai, u}. Further if any
vertex x ∈ V − Y − {ai} is such that {ai, u, x} is a module in G(Y ∪ {ai, x}),
then x belongs to eq(ai, u).

The update in step 6 is performed as follows. Case x ∈ eqY (y) with y 
= u: if
(x, ai) ∈ E iff (y, ai) ∈ E then x ∈ eqY ∪{ai}(y) else x ∈ extn(Y ∪ {ai}); Case
x ∈ eqY (u): in this case x ∈ eqY ∪{ai}(ai, u); Case x ∈ [Y ]: if (x, ai) ∈ E iff
(x, z) ∈ E for any z ∈ Y , then x ∈ [Y ∪ {ai}] else x ∈ extn(Y ∪ {ai}).

In step 7 bi is chosen from extn-class so G(Y ∪{ai, bi}) is indecomposable, con-
sequently class eqY ∪{ai.bi}(z) becomes empty for all z. Existence of commutative
elimination sequence ensures that such a bi exists. Update in step 8 is similar to
that in step 6 but for two exceptions. Case x ∈ eqY ∪{ai}(ai, u): if (bi, ai) ∈ E iff
(bi, x) ∈ E then x ∈ eqY ∪{ai,bi}(ai) else x ∈ eqY ∪{ai,bi}(u). Case x ∈ eqY ∪{ai}(v)
where bi ∈ eqY (v): if (x, ai) ∈ E iff (v, ai) ∈ E then x ∈ eqY ∪{ai,bi}(v) else
x ∈ eqY ∪{ai,bi}(bi).

The correctness of the algorithm is based on few simple observations. In step
7 we select a vertex from extn-class so G(Y ∪{ai, bi}) is X-critical. Therefore we
see that each successive graph G(X), G(X ∪ {a1, b1}), G(X ∪ {a1, b1, a2, b2}), . . .
X-critical. In general {a1, b1}, . . . , {ak, bk} is not a commutative elimination se-
quence. Lemma 8 in [6] shows that the operation in Step 9 gives a commutative
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elimination sequence. The update steps take O(n) time. The first step takes
O(n2 +m) time since for each x ∈ V −X it needs to be found out whether X
is a module of G(X ∪ {x}) or if there is u ∈ X such that {x, u} is a module of
G(X ∪ {x}) or neither. Therefore the entire process costs O(n2).

We prove here another interesting result for commutative elimination
sequences.

Theorem 4. The commutative elimination sequence in a X-critical graph is
unique upto a permutation.

Proof. Let S1 and S2 be two distinct commutative elimination sequences. Now
consider G(X ∪ P ), where P is the set of pairs which are in both S1 and S2.
Call Y = X ∪ P . If {a1, b1} is a pair in S1 which is not in S2 then there must
be pairs {a1, b2} and {b1, a2} in S2. Let Z = Y ∪ {a1, a2, b1, b2}.

Note that {a2, b2} is a locked pair because G(Z) is X-critical and {a1, b1} is
part of a commutative elimination sequence. For each i, j ∈ {1, 2} consider the
classes of C({ai, bj}, Z − {ai, bj}).
Claim. a1 belongs to neither [Z − p11] nor [Z − p12].
Proof. If Z−{b1} has a module of size |Z−{b1}|−1 then that module must be Z−
{a1, b1} since it is a X-critical graph. But Z−{a2, b1} is also X-critical therefore
that module must be Z−{a2, b1}. Uniqueness of the module requires that a1 = a2
but that is not true. Therefore a1 
∈ [Z −{a1, b1}]. Similar argument shows that
a1 
∈ [Z − {a1, b2}]. This leads to the conclusion that a1 ∈ eqZ−{a1,b1}(p1) and
a1 ∈ eqZ−{a1,b2}(p2) for some p1 and p2. ♥
Claim. p1 = p2 = a2.

Proof. By the definition Z − p11 ∪ {a1} = Z − {b1} has the module {a1, p1}. If
a2 
= p1, then {a1, p1} is also a module of Z − {a2, b1}. But that is absurd since
the latter is X-critical. Similarly, p2 = a2. ♥
We have shown that {a1, a2} is a module of G(Z−{b1}) as well as of G(Z−{b2}).
Therefore {a1, a2} must also be a module of G(Z) which is known to be X-
critical. Therefore we conclude that S1 and S2 cannot be distinct. �

2.2 Indecomposability Preserving Elimination Sequence

In this section we shall show that if an indecomposable graph G = (V,E) has
an indecomposable subgraph G(X) with |V − X | > 5, then a pair of vertices
a, b ∈ V −X can be computed in O(n(n +m)) time such that G(V − {a, b}) is
also indecomposable. This gives an algorithm to compute an indecomposability
preserving elimination sequence for any indecomposable graph with time com-
plexity O(n2(n+m)).

To find a pair of vertices from V −X such that the reduced graph after deleting
the pair remains indecomposable, we may arbitrarily delete a vertex and test the
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resulting graph for indecomposability. If this test fails for every vertex in V −X ,
then the graph is X-critical and we have already seen how to find a locked pair.
If it succeeds for some vertex a, then we repeat this step on G(V − {a}). If this
succeeds again, then we have the desired pair. The difficult case is when after
deleting one vertex the graph reduces to X-critical. Following result addresses
the problem of locating such a pair in these graphs.

Theorem 5. Let G be an indecomposable graph on (V,E), X is a subset of
V and V − X = {a, a1, b1, a2, b2, a3, b3} where G(V − {a}) is X-critical and
p1 = {a1, b2}, p2 = {a2, b2}, p3 = {a3, b3} is a commuting elimination sequence
in G(V − {a}). Then for at least one locked pair, pi = {ai, bi}, G(V − {ai, bi})
is indecomposable.

Proof. Assume the contrary. Denote V − pi by Zi. From the assumption G(Zi)
is decomposable but G(Zi − {a}) is indecomposable (actually X-critical) from
the definition of commuting elimination sequence. It is known that if a subgraph
G(A) is indecomposable and G(A ∪ {a}) is decomposable, then the latter has
a unique module and it is either A or {a, b} for some b ∈ A. Therefore either
a ∈ [Zi −{a}] or a ∈ eqZi−{a}(ui) for each i where ui is some vertex in Zi −{a}.

Assume that a ∈ [Z1 −{a}] and a ∈ [Z2 −{a}]. Since (Z1 −{a})∩ (Z2 −{a})
is non-empty, (Z1 − {a}) ∪ (Z2 − {a}) = V − {a} is a module of G which is
absurd as G is indecomposable. Therefore a ∈ [Zi − {a}] for no more than one
i. Without loss of generality, either a belongs to [Z1 − {a}], eqZ2−{a}(u2), and
eqZ3−{a}(u3); or a belongs to eqZi−{a}(ui) for all i. In the following discussions
we show that these possibilities also lead to conflicts.

If uj = uk = u for some j 
= k, then {a, u} is a module of G, which is not
possible as G is indecomposable. Thus uj 
= uk for j 
= k.

Further if uj and uk both belong to V − pj − pk, then {a, uj} and {a, uk}
are both modules in G(V − p2 − p3) therefore {uj, uk} must be a module in
G(V − {a} − pj − pk). This is impossible since the definition of commutative
elimination sequence requires that G(V − {a} − pj − pk) is X-critical. So we
conclude that either uj ∈ pk or uk ∈ pj. These observations lead to only two
possibilities.

Case 1: Assume that V − p1 − {a}, {a, u2} and {a, u3} be the modules of
G(Z1), G(Z2) and G(Z3) respectively. From the previous paragraph we know
that u3 ∈ p2 or u2 ∈ p3. Without loss of generality assume the latter. The facts
that V −p1 −{a} is a module in G(V −p1) and {a, u2} is a module in G(V −p2)
imply that V − p1 − p2 − {a, u2} is a module in G(V − p1 − p2 − {a}). This is
absurd because G(V − p1 − p2 − {a}) is X-critical.

Case 2: Assume that {a, ui} is the module in G(V − pi) for all i. From the
earlier observation all ui are distinct and the following are true:

(i) u1 ∈ p2 or u2 ∈ p1, (ii) u2 ∈ p3 or u3 ∈ p2, and (iii) u3 ∈ p1 or u1 ∈ p3.
These condition require that u1 ∈ p2, u2 ∈ p3, u3 ∈ p1 or u1 ∈ p3, u2 ∈ p1, u3 ∈
p2. Without loss of generality assume the first with u1 = a2, u2 = a3, u3 = a1,
as there is nothing here to distinguish between ai from bi.
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Here, {a, u1} = {a, a2} is a module in G(V − p1) and {a, a3} is a module in
G(V −p2). Combining the two we have {a, a2, a3} is a module in G(V −p1−{b2}).
Similarly {a, a3, a1} is a module in G(V −p2−{b3}) and {a, a1, a2} is a module in
G(V − p3 −{b1}). Together they imply that {a, a1, a2, a3} is a module in G(V −
{b1, b2, b3}). We can derive another fact from these three modules. {a, a2, a3} is
a module in G(V − p1 −{b2}) so {a2, a3} is a module in G(V −{a}− p1 −{b2}).
While {a2, a3} cannot be a module of G(V − {a} − p1) because the latter is
X-critical, it is necessary that (a2, b2) ∈ E iff (a3, b2) /∈ E. Since {a, a1, a2} is a
module in G(V − p3 − {b1}), (a, b2) ∈ E iff (a1, b2) ∈ E iff (a2, b2) ∈ E. These
relations and similar other relations are stated below:

(i) (a, b2) ∈ E iff (a1, b2) ∈ E iff (a2, b2) ∈ E iff (a3, b2) /∈ E
(ii) (a, b1) ∈ E iff (a3, b1) ∈ E iff (a1, b1) ∈ E iff (a2, b1) /∈ E (1)
(iii) (a, b3) ∈ E iff (a2, b3) ∈ E iff (a3, b3) ∈ E iff (a1, b3) /∈ E
As {a1, b1} is a locked pair in G(V −{a}), either a1 ∈ (V −{a}− p1) or {a1, v1}
is a module in G(V − {a, b1}) for some v1 ∈ V − {a, a1, b1}. Assume that a1 ∈
[V − {a} − p1]. We know that {a, a1, a2} is a module in G(V − p3 − {b1}) so
a2 must be in [V − p1 − p3 − {a, a2}]. This implies that G(V − {a} − p1 − p3)
is decomposable which is not true as it is X-critical. So {a1, v1} must be the
module in G(V − {a, b1}). Similarly there exist v2, v3 such that {a2, v2} is the
module in G(V − {a, b2}) and {a3, v3} is the module in G(V − {a, b3}).

Next we will show that vi is bj for some j 
= i. Firstly, {a1, v1} is a module of
G(V − {a, b1}) so (a1, b2) ∈ E iff (v1, b2) ∈ E. From relations (1) we find that
v1 
= a3. Similarly (a1, b3) ∈ E iff (v1, b3) ∈ E implies that v1 
= a2. Similar
arguments establishes that {v1, v2, v3}∩{a1, a2, a3} = ∅. Secondly, suppose v1 ∈
V −p1−p2−p3−{a}. Using the fact that {a, a1, a2} is a module ofG(V −p3−{b1})
we can deduce that {v1, a2} is a module of G(V − {a} − p1 − p3) which is not
possible for an X-critical graph. As {a1, v1} is a module in V − {a, b1}, v1 
= b1.
Thus we find that v1 ∈ {b2, b3}. Similarly v2 ∈ {b3, b1} and v3 ∈ {b1, b2}. We
further show that all vi are distinct. Let v1 = v3 = b2. Now {a1, v1} is a module
in G(V −{a, b1}) so (a3, a1) ∈ E iff (a3, v1) ∈ E iff (a3, b2) ∈ E. Also, {a3, b3} is
a module of G(V − {a, b3}) so (a1, a3) ∈ E iff (a1, v3) ∈ E iff (a1, b2) ∈ E. This
means (a1, b2) ∈ E iff (a3, b2) ∈ E, which contradicts first of relations 1. Thus
{v1, v2, v3} = {b1, b2, b3}.

Finally we put together the facts that {ai, vi} is a module of G(V − {a, bi}),
{a, a1, a2, a3} is a module of G(V − {b1, b2, b3}), and {v1, v2, v3} = {b1, b2, b3}.
Consequently {a, a1, a2, a3, b1, b2, b3} is a module of G, which is absurd as we
had started with the assumption that G is indecomposable. So case 2 is also
impossible. This completes the proof. �

Now we return to our discussion of computing a pair of vertices which can be
deleted while preserving indecomposability. The indecomposability of a graph
can be computed in O(n+m) time. Therefore in O(n(n+m)) either a pair can
be determined or we can conclude that the graph is X-critical or that it turns
X-critical after deleting one vertex. We have seen in the previous section that an
entire commutative elimination sequence of an X-critical graph can be computed
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in O(n2) time. This not only solves the problem for the second case but in light
of the Theorem 5 we can find an eliminatable pair for the third case too by
considering any three locked pairs and testing the graph for indecomposability
by eliminating one pair at a time.

Corollary 1. Let G = (V,E) be an indecomposable graph containing an inde-
composable subgraph G(X) and |V −X | ≥ 6. Then a pair of vertices a, b ∈ V −X
can be computed in O(n(n +m)) time such that G(V − {a, b}) is also indecom-
posable.

Proof. For each vertex a ∈ V −X check if G(V − {a}) is indecomposable until
one such vertex is located. If no such vertex exists, then G is X critical and from
Lemma 1 we can compute a complete elimination sequence in O(n2) time. So
total cost of the computation is O(n(n+m)+n2) since indecomposability can be
tested in (n+m). If a vertex a is located, then locate a vertex b in V −X −{a}
such that G(V −{a, b}) is indecomposable. If one such vertex is located then a, b
is the desired pair and the cost of the computation is O(n(n +m)). Otherwise
G(V −{a}) is X critical. Since |V −{a}| ≥ 5, there are at least three locked pairs
in the elimination sequence of G(V −{a}). Let (a1, b1), (a2, b2), (a3, b3) are three
of the pairs in the sequence. From the theorem we know that at least one of these
pairs can be removed from G while preserving indecomposability, since G(V ′) is
an X-critical graph for V ′ = V − {a, a1, b1, a2, b2, a3, b3}. Therefore we compute
the commutative elimination sequence of G(V − {a}) in O(n2) time and check
the indecomposability of G(V −{ai, bi}), for i = 1, 2, 3. Then the desired pair is
ai, bi if G(V − {ai, bi}) is indecomposable. The testing of indecomposability of
the three subgraphs costs O(n+m), so total cost in this case is (n(n+m)+n2).

An obvious consequence of this result is that an indecomposability preserving
elimination sequence can be computed in O(n2(n+m)).

Corollary 2. Let G = (V,E) be an indecomposable graph containing an in-
decomposable subgraph G(X) with |V − X | ≥ 6. Then a sequence of vertex
pairs D1, D2, . . . , Dk can be computed in O(n2(n + m)) such that for all i, j
Di ⊂ V −X; Di ∩Dj = ∅ for i 
= j; G(V −D1 −D2 . . .−Di) are indecompos-
able; and |V −X −D1 − . . .−Dk| ≤ 5.

We state another consequence of the results of this section without proof.

Theorem 6. There exists an algorithm to compute a maximal X-critical sub-
graph of a given graph in O(n3) time.

3 Conclusion

We have presented a constructive proof of Ille’s theorem which states that ev-
ery indecomposable graph, subject to some size conditions, has a pair of vertices
which can be removed from the graph while preserving the indecomposability.
Our proof gives an algorithm to compute this pair in O(n(n+m)) which is O(n)
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better than a brute-force method of deleting each pair and checking for indecom-
posability. This leads to an O(n2(n +m)) algorithm to compute an elimination
sequence of pairs, which preserves indecomposability. In the proof we have used
an earlier result that every X-critical graph has a commutative elimination se-
quence. We show that this sequence is unique and can be computed in O(n2)
time.
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Abstract. This paper studies the problem of finding the 1-median on a
graph where vertex weights are uncertain and the uncertainty is charac-
terized by given intervals. It is required to find a minmax regret solution,
which minimizes the worst-case loss in the objective function. Averbakh
and Berman had an O(mn2log n)-time algorithm for the problem on a
general graph, and had an O(nlog2n)-time algorithm on a tree. In this
paper, we improve these two bounds to O(mn2+n3log n) and O(nlog n),
respectively.

Keywords: Location theory, minmax regret optimization, medians.

1 Introduction

Over three decades, location problems on networks have received much
attention from researchers in the fields of transportation and communication
[9,10,11,12,17]. Traditionally, network location theory has been concerned with
networks in which the vertex weights and edge lengths are known precisely.
However, in practice, it is often impossible to make an accurate estimate of all
these parameters [13,14]. Real-life data often involve a significant portion of un-
certainty, and these parameters may change with time. Thus, location models
involving uncertainty have attracted increasing research efforts in recent years
[1,2,3,4,5,6,7,8,13,14,16,18,19,20,21].

Several ways for modeling network uncertainty have been defined and stud-
ied [13,16,18]. One of the most important models is the minmax regret approach,
introduced by Kouvelis [13]. In the model, uncertainty of network parameters is
characterized by given intervals, and it is required to minimize the worst-case loss
in the objective function that may occur because of the uncertain parameters.
During the last ten years, many important location problems have been studied on
the minmax regretmodel. The 1-center problem was studied in [2,3,6], the p-center
problem was studied in [2], and the 1-median problem was studied in [4,5,7,13].

The minmax regret 1-median problem is the focus of this paper. For a general
graph with uncertain edge lengths, the problem is strongly NP-hard [1]. For a
general graph with uncertain vertex weights, Averbakh and Berman [4] gave an
O(mn2log n)-time algorithm, where n is the number of vertices and m is the
number of edges. As to trees, it was proved in [7] that uncertainty in edge lengths
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can be ignored by setting the length of each edge to its upper bound. For a tree
with uncertain vertex weights, Kouvelis et al. [13] proposed an O(n4)-time algo-
rithm. Chen and Lin [7] improved the bound to O(n3). Averbakh and Berman
presented an O(n2)-time algorithm in [4] and then improved it to O(nlog2n)
in [5]. In this paper, improved algorithms are presented for the minmax regret
1-median problem on a general graph and a tree with uncertain vertex weights.
For general graphs, we improve the bound from O(mn2log n) to O(mn2 +n3log
n). For trees, we improve the bound from O(nlog2n) to O(nlog n).

The remainder of this paper is organized as follows. In Section 2, notation
and definitions are introduced. In Sections 3 and 4, improved algorithms for the
minmax regret 1-median problem on a general graph and a tree are proposed,
respectively. Finally, in Section 5, we conclude this paper.

2 Notation and Definitions

Let G = (V,E) be an undirected connected graph, where V is the vertex set
and E is the edge set. Let n = |V | and m = |E|. In this paper, G also denotes
the set of all points of the graph. Thus, the notation x ∈ G means that x is a
point along any edge of G which may or may not be a vertex of G. Each edge
e ∈ E has a nonnegative length. For any two points a, b ∈ G, let d(a, b) be
the distance of the shortest path between a and b. Suppose that the matrix of
shortest distances between vertices of G is given. Each vertex v ∈ V is associated
with two positive values w−

v and w+
v , where w−

v ≤ w+
v . The weight of each vertex

v ∈ V can take any value randomly from the interval [w−
v , w

+
v ]. Let Σ be the

Cartesian product of intervals [w−
v , w

+
v ], v ∈ V . Any element S ∈ Σ is called a

scenario and represents a feasible assignment of weights to the vertices of G. For
any scenario S ∈ Σ and any vertex v ∈ V , let wS

v be the weight of v under the
scenario S.

For any scenario S ∈ Σ, and a point x ∈ G, we define

F (S, x) =
∑
v∈V

(wS
v × d(v, x)),

which is the total weighted distance from all the vertices to x according to S.
Given a specific scenario S ∈ Σ, the classical 1-median problem is to find a point
x∗ ∈ G that minimizes F (S, x∗). The point x∗ is called a 1-median of G under
the scenario S. For any point x ∈ G, the regret of x with respect to a scenario
S ∈ Σ is maxy∈GF (S, x) − F (S, y) and the maximum regret of x is

Z(x) = maxS∈Σmaxy∈GF (S, x) − F (S, y).

The minmax regret 1-median problem is to find a point x ∈ G minimizing Z(x).

3 Minmax Regret 1-Median on a General Graph

Averbakh and Berman [4] had an O(mn2log n)-time algorithm to find a min-
max regret 1-median of a graph G = (V,E). In this section, we give a new
implementation of their algorithm, which requires O(mn2 + n3log n) time.
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3.1 Averbakh and Berman’s Algorithm

It is well-known that there is always a vertex that is a solution to the classi-
cal 1-median problem [10]. Thus, for any scenario S ∈ Σ, miny∈GF (S, y) =
miny∈V F (S, y). Therefore, the regret of x with respect to a scenario S ∈ Σ can
also be expressed as maxy∈V F (S, x) − F (S, y). Consequently, we have

Z(x) = maxS∈Σmaxy∈V F (S, x) − F (S, y)
= maxy∈VmaxS∈ΣF (S, x) − F (S, y).

For any point x ∈ G and vertex y ∈ V , define R(x, y)=maxS∈ΣF (S, x)−F (S, y).
Then, we have

Z(x) = maxy∈VR(x, y).

The problem is to find a point x ∈ G that minimizes Z(x). For ease of pre-
sentation, only the computation of minx∈GZ(x) is described. For each edge
e ∈ E, let Z∗

e = minx∈eZ(x). Averbakh and Berman solved the minmax regret
1-median problem by firstly determining Z∗

e for every e ∈ E and then computing
minx∈GZ(x) as the minimum among all Z∗

e . Their computation of each Z∗
e takes

O(n2log n) time and thus their solution to the minmax regret 1-median problem
requires O(mn2log n) time. Let e = (a, b) be an edge in G. In the remainder of
this section, Averbakh and Berman’s algorithm for computing Z∗

e is described.
For ease of description, e is regarded as an interval [a, b] on the real line so that
any point on e corresponds to a real number x ∈ [a, b].

Consider the function R(·, y) for a fixed y ∈ V . For a point x ∈ e, any
scenario S ∈ Σ that maximizes F (S, x) − F (S, y) is called a worst-case scenario
of x according to y. For each point x ∈ e and each vertex v ∈ V , let

wx,y
v =

{
w+

v if d(v, x) > d(v, y), and
w−

v if d(v, x) ≤ d(v, y).
For each point x ∈ e, let S(x,y) be the scenario in which the weight of each v ∈ V
is wx,y

v . It is easy to see that S(x,y) is a worst-case scenario of x according to y.
Thus, we have the following lemma.

Lemma 3.1 [4]. R(x, y) = F (S(x,y), x) − F (S(x,y), y).

For each v ∈ V , let xv be the point on e that is farthest from v. For convenience,
each xv is called a pseudo-node of e. There are at most two points x ∈ [a, b]
with d(v, x) = d(v, y). For ease of presentation, assume that there are two such
points yv

1 and yv
2 , where yv

1 < y
v
2 . For convenience, yv

1 and yv
2 are called y-critical

points of e. In the interval [a, b], R(·, y) is a piecewise linear function having O(n)
breakpoints, including at most n pseudo-nodes and at most 2n y-critical points.
These breakpoints can be easily determined in O(n) time. Let B(y) be the non-
decreasing sequence of the pseudo-nodes and y-critical points on e. Averbakh
and Berman showed the following.

Lemma 3.2 [4]. Let y ∈ V be a vertex. Given B(y), the function R(·, y) on e
can be constructed in O(n) time.
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Averbakh and Berman computed Z∗
e as follows. First, by sorting, B(y) is ob-

tained in O(n2log n) time for every y ∈ V . Next, the function R(·, y) on e is con-
structed for every y ∈ V , which takes O(n2) time. Finally, Z∗

e = minx∈eZ(x) =
minx∈e{maxy∈VR(x, y)} is computed in O(n2) time, by using Megiddo’s linear-
time algorithm for two-variable linear programming [17].

3.2 The Improved Algorithm

Averbakh and Berman’s algorithm for computing each Z∗
e requires O(n2log n)

time. The bottleneck is the computation of B(y) for each y ∈ V . In this subsec-
tion, we show that with a simple O(n3log n)-time preprocessing, each B(y) can
be computed in O(n) time.

The preprocessing computes a list for each edge e ∈ E and computes n lists
for each vertex a ∈ V . The list computed for each e ∈ E is P (e), which is
the non-decreasing sequence of all pseudo-nodes of e. The n lists computed for
each a ∈ V are, respectively, denoted by Y (a, y), y ∈ V . Each Y (a, y), y ∈ V ,
stores the non-decreasing sequence of the values d(v, y)−d(v, a) of all v ∈ V . By
using sorting and with the help of the distance matrix, the computation of each
P (e) and each Y (a, y) takes O(nlog n) time. Thus, the preprocessing requires
O((m+ n2)nlog n) = O(n3log n) time.

Let e = (a, b) be an edge. Consider the function R(·, y) for a fixed y ∈ V on e.
In the following, we show how to computeB(y) inO(n) time. The functionR(·, y)
has two kinds of breakpoints: pseudo-nodes and y-critical points. As mentioned,
for each vertex v ∈ V there are at most two y-critical points x ∈ [a, b]. To be
more specific, if d(v, a) < d(v, y) < d(v, xv), there is a point x in the open interval
(a, xv) with d(v, x) = d(v, y). In such a case, we say that v generates a left y-
critical point and denote the point as yv

1 . On the other hand, if d(v, b) < d(v, y) <
d(v, xv), we say that v generates a right y-critical point and denote the point as
yv
2 . We obtain B(y) as follows. First, we determine the y-critical points generated

by all vertices v ∈ V . Then, we compute Y1 as the non-decreasing sequence
of the left y-critical points. Since the slope of d(v, x) in the interval [a, xv] is
+1, it is easy to conclude that each left y-critical point yv

1 is at a distance of
d(v, y)−d(v, a) from a. The sequence Y (a, y) stores the non-decreasing sequence
of the values d(v, y) − d(v, a) of all v ∈ V . Thus, the order of the left y-critical
points in Y1 can be obtained from Y (a, y) in O(n) time by a simple scan. Next,
we compute Y2 as the non-decreasing sequence of the right y-critical points.
Since the slope of d(v, x) in the interval [xv, b] is −1, each right y-critical point
yv
2 is at a distance of d(v, y) − d(v, b) from b. The sequence Y (b, y) stores the

non-decreasing sequence of the values d(v, y) − d(v, b) of all v ∈ V . Thus, the
order of the right y-critical points in Y2 can be obtained by scanning the reverse
sequence of Y (b, y) in O(n) time. Finally, B(y) is computed in O(n) time by
merging Y1, Y2, and P (e).

With the above computation of B(y), each Z∗
e can be computed in O(n2)

time. Thus, we obtain the following.

Theorem 3.3. The minmax regret 1-median problem on a general graph can be
solved in O(mn2 + n3log n) time.
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We remark that Averbakh and Berman’s algorithm uses O(n2) space, whereas
ours uses O(n3) space.

4 Minmax Regret 1-Median on a Tree

In Subsection 4.1, Averbakh and Berman’s O(nlog2n)-time algorithm for the
minmax regret 1-median problem on a tree T = (V,E) is described. In Subsection
4.2, an O(nlog n)-time improved algorithm is presented.

4.1 Averbakh and Berman’s Algorithm

An edge that contains a minmax regret 1-median is called an optimal edge.
Averbakh and Berman’s algorithm consists of two stages. The first stage finds
an optimal edge e∗, which requires O(nlog2n) time. The second stage finds the
exact position of a minmax regret 1-median on e∗ inO(n) time. Our improvement
is obtained by giving a more efficient implementation of the first stage. Thus,
only the first stage is described in this subsection.

Let v ∈ V be a vertex. By removing v and its incident edges, T is broken
into several subtrees, each of which is called an open v-branch. For each open
v-branch X , the union of v, X , and the edge connecting v and X is called a
v-branch. For any vertex p ∈ v in T , let B(v, p) be the v-branch containing p.
Let S− be the scenario in which the weight of every v ∈ V is w−

v . Let S+ be the
scenario in which the weight of every v ∈ V is w+

v . For any subtree X of T , let
V (X) be the set of vertices in X . For any vertex a ∈ V and any open a-branch
X , the following auxiliary values are defined:

W+(X) = Σv∈V (X)w
+
v W−(X) = Σv∈V (X)w

−
v

D+(X, a) = Σv∈V (X)w
+
v × d(v, a) D−(X, a) = Σv∈V (X)w

−
v × d(v, a)

F+(a) = Σv∈Vw
+
v × d(v, a) F−(a) = Σv∈Vw

−
v × d(v, a)

By using dynamic programming, these auxiliary values of all vertices a and all
open a-branches X are pre-computed, which takes O(n) time [5].

Let R(x, y) and S(x,y) be defined the same as in Subsection 3.1. Consider the
computation of R(x, y) for a pair of vertices x, y ∈ V . An edge is a bisector of a
simple path if it contains the middle point of the path. In case the middle point
is located at a vertex, both the edges connecting the vertex are bisectors. Let
(i, j) ∈ E be a bisector of the path from x to y, where i is closer to x than j. Let
X be the open j-branch containing x and Y be the open i-branch containing y.
By Lemma 3.1, R(x, y) = F (S(x,y), x) − F (S(x,y), y). Since T is a tree, it is easy
to see that under the scenario S(x,y) the weights of all vertices in Y are equal to
their upper bounds w+

v and the weights of all vertices in X are equal to their
lower bounds w−

v . Thus, F (S(x,y), x) and F (S(x,y), y) can be computed in O(1)
time according to the following equations [5]:

F (S(x,y), x) = F −(x) − D−(Y, i) − d(i, x) × W −(Y ) + D+(Y, i) + d(i, x) × W +(Y )

F (S(x,y), y) = F+(y) − D+(X, j) − d(j, y)×W +(X)+D−(X, j)+d(j, y)× W −(X)
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Based upon the above discussion, the following lemma is obtained.

Lemma 4.1 [5]. Let x ∈ V be a vertex. Given the bisectors of the paths from x
to all the other vertices, R(x, y) can be computed in O(n) time for all y ∈ V .

For each x ∈ V , let ŷ(x) be a vertex in T such that R(x, ŷ(x)) = maxy∈VR(x, y).
We have the following.

Lemma 4.2 [5]. Let x ∈ V be a vertex. If x = ŷ(x), x is a minmax regret
1-median of T ; otherwise, B(x, ŷ(x)) contains a minmax regret 1-median.

A centroid of T is a vertex c ∈ V such that every open c-branch has at most
n/2 vertices. It is easy to find a centroid of T in O(n) time [12]. Averbakh and
Berman’s algorithm for finding an optimal edge is as follows.

Algorithm 1. OPTIMAL_EDGE(T )
begin

1 T̂ ← T // T̂ is the range for searching an optimal edge
2 while (T̂ is not a single edge) do
3 begin
4 x← a centroid of T̂
5 for each y ∈ V do compute a bisector of the path from x to y
6 for each y ∈ V do R(x, y) ← F (S(x,y), x) − F (S(x,y), y)
7 ŷ(x) ← the vertex that maximizes R(x, y) over all y ∈ V
8 if x = ŷ(x) then return (x) // x is a minmax regret 1-median
9 else (̂T ) ← B(x, ŷ(x)) ∩ T̂ // reduce the search range to a subtree
10 end
11 return T̂ // T̂ is an optimal edge

end

The while-loop in Lines 2-10 performs O(log n) iterations, in which Line 5
requires O(nlog n) time [5] and is the bottleneck. Therefore, Algorithm 1 finds
an optimal edge in O(nlog2n) time.

4.2 An Improved Algorithm

For each e = (i, j) ∈ E, define Se as the scenario in which the weight of every
vertex v in the open i-branch containing j is w+

v and the weight of every vertex
v in the open j-branch containing i is w−

v . A key procedure of the new algorithm
is to compute for every e ∈ E a vertex that is a classical 1-median under the
scenario Se. The computation is described firstly in Subsection 4.2.1. Then, the
new algorithm is proposed in Subsection 4.2.2.

4.2.1 Computing Medians
For ease of discussion, throughout this subsection, we assume that T is rooted
at an arbitrary vertex r ∈ V . Let v ∈ V be a vertex. Denote P (v) as the path
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from r to v, p(v) as the parent of v, and Tv as the subtree of T rooted at v.
For convenience, the subtrees rooted at the children of v are called subtrees of
v. For any subtree X of T , define the weight of X under a scenario S ∈ Σ as
W (S,X) =

∑
v∈V (X)w

S
v . For any scenario S ∈ Σ and v ∈ V , define

δ(S, v) = 2W (S, Tv) −W (S, T ).
Note that 2W (S, Tv) −W (S, T ) = W (S, Tv) −W (S, T\Tv) and thus δ(S, v) is
equal to the weight difference between Tv and its complement under the scenario
S. By the definition of δ(S, v), it is easy to see the following.

Lemma 4.3. For any scenario S ∈ Σ, the function value of δ(S, ·) is decreasing
along any downward path in T .

Under a scenario S ∈ Σ, a vertex v is a classical 1-median of T if and only if
W (S,X) ≤ 1/2×W (S, T ) for all open v-branches X [12]. By using this property,
the following lemma can be obtained.

Lemma 4.4 [15]. For any scenario S ∈ Σ, the vertex v ∈ V with the smallest
δ(S, v) > 0 is a classical 1-median.

Under a scenario S ∈ Σ, T may have more than one median, but it has a unique
vertex v with the smallest δ(S, v) > 0, which is called the median, denoted as
m(S). For any v ∈ V , define the heavy path of v under a scenario S ∈ Σ, denoted
by h(S, v), as the path starting at v and at each time moving down to the heaviest
subtree, with a tie broken arbitrarily, until a leaf is reached. With some efforts,
the following can be proved.

Lemma 4.5. Let S ∈ Σ be a scenario and v ∈ V be a vertex with δ(S, v) > 0.
Then, h(S, v) contains the median m(S).

Lemma 4.3, 4.4 and 4.5 are useful for finding a classical 1-median for a fixed sce-
nario S ∈ Σ. In our problem, all scenarios Se, e ∈ E, need to be considered. Let
e = (i, j) be an edge in T such that i is the parent of j. For ease of presentation,
denote Sē as the scenario S(j,i). For each v ∈ V , the weight of Tv and the heavy
path of v only depend on the weight assignment to the vertices in Tv. Therefore,
the following two lemmas can be obtained.

Lemma 4.6. Let e = (i, j) be an edge in T such that i is the parent of j.
For any v ∈ V ,

W (Se, Tv) =

⎧⎨⎩
W (S+, Tv) if v ∈ Tj,
W (S−, Tv) if v /∈ Tj and v /∈P (i),
W (S−, Tv) −W (S−, Tj) +W (S+, Tj) if v ∈ P (i); and

W (Sē, Tv) =

⎧⎨⎩
W (S−, Tv) if v ∈ Tj,
W (S+, Tv) if v /∈ Tj and v /∈P (i),
W (S+, Tv) −W (S+, Tj) +W (S−, Tj) if v ∈ P (i); and

Lemma 4.7. Let e = (i, j) be an edge in T such that i is the parent of j.
For any v /∈ P (i),

h(Se, v) =
{
h(S+, v) if v ∈ Tj,
h(S−, v) if v /∈ Tj;

and h(Sē, v) =
{
h(S−, v) if v ∈ Tj,
h(S+, v) if v /∈ Tj.
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According to Lemmas 4.6 and 4.7, maintaining information of T under the sce-
narios S+ and S− is very useful to the computation of m(Se) for every e ∈ E.
With a bottom-up computation, we pre-compute the values W (S+, Tv) and
W (S−, Tv) for all v ∈ V in O(n) time. With the pre-computed values, for any
e ∈ E and v ∈ V , δ(Se, v) = 2W (Se, Tv)−W (Se, Tr) can be determined in O(1)
time by Lemmas 4.6. Besides, we preprocess T to construct the heavy paths
h(S+, v) and h(S−, v) for every v ∈ V . The total length of the heavy paths of
all v ∈ V is O(n2). However, they can be constructed in O(n) time and stored
in O(n) space [22].

Let H+ = {h(S+, v)|v ∈ V } and H− = {h(S−, v)|v ∈ V }. Let e ∈ E be an
edge. Since the value of δ(Se, ·) decreases along any downward path in T , we can
compute the median m(Se) by firstly finding a path in H+ ∪H− that contains
the median and then locating the median by performing binary search on the
path. The following two lemmas help in the finding. Due to the page limit, the
proofs are omitted.

Lemma 4.8. Let e = (i, j) be an edge in T such that i is the parent of j. Let
z be the lowest vertex on P (j) with δ(Se, z) > 0. If z = j, h(S+, z) contains
m(Se); otherwise, h(S−, z) contains m(Se).

Lemma 4.9. Let e = (i, j) be an edge in T such that i is the parent of j. Let
z be the lowest vertex on P (j) with δ(Sē, z) > 0. If z = j, h(S−, z) contains
m(Sē); otherwise, either h(S+, z) or h(S+, c′) contains m(Sē), where c′ is the
child of z such that Tc′ is the second heaviest under the scenario S+.

Now, we are ready to present our algorithm for computing m(Se) for all e ∈ E.
It is as follows.

Algorithm 2. COMPUTE_MEDIANS(T )
begin

1 Orient T into a rooted tree with an arbitrary root r ∈ V
2 Compute W (S+, Tv), W (S−, Tv), h(S+, v), and h(S−, v) for all v ∈ V
3 for each v ∈ V do
4 c′(v) ← the child of v such that Tc′(v) is the second heaviest under S+

5 for each j ∈ V − {r} do (in depth-first search order)
6 begin
7 e← (p(j), j)
8 P (j) ← the path from r to j
9 m(Se) ← the classical 1-median under Se

10 m(Sē) ← the classical 1-median under Sē

11 end
12 return ({m(Se)|e ∈ E})

end

The time complexity of Algorithm 2 is analyzed as follows. Lines 1-4 requires
O(n) time. Consider the for-loop in Lines 5-11 for a fixed j ∈ V − r. Line 7 takes
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O(1) time. Since the vertices are processed in depth-first search order, Line 8 also
takes O(1) time. Based upon Lemma 4.8, Line 9 is implemented in O(log n) time
as follows. First, we compute z as the lowest vertex on P (j) with δ(Se, z) > 0.
Then, if z = j, we find m(Se) on h(S+, z); otherwise, we find m(Se) on h(S−, z).
The computation of z and the finding of m(Se) are done in O(log n) time by
using binary search. Similarly, based upon Lemma 4.9, Line 10 is implemented
in O(log n) time. Therefore, each iteration of the for-loop takes O(log n) time.
There are n− 1 iterations. Thus, the for-loop requires O(nlog n) time in total.
We obtain the following.

Theorem 4.10. The computation of m(Se) of all e ∈ E can be done in
O(nlog n) time.

4.2.2 The New Approach
We pre-compute the medians m(Se) for all e ∈ E. Also, as in Subsection 4.1,
the auxiliary values W+(X), W−(X), D+(X, a), D−(X, a), F+(a), and F−(a)
of all vertices a ∈ V and all open a-branches X are pre-computed.

Averbakh and Berman’s algorithm finds an optimal edge by repeatedly re-
ducing the search range T̂ into a smaller subtree until only one edge is left. Let
x be the centroid of the current search range T̂ . The reduction is done by de-
termining a vertex ŷ(x) with R(x, ŷ(x)) = maxy∈VR(x, y) and then reducing T̂
into B(x, ŷ(x)) ∩ T̂ . A solution to the finding of bisectors is required for their
determination of ŷ(x). The new algorithm is obtained by using a different ap-
proach for the determination of ŷ(x), which is based upon the following lemma.
We omit the proof due to the page limit.

Lemma 4.11. For any x ∈ V , there is an edge e ∈ E such that R(x,m(Se)) =
F (Se, x) − F (Se,m(Se)) = maxy∈VR(x, y).

According to Lemma 4.11, we modify Algorithm 1 by replacing Lines 5-7 with
the following.

5 for each e ∈ E do R′(e) ← F (Se, x) − F (Se,m(Se))
6 ê← the edge that maximizes R′(e) over all e ∈ E
7 ŷ(x) ← m(Sê)

Let e = (i, j) be an edge in T . Let X be the open j-branch containing i and Y be
the open i-branch containing j. Since T is a tree, for every v ∈ V (X), we have
F (Se, v) = F−(v) −D−(Y, i) − d(i, v) ×W−(Y ) +D+(Y, i) + d(i, v) ×W+(Y );
and for every v ∈ V (Y ), we have F (Se, v) = F+(v) − D+(X, j) − d(j, v) ×
W+(X)+D−(X, j) + d(j, v)×W−(X). By using these two equations, it is easy
to implement the new Line 5 in O(n) time. The new Lines 6 and 7 take O(n)
time. Therefore, Algorithm 2 requires O(nlog n) time after the replacement.

Theorem 4.12. The minmax regret 1-median problem on a tree can be solved
in O(nlog n) time.
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5 Concluding Remarks

During the last decade, minmax regret optimization problems have attracted
significant research efforts. In [22], an O(mnlog n)-time algorithm is obtained for
the minmax regret 1-center problem on a general graph, and an O(nlog2n)-time
algorithm is obtained for the problem on a tree. For many location problems,
however, there are still gaps between the time complexities of the solutions to
their classical versions and those to their minmax regret versions. It would be a
great challenge to bridge these gaps.
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Abstract. Assume that each vertex of a graph G is assigned a constant
number q of nonnegative integer weights, and that q pairs of nonnegative
integers li and ui, 1 ≤ i ≤ q, are given. One wishes to partition G into
connected components by deleting edges from G so that the total i-th
weights of all vertices in each component is at least li and at most ui

for each index i, 1 ≤ i ≤ q. The problem of finding such a “uniform”
partition is NP-hard for series-parallel graphs, and is strongly NP-hard
for general graphs even for q = 1. In this paper we show that the problem
and many variants can be solved in pseudo-polynomial time for series-
parallel graphs. Our algorithms for series-parallel graphs can be extended
for partial k-trees, that is, graphs with bounded tree-width.

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E. Assume
that each vertex v ∈ V is assigned a constant number q of nonnegative integer
weights ω1(v), ω2(v), · · · , ωq(v), and that q pairs of nonnegative integers li and
ui, 1 ≤ i ≤ q, are given. We call ωi(v) the i-th weight of vertex v, and call li
and ui the i-th lower bound and upper bound on component size, respectively.
We wish to partition G into connected components by deleting edges from G so
that the total i-th weights of all components are almost uniform for each index
i, 1 ≤ i ≤ q, that is, the sum of i-th weights ωi(v) of all vertices v in each
component is at least li and at most ui for some bounds li and ui with small
ui− li. We call such a partition a uniform partition of G. Figure 1(a) illustrates a
uniform partition of a graph, where q = 2, (l1, u1) = (10, 15), (l2, u2) = (10, 20),
each vertex v is drawn as a circle, the two weights ω1(v) and ω2(v) of v are
written inside the circle, and the deleted edges are drawn by dotted lines.

The problem of finding a uniform partition often appear in many practical
situations such as image processing [4,6], paging systems of operation systems [8],
and political districting [3,9]. Consider, for example, political districting. LetM
be a map of a country, which is divided into several regions, as illustrated in
Fig. 1(b). Let G be a dual-like graph of the map M , as illustrated in Fig. 1(a).
Each vertex v of G represents a region, the first weight ω1(v) represents the
number of voters in the region v, and the second weight ω2(v) represents the

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 63–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a)                                                                                      (b)

Fig. 1. (a) A uniform partition of a graph into p = 4 components, and (b) electoral
zoning of a map corresponding to the partition

area of the region. Each edge (u, v) of G represents the adjacency of the two
regions u and v. For the political districting, one wishes to divide the country
into electoral zones. Each zone must consist of connected regions, that is, the
regions in each zone must induce a connected subgraph of G. Each zone must
have an almost equal number of voters, and must be almost equal in area. Such
electoral zoning corresponds to a uniform partition of the plane graph G for two
appropriate pairs (l1, u1) and (l2, u2) of bounds.

In the paper we deal with the following three problems to find a uniform
partition of a given graph G: the minimum partition problem is to find a uniform
partition of G with the minimum number of components; the maximum partition
problem is defined similarly; and the p-partition problem is to find a uniform
partition of G with a given number p of components. All the problems are NP-
hard for series-parallel graphs even when q = 1 [5]. Therefore, it is very unlikely
that the three partition problems can be solved in polynomial time even for
series-parallel graphs. Moreover, all the three partition problems are strongly
NP-hard for general graphs even if q = 1 [5], and hence there is no pseudo-
polynomial-time algorithm for any of the three problems on general graphs unless
P = NP. Furthermore, for any ε > 0, there is no ε-approximation algorithm for
the minimum partition problem or the maximum partition problem on series-
parallel graphs unless P = NP [5], and the problems for the case q = 1 can be
solved in pseudo-polynomial time for series-parallel graphs [5]; the minimum and
maximum partition problems can be solved in time O(u4

1n) and the p-partition
problem can be solved in time O(p2u4

1n) for series-parallel graphs G, where n
is the number of vertices in G. However, it has not been known whether the
problems can be solved in pseudo-polynomial time for the case q ≥ 2.

In this paper, we obtain pseudo-polynomial-time algorithms to solve the three
problems on series-parallel graphs for an arbitrary constant number q. More
precisely, we show that the minimum and maximum partition problems can be
solved in time O(u4qn) and hence in time O(n) for any fixed constant u, and
that the p-partition problem can be solved in time O(p2u4qn), where u is the
maximum upper bound, that is, u = max{ui | 1 ≤ i ≤ q}. Our algorithms for
series-parallel graphs can be extended for partial k-trees, that is, graphs with
bounded tree-width [1,2].
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2 Terminology and Definitions

In this section we give some definitions.
A (two-terminal ) series-parallel graph is defined recursively as follows [7]:

(1) A graph G with a single edge is a series-parallel graph. The end vertices
of the edge are called the terminals of G and denoted by s(G) and t(G).
(See Fig. 2(a).)

(2) Let G′ be a series-parallel graph with terminals s(G′) and t(G′), and let
G′′ be a series-parallel graph with terminals s(G′′) and t(G′′).
(a) A graph G obtained from G′ and G′′ by identifying vertex t(G′) with

vertex s(G′′) is a series-parallel graph, whose terminals are s(G) =
s(G′) and t(G) = t(G′′). Such a connection is called a series connec-
tion, and G is denoted by G = G′ •G′′. (See Fig. 2(b).)

(b) A graph G obtained from G′ and G′′ by identifying s(G′) with s(G′′)
and identifying t(G′) with t(G′′) is a series-parallel graph, whose ter-
minals are s(G) = s(G′) = s(G′′) and t(G) = t(G′) = t(G′′). Such a
connection is called a parallel connection, and G is denoted by G =
G′ ‖ G′′. (See Fig. 2(c).)

The terminals s(G) and t(G) of G are often denoted simply by s and t, respec-
tively. Since we deal with partition problems, we may assume without loss of
generality that G is a simple graph and hence G has no multiple edges.

s(G)
=s(G' )

t(G)
=t(G'' )

t(G' )

s(G'' )
G' G''

G''

G'
s(G)

=s(G' )
=s(G'')

t(G)
=t(G' )
=t(G'')

(a) (c)

s(G) t(G)

(b) 

Fig. 2. (a) A series-parallel graph with a single edge, (b) series connection, and (c)
parallel connection

A series-parallel graph G can be represented by a “binary decomposition
tree” [7]. Figure 3(a) illustrates a series-parallel graphG, and Figure 3(b) depicts
a binary decomposition tree T of G. Labels s and p attached to internal nodes
in T indicate series and parallel connections, respectively. Nodes labeled s and
p are called s- and p-nodes, respectively. Every leaf of T represents a subgraph
of G induced by a single edge. Each node v of T corresponds to a subgraph
Gv of G induced by all edges represented by the leaves that are descendants of
v in T . Thus Gv is a series-parallel graph for each node v of T , and G = Gr

for the root r of T . Figure 3(c) depicts Gv for the left child v of the root r of
T . Since a binary decomposition tree of a given series-parallel graph G can be
found in linear time [7], we may assume that a series-parallel graph G and its
binary decomposition tree T are given. We solve the three partition problems
by a dynamic programming approach based on a decomposition tree T .
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Fig. 3. (a) A series-parallel graph G, (b) its binary decomposition tree T , and (c) a
subgraph Gv

3 Minimum and Maximum Partition Problems

In this section we have the following theorem.

Theorem 1. Both the minimum partition problem and the maximum partition
problem can be solved for any series-parallel graph G in time O(u4qn), where n
is the number of vertices in G, q is a fixed constant number of weights, and u is
the maximum upper bound on component size.
In the remainder of this section we give an algorithm to solve the minimum
partition problem as a proof of Theorem 1; the maximum partition problem can
be similarly solved. We indeed show only how to compute the minimum number
pmin(G) of components. It is easy to modify our algorithm so that it actually
finds a uniform partition having the minimum number pmin(G) of components.

Every uniform partition of a series-parallel graph G naturally induces a parti-
tion of its subgraph Gv for a node v of a decomposition tree T of G. The induced
partition is not always a uniform partition of Gv but is either a “connected par-
tition” or a “separated partition” of Gv, which will be formally defined later
and are illustrated in Fig. 4 where s and t represent the terminals of Gv. We
denote by X a q-tuple (x1, x2, · · · , xq) of integers with 0 ≤ xi ≤ ui, 1 ≤ i ≤ q.
We introduce two functions f and h; for a series-parallel graph Gv and a q-tuple
X = (x1, x2, · · · , xq), the value f(Gv,X) represents the minimum number of com-
ponents in some particular connected partitions of Gv; for a series-parallel graph
Gv and a pair of q-tuples X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq), the value
h(Gv,X,Y) represents the minimum number of components in some particular
separated partitions of Gv. Our idea is to compute f(Gv,X) and h(Gv,X,Y)
from leaves of T to the root r of T by means of dynamic programming.

PstPst

s t
Ps Pt

s t

(a)                                                               (b)

Fig. 4. (a) A connected partition, and (b) a separated partition
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We now formally define the notion of connected and separated partitions of
a series-parallel graph G = (V,E). Let P = {P1, P2, . . . , Pm} be a partition of
the vertex set V of G into m nonempty subsets P1, P2, · · · , Pm for some integer
m ≥ 1. Thus |P| = m. The partition P of V is called a partition of G if Pj

induces a connected subgraph of G for each index j, 1 ≤ j ≤ m. For a set P ⊆ V
and an index i, 1 ≤ i ≤ q, we denote by ωi(P ) the sum of i-th weights of vertices
in P , that is, ωi(P ) =

∑
v∈P ωi(v). Let ωst(G, i) = ωi(s) + ωi(t). We call a

partition P of G a connected partition if P satisfies the following two conditions
(see Fig. 4(a)):

(a) there exists a set Pst ∈ P such that s, t ∈ Pst; and
(b) for each index i, 1 ≤ i ≤ q, the inequality ωi(Pst) ≤ ui holds, and the

inequalities li ≤ ωi(P ) ≤ ui hold for each set P ∈ P − {Pst}.
Note that the inequality li ≤ ωi(Pst), 1 ≤ i ≤ q, does not necessarily hold for
Pst. For a connected partition P , we always denote by Pst the set in P containing
both s and t. A partition P of G is called a separated partition if P satisfies the
following two conditions (see Fig. 4(b)):

(a) there exist two distinct sets Ps, Pt ∈ P such that s ∈ Ps and t ∈ Pt; and
(b) for each index i, 1 ≤ i ≤ q, the two inequalities ωi(Ps) ≤ ui and ωi(Pt) ≤ ui

hold, and the inequalities li ≤ ωi(P ) ≤ ui hold for each set P ∈ P−{Ps, Pt}.
Note that the inequalities li ≤ ωi(Ps) and li ≤ ωi(Pt), 1 ≤ i ≤ q, do not always
hold for Ps and Pt. For a separated partition P , we always denote by Ps the set
in P containing s and by Pt the set in P containing t.

We then formally define f(G,X) for a series-parallel graph G and a q-tuple
X = (x1, x2, · · · , xq) of integers with 0 ≤ xi ≤ ui, 1 ≤ i ≤ q, as follows:

f(G,X) = min{p∗ ≥ 0 | G has a connected partition P such that
xi = ωi(Pst) − ωst(G, i) for each i, and p∗ = |P| − 1}. (1)

If G has no connected partition P such that ωi(Pst) − ωst(G, i) = xi for each i,
then let f(G,X) = +∞.

We now formally define h(G,X,Y) for a series-parallel graph G and a pair
of q-tuples X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq) of integers with 0 ≤
xi, yi ≤ ui, 1 ≤ i ≤ q, as follows:

h(G,X,Y) = min{p∗ ≥ 0 | G has a separated partition P such that
xi = ωi(Ps) − ωi(s) and yi = ωi(Pt) − ωi(t) for each i,
and p∗ = |P| − 2}. (2)

If G has no separated partition P such that ωi(Ps) − ωi(s) = xi and ωi(Pt) −
ωi(t) = yi for each i, then let h(G,X,Y) = +∞.

Our algorithm computes f(Gv,X) and h(Gv,X,Y) for each node v of a binary
decomposition tree T of a given series-parallel graph G from leaves to the root
r of T by means of dynamic programming. Since G = Gr, one can compute
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the minimum number pmin(G) of components from f(G,X) and h(G,X,Y) as
follows:

pmin(G) = min
{
min{f(G,X) + 1 | li ≤ xi + ωst(G, i) ≤ ui for each i},
min{h(G,X,Y) + 2 | li ≤ xi + ωi(s) ≤ ui and

li ≤ yi + ωi(t) ≤ ui for each i}
}
. (3)

Note that pmin(G) = +∞ if G has no uniform partition.
We first compute f(Gv,X) and h(Gv,X,Y) for each leaf v of T , for which the

subgraph Gv contains exactly one edge. We thus have

f(Gv,X) =
{

0 if X = (0, 0, · · · , 0);
+∞ otherwise, (4)

and

h(Gv,X,Y) =
{

0 if X = Y = (0, 0, · · · , 0);
+∞ otherwise. (5)

By Eq. (4) one can compute f(Gv,X) in time O(uq) for each leaf v of T and
all q-tuples X = (x1, x2, · · · , xq), where u is the maximum upper bound on
component size, that is, u = max{ui | 1 ≤ i ≤ q}. Similarly, by Eq. (5) one
can compute h(Gv,X,Y) in time O(u2q) for each leaf v and all pairs of q-tuples
X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq). Since G is a simple series-parallel
graph, the number of edges in G is at most 2n − 3 and hence the number of
leaves in T is at most 2n− 3. Thus one can compute f(Gv,X) and h(Gv,X,Y)
for all leaves v of T in time O(u2qn).

We next compute f(Gv,X) and h(Gv,X,Y) for each internal node v of T from
the counterparts of the two children of v in T .

We first consider a parallel connection.
[Parallel connection]

Let Gv = G′ ‖ G′′, and let s = s(Gv) and t = t(Gv). (See Figs. 2(c) and 5.)
We first explain how to compute h(Gv,X,Y) from h(G′,X′,Y′) and

h(G′′,X′′,Y′′). The definitions of a separated partition and h(G,X,Y) imply
that if ωi(Ps) = xi + ωi(s) > ui or ωi(Pt) = yi + ωi(t) > ui for some index
i, then h(Gv,X,Y) = +∞. One may thus assume that xi + ωi(s) ≤ ui and
yi + ωi(t) ≤ ui for each index i, 1 ≤ i ≤ q. Then every separated partition P of
Gv can be obtained by combining a separated partition P ′ of G′ with a separated
partition P ′′ of G′′, as illustrated in Fig. 5(a). We thus have

h(Gv,X,Y) = min{h(G′,X′,Y′) + h(G′′,X − X′,Y − Y′) |
X′ = (x′1, x

′
2, · · · , x′q) and Y′ = (y′1, y

′
2, · · · , y′q)

such that 0 ≤ x′i, y′i ≤ ui for each i}, (6)

where X − X′ = (x1 − x′1, x2 − x′2, · · · , xq − x′q) and Y − Y′ = (y1 − y′1, y2 −
y′2, · · · , yq − y′q).
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Fig. 5. The combinations of a partition P ′ of G′ and a partition P ′′ of G′′ for a partition
P of Gv = G′ ‖ G′′

We next explain how to compute f(Gv,X) from f(G′,X′), f(G′′,X′′),
h(G′,X′,Y′) and h(G′′,X′′,Y′′). If ωi(Pst) = xi +ωst(Gv, i) > ui for some index
i, then f(Gv,X) = +∞. One may thus assume that xi +ωst(Gv, i) ≤ ui for each
index i, 1 ≤ i ≤ q. Then every connected partition P of Gv can be obtained
by combining a partition P ′ of G′ with a partition P ′′ of G′′, as illustrated in
Figs. 5(b) and (c). There are the following two Cases (a) and (b), and we define
two functions fa and f b for the two cases, respectively.
Case (a): both P ′ and P ′′ are connected partitions. (See Fig. 5(b).)

Let

fa(Gv,X) = min{f(G′,X′) + f(G′′,X − X′) | X′ = (x′1, x
′
2, · · · , x′q)

such that 0 ≤ x′i ≤ ui for each i}. (7)

Case (b): one of P ′ and P ′′ is a separated partition and the other is a connected
partition.

One may assume without loss of generality that P ′ is a separated partition
and P ′′ is a connected partition. (See Fig. 5(c).) Let

f b(Gv,X) = min{h(G′,X′,Y′) + f(G′′,X − X′ − Y′) |
X′ = (x′1, x

′
2, · · · , x′q) and Y′ = (y′1, y

′
2, · · · , y′q)

such that 0 ≤ x′i, y′i ≤ ui for each i}. (8)

From fa and f b above, one can compute f(Gv,X) as follows:

f(Gv,X) = min{fa(Gv,X), f b(Gv,X)}. (9)

By Eq. (6) one can compute h(Gv,X,Y) in time O(u4q) for all pairs of q-tuples
X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq) with 0 ≤ xi, yi ≤ ui, 1 ≤ i ≤ q.
By Eqs. (7)–(9) one can compute f(Gv,X) in time O(u3q) for all q-tuples X =
(x1, x2, · · · , xq) with 0 ≤ xi ≤ ui, 1 ≤ i ≤ q. Thus one can compute f(Gv,X)
and h(Gv,X,Y) for each p-node v of T in time O(u4q).

We next consider a series connection.
[Series connection]

Let Gv = G′ • G′′, and let w be the vertex of G identified by the series
connection, that is, w = t(G′) = s(G′′). (See Figs. 2(b) and 6.)
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Fig. 6. The combinations of a partition P ′ of G′ and a partition P ′′ of G′′ for a partition
P of Gv = G′ • G′′

We first explain how to compute f(Gv,X). If xi + ωst(Gv, i) > ui for some
index i, then f(Gv,X) = +∞. One may thus assume that xi +ωst(Gv, i) ≤ ui for
each index i, 1 ≤ i ≤ q. Then every connected partition P of Gv can be obtained
by combining a connected partition P ′ of G′ with a connected partition P ′′ of
G′′, as illustrated in Fig. 6(a). We thus have

f(Gv,X) = min{f(G′,X′) + f(G′′,X′′) | X′ = (x′1, x
′
2, · · · , x′q) and

X′′ = (x′′1 , x
′′
2 , · · · , x′′q ) such that 0 ≤ x′i, x′′i ≤ ui and

x′i + x′′i + ωi(w) = xi for each i}. (10)

We next explain how to compute h(Gv,X,Y). If xi + ωi(s) > ui or yi +
ωi(t) > ui for some index i, then h(Gv,X,Y) = +∞. One may thus assume that
xi + ωi(s) ≤ ui and yi + ωi(t) ≤ ui for each index i, 1 ≤ i ≤ q. Then every
separated partition P of Gv can be obtained by combining a partition P ′ of G′

with a partition P ′′ of G′′, as illustrated in Figs. 6(b) and (c). There are the
following two Cases (a) and (b), and we define two functions ha and hb for the
two cases, respectively.
Case (a): one of P ′ and P ′′ is a connected partition and the other is a separated
partition.

One may assume without loss of generality that P ′ is a connected partition
and P ′′ is a separated partition. (See Fig. 6(b).) Let

ha(Gv,X,Y) = min{f(G′,X′) + h(G′′,X′′,Y) | X′ = (x′1, x
′
2, · · · , x′q) and

X′′=(x′′1 , x
′′
2 , · · · , x′′q ) such that 0 ≤ x′i, x′′i ≤ ui and

x′i + x′′i + ωi(w) = xi for each i}. (11)

Case (b): both P ′ and P ′′ are separated partitions. (See Fig. 6(c).)
Let

hb(Gv,X,Y) = min{h(G′,X,Y′) + h(G′′,X′′,Y) + 1 |
Y′ = (y′1, y

′
2, · · · , y′q) and X′′ = (x′′1 , x

′′
2 , · · · , x′′q )

such that 0 ≤ y′i, x′′i ≤ ui and
li ≤ y′i + x′′i + ωi(w) ≤ ui for each i}. (12)
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From ha and hb above one can compute h(Gv,X,Y) as follows:

h(Gv,X,Y) = min{ha(Gv,X,Y), hb(Gv,X,Y)}. (13)

By Eq. (10) one can compute f(Gv,X) in time O(u2q) for all q-tuples X =
(x1, x2, · · · , xq) with 0 ≤ xi ≤ ui, 1 ≤ i ≤ q. By Eqs. (11)–(13) one can compute
h(Gv,X,Y) in time O(u4q) for all pairs of q-tuples X = (x1, x2, · · · , xq) and
Y = (y1, y2, · · · , yq) with 0 ≤ xi, yi ≤ ui, 1 ≤ i ≤ q. Thus one can compute
f(Gv,X) and h(Gv,X,Y) for each s-node v of T in time O(u4q).

In this way one can compute f(Gv,X) and h(Gv,X,Y) for each internal node
v of T in time O(u4q) regardless of whether v is a p-node or an s-node. Since T is
a binary tree and has at most 2n−3 leaves, T has at most 2n−4 internal nodes.
Since G = Gr for the root r of T , one can compute f(G,X) and h(G,X,Y) in
time O(u4qn). By Eq. (3) one can compute the minimum number pmin(G) of
components in a uniform partition of G from f(G,X) and h(G,X,Y) in time
O(u2q). Thus the minimum partition problem can be solved in time O(u4qn).
This completes our proof of Theorem 1.

4 p-Partition Problem

In this section we have the following theorem.

Theorem 2. The p-partition problem can be solved for any series-parallel graph
G in time O(p2u4qn), where n is the number of vertices in G, q is a fixed constant
number of weights, u is the maximum upper bound on component size, and p is
a given number of components.

The algorithm for the p-partition problem is similar to the algorithm for the
minimum partition problem in the previous section. So we present only an out-
line.

For a series-parallel graph G and an integer p∗, 0 ≤ p∗ ≤ p − 1, we define a
set F (G, p∗) of q-tuples X = (x1, x2, · · · , xq) as follows:

F (G, p∗) = {X | G has a connected partition P such that
xi = ωi(Pst) − ωst(G, i) for each i, and p∗ = |P| − 1}.

For a series-parallel graph G and an integer p∗, 0 ≤ p∗ ≤ p − 2, we define a
set H(G, p∗) of pairs of q-tuples X = (x1, x2, · · · , xq) and Y = (y1, y2, · · · , yq) as
follows:

H(G, p∗) = {(X,Y) | G has a separated partition P such that
xi = ωi(Ps) − ωi(s) and yi = ωi(Ps) − ωi(t) for each i,

and p∗ = |P| − 2}.
Clearly |F (G, p∗)| ≤ (u+ 1)q and |H(G, p∗)| ≤ (u+ 1)2q.

We compute F (Gv, p
∗) and H(Gv, p

∗) for each node v of a binary decompo-
sition tree T of a given series-parallel graph G from leaves to the root r of T
by means of dynamic programming. Since G = Gr, the following lemma clearly
holds.
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Lemma 1. A series-parallel graph G has a uniform partition with p components
if and only if the following condition (a) or (b) holds:

(a) F (G, p − 1) contains at least one q-tuple X = (x1, x2, · · · , xq) such that li ≤
xi + ωst(G, i) ≤ ui for each index i, 1 ≤ i ≤ q; and

(b) H(G, p − 2) contains at least one pair of q-tuples X = (x1, x2, · · · , xq) and
Y = (y1, y2, · · · , yq) such that li ≤ xi + ωi(s) ≤ ui and li ≤ yi + ωi(t) ≤ ui

for each index i, 1 ≤ i ≤ q.
One can compute in time O(p) the sets F (Gv, p

∗) andH(Gv, p
∗) for each leaf v of

T and all integers p∗ (≤ p−1), and compute in time O(p2u4q) the sets F (Gv, p
∗)

and H(Gv, p
∗) for each internal node v of T and all integers p∗ (≤ p − 1) from

the counterparts of the two children of v in T . Since G = Gr for the root r of
T , one can compute the sets F (G, p− 1) and H(G, p− 2) in time O(p2u4qn). By
Lemma 1 one can know from the sets in time O(u2q) whether G has a uniform
partition with p components. Thus the p-partition problem can be solved in time
O(p2u4qn).

5 Conclusions

In this paper we obtained pseudo-polynomial-time algorithms to solve the three
uniform partition problems for series-parallel graphs. Both the minimum parti-
tion problem and the maximum partition problem can be solved in time O(u4qn).
On the other hand, the p-partition problem can be solved in time O(p2u4qn).

One can observe that the algorithms for series-parallel graphs can be extended
for partial k-trees, that is, graphs with bounded tree-width [1,2].

References

1. S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs,
J. Algorithms, Vol. 12, pp. 308–340, 1991.

2. H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees, J. Algorithms, Vol. 11, pp. 631–643, 1990.

3. B. Bozkaya, E. Erkut and G. Laporte, A tabu search heuristic and adaptive mem-
ory procedure for political districting, European J. Operational Research, Vol. 144,
pp. 12–26, 2003.

4. R. C. Gonzalez and P. Wintz, Digital Image Processing, Addison-Wesley, Read-
ing, MA, 1977.

5. T. Ito, X. Zhou and T. Nishizeki, Partitioning a graph of bounded tree-width to
connected subgraphs of almost uniform size, J. Discrete Algorithms, Vol. 4, pp. 142–
154, 2006.

6. M. Lucertini, Y. Perl and B. Simeone, Most uniform path partitioning and its use
in image processing, Discrete Applied Mathematics, Vol. 42, pp. 227–256, 1993.

7. K. Takamizawa, T. Nishizeki and N. Saito, Linear-time computability of combina-
torial problems on series-parallel graphs, J. ACM, Vol. 29, pp. 623–641, 1982.

8. D. C. Tsichritzis and P. A. Bernstein, Operating Systems, Academic Press, New
York, 1974.

9. J. C. Williams Jr., Political redistricting: a review, Papers in Regional Science,
Vol. 74, pp. 13–40, 1995.



Characterizations and Linear Time Recognition
of Helly Circular-Arc Graphs

Min Chih Lin1,� and Jayme L. Szwarcfiter2,��

1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales,
Departamento de Computación, Buenos Aires, Argentina

oscarlin@dc.uba.ar
2 Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE
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Abstract. A circular-arc model (C, A) is a circle C together with a col-
lection A of arcs of C. If A satisfies the Helly Property then (C, A) is a
Helly circular-arc model. A (Helly) circular-arc graph is the intersection
graph of a (Helly) circular-arc model. Circular-arc graphs and their sub-
classes have been the object of a great deal of attention, in the literature.
Linear time recognition algorithm have been described both for the gen-
eral class and for some of its subclasses. However, for Helly circular-arc
graphs, the best recognition algorithm is that by Gavril, whose com-
plexity is O(n3). In this article, we describe different characterizations
for Helly circular-arc graphs, including a characterization by forbidden
induced subgraphs for the class. The characterizations lead to a linear
time recognition algorithm for recognizing graphs of this class. The al-
gorithm also produces certificates for a negative answer, by exhibiting a
forbidden subgraph of it, within this same bound.

Keywords: algorithms, circular-arc graphs, forbidden subgraphs, Helly
circular-arc graphs.

1 Introduction

Circular-arc graphs form a class of graphs which has attracted much interest,
since its first characterization by Tucker, almost fourty years ago [9]. There
is a particular interest in the study of subclasses of it. The most common of
these subclasses are the proper circular-arc graphs, unit circular-arc graphs and
Helly circular-arc graphs (Golumbic [3]). Linear time recognition and represen-
tation algorithms have been already formulated for general circular-arc graphs
(McConnell [7], Kaplan and Nussbaum [5]), proper circular-arc graphs (Deng,
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Hell and Huang [1]) and unit circular-arc arc graphs (Lin and Szwarcfiter [6]).
For Helly circular-arc graphs, the best recognition algorithm is by Gavril [2],
which requires O(n3) time. Such an algorithm is based on characterizing Helly
circular-arc graphs, as being exactly those graphs whose clique matrices admit
the circular 1’s property on their columns [2]. The book by Spinrad [8] contains
an appraisal of circular-arc graph algorithms.

In the present article, we propose new characterizations for Helly circular-
arc graphs, including a characterization by forbidden induced subgraphs for the
class. The characterizations lead to a linear time algorithm for recognizing graphs
of the class and constructing the corresponding Helly circular-arc models. In case
a graph does not belong to the class, the method exhibits a certificate, namely
a forbbiden induced subgraph of it, also in linear time.

Let G be a graph, VG, EG its sets of vertices and edges, respectively, |VG| = n
and |EG| = m. Write e = vivj , for an edge e ∈ EG, incident to vi, vj ∈ VG. A
clique of G is a maximal subset of pairwise adjacent vertices. Denote N(vi) =
{vj ∈ VG|vivj ∈ EG}, call vj ∈ N(vi) a neighbour of vi and write and d(vi) =
|N(vi)|.

(a) (b)

Fig. 1. Two circular-arc models

A circular-arc (CA) model (C,A) is a circle C together with a collection A
of arcs of C. Unless otherwise stated, we always traverse C in the clockwise
direction. Each arc Ai ∈ A is written as Ai = (si, ti), where si, ti ∈ C are
the extreme points of Ai, with si the start point and ti the end point of the
arc, respectively, in the clockwise direction. The extremes of A are those of all
arcs Ai ∈ A. As usual, we assume that no single arc of A covers C, that no
two extremes of A coincide and that all arcs of A are open. When traversing
C, we obtain a circular ordering of the extreme points of A. Furthermore, we
also consider a circular ordering A1, . . . , An of the arcs of A, defined by the
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corresponding circular ordering s1, . . . , sn of their respective start points. In
general, when dealing with a sequence x1, . . . , xt of t objects circularly ordered,
we assume that all the additions and subtractions of the indices i of the objects
xi are modulo t. Figure 1 illustrates two CA models, with the orderings of their
arcs.

(a) (b)

Fig. 2. Two minimally non Helly models

In a model (C,A), the complement of an arc Ai = (si, ti) is the arc Ai =
(ti, si). Complements of arcs have been employed before by McConnell [7], under
the name arc flippings. The complement of (C,A) is the model (C,A), where
A = {Ai|Ai ∈ A}.

In the model (C,A), a subfamily of arcs of A is intersecting when they pairwise
intersect. Say that A is Helly, when every intersecting subfamily of it contains
a common point of C. In this case, (C,A) is a Helly circular-arc (HCA) model.
When A is not Helly, it contains a minimal non Helly subfamily A′, that is A′ is
not Helly, but A′ \Ai is so, for any Ai ∈ A′. The model (C,A′) is then minimally
non HCA. Figure 2 depicts two minimally non Helly models.

A circular-arc (CA) graph G is the intersection graph of some CA model
(C,A). Denote by vi ∈ VG the vertex of G corresponding to Ai ∈ A. Similarly,
a Helly circular-arc (HCA) graph is the intersection graph of some HCA model.
In a HCA graph, each clique Q ⊆ VG can be represented by a point q ∈ C,
which is common to all those arcs of A, which correspond to the vertices of Q.
Clearly, two distinct cliques must be represented by distinct points. Finally, two
CA models are equivalent when they share the same intersection graph.

In the next section, we present the main basic concepts, in which the pro-
posed characterizations are based. In Section 3, we characterize HCA models,
while HCA graphs are characterized in Section 4. In Section 5, we describe the
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construction of a special CA model, which is employed in the recognition al-
gorithm. Finally, Section 6 describes the recognition algorithm, together with
its certificates. Withou loss of generality, we consider all given graphs to be
connected.

2 Central Definitions

In this section, we describe usefull concepts for the proposed method. Let G be
a graph and (C,A) a CA model of it. First, define special sequences of extremes
of the arcs of A.

(a) (b)

Fig. 3. An obstacle and its non Helly stable model

An s-sequence (t-sequence) is a maximal sequence of start points (end points)
of A, in the circular ordering of C. Write extreme sequence to mean an s-sequence
or t-sequence. The 2n start points and end points are then partitioned into s-
sequences and t-sequences, which alternate in C. For an extreme sequence E,
denote by FIRST (E) the first element of E, while the notations NEXT (E)
and NEXT−1(E) represent the extreme sequences which succeeds and preceeds
E in C, respectively. For an extreme point p ∈ C, denote SEQUENCE(p)
the extreme sequence which contains p, while NEXT (p) means the sequence
NEXT (SEQUENCE(p)). Through the paper, we employ operations on the
CA models, which possibly modify them, while preserving equivalence. A simple
example of such operations is to permute the extremes of the arcs, whitin a same
extreme sequence.

Next, we define a special model of interest.

Definition 1. Let si be a start point of A and S = SEQUENCE(si). Say that
si is stable when i = j or Ai ∩Aj = ∅, for every tj ∈ NEXT−1(S).
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Definition 2. A model (C,A) is stable when all its start points are stable.

As examples, the models of Figures 1(a) and 1(b) are not stable, while that of
Figure 3(b) is.

We will employ stable models in the recognition process of HCA graphs.
Finally, define a special family of graphs.

Definition 3. An obstacle is a graph H containing a clique Kt ⊆ VH , t ≥ 3,
whose vertices admit a circular ordering v1, . . . , vt, such that each edge vivi+1,
i = 1, . . . , t, satisfies:

(i) N(wi) ∩Kt = Kt \ {vi, vi+1}, for some wi ∈ VH \Kt, or
(ii) N(ui) ∩Kt = Kt \ {vi} and N(zi) ∩Kt = Kt \ {vi+1}, for some adjacent

vertices ui, zi ∈ VH \Kt.

As example, the graph of Figure 3(a) is obstacle.
We will show that the obstacles form a family of forbidden induced subgraphs

for a CA graph to be HCA.

3 Characterizing HCA Models

In this section, we describe a characterization and a recognition algorithm for
HCA models. The characterization is as follows:

Theorem 1. A CA model (C,A) is HCA if and only if

(i) if three arcs of A cover C then two of these three arcs also cover it, and
(ii) the intersection graph of (C,A) is chordal.

Proof. By hypothesis, (C,A) is a HCA model. Condition (i) is clear, otherwise
(C,A) can not be HCA. Suppose Condition (ii) fails. Then the intersection graph
Gc of (C,A) contains an induced cycle Cc, with length k > 3. Let A′ ⊆ A be the
set of arcs of A, corresponding to the vertices of Cc, and A′ ⊆ A the sets of the
complements of the arcs Ai ∈ A′. First, observe that no two arcs of A′ cover the
circle, otherwise Cc would contain a chord. Consequently, A′ consists of k arcs
circularly ordered as A1, . . . , Ak and satisfying: Ai ∩Aj 
= ∅ if and only if Ai, Aj

are consecutive in the circular ordering. In general, comparing a model (C,A)
to its complement model (C,A), we conclude that two arcs of A intersect if and
only if their complements in A are either disjoint or intersect without covering
the circle. Consequently, A′ must be an intersecting family. On the other hand,
the arcs of A′ can not have a common point p ∈ C. Because, otherwise p 
∈ Ai,
for all Ai, meaning that the arcs of A′ do not cover the circle, contradicting Cc

to be an induced cycle. The inexistence of a common point in A′ implies that A
is not a Helly family, a contradiction. Then (ii) holds. The converse is similar.�

The following characterizes minimally non Hely models.
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Corollary 1. A model (C,A) is minimaly non HCA if and only if

(i) A is intersecting and covers C, and
(ii) two arcs of A cover C precisely when they are not consecutive in the circular

ordering of A.

Theorem 1 leads directly to a simple algorithm for recognizing Helly models, as
follows. Given a model (C,A) of some graphG, verify if (C,A) satisfies Condition
(i) and then if it satisfies Condition (ii). Clearly, (C,A) is HCA if and only if
both conditions are satisfied. Next, we describe methods for checking them.

For Condition (i), we seek directly for the existence of three arcs Ai, Aj , Ak ∈
A that cover C, two of them not covering it. Observe that there exist such arcs if
and only if the circular ordering of their extremes is si, tk, sj, ti, sk, tj. For each
Ai ∈ A, we repeat the following procedure, which looks for the other two arcs
Aj , Ak whose extreme points satisfy this ordering. Let L1 be the list of extreme
points of the arcs contained in (si, ti), in the ordering of C. First, remove from
L1 all pairs of extremes sq, tq of a same arc, which may possibly occur. Let L2
be the list formed by the other extremes of the arcs represented in L1. That
is, sq ∈ L1 if and only if tq ∈ L2, and tq ∈ L1 if and only if sq ∈ L2, for any
Aq ∈ A. Clearly, the extremes points which form L2 are all contained in (ti, si),
and we consider them in the circular ordering of C. Denote by FIRST (L1) and
LAST (L2) the first and last extreme points of L1 and L2, in the considered
orderings, respectively. Finally, iteratively perform the steps below, until either
L1 = ∅, or FIRST (L1) = tk and LAST (L2) = tj , for some j, k.

if FIRST (L1) is a start point sq then remove sq from L1 and tq from L2
if LAST (L2) is a start point sq then remove sq from L2 and tq from L1

If the iterations terminate because L1 = ∅ then there are no two arcs which
together with Ai satisfy the above requirements, completing the computations
relative to Ai. Otherwise, the arcs Ak and Aj , whose end points are FIRST (L1)
and LAST (L2), form together with Ai a certificate for the failure of Condition
(i). Each of the n lists L2 needs to be sorted. There is no difficulty to sort them
all together in time O(m), at the beginning of the process. The computations
relative to Ai require O(d(vi)) steps. That is, the overall complexity of checking
Condition (i) is O(m).

For Condition (ii), the direct approach would be to construct the model (C,A),
its intersection graph Gc and apply a chordal graph recognition algorithm to
decide if Gc is chordal. However, the number of edges of Gc could be O(n2),
breaking the linearity of the proposed method. Alternatively, we check whether
the complement Gc of Gc is co-chordal. Observe that two vertices of Gc are ad-
jacent if and only if their corresponding arcs in A cover the circle. Consequently,
the number of edges of Gc is at most that of G, i.e. ≤ m. Since co-chordal graphs
can be recognized in linear time (Habib, McConnell, Paul and Viennot [4]), the
complexity of the method for verifying Condition (ii) is O(m).

Consequently, HCA models can be recognized in linear time.
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4 Characterizing HCA Graphs

In this section, we describe the proposed characterizations for HCA graphs.

Theorem 2. The following affirmative are equivalent for a CA graph G.

(a) G is HCA.
(b) G does not contain obstacles, as induced subgraphs.
(c) All stable models of G are HCA.
(d) One stable model of G is HCA.

Proof. (a) ⇒ (b): By hypothesis, G is HCA. Since HCA graphs are hereditary, it
is sufficient to prove that no obstacle H is a HCA graph. By contrary, suppose H
admits a HCA model (C,A). Let Kt be the core of H . By Definition 3, there is a
circular ordering v1, . . . , vt of the vertices of Kt which satisfies Conditions (i) or
(ii) of it. Denote by A′ = {A1, . . . , At} ⊆ A the family of arcs corresponding to
Kt. Define a clique Ci of H , for each i = 1, . . . , t, as follows. If (i) of Definition
3 is satisfied then Ci ⊇ {wi} ∪ Kt \ {vi, vi+1}, otherwise (ii) is satisfied and
Ci ⊇ {ui, zi} ∪Kt{vi, vi+1}. Clearly, all cliques C1, . . . , Ct are distinct, because
any two of them contain distinct subsets of Kt. Since H is HCA, there are
distinct points p1, . . . , pt ∈ C, representing C1, . . . , Ct, respectively. We know
that vi ∈ Cj if and only if i 
= j − 1, j. Consequently, pj ∈ Ai if and only if
i 
= j − 1, j. The latter implies that p1, . . . , pt are also in the circular ordering of
C. On the other hand, because Kt is a clique distinct from any Ci, there is also
a point p ∈ C representing Kt. Try to locate p in C. Clearly, p lies between two
consecutive points pi−1, pi. Examine the vertex vi ∈ Kt and its corresponding
arc Ai ∈ A′. We already know that p ∈ Ai, while pi−1, pi 
∈ Ai. Furthermore,
because t ≥ 3, there is j 
= i− 1, i such that pj ∈ Ai. Such situation can not be
realized by arc Ai. Then (C,A) is not HCA, a contradiction.

(b) ⇒ (c): By hypothesis, G does not contain obstacles. By contrary, suppose
that there exists a stable model (C,A) of G, which is not HCA. Let A′ ⊆ A be
a minimally non Helly subfamily of A. Denote by A1, . . . , At the arcs of A′ in
the circular ordering. Their corresponding vertices in G are v1, . . . , vt, forming a
clique Kt ⊆ VG. Let Ai, Ai+1 be two consecutive arcs of A′, in the circular order-
ing. By Corollary 1, Ai, Ai+1 do not cover C. Denote T = SEQUENCE(ti+1)
and S = SEQUENCE(si). Because (C,A) is stable, S 
= NEXT (T ). Let
S′ = NEXT (T ) and T ′ = NEXT−1(S). Choose sz ∈ S and tu ∈ T ′. We know
that Az does not intersect Ai+1, nor does Au intersect Ai, again because the
model is stable. Since sz , tu ∈ (ti+1, si), Corollary 1 implies that sz, tu ∈ Aj , for
any Aj ∈ A′, Aj 
= Ai, Ai+1. Denote by zi and ui the vertices of G corresponding
to Az and Au, respectively. Examine the following alternatives.

If zi and vi are not adjacent, rename zi as wi. Similarly, if ui and v+1 are not
adjacent, let wi be the vertex ui. In any of these two alternatives, it follows that
N(wi)∩Kt = Kt \{vi, vi+1}. The latter means that Condition (i) of Definition 3
holds. When none of the above alternatives occurs, the arcs Az and Au intersect,
because sz preceeds tu in (ti+1, si). That is, zi and wi are adjacent vertices
satisfying N(zi)∩Kt = Kt\{vi+1} and N(ui)∩Kt = Kt\{vi}. This corresponds
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to Condition (ii) of Definition 3. Consequently, for any pair of vertices vi, vi+1 ∈
Kt it is always possible to select a vertex wi 
∈ Kt, or a pair of vertices zi, ui 
∈ Kt,
so that Definition 3 is satisfied. That is, G contains an obstacle as an induced
subgraph. This contradiction means all stable models of G are HCA.

The implications (c) ⇒ (d) and (d) ⇒ (a) are trivial, meaning that the proof
is complete. �

5 Constructing Stable Models

Motivated by the characterizations of HCA graphs in terms of stable models,
described in the previous section, we present below an algorithm for constructing
a stable model of a CA graph. Let (C,A) be a CA model of some graph G, and
A1, . . . , An the circular ordering of the arcs of A. Define the following expansion
operations on the end points tj and start points si of A.

expansion(tj):
Examine the extremes points of A, starting from tj , in the clockwise direc-
tion, and choosing the closest start point si satisfying i = j or Ai ∩Aj = ∅.
Then move tj so as to become the extreme point preceeding si in the model.

expansion(si):
First, examine the extreme points of A, starting from si, in the counter-
clockwise direction, and choosing the closest end point tj satisfying i = j or
Ai ∩Aj = ∅. Let T = SEQUENCE(tj). Then move si counterclocwise to-
wards T , transforming T into the sequences T ′siT ′′, where T ′ = {tj ∈ T |i = j
or Ai ∩Aj = ∅} and T ′′ = T \ T ′.

The following lemma asserts that the intersections of the arcs are preserved by
these operations.

Lemma 1. The operations expansion(tj) or expansion(si) applied to a model
(C,A) construct models equivalent to (C,A).

We describe the following algorithm for finding a stable model of a given CA
model, with end points tj and start points si:

1. Perform expansion(tj), for j = 1, . . . , n.
2. Perform expansion(si), for i = 1, . . . , n.

The correctness of this algorithm then follows from Lemma 1 and from the
following theorem.

Theorem 3. The model constructed by the above algorithm is stable.

Proof. Let (C,A) be a given CA model, input to the algorithm. We show that
all its start points are stable, at the end of the process. After the completion
of Step 1, we know that si = FIRST (S) is already stable, for any s-sequence
S. Otherwise, there would exist some end point tj ∈ NEXT−1(S) satisfying
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i 
= j and Ai ∩ Aj 
= ∅, meaning that tj would have been moved after si in the
clockwise direction, by expansion(tj).

Next, examine Step 2. Choose a start point si and follow the operation
expansion(si). If si is already stable, the algorithm does nothing. Suppose si
is not stable. Let S∗ = SEQUENCE(si) and S the s-sequence closest to S∗

in the counterclockwise direction, where T = NEXT−1(S) contains some tj
satisfying i = j or Ai ∩ Aj = ∅. Then expansion(si) transforms T into the se-
quences T ′siT ′′, where T ′ = {tj ∈ T |i = j or Ai ∩ Aj = ∅} and T ′′ = T \ T ′.
Analyze the new sequences that have been formed. Clearly, T ′ 
= ∅, otherwise si
would have been moved further from S∗. On the other hand, T ′′ could possibly
be empty. However, the latter would only imply that T remains unchanged and
that si has been incorporated to S. In any case, T ′ is the t-sequence which pre-
ceeds si. By the construction of T ′, it follows that si is now stable. In addition,
previously stable start points of S remain so, because T ′′ ⊂ T . Furthermore,
observe that si 
= FIRST (S∗), because FIRST (S∗) was before stable, whereas
si was not. Consequently, S∗ does not become empty by moving si out of it,
implying that no parts of distinct t-sequences can be merged during the process.
The latter assertion preserves the stability of the stable vertices belonging to the
s-sequence which follows S∗ in C. The remaining start points are not affected by
expansion(si). Consequently, si becomes now stable and all previousloy stable
start points remain so. The algorithm is correct. �

Corollary 2. Every CA model admits an equivalent stable model.

Next, we discuss the complexity of the algorithm. The number of extreme points
examined during the operation expansion(tj) is at most d(vj) + 1, since the
operation stops at the first extreme ti, such that either i = j or Ai ∩ Aj = ∅.
Consequently, Step 1 requires O(m) time. As for the operation expansion(si),
we divide it into two parts. First, for finding the required s-sequence S, the above
argument applies, that is, O(m) time suffices for all si. As for the determina-
tion of the sequences T ′ and T ′′, a straightforward implementation of it would
consist of examining the entire t-sequence T = T ′ ∪ T ′′, for each corresponding
si, meaning O(n2) time, overall. However, a more elaborate implementation is
possible, as follows.

To start, after the completion of Step 1, order the end points of each t-sequence
T , in reverse ordering of their corresponding start points. That is, if tj , tk ∈
T then in the clockwise direction, the extreme points of Aj and Ak appear
as . . . tj . . . tk . . . sk . . . sj . . .. Such an ordering can be obtained in overall O(n)
time. With the end points so ordered, when traversing T = NEXT−1(S), for
completing the operation expansion(si), we can stop at the first tj ∈ T satisfying
i = j or Ai ∩ Aj = ∅. In case the condition i = j holds, we exchange in T , the
positions of tj and FIRST (T ). Afterwards, in any of the two alternatives, move
si to the position just before tj in the counterclockwise direction. We would need
no more than additional d(vi) + 1 steps for it, in the worst case. Consequently,
expansion(si) can be completed in O(m) time, for all start points. Therefore
the complexity of the algorithms is O(m).
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6 Recognition Algorithm for HCA Graphs

We are now ready to formulate the algorithm for recognizing HCA graphs. Let
G be a graph.

1. Apply the algorithm [7] to recognize whether G is a CA graph. In the affir-
mative case, let (C,A) be the model constructed by [7]. Otherwise terminate
the algorithm (G is not HCA).

2. Transform (C,A) into a stable model, applying the algorithm of Section 5.
3. Verify if (C,A) is a HCA model, applying the algorithm of Section 3. Then

terminate the algorithm (G is HCA if (C,A) is HCA, and otherwise G is not
HCA).

The correctness of the algorithm follows directly from Theorems 1, 2 and 3.
Each of the above steps can be implemented in O(m) time. The complexity

of the algorithm is O(m).
The algorithm constructs a HCA model of the input graph G, in case G is

HCA. If G is CA but not HCA, we can exhibit a certificate of this fact, by
showing a forbidden subgraph of G, that is, an obstacle. In order to construct
the obstacle, we may need certificates of non co-chordality. There is no difficulty
to modify the algorithm [4] so as to produce such certificates. The entire process
can also be implemented in linear time.
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Abstract. Reversible finite automata with halting states (RFA) were
first considered by Ambainis and Freivalds to facilitate the research of
Kondacs-Watrous quantum finite automata. In this paper we consider
some of the algebraic properties of RFA, namely the varieties these
automata generate. Consequently, we obtain a characterization of the
boolean closure of the classes of languages recognized by these models.

1 Introduction

In this paper we study reversible finite automata (RFA). Being entirely classical,
the model is however a special case of Kondacs-Watrous quantum finite automata
and was introduced in [5]. Quantum finite automata (QFA) are of a specific inter-
est, since the family of these models represent finite memory real-time quantum
mechanical devices. On the other hand, recently it has been demonstrated [3]
that these models are worth studying also from the point of view of classical
algebraic automata theory. The first models of QFA are due to [11] and [13].
Other models are proposed and studied, for example, in [9,14,6,8,3,10,4], etc. In
principle, the different types of QFA reflect the different ways how the results
of computation can be interpreted, i.e., quantum measurements. By applying
various restrictions, it is even possible to get deterministic and probabilistic spe-
cial cases of QFA. Such models sometimes prove to be extremely useful in the
research of the properties of QFA.

In Section 2 we introduce the finite automata models discussed further in
the paper. Section 3 recalls the notations of the varieties used in this paper.
Section 4 deals with injective finite automata (IFA), which are in turn a special
case of RFA. IFA are closely related to a deterministic special case of Brodsky-
Pippenger QFA [9]. We give an exact characterization of languages which are
recognized by IFA and conclude that the syntactic monoids of this class generates
the variety of commuting idempotent monoids, ECom. In Section 5 we show
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that the syntactic monoids of languages recognized by RFA generate the variety
defined by the identity xωyωxω = xωyω. Section 6 specifies algebraic conditions
for a language to be recognized by RFA or IFA.

2 Preliminaries

In this paper, by minimal automaton of a regular language we understand a
complete minimal deterministic finite automaton recognizing the language (the
transition function is defined for any state and any input letter). Two automata
(deterministic or not) are said to be equivalent if they accept the same language.
We denote by Lc the complement of a language L. We do not recall the general
definition for Kondacs-Watrous QFA, which can be found in [11]. The definition
of RFA is obtained from Kondacs-Watrous QFA by adding the restriction that
any transition is deterministic:

Definition 2.1. A reversible finite automaton A = (Q,Σ ∪ {$}, q0, Qa, Qr, · )
is specified by a finite set of states Q, a finite input alphabet Σ, an end-marker
$ /∈ Σ and an initial state q0 ∈ Q. The set Q is the union of two disjoint subsets
Qh and Qn, called the set of halting and non-halting states, respectively. Further,
the set Qh is the union of two disjoint subsets Qa and Qr of Q, called the set of
accepting and rejecting states, respectively. The transition function (q, σ) → q ·σ
from Q× (Σ ∪ {$}) into Q satisfies the following conditions:

for all σ ∈ Σ ∪ {$}, q1 ·σ = q2 ·σ implies q1 = q2; (1)
if q is non-halting, then q · $ is halting. (2)

The first condition is equivalent to each letter σ ∈ Σ ∪ {$} inducing a bijection
on Q. A RFA reads any input word starting with the first letter. As soon as
the automaton enters a halting state, the computation is halted and the word
is either accepted or rejected, depending on whether the state is accepting or
rejecting. The end-marker $ insures that any word is either accepted or rejected.

1 2

34

σ

$

τ

τ

$ σ, $

τ

σ

σ

τ

$

Fig. 1. A reversible finite automaton
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In the example of Figure 1, state 4 is accepting and state 3 is rejecting. States
1 and 2 are non-halting.

A reversible finite automaton is called end-decisive [9], if it accepts a word
only after reading the end-marker $. Dually, if the automaton rejects a word
only after reading $, it is called co-end-decisive. If a reversible finite automaton
is either end-decisive or co-end-decisive, it will be called a deterministic Brodsky-
Pippenger automaton (DBPA).

It can be noticed that any RFA A = (Q,Σ ∪ {$}, q0, Qa, Qr, · ) can be trans-
formed into a classical finite automaton B = (Q,Σ, q0, F, ·B ), where F = Qa ∪
{q ∈ Qn | q · $ ∈ Qa} and the new transition function is defined in the following
way: for all σ ∈ Σ and q ∈ Q,

q ·B σ =

{
q ·σ if q is non-halting,
q if q is halting.

(3)

By eliminating in B the states which are not accessible from the initial state, we
obtain an automaton A′ = (Q′, Σ, q0, F ′, · ), where F ′ = Q′∩F , which recognizes
the same language as A. For instance, if A is the automaton represented in Figure
1, the automata B and A′ are represented in Figure 2.

1 2

34

σ
τ

τ

σ, τ

σ

σ, τ

1 2

4

σ
τ

τ

σ

σ, τ

Fig. 2. The automata B and A′

A state q such that, for every σ ∈ Σ, q ·B σ = q, will be called absorbing.

Proposition 2.2. If A′ is non-trivial, a state of Q′ is absorbing if and only if
it is halting.

Consider the non-absorbing states of A′, which are also, by Proposition 2.2, the
non-halting states. It follows from (3) that each letter of Σ acts on these states
as a partial injective function. All the absorbing states in F ′ are equivalent, so
they can be merged. The same applies to non-final absorbing states.

The resulting deterministic automaton is equivalent to A. It has at most two
absorbing states and each letter defines a partial injective function on the set
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of non-absorbing states. An automaton with these properties will be called a
classical reversible finite automaton (CRFA). Conversely, it is possible to show
that any CRFA can be transformed into an equivalent RFA. Thus we have
established the following result.

Proposition 2.3. Any RFA is equivalent to some CRFA. Conversely, any
CRFA is equivalent to some RFA.

If a CRFA has no absorbing states, it is a group automaton (all letters define
permutations on the set of states) and it recognizes a group language. If it has at
most one absorbing state, it will be called an injective finite automaton (IFA), to
illustrate the connection of this model to partial injective functions, as discussed
in the next section. Similarly as RFA are equivalent to CRFA, IFA are equivalent
to DBPA. We call IFA-A (resp. IFA-R) an injective automaton whose absorbing
state (if it exists) is final (resp. nonfinal). IFA-A are equivalent to co-end-decisive
automata and IFA-R to end-decisive automata. As we shall later see, the closure
of IFA-R under finite union is equivalent to Pin’s reversible automata [16,17].

h

σ, τ

τ

σ

σ, τ

σ, τ

σ, τ

h

σ, τ

τ

σ

σ, τ

σ, τ

σ, τ

Fig. 3. An IFA-A (on the left) and an IFA-R (on the right)

3 Varieties

If x is an element of a monoid M , we denote by xω the unique idempotent of
the subsemigroup of M generated by x.

An ordered monoid (M,≤) is a monoid M equipped with a stable order rela-
tion ≤ on M which means that, for every u, v, x ∈ M , u ≤ v implies ux ≤ vx
and xu ≤ xv.

Let M be a monoid and let s be an element of M . An inverse of s is an
element s̄ such that ss̄s = s and s̄ss̄ = s̄. An inverse monoid is a monoid in
which every element has exactly one inverse. It is well known that the relation
≤ on M defined by

x ≤ y if and only if x = ye for some idempotent e of M

is a stable partial order, called the natural order of M .



Varieties Generated by Certain Models of Reversible Finite Automata 87

Following [19], we call ordered inverse monoid an inverse monoidM , equipped
with its natural order. We also call dually ordered inverse monoid an inverse
monoid ordered by the dual order of its natural order.

A general overview on varieties of finite semigroups and monoids is given in
[15], whereas introduction to varieties of ordered semigroups and monoids can be
found in [18]. Given two varieties of ordered monoids V and W, their semidirect
product V ∗ W and Malcev product VM©W are defined as in [19]. Theorems in
[19, Section 3] imply that the semidirect product is an associative operation on
varieties of ordered monoids.

In this paper, we shall use the following varieties of ordered monoids, which
are defined by some simple identities:

(1) G = [[xω = 1]], the variety of groups;
(2) J1 = [[x2 = x, xy = yx]], the variety of commutative and idempotent
monoids;
(3) J+

1 = [[x2 = x, x ≤ 1]], the variety of ordered idempotent monoids in
which the identity is the maximum element. Order implies xy ≤ y, xy ≤ x,
and since monoids are idempotent, xy ≤ yx. Hence xy = yx, and J+

1 ⊂ J1;
(4) J−

1 = [[x2 = x, 1 ≤ x]], the variety of ordered idempotent monoids in
which the identity is the minimal element. Similarly, J−

1 ⊂ J1;
(5) R1 = [[xyx = xy]], the variety of idempotent and R-trivial monoids;
(6) ECom = [[xωyω = yωxω ]], the variety of monoids with commuting idem-
potents: the set of idempotents form a submonoid which belongs to the vari-
ety J1. This variety is known [7] to be equal to Inv, the variety of monoids
generated by inverse monoids. Further, by [12], Inv = J1 ∗ G = J1 M©G =
ECom;
(7) ECom+ = [[xωyω = yωxω, xω ≤ 1]], the variety of ordered monoids
whose idempotents form an ordered submonoid which belongs to the variety
J+
1 . This variety is known [19] to be equal to Inv+, the variety of ordered

monoids generated by ordered inverse monoids, and also to J+
1 ∗ G;

(8) ECom− = [[xωyω = yωxω , 1 ≤ xω ]] the variety of ordered monoids
whose idempotents form an ordered submonoid which belongs to the variety
J−
1 . One can show that this variety is equal to Inv−, the variety of ordered

monoids generated by dually ordered inverse monoids, and also to J−
1 ∗ G.

By Vagner-Preston theorem [23,22], transition monoids of IFA, IFA-A, IFA-R
generate the varieties Inv, Inv+, Inv−, respectively. We elaborate this fact in
the next section.

4 Injective Finite Automata

In this section we shall describe the languages recognized by IFA, as well as
an algebraic characterization of the boolean closure of this class of languages.
The transition monoid generated by an injective automaton is isomorphic to
a submonoid of the monoid of injective partial functions from a finite set into
itself, which justifies the name chosen for the model.
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The classes of languages recognized by IFA-A and IFA-R will be denoted
by L and Lc, respectively. The intersection of L and Lc is the class of group
languages. Recall that a class of languages is closed under inverse morphism if
for any monoid morphism ϕ : Σ∗ → Γ ∗ and for any language L in the class,
the language ϕ−1(L) is also in the class. Given a word u and a language L of
Σ∗, recall that the quotient of L by u on the left (resp. right) is the language
u−1L = {v ∈ Σ∗ | uv ∈ L} (resp. Lu−1 = {v ∈ Σ∗ | vu ∈ L}).
Theorem 4.1. The classes L and Lc are closed under inverse morphisms and
word quotients. Furthermore, the class L is closed under finite union and the
class Lc under finite intersection.

Theorem 4.2. A language of Σ∗ is in L if and only if it is of the form L0 ∪(⋃
σ∈Σ LσσΣ

∗), where L0 and the Lσ are group languages.

Proof. First, if L ⊂ Σ∗ is a group-language and σ ∈ Σ, the languages L and
LσΣ∗ are recognized by IFA-A and therefore are in L. Since by Theorem 4.1, L
is closed under finite union, the languages described in the statement are in L.

Consider now a languageL recognized by an IFA-A A = (Q,Σ, q0, F, · ) having
an absorbing state h. Let P = Q \ {h}. Each letter of Σ induces an injective
partial map on P . Completing these partial maps to bijections in an arbitrary
way, we obtain a bijective automaton B = (Q,Σ, ·B ). Let L0 be the language
recognized by the automaton A0 = (Q,Σ, q0, F \{h}, ·B ) and, for each letter σ ∈
Σ, let Lσ be the language recognized by the automaton Aσ = (Q,Σ, q0, Fσ, ·B ),
where Fσ = {q ∈ P | q ·σ = h}. If L is the language recognized by the IFA-A
represented in Figure 3, the three automata A0, Aσ and Aτ are pictured in
Figure 4. Then by construction, L = L0 ∪⋃σ∈Σ∗ LσσΣ

∗. ��

σ, τ
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τ

σ, τ

σ

τ

σ, τ

σ

τ

σ, τ

σ

τ

σ, τ

σ

τ

σ, τ

σ

τ

Fig. 4. The automata A0, Aσ and Aτ , respectively

Corollary 4.3. A language of Σ∗ is recognized by an IFA-R if and only if it can
be written as L0 ∩

(⋂
σ∈Σ(LσσΣ

∗)c
)
, where L0 and the Lσ are group languages.

So the class of languages recognized by IFA is characterized by Theorem 4.2 and
Corollary 4.3.
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By Theorem 4.1, L (Lc, respectively) is closed under finite union (finite in-
tersection), inverse morphisms and word quotients. Nevertheless, one can show
that L (Lc, respectively) does not form a disjunctive (conjunctive) variety in the
sense of Polák [21], since it is not closed under inverse free semiring morphisms
ψ(−1) (ψ[−1]) defined there.

Consider the closure of L under finite intersection. The resulting class of lan-
guages is a positive variety of languages. By [20, Theorem 4.4], the corresponding
variety of ordered monoids is J+

1 ∗ G = ECom+. Combining this result with the
description of the languages of L given by Theorem 4.2, we obtain the following
result:

Proposition 4.4. Let Z be a language of Σ∗. The following conditions are
equivalent:

(1) Z belongs to the closure of L under finite intersection,
(2) Z is a positive boolean combination of languages of the form L or LσΣ∗,

where L is a group language,
(3) The syntactic ordered monoid of Z belongs to the variety ECom+.

Similarly, the closure of Lc under finite union is exactly the class of languages
recognized by Pin’s reversible automata and the corresponding variety of ordered
monoids is ECom− = [[xωyω = yωxω, xω ≥ 1]] [16,17].

Finally, by [12], the closure of L or Lc under boolean operations corresponds
to the monoid variety ECom, defined by the identity xωyω = yωxω.

5 Reversible Finite Automata

The class of languages recognized by CRFA (which, by Proposition 2.3, is also
the class of languages recognized by RFA) will be denoted by K.

In this section give a necessary condition for membership in K, as well as an
algebraic characterization of the boolean closure K of this class of languages.

Theorem 5.1. Any language of Σ∗ recognized by a CRFA can be written as
K0 ∪K1σ1Σ

∗∪· · ·∪KkσkΣ
∗, where K0, . . . ,Kk ∈ Lc and σ1, . . . , σk are letters.

Proof. Consider a language Z recognized by a CRFA A = (Q,Σ, q0, F, · ). If A
has less than two absorbing states, the result follows from Theorem 4.2. Hence
assume that A has two absorbing states: a non-final state g and a final state h.
Let J = Q \ {h}. We first decompose Z as the union of two languages K0 and
Z1. The languageK0 is recognized by the automaton A0 = (J,Σ, q0, F \{h}, ·′ ),
where

q ·′ σ =

{
q ·σ if q ·σ ∈ J,
g otherwise.

Then A0 is an IFA-R and thus K ∈ Lc. The language Z1 is recognized by the
automaton A1 = (Q,Σ, q0, {h}, · ). For each transition in
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T = {(q, σ) ∈ J ×Σ | q ·σ = h}
create an automaton Aq,σ = (Q,Σ, q0, {h}, ·q,σ ), where

p·q,σ τ =

{
p· τ if (p, τ) /∈ T or (p, τ) = (q, σ)
g otherwise.

Denoting byZ(q,σ) the language recognizedbyA(q,σ), we obtainZ =
⋃

(q,σ)∈T

Z(q,σ).

Further,Z(q,σ) = Kq,σσΣ
∗, whereKq,σ is the language in Lc that is recognized by

the automaton (J,Σ, q0, {q}, ·′q,σ ), where ·′q,σ is the restriction of ·q,σ to J , com-
pleted by the transition q ·′q,σ σ = g. Hence Z = K0 ∪ ( ⋃

(q,σ)∈T

Kq,σσΣ
∗). ��

Note that given a language K ⊆ Σ∗ of Lc and σ ∈ Σ, the language KσΣ∗ is
recognized by a CRFA.

Theorem 5.2. The class K is closed under complement, inverse of morphisms
between free monoids and word quotients.

Corollary 5.3. If a language of Σ∗ is recognized by a CRFA, then it can be
written as Kc

0 ∩ (K1σ1Σ
∗)c ∩ · · · ∩ (KkσkΣ

∗)c, where k ≥ 0, K0, . . . ,Kk ∈ Lc

and σ1, . . . , σk ∈ Σ.

Since K is closed under complement, its closure under positive boolean opera-
tions (finite unions and intersections) is equal to its boolean closure K.

Theorem 5.4. A language belongs to K if and only if its syntactic ordered
monoid belongs to J+

1 ∗ (J−
1 ∗ G).

Proof. Let L be a regular language and letM(L) be its syntactic ordered monoid.
If L ∈ K, then it is by Theorem 5.1 a positive boolean combination of languages
of the formK orKσΣ∗, whereK ∈ Lc. Thus by the [16,17],M(K) ∈ ECom− =
J−
1 ∗ G. Therefore by [20, Theorem 4.4], M(L) ∈ J+

1 ∗ (J−
1 ∗ G).

Suppose now that M(L) ∈ J+
1 ∗ (J−

1 ∗ G). Then by [20, Theorem 4.4], L is
a positive boolean combination of languages of the form Z or ZσΣ∗, where
M(Z) ∈ J−

1 ∗ G. Further, Z is a positive boolean combination of languages of
the form Yi and (YjσΣ

∗)c, where Yi, Yj are group languages. So Z =
⋃
i

Ki, where

Ki ∈ Lc. Now ZσΣ∗ = (
⋃
i

Ki)σΣ∗ =
⋃
i

(KiσΣ
∗). Hence L ∈ K. ��

By associativity, J+
1 ∗ (J−

1 ∗ G) = (J+
1 ∗ J−

1 ) ∗ G, hence it is of interest to de-
scribe the variety J+

1 ∗ J−
1 . Due to the lack of space, we omit the proof of this

semigroup theoretic result.

Theorem 5.5. The following equality holds: J+
1 ∗ J−

1 = J−
1 ∗ J+

1 = R1.

The variety of monoids R1 is defined by the identity xyx = xy. Hence by [2],
Corollary 4.3 and [1], p. 276, R1 ∗ G = [[xωyωxω = xωyω]].

The facts exposed above yield the following theorem, which essentially says
that the languages recognized by RFA generate the variety R1 ∗ G:
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Theorem 5.6. A language is in K if and only if its syntactic monoid belongs
to the variety R1 ∗ G = [[xωyωxω = xωyω]].

6 Algebraic Conditions

Let us note that Ambainis and Freivalds have proved ([5], theorems 2 and 3) the
following characterization for the class of languages recognized by RFA:

Theorem 6.1. [5] Let A be the minimal automaton of a regular language L.
Then L is recognized by a reversible finite automaton if and only if for any
states q1, q2, q3 of A, q1 
= q2, q2 
= q3, and for any input words x, y, A does not
contain the following configuration: q1 ·x = q2, q2 ·x = q2, q2 · y = q3.

q1 q2 q3
x

x

y

Fig. 5. The forbidden configuration in a RFA

The Ambainis-Freivalds condition can be translated into an algebraic condi-
tion. Let L a regular language of Σ∗. We denote by M(L) its syntactic monoid,
by ϕ : Σ∗ −→ M(L) its syntactic morphism and by P = ϕ(L) the syntactic
image of L. Let ∼r be the right congruence on M(L) defined by s ∼r t if and
only if, for all u ∈M(L), su ∈ P is equivalent to tu ∈ P .

Corollary 6.2. L is recognized by a reversible finite automaton if and only if
for all s, t, u ∈M(L), stω ∼r s or stωu∼r st

ω.

Proof. Consider the minimal automaton (Q,Σ, q0, F, · ) of a language L. Due
to Ambainis-Freivalds condition, a language is recognized by a reversible finite
automaton if and only if for all q1, q2, q3 ∈ Q and x, y ∈ Σ∗,

q1 ·x = q2, q2 ·x = q2 and q2 · y = q3 imply q1 = q2 or q2 = q3
or, equivalently, for all q ∈ Q, for all x, y ∈ Σ∗,

q ·x = q ·x2 implies q = q ·x or q ·x = q ·xy.
Now, choose v ∈ Σ∗ such that q = q0 · v and let s = ϕ(v) and t = ϕ(x). We
claim that the condition q ·x = q ·x2 is equivalent to st ∼r st

2. Indeed, by the
definition of the Nerode equivalence, the first condition means that, for every
y ∈ Σ∗, q0 · vxy ∈ F if and only if q0 · vx2y ∈ F , or, equivalently, for all u ∈M(L),
stu ∈ P if and only if st2u ∈ P .

Therefore, Formula (6) can be rewritten as follows: for all s, t, u ∈M(L),
st ∼r st

2 implies s ∼r st or st ∼r stu,
which is in turn equivalent to: for all s, t, u ∈M(L),

s ∼r st
ω or stω ∼r st

ωu. ��
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Consider an injective automaton A, which is not a group automaton, i.e., has
one absorbing state. We assume that A is accessible. Then for any state q and
any word w, exists k > 0 such that q ·wk = q or q ·wk = h, where h is the
absorbing state. Therefore we deduce that the absorbing state is accessible from
any state. So the transition monoid M(A) has a zero element ([15, Exercise
2.7]). Since M(L) divides M(A), M(L) also has a zero element. One can view
the syntactic monoidM(L) as an automaton (M(L), Σ, 1, P, · ), which recognizes
L. Any of its states is accessible from the initial state 1. The right equivalence
class containing 0 corresponds to the absorbing state in the minimal automaton
of L. All the absorbing states of M(L) are in this class. Hence if for every u
stω ∼r st

ωu, then stω ∼r 0. So in the case of DBPA, Corollary 6.2 may be
rewritten as follows:

Corollary 6.3. A language L is recognized by a deterministic Brodsky-Pippenger
automaton if and only if, for all s, t ∈M(L), stω ∼r s or stω ∼r 0.

If L is a group language, M(L) does not have a zero, so this condition reduces
to: for all s, t ∈M(L), stω ∼r s, which is turn equivalent to tω = 1.

References

1. J. Almeida. Finite Semigroups and Universal Algebra. World Scientific, Singapore,
1994.

2. J. Almeida, J.E. Pin, P. Weil. Semigroups whose Idempotents Form a Subsemi-
group. Math. Proc. Camb. Phil. Soc., Vol. 111, pp. 241-253, 1992.

3. A. Ambainis, M. Beaudry, M. Golovkins, A. Ķikusts, M. Mercer, D. Thérien. Alge-
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Abstract. We show that membership is decidable for languages defined
by iterated template-guided recombination systems when the set of tem-
plates is regular and the initial language is context-free. Using this result
we show that when the set of templates is regular and the initial language
is context-free (respectively, regular) we can effectively construct a push-
down automaton (respectively, finite automaton) for the corresponding
iterated template-guided recombination language.

1 Introduction

The spirotrichous ciliates are a type of unicellular protozoa which possess a
unique and fascinating genetic behaviour. Each ciliate cell contains two types
of nuclei, macronuclei which are responsible for the day-to-day “genetic house-
keeping” of the cell, and micronuclei which are functionally inert, but used in
reproduction. This is in contrast to, e.g., mammalian cells which have only one
micronucleus. Although they reproduce asexually, ciliates are also capable of
sexual activity in which they exchange haploid micronuclear genomes. This re-
sults in each ciliate getting a “genetic facelift” by combining its own genes with
those of a mate. After creating a new, hybrid, micronucelus, each ciliate will
then regenerate its macronucleus. It is this process of macronuclear regeneration
that is of principle interest to us here.

In the spirotrichous ciliates in particular, this macronuclear regeneration in-
volves an intricate process of genetic gymnastics. Suppose that a functional
gene in the macronucleus can be divided into 5 sections and written as follows:
1-2-3-4-5. In many cases, the micronuclear form of the same gene may have the
segments in a completely different order and include additional segments not
found in the macronucleus. For the example given above, a micronuclear gene
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may appear as: 3-x-5-y-1-z-4-2. For the ciliate to produce a functional macronu-
cleus and continue living, it must descramble these micronuclear genes. (See, e.g.,
[10] for further detail).

A biological model for this descrambling process, based on template-guided
DNA recombination, was proposed in [11]. This model was formalized as an
operation on words and languages in [3] which also introduced the notion of a
template-guided recombination system (TGR system). It was then shown in [4]
that a TGR system with a regular set of templates preserves regularity, that is,
for a regular initial language, the language resulting from iterated application of
the TGR system is always regular. This is in striking contrast to splicing systems
since the splicing language generated by a regular set of rules and a finite initial
language need not be recursive [8]. In fact, [4] shows much more generally that
the operation defined by a TGR system with a regular set of templates preserves
any language family that is a full AFL [7,12].

However, the above results are non-constructive and, in particular, do not
give an algorithm to decide the membership problem for the language defined
by a TGR system, even in the case where the initial language is finite and the
set of templates is regular. Here we show that the uniform membership problem
for the language defined by a TGR system is decidable when the initial language
is context-free and the set of templates is regular. The nonuniform membership
problem (where the TGR system is fixed) can be decided in polynomial time. The
decidability result is extended for languages that are extensions of the context-
free languages, such as the indexed languages, or, more generally, for languages
that belong to a full AFL satisfying certain natural effectiveness conditions.

Moreover, we use this result to positively solve the main open problem from [4].
That is, given a context-free (respectively, regular) initial language and a regular
set of templates, we can effectively construct a pushdown automaton (respec-
tively, a finite automaton) for the language defined by the TGR system. Using
a variant of the decision algorithm for the membership problem, we effectively
find a deterministic finite automaton (DFA) for the subset of templates that
can be used in some recombination operation and this, together with the results
of [4], enables us to construct the pushdown automaton (respectively, the finite
automaton) for the language defined by the TGR system. This result also holds
for regular sets of templates and initial languages from an arbitrary full AFL
that satisfies certain effectiveness conditions.

Both the algorithm for the membership problem and the method for finding
the set of useful templates use expensive brute-force techniques. It remains an
open question, whether it is possible to find a more efficient algorithm, at least
in the case where both the initial language and the set of templates are regular.

2 Preliminaries

Here we recall some basic definitions needed in the next section. For all un-
explained notions related to formal languages we refer the reader e.g. to [12].
Recent work on language classes and bio-operations can be found e.g. in [2].
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In the following Σ is a finite alphabet and the set of all words over Σ is
Σ∗. The length of a word w ∈ Σ∗ is |w|. The ith symbol of a word w ∈ Σ∗ is
denoted w[i], i = 1, . . . |w|. A language is a subset of Σ∗. The sets of all prefixes,
all suffixes and all subwords of words in L are denoted, respectively, pref(L),
suf(L), subw(L).

A family of languages is said to be a full abstract family of languages (full
AFL) [7,12] if it contains a nonempty language and is closed under the follow-
ing operations: union, Kleene plus, homomorphism, inverse homomorphism, and
intersection with regular languages.

Definition 2.1. [3,4] A template-guided recombination system (TGR system)
is a tuple � = (T,Σ, n1, n2), where Σ is a finite alphabet, T ⊆ Σ∗ is the template
language, and n1, n2 ∈ IN.

Let x, y ∈ Σ∗ and t ∈ T . The recombination operation defined by � is given
by: (x, y) ��

t w if and only if we can write

x = uαβd, y = eβγv, t = αβγ and w = uαβγv

for some u, v, d, e ∈ Σ∗, α, γ ∈ Σ≥n1 and β ∈ Σn2 . For L ⊆ Σ∗ we define
�(L) = {w ∈ Σ∗ | (x, y) ��

t w for some x, y ∈ L, t ∈ T }.
Let � = (T,Σ, n1, n2) be a TGR system and let L ⊆ Σ∗. We define the iteration
�(∗) of the operation � by setting �(0)(L) = L, and defining

�(i+1)(L) = �(i)(L) ∪ �(�(i)(L)) for all i ≥ 0. (1)

Denote �(∗)(L) =
⋃∞

i=0 �
(i)(L).

Let � = (T,Σ, n1, n2) be a TGR system and let L ⊆ Σ∗. A word t ∈ T is
said to be useful on (L, �) if t can be used in iterated application of � on the
initial language L. It is shown in [4] that t ∈ T is useful on (L, �) if and only if
|t| ≥ 2n1 + n2 and t is a subword of some word in �(∗)(L). The TGR system �
is said to be useful on L if every word of T is useful on (L, �). The useful subset
of � on L is the set of all words in T which are useful on (L, �).

3 Membership Problem

Here we show that for a context-free language L and a TGR system � =
(T,Σ, n1, n2) where T is regular, the uniform membership problem for the lan-
guage �(∗)(L) is decidable.

We want to establish properties concerning how many recombination opera-
tions are required to produce some subword of a word w when it is known that w
requires a given number of recombination operations. For this purpose it turns
out to be useful to consider “marked variants” of words over Σ. The marked
variants associate states of a DFA recognizing the set of templates T and length
information with certain positions in the word. This additional control infor-
mation is used to keep track of the templates (or strictly speaking equivalence
classes of templates) that can be used in the recombination operations.
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For the above purpose we next introduce some technical notation. Let � =
(T,Σ, n1, n2) be a TGR system and

A = (Σ,Q, q0, F, δ) (2)

be a DFA that recognizes T . Denote
→
Q= {→q | q ∈ Q},

←
Q= {←q | q ∈ Q}. For

n ∈ IN let [n] = {0, 1, . . . , n}. We define the extended alphabet Σ[�] as

Σ[�] = Σ × P((
→
Q ∪

←
Q) × [n1]). (3)

The first component of elements of Σ[�] is an element of Σ and the second
component consists of a set of states of Q each marked with a “right arrow”
or a “left arrow”. Additionally, each state is associated with an index from
{0, 1, . . . , n1}.

The projections from Σ[�] to Σ and to P((
→
Q ∪

←
Q)× [n1]) are denoted, respec-

tively, π�
1 and π�

2 . When � is clear from the context, we denote the projections
simply as π1 and π2. The projection π1 is in the natural way extended to a
morphism Σ[�]∗ −→ Σ∗.

Let L ⊆ Σ∗. The T -controlled marked variant of L is the largest language
CT (L) ⊆ Σ[�]∗ such that the below conditions (i) and (ii) hold1. The notations
refer to (2) that gives a DFA for the language T .

(i) For every w ∈ CT (L), π1(w) ∈ L.

(ii) Assume that w ∈ CT (L) and (p, j) ∈ π2(w[i]), 1 ≤ i ≤ |w|, p ∈
→
Q ∪

←
Q,

j ∈ [n1].

(a) If p ∈
→
Q, then π1(w) has a subword u starting at the (i + 1)th position

such that |u| ≥ j and δ(p, u) ∈ F .

(b) If p ∈
←
Q, then π1(w) has a subword u ending at the (i − 1)th position

such that |u| ≥ j and δ(q0, u) = p.

Note that for any w ∈ L, the word w′ is in CT (L) where w′ is obtained from w
by replacing each symbol c ∈ Σ by (c, ∅) ∈ Σ[�]. We identify words w and w′

and in this way we can view L to be a subset of CT (L).

According to (i) and (ii) above, the elements (p, j), p ∈
→
Q ∪

←
Q occurring in

symbols of a word w ∈ CT (L) place conditions on what kind of subwords w must

have starting directly after or ending directly before that position. If p ∈
→
Q, this

means that π1(w) must have a subword u starting from the next position that
is a suffix of a word in T , u is of length at least j, and the state p corresponds

to this suffix (that is, δ(p, u) ∈ F ). If p ∈
←
Q, this means that π1(w) must have a

subword u ending at the previous position that is a prefix of a word in T , u has
length at least j, and the state p corresponds to this prefix.

1 Note that the union of languages satisfying this property also satisfies this property,
and so the largest language must exist.
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We still need the following notation to manipulate words over the alphabet

Σ[�]. Let w ∈ Σ[�]∗, 1 ≤ i ≤ w, p ∈ (
→
Q ∪

←
Q) and j ∈ [n1]. Then w[i ← (p, j)]

denotes the word obtained from w by adding (p, j) to the second component of
the ith symbol, that is, the second component of the ith symbol is changed to
be π2(w[i]) ∪ {(p, j)}.

We say that a word w ∈ Σ[�]∗ is well formed if |w| ≥ 2 and the following

three conditions hold: (i) π2(w[1]) ⊆
←
Q ×[n1], (ii) π2(w[|w|]) ⊆

→
Q ×[n1], and (iii)

π2(w[j]) = ∅ when 1 < j < |w|.
In a well formed marked word the first symbol contains only elements of the

type (
←
p , j) as markers, and the last symbol contains only elements of the type

(
→
p , j) as markers, p ∈ Q, j ∈ [n1]. Symbols of w other than the first or the last

symbol have ∅ as the second component.
The set of all well formed words over Σ[�] is denoted by WF(Σ[�])
The following lemma says, very roughly speaking, that if w is a subword of

�(k+1)(L) but w is not a subword of �(k)(L), then w has a proper subword that
is a subword of �(k)(L) but not a subword of �(k−1)(L). The statement in the
previous sentence is oversimplified and does not hold as such. To be precise, in
order to be able to establish the required property we need to add to the subwords
information on the states of the DFA for T associated with the templates used
in the recombination operations, that is, we need to consider subwords of the
T -controlled marked variant of �(k)(L), k ≥ 1.

For m,n ∈ IN we define the non-negative difference of m and n, m � n, as
m− n if m ≥ n and m� n = 0 otherwise.

Lemma 3.1. Let � = (T,Σ, n1, n2) where T is regular and let A as in (2) be a
DFA that recognizes T . Let k ≥ 1 and L ⊆ Σ∗.

We claim that if w ∈ WF(Σ[�]) and

w ∈ subw(CT (�(k+1)(L))) − subw(CT (�(k)(L))) (4)

then one of the below cases (P1)–(P4) holds:

(P1) w = uαβγv, π1(αβγ) ∈ T , |β| = n2, |α|, |γ| ≥ n1, uαβ ∈
subw(CT (�(k)(L))) ∩ WF(Σ[�]), βγv ∈ subw(CT (�(k)(L))) ∩ WF(Σ[�]),

(P2) w = uαβγ′, |β| = n2, |α| ≥ n1, |γ′| ≥ 1, uαβ ∈
subw(CT (�(k)(L))) ∩ WF(Σ[�]), βγ′[|βγ′| ← (

→
p , n1 � |γ′|) ∈

subw(CT (�(k)(L))) ∩ WF(Σ[�]), where p = δ(q0, αβγ′).
(P3) w = α′βγv, |β| = n2, |γ| ≥ n1, |α′| ≥ 1, α′β[1 ← (

←
p , n1 � |α′|)] ∈

subw(CT (�(k)(L))) ∩ WF(Σ[�]), p ∈ Q, βγv ∈
subw(CT (�(k)(L))) ∩ WF(Σ[�]), where δ(p, α′βγ) ∈ F .

(P4) w = α′βγ′, |β| = n2, |α′|, |γ′| ≥ 1, α′β[1 ← (
←
p , n1 � |α′|)] ∈

subw(CT (�(k)(L))) ∩ WF(Σ[�]), p ∈ Q, βγ′[|βγ′| ← (
→
p1, n1 � |γ′|)] ∈

subw(CT (�(k)(L))) ∩ WF(Σ[�]), where δ(p, α′βγ′) = p1.

Furthermore, in any decomposition of w as in (P1)–(P4) at most one of the two
mentioned marked words of subw(CT (�(k)(L))) can be in subw(CT (�(k−1)(L))).
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We should note that in (P2), (P3) and (P4) in Lemma 3.1 it is essential that
we add the new marker states to the resulting subwords. For example, using
the notations of (P4), it is quite possible that π1(α′β) ∈ subw(�(k−1)(L)) and
π1(βγ′) ∈ subw(�(k−1)(L)) because α′β could be part of a word that does not
allow recombination using any template of T with the words where βγ′ occurs as
a subword. The marked variants of the words prevent this possibility by storing
the appropriate states and length information in the first symbol of α′ and in
the last symbol of γ′. The marker information forces that α′β (respectively,
βγ′) must occur in a position where the immediately preceding (respectively,
immediately following) subword contains a suffix (respectively, a prefix) that
allows us to complete α′βγ′ into a template of T .

Due to length restrictions the technical proof of Lemma 3.1 is omitted. We
refer the reader to [9] for the proof of Lemma 3.1.

Using Lemma 3.1 we get the following property that will be essential for
deciding the membership problem. Also we note that Lemma 3.2 (i) is not a
special case of (ii) (although their proofs are similar) and hence we include both
statements. The proof of Lemma 3.2 is available in [9].

Lemma 3.2. Let � = (T,Σ, n1, n2) be a TGR-system where T is regular and
L ⊆ Σ∗.

(i) If w ∈ �(k)(L) − �(k−1)(L), k ≥ 1, then |w| − n2 − 1 ≥ k.
(ii) If w ∈ subw(�(k)(L)) − subw(�(k−1)(L)), then |w| − n2 − 1 ≥ k.
Theorem 3.1. Given a TGR system � = (T,Σ, n1, n2) with T regular, a
context-free language L and a word w ∈ Σ∗, it is decidable whether or not
w ∈ �(∗)(L).

Furthermore, it is decidable whether or not w ∈ subw(�(∗)(L)).

Proof. Let A = (Σ,Q, q0, F, δ) be a DFA that recognizes T . Given a pushdown
automaton Bi for �(i)(L), i ≥ 0, we can construct a pushdown automaton Bi+1
for �(i+1)(L) as follows. Let β ∈ Σn2 and q ∈ Q. We define L1(Bi, β, q) =
{ w ∈ pref(L(Bi)) | w = uαβ, |α| ≥ n1, δ(q0, αβ) = q }, L2(Bi, β, q) = { w ∈
β−1suf(L(Bi)) | w = γv, |γ| ≥ n1, δ(q, γ) ∈ F }. Now it is clear that

�(i+1)(L) = �(i)(L) ∪
⋃

β∈Σn2 , q∈Q

L1(Bi, β, q) · L2(Bi, β, q). (5)

Since context-free languages are effectively closed under prefix, suffix, union, and
quotient and intersection with a regular language, using (5) we can construct a
pushdown automaton Bi+1 for �(i+1)(L).

By Lemma 3.2, it is sufficient to construct the pushdown automatonB|w|−n2−1
and decide whether or notB|w|−n2−1 accepts w. The latter can be done effectively
since membership is decidable for context-free languages.

Also, context-free languages are effectively closed under subword. Thus, we
can test whether w ∈ subw(�(|w|−n2−1)(L)) and, by Lemma 3.2 (ii), this holds if
and only if w ∈ subw(�(∗)(L)).
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The operation (5) uses union indexed over all words of length n2 and conse-
quently the algorithm given by Theorem 3.1 for the uniform membership problem
requires exponential time. However, if � is fixed, i.e., if we consider the non-
uniform membership problem then the algorithm given by Theorem 3.1 uses
polynomial time. The same is true even if only the value of n2 is fixed. Note
that the number of iterations of (5) is upper bounded by the length of w, i.e.,
the number of iterations is given in unary notation.

Corollary 3.1. Let n2 be fixed. Given a TGR system � = (T,Σ, n1, n2) with
T regular, a context-free language L and a word w ∈ Σ∗, it is decidable in
polynomial time whether or not w ∈ �(∗)(L).

Lemma 3.2 does not make any assumptions on the initial language. The proof of
Theorem 3.1 uses certain closure and decidability properties of context-free lan-
guages. A full AFL satisfies the required conditions, assuming that membership
is decidable and closure under the AFL operations is effective, and a correspond-
ing extended result is stated below in Corollary 3.2. Before that we introduce
some terminology dealing with AFL’s consisting of recursive languages. The ter-
minology will be useful also in the next section in order to be able to rely in a
uniform way on results from [4] that are formulated in terms of AFL’s.

Definition 3.1. We say that a property P of Turing machines is syntactic if
given a Turing machine M it is decidable whether or not M has property P . The
class of Turing machines satisfying a property P is denoted TM[P ].

A language family L is said to be a constructive full AFL if L contains a
nonempty language and there exists a syntactic property of Turing machines PL
such that

(i) a language L is in L if and only if L is recognized by some Turing machine
in TM[PL],

(ii) given M ∈ TM[PL] and an input word w, it is decidable whether or not
w ∈ L(M), and

(iii) languages recognized by machines in TM[PL] are effectively closed under
the AFL operations. That is, there is an algorithm that for given M1,M2 ∈
TM[PL] constructsMunion ∈ TM[PL] such that L(Munion) = L(M1)∪L(M2),
and for any AFL operation σ other than union there is an algorithm to
construct M ∈ TM[PL] such that L(M) = σ(L(M1)).

Well known examples of constructive full AFL’s are the regular and the context-
free languages. An example of a more general constructive full AFL is the
family of languages recognized by (one-way, single head) k-iterated pushdown
automata, k ≥ 1, [6]. It is easy to verify that any (k-iterated) pushdown automa-
ton can be simulated by a Turing machine where the transition relation satisfies
a suitably defined syntactic property that forces the work tape to simulate a
(k-iterated) pushdown store. It seems that any full AFL consisting only of re-
cursive languages that is defined by a “reasonable” machine model could be
characterized in the above way. The family of recursively enumerable languages
is a full AFL that is not a constructive full AFL.
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Corollary 3.2. Let L be a constructive full AFL. Given a TGR system � =
(T,Σ, n1, n2) where T is regular and L ∈ L, the membership problem for �(∗)(L)
is decidable.

The set of useful templates of a TGR system � = (T,Σ, n1, n2) with an initial
language L is the set T ∩ subw(�(∗)(L)) ∩Σ≥2n1+n2 [4]. Thus by Theorem 3.1:

Corollary 3.3. Given a TGR system � = (T,Σ, n1, n2) where T is regular and
a context-free initial language L, we can effectively decide whether or not a given
template is useful on (L, �).

Corollary 3.4. Let L be a constructive full AFL. Given a TGR system � =
(T,Σ, n1, n2) where T is regular and L ∈ L, we can effectively decide whether or
not a given template is useful on (L, �).

To conclude this section we make a couple of remarks on limitations in attempt-
ing to extend the previous results. The 2-iterated pushdown automata recognize
the indexed languages [1] and, thus, from Corollary 3.2 we get a decidability
result for the membership problem when the initial language is an indexed lan-
guage. However, there is no known polynomial time parsing algorithm for general
indexed languages and Corollary 3.1 cannot be extended for the case where the
initial language is indexed.

4 Effective Closure Properties

We would now like to attack the question of, given � = (T,Σ, n1, n2), with
T regular, and L recognized by a pushdown automaton (respectively, a finite
automaton), can we effectively construct a pushdown automaton (respectively,
a finite automaton) which recognizes �(∗)(L)? Note that in the former case it is
known that �(∗)(L) is context-free (and in the latter case regular) [4] but the
results are non-constructive.

We first need to provide some details from [4]. The main non-constructive
proof from this paper shows that, for an arbitrary TGR system � = (T,Σ, n1, n2)
with T regular, and an arbitrary full AFL L the following holds: If L ∈ L, then
�(∗)(L) ∈ L. The proof of this result relies on two auxiliary results, the first one
of which is the following:

Proposition 4.1. (Theorem 4.2 of [4]) Let � = (T,Σ, n1, n2) be a TGR system
and let L ⊆ Σ∗. Let Tu be the useful subset of � on L. If T is a regular language,
then Tu is also regular.

The proof of the above result [4] is not constructive, even in the case where
we have some effective representation for L. However, the proof does give some
information as to the structure of the DFA which accepts Tu. If Q is the state set
of a DFA which accepts T , then the proof creates a finite set of automata XT,L,
each automaton with a state set of size qT,L = (|Q| + 1)n · (|Σ| + 1)n−1 where
n = 2n1 + n2 − 1. Moreover, the proof establishes that one of these automata
accepts Tu, but does not tell us which one is the correct automaton.
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Indeed, let � = (T,Σ, n1, n2) be a TGR system where T is regular and let L
be a constructive full AFL, and let L ∈ L. Then, by Corollary 3.4, we can decide
whether or not a given template is useful on (L, �). Consider Tu ∩Σ≤2·qT,L , the
finite set of all words which are useful on (L, �) and which are of length less than
or equal to 2 · qT,L. Using Corollary 3.4 we can now effectively determine this
set. In addition, for each automaton M = (Q,Σ, q0, F, δ) ∈ XT,L, we can check
whether or not Tu ∩Σ≤2·qT,L = L(M) ∩Σ≤2·qT,L .

Claim. Tu ∩Σ≤2·qT,L = L(M) ∩Σ≤2·qT,L if and only if Tu = L(M).

Proof of the claim. It is sufficient to show the implication from left to right.
According to Proposition 6.3 of [5], the following is true: Let M1,M2 be two
DFAs with state sets Q1, Q2 respectively. Then L(M1) = L(M2) whenever for
all s ∈ Σ∗ such that |s| < |Q1|+|Q2| we have s ∈ L(M1) if and only if s ∈ L(M2).

Assume by contradiction that Tu 
= L(M). But there exists M ′ ∈ XT,L (also
with a state set of size qT,L) such that L(M ′) = Tu, and hence

L(M ′) ∩Σ≤2qT,L = Tu ∩Σ≤2qT,L = L(M) ∩Σ≤2qT,L .

However, according to the proposition from [5], this implies L(M ′) = L(M), a
contradiction. This concludes the proof of the claim.

By the above claim, we can find from XT,L the correct automaton which
accepts Tu. Hence, we can effectively construct a deterministic finite automaton
which accepts Tu. Thus we have shown that the following holds:

Lemma 4.1. Let L be a constructive full AFL. Given � = (T,Σ, n1, n2) with T
regular and L ∈ L, we can construct a DFA for the useful subset of � on L.

Corollary 4.1. Let L be a constructive full AFL. Given � = (T,Σ, n1, n2) with
T regular and L ∈ L, we can effectively find a regular set of templates T1 such
that if �1 = (T1, Σ, n1, n2) then �(∗)1 (L) = �(∗)(L) and �1 is useful on L.

The second result from [4] that turns out to be useful is the following:

Proposition 4.2. (Theorem 4.1 of [4]) If L is a full AFL, � = (T,Σ, n1, n2)
is a TGR system and L, T ∈ L, L ⊆ Σ∗, are such that � is useful on L, then
�(∗)(L) ∈ L.

The proof of Proposition 4.2 in [4] establishes that �(∗)(L) is in L by showing
that �(∗)(L) is obtained from L using a finite number of operations that can be
expressed as compositions of AFL operations. This gives the following:

Corollary 4.2. Let L be a constructive full AFL. Given a TGR system � =
(T,Σ, n1, n2) where T ∈ L, an intial language L ∈ L, L ⊆ Σ∗, such that �
is useful on L, we can effectively construct (a Turing machine in TM[PL] for)
�(∗)(L) ∈ L.

Now we are ready to prove the main result of this section.

Theorem 4.1. Let L be a constructive full AFL. Given L ∈ L and a TGR
system � = (T,Σ, n1, n2) where T is regular, we can effectively construct (a
Turing machine in TM[PL] for) the language �(∗)(L) (which is always in L).
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Proof. By Corollary 4.1 we can effectively find a regular set of templates
T1 (⊆ T ) such that if �1 = (T1, Σ, n1, n2) then �1 is useful on L and �(∗)1 (L) =
�(∗)(L).
Since any full AFL contains all regular languages, we have T1 ∈ L. Now, by
Corollary 4.2, given L and T1 we can effectively construct a Turing machine for
�
(∗)
1 (L) and we are done.

Since the regular and the context-free languages are examples of constructive full
AFL’s, as particular cases Theorem 4.1 implies that if � is a TGR system with
a regular set of templates, given a finite automaton (respectively, a pushdown
automaton) for a language L, we can effectively construct a finite automaton
(respectively, a pushdown automaton) for the language �(∗)(L).

Finally, it can be noted that Theorem 4.1 relies on Corollary 4.1 and Corol-
lary 3.4 (that in turn relies on Corollary 3.2), and these results use brute-force
constructions that basically enumerate all words up to a given length. It would
be interesting to know whether for a regular initial language L and a regular
set of templates there is some reasonably efficient algorithm to construct a (not
necessarily deterministic) finite automaton for �(∗)(L).
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Abstract. A binary sequence x1, . . . , xn is called k-tonic if it contains
at most k changes between 0 and 1, i.e., there are at most k indices
such that xi �= xi+1. A sequence ¬x1, . . . , ¬xn is called an inversion of
x1, . . . , xn. In this paper, we investigate the size of a negation-limited
circuit, which is a Boolean circuit with a limited number of NOT gates,
that sorts or inverts k-tonic input sequences. We show that if k = O(1)
and t = O(log log n), a k-tonic sequence of length n can be sorted by a
circuit with t NOT gates whose size is O((n log n)/2ct) where c > 0 is
some constant. This generalizes a similar upper bound for merging by
Amano, Maruoka and Tarui [4], which corresponds to the case k = 2. We
also show that a k-tonic sequence of length n can be inverted by a circuit
with O(k log n) NOT gates whose size is O(kn) and depth is O(k log2 n).
This reduces the size of the negation-limited inverter of size O(n log n)
by Beals, Nishino and Tanaka [6] when k = o(log n). If k = O(1), our
inverter has size O(n) and depth O(log2 n) and contains O(log n) NOT
gates. For this case, the size and the number of NOT gates are optimal
up to a constant factor.

1 Introduction

To derive a strong lower bound on the size of a Boolean circuit for a function
in NP is one of the most challenging open problems in theoretical computer
science. But so far, the best known lower bound is only a linear in the number
of input variables. This is quite contrast to the case of monotone circuit, which
consists only of AND and OR gates, no NOT gates. Exponential lower bounds
on the size of monotone circuits for explicit functions have been derived (e.g.,
[2,5,8,13]).

This motivates us to study the complexity of circuits with a limited number of
NOT gates, which are usually called the negation-limited circuits. About a half
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century ago, Markov [11] proved that r = �log(n+1) NOT gates are enough to
compute any function on n variables, and that there is a function that requires
r NOT gates to compute1. Beals, Nishino and Tanaka [6] constructed a circuit
with r NOT gates that computes the inverter Invn(x1, . . . , xn) = (¬x1, . . . ,¬xn)
whose size is O(n log n). Thus, for every function f , the size of a smallest circuit
with at most r NOT gates that computes f is at most 2Size(f) + O(n log n),
where Size(f) is the size of a smallest circuit for f . This shows that restricting
the number of NOT gates in a circuit to O(log n) entails only a small blowup
in circuit size. Recently, several lower bounds on the size of a negation-limited
circuit for an explicit function were obtained [3,4], and the relationship between
the number of NOT gates and circuit size was also studied [9,14]. However, it is
still unclear the effect on circuit complexity of restricting the number of NOT
gates available.

In the first half of the paper (Section 3), we focus on the negation-limited
circuit complexity of the sorting function, which is a function that sorts n bi-
nary inputs. This is motivated by the result of Amano, Maruoka and Tarui [4]
showing that for every t = 0, . . . , log logn, the size complexity of the merging
function with t NOT gates is Θ((n log n)/2t). Roughly speaking, the size of a
smallest circuit for merging is halved when the number of available NOT gates
increases by one. The merging function is a function that takes two presorted
binary sequences each of length n as inputs and merges into a sorted sequence of
length 2n. The merging function can be viewed as the special case of the sorting
function in which an input is restricted to the form of the concatenation of two
sorted sequences. Interestingly, it is known that both merging and sorting have
monotone circuit complexity of Θ(n logn) and (non-monotone) circuit complex-
ity of Θ(n). So it is natural to consider the negation-limited circuit complexity
of sorting, or an intermediate function between merging and sorting.

In this paper, we parameterize a binary sequence with the number of changes
of the values when it is read from left to right. Formally, a binary sequence
x1, . . . , xn is called k-tonic if there are at most k indices i such that xi 
= xi+1.
The k-tonic sorting function is a function that outputs a sorted sequence of
x1, . . . , xn if an input is k-tonic, and arbitrarily otherwise. The merging function
can be regarded as the 2-tonic sorting function since input sequences x1 ≥ · · · ≥
xn and y1 ≥ · · · ≥ yn are 2-tonic if we reorder them to x1, . . . , xn, yn, . . . , y1.
We show that if k is a constant, the k-tonic sorting function can be computed
by a circuit with t(≤ logn) NOT gates whose size is O((n log n)/2ct) for some
constant 1 > c > 0. This can be viewed as a generalization of a similar upper
bound for the merging function in [4], which corresponds to the case k = 2.

In the second half of the paper (Section 4), we investigate the negation-limited
complexity of the inverter Invn. As described before, Beals, Nishino and Tanaka
[6] constructed an inverter of size O(n log n) and depth O(log n) that contains
�log(n + 1) negation gates. In the same paper [6], they stated the following
question as an open problem (which is credited to Turán in [6]) : is the size of
any c logn depth inverter using c logn NOT gates superlinear?

1 All logarithms in this paper are base 2.
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We give the construction of an inverter for k-tonic sequences whose size is
O(kn) and depth is O(k log2 n) that contains O(k logn) NOT gates. If k = O(1),
our inverter has size O(n) and depth O(log2 n) and contains O(log n) NOT
gates. This shows that the answer of Turán’s problem is “no” if we relax the
depth requirement from O(log n) to O(log2 n) and restrict the inputs to k-tonic
sequence with k being a constant. Both of our results suggest that limiting the
number of changes in an input sequence may boost the power of NOT gates in
a computation of Boolean functions.

2 Preliminaries and Results

A circuit is a combinational circuit that consists of AND gates of fan-in two, OR
gates of fan-in two and NOT gates. In particular, a circuit without NOT gates
is called monotone circuit. The size of a circuit C is the number of gates in C.

Let F be a collection of m Boolean functions f1, f2, . . . , fm. The circuit com-
plexity of F , denoted by Size(F ), is the size of a smallest circuit that computes
F . The monotone circuit complexity of F , denoted by Sizemon(F ), is the size of
a smallest circuit that computes F . Following Beals et al. [6], we call a circuit
including at most t NOT gates a t-circuit. The t-negation limited circuit com-
plexity of F , denoted by Sizet(F ), is the size of a smallest t-circuit that computes
F . If F cannot be computed by a t-circuit, then Sizet(F ) is undefined.

For a binary sequence x, the length of x is denoted by |x|. For x = (x1, . . . , xt)
∈ {0, 1}t, (x)2 denotes the integer whose binary representation is x where x1 is
the most significant bit, i.e., (x)2 =

∑t
i=1 xi2t−i. The number of 1’s in a binary

sequence x is denoted by �1(x). For two integers a < b, [a, b] denotes the set
{a, a+ 1, . . . , b}. The set [1, n] is simply denoted by [n].

Definition 1. The sorting function on n inputs, denoted by Sortn, is a collection
of Boolean functions that sorts an n-bit binary sequence x1, . . . , xn, i.e.,

Sortn(x1, . . . , xn) = (z1, . . . , zn),

such that z1 ≥ · · · ≥ zn and
∑

i xi =
∑

i zi. The merging function Mergen

is a collection of Boolean functions that merges two presorted binary sequences
x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn into a sequence z1 ≥ · · · ≥ z2n, i.e., zi = 1 if
and only if the total number of 1’s in the input sequences is at least i. ��
The following results are known for the complexities of sorting and merging.

Theorem 1. [12,1] All of the following are true:

– Size(Sortn) = Θ(n) and Sizemon(Sortn) = Θ(n logn).
– Size(Mergen) = Θ(n) and Sizemon(Mergen) = Θ(n log n).

For the merging function, there is a clear tradeoff between the size of a circuit
and the number of NOT gates.
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Theorem 2. [4] For every 0 ≤ t ≤ log logn, Sizet(Mergen) = Θ((n log n)/2t).

So it is interesting to consider whether such a tradeoff exists for more general
functions.

Definition 2. A turning point of a binary sequence x1, . . . , xn is an index i such
that xi 
= xi+1. A binary sequence is called k-tonic if it has at most k turning
points.

Note that every n-bit binary sequence is (n− 1)-tonic, and that input sequences
to the merging function x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn can be regarded as
2-tonic if we reorder the sequences to x1, . . . , xn, yn, . . . , y1. Thus, we can define
an “intermediate” function between merging and sorting based on the notion of
k-tonic.

Definition 3. A function {0, 1}n to {0, 1}n whose output is equal to the output
of Sortn for every k-tonic input is called a k-sorting function and is denoted by
Sortkn. Note that the output of Sortkn is arbitrary if an input is not k-tonic.

We show in Section 3 that a small number of NOT gates can reduce the size of a
circuit for Sortkn, which extends the results on the upper bounds in Theorem 2.
Precisely, we will show:

Theorem 3. Suppose that k = O(log n) and t ≤ logn. Then there exists a
constant c such that Sizectk2(Sortkn) = O(kn + (n logn)/2t). In particular, if
k = O(1) and t = O(log logn), then Sizet(Sortkn) = O((n log n)/2c′t) for some
constant c′ > 0.

In Section 4, we give the construction of an inverter for k-tonic sequences.

Definition 4. An inverter with n binary inputs, denoted by Invn, is defined by

Invn(x1, x2, . . . , xn) = (¬x1,¬x2, . . . ,¬xn).

A function {0, 1}n to {0, 1}n whose output is equal to the output of Invn for every
k-tonic input is called a k-tonic inverter and is denoted by Invk

n. Note that the
output of Invk

n is arbitrary if an input is not k-tonic.

We will show:

Theorem 4. The function Invk
n can be computed by a circuit of size O(kn) and

of depth O(k log2 n) that contains O(k logn) NOT gates. In particular, if k =
O(1), then Invk

n can be computed by a linear size circuit of depth O(log2 n) that
contains O(log n) NOT gates.

We remark that we need Ω(log n) NOT gates to compute Invk
n even if k = 1.

This can be easily proved by the result of Markov [11] (see also [6]). Thus, for
the case k = O(1), the size and the number of NOT gates are optimal up to a
constant factor.
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3 Negation-Limited Sorter for k-tonic Sequences

In this section, we describe the construction of a negation-limited circuit for the
k-sorting function to prove Theorem 3.

As for the construction of a linear size sorter by Muller and Preparata [12],
the construction is in two stages: the first computes the binary representation of
the number of 1’s in inputs, and the second generates appropriate outputs from
this representation. Throughout this section, we assume that the length n of an
input sequence is n = 2l for some natural number l.

Definition 5. A counter Countn is a function from {0, 1}n to {0, 1}logn+1 that
outputs the binary representation of the number of 1’s in an input sequence. A de-
coder Decoden is a function from {0, 1}logn+1 to {0, 1}n such that Decoden(u) =
(x1, . . . , xn) with x1 = · · · = x(u)2 = 1 and x(u)2+1 = · · · = xn = 0.

It is obvious that Sortn(x) = Decoden(Countn(x)), and thus the size of a circuit
for Sortn is given by the sum of the sizes of circuits for Decoden and Countn.
The linear sized sorter by Muller and Preparata [12] follows from:

Theorem 5. [12] Sizen(Countn) = Θ(n) and Sizemon(Decoden) = Θ(n).

Since there is a monotone circuit for Decoden whose size is linear, one may think
that it is sufficient to focus on the construction of a negation-limited circuit for
Countn. However, the last bit of the output of Countn is the parity function, and
so we need logn NOT gates to compute it [11]. In order to avoid to use such
a large number of NOT gates, we only compute a limited number of significant
bits of the number of 1’s in inputs at the first stage of the construction.

Definition 6. A t-counter, denoted by Countn,t, is a function from {0, 1}n to
{0, 1}t+n/2t

defined as

Countn,t(x) = (z, u),

where z ∈ {0, 1}t is the t most significant bits of the binary representation of
the number of 1’s in x and u = (u1, . . . , un/2t) ∈ {0, 1}n/2t

is a sorted sequence
u1 ≥ u2 ≥ · · · ≥ un/2t such that �1(x) = (z)2 · n/2t + �1(u). A function whose
output coincides with Countn,t(x) for every k-tonic sequence x is denoted by
Countkn,t.

A t-decoder, denoted by Decoden,t, is a function from {0, 1}t+n/2t

to {0, 1}n

defined as: For any binary sequence z of length t and any sorted sequence u of
length n/2t,

Decoden,t(z, u) = (y1, . . . , yn)

such that y1 = · · · = yw = 1 and yw+1 = · · · = yn = 0 where w = (z)2 · n/2t +
�1(u).

Note that Sortkn(x) = Decoden,t(Countkn,t(x)). We first construct a negation-
limited circuit for Countkn,t.
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Theorem 6. Suppose that k = O(log n) and t ≤ logn. Then there exists a
constant c such that Sizectk2(Countkn,t) = O(kn+ (n logn)/2t).

Proof. We first show an algorithm for computing Countkn,t, and then we will
describe a construction of a circuit which follows the algorithm.

A binary sequence is called clean if it consists of 0’s only or 1’s only, otherwise
it is called dirty. Let x be an input sequence for Countkn,t. The key observation
to the algorithm is the fact that if we divide a k-tonic sequence x into 2k blocks,
then at least half of them are clean. For simplicity, we suppose that |x| = n = 2l

and k = 2a for some natural numbers l and a with l > a.

Algorithm C. This algorithm takes a binary sequence x of length n as an input
and outputs (z, u) satisfying Countkn,t(x) = (z, u).

C1. For each i = 1, 2, . . . , t, do the following:
1. Divide x into 2k blocks of equal length: B1, B2, . . . , B2k.
2. Let p1, p2, . . . , pk ∈ [2k] be the first k indices of clean blocks.
3. For each j ∈ [k], let ci,j = 1 if Bpj is all 1’s and ci,j = 0 if Bpj is all 0’s.
4. Let x̃ be a sequence of length |x|/2 obtained from x by removingBp1 , Bp2 ,
. . . , Bpk

(i.e., the first k clean blocks).
5. Substitute x by x̃.

C2. Let zH and zL be two binary sequences of length t and of length a such
that

(zH)2 =
k∑

j=1

(c1,jc2,j · · · ct,j)2 div 2a, (zL)2 =
k∑

j=1

(c1,jc2,j · · · ct,j)2 mod 2a,

where “div” and “mod” denote the quotient and remainder of two integers.
C3. Let u1 be a sorted sequence of length n/2t that contains (zL)2 ·2l−(a+t) 1’s,

and u2 be a sorted sequence of length n/2t obtained by sorting x.
C4. If �1(u1) + �1(u2) ≥ n/2t, then let z be a sequence of length t such that

(z)2 = (zH)2 +1 and let u be a sorted sequence of length n/2t that contains
{�1(u1) + �1(u2) − n/2t} 1’s. Otherwise, let z = zH and let u be a sorted
sequence of length n/2t that contains {�1(u1) + �1(u2)} 1’s.

C5. Output (z, u).

In the following we show the correctness of the above algorithm. Consider the
i-th iteration of the for loop at step C1 of the algorithm. Let x and x̃ be binary
sequences before and after the i-th iteration. Suppose that a sequence x is k-
tonic. This means that there are at most k dirty blocks, or equivalently, at least
k clean blocks in B1, . . . , B2k. So we can always choose k indices p1, . . . , pk. It
is easy to check that the sequence x̃ is also k-tonic. Since each block has length
n/(k · 2i) = 2l−(a+i), it is obvious that

�1(x) =
k∑

j=1

ci,j · 2l−(a+i) + �1(x̃).
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By summing the above equation over i = 1, . . . , t, the number of 1’s in an initial
input sequence is given by

k∑
j=1

(c1,jc2,j · · · ct,j)2 · 2l−(a+t) + �1(u2) = (zH)2 · 2l−t + (zL)2 · 2l−(a+t) + �1(u2)

= (zH)2 · 2l−t + �1(u1) + �1(u2)
= (z)2 · 2l−t + �1(u).

This completes the proof of the correctness of the algorithm.
Now we describe the construction of a circuit along the algorithm C starting

from step C1, which is the most complex part of the construction. As for the
above discussion, we first concentrate on the i-th iteration of the for loop, and
so describe the construction of a circuit that takes sequences B1, . . . , B2k each of
length n/(k · 2i) as an input and outputs ci,j for j ∈ [k] and Bs1 , . . . , Bsk

where
(s1, . . . , sk) = [2k]\(p1, . . . , pk).

Given (B1, . . . , B2k), we put B(0) = (B(0)
1 , . . . , B

(0)
2k ) = (B1, . . . , B2k). For

each p ∈ [k], define B(p) = (B(p)
1 , . . . , B

(p)
2k−p) as

B(p)
q =

{
B

(p−1)
q if all of B(p−1)

1 , . . . , B
(p−1)
q are dirty,

B
(p−1)
q+1 there exists a clean block in B(p−1)

1 , . . . , B
(p−1)
q .

(1)

In other words, B(p) is a sequence obtained from B(p−1) by removing the first
clean block in it. Then B(p) is equal to a sequence obtained from B(0) by remov-
ing the first p clean blocks. Hence B(k) = (B(k)

1 , . . . , B
(k)
k ) is a desired sequence.

Now we introduce two types of auxiliary Boolean functions. For p ∈ [0, k] and
for q ∈ [2k − p], let Is Clean(p)

q be a function that outputs 1 if and only if B(p)
q

is clean and let Exist Clean(p)
q be a function that outputs 1 if and only if there

exists a clean block in B(p)
1 , . . . , B

(p)
q−1. These functions can be easily computed

in a following way:

Is Clean(0)
q = (

∧
v∈B

(0)
q

v) ∨ (
∨

v∈B
(0)
q

v), (for q ∈ [2k]),

Exist Clean(p)
0 = 0, (for p ∈ [0, k]),

Exist Clean(p)
q = Exist Clean(p)

q−1 ∨ Is Clean(p)
q , (for p ∈ [0, k], q ∈ [2k − p]),

Is Clean(p)
q = (Is Clean(p−1)

q+1 ∧ Exist Clean(p−1)
q )

∨(Is Clean(p−1)
q ∧ Exist Clean(p−1)

q ), (for p ∈ [k], q ∈ [2k − p]).

Thus by Eq. (1), for each l = 1, 2, . . ., the l-th bit of B(p)
q is given by

(B(p−1)
q+1 [l] ∧ Exist Clean(p−1)

q ) ∨ (B(p−1)
q [l] ∧ Exist Clean(p−1)

q ),
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where B[l] denotes the l-th bit of the block B. We also have

ci,j =
k+1∨
q=1

(
Is Clean(j−1)

q ∧ Exist Clean(j−1)
q−1 ∧B(j−1)

q [1]
)
,

where B(j−1)
q [1] denotes the first bit of the block B(j−1)

q .
Now we estimate the number of gates needed to compute these functions. Let

ni = n/(2i−1), which is the length of an input sequence at the beginning of the
i-th iteration of step C1. We use NOT gates at the computation of Is Clean(0)

q

for each q ∈ [2k] and Exist Clean(p)
q for each p ∈ [0, k] and q ∈ [2k − p]. So the

number of NOT gates we need is at most 2k + 2k2 ≤ 3k2. The total number of
gates is easily shown to be O(k2 + kni). Summing these over i = 1, . . . , t, we
need at most 3tk2 NOT gates and

∑t
i=1O(k2 + kni) = O(tk2 + kn) gates in

total to simulate step C1 of the algorithm.
In step C2, all we have to do is to compute the addition of k integers of t bits.

Since it is well known that the addition of two t-bit integers can be computed by
a circuit of linear size (see e.g., [16, Chapter 3]), the number of gates needed to
compute the addition of k integers of t bits is O(k(t+ log k)). The term t+ log k
here comes from the fact that the summand has at most t + log k digits. Here
we use kt NOT gates, which is equal to the number of total input variables.

In step C3, we obtain u1 as Decoden/2t(0zL0l−(a+t)), which can be computed
by a monotone circuit of size O(n) by Theorem 5, and obtain u2 as Sortn/2t(x),
which can be computed by a monotone circuit of size O((n/2t) log(n/2t)) =
O((n log n)/2t) by using the AKS-sorting network [1].

We can now proceed to step C4. Let ũ be a sorted sequence of the con-
catenation of u1 and u2, which can be computed by a monotone circuit of
size O((2n/2t) log(2n/2t)) = O((n log n)/2t) by using the AKS-sorting net-
work [1]. Let w ∈ {0, 1} be the n/2t-th bit of ũ. Then w = 1 if and only if
�1(u1) + �1(u2) ≥ n/2t. Thus, the desired sequence u is obtained by taking the
first half of ũ if w = 0 and the last half of ũ if w = 1, which can be computed
as ui = wũi ∨ wũi+n/2t where ui and ũi denote the i-th bit of u and ũ, respec-
tively. Clearly, z is given by the binary representation of (zH)2 + w which can
be computed by a t-bit adder. All these can be computed by a circuit of size
O((n log n)/2t) with O(t) NOT gates.

The following table summarizes the number of gates used in each step.

Step NOT gates Total Size
C1 O(tk2) O(tk2 + kn)
C2 kt O(k(t+ log k))
C3 0 O((n log n)/2t)
C4 O(t) O((n log n)/2t)

By summing these numbers, we conclude that the number of NOT gates in
our circuit is O(tk2), and the total size is

O(tk2 + kn+ k(t+ log k) + (n logn)/2t) = O(kn+ (n logn)/2t).
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Here we use the assumption that k = O(log n) and t ≤ logn. This completes the
proof of the theorem. ��
We can now proceed to the construction of a circuit for Decoden,t.

Theorem 7. Suppose that t ≤ logn. Then Sizemon(Decoden,t) = O(n).

Proof. Let z ∈ {0, 1}t and u ∈ {0, 1}n/2t

be inputs to Decoden,t. For such inputs,
the output of Decoden,t should be

(z)2·n/2t︷ ︸︸ ︷
11 · · · 11u1 · · ·un/2t00 · · · 00.

For a binary sequence S, S[i] denotes the i-th bit of S. Let A be an n-bit
binary sequence given by 2t copies of u. Put B = Decoden(0z0l−t) and C =
Decoden(0z1l−t) Recall that n = 2l. Let D be an n-bit binary sequence given by
D[i] = (A[i] ∨B[i]) ∧ C[i] for i ∈ [n]. Then the sequence D is

(z)2·n/2t︷ ︸︸ ︷
11 · · ·11u1 · · ·un/2t−100 · · ·00,

which is very close to the desired sequence, i.e., it misses the last bit of u. This
discrepancy is fixed by putting D[in/2t] = (D[in/2t − 1] ∧ un/2t) ∨D[in/2t] for
each i ∈ [2t]. Since Decoden has a linear size monotone circuit (Theorem 5), the
sequence D can also be computed by a monotone circuit of linear size. ��
Theorem 3 follows immediately from Theorems 6 and 7.

4 Negation-Limited Inverter for k-tonic Sequences

In this section, we describe the construction of a negation-limited circuit for the
k-tonic inverter to prove Theorem 4. Throughout this section, we suppose that
the length n of an input is 2a − 1 for some natural number a. We first introduce
several auxiliary functions.

Definition 7. Let b ∈ {0, 1}. Let Leftbn : {0, 1}n → {0, 1}a be the collection
of Boolean functions defined as Leftbn(x) = p if x1 = · · · = x(p)2−1 = 1 − b
and x(p)2 = b, i.e., p is the binary representation of the smallest index i with
xi = b. If there are no b’s in x, then the output of Leftbn is unspecified. Let
Decodeb

n : {0, 1}a → {0, 1}n be the collection of Boolean functions defined as
Decodeb

n(p) = b(p)2−1(1− b)n−(p)2+1. If p is all 0’s then the output of Decodeb
n is

unspecified. Let Orn and Andn denote the functions that output bitwise OR and
AND of two input sequences, respectively.

Lemma 8. For each b ∈ {0, 1}, Leftbn can be computed by a circuit of size O(n)
and of depth O(log2 n) that contains O(log n) NOT gates.
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Proof. We first give an algorithm to compute Left1n.

Algorithm L. This algorithm takes an n-bit binary sequence x = (x1, . . . , xn)
as an input and outputs p = (p1, . . . , pa) which satisfies x1 = · · · = x(p)2−1 = 0
and x(p)2 = 1.

L1. Let x0 = x and flag0 = 1.
L2. For i = 1, . . . , a− 1 do the following:

1. pi = ¬(
2a−i−1∨

j=1

xi−1
j ) ∧ flagi−1,

2. xi
j = ¬pix

i−1
j ∨ pix

i−1
j+2a−i (for j = 1, . . . , 2a−i − 1),

3. flagi = ¬(pi ∧ xi−1
2a−i) ∧ flagi−1,

L3. pa = xa−1
1 ∧ flaga−1.

L4. Outputs (p1, . . . , pa).

We now consider the correctness of algorithm L. We focus on the i-th iteration of
step L2. In the case pi = 1, since the number of 0-bits before the leftmost 1 in xi−1

is at least 2a−i −1, we can show (p1 · · · pi−110a−i)2 ≤ (p)2 ≤ (p1 · · · pi−111a−i)2.
In particular, if pi = 1 and xi−1

2a−i = 1 (which implies flagi = 0), then the
number of 0-bits before the leftmost 1 is equal to 2a−i − 1. Hence (p)2 =
(p1 · · · pi−110a−i)2, i.e., pi+1, . . . , pa should be all 0’s. This will be satisfied since
flagi = 0. In the case pi = 0, the number of 0-bits before the leftmost 1 in
xi−1 is at most 2a−i − 2. Thus (p1 · · · pi−100a−i)2 ≤ (p)2 ≤ (p1 · · · pi−101a−i)2.
Therefore algorithm L outputs pi correctly.

We now estimate the size of a circuit. For the i-th iteration of the for loop at
step L2, pi can be computed by a circuit of size 2a−i and depth a− i + 2 with
one NOT gate. A sequence xi

j can be obtained by a circuit of size 3 · (2a−i−1) =
3 · 2a−i − 3 with one NOT gate, and flagi can be computed by using three gates
including one NOT gate. For each i, step L2 can be done by a circuit of size
4 · 2a−i + 1 with three NOT gates and depth a− i+ 4. We only need one AND
gate at step L3. Therefore, algorithm L can be simulated by a circuit of size∑a−1

i=1 (4 · 2a−i + 1) + 1 = 4(2a−1 − 1) + (a − 1) + 1 = O(n) with 3(a − 1) =
O(log n) NOT gates and of depth

∑a−1
i=1 (a− i+4)+1 = O(a2) = O(log2 n). The

construction of a circuit for Left0n is similar to that for Left1n and is omitted. ��

Lemma 9. For each b ∈ {0, 1}, Decodeb
n can be computed by a circuit of size

O(n) and of depth O(log n) that contains O(log n) NOT gates.

Proof. It is obvious that Decode1
n(p) = Decoden(q) with (q)2 = (p)2 − 1, and

Decode0
n(p) is equal to the reverse of Decoden(q′) with (q′)2 = n− (p)2 + 1. We

can easily see that each of q and q′ can be computed by a circuit of size O(log n)
and of depth O(log n) with O(log n) NOT gates. Since it is well known that
Decoden has a linear size O(log n) depth monotone circuit [12], we can obtain a
desired circuit for Decodeb

n. ��
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Proof. (of Theorem 4) As for the proof of Theorem 6, we first show an algorithm
to compute Invk

n. Suppose that x is a k-tonic sequence starting with “0”.

Algorithm I. This algorithm takes an n-bit binary sequence x = (x1, . . . , xn)
as an input and outputs z = (z1, . . . , zn) where zi = ¬xi if x is k-tonic.
I1. Let x0 = x and z0 = 1n.
I2. For i = 1, . . . , k do the following:

If i is odd then
1. si = Decode1

n(Left1n(xi−1)),
2. xi = Orn(xi−1, si),
3. zi = Andn(zi−1, si),

else
1. si = Decode0

n(Left0n(xi−1)),
2. xi = Andn(xi−1, si),
3. zi = Orn(zi−1, si),

I3. Outputs z = zk.

The correctness of the algorithm I can be verified as follows: For some non-
negative integers p0, . . . , pk ≥ 0, we can write x0 as

x0 = 0p01p10p21p30p4 · · · 0pk .

Then we have

s1 = 1p00p10p20p30p4 · · · 0pk ,

x1 = 1p01p10p21p30p4 · · · 0pk ,

z1 = 1p00p10p20p30p4 · · · 0pk ,

s2 = 0p00p11p21p31p4 · · · 1pk ,

x2 = 0p00p10p21p30p4 · · · 0pk ,

z2 = 1p00p11p21p31p4 · · · 1pk .

Note that x1 is a k − 1 tonic sequence starting with 1p0+p1 and x2 is a k − 2
tonic sequence starting with 0p0+p1+p2 . Similarly, we can show that xi is a k− i
tonic sequence and that

zi = 1p00p1 · · · bpibpi+1 · · · bpk .

Hence

zk = 1p00p11p20p31p4 · · · 0pk ,

which is a desired output.
We now estimate the size of a circuit. For each iteration of the for loop at step

I2, a sequence si can be computed by a circuit of size O(n) and depth O(log2 n)
with O(log n) NOT gates, and sequences xi and zi can be computed by n gates
and depth 1 without NOT gates. Hence the size and depth of an entire circuit are
O(kn) and O(k log2 n), respectively. The total number of NOT gates is clearly
O(k log n). ��
We finally remark that if we can improve the depth of our circuit for Leftb

n to
O(log n), then we will have a negation-limited k-tonic inverter of depth O(k logn)
which gives a negative answer to Turán’s problem for the case k = O(1).
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Abstract. This paper considers the quantum query complexity of ε-
biased oracles that return the correct value with probability only 1/2 +
ε. In particular, we show a quantum algorithm to compute N-bit OR
functions with O(

√
N/ε) queries to ε-biased oracles. This improves the

known upper bound of O(
√

N/ε2) and matches the known lower bound;
we answer the conjecture raised by the paper [1] affirmatively. We also
show a quantum algorithm to cope with the situation in which we have no
knowledge about the value of ε. This contrasts with the corresponding
classical situation, where it is almost hopeless to achieve more than a
constant success probability without knowing the value of ε.

1 Introduction

Quantum computation has attracted much attention since Shor’s celebrated
quantum algorithm for factoring large integers [2] and Grover’s quantum search
algorithm [3]. One of the central issues in this research field has been the quan-
tum query complexity, where we are interested in both upper and lower bounds
of a necessary number of oracle calls to solve certain problems [4,5,6]. In these
studies, oracles are assumed to be perfect, i.e., they return the correct value with
certainty.

In the classical case, there have been many studies (e.g., [7]) that discuss
the case of when oracles are imperfect (or often called noisy), i.e., they may
return incorrect answers. In the quantum setting, Høyer et al. [8] proposed an
excellent quantum algorithm, which we call the robust quantum search algorithm
hereafter, to compute the OR function of N values, each of which can be accessed
through a quantum “imperfect” oracle. Their quantum “imperfect” oracle can
be described as follows: When the content of the query register is x (1 ≤ x ≤ N),
the oracle returns a quantum pure state from which we can measure the correct
value of f(x) with a constant probability. This noise model naturally fits into
quantum subroutines with errors. (Note that most existing quantum algorithms
have some errors.) More precisely, their algorithm robustly computes N -bit OR
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functions with O(
√
N) queries to an imperfect oracle, which is only a constant

factor worse than the perfect oracle case. Thus, they claim that their algorithm
does not need a serious overhead to cope with the imperfectness of the oracles.
Their method has been extended to a robust quantum algorithm to output all the
N bits by using O(N) queries [9] by Buhrman et al. This obviously implies that
O(N) queries are enough to compute the parity of the N bits, which contrasts
with the classical Ω(N logN) lower bound given in [7].

It should be noted that, in the classical setting, we do not need an overhead
to compute OR functions with imperfect oracles either, i.e., O(N) queries are
enough to compute N -bit OR functions even if an oracle is imperfect [7]. Never-
theless, the robust quantum search algorithm by Høyer et al. [8] implies that we
can still enjoy the quadratic speed-up of the quantum search when computing
OR functions, even in the imperfect oracle case, i.e., O(

√
N) vs. O(N). How-

ever, this is not true when we consider the probability of getting the correct
value from the imperfect oracles explicitly by using the following model: When
the query register is x, the oracle returns a quantum pure state from which we
can measure the correct value of f(x) with probability 1/2 + εx, where we as-
sume ε ≤ εx for any x and we know the value of ε. In this paper, we call this
imperfect quantum oracle an ε-biased oracle (or a biased oracle for short) by
following the paper [1]. Then, the precise query complexity of the above robust
quantum search algorithm to compute OR functions with an ε-biased oracle can
be rewritten as O(

√
N/ε2), which can also be found in [9]. For the same prob-

lem, we need O(N/ε2) queries in the classical setting since O(1/ε2) instances
of majority voting of the output of an ε-biased oracle is enough to boost the
success probability to some constant value. This means that the above robust
quantum search algorithm does not achieve the quadratic speed-up anymore if
we consider the error probability explicitly.

Adcock et al. [10] first considered the error probability explicitly in the quan-
tum oracles, then Iwama et al. [1] continued to study ε-biased oracles: they
show the lower bound of computing OR is Ω(

√
N/ε) and the matching upper

bound when εx are the same for all x. Unfortunately, this restriction to oracles
obviously cannot be applied in general. Therefore, for the general biased ora-
cles, there have been a gap between the lower and upper bounds although the
paper [1] conjectures that they should match at Θ(

√
N/ε).

Our Contribution. In this paper, we show that the robust quantum search can
be done with O(

√
N/ε) queries. Thus, we answer the conjecture raised by the

paper [1] affirmatively, meaning that we can still enjoy the quantum quadratic
speed-up to compute OR functions even when we consider the error probability
explicitly. The overhead factor of 1/ε2 in the complexity of the original robust
quantum search (i.e., O(

√
N/ε2)) essentially comes from the classical majority

voting in their recursive algorithm. Thus, our basic strategy is to utilize quan-
tum amplitude amplification and estimation [11] instead of majority voting to
boost the success probability to some constant value. This overall strategy is
an extension of the idea in the paper [1], but we carefully perform the quantum



118 T. Suzuki et al.

amplitude amplification and estimation in quantum parallelism with appropriate
accuracy to avoid the above-mentioned restriction to oracles assumed in [1].

In most existing (classical and quantum) algorithms with imperfect oracles, it
is implicitly assumed that we know the value of ε. Otherwise, it seems impossible
to know when we can stop the trial of majority voting with a guarantee of a
more than constant success probability of the whole algorithm. However, we
show that, in the quantum setting, we can construct a robust algorithm even
when ε is unknown. More precisely, we can estimate unknown ε with appropriate
accuracy, which then can be used to construct robust quantum algorithms. Our
estimation algorithm also utilizes quantum amplitude estimation, thus it can
be considered as an interesting application of quantum amplitude amplification,
which seems to be impossible in the classical setting.

2 Preliminaries

In this section we introduce some definitions, and basic algorithms used in this
paper.

The following unitary transformations are used in this paper.

Definition 1. For any integer M ≥ 1, a quantum Fourier transform FM is

defined by FM : |x〉 $−→ 1√
M

M−1∑
y=0

e2πıxy/M |y〉 (0 ≤ x < M).

Definition 2. For any integer M ≥ 1 and any unitary operator U, the operator
ΛM (U) is defined by

|j〉|y〉 $−→
{
|j〉Uj |y〉 (0 ≤ j < M)
|j〉UM |y〉 (j ≥M).

ΛM is controlled by the first register |j〉 in this case. ΛM (U) uses U forM times.

In this paper, we deal with the following biased oracles.

Definition 3. A quantum oracle of a Boolean function f with bias ε is a unitary
transformation Oε

f or its inverse Oε
f
† such that

Oε
f |x〉|0m−1〉|0〉 = |x〉(αx|wx〉|f(x)〉 + βx|w′

x〉|f(x)〉),
where |αx|2 = 1/2 + εx ≥ 1/2 + ε for any x ∈ [N ]. Let also εmin = min

x
εx.

Note that 0 < ε ≤ εmin ≤ εx ≤ 1/2 for any x. In practice, ε is usually given in
some way and εmin or εx may be unknown. Unless otherwise stated, we discuss
the query complexity with a given biased oracle Oε

f in the rest of the paper.
We can also consider phase flip oracles instead of the above-defined bit flip ora-

cles. A (perfect) phase flip oracle is defined as a map: |x〉|0m−1〉 $−→
(−1)f(x)|x〉|0m−1〉, which is equivalent to the corresponding bit flip oracle in
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the perfect case, since either oracle can be easily simulated by the other ora-
cle with a pair of Hadmard gates. In a biased case, however, the two oracles
cannot always be converted to each other. We need to take care of interference
of the work registers, i.e., |wx〉 and |w′

x〉, which are dealt with carefully in our
algorithm.

Now we briefly introduce a few known quantum algorithms often used in
following sections. In [11], Brassard et al. presented amplitude amplification as
follows.

Theorem 4. Let A be any quantum algorithm that uses no measurements and
χ : Z → {0, 1} be any Boolean function that distinguishes between success or fail
(good or bad). There exists a quantum algorithm that given the initial success
probability p > 0 of A, finds a good solution with certainty using a number of
applications of A and A−1, which is in O( 1√

p ) in the worst case.

Brassard et al. also presented amplitude estimation in [11]. We rewrite it in
terms of phase estimation as follows.

Theorem 5. Let A, χ and p be as in Theorem 4 and θp = sin−1(
√
p) such

that 0 ≤ θp ≤ π/2. There exists a quantum algorithm Est Phase(A, χ,M) that
outputs θ̃p such that |θp − θ̃p| ≤ π

M , with probability at least 8/π2. It uses exactly
M invocations of A and χ, respectively. If θp = 0 then θ̃p = 0 with certainty,
and if θp = π/2 and M is even, then θ̃p = π/2 with certainty.

Our algorithm is based on the idea in [1], which makes use of the amplitude
amplification. We refer interested users to [11] and [1].

3 Computing OR with ε-Biased Oracles

In this section, we assume that we have information about bias rate of the given
biased oracle: a value of ε such that 0 < ε ≤ εmin. Under this assumption,
in Theorem 9 we show that N -bit OR functions can be computed by using
O(

√
N/ε) queries to the given oracle Oε

f . Moreover, when we know εmin, we can
present an optimal algorithm to compute OR with Oε

f . Before describing the
main theorem, we present the following key lemma.

Lemma 6. There exists a quantum algorithm that simulates a single query to
an oracle O1/6

f by using O(1/ε) queries to Oε
f if we know ε.

To prove the lemma, we replace the given oracle Oε
f with a new oracle Õε

f for
our convenience. The next lemma describes the oracle Õε

f and how to construct
it from Oε

f .

Lemma 7. There exists a quantum oracle Õε
f that consists of one Oε

f and one
Oε

f
† such that for any x ∈ [N ] Õε

f |x, 0m, 0〉 = (−1)f(x)2εx|x, 0m, 0〉 + |x, ψx〉,
where |x, ψx〉 is orthogonal to |x, 0m, 0〉 and its norm is

√
1 − 4εx2.
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Proof. We can show the construction of Õε
f in a similar way in Lemma 1 in [1].

��
Now, we describe our approach to Lemma 6. The oracle O1/6

f is simulated by
the given oracle Oε

f based on the following idea. According to [1], if the query
register |x〉 is not in a superposition, phase flip oracles can be simulated with
sufficiently large probability: by using amplitude estimation through Õε

f , we can
estimate the value of εx, then by using the estimated value and applying ampli-
tude amplification to the state in (7), we can obtain the state (−1)f(x)|x, 0m, 0〉
with high probability. In Lemma 6, we essentially simulate the phase flip oracle
by using the above algorithm in a superposition of |x〉. Note that we convert the
phase flip oracle into the bit flip version in the lemma.

We will present the proof of Lemma 6 after the following lemma, which shows
that amplitude estimation can work in quantum parallelism. Est Phase in The-
orem 5 is straightforwardly extended to Par Est Phase in Lemma 8, whose
proof can be found in [12].

Lemma 8. Let χ : Z → {0, 1} be any Boolean function, and let O be any quan-
tum oracle that uses no measurements such that O|x〉|0〉 = |x〉Ox|0〉 = |x〉|Ψx〉 =
|x〉(|Ψ1

x〉 + |Ψ0
x〉), where a state |Ψx〉 is divided into a good state |Ψ1

x〉 and a bad
state |Ψ0

x〉 by χ. Let sin2(θx) = 〈Ψ1
x |Ψ1

x〉 be the success probability of Ox|0〉 where
0 ≤ θx ≤ π/2. There exists a quantum algorithm Par Est Phase(O, χ,M)

that changes states as follows: |x〉|0〉|0〉 $−→ |x〉 ⊗
M−1∑
j=0

δx,j|vx,j〉|θ̃x,j〉, where

∑
j:|θx−θ̃x,j|≤ π

M

|δx,j |2 ≥ 8
π2 for any x, and |vx,i〉 and |vx,j〉 are mutually orthonor-

mal vectors for any i, j. It uses O and its inverse for O(M) times.

Proof. (of Lemma 6)
We will show a quantum algorithm that changes states as follows: |x〉|0〉|0〉

$−→ |x〉(αx|wx〉|f(x)〉+βx|w′
x〉|f(x)〉), where |αx|2 ≥ 2/3 for any x, using O(1/ε)

queries to Oε
f . The algorithm performs amplitude amplification following ampli-

tude estimation in a superposition of |x〉.
At first, we use amplitude estimation in parallel to estimate εx or to know how

many times the following amplitude amplification procedures should be repeated.
Let sin θ = 2ε and sin θx = 2εx such that 0 < θ, θx ≤ π/2. Note that Θ(θ) = Θ(ε)
since sin θ ≤ θ ≤ π

2 sin θ when 0 ≤ θ ≤ π/2. Let also M1 =
⌈

3π(π+1)
θ

⌉
and χ be a Boolean function that divides a state in (7) into a good state
(−1)f(x)2εx|0m+1〉 and a bad state |ψx〉. The function χ checks only whether
the state is |0m+1〉 or not; therefore, it is implemented easily. By Lemma 8,

Par Est Phase(Õε
f ,χ,M1) maps |x〉|0〉|0〉|0〉 $−→ |x〉 ⊗

M−1∑
j=0

δx,j|vx,j〉|θ̃x,j〉|0〉,

where
∑

j:|θx−θ̃x,j|≤ θ
3(π+1)

|δx,j|2 ≥ 8
π2 for any x, and |vx,i〉 and |vx,j〉 are mutually
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orthonormal vectors for any i, j. This state has the good estimations of θx in the
third register with high probability. The fourth register |0〉 remains large enough
to perform the following steps.

The remaining steps basically perform amplitude amplification by using the
estimated values θ̃x,j , which can realize a phase flip oracle. Note that in the
following steps a pair of Hadmard transformations are used to convert the phase
flip oracle into our targeted oracle.

Based on the de-randomization idea as in [1], we calculate m∗
x,j =⌈

1
2

(
π

2θ̃x,j
− 1
)⌉

, θ∗x,j = π
4m∗

x,j+2 , p∗x,j = sin2(θ∗x,j) and p̃x,j = sin2(θ̃x,j) in the
superposition, and apply an Hadmard transformation to the last qubit. Thus we
have

|x〉
(M−1∑

j=0

δx,j|vx,j〉|θ̃x,j〉|m∗
x,j〉|θ∗x,j〉|p∗x,j〉|p̃x,j〉 ⊗ |0m+1〉|0〉 ⊗ 1√

2
(|0〉 + |1〉)

)
.

Next, let R : |p∗x,j〉|p̃x,j〉|0〉 → |p∗x,j〉|p̃x,j〉
(√

p∗
x,j

p̃x,j
|0〉 +

√
1 − p∗

x,j

p̃x,j
|1〉
)

be a rota-

tion and let O = Õε
f ⊗ R be a new oracle. We apply O followed by ΛM2(Q),

where M2 =
⌈

1
2

(
3π(π+1)
2(3π+2)θ + 1

)⌉
and Q = −O(I ⊗ S0)O−1(I ⊗ Sχ); S0 and Sχ

are defined appropriately. ΛM2 is controlled by the register |m∗
x,j〉, and Q is ap-

plied to the registers |x〉 and |0m+1〉|0〉 if the last qubit is |1〉. Let Ox denote the
unitary operator such that O|x〉|0m+1〉|0〉 = |x〉Ox|0m+1〉|0〉. Then we have the
state (From here, we write only the last three registers.)

M−1∑
j=0

δx,j√
2

(|0m+1〉|0〉|0〉 + Qmx,j
x Ox

(|0m+1〉|0〉) |1〉) , (1)

where Qx = −OxS0O−1
x Sχ andmx,j = min(m∗

x,j,M2) for any x, j. We will show
that the phase flip oracle is simulated if the third register |θ̃x,j〉 has the good
estimation of θx and the last register has |1〉. Equation (1) can be rewritten as

M−1∑
j=0

δx,j√
2

(
|0m+1, 0〉|0〉 +

(
(−1)f(x)γx,j|0m+1, 0〉 + |ϕx,j〉

)
|1〉
)
,

where |ϕx,j〉 is orthogonal to |0m+1, 0〉 and its norm is
√

1 − γ2
x,j. Suppose that

the third register has |θ̃x,j〉 such that |θx − θ̃x,j| ≤ θx

3(π+1) . It can be seen that

mx,j ≤ M2 if |θx − θ̃x,j| ≤ θx

3(π+1) . Therefore, Qx is applied for m∗
x,j times, i.e.,

the number specified by the fourth register. Like the analysis of Lemma 2 in [1],

it is shown that γx,j ≥
√

1 − 1
9 .

Finally, applying an Hadmard transformation to the last qubit again, we have
the state

M−1∑
j=0

δx,j

2

(
(1+(−1)f(x)γx,j)|0m+2〉|0〉+(1−(−1)f(x)γx,j)|0m+2〉|1〉+ |ϕx,j〉(|0〉− |1〉)

)
.
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If we measure the last qubit, we have |f(x)〉 with probability

M−1∑
j=0

⎛⎜⎝∣∣∣∣δx,j(1 + γx,j)
2

∣∣∣∣2 +

∣∣∣∣∣∣
δx,j

√
1 − γ2

x,j

2

∣∣∣∣∣∣
2⎞⎟⎠≥ 1

2

∑
j:|θx−θ̃x,j|≤ θ

3(π+1)

|δx,j |2(1+γx,j) ≥ 2
3
.

Thus, the final quantum state can be rewritten as |x〉(αx|wx〉|f(x)〉 +
βx|w′

x〉|f(x)〉, where |αx|2 ≥ 2/3 for any x.
The query complexity of this algorithm is the cost of amplitude estimationM1

and amplitude amplificationM2, thus a total number of queries is O(1
θ ) = O(1

ε ).
Therefore, we can simulate a single query to O1/6

f using O(1
ε ) queries to Oε

f . ��

Now, we describe the main theorem to compute OR functions with quantum
biased oracles.

Theorem 9. There exists a quantum algorithm to compute N -bit OR with prob-
ability at least 2/3 using O(

√
N/ε) queries to a given oracle Oε

f if we know ε.
Moreover, if we know εmin, the algorithm uses Θ(

√
N/εmin) queries.

The upper bound is derived from Lemma 6 and [8] straightforwardly. Also, The-
orem 6 in [1] can prove the lower bound Ω(

√
N/εmin).

4 Estimating Unknown ε

In Sect.3, we described algorithms by using a given oracle Oε
f when we know ε.

In this section, we assume that there is no prior knowledge of ε.
Our overall approach is to estimate ε (in precise εmin) with appropriate accu-

racy in advance, which then can be used in the simulating algorithm in Lemma 6.
We present the estimating algorithm in Theorem 12 after some lemmas, which
are used in the main theorem.

Lemma 10. Let O be any quantum algorithm that uses no measurements such
that O|x〉|0〉 = |x〉|Ψx〉 = |x〉(|Ψ1

x〉 + |Ψ0
x〉). Let χ : Z → {0, 1} be a Boolean

function that divides a state |Ψx〉 into a good state |Ψ1
x〉 and a bad state |Ψ0

x〉
such that sin2(θx) = 〈Ψ1

x |Ψ1
x〉 for any x (0 < θx ≤ π/2). There exists a quantum

algorithm Par Est Zero(O, χ,M) that changes states as follows:

|x〉|0〉|0〉 → |x〉 ⊗ (αx|ux〉|1〉 + βx|u′x〉|0〉) ,

where |αx|2 =
sin2(Mθx)
M2 sin2(θx)

for any x. It uses O and its inverse for O(M) times.

Par Est Zero can be based on Par Est Phase. We omit the proof. See [12] for
more details.
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Lemma 11. Let O be any quantum oracle such that O|x〉|0〉|0〉 = |x〉(αx|wx〉|1〉
+ βx|ux〉|0〉). There exists a quantum algorithm Chk Amp Dn(O) that outputs
b ∈ {0, 1} such that b = 1 if ∃x; |αx|2 ≥ 9

10 , b = 0 if ∀x; |αx|2 ≤ 1
10 , and b =

don′t care otherwise, with probability at least 8/π2 using O(
√
N logN) queries

to O.

Proof. Using O(logN) applications of O and majority voting, we have a new
oracle O′ such that O′|x〉|0〉|0〉 = |x〉(α′x|w′

x〉|1〉 + β′x|u′x〉|0〉), where |α′x|2 ≥
1 − 1

16N if |αx|2 ≥ 9
10 , and |α′x|2 ≤ 1

16N if |αx|2 ≤ 1
10 . Note that work bits |w′

x〉
and |u′x〉 are likely larger than |wx〉 and |ux〉.

Now, let A be a quantum algorithm that makes the uniform superposition
1√
N

∑
x |x〉|0〉|0〉 by the Fourier transform FN and applies the oracle O′. We

consider (success) probability p that the last qubit in the final state A|0〉 has
|1〉. If the given oracle O satisfies ∃x; |αx|2 ≥ 9

10 (we call Case 1), the probability
p is at least 1

N ×(1− 1
16N ) ≥ 15

16N . On the other hand, if O satisfies ∀x; |αx|2 ≤ 1
10

(we call Case 2), then the probability p ≤ N× 1
N × 1

16N = 1
16N . We can distinguish

the two cases by amplitude estimation as follows.
Let θ̃p denote the output of the amplitude estimation Est Phase(A, χ,

�11
√
N ). The whole algorithm Chk Amp Dn(O) performs Est Phase(A, χ,

�11
√
N ) and outputs whether θ̃p is greater than 0.68/

√
N or not. We will show

that it is possible to distinguish the above two cases by the value of θ̃p. Let
θp = sin−1(

√
p) such that 0 ≤ θp ≤ π/2. Note that x ≤ sin−1(x) ≤ πx/2 if

0 ≤ x ≤ 1. Theorem 5 says that in Case 1, the Est Phase outputs θ̃p such that

θ̃p ≥ θp − π

11
√
N

≥
√

15
16N

− π

11
√
N
>

0.68√
N
,

with probability at least 8/π2. Similarly in Case 2, the inequality θ̃p < 0.68√
N

is
obtained.
Chk Amp Dn(O) uses O for O(

√
N logN) times since Chk Amp Dn(O) calls

the algorithm A for �11
√
N times and A uses O(logN) queries to the given

oracle O. ��
Theorem 12. Given a quantum biased oracle Oε

f , there exists a quantum algo-
rithm Est Eps Min(Oε

f ) that outputs ε̃min such that εmin/5π2 ≤ ε̃min ≤ εmin
with probability at least 2/3. The query complexity of the algorithm is expected
to be O

(√
N log N
εmin

log log 1
εmin

)
.

Proof. Let sin(θx) = 2εx and sin(θmin) = 2εmin such that 0 < θx, θmin ≤ π
2 .

Let χ also be a Boolean function that divides the state in (7) into a good
state (−1)f(x)2εx|0m+1〉 and a bad state |ψx〉. Thus Par Est Zero(Õε

f , χ,M)
in Lemma 10 makes the state |x〉 ⊗ (αx|ux〉|1〉 + βx|u′x〉|0〉) such that |αx|2 =
sin2(Mθx)

M2 sin2(θx) . As stated below, if M ∈ o(1/θx), then |αx|2 ≥ 9/10. We can use
Chk Amp Dn to check whether there exists x such that |αx|2 ≥ 9/10. Based on
these facts, we present the whole algorithm Est Eps Min(Oε

f ).
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Algorithm( Est Eps Min(Oε
f ) )

1. Start with � = 0.
2. Increase � by 1.
3. Run Chk Amp Dn(Par Est Zero(Õε

f , χ, 2
�)) for O(log �) times and use ma-

jority voting. If “1” is output as the result of the majority voting, then return
to Step 2.

4. Output ε̃min = 1
2 sin
( 1

5·2�

)
.

Now, we will show that the algorithm almost keeps running until
� >
⌊
log2

1
5θmin

⌋
. We assume � ≤

⌊
log2

1
5θmin

⌋
. Under this assumption, a proposi-

tion ∃x; |αx|2 ≥ 9
10 holds since the equation εmin = minx εx guarantees that there

exists some x such that θmin = θx and |αx|2 = sin2(2�θx)
22� sin2(θx) ≥ cos2(1

5 ) > 9
10 when

2� ≤ 1
5θx

. Therefore, a single Chk Amp Dn run returns “1” with probability at
least 8/π2. By O(log �) repetitions and majority voting, the probability that we
obtain “1” increases to at least 1− 1

5�2 . Consequently, the overall probability that

we return from Step 3 to Step 2 for any � such that � ≤
⌊
log2

1
5θmin

⌋
is at least∏⌊log2

1
5θmin

⌋
�=1

(
1 − 1

5�2

)
> 2

3 . This inequality can be obtained by considering an in-

finite product expansion of sin(x), i.e., sin(x) = x
∏∞

n=1

(
1 − x2

n2π2

)
at x = π/

√
5.

Thus the algorithm keeps running until � >
⌊
log2

1
5θmin

⌋
, i.e., outputs ε̃min such

that ε̃min = 1
2 sin
( 1

5·2�

) ≤ 1
2 sin(θmin) = εmin, with probability at least 2/3.

We can also show that the algorithm almost stops in � <
⌈
log2

2π
θmin

⌉
. Since

sin2(Mθ)
M2 sin2(θ) ≤ π2

(2Mθ)2 when 0 ≤ θ ≤ π
2 , |αx|2 = sin2(2�θx)

22� sin2(θx) ≤ 1
16 for any x if 2� ≥

2π
θmin

. Therefore, in Step 3, “0” is returned with probability at least 8/π2 when

� ≥
⌈
log2

2π
θmin

⌉
. The algorithm, thus, outputs ε̃min = 1

2 sin
( 1

5·2�

) ≥ 1
2 sin( θmin

10π ) ≥
εmin
5π2 with probability at least 8/π2.

Let �̃ satisfy
⌊
log2

1
5θmin

⌋
< �̃ <

⌈
log2

2π
θmin

⌉
. If the algorithm runs until � = �̃,

its query complexity is

�̃∑
�=1

O(2�
√
N logN log �) = O(2�̃

√
N logN log �̃) = O

(√
N logN
εmin

log log
1
εmin

)
,

since 2�̃ ∈ Θ
(

1
θmin

)
= Θ
(

1
εmin

)
. ��

5 Conclusion

In this paper, we have shown that O(
√
N/ε) queries are enough to compute

N -bit OR with an ε-biased oracle. This matches the known lower bound while
affirmatively answering the conjecture raised by the paper [1]. The result in this
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paper implies other matching bounds such as computing parity with Θ(N/ε)
queries. We also show a quantum algorithm that estimates unknown value of ε
with an ε-biased oracle. Then, by using the estimated value, we can construct a
robust algorithm even when ε is unknown. This contrasts with the corresponding
classical case where no good estimation method seems to exist.

Until now, unfortunately, we have had essentially only one quantum algorithm,
i.e., the robust quantum search algorithm [8], to cope with imperfect oracles.
(Note that other algorithms, including our own algorithm in Theorem 9, are all
based on the robust quantum search algorithm [8].) Thus, it should be interesting
to seek another essentially different quantum algorithm with imperfect oracles.
If we find a new quantum algorithm that uses O(T ) queries to imperfect oracles
with constant probability, then we can have a quantum algorithm that uses
O(T/ε) queries to imperfect oracles with an ε-biased oracle based on our method.
This is different from the classical case where we need an overhead factor of
O(1/ε2) by majority voting.
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Abstract. We study the complexity of some computational problems
on finite black-box rings whose elements are encoded as strings of a
given length and the ring operations are performed by a black-box ora-
cle. We give a polynomial-time quantum algorithm to compute a basis
representation for a given black-box ring. Using this result we obtain
polynomial-time quantum algorithms for several natural computational
problems over black-box rings.

1 Introduction

Finite rings often play an important role in the design of algebraic algorithms.
Berlekamp’s randomized algorithm for factoring univariate polynomials over fi-
nite fields is a classic example [VZG03]. More recently, as explained in [AS05], the
celebrated AKS primality test [AKS04] can be cast in a ring-theoretic framework.
Lenstra’s survey [Le92] gives other algorithmic examples. Recently, [AS05, KS05]
have shown that Graph Isomorphism and Integer Factoring are polynomial-time
reducible to Ring Isomorphism, where the rings are input in the basis represen-
tation (defined in Section 2).

As pointed out in [AS05], the representation of the finite ring is crucial to
complexity of Ring Isomorphism. In this paper, we explore the complexity of
ring-theoretic problems where the finite rings are given by a black-box (defi-
nitions are in Section 2). In a sense, a black-box ring is representation free.
This model is motivated by finite black-box groups introduced by Babai and
Szemerédi [BS84, Ba92] and intensively studied in algorithmic group theory. It
turns out, surprisingly, that there is a polynomial-time quantum algorithm to
obtain a basis representation for a given black-box ring. Thus, upto quantum
polynomial time, the two representations are equivalent. A key procedure we
use is an almost-uniform random sampling algorithm for finite black-box rings.
Our algorithm is quite simple as compared to Babai’s sampling algorithm for
black-box groups [Ba91]. Additionally, if the characteristic of the ring is small
(polynomially bounded in the input size), then we actually have an NC sam-
pling algorithm. In contrast, for black-box groups it is still open if there is an
NC sampler [Ba91].

It is an open question whether there is a randomized polynomial-time algorithm
to recover a basis representation from the black-box oracle. The main obstacle
is additive independence testing in a black-box ring R: given r1, r2, · · · , rk ∈ R

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 126–135, 2006.
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is there a nontrivial solution to
∑l

i=0 xiri = 0. There is no known classical
polynomial-time algorithm for this problem. However, it fits nicely in the hidden
subgroup framework and we can solve it in quantum polynomial time as the addi-
tive group of R is abelian. As application we obtain quantum algorithms for some
black-box rings problems in Sections 5 and 6.

2 Preliminaries

A finite ring is a triple (R,+, ∗), where R is a finite nonempty set such that
(R,+) is a commutative group and (R, ∗) is a semigroup, such that ∗ distributes
over addition. A subring R′ is a subset of R that is a ring under the same
operations. Let S ⊂ R. The subring generated by S is the smallest subring 〈S〉
of R containing S. Thus, if R = 〈S〉 then every element of R can be computed
by an arithmetic circuit that takes as input the generators from S and has the
ring operations + and ∗ as the gate operations. It is easy to see that every finite
ring R has a generator set of size at most log |R|.

A ring oracle R takes queries of the form (q, x, y,+), (q, x, y, ∗), (q, x, addinv),
and (q, addid) where q, x, y are strings of equal length over Σ. The response to
each of these queries is either a string of length |q| or a symbol indicating invalid
query. Let R(q) be the set of x ∈ Σ|q| for which (q, x, addinv) is a valid query.
Then R is a ring oracle if R(q) is either empty or a ring with ring operations
described by the responses to the above queries (where the response to (q, addid)
is the string encoding additive identity). The oracle R defines the rings R(q).
The subrings of R(q), given by generator sets will be called black-box rings.

A basis representation of a finite ring R [Le92, KS05] is defined as follows: the
additive group (R,+) is described by a direct sum (R,+) = Zm1e1⊕Zm2e2⊕· · ·⊕
Zmnen, where mi are the additive orders of ei. Multiplication in R is specified
by the products eiej =

∑n
k=1 γ

k
ijek, for 1 ≤ i, j ≤ n, where γijk ∈ Zmk

.
Details about the classical and quantum complexity classes discussed in this

paper can be found in [BDG88a, BDG88b, BV97].

3 Random Sampling from a Black-Box Ring

In this section we present a simple polynomial-time sampling algorithm that
samples almost uniformly from finite black box rings. Let R be a black-box ring
generated by S.

We will describe a randomized algorithm that takes S as input and with high
probability computes an additive generating set T for (R,+). I.e. every element
of R is expressible as a sum of elements of T .

Using this additive generator set T it turns out that we can easily sample
from (R,+). We first prove this fact in the following lemma.

Lemma 1. Let R be a finite black-box ring given by an additive generator set
{r1, r2, · · · , rn}. Then there is a polynomial-time almost uniform sampling al-
gorithm for R using O(n log(|R|/ε)) ring additions and O(n log(|R|/ε)) random
bits.
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Proof. Let k1, k2, · · · , kn be the additive orders of {r1, r2, · · · , rn} in R. Define
the onto homomorphism ξ : Zk1 × Zk2 × · · ·Zkn −→ R as ξ(x1, x2, · · · , xn) =∑n

i=1 xiri. Suppose we can almost uniformly sample from Zk1 × Zk2 × · · ·Zkn .
Let (x1, x2, · · · , xn) be a sample point from Zk1 × Zk2 × · · ·Zkn . Since ξ is an
onto homomorphism, ξ−1(r) has the same cardinality for each r ∈ R. Hence,
ξ(x1, x2, · · · , xn) is an almost uniformly distributed random element from R.

Thus, it suffices to show that we can almost uniformly sample from Zk1 ×
Zk2 ×· · ·Zkn . Notice that we do not know the ki’s. But we know an upper bound,
namely 2m, for each of k1, k2, . . . , kn. Take a suitably large M > 2m to be fixed
later in the analysis. The sampling is as follows: pick (x1, x2, · · · , xn) uniformly at
random from [M ]n and output

∑
xiri. Let (a1, a2, · · · , an) ∈ Zk1 ×Zk2 × · · ·Zkn

and let p = Prob[xi ≡ ai mod ki, 1 ≤ i ≤ n].
The xi for which xi ≡ ai mod ki are precisely ai, ai + ki, · · · , ai + ki�(M −

ai)/ki�. LetM ′
i = �(M−ai)/ki�. Then p = (

∏
iM

′
i)/M

n. Clearly, p ≤∏i(1/ki).
Furthermore, it is also easy to check that p ≥ (1−2m+1/M)n ·∏i(1/ki). Choose
M > (n2m+1)/ε. Then p ≥ (1− ε)∏i(1/ki), implying that

∑
xiri is ε-uniformly

distributed in R. The number of ring additions required is O(n log((n2m+1)/ε))
which is O(n log(|R|/ε)). The number of random bits used is also O(n log(|R|/ε)).
Let R = 〈S〉 be a black-box ring. Denote by R̂ the additive subgroup of (R,+)
generated by S. I.e. R̂ is the smallest additive subgroup of (R,+) containing S.
Notice that R̂ could be a proper subset of R, and R̂ need not be a subring of R
in general.

Lemma 2. Let R = 〈S〉 be a black-box ring, and R̂ be the additive subgroup of
(R,+) generated by S. Then R̂ = R if and only if R̂ is closed under the ring
multiplication: i.e. R̂r ⊆ R̂ for each r ∈ S.

Proof. If R̂ = R then the condition is obviously true. Conversely, notice that
R̂r ⊆ R̂ for each r ∈ S implies that R̂ is closed under multiplication and hence
R̂ = R.

Theorem 1. There is a randomized algorithm that takes as input a black-box
ring R = 〈S〉 and with high probability computes an additive generating set for
(R,+) and runs in time polynomial in the input size.

Proof. The algorithm starts with S and proceeds in stages by including new
randomly picked elements into the set at every stage. Thus, it computes a se-
quence of subsets S = S1 ⊆ S2 ⊆ . . . ⊆ S�, where � will be appropriately fixed
in the analysis. Let Hi denote the additive subgroup generated additively by Si

for each i. Notice that H1 = R̂. We now describe stage i of the procedure where,
given Si, the algorithm will compute Si+1. First, notice that for each r ∈ S, Hir
is a subgroup of (R,+) that is additively generated by {xr | x ∈ Si}. Thus, we
can use Lemma 1 to ε-uniformly sample in polynomial time an element xir from
Hir, for each r ∈ S (for a suitable ε to be chosen in the analysis). We now define
the set Si+1 = Si ∪ {xir | r ∈ S}. Clearly, if � is polynomially bounded then
the above sampling procedure outputs S� in polynomial time. It thus remains to
analyze the probability that S� additively generates (R,+).
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Claim. For � = 4m+1 and ε = 1/2m the probability that S� additively generates
(R,+) is at least 1/6.

Proof of Claim. The proof is a simple application of Markov’s inequality. We
define indicator random variables Yi, 1 ≤ i ≤ 4m as follows: Yi = 1 if Hi = Hi+1
and Hi 
= R, and Yi = 0 otherwise. Let Y =

∑4m
i=1 Yi. First, we bound the

expected value of each Yi. If Hi = R then clearly E[Yi] = 0. Suppose Hi 
= R.
By Lemma 2 there is an r ∈ S such thatHir 
⊆ Hi. As Hir is an additive group it
follows thatHir∩Hi is a proper subgroup ofHir and hence |Hir∩Hi| ≤ |Hir|/2.
Therefore, for a random x ∈ Hir the probability that it lies in Hi is at most 1/2.
Since xir is ε-uniformly distributed we have Prob[Yi = 1] ≤ Prob[xir ∈ Hi] ≤
1/2(1+1/2m). Putting it together, we get μ = E[Y ] ≤ 2m(1+1/2m) ≤ 2.5m for
m > 1. Now, by Markov’s inequality Prob[Y > 3m] ≤ Prob[Y > 3μ/2.5] ≤ 5/6.

Combining Theorem 1 with Lemma 1 we immediately obtain the main theorem
of this section.

Theorem 2. There is a polynomial-time almost uniform sampling algorithm
from black-box rings that takes as input R = 〈S〉 and ε > 0, runs in time
polynomial in input size and log(1/ε) and outputs an ε-uniform random element
from the ring R.

Remark. We note that if the characteristic of the ring R is unary (in input
size) then it is possible to modify the above polynomial-time sampling algorithm
into an NC sampling algorithm.

Let R = 〈r1, r2, . . . , rn〉 be a black-box ring with elements encoded as strings
in Σm. Examining the proof of Theorem 1 it is easy to see that every element
r ∈ R can be computed by an arithmetic circuit Cr (a straight-line program)
that takes as input the generators r1, r2, . . . , rn and has gates labeled + and ∗
corresponding to the ring operations, such that Cr evaluates to r, and the size
of the circuit Cr is O(m3n3). This is analogous to the reachability lemma for
finite black-box groups [BS84].

Lemma 3 (ring reachability lemma). Let R = 〈r1, r2, . . . , rn〉 be a black-
box ring with elements encoded as strings in Σm. For every r ∈ R there is an
arithmetic circuit Cr of size O(m3n3) that has gates labeled by ring operations
+ and ∗, takes as input r1, r2, . . . , rn and evaluates to r.

4 Quantum Algorithm for Finding a Basis Representation

In this section we describe a quantum polynomial-time algorithm that takes
a black-box ring and computes a basis representation for it. The algorithm is
Monte Carlo with small error probability.

Theorem 3. There is a quantum polynomial-time algorithm that takes a black-
box ring as input and computes a basis representation for the ring with small
error probability.
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Proof. Let R = 〈S〉 be the input black-box ring. By the algorithm in Theorem 1
we first compute an additive generating set {r1, r2, · · · , rn} for R. We first claim
that there is a quantum polynomial-time algorithm for computing the additive
orders di for each ri. I.e. di is the least positive integer such that diri = 0,
1 ≤ i ≤ n. To see this notice that 2m is an upper bound on |R|, where m is
the length of encodings of elements in R. Thus, the problem of computing di is
precisely the period finding problem that can be solved in quantum polynomial-
time by applying Shor’s algorithm [Shor97].

The next step is to extract an additively independent set T of generators from
{r1, r2, · · · , rn} which will serve as the basis for R in its basis representation.
Computing such a subset can be easily done using ideas from Cheung and Mosca
in [CM01]. The idea is to first decompose (R,+) as the direct sum of it’s Sylow
subgroups. This decomposition uses Shor’s algorithm. Then each of the Sylow
subgroups can further be decomposed into direct sum of cyclic groups by solving
instances of hidden subgroup problem.

Finally, it remains to express the products rr′, for r, r′ ∈ T , as integer linear
combinations of elements of T . We can again use Shor’s period-finding quan-
tum algorithm to compute the additive order d of rr′. Then we define a ho-
momorphism ϕ : Zd × Zdi1

× · · · × Zdi�
→ (R,+) as ϕ(a, a1, ai1 , · · · , ai�

) =
−arr′ +∑�

j=1 aij rij . By applying [CM01] we can find an additive generating set
for Ker(ϕ). We can express the generating set for Ker(ϕ) in terms of the basis
for the ring R. Let M be the integer matrix whose columns are the generators
of Ker(ϕ). Let Mh be the corresponding Hermite Normal Form for M that can
be computed in deterministic polynomial time. For expressing rr′ as an integer
linear combination of the basis elements, we need to seek a vector of the form
(1, x1, x2, · · · , x�) in the column space of Mh. Thus, (1, 1)th entry of Mh has to
be an invertible element in the ring Zd. Let its inverse be λ. If C1 is the first col-
umn ofMh, it is easy to see that λC1 is a solution of the form (1, x1, x2, · · · , xm)
using which we can express rr′ as an integer linear combination of the basis.

5 Testing if a Black-Box Ring Is a Field

In this section we describe a simple quantum polynomial time algorithm that
takes a black-box ring as input and tests if it is a field. This result can be seen as
a sort of generalization of primality testing: the ring Zn is a field if and only if n is
a prime. However, the black-box setting for the problem presents obstacles, like
finding the additive order of elements, that seem hard for classical (randomized)
polynomial time computation.

Theorem 4. There is a quantum polynomial-time algorithm with small error
probability for testing if a given black-box ring is a field.

Proof. Let R be the input black-box ring. Applying the algorithm in Theorem 3
we obtain with high probability a basis representation for R: (R,+) = Zm1e1 ⊕
Zm2e2 ⊕ · · · ⊕ Zmnen, and eiej =

∑n
k=1 γijkek, γijk ∈ Zmk

.
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Clearly, R is a field only if all mi’s are equal to a prime p. Using the AKS
primality testing [AKS04] (or one of the polynomial time randomized tests) we
check if p is prime. If not then the input is rejected. Thus, the basis representation
can be written as (R,+) = Fpe1 ⊕ Fpe2 ⊕ · · · ⊕ Fpen.

We next compute the minimal polynomial of e1 over Fp. This can be easily
done in deterministic polynomial time. Suppose the minimal polynomial ism1(x)
with degree d1. Then in deterministic polynomial time we can test if m1(x) is
irreducible over Fp [VZG03]. If it is not then the input R is rejected. Otherwise,
Fp(e1) = {a0 + a1e1 + a2e21 + · · · + ad1−1e

d1−1
1 | for 1 ≤ i ≤ d1 − 1, ai ∈ Fp} is a

finite field isomorphic to Fpd1 .
With the above step as the base case, inductively we assume that at the

i-th step of the algorithm we have computed the finite field Fp(e1, e2, . . . , ei)
contained in R with a basis {v1, v2, · · · , vk} where each vi is expressed as an Fp-
linear combination of {e1, e2, · · · , en}. Let d =

∏i
t=1 dt, where dt is the degree

of the minimal polynomial of et over F(e1, . . . , et−1) for each t. By induction
hypothesis Fp(e1, e2, · · · , ei) ∼= Fpd . Proceeding inductively, at the i+1-th step we
again compute the minimum polynomial mi+1(x) of ei+1 over Fp(e1, e2, · · · , ei).
Using the product relations defining the basis representation for R, it is easy
to see that this computation will also boil down to solving a system of linear
equations over Fp. Also, we will similarly be able to check in polynomial time
whether the obtained minimal polynomial is irreducible over Fpd [VZG03].

We continue this procedure for n steps and if in none of the steps the above
algorithm rejects the input, we conclude that R is a field. Clearly, if the basis
representation for R is correct (which it is with high probability), the algorithm
will correctly decide.

In the above theorem the power of quantum computation is used only to recover
a basis representation for R. If R is already in basis representation then field
testing is in P. We now give a classical complexity upper bound for the field
testing.

Theorem 5. Testing if a black-box ring is a field is in AM ∩ coNP.

Proof. A finite ring R = 〈r1, . . . , rn〉 is not a field if and only if it has zero
divisors: nonzero elements a, b ∈ R whose product ab = 0. An NP test for this
would be to guess small circuits Ca and Cb (using Lemma 3) for zero divisors a
and b verifying their product ab = 0 using the black-box oracle. Thus the problem
is in coNP. We now show that the problem is in AM. Merlin will send the basis
representation for R to Arthur as follows: Merlin sends a basis {u1, u2, · · · , ul}
for (R,+) along with their pairwise products in terms of generators. Also Merlin
sends each generator ri as a linear combination of the basis elements uj . Arthur
can now easily verify that {u1, u2, · · · , ul} is a generating set for (R,+) and
that the product relations are correct. It remains to verify that {u1, u2, · · · , ul}
is additively independent. Merlin sends the additive orders di of ui for each i,
with the prime factorizations of di using which Arthur can verify that di are the
additive orders. Now, to verify that {u1, u2, · · · , u�} is additively independent
it suffices to check that the |R| =

∏�
i=1 di. By a result of Babai [Ba92], order
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verification of black-box groups is in AM. This protocol can clearly be applied
to (R,+).

5.1 An Application of the Chebotarëv Density Theorem

We now briefly explore a somewhat different problem related to testing if a given
ring is a field: suppose we are given a basis e1, e2, . . . , en along with product re-
lations eiej =

∑n
k=1 γijkek for integers γijk. The question we ask here is whether

there is some prime p such that modulo p the above is a basis representation
for the finite field Fpn . We need some algebraic number theory to develop a
polynomial-time randomized algorithm to test if there is such a prime.

First, notice that by using the product relations, we can as before compute the
minimal polynomials mi of the ei over the rationals Q. We can check in polyno-
mial time that themi are all indeed irreducible over Q (using the LLL algorithm).
Because if mi are not irreducible over Q then they are not irreducible modulo
any prime and we can reject the input in that case. Now, we use the product
relations to compute the tower of fields Q ⊆ Q(e1) ⊆ · · · ⊆ · · · ⊆ Q(e1, . . . , en).
In fact, by the primitive element theorem, starting with f1 = e1 we can com-
pute in polynomial time a primitive element fi for the field Q(e1, . . . , ei) as
an integer linear combination of e1, . . . , ei. Finally, we will obtain fn such that
Q(fn) = Q(e1, e2, · · · , en). Using the product relation the problem of finding
the minimal polynomial of fn over Q reduces to solving a system of linear
equations over Q which can be done in polynomial time. Let f(x) be this
minimal polynomial, which has to be irreducible of degree n. Thus, we have
Q(fn) ∼= Q[x]/(f(x)). Let � denote the lcm of the denominators of coefficients of
f(x). Then taking e = lfn, we observe that e has a monic minimal polynomial
g(y) with integer coefficients and Q(fn) = Q(e) = Q[y]/(g(y)). Now our goal
is to test if there is a prime p such that g(y) is irreducible modulo p, so that
Zp[y]/g(y) is Fpn and hence the given basis representation modulo p is Fpn .

Let L be the splitting field of g(y). Consider its Galois group Gal(L/Q) = G
which is fully described by its action on the roots of g(y). Thus G can be seen as a
subgroup of Sn. Clearly, any σ ∈ G is a product of disjoint cycles. If the length of
these cycles is n1, n2 . . . , nk such that n1 ≤ n2 ≤ . . . ≤ nk we say that σ has cycle
pattern (n1, . . . , nk). Let p be a prime which does not divide the discriminant
of g. Then, modulo p, the polynomial g(y) has no multiple roots. If we factorize
g modulo p (using Berlekamp’s algorithm) we get g(y) = g1(y)g2(y) . . . gk(y),
where gi are distinct, irreducible and degrees of the gi is a partition of n. Writing
the degrees di of gi in increasing order we obtain the decomposition pattern
(d1, d2, . . . , dk) of g modulo p.

Now, the Frobenius density theorem (which is a weaker form of the Chebotarëv
density theorem) tells us that the number of primes with a given decomposition
is close to number of permutations in G having that particular cycle structure.
Assuming GRH, the bounds are tight enough to be algorithmically applied. We
describe this theorem in a form tailored to our question.

Let C = (n1, n2, . . . , nk) be any cycle pattern and let C(G) be the subset of
G consisting of permutations with cycle pattern C. Notice that C(G) is closed
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under conjugation. Let πC(x) be the number of primes p ≤ x such that p is
unramified in L and the decomposition pattern of g modulo p is C. Then we
have the following theorem which is a restatement of the Frobenius density
theorem using [SS97, Lemma 3].

Theorem 6. Let L be the splitting field of an irreducible polynomial g(y) ∈ Z[y].
Let d be the discriminant of L. Assuming GRH, there are absolute constants α, β
such that if x ≥ α(log |d|)α, then πC(x) ≥ β#C(G)

#G
x

lnx .

Since we are seeking a prime p such that g(y) is irreducible modulo p, let C0 be
the cycle pattern (n). First we can see by an easy counting argument that if C(G)
is nonempty then #C(G) ≥ #G

n . Let size(g) denote the size of the polynomial
g. Then it follows that log |d| ≤ (n + 1)!2 · size(g). We choose x = �α(log |d|)α 
which is a polynomial-sized integer. By the above theorem it follows that g(y)
is irreducible modulo p for a random prime p ≤ x with probability at least β/n
if there is such a prime at all. This gives us a simple randomized polynomial
time procedure that finds such a prime p if it exists with nonnegligible success
probability (assuming GRH).

6 Complexity of Nilradical

Let R be a commutative ring. An element x ∈ R is nilpotent if xn = 0 for some
n > 0. In a commutative ring R, the set of all nilpotent elements of R form an
ideal N(R) called the nilradical of R. The nilradical is crucial to the structure of
rings and it plays an important role in decomposing finite rings. In this section,
we show that the nilradical of commutative black-box rings can be computed in
quantum polynomial time.

Let R = 〈S〉 be a commutative black-box ring. By Lemma 1 we first com-
pute an additive generating set for R with high probability. Let T denote the
computed additive generating set.

Applying Cheung & Mosca’s ideas, as explained in Theorem 3, in quantum
polynomial time we can compute from T an additive independent generating
set for (R,+). Call this generating set T ′ = {r1, r2, . . . , r�}. Now, using Shor’s
algorithm we can find their additive orders di with high probability, implying
that |R| =

∏n
i=1 di. Again by Shor’s integer factoring algorithm we compute the

prime factorization |R| = pα1
1 · · · pαk

k . Let ni = |R|
p

αi
i

for 1 ≤ i ≤ k.
By elementary group theory, we know that the additive pi-Sylow subgroups

(Ri,+) of (R,+) is additively generated by Ti = {nir|r ∈ T ′}. It is easy to see
that Ri’s are actually subrings of R (the pi-Sylow subrings), in fact even ideals
and furthermore R = R1 ⊕ · · · ⊕ Rk is a direct sum ring decomposition with
RiRj = 0, ∀i 
= j. Thus, the nilradicalN of R is given by N = N1⊕N2⊕· · ·⊕Nk,
where each Ni is the nilradical of Ri. Thus, it suffice to explain how to compute
an additive generating set for the nilradical of a ring R s.t |R| = pα for some
prime p.

As explained in Theorem 3 we compute a basis representation for R in quan-
tum polynomial time. Let e1, e2, . . . , et be the basis elements with additive
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orders pαi (1 ≤ i ≤ t) respectively. Then R ∼= Zp
α1
1
e1 ⊕ · · · ⊕ Zp

αt
t
et with

eiej =
∑t

k=1 γijkek is the basis representation.
Since pαr = 0 ∀r ∈ R, it easily follows that pR = {pr|r ∈ R} is a subring of R

contained in the nilradical. Indeed pR is an ideal of R. Thus R/pR is also a finite
ring. Moreover, we can easily write down its basis representation as follows: Let
fi = ei + pR, 1 ≤ i ≤ t. Then R/pR = Fpf1 ⊕ · · ·⊕Fpft where the products fifj
are eiej + pR and can be expressed as an Fp-linear combination of the fi’s. The
following lemma is easy to see.

Lemma 4. N is the nilradical of R if and only if N/pR is the nilradical of
R/pR.

Thus, if we can find a basis for the nilradical N/pR of R/pR as linear combina-
tions of the fi’s we can easily pull back into N by replacing the basis elements
fi’s by ei’s. Therefore, we have reduced the problem to finding the nilradical of
an Fp-algebra R given in basis representation. The proof of the next lemma will
be given in the full version.

Lemma 5. Given an Fp-algebra R in basis representation, its nilradical can be
computed in deterministic polynomial time.

Continuing with the original problem, let S′′ be the pullback of S′ w.r.t the
homomorphism φ : R → R/pR (namely replace fi by ei). Then S′′ ∪ {pei|1 ≤
i ≤ t} is an additive generating set for the nilradical of R. Putting it together,
we have proved the following theorem.

Theorem 7. The nilradical of a black-box ring can be computed in quantum
polynomial time.

Also similar kind of techniques as of Theorem 5 easily suggests the following
result about the classical complexity of nilradical testing.

Theorem 8. Let R be a black-box ring and I be an ideal of R given by a gen-
erator set.Testing if I is the nilradical of R is in AM ∩ coAM.

The square-free part of a positive integer n is the product of all distinct prime
factors of n. We now observe that computing the nilradical of a black-box ring
is harder than computing the square-free part of an integer.

Lemma 6. Computing the square free part of an integer n is polynomial time
Turing reducible to computing the nilradical of Zn.

Proof. Let n = pα1
1 p

α2
2 · · · pαk

k . Then the square-free part of n is s = p1p2 . . . pk.
An x in Zn is in the nilradical N if and only if xm = 0(modn), which is possible
if and only if s divides x. Now, suppose we have an algorithm that computes
a generator set T for N , where T generates N as a ring. Let n1 ∈ T be any
element. Then n1 < n and s divides n1. We again apply the algorithm to find a
generator set for the nilradical N1 of Zn1 . Continuing thus, we obtain a sequence
of integers n > n1 > n2... > nt where ni divides ni−1 for each i and each ni is a
multiple of s. Thus, this sequence is of length at most logn and must terminate
at some nt = s, which we can detect since the nilradical of Zs is {0}.
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Abstract. In this paper, different parameterized versions of the
longest common subsequence (LCS) problem are extensively investi-
gated and computational lower bound results are derived based on cur-
rent research progress in parameterized computation. For example, with
the number of sequences as the parameter k, the problem is unlikely to
be solvable in time f(k)no(k), where n is the length of each sequence
and f is any recursive function. The lower bound result is asymptot-
ically tight in consideration of the dynamic programming approach of
time O(nk). Computational lower bounds for polynomial-time approx-
imation schemes (PTAS) for the LCS problem are also derived. It is
shown that the LCS problem has no PTAS of time f(1/ε)no(1/ε) for any
recursive function f , unless all SNP problems are solvable in subexpo-
nential time. Compared with former results on this problem, this result
has its significance. Finally a parameterized approach for the LCS prob-
lem is discussed, which is more efficient than the dynamic programming
approach, especially when applied to large scale sequences.

1 Introduction

A string s is a subsequence of a string s′ if s can be obtained from s′ by deleting
some characters in s′. For example, “ac” is a subsequence of “atcgt”. Given a
set of strings over an alphabet Σ, the longest common subsequence prob-
lem is to find a common subsequence that has the maximum length. The al-
phabet Σ may be of fixed size or of unbounded size. The longest common
subsequence (LCS) problem is a well-known optimization problem because
of its applications, especially in bioinformatics. The fixed alphabet version of
the problem is of particular interest considering the importance of sequence
comparison (e.g. multiple sequence alignment) in the fixed size alphabet world
of DNA and protein sequences. (Note that in computational biology, DNA se-
quences are in a four-letter alphabet, and protein sequences are in a twenty-letter
alphabet).
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We study the longest common subsequence problem in parameterized
computation in this paper. We first give a brief review on parameterized com-
plexity theory and some recent progress on parameterized intractability. A pa-
rameterized problem Q is a decision problem consisting of instances of the form
(x, k), where the integer k ≥ 0 is called the parameter. The parameterized prob-
lem Q is fixed-parameter tractable [15] if it can be solved in time f(k)|x|O(1),
where f is a recursive function1. Certain NP-hard parameterized problems, such
as vertex cover, are fixed-parameter tractable, and hence can be solved prac-
tically for small parameter values [10]. On the other hand, the inherent com-
putational difficulty for solving many other NP-hard parameterized problems
with even small parameter values has motivated the theory of fixed-parameter
intractability [15]. The W -hierarchy

⋃
t≥1W [t] has been introduced to charac-

terize the inherent level of intractability for parameterized problems. Examples
of W [1]-hard problems include problems such as clique and dominating set.
It has become commonly accepted that no W [1]-hard problem can be solved in
time f(k)nO(1) for any function f , i.e., W [1] 
= FPT. W [1]-hardness has served
as the hypothesis for fixed-parameter intractability.

Based on the W[1]-hardness of the clique algorithm, computational intrac-
tability of problems in computational biology has been derived [2,3,16,17,23,25].
For example, in [25], the author point out that “unless an unlikely collapse in
the parameterized hierarchy occurs, this (This refers to the results proved in
[25] that the problems longest common subsequence and shortest com-
mon supersequence areW [1]-hard) rules out the existence of exact algorithms
with running time f(k)nO(1) (i.e., exponential only in k) for those problems.
This does not mean that there are no algorithms with much better asymptotic
time-complexity than the known O(nk) algorithms based on dynamic program-
ming, e.g., algorithms with running time n

√
k are not deemed impossible by our

results.”
Recent investigation in [7,8] has derived stronger computational lower bounds

for well-known NP-hard parameterized problems. For example, for the clique
problem, which asks if a given graph of n vertices has a clique of size k, it is proved
that unless an unlikely collapse occurs in parameterized complexity theory, the
problem is not solvable in time f(k)no(k) for any function f . Note that this
lower bound is asymptotically tight in the sense that the trivial algorithm that
enumerates all subsets of k vertices in a given graph to test the existence of
a clique of size k runs in time O(nk). Based on the hardness of the clique
problem, lower bound results for a number of computational biology problems
have been derived [18,9].

In this paper, we extensively investigate different parameterized versions of
the longest common subsequence problem. Our results for the problem
strengthen the results in the literature (such as [25]) significantly and advance
our understanding on the complexity of the problems.

1 In this paper, we always assume that complexity functions are “nice” with both
domain and range being non-negative integers and the values of the functions and
their inverses can be easily computed.
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2 Terminologies in Approximation

We provide some basic terminologies for studying approximation algorithms and
its relationship with parameterized complexity. For a reference of the theory of
approximation, the readers are referred to [1].

An NP optimization problem Q is a 4-tuple (IQ, SQ, fQ, optQ), where
1. IQ is the set of input instances. It is recognizable in polynomial time;
2. For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which

is defined by a polynomial p and a polynomial time computable predicate π (p
and π only depend on Q) as SQ(x) = {y : |y| ≤ p(|x|) and π(x, y)};

3. fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x) to
a non-negative integer. The function fQ is computable in polynomial time;

4. optQ ∈ {max,min}. Q is called a maximization problem if optQ = max, and
a minimization problem if optQ = min.

An optimal solution y0 for an instance x ∈ IQ is a feasible solution in SQ(x)
such that fQ(x, y0) = optQ{fQ(x, z) | z ∈ SQ(x)}. We will denote by optQ(x)
the value optQ{fQ(x, z) | z ∈ SQ(x)}.

An algorithm A is an approximation algorithm for an NP optimization prob-
lem Q = (IQ, SQ, fQ, optQ) if, for each input instance x in IQ, A returns a feasible
solution yA(x) in SQ(x). The solution yA(x) has an approximation ratio r(n) if
it satisfies the following condition:

optQ(x)/fQ(x, yA(x)) ≤ r(|x|) if Q is a maximization problem
fQ(x, yA(x))/optQ(x) ≤ r(|x|) if Q is a minimization problem

The approximation algorithm A has an approximation ratio r(n) if for any in-
stance x in IQ, the solution yA(x) constructed by the algorithm A has an ap-
proximation ratio bounded by r(|x|).
Definition 1. An NP optimization problem Q has a polynomial-time approxi-
mation scheme (PTAS) if there is an algorithm AQ that takes a pair (x, ε) as
input, where x is an instance of Q and ε > 0 is a real number, and returns a
feasible solution y for x such that the approximation ratio of the solution y is
bounded by 1+ ε, and for each fixed ε > 0, the running time of the algorithm AQ

is bounded by a polynomial of |x|.
An NP optimization problemQ can be parameterized in a natural way as follows.
The following definition offers the possibility to study the relationship between
the approximability and the parameterized complexity of NP optimization prob-
lems.

Definition 2. Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. The
parameterized version of Q is defined as follows:

(1) If Q is a maximization problem, then the parameterized version of Q is
defined as Q≥ = {(x, k) | x ∈ IQ ∧ optQ(x) ≥ k};

(2) If Q is a minimization problem, then the parameterized version of Q is
defined as Q≤ = {(x, k) | x ∈ IQ ∧ optQ(x) ≤ k}.
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3 Lower Bound Results for LCS

In the following we derive the lower bounds for the exact algorithms for the
parameterized versions of the longest common subsequence (LCS) problem.
We also extend the techniques and derive the lower bounds for the approximation
algorithms for the optimization versions of the problem.

3.1 Formal Problem Definitions

Several parameterized versions of the LCS problem are discussed in [2,3,17,25].
We present the four parameterized versions of the problem.

The LCS-k problem:
Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an
integer λ > 0, where the alphabet Σ is of unbounded size.
Parameter: k.
Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of
each string in S?
The FLCS-k problem:
Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an
integer λ > 0, where the alphabet Σ is of fixed size.
Parameter: k.
Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of
each string in S?
The LCS-λ problem:
Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an
integer λ > 0, where the alphabet Σ is of unbounded size.
Parameter: λ.
Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of
each string in S?
The FLCS-λ problem:
Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an
integer λ > 0, where the alphabet Σ is of fixed size.
Parameter: λ.
Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of
each string in S?

The following results on the parameterized complexity of these parameterized
problems are known:

– The LCS-k problem is W[t]-hard for t ≥ 1 [3].
– The FLCS-k problem is W[1]-hard [25].
– The LCS-λ problem is W[2]-hard [3].
– The FLCS-λ problem is in FPT [25].

In particular, we are interested in the FLCS-k problem and the LCS-λ problem,
which we discuss in the following sections.
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3.2 FLCS-k

In [25], the FLCS-k problem is proved to be W [1]-hard. Unless W [1] = FPT,
for the FLCS-k problem, the W [1]-hardness result rules out the existence of
algorithms of time f(k)nO(1) for any function f , where k is the number of strings.
In the conclusion of [25], the author pointed out that the W [1]-hardness of
FLCS-k does not exclude the possibility of having an algorithm of time, say
O(n

√
k), which is much more efficient than the O(nk) time dynamic programming

algorithm for the FLCS-k problem.
However, it is proved that

Theorem 1 ([9]). The FLCS-k problem has no algorithm of time f(k)no(k) for
any function f , unless all SNP problems are solvable in subexponential time.

Interested readers are referred to [9,18] for a detailed proof of this result.
The class SNP introduced by Papadimitriou and Yannakakis [22] contains

many well-known NP-hard problems including, for any fixed integer q ≥ 3, cnf
q-sat, q-colorability, q-set cover, and vertex cover, clique, and inde-
pendent set [19]. It is commonly believed that it is unlikely that all problems
in SNP are solvable in subexponential time2.

We define an optimization problem FLCS-kopt and its corresponding param-
eterized problem FLCS’-k.

The FLCS-kopt problem:
given a set S = {s1, s2, ..., sl} of strings over a fixed alphabet Σ, and an
integer λ > 0, try to find a string s ∈ Σ∗ of length λ maximizing the
size of a subset S′ of S, such that s is a common subsequence of all the
strings in S′.

By our definition, the parameterized version of the optimization problem
FLCS-kopt is

The FLCS’-k problem:
Instance: given a set S = {s1, s2, ..., sl} of strings over a fixed alphabet
Σ, and an integer λ > 0.
Parameter: an integer k, 0 < k ≤ l.
Question: is there a string s ∈ Σ∗ of length λ such that s is a common
subsequence of at least k strings in the set S?

From the definitions of the two parameterized problems FLCS-k and FLCS’-
k, we can see that FLCS-k is a special case of FLCS’-k. There is a trivial linear
fpt-reduction from FLCS-k to FLCS’-k: given an instance I1 of FLCS-k, I1 =
(S1 = {s1, s2, ..., sk}, λ and the parameter k), we build an instance I2 of FLCS’-
k, I2 = (S2 = {s1, s2, ..., sk}, λ and the parameter k), which asks if there is a
string s ∈ Σ∗ of length λ that is a common subsequence of at least k strings
2 A recent result showed the equivalence between the statement that all SNP problems

are solvable in subexponential time, and the collapse of a parameterized class called
Mini[1] to FPT [14].
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(i.e., all strings) in the set S2. Obviously, the instance I2 is a yes-instance for the
problem FLCS’-k if and only if the instance I1 is a yes-instance for the problem
FLCS-k, .

Theorem 2 ([8,9]). Suppose that a problem Q1 has no algorithm of time
f(k)no(k) for any function f , and that Q1 is linear fpt-reducible to Q2. Then
the problem Q2 has no algorithm of time f ′(k)no(k) for any function f ′.

By the above linear fpt-reduction, Theorem 1 and Theorem 2, we have

Lemma 1. The FLCS’-k problem has no algorithm of time f(k)no(k) for any
function f , unless all SNP problems are solvable in subexponential time.

Theorem 3 ([8,9]). Let Q be an NP optimization problem. If the parameterized
version of Q has no algorithm of time f(k)no(k), then Q has no PTAS of running
time f(1/ε)no(1/ε) for any function f , unless all problems in SNP are solvable
in subexponential time.

Therefore, by Lemma 1 and Theorem 3, we have

Theorem 4. The FLCS-kopt problem has no PTAS of time f(1/ε)no(1/ε) for
any function f , unless all SNP problems are solvable in subexponential time.

3.3 LCS-λ

The LCS-λ problem is proved to be W [2]-hard in [2,3]. Therefore, unless W [2]
= FPT, for the LCS-λ problem, there is no algorithm of time f(λ)nO(1) for any
function f . We prove

Theorem 5. The LCS-λ problem has no algorithm of time f(λ)no(λ) for any
function f , unless all SNP problems are solvable in subexponential time.

Proof. We first give an linear fpt-reduction from dominating set to the LCS-λ
problem. Based on the linear fpt-reduction, the lower bound result for domi-
nating set [8] and Theorem 2, the theorem is proved.

The fpt-reduction from dominating set to the LCS-λ problem in [3] for
proving the LCS-λ problem is W [2]-hard is essentially an linear fpt-reduction.

Given a graph G = (V,E), |V | = n, and a parameter λ, and suppose an
ascending order of the vertices {u1, u2, ..., un} of G, we will construct a set S of
strings such that they have a common subsequence of length λ if and only ifG has
a dominating set of size λ. The alphabet is Σ = {a[i, j] : 1 ≤ i ≤ λ, 1 ≤ j ≤ n}.
We use the notations: Σi = {a[i, j] : 1 ≤ j ≤ n}, Σ[t, u] = {a[i, j] : (i 
= t) or
(i = t and j ∈ N [u])}.

If Γ ⊆ Σ, let (↑ Γ ) be the string of length |Γ | which consists of one occurrence
of each symbol in Γ in ascending order, and let (↓ Γ ) be the string of length |Γ |
which consists of one occurrence of each symbol in Γ in descending order.

The set S consists of the following strings.
Control strings:
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X1 = Πλ
i=1(↑ Σi),

X2 = Πλ
i=1(↓ Σi).

Check strings: For u = 1, ..., n:
Xu = Πλ

i=1(↑ Σ[i, u]),
We observe that any sequence C of length λ that is a common subsequence of

both control strings must consist of exactly one symbol from eachΣi in ascending
order. For such a sequence C we may associate the set Vc of vertices represented
by C: if C = a[1, u1]...a[λ, uλ], then Vc = {ui : 1 ≤ i ≤ λ} = {x : ∃i a[i, x] ∈ C}.

We will prove that if C is also a subsequence of the check strings {Xu}, then
Vc is a dominating set in G. Let u ∈ V (G) and fix a substring Cu of Xu, with
Cu = C. We have the fact [3]:

Fact. For some index j, 1 ≤ j ≤ λ, the symbol a[j, uj] occurs in the
(↑ Σ[j, u]) portion of Xu, thus uj ∈ N [u] by the definition of Σ[j, u].

By the above fact, if C is a subsequence of the control and check strings, then
every vertex of G has a neighbor in Vc, that is, Vc is a dominating set in G.

On the other hand, if D = {u1, .., uλ} is a dominating set in G with u1 <
... < uλ, then the sequence C = a[1, u1]...a[λ, uλ] is easily seen to be a common
subsequence of the strings in S.

The reduction from dominating set to LCS-λ is an linear fpt-reduction. ��
Formally, we give the definition of the optimization problem LCS-λopt.

The LCS-λopt problem:
given a set S = {s1, s2, ..., sk} of strings over an alphabetΣ of unbounded
size, try to find a string s ∈ Σ∗ of maximum length such that s is a
common subsequence of all the strings in S.

By our definition, the parameterized version of the optimization problem LCS-
λopt is

The LCS’-λ problem:
Instance: given a set S = {s1, s2, ..., sk} of strings over an alphabet Σ of
unbounded size.
Parameter: an integer λ > 0.
Question: is there a string s ∈ Σ∗ of length at least λ such that s is a
common subsequence of all strings in the set S?

Since that there is a string s of length at least λ such that s is a common
subsequence of all strings in S is equivalent to that there is a string s of length
exactly λ such that s is a common subsequence of all strings in S, the two
problems LCS-λ and LCS’-λ are equivalent. By Theorem 5, the problem LCS’-λ
has no algorithm of time f(λ)no(λ) for any function f , unless all SNP problems
are solvable in subexponential time. This result plus Theorem 3 gives us the
following theorem:

Theorem 6. The LCS-λopt problem has no PTAS of time f(1/ε)no(1/ε) for any
function f , unless all SNP problems are solvable in subexponential time.
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In [20], the authors showed that the LCS-λopt problem is inherently hard to
approximate in the worst case. In particular, they proved that there exists a
constant δ > 0 such that, the LCS-λopt has no polynomial time approximation
algorithm with performance ratio nδ, unless P = NP. It is obvious to see that
this lower bound holds only when the objective function value λ is larger than nd

for a constant d > 0. In particular, the lower bound result in [20] does not apply
to the case when the value of λ is small. For example, in case λ = nδ, a trivial
common subsequence of length one is a ratio-nδ approximation solution. This
implies that for the LCS problem, when the length λ of the common subsequence
is a small function of n, no strong lower bound result as that of [20] has been
derived.

On the other hand, our lower bound result in Theorem 6 for the LCS problem
can be applied when the length of the common subsequence λ is any small
function of the length n of each string.

4 Parameterized Approach for LCS

Given k sequences with each sequence of length n, we discuss in this section a
parameterized approach, which choose a proper parameter, the diagonal band
width b. The time complexity of the approach is O(b ∗ n(k−1)).

The parameterized approach for finding the longest common subsequence of
two given sequences is of time O(bn), where n is the length of the given se-
quence, b is the parameter, the value of the diagonal band width. This is a
great improvement over the well known dynamic programming approach of time
O(n2). Especially when the length of the given sequence n is very large and the
two given sequences are very similar, the parameterized approach with a small
value of the diagonal band width b can find the optimal solution more efficiently.

The banded alignment idea has been investigated in [6], but the parameter-
ized approach here incorporates the idea of how to guarantee to find the optimal
solution, which is discussed in [26]. To illustrate the basic idea of the parame-
terized approach, consider the case of two given sequences s1 and s2 with the
same length n. The well known dynamic programming approach for solving the
LCS problem is to build a two dimensional table where each entry represents
the length of the longest common subsequence between the corresponding prefix
of s1 and the corresponding prefix of s2 [11]. There are n2 entries of the two di-
mensional table. Consider a diagonal band with width b of entries starting from
the middle diagonal. The basic idea of the parameterized approach is to ignore
entries outside the diagonal band. If an alignment goes outside of the diagonal
band with width b, it is easy to see that the corresponding longest common sub-
sequence cannot have a length of more than n − b. This is because the search
loses one pair of match each time it moves one entry away from the diagonal.
Therefore, if the search stays within the diagonal band with width b and finally
gets a common subsequence of length at least n − b, it is guaranteed that this
solution is optimal. That is, it finds the longest common subsequence of the two
given sequences s1 and s2. Since this parameterized approach needs to fill up a
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band with width b of the two dimensional table, it takes linear time O(bn), with
b as the parameter.

Our experiment results show the efficiency of the parameterized approach.
Especially when the two given sequences are very similar, one could pick a rel-
atively small value for the band b in order to achieve the optimal solution, i.e.,
the longest common subsequences of the given two sequences.

5 Summary

In this paper computational lower bounds on the running time of the algorithms
for different parameterized versions of the longest common subsequence
(LCS) problem are extensively investigated. It is proved that the problem FLCS-
k is unlikely to have an algorithm of time f(k)no(k), where n is the length of
the sequence, k is the total number of sequences and f is any recursive func-
tion. In consideration of the known upper bound of O(nk), we point out that
the lower bound result is asymptotically tight. Computational lower bounds for
polynomial-time approximation schemes (PTAS) for the optimization versions of
the LCS problem are also derived. We then discuss a parameterized approach for
the problem. Compared with the well known dynamic programming approach,
the parameterized approach is much more efficient, especially when it is applied
to find the longest common subsequence of very large scale sequences, which is
common in sequence comparisons in bioinformatics.
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Abstract. In this paper we have presented new algorithms to handle
the pattern matching problem where the pattern can contain variable
length gaps. Given a pattern P with variable length gaps and a text T
our algorithm works in O(n + m + α log(max1<=i<=l(bi − ai))) time
where n is the length of the text, m is the summation of the lengths of
the component subpatterns, α is the total number of occurrences of the
component subpatterns in the text and ai and bi are, respectively, the
minimum and maximum number of don’t cares allowed between the ith
and (i+1)st component of the pattern. We also present another algorithm
which, given a suffix array of the text, can report whether P occurs in T
in O(m + α log log n) time. Both the algorithms record information to
report all the occurrences of P in T . Furthermore, the techniques used
in our algorithms are shown to be useful in many other contexts.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given
pattern P of lengthm in a text T of length n, both being sequences of characters
drawn from a finite character set Σ. This problem is interesting as a fundamental
computer science problem and is a basic need of many applications, such as text
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retrieval, music retrieval, computational biology, data mining, network security,
among many others. Several of these applications require, however, more sophis-
ticated forms of searching. Pattern matching has been generalized to searching
with error bounds, e.g. Hamming distance [3,7,14], edit distance [5,14,17]. These
variations of the original problems are known as approximate pattern matching
and in many, if not most, practical cases it is the approximate version of the
pattern matching problem that turns out to be the most applicable one. Several
other pattern matching problems have been considered within the approximate
paradigm. Fischer and Paterson [8] generalized pattern matching to include
don’t cares: given a pattern P and a text T , either of which may contain don’t
cares, denoted ∗, the goal is to output all occurrences of P in T . The new di-
mension in the problem was the introduction of don’t cares, also known as gaps
in the literature, which matches any character in the alphabet i.e. ∗ matches
every a ε Σ. Fischer and Paterson presented an algorithm that runs in time
O(n logn logΣ) which was subsequently improved to O(n logn) by Cole and
Hariharan [6]. The don’t care paradigm has been extended to several other
problems as well. In this paper we are interested in a more general version of
this problem where the pattern contains variable length gaps whose length lies
within a certain range. We first define the problem more formally.

Problem 1. We are given a pattern P which consists of subpatterns Pi, 1 ≤ i ≤ l.
Each subpattern Pi is a string over the alphabet Σ. We are also given for each
1 ≤ i ≤ l−1 two parameters ai and bi which imposes constraints on the variable
length gaps consisting of don’t care characters in P . In particular, ai and bi
indicate, respectively, the least and highest number of don’t cares allowed in
the gaps between the two subpatterns Pi and Pi+1. The problem is to find the
pattern P in a given text T .

As per the definition we can define a pattern P as follows:

P = P1 ∗a1,b1 P2 ∗a2,b2 ...Pl−1 ∗al−1,bl−1 Pl.

Note that we define m to be the summation of the lengths of the subpatterns
i.e. m =

∑
1<=i<=l |Pi|. We can think of the gaps as a distance constraint

between the neighboring occurrences of the component subpatterns. So if we have
a subpattern Pi in position xi of the text, the occurrence of a Pi+1 should start
within the range [(xi + |Pi|+ai), (xi + |Pi|+bi)]. In other words, any occurrence
of Pi+1 in the text (at position xi+1) is valid if and only if there is an occurrence
of Pi in the text at position xi such that xi+1 ε {(xi+|Pi|+ai), ..., (xi+|Pi|+bi)}.
Note, however that a particular occurrence of a Pi+1 may turn out to be valid
for more than one occurrences of Pi.

Example 1. Suppose we are given a text T and a pattern P as follows.
T = ACCGAGTGCGTGGACAAACTACGATTGTGGAATGAACT
P = AC ∗3,7 GTG ∗4,5 AACT

As we can see from Figure 1, if we allow (arbitrary) gaps between the subpatterns
of P then we can find a number of matches. However only 3 of those obey the
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gap constraints defined by the pattern P . Let us discuss the matter further for
better comprehension. In this case the subpatterns and the gap constraints are
defined as follows:
P1 = AC, P2 = GTG and P3 = AACT.
(a1, b1) = (3, 7) and (a2, b2) = (4, 5).

Now, in the first two instances although the first gap constraint is met the second
one is violated. The third instance is, however, a valid match because it obeys
both the gap constraints and so are the 5th and the 6th instances in the figure.
The 4th instance on the other hand violates the first gap constraint, again, and
hence is not a valid match. To illustrate another point lets take a closer look at
the 5th and 6th instances in the figure. Note that the same occurrence of P2 here
is valid for 2 different occurrences of P1 resulting, ultimately, in two different
occurrences of P in T .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
A C C G A G T G T G T G G A C A A A C T A C G A T T G T G G A A T G A A C T
A C * * * G T G * * * * * * * * A A C T
A C * * * * * G T G * * * * * * A A C T
A C * * * * * * * G T G * * * * A A C T

A C * * * * * * * * * * * G T G * * * * * A A C T
A C * * * * * * * G T G * * * * * A A C T

A C * * * * G T G * * * * * A A C T

Fig. 1. Valid and invalid matches of Example 1

Applications for this problem include information retrieval, data mining and
computational molecular biology. For a detailed discussion on the motivation of
this problem we refer the readers to [15,16].

This paper presents new algorithms to solve Problem 1 defined above. We
also show some generalizations of our approach in devising the algorithms that
seem to be useful in related problems. In particular we first present an O(n +
m+ α log(max1<=i<=l(bi − ai))) algorithm which finds out whether a given P
occurs in T where n is the length of the text, m is the summation of the lengths
of the component sub patterns, α is the total number of occurrences of the
component subpatterns in the text and ai and bi are, respectively, the minimum
and maximum number of don’t cares allowed between the ith and the (i+ 1)st
component. It also records the information required to report all the occurrences
in O(lβ) time where β denotes the number of occurrences of the (whole) pattern
P in T . In our algorithm we use the famous Aho-Corasick pattern matching
algorithm [1] to find out the occurrences of the subpatterns. However, as will be
evident later, the technique used in this algorithm can be used with any pattern
matching algorithms as long as the occurrences of the component patterns are
reported in sorted order. We then present another algorithm using a suffix array
to solve the problem. Given a suffix array this algorithm can report whether P is
in T in O(m+α log logn) time. It also records the information to report all the
occurrences of the pattern. Furthermore, the technique used in this algorithm can
be used with any pattern matching algorithm that doesn’t give the occurrences
of a pattern in sorted order.
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The rest of the paper is organized as follows. In Section 2 we give a very brief
literature review and then we discuss our algorithms in Section 3 and Section 4.
Finally we conclude in Section 5.

2 Previous Work

The simplest approach is to represent the pattern with variable length gaps as
a regular expression and then apply regular expression matching (see [15,9] for
details). However, as is pointed out in [15] this approach is too general.

Applying bit-vector simulation of a Nondeterministic Finite Automaton (NFA),
based on the Shift-Or algorithm [4] for pattern matching, Navarro and Raf-
finot [16] presented an O(m′n/w) time algorithm to solve the problem where
m′ =

∑
1≤i≤l |Pi|+

∑
1≤i≤l−1 |bi| and w is the word length of the target machine.

They also presented an O(m′nk/w) time algorithm allowing approximate occur-
rences of the component subpatterns with error bound k whereas the algorithm
of Akutsu [2] for the same problem required O(mn logn) time, independent of
the error bound k. In [2] a combination of a balanced search tree and traditional
dynamic programming approach for approximate pattern matching is used.

Lee et. al [15] presented an algorithm that reports whether a given P is in
T in O(nl+m+α) time1. They also considered approximate occurrences of the
sub-patterns in the text allowing ki errors for each subpattern Pi presenting an
O(mn) algorithm. Inspired by [16] they also explored the bit vector approach
and presented a O(m′nkmax/w) algorithm where kmax = max1≤i≤l(ki).

3 Pattern Matching Algorithm

In this section we present our algorithm for finding a pattern with variable
length gaps. We first outline the steps of the algorithm in Algorithm 1 and then
a detailed description with time complexity analysis follows.

3.1 Analysis of the Algorithm

In this subsection we analyze the algorithm outlined above. The algorithm ba-
sically builds over the Aho-Corasick pattern matching machine which works in
O(n+m+α) time. On top of that, as is indicated in Step 3, we need to perform
search operations to validate the occurrences of the subpatterns and we need to
do that as efficiently as possible. This is done as follows. Once an occurrence
of a Pi+1 is reported we want to find the Pi (preferably all of them) for which
this Pi+1 is valid. Since PMM outputs the occurrences of the patterns in the
dictionary in sorted order, we employ the idea of binary search to find out the
range(s) in which Pi+1 lies in. Observe that to check the validity of a particular
Pi+1 we just need to consider the Pi’s reported so far by the PMM. Preferably
1 In [15] the running time is reported to be O(nl + m). But a closer look will reveal

that in order to calculate the “candidate ranges” O(α) time is required. However,
since α = O(nl) it can be omitted from the running time.
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Algorithm 1
1: Build an Aho-Corasick automaton for the dictionary D = {Pi|1 ≤ i ≤ l}
2: Using the above automaton start pattern matching on text T employing the Aho-

Corasick Pattern Matching Machine (PMM). We slightly modify the PMM algo-
rithm so that it reports the start positions of the patterns in the dictionary.

3: As soon as the PMM reports a match of a Pi+1 it searches the valid ranges cal-
culated from the so far reported occurrences of Pi’s and if this Pi+1 is not within
any of the valid ranges then it is discarded. Otherwise the valid range (for a pos-
sible occurrence of Pi+2) is calculated from Pi+1 and stored. Also with the help of
pointers we keep track of the Pi for which this Pi+1 is valid. Note that there may
be more than one such Pi and depending on what is required as a solution we may
need to keep track of all of them. Note also that, initially, each occurrence of P1

is stored along with the calculated valid ranges from them. We use si
j and ei

j to
denote, respectively, the start and end of the valid range calculated from Pi

j , the
jth occurrence of Pi.

4: After the scanning of the text by PMM is complete we just need to explore the
pointers to find the occurrences. Note that as soon as we get a valid Pl we can
report that P occurs in T .

we want to keep track of all the Pi’s for which a Pi+1 is valid. To do that ef-
ficiently we also observe that for a particular Pi+1 we need only to keep track
of the first and last occurrences of Pi for which the Pi+1 under consideration is
valid. Now, how do we find out the first and last occurrences of Pi’s for which
a Pi+1 is valid? We are given a set of ranges (one for each Pi

j) defined by sij

and eij , 1 ≤ j ≤ ki where ki is the number of occurrences of Pi so far. Let
xi+1 denote the position of Pi+1 in the text. To achieve our goal we need to find
out the highest sij that is less than or equal to xi+1 and the lowest eij that is
greater than or equal to xi+1. Let sijp = max{sij |sij ≤ xi+1 and 1 ≤ j ≤ ki}
and eijq = min{eij |eij ≥ xi+1 and 1 ≤ j ≤ ki}. Then it is easy to observe that
for all Pi

j such that q ≤ j ≤ p the Pi+1 under consideration is valid.

xi+1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi+1

× × × √ √ √ √ √ × × ×

Fig. 2. The positions of Pi for which a Pi+1 can be valid for the pattern: . . . Pi ∗3,7

Pi+1 . . . . Here we have xi+1 − bi − 1 = 4 and xi+1 − ai − 1 = 8

As regards the computational effort needed for a particular search it is easy to
see that in the worst case we may needO(logα) effort. However we can do a lot bet-
ter. Recall that between a Pi and a valid Pi+1 there must be at least ai and at most
bi don’t care characters. So by careful observation we can see that we just need to
check bi − ai + 1 positions, namely from the position xi+1 − bi − 1 to the position
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xi+1 − ai − 1 (Figure 2). So with a bit of careful programming we can reduce the
computational effort down to O(log(max1<=i<=l(bi − ai))) per search. So in the
worst case, for the search, we may need to spend O(α log(max1<=i<=l(bi − ai))).
However, we believe that in the average case it will need much less computational
effort because a large number of the occurrences would be invalid and discarded.

3.2 Reporting the Occurrences

So far what we have done is to find whether the given pattern P exists in
the given text T . It is clear that as soon as the algorithm finds one valid
Pl we can straightaway report that P is in T and terminate the algorithm.
However, in the worst case this would require the same time complexity as
O(n+m+ α log(max1<=i<=l(bi − ai))). This will happen, for example, if there
is only one valid occurrence of Pl and if that is the last occurrence among all
the occurrences of all the other component patterns. We, on the other hand,
would also like to report the occurrences of P in T if indeed P exists in T . Note,
however, that the definition of an occurrence of a pattern P with variable length
gaps is not as obvious as that of a “normal” pattern. Normally an occurrence of
a normal pattern is reported by either the start position or the end position of
that occurrence of the pattern in the text. For example if we want to report the
occurrences of the (“normal”) pattern ACCTA in the text CACCTAGGTACC-
TACCTAGG, we can either report {2, 10, 14} or {6, 14, 18} i.e., respectively,
the start positions or the end positions of each of the occurrences of the pattern.
However, this convention, if followed for the patterns with variable length gaps,
does not convey the complete information about the occurrence because of the
so called “elasticity” in the gaps.

Let us consider Figure 1 once again to get a clear idea. First assume that the
pattern we are looking for is P = AC ∗3,11GTG ∗4,8AACT . This means each of
the instances reported in the figure represents a valid match. Now any successful
matching algorithm would report {20, 38} or {1, 14, 18, 21} assuming that it has
to report, respectively, the start or end positions of the occurrences. However
none of the above conveys the full information. Even reporting both the start
and the end positions of the occurrence of the pattern does not give us the full
picture as is evident from the first three instances in Figure 1 all of which have
the same start and end positions! So it turns out that to completely define an
occurrence we need to give the start (or end) position of each of the component
subpatterns. Fortunately, the pointer information that we keep determines an
implicit graph which can be traversed to enumerate all occurrences of the pattern
P in O(lβ) time where l is, as defined before, the number of component patterns
and β is the number of occurrences of the complete pattern P in text T . How
this is done is as follows. Each Pi+1

k keeps two backward pointers each point-
ing, respectively to, Pi

q and Pi
p indicating that for all Pi

j such that q ≤ j ≤ p
the Pi+1

k is valid. Thus, implicitly, each Pi+1
k has p − q + 1 edges each point-

ing to a Pi
j , q ≤ j ≤ p. So in effect, we get an implicit graph, which is partitioned



152 M.S. Rahman et al.

into l sets (Vi, 1 ≤ i ≤ l) of vertices and there can exist edges only between
the adjacent partitions; more specifically there can exist directed edges from a
vertex in Vi+1 to a vertex in Vi (1 ≤ i ≤ l− 1) only. It is clear that to report all
the occurrences of P we have to enumerate all possible paths of length l of the
implicit directed graph. Traversing the graph in depth first manner and with a
bit of clever programming we can do this in O(lβ) time as desired.

3.3 Generalization

It seems that the technique we have used in our algorithm can be generalized to
some extent. We can divide our pattern matching algorithm into two separate
sections. In the first section we report all the occurrences of the component
patterns. In the second section we do the searching to construct the implicit
graph. This would work well as long as we use an algorithm for the first part
that gives the occurrences in sorted order. Suffix array (or tree), however, doesn’t
usually give the occurrences in sorted order and hence can not be used here
directly. But they have the advantage of having the capability to handle a number
of patterns in online fashion by preprocessing the text. It seems that we may need
to do some more work to use suffix array (or tree) in our algorithm. We discuss
this in a later section. Also, by using appropriate pattern matching algorithm
we can even allow approximate matching of the component patterns.

We can think of another generalization from another point of view. It turns out
that we can even report any path that is of length less than l using appropriate
algorithm. This implies that we can report, if required, the occurrences where
some (or perhaps specific) components of the patterns are missing leading to
partial matching. To achieve this however, we can’t discard any Pi as is done in
Step 3 of our algorithm.

4 Using Suffix Array

As is indicated in Section 3.3, the algorithm discussed above cannot be applied
directly if the output of the occurrences are generated by a suffix array. This is
because suffix array doesn’t report the occurrences in sorted order which would
prevent us from doing the binary search. Note that if the maximum “elasticity”
in gaps i.e. max1<=i<=l(bi − ai) is a constant, we can perform a linear search
instead of the binary search with slightly asymptotically worse running time.
However, it should be noted here that the sorted order also helps us in keeping
all the pointer information in a compact form (namely by keeping only the two
pointers) and it helps us later in reporting the occurrences as well. Note that in
our algorithm we only require that xi

j < xi
j+1 for 1 ≤ i ≤ l and 1 ≤ j ≤ ki

where ki is the number of occurrences of Pi. So for each Pi, 1 ≤ i ≤ l, as soon
as we compute the occurrences of Pi from the suffix array we can sort them
and then apply the algorithm as before. So for sorting we have to spend an
additional O(Σ1≤i≤lki log ki) = O(α logα) time. However we propose another
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method. In this method we use an elegant data structure invented by Emde
Boas [18] that allows us to maintain a sorted list of integers in the range [1..n]
in O(log logn) time per insertion and deletion. In addition to that it can return
next(i) (successor element of i in the list) and prev(i) (predecessor element of i in
the list) in constant time. We first present the algorithm for patterns with fixed
gaps i.e. when for all 1 ≤ i ≤ l − 1, ai = bi. We will see that we can generalize
from that easily.

Algorithm 2
1: Build a suffix array for the text T.
2: For each Pi, 1 ≤ i ≤ l compute the occurrences of Pi in T. Let Occi be the collection

of the occurrences of Pi and let |Occi| = ki.
3: This step is repeated for each pair of Pi and Pi+1, 1 ≤ i ≤ l − 1. In each round we

first create an Emde Boas data structure, EBi and insert xi
j + |Pi| − 1 + ai (note

that ai = bi) for all 1 ≤ j ≤ ki. It is clear that for any Pi+1
r (1 ≤ r ≤ ki+1) to be

valid, we must have xr
i+1 − 1 = xi

j + |Pi| − 1 + ai for some 1 ≤ j ≤ ki and hence
if any valid xr

i+1 is inserted in EBi, we must have xr
i+1 − prev(xr

i+1) = 1. So in
this way for 1 ≤ r ≤ ki+1, we first insert xr

i+1 in EBi and check whether it is valid
or not; if it is valid we keep a pointer to appropriate |Pi

j | and then delete it from
EBi.

4.1 Analysis of the Algorithm

In this section we are going to analyze the running time of algorithm 2. The
suffix array construction can be done in O(n) [10,12,11], and we can get all
the occurrences of the component patterns in O(m + α). Now we need to con-
centrate on Step 3. In each round in Step 3 we first insert ki elements requiring
O(ki log logn) time. Then for each of the ki+1 elements we perform insert, delete
and prev operations requiring O(2ki+1 log logn) time. Since there are in total
l − 1 rounds, the total computational effort spent is O(Σ1≤i≤l−1 log log n(ki +
2ki+1)) = O(α log log n).

4.2 Handling the Variable Length Gaps

The algorithm presented above works for patterns with fixed gaps i.e. when
ai = bi for all 1 ≤ i ≤ l− 1. In order to handle the elasticity in the gaps we need
to modify Step 3 of the algorithm slightly and as we shall see this modification
will not affect the asymptotic running time of the algorithm. Recall that for a
given P r

i+1 our goal is to find all Pi
j for which P r

i+1 is valid. In what follows
we discuss the modification for a particular round in Step 3. Instead of one, we
create 2 Emde Boas data structure EBi

start and EBi
end. For each 1 ≤ j ≤ ki we

set sij = xi
j + |Pi|+(ai−1) and eij = xi

j + |Pi|+(bi+1). This essentially means
if P r

i+1 is valid then sij < xr
i+1 < ei

j for some 1 ≤ j ≤ ki. Now for all 1 ≤ j ≤ ki

we insert sij in EBi
start and eij in EBi

end. This time, unlike what we did in
Algorithm 2, for each sij and eij inserted we also save the corresponding value
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j for a reason that will be clear as we proceed. Let us suppose that we have
a function F which, given sij or eij as parameter, returns the corresponding
j. Note that we can implement this very easily and in the implementation we
do not need a function at all. Now for each xi+1

r, 1 ≤ r ≤ ki+1 we do the
following: We insert xi+1

r in both EBi
start and EBi

end. In EBi
start we look

for F (prev(xi+1
r)) (= p, say) and in EBi

end we look for F (next(xi+1
r)) (= q,

say). Observe that Pi+1
r is valid for all Pi

j such that min(p, q) ≤ j ≤ max(p, q).
So here again we just need to keep track of two pointers. Finally it is easy to
observe that the asymptotic running time is not increased. So, given a suffix array
we can solve whether P is in T in O(m + α log logn) time. The disadvantage
of this running time is its dependency on n. We, however, would like to point
out that log logn is a very mild term. For example for a text size of 1024GB
log logn ≈ 5.32.

5 Conclusion

In this paper we have presented new algorithms to handle pattern matching
problems where the pattern can contain variable length gaps. We have presented
an O(n+m+α log(max1<=i<=l(bi −ai))) algorithm (Algorithm 1) that given a
pattern P with variable length gaps and a text T reports whether P is in T . The
algorithm by Lee et al. needed a running time of O(nl+m+α). The algorithm
also records the information needed to report all the occurrences of P in the
form of an implicit graph. We can report all the occurrences by traversing the
graph in O(lβ) time where reporting the occurrences mean reporting the start
(or end) position of each of the component patterns. Although we have used
the Aho-Corasic pattern matching machine to find out the occurrences of all the
component subpatterns, the technique used in our algorithm is equally applicable
with any pattern matching algorithm as long as it reports the occurrences in
sorted order. As a result we can use the same technique to solve a number of
variants of the problem just by using the appropriate pattern matching algorithm
instead of the Aho-Chorasic algorithm used here. The running time of these new
algorithms would be O(χ + α log(max1<=i<=l(bi − ai))) where O(χ) is the
running time of the pattern matching algorithm used. We also present another
technique that would work for pattern matching algorithms that doesn’t report
occurrences of patterns in sorted order, e.g. suffix array. Given a suffix array our
algorithm (Algorithm 2) can report whether P is in T in O(m + α log logn)
time. Again, like Algorithm 1, Algorithm 2 records information needed to report
all the occurrences of P in T in the form of an implicit graph.
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Abstract. In this paper, we study an interesting matrix decomposi-
tion problem that seeks to decompose a “complicated” matrix into two
“simpler” matrices while minimizing the sum of the horizontal complex-
ity of the first sub-matrix and the vertical complexity of the second
sub-matrix. The matrix decomposition problem is crucial for improving
the “step-and-shoot” delivery efficiency in Intensity-Modulated Radia-
tion Therapy, which aims to deliver a highly conformal radiation dose to
a target tumor while sparing the surrounding normal tissues. Our algo-
rithm is based on a non-trivial graph construction scheme, which enables
us to formulate the decomposition problem as computing a minimum
s-t cut in a 3-D geometric multi-pillar graph. Experiments on randomly
generated intensity map matrices and on clinical data demonstrated the
efficiency of our algorithm.

1 Introduction

In this paper, we study an interesting matrix orthogonal decomposition problem
arising in intensity-modulated radiation therapy (IMRT) [15]. IMRT is a modern
cancer therapy technique that aims to deliver a highly conformal radiation dose
to a target tumor while sparing the surrounding normal tissues. The prescribed
dose distribution of radiation is commonly described by an intensity map (IM),
which is specified by a set of nonnegative integers on a 2-D grid (see Figure
1(a)). The number in a grid cell indicates the amount (in unit) of radiation
to be delivered. The delivery is done by a set of cylindrical radiation beams
orthogonal to the IM grid.

An advanced tool today for IM delivery is the multileaf collimator (MLC) [15].
An MLC consists of many pairs of tungsten alloy leaves of the same rectangular
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Fig. 1. (a) An example of intensity map. (b) and (c) MLC apertures used to deliver
the IM in (a). (d) and (e) The corresponding collimator configurations in (b) and (c).

shape and size. The leaves can move left and right to form a rectilinear region,
called an MLC-aperture. Each MLC-aperture is associated with an integer rep-
resenting the radiation units delivered by its radiation beam.

One of the most popular IMRT delivery technique [14] is called the static
leaf sequencing (SLS) or step-and-shoot approach [5, 15, 18] Mathematically,
the “step-and-shoot” delivery planning can be viewed as the following matrix
decomposition problem: Given an intensity map M (i.e., a matrix), decompose
M into the form of M =

∑κ
i=1 αiSi, where Si is a special 0-1 matrix specifying

an MLC-aperture, αi is the amount of radiation delivered through Si, and κ is
the number of MLC-apertures used to deliver M (see Figure 1). (The reader is
referred to [18, 1, 7, 4] for more details on the step-and-shoot IMRT technique.)
There are two obvious measures for the quality of the step-and-shoot delivery:
(1) the beam-on time which is given by

∑κ
i=1 αi, and (2) the number of MLC-

apertures used. The beam-on time is the actual time that the patient is exposed
under the radiation beams. Minimizing beam-on time is crucial to reduce the
patient’s risk under irradiation and to reduce the delivery error caused by the
tumor motion [1]. On the other hand, minimizing the number of MLC-apertures
used for each IM (hence, minimizing the treatment time of each IM) is also
important because it not only lowers the treatment cost for each patient but
also enables hospitals to treat more patients [4].

To deliver the IMs, in current SLS method MLC leaves move along one di-
rection (say, horizontally or vertically) during the entire delivery process. This
uni-direction delivery may not fully utilize the capacity of the advanced MLC,
which is rotatable. In fact, in order to improve the efficiency of the IMRT de-
livery, it was proposed recently to rotate the MLC between the delivery of the
MLC-apertures for an IM [9, 2, 8].

In this paper, we propose to use two orthogonal directions to deliver an IM
(i.e., horizontal and vertical) and formulate the following matrix orthogonal
decomposition (MOD) problem: Given an m×n non-negative integer matrix
A = (ai,j) ∈ Z+m×n (i.e., an IM) and an integer λ ≥ 1, find two matrices (i.e.,
sub-IMs) Q = (qi,j), R = (ri,j) ∈ Z+m×n such that:

(1) A = λQ +R,
(2) the sum of the horizontal complexity CH(Q) of Q and the vertical

complexity CV (R) of R is minimized, where
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CH(Q) =
m∑

i=1

⎛⎝qi,1 +
n∑

j=2

max(0, qi,j − qi,j−1)

⎞⎠
CV (R) =

n∑
j=1

(
r1,j +

m∑
i=2

max(0, ri,j − ri−1,j)

)
(1)

Then, the sub-IM Q and R are delivered in two orthogonal directions. The
rational behind this decomposition is based on the following observations. The
beam-on time Tbot(B[i]) for delivering each row B[i] of B equals to(
bi,1 +

∑n
j=2 max(0, bi,j − bi,j−1)

)
[7]. The horizontal complexity CH(Q) mea-

sures the total beam-on time of all rows of the IM Q when it is delivered hor-
izontally, while the vertical complexity CV (R) is the total beam-on time of
all columns of R when it is delivered vertically. Hence, the complexity of an
IM that we use is closely related to the beam-on time of the IM. It is help-
ful to note that two IMs A and B with A = λ · B for some integer λ >
1, can be delivered by the same set of MLC-apertures. By adding the fac-
tor λ, it is very likely to reduce the total number of MLC-apertures since
this can reduce the elements in R and thus the number of MLC-apertures
used to deliver R. Most of current approaches for the SLS problem are based
on a method for reducing the intensity level of IM matrices, then compute
a set of MLC-apertures for the IM matrices with a smaller maximum inten-
sity level [18, 4, 11, 12, 13, 3]. Our decomposition results in two “simpler”
sub-IMs with smaller maximum intensity level, which, in turn, yields a more
efficient delivery plan using fewer MLC-apertures and/or less total beam-on
time.

We model the MOD problem as a minimum s-t cut problem. As an approach
of partitioning, the minimum s-t cut has been extensively used. For example,
several medical image segmentation techniques based on minimum s-t cuts were
developed by, to name a few, Boykov and Jolly [19], Kim and Zabih [20], and
Wu and Chen [16].

To our best knowledge, no previous work specifically for solving the matrix
orthogonal decomposition problem discussed in this paper was known before.
The closely related work is Chen et al.’s optimal linear time algorithm [3] for
partitioning an IM matrix A into two sub-IMs of the form λ · Q + R, without
introducing new delivery error while minimizing the maximum intensity level of
the sub-IM R.

In this paper, we develop an T (mn�H
λ �,mn�H

λ �) time algorithm for the IM
matrix orthogonal decomposition problem, where T (n′,m′) is the time for com-
puting a minimum s-t cut in an edge-weighted directed graph with O(n′) vertices
and O(m′) edges. Our algorithm is based on a non-trivial graph construction
scheme, which enables us to formulate the decomposition problem as computing
a minimum s-t cut in a 3-D geometric multi-pillar graph (defined in Section 2.1).
Experiments on randomly generated IM matrices and on clinical data are
performed.
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2 Our Algorithm for the IM Orthogonal Decomposition
Problem

This section presents our efficient IM matrix orthogonal decomposition (MOD)
algorithm. We model the MOD problem as a minimum s-t cut problem on a 3-D
geometric multi-pillar graph by a complicated graph transformation scheme.

2.1 Modeling the MOD Problem

We define a 3-D geometric multi-pillar graph G = (V,E) on a 2-D m× n grid Γ
from the given IM matrix A = (ai,j)m×n and the integer λ > 0, as follows.

Let g(i, j) (0 < i ≤ m and 0 < j ≤ n) denote a grid point in Γ . For each grid
point g(i, j) ∈ Γ , there is a set Col(i, j) of �ai,j

λ � + 2 (defined as height hi,j of
the pillar) vertices in G corresponding to ai,j of the IM matrix A; Col(i, j) =
{g(i, j, k) | k = 1, 2, . . . , hi,j}, called the (i, j)-pillar of G (see Figure 2(a) and
(b) for an example). In addition, we add two dumbing vertices, a source s and
a sink t, in G since we want to formulate our MOD problem as computing a
minimum s-t cut in G.

For the ease to introducing edges inG, we here give some notation. We say that
two pillars Col(i, j) and Col(i′, j′) are adjacent to each other if |i−i′|+|j−j′| = 1.
For each pillar Col(i, j), g(i, j, 1) (resp., g(i, j, hi,j)) is called the base (resp., top)
vertex of the pillar. For every vertex g(i, j, k) in G with i < m and 0 < k < hi,j ,
we define its lower neighbor and its upper neighbor on the pillar Col(i + 1, j):
(1) if 1 ≤ (�ai+1,j−ai,j

λ � + k) ≤ hi+1,j − 1, the lower neighbor of g(i, j, k) is
g(i+ 1, j, �ai+1,j−ai,j

λ � + k); (2) if g(i+ 1, j, k′) is the lower neighbor of g(i, j, k)
and k′ < hi+1,j , the upper neighbor of g(i, j, k) is g(i+ 1, j, k′ + 1). Intuitively,
the upper neighbor of g(i, j, k) is the vertex on Col(i+1, j) immediately “above”
the lower neighbor of g(i, j, k).

We are now ready to put directed edges in G. We introduce four subsets, Evt,
Ehz, Eq, and Er, of directed edges into G, which are used to realize different
parts of the complexity equation.

Fig. 2. (a) A 2-D grid. (b) Multi-pillar vertices of the IM in Figure 1. (c) Illustrating
Ehz (thin edges) and Eq (thick edges) of the case ai,j = 9, ai,j+1 = 13, and λ = 3. (d)
Illustrating Evt (thin) and Er (thick) of the case ai,j = 9, ai+1,j = 13, and λ = 3.
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– The edges in Evt: Consider pillar Col(i, j) and Col(i+ 1, j) , for 0 < i < m
and 0 < j ≤ n. For each non-base vertex g(i, j, k), two directed edges are
put in Evt: (1) a lower edge to its lower neighbor, and (2) an upper edge
to its upper neighbor (see Figure 2(d)). The weight of the lower edge is
(λ − [ai+1,j − ai,j ]%λ) (note that “%” denotes a modulate operation), and
the weight of the upper edge is ([ai+1,j − ai,j ]%λ). Meanwhile, for the base
vertex g(i, j, 1), we put an upper-base edge with a weight of ([ai+1,j−ai,j ]%λ)
to its upper neighbor. If the lower neighbor g(i+1, j, lw) of g(i, j, k) is not a
base vertex, a set of directed edges (called the lower-base edges) from g(i, j, k)
to g(i+ 1, j, k′) for every 2 ≤ k′ ≤ lw is introduced into Evt; the weight of
each of these edge is λ. Note that all the above edges are added only when
the corresponding neighbor exists and the neighbor is not the base vertex.

– The edges in Ehz: Consider pillar Col(i, j) and Col(i, j + 1), for 0 < i ≤ m
and 0 < j < n. For each non-base vertex g(i, j, k) on Col(i, j), if k <
min{hi,j , hi,j+1}, we put an edge from g(i, j, k) to g(i, j+1, k) with a weight
of 1. (see Figure 2(c)). If the height hi,j+1 of Col(i, j + 1) is larger than the
height hi,j of Col(i, j), a directed edge of weight 1 is also introduced from
each vertex g(i, j+1, k) on the pillar Col(i, j+1) to the top vertex g(i, j, hi,j)
of Col(i, j), for k = hi,j , . . . , hi,j+1 − 1.

– The edges in Eq: For each non-base vertex g(i, 1, k) of every pillar Col(i, 1),
i = 1, 2, . . . ,m, we put a directed edge of weight 1 from g(i, 1, k) to the sink
t (see Figure 2(c) when j = 1).

– The edges in Er: The top vertex of each pillar Col(1, j), for j = 1, 2, . . . , n,
has a directed edge with a weight of [a1,j%λ] from the source s. Additionally,
For each non-base, non-top vertex g(1, j, k) of every pillar Col(1, j)we add a
directed edge of weight λ from the source s. Figure 2(d) shows an example
for this construction when i = 1.

In addition, we introduce two more sets of edges, Emo and Ead, into G. The
set of edges in Emo is used to guarantee the monotonicity property of the result.
While the edges in Ead is employed to avoid the degeneracy of the solution.

– The edges in Emo: On each pillar Col(i, j), an edge of weight +∞ is added
from every vertex g(i, j, k) to vertex g(i, j, k − 1) for k = 2, 3, . . . , hi,j .

– The edges in Ead: An edge of weight +∞ is put in Ead from the source s to
the base vertex of each pillar. Meanwhile, an edge of weight +∞ is added
from the top vertex of each pillar to the sink t.

Hence, the edge set E of G is Evt ∪ Ehz ∪ Eq ∪ Er ∪ Emo ∪ Ead. We thus
complete the construction of the multi-pillar graph G.

2.2 Computing an Optimal Matrix Orthogonal Decomposition

The graph G thus constructed allows us to find the optimal matrix orthogonal
decomposition for the given IM matrix A, by computing a minimum-weight
s-t cut in G. In order to do that, below we prove that following facts: (1) Any
valid s-t cut C (i.e., the total edge weight w(C) of C is finite) defines a feasible
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decomposition of A (i.e., A = λ · Q + R), such that CH(Q) + CV (R) = w(C);
(2) any feasible decomposition of A = λ ·Q+R specifies a valid s-t cut C in G,
such that w(C) = CH(Q) + CV (R). Consequently, a valid s-t cut in G with the
minimum total edge weight can be used to specify an optimal matrix orthogonal
decomposition of A.

We first argue that any valid s-t cut inG corresponds to a feasible decomposition
of A and any feasible decomposition of A corresponds to a valid s-t cut in G.

We have these two obvious observations:

Observation 1. For a valid s-t cut C = (S, S̄) in G, the base vertices of all
pillars are included in the source set S and the all top vertices of pillars are
included in the sink set S̄.

Observation 2. For a valid s-t cut C = (S, S̄) in G, if a vertex g(i, j, k) ∈
Col(i, j) is in the source set S, each vertex g(i, j, k′) with k′ < k is also in S;
if a vertex g(i, j, k) ∈ Col(i, j) is in the sink set S̄, every vertex g(i, j, k′) with
k′ > k is also in the sink set S̄.

Thus, we can define a matrix D = (di,j)m×n, di,j ∈ Z+, 1 ≤ di,j ≤ hi,j − 1
to describe a valid s-t cut C = (S, S̄) in G, such that for each pillar Col(i, j),
S ∩ Col(i, j) = {g(i, j, k) | k = 1, 2, . . . di,j} and S̄ ∩ Col(i, j) = {g(i, j, k) | k =
di,j +1, di,j +2, . . . hi,j}. Then, a feasible decomposition of A, with A = λ ·Q+R,
can be defined, as follows. For every pair (i, j) (1 ≤ i ≤ m and 1 ≤ j ≤ n),
qi,j = di,j − 1 (Note that ri,j is uniquely defined by qi,j).

On the other hand, given a feasible decomposition A = λ ·Q+R, a valid s-t
cut in G can be specified by letting di,j = qi,j +1 for every pair (i, j) ∈ Γ . Hence,
the following lemma holds.

Lemma 1. Any valid s-t cut in G has a one-to-one correspondence to a feasible
decomposition of the IM matrix A.

Next, we show that the total edge weight w(C) of C equals to the complexity of
the decomposition.

From Observations 1 and 2, edges in Emo or in Ead cannot be in C. We thus
only need to consider edges in Evt, Ehz, Eq, and Er. Actually, we are able to
show that the total edge weight of the intersection of C with Evt, Ehz, Eq, and
Er, equals to

∑n
j=1
∑m

i=2 max(0, ri,j − ri−1,j),
∑m

i=1
∑n

j=2 max(0, qi,j − qi,j−1),∑m
i=1 qi,1, and

∑n
j=1 r1,j , respectively.

Lemma 2. For a valid s-t cut C = (S, S̄) in G, the total edge weight of C ∩Evt

equals to
∑n

j=1
∑m

i=2 max(0, ri,j − ri−1,j).

Proof. In the construction of the edge set Evt, all edges are added between two
adjacent pillars on the same column of Γ , we thus can first consider the edges
that are between pillars Col(i, j) and Col(i+ 1, j), and sum on the whole grid.

Recall our construction scheme and the constraint of range of k (the starting
vertex must be in the source set and the ending vertex must be in the sink set),
the number of lower edges in the cut C is,
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max
{

0,min
{
hi+1,j − 1 − �ai+1,j − ai,j

λ
�, qi,j + 1

}
−max

{
2, qi+1,j + 2 − �ai+1,j − ai,j

λ
�
}

+ 1
}
. (2)

For the upper edges between Col(i, j) and Col(i+1, j), in a similar way, we can
calculate that the number of such edges in the cut C is

max
{

0,min
{
hi+1,j − 1 − �ai+1,j − ai,j

λ
�, qi,j + 1

}
−max

{
1, qi+1,j + 1 − �ai+1,j − ai,j

λ
�
}

+ 1
}
. (3)

The number of the upper-base and lower-base edges between Col(i, j) and
Col(i+ 1, j) that are in the cut C is

max(�ai+1,j − ai,j

λ
� − qi+1,j , 0). (4)

When 0 ≤ ai+1,j − ai,j < λ or �ai+1,j−ai,j

λ � = 0, number of edges in equation
(2), (3), and (4) can be reduced to max(0, qi,j − qi+1,j), max(0, qi,j − qi+1,j + 1),
and 0. Thus the total weight of these edges can be calculated as max(ri+1,j −
ri,j , 0).

Fig. 3. Examples illustrating the proof of Lemma 2. (a) An example with
�ai+1,j−ai,j

λ
 < 0, wherein ai,j = 9, ai+1,j = 7, qi,j = 2, qi+1,j = 0, and λ = 3. (b)

Increasing ai+1,j to 10 and qi+1,j to 1, ri,j will not be changed, neither are the edges
across the cut. (c) An example with �ai+1,j−ai,j

λ
 > 0, wherein ai,j = 9, ai+1,j = 13,

qi,j = 2, qi+1,j = 0, and λ = 3. (d) Decreasing ai+1,j to 10 and keeping qi+1,j un-
changed, ri+1,j is decreased by 3, but an edge of weight 3 can counteract this change.

When �ai+1,j−ai,j

λ � > 0, we can decrease ai+1,j by λ�ai+1,j−ai,j

λ � and qi+1,j by

min
{
qi+1,j , �ai+1,j−ai,j

λ �
}

(to make sure that q′i+1,j ≥ 0) to a′i+1,j and q′i+1,j ,

respectively. Observe that the case for qi+1,j ≥ �ai+1,j−ai,j

λ � is the same as the
case for �ai+1,j−ai,j

λ � < 0. However, if qi+1,j < �ai+1,j−ai,j

λ �, the new r′i+1,j =
a′i+1,j −λq′i+1,j will be (�ai+1,j−ai,j

λ �− qi+1,j)×λ less than the actual ri+1,j . The

term max
{
�ai+1,j−ai,j

λ � − qi+1,j , 0
}
× λ can then counteract the change. Hence,

in this case, we again have the total weight of the edges in the intersection of the
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s-t cut C and the edges between Col(i, j) and Col(i+1, j), is max(ri+1,j −ri,j , 0).
Figure 3 (c) and (d) illustrate the essential idea using an example.

When �ai+1,j−ai,j

λ � < 0, the situation is similar and Figure 3 (a) and (b) show
an example to illustrate the idea.

Taking all the above possibilities into account, we conclude that the total
weight of the edges in the intersection of the s-t cut C and the edges between
Col(i, j) and Col(i+ 1, j), is max(ri+1,j − ri,j , 0).

By considering all pairs of adjacent pillars on the same columns of Γ , we have
w(C ∩ Evt) =

∑n
j=1
∑m

i=2 max(0, ri,j − ri−1,j). Thus, Lemma 2 follows. �

Using a similar argument as for Lemma 2, we have the following lemmas.

Lemma 3. For a valid s-t cut C = (S, S̄) in G, the total edge weight of C ∩Ehz

equals to
∑m

i=1
∑n

j=2 max(0, qi,j − qi,j−1).

Lemma 4. For a valid s-t cut C = (S, S̄) in G, the total edge weight of C ∩ Eq

equals to
∑m

i=1 qi,1.

Lemma 5. For a valid s-t cut C = (S, S̄) in G, the total edge weight of C ∩ Er

equals to
∑n

j=1 r1,j.

Putting Lemmas 2 - 5 all together, we have the following fact.

Lemma 6. For any valid s-t cut C in G and its specified decomposition of A,
with A = λ ·Q+R, we have w(C) = CH(Q) + CV (R).

From Lemmas 1 and 6, an minimum-weight s-t C∗ in G can be used to define
an optimal matrix orthogonal decomposition of A, with A = λ · Q∗ + R∗, such
that CH(Q∗) + CV (R∗) is minimized. Note that |V | = O(mn�H

λ �) and |E| =
O(mn�H

λ �), where H is the largest intensity level in the IM matrix A. Denote by
T (n′,m′) the time for finding a minimum s-t cut in an edge-weighted directed
graph with O(n′) vertices and O(m′) edge. We have our main result.

Theorem 3. The MOD problem can be solved in T (mn�H
λ �,mn�H

λ �) time.

3 Experiment Results

To evaluate our algorithm, we performed some statistical studies using 1000
randomly generated 15 × 15 IM matrices each with intensity levels range from
4 to 64 in powers of 2. The number of MLC-apertures are computed using Xia
and Verhey’s algorithm [18] without considering interleaf motion constraint.

Table 1 shows percentage of IMs getting improved and the average results
(both beam-on time and number of MLC-apertures) before and after performing
our decomposition method (the average is calculated based only on those IMs
getting improved). We observed that our MOD algorithm generated as much as
38.1% less MLC-apertures and 33.3% less beam-on time than single direction
delivery.
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Table 1. The average beam-on time and the number of MLC-apertures

# of MLC-apertures beam-on time
%improved avg before avg after %improved avg before avg after

4 9% 5.98±0.60 5.78±0.44 25% 7.75±0.99 7.32±0.80
8 24% 9.07±0.64 8.46±0.66 66% 17.09±1.96 15.47±1.56
16 25% 12.04±0.71 11.44±0.58 73% 35.33±4.27 32.05±3.95
32 45% 14.91±0.85 14.20±0.69 81% 69.71±8.93 63.41±6.46
64 54% 18.16±0.94 17.11±0.72 94% 144.15±18.23 129.04±13.08

We have also experimented with some real medical data sets available to us.
77% IMs that we tested on got improved number of MLC-apertures. Our MOD
algorithm produced as much as 27.3% less MLC-apertures with an average of
13.1% comparing with the SLS method using a single direction for delivery.

The experiments are performed on a Pentium-D 2.8GHz computer with 3.5GB
of memory. We used a program provided by Matlab to compute the minimum
s-t cut in a graph, and expected to have a much faster execution time by im-
plementing the minimum cut algorithm using C. The average execution time of
decomposition is shown in Table 2. Our experiments on randomly generated IMs
and on the clinical data demonstrated the efficiency of our MOD algorithm. Al-
though the worst cast running time of our MOD algorithm is pseudo-polynomial
with respect to the maximum intensity level H of the IM matrix, its practical
execution time on real medical data is expected to be quite short, since on the
medical data sets used in current clinical treatments, the maximum intensity
level of an IM matrix is rarely larger than 100 and is mostly about tens.

Table 2. Execution Times (in seconds)

Maximum intensity Size 10 × 10 Size 15 × 15
level (H) λ = 1 λ = �√H λ = 1 λ = �√H

4 0.3125 0.1955 0.9925 0.6330
8 0.6090 0.3360 2.2420 1.2815
16 1.6570 0.4135 5.7425 1.3360
32 5.1560 0.7265 19.1880 2.6635
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Abstract. We consider the problem of placing a maximal number of
disks in a rectangular region containing obstacles such that no two disks
intersect. Let α be a fixed real in (0, 1]. We are given a bounding rectangle
P and a set R of possibly intersecting unit disks whose centers lie in P .
The task is to pack a set B of m disjoint disks of radius α into P such that
no disk in B intersects a disk in R, where m is the maximum number of
unit disks that can be packed. Baur and Fekete showed that the problem
cannot be solved in polynomial time for α ≥ 13/14, unless P = NP. In
this paper we present an algorithm for α = 2/3.

1 Introduction

Obnoxious facility location problems consider the placement of facilities of which
clients consider it undesirable to be in the proximity, for instance, nuclear power
plants or garbage dumps. There are several models for and variations to the
problem; see the survey by Cappanera [3]. We consider the following instance:
we are given a bounding rectangle P , a set R of n points in P (the red points),
and an integer k, and we should construct a set B of k (blue) points such that
the minimum distance from a blue point to another point (either red or blue) is
maximized over all points in B. If the optimal distance is denoted by ropt, then we
can reformulate the problem as follows: we are given a set of n centers of possibly
overlapping red disks with unknown radius ropt, and we are to determine ropt
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and to find a set of k blue disks with radius ropt such that no blue disk overlaps
any other disk, whether red or blue.

The problem of packing objects into a bounded region is one of the classic
problems in mathematics and theoretical computer science, see for example the
monographs [11,13] which are solely devoted to this problem, and the survey
by Tóth [12]. In this paper we consider problems related to packing disks into
a polygonal region. As pointed out by Baur and Fekete in [2], even when the
structure of the region and the objects are simple, only very little is known, see
for example [6,9].

Consider the following decision problem corresponding to our optimization
problem: we are given R and k and a radius r, and we must decide whether
r > ropt or r ≤ ropt. In the latter case, we must also give a set B of k blue
disk with radius r such that no blue disk overlaps any other disk. If we had an
algorithm at our disposal that solves the decision problem in polynomial time,
then we could solve the original optimization problem in polynomial time by
applying Megiddo’s parametric search [10]. Unfortunately, the decision problem
is known to be NP-complete [5]. Therefore we are looking for an algorithm that
approximates the decision problem in the following sense: if m disks of radius r
can be placed, then our algorithm places m disks of radius αr, for some fixed
α ∈ (0, 1]. If m < k, then we know that r > ropt, and if m ≥ k, then either
r ≤ ropt, or r > ropt and αr ≤ ropt. In other words, placement of at least k disks
of radius less than αropt is guaranteed, and we may or may not be fortunate for
radii in between αropt and ropt.

Obviously, we would like to maximize α while keeping a polynomial running
time. Given such an algorithm, we can use it to compute an α-approximation to
the original optimization problem, again by using parametric search, albeit in a
somewhat non-standard way.

By rescaling r to 1, we can regard the decision problem as that of packing
m ≥ k unit disks into a rectangle that is already partially covered by n unit
disks. In this paper, we consider the following problem:

Problem 1 (ApproxSize). Let α ∈ (0, 1] be a fixed real. Given a bounding
rectangle P and a set R of possibly intersecting unit disks whose centers lie in P ,
pack ≥ m non-intersecting disks of radius α into P , where m is the maximal
number of unit disks that can be packed in P .

Note that we do not know the value of m a priori. For α = 1/2, the problem can
be solved by placing disks with radius 1/2 greedily, i.e., as long as there is space
to place a disk, we place one at an arbitrary feasible position. The following
simple charging argument shows that we will place at least m disk of radius 1/2
in this way. Consider an arbitrary placement of m unit disks, and charge a disk
C with radius 1/2 to a unit disk D if the center c of C lies inside D. After the
greedy algorithm has finished, all of the m unit disks have a charge of at least
one. Otherwise, we can place a disk with radius 1/2 in an uncharged unit disk
such that their centers coincide, and this contradicts the termination condition
of the greedy algorithm.
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In their pioneering work [7] Hochbaum and Maas gave a polynomial-time ap-
proximation scheme (PTAS) for the problem of packing a maximal number of
unit disks into a region. The problem is known to be NP-complete [5]. Even
though the corresponding geometric dispersion problem looks very similar, in-
approximability results have been shown. Baur and Fekete [2] proved hardness
results for a variety of geometric dispersion problems, and their results can be
modified to our setting with a bit of effort. Specifically, they showed that Ap-
proxSize cannot be solved in polynomial time for any radius that exceed 13/14,
unless P = NP . Furthermore, for the case when the objects are squares, Baur
and Fekete gave an O(log k · n40)-time 2/3-approximation algorithm, where k is
the number of squares. However, since a square is a simpler shape and easier to
pack than a disk their approach cannot be generalized to disks. The main contri-
bution of this paper is a polynomial-time 2/3-approximation algorithm. Actually,
we conjecture that 2/3 is indeed the largest value for which the problem can be
solved in polynomial time.

ApproxSize has applications in non-photorealistic rendering system, where
3D models are to be rendered in an oil painting style, as well as in random
examinations of, e.g., soil or water.

2 Algorithm Outline

We now give a rough outline of our algorithm DiskPacking. We use the term
r-disk as shorthand for a disk of radius r. For r > 0 and a set R ⊆ R2 let the
r-freespace Fr(R) of R be the set of the centers of all r-disks that are completely
contained in R. By F⊗

r (R) we denote the Minkowski sum of Fr(R) and an r-disk.
We first compute the sets F1 = F1(P \ ⋃R) and F⊗

1 = F⊗
1 (P \ ⋃R), see

Fig. 1. Then, we apply the PTAS of Hochbaum and Maas [7] to F⊗
1 . For any

positive integer t, the PTAS packs in O(nt2) time at least (1 − 1/t)2 · m unit
disks into F⊗

1 , wherem is the maximum number of unit disks that can be packed
into F⊗

1 and n is the minimum number of unit squares whose union covers F⊗
1 .

Setting t = 25 we obtain in O(n625) time a set B of m′ ≥ 12/13 ·m unit disks.
Note that the approximation scheme by Hochbaum and Maas can be modified

such that the algorithm is strongly polynomial with respect to the size of our
input. If the number of disks that can be packed is not polynomial in the size
of P and R then there must exist a huge empty square region within P . This
can be “cut out” and packed almost optimally by using a nâıve approach. The
added error obtained is bounded by O(1/ñ2) where ñ is the optimal number of
disks that can be packed in the square. This step can be repeated until there are
no more huge empty squares.

Given B we compute a set B2/3 of disks of radius 2/3 that has cardinality at
least 13/12 ·m′ ≥ m and is contained in P \⋃R. We obtain B2/3 in two steps.
First, we compute a sufficiently large matching in the nearest-neighbor graph
G = (B, E) of B with respect to a metric dist(·, ·) that we will specify later.
Second, we define a region for each pair of matching unit disks such that we
can place three 2/3-disks in each region (see Fig. 2) and all regions are pairwise
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P

R
F1

F⊗
1

C ′

C
v

v′

Fig. 1. The 1-freespace F⊗
1 (light shaded) and

a shortcut vv′ (dashed) between the connected
components C and C′ of F1

4

4/3

Fig. 2. Packing three 2/3-disks in
the region spanned by a pair of
unit disks

disjoint. For each unmatched unit disk D we place a 2/3-disk D′ such that the
centers d and d′ of D and D′, respectively, coincide.

In the next sections we describe each step of Algorithm DiskPacking in more
detail.

3 The Freespace and a Metric on Unit Disks

We briefly recall the setting. We are given a set R of unit disks whose centers
lie in a rectangle P . The disks in R are allowed to intersect. We first compute
the freespace F1 of P \⋃R. According to Kedem et al. [8] the union of s disks
can be computed in O(s log2 s) time and its complexity is linear in s. Applying
their algorithm to the disks in R scaled by a factor of 2 and intersecting the
resulting union with P , we can compute F1 in O(|R| log2 |R|) time, where |R|
is the cardinality of R.

Next, we want to introduce a metric dist(·, ·) on unit disks in F⊗
1 . With

the current definition of F1 we have the problem that two unit disks centered
on points in different connected components of F1 can intersect. We solve this
problem by considering a superset F+

1 of F1 that connects close components of
F1. By |p, q| we denote the Euclidean distance between two points p and q in
the plane.

Definition 1. Let C1 be the set of connected components of F1, and let C,C′ ∈
C1. Let v and v′ be vertices on the boundaries of C and C′, respectively. We
say that the line segment vv′ is a shortcut if |v − v′| ≤ √

11 · 2/3 ≈ 2.21.
Let S(C,C′) be the set of all shortcuts induced by C and C′. We set F+

1 =
F1 ∪⋃C,C′∈C1; s∈S(C,C′) s.
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Figure 1 depicts F1, F⊗
1 , and a shortcut vv′. Throughout the paper we will use

upper-case letters to denote disks and the corresponding lower-case letters to
denote their centers. Now, we are ready to define our metric for a connected
component of F+

1 , see Fig. 3.

Definition 2. Let D and D′ be unit disks in F⊗
1 , with centers d and d′, respec-

tively. The distance dist(D,D′) of D and D′ is the length of the geodesic g(d, d′)
of d and d′ in F+

1 . The tunnel T (D,D′) of D and D′ is the union of all r-disks
in P \⋃R centered at points of g(d, d′) with r ≤ 1.

It is easy to see that any 2/3-disk D2/3 centered at a point of g(d, d′) does not
intersect any disk in R. (This will also follow from Lemma 2.) Thus D2/3 is
contained in the tunnel T (D,D′). The geodesic between two points in F+

1 can
only consist of line segments and arcs of radius 2, see Fig. 3.

Recall that our algorithm computes a matching in the nearest-neighbor graph
G = (B, E) induced by the metric dist(·, ·) on the set B of unit disks that we get
from the PTAS by Hochbaum and Maas. For each pair {D,D′} in the matching
we define a region T2/3(D,D′) into which we will then place three 2/3-disks as
in Fig. 2. An obvious way to define T2/3(D,D′) would be to take the union of all
2/3-disks centered at points of the geodesic between d and d′ in F2/3. Our defi-
nition is not as straight-forward, but will simplify the proof that T2/3(D,D′) and
T2/3(F, F ′) are disjoint if D, D′, F , and F ′ are pairwise disjoint. This is needed
to ensure that the 2/3-disks that we will place in the tunnels T2/3 are disjoint.

D D′

T (D,D′)

T (D,D′)D

D′

T2/3(D, D′)

D′

g2/3(d, d′)

T (D, D′)

R ∈ R

D

T2/3(D, D′)

T2/3(D, D′)

g(d, d′) = g2/3(d, d′)

g(d, d′) = g2/3(d, d′)

v′

v

Fig. 3. The geodesic g(d, d′). Left: unrestricted. Center: obstacle R. Right: shortcut.

Definition 3. Let D and D′ be unit disks in F⊗
1 . Let g2/3(d, d′) be a geodesic

from d to d′ in F2/3(T (D,D′)). Then, the 2/3-tunnel T2/3(D,D′) of D and D′

is the union of all 2/3-disks centered at points of g2/3(d, d′).

According to Chang et al. [4] the geodesics g(d, d′) and g2/3(d, d′) from d to d′

can be computed in O(|R|2 log |R|) time.
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4 The Nearest-Neighbor Graph

Recall thatm is the maximum number of disjoint unit disks that fit into F⊗
1 . For

t = 25 the (1 − 1/t)2-approximation of Hochbaum and Maas [7] yields a set B
of m′ ≥ 12m/13 unit disks in F⊗

1 . Our plan is to compute the nearest-neighbor
graph G = (B, E) induced by the metric dist(·, ·), find a matching of sufficient
size in G, and finally place three 2/3-disks in the 2/3-tunnel T2/3(C,D) for each
pair {C,D} in the matching. We show that if we place another 2/3-disk for each
unmatched disk in B, then we place at least 13m′/12 ≥ m disks of radius 2/3
by this approach.

By construction, two unit disks D1 and D2 whose centers lie in different
components of F+

1 have an empty intersection, so we can consider each connected
component of F+

1 separately.
After running the algorithm of Hochbaum and Maas we greedily add to B

disjoint unit disks in F⊗
1 \⋃B until no more disks can be added. This is needed

to ensure the following lemma:

Lemma 1. The nearest-neighbor graph G = (B, E) (w.r.t. dist) is planar and
has maximum degree 6.

Proof. Let C ∈ B be an arbitrary unit disk, let C′ ∈ B be the nearest neighbor
of C in B, and let D = {D1, . . . , Dk} ⊆ B be the neighbors of C in B for which
C is their nearest neighbor. If k ≤ 5 then the degree bound obviously holds, thus
we only have to consider the case when k ≥ 6. For each disk Di, 1 ≤ i ≤ k, place
a unit disk D′

i with center on g(c, di) such that |c, d′i| = 2, i.e., D′
i touches C.

From the definition of the nearest-neighbor graph it follows that every point on
g(c, di) is closer to C or Di than to any other unit disk in B \ {Di}. As a result
the set D′

1, . . . , D
′
k and C′ has to be disjoint. Using a simple packing argument,

k = 6 and C′ ∈ D follows and thus the degree bound stated in the lemma holds.
Finally, G is planar since no two edges in a nearest-neighbor graph can

intersect. ��
From now on we will call {C,D} ⊆ B a nearest pair if either (C,D) or (D,C) is
an edge in G, i.e., either D is the nearest disk in B to C or C is the nearest disk in
B toD. For every nearest pair {C,D} we define A(C,D) to be C∪D∪T2/3(C,D).
As the nearest pair {C,D} is a potential candidate to become a matching pair,
we want to ensure that we can use A(C,D) to pack three 2/3-disks in it such
that all the packed 2/3-disks are pairwise disjoint. Thus, we have to prove:

(i) three 2/3-disks fit into A(C,D) and
(ii) for any nearest pair {E,F} where C,D,E and F are pairwise disjoint

A(C,D) ∩ A(E,F ) = ∅.
Note that we do not have to care whether, e.g., A(C,D) intersects A(C,E)
because the matching will choose at most one pair out of {C,D} and {C,E}.
Three 2/3-disks obviously fit into A(C,D) since C and D do not intersect, thus,
(i) is fulfilled. The remaining part of the paper will focus on proving (ii).
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We split the proof into two parts. The first part shows that T2/3(C,D) does
not intersect any disk other than C and D. The second part shows that no two
2/3-tunnels T2/3(C,D) and T2/3(E,F ) intersect. We start with two technical
lemmas that we need to prove the first part.

Lemma 2. Let C and D be two unit disks in F⊗
1 . If |c, d| ≤ 2

3

√
11 then g2/3(c, d)

is a line segment.

Proof. Let T ′
2/3(C,D) be the Minkowski sum of a 2/3-disk and the line segment

cd, see Fig. 4a. If g2/3(c, d) is not a line segment, then a disk E in B∪R intersects
T ′

2/3(C,D). We establish a lower bound on |c, d| for this to happen. Note that
C, D and E are pairwise disjoint as C and D are disks in B.

Clearly, the minimum distance between c and d is attained if E and T ′
2/3(C,D)

only intersect in a single point and furthermore, both E and C as well as E and
D intersect in a single point. This means that |c, e| = |d, e| = 2. Moreover, the
Euclidean distance between e and the straight-line segment cd is 1 + 2

3 = 5
3 . By

Pythagoras’ theorem we calculate |c, d| to be at least 2
3

√
11. This means that

T ′
2/3(C,D) is contained in P \R. Even if C and D belong to different components

of F1, by Definition 1 they are connected via a shortcut. Thus, g2/3(c, d) is a
line segment. ��
Lemma 3. Let D and E be two unit disks in F⊗

1 that are infinitesimally close
to each other. Then dist(D,E) ≤ 2

3π.

Proof. For simplification we assume thatD and E touch, as illustrated in Fig. 4a.
The curve g(D,E) attains its longest length if there is an obstacle disk R that
touches D and E and no shortcut could be taken. In this case g(D,E) describes
an arc of radius 2 and 60◦, thus its length is 1

6 · 2 · 2π = 2
3π. ��

Now, we are ready to prove the first part:

Lemma 4. Let {C,D} ⊆ B be a nearest pair. No disk of B∪R\{C,D} intersects
T2/3(C,D).

Proof. From the definition of freespace and Definitions 2 and 3 it immediately
follows that neither T (C,D) nor T2/3(C,D) are intersected by a disk in R. Thus,
it remains to prove that apart from C and D no disk in B intersects T2/3(C,D).

W.l.o.g. let C be the nearest disk in R to D. The proof is done by contradic-
tion: we assume that there is a disk E ∈ B that intersects T2/3(C,D).

First, we move a unit disk on g(C,D) from the position of D to the first
position in which it hitsE, denote the disk in this position byD, see Fig. 4a where
D = D holds. Note that D does not necessarily lie entirely within F⊗

1 . However,
according to Lemma 2 (C,D and E are disjoint), the Euclidean distance between
c and d is at least 2

3

√
11. We prove that the geodesic g(d, e) within F+

1 is of length
less than g(c, d). This contradicts C being the nearest neighbor of D.

In the remainder of the proof we show that g(c, d) is larger than g(d, e),
regardless of whether d is in F1 or not. The details, especially of the latter case,
are rather technical and somewhat unpleasant, and due to space limitations we
omit them here. They can be found in the full version of this paper [1]. ��
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Lemma 4 settles that no other disks apart from C and D intersect T2/3(C,D).
We still have to show that no two 2

3 -tunnels T2/3(C,D) and T2/3(E,F ) intersect.

Theorem 1. Let {C,D}, {E,F} ⊆ B be two nearest pairs such that C,D,E
and F are pairwise disjoint, it holds that T2/3(C,D) ∩ T2/3(E,F ) = ∅.
Proof. The proof is by contradiction again. Assume that T2/3(C,D) and
T2/3(E,F ) intersect. First, we exclude the scenario in which even the geodesics
g2/3(c, d) and g2/3(e, f) intersect. If g2/3(c, d) and g2/3(e, f) intersect it immedi-
ately follows that g(c, d) and g(e, f) also intersect. Note that this comprises the
case in which g(c, d) and g(e, f) take the same shortcut. Let i be one of the inter-
section points of g(c, d) and g(e, f). By appropiately exchanging parts of g(c, d)
and g(e, f) having endpoints c, d, e, f and i, it is easy to construct a curve that
at least contradicts one of g(c, d) and g(e, f) to be a geodesic and thus one of the
pairs {C,D} or {E,F} to be nearest. Thus, we can assume that only T2/3(C,D)
and T2/3(E,F ) intersect. Obviously, it is enough to prove the theorem for the
case in which the tunnels intersect in a single point p, see Fig. 4b. Thus, p lies
in F1 and neither g(c, d) nor g(e, f) takes a shortcut containing p and we can
w.l.o.g. assume that no shortcut is taken at all (comparing with one of the disks
of D(S) on g(c, d) or g(e, f) instead of C,D,E or F for the used shortcut S).
Again, we show that {C,D} and {E,F} can’t be nearest pairs at the same time.

We observe that at least one of the disks {C,D,E, F} intersects the unit disk
P with center p; otherwise there would be another disk in B located in the space
between C,D,E and F which would immediately contradict {C,D} as well as
{E,F} being nearest pairs. W.l.o.g. let C be a disk that intersects P .

Let pCD be the point on g2/3(C,D) such that |p, pCD| = 2/3, see Fig. 4b.
Define pEF correspondingly. We assume that there is a vicinity of pCD and pEF

in which g2/3(C,D) and g2/3(E,F ) are arcs. The case when one vicinity of pCD

and pEF is a straight-line is easier and can be treated with similar arguments.
The curvature of g2/3(C,D) and g2/3(E,F ) in a vicinity of pCD and pEF

induces the existence of two disks R,S ∈ R as illustrated in Fig. 4b. Since R
and S forces the curvature of g2/3(C,D) and g2/3(E,F ) we may introduce the
following coordinate system. The origin is p and the coordinates of r and s are
(0, 7

3 ) and (0,− 7
3 ), respectively.

As a consequence of Lemma 2 we get that each geodesic g2/3 starts with a
straight-line segment of length at least 1

3

√
11 ≈ 1.11. Thus, the curvature of

g2/3(C,D) in pCD infers that |c, pCD| ≥ 1.11 holds, which means that C either
lies completely to the left of the y-axis or to the right. This holds analogously
for the other disks. W.l.o.g. we assume that C and E lie to the left of the y-axis
and D and F lie to the right, see Fig. 4b.

Note that we have to take care which relationship inferred that {C,D} and
{E,F} are nearest pairs, e.g. C could be the nearest neighbor of D or D could
be the nearest neighbor of C. We will prove the following:

(i) dist(C,E) < dist(E,F )
(ii) dist(C,E) < dist(C,D)
(iii) dist(D,F ) < dist(C,D)
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Item (i) says that C is closer to E than F is. Thus, in order for {E,F} to be
a nearest pair, E must be the nearest neighbor of F . We use this fact to show
that (ii) and (iii) hold. Together, (ii) and (iii) comprise the contradiction: (ii)
says that D is not the nearest neighbor of C, while (iii) says that C is not the
nearest neighbor of D. Hence, {C,D} cannot be a nearest pair.

The proofs of (i)—(iii) can be found in the full version of this paper [1]. ��
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3
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(0,− 7
3

1

S

pCD

Fig. 4. Illustrations for (a) the proof of Lemma 2 and 3. (b) the proof of Theorem 1.

5 The Set B2/3

After computing B and the nearest neighbor graph G = (B, E), we compute a
matching in G. Let m′ = |B| be the number of unit disks in B. Recall that G
is planar and has degree at most 6. We show that we can find a matching in
which the number of matched disks is at least 1

6 ·m′. Observe that G can consist
of more than one connected component. We look at each connected component
separately. Let C be a connected component and let c be the number of disks
that it contains. Clearly, C contains a spanning tree of degree at most 6. It is
easy to see that there is a matching in C that matches at least 1

6 · c disks. Doing
this for each connected component yields a matching in G that contains at least
1
6 ·m′ matched disks.

According to Theorem 1 and Lemma 4 we can pack three 2/3-disks in A(C,D)
for every matched pair {C,D} such that these 2/3-disks are pairwise disjoint.
For each of the remaining unmatched disks we pack one 2/3-disk in each disk.
Let set of all disks packed as above be B2/3. By construction, there are no
interferences between these sets belonging to different connected components of
F+

1 . The cardinality of B2/3 is at least 1
6 · 3

2 · m′ + 5
6 · m′ = 13

12 ·m′. Since the
cardinality of B is at least 12

13 ·m, the set B2/3 contains at least m 2/3-disks and
we can conclude with the following theorem:



A Polynomial-Time Approximation Algorithm 175

Theorem 2. Algorithm DiskPacking is a polynomial-time 2/3-approximation
for the problem ApproxSize.

6 Conclusion

Naturally, our result is purely of theoretic interest. The bottleneck for the run-
ning time is the application of Hochbaum and Maas’ PTAS with approximation
factor (1 − 1/13). To obtain an algorithm with better running time, it seems
unavoidable to use a completely different approach. For future work it would
also be desirable to narrow the gap between the approximation factor of 2/3 of
our algorithm and the inapproximability result of 13/14 of Baur and Fekete [2].
We conjecture that, unless P = NP , the lower bound of 2/3 is indeed tight.
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12. G. F. Tóth. Packing and Covering. In Handbook of Discrete and Computational

Geometry, 2nd Edition J. E. Goodman and J. O’Rourke, editors CRC Press LLC,
2004.

13. C. Zong and J. Talbot. Sphere Packings. Springer-Verlag, 1999.



A PTAS for Cutting Out Polygons with Lines
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Abstract. We present a simple O(m+n6/ε12) time (1+ε)-approximation
algorithm for the problem of cutting a convex n-gon out of a convex m-gon
with line cuts of minimum total cutting length. This problem was intro-
duced by Overmars and Welzl in the First Annual ACM Symposium on
Computational Geometry in 1985. We also present a constant approxima-
tion algorithm for the generalized problem of cutting two disjoint convex
polygons out of a convex polygon.

1 Introduction

We consider a problem introduced by Overmars and Welzl [6] in 1985:

Given a polygonal piece of paper Q with a polygon P drawn on it, cut
P out of Q in the cheapest possible way.

(a) (b)

Fig. 1. (a) A cutting sequence. (b) The cost.

A cut is a line that runs through the piece of paper Q but not the polygon P .
We refer to Figure 1. Each cut divides the piece of paper into several pieces (two
pieces when Q is convex); we continue to cut the piece that contains P until,
after a cutting sequence, it finally “becomes” P , that is, P is cut out of Q. The
cost of a cut is the length of the segment marking the intersection between the
cutline and the “current” piece of paper that contains P . Our optimization goal
is to find a cutting sequence with the minimum total cost.
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With line cuts, this problem has a solution only if the polygon P is convex,
which we will assume. To cut out non-convex polygons, other types of cuts such
as rays and segments [3,2,8] must be used instead.

We also assume that the piece of paper Q is convex. When Q is non-convex,
Overmars and Welzl [6] have shown pathological cases in which no optimal cut-
ting sequence exists if Q is considered to be topologically closed. Even when Q is
convex, Bhadury and Chandrasekaran [1] have shown that the optimal solution
may reside in the algebraic extension of the input data field, which confirms the
difficulty of solving the problem exactly.

Due to the difficulty of obtaining exact solutions [6,1], recent research ef-
forts on this problem have been focused mostly on finding good approxima-
tions. Bhadury and Chandrasekaran [1] first gave an approximation scheme with
pseudo-polynomial running time, that is, the running time of their algorithm is
polynomial only if the input data is encoded in unary. Dumitrescu [4,5] presented
the first polynomial-time approximation algorithm with an O(log n) approxima-
tion factor. Subsequently, Daescu and Luo [2] designed a constant-factor ap-
proximation algorithm, and Tan [8] improved the approximation factor further
to 5 + 2

√
2.

In this paper, we present a simple polynomial-time approximation scheme for
the problem of cutting out polygons with lines. Our main result is an O(m +
n6/ε12) time (1 + ε)-approximation algorithm for cutting out a convex n-gon
P out of a convex m-gon Q. Note that this problem is “inherently algebraic in
nature” and “the best that can be done is to provide approximately optimal
solutions” [1].

�
�

�
�

�
�

Fig. 2. Cutting out three polygons with lines is not always possible

The problem of cutting out polygons with lines can be generalized. Given a
convex polygon Q and a set of k disjoint convex polygons {Pi}i=1..k in Q, how to
cut out every Pi with lines such that the total cutting length is minimized? We
denote by (P1, · · · , Pk, Q) this generalized problem, and by (P,Q) the original
problem. The related cuttability problem, that is, whether {Pi} can be cut out
of Q by lines, was studied by Pach and Tardos [7]. As we can see from Figure 2,
a cutting sequence does not always exist even when k = 3. However, when k = 2,
there is always a solution.

This paper is organized as follows. In Section 2, we introduce the preliminaries.
In Section 3, we present the algorithm. In Section 4, we give the correctness proof
and the analysis. In Section 5, we study the generalized problem of cutting out
two convex polygons out of a convex polygon.
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2 Preliminaries

We first introduce some definitions. Given a polygon P , we denote by |P | the
perimeter of P , and by ∂P the boundary of P . A cut is a tangent cut if it is
tangent to (touches but does not cut through) the polygon P . A tangent cut is
a vertex cut if it touches a single vertex of P ; otherwise, if a tangent cut runs
along an edge of P , it is an edge cut. The (at most two) vertices of P that a
tangent cut touches are the anchor vertices of the tangent cut. A vertex cut has
one anchor vertex; an edge cut has two anchor vertices.

l1

l2
o

p

q

P

Fig. 3. The intersection angle

We refer to Figure 3. Let l1 and l2 be two tangent cuts with different anchor
vertices such that l1 precedes l2 in the cutting sequence and that l2 intersects
l1. Denote by (l1, l2) the intersection o of the two cuts. Let p (respectively, q) be
an anchor vertex of l1 (respectively, l2). The angle of the intersection (l1, l2) is
� poq (� poq ≤ π).

Our algorithm is based on three simple techniques. The first technique is
dynamic programming. For a restricted case of the problem, in which only the
n edge cuts along the n edges of P are allowed in a cutting sequence, Overmars
and Welzl [6] presented an O(m + n3) time exact algorithm based on dynamic
programming. This algorithm is immediate from the observation that, after the
first edge cut, the concatenation of the remaining n−1 uncut edges of P forms a
convex polygonal chain with both ends on ∂Q; every subsequent edge cut reduces
the problem to two independent sub-problems.

The second technique is sampling-and-rounding. Overmars and Welzl [6] have
shown that, for any problem instance, there exists an optimal cutting sequence
of O(n) tangent cuts. Instead of restricting the cutting sequence to edge cuts
only, our algorithm uses an extended set of candidate cuts including both the
n edge cuts and some carefully chosen vertex cuts. If every vertex cut in the
optimal sequence is close to a candidate cut, then the optimal sequence of can-
didate cuts gives a good approximation of the optimal cutting sequence. (The
optimal sequence of candidate cuts can be found by the same dynamic pro-
gramming algorithm since a vertex can be viewed as a zero-length edge and a
vertex cut is a degenerated edge cut.) The sampling-and-rounding technique was
first used by Bhadury and Chandrasekaran [1] in their pseudo-polynomial-time
approximation algorithm. We choose our candidate cuts carefully to avoid the
pseudo-polynomial running time.
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The third technique is that, since polynomial-time approximation algorithms
for this problem already exist [4,2,8], we can run any of these algorithms as
a preprocessing step to get an estimate of the optimal solution, then use the
estimate to guide our selection of candidate cuts.

3 The Algorithm

Our algorithm consists of three steps: the estimation step, the sampling step,
and the dynamic programming step.

In the estimation step, we run Tan’s algorithm [8] to get an estimate EST of
the cost OPT of the optimal cutting sequence such that OPT ≤ EST ≤ c·OPT ,
where c is the constant approximation factor. Our choice of Tan’s algorithm in
this estimation step is arbitrary; other approximation algorithms [2,4] can be
used instead, though they may incur a slight increase in the overall running
time.

P

Q

A

A′

Fig. 4. Portal points

In the sampling step, we first construct a set V of portal points. We refer to
Figure 4. Let A be the smallest axis-parallel rectangle that contains P . Let A′

be an axis-parallel rectangle with length a+ 2EST and width b+ 2EST , where
a and b are the length and the width of A. The two rectangles A and A′ are
centered at the same point; the distances between their corresponding edges are
exactly EST . The portal points are placed on the boundary of Q∩A′ and on the
boundary of A′ to discretize them into polygonal chains with maximum segment
length δ · EST , where δ = Θ(ε2/n).

We next construct a set E of candidate cuts. First put the n edge cuts into
E, then, for each vertex p of P , and for each portal point v ∈ V , if the line
through both p and v specifies a valid tangent cut anchored at p (that is, the
line does not cut through P ), put the tangent cut into E. We call the candidate
cuts constructed so far the type-1 cuts.

We refer to Figure 5. For every two type-1 cuts l1 and l2 intersecting at a point
o and anchored at two vertices q and r respectively (q, r, and o may coincide),
we compute, for every vertex p of P outside the triangle +oqr, all the vertex
cuts anchored at p such that the length of the cutline’s segment between l1 and
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l

l1

l2

o

p

p1

p2
q

r

P

Fig. 5. Type-2 cuts

l2 is (locally) minimal. We put these cuts into the candidate set E and called
them the type-2 cuts.

We show how to find these type-2 cuts. Assume without loss of generality that
the line equations for l1, l2, and l are

y = 0, y = ax,
y − y0
x− x0

= k.

The intersection p1 of l and l1 is at

x1 = x0 − y0
k
, y1 = 0.

The intersection p2 of l and l2 is at

x2 =
y0 − ax0

a− k + x0, y2 = a
(
y0 − ax0

a− k + x0

)
.

Therefore, we have

|p1p2|2 = (x2 − x1)2 + (y2 − y1)2 =
(
y0 − ax0

a− k +
y0
k

)2

+ a2
(
y0 − ax0

a− k + x0

)2

.

It follows that
d
dk

|p1p2|2 = 2
(

y0 − ax0

a − k
+

y0

k

)(
y0 − ax0

(a − k)2
− y0

k2

)
+ 2a2

(
y0 − ax0

a − k
+ x0

)
y0 − ax0

(a − k)2
.

The equation d
dk |p1p2|2 = 0 can be simplified to a polynomial equation of

k with degree four, whose roots can be computed in constant time on a RAM
machine.

Finally, in the dynamic programming step, we use dynamic programming [6]
to find a sequence of candidate cuts from E with the minimum cost. This cutting
sequence is our approximate solution.

4 Proof and Analysis

We prove by construction that our algorithm indeed gives a (1+ε)-approximation.
Given an optimal cutting sequence S of O(n) tangent cuts, the existence of which
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is proved by Overmars and Welzl [6], we construct a sequence S′ ofO(n) candidate
cuts to approximate S.

We initialize S′ with the same sequence of cuts in S. Each cut in S′ forms
exactly two intersections, one on each side of its anchor vertex (or, in the case of
an edge cut, vertices), with either ∂Q or the preceding cuts in S′. We say that
an intersection is sharp if its angle is less than θ = Θ(ε). Let l be the first cut
in S′ that forms a sharp intersection with a preceding cut. We consider the only
two cases:

1. The cut l forms only one sharp intersection with a preceding cut l1.
2. The cut l forms two sharp intersections with two preceding cuts l1 and l2.

The cut l1 must intersect ∂Q on the side that l intersects it. Suppose on the
contrary that l1 intersects a preceding cut l0 instead of ∂Q, then the intersection
(l0, l1) both precedes and is sharper than the intersection (l1, l), which contra-
dicts our choice of l. By the same argument, the cut l2 (in the second case) must
intersect ∂Q on the side that l intersects it.

l

l′

l1

l′1

κ1
κ2P

l

l1
l′1

l2

l′2

κ1

κ2

l−

l+

p

P

(a) (b)

Fig. 6. (a) The first case. (b) The second case.

We refer to Figure 6(a) for the first case. We rotate the two cuts l and l1
toward each other (the angle of their intersection increases) to their nearest
type-1 cuts l′ and l′1. We then find two additional type-1 cuts κ1 and κ2 that are
near-perpendicular to l′ (that is, at most angle δ away from the perpendicular
position), one on each side of P , and insert them immediately after l′ in S′. We
call these two cuts the shortcuts. Because of the shortcuts, no subsequent cuts
in S′ can form sharp intersections.

We refer to Figure 6(b) for the second case. We rotate the two cuts l1 and
l2 toward l (the angles of both (l, l1) and (l, l2) increase) to their nearest type-1
cuts l′1 and l′2. If l is a vertex cut anchored at the vertex p, let l− and l+ be the
two nearest candidate cuts anchored at the same vertex p such that l is between
l− and l+. We round l to l′ ∈ {l−, l+} such that the segment of l′ between the
two lines l′1 and l′2 is shorter. (Note that this is the only place in our construction
that a cut in S may be rounded to a type-2 cut; as a result, S′ includes at most
one type-2 cut.) We then find the two type-1 cuts (shortcuts) κ1 and κ2 that
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are near-perpendicular to l′, and insert them immediately after l′ in S′. Again,
because of the shortcuts, no subsequent cuts in S′ can form sharp intersections.
The maximum number of sharp intersections in the sequence S′ is either one (in
the first case) or two (in the second case).

Finally, for each remaining (not yet rounded) vertex cut in S′, we round it to
its nearest type-1 cut in E. The cutting sequence S′ thus obtained includes the
same n edge cuts that are originally in the optimal sequence S, so it is a valid
cutting sequence that indeed cuts P out of Q. Because of the rounding and the
additional shortcuts, S′ may include redundant cuts and may have a topology
different from that of S; however, this should not be of any concern since we are
only interested in the cost of the approximation.

We next show that the cost of S′ is close to the cost of S. In the following
analysis, we charge the cost of each tangent cut to its two intersections with
either ∂Q or the preceding cuts in the sequence. For a vertex cut, the cost of
an intersection is the distance from the intersection to the anchor vertex; for an
edge cut, the cost is the distance from the intersection to the midpoint of the
two anchor vertices.

l1

l2

l′1

l′2

o
o′

o′′

p

q

Fig. 7. Non-sharp intersection

Lemma 1. The rounding incurs an additional cost of at most O(ε/n)OPT for
a non-sharp intersection (l1, l2).

Proof. Two type-1 cuts corresponding to a common anchor vertex v and two
consecutive portal points on the boundary of A′ are at most angle δ away from
each other, since the distance from v to either portal point is at least EST and
the distance between the two portal points is at most δ · EST . The type-1 cuts
in E can be ordered into a cycle according to the slopes of their cutlines; two
consecutive cuts in the cycle are at most angle δ away from each other. (Note
that the edge cuts and the portal points on the boundary of Q ∩ A′ make the
sampling even denser.) Every tangent cut in S can be rotated in either direction
for an angle of at most δ to a type-1 cut.

We refer to Figure 7 for the worst case that l1 and l2 rotate away from each
other to l′1 and l′2. The two cuts l1 and l2 are anchored at vertices p and q,
respectively. Let o = (l1, l2), o′ = (l1, l′2), and o′′ = (l′1, l′2). We have � poq ≥ θ,
� opo′′ ≤ δ, and � oqo′ ≤ δ. Since θ = Θ(ε) and δ = Θ(ε2/n), we have

|oo′|
|oq| =

sin � oqo′

sin(� poq − � oqo′)
= O
( � oqo′

� poq

)
= O(δ/θ) = O(ε/n).
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It follows that |oo′| = O(ε/n)|oq|. By the same argument, we can show that
|o′o′′| = O(ε/n)|o′p| = O(ε/n)|op| +O(ε2/n2)|oq|. Therefore, we have

|o′′q| ≤ |oq| + |oo′| + |o′o′′| = |oq| +O(ε/n)(|op| + |oq|) ≤ |oq| +O(ε/n)OPT . ��
Lemma 2. The rounding incurs an additional cost of at most O(ε2/n)OPT for
an intersection between a cut l and ∂Q.

Proof. The cost of the intersection between l and ∂Q is at most OPT , which is
bounded by EST ; therefore, the intersection is inside the rectangle A′. Because
of our choice of the portal points on the boundary of the polygon Q ∩ A′, the
rounding of l to l′ moves the intersection for a distance of at most δ · EST =
O(ε2/n)OPT . If l′ intersects a preceding candidate cut in S′ instead of ∂Q, the
rounding incurs an even less additional cost. ��
The previous two lemmas considered O(n) intersections, the total additional cost
of which is O(n)O(ε/n)OPT = O(ε)OPT .

Lemma 3. The rounding incurs no additional cost for the sharp intersections.

Proof. We refer to Figure 6(a) for the first case. Let v be the anchor vertex of
both l and l′. The distance from the intersection (l1, l) to v is at least the distance
from the intersection (l′1, l′) to v, because we rotate l and l1 toward each other to
l′ and l′1. The cost of the intersection (l′1, l

′) is therefore at most the cost of the
intersection (l1, l). (The cost of the cut l1 is charged to the intersection between
l1 and ∂Q; it is not considered here.)

We refer to Figure 6(b) for the second case. The same argument shows that
the total cost of the two intersections (l′1, l) and (l′2, l) is at most the total cost of
the two intersections (l1, l) and (l2, l). Rotating l to l′ in either direction would
increase the cost of one of its two intersections. However, our choice of the type-2
cuts in E ensures that, when l′ is between two candidate cuts l− and l+, the
total cost of l′ reaches the minimum at either l− or l+. Therefore, the total cost
of the two intersections (l′1, l) and (l′2, l) is at least the total cost of the two
intersections (l′1, l′) and (l′2, l′). ��
Lemma 4. The cost of the two shortcuts is at most O(ε)OPT.

Proof. We refer to Figure 6(a) for the first case. Let u = (l1, l) and u′ = (l′1, l
′),

and let v be the anchor vertex of l and l′. The distance d from u′ to a shortcut
(either κ1 or κ2) is at most |u′v| + |P |. Since |u′v| ≤ |uv| ≤ OPT and |P | =
O(OPT ), we have d = O(OPT ). The angle of the intersection (l′1, l

′) is at most
θ + 2δ = Θ(ε) + Θ(ε2/n) = Θ(ε). Therefore, the cost of the two shortcuts is at
most O(d)Θ(ε) = O(ε)OPT . The analysis for the second case is similar. ��
The previous four lemmas together imply that the cost of our constructed se-
quence S′ is at most 1+O(ε) times the cost of the optimal sequence S. Adjusting
the parameters for δ = Θ(ε2/n) and θ = Θ(ε), we have a (1 + ε)-approximation.

We now analyze the running time of our algorithm. For the two rectangles
A and A′, we have |A| = O(|P |) = O(OPT ) and |A′| = |A| + 8EST . Since
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EST = Θ(OPT ), we have |A′| = O(OPT ). It follows that the perimeter of the
polygon Q∩A′ is O(OPT ). The number of portal points is therefore O(OPT)

δ·EST =
O(1/δ) = O(n/ε2). The number of type-1 cuts is O(n/ε2). The number of
type-2 cuts is O(n2/ε4). The dynamic programming algorithm [6] takes O(m +
(n2/ε4)3) = O(m+ n6/ε12) time. We have the following theorem.

Theorem 1. For the problem of finding an optimal line cutting sequence to cut
out a convex n-gon P out of a convex m-gon Q, we have an O(m+n6/ε12) time
(1 + ε)-approximation algorithm.

5 Cutting Out Two Polygons

Given an instance (P1, P2, Q), let H be the convex hull of P1 and P2. A cutting
sequence for (P1, P2, Q) consists of four parts (parts 1, 3, and 4 may be empty):

1. A sequence that cuts a polygon Q′ out of Q such that H ⊆ Q′.
2. A single dividing cut that cuts Q′ into two polygons Q1 and Q2 such that
P1 ⊆ Q1 and P2 ⊆ Q2.

3. A sequence that cuts P1 out of Q1.
4. A sequence that cuts P2 out of Q2.

Denote by OPT (P1,P2,Q) the optimal cost for (P1, P2, Q); denote by OPT (P,Q)
the optimal cost for (P,Q). We have the following inequality:

OPT (P1,P2,Q) ≥ OPT (P1,P2,Q′) ≥ max{OPT (P1,Q′),OPT (P2,Q′)}
≥ max{OPT (P1,Q1),OPT (P2,Q2)} ≥ max{|P1|, |P2|}.

Denote by Cp the infimum of the length of a chord of Q through a point
p ∈ Q, and define CP = maxv∈V (P ) Cv for a convex polygon P ⊆ Q. Dumitrescu
[4] proved that CP is a lower bound for OPT (P,Q). Using essentially the same
argument, we obtain the following inequality:

OPT (P1,P2,Q) ≥ max{CP1 , CP2} ≥ CH .

Theorem 2. There is a polynomial-time constant approximation for (P1, P2, Q).

Proof. Dumitrescu [4] presented a “separation algorithm” for (P,Q) that cuts
a polygon Q′ out of Q using a sequence of tangent cuts with a cost of at most
c1CP + c2|P | such that P ⊆ Q′ and |Q′| ≤ c3|P |, where c1, c2, and c3 are three
constants. Let c′ = max{2(c1 + c2 + 1), c3}. We consider two cases.

Case one: |H | > c′OPT (P1,P2,Q). For two points p1 ∈ ∂P1 and p2 ∈ ∂P2,
the distance |p1p2| is at most |H |/2. On the other hand, the distance between
two points on ∂P1 (respectively, ∂P2) is at most |P1|/2 (respectively, |P2|/2).
Therefore, the distance |p1p2| is at least (|H |−|P1|−|P2|)/2 > (c′OPT (P1,P2,Q)−
OPT (P1,P2,Q) − OPT (P1,P2,Q))/2 ≥ (c1 + c2)OPT (P1,P2,Q).

We can use Dumitrescu’s separation algorithm to cut a polygon Q1 out of
Q such that P1 ⊆ Q1 and |Q1| ≤ c3|P1|. Since this cutting sequence includes
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only cuts tangent to P1 and has a cost of at most c1CP1 + c2|P1| ≤ (c1 +
c2)OPT (P1,P2,Q), these cuts can never cut through (or even reach) P2. Since
P1 ⊆ Q1 and |Q1| ≤ c3|P1| ≤ c′OPT (P1,P2,Q) < |H |, there must be a dividing
cut in this sequence that separates P1 from P2. Let Q2 be the polygon that
contains P2 after that dividing cut. We then cut P1 out of Q1 and cut P2 out
of Q2 independently using a constant approximation algorithm [2,8], the cost of
which is at most cOPT (P1,Q1) + cOPT (P2,Q2) ≤ 2cOPT (P1,P2,Q). The total cost
is at most (c1 + c2 + 2c)OPT (P1,P2,Q).

Case two: |H | ≤ c′OPT (P1,P2,Q). We first use Dumitrescu’s separation algo-
rithm to cut a polygon Q′ out of Q such that H ⊆ Q′ and |Q′| ≤ c3|H |, then
cut Q′ into Q1 and Q2 with an arbitrary dividing cut, and finally cut P1 out
of Q1 and cut P2 out of Q2. The separation algorithm incurs a cost of at most
c1CH + c2|H | ≤ c1OPT (P1,P2,Q) + c2c′OPT (P1,P2,Q) = (c1 + c2c′)OPT (P1,P2,Q).
The cost of the dividing cut is at most |Q′| ≤ c3|H | ≤ c3c

′OPT (P1,P2,Q). The
cost for the two subproblems (P1, Q1) and (P2, Q2) is at most 2cOPT (P1,P2,Q).
The total cost is at most (c1 + c2c′ + c3c′ + 2c)OPT (P1,P2,Q). ��
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Abstract. We consider the problems of straightening polygonal trees
and convexifying polygons by continuous motions such that rigid edges
can rotate around vertex joints and no edge crossings are allowed. A
tree can be straightened if all its edges can be aligned along a common
straight line such that each edge points “away” from a designated leaf
node. A polygon can be convexified if it can be reconfigured to a convex
polygon. A lattice tree (resp. polygon) is a tree (resp. polygon) containing
only edges from a square or cubic lattice. We first show that a 2D lattice
chain or a 3D lattice tree can be straightened efficiently in O(n) moves
and time, where n is the number of tree edges. We then show that a
2D lattice tree can be straightened efficiently in O(n2) moves and time.
Furthermore, we prove that a 2D lattice polygon or a 3D lattice polygon
with simple shadow can be convexified efficiently in O(n2) moves and
time. Finally, we show that two special classes of diameter-4 trees in two
dimensions can always be straightened.

Keywords: Comput. geom., unfolding, straightening, convexifying.

1 Introduction

Graph reconfiguration problems have wide applications in contexts including
robotics, molecular conformation, animation, wire bending, rigidity and knot
theory. The motivation for reconfiguration problems of lattice graphs arises in
applications in molecular biology and robotics. For instance, the bonding-lengths
in molecules are often similar [6,11,12], as are the segments of robot arms.

A unit tree (resp. unit polygon) is a tree (resp. polygon) containing only edges
of unit length. An orthogonal tree (resp. orthogonal polygon) is a tree (resp.
polygon) containing only edges parallel to coordinate-axes. A lattice tree (resp.
lattice polygon) is a tree (resp. polygon) containing only edges from a square or
cubic lattice. Note that a lattice tree or polygon is basically a unit orthogonal
tree or polygon. A graph is simple if non-adjacent edges do not intersect. We
consider the problem about the reconfiguration of a simple chain, polygon, or
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tree through a series of continuous motions such that the lengths of all graph
edges are preserved and no edge crossings are allowed. A tree can be straightened
or flattened if all its edges can be aligned along a common straight line such that
each edge points “away” from a designated leaf node. In particular, a chain can
be straightened if it can be stretched out to lie on a straight line. A polygon can
be convexfied if it can be reconfigured to a convex polygon. We say a chain or
tree is locked if it cannot be straightened. We say a polygon is locked if it cannot
be convexified. We consider one move in the reconfiguation as a continuous
monotonic change for the joint angle at some vertex.

In four dimensions or higher, a polygonal tree can always be straightened, and
a polygon can always be convexified [7]. In two dimensions, a polygonal chain
can always be straightened and a polygon can always be convexified [9,14,5].
However, there are some trees in two dimensions that can lock [3,8,13]. In three
dimensions, even a 5-chain can lock [4]. Alt et al. [2] showed that deciding the
reconfigurability for trees in two dimensions and for chains in three dimensions is
PSPACE-complete. However the problem of deciding straightenability for trees
in two dimensions and for chains in three dimensions remains open. Due to the
complexity of the problems in two and three dimensions, some special classes of
trees and polygons have been considered. Poon [13] showed that a unit tree of
diameter 4 in two dimensions can always be straightened. In their paper, they
posed a challenging open question whether a unit tree in either two or three
dimensions can always be straightened.

The rest of this paper is organized as follows. We define some technical terms
used in our paper in Section 2. We present efficient algorithms to straighten
lattice chains and trees and to convexify lattice polygons in both two and three
dimensions, respectively, in Sections from 3 to 6. In Section 7, we show that two
special classes of diameter-4 trees in two dimensions can always be straightened.
Finally, we conclude with some conjectures in Section 8.

2 Definitions

Let P be unit tree or polygon in two or three dimensions. Define a small value
ε = 1

100n , where n is the number of edges in P . We call point q is convergent to
p if q is within distance ε from p. A unit edge is called convergent to a lattice
edge if any point on the edge is within distance ε from a particular lattice edge.
Such a unit edge is called a near-lattice edge, and the particular lattice edge is
called its core edge. A em core vertex is a vertex of some core edge. A near-lattice
tree (resp. near-lattice polygon) is a tree (resp. polygon) that contains only near-
lattice edges. Suppose P is a near-lattice tree or polygon. The core of P , denoted
by K(P ), is the union of core edges for all edges in P . A spring in P is the set
of edges in P converging to a common lattice edge. A spring with only one edge
is called a singleton. A leaf spring is a spring with its core edge possessing a leaf
vertex in the core of P .

A near-lattice tree is called folded if its core contains a single lattice edge.
A near-lattice polygon is called nearly folded if its core is a lattice rectangle
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of unit width. Remark that the definition of a nearly-folded polygon is due to
our unfolding algorithm, in which we convert a given lattice polygon to such a
polygon, which can then be convexified straightforwardly.

3 2D Lattice Chains and 3D Lattice Trees

2D lattice chains. Given a simple 2D lattice chain P = p0p1 . . . pn. Starting from
an end edge, say p0p1, we fold up the whole chain, edge by edge. At step i, a
spring Si containing a zig-zag path from p0 to pi+1 is formed such that pipi+1
is a lattice edge staying at its original position, and ∠pj = ε2 for 1 ≤ j ≤ i.
Vertices pi−1, pi−3, . . . all lie in a lattice cell, say σ. Step i+ 1 of the algorithm
tries to combine the spring Si and the edge e = pi+1pi+2 to form a new spring
Si+1. We need to consider several cases depending on the position of e. If pi+1 is
non-straight and e does not lie on σ, we rotate Si around vertex pi+1, away from
σ, until pipi+1 makes an angle ε2 with e, and we are done. See Figure 1(a) for
illustration. Otherwise, we first rotate e around pi+2 to the side containing σ until

(b)

pi+2

pi+1

(a)

pi+1

pi+2

pi+1

pi+2

pi+2

pi+1

pi+2

pi+1

pi+2

pi+1

Fig. 1. Folding 2D chains

e makes an angle of π/12 with its original position, and it is safe now to rotate Si

around pi+1 by sweeping through the side not containing Si until ∠pipi+1pi+2 =
ε2. Then we move e back to its original position. See Figure 1(b) for illustration.
It is clear that it takes only constant number of moves to construct Si+1 from Si.
Thus the whole chain can be folded up, in O(n) moves and time, into a zig-zag
path, which can then be straightened straightforwardly.

Theorem 1. A 2D lattice chain can be straightened in O(n) moves and time.

3D lattice trees. As in the previous section, we can unfold 3D lattice chains
in the same manner. In fact, we can even unfold 3D lattice trees in a similar
fashion. we do this in a bottom-up fashion according to the given tree structure.
The folding process starts from the leaves of the given tree. In each step, we fold
up each set of all leaf springs incident to a common internal core vertex v to the
internal core edge incident to v. Each time when we fold up a spring towards an
edge, we keep the “tail” of the spring away from its moving direction. It is clear
that folding each leaf spring takes constant number of moves. Thus we obtain
the following theorem.

Theorem 2. A 3D lattice tree can be straightened in O(n) moves and time.
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4 2D Lattice Trees

Given a 2D lattice tree P . We consider a leftmost vertex r of P as its root.
We consider the parent of the root r as the lattice point to the left of r. Our
algorithm proceeds by pulling P to the left successively until the whole tree is
straightened. Each pulling step moves each vertex along its edge connecting to
its parent until it is within distance ε2 to its parent in the previous step. This
step is repeated n times so that, finally, P is straightened. Figure 2 shows the
execution of the algorithm on a small tree. Step i generates a new polygon Pi.
We assume P = P0. First, we can show the following lemma.

r r r

rrr

P P1

P2

P3P4P5

Fig. 2. Straightening a lattice tree by pulling it to the left successively

Lemma 1. During step i of the algorithm, suppose v is moving on the edge
vi−1ui−1, where vi−1 and ui−1 are the positions of v and its parent just after
step i − 1. Then

(i) Each vertex of Pi is within distance iε2 to a lattice vertex.
(ii) Each vertex v is within distance iε2 to the core lattice edge of e.
(iii) No edge crossings can occur.

Proof. Suppose, just after step i, v stops at position vi. Note that d(vi, ui−1) ≤ ε2

due to the algorithm.
(i) It is clear that any vertex of P0 is a lattice point. Assume any vertex of Pi−1

is within distance (i − 1)ε2 to a lattice vertex U . Consider any vertex vi of Pi.
We know that d(vi, ui−1) ≤ ε2. As d(ui−1, U) ≤ (i−1)ε2, we have d(vi, U) ≤ iε2.

(ii) Suppose the core edge of ui−1vi−1 is UV , where ui−1 and vi−1 converge
to U and V , respectively. Since d(vi, U) ≤ iε2 and d(vi−1, V ) ≤ (i − 1)ε2, we
have d(v, UV ) ≤ iε2 as v moves along segment vi−1vi.

(iii) (Sketch) Consider a moving edge e = uv, where u is the parent of v. We
show that e cannot cross other moving edges. Let the parent of ui−1 in Pi−1 be
ti−1, which converges to lattice point T . By part (ii), we have d(u, TU) ≤ iε2.
We consider two cases depending on whether T, U and V are collinear. If they
are, then any point p on e is within distance iε2 from TUV . Otherwise, T, U
and V are not collinear. Then any point p on e either lies in the lattice cell with
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T, U and V as its vertices or is within distance iε2 from TUV . Also d(e, TUV ) ≤
1/

√
2 + 2iε2 ≤ 2/3 < 1− 2ε. Then it is not hard to see that e cannot cross other

moving edges. The details are omitted in this abstract.

As each pulling step takes O(n) moves and time, the whole algorithm takes
O(n2) moves and time.

Theorem 3. A 2D lattice tree can be straightened in O(n2) moves and time.

5 2D Lattice Polygons

Given a simple 2D lattice polygon P . Start with any lattice edge e of P . We
label the edges of P in counter-clockwise order with consecutive numbers by
starting with labeling edge e with the number 1. An edge of P is called an odd
edge if its label number is odd; otherwise, it is called an even edge. Note that a
2D lattice polygon has even number of edges. We suppose that, throughout the
entire motion, the parity of each edge remains fixed. A vertex is called straight
if it is collinear with both its preceding and following vertices on the polygon.
Otherwise, it is called non-straight.

A block of a lattice polygon is a rectangle of width one such that its left, top
and bottom sides coincides with the edges of the given polygon. A collapsible
block of a lattice polygon is a block such that its right side complementing the
given polygon is a single segment. Such a segment is called the opening segment,
or simply the opening, of the corresponding collapsible block. And the two end-
points of an opening segment are called opening vertices. The path between its
two opening vertices on a collapsible block is called a collapsible path. A block
or path of a near-lattice polygon is collapsible if the corresponding block or path
of its core lattice polygon is collapsible.

The parity of a spring is defined as the parity of its two end edges. Suppose
we walk along the edges of a near-lattice polygon in anti-clockwise order. We
call a non-singleton spring left-twisted if its edges run to the left; otherwise it
is called right-twisted. See Figure 3(a) for examples. A near-lattice polygon is
called consistently twisted if odd and even springs have opposite directions of
twisting. See Figure 3(b) for an example of a consistently-twisted near-lattice
polygon. We first need the following two lemmas.

(a) (b)

Fig. 3. (a) A left-twisted spring and a right-twisted spring, respectively. (b) A consis-
tently twisted near-lattice polygon.
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Lemma 2. In a non-nearly-folded near-lattice polygon, there is a collapsible
block; more precisely, the block with the smallest height is a collapsible block.

Proof. Suppose to the contrary that the block B with the smallest height is not
collapsible. Then its opening contains at least two segments. Thus there is some
block B′ with its left side between these two segments. Obviously the height of
B′ is shorter than that of B. This contradicts our assumption.

Lemma 3. In a consistently-twisted near-lattice polygon, consider a collapsible
block B such that all its non-singleton springs lie on its left side. Then

(i) All its non-singleton springs can be transformed into one non-singleton spring
on any edge on the left side of the block with consistent twisting.

(ii) Its corresponding collapsible path can be transformed to a consistently-twisted
near-lattice path convergent to the opening segment of B.

Proof. (Sketch)
(i) Note that the non-singleton springs lie only on the left side of B. A non-

singleton spring can be transformed into a singleton by moving its remaining
edges to the adjacent spring. Repeating this process results in only one non-
singleton spring on the left side of B. See Figure 4(a) for illustration.

(ii) We need to consider several cases depending on different directions of the
incident edges of its two opening vertices. Note that according to part (i), we can
assume the left side of B contains only one non-singleton spring, which reduces
a lot of cases we need to consider. Figure 4(b) shows the collapse of a specific
collapsible block. Other cases can be handled in a similar way, whose details are
omitted in this abstract.

(b)(a)

Fig. 4. (a) Transform several springs into a single non-singleton spring on the left side
of B. (b) Collapse a collapsible block.
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Lemma 2 says that a near-lattice polygon which is not nearly folded always
contains a collapsible block, which can then be collapsed using Lemma 3 in
O(n) moves and time. Hence, each step of our algorithm is to select the block
with smallest height in the polygon to collapse. Note that all the blocks of the
polygon can be maintained in a priority queue with their heights as keys. After
O(n) collapsing steps, we end up with a nearly folded polygon, which clearly can
be convexified in O(n) moves and time.

Theorem 4. A 2D lattice polygon can be straightened in O(n2) moves and time.

6 3D Orthogonal Chains and Polygons

A 3D 5-chain can lock [4]. We can simulate this chain by an orthogonal 9-chain
as shown in Figure 5(a), where each of its two end edges is longer than the
union of its internal edges. Furthermore, by doubling this 9-chain, we obtain a
3D locked orthogonal unknotted 20-gon as shown in Figure 5(b).

(a) (b) (c)

Fig. 5. (a) A 3D orthogonal locked 9-chain. (b) A 3D orthogonal locked 20-gon. (c)
Collapse a 3D collapsible block.

Theorem 2 implies that a 3D lattice chain can be straightened in O(n) moves.
We present below an algorithm to straighten a class of unknotted lattice polygons
in 3D.

A 3D polygon with simple shadow is a simple 3D polygon whose shadow is
a simple polygon when it is projected orthogonally onto some plane, which we
assume to be xy-plane. A 3D polygon with simple projection is a 3D polygon with
simple shadow such that any line parallel to z-axis intersects the polygon with
at most one single connected component. Alberto-Calvo et al. [1] showed that a
3D polygon with simple projection can be convexified in O(n + T ) time, where
T is the running time of an algorithm to convexify the planar projection. There
are several algorithms to convexify a planar polygon [5,9,14]. The best bound for
T is O(n79) due to the algorithm by Cantarella et al. [5], where the constant is a
polynomial in the ratio between the maximum edge length and initial minimum
distance between a vertex and an edge. In this section, we present an efficient
algorithm to convexify a 3D lattice polygon with simple shadow in O(n2) moves
and time. In this abstract, we only sketch the main idea.
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Suppose P is the given 3D lattice polygon with simple shadow. Consider any
vertical lattice plane π parallel to z-axis. Let Pπ be the intersection of π and P .
Our algorithm starts by collapsing the blocks in each Pπ. This step is similar
to what we do for the 2D case. The difference is that we need to consider more
types of blocks. We define a vertical block as a block of width one with its opening
on its left or right side, and a horizontal block as a block of height one with its
opening on its top or bottom side. Note that a block in 2D case is basically
a vertical back with its opening on its right side. A collapsible block is defined
similarly as the 2D case. This step of our algorithm searches for any collapsible
vertical or horizontal block to collapse for each Pπ. It takes O(n2) moves and
time, and ends up with a near-lattice polygon P ′ whose core is a polygon with
simple projection.

In order to collapse the edges of P ′, we need to define the three dimensional
version of blocks. A 3D block of P ′ is a 3D box B with width one along x-axis or
y-axis such that the intersection of B and the core of P ′ projects orthogonally
to a two dimensional block on xy-plane. A collapsible 3D block is a 3D block
whose orthogonal projection is a collapsible 2D block. Figure 5(c) shows the
result of collapsing a 3D collapsible block, which can be done in O(n) time.
Let lattice polygon Q be projection of the core of P ′ onto xy-plane. Each 2D
block in Q corresponds to a 3D block in P ′. In this step, our algorithm finds
each 3D collapsible block by identifying its corresponding 2D collapsible block
in its orthogonal projection. As there are at most O(n) 3D collapsible blocks to
consider, the running time for this step is again O(n2).

Theorem 5. A 3D lattice polygon with simple shadow can be straightened in
O(n2) moves and time.

7 Diameter-4 Trees in 2D

Let T be a polygonal tree of diameter 4 in the plane, with o as its central node.
We call the edges incident to o back edges, and the rest front edges. A UB-tree is
a tree of diameter 4 with all its back edges of unit length. An SB-tree is a tree
of diameter 4 with all its back edges not longer than their corresponding front
edges. In this section, we show that a UB-tree or SB-tree in two dimensions can
always be straightened.

We first to define some technical terms. A branch is a path from o to a leaf
of T . We define E(B) to be the extension ray of the back edge of B. The direct
straightening of branch B = ouv means to rotate the front edge uv around the
back vertex u until it aligns along E(B) by sweeping through the smaller angle.
We denote S(B) to be the swept region for directly straightening B. The direct
collapse of branch B = ouv means to rotate the front edge uv around the back
vertex u by sweeping through the smaller angle until it makes an arbitrarily
small angle with ou. We say B′ follows B if B′ intersects E(B), and B′ and
B are branches of the same turn. We say B′ directly covers B if B′ intersects
E(B) ∪ S(B), and B and B′ are branches of opposite turns. We then define B′

covers B if there exists some branch B′′ following B or simply being B such that
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B′ directly covers B′′. We define a branch B′ mutually covers another branch B
if B′ covers B, and vice versa. Branch B′ non-mutually covers branch B if B′

covers B, but B does not cover B′.
We categorize the branches into three groups:

• (Group I) branches falling on a maximal following cycle,
• (Group II) those falling on non-mutual covering sequences, and
• (Group III) those including mutually covered branches and branches covered

by some straightened branches.

See Figure 6 for an example of different groups of branches in a UB-tree. Group
I branches are those with all of their vertices dotted, Group III branches are
bold, and the remained branches are Group II branches.

o

Fig. 6. A UB-tree

Our algorithm consists of three phases, in which
we straighten the three groups of branches in the
above order respectively. In the following cycle (if
there is), the front edge of some of its branches B
can be swept through S(B) by passing through an
angle of Ω( 1

n ). Thus Phase I needs O(n2) moves
to straighten such a following cycle. In Phase II,
we observe that the last branch (including its
following branches) of a maximal non-mutual cov-
ering sequence can be straightened directly. We re-
peat this peeling process to straighten all Group
II branches. Finally, we consider the final phase of
our algorithm. Group III branches have an impor-
tant property that their front edges are shorter than their corresponding back
edges. This implies that all branches with a common back edge can all be col-
lapsed directly altogether. Then all the collapsed branches can be rotated to
pack inside a small wedge, say a quadrant. Now the collapsed branches can be
drawn out of the quadrant one by one to be straightened directly. This com-
pletes our algorithm. The algorithm can be implemented to take O(n2) moves
and O(n3 log n) time. We summarize in the following theorem.

Theorem 6. A UB-tree or SB-tree of diameter 4 in two dimensions can be
straightened in O(n2) moves and in O(n3 log n) time.

8 Conclusion

We present efficient algorithms to straighten lattice chains and trees and to con-
vexify lattice polygons in both two and three dimensions, respectively. In par-
ticular, we only manage to show that a special class of lattice polygons in three
dimensions can be convexified. We believe that any unknotted lattice polygon in
three dimensions can always be convexified. We are currently investigate in this
direction. It is also open whether an unknotted unit polygon in three dimensions
can always be straightened. Furthermore, it is open whether a unit tree in two or
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three dimensions can always be straightened [13]. In Section 6, we show that an
orthogonal chain in three dimensions can lock. However, it is unknown whether
an orthogonal tree in two dimension can lock. In fact, we conjecture that it can
always be straightened.
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Abstract. We consider the problem of simplifying a triangle mesh using
edge contractions, under the restriction that the resulting vertices must
be a subset of the input set. That is, contraction of an edge must be made
onto one of its adjacent vertices. In order to maintain a high number of
contractible edges under this restriction, a small modification of the mesh
around the edge to be contracted is allowed. Such a contraction is denoted
a 2-step contraction. Given m “important” points or edges it is shown
that a simplification hierarchy of size O(n) and depth O(log(n/m)) may
be constructed in O(n) time. Further, for many edges not even 2-step
contractions may be enough, and thus, the concept is generalized to
k-step contractions.

1 Introduction

In computer graphics objects are commonly represented using triangle meshes.
One important problem regarding these meshes is how to efficiently simplify
them, while maintaining a good approximation of the original mesh. As an ex-
ample, scanners often produce information redundant meshes containing millions
of points and triangles. Further, often the simplification should be performed in
several rounds, such that a level-of-detail hierarchy is constructed. One applica-
tion of such a hierarchy is that an appropriate level may be chosen depending
on viewing distance, as finer details tend to be unnecessary as the distance in-
creases. Other applications include progressive transmission and efficient storing.
It is common to represent the level-of-detail hierarchy as a directed, acyclic and
hierarchical graph, where each level in the graph corresponds to a level in the
level-of-detail hierarchy, and where each node in the graph corresponds to a tri-
angle, in the natural way. The first, top-most, level in the graph corresponds to
the input mesh. When a contraction is made two triangles disappear, and one
or more triangles are affected in such a way that their appearance change. In
the graph this is represented with edges between disappearing triangles at some
level i, and the affected triangles at level i + 1. The efficiency of a simplifica-
tion algorithm is directly related to the size [3,11] and depth of the hierarchy
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(a) (b)

Fig. 1. (a) A valid edge contraction (merge-operation). (b) An invalid edge contraction.

graph that it produces. Simplification algorithms constructing hierarchies of
size O(n) and depth O(log n) have been presented for several problem variants
[1,2,4,10].

Mesh simplification is generally regarded as a mature field (see [5,8] for sur-
veys), consisting of several suggested methods and problem variants. In this pa-
per the method of iteratively contracting edges [1,6,7,9] is considered, where
contractions are made such that no crossing edges result from the contrac-
tion. This method is examined under the restriction that the set of output
points is required to be a subset of the input points, i.e., contraction of an
edge must be done onto one of its adjacent vertices. In order to maintain a
high number of contractible edges a small modification of the mesh around an
edge to be contracted is allowed. This method is denoted a 2-step contraction,
and it is shown that a hierarchical graph may be produced, under the restric-
tion that m “important” points or edges may not be contracted, of size O(n)
and depth O(log(n/m)). Further, in order to enable contraction of edges that
are not even 2-step contractible the concept is generalized to k-step contrac-
tions. We show that k is upper bounded by either deg(v) − 4 of a vertex v
to be contracted, or by the number of concave corners on the link of v (see
Section 2 for definition). Each step in this method is geomorphic, i.e., it is visu-
ally smooth. Further, as will be seen the relations of adjacency between trian-
gles change temporarily during a k-step contraction, but are restored once it is
complete.

Note that many of the results in previous papers were achieved using only
1-step contractions. However, in those cases there were no restrictions on the set
of output points. Note also that in this paper we only consider vertices in the
plane, and as such the results mainly apply to terrains, and not to the general
setting of arbitrary objects in 3-dimensional space. However, the ambition is to
extend the results to such a setting in the future.

2 Contracting in k Steps

As input we are given a planar triangulation T . We can assume that the outer
hull of T is a rectangle, as illustrated in Fig. 2a.

The aim is to simplify T by iteratively performing edge contractions, as shown
in Fig. 1a, where an edge (u, v) can be contracted such that u is moved to v,
or v is moved to u. A problem that often occurs during edge contractions of
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A v

(a) (b) (c)

Fig. 2. (a) A planar triangulation with a rectangular outer hull is given as input. (b)
No edge in region A can be contracted, unless using k-step contractions. (c) Example
of a vertex v that is not 1-step contractible.

triangulations is that the resulting graph might not be a planar triangulation.
An edge contraction is said to be valid if the resulting graph is still a planar
triangulation (see Figure 1a), and invalid (see Figure 1b) otherwise. In this paper
we consider the problems of defining valid contractions and computing valid
contractions. Below some basic operations and notations are defined:

Definition 1. Given a vertex v, the link of v, or lk(v) is the cycle through the
neighbors of v, where the edges of the cycle lie on triangles incident on v.

Definition 2. Two basic operations:

– A merge operation contracts one vertex v onto another vertex u′, both con-
nected by an edge in T , into one vertex u′, as illustrated in Fig. 3c-d.

– Given vertices s, t and u, let C(s, t, u) be the vertices (s and t included) of
the chain of lk(v) which connects s and t, and includes u. A split-and-merge
on v and u, using s and t (illustrated in Fig. 3a-c) denotes a split-and-
merge where v is split into two vertices, v and v1, where v1 is connected to
C(s, t, u) ∪ v, and v is connected to lk(v) \ C(s, t, u) ∪ s ∪ t. After this split
v1 is merged on u. The split-and-merge operation is said to be valid if the
triangulation is planar at each step of the operation.

Note that an edge contraction is obtained by a single merge operation. Below
we define 1-step contractible using the merge concept, and we then generalize
this concept into k-step contractible.

v
v1

v
u u u′

v′ v′ v′

u

v′
(a) (b) (c) (d)

vu′ u′uu′

t

s s

t

s

t

s

t

Fig. 3. Illustrating a 2-step contraction of a degree 6 node v
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Definition 3. If two vertices u and v, connected by an edge in the triangula-
tion T can be merged into a new vertex w placed at u such that the contracted
triangulation still is planar, then v is said to be 1-step contractible (at u).

Definition 4. A vertex v is said to be k-step contractible if and only if one
can perform at most k − 1 valid split-and-merge operations followed by a 1-step
contraction of v.

With regards to guaranteeing a hierarchical simplification graph of small size
and depth, mainly 2-step contractions will be considered. Fig. 3 shows a vertex
v that is 2-step contractible since a valid split-and-merge operation is followed
by a 1-step contraction of v. However, depending on complexity, some areas
of an object may require more triangles for good approximation than others.
(For example, the nose of a face, versus the more flat cheek.) Thus, it would
be desirable to be able to choose local areas in which to contract. Problem is,
2-step contractions may not always be sufficient. For example, in the structure
shown in Fig. 2b, if one wants to perform k-step contractions which change or
contract only edges inside the area A, then k has to be at least proportional to
the number of edges inside A (divided by some constant). Thus, the generalized
concept of a k-step contraction is needed, and below (Theorem 1 and 2) upper
bounds on k are shown.

Theorem 1. Any vertex v, not on the hull of T , with degree at most k is q-step
contractible, where q = max{1, k − 4}.
Proof. The theorem is proven by induction on the degree of v.

Base case: Vertices of degree at most four can easily be 1-step contracted. We
thus assume that v has degree five, which immediately implies that lk(v) contains
five points. Consider the interior of lk(v). If there exists a corner v′ of lk(v) which
can see all other corners of lk(v) then v is 1-step contractible at v′, and thus,
the theorem holds. Next, since lk(v) has at least three convex corners, lk(v) has
at most two concave corners. If lk(v) has only one concave corner u then this
corner must see all the vertices of lk(v) and, hence, v is 1-step contractible to
u. If lk(v) has two concave corners we have two cases, as shown in Fig. 4. Note

(a) (b)
p′

p

u′
u

p u

p′ u′

q

l
v

v

Fig. 4. The two cases of Theorem 1
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that edges between v and lk(v) are not included in order to avoid cluttering of
the figure. In the first case, Fig. 4a, the concave corner points p and u are not
incident, while in the second, Fig. 4b, they are.

First case. First note that p and u must lie inside the triangle defined by the
three points of the convex corners in lk(v), and also that p and u always see
each other. There exist two incident convex corner points p′ and u′, such that p′

is incident on p and u′ is incident on u. It is straightforward to see that p sees
all points of lk(v) if the edge (p, p′) does not cross the line-extension of the line
(u, u′), as p then can see u′. The same holds for u, the edge (u, u′) and the line
extension of (p, p′). However, both cases can not occur simultaneously as this
implies that the edges (u, u′) and (p, p′) must cross. Thus, either p or u can see
all of lk(v).

Second case. Consider the one convex corner point q not incident on either p
or u. Since q is connected to both p′ and u′, q will see all corners of lk(v) if and
only if q sees both p and u. Next, consider the line-extension l of the edge (p, u).
Since p and u are concave corners p′ and u′ must lie on the same side of l. Further,
q must connect to p′ and u′ such that p′ and u′ form convex angles and p and u
form concave angles. This means that q must lie on the opposite side of p and u,
with regards to l, which immediately implies that q can see both p and u.
Induction hypothesis: Assume that the theorem holds for all vertices of degree
at most m − 1. Induction step: Assume that v has degree m. There exists a
vertex on the link of v that can see at least four consecutive vertices of the link
including itself. Denote these vertices u1, . . . , u4. Now a valid split-and-merge
on v and u3, using u1 and u4 can be performed. Note that the result of this
split-and-merge will be one ’flipped’ edge. The degree of v is now m − 1, thus
applying the induction hypothesis on v proves the theorem. ��
Note that if v has degree more than six then it might not be 1-step contractible
as shown in Fig. 2c. Next, the following corollary can be shown using the fact
that any planar graph has total degree at most 6n − 12, and the fact that there
can be at most n − 3 points of degree six (full proof omitted).

Corollary 1. At least two edges in T are 1-step contractible.

Note that if only few edges are 1-step contractible then almost all vertices in T
must have degree 6. The bound stated in Corollary 1 is probably very conserva-
tive. If the number of 1-step contractible edges is small that implies that almost
all vertices of T have degree 6. However, we have not been able to construct any
examples where almost all vertices have degree 6 while simultaneously being not
1-step contractible.

Next, we present an alternative bound on k. As only concave corners restrict
visibility, intuitively it should be easier to contract a vertex with few concave
corners on its link. Assume w.l.o.g. that v has c concave vertices on lk(v), as
shown in Fig. 5. Let s1 be any concave vertex farthest from v and order the
concave vertices s1, . . . sc as they appear clockwise around v (in this context, let
i + 1 = 1 if i = c, and let i − 1 = c if i = 1). Next, let βi denote the angle
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∠si−1sisi+1 and let αi denote the angle ∠sivsi+1. Further, let C(si) denote the
subchain of lk(v) clockwise from si to si+1 and let CP (si) denote the convex
polygon bounded by C(si) and the edge (si, si+1). The following observation
will be needed (proof omitted):

Observation 1. If αi ≤ 180◦, then the two consecutive concave vertices si and
si+1 must see each other.

Further, the theorem below is shown using a valid split-and-merge which reduces
the number of concave corners by at least one in the resulting lk(v). Such a split-
and-merge will be denoted a reducing split-and-merge, for which the following
observation can be made (proof omitted).

Observation 2. If βi ≤ 180◦, v 
∈ CP (si−1) and v 
∈ CP (si), then a split-and-
merge on v and si, using si−1 and si+1, is reducing.

The following theorem can now be shown.

Theorem 2. Every vertex v, not on the hull of T , with at most c concave ver-
tices on its link is c-step contractible.

Proof. The theorem is proven by induction on c.
Base cases: If c = 1 then let s be the concave vertex of v on lk(v). Obviously, v
can be 1-step contracted at s, thus the theorem holds for c = 1.

If c = 2 then let s1 and s2 be the two concave vertices on the link of v. It
is easily seen that a split-and-merge to s1 followed by merging v to s2 can be
performed, thus v is 2-step contractible.

Induction hypothesis: Assume that the theorem holds for all vertices of degree
at most c − 1.

Induction step: We show that there always exists reducing split-and-merge, and
thus, applying the induction hypothesis on v proves the theorem. Consider the
following cases:

Case 1: αc ≤ 180◦ and α1 ≤ 180◦: See Fig. 5a. In this case we immediately
have that v 
∈ CP (sc) and v 
∈ CP (s1) since both αc and α1 have degree at
most 180◦. Further, since s1 is a point at furthest distance from v, it holds that
β1 ≤ 180◦, and thus, a split-and merge on v and s1, using sc and s2, is reducing
(Observation 2).

Case 2: αc > 180◦ or α1 > 180◦: See Fig. 5b. Assume w.l.o.g. that αc > 180◦

which immediately implies that v ∈ CP (sc). Since s1 and sc both are visible from
v there can be no other point si, i 
= c, such that v ∈ CP (si). Let li and l′i be the
lines through si and v, and through si and si+1, respectively. Let H1 be the area
defined by lines l1 and l′1, as shown in Fig. 5(b). Hc is defined correspondingly
using lines lc and l′c. Assume that H1 contains a vertex u ∈ C(sc), and consider
a split-and-merge on v and s1, using u and s2. Note that all vertices between
u and s1 are visible to s1, since H1 ∪ Hc can contain vertices from C(sc) only.
The same holds between s1 and s2 since v 
∈ CP (s1) (see above). Further, the
definition of l1 guarantees that v will remain in the resulting lk(v) after the
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Fig. 5. An illustration of the two cases of Theorem 2. Figure (a) illustrates Case 1,
and Figure (b) illustrates Case 2.

split-and-merge, and line l′1 guarantees that the corner defined by edges (u, s1)
and (s1, s2) is convex. Thus, if H1 contains a vertex u ∈ C(sc), the above split-
and-merge must be reducing. Correspondingly, a split-and-merge on v and sc,
using u and sc−1 will be reducing if Hc contains a vertex u ∈ C(sc). Finally, note
that the area H1 ∪Hc must actually contain a vertex from C(sc) since αc > 180
and C(sc) connects sc with s1. ��
Allowing k-step contractions increases the flexibility of simplification since it al-
lows a greater fraction of the edges to be contracted, as shown by lower bound be-
low, which follows from Theorem 1 and the fact that the total degree is bounded
(proof omitted).

Observation 3. At least (k−1
k+2 )n vertices are k-step contractible, for any k ≥ 2.

Note that a similar bound can be obtained using Theorem 2 instead. However,
we have not been able to improve the bound in Observation 3 using this theorem.

3 The Hierarchical Graph

In this section we show that using 2-step contractions we can achieve a hierarchi-
cal graph, as defined in the introduction, of size O(n) and depth O(log(n/m)),
given m important points or edges that may not be contracted. In order to do
this several edges must be simultaneously contracted in each round, that is, at
each level of the graph. Next, note that a previously valid 1-step contractible
edge might become invalid after other edges have been contracted, as shown in
Fig. 6. In order to avoid this problem, for the purpose of finding simultaneously
contractable edges, we consider independent edges. Let S′

2 be the set of 2-step
contractible vertices of degree at most six. Combining Theorem 1 and Observa-
tion 3 it is straightforward to see that |S′

2| ≥ n
4 . Since a vertex in S′

2 has at most
six neighbors we can choose at least n

4·7 = n
28 vertices from S′

2 such that none
of these chosen vertices has a neighbor from S′

2. Thus, there exists a constant
fraction γ of independent 2-step contractible vertices, and the following theorem
can be shown.
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x

y
y

Fig. 6. Initially x and y are contractible, but after x has been contracted y is no longer
contractible

Theorem 3. Given m important points S′′ ⊂ S in a triangulation T one can
perform O(log(n/m)) rounds of 2-step contractions to obtain a triangulation T ′

of a point set S′ with complexity O(m) such that S′′ ⊆ S′ ⊂ S.

Proof. Let ni denote the number of vertices before round i and consider an
arbitrary constant δ < γ. Perform rounds until m ≥ δni, that is until the
resulting point set S′ have complexity O(m). This is possible, since as long as
m ≤ δni, there are at least γni − δni = (γ − δ)ni 2-step contractible vertices
remaining, containing no important point. Thus, T ′ can be obtained using at
most O(log 1

γ−δ
n − log 1

γ−δ
m) = O(log(n/m)) rounds of contractions. ��

Lemma 1. Using rounds of 2-step contractions a hierarchical graph of size O(n)
and depth O(log(n/m)), given m important points, may be produced in O(n) time.

Proof. Note that the above theorem immediately enables the construction of
hierarchical graph of depth O(log(n/m)). Next, consider the size. Note that the
number of nodes in the hierarchical graph is O(n) and only 2-step contractible
vertices of degree at most six are used during the rounds of contractions. This
means that at most four triangles are affected by a contraction, which implies
that each node in the hierarchical graph has at most four incident edges. Thus,
the hierarchical graph has size O(n).

Next, consider the time complexity of creating the hierarchical graph. Note
that Theorem 3 was shown using only 2-step contractible edges of constant
degree (at most six). Thus, in each round i the set of γni independent 2-step
contractible edges can be found in O(ni) time. This means, since ni ≤ nγi−1,
that the total running time is O(n+nγ +nγ2 + . . .+nγO(log(n/m))) = O(n). ��
Finally, note that the above results also hold for m important edges (or m edges
and vertices, in total), since each important edge restricts possible contraction
for only a constant (two) number of vertices.
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Abstract. In this paper we present an algorithm for enumerating with-
out repetitions all the non-crossing generically minimally rigid bar-and-
joint frameworks (simply called non-crossing Laman frameworks) on a
given generic set of n points. Our algorithm is based on the reverse search
paradigm of Avis and Fukuda. It generates each output graph in O(n4)
time and O(n) space, or, with a slightly different implementation, in
O(n3) time and O(n2) space. In particular, we obtain that the set of
all non-crossing Laman frameworks on a given point set is connected by
flips which remove an edge and then restore the Laman property with
the addition of a non-crossing edge.

1 Introduction

Let G = (V, E) be a graph with vertices {1, . . . , n} and m edges. G is a minimally
rigid graph (also called Laman graph) if m = 2n − 3 and every subset of n′ ≤ n
vertices spans at most 2n′ − 3 edges. An embedding G(p) of the graph G on a
set of points p = {p1, · · · , pn} ⊂ R2 is a mapping of the vertices V to points
in the Euclidian plane i $→ pi ∈ p. The edges ij ∈ E are mapped to straight
line segments pipj . An embedding G(p) is non-crossing if no pair of segments
pipj and pkpl corresponding to non-adjacent edges ij, kl ∈ E, i, j 
∈ {k, l} have a
point in common.

Laman graphs embedded on generic point sets are called Laman frameworks
and has the special property of being minimally rigid [14,10], when viewed as bar-
and-joint frameworks with fixed edge-lengths, which motivates the tremendous
interest in their properties.

In this paper we give an algorithm for enumerating all the non-crossing Laman
frameworks embedded on a given generic point set.

� Supported by JSPS Grant-in-Aid for Scientific Research on priority areas of New
Horizons in Computing.

�� Supported by NSF grant CCF-0430990 and NSF-DARPA CARGO CCR-0310661.
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To the best of our knowledge, this is the first algorithm proposed for enu-
merating (without repetitions, in polynomial time and without using additional
space) all the non-crossing generically minimally rigid frameworks. We achieve
O(n4) time per graph in O(n) space (or, with a slightly different implementation,
in O(n3) time and O(n2) space) by using reverse search.

The reverse search enumeration technique of Avis and Fukuda [2,3] has been
successfully applied to a variety of combinatorial and geometric enumeration
problems. The necessary ingredients to use the method are an implicitly de-
scribed connected graph on the objects to be generated, and an implicitly de-
fined spanning tree in this graph. In this paper we supply these ingredients for
the problem of generating Laman frameworks.

Relevant to the historical context of our work are the results of Bereg
[6, 7] using reverse search combined with data-specific lexicographic orderings
to enumerate triangulations and pointed pseudo-triangulations of a given point
set. We notice in passing that there exist several other algorithms for enumerat-
ing (pseudo-)triangulations [9, 8, 1], but they are based on different techniques.

Also relevant is the pebble game algorithm of Jacobs and Hendrickson [11] for
2-dimensional rigidity, see also [5]. Our complexity analysis relies on the recent
results, due to Lee et al. [15,16], regarding the detailed data-structure complexity
of finding and maintaining rigid components during the pebble game algorithm.
Indeed, the time-space trade-off of our algorithm is inherited from [16].

We briefly discuss now the difference between generating non-crossing Laman
frameworks as opposed to pointed pseudo-triangulations. A pointed pseudo-
triangulation is a special case of a non-crossing Laman framework on a given
point set [19], where every vertex in the embedding is incident to an angle larger
than π. Pseudo-triangulations are connected via simple flips, in which the re-
moval of any non-convex-hull edge leads to the choice of a unique other edge
that can replace it, in order to restore the pointed pseudo-triangulation prop-
erty. The flip graph of all pointed pseudo-triangulations is a connected subgraph
of the graph of all the Laman frameworks. In fact, it is the one-skeleton of a
polytope [18], and the reverse search technique can be directly applied to it.
Bereg’s efficient algorithm makes use of specific properties of pointed pseudo-
triangulations which do not extend to arbitrary non-crossing Laman frameworks.
In particular, remove-add flips are not unique, relative to the removed edge, in
the case of non-crossing Laman frameworks. Moreover, it is not even known
whether the set of all the non-crossing Laman frameworks on a points set is
connected via these flips.

We describe now briefly how this problem came to our attention via the work
of the third author. Graph theoretical approaches are widely used in structural
mechanics [12], where the edges and vertices in the graph represent the bars
and rotation-free joints of a structure called a truss. It is well-known [4] that
the stiffest truss under static loads is statically determinate, a concept directly
related to the previously defined Laman-graph property. Ohsaki et al. [17] pre-
sented a method for generating multi-stable flexible bar-joint system, and found
that the optimal structure is statically determinate. Since the optimal topology
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is found by removing unnecessary nodes and members from the highly connected
initial structure, the computational cost can be reduced if the candidate set of
Laman frameworks are first enumerated. In a related direction, Kawamoto et
al. [13] presented a method based on the enumeration of planar graphs to find
an optimal mechanism. None of these papers give a general approach for the
systematic enumeration of rigidity-constrained structures - which is the topic of
our paper.

2 Preliminaries

Besides the definition given in the introduction, Laman graphs can be character-
ized in various ways. In particular, Laman graph on n vertices has an inductive
construction, called Henneberg construction [20]. Start from an edge for n = 2.
At each step, add a new vertex in one of the following two ways:

Henneberg I: add a new vertex and connect it to two old vertices via two new
edges.
Henneberg II: remove an old edge, add new vertex, and connect it to two
endpoints of the removed edge and to some other vertex.

A mechanism is a flexible framework obtained by removing one or more edges
from a generic Laman framework. Its number of degrees of freedom or dof’s,
is the number of removed edges. We will encounter mostly 1-degree-of-freedom
(1dof) mechanisms, which arise from a Laman framework by the removal of one
edge. Similarly, considering a Laman graph, the graph obtained by removing
one edge from it can be called the graph of 1dof. In particular, a mechanism
with k dofs has exactly 2n − 3 − k edges, and each subset of n′ vertices spans
at most 2n′ − 3 edges. A subset of some n′ vertices spanning exactly 2n′ − 3
edges is called a rigid block. A maximal block is called a rigid component or a
body. The edge set of a mechanism is partitioned into rigid components, with
some components possibly containing just one edge each. Two rigid components
are either disjoint (vertex-wise), or may share one vertex. A joint is a vertex
shared by at least two components. These properties, as well as efficient algo-
rithms for computing rigid components in Laman mechanisms, can be found
in [11, 5, 15, 16].

The Laman frameworks on a generic point set form the set of bases of the
generic rigidity matroid on Kn, see [10]. The bases have all the same size 2n−3.
Bases may be related via the base exchange operation, which we will call a
flip between two Laman frameworks. Two Laman frameworks L1 and L2 are
connected by a flip if their edge sets agree on 2n − 4 positions. The flip is
given by the pair of edges (e1, e2) not common to the two bases, e1 ∈ L1 \ L2,
e2 ∈ L2 \ L1. Using flips, we can define a graph whose nodes are all the Laman
frameworks on n vertices, and whose edges correspond to flips. It is well-known
that the graph whose nodes are the bases of a matroid connected via flips, is
connected. But a priori, the subset of non-crossing Laman framworks may not
necessarily be. We will prove this later in Section 4.
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Revese search is a memory efficient method for visiting all the nodes of a con-
nected graph that can be defined implicitly by an adjacency oracle. It can be used
whenever a spanning tree of the graph is defined implicitly by a parent function
which is defined for each vertex of the graph except a prespecified root. Iterating
the parent function leads to a path to the root from any other vertex in the
graph. The set of such paths defines a spanning tree, known as the search tree.

3 The Search Tree

Given a set of points p on the plane. Let G be a set of all the non-crossing Laman
frameworks on p. In this section we define the main structure required by reverse
search, a search tree on G. We choose a certain Laman framework Groot to be the
root. Then we define a parent for every G ∈ G \{Groot}. To show that the parent
function defines a search tree we associate an index to every Laman framework,
such that the parent function always returns a Laman framework with smaller
index. This gives a forest structure. To prove that it is connected and thus a
search tree, we will show in Section 4 that the parent of every non-root node
indeed exists.

Root. We choose the root of the search tree to be a greedy pseudo-triangulation
corresponding to a fixed direction. The simplest way to define it is relative to
the horizontal direction (x-axis).

We first sort the points by x-coordinate and label them as {1, 2, · · · , n} in this
order. Then we construct a Henneberg I pointed pseudo-triangulation as follows.
Start with the edge 12 and continue for n−2 steps. At each step, the next vertex
(in x-sorted order) is added (vertex i + 2 at step i, i = 1, · · · , n − 2), together
with the two tangents from point pi+2 to the (convex hull of) the framework
constructed so far. Fig. 1(a) illustrates the root, and Fig. 1(b) gives an example
of a non-root framework.

Index. Given G ∈ G \ {Groot}, we define its index as a pair index(G) = (c, d),
where c ∈ {2, · · · , n} and d =∈ {1, · · · , n} are, respectively, the label of the
critical vertex of G and the critical degree of the critical vertex, defined below.

The critical vertex (with respect to the root) is the largest label of a vertex
whose incident edges differ from the corresponding set of incident edges in the

(a) (b)

Fig. 1. (a)The root non-crossing Laman framework on a set of 7 points. (b)A non-root
Laman framework.
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root framework. Since all the vertices with labels at least c + 1 have the same
edges as their counterparts in the root framework, it follows easily that the
subset of G spanned by the vertices {1, · · · , c} is Laman. An edge in G is called
non-root if it doesn’t exist in Groot. The critical degree is the number of non-
root edges incident to the critical vertex. For example, the non-root framework
in Fig. 1(b) has index (6, 1). We use the index as a measure of how far a node
(Laman framework) is from the root, whose index is defined to be (1, 0).

Parent rule. The parent of a node (Laman framework) is defined in terms of its
critical vertex via a certain Remove-add flip. The removed edge which does not
exist in the root will be incident to the critical vertex, and the added edge will be
chosen so that it will decrease the index. In general there will be several choices
of such flips. To uniquely define the parent, we will use a lexicographic ordering
of these flips. The efficiency of the parent function depends on the lexicographic
ordering. We will discuss it in Section 5. The correctness of the parent definition
follows from our Main Theorems:

Theorem 1. Every non-root non-crossing Laman framework has a parent whose
index is smaller than that of the current node.

The proof of the above theorem relies on properties of non-crossing Laman frame-
works described in the next section. Based on Theorem 1, we will propose a
reverse search algorithm by the standard techniques developed by [2, 3]. The
detailed description of the algorithm and the complexity analysis will be given
in Section 5.

Theorem 2. The set G can be reported in O(n3) time per non-crossing Laman
framework using O(n2) space and in O(n4) time using O(n) space.

4 Remove-Add Flips in Non-crossing Laman Frameworks

This section contains the proof of Theorem 1 which follows from a sequence of
Lemmas (whose proofs are omitted).

In a graph, a subgraph induced by a vertex set V ′ ⊂ V is a cut if its removal
disconnects the graph.

Lemma 1. A rigid component cannot be a cut in a graph of 1dof.

The following statements are better understood if we forget for a moment the ge-
ometry of the embedding of the non-crossing Laman framework in the Euclidean
plane, and think of G as a spherical (topological) embedding.

Proposition 1. In a topologically embedded planar Laman graph, each face cy-
cle is simple and subdivides the sphere into two disk-like regions.

Lemma 1 shows that a rigid component cannot disconnect the graph, therefore
for each cycle in a rigid component, only one (but not both) of the two (spherical)
disk-like regions induced by it may contain vertices not in the rigid component.
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Since a face is empty, if its boundary cycle is part of a rigid component, we will
say that the face belongs to the rigid component. Notice that a rigid component
may thus contain the outer face. We obtain:

Lemma 2. In a topologically embedded planar Laman graph, the union of all
the faces belonging to the same rigid component form a topological disk.

If the removed edge does not belong to the outer face of a planar embedding of
G, then the complement of G′ may fall inside an interior face and the union of
the (embedded) interior faces of G′ may look like an annulus. See Fig. 2.

(a) (b)

Fig. 2. Removing the dotted edge results in a 1dof mechanism. (a) The removed edge
is interior. The shaded rigid component is not a topological disk (the other rigid com-
ponents are just bars). In (b), the outer rigid component is made out of all the bold
bars, and each of the other bars is a separate component.

Lemma 2 implies that the faces of the non-crossing framework can be divided
into two categories: rigid, if they belong to a rigid component and flexible, oth-
erwise. A rigid component bounds a flexible face, if they share at least one edge.
Since Laman frameworks are 2-connected, all the rigid components are made out
of simple faces, and therefore the boundary of a rigid component is also a simple
cycle. For flexible faces, this may not be true. The next lemmas give some useful
properties of flexible faces:

Lemma 3. All the flexible faces of a 2-connected 1dof non-crossing mechanism
have at least four bounding rigid components.

Lemma 4. If the 1dof non-crossing mechanism is not 2-connected, then all but
one face are as in Lemma 3. The unique exception is a special flexible face
incident to exactly two components, and whose bounding cycle is not simple.

The situations described in Lemma 4 are illustrated in Fig. 3. From these prop-
erties of non-crossing Laman frameworks and 1dof mechanisms, we now sketch
the proof for our main theorem.

Proof (of Theorem 1). Let G ∈ G \ Groot and let pc be the critical vertex of
G. Then the subgraph induced by {1, 2, . . . , c} is still a Laman graph (whose
framework embedded on {p1, . . . , pc} is denoted by G′). From the definition of
the critical vertex, pc is always on the outer face in G′ and there is at least one
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(a) (b)

Fig. 3. The special type of flexible face which is incident to two rigid components only.
(a) Unbounded and (b) Bounded face. Notice that the original graph is 2- but not
3-connected, and the removed dotted edge is incident to the cut pair.

non-root edge incident to pc. Then we delete the non-root edge pcpi from G′ in
the parent function. It suffices to prove that there always exists an edge in e /∈ G′

satisfying: (i) after inserting e to G′ \ {pcpi}, we obtain a non-crossing Laman
framework, and (ii) e is disjoint from pc or a root edge incident with pc by which
resulting framework has a smaller index. The proof has two cases depending on
whether pcpi is on the outer face or not.

Case 1: pcpi is not on the outer boundary. In this case 1dof mechanism G′\{pcpi}
satisfies the properties proven in the previous lemmas.

(1-a) When G′ \ {pcpi} is 2-connected. From Lemma 3 all flexible faces are
incident to at least four rigid components (one of which may be annulus-like
component) and four distinct joints. We call a pair of joints incident if they
belong to the same component. Consider the geodesic paths between any pair
of non-incident joints, and call them geodesic diagonals of the faces. There are
at least two such geodesic diagonals in each face, since each face has at least
four joints. A geodesic diagonal may lie entirely on the boundaries of the rigid
component incident to the face, in which case it must also go through the joints
between those rigid component, or may have at least one segment lying inside
the face. Moreover, such a segment may go between vertices belonging to the
same rigid component, or may go between two different components. In this last
case, the segment connects two distinct rigid components. We say such segment
free. We claim that there exists at least one free segment, on at least one geodesic
diagonal path in all the flexible faces of the mechanism.

Suppose that there is more than one flexible face in G′ \ {pcpi}. Since each of
them has at least one free segment, there always exists at least two free segements
one of which is not incident to pc. Then, we consider the case where there is only
one flexible face in G′ \ {pcpi}. Note that all the joints are on the outer face and
the flexible face. If all four joints are the convex hull vertices, then the interior
face contains two distinct free segments, and one of which is not incident to pc.
Otherwise, suppose the interior face contains only one free segment pcpi. Then,
there exists one free segment in the outer face which is certainly not incident to pc.

(1-b) When G′ \ {pcpi} is 1-connected. From Lemma 4, G′ \ {pcpi} has an
annulus-like component (see Fig.3(a)). Then its inner boundary is a polygon P ,
and P must consist of at least three vertices including pc. Let pa and pb be
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two of these vertices different from pc. Since the vertex pi does not belong to
this annulus-like component, there is another disk-like body lying inside P to
which pi belongs. Since two rigid components cannot have more than one vertex
(joint) in common, at least one vertex of pa and pb does not belong to the rigid
component to which pi belongs. Let pa be such a vertex. Consider the two paths
inside the flexible face between pairs of vertices (pc, pi) and (pa, pi) respectively:
they must contain at least two distinct line segments lying entirely inside the
face (diagonals). These two paths connect vertices lying on two distinct rigid
components (one is the annulus-like component), so each of them can be added
as a bar to create a non-crossing Laman framework. Furthermore, the diagonal
between pi and pa is not incident to pc.

Case2: pcpi is on the outer boundary. At least one of the upper and lower hull
edges incident to pc is missing in G′. Without loss of generality, we assume the
upper hull edge is missing, and let pup

c be the endpoint of upper hull edge other
than pc. Suppose that pc and pup

c belong to distinct rigid components. Adding
pcp

up
c to G′ \ {pcpi} creates another non-crossing Laman framework which satis-

fies the desired properties. Then, we consider the case where pc and pup
c belong

to the same rigid component. Consider adding an auxiliary vertex p̄ incident to
pc and pup

c such that G′∪{p̄pc, p̄pup
c } is a non-crossing Laman framework (it can

always be constructed by a Henneberg I ), we can show the existance of at least
one free segment not incident to pc and p̄ by the same way as in Case 1. Deleting
p̄ and adding this free edge produces a non-crossing Laman framework.

This completes the proof of Theorem 1: the search tree for reverse search is
well defined. ��
Remark. Notice that the Flip operation is not always valid when the removed
edge is on the convex hull (see Fig. 3(b)).

5 Algorithm and Its Analysis

In this section we give a more detailed version of the algorithm for enumerating
non-crossing Laman frameworks and analyze its running time. We start by intro-
ducing some notations. For each vertex pi, an upper-hull edge (lower-hull edge)
of pi is defined as the upper (lower) convex hull edge of {p1, . . . , pi} incident to
pi, and let pup

i (plow
i ) denote the other endpoint of the upper-hull (lower-hull)

edge of pi. Note that pip
up
i and pip

low
i are both root edges.

When we refer to an edge pipj, the label of pi is assumed to be larger than
that of pj . We define an edge ordering on the set of all possible edges in such
a way that: (i) an edge pipj precedes an edge pkpl whenever i < k, and (ii)
when i = k holds, pip

low
i precedes all the other edges incident to pi, and pip

up
i

is ordered next to pip
low
i . If neither pipj nor pipl is a root edge, pipj precedes

pipl when j < l. We use the notations pipj ≺ pkpl when pipj precedes pkpl,
and pipj = pkpl when they coincide. According to the edge ordering, all possible
edges are labelled appropriately. For an edge set A, we use the notations max{e |
e ∈ A} and min{e | e ∈ A} to denote the largest and smallest labelled edges in
A, respectively.
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Parent operation. We define the following paren function fparent : G \{Groot}
→ G based on the proof of Theorem 1:

Definition 1. (Parent function) For G′ ∈ G with G′ 
= Groot, let pc′ be the
critical vertex in G′. G = G′ \ {e′1} ∪ {e′2} is the parent of G′, where
• e′1 = max{e | e ∈ G′ \ Groot}, and
• e′2 = max{e ∈ Kn | e . pc′pup

c′ , and G′ \ {e′1} ∪ {e} ∈ G}.
Note that the edge e′1 to be deleted is incident to pc′ from the definition of the
critical vertex in Section 3. We can prove the following lemma:

Lemma 5. Time complexity of the parent function is O(n2) time in O(n2) space
or alternatively O(n3) time using O(n) space.

Finding a next child. Given G ∈ G. Let LG and LKn be the list of edges of G
and Kn ordered lexicographically, let δ(G) and δ(Kn) be the number of elements
of LG and LKn and let LG(i) and LKn(i) be the i-th elements of LG and LKn ,
respectively. Then, we define the adjacency function such that, for e1 ∈ G and
e2 ∈ Kn,

Adj(G, i, j) :=

{
G \ {e1} ∪ {e2} if G \ {e1} ∪ {e2} ∈ G,

null otherwise,

where e1 = LG(i) and e2 = LKn(j).
Based on the algorithm in [2,3], we describe our algorithm in Algorithm 1. The

while-loop from line 4 to 14 has δ(LG) · δ(LKG) iterations which requires O(n5)

Algorithm 1. Reverse Search
1: Groot :=the root of the search tree;
2: G := Groot; i, j := 0; Output(G);
3: repeat
4: while i ≤ δ(LG) do
5: i := i + 1;
6: while j ≤ δ(LKG) do
7: j := j + 1;
8: if Adj(G, i, j) �= null and fparent(Adj(G, i, j)) = G then
9: G := Adj(G, i, j); i, j := 0;

10: Output(G);
11: go to line 4;
12: end if
13: end while
14: end while
15: if G �= Groot then
16: G′ := G; G := fparent(G);
17: determine integers pair (i, j) such that Adj(G, i, j) = G′

18: i := i − 1
19: end if
20: until G = Groot, i = δ(LG) and j = δ(LKG)
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time if simply checking the line 8. In order to improve O(n5) time to O(n3) time
we claim the followings: For every integer i that represents a removing edge,
preparing a data structure of [15, 16] in O(n2) time and in O(n2) space,

(i) it can be checked in O(1) time whether Adj(G, i, j) returns null or not for
each integer j, and

(ii) given an integer j0 with 0 ≤ j0 ≤ δ(LKG), the minimum integer j > j0
satisfying fparent(Adj(G, i, j)) = G can be found in O(n2) time with O(n2)
space if such an edge exists.

Thus, we achieve O(n3) time algorithm since we take O(n2) time for each integer
i. (Also, we can show O(n4) time algorithm with O(n) space by similar way.)
By this we proved Theorem 2.

6 Conclusions

We presented an algorithm for enumerating all the non-crossing minimally rigid
graphs embedded on a generic point set. While our main focus in this paper is to
show that this can be done in polynomial time, we expect that the complexity
of our algorithm may be improved via a combination of more sophisticated data
structures and further insights into the specific properties of non-crossing Laman
frameworks (as opposed to just Laman frameworks).
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Abstract. A non-decreasing sequence of n integers is the degree se-
quence of a 1-tree (i.e., an ordinary tree) on n vertices if and only if
there are least two 1’s in the sequence, and the sum of the elements is
2(n − 1). We generalize this result in the following ways. First, a natu-
ral generalization of this statement is a necessary condition for k-trees,
and we show that it is not sufficient for any k > 1. Second, we iden-
tify non-trivial sufficient conditions for the degree sequences of 2-trees.
We also show that these sufficient conditions are almost necessary using
bounds on the partition function p(n) and probabilistic methods. Third,
we generalize the characterization of degrees of 1-trees in an elegant and
counter-intuitive way to yield integer sequences that characterize k-trees,
for all k.

1 Introduction

1.1 Degree Sequence and Characterization

Definition 1. The degree sequence of an undirected graph G = (V, E) is the
list of degrees of its nodes, with duplication, sorted in non-decreasing order. A
graphic sequence is a sequence of integers which is the degree sequence of a
simple undirected graph. That is, a graph that does not contain loops or parallel
edges. Graph G realizes a degree sequence Δ if Δ is the degree sequence of G.

The basic sequence recognition problem is to determine whether a sequence of
integers is a graphic sequence at all. This problem was solved half a century ago
by Havel [9], Hakimi [7] and Erdös and Gallai [3]. Their solutions are construc-
tive. That is, if the sequence is graphic, they show how to construct a simple
graph that realizes it.

For a specific graph class C, there can be two types of classification results.
The first type is a global classification, where we are given a sequence Δ and
need to determine whether every simple graph that realizes Δ belongs to C. The
second type is an existential classification, where we need to determine whether
there exists a graph in C that realizes Δ and, if so, to construct one.
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Hammer and Simone [8] studied split graphs, which are graphs that have the
property that their node set can be partitioned into a clique and an independent
set. Their results imply that if G is a split graph, then any graph with the same
degree sequence as G is also a split graph. Furthermore, the degree sequences
that are realized by split graphs can be identified in linear time. Another example
of a sequence recognition result was conjectured by Erdös et al. [15] and proved
by Li et al. [12]. The problem is to find the minimal value σ(k, n) such that
every graphic sequence of length n without zero terms that sums to σ(k, n) can
be realized by a graph that contains a clique of size k +1. This value was shown
to be σ(k, n) = (k − 1)(2n − k) + 2. A related result is the Turán number [16]
ex(k, n) which is the smallest integer such that a graph with n nodes and ex(n, k)
edge is guaranteed to contain a clique of size k + 1 [4].

In this paper we consider the characterization problem of k-trees.

1.2 k-Trees and Previous Work

Definition 2. A k-tree is recursively defined as follows.

1. A complete graph with k + 1 nodes is a k-tree.
2. If G is a k-tree and the nodes v1, . . . , vk form a k-clique in G, then the graph

obtained by adding a node to G and connecting it by an edge to each of
v1, . . . , vk is a k-tree.

A 1-tree is a tree, hence this definition generalizes the notion of a tree. The
minimum degree of a node in a k-tree is k, and in the context of a k-tree, by
“leaf” we mean a node of degree k. Given an input graph, it can be determined
in time O(kn) whether this graph is a k-tree [5,13]. Every k-tree has treewidth
k, and in fact k-trees are instrumental in one of the definitions of treewidth [14].
Degree sets of k trees have been studied extensively by Duke and Winkler [1,2,18].
Note that, while degree sequences are ordered in non-decreasing order, the degree
set has no sequence information, nor the number of times a certain number may
be used as the degree of a vertex. In this sense, characterizing degree sequences
is harder than characterizing degree sets. In particular they show that degree
sets of 2-trees are indeed characterized by the degree sets of 2-caterpillars, see
Definition 6, which are a subclass of 2-trees. In [1], Duke and Winkler show that if
D is any finite set of positive integers, which includes 1, then D is the set of vertex
degrees (for a slightly different but equivalent definition of “degree”) of some k-
tree for k=2,3, and 4, and that there is precisely one such set, D = {1, 4, 6},
which is not the set of degrees of any 5-tree. They also show for each k ≥ 2 that
such a set D is the set of degrees of some k-tree, provided only that D contains
some element d, which satisfies d ≥ k(k − 1) − 2

⌊
k
2

⌋
+ 3.

However, prior to our work, degree sequences only of trees were characterized:

Theorem 1 (Folklore). A degree sequence Δ =< d1, d2, . . . , dn > can be real-
ized by a tree iff:

1. 1 ≤ di ≤ n − 1 for all 1 ≤ i ≤ n.
2.
∑n

i=1 di = 2n − 2.
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1.3 Our Work and Results

This work follows from an effort to characterize degree sequences of 2-trees.
Theorem 1 shows that the necessary conditions on the degree sequence of a tree
are indeed sufficient. A natural generalization of this theorem would be that,
for all k ≥ 0, the necessary conditions for the degree sequence of a k-tree, see
Definition 3, are sufficient. However, in this paper (see Section 2, we show that
the conjecture is false for all k ≥ 2. Following this, in Section 3, we identify
the right generalization of degree sequences in a way that helps to characterize
such sequences that correspond to k-trees. The generalization lies in viewing the
degree sequence of a graph in a slightly different way; the entries of a degree
sequence count the number of 2-cliques(edges) that contain a 1-clique(a vertex).

While we show that plausible k-sequences (see Definition 3) do not character-
ize k-trees, we present some fundamental results on them for k = 2. In Section 4
we show that if a plausible 2-sequence contains a 3, then it is the degree sequence
of 2-tree. In this proof, we identify a structure of a 2-tree that makes it possible
to output such a tree in linear time. Having shown that a plausible 2-sequence
which contains a 3 is the degree sequence of a 2-tree, we show in Section 5 that
almost every plausible 2-sequence contains a 3 and hence almost every plausible
2-sequence is realizable. This proof is based on the idea that for a certain num-
ber n, each plausible 2-sequence corresponds to a partition of 2n − 7. We then
use bounds on the partition function p(n) [10,11,17], the integer function that
counts the number of partition of n, to prove the claim.

Throughout the paper, the symbol n usually denotes the size of a k-tree or a
degree sequence. We sometimes identify nodes by their degree. For example, by
“adding a 3”, we mean “adding a node of degree 3”.

2 Non-realizable k-Sequences

For 1-trees it turns out that the necessary conditions on the degree sequence
are indeed sufficient. The natural conjecture would be that the same holds for
k-trees too, for k ≥ 2. In Lemma 1 we show that this conjecture is false for
k-trees by exhibiting one class of sequences that satisfy the necessary conditions
but are not realizable by k-trees. To show this we define plausible k-sequences
as those that satisfy the necessary conditions.

Definition 3. A sequence of integers Δ =< d1, d2, . . . , dn > is a plausible k-
sequence if the following conditions hold:

1. di ≤ di+1 for all 1 ≤ i < n.
2. dn ≤ n − 1.
3. d1 = d2 = k.
4.
∑n

i=1 di = k(2n − k − 1).

Lemma 1. For every k > 1, for every integer n such that b = k(n+1)
k+2 is a

positive integer, the plausible k-sequence d1 = d2 = . . . = dn−k−2 = k, dn−k−1 =
. . . = dn = b is not the degree sequence of any k-tree.
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Proof. Consider a k-tree T corresponding to the said plausible k-sequence. Let
L ⊆ T be the set of all nodes of degree k. Now T − L induces a k-tree on k + 2
nodes, which has two non-adjacent nodes, say a and b, of degree k. Now, no matter
in what order we add the vertices of L to obtain the k-tree T from the k-tree T −L,
we will never be able to equalize the degrees of T −L. The proof is by an averaging
argument, and exploits the fact that a and b are not adjacent. Let us consider the
following two vertex sets A = {a, b}, and B = T − L − A. In each step of a
construction of T from T −L, we show that the average degree of vertices in B is
more than the average degree of vertices in A. Clearly, in T −L, the average degree
in A is k, and in B it is k+1. Whenever a new vertex is added, it must be adjacent
to at least k−1 vertices in B and at most one vertex in A. Therefore, after adding
m vertices, the average degree of A will be at most k+ m

2 , and the average degree of
vertices in B will be at least k+1+ m(k−1)

k . So the degrees of vertices in T −L can
never become all equal. Therefore, d1 = . . . = dn−k−2 = k, dn−k−1 = . . . = dn = b
is not the degree sequence of a k-tree. �

3 Integer Sequences That Characterize k-Trees

Definition 4. The (k, k + 1)-degree of a k-clique C in a graph G is defined
as the number of (k + 1)-cliques in G which contain C. The (k, k + 1)-degree
sequence of a graph G is the list of (k, k + 1)-degrees of the k-cliques in G, with
duplicates, sorted in non-decreasing order.

The (1, 2)-degree sequence of a graph is its degree sequence, and its (2, 3)-degree
sequence can be thought of as the edge-triangle degree sequence.

Definition 5. For n ≥ k + 1, a sequence of integers Δ =< d1, d2, . . . , dr > is a
(k, k + 1)-sequence if the following conditions hold:
1. r = k + 1 + (n − k − 1)k.
2. di ≤ di+1 for all 1 ≤ i < r.
3. If n = k + 1, di = 1 for 1 ≤ i ≤ k + 1. If n > k + 1, then di = 1 for

1 ≤ i ≤ 2k.
4.
∑r

i=1 di = (k + 1)(n − k).

The following two lemma follow from the definition of a (k, k +1)-sequence, and
are used in the proof of Theorem 3, which is our main theorem.

Lemma 2. For n = k + 1, the (k, k + 1)-sequence is unique and every element
is a 1. For n = k + 2, the (k, k + 1)-sequence is unique; d1 = d2 = . . . = d2k =
1, d2k+1 = 2.

Lemma 3. Let r > k + 1. Let < d1, . . . , dr > be a (k, k + 1)-sequence and let
l be the smallest integer such that dl > 1. If < dk+1, . . . , dl − 1, . . . , dr > is the
(k, k +1)-degree sequence of a k-tree, then < d1, . . . , dr > is the (k, k +1)-degree
sequence of a k-tree.

Theorem 2. Let Δ =< d1, d2, . . . , dr > be a sequence of integers. Then Δ is
the (k, k + 1)-degree sequence of a k-tree iff Δ is a (k, k + 1)-sequence.
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Proof.First we prove the necessary condition. In a k-tree on n vertices, the num-
ber of k-cliques, denoted by r, is k(n − k) + 1. Further, the sum of the entries
in the (k, k + 1)-degree sequence < d1, d2, . . . , dr > is

∑r
i=1 di = (k + 1)(n − k).

The proofs of these claims are by induction on n. The base case is for n = k +1;
in this case there are k k-cliques, a unique k + 1-clique, and the sum of the
degrees is k + 1. To complete the induction, if we assume that these formulas
hold for n, proving that they hold for n + 1 follows by simple arithmetic. We
now prove the property on the entries of the degree sequence. If n = k + 1,
as observed before, there are k k-cliques, and a unique k + 1-clique. So the de-
gree sequence is d1 = d2 = . . . = dk+1 = 1. For the case of n > k + 1, we
observe a simple invariant maintained in every k-tree: there are two vertices of
degree k, this property is easily seen in the inductive construction of k-trees.
Further, in a k-tree a vertex of degree k is present in exactly k k-cliques. Each
of these k-cliques is contained in the unique k + 1-clique induced by the vertex
and all its neighbors. The entries corresponding to these k k-cliques are 1 in the
(k, k + 1)-degree sequence. Since there are two vertices of degree k in any k-
tree, it follows that there are 2k 1’s in the (k, k +1)-degree sequence. Therefore,
d1 = d2 = . . . = d2k = 1.

We prove the sufficient condition by induction on the length of the (k, k + 1)-
sequence. Let us consider a (k, k + 1)-sequence d1, d2, . . . , dr. If r = k + 1, then
the corresponding k-tree is the clique of k + 1 vertices. If r = 2k + 1, then the
corresponding k-tree has k + 2 vertices in which there is a k-clique, and two
non-adjacent vertices are both adjacent to each vertex in the k-clique. There
are no other vertices and edges in the graph. Therefore, (k, k + 1)-sequences of
length k + 1 and 2k + 1 can be realized by k-trees, which is the base case for
our induction. Let us consider the case when r > 2k + 1. Let l be the smallest
integer such that dl > 1. Clearly, l > 2k. We show that dk+1, . . . , dl − 1, . . . , dr

is a (k, k + 1)-sequence. The sum of the degrees is clearly (k + 1)(n − 1 − k).
We only need to show that dk+1 = dk+2 = . . . = d3k = 1. If we assume not
that is we assume that dk+1 = . . . db = 1, b < 3k. Then it follows that we have
k(n − 1− k) + 1− b + k entries in the sequence which are more than 1. Further,
we also know that the sum of these entries is (k + 1)(n − 1 − k) − b + k. It now
follows that (k + 1)(n − 1 − k) − b + k ≥ 2k(n − 1 − k) + 2 − 2b + 2k, that is
b ≥ (n−1−k)(k−1)+k+2. If b < 3k, then it follows that 2k−2 > (n−1−k)(k−1),
which in turn implies that n < 2 + (k + 1), that is n = k + 1 or n = k + 2. This
means r ≤ 2k+1, a contradiction to the fact that we are considering r > 2k+1.
Therefore our assumption that dk+1, . . . , dr is not a (k, k+1)-sequence is wrong.
Inductively, dk+1, . . . , dl − 1, . . . , dr is the (k, k + 1)-degree sequence of a k-tree.
By Lemma 3 it now follows that d1, . . . , dr is also the (k, k + 1)-degree sequence
of a k-tree. Hence the characterization is complete. �

4 Sufficient Conditions for 2-Trees

In this section we present our main results on the sufficient conditions on the
degree sequence of 2-trees.
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We call a 2-tree, which contains exactly two leaves, a 2-chain. In a 2-tree T ,
a pruning sequence is a minimal sequence of degree 2 nodes of T such that after
removing these nodes according to the sequence, we get a 2-chain. The process
of applying a pruning sequence to a 2-tree is called pruning.

Definition 6. A 2-caterpillar is either a 3-clique, or a 2-tree with a pruning
sequence.

Definition 7. For each l ≥ 1, a [d1, d2, . . . , dl]-path is a path v1, . . . , vl such
that for 1 ≤ i ≤ l, the degree of vi is di. For l = 2, we refer to a [d1, d2]-path as
a [d1, d2]-edge.

Theorem 3. If a plausible 2-sequence contains at least one 3, then it is the
degree sequence of a 2-tree. Furthermore, if n > 4 then there is 2-tree realizing
this degree sequence in which there is a [2, 3,min1]-path, where min1 = dl and
dl ≥ 4 but dl−1 < 4. If l < n, then there is even a [2, 3,min1,min2]-path. Here
min2 = dl+1, i.e., min2 is the next degree in the sequence.

The proof of this theorem will be by induction on n, i.e., the number of vertices.
In the induction step, certain boundary cases can occur. These special cases are
dealt with by the following lemmas.

Lemma 4. If in a plausible 2-sequence dn−1 < 4, then the sequence contains
exactly two 2’s and dn = n − 1. Further, such a sequence is the degree sequence
of a 2-tree. In this special case, Theorem 3 holds.

Proof. Since
∑n

i=1 di = 4n − 6, and the fact that d1 = d2 = 2, it follows that∑n
i=3 di = 4n−10. Hence,

∑n−1
i=3 di ≥ 3n−9 = 3(n−3) as dn ≤ n−1. Therefore,

the average value of {d3, . . . , dn−1} is at least 3. Since dn−1 < 4 it follows that∑n−1
i=1 di = 2t + 3(n − t − 1) = 3n − t − 3, where t is the number of 2’s in

d1, . . . , dn−1. Therefore, dn = n + t − 3. Since dn ≤ n − 1, it follows that t ≤ 2.
Therefore, t = 2, and consequently, d3 = . . . = dn−1 = 3, dn = n − 1. This
sequence is trivially realized by a “fan”: a central node of degree n − 1, which
is surrounded by nodes of degree 3 with a node of degree 2 at either end of
this ring. �

d3

d1 d2

d3+1

d1
new node
of degree 3

d2

Fig. 1. Inserting a node of degree 3 to
a [d1, d2, d3]-triangle and changing the
degree of only one node from d3 to
d3 + 1

d

degree 3
node to be
removed

3 3

d-1

Fig. 2. Deleting a node of degree 3
from a [3, 3, d]-triangle and changing the
degree of only one node from d to
d − 1



222 Z. Lotker et al.

Lemma 5. A plausible 2-sequence with exactly two 2’s in the sequence will also
contain at least one 3. Such a sequence is the degree sequence of a 2-tree. In this
special case, Theorem 3 holds. In fact, the nodes of high degrees h1, h2, . . . , hr,
where the hj are the subset of the degrees di with di ≥ 4, can be arranged in any
arbitrary order such that there is a [2, 3, hj1 , . . . , hjr ] path.

Proof. In the explicit construction we will, first, reduce all nodes of degree > 4
to degree 4 and then remove the “appropriate” number of 3’s from the sequence,
namely, a node of degree 4+x corresponds to x nodes of degree 3, as the sum is
fixed at 4n− 6 and there are only two 2’s. This, in the end, leaves a sequence of
the form 2, 2, 3, 3, 4, 4, . . . , 4 with exactly two 2’s, two 3’s and the same number
of 4’s as nodes of high degree in the original sequence. This sequence is then
realizable by a “straight chain”. See Figure 3 for an illustration. Once we have
this basic backbone, we fix a [2, 3, 4, 4, 4, . . . , 4]-path and identify the 4’s with the
desired degrees hj1 , . . . , hjr . For each such node of intended degree hjs we then
insert (hjs − 4) 3’s into the 2-tree, as illustrated in Figure 1. Figure 3 illustrates
the whole process. �

4 4

4 4

4

4

4 2

3

4

h1

4

4

h24 33 3

3

2

4

3

2 4 4

3

23 3 3 3

Fig. 3. Inserting (hi −4) degree 3 nodes on a [4, . . . , 4]-path (shown in bold), changing
the degree of degree 4 nodes to hi, if hi > 4. The nodes are labelled by their degrees.

Lemma 6. If dn = n − 1 in a plausible 2-sequence, then the sequence is the
degree sequence of a 2-tree. In fact, the nodes of high degrees h1, h2, . . . , hr,
where the hj are the subset of the degrees di where di ≥ 4, can be arranged
in any arbitrary order such that, if the 2-sequence contains a 3, there is a
[2, 3, . . . , 3, hj1 , . . . , hjr ] path passing through all nodes of degree 3 consecutively
or, if the 2-sequence does not contain a 3, there is [2, hj1 , . . . , hjr ] path.

Proof. Note that the combination of the conditions of Lemmas 5 and 6 leads
to the very strict conditions of Lemma 4. So we can assume that there are at
least three 2’s in the sequence. The proof of the lemma is by induction. The
induction starts at n = 5 with the only plausible sequences < 2, 2, 2, 4, 4 >
and < 2, 2, 3, 3, 4 >, both of which are realizable as desired by inspection. Now
suppose the lemma holds for up to n. Note that we can always assume that hj1

is not the maximum degree n − 1 (for n nodes) as, if the sequence is realizable,
the node of maximum degree will be connected to all other nodes and can thus
be inserted anywhere along an existing path. So, we can first move it to “the
end” by assuming hjr = n− 1. If there is only one node of high degree ≥ 4, then
we are also in the case of Lemma 4. Now, given a 2-sequence with n + 1 degrees
and dn+1 = n and 4 ≤ hj1 < n, simply remove a 2, as there are at least three
2’s by the comment before, and reduce both the maximum degree dn+1 and the
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degree hj1 by one and apply induction. As the node of maximum degree, which
now has degree n−1, is still connected to all remaining nodes it is, in particular,
connected to the node of degree hj1 − 1. Hence, we can put a leaf back on top
of the [n − 1, hj1 − 1]-edge to get back the original degree sequence. �

The following observation, illustrated in Figure 2, will allow us to reduce the
sequences of 3’s along the path to a single 3.

Observation 1. Given a [3, 3]-edge as part of a [3, 3, d]-triangle in a 2-tree, we
can remove one of the two 3’s while also reducing d to d − 1 and we obtain
another 2-tree.

Corollary 1. If dn = n − 1 in a plausible 2-sequence, then the sequence is the
degree sequence of a 2-tree. In fact, if the 2-sequence contains at least one 3,
then the nodes of high degrees h1, h2, . . . , hr, where the hj are the subset of the
degrees di with di ≥ 4, can be arranged in any arbitrary order such that there is
a [2, 3, hj1 , . . . , hjr ] path. Thus, in particular, for dn = n − 1 Theorem 3 holds.

Proof. Note that if, in the case where dn = n−1, we have a [3, 3]-edge, then both
corresponding nodes must also be connected to the central node of degree n− 1.
Thus, using the observation above, we can remove one of the nodes of degree 3
along with its edge connected to the node of degree n− 1 (now becoming n− 2)
and bridge its other two edges thereby leaving all other degrees unchanged. If
we now put a leaf on top of the other leaf, which is not involved in the desired
path, then this 2 becomes a 3, we insert another 2 (the newly added leaf) and
the central node of degree n − 2 goes back to degree n − 1. Using this trick
repeatedly, we can remove any sequence of 3’s along the path to a single 3. �

With these lemmas, we can now prove the Theorem 3.

Proof. The statement is proved constructively by induction on n. The statement
holds for n = 4. At each step, if we ever get left with (a) only one high degree
greater than 3, (b) only two 2’s or (c) dn = n − 1, then we refer to the lemmas
above, namely Lemma 4, Lemma 5 and Corollary 1

Case 1. Assume that we have no 4’s in the sequence, so min1 > 4 and min2 > 4.
Then reduce min1 and min2 by 1 and remove a 2 from the sequence. This gives
another plausible 2-sequence and there will also remain at least one 3. So, by the
induction hypothesis, construct a 2-tree with a [2, 3, min1 − 1, min2 − 1]-path.
Observe that by reducing the two minima among the vertices of degree more
than 3, they will still remain the minima, as min1, min2 > 4. Add a vertex to
this 2-tree and connect it to the two last nodes on this path. This gives a 2-tree
realizing our original sequence of length n.

Case 2. Now assume we have at least one 4 in the sequence, so min1 = 4. Then
reduce a 3 to a 2, reduce a 4 to a 3 and remove a 2. Again, this will give a
plausible 2-sequence of shorter length with at least one 3. Observe that min2 has
now become the smallest high degree. By induction, we then get a [2, 3, min2, x]-
path for some x. Add a vertex and connect it to the first two nodes on this path.
This then gives a [2, 3, 4, min2]-path. �
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5 Almost Every Plausible 2-Sequence Is Realizable

Let the partition function p(n) give the number of ways for writing a positive
integer n as a sum of positive integers, where the order of addends is not con-
sidered. From [10,11,17], we know the following asymptotic formula.

Theorem 4. As n → ∞, p(n) → exp(π
√

2n/3)
4
√

3n
.

Lemma 7. The number of plausible 2-sequences of size n is at most p(2n − 6).

Proof. The lemma follows from the fact that every plausible 2-sequence Δ of size
n defines a unique partition of the number 2n−6. It is because, by subtracting 2
from each number of Δ, we get a monotonic sequence of n non-negative numbers,
whose sum is (4n − 6) − 2n = 2n − 6. �

Lemma 8. The number of plausible 2-sequences of size n containing at least
one 3 is greater than p(2n − 7) − 2n · p(n).

Proof. Let Δ =< di >n
i=1 be a plausible 2-sequence of size n containing at least

one 3. Since the sum of all di’s is 4n − 6 and since Δ contains at least two
2’s and one 3, the sum of the remaining n − 3 elements in Δ is 4n − 13. Now,
since all the elements are bigger than or equal to 2, Δ defines a partition of
the number (4n − 13) − 2(n − 3) = 2n − 7 into n − 3 blocks. However, not all
partitions (b1, . . . , bl) of 2n − 7 correspond to plausible 2-sequences. There are
two types of partitions which do not correspond to plausible sequences. First,
the partition may contain more than n − 3 blocks and thus cannot correspond
to a 2-sequence of size n; we call such a partition a “long partition”. Below
we show that the total number of such partitions is bounded from above by
np(n). Since the order of the partition is not considered, we can assume that a
partition is sorted non-increasing order. Therefore, if the partition is “long”,
then bn−2 = 1, because bi ≥ 1 for all i ≤ n − 3 and

∑n−2
i=1 bi ≤ 2n − 7.

Therefore, bn−2+i ≤ 1 for all i ≥ 1 and there is a unique j, determined by
the sum of b1, . . . , bn−3 such that bl = 0 for l ≥ j. Hence, a “long” partition
is determined by the sum S of the first n − 3 elements of the partition. Since
n − 5 = 2n − 7 − (n − 2), it follows that n − 3 ≤ S ≤ 2n − 8 and therefore the
number of long partitions is exactly

∑n−5
i=1 p(i). Finally, since p(n) > p(n−5− i)

for all i = 1, 2, . . . , n − 5, it follows that the number of long partitions is less
than np(n).

The other type of partitions of 2n − 7 that do not correspond to plausible k-
sequences are those for which the biggest number is greater than n − 3, leading
to a 2-sequence which violates the maximum condition. The sum of the rest of
the numbers in the partition is between 1 and n − 5. Therefore the number of
such partitions is at most

∑n−5
i=1 p(i), which is again less than np(n). Thus the

lemma follows. �

Theorem 5. Almost every plausible 2-sequence is realizable by a 2-tree.
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Proof. By Theorem 3, it is enough to show that almost every plausible 2-sequence
contains a 3. Consider a random experiment that picks a sequence randomly
from the set of all plausible 2-sequences. Denote by A an event that the picked
sequence contains a 3. By Lemma 7 and 8, we have Pr[A] ≥ p(2n−7)−2n·p(n)

p(2n−6) . From
Theorem 4 we know that the right hand side approaches 1 as n approaches ∞,
so we have limn→∞ Pr[A] = 1, hence the result. �
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Abstract. The concept of tree-width and tree-decomposition of a graph
plays an important role in algorithms and graph theory. Many NP-hard
problems have been shown to be polynomially sovable when restricted
to the class of instances with a bounded tree-width. In this paper, we es-
tablish an improved lower bound on the threshold for a random graph to
have a linear treewidth, which improves the previous result by Kloks [1].

1 Introduction

The concept of tree-width and tree-decomposition of a graph plays an important
role in the study of algorithm and graph theory [2,1]. Many NP-hard problems
have been shown to be polynomially sovable when restricted to the class of
instances with a bounded tree-width. Dynamic programming algorithms based
on the tree-decomposition of graphs have found many applications in research
field such as artificial intelligence[3,4].

Over the past ten years, there has been much interest in the study of the phase
transitions and typical-case behavior of problem instances randomly-generated
from some probability distribution [5,6,7,8]. Randomly-generated problem in-
stances have been widely used as benchmarks to test the efficiency of algorithms
and to gain insight on the problem hardness.

The theory of random graphs pioneered by the work of Erdös [9] deals with
the phase transitions and threshold phenomena of various graph properties such
as the connectivity, the colorability, and the size of (connected) components.
In [1], Kloks studied the threshold phenomenon for a random graph to have
a treewidth linear to the number of vertices, and proved that whp a random
graph G(n, m) with m

n > 1.18 has a treewidth linear in n. Kloks commented
that it was not known whether his lower bound 1.18 can be further improved
and that the treewidth of a random graph G(n, m) with 1

2 < m
n < 1 is un-

known [1]. In [10], it is shown that the threshold phenonmena of having a
linear treewidth can be used to explain the results of many empirical stud-
ies in AI. To the best knowledge of the author, no further result has been
obtained regarding the lower bound on the treewidth of random graphs since
Kloks’ work.
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The purpose of this paper is to establish a lower bound on the threshold for
a random graph to have a linear treewidth, which improves the previous result
by Kloks.

2 Preliminary and the Main Result

The treewidth can be defined in several equivalent ways. The one that is the
easiest to state is via the k-tree defined recursively as follows ([1]):

1. A clique with k+1 vertices is a k-tree;
2. Given a k-tree Tn with n vertices, a k-tree with n +1 vertices is constructed

by adding to Tn a new vertex and connecting it to a k-clique of Tn.

A graph is called a partial k-tree if it is a subgraph of a k-tree. The treewidth
tw(G) of a graph G is the minimum value k for which G is a partial k-tree.

Let P = (Ω,A, Pr) be a probability space where Ω is a sample space, A is a
σ-field, and Pr is a probability measure. Throughout this paper, we will use the
following notations:

EP [X ] : the expectation of a random variable X ;
σ2
P [X ] : the variance of a random variable X ;

IA : the indicator function of an event A ∈ A.

When the probability space is clear from the context, we will suppress the sub-
scripts and simply write E [X ], σ2[X ], and IA.

Let {Pn = (Ωn,An, Prn), n ≥ 1} be a sequence of probability spaces and let
{An ∈ An, n ≥ 1} be a sequence of events. We say that {An ∈ An, n ≥ 1} occur
with high probability (whp ) if lim

n
Prn{An} = 1.

A random graph G(n, m) over n vertices is defined to be a graph with m edges
selected uniformly and randomly without replacement from all the

(
n
2

)
possible

edges [11]. Kloks proved that whp , a random graph G(n, m) with m
n > 1.18

has a treewidth linear in n. Kloks commented that it was not known whether his
lower bound 1.18 can be further improved and that the treewidth of a random
graph G(n, m) with 1

2 < m
n < 1 is unknown [1]. To my best knowledge, no

further result has been obtained regarding the treewidth of G(n, m) since Kloks’
work.

Our main result is an improved lower bound on the threshold of having a
linear treewidth. The improvement comes from two factors: (1) the use of a new
combinatorial construct to make better use of the first moment method; and (2)
the use of a random graph equivalent to G(n, m) that makes it possible to have
a more accurate estimation of some quantity.

Theorem 1. For any m
n = c > 1.081, there is a constant δ > 0 such that

lim
n

Pr { tw(G(n, m)) > δn } = 1. (1)
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We will be working on a random graph model G(n, m) that is slightly different
from G(n, m) in that the m edges are selected independently and uniformly with
replacement. It turns out that as far as the property of having a linear treewidth
is concerned, the two random graph models are equivalent. This is due to the
following observations:

1. There are only o(n) duplicated edges in G(n, m). In fact, let Ie be the indi-
cator function of the event that the potential edge e ∈ V 2 is duplicated and
write I =

∑
e∈V 2

Ie. We have

E [ Ie ] =
∑
r≥2

(
m

r

)
1

N r
(1 − 1

N
)m−r = O(

1
n2 ), where N =

(
n

2

)
.

And thus, E [ I ] = O(1). On the other hand, we have for any pair of potential
edges e1 and e2,

E [ Ie1Ie2 ] ≤ E [ Ie1 ]E [ Ie2 ]

since Ie1 and Ie2 are negatively correlated. It follows that the variance of I
is also O(1), and therefore whp I = o(n).

2. Due to the symmetry of the sampling space, a graph consisting of the first
m − o(n) non-duplicated edges of G(n, m) has the same distribution as
G(n, m − o(n)).

3. For any graph G and its super-graph G′ such that G′ has o(n) more edges
than G, we have

tw(G′) = tw(G) + o(n).

This is because adding one edge to a graph increases the treewidth of the
graph at most by one.

Based on these observations, we will continue to use the notation G(n, m) instead
of G(n, m) in the rest of the paper, but with the understanding that the m edges
are selected independently and uniformly with replacement.

3 Proof of the Result

As the first step to prove theorem 1, we introduce the following concept which
will be used to provide a necessary condition for a graph to have a treewidth of
certain size:

Definition 1. Let G(V, E) be a graph with |V | = n. A partition W = (S, A, B)
of V is said to be a rigid and balanced l-partition if the following conditions are
satisfied:

1. |S| = l + 1;
2. 1

3 (n − l − 1) ≤ |A|, |B| ≤ 2
3 (n − l − 1); and
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3. S separates A and B, i.e., there are no edges between vertices of A and
vertices of B; and

4. If |B| > |A|, then any vertex v in B is not isolated in B, i.e., there exists at
least another vertex in B that is adjacent to v.

A partition that satisfies the first three conditions in the above definition is
called a balanced partition and was used by Kloks in his proof of the 1.18 lower
bound. The rigid and balanced partition generalizes Kloks’s balanced partition
by requiring that any vertex in the larger subset of a partition cannot be moved
to the other subset of the partition, and hence the word “rigid”.

Lemma 1. Any graph with a treewidth l > 4 must have a rigid and balanced
l−partition.

Proof. From [1], any graph with a treewidth l > 4 must have a partition, say
W = (S, A, B), that satisfies the first three conditions in Definition 1. If this
partition does not satisfy the fourth condition, then we can move the vertices
that are isolated in B one by one to A until either |B| = |A| or there is no more
isolated vertex in B.

The following lemma gives an upper bound on the conditional probability for a
partition W = (S, A, B) to be rigid given that the partition is balanced.

Lemma 2. Let G(n, m), c = m
n , be a random graph and let W = (S, A, B) be a

partition such that |S| = l + 1, |A| = a, and |B| = b. Assume that b = tn and
b > a. Then for n sufficiently large,

Pr {W is rigid |W is balanced } ≤
(

1
e

)r(t)n

(2)

where

r(t) =
t2

2c

(
1
e

) 4ct
1−2t(1−t)

.

Proof. Conditional on that W is a balanced partition of G(n, m), each of the m
edges can only be selected from the set of edges

EW = V 2 \ {(u, v) : u ∈ A, v ∈ B}.

Notice that

s ≡ |EW | =
n(n − 1)

2
− ba =

n(n − 1)
2

− tn(n − tn − (l + 1)).

Let Iv be the indicator function of the event that the vertex v ∈ B is isolated
in B and write I =

∑
v∈B

Iv. Then, the random variable I is a function of the

m outcomes when selecting the m edges of the random graph G(n, m). For any
two sets of outcome (w1, · · · , wm) and (w1, · · · , wm) that only differ at the i-th
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coordinate, i.e., the edges of two corresponding graphs are the same except for
the i-th edge, we have

|I(w1, · · · , wm) − I(w1, · · · , wm)| ≤ 2.

This is because changing one edge either increases or decreases the number of
isolated vertices at most by two. Thus, applying McDiarmid’s inequality [12]
gives us

Pr {W is rigid |W is balanced } = Pr { I = 0|W is balanced }
≤ Pr { I − E [ I ] ≤ −E [ I ] }

≤
(

1
e

) 2E2[I]
4cn

.

By the definition of the random variable I, the term E [I] is

b

(
1 − b − 1

s

)cn

= tn

(
1 − tn − 1

n(n − 1)/2 − tn(n − tn − l − 1)

)cn

Formula (2) follows. ��
We need two more lemmas on the behavior of some functions that will be used
in the proof of Theorem 1.

Lemma 3. For any c > 1, the function r(t) in Lemma 2 is monotone-decreasing
on [12 , 2

3 ].

Proof. Taking the derivative of the function

log(r(t)) = 2 log(t) − 4ct

1 − 2t + 2t2
,

we have

1
r(t)

r′(t) =
2(1 − 2t + 2t2)2 − 4c(t − 2t2 + 2t3) − 4c(−2t2 + 4t3)

t(1 − 2t + 2t2)2
.

Now consider the numerator of the right-hand-side of the above, i.e., the function

h(t) = 2(1 − 2t + 2t2)2 − 4c(t − 2t2 + 2t3) − 4c(−2t2 + 4t3).

The monotonicity of the function r(t) can be established if we can show that
h(t) ≤ 0, ∀t ∈ [12 , 2

3 ]. Since we have h(1
2 ) = 1

2 − c < 0 and h(2
3 ) = 50

81 − 144
81 c < 0,

it is enough to show that h(t) itself is monotone. The first and second derivatives
of the function h(t) are respectively

h′(t) = 4(−2 + 8t − 12t2 + 8t3) − 4c(1 − 8t + 18t2)

and
h′′(t) = 4[(8 − 24t + 24t2) − c(−8 + 36t)].

Notice that as a quadratic polynomial, h′′(t) = 4(24t2−(24+36c)t+8(1+c)) can
be shown to be always less than 0 for any t ∈ [ 12 , 2

3 ]. Since h′(1
2 ) = −4c(1+ 1

2 ) < 0,
it follows that h′(t) < 0, ∀t ∈ [12 , 2

3 ]. Therefore h(t) is monotone as required. ��
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Lemma 4. Let g(t) be a function defined as

g(t) =
(1 − 2t + 2t2 + 2δt)c

tt(1 − t)1−t
(3)

where c > 1 and δ > 0 are constants. Then, for small enough δ, g(t) is monotone-
increasing on [ 12 , 2

3 ].

Proof. Consider the function h(t) = log g(t)

h(t) = c log(1 − 2t + 2t2 + 2δt) − t log t − (1 − t) log(1 − t).

We have

h′(t) = c
−2 + 4t + 2δ

1 − 2t + 2t2 + 2δt
− logt + log(1 − t)

and h′(1
2 ) ≥ 0. The second-order derivative of h(t) is

h′′(t) =
c

(1 − 2t + 2t2 + 2δt)2t(1 − t)
× z(t, δ)

where

z(t, δ) = 4(1−2t+2t2+2δt)(1− t)t− (4t−2+2δ)2(1− t)t− (1−2t+2t2+2δt)2.

First, assume that δ = 0. On the interval [12 , 2
3 ], we have

(4t − 2 + 2δ)2 ≤ (4 × 2
3
− 2)2 =

4
9
,

2
9

≤ t(1 − t) ≤ 1
2
(1 − 1

2
) =

1
4

and
1
2

≤ (1 − 2t + 2t2 + 2δt)2 ≤ (1 − 2 × 2
3

+ 2 × (
2
3
)2)2 =

5
9
.

It follows that

z(t, δ = 0) ≥ 4 × 1
2

2
9
− 1

9
− (

5
9
)2 =

2
81

> 0.

Since the family of functions z(t, δ), δ > 0 are uniformly continuous on [12 , 2
3 ], we

have that for small enough δ, z(t, δ) > 0. Therefore, the second-order derivative
h′′(t) is always larger than zero. And so is h′(t) (recall that h′(1

2 ) > 0). It follows
that h(t) is monotone-increasing, and so is g(t). ��

Proof of Theorem 1

Proof. Let W = (S, A, B) be a partition of the vertices of G(n, m) such that
|S| = l + 1 = βn, |B| ≥ |A|, |B| = b = tn, with 1

2 ≤ t ≤ 2
3 . Let IW be the
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indicator function of the event that W is a rigid and balanced l-partition of
G(n, m). We have

E [ IW ] = Pr {W is rigid and balanced }
= Pr {W is balanced }Pr {W is rigid |W is balanced } (4)

From Lemma 2, we know that

Pr {W is rigid |W is balanced } ≤
(

1
e

)r(t)n

By the definition of a balanced partition,

Pr{W is balanced } =
(

1 − tn(n − tn − βn)
n(n − 1)/2

)cn

=
[
1 − 2t + 2t2 + 2tβ + O(1/n)

]cn
. (5)

This is because in order for W to be a balanced partition of G(n, m), each of
the m independent trials can only select an edge from the set of vertex pairs
V 2 \ {(u, v) : u ∈ A, v ∈ B}. Write

φ1(t) =
[
1 − 2t + 2t2 + 2tβ + O(1/n)

]c
,

φ2(t) =

[(
1
e

) 1
c r(t)
]c

and
φ(t) = φ1(t)φ2(t)

so that we have
E [ IW ] = [φ(t)]n.

Let I =
∑
W

IW be the number of rigid and balanced l-partitions of the random

graph G(n, m) where the sum is taken over all such possible partitions. For a
partition (S, A, B), there are

(
n

βn

)
ways to choose the vertex set S with |S| = βn.

For a fixed vertex set S, there are
(
n−βn

b

)
ways (1

2n ≤ b ≤ 2
3n) to choose the

pair (A, B) such that one of them has the size b. Therefore,

E [ I ] =
∑
W

E [ IW ]

≤
(

n

βn

) ∑
1
2 n≤b≤ 2

3 n

(
n − βn

b

)
[φ(

b

n
)]n

≤
(

n

βn

) ∑
1
2 n≤b≤ 2

3 n

(
n

b

)
[φ(

b

n
)]n.
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By Stirling’s formula, we have for n large enough

E [ I ] ≤
(

1
ββ(1 − β)1−β

)n ∑
1
2 n≤b≤ 2

3 n

⎛⎝ φ1( b
n )φ2( b

n )
b
n

b
n (1 − b

n )1−
b
n

⎞⎠n

By Lemma 3,

φ2(
b

n
) ≤ φ2(

2
3
) =

⎡⎣(1
e

) 2
9c2 ( 1

e )4.8c
⎤⎦c

By Lemma 4,
φ1( b

n )
b
n

b
n (1 − b

n )1−
b
n

≤ φ1(2
3 )

(2
3 )

2
3 (1

3 )
1
3

=
(5
9 + 4

3β)c

(2
3 )

2
3 (1

3 )
1
3

.

Therefore,

E [ I ] ≤ O(n)
(

1
ββ(1 − β)1−β

)n
⎛⎝ [(5

9 + 4
3β)
( 1

e

) 2
9c2e4.8c ]c

(2
3 )

2
3 (1

3 )
1
3

⎞⎠n

.

From the above, it can be shown that for sufficiently small β and c > 1.081,

E [ I ] ≤ O(n)γn

with 0 < γ < 1. The theorem then follows from Markov’s inequality and
Lemma 1:

lim
n

Pr { tw(G(n, m)) < βn } ≤ lim
n

Pr { I > 0 } ≤ lim
n

E [ I ] = 0. ��

4 Further Discussion

We conjecture that the threshold of having a linear treewidth is less than one
(actually close to 1/2) based on the size of the “giant” component in a random
graph. Recall that Lemma 1 says that in order for a graph to have a treewidth
≤ l − 1, the graph must have a balanced partition W = (S, A, B) such that
|S| = l and 1

3 (n − l) ≤ |A|, |B| ≤ 2
3 (n − l).

Consider the random graph G(n, m) with 1/2 < m
n < 1 on the set V of

vertices. Let S ⊂ V be a subset of vertices and assume that |S| = βn with β
small enough. Then, the induced subgraph GV \S(n, m) is a random graph with
the edges-vertices ratio c slightly less than m/n. Let

t(c) =
1
2c

∞∑
k=1

kk−1

k!
(2ce−2c)k

and 1 − pS(n) be the probability that the size of the largest component of
GV \S(n, m) is in the order of (1 − t(c))n. The famous result on the size of
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the giant component in a random graph, see e.g. [11], indicates that pS(n) tends
to zero. It is also true that (1 − t(c)) is larger than 2/3 even for c well below 1.
Notice that the probability for G(n, m) to have a balanced partition of the form
(S, A, B) is less than pS(n); the existence of such a balanced partition implies
that the components of the induced subgraph GV \S(n, m) are all of size less
than 2

3n. Since there are
(

n
βn

)
such S, we could have shown that the threshold of

having a linear treewidth is less than one if the probability pS(n) is exponentially
small. Unfortunately, we currently do not know yet if such an exponential upper
bound for pS(n) exists.
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Polytomies�
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Abstract. We consider the problem of reconciling gene trees with a
species tree based on the widely accepted Gene Duplication model from
Goodman et al. Current algorithms that solve this problem handle only
binary gene trees or interpret polytomies in the gene tree as true. While
in practice polytomies occur frequently, they are typically not true. Most
polytomies represent unresolved evolutionary relationships. In this case
a polytomy is called apparent. In this work we modify the problem of
reconciling gene and species trees by interpreting polytomies to be ap-
parent, based on a natural extension of the Gene Duplication model.
We further provide polynomial time algorithms to solve this modified
problem.

1 Introduction

In order to predict the function of genes it is critical to distinguish between spe-
ciation and duplication events in the genes’ common evolutionary history [1,2].
Duplication events, which are pervasive in many gene families, typically result
in incongruence between evolutionary histories of genes and the histories of the
species from which the genes were sampled from. Evolutionary histories of either
genes or species are represented through rooted phylogenetic trees (where every
internal node has at least two children) and we refer to them as either gene or
species trees respectively. An example for incongruence between a gene and its
species tree that is caused by gene duplication is depicted in Fig. 1.

The gene duplication (GD) model from Goodman et al. [3] infers gene du-
plication events and losses from the incongruence of a given gene and species
tree. While the basic GD model has been widely accepted and utilized through
efficient algorithms [4,5,6,7,8], the model is constrained by its interpretation of
internal nodes that have more then two children called polytomies. Polytomies
can be either ‘true’ or ‘apparent’ [9,10]. A polytomy is true if all of its children
diverged from it at the same time. A polytomy is apparent when it replaces some
phylogenetic subtree that could not be fully resolved in the evolutionary history.
In practice, most gene trees contain numerous weakly supported or completely
unresolved evolutionary relationships that may be represented most accurately
by apparent polytomies. The original GD model is confined to true polytomies.

� This research is supported by NSF Grant No. 0334832.
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Fig. 1. The reconciled trees R1 and R2 explain the inconsistencies between the gene
tree G and the species tree S assuming that r is a true and an apparent multifurcation
respectively. The reconciled tree R1 ”truly” duplicates node d into the copies d1, d2, and
d3 in species X. Each of the copies evolves along the species tree and follows speciation
events. The embedding of G into R1 is highlighted by the solid edges. The reconciled
tree R2 explains the inconsistency assuming that r is an apparent multifurcation which
is replaced by the ”unknown” topology of of the species tree S without any duplication
event.

Since true polytomies are rare evolutionary events, available algorithms for the
GD model were mostly designed for only fully binary input trees.

In this work we introduce the first algorithm that infers gene duplications and
losses from gene trees by interpreting polytomies as apparent. We (i) show a nat-
ural modification of the basic GD model for apparent polytomies, (ii) formulate
the Reconciliation problem that infers duplications and losses from the extended
GD model, (iii) present an overview of structural properties of the extended GD
model, and (vi) derive from these properties a polynomial time algorithm that
solves the reconciliation problem.

1.1 Previous Work and Interpreting the GD Model

Goodman et al. [3] introduced the GD model to infer gene duplication and
losses for a given rooted gene and species tree. This work was formalized and
later refined by Page [4] and others [11,12,6,13,14,15,16].

Given a gene tree G and a species tree S, the GD model assumes that a
surjective (onto) mapping from the leaves of the gene tree to the leaves of
the species tree is provided. This leaf association function maps each leaf gene
node to the species which it was sampled from. An LCA mapping function
LCA : V(G) → V(S) can be computed in linear time on a PRAM [13] (see
also [17]) from the leaf association function where LCA(g) is the most recent
species in S that theoretically can contain gene g. The node LCA(g) is the species
of g.

Theoretically, the idea of the basic GD model is to infer all possible gene
trees from the species tree S by allowing genes to either duplicate in two or
more copies or to speciate. Duplication can only take place in one species at a
time, thus the duplicated gene and its copies have the same species. For example
in Fig. 1 gene d is duplicated into three copies d1, d2 and d3 and all genes belong
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to the same species. Speciation occurs when a gene in a species evolves into one
gene for each child of the species. For example in Fig. 1 gene y3 in species Y
speciates into gene a3 and b3 in the species A and B respectively. A gene tree
that is derived from the species tree by either duplicating or speciating genes in
nodes of a species tree is called a duplication tree. For example the tree R1 in
Fig. 1 is a duplication tree.

Formally D is a duplication tree of S, if there exists a function Dup : V(D) →
V(S) such that: (i) a leaf in D maps to a leaf in S, and (ii) every internal
node u in D is either a duplication or a speciation node. Let ChT (x) denote the
children of a node x in a rooted tree T . The node u is a duplication node (or
d-node) if Dup(ChD(u)) = {Dup(u)}, and it is a speciation node (or s-node) if
Dup(ChD(u)) = ChS(Dup(u)). We also call Dup(u) the species of u.

Some of the duplication trees are evolutionary compatible with the gene tree.
In this case, the gene tree G can be embedded into the duplication tree D
through an embedding function Emb : V(G) → V(D) that preserves the pairwise
least common ancestor relations in G. Fig. 1 depicts an example where gene tree
G can be embedded (solid lines) into the duplication tree R1. Duplication trees
that allow such an embedding of the gene tree are explanation trees. Explanation
trees are evolutionary compatible with the gene tree and thus explain the incom-
patibility between the gene tree and the species tree through gene duplication
and losses. A loss is a maximum subtree in E that has no embedding from the
gene tree G. E.g. in Fig. 1 the subtree rooted at node z3 of the reconciled tree
R1 is a loss.

Of particular biological interest are two special types of explanation trees for
a given gene and a species tree.

Node reconciled trees are explanation trees with the minimum number of
nodes [4]. It was shown by [6] and later by [16] that a reconciled tree is uniquely
determined by the given gene and species trees.

Dup-loss reconciled trees are explanation trees with the minimum reconcilia-
tion cost. The reconciliation cost of an explanation tree E is the duplication cost
of E plus the number of losses in E. The duplication cost is the overall number
of copies minus one for each d-node in E.

Node and dup-loss reconciled trees and their reconciliation cost can be com-
puted in polynomial time for complete binary gene and species trees [4,7,5]. Node
reconciled trees and their reconciliation cost can be computed for general gene
and species trees under true polytomies [6].

In the case of complete binary gene and species trees the definitions of node
and dup-loss reconciled trees are equivalent [16,18].

This is not true for gene and species trees with apparent polytomies as is it
is shown in Fig. 1. Thus we consider node and dup-loss reconciled trees for our
extended GD model.

1.2 Presented Work

In this paper, we modify the basic GD model to interpret polytomies in gene trees
as apparent. Apparent polytomies represent unknown phylogenetic subtrees.
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Thus, the idea of the modified GD model is to replace the polytomies by com-
plete binary subtrees. Therefore we consider the set G of all gene trees that we
construct from the given gene tree G by replacing star trees, which are the poly-
tomies and their children, with more refined trees. Let ExpG,S be the set that
contains the explanation trees for each combination of a gene tree in G and the
species tree S in the basic GD model. Equivalently ExpG,S can be described as
the duplication trees into which the gene tree G can be embedded using a relaxed
embedding function. The relaxed embedding is defined similar to the embedding
for the basic GD model, but preserves only the tree order, rather then the pair-
wise least common ancestor relations. Fig. 1 depicts an example. The solid lines
in the reconciled tree R1 represent an embedding under preserving the pairwise
least common ancestor relations. In contrast the solid lines in the reconciled tree
R2 represent an embedding that preserves the tree order, but not the pairwise
least common ancestor relations.

As we show, node and dup-loss reconciled trees are not necessarily unique
thus their definitions are not equivalent. Given a gene and its species tree, the
node reconciliation problem is to find a node reconciled tree and the dup-loss
reconciliation problem is to find a dup-loss reconciled tree. In this paper we
show that both problems are solvable in polynomial time (an asymptotic upper
bound is provided in Section 3.4).

1.3 Outline

We solve the node reconciled tree problem through a divide-and-conquer ap-
proach that divides the node reconciled tree problem into independent subprob-
lems that we solve directly through dynamic programming. Section 2 presents
an overview of the divide-and-conquer approach and Sections 3 introduces a
dynamic programming solution. We briefly describe a similar solution for the
dup-loss problem in Section 4. Due to space requirements we refer the reader for
most of our proofs to the technical report of Chang and Eulenstein [18].

Let G be a gene tree, S its species tree, and R a node reconciled tree from G
to S. Further let (i)LCA be the LCA mapping from G to S, (ii) Dup specify R,
and (iii) Emb be the relaxed embedding from G into R. The subtree of a tree T
rooted at node v ∈ V(T ) is denoted as Tv.

2 Divide-and-Conquer

The gene duplication problem (GDP) is formally defined as:

Instance: A gene tree G, a species tree S and a leaf association A from G to S.
[]

Find: A reconciled tree R from G to S w.r.t. A.

GDP can be divided into independent subproblems based on the following
theorem.

Theorem 1 (LCA-theorem). For every gene g in the gene tree, it holds that
LCA(g) = Dup(Emb(g)) if R is a reconciled tree.
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The theorem shows that the species of a gene in G and the species of its em-
bedding in the reconciled tree R are identical. This allows to partition the edges
of the gene and species tree into independent subproblems of the node recon-
ciled tree problem, and the edges of the reconciled tree into solutions to these
subproblems.

Consider a partition of the edges in the gene tree G into star trees (parent-
child edges). Each star tree rooted at node g defines the edges of a subtree in
the species tree, called the environment of g in the species tree S. This subtree
is defined to be rooted at the node LCA(g) where the subtrees rooted at LCA(c)
for every child c of g are removed. Similarly, we define the environment of g in
the reconciled tree R.

As a result we partition the original problem instance, the gene and species
tree, into subproblems consisting of a start tree in G and its environment in S.
The subproblem, called the core problem, is defined as follows.

Instance: A star-tree G where C = Le(G), a tree S and a mapping function
M : V(G) → V(S) where M(Root(G)) = LCAS(M(C)).

Find: A reconciled tree from G to S w.r.t. M.

Our claim is that the solution to the core problem is the environment of g in
R. A cut-and-paste argument verifies this claim. Suppose the environment of g
in R is a not a solution, then there exists an explanation tree that solves the
given subproblem with fewer nodes. Replacing the environment of g in R with
this explanation tree results in an explanation tree for the original problem that
has fewer nodes then R.

Following the same argument, the solutions to the core problems can be com-
bined to obtain a solution to the original GDP.

3 Solving the Core Problem

Here we outline a dynamic programming approach for solving the core problem.
To show that solutions to the core problem exhibit optimal substructure we
prove that every solution contains node reconciled trees of a particular form,
called normal form. The normal form allows us to describe the size of a node
reconciled tree recursively that can be then computed by dynamic programming.

3.1 A Reconciled Tree in Normal Form

A node reconciled tree R is in normal form if for any d-node d in V(R) with
copies d1, . . . , dk the following two properties are satisfied:

1. The property of normalized duplication: There exists no d-node in
V(Rdi) for 2 ≤ i ≤ k.

2. The property of normalized embedding: For any node u in V(Rdi) ∩
Emb(V(G)) (1 ≤ i < k), there exists a distinct embedded node v in V(Rdj ∩
Emb(V(G)) (i < j ≤ k) where Dup(v) is an ancestor of Dup(u) in S.
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We describe the effect on R if both properties are satisfied. Consider a duplication
node d in R and its copies d1, . . . , dk ordered from left to right, and let C be the
set of all children in the star-tree G that are embedded into the subtree rooted
at d. Each subtree rooted at d1, . . . , dk exists because it contains an embedding
from nodes in C. Thus the subtrees partition the set C into k non-empty sets,
C1, . . . , Ck, based on the nodes that are embedded into each subtree. Recall that
R satisfies the first property. Thus the subtrees rooted at d2, . . . , dk, called non-
duplication subtrees, do not contain any duplication. It follows that the species of
the genes in a non-duplication subtree form an anti-chain in S (no two elements
are on a same path). Now the second property requires that the elements in the
anti-chains in S for each non-duplication subtree are ordered by ≤. We define
Si ≤ Sj if for any i ∈ Si and j ∈ Sj that are on a same path, and i has smaller or
equal depth then j in S. We refer to the gene nodes in C that form the ordered
anti-chains in each subtree rooted at d2, . . . , dk as layers. An example o layers
is depicted in Fig. 2.

S

52,6

C 3,4
1

M

1 2 3 4 5 6

Id : C → N0

R

6 2 5

4 1 3

d

d3d2d1

x

Fig. 2. The problem instance is simplified to a star gene tree where C is the leaf set.
Without loss of generality, a total ordering (Id) in C is assumed. The mapping function
M is essentially the LCA mapping function. Layers in C are {1, 3}, {2, 5, 4} and {6}.
Please note that in this example, R is not an reconciled tree since it is not optimal.

Theorem 2 (reconciled tree in normal form). There exists a reconciled
tree in normal form.

The above theorem warrants the existence of a node reconciled tree in normal
form in all problem instances. It is shown by an algorithm that transforms any
arbitrary reconciled tree into a reconciled tree that satisfies the two properties.
A similar approach shows that for the core problem, a reconciled tree in normal
form has at most one d-node mapped to a single species node through Dup. This
implication helps us to reconstruct an optimal solution in a dynamic program-
ming approach. Furthermore, Theorem 2 identifies an optimal substructure in a
node reconciled tree to form a recursive formula which will be introduced later.
Because of Theorem 2, we will simply refer to a reconciled tree in normal from
as a reconciled tree.

3.2 Optimal Substructure

In order to describe the substructure recursively, we introduce a notation to
represent a partition of (a subset of) C. If v is a node in V(R), then Cv is
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the subset of C mapped to Rv through Emb, and the definition can be extended
recursively to a subset of C. The same notation applies to a node in S. As shown
in Fig. 2, we can use Cd1 , Cd2 and Cd3 to denote the layers {6}, {2, 5, 4} and
{1, 3} respectively. And the set {2, 5, 4} can be further partitioned into layers
{4} and {2, 5} if necessary. Note that we can generalize the definition of layers
with the imposed total ordering in C and the ordered anti-chains to describe
them uniquely. That is, we call Cd3 the first layer of Cx, denoted by Layer(Cx, 1),
where x = Dup(d), Cd2 the second layer of Cx, denoted by Layer(Cx, 2), and
Cd1 the third layer of Cx, denoted by Layer(Cx, 3). We also denote Cd1 ∪ Cd2

as Remain(Cx, 1), which represents Cx − Layer(Cx, 1) and are called remains, to
emphasize that each non-duplication subtree is embedded by a layer. Note that
the numbers of non-empty layers and remains are always finite and no greater
than |C|.

The linear ordering introduced in C simply gives a unique structure among
layers and remains, and allows us to find an equivalent reconciled tree. With the
generalization in mind, the following theorem concludes the optimal substructure
to describe a reconciled tree recursively.

Theorem 3 (layer, remain embedding). Let v be a vertex in R. It holds
that Cv is either a layer or a remain of CDup(v), and Rv is a reconciled tree from
G|Cv

to SDup(v).

The theorem can be shown by using the recursive structure introduced in the
normal form, combining the definitions of layers and remains properly. In the
next step, we show how to apply the theorem to formulate the substructure
recursively.

3.3 Recursive Solution

In the case of node reconciled trees, the objective is to minimize the size of a
reconciled tree, which means that we need to count the nodes first. In a top-
down fashion, assuming we know whether a node is an s-node or a d-node (and
the number of its copies), the formula can be illustrated by Fig. 3 as there are
exactly two cases.

For the first case, suppose we know that the genes in C are embedded into
the subtree Rd of a node reconciled tree in normal form rooted at a duplication
node d with copies d1,. . .,dk. The first (k − 1) layers of C are embedded into the
subtrees Rd2 , . . ., Rdk

. Then Size(Rd, C) is defined as the number of nodes in Rd

if we embed C into it. We can then write Size(Rd, C) as follows

Size(Rd, C) = Size(Rd1 , C1) + (k − 1) · Size(Sd′) + 1 (1)

where C1 is essentially Remain(C, k−1) and d′ is the species Dup(d) in S. Size(Sd′)
is the size of each non-duplication subtree, since they do not contain any du-
plication, and it is given by S. We have (k − 1) such subtrees. An additional
node is counted for the root of Rd, and Size(Rd1 , C1) accounts for the size of
the remaining subtree rooted at Rd1 . Furthermore, as implied by the normal
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Remain(C, k − 1)

Layer(C, k − 1)
Layer(C, 1)

Cu1 Cu2 Cur

R

d

d1 d2 dk

R

s

u1 u2 ur

Fig. 3. Each complete subtree of a reconciled tree R has a layer or remain embedded.
In the case that s is an s-node in R; Cu1 , . . . , Cur form a partition of Cs. In the case
that d is a d-node in R; Rd2 . . . Rdk

are embedded with the firs k − 1 layers of Cd

(denoted as C above).

form properties, d1 in R has to be an s-node, which automatically advances the
recursion into the second scenario.

In the second scenario, also illustrated in Fig. 3, if a node s in R is an s-node,
we know exactly its children, as in the species tree. Therefore the objective
function Size(Rs, C) can be expressed similarly to Equation (1)

Size(Rs, C) =
∑

u∈Ch(s) Size(Ru, Cu) (2)

The above two equations describe the size of a reconciled tree precisely in a
top-down recursive fashion. By reversing the direction, we can find an optimal
solution (as they are not necessarily unique) from bottom up. In the next step,
we present the general idea behind the optimization.

3.4 Optimal Node Reconciled Tree

The goal of optimization is essentially finding the optimal number of copies of
each node in a reconciled tree. Since a d-node has at least two copies, we can
generalize the notion by saying an s-node has exactly one copy. As demonstrated
in the previous discussion, the number of allowed copies for each node is bounded
by the number of non-empty layers in the remain, which may be reduced by
a duplication event of some ancestor node. Hence, the solution can be found
by trying all possible subproblems in a given subtree then finding the optimal
number of copies.

The process can be memoized using an O(|S| · |C|) table for all feasible com-
binations of vertices and their non-empty remains. One also needs to know |Sv|
for each v ∈ V(S), in which a DFS traversal is sufficient. All leaf nodes can be
initialized immediately since they are all base cases. Each cell stores two values:
Size(v, C′

v) and k(v, C′
v), where C′

v is a non-empty remain of v, as the solution
to the subproblem under the given condition. Once the table is filled up in a
bottom-up fashion, Size(Root(S), C) represents |R|. The whole optimization pro-
cess takes O(|S| · |C|2) time as each cell has at most |C| possible values for k
(and those values are not all necessarily feasible).
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3.5 Constructing a Node Reconciled Tree

It suffices to build a node reconciled tree R, if the optimal k is found for each
v ∈ V(S). Starting at r = Root(S), k(r, C) determines whether the root of
the resulting node reconciled tree is a d-node or an s-node. For v ∈ In(S), if
k(v, C′

v) = k′ is optimal, we know there are k′ copies of the node x in R such
that Dup(x) = v and the embedding nodes in children of x are also determined
accordingly for the next step. Essentially by backtracking k(v, C′

v), there is a
duplication function, and we also know the unique layer structures embedded
into each non-duplication subtree, which gives an embedding function.

4 Dup-Loss Reconciled Tree

In order to minimize the duplication and loss cost, it is necessary to know how
to calculate losses, since the duplication cost in a reconciled tree R is clear. As
losses are closely related to the layers, a lookup table associates the number of
losses in each subtree of S and a given layer can be calculated recursively as a
part of pre-processing. The loss table is of size O(|S| · |C|), and we claim it can be
filled up properly in O(|S|·|C|) time. The recursion is similar to Equation (1) and
(2), but it computes the duplication and loss cost instead of the size of a subtree.
Hence, to determine a dup-loss reconciled tree takes O(|S| · |C|2) time as well.

5 Outlook

Of biological interest is the extension of the GD model that considers in ad-
dition to apparent polytomies in the gene tree also apparent topologies in the
species tree. This extension requires a biologically meaningful definition of a
reconcile tree. Using the relaxed embedding of our extended GD model for the
reconciliation, a solution similar to the presented one might be sufficient.

Further dup reconciled trees that are explanation trees with the minimum
duplication cost under the extended GD model might be valuable to biologists.
A modification of Theorem 1 should allow to compute dup reconciled trees using
our presented approach.
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Abstract. In this paper we present several lower bounds on the approx-
imation of the exemplar conserved interval distance problem of genomes.
We first prove that the exemplar conserved interval distance problem can-
not be approximated within a factor of c log n for some constant c > 0
in polynomial time, unless P=NP. We then prove that it is NP-complete
to decide whether the exemplar conserved interval distance between any
two sets of genomes is zero or not. This result implies that the exemplar
conserved interval distance problem does not admit any approximation
in polynomial time, unless P=NP. In fact, this result holds even when a
gene appears in each of the given genomes at most three times. Finally,
we strengthen the second result under a weaker definition of approxima-
tion (which we call weak approximation). We show that the exemplar con-
served interval distance problem does not admit a weak approximation
within a factor of m, where m is the maximum length of the given genomes.

1 Introduction

A central problem in the genome comparison and rearrangement area is to com-
pute the number (i.e., genetic distances) and the actual sequence of genetic
operations needed to convert a source genome to a target genome. This prob-
lem originates from evolutionary molecular biology. In the past, typical genetic
distances studied include edit [10], signed reversal [13,9,1] and breakpoint [17],
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conserved interval [3,4], etc. (It was Sturtevant and Dobzhansky who came up
with the idea of signed reversal and breakpoint distance, though implicitly, in
1936 [16].) Recently, conserved interval distance was also proposed to measure
the similarity of multiple sequences of genes [3]. For an overview of the re-
search performed in this area, readers are referred to [8,7] for a comprehensive
survey.

Until a few years ago, in genome rearrangement research, people always
assumed that each gene appears in a genome exactly once. Under this as-
sumption, the genome rearrangement problem is essentially the problem of
comparing and sorting signed/unsigned permutations [8,7]. However, this as-
sumption is very restrictive and is only justified in several small virus genomes.
For example, this assumption does not hold on eukaryotic genomes where par-
alogous genes exist [12,15]. Certainly, it is important in to compute genomic
distances efficiently, e.g., by Hannenhalli and Pevzner’s method [8], when no
gene duplications arise; on the other hand, one might have to handle this gene
duplication problem as well. A few years ago, Sankoff proposed a way to se-
lect, from the duplicated copies of genes, the common ancestor gene such that
the distance between the reduced genomes (exemplar genomes) is minimized
[15]. He also proposed a general branch-and-bound algorithm for the problem
[15]. Recently, Nguyen, Tay and Zhang used a divide-and-conquer method to
compute the exemplar breakpoint distance empirically [12]. As these problem
seemed to be hard, theoretical research was followed almost immediately. It
was shown that computing the signed reversals and breakpoint distances be-
tween exemplar genomes are both NP-complete [5]. Recently, Blin and Rizzi
further proved that computing the conserved interval distance between exem-
plar genomes is NP-complete [4]; moreover, it is NP-complete to compute the
minimum conserved interval matching (i.e., without deleting the duplicated
copies of genes). There has been no formal theoretical results, before Nguyen
[11] and our recent work [6], on the approximability of the exemplar genomic
distance problems except the NP-completeness proofs [5,4]. Nguyen [11] proved
that exemplar breakpoint distance cannot be approximated within constant
ratio in polynomial time unless P = NP . Actually, the result was proved
through a reduction from the set cover problem. This work was announced
in [12].

In [6], we present the first set of inapproximability and approximation re-
sults for the Exemplar Breakpoint Distance problem, given two genomes each
containing only one sequence of genes drawn from n identical gene families.
(Some of the results hold subsequently for the Exemplar Reversal Distance
problem.) For the One-sided Exemplar Breakpoint Distance Problem, which
is also known to be NP-complete, we obtain a factor-2(1 + log n), polynomial-
time approximation. The approximation algorithm follows the greedy strategy
for Set-Cover, but constructing the family of sets is non-trivial and is related
to a new problem of longest constrained common subsequences which is re-
lated to but different from the recently studied constrained longest common
subsequences [2].
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2 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed sequence of genes. The order of the genes
corresponds to their positions on the linear chromosome and the signs corre-
spond to which of the two DNA strands the genes are located. While most of
the past research are under the assumption that each gene occurs in a genome
once, this assumption is problematic in reality for eukaryotic genomes or the
likes where duplications of genes exist [15]. Sankoff proposed a method to select
an exemplar genome, by deleting redundant copies of a gene, such that in an ex-
emplar genome any gene appears exactly once; moreover, the resulting exemplar
genomes should have a property that certain genetic distance between them is
minimized [15].

The following definitions are very much following those in [3,4]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F such that
each element is with a sign (+ or −). In general, we allow the repetition of a
gene family in any genome. Each occurrence of a gene family is called a gene,
though we will not try to distinguish a gene and a gene family if the context
is clear. Given a genome G = g1g2...gm with no repetition of any gene, we say
that gene gi immediately precedes gj if j = i + 1. Given genomes G and H, if
gene a immediately precedes b in G but neither a immediately precedes b nor
−b immediately precedes −a in H, then they constitute a breakpoint in G. The
breakpoint distance is the number of breakpoints in G (symmetrically, it is the
number of breakpoints in H).

The number of a gene g appearing in a genome G is called the cardinality of
g in G, written as card(g,G). A gene in G is called trivial if g has cardinality
exactly 1; otherwise, it is called non-trivial. In this paper, we assume that all the
genomes we discuss could contain both trivial and non-trivial genes. A genome G
is called r-repetitive, if all the genes from the same gene family appear at most r
times in G. A genome G is called a k-span genome, if all the genes from the same
gene family are within distance at most k in G. For example, G = −adc− bdaeb
is 2-repetitive and it is a 5-span genome.

Given a genome G = g1g2 · · · gm, an interval [gi, gj ] is simply the substring
gigi+1 · · · gj (which will also be denoted as G[i, j]). For example, given G′ =
bdc−ag−e−fh,G′′ = bdce−gafh, between the two intervals I1 = dc−ag−e−f
and I2 = dce−gaf , there are 2 breakpoints c−a and −e−f . A signed reversal on
a genome G simply reverses the order and signs of all the elements in an interval
of G. In the previous example, if a signed reversal operation is conducted in I1
on G′, then we obtain a new genome G∗ = bfe − ga − c − dh. (All the reversals
concerned in this paper are signed reversals. Henceforth, we simply use reversal
to make the presentation simpler.) The reversal distance between genomes G
and H is the minimum number of reversals to transfer G into H.

Given a genome G over F , an exemplar genome of G is a genome G′ obtained
from G by deleting duplicating genes such that each gene family in G appears
exactly once in G′. For example, let G = bcaadagef there are two exemplar
genomes: bcadgef and bcdagef .
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Given a set of genomes G and two gene families a, b ∈ F , an interval [a, b] is a
conserved interval of G if (1) a precedes b or −b precedes −a in any genome in G;
and (2) the set of unsigned genes (i.e., ignoring signs) between a and b are the
same for all genomes in G. Let G = {G1, G2}, where G1 = bc−ag−e−fdh,G2 =
b − ce − gaf − dh, there are three conserved intervals between G1 and G2:
[e, a], [b, h] and [−a, g].

Given two sets of genomes G and H, the conserved interval distance between
G and H is defined as

d(G,H) = NG + NH − 2NG∪H,

where NG (resp. NH and NG∪H) is the number of conserved intervals in G
(resp. H and G ∪ H). Continuing the example in the previous paragraph, let
H = {H1,H2}, where H1 = b − cg − af − edh,H2 = bagcdefh, then there are
two conserved intervals between H1 and H2: [b, h] and [a, c]. There is only one
conserved interval in G ∪ H: [b, h]. Therefore, d(G,H) = 3 + 2 − 2 × 1 = 3.

If G and H are both a singleton, i.e., G contains only a genome G, and H
contains only a genome H, then we simply use the notation d(G,H) = NG+NH−
2NG∪H to stand for d(G,H). Note that when only one genome G is considered,
every interval in G is a conserved interval. This implies that when G (resp. H)
has n trivial genes, then d(G,H) = 2(n

2 ) − 2NG∪H .
The Exemplar Conserved Interval Distance Problem, denoted as the ECID

problem, is defined as follows:

Instance: Two sets of genomes G and H, each genome is of length O(m) and
covers n identical gene families (i.e., it contains at least one gene from each of
the n gene families); an integer K.
Question: Are there respective exemplar genomes G∗ of G and H∗ of H, such
that the conserved interval distance distance d(G∗,H∗) is at most K?

In the next three sections, we present lower bounds on the approximation of
the optimization version of the ECID problem, namely, to compute or approx-
imate the minimum value K in the above formulation. Given a minimization
problem Π, let the optimal solution of Π be OPT . We say that an approxi-
mation algorithm A provides a performance guarantee of α for Π if for every
instance I of Π, the solution value returned by A is at most α×OPT . (Usually
we say that A is a factor-α approximation for Π.) Typically we are interested
in polynomial time approximation algorithms.

In many biological problems, the optimal solution value OPT could be zero.
(For example, in some minimum recombination haplotype reconstruction prob-
lems the optimal solution could be zero.) In that case, if computing such a zero
optimal solution value is NP-complete then the problem does not admit any
approximation unless P=NP. However, in reality one would be happy to ob-
tain a solution with value one or two. Due to this reason, we relax the above
(traditional) definition of approximation to a weak approximation. Given a min-
imization problem Π, let the optimal solution of Π be OPT . We say that a
weak approximation algorithm B provides a performance guarantee of α for
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Π if for every instance I of Π, the solution value returned by B is at most
α × (OPT + 1).

3 A c log n Lower Bound on Approximating ECID

Theorem 1. It is NP-complete to approximate the Exemplar Conserved Interval
Distance problem within a factor of c log n for some constant c > 0.

Proof. We use a reduction from the Dominating Set problem to the ECID prob-
lem for two sets of genomes G = {G1, G2} and H = {H1, H2} that will be
constructed from the given graph.

Let T = (V,E) be any given graph with V = {v1, v2, · · · , vn} and E =
{e1, e2, · · · , em}. We assume that vertices and edges in T are sorted by their
corresponding indices. We construct two sets of genomes G = {G1, G2} and
H = {H1,H2} as follows. For each vi ∈ V , we have four corresponding genes
v1

i , v2
i , v3

i , and v4
i . We enforce a rule that vk

i is incident to vl
j if and only if k = l

and vi is incident to vj in T . Let Bj
i be the sorted sequence of vertices incident

to vj
i and Bj

i be the unsigned reversal of Bj
i . (“|” is not a gene and is used for

readability purpose.)

G1 = v1
1B1

1v3
1 |v2

1B2
1v4

1 | · · · |v1
n−1B

1
n−1v

3
n−1|v2

n−1B
2
n−1v

4
n−1|v1

nB1
nv3

n|v2
nB2

nv4
n

G2 = −v3
1B1

1 − v1
1 | − v4

1B2
1 − v2

1 | · · · | − v3
n−1B1

n−1 − v1
n−1| − v4

n−1B2
n−1 − v2

n−1|
−v3

nB1
n − v1

n| − v4
nB2

n − v2
n

H1 = v1
1B1

1v3
1 | · · · |v1

n−1B
1
n−1v

3
n−1|v1

nB1
nv3

n|v2
1 − v4

1 | · · · |v2
n−1 − v4

n−1|v2
n − v4

n

H2 = −v3
1B1

1 − v1
1 | · · · | − v3

n−1B1
n−1 − v1

n−1| − v3
nB1

n − v1
n|

−v4
nv2

n| − v4
n−1v

2
n−1| · · · | − v4

1v2
1

Fig. 1 shows a simple graph with six vertices v1, v2, . . . , v6. The corresponding
genomes for this graph are given as follows.

G1 = v1
1v1

3v3
1 |v2

1v2
3v4

1 |v1
2v1

3v3
2 |v2

2v2
3v4

2 |v1
3v1

1v1
2v1

5v3
3 |v2

3v2
1v2

2v2
5v4

3 |
v1
4v1

5v1
6v3

4 |v2
4v2

5v2
6v4

4 |v1
5v1

3v1
4v1

6v3
5 |v2

5v2
3v2

4v2
6v4

5 |v1
6v1

4v1
5v3

6 |v2
6v2

4v2
5v4

6 |
G2 = −v3

1v1
3 − v1

1 | − v4
1v2

3 − v2
1 | − v3

2v1
3 − v1

2 | − v4
2v2

3 − v2
2 |

−v3
3v1

5v1
2v1

1 − v1
3 | − v4

3v2
5v2

2v2
1 − v2

3 | − v3
4v1

6v1
5 − v1

4 | − v4
4v2

6v2
5 − v2

4 |
−v3

5v1
6v1

4v1
3 − v1

5 | − v4
5v2

6v2
4v2

3 − v2
5 | − v3

6v1
5v1

4 − v1
6 | − v4

6v2
5v2

4 − v2
6 |

H1 = v1
1v1

3v3
1 |v1

2v1
3v3

2 |v1
3v1

1v1
2v1

5v3
3 |v1

4v1
5v1

6v3
4 |v1

5v1
3v1

4v1
6v3

5 |v1
6v1

4v1
5v3

6 |
v2
1 − v4

1 |v2
2 − v4

2 |v2
3 − v4

3 |v2
4 − v4

4 |v2
5 − v4

5 |v2
6 − v4

6

H2 = −v3
1v1

3 − v1
1 | − v3

2v1
3 − v1

2 | − v3
3v1

5v1
2v1

1 − v1
3 |

−v3
4v1

6v1
5 − v1

4 | − v3
5v1

6v1
4v1

3 − v1
5 | − v3

6v1
5v1

4 − v1
6 |

−v4
6v2

6 | − v4
5v2

5 | − v4
4v2

4 | − v4
3v2

3 | − v4
2v2

2 | − v4
1v2

1

Claim A. The given graph T has a dominating set of size K if and only if there
are exemplar genomes gi for Gi and hi for Hi for i = 1, 2, such that we have,
letting G∗ = {g1, g2} and H∗ = {h1, h2},
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1

v

v v

v

v

3

4

5

v6

2

Fig. 1. Illustration of a simple graph for the reduction

(1) NG∗ = 2K

(2) NH∗ = K

(3) NG∗∪H∗ = K

Note that (1), (2) and (3) together imply d(G∗,H∗) = K.
We now prove the above claim. The “only if part” is easy. We only show the

proof for (2) as the proofs for (1) and (3) would be similar. If T has a dominating
set of size K, then for all those vj which is not in the dominating set we delete
all B1

j in H1 and B1
j in H2. For those remaining B1

i in H1 and B1
i in H2, we

delete the duplications (say v1
l ) consistently in H1 and H2. It is easy to see that

the conserved intervals we have are [v1
i , v3

i ] in H1 and [−v3
i ,−v1

i ] in H2, which
correspond to the vertices in the dominating set.

The “if part” is slightly more tricky. Assume that (1), (2) and (3) are all
true. In this case, we only need to focus on (2), i.e., NH∗ = K. First, notice
that the second half of H1 and H2 (i.e., those involved with v2

j − v4
j or their

unsigned reversals) will not contribute anything to the number of conserved
intervals in H∗. Notice also that only these [v1

i , v3
i ] from the first half of H1 can

possibly form conserved intervals with the corresponding [−v3
i ,−v1

i ] from the
first half of H2. If the number of conserved intervals in H∗ is K, then those K
conserved intervals must come from [v1

i , v3
i ] in h1 and [−v3

i , v1
i ] in h2. Moreover,

if there is any deletion in B1
i in H1 and in B1

i in H2, then the deletion has to be
consistent. If v1

j appears in B1
i and B1

i , then unless it appears in B1
l and B1

l we
must keep them to avoid extra conserved intervals in the form of [v1

j , v3
j ] in H1

and [−v3
j ,−v1

j ] in H2. Therefore, from the K conserved intervals in H∗ we can
construct the K vertices which form the dominating set for T .

Let opt(T ) denote the size of the minimum dominating set of the graph T ,
and let opt(G,H) denote the minimum exemplar conserved interval distance
between G and H. It follows from Claim A that opt(T ) = opt(G,H). The size
of T is |V | + |E| = n + m. It is easy to see that the size of G and H is at
most 8(n + m). Raz and Safra [14] proved that the Dominating Set Problem
cannot be approximated within a factor of c1 log(n + m) from some constant
c1 > 0. Let c = c1/4. If there is an algorithm that can approximate the exemplar
conserved interval distance problem within a factor of c1 log(|G| + |H|), where
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|G| (resp. |H|) denotes size of G (resp. H), i.e., the number of genes in it. Then,
this algorithm can be used to solve the Dominating Set Problem: the returned
exemplar conserved interval distance for opt(G,H) is also for opt(T ). Let app(T ),
which is app(G,H), denote the result returned by the algorithm. Then, we have

app(T ) = app(G,H) ≤ c log(8(n + m))opt(G,H) = c log(8(n + m))opt(T )
≤ 4c log |T |opt(T ) = c1 log |T |opt(T )

Hence, opt(T ) can be approximated within a factor of c1 log |T |, a contradiction
to the result obtained by Raz and Safra [14]. Therefore, the exemplar conserved
interval distance problem cannot be approximated with a factor of c log(|G|+|H|)
for a constant c > 0. ��

4 The Zero Exemplar Conserved Interval Distance
Problem

Recently, Chen, Fu and Zhu proved in [6] that the zero exemplar breakpoint dis-
tance problem is NP-complete. Following the spirit of [6], in this section we shall
consider the zero exemplar conserved interval distance problem, i.e., the problem of
deciding whether the exemplar conserved interval distance between any two given
sets of genomes G and H is zero or not. We shall show that this problem, like the
zero exemplar breakpoint distance problem, is also NP-complete.

Lemma 1. Let G and H be two genomes such that each has n trivial genes and
the set of genes in G is the same as the set of genes in H. (In other word, G
is a signed permutation of H.) Then, the conserved interval distance between G
and H is zero, i.e., d(G,H) = 0, if and only if either G = H or G is the signed
reversal of H.

Proof. It follows from the given condition that d(G,H) = 2(n
2 ) − 2NG∪H . If

G = H or G is a signed reversal of H, then every two genes in G form a
conserved interval in G and H. Thus, NG∪H = (n

2 ). This implies d(G,H) = 0.
Now, suppose d(G,H) = 0. Then, we have NG∪H = (n

2 ), i.e., every two genes
in G form a conserved interval in G and H. We can prove by induction on n
that either G = H or G is the singed reversal of H. The details are omitted due
to space limit. ��
Theorem 2. Given any two genomes G and H which are both 3-repetitive, it is
NP-complete to decide whether the exemplar conserved interval distance between
G and H is zero or not.

Proof. It is easy to see that this ZECID problem is in NP. To prove its NP-
hardness, we will construct a reduction from the 3SAT problem to the ZECID
problem, following the reduction for proving the NP-hardness for the zero break-
point distance problem in [6].

Let F = f1
∧

f2
∧ · · ·∧ fq be a conjunctive normal form, where each fi is a 3-

disjunctive clause like (x1
∨

x4
∨¬x7). We construct two genomes G and H such

that F is satisfiable iff G and H have zero exemplar conserved interval distance.
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We consider fi, 1 ≤ i ≤ q, as names of genes. Assume that F has n boolean
variables xi, 1 ≤ i ≤ n. Let G = S1g1S2g2 · · · gn−1Sn and H = S∗

1g1S
∗
2g2 · · · gn−1

S∗
n, where g1, · · · , gn−1 are peg genes that occur only once in G or H. For 1 ≤

i ≤ n, Si = fi1 · · · fiu
fj1 · · · fjv

and S∗
i = fj1 · · · fjv

fi1 · · · fiu
, where fi1 , · · · , fiu

are the clauses containing xi, and fj1 , · · · , fjv
are the clauses containing ¬xi.

Since each clause has at most 3 literals, S and H are 3-repetitive.
Following the approach in [6], if F is satisfiable, then we have an exemplar

genomes G′ and H ′ such that G′ = H ′. Hence, by Lemma 1 we have d(G′, H ′) =
0. If there are two exemplar genomes G′′ and H ′′ such that d(G′′, H ′′) = 0, then
by Lemma 1 we have G′′ = H ′′, because G′′ and H ′′ contain all unsigned genes
in the set {f1, · · · , fq, g1, · · · , gn−1} and no genes are repetitive. If Si becomes
empty in G′′ then we can assign a value to xi arbitrarily. Otherwise, we assign
xi = 1 if it becomes a subsequence of fi1 · · · fiu

in G′′, or we assign xi = 0 if
it becomes a subsequence of fj1 · · · fjv

. It is easy to verify that such a truth
assignment will make F true. ��
Example. F = (x1∨¬x2∨x4)

∧
(¬x1∨x3∨x4)

∧
(x2∨x3∨¬x4)

∧
(¬x1∨¬x2∨¬x3),

where F1 = (x1 ∨ ¬x2 ∨ x4), F2 = (¬x1 ∨ x3 ∨ x4), F3 = (x2 ∨ x3 ∨ ¬x4), and
F4 = (¬x1 ∨ ¬x2 ∨ ¬x3).
G = F1F2F4g1F3F1F4g2F2F3F4g3F1F2F3 and
H = F2F4F1g1F1F4F3g2F4F2F3g3F3F1F2.
d(G”,H”) = 0, with G” = H” = F4g1F3g2g3F1F2, corresponds to the truth as-
signment that x1 = False(0), x3 = False(0) or True(1), and x2 = x4 = True(1).

Corollary 1. Given any two sets of genomes G and H, it is NP-complete to
decide whether the exemplar conserved interval distance between G and H is
zero or not.

Theorem 2 and the above corollary imply that the ECID problem does not ad-
mit any approximation unless P=NP—if such a polynomial-time approximation
existed then it would be able to decide whether G and H have zero exemplar
conserved interval distance in polynomial time hence contradicting Theorem 2.

5 Weak Inapproximability Bound

Let opt(G,H) be the optimal exemplar conserved interval distance between G
and H. We also use d(X,Y ) to denote the minimum conserved interval distance
between two genomes X and Y , where X and Y do not have to be exemplar.
We also adopt a similar approach as in [6] but with some more involved analysis.
We obtain the following inapproximability bounds under a much weaker model
of approximation. Notice that the m factor in the bounds here are stronger than
the m1−ε factor in the bounds in [6] for exemplar break point distance problem.

Theorem 3. Let g(x) : N → N be a function computable in polynomial time.
If there is a polynomial time algorithm such that given two genomes G and H of
length at most m it can return exemplar genomes G and H satisfying d(G,H) ≤
g(m)opt(G,H) + m, then P=NP.
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Proof. Let f be a given CNF formula. Let G(f),H(f) be the genomes as con-
structed in Theorem 2 such that f is satisfiable if and only if d(G(f), H(f)) = 0.
Let |G(f)| = |H(f)| = u, i.e., the number of all the genes occurred in G(f)
(or H(f)). Let Σ(S) be the alphabet of a sequence S. If Σi is a different set of
letters with |Σi| = |Σ(S)|, we define S(Σi) to be a new sequence obtained by
replacing all letters in S, in one to one fashion, by those in Σi.

For M ≥ 1, Let Σ1, Σ2, · · · , ΣM be M disjoint sets of letters of size |Σ(G(f))|.
Let G1 = G(f)(Σ1), G2 = G(f)(Σ2), · · · , GM = G(f)(ΣM ) be the sequences
derived from G(f). Let H1 = H(f)(Σ1),H2 = H(f)(Σ2), · · · , HM = H(f)(ΣM )
be the sequences derived from H(f).

Define G = G1s1G2s2 · · ·GMsM and H = H1s1H2s2 · · ·HMsM , where si is a
peg gene appearing only once in G and H, respectively. Let m = |G| = |H|. In
fact, m is the number of all the genes in G (or H).

Assume that some polynomial time algorithm A outputs respectively two
exemplar genomes G and H of G and H, and d(G,H) ≤ g(m)d(G,H) + m, we
can then decide if f is satisfiable by checking whether d(G,H) ≤ m. If f is
satisfiable, as in the proof of Theorem 2, two identical exemplar genomes can be
obtained from G and H. Hence, we have d(G,H) = 0 by Lemma 1. This implies
that d(G,H) ≤ m. If f is not satisfiable, then from Theorem 2, d(Gi, Hi) ≥ 1;
namely, there is at least one conserved interval in Gi but not in Hi. This implies
one of the following is true: (1) a · · · b in Gi but b · · · a in Hi; (2) c ∈ [a, b]
in Gi but c 
∈ [a, b] in Hi; and (3) c 
∈ [a, b] in Gi but c ∈ [a, b] in Hi. For
case (1), for any d in Gjsj , j 
= i, either [a, d] or [d, a]is a conserved interval
in Gj but not in Hj . Similarly, for any e in Hjsj , j 
= i, either [a, e] or [e, a]is
a conserved interval in Hj but not in Gj . Thus, in this case, we have at least
(u + 1)(M − 1) conserved interval in either G or H but not in both. Hence,
we have d(G,H) ≥ 2(u + 1)(M − 1). It follows from some similar analysis that
d(G,H) ≥ 2(u+1)(M − 1) is true for the other two cases. Therefore, in either of
the three cases, when M ≥ 2, we have d(G,H) ≥ 2(u+1)(M−1) > (u+1)M = m.
Since G,H are exemplar genomes of G and H, we have d(G,H) > m. ��
Corollary 2. If there is a polynomial time algorithm such that given G and
H of length at most m it can return exemplar genomes G and H satisfying
d(G,H) ≤ m[opt(G,H) + 1], then P=NP.

This negative result shows that even under a much weaker model, unless P=NP,
it is not possible to obtain a good approximation to the optimal exemplar con-
served interval distance problem.

6 Concluding Remarks

We prove several lower bounds on the approximation of the Exemplar Conserved
Interval Distance problem. Although it seems that the general problem does
not admit any approximation, good approximation may exist for special cases
of genomes, and good heuristics may perform well empirically or on average. It
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would be interesting to study some meaningful special cases. For example, in
real-world datasets repetitions of genes are typically pegged and not very far
away [12]. Are these cases easier to solve/approximate?
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Abstract. Given a sequence, the problem studied in this paper is to find
a set of k disjoint continuous subsequences such that the total sum of all
elements in the set is maximized. This problem arises naturally in the
analysis of DNA sequences. The previous best known algorithm requires
Θ(n log n) time in the worst case. For a given sequence of length n, we
present an almost linear-time algorithm for this problem. Our algorithm
uses a disjoint-set data structure and requires O(nα(n, n)) time in the
worst case, where α(n, n) is the inverse Ackermann function.

1 Introduction

In the analysis of biomolecular sequences, one is often interested in finding bi-
ologically meaningful segments, e.g. GC-rich regions, non-coding RNA genes,
transmembrane segments, and so on [1,2,3]. Fundamental algorithmic problems
arising from such sequence analysis are to locate consecutive subsequences with
high score (given a suitable scoring function on the subsequences). In this paper,
we present an almost linear time algorithm that takes a sequence of length n
together with an integer k and computes a set of k non-overlapping segments
of the sequence that maximizes the total score. If a general segment scoring
function (other than the sum of the segments as in this paper) is used, then the
problem of finding a k-cover with maximum score can be solved in O(n2k) time
[4,5]. When the score of a segment is the sum of the elements in the segment,
the previous best known algorithm runs in Θ(n log n) time [1]. Our new algo-
rithm requires O(nα(n, n)) time in the worst case, where α(n, n) is the inverse
Ackermann function.

The problem studied can be viewed as a generalization of the classical max-
imum sum subsequence problem introduced by Bentley [6]. The latter is to find
the continuous segment with largest sum of a given sequence and can be solved in
linear time [7,8]. Several other generalizations of this classical problem have been
investigated as well. For example when one is interested in not only the largest,
but also k continuous largest subsequences (for some parameter k ) [9,10,11,12].
Other generalizations arising from bioinformatics is to look for an interesting
segment (or segments) with constrained length [13,14,15].

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 255–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The paper is organized as follows. In Section 2 the problem is defined. Section 3
gives an overview of our algorithm while the details of the algorithm is presented
in Section 4. The analysis of our algorithm appears in Section 5 and the paper
is concluded with some open problems in Section 6.

2 Problem and Notations

Given a sequence X = 〈x1, x2, . . . , xn〉 of real numbers, let Xi,j denote the
subsequence of consecutive elements of X starting at index i and ending at
index j; i.e. the segment Xi,j = 〈xi, xi+1, . . . , xj〉. A segment Xi,j is positive

(negative) if its score (sum or value)
j∑

�=i

x� > 0 (< 0). Call Xi,j a non-negative

run (negative run) of X if

– x� ≥ 0 (or < 0) for all i ≤ � ≤ j;
– xi−1 < 0 (or ≥ 0) if i > 1; and
– xj+1 < 0 (or ≥ 0) if j < n.

Given an integer 1 ≤ k ≤ n, a k-cover for the sequence X is a set of k disjoint
non-empty segments of X . The score (sum or value) of a k-cover is determined
by adding up the sums of each of its segments.

Definition 1. An optimal k-cover for a given sequence X is a k-cover of X
whose score is the maximum over all possible k-covers of X.

3 The Algorithm

By generalizing the recursive relation between maximum-scoring segments [1],
we are able to design an algorithm that computes an optimal k-cover in almost
linear time; the complexity of our algorithm is independent of the parameter k.
The main idea is to transform the input sequence into a series of sequences of
decreasing lengths under cover-preserving. We employ the union-find algorithmic
technique to achieve the efficiency.

Our algorithm consists of three phases: Preprocessing, Partitioning, and Con-
catenating. The preprocessing phase deals with some trivial cases of the problem
and simplifies the input for the rest of the algorithm. The latter two phases choose
subsequences of which candidate segments to the optimal k-cover are examined
and will be executed in an iterative fashion.

A special class of sequences plays an important role in our algorithm design,
namely alternating sequences.

Definition 2. A sequence Y = 〈y1, y2, . . . , ym〉 of real numbers is an alternating
sequence if m is odd, y1, y3, . . . , and ym are positive, and y2, y4, . . . , and ym−1 are
negative. An alternating sequence is an a-sequence if its elements are mutually
distinct.
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The following fact implies that finding an optimal k-cover in some alternating
sequence needs only constant time.

Observation 1. All the positive elements of an alternating sequence of length
2k − 1 represent an optimal k-cover of the sequence.

3.1 Preprocessing

This phase processes special cases of the problem and, if needed, finds the seg-
mentation of the input into runs. The segmented input will be of alternating type
and work as input for the two phases of our algorithm that follows. We treat the
preprocessing step here separately from the other two steps of the algorithm,
which simplifies the presentation of the latter. However, it does not make the
problem to be solved simple.

The problem becomes trivial when k ≥ m (the number of positive runs of the
input sequence). For the case when k < m, the following segmentation of the
input is performed:

1. Find all the non-negative runs and negative runs of X .
2. Construct a new sequence Y from X by replacing every run with its

score.
3. Negative elements at both ends of Y (if any) are removed from Y .

By storing the indices of all the runs of X , one can easily refer each element
of Y to its corresponding segment of X . Clearly, the whole preprocessing phase
takes at most O(n) time in the worst case. Furthermore, any optimal k-cover of
Y corresponds to an optimal k-cover of X , if k < m. In fact,

Proposition 1. Given a sequence X of real numbers, if the number of non-
negative runs of X is at least k, then there is an optimal k-cover of X such that
any member of the optimal cover is either an entire non-negative run of X or a
concatenation of neighboring runs of X.

The sequence resulting from the segmentation is an alternating sequence Y =
〈y1, y2, . . . , ym〉, where m ≤ n. Moreover, we can define a new order (≺) on
the elements of Y such that yi ≺ yj ⇔ {yi < yj ∨ yi = yj ∧ i < j}. However,
throughout the paper we will use the standard notation to simplify presentation.
Therefore, after O(n) preprocessing time, we consider only alternating sequences
of mutually distinct real numbers (that is, a-sequences) in the rest of our algo-
rithm. The following property of such sequences characterizes optimal covers of
the sequences.

Observation 2. Let Y be an alternating sequence of length m and k ≤ �m/2 .
Then, each member of an optimal k-cover of Y will always be a segment of Y of
odd length.
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3.2 Partitioning and Concatenating

In this subsection, we give an overview of these two phases of our algorithm,
whereafter a detailed presentation follows. Our approach in computing an opti-
mal k-cover for a given a-sequence Y is to construct a series of a-sequences from
Y while the lengths of the sequences are decreasing and the optimal k-cover
remains the same.

For a given a-sequence Y of length m and an integer k, 1 ≤ k ≤ m , we consider
only the case when k < �m/2 . Otherwise, the solution is straightforward. Let Yt

(t = 1, 2, · · · ) be an a-sequence of length mt associated with a working sequence
St of length nt, where Y1 = Y and S1 = Y . The working sequence contains
elements of Y that are currently interesting for the algorithm. In the following,
each element of Yt and St refers to the block of concatenated elements that
the element currently corresponds to. The tth iteration of our algorithm (in
particular, the partitioning and concatenating procedure) is as follows. Let ξ0
be the largest absolute value of the elements in Y and let r1 = �‖S1‖/2 .

Input: Yt, St, a threshold rt, and a pivot ξt−1, where k < �mt/2 
Output: Yt+1, St+1, rt+1, and ξt, where mt+1 ≤ mt and nt+1 < nt.

1. Partition
(a) Compute the (rt)th largest absolute value ξt of all the elements in St.
(b) Let Dt be the sequence containing all the elements of St whose absolute

value is less than or equal to ξt. Preserve the ordering among the elements
from Yt; the indices of the elements are in increasing order.

2. Concatenation
(a) Let Y ′

t be the sequence resulting from, for each element y in Dt, repeat-
edly replacing some blocks in Yt of odd lengths around y with their score
until every element has an absolute value not less than ξt. Let k′ be the
number of positive elements in Y ′

t .
(b) If k < k′ (that is, we merged too few blocks in the previous step), then

– St+1 ← 〈All the elements now in St whose absolute value lies between
ξt and ξt−1; if some elements now belong to the same block, then just
insert one of them into St+1〉

– rt+1 ← �‖St+1‖ /2 
– Yt+1 ← Y ′

t .
(c) If k > k′ (that is, we merged too many blocks in the previous step), then

St+1 ← Dt, rt+1 ← �‖St+1‖/2 , and Yt+1 ← Yt.
(d) If k = k′, then we are done.

The goal is to eventually construct an a-sequence of length 2k−1 and hence the
optimal k-cover is found due to Observation 1. With a careful implementation,
the lengths of the a-sequences constructed will gradually decrease. In accom-
plishing our task within the desired time bound, we cannot afford to actually
construct all the sequences Yt (t = 1, 2, · · · ). In such case, we may end up with
an algorithm that takes Ω(m log m) time in the worst case.

In the following, we show how to implement the algorithm efficiently. Actually,
we never construct Yt, but operate directly on Y all the time.
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4 Algorithmic Details

Recall that the input now is an a-sequence Y = 〈y1, y2, . . . , ym〉 and an integer k,
where k < �m/2 . To implement the above algorithm efficiently, we will employ a
disjoint-set data structure [16] augmented with extra information such as indices
and scores of blocks. In addition to the standard disjoint-set data structure, we
store the following extra fields at the leader node of each set:

– The index, in Y , of the leader
– The range, in Y , of the largest block created to which the leader belongs
– The score of the block

4.1 Union-Find

Initially, for i = 1, 2, . . . , m, we perform MakeSet(yi) with {i, (i, i), yi} as extra
information. Also, let FindSet(yi) return this extra information. For any two
elements x and y in Y , the operation Union(x, y) is performed as follows.
Union(x,y)

1. Let (i, (i1, i2), sx) = FindSet(x).
2. Let (j, (j1, j2), sy) = FindSet(y).
3. If i = j, then return; else let � be the new leader index decided by the

disjoint-set data structure (i.e., � is either i or j).
4. The new extra information will be (�, (min{i1, j1}, max{i2, j2}), sx + sy).

In the above procedure, if j1−i2 = 1 (that is, the blocks joined are adjacent), the
extra information maintained for each block will represent the intended extra
information in the previous subsection. This is the case that is needed by our
algorithm later on.

For the simplicity, for any y in Y , denote by b(y) and v(y) the index, in Y ,
of its leader and the score of its block, respectively; i.e., (b(y), (j1, j2), v(y)) =
FindSet(y). It is important to emphasize that any block created with Unions
can be represented by an arbitrary element of Y from within the block. Any
intermediate sequence used during the process contains only the original element
from Y . Consider now the tth iteration of the phases for t = 1, 2, · · · .

4.2 Partition

In this step, we partition the current input St according to the given threshold
rt. Notice that each element in St corresponds to some block of Y . Therefore, it
is necessary to map from the elements stored in St to the blocks created by the
previous concatenations. Thus, one FindSet is done on each element of St.

Now, we can do the desired selection on all the absolute values obtained
using a worst-case linear-time selection algorithm [16]. After that, a partition is
performed around the pivot, ξt, and all the elements of St whose absolute value
is less than or equal to ξt are included in a sequence Dt. Observe that for each
comparison done on a pair of elements, one must do FindSet operations first.
The output of the partition step is (Dt, ξt). Thereafter, a series of replacements
is applied to Dt in order to create a new a-sequence of smaller length.
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4.3 Concatenation

In this subsection, we focus on the problem of constructing shorter a-sequences
from a given a-sequence. One approach is to repeatedly concatenate blocks and
replace them with their score. However, one cannot just choose an arbitrary
block and then do the replacement, because this could potentially yield incor-
rect results. Among all possible replacements of blocks, one special kind of the
replacements, the merge, will do the job.

The Merge Operation. A merge operation only applies to segments of length
three. In particular, a merge can apply to a segment 〈yi−1, yi, yi+1〉 only if |yi| <
min{|yi−1|, |yi+1|}. The result of a merge on the segment 〈yi−1, yi, yi+1〉, denoted
by merge(yi−1, yi, yi+1), is a new block with a value equal to yi−1+yi+yi+1; real-
izable with Union(Union(yi−1, yi), yi+1). Call such an operation a merge around
yi. Specially, a merge around y1 implies Union(y1, y2) if |y1| < |y2| and a merge
around ym implies Union(ym−1, ym) if |ym−1| < |ym|. Hence, the elements y1
and ym can be treated in the same way as other elements. In general, for any y
in Y , let (b(y), (i, j), s) = FindSet(y). A merge around y is then the merge op-
eration on the segment

〈
yi−1, yb(y), yj+1

〉
(i.e., Union(Union(yi−1, yb(y)), yj+1))

if applicable. In this case, such a merge is also called a merge around y′ for
any y′ in the block Yi,j . Hence, we use the term element y to mean both the
original element in Y and interchangeably the longest block created containing
y. Clearly,

Proposition 2. Let y be an element in the block resulting from
merge(yi1 , yi2 , yi3). Then, |v(y)| ≥ max{|v(yi1)|, |v(yi2 )|, |v(yi3)|}.
Proposition 3. Let M be the set of merge operations performed on a given al-
ternating sequence Y = 〈y1, y2, . . . , ym〉 and YM the sequence (called the compact
version of Y under M) constructed from Y by replacing each merged block with
a singleton element. If no merge is done around neither y1 nor ym, then YM is
also an alternating sequence.

Moreover, if Y is an a-sequence, so is YM . Hence, by repeatedly merging blocks
one can obtain some compact version of Y , particularly a version with no smaller
elements (that is, all its elements have absolute values greater than ξt).

Repeated Merges on Dt. Obviously, in order to ensure that there is no
element y in Y with |v(y)| ≤ ξt, at least all the elements in Dt must be involved
in some merges. For each element in Dt and all the newly formed blocks (regarded
as new elements of Yt for some t), we need to decide whether a merge operation
will be performed around it. For y in Y , define Test(y) = true if a merge can be
done around y according to the definition of the merge operation and |v(y)| ≤ ξt;
otherwise, Test(y) = false. Let Dt = 〈d1, d2, . . . , dnt〉. Basically, we traverse Dt

from d1 to dnt and, for each element, determines if it should be merged. The
current element is merged repeatedly until it is larger than the pivot. When it
is, then its left neighbour is checked again to see if it should be merged again.
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Notice that each merge operation creates a compact version of Y with the
length decreased by 2. Therefore, the number of positive elements in the current
version, Yt of Y , (after all the merges done) can easily be counted when doing
merges. This means that we do not need to actually construct the compact
versions Yt+1 of Y at the moment. Only when we finally find an a-sequence of
length 2k − 1, that compact version of Y is then computed; which costs in the
worst case O(m).

Furthermore, if a merge around y1 (or ym) was performed during the process,
then a new block with negative score (which is either the prefix or suffix of Y )
appears. The reason for the block being negative is that y1 < y2, otherwise
the merge would not have occurred. Such a block can immediately be removed,
because it is always unnecessary to include it in the solution to the current
compact version Yt+1 of Y . Thus, if the block 〈y1y2〉 is selected for merge, we
can effectively remove this block without doing any merge. The merge around
ym is analogous. Hence, Yt+1 is an a-sequence as well.

tth Iteration. The goal of the tth iteration is to construct implicitly a new
a-sequence Yt+1 of length mt+1 from an a-sequence Yt of length mt. From the
construction, we know that mt+1 ≤ mt. The equality holds when there are too
few positive elements in the compact version of Y after the merges. In this case,
we cancel all the merges performed in this iteration. In order to be able to
cancel the merge operations performed earlier, we record and store all changes
made to the disjoint-set data structure. We need only store all the changes made
in the current iteration. This is because that if there are not too few positive
elements in the resulting sequence, we will never need to cancel the previous
merge operations.

Observe that the iteration works on the working sequence St associated with
Yt, decides whether a merge should be performed around every element, and
produces a new working sequence St+1 associated with Yt+1. Fortunately, the
working sequences get shorter after every iteration. In fact, the lengths of such
sequences decrease very fast, which implies that the number of iterations per-
formed in our algorithm is not too many.

From Propositions 2 and 3, the lengths of a-sequences (i.e., the compact ver-
sions of Y ) will eventually decrease to 2k−1; say the last one is Yt′ . We will show
in the next section that the optimal k-cover of Yt+1 corresponds to an optimal
k-cover of Yt, and thus is represented by all the positive elements in Yt′ .

5 Analysis

Roughly speaking, the following task, called Concatenate(Y, ξ), is performed
during the concatenation step of our algorithm when applying to a given alter-
nating sequence Y and a positive real ξ:

Assume that we have already the partition set D = {y ∈ Y : |v(y)| ≤ ξ}. The
task is to check for each element y ∈ D to determine whether a merge can be
done around it. If a merge is done, then the element y (actually, its corresponding
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block) will have a new value v(y) due to the merge. An element is deleted from
D only if |v(y)| > ξ after merge(s). This process continues until D becomes
empty. Let Z be the sequence constructed from Y by replacing every merged
block with a singleton element having the score of the block as its value; denoted
by Z = Concatenate(Y, ξ).

5.1 Correctness

Before establishing the correctness of our algorithm, we investigate the recursive
behavior of the optimal k-cover for alternating sequences. An element (or a block)
y in the input sequence Y is included in an optimal k-cover C for the input if y is
either a member of C or a segment of some member of C. The following fact can
be obtained directly from a nice relationship between optimal covers presented
by Csűrös [1].

Lemma 1. If k < �m/2 and yi is an element with the smallest absolute value
in Y , then either the entire segment 〈yi−1, yi, yi+1〉 is included in an optimal
k-cover of Y or none of yi−1, yi, or yi+1 is.

Since yi has the minimum absolute value, one can always perform a merge oper-
ation around it; call such a merge a min-merge operation. The Θ(m log m)-time
algorithm for finding an optimal k-cover proposed by Csűrös [1] performs only
min-merge operations. Our algorithm goes further by using general merge op-
erations, which leads to an almost-linear-time solution. Actually, the elements
included in the optimal k -cover computed by our algorithm are exactly the
same as those selected by Csűrös’ algorithm for being included in some optimal
k-cover.

For a given alternating sequence Y of length m and an integer k, k < �m/2 ,
the procedure to construct an optimal k-cover of Y by repeated min-merge oper-
ations [1] actually implies the following recursive constructions. For any integer
q, k ≤ q < �m/2 , an optimal q-cover of Y can be computed as follows: While
the number of positive elements in the sequence is greater than q repeatedly join
segments each of length 3 by performing min-merges. Call the sequence obtained
Zq and let Mq be the set of min-merge operations performed (ordered by the
time at which the operation is executed). Then, an optimal k-cover of Y can
be found with further min-merge operations starting from Zq. Moreover, the
optimal q-cover computed by such a procedure is exactly the same as the one
resulted from our algorithm. More precisely,

Lemma 2. Let � be the number of positive elements of Z = Concatenate(Y,
ξ), where ξ > 0 is a given pivot. If � < �m/2 and an optimal �-cover of Y is
constructed from Y by repeated min-merge operations, resulting in the sequence
Z�, then Z� is the same as the sequence Z = Concatenate(Y, ξ).

The proof of the above lemma will be included in the full version of this paper.
Notice that Z = Concatenate(Y, ξ) is an alternating sequence as well. Also, an
alternating sequence with � positive elements forms an optimal �-cover of the
sequence. Then, we have that
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Corollary 1. Let � be the number of positive elements of Z = Concatenate(Y,
ξ), where ξ > 0 is a given real number. If � < �m/2 , then the optimal �-cover
of Z corresponds to an optimal �-cover of Y .

Observe that our algorithm try to compute the number of positive elements, �,
of the sequence resulting from the concatenation step for a given pivot ξ. We
want to ensure that k ≤ � < �m/2 and try to decrease the value of � by a
recursive computation of the pivot value. The correctness of our algorithm thus
follows.

Theorem 1. Given a positive real number ξ. Let 1 ≤ k < �m/2 and Z =
Concatenate(Y, ξ). If k ≤ � (the number of positive elements of Z) and � <
�m/2 , then there is an optimal k-cover of Z that corresponds to an optimal
k-cover of Y .

5.2 Complexity

Given a sequence X = 〈x1, x2, . . . , xn〉 of real numbers, the preprocessing step
of our algorithm takes O(n) time. After that, the iterations have been run on
the working sequences St for t = 1, 2, · · · , where S1 = Y (the segmented version
of X). The time (except for that consumed by the disjoint-set data structure)
needed for the tth iteration of our algorithm (in particular, the partitioning and
concatenating procedure) is O(‖St‖). Notice from the design of our algorithm
that ‖St+1‖ ≤ 2

3 ‖St‖ and ‖S1‖ = ‖Y ‖ = m ≤ n (the proof will appear in the full
version of the paper). Hence, the time complexity of our algorithm (excluding
cost for union-finds) satisfies the recurrence T (n) = T

( 2
3n
)

+ O(n) and thus
equals O(n).

Moreover, the number of union-find operations performed during the tth itera-
tion is also O(‖St‖). This implies that the total number of disjoint-set operations
executed by our algorithm is

∑
t≥1 O(‖St‖) = O(

∑
t≥1 ‖St‖) = O(n). All these

operations cost thus O(n ·α(n, n)) in the worst case, where α(n, n) is the inverse
Ackermann function. To sum up,

Theorem 2. Given a sequence X of n real numbers and an integer 1 ≤ k ≤ n,
the problem of computing an optimal k-cover of the sequence can be done in
O(n · α(n, n)) time in the worst case, where α(n, n) is the inverse Ackermann
function.

6 Conclusions

The problem of computing the maximum-scoring segments of a given sequence
has been studied. We show how to solve the problem in O(nα(n, n)) time in
the worst case. Of course, a linear-time algorithm for this problem is desirable.
Many algorithmic problems arising in the analysis of DNA sequences are of this
flavor. Namely, one is interested in finding segments with constraints on the
length of the segments and/or with different scoring functions. Both theoretical
and practical efficient algorithms for these problems are interesting.
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Abstract. The enumerate-and-expand paradigm for solving NP-hard
problems has been introduced and applied to some Vertex Cover vari-
ants in a recently published preliminary paper. In this paper we improve
on the runtime for Connected Vertex Cover, obtaining a bound of
O∗(2.7606k),1 and use the technique in order to gain the fastest known
method for counting the number of vertex covers in a graph, which takes
O∗(1.3803k) time.

1 Introduction

In the recently published preliminary paper “Enumerate and Expand: Improved
Algorithms for Connected Vertex Cover and Tree Cover” [12], a new paradigm
for the exact solution of NP-hard problems has been introduced and applied
to some Vertex Cover variants. More specifically, significantly improved up-
per bounds on the parameterized complexity of Connected Vertex Cover
and Tree Cover have been found. In the meantime, our first bound for Con-
nected Vertex Cover, namely O∗(3.2361k), was improved on by two dif-
ferent algorithms: Fernau and Manlove designed an O∗(2.9316k) algorithm [8],
and we refined the original algorithm— again using the enumerate-and-expand
technique —obtaining a running time of O∗(2.7606k).

In this paper, we first describe the design and analysis of our new algorithm
for Connected Vertex Cover. As another application of the enumerate-and-
expand paradigm, we develop a new algorithm that counts the vertex covers
of size k in a graph in O∗(1.3803k) time, beating the previously best bound of
O∗(1.4656k). This old bound has been around for a couple of years, but remained
unpublished until recently (see, e.g, [7]).

Vertex Cover arguably constitutes the most intensely studied problem in
parameterized complexity, which is reflected by a long history of improved run-
time bounds [1,15,3,16,2] culminating in the algorithm by Chen, Kanj, and Xia
with running time O(1.2738k +kn) [4]. This naturally led to the investigation of

� Supported by the DFG under grant RO 927/6-1 (TAPI).
1 The O∗-notation is equivalent to the well-known Landau notation, except that poly-

nomial factors may be suppressed. For instance, 2kk2n3 = O∗(2k).

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 265–273, 2006.
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generalizations such as Connected Vertex Cover, Capacitated Vertex
Cover, and Maximum Partial Vertex Cover.

Many approaches to the solution of these problems rely on the enumeration of
vertex covers. However, it is easy to establish a lower bound of 2k on the number
of different vertex covers of size at most k in a graph [6,12]. In order to accelerate
such algorithms, we thus take a different approach: Instead of going through all
the minimal vertex covers, we just enumerate subsets of vertex covers that can
easily be expanded to complete vertex covers. We call this method Enumerate
and Expand.

The rest of this section basically amounts to reviewing important parts of the
enumerate-and-expand method and its early applications [12]. Recall that, given
a graph G = (V, E) and a natural number k, the problem Vertex Cover asks
for a set C ⊆ V , |C| ≤ k, such that every edge is incident to at least one node
from C. Connected Vertex Cover introduces the additional constraint that
the subgraph G[C] induced by C be connected.

Definition 1. Let C be a graph class. A C-cover for a graph G = (V, E) is a
subset C ⊆ V such that G[V \ C] ∈ C.

That is, a C-cover does not have to cover all edges, but the uncovered part of
the graph must be in C. For instance, C is a vertex cover if and only if C is an
I-cover, where I denotes the class of all graphs without edges.

Definition 2. Let G = (V, E) a graph, and k ∈ N. A family of subsets of V is
k-representative if it contains a subset of every vertex cover C of G with |C| ≤ k.

The concept of k-representative families is substantial for the enumerate-and-
expand method: Assume we want to find all node sets S ⊆ V , |S| ≤ k, such
that S fulfills a certain property P in the input graph G = (V, E). If each such
S constitutes a vertex cover for the input graph, then it suffices to enumerate
the members of a k-representative family and expand them accordingly (i.e.,
with respect to P ). For suitable families and properties, it turns out that the
expansion can be done rather efficiently because the enumerated node sets allow
us to simplify the graphs to be processed.

Theorem 1. Let G = (V, E) be a graph, k ∈ N, and C a graph class that
contains all graphs with degree at most d and has a linear-time membership test.
A k-representative family of C-covers for G can be enumerated in O(ζk

d k2 + kn)
time, where ζd is the unique positive root of the polynomial zd+1 − zd − 1.

This theorem can be proven using well-known kernelization techniques and a
simple algorithm that branches on nodes of maximum degree [12].

Let Dd be the class of all graphs with maximum degree d and M := D1.
Clearly, a graph is in M if and only if its edges constitute a matching. In the
aforementioned paper [12], Connected Vertex Cover was solved by first
enumerating a k-representative family of M-covers, and then expanding these
into connected vertex covers. This was done with the help of the following lemma
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Table 1. Approximate values of some ζd’s

d 0 1 2 3 4 5 6

ζd 2 1.6181 1.4656 1.3803 1.3248 1.2852 1.2555

using a reduction to instances of a restricted Steiner tree problem. Here, S(n, k)
refers to the time needed to obtain a minimum Steiner tree for a k-terminal set
that also constitutes a vertex cover in a network of n nodes.

Lemma 1. [12, Lem. 1] The following problem can be solved in S(n, k) time:

Input: A graph G = (V, E), an M-cover C, a number k ∈ N
Parameter: k

Question: Is there a connected vertex cover Ĉ ⊇ C
of size at most k?

An upper bound on S(n, k) is O∗(2k) where only small additional polynomial
factors are involved [12], making the overall algorithm quite practical. The ap-
plication of the specialized Steiner tree algorithm is crucial in achieving a low
running time, because the commonly used generic Steiner tree algorithm by
Dreyfus and Wagner [5] takes O∗(3k) steps. This running time has recently been
improved to O∗((2 + ε)k) [11,13], but the hidden polynomials are prohibitively
large for small ε.

Abstracting from the details of the reduction, the following runtime bound
has been obtained for Connected Vertex Cover, where φ = (1 +

√
5)/2

denotes the golden ratio:

Corollary 1. [12, Cor. 3] The decision problem Connected Vertex Cover
can be solved in O∗(φkS(n, k)) = O∗((2φ)k) steps.

This bound amounts to approximately 3.2361k. In the upcoming section we will
improve this running time to 2.7606k.

2 Connected Vertex Cover Revisited

There are two key ideas involved in speeding up the computation of connected
vertex covers. The first one is to enumerate D3-covers instead of M-covers.
While enumerating all k-representative M-covers takes about 1.6181k steps, only
1.3803k steps are required in the case of D3-covers. This implies a much more
complicated expansion phase, a price we have to pay. Whereas removing an M-
cover from a graph leaves isolated edges and nodes, an arbitrary cubic graph
remains on deletion of a D3-cover.

Of course, we might be lucky and still get a very simple cubic graph. For these
D3-covers, the complexity lies in the enumeration. Otherwise, for complicated
cubic graphs, we continue to refine these covers into M-covers. If this needs to
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be done, however, we can prove that these M-covers induce subgraphs with only
few components. It fortunately turns out that we may replace these components
by single nodes, thus reducing the size of the connected vertex cover we are
looking for. Amazingly enough, this particular effect outweighs the extra effort
put into the enumeration of M-covers.2

Table 2. Our new algorithm for Connected Vertex Cover

forall D3-covers C3 in G of size at most k do
forall M-covers C1 in G[V − C3] of size at most k − |C3| do

1. Let I and M be the set of isolated nodes and the matching (that is, the
set of edges) in the remaining graph G[V − C3 − C1], respectively. Let
A be the set of components in G[C1].

2. Construct a graph G′ from G by copying all of G[V − C1 − C3] and
mapping every A ∈ A onto a single node vA, where vA and any node
v ∈ V − C1 − C3 are connected by an edge in G′ iff there is an edge
between some node in A and v in G.

3. Let d = |V [G]| − |V [G′]| =
∑

A(|V [A]| − 1).
4. Employ the reduction to the Steiner tree problem from Lemma 1: In

G′, subdivide every edge from M , and mark all the vA as well as all the
subdivision nodes as terminals.

5. If |A| ≤ 3k − 2|C3| − 3|C1| − |M |, then compute an optimum Steiner
tree, and return true if it has at most k − d nodes.

od
od
return false

In the remainder of the section, we present the algorithm (see Table 2) in
detail and prove its correctness as well as a runtime bound. Justification for the
replacement of entire components by single placeholder nodes is brought forth
by the following lemma.

Lemma 2. Let C be an M-cover for a graph G = (V, E). There is an optimum
Steiner tree T for any terminal set Y ⊇ C on the unit-cost network over G such
that each component of G[C] remains connected in T [C].

Proof. Consider some optimum Steiner tree T ′ that does not meet the require-
ments. Then there is a component of G[C] that constitutes p ≥ 2 components
V1, . . . , Vp in T ′[C]. Moreover, it is easy to see that two such components, say
V1 and V2, are connected in G[C] by some edge e. On the other hand, they are
connected in T ′ via a path containing an edge f that is not in G[C]. Exchang-
ing f for e changes neither cost nor connectivity. Obviously, this process can be
iterated until the modified Steiner tree T meets the requirements. �
2 The technique can easily be modified so as to use D2- or D4-covers, but D3-covers

yield the best runtime bounds.
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Theorem 2. The algorithm from Table 2 solves Connected Vertex Cover.

Proof. Recall that the old O∗(3.2361k) algorithm enumerates all M-covers C
with |C| ≤ k and tries to expand them to connected vertex covers using the
reduction to the Steiner tree problem from Lemma 1. There are three differences
between the old and the new algorithm:

In the revised approach, M-covers are enumerated by going through all fea-
sible D3-covers and then through all feasible M-covers on the remaining graph.
It is easy to see that this yields exactly the same covers (and, on a side note,
does not even affect the running time consumed for enumeration).

Secondly, the components A ∈ A are mapped onto single nodes, and thus a
different instance of the Steiner tree problem is constructed. However, Lemma 2
implies that, if S denotes the set of nodes used to subdivide the edges in M ,
there is a Steiner tree with k nodes for the terminal set C ∪ S in G iff there is a
Steiner tree with k − d nodes for the terminal set X := { vA | A ∈ A} ∪ S.

Finally, the Steiner tree algorithm is only employed if |A| ≤ 3k − 2|C3| −
3|C1| − |M |. This makes sense because otherwise there cannot be a connected
vertex cover of size k in G that contains C1 ∪C3. In order to establish this claim
we show that there cannot be a connected vertex cover of size k − d in G′ that
contains X .

Let X1 := { vA ∈ X | V [A] ⊆ C1 } the set of nodes that stem from components
in G[C1 ∪ C3] only containing nodes from C1. A connected vertex cover C for G′

that contains X must connect all the nodes from X1, of which there are at least
|X | − |C3|. This can only be done by adding nodes from I and M . Observe that
every node from I can be adjacent to at most three nodes from X1, and every node
from V [M ] can be adjacent to at most two nodes from X1, in G′. Assume that C
contains kI nodes from I and kM nodes from V [M ]. Then, |X | − |C3| ≤ |X1| ≤
3kI + 2kM . Moreover, for the corresponding connected vertex cover of size k in G
we have that k = kI + kM + |C1| + |C3|, as well as |M | ≤ kM . From these three
inequalities and |A| = |X |, the claim |A| ≤ 3k − 2|C3| − 3|C1| − |M | follows. �

Theorem 3. The running time of the algorithm from Table 2 is O∗((2ζ3)k).

Proof. Let C3 be a D3-cover and C1 an M-cover of G[V − C3]. Then C3 ∪C1 is
an M-cover of G with corresponding matching M . Assume moreover that C is
a connected vertex cover with C3 ∪ C1 ⊆ C. If our algorithm tries to find C by
using C3 ∪ C1 and M , it first replaces C3 ∪ C1 by contracting all components in
G[C1 ∪ C3] into single nodes. Let us call the resulting set X and the modified
graph G′. It then computes a Steiner tree for the terminal set consisting of X and
|M | additional nodes from the subdivision of M . The running time to compute
this Steiner tree is O∗(2|X|+|M|).

We proceed by bounding the size of X . Since C is a connected vertex cover,
G′[C] is connected. Again, assume that C contains kI nodes from I and kM nodes
from V [M ]. Remember that every node in G′[V −C3] has maximum degree three.
If such a node is in C, it can connect to up to three nodes from X , reducing the
number of components by up to three. If it is incident to an edge in M , then the
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(a)

C3

C1

G

(b)G[V \ C3]

(c)G[V \ (C3 ∪ C1)]

(d)G′

(e)

Fig. 1. (a) An example graph G with D3-cover C3 and subsequent M-cover C3 ∪ C1.
(b) Deleting C3 leaves a cubic graph. (c) Deleting C1 now leaves a graph from M. (d) We
are looking for a minimum connected vertex cover in G containing C3 ∪ C1. The seven
components of G[C3 ∪ C1] in G are mapped onto seven nodes in G′ that constitute the
set X. (e) A connected vertex cover that is a superset of X needs to connect the nodes
in X and to cover the edges in M . This can be done optimally by a minimum Steiner
tree for X and the subdivision nodes for M , as depicted by the emphasized edges. The
resulting connected vertex covers have size eleven in G′ and 17 in G.

number of components is reduced by up to two. Hence, |C1| ≤ 3kI + 2kM and
|X | ≤ |C3|+ 3kI + 2kM .

The time to enumerate all D3-covers of size |C3| and then allM-covers of size
|C1| is O∗(ζ|C3|

3 φ|C1|). The running time of our algorithm is therefore bounded by
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∑
|C1|,|C3|,|X|,kM

O∗(ζ|C3|
3 φ|C1|2|X|+kM

)
.

In order to obtain a worst-case bound of the form O∗(αk) for some real number
α, we proceed by expressing the problem of maximizing the above term as a
linear program, normalized by setting k = 1:

maximize |C3| ln ζ3 + |C1| lnφ+ (|X |+ kM ) ln 2

|X | ≤subject to |C3|+ 3kI + 2kM

|X | ≤ |C3|+ |C1|
k = kI + kM + |C1|+ |C3|
k ≥ |C3|+ |C1|+ |M |
k = 1
0 ≤ kI , kM , |C1|, |C3|, |M |

Leaving out the constraint |M | ≤ kM ≤ 2|M | does not make a difference. Solving
the linear program reveals that the maximum is assumed for |C3| = k, |C1| = 0,
|X | = k, kM = 0. Consequently, the total running time of our algorithm is
bounded by O∗((2ζ3)k) = O∗(2.7606k). �

3 Counting Vertex Covers

Another rather obvious application of the enumerate-and-expand method lies
in counting the number of vertex covers. That is, enumerate a k-representative
set of partial covers and find out into how many appropriate vertex covers they
can each be expanded. We just need to make sure that the expansion sets do
not overlap. However, partial covers are generated by recursively branching on
a node v: So in one branch, only covers that contain v will be considered, while
in the other branch no cover can contain v.

Depending on the kind of partial covers enumerated, different running times
emerge: Simply enumerating all vertex covers will cost O∗(2k) time. In the case
of M-covers, the running time is O∗(φk), and O∗(ζk

2 ) with D2-covers, because
counting the number of vertex covers on partial two-trees can be done in poly-
nomial time [7,12,14]. Obviously, enumerating D3-covers is even faster. However,
the remaining graph might be an arbitrary cubic graph. Unfortunately, Vertex
Cover is known to be NP-complete even on cubic graphs. Surprisingly, calcu-
lating the number of vertex covers in a cubic graph is, though exponential in k,
still fast enough to beat the above approaches.

Theorem 4. The number of vertex covers of size k in a graph can be calculated
in O∗(ζk

3 ) = O∗(1.3803k) steps.

Proof. Let us first show that a cubic graph containing a vertex cover of size at
most k has treewidth at most (1

3 + ε)k for any ε > 0 and that a corresponding
tree decomposition can be computed in polynomial time.
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Assume that G is a cubic graph. Without loss of generality we can assume
furthermore that all nodes have degree three because contracting a degree-two
node does not change any treewidth larger than two. Now if there is a vertex
cover of size k, then there can be at most 3k edges and consequently no more than
2k nodes. Fomin and Høie [10] have shown that a tree decomposition of width at
most (1

6 +ε)n can be found for any cubic graph with n nodes and arbitrary ε > 0
in polynomial time. Given a graph together with a tree decomposition of width
w, standard dynamic programming techniques yield an O∗(2w) algorithm for
deciding Vertex Cover [17]. It is easy to adapt this algorithm for counting all
vertex covers of a given size.

The overall algorithm proceeds as follows: Go through all the members C of
a family of k-representative D3-covers, compute the number of vertex covers of
size k − |C| in G[V \ C] in time O∗(2(1/3+ε)(k−|C|)) for each C, and finally sum
up all the results. The overall runtime can be bounded by

k∑
|C|=0

O∗(ζ|C|
3 2(1/3+ε)(k−|C|)) = O∗(ζk

3 )

if ε ≤ 0.13, because then 21/3+ε < ζ3. �

4 Concluding Remarks

The exact solution of NP-hard problems has lately been receiving increased at-
tention, as outlined in the survey by Fomin, Grandoni, and Kratsch [9]. Against
this backdrop, the enumerate-and-expand method is a new tool for the develop-
ment of exact and parameterized algorithms. We have demonstrated its capa-
bilities in two non-trivial applications, deriving the best known runtime bounds
for solving Connected Vertex Cover and counting vertex covers of a given
size.
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Abstract. Inferring a graph from path frequency has been studied as
an important problem which has a potential application to drug design.
Given a multiple set g of strings of labels with length at most K, the
problem asks to find a vertex-labeled graph G that attains a one-to-one
correspondence between g and the set of sequences of labels along all
paths of length at most K in G. In this paper, we prove that the problem
with K = 1 can be formulated as a problem of finding a loopless and
connected detachment, based on which an efficient algorithm for solving
the problem is derived. Our algorithm also solves the problem with an
additional constraint such that every vertex is required to have a specified
degree.

1 Introduction

Kernel methods have been popular tools for designing classifiers such as sup-
port vector machines. In kernel methods, a set of objects (or data) in the target
problem are mapped to a space, called a feature space, where an object is trans-
formed into a vector with real coordinates, and a kernel function is defined as an
inner product of two feature vectors. Recently, a feature space has been used in a
new approach in order to design or choose a desired (possibly unknown) object
[3]. As in kernel methods, given objects mapped to points in a feature space,
this approach searches a point y in the feature space using a suitable objective
function, and then maps this point back to an object in the input space, where
the object mapped back is called a pre-image of the point. Given a mapping φ
from an input space to a feature space and a point y in the feature space, the
pre-image problem asks to find an object x with y = φ(x) in the input space. The
pre-image problem for graphs is very important because it has a potential ap-
plication to drug design and elucidation of chemical structures from mass/NMR
spectra data, and has been studied by several researchers [3,9].

Akutsu and Fukagawa [1] started the theoretical aspect of the problem of
inferring graphs from path frequency. In this case, a feature vector g is a multiple
set of strings of labels with length at most K which represents path frequency
(i.e., the numbers of occurrences of vertex-labeled paths of length at most K).
Given a feature vector g, they considered the problem of finding a vertex-labeled

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 274–283, 2006.
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graph G that attains a one-to-one correspondence between g and the set of
sequences of labels along all paths of length at most K in G. For the problem
of inferring a tree, they gave dynamic programming algorithms that runs in
polynomial time in n whenK and the number of labels are bounded by constants,
where n denotes the size of an output graph. They also proved that the problem
is strongly NP-hard even for planar graphs and K = 4 [2]. Afterwards, they
extended their dynamic programming algorithms to the problem of inferring a
graph in a restricted class of outerplanar graphs. However, the time complexity
of these dynamic programming algorithms is a polynomial of n whose exponent
is exponential in K and the number of labels. Furthermore, in an inferred graph,
vertices with the same label may have different degrees.

In this paper, we consider the problem of inferring a multigraph from a fea-
ture vector g of path frequency with K = 1. We show that the problem can
be formulated as a problem of finding loopless and connected detachments of
graphs, and give an efficient algorithm based on matroid intersection in discrete
optimization. Our algorithm tests whether there exists a solution to a given vec-
tor g or not in O(min{|g|2|g|, n3.5 +m}) time, and delivers a solution (if any) in
O(n3.5 +m) time, where |g| is the number of nonzero entries in an input vector
g and n and m are the numbers of vertices and edges of a multigraph to be
constructed. In particular, testing the feasibility of a vector g can be executed
in constant time if the number of labels is bounded by a constant. We next in-
troduce a graph inference problem with an additional constraint such that every
vertex is required to have a specified degree. We prove that this graph inference
problem can also be solved in O(min{n+ |g|2|g|, n3.5 +m}) time.

2 Graph Inference Problem

This section defines problems of inferring graphs from path frequency.
A graph is called a multigraph if it is allowed to have multiple edges and self-

loops; otherwise it is called simple. A multigraph having no self-loops is called
loopless. A multigraph G with a vertex set V and an edge set E is denoted by
(V,E). The vertex set and edge set of a given multigraph G may be denoted by
V (G) and E(G), respectively.

Let Z+ denote the set of nonnegative integers. Let Σ be a set of labels, Σk be
the set of all sequences of k labels in Σ, and Σ≤k = ∪1≤j≤kΣ

j . Let Fk(Σ) denote
the set of all vectors g whose coordinate indexed by t ∈ Σ≤k+1 is an nonnegative
integer (i.e., g is a mapping from Σ≤k+1 to Z+). A vector g ∈ Fk(Σ) may be
called a feature vector. Let g(t) denote the entry of g ∈ Fk(Σ) indexed by
t ∈ Σ≤k+1.

A multigraph H is called Σ-labeled if each vertex v ∈ V (H) is labeled by
a label �(v) ∈ Σ. Let H be a loopless Σ-labeled multigraph. For a walk π =
(v0, e1, v1, e2, v2, . . . , eh, vh) in H , let �(π) denote the sequence of the vertex
labels in π, i.e., �(π) = �(v0)�(v1) . . . �(vh). For a label sequence t over Σ, let
occ(t,H) denotes the number of walks π such that �(π) = t. The feature vector
fK(H) of level K in H is a vector g ∈ FK(Σ) such that g(t) = occ(t,H) for all
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Fig. 1. (a) A (Σ, ρ)-labeled multigraph H1, where Σ = {H, O, C}, ρ(x) = 1 if 
(x) = H,
ρ(x) = 2 if 
(x) = O, and ρ(x) = 4 if 
(x) = C, respectively; (b) occ(t, H1) = occ(t, H2)
for all sequences t ∈ Σ≤2; (c) A Σ-labeled multigraph H2

t ∈ Σ≤K+1, i.e.,
fK(H) = (occ(t,H))t∈Σ≤K+1 .

For example, Figure 1(a) shows a loopless Σ-labeled multigraph H1, where
Σ = {H, O, C}, Figure 1(b) gives occ(t,H1) for all t ∈ Σ≤2, and we have f1(H1) =
(4, 1, 2, 0, 0, 0, 4, 4, 0, 2, 2, 2). Figure 1(c) shows a different loopless Σ-labeled
multigraph H2 such that f1(H2) = f1(H1).

For a given feature vector g ∈ FK(Σ), there may be no Σ-labeled multigraph
H with fK(H) = g. Different Σ-labeled graphs H and H ′ may have the same
feature vector fK(H) = fK(H ′) = g, as observed in Fig. 1.

Akutsu and Fukagawa [1] formulated the following important problem.

Graph Inference from Path Frequency (GIPF). Given a feature vector
g ∈ FK(Σ), output a loopless and connected Σ-labeled multigraph H with
fK(H) = g. If there does not exist such H , then output “no solution.”

An inferred graph needs to meet a degree constraint in some applications. In
this paper, we define a degree-constrained graph inference problem as follows. A
valence-sequence ρ is a function ρ : V (H) → Z+. A Σ-labeled multigraph H is
called (Σ, ρ)-labeled if deg(x;H) = ρ(x) for each x ∈ V (H).

Figure 1(a) shows a (Σ, ρ)-labeled multigraph H1 for valence-sequence ρ such
that ρ(x) = 1 if �(x) = H, ρ(x) = 2 if �(x) = O, and ρ(x) = 4 if �(x) = C,
respectively. Note that multigraph H2 in Fig. 1(c) is not (Σ, ρ)-labeled.

Graph Inference from Path Frequency and Label Valence (GIFV).
Given a feature vector g ∈ FK(Σ) and a valence-sequence ρ, output a loopless
and connected (Σ, ρ)-labeled multigraph H with fK(H) = g. If there does not
exist such H , then output “no solution.”
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3 Detachments in Multigraphs

3.1 Multigraphs and Matroids

A singleton set {x} may be simply written as x. Let G = (V,E) be a multigraph
which may have self-loops. For two subsets X,Y ⊂ V (not necessarily disjoint),
E(X,Y ;G) denotes the set of edges e joining a vertex in X and a vertex in Y
(i.e., e = {u, v} satisfies u ∈ X and v ∈ Y ), and d(X,Y ;G) denotes |E(X,Y ;G)|.
Note that E(X,Y ;G) includes all self-loops {u, u} with u ∈ X∩Y if any. We may
write E(X,V −X ;G) and d(X,V −X ;G) as E(X ;G) and d(X ;G), respectively.
Note that d(u, v;G) is the number of multiple edges with end vertices u and v
in G. The degree of a vertex v is defined to be deg(v;G) = d(v;G) + 2d(v, v;G).
For a multigraph G = (V,E) and a subset X ⊆ E (resp., X ⊆ V ), let G −X
denotes the multigraph obtained by removing the edges in X (resp., the vertices
in X together with incident edges) from G.

Let c(G) denote the number of components in a multigraph G. Removing k
edges from G increases the number of components at most by k. Hence we have:

Lemma 1. For a multigraph G = (V,E) and a subset E′ ⊆ E, c(G − E′) ≤
c(G) + |E′|. 
�
We here review the definition and some important property of matroids (see [10]
for more on matroid theory). For a finite set S, let I be a family of subsets of
S. System (S, I) is called a matroid if it satisfies three conditions (i) ∅ ∈ I, (ii)
If I ∈ I, then any subset I ′ of I also belongs to I, and (iii) For any I1, I2 ∈ I
with |I1| < |I2|, there is an element e ∈ I2 − I1 such that I1 ∪ {e} ∈ I. For a
set I ∈ I of a matroid M = (S, I) and an element e ∈ S − I with I ∪ {e} ∈ I,
the set of elements e′ ∈ I ∪ {e} such that I ∪ {e} − e′ ∈ I is called a circuit and
is denoted by C(I, e). The rank function r of a matroid M = (S, I) is defined
as a function r : 2S → Z+ such that r(S′) is the maximum cardinality |I| of
a member I ∈ I with I ⊆ S′. Given two matroids M1 = (S, I1) and M1 =
(S, I2) on the same set S, finding a maximum common member I∗ ∈ I1 ∩ I2
is known as the matroid intersection problem. It is not difficult to observe that
|I| ≤ r1(S′) + r2(S − S′) holds for every I ∈ I1 ∩ I2 and S′ ⊆ S, where ri is
the rank function of Mi, i = 1, 2.. Edmonds has proven the following min-max
theory.

Theorem 1. [6] max{|I| | I ∈ I1∩I2} = min{r1(S′)+r2(S−S′) | S′ ⊆ S}. 
�

3.2 Detachments

Let G be a multigraph which may have self-loops. A detachment H of G is a
multigraph with E(H) = E(G) such that V (H) can be partitioned into |V (G)|
subsets Wv, v ∈ V (G) in such a way that G is obtained from H by contracting
each subset Wv into a single vertex v.

Given a function r : V (G) → Z+, a detachment H = (∪v∈V (G)Wv, E(G)) of
G is called an r-detachment of G if |Wv| = r(v), v ∈ V (G), where we denote
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Wv = {v1, v2, . . . , vr(v)}. In other words, H is obtained from G by splitting each
vertex v ∈ V (G) into r(v) copies of v, where each edge {u, v} ∈ E(G) joins some
vertices ui ∈ Wu and vj ∈ Wv. A self-loop {u, u} in G may be mapped to a
self-loop {ui, ui} or a non-loop edge {ui, uj} in a detachment H of G. Note that
d(Wu,Wv;H) = d(u, v;G) holds for all u, v ∈ V (G).

For example, an r-detachment of graph Gg in Fig. 2(a) is shown in Fig. 2(c),
where r(H) = 4, r(O) = 1 and r(C) = 2.

For a function r : V (G) → Z+, an r-degree specification is a set ρ of vec-
tors ρ(v) = (ρv

1, ρ
v
2 , . . . , ρ

v
r(v)), v ∈ V (G) such that

∑
1≤i≤r(v) ρ

v
i = deg(v;G).

An r-detachment H of G is called a ρ-detachment if each v ∈ V satisfies
deg(vi;H) = ρv

i for all vi ∈ Wv = {v1, v2, . . . , vr(v)}. For a subset X ⊆ V (G),
r(X) denotes

∑
v∈X r(v). Nash-Williams [11] obtained the following characteri-

zation of connected r-detachments of G which are allowed to have self-loops.

Theorem 2. [11] Let G = (V,E) be a multigraph and r : V → Z+. Then there
exists a connected r-detachment H of G if and only if

r(X) + c(G−X)− d(X,V ;G) ≤ 1 for every nonempty subset X ⊆ V . (1)

Furthermore, if G has a connected r-detachment then there exists a connected
ρ-detachment Hρ of G for every r-degree specification ρ. 
�
The theorem does not characterize the necessary and sufficient condition for a
given multigraphG to have a loopless connected r-detachment or ρ-detachmentH .

(a) (b)

O

C

H

C1

H4H3H2H1

C2

O1

r(O)=1

r(H)=4

r(C)=2

(c)

C1

H4H3H2H1

C2

O1

Fig. 2. (a) A multigraph Gg obtained from the vector g ∈ F1({H, O, C}) in Fig. 1(c);
(b) An r-expansion Ĥ(Gg) of Gg, where r(H) = 4, r(O) = 1 and r(C) = 2; (c) An
r-detachment of Gg

3.3 Loopless Detachments

In this subsection, we give an efficient algorithm for computing a loopless and
connected ρ-detachment of a given multigraph. For this, we derive the necessary
and sufficient conditions for a given multigraph to have loopless connected r-
and ρ-detachments as follows.
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Theorem 3. Let G = (V,E) be a multigraph and r : V → Z+. Then:

(i) There exists a loopless and connected r-detachment H of G if and only if (1)
holds and r(v) ≥ 2 for each self-loop {v, v} ∈ E.

(ii) Whether (1) holds or not can be tested in O(min{r(V )3.5 + |E|, r(V )1.5

|E|r2max}) time, and a multigraph H in (i) if any can be obtained in O(min
{r(V )3.5 + |E|, r(V )1.5|E|r2max}) time, where rmax = maxv∈V r(v). 
�

Theorem 4. Let G = (V,E) be a multigraph, r : V → Z+, and ρ be an r-degree
specification. Then:

(i) G has a loopless and connected ρ-detachment Hρ if and only if it hold (1)
and

1 ≤ ρv
i ≤ d(v;G) + d(v, v;G) for all vi ∈ Wv and v ∈ V . (2)

(ii) Given a loopless and connected r-detachment H of G, a loopless and con-
nected ρ-detachment Hρ can be constructed in O(|E| min{r(V )2, |E|r2max})
time. 
�

Proof of Theorem 3. We first prove Theorem 3. First consider the necessity
of Theorem 3(i). If r(v) = 1 for some self-loop {v, v} ∈ E, then clearly G cannot
have a loopless r-detachment. Assume that there is a connected r-detachment
H = (∪v∈V Wv, E(G)) of G = (V,E). Let X be an arbitrary nonempty subset of
V . For XH = ∪v∈XWv and E′ = E(XH , V (H);H), each vertex in XH has no
incident edge in graph H − E′, and c(H − E′) = |XH | + c(H −XH) ≥ r(X) +
c(G−X) holds. Since 1 = c(H) ≥ c(H−E′)−|E′| holds by Lemma 1 and |E′| =
d(XH , V (H);H) = d(X,V ;G) holds, we have 1 ≥ r(X)+c(G−X)−d(X,V ;G),
which implies the necessity of Theorem 3(i).

We now show the sufficiency of Theorem 3(i). Given a multigraph G = (V,E)
and a function r in Theorem 3, we define an r-expansion as a multigraph Ĥ(G) =
(W = ∪v∈VWv, F ) such that its vertex set W is the union of |V | disjoint vertex
subsets Wv = {v1, v2, . . . , vr(v)}, v ∈ V and its edge set F is the union of |E|
disjoint edge subsets Fe, e ∈ E defined by

Fe = {{ui, vj} | ui ∈Wu, v
j ∈Wv} if e = {u, v} ∈ E (u = v),

Fe = {{ui, uj} | ui, uj ∈Wu, i = j} if e = {u, u} ∈ E.
Note that |W | = r(V ) and |F | =∑{u,v}∈E:u�=v r(u)r(v)+

∑
{u,u}∈E r(u)(r(u)−

1)/2 = O(|E|r2max) hold, and that the resulting multigraph (W,F ) is loopless
since |Wu| = r(u) ≥ 2 holds for any self-loop e = {u, u} ∈ E by the assumption
on r. Any subset F ′ ⊆ F such that |F ′ ∩ Fe| = 1, e ∈ F can be viewed as a
loopless r-detachment (W,F ′) of G.

We here introduce a partition matroid M1 = (F, I1) with I1 = {I ⊆ F |
|I ∩ Fe| ≤ 1 ∀e ∈ E} and the graphic matroid M2 = (F, I2) of Ĥ(G), i.e.,
I2 = {I ⊆ F | I contains no cycle in Ĥ(G)}. Observe that, for any loopless
r-detachment (W,F ′) of G, its maximal forest F ′′ ⊆ F ′ (i.e., a maximal subset
of F ′ having no cycle) satisfies

c((W,F ′′)) = |W | − |F ′′| and F ′′ ∈ I1 ∩ I2.
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In particular, c((W,F ′′)) = |W | − |F ′′| = 1 if (W,F ′) is connected. Therefore,
it suffices to show that I1 ∩ I2 contains a subset I∗ with |I∗| = |W | − 1 if (1)
holds, since this implies that c((W, I∗)) = |W |− |I∗| = 1 and that a loopless and
connected r-detachment (W,F ′) is obtained from I∗ by adding |E| − |I∗| more
edges choosing an arbitrary edge e′ ∈ Fe for each e ∈ E with I∗ ∩Fe = ∅ so that
|F ′ ∩ Fe| = 1 holds for all e ∈ E.

By Theorem 1, the maximum cardinality |I| of a member I ∈ I1 ∩I2 is equal
to min{r1(F ′) + r2(F − F ′) | F ′ ⊆ F}, where ri is the rank function of Mi,
i = 1, 2. We can prove the next property, as shown in [11].

Lemma 2. If (1) holds, then

r1(F ′) + r2(F − F ′) ≥ r(V )− 1 for every subset F ′ ⊆ F . (3)

Proof. Omitted due to space limitation. 
�

Given a multigraph G and a function r, we compute a member I∗ ∈ I1∩I2 with
the maximum cardinaliry |I∗|. If (1) holds, then |I∗| = min{r1(F ′) + r2(F −F ′)
| F ′ ⊆ F} ≥ r(V )− 1 must hold by this lemma and Theorem 1, and G admits a
loopless and connected r-detachment. This shows the sufficiency of (1), proving
Theorem 3(i).

To test whether (1) holds or not, we compute a maximum common member
I∗ ∈ I1 ∩ I2. This can be done in polynomial time by using the matroid in-
tersection algorithm in [5]. The time complexity is reduced to O(min{r(V )3.5,
r(V )1.5|E|r2max}) by utilizing the structure of the problem (the detail is omitted
due to space limitation). This proves Theorem 3(ii).

Proof of Theorem 4. Next we prove Theorem 4. We first consider the necessity
of Theorem 4(i). Assume that G has a loopless and connected ρ-detachment Hρ.
It is easy to see that 1 ≤ deg(vi) = ρv

i holds for all vi ∈ Wv and v ∈ V . If
ρv

i = deg(vi) > d(v;G)+d(v, v;G) holds, then at least one self-loop in E(v, v;G)
must be incident to vi. Hence ρv

i ≤ d(v;G) + d(v, v;G) necessarily holds.
To show the sufficiency of Theorem 4(i), we again consider an r-detachment

H of G as a spanning subgraph H = (W,F ′) of the r-expansion Ĥ(G) = (W,F )
such that |F ′ ∩ Fe| = 1 for every e ∈ E. Given an r-degree specification ρ in
Theorem 4, we show that F ′ can be modified into a ρ-detachment of G. Let
D(H) denote the difference

∑
v∈V

∑
1≤i≤r(v) |deg(vi;H)− ρv

i |.
Lemma 3. LetH = (W,F ′) be a connected spanning subgraph of the r-expansion
Ĥ(G) such that |F ′ ∩ Fe| = 1 for every e ∈ E. If D(H) > 0, then one of the
following (i) and (ii) holds:

(i) There are edges ea ∈ F ′ ∩ Fe and eb ∈ Fe − F ′ for some edge e ∈ E such
that H ′ = (W, (F ′ − ea) ∪ {eb}) remains connected and D(H ′) = D(H) − 2
holds.

(ii) There are edges ea ∈ F ′∩Fe, eb ∈ Fe−F ′ e′a ∈ F ′∩Fe′ and e′b ∈ Fe′−F ′ for
some edges e, e′ ∈ E such that H ′ = (W, (F ′ − {ea, e

′
a}) ∪ {eb, e

′
b}) remains

connected and D(H ′) = D(H)− 2 holds.
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Proof. Omitted due to space limitation. 
�
After modifying F ′ into (F ′− ea)∪{eb} by edges ea and eb in (i) of this lemma,
the resulting H = (W,F ′) remains connected and satisfies |F ′∩Fe| = 1 for every
e ∈ E, and the difference D(H) reduces by 2. Analogously for the modification
by (ii) of the lemma. Therefore by repeating these procedures until D(H) be-
comes zero, we obtain a loopless and connected ρ-detachment H = (W,F ′)
of G. This proves Theorem 4(i). Since D(H) ≤ 2|E|, and the modification
is applied O(|E|) times. We represent a multigraph H = (W,F ′) as an edge-
weighted simple graph. Then the connectivity of two vertices in H can be tested
in O(min{r(V )2, |E|r2max}) time, and we can obtain a loopless and connected
r-detachment of G in O(|E|min{r(V )2, |E|r2max}) time, proving Theorem 4(ii).

4 Inferring Multigraphs

We are ready to prove our results on graph inference. Given a feature vector
g ∈ FK(Σ), let gk denote the vector which consists of entries g(t), t ∈ Σk, |gk|
denote the number of nonzero entries in gk, and let Vk = {t ∈ Σk | g(t) ≥ 1},
where |gk| = |Vk| holds. We assume that a given feature vector g is represented
only by its positive entries, since otherwise it would require unnecessarily large
space complexity to store many zero entries. Let |g| denote the number of nonzero
entries in g, and let n =

∑
t∈Σ1 g(t), p = maxt∈Σ1 g(t) and m =

∑
t∈Σ2 g(t).

Thus, g ∈ F1(Σ) is given by O(|g| logn) space.
A feature vector g ∈ F1(Σ) is called valid with respect to Σ if it satisfies that

V2 ⊆ V1 × V1, g(uv) = g(vu) for all uv ∈ V2, and g(uu) is an even integer and
g(u) ≥ 2 for all uu ∈ V2.

Theorem 5. Given an instance I = g ∈ F1(Σ) of GIPF, the feasibility of I
can be tested in O(min{|g|2|g1|, n3.5 +m,n1.5mp2}) time, and a solution of I (if
any) can be constructed in O(min{n3.5 +m,n1.5mp2}) time.

Proof. Given a feature vector g ∈ F1(Σ), we can check whether or not g is valid
with respect to Σ in O(|g1| + |g2|) = O(|g|) time. If g is not valid, then we
see that there is no loopless Σ-labeled multigraph H with f1(H) = g. Consider
the case where g is valid. By regarding V1 = {t ∈ Σ1 | g(t) ≥ 1} and V2 =
{t ∈ Σ2 | g(t) ≥ 1} as a vertex set and an edge set, we construct a multigraph
Gg = (V = V1, E = V2) such that d(u, v;G) = g(uv)(= g(vu)) for all u, v ∈ V
with u = v and d(u, u;G) = g(uu) for all u ∈ V , where a set of edges E(u, v;Gg)
is stored as a single edge weighted by integer d(u, v;G). Let r(v) := g(v), v ∈ V .
Since g is valid, such a multigraph Gg exists and r(v) ≥ 2 holds for each self-
loop {v, v} ∈ E. We see that any loopless and connected Σ-labeled multigraph
H with f1(H) = g is a loopless and connected r-detachment of Gg. We test
whether there exists an r-detachment H of Gg or not and find such a solution
H to I if any. This can be done in O(min{r(V )3.5 + |E|, r(V )1.5|E|r2max}) =
O(min{n3.5 + m,n1.5mp2}) time by Theorem 3(ii). Note that the feasiblity of
I can also be tested by checking (1) for all possible subsets X of V . This takes
O(|g|2|g1|) time since c(Gg −X) can be computed in O(|g|) time. 
�
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For example, given feature vector g ∈ F1({H, O, C}) with g(t) = occ(t,H1) in
Fig. 1(b), multigraph Gg = (V,E) in this proof is given as in Fig. 2(a). An
r-expansion Ĥ(Gg) is given in Fig 2(b), from which a loopless and connected r-
detachment is obtained in Fig. 2(c), which is equivalent to graphH2 in Fig. 1(c).

Corollary 1. Given an instance I = g ∈ F1(Σ) of GIPF for trees, the feasibility
of I can be tested in O(min{|g|2|g1|, n3.5, n2.5p2}) time, and a solution of I (if
any) can be constructed in O(min{n3.5, n2.5p2}) time.

Proof. We can test if a given g satisfies m = n−1 or not in O(min{|g|, n}) time.
If m = n − 1, then no Σ-labeled tree T with f2(T ) = g exists. Otherwise (if
m = n− 1) we apply Theorem 5 to obtain a connected Σ-labeled multigraph H
with f1(H) = g if any, which must be a tree since |V (H)| = n and |E(H)| =
m = n− 1. 
�

Analogously with Theorem 5 and Corollary 1, we have the next results.

Theorem 6. Given an instance I = (g ∈ F1(Σ), ρ) of GIFV, the feasibility of
I can be tested in O(min{n + |g|2|g1|, n3.5 +m,n1.5mp2}) time, and a solution
of I (if any) can be constructed in O(min{n3.5 +m,n1.5mp2}) time. 
�
Corollary 2. Given an instance I = (g ∈ F1(Σ), ρ) of GIFV for trees, the
feasibility of I can be tested in O(min{n + |g|2|g1|, n3.5, n2.5p2}) time, and a
solution of I (if any) can be constructed in O(min{n3.5, n2.5p2}) time. 
�
We close this section by making a remark that our algorithm can be used to
reduce the search space for solving GIPF and GIFV for K > 1. Given a feature
vector g ∈ FK(Σ), suppose that there is a loopless and connected Σ-labeled
multigraph H with fK(H) = g. For such a graph H , we consider the k-path
graph Hk = (Wk, Fk) such that its vertex set Wk consists of all paths of length
of k as vertices and its edge set Fk contains an edge {t, t′} if and only if H
has a path (v1, v2, . . . , vk+1) of length k + 1 with t = (v1, v2, . . . , vk) and t′ =
(v2, v3, . . . , vk+1). Since Hk is a loopless and connected Σk-labeled multigraph,
we can test whether gk and gk+1 can have such Hk as in the case of g1 and g2 by
suitably defining multigraph Gg (the detail is omitted due to space limitation).
Hence if g ∈ FK(Σ) has a pair of gk and gk+1 (1 ≤ k ≤ K) that has no Hk,
then we conclude that g has no solution H with fK(H) = g.

5 Concluding Remarks

In this paper, we proved that the problem of inferring a multigraph from fre-
quency of paths of length at most K = 1 can be solved efficiently by formu-
lating it as the loopless and connected detachment problem. Our algorithm can
handle the case where each vertex is required to have a specified degree. Our
new approach will be applied to infer multigraphs/digraphs with a higher con-
nectivity since the characterizations of k-edge-connected detachments of multi-
graphs/digraphs have already been obtained [4,7,8,11].
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Abstract. Given a graph G(V, E), the identifying codes problem is to
find the smallest set of vertices D ⊆ V such that no two vertices in
V are adjacent to the same set of vertices in D. The identifying codes
problem has been applied to fault diagnosis and sensor based location
detection in harsh environments. In this paper, we introduce and study a
generalization of this problem, namely, the d-identifying codes problem.
We propose a polynomial time approximation algorithm based on ideas
from information theory and establish its approximation ratio that is
very close to the best possible. Using analysis on random graphs, several
fundamental properties of the optimal solution to this problem are also
derived.

1 Introduction

Consider an undirected graph G with vertex set V and edge set E. A ball of
radius t ≥ 1 centered at a vertex v is defined as the set of all vertices that
are at distance t or less from v. The vertex v is said to cover itself and all the
vertices in the ball with v as the center. The identifying codes problem defined
by Karpovsky et al. [9] is to find a minimum set D such that every vertex in
G belongs to a unique set of balls of radius t ≥ 1 centered at the vertices in
D. The set D may be viewed as a code identifying the vertices and is called an
identifying set. Two important applications have triggered considerable research
on the identifying codes problem. One of these is the problem of diagnosing
faulty processors in a multiprocessor system [9]. Another application is robust
location detection in emergency sensor networks [13]. Next we briefly describe
the application of identifying codes in fault diagnosis.

Consider a communication network modeled as an undirected graph G. Each
vertex in the graph represents a processor and each edge represents the commu-
nication link connecting the processors represented by the end vertices. Some of
� This work was supported by the National Science Foundation under the ITR grant

ECS-0426831.
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the processors could become faulty. To simplify the presentation let us assume
that at most one processor could become faulty at any given time. Assume that
a processor, when it becomes faulty, can trigger an alarm placed on an adjacent
processor. We would like to place alarms on certain processors that will facilitate
unique identification of the faulty processors. We would also like to place alarms
on as few processors as possible. If D is a minimum identifying set for the case
t = 1, then placing alarms on the processors represented by the vertices in the
set D will help us to uniquely identify the faulty processor. Notice that we only
need to consider t = 1 because if t > 1 is desired, we can proceed with Gt, the
tth power of G.

Karpovsky et al [9] have studied the identifying codes selection problem ex-
tensively and have established bounds on the cardinally of the identifying sets.
They have shown how to construct the identifying sets for specific topologies
such as binary cubes and trees. For arbitrary topology, [2] presents heuristic
approaches for a closely related problem that arises in selecting probes for fault
localization in communication networks. Several problems closely related to the
identifying codes problem have been studied in the literature. Some of these may
be found in [5], [6], [10], [11].

Karpovsky et al. [9] have shown that unique identification of vertices may not
always be possible for certain topologies. In other words, triggering of alarms
on a set of processors could mean that one of several candidate processors could
be faulty. Once such a set of possible faulty processors has been identified then
testing each processor in this set will identify the faulty processor. This moti-
vates the generalization of the identifying codes problem to d-identifying codes
problem defined below. This generalization is similar to the introduction of t/s
diagnosable systems that generalize the t-diagnosable systems introduced by
Preparata, Metze and Chien [12]. An introduction to t-diagnosable systems and
their generalization may be found in [3], [4].

1.1 Definition of the d-Identifying Codes Problem

Consider an undirected graph G(V,E) with each vertex v ∈ V associated with
an integer cost c(v) > 0 and an integer weight w(v) > 0.

Let N [v] be the set of vertices containing v and all its neighbors. For a subset
of vertices S ⊆ V , define the cost and weight of S as

c(S) =
∑
v∈S

c(v) and w(S) =
∑
v∈S

w(v).

Two vertices u, v ∈ V are distinguished by vertex w iff |N [w]∩ {u, v}| = 1. A
set of vertices D ⊆ V is called an identifying set if (1) every unordered vertex
pair (u, v) is distinguished by some vertex in D and (2) D is a dominating set
of G, i.e., each vertex in G is adjacent to at least one vertex in D (we will relax
this requirement later).

Given D ⊆ V , define ID(v) = N [v] ∩ D and an equivalence relation u ≡ v
iff ID(u) = ID(v). The equivalence relation partitions V into equivalence classes
VD = {S1, S2 . . . , Sl} such that u, v ∈ Si ⇐⇒ ID(u) = ID(v).



286 Y. Xiao, C. Hadjicostis, and K. Thulasiraman

For any D ⊆ V , let VD be the equivalence classes induced by D. If D is a
dominating set of G and d ≥ max{w(S1), w(S2) . . . , w(Sl)}, then D is called a
d-identifying set of G. The d-identifying codes problem is to find a d-identifying
set D ⊆ V with minimum cost.

Note that if d = 1 then the d-identifying codes problem reduces to the iden-
tifying codes problem if the vertex costs and weights are equal to unity. Also,
whereas the cost of the d-identifying set is a measure of the cost of installing
alarms, the value of d is a measure of the degree of uncertainty in the identifica-
tion of faulty processors. Since the value of d is also a measure of the expenses
involved in testing each processor in an equivalence class, d has to be set at a
small value.

The identifying set must be a dominating set. However we can drop this re-
quirement after a simple transformation of the graph, i.e., adding a new isolated
vertex with weight d and a very big cost such that any cost aware algorithm will
not include this vertex in the solution set. Thus it will be the only vertex not
adjacent to the identifying set. So we will ignore the dominating set condition
for the simplicity of presentation.

We denote lnx ≡ loge x, lg x ≡ log2 x.

1.2 Main Results

In this paper we introduce and study the d-identifying codes problem. We first
propose an approximation algorithm inspired by a heuristic for the minimum
probe selection problem [2] based on ideas from information theory. In Theo-
rem 1, we establish the approximation ratio of our algorithm in terms of an
entropy function H(·). As a byproduct of the analysis in Theorem 1, we derive
in Corollary 1 a lower bound on the cost of the optimal solution. We then study
the characteristics of the optimal entropy function that results in the approxi-
mation ratio of 1 + ln d+ ln |V |+ ln(lg |V |) for the d-identifying codes problem
and of 1 + ln |V | + ln(lg |V |) for the identifying codes problem in Theorem 1.
We show that the approximation ratio of our algorithm is very close to the
best possible for the d-identifying codes problem if NP ∈ DTIME(nlg lg n). We
also derive several fundamental properties of the optimal solution using random
graphs. Certain proofs are omitted to conserve space and a few are put in the
appendix.

2 An Approximation Algorithm for the d-Identifying
Codes Problem

2.1 A Greedy Algorithm

We first present the approximation algorithm solving the d-identifying codes
problem as Algorithm 1 below based on ideas from information theory. Following
information theoretical terminology, H(VS) is called the entropy defined on VS

which is the set of equivalence classes induced by S. Similarly, I(VS ; v) =H(VS)−
H(VS+v) is called the information content of v ∈ V − S w.r.t. S. We defer the
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definition of the entropy until Sect. 2.2. Actually, the framework of our greedy
algorithm without specific entropy definition is applicable to a class of identifying
codes problems whose detailed specifications can be hidden in the definition of
the entropy. Based on the framework of the greedy algorithm, one only needs
to focus on the design of entropy for other variations of the identifying codes
problem, e.g., the strong identification codes problem [11]. However, finding the
optimal entropy is not straightforward. On the contrary, it is usually the most
tricky work.

Algorithm 1. Greedy Algorithm
1: Initialize D = ∅
2: while H(D) > 0 do
3: Select vertex v∗ = arg maxv∈V −D I(VD; v)/c(v)
4: D ← D ∪ {v∗}.
5: end while

The time complexity of the above greedy algorithm is O(n2TH(n)), where
TH is the time complexity function of the algorithm computing H(·). The fol-
lowing theorem is the main result on the approximation ratio of the greedy
algorithm.

Theorem 1. Denote VD as the set of equivalence classes induced by D ⊆ V .
Suppose an entropy function H(·) satisfies the following conditions:

(a) H(VD) = 0 for any d-identifying set D,
(b) If H(VS) = 0, then H(VS) ≥ 1, and
(c) I(VS ; v) ≥ I(VS+u; v) for all u = v, S ⊆ V ,

then the greedy algorithm returns a d-identifying set D such that c(D)/c(D∗) <
ln[H(V∅)] + 1 (recall that by definition V∅ = V ), where D∗ = {v∗1 , v∗2 . . . , v∗|D∗|}
is the minimum d-identifying set.

Proof. Suppose at the rth iteration, the greedy algorithm picks vertex vr. Let
Dr be the partial d-identifying set at the beginning of the rth iteration, Hr =
H(VDr ), and D∗

r = D∗ −Dr. Note that D1 = ∅ and H1 = H(V∅).
Since Dr ∪D∗

r is a d-identifying set, H(VDr∪D∗
r
) = 0 by (a). Define D∗

r (i) =
{v∗1 , v∗2 . . . , v∗i }, i.e., the first i values from D∗

r . Note that D∗
r (0) = ∅. We have

H(VDr ) = H(VDr )−H(VDr∪D∗
r
)

=
|D∗

r |−1∑
i=0

[H(VDr∪D∗
r (i))−H(VDr∪D∗

r (i+1))] =
|D∗

r |−1∑
i=0

I(VDr∪D∗
r (i); v∗i+1).

By (c), I(VDr∪D∗
r (i); v∗i+1) ≤ I(VDr∪D∗

r (i−1); v∗i+1) · · · ≤ I(VDr ; v∗i+1).
According to the greedy algorithm, I(VDr ; v∗i+1)/c(v

∗
i+1) ≤ I(VDr ; vr)/c(vr).
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Hence

Hr = H(VDr ) =
|D∗

r |−1∑
i=0

I(VDr∪D∗
r (i); v∗i+1)

≤ c(D∗
r)

c(vr)
I(VDr ; vr) ≤ c(D∗)

c(vr)
I(VDr ; vr).

Then we know that Hr+1 = Hr − I(VDr ; vr) ≤ (1− c(vr)
c(D∗))Hr .

Let the number of iterations of the greedy algorithm be t = |D|, where D is
the solution returned by the greedy algorithm. We have

1 ≤ Ht ≤
∏

v∈Dt

(1− c(v)
c(D∗)

)H0 ≤ exp{− c(Dt)
c(D∗)

}H0.

The first inequality holds because of (b) (note that Dt = D− vt) and the last
inequality is true because 1− x ≤ e−x.

On the other hand, by (a), H(VD) = 0,

I(VDt ; vt) = H(VDt) ≤
c(D∗)
c(vt)

I(VDt ; vt) ⇒ c(vt) ≤ c(D∗).

So c(D)
c(D∗) = c(Dt)+c(vt)

c(D∗) = c(Dt)
c(D∗) + c(vt)

c(D∗) ≤ ln[H(V∅)] + 1. 
�

Using a similar argument, we can derive a lower bound on the cost of the mini-
mum d-identifying set if the costs of all the vertices are equal.

Corollary 1. Let G(V,E) be a graph with n vertices with equal cost which are
labeled such that I(V∅; v1) ≥ I(V∅; v2) · · · ≥ I(V∅; vn). Then the optimal cost of
the minimum d-identifying set, OPTd(G) ≥ K, where K is the smallest integer
such that

∑K
i=1 I(V∅; vi) ≥ H(V∅).

2.2 Optimal Entropy Function

Let fd(·) be some non-negative function (to be specified later) and Hd(VD) =∑
S∈VD

fd(w(S)) and Hd(∅) = 0, where VD = {S1, S2, ...} is the set of equiva-
lence classes induced by D ⊆ V .

We first examine Condition (c) in Theorem 1, i.e., I(VS ; v) ≥ I(VS+u; v) for
any u = v, S ⊆ V . In Fig. 1, there are two cases. In Case 1, v is adjacent to
all the vertices in Tuv and Tv. In Case 2, v is only adjacent to vertices in Tuv,
where T is an equivalence class in VS ; Tuv, Tu, Tv, and T0 is the set of vertices
in T adjacent to both u and v, only u, only v, and none of u, v, respectively.
In other words, Tuv ∪ Tu, Tv ∪ T0 ∈ VS+u and Tuv, Tu, Tv, T0 ∈ VS+u+v. Let
i = w(Tuv), j = w(Tu), k = w(Tv), and l = w(T0).

It is easy to verify that the following conditions are necessary and sufficient
for Theorem 1(a)-(c) to be true:
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u v

T
Tuv  Tv Tu  T0

Case 1

u v

T
Tuv  Tu

 T0

Case 2

Fig. 1. Two cases. In Case 1, v is adjacent to all the vertices in Tuv and Tv. In Case
2, v is only adjacent to vertices in Tuv.

If i, j, k, l ∈ {0, 1, 2 . . .} and at most one of i, j, k, l is 0, then

fd(i+ j + k + l)− fd(i+ k)− fd(j + l)
≥ [fd(i+ j)− fd(i)− fd(j)] + [fd(k + l)− fd(k)− fd(l)], (1)

fd(t) = 0, 0 ≤ t ≤ d, and (2)
fd(t) ≥ 1, ∀t ≥ d+ 1. (3)

Recall that the approximation ratio given in Theorem 1 is ln[H(V∅)] + 1=
ln fd(w(V )) + 1. An entropy function is called optimal if it is the minimum
function among all functions that satisfy (1)-(3). Because the approximation
ratio is ln fd(w(V )) + 1, we are only interested in the order of the function and
ignore the constant coefficients and constant terms in the function. Assume that
w(V ) is large. We next construct optimal entropy functions. We first consider
d = 1. For this special case, define

f1(n) = n lgn. (4)

Lemma 1. f1(n) satisfies (1)-(3).

Lemma 2. Given d ≥ 2, the function defined below satisfies (1)-(3).

fd(n) =

⎧⎨⎩
n lg(n/d), n ≥ d

0, otherwise.
(5)

Proof. Since fd(n) is a nondecreasing function and

fd(d+ 1) = (d+ 1) lg(1 +
1
d
) = lg((1 +

1
d
)d+1) ≥ lg e > 1,

Condition (3) is true.
Condition (2) holds by definition of fd(n).
We next prove that Condition (1) holds.
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If i + j + k + l ≤ d, the proof is trivial. Without loss of generality, assume
i+ j + k + l ≥ d+ 1. Consider 5 cases:

Case 1: i, j, k, l ≥ d.
fd(i+ j + k + l) + fd(i) + fd(j) + fd(k) + fd(l)
= (i+ j + k + l) lg((i+ k + j + l)/d) + i lg(i/d)

+j lg(j/d) + k lg(k/d) + l lg(l/d)
= (i+ j + k + l) lg(i+ j + k + l) + i lg i+ j lg j

+k lg k + l lg l − 2(i+ j + k + l) lg d
≥ (i+ k) lg(i+ k) + (j + l) lg(j + l) + (i + j) lg(i+ j)

+(k + l) lg(k + l)− ((i+ k) + (j + l) + (i+ j) + (k + l)) lg d
= fd(i+ k) + fd(j + l) + fd(i+ j) + fd(k + l)

Case 2: Precisely one of i+ k, j + l, i+ j, and k + l is ≤ d.
Due to the symmetry of i, j, k, l in the function, assume that i + k ≤ d. We

have i ≤ d and k ≤ d. Let g(n) = n lg(n/d).
Therefore

fd(i+ j + k + l) + fd(i) + fd(j) + fd(k) + fd(l)
≥ g(i+ j + k + l) + g(i) + g(j) + g(k) + g(l)− g(i)− g(k)
≥ g(j + l) + g(i+ j) + g(k + l) + (g(i+ k)− g(i)− g(k))
= fd(j + l) + fd(i+ j) + fd(k + l) + ((i+ k) lg

i+ k

d
− i lg i

d
− k lg

k

d
)

≥ fd(j + l) + fd(i+ j) + fd(k + l)

Case 3: Precisely i+ k ≤ d and j + l ≤ d or i+ j ≤ d and k + l ≤ d.
Assume i+ k ≤ d and j + l ≤ d.
In this case, i, j, k, l ≤ d. It suffices to show that

fd(i+ j + k + l) ≥ fd(i+ j) + fd(k + l).

This is obviously true.

Case 4: Precisely i+ k ≤ d and i+ j ≤ d (ignore those equivalent cases).
We have i, j, k ≤ d. Hence

fd(i+ j + k + l) + fd(i) + fd(j) + fd(k) + fd(l)
= fd(i+ j + k + l) + fd(l)
≥ (i+ j + k + l) lg((i+ j + k + l)/d) + l lg(l/d)
= [(j + k + l) lg(i+ j + k + l) + l lg l] +

[i lg(i+ j + k + l)− (i+ j + k + l) lg d− l lg d]
≥ [(j + l) lg(j + l) + (k + l) lg(k + l)]− [((j + l) lg d+ (k + l) lg d)]
= fd(j + l) + fd(k + l)
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Case 5: All or 3 of the 4 terms, i+ k,j + l, i+ j, and k + l are ≤ d.
The proof for this case is trivial. 
�

Finally, we get the main results of this paper.

Theorem 2. Using the entropy Hd(VD) =
∑

S∈VD
fd(w(S)) with fd(·) as de-

fined in (5), the greedy algorithm guarantees the approximation ratio of 1+lnd+
ln(|V | lg |V |).

Proof. Without loss of generality, assume w(V ) > d ≥ maxv∈V w(v). We have
Hd(V∅) = fd(w(V )) = w(V ) lg(w(V )/d) ≤ d|V | lg |V |.
The rest of the proof follows from Theorem 1. 
�

Corollary 2. For the identifying codes problem, our algorithm guarantees the
approximation ratio of 1 + ln |V |+ ln(lg |V |).

We next show that the function defined in (5) is optimal in asymptotic sense,
i.e., the approximation ratio based on Theorem 1 cannot be improved by finding
better entropy.

Lemma 3. f(n) ≥ Θ(n lg n).

Proof. Set i = j = k = l = 2id in (1), we get

fd(2i+2d)− 2fd(2i+1d) ≥ 2(fd(2i+1d)− 2fd(2id)). (6)

Solving the recurrence inequalities on i, we get

fd(2i+2d) ≥ 2fd(2i+1d) + 2if(2d). (7)

Hence, fd(2id) ≥ i2i−1f(2d). Letting n = 2id completes the proof. 
�

2.3 Hardness of the d-Identifying Codes Problem

To study the hardness, i.e., the approximability of the d-identifying codes prob-
lem, we consider a subclass of d-identifying codes problem where the vertex costs
and weights are 1. Since this subclass includes the identifying codes problem,
d-identifying codes problem is at least as hard as identifying codes problem (here
d is treated as a variable). On the other hand, an interesting question is whether
the approximability of the d-identifying codes problem changes with some fixed
d. For example, if the best approximation ratio for the identifying codes problem
is φ, one may ask whether the 2-identifying codes problem is φ/2 or 2φ approx-
imable. The next lemma shows that the approximability will not change if d is
a constant.

Lemma 4. For any fixed d ≥ 2, if there exists a polynomial time φ-approximation
algorithm for the d-identifying codes problem, there also exists a polynomial time
φ-approximation algorithm for the identifying codes problem.
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Lemma 4 means that for any fixed d, the d-identifying codes problem is at least
as hard as the identifying codes problem in term of approximability. Thus, with
an application of the results in [6], we have the following theorem.

Theorem 3. For any given d ≥ 1, the d-identifying codes problem with unit
vertex costs and weights is not approximable within (1 − ε) ln |V | unless NP ∈
DTIME(nlg lg n).

In view of Corollary 2, we can see that the approximation ratio of our algorithm
is quite tight for the d-identifying codes problem where the vertex costs and
weights are 1. Furthermore, we can expect that our approximation ratio is also
very tight for general d-identifying codes problem as in the special case.

3 A Special Case with Unit Vertex Costs and Weights

In Sect. 2, we established the approximation ratio, i.e., the ratio of the cost of
the approximation solution and the optimal cost of the d-identifying set. In this
section we shall investigate the characteristics of the optimal solution itself. One
of the goals of this study is to show that the approximation algorithm will return
a small set (compared to the cardinality of the vertex set) even with the worst
approximation ratio.

Since it is difficult to study the d-identifying codes problem with arbitrary
vertex costs and weights, we shall only consider a special class of d-identifying
codes problem in which the cost and weight of each vertex is 1. In this setting,
the cost and weight of a set of vertices is just the cardinality of the set.

We shall next investigate the impact of d on the cardinality of the resultant
solution. Let OPT1(G) and OPTd(G) be the cardinality of the minimum identi-
fying set and the minimum d-identifying set, respectively. It can be shown that
the value of OPT1(G) / OPTd(G) is unbounded.

Lemma 5. Given d ≥ 2 and M > 0, there exists a graph G such that

OPT1(G)/OPTd(G) ≥M.
The graph used to prove Lemma 5 is rather artificial. So let’s consider the size
of d-identifying sets on average basis. To study the average characteristics, as-
sumptions are needed on the distribution of graphs. Given the vertices of G, the
cardinality of the d-identifying set is totally decided by the edges. So we assume
that for any unordered pair of vertices there is an edge with probability p which
is a constant. Notice that this is exactly the definition of a class of random graphs
[1], [7].

For the sake of completeness, we first present Suen’s inequality proved in
[8], [14]. Let A1, A2 . . . , An be a set of events, and X =

∑n
i=1Xi, where Xi

is the indicator variable of event Ai(Xi = 1 if event Ai occurs and Xi = 0
otherwise). We use i ∼ j to indicate that events Ai and Aj are dependent. Denote
μ =
∑n

i=1 E[Xi], Δ =
∑

i,j:i∼j E[XiXj], and δ = max1≤i≤n

∑
j:j∼i E[Xj]. Then

Pr(X = 0) ≤ exp{−μ+Δe2δ}.
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Let P ≡ pd+1 + (1− p)d+1, Q(i) ≡ p2d+2−i + (1− p)2d+2−i, R+(p, d)≡ ln(1 +
(1−p

p )d+1)/ ln( 1
p ) , and R−(p, d) ≡ R+(1− p, d).

The following lemma is easy to prove.

Lemma 6. R+(p, d) (R−(p, d)) is a strictly decreasing (increasing) function of
p and a decreasing (decreasing) function of d for p ∈ [1/2, 1) (p ∈ (0, 1/2]).

Given ε ∈ (0, 1), denote p−ε ∈ (0, 1/2], p+ε ∈ [1/2, 1) as two values such that
R−(d, p−ε ) = R+(d, p+ε ) = ε. Since R−(1/2, d) = R+(1/2, d) = 1, p−ε < 1/2 < p+ε .
It can be shown that p−ε + p+ε = 1 and p−ε → 0 (p+ε → 1) if ε→ 0.

Lemma 7. If 1 ≤ i ≤ d, 0 < ε < 1, and p ∈ [p−ε , p+ε ], then

(
d+ 1− ε
d+ 1− i )(

lnQ(i)
lnP

− 1) > 1.

Theorem 4. Given 0 < ε < 1, ∀p ∈ [p−ε , p
+
ε ], with high probability, there exists

no d-identifying set of cardinality of (d+1−ε) ln n
ln(1/P ) in G(n, p) if n is sufficiently

large.

Proof. Let c = (d+1−ε) ln n
ln(1/P ) . it suffices to show that

Pr(There exists a d-identifying set of cardinality c) = o(1)→ 0.

Consider a given set C of cardinality c. Let S ⊂ V be a set of d+ 1 vertices,
define event AS : ∀u, v ∈ S, IC(u) = IC(v). We can see that C is a d-identifying
set iff no such event occurs for all S with |S| = d + 1. Denote XS to be the
indicator variable for event AS .

It can be seen that two events AS and AS′ are dependent iff S ∩ S′ = ∅.
Let X =

∑
S⊂V −C,|S|=d+1XS .

Evidently, Pr(C is a d-identifying set) ≤ Pr(X = 0).
Assume n− c− d− 1 ≥ n/k for some small k (recall d is a constant). Then

μ =
(
n− c
d+ 1

)
(pd+1 + (1− p)d+1)c ≥ (n− c− d− 1)d+1P c

≥ (n/k)d+1P c = exp{(d+ 1) lnn− (d+ 1) ln k + c lnP}
= exp{(d+ 1) lnn− (d+ 1) ln k − (d+ 1− ε) lnn}
= exp{ε lnn− (d+ 1) ln k} = Θ(nε),

Δ =
d∑

i=1

(
n− c

2d+ 2− i
)(

2d+ 2− i
d+ 1

)
(p2d+2−i + (1 − p)2d+2−i)c,

and

δ =
d∑

i=1

(
d+ 1
i

)(
n− c− d− 1
d+ 1− i

)
P c
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Denote θ = min1≤i≤d{(d+1−ε
d+1−i )(

ln Q(i)
ln P − 1)}− 1. By Lemma 7, θ > 0. We have

Δ

μ
≤

d∑
i=1

(
n−c

2d+2−i

)(2d+2−i
d+1

)(
n−c
d+1

) (
Q(i)
P

)c =
d∑

i=1

(
n− c− d− 1
d+ 1− i

)
(
Q(i)
P

)c

≤
d∑

i=1

(
ne

d+ 1− i )
d+1−i(

Q(i)
P

)c

≤
d∑

i=1

exp{(d+ 1− i)(1− (d+ 1− ε)
(d+ 1− i) (

lnQ(i)
lnP

− 1)) lnn+ d}

≤
d∑

i=1

exp{−θ(d+ 1− i) lnn+ d} ≤ d exp{−θ lnn+ d} = Θ(n−θ) = o(1).

Similarly, we can show that e2δ = O(exp{nε−1})→ 1.
Hence −μ+Δe2δ = −μ(1− Δ

μ e
2δ) ≤ Θ(−nθ) and

Pr(There exists a d-identifying code of cardinality c) ≤ (nc) exp{Θ(−nθ)}
Since

(
n
c

)
exp{Θ(−nθ)} = O(exp{Θ(ln2 n− nθ)),

Pr(There exists a d-identifying set of cardinality c) = o(1)→ 0. 
�

Theorem 5. For a set of vertices C ⊆ V and |C| = (d+1+ε) ln n
ln(1/P ) ,

lim
n→∞Pr(C is a d-identifying set ) = 1.

Proof. Let X =
∑

S⊂V,|S|=d+1XS , where XS is defined as in the proof of Theo-
rem 4. By Markov’s inequality, we have,

Pr(C is a d-identifying set) = Pr(X = 0) = 1− Pr(X ≥ 1) ≥ 1− E(X).

E(X) =
∑
S

E(XS) =
d+1∑
i=0

∑
|S∩C|=i

E(XS)

=
d+1∑
i=0

(|C|
i

)(
n− |C|
d+ 1− i

)
P |C|−i(pd+1−i)ipi(i−1)/2

≤ nd+1P |C|−d−1 ≤ exp{−ε lnn+ (d+ 1) ln(1/P )} → 0. 
�

By Theorem 4 and Theorem 5, with high probability, the cardinality of minimum
d-identifying set is approximately (d+1) lnn/ ln(1/P ) when n is sufficiently large.

4 Summary

In this paper we introduced and studied the d-identifying codes problem that
generalizes the identifying codes problem studied in [9]. This problem is of great
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theoretical and practical interest in several applications, in particular, fault di-
agnosis in multiprocessor systems and placement of alarms for robust identifi-
cation of faulty components in sensor networks. The value of d associated with
the identifying set is a measure of the degree of uncertainty in the identification
of faulty processors. We presented an approximation algorithm and established
its approximation ratio. This algorithm is a generalization of the heuristic pre-
sented in [2] but without analysis of the approximation ratio. Our analysis also
provides a way to compute a lower bound on the cost of the optimum solution.
We also established certain hardness results in terms of approximability of the
d-identifying codes problem.

We performed a probabilistic analysis on random graphs assuming that vertex
costs and weights are all equal. We established that a d-identifying set of certain
cardinality exists with very high probability. We also showed that a d-identifying
set of cardinality smaller than this number does not exist with a high probability.

References
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bility of the minimum test collection problem. In ESA, pages 158–169, 2001.

7. S. Janson, T. Luczak, and A. Rucinski. Random graphs. Wiley, New York, 2000.
8. Svante Janson. New versions of Suen’s correlation inequality. Random Struct.

Algorithms, 13(3-4):467–483, 1998.
9. M. Karpovsky, K. Chakrabarty, and L. Levitin. On a new class of codes for iden-

tifying vertices in graphs. IEEE Trans. on Information Theory, 44(2):599–611,
1998.

10. M. Laifenfeld and A. Trachtenberg. Disjoint identifying-codes for arbitrary graphs.
submitted to IEEE Symposium on Information Theory, 2005.

11. Tero Laihonen. Optimal codes for strong identification. Eur. J. Comb., 23(3):307–
313, 2002.

12. F. Preparata, G. Metze, and R. Chien. On the connection assignment problem of
diagnosiable systems”. IEEE Trans. on Electronic Computers, 16:848–854, 1967.

13. S. Ray, R. Ungrangsi, F. Pellegrini, A. Trachtenberg, and D. Starobinski. Robust
location detection in emergency sensor networks. In INFOCOM, 2003.

14. Stephen Suen. A correlation inequality and a Poisson limit theorem for nonover-
lapping balanced subgraphs of a random graph. Random Struct. Algorithms, 1(2):
231–242, 1990.



296 Y. Xiao, C. Hadjicostis, and K. Thulasiraman

Appendix

Lemma 1. f1(n) satisfies (1)-(3).

Proof. Conditions (2)-(3) are trivial. We only show the proof to Condition (1).
Let i, j, k, l ≥ 0 and at most one of them be 0. Consider 2 cases.

Case 1: i, j, k, l > 0. It suffices to show that

(i+ j + k + l) lg(i+ j + k + l)− (i+ k) lg(i+ k)− (j + l) lg(j + l)
≥ [(i+ j) lg(i+ j)− i lg i− j lg j] + [(k + l) lg(k + l)− k lg k − l lg l].

Equivalently, we will prove that

lg(
(i+ j + k + l)(i+j+k+l)iijjkkll

(i+ k)(i+k)(j + l)(j+l)(i+ j)(i+j)(k + l)(k+l) ) ≥ 0.

Define function

g(x) = ln(
(x+ j + k + l)x+j+k+lxxjjkkll

(x+ k)x+k(j + l)j+l(x+ j)x+j(k + l)k+l
).

It suffices to show that ∀x > 0, g(x) ≥ 0. We have

g′(x0) = ln
x0(x0 + j + k + l)
(x0 + k)(x0 + j)

= 0⇔ x0 = kj/l > 0.

g′′(x0) = l/[x0(x0 + j + k + l)] > 0.

Since

(x+ j + k + l)x+j+k+lxxjjkkll

(x+ k)x+k(j + l)j+l(x+ j)x+j(k + l)k+l

= (1 +
xl − jk

(x + k)(x+ j)
)x(1− xl − jk

(j + l)(x+ j)
)j

×(1− xl − jk
(x + k)(k + l)

)k(1 +
xl − jk

(j + l)(k + l)
)l,

g(x0) = ln 1 = 0 and hence ∀x > 0, g(x) ≥ g(x0) = 0.

Case 2: Precisely one of i, j, k, l is 0.
Without loss of generality, assume l = 0. It suffices to show that

∀x ≥ 0, h(x) = ln(
(i+ j + x)i+j+xii

(i+ x)i+x(i+ j)i+j
) ≥ 0.

Since h′(x) = ln( i+j+x
i+x ) ≥ 0 and h(0) = 0, ∀x ≥ 0, h(x) ≥ h(0) = 0. 
�

Lemma 4. For any fixed d ≥ 2, if there exists a polynomial time φ-approximation
algorithm for the d-identifying codes problem, there also exists a polynomial time
φ-approximation algorithm for the identifying codes problem.
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Proof. We first give a polynomial time φ-approximation algorithm for the iden-
tifying codes problem on G(V,E) staring from the φ-approximation algorithm
for the d-identifying codes problem:

1. Construct a graph G′(V ′, E′) defined as follows: Split each vertex v ∈ V into
d copies denoted as vd = {v1, v2 . . . , vd}. For all (u, v) ∈ E, add edges to
connect all vertices in ud to all vertices in vd and for all v ∈ V , add edges to
join each pair of vertices in vd(See Fig. 2). Formally,

V ′ =
⋃

v∈V

{v1, v2 . . . vd}, and

E′ = {(ui, vj), i, j = 1, 2 . . . , d|(u, v) ∈ E}⋃
{(vi, vj), i, j = 1, 2 . . . , d)|v ∈ V }.

G(V, E) G'(V', E')

Fig. 2. Transformation from identifying codes problem to 2-identifying codes problem:
The identifying set and d-identifying set consists of the solid vertices

2. Apply the φ-approximation algorithm to get a d-identifying set Dd on G′.
3. Return D = {v ∈ V |vd ∩Dd = ∅} as an identifying set on G.

The construction of G′ takes O(d2|E|) time with d as a constant.
We next show that the above procedure is a φ-approximation algorithm for

the identifying codes problem.
Let D∗ be an optimal solution to the identifying codes problem on G. It is

easy to verify that D′
d = {v1|v ∈ D∗} is a d-identifying set of G′. Denote D∗

d as
an optimal d-identifying set of G′. We have

c(D∗
d) = |D∗

d| ≤ |D′
d| = |D∗| = c(D∗).

Because in G′, ∀v ∈ V, v1, v2 . . . , vd ∈ V ′ has the same set of neighbors in G′,
there is no way to distinguish them in G′. Hence the set of equivalence classes
of V ′ induced by Dd is simply V ′

Dd
= {vd|v ∈ V }.

Observe that condensing all the vertices in vd for all v ∈ V into a single vertex
v transforms G′ back to G. So an identifying set of G can be formed by picking
all the vertices whose corresponding set of vertices in G′ contain at least one
vertex in Dd. Hence the set D returned by the above procedure is an identifying
set of G. Since the vd’s are pairwise disjoint,

c(D) = |D| ≤ |Dd| = c(Dd) ≤ φ · c(D∗
d) ≤ φ · c(D∗). 
�
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Lemma 7. If 1 ≤ i ≤ d, 0 < ε < 1, and p ∈ [p−ε , p
+
ε ], then

(
d+ 1− ε
d+ 1− i )(

lnQ(i)
lnP

− 1) > 1.

Proof. If p = 1/2, the proof is trivial. We now consider 2 cases.

Case 1: 1/2 < p ≤ pε.
By Lemma 6, ε ≤ R+(p, d) ≤ 1 and ∀1 ≤ i ≤ d,R+(p, d) > R+(p, 2d+ 1− i).

So

lnQ(i)
lnP

− 1 =
ln(p2d+2−i + (1− p)2d+2−i)

ln(pd+1 + (1− p)d+1)
− 1

=
(2d+ 2− i)−R+(p, 2d+ 1− i)

(d+ 1)−R+(p, d)
− 1

=
(d+ 1− i) +R+(p, d)−R+(p, 2d+ 1− i)

(d+ 1)−R+(p, d)

≥ d+ 1− i
d+ 1− ε +

R+(p, d)−R+(p, 2d+ 1− i)
d+ 1− ε .

Therefore,

(
d+ 1− ε
d+ 1− i )(

lnQ(i)
lnP

− 1) ≥ 1 + R+(p,d)−R+(p,2d+1−i)
d+1−i > 1.

Case 2: pε ≤ p < 1/2.

lnQ(i)
lnP

− 1 =
(d+ 1− i) +R−(p, d)−R−(p, 2d+ 1− i)

(d+ 1)−R−(p, d)
.

The rest of the proof is the same as in Case 1. 
�
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Abstract. In a recent article, Nakhleh, Ringe and Warnow introduced
perfect phylogenetic networks—a model of language evolution where lan-
guages do not evolve via clean speciation—and formulated a set of prob-
lems for their accurate reconstruction. Their new methodology assumes
networks, rather than trees, as the correct model to capture the evolu-
tionary history of natural languages. They proved the NP-hardness of
the problem of testing whether a network is a perfect phylogenetic one
for characters exhibiting at least three states, leaving open the case of
binary characters, and gave a straightforward brute-force parameterized
algorithm for the problem of running time O(3kn), where k is the num-
ber of bidirectional edges in the network and n is its size. In this paper,
we first establish the NP-hardness of the binary case of the problem.
Then we provide a more efficient parameterized algorithm for this case
running in time O(2kn2). The presented algorithm is very simple, and
utilizes some structural results and elegant operations developed in this
paper that can be useful on their own in the design of heuristic algorithms
for the problem. The analysis phase of the algorithm is very elegant us-
ing amortized techniques to show that the upper bound on the running
time of the algorithm is much tighter than the upper bound obtained
under a conservative worst-case scenario assumption. Our results bear
significant impact on reconstructing evolutionary histories of languages–
particularly from phonological and morphological character data, most
of which exhibit at most two states (i.e., are binary), as well as on the
design and analysis of parameterized algorithms.

1 Introduction

Languages differentiate and divide into new languages via a process similar to
how biological species divide into new species: communities separate (typically
� The first author was supported in part by DePaul University Competitive Research
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geographically), the language changes differently in each of the new communi-
ties, and in time people from separate communities can no longer understand
each other. While this is not the only means by which languages change, it is
this process which is referred to when we say, for example, “French and Italian
are both descendants of Latin.” The evolution of related languages is mathemat-
ically modeled as a rooted tree in which internal nodes represent the ancestral
languages and the leaves represent the extant languages.

Reconstructing this process for various language families is a major endeavor
within historical linguistics, but is also of interest to archaeologists, human ge-
neticists, and physical anthropologists, for example, because an accurate recon-
struction of how certain languages evolved can help answer questions about
human migrations, the time that certain artifacts were developed, when ancient
people began to use horses in agriculture, the identity of physically European
mummies found in China, etc. (see in particular [7,13,18]). Various
researchers [2,3,5,14] have noted that if communities are sufficiently separated
after they diverge, then the inference of the phylogeny (i.e., evolutionary tree)
for the languages can be inferred by comparing the characteristics of the lan-
guages (grammatical features, regular sound changes, and cognate classes for
different basic meanings), and searching for “perfect phylogenies.” However, the
problem of determining if a perfect phylogeny exists, and then computing it,
is NP-hard [1]. Consequently, efficient techniques for the inference of evolution-
ary trees for language families were not easily obtained. In the 1990’s, various
fixed-parameter approaches for the perfect phylogeny problem were developed
(although inspired by the biological context rather than the linguistic one). Sub-
sequently, Ringe and Warnow worked together to fully develop the methodology
(character encoding and algorithmic techniques) needed to apply these algo-
rithms to the Indo-European language family.

However, while the methodology seemed very clearly heading in the right di-
rection, and even seemed to potentially answer many of the controversial prob-
lems in Indo-European evolution (see [10,12,14,15,16]), it became necessary to
extend the model to address the problem of how characters evolve when the lan-
guage communities remain in significant contact. To address this issue, Nakhleh
et al. introduced the perfect phylogenetic networks (PPN) model in which lan-
guages do not evolve via a clean speciation process [8,9]. They proved the NP-
hardness of the problem of testing whether a network is a perfect phylogenetic
one for characters exhibiting at least three states, leaving open the case of binary
characters, and gave a straightforward O(3kn) time parameterized algorithm for
the problem [8], where k is the number of bidirectional edges in the network and
n is its size.

In this paper we consider the binary case of the problem. This case is of
prime interest on its own since it models the problem of reconstructing evolu-
tionary histories of languages, particularly from phonological and morphological
character data, most of which exhibit at most two states [6,11,12,14,16,17]. We
first prove the NP-hardness of this problem. Then we present a branch-and-
bound parameterized algorithm that solves the problem in O(2kn2) time. The
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algorithm employs several interesting structural (network) operations that are
very useful in the design of heuristic algorithms for the problem. When analyzed
using the standard methods for analyzing parameterized branch-and-bound al-
gorithms, and which usually work under a worst-case scenario assumption, the
upper bound obtained on the size of the search tree of the algorithm is O(3k),
matching the upper bound of the trivial brute-force algorithm. This worst-case
analysis for a branch-and-search process is usually very conservative— the worst
cases can appear very rarely in the entire process, while most other cases permit
much better branching and reductions. Instead, we use amortized analysis to
show that “expensive” operations can be balanced by efficient ones, and that
the actual size of the search tree can be upper bounded by O(2k). The running
time of the algorithm becomes O(2kn2). The analysis phase of the algorithm
is very elegant illustrating that parameterized algorithms perform much better
than their claimed upper bounds, and suggesting that the standard approaches
used in analyzing the size of the search tree for parameterized algorithms are
very conservative. Most of the proofs in this paper are omitted for lack of space
and are available in the technical report 05–007 at the following web address:
http://www.cs.depaul.edu/research/technical.asp.

2 Inferring Evolutionary Trees

An evolutionary tree, or phylogeny, for a set L of taxa (i.e., species or languages)
describes the evolution of the taxa in L from their most recent common ancestor.
Each taxon in L corresponds to a leaf in the evolution tree. The Different types
of data can be used as input to methods of tree reconstruction; “qualitative
character” data, which reflect specific observable discrete characteristics of the
taxa under study, are one such type of data. There are several ways of describing
qualitative characters: as partitions of the set of taxa into equivalence classes, or
as functions that map the taxa to the distinct states. Qualitative characters for
languages are grammatical features, unusual sound changes, and cognate classes
for different meanings. The assumption of the historical linguistic methodology
is that these qualitative characters evolve in such a way that there is no back-
mutation (when characters exhibit parallel evolution we can find most of it
and exclude those characters). What this means is that when the state of the
qualitative character changes in the evolutionary history of the set of languages,
it changes to a state which does not exist anywhere else on earth at that time,
nor has it appeared earlier. We now formalize this concept mathematically.

Suppose that T is a rooted tree describing the evolution of a set L of languages.
Therefore the leaves in T are the languages in L. Suppose that a qualitative
character α is defined for each of the languages in L as a function α : L → Z,
where Z denotes the set of integers (i.e. each integer represents a possible state
for α). That is, α is a labeling to the leaves in T . We say a qualitative character
α is compatible (or “convex”) on T if we can extend α to every internal node of
the tree T , thus defining a qualitative character α′, or a labeling to the internal
nodes of T , so that for every state, the nodes in T having that specific state
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induce a connected subgraph of T . (In other words, ∀z ∈ Z, the set of nodes
{v ∈ V (T ) : α′(v) = z} induces a connected subgraph of T .)

A different way of casting the above problem which is more intuitive is the
following. Given a rooted tree T whose leaves are labeled with integers, decide
if the internal nodes in T can be labeled so that each set of nodes in T with the
same label induces a connected subgraph of T .

Ringe and Warnow postulated that all properly encoded qualitative characters
for the Indo-European data should be compatible on the true tree, if such a tree
existed. Such a tree is called a perfect phylogeny. We have the following definition
and theorem.

Definition 1. Let C be a set of qualitative characters defined on a set L of
languages. A tree T is a perfect phylogeny for C and L if every qualitative
character in C is compatible on T .

Theorem 1. Let T be a phylogenetic tree on a set L of n languages, and as-
sume that each language in L is assigned a state for α. Then we can test the
compatibility of α on T in O(n) time.

The initial analysis of the Indo-European data done by Warnow and Ringe in [16]
demonstrated that the IE linguistic data is, nevertheless, “almost perfect”: they
found a tree on which the proportion of compatible characters to incompatible
characters was enormous. (Even this was quite surprising; the existence of a tree
on which a large proportion of characters is compatible is extremely unlikely in
biological data analysis.) This suggested that the basic approach was a good one
but that the model had to be extended: A tree model is inappropriate and the
evolutionary process is better represented as a “network” [8].

3 Phylogenetic Networks Compatibility: Preliminaries
and Complexity

This model of how languages evolve on networks references an underlying rooted
tree (modeling “genetic descent”) to which bidirectional edges (modeling how
linguistic characters can be transmitted through contact) are added. Therefore,
the underlying tree is rooted, and the edges of that tree can be naturally oriented
from parent to child, whereas the additional edges are by design bidirectional,
since contact between language communities can result in the flow of linguistic
characters in both directions. This model was formalized in [8] as follows.

Definition 2. A phylogenetic network on a set L of languages is a rooted di-
rected graph N = (V,E) with the following properties:

(i) V = L∪I, where I denotes added nodes which represent ancestral languages,
and L denotes the set of leaves of T .

(ii) E can be partitioned between the edges of a tree T = (V,ET ), and the set of
“non-tree” edges or bidirectional edges E′ = E−ET . For more convenience
in the notation, we will refer to a bidirectional edge by a b-edge. The edges
in T are oriented from parent to child, and hence T is a directed rooted tree.
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(iii) N is “weakly acyclic”, i.e., if N contains directed cycles, then those cycles
contain only edges from E′.

(iv) Every internal node in N has at least two children in T .

Properties (iii) and (iv) above will be referred to as the phylogenetic networks
properties.

For a phylogenetic network N , we denote by TN the underlying tree of N . For a
node u ∈ N , we denote by label(u) the label of node u, and by π(u) the parent
of u in TN . If e is a b-edge between two nodes u and v in the network N , then
e has three possible statuses: (1) the edge e can be simply removed denoting
that no transfer took place between the two ancestral languages representing u
and v, (2) e can be directed from u towards v denoting that the transfer was
from the ancestral language representing u to that representing v, or (3) e can
be directed from v towards u denoting that the transfer was from the ancestral
language representing v to that representing u. If e is directed from u towards v,
then the network is transformed as follows. Remove the edge (π(v), v) from N ,
and make u the new parent of v in the resulting network (that is, add the edge
(u, v) as a tree edge to the resulting network). Similarly, if e is directed from
v towards u, then the edge (π(u), u) is removed from N , and the edge (v, u) is
added. Note that if there are t b-edges in N , then the t b-edges induce O(3t)
trees based on 3t different statuses of the t edges. We denote by Γ the set of the
trees induced by the t b-edges in N .

An assignment to the statuses of the edges in a network N whose leaves are
labeled by a character is said to be successful if the character is compatible with
the tree induced by this assignment. A successful labeling for a compatible tree
is a labeling to the nodes of T in which all the nodes with the same label induce
a connected subgraph of T .

Note that the order in which the b-edges that are incident on a certain node
are assigned can potentially make a difference in the resulting tree.

Definition 3. Let N = (V,E) be a phylogenetic network on L and Γ be the set
of trees induced by all the assignments to the b-edges in N . Let C be a set of
characters defined on L, and let c : L → Z be a character in C. Then c is said
to be compatible on N if c is compatible on at least one of the trees in Γ . N
is called a Perfect Phylogenetic Network if all characters in C are compatible
on N .

The Character Compatibility on Phylogenetic Networks problem, de-
noted henceforth by CCPN, was defined as follows [8].

CCPN
Given a phylogenetic network N = (V,E) on a set L, and a set of
characters C defined on L, decide if N is a perfect phylogenetic network.

This problem was shown to be NP-hard [8] for the case where each character
has at least three states. We will consider the case of the CCPN problem in
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which each character has exactly two states. This problem is called the Binary
Character Compatibility on Phylogenetic Networks, denoted hence-
forth by BCCPN. This problem is of prime interest on its own in the field of
linguistics (see [6,11,12,14,16,17]).

BCCPN
Given a phylogenetic network N = (V,E) on a set L, and a set of
characters C defined on L such that each character in C has two states
(i.e., binary) decide if N is a perfect phylogenetic network.

Remark 1. Deciding if a network N is perfect phylogenetic on a set of characters
C reduces to deciding if every character c ∈ C is compatible on N . Therefore,
without loss of generality, we will denote by BCCPN the problem of deciding
whether a given binary character c is compatible on N . The mentioning of c
becomes irrelevant in this case, and we will simply say N is compatible to denote
that the implicit (given) character c is compatible on N .

Theorem 2. BCCPN is NP-complete.

Theorem 2 implies that the CCPN problem is NP-complete as well by special-
ization, giving an alternative, yet different, proof to that in [8].

4 A Parameterized Algorithm for BCCPN

A parameterized problem is a set of pairs of the form (x, k) where x is the in-
put instance and k is a positive integer called the parameter. A parameterized
problem is said to be fixed-parameter tractable, if the problem can be solved in
time f(k)|x|c, where f is a computable function of the parameter k, |x| is the
input size, and c is a constant independent of k [4]. The area of parameter-
ized algorithms and complexity was introduced mainly in the work of Downey
and Fellows [4], and is based on the core observation that for many practical
occurrences of intractable problems some parameters remain small, even if the
problem instances are large.

Taking the advantage of the fact the the number of b-edges in the phylo-
genetic network is small [9], the BCCPN problem can be naturally parame-
terized by the number of b-edges, k, in the phylogenetic network. We call this
problem the Parameterized BCCPN problem. It is easy to see that the Pa-
rameterized BCCPN problem can be solved in O(3kn) time, where n is the
number of nodes in the phylogenetic network, by enumerating the status of ev-
ery b-edge in the network, then checking whether the resulting induced tree is
compatible. We will significantly improve on this upper bound next. The algo-
rithm we present is a decision algorithm deciding if the network is compatible
or not.

Assumption I. Let (N, k) be an instance of Parameterized BCCPN. If
there is at most one leaf in N of label 0 (resp. 1), then N is compatible. This
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is true since if we label all the internal nodes in N with 1 (resp. 0), then every
assignment to the b-edges in N is a successful assignment. Since these particular
cases can be identified in O(n) time, we will assume henceforth that at any stage
of the algorithm, there are at least two leaves of label 0 and at least two leaves
of label 1.

Definition 4. Let N be a phylogenetic network. An internal node s in N is
said to be a splitting node if there exists a successful assignment to the b-edges
in N that results in a compatible tree T , such that there is a valid labeling for
the nodes in T with all the nodes in the subtree rooted at s labeled with the
same label, and all the other nodes in the tree labeled with the other (different)
label.

Definition 5. Let N be a phylogenetic network and suppose that s is a splitting
node in N . Let A be a successful assignment to the b-edges in N , and let T be
the tree induced by A. The assignment A is said to respect the splitting node s,
if there is a valid labeling for the nodes in T with all the nodes in the subtree
rooted at s labeled with the same label, and all the other nodes in the tree labeled
with the other (different) label.

Remark 2. Observe that, if we assume the statements in Assumption I, then
for any compatible phylogenetic network N there is at least one splitting node
in N .

The main algorithm, Phylogenetic Compatibility, which solves the Param-
eterized BCCPN problem is given in Figure 2. The algorithm Phyloge-
netic Compatibility tries every node in N as the splitting node. For each
node selected as the splitting node, it calls the subroutine Is Compatible to
check whether there exists a successful assignment to N that respects the se-
lected splitting node. Thus, the subroutine Is Compatible works under the
assumption that the splitting node is given. The subroutine Is Compatible
utilizes the subroutines Clean, Reduce, and Merge, given in Figure 1. These
subroutines apply some operations to reduce the networkN , and also work under
the assumption that the splitting node has been selected.

Proposition 1. Let N be a phylogenetic network such that none of the opera-
tions Reduce, Clean, or Merge is applicable to N . Then there exist two nodes
u and u′ in N such that: (1) label(u) = label(u′), (2) (u, u′) is a b-edge in N ,
and (3) all children of u and u′ are leaves.

We call a pair of nodes {u, u′} satisfying the three conditions in Proposition 1 anice
pair. Proposition 1 establishes the existence of a nice pair in any phylogenetic net-
workN to which none of the operations Reduce, Clean, or Merge is applicable.
Now we are ready to present the main algorithm Phylogenetic Compatibility
which solves the Parameterized BCCPN problem. We will assume that
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Clean((u, u′))
Precondition: label(u) �= label(u′) and (u, u′) is a b-edge

1. remove the b-edge (u, u′) from N ;

Reduce(u)
1. if u has two leaf-children with different labels then reject;
2. if all the children of u are leaves and there is no b-edge incident on u then

if u is marked as the splitting node then
if there is a leaf in N that is not a child of u

and of the same label as the children of u then reject;
else accept;

else
remove u and its children and replace them with a leaf l;
label l with the same label as the children of u;
add the tree edge (π(u), l);

3. if u is unlabeled and has a labeled child w (w could be a leaf) with no
b-edge incident on w then

if w is marked as the splitting node then set label(u) = 1 − label(w);
else set label(u) = label(w);

4. if u is labeled and has an unlabeled child w with no incident b-edge then
if w is marked as the splitting node then set label(w) = 1 − label(u);
else set label(w) = label(u);

5. if u is labeled and has at most one leaf-child then
add two leaves as children to u of the same label as u;

6. if u has more than two leaves with the same label then remove all of them
except two;

Merge(〈u, u′〉)
Precondition: label(π(u)) �= label(u) = label(u′) and (u, u′) is a b-edge
1. cut off the tree edge (π(u), u) from N ;
2. remove the b-edge (u, u′);
3. identify the two nodes u and u′ (i.e., merge the two nodes into one

new node);
4. let the new node be w; set label(w) = label(u′) and π(w) = π(u′) (add the

tree edge (π(u′), w));
5. make the children of both u and u′ children of w;
6. shift all the b-edges that are incident on u and u′ to make them incident on

w without changing the other endpoints of the b-edges;
7. if u or u′ is marked as the splitting node then mark the new node w as the

splitting node;

Fig. 1. The subroutine Merge

Assumption I is valid before each operation performed by the algorithm and its
subroutines. The algorithm is given in Figure 2.

Theorem 3. The algorithm Phylogenetic Compatibility is correct.
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Is Compatible (N , k)
1. if k = 0 and N is not compatible then reject;
2. while Reduce is applicable to a node in N apply it;
3. if any of Clean or Merge is applicable then apply it and go to step 1;
4. let {u, u′} be a nice pair in N ; {∗ assume without loss of generality that

label(u) = label(u′) = 1 ∗}
Case 1. Both π(u) and π(u′) are labeled

remove the b-edge (u, u′);
Case 2. One of π(u) and π(u′) is labeled, say π(u). Branch as follows

first side of the branch: set label(π(u′)) = 1 and remove the
b-edge (u, u′);

second side of the branch: set label(π(u′)) = 0;
Case 3. (Both π(u) and π(u′) are unlabeled.) Branch as follows

first side of the branch: set label(π(u)) = 0;
second side of the branch: set label(π(u′)) = 0;
third side of the branch: set label(π(u)) = label(π(u′)) = 1 and

remove the b-edge (u, u′);

Phylogenetic Compatibility
Input: an instance (N, k) of Parameterized BCCPN where N is a

phylogenetic network and k is a positive integer
Output: yes/no decision based on whether N is compatible or not
1. for every node s in N do

1.1. N ′ = N ;
1.2. mark s as the splitting node in N ′;
1.3. call Is Compatible on (N ′, k);
1.4. if Is Compatible returns yes then return yes;

2. return (no);

Fig. 2. Is Compatible and Phylogenetic Compatibility

5 Analysis of the Algorithm Is Compatible

To analyze the running time of the algorithm Phylogenetic Compatibility,
and since the algorithm Phylogenetic Compatibility ends up calling the sub-
routine Is Compatible O(n) times, it suffices to analyze the running time of
Is Compatible and multiply it by O(n). The subroutine Is Compatible is a
branch-and-bound process, and its execution can be depicted by a search tree.
Therefore, the main step in the analysis is deriving an upper bound on the
number of leaves in the search tree. The branches performed by the subroutine
Is Compatible can be classified into two branches: (1, 1)-branches and (1, 1, 1)-
branches. The latter branch corresponds to an O(3k) upper bound on the size
of the search tree, matching the bound of a trivial brute-force algorithm that
enumerates each of the three statuses of every b-edge. Differing from the com-
mon analysis techniques based on the worst-case scenario, we use a novel way
for analyzing the size of the search tree using amortized techniques, and obtain:
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Lemma 1. Let T be the search corresponding to the subroutine Is Compatible
on an instance (N, k). The number of leaves of T is O(2k).

Theorem 4. The Parameterized BCCPN problem can be solved in time
O(2kn2) where n is the number of nodes in the network.
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Abstract. We study the dynamic bin packing problem introduced by
Coffman, Garey and Johnson [7]. This problem is a generalization of
the bin packing problem in which items may arrive and depart from the
packing dynamically. The main result in this paper is a lower bound
of 2.5 on the achievable competitive ratio, improving the best known
2.428 lower bound [3], and revealing that packing items of restricted
form like unit fractions (i.e., of size 1/k for some integer k), which can
guarantee a competitive ratio 2.4985 [3], is indeed easier.

We also investigate the resource augmentation analysis on the prob-
lem where the on-line algorithm can use bins of size b (> 1) times
that of the optimal off-line algorithm. An interesting result is that we
prove b = 2 is both necessary and sufficient for the on-line algorithm
to match the performance of the optimal off-line algorithm, i.e., achieve
1-competitiveness. Further analysis is made to give a trade-off between
the bin size multiplier b and the achievable competitive ratio.

1 Introduction

Bin packing is a classical combinatorial optimization problem (see the sur-
veys [11, 8, 5]). The objective is to pack a sequence of items into a minimum
number of bins such that the total size of the items in a bin does not exceed the
bin capacity. The on-line version of the problem assumes that items may arrive
at arbitrary time and no advance information is known about the items not yet
arrived. Dynamic bin packing (DBP) was introduced as a generalization of the
on-line bin packing by Coffman, Garey and Johnson [7]. In this generalization,
items may also depart at arbitrary time and both on-line and off-line algorithms
are not allowed to move items from one bin to another. The goal is to minimize
the maximum number of bins used over all time.

The performance of an on-line algorithm A is generally measured by its com-
petitive ratio [2]. For our problem where a sequence of item arrivals and de-
partures is given, the competitive ratio c is the worst case ratio between the
� This research is partly supported by Hong Kong RGC Grant HKU5172/03E.
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maximum number of bins used by A over all time and the maximum number of
bins used by the optimal off-line algorithm (which knows the whole sequence in
advance) over all time. Algorithm A is said to be c-competitive.

Coffman, Garey and Johnson [7] proved that the lower bound on the com-
petitive ratio of any on-line algorithm on dynamic bin packing is 2.388 1. They
also showed that a modified version of first-fit is 2.788-competitive [7]. Chan,
Lam and Wong [3] improved the lower bound to 2.428 by considering only unit
fraction items, where a unit fraction item is an item of size 1/k for some in-
teger k. They also showed that for packing unit fraction items only, first-fit is
2.4985-competitive [3]. A natural question arises: Is packing items of restricted
form, such as unit fraction items, as difficult as packing items of general form?
In another aspect, resource augmentation analysis [15] has been studied in the
context of on-line bin packing [12,13], in which an on-line algorithm can use bins
of size b (> 1) times that of the optimal off-line algorithm. To our knowledge,
there is no previous work on resource augmentation analysis for dynamic bin
packing. We address the above questions in this paper.

Our contributions. This paper presents the following results on DBP.
1. We push up the lower bound on competitive ratio from 2.428 [3] to 2.5 2,

giving a negative answer to the question that packing unit fraction items
is as difficult as packing general items because packing unit fraction items
attains a competitive ratio 2.4985 [3] (< 2.5).

2. We investigate on resource augmentation analysis, showing an interesting
result that doubling the bin size for the on-line algorithm is both necessary
and sufficient to match the performance of the optimal off-line algorithm,
i.e., to attain 1-competitiveness. Further analysis is made to give a trade-
off between the bin size multiplier b (for 1 < b ≤ 2) and the achievable
competitive ratio.

Related work. There is a long history of results for the classical bin packing
problem and its variants [11,8,5]. The best upper bound and lower bound on the
competitive ratio for on-line bin packing to date are 1.58889 [16] and 1.54014 [17],
respectively. The upper bound reveals that dynamic bin packing is more difficult
than on-line bin packing. For both dynamic and on-line bin packing, items of
various restricted forms have been studied, which include unit fraction items
[1,3], items of divisible sizes [6] (where each possible item size can be divided by
the next smaller item size), and items of discrete sizes [4, 10, 9] (where possible
item sizes are {1/k, 2/k, · · · , j/k} for some 1 ≤ j ≤ k). Resource augmentation
analysis for on-line bin packing has been studied [12, 13]; matching upper and
lower bounds (up to an additive constant) are given for bounded space bin
packing [12] in which there is a limit on the number of opened bins that can be
used at any time; better upper bound has been derived for (unbounded space)
1 A variant of the problem is to assume a stronger off-line algorithm that can repack

the current set of items into the minimum possible number of bins each time a new
item arrives, in which case a stronger lower bound of 2.5 is achieved [7].

2 There was a 2.5 lower bound [7] when the off-line algorithm can repack, our result
achieves the same bound even when the off-line algorithm does not repack.
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on-line bin packing [13]. Ivkovic and Lloyd studied the fully dynamic bin packing
problem [14], which is a variant of dynamic bin packing that allows repacking of
items for each item arrival or departure. They gave a 1.25-competitive on-line
algorithm for the problem [14].

Notations. We now give a precise definition of the problem and the necessary
notations for further discussion. In dynamic bin packing, items arrive and depart
at arbitrary time. Each item comes with a size. We denote by s-item an item of
size s. When an item arrives, it must be assigned to a bin immediately without
exceeding the capacity of the assigned bin. At any time, the load of a bin is the
total size of items currently assigned to that bin that have not yet departed.
We denote by �-bin a bin of load �. Migration is not allowed, i.e., once an item
is assigned to a bin, it cannot be moved to another bin. The objective is to
minimize the maximum number of bins used over all time.

In the resource augmentation analysis (Sections 3 and 4), an on-line algo-
rithm A is given size-b bins with 1 ≤ b ≤ 2, while the optimal off-line algorithm
uses size-1 bins. Consider any input sequence σ. Let Ab(σ, t) denote the number
of size-b bins used at time t by A, similarly, we have O1(σ, t) for the optimal
off-line algorithm. A is said to be c-competitive if there exists a constant k such
that for any input sequence σ, maxtAb(σ, t) ≤ c ·maxtO1(σ, t) + k.

Organization of the paper. In Section 2, we present the 2.5 lower bound. In
Section 3, we show that doubling the bin size is both necessary and sufficient to
achieve 1-competitiveness. In Section 4, we study the trade-off between bin size
and competitive ratio. Finally, we give some concluding remarks in Section 5.

2 A 2.5 Lower Bound

In this section, we prove that no on-line algorithm can be better than 2.5-
competitive. Consider any on-line algorithm A. The adversary works in stages
using items of various sizes including ε, 1

6 , 1
3 , 1

2− ε
4 , 1

2 , 1
2+ ε

4 , 2
3 and 1, where ε

is a small constant to be defined later. Roughly speaking, the adversary first
releases some items of a particular size. Depending on how A packs the items,
the adversary lets some items depart and further releases some other items such
that the total size of items present at any time is always the same (with some
minor difference). The choices of items to be departed ensures that the space
released from some departed items cannot be reused for newly arrived items,
thus, forcing A to use more new bins. The adversary works as follows.

Let ε = 1
18k for some large positive integer k. Recall that for any s > 0, � > 0,

we denote by s-item an item of size s, and by �-bin a bin of load �. When we
discuss how items are packed into bins, we denote by x:� that there are x bins of
load �, and by {x1:�1, x2:�2, ...} a packing configuration. The adversary releases
items in stages such that A uses a maximum of 45k bins while the total size of
items at any time is no more than 18k + 2. The item sizes are chosen carefully
to allow the optimal off-line algorithm to use at most 18k + 2 bins.
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Theorem 1. No on-line algorithm is better than 2.5-competitive.

Consider any on-line algorithmA. Let ni be the number of new bins used by A in
Stage i. In Stage 1, 18k

ε items of size ε are released, thus, n1 ≥ 18k. We distinguish
between three cases: n1 ≥ 24k, 24k > n1 ≥ 21k, and 21k > n1 ≥ 18k. The first
case is the easiest case and we skip the details. We focus on the second case and
the third case can be handled in a similar way.

Case 2: 24k > n1 ≥ 21k. We make the following observations.

Observation 1. If 24k > n1 ≥ 21k, then A uses at least 6k bins of load at least
2
3 + ε, 12k bins at least 1

2 + ε, and 15k bins at least 1
3 + ε at the end of Stage 1.

Proof. Assume that there are less than 6k bins of load at least 2
3 + ε. The

remaining bins has a maximum load of 2
3 . Then the maximum load that has

been packed is < 6k + (24k − 6k)(2
3 ) = 18k, contradicting that a total load

of 18k has been released. The other cases are similar. 
�
In Stage 2, we let items depart until {6k:(2

3 + ε), 6k:(1
2 + ε), 3k:(1

3 + ε), 6k:ε}. We
then release 30k items of size 1

3 . If A packs a 1
3 -item into some bin B of load

1
2 + ε, we depart a total size of 1

6 of ε-item from B, making its load become 2
3 + ε.

For every two such bins, we further release one 1
3 -item. Repeat departing groups

of ε-items of size 1
6 and releasing items of size 1

3 as long as A packs a 1
3 -item

into a bin of load 1
2 + ε. This process must terminate because once A packs a

1
3 -item into a bin, its load becomes 2

3 + ε, meaning that it cannot accommodate
another 1

3 -item. We assume that there are even number of (1
2 + ε)-bins that are

packed with 1
3 -items; the other case is similar.

Let x and y be the number of (1
2 + ε)- and (1

3 + ε)-bins, respectively, that
have been packed a 1

3 -item at the end of Stage 2. Let a1 and a2 be the number
of new bins (used in Stage 2) that have been packed exactly one 1

3 -item and at
least two 1

3 -items, respectively, i.e., n2 = a1 + a2. The total load of all bins is
≤ (6k + x + y + 6k)(2

3 + ε) + (6k − x)(1
2 + ε) + (3k − y)(1

3 + ε) + a2 + a1
3 . This

quantity must be ≥ 18k+ 21kε. Using the property that x ≤ 6k and y ≤ 3k, we
can derive that a1 + a2 ≥ 4k.

We further consider two sub-cases: a1 + a2 ≥ 9k and 9k > a1 + a2 ≥ 4k.
Case 2.1: a1 + a2 ≥ 9k. In Stage 3, we depart items until {21k:ε, 9k:13}.
Finally, release 15k items of size 1, thus, n3 = 15k. The total number of bins
used by A becomes 21k + 9k + 15k = 45k.
Case 2.2: 9k > a1 + a2 ≥ 4k. Figure 1 shows the target configuration the
adversary achieves. Using a similar idea as before, we can show that a2 > k.

ε

k2k2k2k4k 13k21k

1
3

1
3

1
2 − ε

4
1
2 − ε

4
1
2

1
2

1
2+ ε

4
1
2+ ε

4
2
3

2
3 11

Fig. 1. The final configuration achieved by the adversary in Case 2.2
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The remaining stages run as follows.
3. Depart items until

{6k:(1
2 + ε), x:(1

3 + 1
6 + ε), (6k − x):(1

2 + ε), 3k:ε, 6k:ε, k:(1
3 + 1

3 ), 3k:13 }.
This is possible because a2 > k and a1 + a2 ≥ 4k. We then release 20k items
of size 1

2− ε
4 . Since only bins of load ε and 1

3 can accommodate one such item,
n3 ≥ (20k − 12k)/2 = 4k.

4. Depart items until
{ 6k:(1

2 + ε), x:(1
3 + 1

6 + ε), (6k − x):(1
2 + ε), 3k:ε, 6k:ε,

k:(1
3 + 1

3 ), 3k:13 , 2k:(1
2− ε

4 ) }.
Next we release 18k items of size 1

2 , making n4 ≥ (18k − 14k)/2 = 2k.
5. Depart items until

{ 6k:(1
2 + ε), x:(1

3 + 1
6 + ε), (6k − x):(1

2 + ε), 3k:ε, 6k:ε,

k:(1
3 + 1

3 ), 3k:13 , 2k:(1
2− ε

4 ), 2k:12 }.
Releasing 16k items of size 1

2+ ε
4 makes n5 ≥ 16k − 14k = 2k.

6. Depart items until
{ 6k:(1

3 + ε), x:(1
3 + ε), (6k − x):(1

3 + ε), 3k:ε, 6k:ε,

k:(1
3 + 1

3 ), 3k:13 , 2k:(1
2− ε

4 ), 2k:12 , 2k:(1
2+ ε

4 ) }.
We then release 13k items of size 2

3 , making n6 ≥ 13k − 12k = k.
7. Depart items until

{6k:ε, x:ε, (6k − x):ε, 3k:ε, 6k:ε, k: 13 , 3k:13 ,2k:(1
2− ε

4 ), 2k:12 , 2k:(1
2+ ε

4 ), k:23}.
A final of 13k items of size 1 are released, making n7 = 13k. Totally, A uses
21k + 4k + 2k + 2k + 2k + k + 13k = 45k bins.

Case 3: 21k > n1 ≥ 18k. Figure 2 shows the target configuration the adver-
sary aims to achieve. We leave the details in the full paper.
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Fig. 2. The final configuration achieved by the adversary in Case 3

3 1-Competitive if and Only if Size-2 Bins Are Used

In this section, we show that using size-2 bins is both necessary (Theorem 3) and
sufficient (Theorem 2) to achieve 1-competitiveness. Any-fit (AF) is an algorithm
that always packs a new item into a non-empty bin arbitrarily as long as the bin
can accommodate the item.
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Theorem 2. Any fit algorithm with size-2 bins is 1-competitive.

Proof. Suppose AF uses n size-2 bins for a sequence of items. When AF first
uses n bins due to the arrival of a new item X , all the existing n− 1 bins must
have a load greater than 1, otherwise, X can be packed into one of these bins
and AF does not need to open a new bin. In other words, the total load of items
is at least n− 1 + s where s is the size of X . Any algorithm using unit-size bins
needs at least n bins to pack all these items. Therefore, the maximum number of
size-2 bins used by AF is at most that used by the optimal off-line algorithm. 
�
Theorem 3. No on-line algorithm can be 1-competitive by using size-x bins, for
any x < 2.

Proof. Suppose x = 2 − ε, for some small ε > 0. Let k be a positive integer
such that 1/2k−1 ≥ ε > 1/2k. Notice the size satisfies the property 2−1/2k−1 ≤
2−ε = x < 2−1/2k. The adversary works in two phases.

In the first phase, release 23k−1 items of size 1/2k. The total load of the items
is 22k−1 and all items can be packed into 22k−1 unit-size bins. If the on-line
algorithm uses more than 22k−1 bins, we are done. So we only need to consider
the case in which the on-line algorithm uses at most 22k−1 bins. We are going
to prove that the on-line algorithm uses at least 2k bins with load at least
1−1/2k. Let Y be the number of such bins. Then the total load accommodated
by the on-line algorithm is at most Y (2− 1/2k−1) + (22k−1 − Y )(1− 1/2k−1) =
22k−1(1−1/2k−1)+Y . This load cannot be smaller than the total load of items,
i.e, 22k−1(1− 1/2k−1) + Y ≥ 22k−1. In other words, Y ≥ 22k−1/2k−1 = 2k.

In the second phase, we retain a load of 1−1/2k in 2k bins and let all other
items depart. Then release 22k−1 − (2k−1) items of size 1. Notice that none of
these items can be packed into an existing bin because 1+1−1/2k is greater than
x, the size of the bin. Therefore, the total number of bins used by the on-line
algorithm is 22k−1 + 1. It can be shown that the optimal off-line algorithm only
needs 22k−1 bins. We leave the details in the full paper. 
�

4 Trade-Off Between Bin Size and Competitive Ratio

In this section, we discuss results where the on-line algorithm uses bins of size
1 < b < 2. We first give a general lower bound for any on-line algorithm. Then
we analyze the performance of first-fit (packs to the first bin that can fit), best-
fit (heaviest loaded bin) and worst-fit (lightest loaded bin) giving their upper
bounds.

4.1 General Lower Bound for 1 < b < 2

In this section, we describe two adversaries, one gives better lower bound for
1 < b < 1.5 and the other for 1.5 ≤ b < 2.

Lemma 1. Noon-line algorithmusing size-b bins can be better than 2
b -competitive.
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Proof. Consider any on-line algorithm A. Let ε be a small constant and k =
� 1

ε � − 2. The adversary runs in 3 stages.

1. Release ε-items of total size k. If A uses more than 2k
b bins, we are done.

Otherwise, we claim that there must be at least (2
b − 1)k bins with load

≥ b − 1 + ε, otherwise, the total possible load accommodated by A is less
than ((2

b −1)k−1)b+(k+1)(b−1+ ε) = k−1+(k+1)ε < k, contradiction.
2. Depart items until { k(2

b − 1):(b− 1+ ε) }. Then release k items of size b
2 + ε.

At most one such item can be packed into an existing bin or an empty bin.
So, at least k − (2

b − 1)k = 2k(1− 1
b ) new bins are opened.

3. Depart items until { k(2
b − 1):(b− 1 + ε), 2k(1− 1

b ):( b
2 + ε) }. Finally, release

(2
b − 1)k items of size 1. None of the items can be packed into existing bins,

thus, another (2
b−1)k new bins are opened. Number of bins used becomes 2k

b .

We can show that the items can be packed into k +O(1) unit-size bins. 
�
Let m be the largest integer such that b − 1

m < 1 and let k = m!(m − 1)!. We
define the functions α(i) and β(i) for any positive integer 1 ≤ i ≤ m as follows.
Let α(1) = k, β(i) =

∑i
j=1 α(j),
α(i) = β(i− 1)

(
m+1−i
m+2−i − m−i

m+1−i

)
.

In other words,α(i) = β(i−1)
(m+2−i)(m+1−i) . E.g.,α(2) = k

m(m−1) , α(3) =
k+ k

m(m−1)

(m−1)(m−2) .

Lemma 2. No on-line algorithm using size-b bins can be better than β(m)
m!(m−1)! -

competitive, where m is the largest integer such that b− 1
m < 1.

Proof. This adversary makes use of unit fraction items, i.e., in the form 1/w, for
some integer w. The following fact can be proved by simple arithmetic.

Fact 1. Both α(i) and β(i) are integer multiples of (m− i+ 1)!(m− i)!
Consider any on-line algorithm A. The adversary runs in m stages. In Stage 1,
we release 1

m -items up to a total size of k, i.e., km such items. For each stage 2 ≤
i ≤ m, we depart some items released in previous stage and then release some

1
m+1−i -items, such that in Stage i, the following invariants are maintained: (1)
items of a total size β(i− 1)m+1−i

m+2−i depart and the same size of 1
m+1−i -items are

released, keeping the total size of items being k; and (2) A uses at least α(i)
more new bins at the end of the stage. Stage i proceeds as follows.
a. Retain one 1

m+2−i -item from each of the α(i−1) new bins used in Stage i−1
and let all other 1

m+2−i -items depart, i.e., only retain α(i− 1) such items.
b. Release items of size 1

m+1−i until the total size of all items is k.
By this adversary, we can prove by induction that the invariants hold. In other
words, at the end of Stage m, A uses a total of at least β(m) bins.

Consider the optimal off-line algorithm. Note that the total size of items at
any time is kept at k. Furthermore, the total size of items of the same type
of item is always an integer because of Fact 1, and since the item size is unit
fraction, we can always pack the same type of item fully into the same unit-size
bin. Therefore, the optimal off-line algorithm only needs k bins. 
�
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The lower bound below follows from Lemmas 1 and 2 (see Figure 3 for the trend).

Theorem 4. No on-line algorithm using size-b bins is better than
max{ β(m)

m!(m−1)! ,
2
b}-competitive, where m is the largest integer such that b− 1

m < 1.

4.2 Performance of First-Fit for 1 < b < 2

In this section, we analyze the upper bound of the first-fit algorithm (FF) using
size-b bins. To simplify the discussion, we refer to two properties pointed out
by Coffman et al. [7]. (1) We can focus on the input sequences such that the
maximum number of bins used by FF when the last item is packed and not
before. (2) No non-empty bin ever becomes empty during the execution of FF
on input sequences satisfying the first property. It can be shown [7] that the two
properties are true because FF will work out the same packing for the modified
input sequence, e.g., a modified sequence in which the items packed to that non-
empty bin are removed. By the second property, we can label the non-empty
bins by the order they became non-empty, i.e., bin i refers to the i-th bin used
by FF, and the labels never change.

Theorem 5. The competitive ratio of FF using size-b bins is at most min{ 2b+1
2b−1 ,

5−b
(2b−1) ,

b2+3
b(2b−1)}.

Proof. Let k denote the maximum number of bins used by the optimal off-line
algorithm using unit-size bins. Suppose x is the last (maximum) bin that FF
ever packs an item of size ≤ 1/2. Let B be the last bin that FF opens with an
item of size ≤ b/2 and y be the number of bins (including B) with label > x
whose smallest item has a size in the range (1/2, b/2] when FF opens B. Let
z = n− x − y, where n is the maximum number of bins used by FF. We claim
that the following inequalities hold.

(x− 1)(b− 1/2) ≤ k (1)
xb/2 + (y − 1) ≤ k (2)

(x+ y)(b − 1) + zb/2 ≤ k (3)
x(b − 1) + y/2 + zb/2 ≤ k (4)

y + z ≤ k (5)

Using the above inequalities, we can show that (i) x + y + z ≤ 2b+1
2b−1k + 1;

(ii) x+ y + z ≤ 5−b
(2b−1)k +O(1); and (iii) x+ y + z ≤ b2+3

b(2b−1)k +O(1). 
�

Figure 3 shows how the competitive ratio of FF varies with b. Notice that our
formula in Theorem 5 reaches the value 1 when b = 2 matching Theorem 2;
yet when b = 1, the value is 3, not matching the existing best upper bound of
2.788 [7]. We leave it as an open question to close the gap between the upper
and lower bounds. We now state the performance of best-fit (BF) and worst-fit
(WF) (see the upper three curves in Figure 3 and Table 1).
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Theorem 6. (1) BF using size-b bins is 1
b−1 -competitive, this bound is tight.

(2) WF using size-b bins is 4
b2 -competitive; on the other hand, its competitive

ratio is no better than min{ 2+b
b , b2−8b+20

4b }.

Proof (Sketch). Upper bound of BF. Suppose BF uses a maximum of n bins.
When BF first packs an item into bin n, the load of bin i for i < n is at least
b− 1, otherwise, BF can pack the item into those bins instead of opening a new
bin. Therefore, the optimal off-line algorithm needs k ≥ (n− 1)(b− 1) bins, and
hence the competitive ratio of BF is at most k

b−1 since n ≤ k
b−1 + 1.

Upper bound of WF. Let k denote the maximum number of bins used by the
optimal off-line algorithm using unit-size bins. Suppose WF uses a maximum
of n bins. Let x be the largest integer such that there is no item of size > b

2
in bin x at the item instance where WF packs the first item into bin n. Let
y = n− x. We claim the following inequalities hold.

yb/2 + x(b − 1) ≤ k (6)
xb/2 ≤ k (7)

The inequalities can be proved in a similar way as in the analysis for FF. By
the two inequalities and simple arithmetic, we can show that x+ y ≤ 4/b2 + 1.

The lower bounds will be given in the full paper. 
�
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Table 1. Summary of results for bin size 1 ≤ b < 2

Algorithm upper bound lower bound

BF 1
b−1

1
b−1

WF 4
b2

min{ 2+b
b

, b2−8b+20
4b

}
FF min{ 2b+1

2b−1 , 5−b
(2b−1) ,

b2+3
b(2b−1)} max{ β(m)

m!(m−1)! ,
2
b
}
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5 Concluding Remarks

In this paper, we have shown a 2.5 lower bound for dynamic bin packing, reveal-
ing that dynamic bin packing of general items is more difficult than unit fraction
items. An open question is to close the gap between this 2.5 lower bound and
the 2.788 upper bound [7]. We believe it is possible to push down the upper
bound by analyzing some modified version of FF. One can also analyze other
algorithms, like the class of Harmonic algorithms [17], yet our preliminary study
showed that some versions of Harmonic algorithm have a non-constant lower
bound for DBP; further investigation on other variants of Harmonic algorithms
is desirable. We also give the first resource augmentation analysis for dynamic
bin packing, showing that doubling bin size is both necessary and sufficient to
achieve 1-competitiveness. Trade-off between bin size and competitive ratio is
also studied. Note that the formula derived for the upper bound of FF does not
yet match the general lower bound. We are attempting to give tighter bounds
to close the gap.
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Abstract. We study an on-line broadcast scheduling problem in which
requests have deadlines, and the objective is to maximize the weighted
throughput, i.e., the weighted total length of the satisfied requests. For
the case where all requested pages have the same length, we present
an online deterministic algorithm named BAR and prove that it is 4.56-
competitive. This improves the previous algorithm of Kim and Chwa [11]
which is shown to be 5-competitive by Chan et al. [4]. In the case that
pages may have different lengths, we prove a lower bound of Ω(Δ/ log Δ)
on the competitive ratio where Δ is the ratio of maximum to minimum
page lengths. This improves upon the previous

√
Δ lower bound in [11,4]

and is much closer to the current upper bound of (Δ + 2
√

Δ + 2) in [7].
Furthermore, for small values of Δ we give better lower bounds.

1 Introduction

Data broadcast scheduling is a core problem in many applications that involve
distribution of information from a server to a large group of receivers. In con-
trast to the traditional point-to-point mode of communication, broadcasting
technologies are employed so that different clients requesting the same data can
be satisfied simultaneously by only one broadcast. For example, in Hughes’ Di-
recPC system [12], clients make requests over phone lines and the server satisfies
the requests through broadcasts via a satellite. Typical information that will be
broadcasted include movies (video on-demand), stock market quotation, traffic
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and landmark information, etc. Very often, the information to be disseminated
is time critical and thus it is important to meet the deadlines of the requests.

Motivated by these applications, we study the following On-line Scheduling
of Broadcasts (Broadcasting): We are given a set of pages to be broadcasted to
clients upon request. Each request r has four attributes, namely, p(r): the re-
quested page, a(r): the arrival time, d(r): the deadline by which the requested
page has to be received in its entirety, and w(r): the weight of the request. A
request is not known until it arrives, i.e., at time a(r). When it arrives, all p(r),
d(r) and w(r) become known. When the server broadcasts a page, all requests
to the same page that have arrived will receive the content of the page simulta-
neously. Upon completion, each of these requests will be satisfied, provided that
the completion time is before its respective deadline. The server is allowed to
abort the current page it is broadcasting before its completion and start a new
one. To satisfy an aborted request, the requested page has to be broadcasted
again from the beginning. Thus it is an on-line scheduling problem with pre-
emptions and restarts. Our goal is to maximize the total weighted throughput,
i.e., the total weighted lengths of all satisfied requests.

Related Work. Most of the previous works on the problem of on-line broad-
cast scheduling concentrate on minimizing the flow time where the flow time of a
request is the time elapsed between its arrival and its completion. For example,
[10,5,6,8] studied the problem of minimizing the total flow time while Bartal and
Muthukrishan [2] studied the minimization of the maximum flow time. Aksoy
and Franklin [1] presented a practical parameterized algorithm and evaluated it
with extensive experiments. While the flow time is important and related to how
the clients perceive the responsiveness of the system, the objective of maximiz-
ing the throughput is crucial for applications in which requests are associated
with deadlines. Jiang and Vaidya [9] considered the problem of maximizing the
percentage of satisfied requests assuming knowledge of the requests distribution.

Kim and Chwa [11] were the first to design algorithms with provable worst
case performance bounds for this problem. In particular, one of their results is a
5.828-competitive algorithm for our problem. Using a tighter analysis, Chan et
al [4] showed that Kim and Chwa’s algorithm actually has competitive ratio at
most 5, through a reduction to a job scheduling problem with cancellations. It
was shown [14] that we need new techniques to further improve the bound. For
the case of different page lengths, let Δ be the ratio between the length of the
longest and shortest page. There is a (Δ + 2

√
Δ + 2)-competitive algorithm [7]

and a
√
Δ lower bound [11,4].

A related on-line interval scheduling problem is studied by Woeginger [13].
Translated into our terminologies, his problem is to schedule requests with tight
deadlines (i.e., the length of time interval between its arrival time and deadline
is exactly the length of the requested page) and pages have different lengths. He
proved that when the page length and the weight of requests can be arbitrarily
related, no deterministic algorithm can have constant competitive ratio. He went
on to give a 4-competitive heuristic for several special cases in which the page
length and the weight of requests satisfy certain relationship. In particular, the
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heuristic works for the case of unit page length and arbitrary weights. He then
complemented his upper bound with several lower bounds, including a tight
lower bound for this special case of unit page length. In some sense, our problem
is a generalization of Woeginger’s problem allowing non-tight intervals.

Our Results. In this paper we give three different results for Broadcasting.
Our first contribution is to give an improved algorithm for the case of unit
page length. We consider the deadlines of the requests, a parameter ignored by
previous algorithms, in our scheduling decision. By considering the fact that
some of the currently-serving requests might have distant deadlines and can be
served later after the completion of new requests, we improve the competitive
ratio from 5 [4] to 4.56. In Section 3 we describe this algorithm and its analysis.

Our second contribution is to give an improved lower bound for the case of
different page lengths. We give a lower bound of Ω(Δ/ logΔ) on the competi-
tive ratio, an improvement over the previous Ω(

√
Δ) bound and which almost

matches the linear upper bound. This is discussed in Section 4.
All existing lower bound proofs for the case of different page lengths do not

work very well when Δ > 1 is small, and thus the lower bound for those cases
is still 4, that being the lower bound for the unit page length case. In Section 5
we describe our third contribution of proving better lower bounds for these cases.
The lower bound for the competitive ratio is improved to e.g., 4.245, 4.481, 4.707
and 5.873 for Δ = 2, 3, 4 and 10 respectively. The result is obtained by extending
the lower bound proof for the unit page length case [13] to the case of different
page lengths.

Due to space constraints, most proofs are omitted from this version. They can
be found in the full version of the paper.

2 Notations

We first state the problem formally. Assume there are n pages, P1, . . . , Pn, in
the system. A request for some page may arrive in arbitrary time with arbitrary
deadline. If a page is fully broadcasted, then a request for that page is satisfied if
the requests arrive before the broadcast of the page, and the broadcast finishes
before the deadline of the request. A broadcast can be aborted at any time, and
can later be restarted from the beginning.

A schedule S is a sequence of broadcasts J1, J2, . . . where each broadcast Ji

is a set of requests to the same page started being served at time s(Ji). The
broadcasts are indexed such that s(Ji) < s(Ji′ ) for i < i′. For convenience, we
will write Ji to represent both the set of requests and the requested page. Let
l(Ji) be the length of the page broadcasted by Ji. If s(Ji) + l(Ji) > s(Ji+1),
then the broadcast Ji is aborted by Ji+1; otherwise Ji is said to be completed.
The profit of a completed request is its weight times the length of the page it
requests. The profit of a broadcast Ji, denoted by |Ji|, is the sum of w(r)× l(Ji)
over all r in Ji. We denote by |S| the total profit of completed broadcasts in
the schedule S, i.e., we only count those satisfied requests. The objective is to
maximize the total profit of satisfied requests |S| during a time period.
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Given an input I (a set of requests) and an algorithm A, we denote by SA(I)
and S∗(I) the schedules produced by A and by an optimal offline algorithm on
I respectively. When A and I are understood from the context, we will simply
denote the schedules by S and S∗ respectively. To gauge the quality of the
schedules produced by an on-line algorithm, the competitive ratio analysis [3] is
often used. The competitive ratio of algorithm A is defined as rA = supI

|S∗(I)|
|SA(I)| .

3 Unit Page Length: The BAR Algorithm

In this section, we consider the case where each page is of the same length. Thus
we assume without loss of generality that broadcasting each page requires one
unit of time. We present our BAR algorithm (for Bi-level Abortion Ratio) and
prove that it is 4.56-competitive.

At any moment, there is a (possibly empty) pool of requests that have arrived
and are waiting to be served. Requests in the pool will be discarded when their
deadlines cannot be met even if the server starts to serve them immediately.
The algorithm is triggered either when a broadcast is completed or when a new
request arrives. In the former case, the server will pick the page with the largest
total profit of requests in the pool to be broadcasted next. When a new request
arrives while the server is broadcasting a page, the server will either continue the
current broadcast J (and add the new requests to the pool), or abort J in favour
of a new broadcast R with larger total profit of requests in the pool (including
newly arrived requests and possibly part of J). The decision is made according
to the relative profits of J and R. It will also consider the previous broadcast
and the deadlines of requests currently in the system.

More precisely, let J0 be the broadcast aborted by J . If J does not abort
any broadcast, define J0 = φ (the empty set). Let J ′ be the largest-profit set of
requests that can be satisfied in a single broadcast after completing J , assuming
no more requests arrive. Similarly R′ denotes the largest-profit set of requests
that can be satisfied in one broadcast after completing R, if we abort J and start
R now. See Figure 1. Let α, β be some constants such that 1.5 ≤ α < 2 ≤ β < 2.5.
The exact values will be determined later. If either one of the following conditions
is satisfied, we abort J and start R:

C1: β|J | ≤ |R| and β2|J0| ≤ |R|, or
C2: α|J | ≤ |R| < β|J |, β|J |+ |J ′| ≤ |R|+ |R′|, and β|J0| ≤ |J |.
Otherwise, we continue with the broadcasting of J and add the new requests
into the pool.

We give some intuitive rationale behind these conditions. In previous algo-
rithms [11,4], the abortion is simply determined by considering whether β|J | ≤
|R|. This completely ignores the deadlines of the requests. The improvement
of BAR comes from the introduction of [C2], which gives an alternative abor-
tion condition with a lower threshold α and, as we show below, considers the
deadlines of requests.
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J0
(aborted)

J J’

R R’

Fig. 1. BAR is broadcasting J and determining whether to abort J and start R

The first part of condition [C1] is the usual abortion condition by considering
the profit of requests. The second part of [C1] enforces some technical properties
that are required in bounding the profit of the requests, despite some abortions
being caused by condition [C2].

The second part of condition [C2] utilizes deadlines of requests. Rather than
directly comparing the deadlines of requests, we consider the total profit of
requests that can later be satisfied (before their deadlines) in deciding whether
to abort the page currently being broadcast. Suppose an abortion happens due
to condition [C2]. Then some part of R′ must come from J (which is aborted).
Otherwise, the requests in R′ come from the pool only, and since the broadcast
J ′ will finish earlier than R′, R′ is a possible choice of J ′. Hence |R′| ≤ |J ′|
and the condition β|J | + |J ′| ≤ |R| + |R′| cannot be true. So R′ ∩ J is not
empty, and they must be requesting the same page. That means once condition
[C2] happens, there must be some requests in J that have long deadlines, long
enough to be completed after R is completed. Therefore, even though |R| is only
α times larger than |J |, we may still satisfy enough requests to achieve a good
competitive ratio.

The third part of condition [C2] ensures there will not be two consecutive
abortions caused by [C2], so that this weaker-threshold condition will not be
used too often.

The remaining of this section is devoted to the proof of the following theorem.

Theorem 1. BAR is 4.56-competitive for Broadcasting in the unit page length
case.

3.1 Basic Subschedules

We now elicit certain useful structures in a schedule produced by BAR. A se-
quence of broadcasts (J1, . . . , Jk) is called a chain if Ji is aborted by Ji+1 for
all i = 1, . . . , k − 1 and J1 is preceded by either an idle interval or a completed
broadcast. A chain C = (J1, . . . , Jk) in which Jk is completed is called a basic
subschedule. Thus a basic subschedule consists of a sequence of zero or more
aborted broadcasts followed by a completed broadcast; and the sequence cannot
be extended at the front. Furthermore, the broadcast before an idle interval must
be completed. Therefore, the whole schedule can be decomposed into a sequence
of basic subschedules.

Consider an arbitrary basic subschedule, B = (J1, J2, . . . , Jk) where Jk is
a completed broadcast and all the others are aborted ones. The total profit
of requests satisfied by BAR in this basic subschedule is |B| = |Jk|. To analyze
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the competitive ratio, we will associate with B a carefully chosen set of requests
satisfied by the offline optimal algorithm O.

Consider a broadcast J by BAR. We can make use of condition [C1] and/or
[C2] to argue that requests started by O while BAR is broadcasting J cannot be
too large, if these requests are available in the pool maintained by BAR. Note,
however, that O can also serve requests with arbitrarily large profits that have
been satisfied by BAR before without violating [C1, C2]. Thus, we classify the
requests satisfied by O into two types according to whether the request has been
satisfied by BAR at the time O starts them. (Since O is an offline algorithm, we
assume that it will never abort a broadcast. Thus, saying that a request is started
by O is equivalent to saying that it will be satisfied by O.) More precisely, we
define J∗

i , for i = 1, . . . , k, as the set of requests started by O within the interval
[s(Ji), s(Ji+1)) but have not been satisfied by BAR before, where s(Ji) is the
start time of Ji and we take s(Jk+1) = s(Jk) + 1. Also, we define B∗ as the set
of requests in Jk that are started by O after the basic subschedule B. We will
try to obtain an upper bound on

∑k
i=1 |J∗

i |+ |B∗|.
Note that if a broadcast Ji is aborted by a broadcast Ji+1 due to condition

[C1], the ratio |Ji+1|/|Ji| is at least β. However if the abortion is due to condition
[C2], |Ji+1|/|Ji| may be smaller than β. Nevertheless, we can still bound the
profits of Ji’s and J∗

i ’s by geometric series in the following lemmas. Consider a
chain C = (J1, . . . , Jk). It is said to have big endian if |Jk| ≥ β|Jk−1|; and small
endian otherwise. If C has only one broadcast, we take Jk−1 = φ. Thus C will
be considered to have big endian.

The following two lemmas bound the profits of Ji and J∗
i .

Lemma 1. Consider a chain C = (J1, . . . , Jk) with big endian. Then |Ji| ≤
|Jk|/βk−i for all i = 1, . . . , k.

Lemma 2. Consider a chain C = (J1, . . . , Jk) with big endian. Then |J∗
i | <

|Jk|/βk−i−1 for all i = 1, . . . , k. Hence
∑k

i=1 |J∗
i | < β2

β−1

(
1− 1

βk

)
|Jk|.

The following lemma bounds the profit of requests served by O in a basic sub-
schedule.

Lemma 3. Consider a basic subschedule B = (J1, . . . , Jk). If B has small en-
dian,

k∑
j=1

|J∗
j |+ |B∗| ≤

(
β +

1
β − 1

)
β|Jk−1|+ |Jk|+ |J ′

k| −
β

β − 1
|J1|.

If B has big endian,

k∑
j=1

|J∗
j |+ |B∗| ≤

(
α+

β

β − 1
+ 1
)
|Jk|+ |J ′

k| −
β

β − 1
|J1|.

Proof. Suppose B has small endian. We observe that the chain (J1, . . . , Jk−1)
must have big endian by construction of BAR. (Note that k ≥ 2 if B has small
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endian since k = 1 implies B has big endian.) By Lemma 2, we have
∑k−1

j=1 |J∗
j | <

β2

β−1

(
1− 1

βk−1

)
|Jk−1|. Also, we have |J∗

k | < β2|Jk−1| for otherwise, J∗
k would

have aborted Jk due to condition [C1]. Thus
∑k

j=1 |J∗
j | < β3

β−1

(
1− 1

βk

)
|Jk−1|.

As for B∗, we note that β|Jk−1| + |J ′
k−1| ≤ |Jk| + |J ′

k| since Jk aborts Jk−1
by condition [C2]. Moreover, |B∗| ≤ |J ′

k−1| because requests in B∗ have dead-
lines no earlier than that of J ′

k−1 and they have not been satisfied by BAR at
time s(J ′

k−1). Hence |B∗| ≤ |Jk| − β|Jk−1|+ |J ′
k|. Combining these two bounds,

we have
∑k

j=1 |J∗
j | + |B∗| ≤ β3

β−1

(
1− 1

βk

)
|Jk−1| + (|Jk| − β|Jk−1| + |J ′

k|) =(
β + 1

β−1

)
β|Jk−1|+ |Jk|+ |J ′

k| − 1
(β−1)βk−3 |Jk−1| ≤

(
β + 1

β−1

)
β|Jk−1|+ |Jk|+

|J ′
k| − β

β−1 |J1|.
We omit the proof for the big endian case. 
�

In Lemma 3, no matter B has big or small endian, we can bound |J ′
k| from

above by the profit of the first broadcast in the basic subschedule after B. If B
is followed by an idle interval, then we can actually argue that |J ′

k| = 0. That
is, we associate |J ′

k| with the basic subschedule following B. By the same token,
B will also be associated with such value from the preceding basic subschedule.
In the next subsection we will see how this association is used in the analysis.

3.2 Aggregated Subschedules

Let Bi = (Ji,1, . . . , Ji,ki) denote the i-th basic subschedule in a sequence of basic
subschedules. For notational convenience define Ji,0 = φ, and prev(Bi) = Ji,ki−1,
i.e., the second last broadcast in a basic subschedule.

Lemma 4. The last basic subschedule before an idle interval must have big
endian.

Based on the above lemma, we can partition the original schedule into a number
of aggregated subschedules, each of which containing zero or more basic subsched-
ules with small endians followed by one basic subschedule with big endian.

Consider an arbitrary aggregated subschedule, A = (B1, . . . , Bm) where for
i = 1, . . . ,m, Bi = (Ji,1, . . . , Ji,ki) is a basic subschedule with ki broadcasts.

Obviously, the total profit of requests satisfied by BAR in A is

|A| =
m∑

i=1

|Ji,ki |. (1)

Also, since |Ji,ki | ≥ α|prev(Bi)| for i = 1, . . . ,m− 1, we have

|A| ≥ α
(

m−1∑
i=1

|prev(Bi)|
)

+ |Jm,km |. (2)
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Recall that Bi’s have small endians for i = 1, . . . ,m − 1. We have ki ≥ 2 since
basic subschedules with only one broadcast must have big endians by definition.
By condition [C2], β|prev(Bi)|+ |J ′| ≤ |Ji,ki |+ |R′| where |R′| ≤ |Ji+1,1| because
R′ is a candidate set of requests to be served after Ji,ki is completed. Hence we
have β|prev(Bi)| ≤ |Ji,ki |+ |Ji+1,1|, and together with (1),

|A| ≥
m−1∑
i=1

β|prev(Bi)|+ |Jm,km | −
m∑

i=2

|Ji,1|. (3)

On the other hand, the total profit of requests satisfied by O and associated
with aggregated subschedule A is:

|A∗| =
⎛⎝ k1∑

j=1

|J∗
1,j |+ · · ·+

km∑
j=1

|J∗
m,j|
⎞⎠+ (|B∗

1 |+ · · ·+ |B∗
m|)

≤
m−1∑
i=1

(
β +

1
β − 1

)
β|prev(Bi)|+

(
α+

β

β − 1

)
|Jm,km |

+
m∑

i=1

|Ji,ki |+
m∑

i=2

|Ji,1|+ |J ′
m,km

| − β

β − 1

m∑
i=1

|Ji,1|

where the inequality follows from Lemma 3. Consider (1) + (2) ×(β2

α )+ (3)
× 1

β−1 . After some algebraic manipulations (which we omit) we have(
1 +

β2

α
+

1
β − 1

)
|A| ≥ |A∗|+ |J1,1| − |J ′

m,km
| (4)

as long as β2

α + 1
β−1 ≥ β

β−1 +α. We can bound |J ′
m,km

| from above by the profit
of the first broadcast (i.e., |J1,1|) in the next aggregated subschedule. Thus, if we
have a sequence of aggregated subschedules A1, . . . , Al, then from (4) we have(

β2

α
+

β

β − 1

)
(|A1|+ · · ·+ |Al|) ≥ |A∗

1|+ · · ·+ |A∗
l | − |J ′| (5)

where J is the last broadcast in Al. Since there is no more broadcast after Al,
|J ′| = 0.

If the whole aggregated subschedule consists of only one basic subschedule
with big endian, i.e., A = (B1), then |A| = |J1,k1 | and we can verify that in-
equality (5) still holds.

The condition β2

α + 1
β−1 ≥ β

β−1 + α can be satisfied by having α2 + α ≤ β2,

i.e., α ≤
√
β2 + 1

4 − 1
2 . Setting α =

√
β2 + 1

4 − 1
2 , the competitive ratio of BAR

is∑l
i=1 |A∗

i |∑l
i=1 |Ai|

≤ β

β − 1
+
β2

α
=

β

β − 1
+

β2√
β2 + 1

4 − 1
2

=
3
2

+
1

β − 1
+

√
β2 +

1
4
.

This has a minimum value of approximately 4.561 attained when β ≈ 2.015, and
α ≈ 1.576.
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4 Variable Page Length: An Improved Lower Bound

In this section we consider the case where the pages can have different lengths.
We give a lower bound on the competitive ratio of any deterministic online
algorithm for Broadcasting. Let Δ be the ratio between the length of the longest
and shortest page.

Theorem 2. The competitive ratio of any deterministic online algorithm for
Broadcasting cannot be smaller than Ω(Δ/ logΔ).

Proof. Assume that there are two pages, P and Q whose lengths are Δ and 1,
respectively. Given any online algorithm A, we construct a sequence of requests
as follows. At time 0, a request for P arrives with deadline at time Δ, i.e., it has
a tight deadline. The weight of the request is 1. There are at most �Δ� requests
for Q, denoted by ri for 0 ≤ i ≤ �Δ� − 1. ri arrives consecutively, i.e., a(ri) = i,
and they all have tight deadlines, i.e., d(ri) = i+ 1. The weight of ri, i.e., w(ri),
is Δr(i+ 1)k where r and k are some constants which will be defined later. If A
broadcasts Q at any time t, no more request of ri arrives for i > t.

Now we analyze the performance of A against the optimal offline algorithm
O. There are two cases. (1) If A satisfies the request for P by broadcasting P
at time 0, O will satisfy all requests ri by broadcasting Q at time i for 0 ≤ i ≤
�Δ�−1. Hence, we have |A| = Δ and |O| =∑�Δ�−1

i=0 Δr(i+ 1)k. Since
∑x

i=1 i
y =

Θ(xy+1/(y + 1)), |O|/|A| = Θ(Δr−1�Δ�k+1/(k + 1)) ≥ Θ(Δr+k/(k + 1)).
(2) If A broadcasts Q at time t, only rt can be satisfied. However, O can

either satisfy the request for P by broadcasting P at time 0 or satisfy all ri
by broadcasting Q at time i for 0 ≤ i ≤ t. We have |A| = Δr(t + 1)k and
|O| = max{Δ,∑t

i=0Δ
r(i+ 1)k}. Hence, |O|/|A| = max{Δ,Θ(Δr(t+1)k+1/(k+

1))}/Δr(t+ 1)k = max{Δ1−r/(t+ 1)k, Θ((t+ 1)/(k+ 1))}. In order to minimize
the ratio, A should choose t = (Δ1−r(k + 1))1/(k+1) − 1. In that case, the ratio
is Θ(Δ(1−r)/(k+1)/(k + 1)k/(k+1)) ≥ Θ(Δ(1−r)/(k+1)/(k + 1)).

In order to maximize the minimum ratio among the two cases, we let r =
(1 − k − k2)/(k + 2). Hence, the competitive ratio is Θ(Δ1−1/(k+2)/(k + 1)) ≥
Θ(Δ1−1/(k+2)/(k + 2)). We further let k + 2 = lnΔ where the function
Δ1−1/(k+2)/(k + 2) achieves the maximum, i.e., Δ1−1/ ln Δ/ lnΔ. Since Δ1/ ln Δ

is the constant e, i.e., the base of natural logarithm, we have proved that the
competitive ratio is Ω(Δ/ logΔ). 
�

5 Lower Bound for Small Δ

The current lower bound for the broadcasting problem is 4 when Δ = 1 [13].
The Ω(Δ/ logΔ) lower bound we just proved as well as the previous

√
Δ one [4]

gives very small lower bounds (much smaller than 4) for small values of Δ. In
this section we give better lower bounds for this case.

Let α be the unique positive real root of the equation

2α2 − 4α3/2 + 2α+ 1 =
√

(�Δ� − 1)2 + 4α2 + �Δ�. (6)
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The following table shows some values of α.

Δ 1 2 3 4 10 very large
α 4 4.245 4.481 4.707 5.873

√
Δ

Theorem 3. For Δ ≥ 2, no deterministic algorithm for Broadcasting can be
better than α-competitive, where α is the unique positive root of (6).

The proof of this theorem uses a modified construction from the lower bound
proof in [13], by adding requests with different lengths and carefully setting the
arrival time of requests in a different way.
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Abstract. This paper gives a complete and tight mathematical anal-
ysis on the performance of the Most-Requested-First algorithm for on-
demand data broadcast. The algorithm is natural and simple, yet its
performance is surprisingly good in practice. We derive tight upper and
lower bounds on MRF’s competitiveness and thus reveal the exact com-
petitive ratios of the algorithm under different system configurations. We
prove that the competitive ratio of MRF is exactly 3− �

d
when the start-up

delay d is a multiple of the page length 
; otherwise the ratio is 3.

1 Introduction

In an on-demand data broadcast system, clients make requests for data such
as weather forecasting, stock prices, traffic information and sports results using
various mobile devices such as notebooks, personal digital assistants (PDAs) and
GPRS-enabled cellular phones. The server broadcasts the requested data at some
time, and all pending requests on the data are satisfied with this single broad-
cast. The performance of such system depends critically on how the data pages
are broadcast and hence finding a good broadcast scheduling algorithm is an
important design issue. The First-Come-First-Serve (FCFS), Longest-Wait-First
(LWF) and Most-Requested-First (MRF) are among the most popular schedul-
ing algorithms and their empirical performances have been studied extensively
[1, 4, 5, 15, 16, 18]. Recently, there are some theoretical analysis on these algo-
rithms. Mao [14], and Hawkins and Mao [7] studied the competitiveness of FCFS.
In particular, they showed that the competitive ratio of FCFS is no more than m

s
where m is the total number of pages that can be broadcast, and s is the num-
ber of servers in the system. On the other hand, Kalyanasundaram, Pruhs and
Velauthapillai [11] showed that MRF and FCFS cannot be O(1)-competitive. For
LWF, Edmonds and Pruhs [6] proved that it cannot be O(1)-competitive either.
Furthermore, they studied resource augmentation for LWF; they showed that if
LWF runs in a server that is six times faster than the one in which the optimal
scheduler runs, then LWF is O(1)-competitive.
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Upper bounds Lower bounds
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�
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⌉
Fig. 1. The competitive ratio of MRF with startup delay d and number of servers s

We note that the above theoretical studies use the average response time as
the performance measure and they assume that once a request is generated by a
user, the request will be held until it is satisfied. This assumption is not without
its critics. For example, Jiang and Vaidya [10] argued that this assumption is
not always true; clients are impatient and they may leave with their requests un-
served after waiting too long. To take this kind of behaviour into consideration,
we studied a somewhat different model in which there is a start-up delay guar-
antee, or simply start-up delay. The model was introduced by Bar-Noy, Goshi
and Ladner [2]. Roughly speaking, if the request for some page p arrives at time
t, the system can accept this request by starting to broadcast the page p within
the time interval [t, t + d] and gain the profit from this request; otherwise the
system gain nothing from it. Here, d is the start-up delay.

Note that for this model, the system throughput (i.e., the total profit gained
by all those requests served before the start-up delay) is more important than
the average response time. Therefore, we will use throughput as the performance
measure. We studied the MRF algorithm for this model. In [8, 9], we consider the
case when the start-up delay d is smaller than the page length �. We prove that
when �

2 < d < � then MRF is 4-competitive, and when d ≤ �
2 , MRF is about � �

d�-
competitive1. We also derive nearly matching lower bounds for these two cases.
In this paper, we study MRF for the case when d ≥ �. It is surprising that we can
derive a complete and tight mathematical analysis on the competitiveness of MRF
for this case. We prove that the competitive ratio of MRF is exactly (3− �

d) when
d is a multiple of �; otherwise, its competitive ratio is exactly 3. We summarize
the results in Figure 1.

2 The Model and the MRF Algorithm

An on-demand data broadcast system is specified by the tuple (d, S,P) where d is
the start-up delay, S is a set of identical servers,P is a set of pages. As in [6, 9, 11],
we assume that all the pages have the same length. Note that the assumption is
1 Under the system throughput, not the average response time, performance measure.
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not unrealistic and is applicable to systems using DNS servers. To simplify our
analysis, we normalize the page length to one. Each server can broadcast a page
at a time, and it takes one time unit to complete the broadcast. Once a server
starts to broadcast a page at some time t, it cannot stop the broadcast of that
page until it completes the broadcast at t+ 1. In other words, preemptions are
not allowed. (We note that there are also many stuides on systems that allow
preemptions, e.g., [3, 12, 13, 17].) Every request r is associated with a profit ρ(r).
For any set of requests R, we let ρ(R) denote the sum

∑
r∈R ρ(r). If a request r

arrives at time t, then the system will gain a profit of ρ(r) from r if it starts to
broadcast the requested page during the time interval [t, t+ d]; after t + d, the
request is expired and the system cannot gain any profit from it.

We study the problem of online scheduling for an on-demand data broadcast
system. The input to the problem is a sequence σ of requests. Without loss of
generality, we assume that the first request arrives at time 0. Given any schedule
Ψ for serving σ, we say that a request r for some page P is pending at time i if it
arrives at some time t ∈ [i−d, i], and no server broadcasts P during [t, i). We say
that r is accepted by the server s at time i if r is pending at i and s broadcasts
the page requested by r at i. In such case, we also say that r is accepted by
the schedule Ψ , and is accepted by the algorithm constructing Ψ . We say that
an online algorithm A for scheduling an on-demand data broadcast system has
competitive ratio κ if for any input request sequence σ, we have ρ(Opt, σ) ≤
κρ(A, σ) where ρ(Opt, σ) and ρ(A, σ) are the total profits of the requests accepted
by the optimal offline algorithm Opt and by the online algorithm A, respectively.

MRF is an online algorithm for scheduling on-demand data broadcast system
(d, S,P). It is very simple and works as follows: At times 0, 1, 2, . . ., MRF uses the
|S| servers to broadcast the |S| pages that allow it to gain the most total profit.
(Note that it takes one time unit for a server to broadcast one page, and if the
pending requests ask for fewer than |S| pages, some of the servers will be idle.)

3 The Case When d > 1 and Is Not an Integer

In this section, we prove that when the start-up delay d is greater than 1, MRF
has competition ratio at most 3. The proof is rather straightforward. The more
interesting result in this section is the construction of an input sequence that
enables us to show that, with the additional requirement that d is not an integer,
the competitive ratio of MRF is at least 3, which matches the upper bound.

Theorem 1. When d > 1, the competitive ratio of MRF is at most 3.
Proof. Consider any input request sequence σ. Suppose that Opt is an optimal
offline algorithm. Let M and O be the sets of requests in σ that are accepted by
MRF and Opt, respectively. Let R = O −M be the set of requests accepted by
Opt but not by MRF. Note that ρ(O) ≤ ρ(R) + ρ(M) (i.e., the total profit of the
requests in O is no greater than the sum of those in R and M). Below, we show
that ρ(R) ≤ 2ρ(M) and the theorem follows.

Let Ro be the set of requests in R that are accepted at time 0, and for any
i ≥ 1, let Ri ⊆ R be the set of requests that are accepted during (i − 1, i]. We
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further divide Ri into two sets: R′
i is the set of requests in Ri that are pending

at time i according to schedule of MRF, and R′′
i = Ri−R′

i. For any integer i ≥ 0,
let Mi be the set of requests accepted by MRF at time i. By the design of MRF,
we have ρ(R0) ≤ ρ(M0). Note that ρ(R′

i) ≤ ρ(Mi) because all the requests in
R′

i are acceptable by MRF at i, and by design, Mi is the set of such requests
with the largest profit. Finally, note that any request r ∈ R′′

i must be arrived
before i − 1; otherwise, it is still pending at i and thus r should not be in R′′

i .
Hence, all requests in R′′

i are acceptable by MRF at i − 1 and we can conclude
that ρ(R′′

i ) ≤ ρ(Mi−1). Therefore, ρ(R) = ρ(Ro) +
∑

i≥1 ρ(R
′
i) +
∑

i≥1 ρ(R
′′
i ) ≤

ρ(M0) +
∑

i≥1 ρ(Mi) +
∑

i≥1 ρ(Mi−1) ≤ 2ρ(M). 
�
Theorem 2. When the start-up delay d ≥ 1 is not an integer, the competitive
ratio of MRF is at least 3.

Proof. We establish the bound by constructing a difficult input request sequence
for MRF. For ease of description, we assume that there is only one server in the
system. We can show that this lower bound is also true for any number of servers
c by creating c− 1 copies of the requests, each copy with different set of pages.

Suppose that d = do + r where do is a positive integer and 0 < r < 1.
Consider the 2do + 1 pages P0, P1, . . . , P2do . Let δ be a small value such that
0 < δ < min{r, 1 − r}. For each integer i ≥ 0, let Ri be the set containing the
following three requests ri,1, ri,2, ri,3 arriving respectively at time i, i + δ, and
i+ do + δ, all asking for the page Pio where io = i mod (2do + 1). The requests
ri,2, ri,3 have profit of 1, and the first request ri,1 has profit of 1 + ε where ε > 0
is an extremely small value. (This ε is only for resolving the arbitrariness.) Our
input is just the union of these Ri’s, i.e.,

⋃
i≥0 Ri. See Figure 2 for an example.

Consider the schedule that broadcasts, for each i ≥ 0, the page Pio at time
i+ do + δ where io = i mod (2do +1). Note that this schedule is feasible because
each page has length 1 and its broadcast takes one time unit. Furthermore, this
schedule accepts all requests because for each i, the broadcast of Pio at time
i+ do + δ can accept all the three requests in Ri; the earliest request ri,1 arrives
at i, and is still pending at time i+ d = i+ do + r > i+ do + δ. Below, we will
prove by induction that for any i ≥ 0, MRF will broadcast Pio at time i and thus
can only accept the first request ri,1 in Ri. Then, the theorem follows.

It is true for the base case because r0,1 arrives at time 0 and MRF accepts it
immediately. Suppose that MRF accepts r0,1, r1,1, . . . , ri−1,1 at time 0, 1, 2, . . . , i−
1. For time i, we consider the requests in Rj for all 0 ≤ j ≤ i as follows.

1. When 0 ≤ j < i−2do: Note that the three requests in Rj are expired at time
i. In fact, the last request rj,3, which arrives at time j+do +δ ≤ i−2do−1+
do+δ, is expired at or before (i−2do−1+do+δ)+do +r = i+δ−(1−r) < i.

2. When i− 2do ≤ j < i: By the induction hypothesis, the first request rj,1 has
already been accepted. If j ≤ i− do − 1, then the request rj,2, which arrives
at time j+δ ≤ i−do−1+δ, is expired at or before i−do−1+δ+do+r < i.
If j ≥ i − do, then rj,3 arrives after i because j + do + δ ≥ i − do + do + δ.
Hence, only one request in Rj = {rj,1, rj,2, rj,3} is pending at time i.

3. When j = i: Rj has exactly one request, namely ri,1, arrives at time i.
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Fig. 2. An example with d = 1.4. The system has one server and three pages p0, p1

and p2. The arrows show the durations of the requests.

Therefore, the set of requests pending at time i comprises exactly one request
in each of Ri−2do , Ri−2do+1, . . . , Ri. Note that for any i − 2do ≤ j = j′ ≤ i,
j mod (2do + 1) = j′ mod (2do + 1) and Rj and Rj′ are asking for different
pages. Since for 1 ≤ j < i, rj,1 has been accepted (induction hypothesis), MRF
will broadcast Pio at time i to accept ri,1 to get the maximum profit 1 + ε. 
�

4 The Case When d > 1 and Is an Integer

In this section, we prove that when d is an integer, the competitive ratio of MRF
is no more than 3− 1

d . We also show that this bound is tight.
Consider any input request sequence σ. For any time interval I, let σI denote

the sequence of requests in σ that arrive during I. For example, σ[0,t) is the
sequence of requests in σ arriving before t, and σ[t,t] are those arriving at t. Let
O be the set of requests that are accepted by Opt, the optimal offline algorithm,
and for any integer i ≥ 0, we let Oi be the set of requests that are accepted by
Opt during (i− 1, i]. For any page P ∈ P , define Oi,P ⊆ Oi to be the subset of
requests in Oi that ask for P . Define M , Mi and Mi,P for MRF similarly. (Note
that by design, MRF will only accept requests in Mi at time i.)

For any server s ∈ S, let M(s) be the set of requests in M that are accepted
by s. Note that Mi ∩M(s) is the set of requests accepted by s at time i, and it
is empty if MRF does not use s to accept any request at i. For any fixed i ≥ 0, let
Mi,min denote the setMi∩M(s) with the minimum profit (over all servers s ∈ S).
Note that for any page P that is broadcast by MRF at time i, Mi,P = Mi ∩M(s)
for some server s at i. The following fact is easy to verify.
Fact 1. For any page P that is broadcast by MRF at time i, we have ρ(Mi,P ) ≥
ρ(Mi,min) and ρ(Mi,min) = 0 if MRF does not use all the |S| servers at time i.

For any integers 0 ≤ i ≤ j, let Bj
i (P ) be the set of instances t ∈ [i, j] such

that MRF broadcasts page P at t. Since MRF only broadcasts a page only at some
integral time, Bj

i (P ) includes only integers. Let B̄j
i (P ) = {i, i+1, . . . , j}−Bj

i (P )
be the set of instances t ∈ [i, j] such that MRF does not broadcast page P at t. To
derive an upper bound on ρ(O) in terms of ρ(M), we need the following lemma.
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Lemma 1. Suppose the start-up delay d is an integer. For any time i and page
P , ρ(Oi,P ) ≤∑j∈Bi−1

i−d(P ) ρ(Oi,P ∩Mj,P )+
∑

j∈B̄i−1
i−d(P )

ρ(Mj,min)
d +Δ(i, P ), where

Δ(i, P ) = ρ(Oi,P ∩Mi,P ) if MRF broadcasts P at time i; otherwise, Δ(i, P ) =
ρ(Mi,min).

Proof. We analyze how the requests in Oi,P are served by MRF. Let O+
i,P be

the set of requests in Oi,P that are accepted by MRF at or before i, and let
O−

i,P = Oi,P −O+
i,P be those that are still not accepted at i. (These requests may

already be expired, or may be accepted by MRF later after i.) Since all requests
in Oi,P are served by Opt during (i− 1, i], they must arrive after i− d− 1. This
implies the requests in O+

i,P can only be accepted by the broadcast of P by MRF
during (i− d− 1, i]. Together with the fact that MRF will only broadcast a page
at integral time units, we conclude that ρ(O+

i,P ) is equal to∑
j∈Bi

i−d(P ) ρ(Oi,P ∩Mj,P ) =
∑

j∈Bi−1
i−d(P ) ρ(Oi,P ∩Mj,P ) +Δ1(i, P ) (1)

where Δ1(i, P ) = ρ(Oi,P ∩Mi,P ) if MRF broadcasts P at i (i.e., i ∈ Bi
i−d(P ));

otherwise Δ1(i, P ) = 0. To handle O−
i,P , we note that O−

i,P = O−
i,P ∩ σ(i−d−1,i]

as all requests in Oi,P arrive during (i− d− 1, i]. We divide O−
i,P into two sets,

O−
i,P ∩ σ(i−d−1,i−d] and O−

i,P ∩ σ(i−d,i], and we estimate their profits as follows.
For the first set, we claim that

ρ(O−
i,P ∩ σ(i−d−1,i−d]) ≤

∑
j∈B̄i−1

i−d(P )
ρ(Mj,min)

d . (2)

If O−
i,P ∩ σ(i−d−1,i−d] = ∅, we have (2) immediately. Suppose that the set is not

empty. Note that all requests in O−
i,P ∩ σ(i−d−1,i−d] are all pending at each time

j ∈ [i − d, i − 1] because (i) its earliest request arrives after i − d − 1 and its
last request arrives at or before i − d, and (ii) none of its requests will be ac-
cepted before i. However, MRF did not accept them at time j for all j ∈ B̄i−1

i−d(P );
by the greedy nature of MRF, we conclude ρ(O−

i,P ∩ σ(i−d−1,i−d]) ≤ ρ(Mj,min).
Therefore,

∑
j∈B̄i−1

i−d(P ) ρ(O
−
i,P ∩ σ(i−d−1,i−d]) ≤

∑
j∈B̄i−1

i−d(P ) ρ(Mj,min), or equiv-

alently, ρ(O−
i,P ∩ σ(i−d−1,i−d]) ≤

∑
j∈B̄i−1

i−d(P ) ρ(Mj,min)/|B̄i−1
i−d(P )|. Finally, be-

cause of our assumption that O−
i,P ∩ σ(i−d−1,i−d] is not empty, we conclude

B̄i−1
i−d(P ) = {i−d, i−d+1, . . . , i−1} (any broadcast of P during [i−d, i−1] will

accept all requests in Oi,P arriving during (i−d−1, i−d]). Hence, |B̄i−1
i−d(P )| = d

and (2) follows.
For the second set, let Δ2(i, P ) = 0 if MRF broadcasts P at time i; otherwise

let Δ2(i, P ) = ρ(Mi,min). We claim that

ρ(O−
i,P ∩ σ(i−d,i]) ≤ Δ2(i, P ). (3)

If O−
i,P ∩σ(i−d,i] = ∅, (3) follows immediately. Suppose that the set is not empty.

Similar to the above analysis, we observe that (i) all requests at the set are
pending at i, and (ii) MRF does not broadcast P at i. By the greedy nature of
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MRF, we conclude that ρ(O−
i,P ∩ σ(i−d,i]) ≤ ρ(Mi,min), and since MRF does not

broadcast P at i, we have Δ2(i, P ) = ρ(Mi,min); Inequality (3) follows.
From (1), (2), (3), and Δ(i, P ) = Δ1(i, P ) +Δ2(i, P ), the lemma follows. 
�

We are now ready to derive the upper bound on the competitive ratio.

Theorem 3. When the start-up delay d is a positive integer, the competitive
ratio of MRF is at most 3− 1

d .

Proof. For any i ≥ 0, let Opt(i) and MRF(i) be the sets of pages broadcast by
Opt and MRF during (i − 1, i], respectively. Note that by Lemma 1, we have
ρ(O) =

∑
i≥0
∑

P∈Opt(i) ρ(Oi,P ), which is smaller than or equal to

∑
i≥0
∑

P∈Opt(i)(
∑

j∈Bi−1
i−d

(P ) ρ(Oi,P ∩Mj,P ) +
∑

j∈B̄i−1
i−d

(P )
ρ(Mj,min)

d +Δ(i, P )).

Hence, to prove the theorem, it suffices to prove I1 ≤ (2− 1
d)ρ(M) and I2 ≤ ρ(M)

where I1 =
∑

i≥0
∑

P∈Opt(i)(
∑

j∈Bi−1
i−d(P ) ρ(Oi,P ∩Mj,P ) +

∑
j∈B̄i−1

i−d(P )
ρ(Mj,min)

d )
and I2 =

∑
i≥0
∑

P∈Opt(i)Δ(i, P ).
We first prove I2 ≤ ρ(M), which is easier. Consider any fixed i ≥ 0. Let

Ci = Opt(i) ∩ MRF(i). Note that for any P ∈ Ci ⊆ MRF(i), MRF broadcasts P at i
and by definition, Δ(i, P ) = ρ(Oi,P ∩Mi,P ). Hence,∑

P∈Ci
Δ(i, P ) =

∑
P∈Ci

ρ(Oi,P ∩Mi,P ) ≤∑P∈Ci
ρ(Mi,P ). (4)

For any P ∈ Opt(i)− Ci, we claim that∑
P∈Opt(i)−Ci

Δ(i, P ) =
∑

P∈Opt(i)−Ci
ρ(Mi,min) ≤

∑
P∈MRF(i)−Ci

ρ(Mi,P ). (5)

We have the first equality because P ∈ MRF(i) and thus MRF does not broadcast
P at i, and by definition, Δ(i, P ) = ρ(Mi,min). For the second inequality, it
obviously holds if ρ(Mi,min) = 0. Suppose that ρ(Mi,min) > 0. From Fact 1,
we conclude that MRF uses all the |S| servers at i and |MRF(i)| = |S|. It follows
that |Opt(i)| ≤ |S| = |MRF(i)|. Since Ci ⊆ Opt(i) and Ci ⊆ MRF(i), we have
|Opt(i) − Ci| = |Opt(i)| − |Ci| and |MRF(i) − Ci| = |MRF(i)| − |Ci|. Therefore,∑

P∈Opt(i)−Ci
ρ(Mi,min) = |Opt(i) − Ci|ρ(Mi,min) = (|Opt(i)| − |Ci|)ρ(Mi,min) ≤

(|MRF(i)|−|Ci|)ρ(Mi,min) = (|MRF(i)−Ci|)ρ(Mi,min) =
∑

P∈MRF(i)−Ci
ρ(Mi,min) ≤∑

P∈MRF(i)−Ci
ρ(Mi,P ), and (5) follows.

From (4), (5), and
∑

P∈MRF(i) ρ(Mi,P ) = ρ(Mi) and
∑

i≥0 ρ(Mi) = ρ(M), we
conclude I2 =

∑
i≥0
∑

P∈Opt(i)Δ(i, P ) ≤ ρ(M)
We now show I1 ≤ (2 − 1

d )ρ(M). For any i ≥ 0 and any page P , define
the characteristic function δOpt(i, P ) = 1 if P ∈ Opt(i), and δOpt(i, P ) = 0
otherwise. Define δMRF(i, P ) for MRF similarly. We now rewrite I1 using these
characteristic functions such that we can estimate its value more easily. To make
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the manipulations more transparent, we let G(j, P ) = δMRF(j, P )ρ(Oi,P ∩Mj,P )
and H(j, P ) = (1 − δMRF(j, P ))ρ(Mj,min)

d . It can be verified that I1 is equal to
∑
i≥0

∑
P∈P

δOpt(i, P )
∑

i−d≤j≤i−1

(
δMRF(j, P )ρ(Oi,P ∩ Mj,P ) + (1 − δMRF(j, P ))

ρ(Mj,min)

d

)

=
∑

i≥0

∑
P∈P

∑
i−d≤j≤i−1(δOpt(i, P )G(j, P ) + δOpt(i, P )H(j, P ))

=
∑

j≥0

∑
j+1≤i≤j+d

∑
P∈P(δOpt(i, P )G(j, P ) + δOpt(i, P )H(j, P ))

=
∑

j≥0(Qj + Rj + Sj)

where Qj =
∑

j+1≤i≤j+d

∑
P∈P δOpt(i, P )ρ(Mj,min)

d ,

Rj =
∑

j+1≤i≤j+d

∑
P∈P δOpt(i, P )δMRF(j, P )ρ(Oi,P ∩Mj,P ), and

Sj =
∑

j+1≤i≤j+d

∑
P∈P δOpt(i, P )δMRF(j, P )(− ρ(Mj,min)

d ).

Below, we show that for all j ≥ 0, Qj + Rj + Sj ≤ (2 − 1
d)ρ(Mj). Then, the

inequality I1 ≤ (2 − 1
d)ρ(M) follows.

For any time j ≥ 0 and any page P ∈ P , we say that P is critical for time j
if (i) MRF broadcasts P at time j, and (ii) there is a time i ∈ [j + 1, j + d] such
that Opt also broadcasts P at time i. Let Σj be the set of critical pages for time
j. It can be verified that

Σj = {P ∈ P | δOpt(i, P )δMRF(j, P ) = 1 for some i ∈ [j + 1, j + d]},
and P ⊆ MRF(j). Furthermore, observe that for any page P ∈ P , if P ∈ Σj , then
δOpt(i, P )δMRF(j, P ) = 0 for all i ∈ [j + 1, j + d]. Below, we bound Qj, Rj and Sj .

Note that Qj =
∑

j+1≤i≤j+d |Opt(i)|ρ(Mj,min)
d ≤ |S|ρ(Mj,min). For Rj , note

that for any P ∈ Σj , δOpt(i, P )δMRF(j, P ) = 0 for all i ∈ [j + 1, j + d]. Hence,

Rj ≤
∑

j+1≤i≤j+d

∑
P∈Σj

ρ(Oi,P ∩Mj,P ) ≤∑P∈Σj
ρ(Mj,P ).

(We have the last inequality because Oi,P ∩ Oi′,P = ∅ for any i = i′.) For Sj ,

note that
∑

P∈MRF(j)−Σj

(
ρ(Mj,P ) − ρ(Mj,min)

d

)
is non-negative and hence Sj ≤∑

j+1≤i≤j+d

∑
P∈P δOpt(i, P )δMRF(j, P )

(
− ρ(Mj,min)

d

)
+
∑

P∈MRF(j)−Σj

(
ρ(Mj,P )−

ρ(Mj,min)
d

)
. Note that

∑
j+1≤i≤j+d

∑
P∈P δOpt(i, P )δMRF(j, P )(−1) ≤∑

P∈Σj
(−1), and we conclude that Sj ≤ ∑

P∈Σj
− ρ(Mj,min)

d +∑
P∈MRF(j)−Σj

(
ρ(Mj,P )− ρ(Mj,min)

d

)
=
∑

P∈MRF(j)−Σj
ρ(Mj,P )−|MRF(j)|ρ(Mj,min)

d .

Hence, Qj + Rj + Sj ≤
∑

P∈MRF(j) ρ(Mj,P ) + (|S| − |MRF(j)|
d )ρ(Mj,min). Note

that if ρ(Mj,min) = 0, then Qj + Rj + Sj =
∑

P∈MRF(i) ρ(Mj,P ) = ρ(Mj) <
(2− 1/d)ρ(Mj), as we have claimed. Otherwise, MRF has used all the |S| servers
and |MRF(i)| = |S|, and our claim is still true because Qj + Rj + Sj ≤ ρ(Mj) +
(|S| − |S|/d)ρ(Mj,min) = ρ(Mj) + (1− 1

d)|S|ρ(Mj,min) ≤ (2 − 1
d)ρ(Mj). 
�

Theorem 4. When the start-up delay d is a positive integer, the competitive
ratio of MRF is at least 3− 1

d .
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Proof. As in the proof of Theorem 2, we assume without loss of generality that
there is only one server in the system. To construct a difficult input instance
for MRF, we consider 2d different pages P0, P1, . . . , P2d−1. For each integer i ≥ 0,
we create a set Ri of requests on page Pio where io = i mod 2d as follows. If
i is divisible by d, then Ri contains d + 1 requests arriving at time i + 0.5, i+
1.5, . . . , i + d + 0.5; the first d requests have profit 1 + ε and the last one has
profit 1 where ε > 0 is an extremely small value. If i is not divisible by d, then
Ri contains exactly 2 requests arriving at i+0.5 and i+d+0.5, both have profit
1. Our input is the union of these Ri’s, i.e.,

⋃
i≥0Ri.

Note that the schedule S that broadcasts, for each i ≥ 0, the page Pio at time
i+d+0.5 where io = i mod 2d accepts all requests in

⋃
i≥0 Ri. We claim for any

integer t ≥ 1, MRF accepts exactly one request at t (there is no request at time
0). Then, the theorem follows because for any time interval [2id + 1, 2id + 2d]
(i ≥ 0), MRF accepts 2d requests during this interval, and S accepts all the 6d−2
requests in R2id+1, R2id+2, . . . , R2id+2d.

We prove our claim by mathematical induction. We will prove something
stronger. Consider any time t = 2id+ j where i ≥ 0 and 1 ≤ j ≤ 2d. We prove
that if 1 ≤ j ≤ d, MRF broadcasts the page P0 at t, and if d + 1 ≤ j ≤ 2d, MRF
broadcasts Pd at t. Furthermore, in both cases, MRF accepts one request. The
base case is easy to verify. Suppose that it is true for times 1, 2, . . . , t − 1 and
we consider the time t = 2id+ j. Suppose that d + 1 ≤ j ≤ 2d (the case when
1 ≤ j ≤ d can be analyzed similarly). To find out the requests pending at t,
we can focus on the request sets Rm where t − 2d ≤ m ≤ t − 1 because at t
(i) the requests in R0, R1, . . . , Rt−2d−1 are all expired, and (ii) the requests in
Rt, Rt+1, . . . have not arrived.

Note that in the interval [t− 2d, t− 1] = [2id+ j − 2d, 2id+ j − 1], there are
exactly two integers mo = 2id and m1 = 2id + d that are divisble by d. When
m is neither mo nor m1, m is not divisible by d and by construction, Rm has
only two requests. If m ≤ t− d− 1, then the first request, which arrives at time
m+ 0.5 ≤ t− d− 0.5, is expired at m+ 0.5 + d < t, and if m ≥ t− d, then the
second request arrives at time m+d+0.5 ≥ t+0.5, i.e., after t. Therefore, there
is exactly one pending request from Rm at t, and it has profit of 1. For the case
when m = mo, note that the requests in Rmo = R2id ask for P0 and all but the
last request arrive before mo + d = 2id + d. Note that mo + d ≤ t − 1, by the
induction hypothesis, MRF broadcasts P0 at mo + d and accepts all except the
last requests in Rmo , and broadcast Pd at time mo + d+ 1, . . . , t− 1. Therefore,
Rmo has one request (the last one) pending at t, and it has profit 1. For the case
when m = m1 = 2id + d, note that the requests in R2id+d ask for page Pd. By
the induction hypothesis, MRF broadcasts Pd at time t−1 and the requests arrive
at or before t − 1 are accepted. Therefore, there is exactly one request on Pd,
the one in Rm1 arriving at t− 1 + 0.5, that is pending at t, and it has profit of
1+ε. Finally, note that Rk−2d, Rk−2d+1, . . . , Rk−1, are requesting for 2d different
pages and from above discussion, each of them has exactly one request pending
at time t. Furthermore, only the request on Pd has profit 1 + ε. Therefore, MRF
will broadcast Pd at time t and accept one request. 
�



A Tight Analysis of Most-Requested-First for On-Demand Data Broadcast 339

References

1. D. Aksoy and M. Franklin. Scheduling for large-scale on-demand data broadcasting.
In IEEE INFOCOM, volume 2, pages 651–659, 1998.

2. A. Bar-Noy, J. Goshi, and R. Ladner. Off-line and on-line guaranteed start-up delay
for media-on-demand with stream merging. In Proceedings of the 15th Annual ACM
Symposium on Parallel Algorithms and Architecture, pages 164–173, 2003.

3. W.T. Chan, T.W. Lam, H.F. Ting, and W.H. Wong. New results on on-demand
broadcasting with deadline via job scheduling with cancellation. In Proceedings
of the 10th Annual International Conference on Computing and Combinatorics,
pages 210–218, 2004.

4. A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling policies for an on-demand
video server with batching. In Proceedings of the ACM Multimedia, pages 15–23,
1994.

5. H.D. Dykeman, M.H. Ammar, and J.W. Wong. Scheduling algorithms for videotex
systems under broadcast delivery. In IEEE International Conference on Commu-
nications (ICC), pages 1847–1851, 1986.

6. J. Edmonds and K. Pruhs. A maiden analysis of Longest Wait First. In Proceedings
of the Fifteenth ACM-SIAM Symposium on Discrete Algorihtms, pages 818–827,
2004.

7. A.T. Hawkins and W. Mao. On multi-channel data broadcast scheduling. In
The Second Workshop on Intelligent Multimedia Computing and Networking, pages
915–918, 2002.

8. Regant Y.S. Hung. Scheduling online batching systems. Master’s thesis, The
University of Hong Kong, 2005.

9. Regant Y.S. Hung and H.F. Ting. Scheduling online batching systems: a com-
petitiveness study on patience and sharing. In Proceedings of the Latin American
Theoretical Informatics Symposium, pages 605–616, 2006.

10. S. Jiang and N.H. Vaidya. Scheduling data broadcast to “impatient” users. In Pro-
ceedings of the 1st ACM International Workshop on Data Engineering for Wireless
and Mobile Access (MobiDE), pages 52–59, 1999.

11. B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling broadcasts in
wireless networks. Journal of Scheduling, 4(6):339–354, 2000.

12. B. Kalyanasundaram and M. Velauthapillai. On-demand broadcasting under dead-
line. In Proceedings of the 11th Annual European Symposium on Algorithms, volume
2832 of Lecture Notes in Computer Science, pages 313–324, 2003.

13. J.H. Kim and K.Y. Chwa. Scheduling broadcasts with deadlines. Theoretical
Computer Science, 325(3):479–448, 2004.

14. W. Mao. Competitive analysis of online algorithm for on-demand data broad-
cast scheduling. In Proceedings of the IEEE International Symposium on Parallel
Architectures, Algorithms, and Networks, pages 292–296, 2000.

15. N.J. Sarhan and C.R. Das. A simulation-based analysis of scheduling policies for
multimedia servers. In Proceedings of the 36th Annual Simulations Symposium,
pages 183–190, 2003.

16. H. Shachnai and P. Yu. Exploring wait tolerance in effective batching for video-
on-demand scheduling. Multimedia Systems, 6:382–394, 1998.

17. H.F. Ting. A near optimal scheduler for on-demand data broadcasts. In Proceed-
ings of the Sixth International Conference on Algorithms and Complexity, 2006, to
appear.

18. J.W. Wong. Broadcast delivery. Proceedings of IEEE, 76(12):1566–1577, 1988.



On Lazy Bin Covering and Packing Problems�

Mingen Lin, Yang Yang, and Jinhui Xu

Department of Computer Science and Engineering
University at Buffalo, the State University of New York

Buffalo, NY 14260, USA
{mlin6, yyang6, jinhui}@cse.buffalo.edu

Abstract. In this paper, we study two interesting variants of the classi-
cal bin packing problem, called Lazy Bin Covering (LBC) and Cardinal-
ity Constrained Maximum Resource Bin Packing (CCMRBP) problems.
For the offline LBC problem, we first show its NP-hardness, then prove
the approximation ratio of the First-Fit-Decreasing algorithm, and fi-
nally present an APTAS. For the online LBC problem, we give compet-
itive analysis for the algorithms of Next-Fit, Worst-Fit, First-Fit, and a
modified HARMONICM algorithm. The CCMRBP problem is a general-
ization of the Maximum Resource Bin Packing (MRBP) problem [1]. For
this problem, we prove that its offline version is no harder to approximate
than the offline MRBP problem.

1 Introduction

Bin packing is a fundamental problem in combinatorial optimization and finds
applications in many different areas. A long and rich history exists and many
important results have been obtained [2,3,4,5,6,7,8]. In its most basic form, the
bin packing problem seeks to pack items of size between zero and one into a min-
imum number of unit-sized bins. Depending on its applications, the bin packing
problem could also have many other different forms. Recently, Boyar et al. stud-
ied an interesting variant of the classical bin packing problem, called Maximum
Resource Bin Packing (MRBP) [1], which considers the bin packing problem
from a reverse perspective and maximizes the total number of used bins. For
instance, in its offline version, the MRBP problem requires an ordering of the
packed bins such that no item in a later bin fits in an earlier bin. Motivated by
this new problem, in this paper we first consider an interesting variant of the
classical bin covering problem called Lazy Bin Covering (LBC), and then study
a generalization of the MRBP problem called cardinality constrained MRBP
(CCMRBP).

Lazy Bin Covering

The classical bin covering problem can be viewed as a “dual” problem of the bin
packing problem. Its objective is to pack items of size between zero and one into
� This research was partially supported by an NSF CARRER Award CCF-0546509.

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 340–349, 2006.
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a maximum number of unit-sized bins so that the level of each bin is at least
one [9,10]. Different from the classical bin covering problem, the LBC problem
tries to pack items into a minimum number of covered bins so that removing any
item from a covered bin turns it into an uncovered one (i.e., its level becomes
smaller than one). Formally, the LBC problem can be stated as follows: Given a
list L = {a1, a2, · · · , an} of items, ai ∈ (0, 1], pack them into a minimum number
m of unit-sized bins B1, B2, · · · , Bm such that

∑
ai∈Bj

ai ≥ 1 for 1 ≤ j ≤ m− 1
and
∑

ai∈Bj
ai−min{ai|ai ∈ Bj} < 1 for all 1 ≤ j ≤ m. That is, except probably

Bm, all other bins are covered and for each bin no item is redundant. In certain
sense, the LBC problem can be regarded as finding the worst but reasonable
packing for the bin covering problem.

Two related problems have been considered in the past, the plain open-end bin
packing problem (POBP) [11,12] and the ordered open-end bin packing problem
(OOBP)[13]. The goal of POBP is to pack items into a minimum number of bins,
where the level of a bin can exceed one as long as removing the last item brings
its level back to less than one. The OOBP further requires that the designated
last item in a bin of level exceeding one has to be the largest-indexed item in
that bin. LBC can also be viewed as the OOBP with the additional requirement
that the item with larger size has lower index.

In this paper, we consider both the offline (Section 3) and online (Section 4)
versions of the LBC problem, and present a number of results for each version,
such as the complexity analysis and approximation ratio analysis for several
classical bin packing strategies. For the online version, each bin is required to be
non-redundant but may not be covered.

Cardinality Constrained Maximum Resource Bin Packing

The CCMRBP problem is a generalization of MRBP [1] and can be stated as
follows: Given a sequence L = {a1, a2, · · · , an} of items, ai ∈ (0, 1], pack them
into a maximum number m of unit-sized bins B1, B2, · · · , Bm such that each bin
contains at most C items and the packing satisfies the following constraint.

Constraint 1. No item a ∈ Bj can fit into any Bk, 1 ≤ k < j, 2 ≤ j ≤ m,
i.e. either Bk already contains c items or the level of Bk will exceed one after
placing a into it.

In Section 5, we prove that the offline CCMRBP problem is no harder to ap-
proximate than the offline MRBP.

Due to space limit, we omit several proofs and many details from this extended
abstract.

2 Preliminaries

For an input sequence L = {a1, a2, · · · , an} of items, let A(L) denote the packing
returned by an algorithm A and OPT (L) denote the packing generated by an
optimal algorithm OPT . For a set of bins s and any bin B ∈ s, let c(B) be
the number of items packed in B, l(B) =

∑
ai∈B ai be the level of B, and
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l(s) =
∑

B∈s l(B) be the level of s. Denote the size of the smallest (or largest)
item in B by min(B) (or max(B)). Similarly, denote the size of the smallest (or
largest) item in s by min(s) (or max(s)). For a weighting function w : L → �,
we define w(B) =

∑
ai∈B w(ai) and w(s) =

∑
B∈sw(B) as the total weight of

items in B and in s respectively. Let p = s1|s2 denote a packing p which consists
of a set of bins s1, followed by a set of bins s2.

In this paper, we consider the following classical packing algorithms/strategies.

– Next-Fit (NF) maintains only one open bin at any time point and places an
item into the bin only if it fits. Otherwise a new bin is opened.

– First-Fit (FF) places an item into the first bin that can accommodate it.
– Worst-Fit (WF) places an item into the lowest level bin among all the bins

that can accommodate it. Break tie arbitrarily.
– First-Fit-Increasing (FFI) packs items in a non-decreasing order with respect

to their sizes, and places them using First-Fit.
– First-Fit-Decreasing (FFD) packs items in a non-increasing order with re-

spect to their sizes, and places them using First-Fit.

We also presents a modified HARMONICM (MH(M)) algorithm [14] for the
online LBC problem. Details of the algorithm will be given in Section 4.

An approximation algorithm A is a c-approximation algorithm for c ≥ 1,
if there is a constant b such that for all possible input sequences L, A(L) ≤
cOPT (L)+ b for minimization problems (or OPT (L) ≤ cA(L)+ b for maximiza-
tion problems). The infimum of all such c is called the approximation ratio of the
algorithm, RA. For a parameterized bin packing/covering problem, we consider
the parameterized approximation ratio, RA(k), which is the approximation ratio
of A in the case where all items have sizes no more than 1

k for some integer k.
For an online algorithm A, the performance (or competitive ratio CA) of A is
measured similarly by comparing with the optimal offline algorithm OPT .

3 Offline Lazy Bin Covering Problem

In this section, we first prove that offline LBC is NP-hard, then analyze the
approximation ratios of FFD and FFI, and finally show that there exists an
asymptotic PTAS for the offline LBC problem.

Theorem 1. The offline LBC is NP-hard.

Proof. To prove the NP-hardness, we reduce the partition problem to the deci-
sion version of LBC. The partition problem can be stated as follows: Given a set
of positive integers I = {a1, a2, · · · , an},

∑n
i=1 ai = 2b, decide whether I can be

partitioned into two sets, S and I − S, such that
∑

ai∈S ai = b. Without lost of
generality, we assume that b ≥ 3 and ai ≥ 2 for 1 ≤ i ≤ n.

The reduction is constructed as follows. Given an instance I of the partition
problem, we construct an instance of LBC I ′ = {p1, p2, · · · , pn, pn+1, · · · , pn+m},
m = 2b+ 4, where pi = ai

2b (big items) for 1 ≤ i ≤ n and pj = b−1
2b2 (small items)

for n+1 ≤ j ≤ n+m. Note that b−1
2b2 is the smallest item. Below we show that I
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can be partitioned into two equal-sized sets if and only if I ′ can be packed into
two unit-sized bins in the LBC problem.

If I can be partitioned into two equal-sized sets S and I − S, we can pack
the items in I ′ as follows. First, for each ai ∈ S, place the corresponding pi into
the first bin. Then place all pj for n + 1 ≤ i ≤ n + m

2 into the first bin. The
remaining items in I ′ are packed into the second bin. It is easy to see that the
level of each bin is 1 + b−2

2b2 , which is strictly smaller than 1 + b−1
2b2 (i.e., 1 plus

the size of the smallest item). Thus removing any item from each bin will make
it uncovered, which means the resulting packing is valid.

If I ′ can be packed into two unit size bins, since (m − 1) b−1
2b2 = 1 + b−3

2b2 ≥ 1,
neither bin contains m small items. Let A be the number of the small items in
the first bin, and X

2b be the total size of the big items in the first bin. Similarly,
let B be the number of small items in the second bin, and Y

2b be the total size of
the big items in the second bin. We have 1 ≤ A ≤ m− 1 , 1 ≤ B ≤ m− 1 and
A+B = m. From definitions, we also have{

A b−1
2b2 + X

2b < 1 + b−1
2b2

B b−1
2b2 + Y

2b < 1 + b−1
2b2 ,

That is,
{
X < 2b− (A− 1) + A−1

b

Y < 2b− (B − 1) + B−1
b

Next we want to show that A = B = m
2 is the only possible solution to the

above set of inequalities. If A = B = m
2 , we have X < b + 1

b and Y < b + 1
b .

Since X and Y are integers and X + Y = 2b, we have X = Y = b. Therefor I
can be partitioned into two equal-sized sets. If A and B are not equal, without
loss of generality, assume A > B. We then have b + 3 ≤ A ≤ 2b + 3. Consider
the following three cases.
Case 1. A = 2b + 3. Then B = 1. From the above inequalities we have X < 2

b
which implies X = 0 (since b ≥ 3), and Y < 2b. A contradiction to the fact
that X + Y = 2b.

Case 2. A = 2b+2. Then B = 2. From the above inequalities we have X < 1+ 1
b

which implies X = 0 since ai ≥ 2 for 1 ≤ i ≤ n, and Y < 2b− 1 + 1
b < 2b. A

contradiction to the fact that X + Y = 2b.
Case 3. b+3 ≤ A ≤ 2b+1. Then 3 ≤ B ≤ b+1. From the above inequalities we

have Y ≤ 2b− (B − 1), hence X + Y < 2b+ A−1
b − 2 ≤ 2b. A contradiction

to the fact that X + Y = 2b.
Thus if I ′ can be packed into two bins, I can be equally partitioned, and the
theorem follows. 
�
Next we consider the FFD algorithm. First, note that FFD behaves like the
NF-Decreasing algorithm in the offline LBC problem.

Theorem 2. The parameterized approximation ratio of FFD is

RFFD(k) =
{

71
60 , if k = 1, 2,
1 + 1

k+2 − 1
α , if k ≥ 3,

where α = k(k + 1)(k + 2) when k is odd, and k(k+1)(k+2)
2 when k is even.

Note that RFFD(1) = RFFD(2) = RFFD(3).



344 M. Lin, Y. Yang, and J. Xu

Proof. We first prove the lower bound of the parameterized approximation ratio.
We start with the case k ≥ 3. For this case, we further distinguish two sub-cases:
(a) k is odd and (b) k is even. For case (a), let n be an integer divisible by
k(k + 1)(k + 2), L be a sequence of items consisting of k−1

2 n items of size 1
k , n

items of size 1
k+1 , and k+3

2 n items of size 1
k+2 . For this sequence of items, FFD

packs k−1
2k n bins with each containing k items of size 1

k , 1
k+1n bins with each

containing k + 1 items of size 1
k+1 , and k+3

2(k+2)n bins with each containing k + 2
items of size 1

k+2 . Thus FFD uses in total (1 + 1
k+2 − 1

k(k+1)(k+2) )n bins. The
optimal algorithm OPT packs n bins with each containing k−1

2 items of size 1
k ,

one item of size 1
k+1 , and k+3

2 items of size 1
k+2 . Thus, the approximation ratio

of FFD for this special instance is (1 + 1
k+2 − 1

k(k+1)(k+2) ), and the lower bound
follows. In this instance, the level of each bin in FFD(L) is exactly one, while
the level of each bin in OPT (L) is 1 + 1

k+2 − 1
k(k+1)(k+2) < 1 + 1

k+2 .

For case (b) (i.e., k is even), let n be an integer divisible by k(k+1)(k+2)
2 ,

and L be a sequence of items consisting of k−2
2 n items of size 1

k , 2n items of
size 1

k+1 , and k+2
2 n items of size 1

k+2 . For this instance, FFD uses a total of
(1 + 1

k+2 − 2
k(k+1)(k+2) )n bins, while OPT packs n bins with each containing

k−2
2 items of size 1

k , two items of size 1
k+1 , and k+2

2 items of size 1
k+2 . Thus the

approximation ratio of FFD for this instance is (1 + 1
k+2 − 2

k(k+1)(k+2) ) and the
lower bound follows. In this instance, the level of each bin in FFD(L) is exactly
one, while the level of each bin in OPT (L) is 1 + 1

k+2 − 2
k(k+1)(k+2) < 1 + 1

k+2 .
When k ≤ 2, it is easy to see that RFD(1) ≥ RFD(2) ≥ RFD(3) ≥ 1 + 1

3+2 −
1

3×4×5 = 71
60 .

Secondly, we upper bound the approximation ratio of FFD. Let L be any
sequence of items. We first prove the upper bound for the case of k ≤ 2. Here
we assume 1

0 = +∞. Let interval Ij = [1j ,
1

j−1 ) for 1 ≤ j ≤ 6 and I7 = (0, 1
6 ).

We define a weighting function w : L→ � as follows:

w(ai) =
{

1
j , if ai ∈ Ij , 1 ≤ j ≤ 6;
ai, if ai ∈ I7.

From this function, it is clear that the weight of each item is no more than its
size. By the problem description, we have the following fact:

Fact 1. For any bin B, w(B) < 1 + min{w(ai) | ai ∈ B}.
Let W be the total weight of all the items in L. Consider a bin B in the packing
FFD(L) which is not the last bin and contains only items from a single interval
Ij for some j. If 1 ≤ j ≤ 6, B will contain exactly j items and w(B) = 1. If
j = 7, w(B) = l(B) ≥ 1. Thus w(B) < 1 only if B contains items from more
than one interval or B is the last bin in FFD(L). Let C be the set of bins
in FFD(L) with weight less than one. Obviously, |C| ≤ 6. Therefore we have
|FFD(L)| − 6 < W .

Next we show that W ≤ 71
60 |OPT (L)|. Clearly, it is sufficient to show that for

any bin B in OPT (L), its weight w(B) ≤ 71
60 . Suppose this is not true. Then
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by Fact 1, the weight of the smallest item in B must be larger than 11
60 . Thus

B can only contain items with weight in {1, 1
2 ,

1
3 ,

1
4 ,

1
5}. Suppose B contains a

items of weight 1, b items of weight 1
2 , c items of weight 1

3 , d items of weight 1
4

and e items of weight 1
5 . If e = 0, we have 71

60 < a + b
2 + c

3 + d
4 + e

5 <
6
5 , and

71 < 60a+ 30b+ 20c+ 15d+ 12e < 72. But this is not possible since a, b, c, d,
e are all integers. If e = 0 and d = 0, we have 71

60 < a + b
2 + c

3 + d
4 <

5
4 , and

71 < 60a+30b+20c+15d < 75. This is also not possible since 60a+30b+20c+15d
is divisible by 5. If e = d = 0 and c = 0, we have 71

60 < a + b
2 + c

3 <
4
3 , and

71 < 60a + 30b + 20c < 80. This is also not possible since 60a + 30b + 20c is
divisible by 10. Similarly, if e = d = c = 0 and b = 0, we have 71

60 < a+ b
2 <

3
2 ,

and 71 < 60a+ 30b < 90. This is not possible since 60a+ 30b is divisible by 30.
If e = d = c = b = 0 and a = 0, we have 71

60 < a < 2, and 71 < 60a < 120, this
is not possible since 60a is divisible by 60.

Thus |FFD(L)| < 71
60 |OPT (L)|+ 6.

We now prove for the case of k ≥ 3. We define a weighting function w : L→ �
as following:

w(ai) =

⎧⎪⎪⎨⎪⎪⎩
1

k+1 , if ai ∈ [ 1
k+1 ,

1
k );

1
k+2 , if ai ∈ [ 1

k+2 ,
1

k+1 );
1

k+3 , if ai ∈ [ 1
k+3 ,

1
k+2 );

ai, otherwise.

It is clear that the weight of each item is at most its size, and Fact 1 is still true
for this weighting function. By similar arguments as in the proof for k ≤ 2, each
bin in FFD(L) has weight at least one except for no more than five bins. Next
we claim that each bin B in OPT (L) has total weight at most 1 + 1

k+2 − 1
α . To

prove it, we consider the following two cases.

Case 1. B contains an item with weight at most 1
k+3 . Then we have w(B) <

1+ 1
k+3 by Fact 1. It is easy to verify that 1

k+3 ≤ 1
k+2− 2

k(k+1)(k+2) ≤ 1
k+2− 1

α

when k ≥ 3.
Case 2. Each item in B has weight at least 1

k+2 . Then the weight of each
item is in { 1

k ,
1

k+1 ,
1

k+2}. Two subcases occur: (a) B contains at least one
item of weight 1

k+2 and (b) B contains no item of weight 1
k+2 . For case

(a), by Fact 1 we have w(B)α < α + α
k+2 , where α is the least common

multiplier of k, k+1 and k+2. Hence w(B)α and α
k+2 are integers, and thus

w(B)α ≤ α + α
k+2 − 1, which means w(B) ≤ 1 + 1

k+2 − 1
α . For case (b), by

Fact 1 we have w(B) < 1 + 1
k+1 , and w(B)k(k + 1) < k(k + 1) + k. Since

w(B)k(k + 1) is an integer, we have w(B)k(k + 1) ≤ k(k + 1) + k − 1, i.e.
w(B) ≤ 1 + 1

k+1 − 1
k(k+1) . It is easy to verify that 1

k+1 − 1
k(k+1) ≤ 1

k+2 − 1
α .

Let W be the total weight of all items in L. We have |FFD(L)| − 5 ≤ W ≤
(1 + 1

k+2 − 1
α )|OPT (L)|, and the theorem follows. 
�

Next we consider the FFI algorithm. Different from the FFD algorithm, FFI does
not always generate a “legal” packing for an arbitrary instance of the offline
LBC problem. This is because it could yield a packing with more than one
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partially-filled bin, thus violating the constraint of the offline LBC problem. We
call the problem without the at-most-one-partially-filled-bin constraint as the
relaxed offline LBC problem. It is easy to see that this problem is also NP-hard
and FFD has the same approximation ratio as the one stated in Theorem 2. In
addition, we have the following theorem.

Theorem 3. For the relaxed offline LBC problem, the parameterized approxi-
mation ratio of FFI is

RFFI(k) =
{ 71

60 , k = 1, 2;
1 + 1

k+2 − 1
α , k ≥ 3.

where α = k(k + 1)(k + 2) if k is odd, and k(k+1)(k+2)
2 if k is even.

In [15], an asymptotic PTAS is presented for the classical bin packing problem.
Using similar techniques, we are able to obtain an APTAS for the offline LBC
problem. Details are left for the full paper.

Theorem 4. There exists an asymptotic PTAS (APTAS) for the offline LBC
Problem.

4 Online Lazy Bin Covering Problem

In this section, we study the online LBC problem. We first analyze the compet-
itive ratios of three classical bin packing algorithms, Next-Fit, Worst-Fit and
First-Fit, and then analyze the competitive ratio of a modified HARMONICK

(MHK) algorithm.

Theorem 5. The parameterized competitive ratio of Next-Fit is

CNF (k) =
{

4, k = 1;
k+1
k−1 , k ≥ 2.

Proof. First we prove the lower bound of the competitive ratio. For k = 1, let
the input sequence L = 〈ε, ε, 1 − ε, ε〉n, where ε ≤ 1

3n and n is an even integer.
Next-Fit packs n bins with each containing two items of size ε and n bins with
each containing an item of size 1 − ε and an item of size ε. The optimal offline
algorithm OPT puts 3n items of size ε into one bin and two 1 − ε into each of
the other bins, using n

2 + 1 bins in total. The lower bound follows.
For k ≥ 2, let the input sequence L = 〈〈 1k − ε〉k−1, kε, ε〉(k+1)n, where ε ≤
1

(k+1)2n and n is an integer. Next-Fit puts k − 1 items of size 1
k − ε, one item of

size kε and one item of size ε into one bin, using a total of (k + 1)n bins. OPT
puts all items of size kε and ε into one bin and k + 1 items of size 1

k − ε into
each of the other bins, using a total of (k − 1)n+ 1 bins. Thus the lower bound
follows for the case k ≥ 2.

For the upper bound, let L be any sequence of items and S be the total size
of all the items. For k = 1, first note that the total level of any two consecutive
bins in NF (L) is greater than one. Second, the level of any bin in OPT (L) is
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less than 2 by definition. Therefore, we have 1
2 (|NF (L)| − 1) < S < 2|OPT (L)|,

and immediately, |NF (L)| ≤ 4|OPT (L)|.
For k ≥ 2, since all items have size at most 1

k , we have that every bin inNF (L)
has level greater than 1- 1

k except possibly the last bin. Every bin in OPT (L) has
level less than 1+ 1

k by definition. Thus k−1
k (|NF (L)|−1) < S < 1+k

k |OPT (L)|,
and |NF (L)| ≤ k+1

k−1 |OPT (L)|. 
�
Theorem 6. The parameterized competitive ratio of Worst-Fit is

CWF (k) =
{

3, k = 1;
k+1
k−1 , k ≥ 2.

Note that CWF (1) = CWF (2).

Theorem 7. The parameterized competitive ratio of First-Fit is CFF (k) = k+1
k .

Proof. First we prove the lower bound. Let the input sequence L = 〈〈 1k −
ε〉k, kε〉(k+1)n, where ε ≤ 1

k(k+1)n and n is an integer. First-Fit packs (k + 1)n
bins with each bin containing k items of size 1

k − ε and one item of size kε. The
optimal offline algorithm OPT puts all the items of size kε into one bin, and
k+ 1 items of size 1

k − ε into each of the other bins, using a total of kn+ 1 bins.
Thus the lower bound follows.

To show the upper bound, for any input sequence L, we let FF (L) =
{B1, B2, · · · , Bm} be the packing generated by First-Fit, and {B′

1, B
′
2, · · · , B′

n}
be the bins in FF (L) with level less than one. By the property of First-Fit,
min(B′

i)+ l(B
′
i−1)−min{min(B′

i),min(B′
i−1)} ≥ 1, 2 ≤ i ≤ n. Since l(B′

i−1) < 1,
we have min{min(B′

i),min(B′
i−1)} = min(B′

i−1), and hence min(B′
i)+ l(B′

i−1)−
min(B′

i−1) ≥ 1, 2 ≤ i ≤ n. Thus we have min(B′
n) ≥ min(B′

1) +
∑n−1

i=1 1− l(B′
i).

Let S =
∑m

i=1 l(Bi). We have S ≥ (m− n) +
∑n

i=1 l(B
′
i) ≥ (m− n) + (n− 1) +

l(B′
n)−min(B′

n)+min(B′
1) > m− 1. Note that for any bin in OPT (L), its level

is less than 1 + 1
k by definition. Thus we have S < (1 + 1

k )|OPT (L)|. Therefore
|FF (L)| < (1 + 1

k )|OPT (L)|+ 1. 
�
Motivated by the HARMONIC(M) algorithm in [14] for the online bin packing
problem, below we present a modified HARMONIC (MH(M)) for the online
LBC problem, where M ≥ 3 is the maximum number of open bins at any time.
Due to the different problem settings, we modify the “harmonic partitioning”
as follows: Let Ij = [ 1

k+j−1 ,
1

k+j−2 ), 1 ≤ j < M , and IM = (0, 1
k+M−2 ). Here we

assume 1
0 = +∞. A bin B is of type j if it only accepts items of size in Ij . Below

are the main steps of our algorithm.

Theorem 8. The parameterized competitive ratio of MH(M) (M ≥ 3) is

CMH(M)(k) = max{β, k +M − 1
k +M − 3

}, where β =
{ 71

60 , k ≤ 2
1 + 1

k+2 − 1
α , k ≥ 3

and α = k(k + 1)(k + 2) when k is odd, and k(k+1)(k+2)
2 when k is even.
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Algorithm 1. MH(M)
1: Open M bins of types 1, 2, · · · , M respectively.
2: For each current item ai, if ai ∈ Ij , let Bj be the open bin of type j.
3: if ai + l(Bj) − min{ai, min(Bj)} < 1 then
4: put ai into Bj .
5: else
6: close Bj , open a new bin of type j and put ai into it.
7: end if
8: Move to the next item.
9: Repeat steps 2 to 8 until all items are packed.

5 Cardinality Constrained Maximum Resource Bin
Packing Problem

In this section, we study the offline CCMRBP problem and prove that it is no
harder to approximate than the offline MRBP.

Let B be a bin in any feasible packing. B is cardinality-saturated if c(B) = C.
Otherwise B is load-saturated.

Lemma 1. There exists an optimal packing p = s1|s2 such that s1 = {B1, · · · ,
Bj} is a set of cardinality-saturated bins and s2 = {Bj+1, · · · , Bm} is a set of
load-saturated bins, for some j ∈ [0,m].

Lemma 2. There exists an optimal packing p = s1|s2 satisfying Lemma 1 and
max(s1) ≤ min(s2).

Proof. Given an optimal packing p = s1|s2 satisfying Lemma 1. Let a = max(s1)
and b = min(s2). Let B be the bin containing a, and B′ be the bin containing b.
If a > b, we swap a and b. After the swapping B is still cardinality-saturated and
the level of B′ will increase. Therefore, no item in the bins with index larger than
B′ can fit into B′. If the new level of B′ exceeds one, we can swap the position
(index) of B′ with the bin right after B′, B′′. After the swapping, we adjust the
items in B′ if necessary, i.e. if any item in B′ can fit into B′′, move it from B′ to
B′′. The level of B′ after the adjustment will still be larger than the level of B′′

before the adjustment. Thus, no items in the bins positioned after B′ can fit into
B′. If the new level of B′ is no greater than one, the packing is valid and we are
done. Otherwise, we keep swapping the position of B′ with the bin right after it
and adjust the items in B′ if necessary. Since p is an optimal packing, eventually
the level of B′ will be at most one by the moment when it becomes the last bin
in the packing. Repeat the above procedure until max(s1) ≤ min(s2).

Lemma 3. There exists an optimal packing p = s1|s2 satisfying Lemma 2 and
the bins in s1 are packed by FFI.

Theorem 9. Given an algorithm A1 for the offline MRBP, there exists an al-
gorithm A2 for the offline CCMRBP such that RA2 = RA1 .
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Proof. Since the offline MRBP can be regarded as the offline CCMRBP with
C = � 1

min{ai|ai∈L}�, we have RA2 ≥ RA1 . To show the other direction, for an
input sequence L, let A2 take the following actions. Sort the items in L in a non-
decreasing order of their sizes. Let the sorted set be L = {a1, a2, · · · , an}. Try all
possible partitions L1 = {a1, a2, · · · , ak}, L2 = {ak+1, ak+2, · · · , an}, 0 ≤ k ≤ n.
For each partition 〈L1, L2〉, pack L1 by FFI and pack L2 by A1. Then output
a valid packing with maximum number of bins. By Lemma 3, RA2 ≤ RA1 . Thus
the theorem follows. 
�
Corollary 1. For the offline CCMRBP Problem, RFFI(k) = 6

5 if k = 1 and
RFFI(k) = k2+k

k2+1 if k ≥ 2.

Proof. Follow from Theorem 9 and the results in [1] on the offline MRBP. 
�
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Abstract. Denote by an 
-component a connected b-uniform hypergraph
with k edges and k(b−1)−
 vertices. We prove that the expected number
of creations of 
-component during a random hypergraph process tends
to 1 as 
 and b tend to ∞ with the total number of vertices n such that

 = o

(
3
√

n
b

)
. Under the same conditions, we also show that the expected

number of vertices that ever belong to an 
-component is approximately
121/3(b−1)1/3
1/3n2/3. As an immediate consequence, it follows that with
high probability the largest 
-component during the process is of size
O((b−1)1/3
1/3n2/3). Our results give insight about the size of giant com-
ponents inside the phase transition of random hypergraphs.

1 Introduction

A hypergraph H is a pair (V , E) where V = {1, 2, · · · , n} denotes the set of
vertices of H and E is a family of subsets of V called edges (or hyperedges). For a
general treatise on hypergraphs, we refer to Berge [2]. We say thatH is b-uniform
(or simply uniform) if for every edge e ∈ E , |e| = b. In this paper, all considered
hypergraphs are b-uniform. We will study the growth of size and complexity of
connected components of a random hypergraph process {H(n, t)}0≤t≤1 defined
as follows. Let Kn be the complete hypergraph built with n vertices and

(
n
b

)
edges (self-loops and multiple edges are not allowed). {H(n, t)}0≤t≤1 may be
constructed by letting each edge e ofKn (amongst the

(
n
b

)
possible edges) appear

at random time Te, with Te independent and uniformly distributed on (0, 1) and
letting {H(n, t)}0≤t≤1 contain the edges such that Te ≤ t (for the random graph
counterpart of this model, we refer the reader to [11,17]). This model is closely
related to {H(n, M)} where M ∈ [1, (nb)] represents the number of edges picked
uniformly at random amongst the

(
n
b

)
possible edges and which are present in

the random hypergraph. The main difference between {H(n,M)}0≤M≤(n
b) and

{H(n, t)}0≤t≤1 is that in {H(n,M)}0≤M≤(n
b), edges are added at fixed (slotted)

times 1, 2, . . .,
(
n
b

)
so at any time M we obtain a random graph with n vertices

and M edges, whereas in {H(n, t)}0≤t≤1 the edges are added at random times.
At time t = 0, we have a hypergraph with n vertices and 0 edge, and as the
time advances all edges e with r.v. Te such that Te ≤ t (where t is the current

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 350–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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time), are added to the hypergraph until t reaches 1 in which case, one obtains
the complete hypergraph Kn.

We define the excess (or the complexity) of a connected b-uniform hypergraph
as (see also [14]):

excess(H) =
∑
e∈E

(|e| − 1)− |V| = |E| × (b− 1)− |V| . (1)

Namely, the complexity (or excess) of connected components ranges from −1
(hypertrees) to

(
n
b

)
(b − 1) − n (complete hypergraph). A connected component

with excess � (� ≥ −1) is called an �-component. The notion of excess was first
used in [19] where the author obtained substantial enumerative results in the
study of connected graphs according to the two parameters number of vertices
and number of edges. It was also used in enumerative combinatorics and as well
as in various study of random hypergraphs processes[14,15,1].

Numerous results have been obtained for random graphs as witnessed by the
books [4,13] and the references therein. In comparison, there are very few works
about random hypergraphs. One of the most significant results was obtained
by Schmidt-Pruznan and Shamir [18] who studied the component structure for
random hypergraphs. In particular, they proved that if b ≥ 2, M = cn with
c < 1/b(b − 1) then asymptotically almost surely (a.a.s. for short) the largest
component of H(n,M) is of order log n and for c = 1/b(b − 1) it has θ(n2/3)
vertices and as c > 1/b(b−1) a.a.s. H(n,M) has a unique geant component with
θ(n) vertices. This result generalizes the seminal papers of Erdös and Rényi who
discovered the abrupt change in the structure of the random graph G(n,M)
when M = cn with c ∼ 1/2. In [15], Karoński and �Luczak proved limit theorems
for the distribution of the size of the largest component of H(n,M) at the phase
transition, i.e., M = n/b(b− 1) +O(n2/3).

In this paper, we consider the continuous time random hypergraph process
described above and will study the creation and growth of components of excess
� (or �-components). A connected component which is not a hypertree is said
multicyclic (following the terms used by our predecessors in [10,11,12]).

1.1 Definitions

We can observe that there are two manners to create a new (� + 1) component
during the {H(n, t)}0≤t≤1 process :
• either by adding an edge between an existing p-component (with p ≤ �) and
(b−q) hypertrees (with 0 ≤ q ≤ b) such that the edge encloses q distinct vertices
in the p-component,
• or by joining with the last added edge many connected components such that
the number of multicyclic components diminishes.

Observe that in the first case, to create an �-component, we must have p+q−
1 = �. In this case, it is also important to note that the number of multicyclic
components remains the same after the addition of the last edge.

The first transition described above will be denoted p → � and the second
⊕ipi → �. We say that an �-component is created by a transition p → � with
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p < � or by a transition ⊕ipi → �. For � ≥ 0, we say that an �-component grows
when it swallows some hypertrees (transition �→ �).
Following Janson in [11], we have two points of view :

• The static view. Let C�(m) denote the collection of all �-components in
{H(n, t)}0≤t≤1 . Consider the family C�

� =
⋃

m C�(m) for every �-component that
appears at some stage of the continuous process, ignoring when it appears : the
elements of C�

� are called static �-components.
• The dynamic view. A connected component can be viewed as “the same”
according to its excess even after it has grown by swallowing some hypertrees
(transition � → �). Such component whose excess remains the same can be
viewed as a dynamic �-component as its size evolves.

We define V� = |V�| as the number of vertices that at some stage of the process
belong to an �-component and V�

max = max{|V (C)| : C ∈ C�
� } to be the size of

the largest �-component that ever appears.
Let α(�; k) be the expected number of times a new edge is added by means

of the first type of transition p → � in order to create an �-component with k
edges (or with k× (b− 1)− � vertices). Note again that in this case, the number
of multicyclic components of the {H(n, t)}0≤t≤1 process remains the same after
the addition of this edge.

Similarly, let β(�; k) be the expected number of times an edge is added joining
at least two multicyclic components in order to form a newly �-component with
a total of k edges. In other terms, β(�; k) is the expected number of times at least
two multicyclic components and some hypertrees merge to form an �-component.

1.2 Our Results and Outline of the Paper

We combine analytic combinatorics [7] and probabilistic theory [13] to study
the extremal characteristics of the components of a random hypergraph process
inside its phase transition [15] and find that the size of the largest component
with k (hyper)edges and k(b− 1)− � vertices is of order O((b − 1)1/3�1/3n2/3).

This extended abstract is organized as follows. In the next section, we intro-
duce the general expression of the expectations of several random variables of
our interest. In section 3, the computations of the expectations are developped
focusing on the particular and instructive case of unicyclic components. The last
paragraph provides several technical lemmas useful in order to study the ex-
tremal case, i.e. whenever the excess � of the component is large. We give there
methods on how to investigate the number of creations of �-components as well
as the expectation of their size.

2 Connected Components and Expectation of Transitions

2.1 Expected Number of Transitions

In this paragraph, we give a general formal expression of the expectation of the
number of the first (resp. second) type of transitions α(�; k) (resp. β(�; k)).
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We have the following lemma which computes the expected number of tran-
sitions α(�; k) :

Lemma 1. Let a = k(b − 1) − �. Denote by ρ(a, k) the number of manners to
label an �-component with a vertices such that one edge – whose deletion will
not increase the number of multicyclic components but will suppress the newly
created �-component – is distinguished among the others. Then,

α(�; k) =
(
n

a

)
ρ(a, k)

∫ 1

0
tk−1(1− t)(n

b)−(n−a
b )−k dt . (2)

Proof. There are
(
n
a

)
choices of the a = k(b − 1) − � vertices of the newly cre-

ated �-component. By the definition of ρ(a; k), there are
(

n
a

) × ρ(a; k) possible
�-components. The probability that the previous component (the one before ob-
taining the current �-component) belongs to {H(n, t)}0≤t≤1 is given by

tk−1(1 − t)
∑ b−1

i=1 (n−a
i )( a

b−i)+(a
b)−k+1 (3)

where the summation in the exponent represents the number of edges not present
between the considered component and the rest of the hypergraph. The condi-
tional probability that the last edge is added during the time interval (t, t+ dt)
and not earlier is dt/(1− t). Using the identity

b−1∑
i=1

(
n− a
i

)(
a

b− i
)

=
(
n

b

)
−
(
n− a
b

)
−
(
a

b

)
(4)

and integrating over all times after some algebra, we obtain (2).

Similarly, if we let τ(a; k) to be the number of ways to label an �-component
with a = (k−1)− � vertices and k edges such that one edge – whose suppression
augments the number of multicyclic connected components – is distinguished
among the others. Then, β(�; k) can be computed as for α(�; k) using exactly
τ(a; k) instead of ρ(a; k).

Next, the following lemma gives some asymptotic values needed when using
formula (2).

Lemma 2. Let a = (b− 1)k − �. We have(
n

a

)∫ 1

0
tk−1(1− t)(n

b)−(n−a
b )−k dt ∼ 1√

(b− 1)n�

k(k−1) [(b− 1)!]k(
k(b − 1)− �

)kb−�

× exp
(
k(b− 2)− �− (b − 1)4 k3

24n2

)
. (5)

Proof. First, using Stirling formula for factorial we get(
n

a

)
=

1√
2πa

na ea

aa
exp
(
− a

2

2n
− a3

6n2 +O

(
a4

n3 +
1
a

))
. (6)
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Setting N =
(
n
b

)− (n−a
b

)
, using standard calculus we then obtain

N =
n(b−1)a

(b− 1)!

(
1− a(b − 1)

2n
+
a2(b− 1)(b − 2)

6n2 +O

(
b

n

)
+O

(
ab3

n2 +
b4

n2

))
.

(7)
Now, using the above formulas we easily find that the integral equals

1
N
(

N
k−1

) =

√
2π
k

kk

ek

[(b− 1)!]k

nk(b−1)ak

(
1 +O

(
k

nb−1b
+

1
k

))
×

exp
(
−k log

(
1− a(b − 1)

2n
+
a2(b− 1)(b − 2)

6n2 +O

(
b

n

)
+O

(
ab3

n2 +
b4

n2

)))
.

(8)

Therefore by replacing a with k(b− 1)− � and using (6), it yields (7)(
n
a

)
N
(

N
k−1

) ∼ 1√
(b − 1) n�

k(k−1) [(b − 1)!]k(
k(b − 1) − 


)kb−�
exp
(
k(b − 2) − 


)
exp
(

− (b − 1)4 k3

24 n2

)
.

Lemma 2 tells us that the expectations the random variables of interest rely
on the asymptotic number of the considered connected components.

2.2 Asymptotic Enumeration of Connected Hypergraphs

As far as we know there are not so many results about the asymptotic enumera-
tion of connected uniform hypergraphs. In this paragraph, we recall some of the
results established independently in [14,6,1] (the three papers actually use three
different methods). In [1], the authors use the generating functions approach
[9,12,7,19,20] to count exactly and asymptotically connected labeled b-uniform
hypergraphs. If A(z) =

∑
n anz

n and B(z) =
∑

n bnz
n are two formal power

series, A � B means that ∀n ∈ N, an ≤ bn. Among other results, the authors of
[1] established the following:

Lemma 3. Let H�(z) be the exponential generating function (EGF for short)
of b-uniform connected hypergraphs with excess �. Define by T (z) the EGF of
labeled rooted hypertrees. Then,

H−1(z) = T (z)− (b − 1)T (z)b

b!
with T (z) = z exp

(
T (z)(b−1)

(b − 1)!

)
= z

∂H−1(z)
∂z

.

(9)
For any � ≥ 1, H� satisfies

λ�(b− 1)2�

3 � T (z)� θ(z)3�
− (ν�(b− 2))(b − 1)2�−1

(3 �− 1)T (z)� θ(z)3�−1 � H�(z) � λ�(b− 1)2�

3 � T (z)� θ(z)3�
, (10)

where λ� = 3
( 3

2

)� �!
2π

(
1 +O

( 1
�

))
and ν� = O(�λ�). Furthermore, λ� is defined

recursively by λ0 = 1
2 and

λ� =
1
2
λ�−1(3�− 1) +

1
2

�−1∑
t=0

λtλ�−1−t , (� ≥ 1) . (11)
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We also need the following result which has been proved independently by
Karoński and �Luczak in [14] and Andriamampianiana and Ravelomanana in [1]:

Lemma 4. For � ≡ �(n) such that � = o
(

3
√

n
b

)
as n → ∞, the number of

connected b-uniform hypergraphs built with n vertices and having excess � satisfies

√
3

2 π

(
b − 1
) �

2
e

�
2 nn+ 3 �

2 − 1
2

12
�
2 


�
2

(
(b − 2)!

) n+�
b−1

exp
(

n

b − 1
− n

)(
1 + O

(
1√



)
+ O

(√
b 
3

n

))
.

(12)

Observe that setting b = 2 in (12), we retrieve the asymptotical results of Sir E.
M. Wright for connected graphs in his fundamental paper [20].

3 Hypertrees and Unicyclic Components

As typical examples, let us work with unicyclic components. We will compute the
expected number of transitions −1 → 0. That is the number of times unicyclic
connected components (i.e. 0-components) are created. We will also investigate
the number of times unicyclic components merge with hypertrees growing in size
but staying with the same complexity (excess 0). In these directions, we have
the following result :

Theorem 1. As n → ∞, on the average a b-uniform random hypergraph has
about 1

3 logn dynamic unicyclic components. The expected number of static 0-
components is ∼

√
2π3/2241/6

6 Γ( 5
6 )

(b − 1)1/3 n1/3 ≈ 1.975 (b− 1)1/3 n1/3.

Proof. The creation of unicyclic components can be obtained only by adding
an edge joining 2 distinct vertices inside the same hypertree with (b − 2) other
vertices from (b− 2) distinct hypertrees (to complete the edge).

The number of such constructions is therefore given by the coefficients of the
following EGF :

C′
0(z) =

(
ϑzH−1(z)

)(b−2)

(b− 2)!
×
(
ϑ2

z − ϑz

2

(
H−1(z)

))
, (13)

where the combinatorial operator ϑz = z ∂
∂z corresponds to marking a vertice

of the hypergraph in order to distinguish it from the others. For instance, we
refer the reader to Bergeron, Labelle and Leroux [3] for the use of distinguish-
ing/marking and pointing in combinatorial species. Recall that the EGFs are
as described briefly in Lemma 3 (see also [1]), using ϑzH−1(z) = T (z) and
ϑzT (z) = T (z)

1−T (z)(b−1)/(b−2)! we find

C′
0(z) =

T (z)b−2

2 (b− 2)!

⎛⎝ T (z)

1− T (z)(b−1)

(b−2)!

− T (z)

⎞⎠ =
1
2

⎛⎝ 1

1− T (z)(b−1)

(b−2)!

− T (z)− 1

⎞⎠ .

(14)



356 V. Ravelomanana and A.L. Rijamamy

We also have (such expansions are similar to those in [16])

1

1− T (z)(b−1)

(b−2)!

=
∞∑

k=0

kk

k! [(b− 2)!]k
z(b−1)k . (15)

Denoting by ρ′((b−1)k, k) the number of manners to label a unicyclic component
with (b − 1)k vertices and with a distinguished edge such that its deletion will
leave a forest of hypertrees, we thus have

ρ′
(
(b− 1)k, k

)
= ((b− 1)k)!

[
z(b−1)k

]
C′

0(z) ∼ ((b− 1)k)! kk

2 k! [(b− 2)!]k
(16)

(where if A(z) =
∑

n anz
n then [zn]A(z) = an).

Next, using Lemma 2 with the above equation, after nice cancellations and
summing other all possible values of k, we get

n
(b−1)∑
k=1

ρ′
(
(b− 1)k, k

)( n

(b − 1)k

)∫ 1

0
tk−1(1 − t)(n

b)−(n−(b−1)k
b )−k dt

∼
n

(b−1)∑
k=1

1
2k
× exp

(
− (b− 1)4 k3

24n2

)
∼ 1

2

∫ n/(b−1)

1

1
x
e−(b−1)4 x3/24n2

dx . (17)

The value of the integral above is ∼ logn2/3 +O(1). Thus, the expected number
of creations of unicyclic components is ∼ 1

3 logn. which completes the proof of
the first part of the theorem. To prove the second part, we have to investigate the
number of static 0-components, that is the number of times 0-components merge
with hypertrees by the transition 0 → 0. The EGF of unicyclic components with
a distinguished edge such that its suppression will leave a unicyclic component
and a set of (b− 1) rooted hypertrees is given by

C′′
0(z) =

T (z)b−1

(b − 1)!
ϑz

(
H0(z)

)
=

T (z)b−1

(b − 1)!

(
(b − 1) T (z)b−1

2 (b − 2)! θ2 − (b − 1) T (z)b−1

2 (b − 2)! θ

)
(18)

where θ = 1−T (z)b−1/(b−2)!. Denote by ρ′′((b−1)k, k) the number of manners
to label a unicyclic component with (b − 1)k vertices and with a distinguished
edge such that its deletion will leave a 0-component with a forest of rooted
hypertrees, we claim that

ρ′′
(
(b − 1)k, k

)
= ((b − 1)k)!

[
z(b−1)k

]
C′′

0(z)

∼
√
π (b− 1)3

8
kk(b−1)+1/2

ek(b−2)

(
(b− 1)k(b−1)

[(b− 2)!]k

)
. (19)

(We omit the details, since the full proof involves singularity analysis [7] of the
EGF C′′

0 described above.)
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Now, using Lemma 2 and summing over k after some cancellations, the com-
puted expectation is about

n/(b−1)∑
k=1

√
π

8
(b − 1)

1
k1/2 e−(b−1)4 k3/24n2 ∼

√
π

8
(b − 1)

∫ n/(b−1)

1

e−(b−1)4 x3/24n2
dx√

x

∼ 1/6
√

2π3/2241/6

Γ (5/6)
(b − 1)1/3 n1/3 ≈ 1.974748319 · · · (b − 1)1/3 n1/3 . (20)

Note here that the result stated in Theorem 1 (humbly) generalizes the ones of
Janson in [11] since by setting b = 2, we retrieve his results concerning unicyclic
(graph) components.

Next, we can investigate the number of vertices that ever belong to
0-components. According to the above computations, the expected number of
vertices added to V0 for the creation of such unicyclic components (transition
−1→ 0) is about

1
2

n/(b−1)∑
k=1

(b− 1) e−(b−1)4 k3/24n2 ∼ 1
6

241/3 Γ (1/3)
(b− 1)1/3 n2/3 . (21)

Whenever the excess � is fixed, that is � = O(1), the methods developped here
for unicyclic components can be generalized, using analytical tools such those in
[7]. Thus, we now turn on components with higher complexities.

4 Multicyclic Components with Extremal Complexities

In this section, we focus on the creation and growth of components of higher
complexity. First, we will compute the expectations of the number of creations
of �-components for � ≥ 1. To this purpose, we need several intermediate lemmas.

Define hn(ξ, β) as follows

1

T (z)ξ
(
1− T (z)b−1

(b−2)!

)3ξ+β
=
∑
n≥0

hn(ξ, β)
zn

n!
. (22)

The following lemma is an application of the saddle point method [5,7] which is
well suited to cope with our analysis :

Lemma 5. Let ξ ≡ ξ(n) be such that ξ(b − 1) → 0 but ξ(b−1)n
lnn2 → ∞ and let β

be a fixed number. Then hn(ξn, β) defined in (22) satisfies

hn(ξn, β) =
n!√

2πn
(
b− 1
)(

(b− 1)!
) ξn+n

b−1

(
1− (b − 1)u0

)(1−β)

× exp (nΦ(u0))

(
1 +O

(√
ξ(b− 1)

)
+O
( 1√

ξ(b − 1)n

))
, (23)
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where

Φ(u) = u −
(

ξ + 1
b − 1

)
lnu − 3 ξ ln (1 − (b − 1)u)

u0 =
3/2 ξb − ξ + 1 − 1/2

√
Δ

b − 1
with Δ = 9 ξ2b2 − 12 ξ2b + 12 ξb + 4 ξ2 − 12 ξ. (24)

Proof. Omitted in this extended abstract.

Lemma 6. Let a = k(b − 1)− �. Denote by c�(a, k) the number of manners to
label an �-component with a vertices such that one edge – whose deletion will
suppress the occurrence of the created �-component – is distinguished among the
others. As � tends to ∞ with the number of vertices a such that � = o

(
3
√

a
b

)
then

c�(a, k) = a! [za]
(

1
2

(3�) (b− 1)2� λ�−1

T (z)�θ3�+1

)
×
(

1 +O

(
1√
�

+O

(√
b �3

a

)))
,

(25)

where θ = 1− T (z)b−1/(b− 2)! and the sequence (λ�) is defined with (11).

Sketch of proof. The proof given in this extended abstract is sketched. The main
ideas are as follows. The inequalities given by equation (10) in Lemma 3 tell
us that when � is large, the main constructions that lead to the creation of a
new �-component arises a.a.s. from picking two distinct vertices in an (� − 1)-
component and joining them by an edge with (b − 2) set of rooted hypertrees.
Such constructions are counted by(

ϑ2
z − ϑz

2
H�−1(z)

)
× T (z)b−2

(b − 2)!
.

Using again (10) with (23), one can show that the coefficient of the latter EGF
has the same asymptotical behaviour as the following one

3� (b− 1)2�λ�−1

2T (z)�θ3�+1 .

(The error terms being the same as those given by the saddle-point Lemma 5
above.) 
�
We then have the following result :

Theorem 2. As �, b→∞ with n but such that � = o
(

3
√

n
b

)
, the expected number

of creations of �-component is ∼ 1 and the expected number of vertices that
ever belong to an �-component is about (12�(b− 1))1/3

n2/3. Thus, E [V�
max] =

O
(
�1/3(b − 1)1/3n2/3

)
.

Sketch of the proof. The proof of this Theorem is a combination of Lemmas 5,6
and 2 together with the asymptotic value of λ� given in Lemma 3 and with the
fact that

n/(b−1)∑
k=0

ku exp
(
− (b− 1)4k3

24n2

)
∼ 1

3
24

u+1
3 n

2(u+1)
3

(b − 1)
4(u+1)

3

Γ

(
u+ 1

3

)
.
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Abstract. We determine the values of the acyclic chromatic index of a
class of graphs referred to as d-dimensional partial tori. These are graphs
which can be expressed as the Cartesian product of d graphs each of
which is an induced path or cycle. This class includes some known classes
of graphs like d-dimensional meshes (hypergrids), hypercubes, tori, etc.
Our estimates are exact except when the graph is a product of a path and
a number of odd cycles, in which case the estimates differ by an additive
factor of at most 1. Our results are also constructive and provide an
optimal (or almost optimal) acyclic edge colouring in polynomial time.

Keywords: Acyclic Edge Colouring, Graph, Acyclic Chromatic Index,
Mesh, Hypercube, Tori.

1 Introduction

All graphs we consider are simple and finite. Throughout the paper, we use
Δ = Δ(G) to denote the maximum degree of a graph G. A colouring of the
edges of a graph is proper if no pair of incident edges receive the same colour. A
proper colouring C of the edges of a graph G is acyclic if there is no two-coloured
(bichromatic) cycle in G with respect to C. In other words, the subgraph induced
by the union of any two colour classes in C is a forest. The minimum number
of colours required to edge-colour a graph G acyclically is termed the acyclic
chromatic index of G and is denoted by a′(G). The notion of acyclic colouring
was introduced by Grünbaum in [7].

The acyclic chromatic index and its vertex analogue are closely related to
oriented chromatic number and star chromatic number of a graph G, which
have many practical applications (such as in wavelength routing in optical net-
works [4,9]).

Determining a′(G) either theoretically or algorithmically has been a very diffi-
cult problem. Even for the highly structured and simple class of complete graphs,
the value of a′(G) is not yet determined. Determining exact values of a′(G) even
for very special classes of graphs is still open.

It is easy to see that a′(G) ≥ χ′(G) ≥ Δ for any graph G. Here, χ′(G) denotes
the chromatic index of G (the minimum number of colours used in any proper
edge colouring of G). Using probabilistic arguments, Alon, McDiarmid and Reed
[1] obtained an upper bound of 64Δ on a′(G). Molloy and Reed [10] refined their
analysis to obtain an improvement of a′(G) ≤ 16Δ. Recently, Muthu, Narayanan

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 360–367, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and Subramanian [12] obtained a better bound of a′(G) ≤ 4.52Δ for graphs G
with girth (the length of the shortest cycle) at least 220.

It follows from the work of Burnstein [6] that a′(G) ≤ Δ+2 for all graphs with
Δ ≤ 3. It was conjectured by Alon, Sudakov and Zaks [2] that a′(G) ≤ Δ + 2
for every G and this has been proved for graphs with large girth and for random
d-regular (d fixed) graphs. For random d−regular graphs (fixed d), the bound
has been improved to d+ 1 by Nesetril and Wormald [13].

The proofs of the above mentioned bounds are existential in nature and are
not constructive. In this work, we look at the class of those graphs which can
be expressed as a finite Cartesian product of graphs each of which is an induced
path or cycle. We show that (see Theorem 2) a′(G) ∈ {Δ,Δ + 1} for each
member of this class and also obtain the exact values of a′(G) for all G except
when G is a product of a path and a number of odd cycles. Thus we verify
the above conjecture for this class of graphs which we refer to as partial tori. As
special cases, it includes other well-known classes like hypercubes, d-dimensional
meshes, etc. All these definitions are given below. Our results are constructive
and are proved by an explicit colouring scheme and this can be realized in time
polynomial in the size of the graph (see Theorem 3). As a result, we obtain
efficient algorithms for optimal acyclic edge colouring of these graphs.

1.1 Definitions and Notation

We use Pk to denote a simple path on k vertices. Without loss of generality
(w.l.o.g.), we assume that V (Pk) = {0, . . . , k− 1} and E(Pk) = {(i, j) : |i− j| =
1}. Similarly, we use Ck to denote a cycle (0, . . . , k− 1, 0) on k vertices. We use
Paths to denote the set {P3, P4, . . .} of all paths on 3 or more vertices. Similarly,
we use Cycles to denote the set {C3, C4, . . .} of all cycles. The standard notation
[n] is used to denote the set {1, 2, . . . , n}.

Our definition of the class of partial tori is based on the so-called Cartesian
product of graphs defined below.

Definition 1. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the Carte-
sian product of G1 and G2, denoted by G1 � G2, is defined to be the graph
G = (V,E) where V = V1 × V2 and E contains the edge joining (u1, u2)
and (v1, v2) if and only if either u1 = v1 and (u2, v2) ∈ E2 or u2 = v2 and
(u1, v1) ∈ E1.

Note that � is a binary operation on graphs which is commutative in the sense
that G1 � G2 and G2 � G1 are isomorphic. Similarly, it is also associative. Hence
the graph G0 � G1 � · · · � Gd is unambiguously defined for any d. We use Gd

to denote the d-fold Cartesian product ofG with itself. It was shown by Sabidussi
[14] and Vizing [16] (see also [8]) that any connected graph G can be expressed
as a product G = G1 � · · · � Gk of prime factors Gi. Here, a graph is said to
be prime with respect to the � operation if it has at least two vertices and if
it is not isomorphic to the product of two non-trivial graphs (those having at
least two vertices). Also, this factorisation (or decomposition) is unique except
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for a re-ordering of the factors and will be referred to as the Unique Prime
Factorisation (UPF) of the graph. Since a′(G) is a graph invariant, we assume,
without loss of generality, that any Gi is from {K2} ∪ Paths ∪ Cycles if it
is either an induced path or an induced cycle.

Definition 2. A d-dimensional partial torus is a connected graph G whose
unique prime factorisation is of the form G = G1 � · · · � Gd where Gi ∈
{K2} ∪ Paths ∪ Cycles for each i ≤ d. We denote the class of such graphs
by Pd.

Definition 3. If each prime factor of a graph G ∈ Pd is a K2, then G is called
the d-dimensional hypercube. This graph is denoted by Kd

2 .

Definition 4. If each prime factor of a graph G ∈ Pd is from Paths, then G
is called a d-dimensional mesh. The class of all such graphs is denoted by Md.

Definition 5. If each prime factor of a graph G ∈ Pd is from Cycles, then G
is called a d-dimensional torus. The class of all such graphs is denoted by Td.

1.2 Results

The proof of the results mentioned in the abstract are based on the following
useful theorem whose proof is given later.

Theorem 1. Let G be a simple graph with a′(G) = η. Then,

1. a′(G�P2) ≤ η + 1, if η ≥ 2.
2. a′(G�Pl) ≤ η + 2, if η ≥ 2 and l ≥ 3.
3. a′(G�Cl) ≤ η + 2, if η > 2 and l ≥ 3.

As a corollary, we obtain the following results.

Theorem 2. The following is true for each d ≥ 1.

– a′(Kd
2 ) = Δ(Kd

2 ) + 1 = d+ 1 if d ≥ 2; a′(K2) = 1.
– a′(G) = Δ(G) = 2d for each G ∈Md.
– a′(G) = Δ(G) + 1 = 2d+ 1 for each G ∈ Td.
– Let G ∈ Pd be any graph. Let e (respectively p and c) denote the number of

prime factors of G which are K2s (respectively from Paths and Cycles).
Then,
• a′(G) = Δ(G) + 1 = e+ 2c+ 1 if p = 0.
• a′(G) = Δ(G) = e+ 2p+ 2c if either p ≥ 2, or p = 1 and e ≥ 1.
• a′(G) = Δ(G) = 2 + 2c if p = 1, e = 0 and if at least one prime factor

of G is an even cycle.
• a′(G) ∈ {Δ = 2+2c,Δ+1 = 2+2c+1} if p = 1, e = 0 and if all prime

factors of G (except the one path) are odd cycles. There are examples for
both values of a′(G).
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2 Proofs

The following fact about acyclic edge colouring can be easily verified and would
be used often in our proofs.

Fact 1. If a graph G is regular with Δ(G) ≥ 2, then a′(G) ≥ Δ(G) + 1.

This is because in any proper edge-colouring of G with Δ(G) colours, each
colour is used on an edge incident incident at every vertex. Hence, for each pair
of distinct colours a and b and for each vertex u, there is a unique cycle in G
going through u and which is coloured with a and b.

We first present the proof of Theorem 2.

Proof. (of Theorem 2)
Case G = Kd

2 : Clearly, a′(K2) = 1 and a′(K2
2 ) = a′(C4) = 3. For d > 2,

we start with G = K2
2 and repeatedly and inductively apply Statement (1) of

Theorem 1 to deduce that a′(Kd
2 ) ≤ d + 1. Combining this with Fact 1, we get

a′(Kd
2 ) = d+ 1 for d ≥ 2.

Case G ∈ Md : Again, we prove by induction on d. If d = 1, then G ∈ Paths
and hence a′(G) = 2 = Δ(G). For d > 1, repeatedly and inductively apply
Statement (2) of Theorem 1 to deduce that a′(G) ≤ 2(d−1)+2 = 2d. Combining
this with the trivial lower bound a′(G) ≥ Δ(G), we get a′(G) = 2d for each
G ∈ Md and each d ≥ 1.

Case G ∈ Td : We prove by induction on d. If d = 1, then G ∈ Cycles
and hence a′(G) = 3 = Δ(G) + 1. For d > 1, repeatedly and inductively apply
Statement (3) of Theorem 1 to deduce that a′(G) ≤ 2(d − 1) + 1 + 2 = 2d+ 1.
Combining this with Fact 1, we get a′(G) = 2d + 1 for each G ∈ Td and each
d ≥ 1.

Case G ∈ Pd : Let e, p and c be as defined in the statement of the theorem.
If p = 0, then G is the product of edges and cycles and hence G is regular and
a′(G) ≥ Δ(G)+1 by Fact 1. Also, we can assume that c > 0. Otherwise, G = Kd

2
and this case has already been established. Again, without loss of generality, we
can assume that the first factor G1 of G is from Cycles and a′(G1) = 3. Now,
as in the previous cases, we apply induction on d and also repeatedly apply one
of the Statements (1) and (3) of Theorem 1 to deduce that a′(G) ≤ Δ(G) + 1.
This settles the case p = 0.

Now, suppose either p ≥ 2, or p = 1 and e ≥ 1. Order the d prime factors of
G so that G = G1 � · · · � Gd and the first p factors are from Paths and the
next e factors are copies of K2. By the previously established cases and from
Theorem 1, it follows that

a′(G1 � · · · � Gp+e) = Δ(G1 � · · · � Gp+e) = 2p+ e ≥ 3.

As before, applying (3) of Theorem 1 inductively, it follows that

a′(G) = a′(G1 � · · · � Gp+e+c) ≤ Δ(G) = 2p+ e+ 2c.



364 R. Muthu, N. Narayanan, and C.R. Subramanian

Combining this with the trivial lower bound establishes this case also.
Suppose p = 1, e = 0 and at least one prime factor of G is an even cycle.

Let G1 = Pk for some k ≥ 3 and G2 = C2l for some l ≥ 2. We note that it
is enough to show that G′ = G2 � G1 is acyclically colourable with Δ(G′) = 4
colours. Extending this colouring to an optimal colouring of G can be achieved
by repeated applications of Statement (3) of Theorem 1 as before. Hence we
focus on showing a′(G′) = 4.

Firstly, colour the cycle G2 = C2l = 〈0, 1, . . . , 2l− 1, 0〉 acyclically as follows.
For each i, 0 ≤ i ≤ 2l − 2, colour the edge (i, i+ 1) with 1 if i is even and with
2 if i is odd. Colour the edge (2l − 1, 0) with 3. Now, use the same colouring
on each of the k isomorphic copies (numbered with 0, . . . k − 1) of G2. For each
j, 0 ≤ j < k−1, the jth and (j+1)th copies of G2 are joined by cross-edges which
constitute a perfect matching between similar vertices in the two copies. These
cross-edges are coloured as follows. For every i and j, the cross edge joining (i, j)
and (i, j+1) is coloured with 4 if (i+ j) is even and is coloured with the unique
colour from {1, 2, 3} which is missing at this vertex i in both copies if (i + j)
is odd. It can be shown that this colouring is proper and acyclic (refer [11] for
details). This shows that a′(G′) = 4, as desired.

Suppose p = 1, e = 0 and all prime factors of G (except the one path) are odd
cycles. In this case, a′(G) can take both values as the following examples show.
If G = P3 � C3, then it can be easily verified that a′(G) = 5 = Δ + 1. Also, if
G = P3 � C5, then a′(G) = 4 = Δ as shown by the colouring in Figure 1.
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◦
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◦
2

1

◦
1
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◦
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◦
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◦
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3

◦

4

���
2

◦
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◦���
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Fig. 1. Colouring of P3�C5

We now present the proof of Theorem 1.
A restricted class of bijections (defined below) would play an important role

in this proof.

Definition 6. A bijection σ from a set A to an equivalent set B is a non-fixing
bijection if σ(i) = i for each i.
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Proof. (of Theorem 1)
Since a′(G) = η, we can edge-colour G acyclically using colours from [η]. Fix

one such colouring C0 : E(G) → [η].
Define C1 to be the colouring defined by C1(e) = σ(C0(e)) where σ : [η] → [η]

is any bijection which is non-fixing. For concreteness, define σ(i) = (i mod η)+1.

Case 1 (a′(G�P2)). Let G0, G1 be the two isomorphic copies of G induced
respectively by the sets {(u, 0) : u ∈ V (G)} and {(u, 1) : u ∈ V (G)}. Let G0
and G1 be edge coloured respectively by C0 and C1. For each of the remaining
edges (termed cross-edges and which constitute a perfect matching between G0
andG1) of the form ((u, 0), (u, 1)), give a new colour α. Denote by C, the resultant
colouring of G�P2. We claim that C is proper and acyclic.

It is easy to see that C is proper. Also note that any bichromatic cycle in C should
necessarily use the colour α (since the colourings of G0 and G1 are acyclic).

Suppose that G�P2 has a bichromatic cycle C using the colours α and some
other colour, say i, from the set [η]. In C, G0 and G1 are both coloured α-free
and hence any proper α, i-coloured cycle should contain the α-coloured edges an
even number of times. Hence we have |C| ≡ 0 mod 4. Fix a vertex (u1, 0) as the
starting point of C. Then C will look like C = 〈(u1, 0) α→ (u1, 1) i→ (u2, 1) α→
(u2, 0) · · · (uk, 0) i→ (u1, 0)〉.

Notice that k is of even parity (since |C| ≡ 0 mod 4). For each i-coloured
edge (u2�+1, 1) → (u2�+2, 1) of G1 in C, its isomorphic copy in G0, namely, the
edge (u2�+1, 0) → (u2�+2, 0) is coloured with a colour j = σ−1(i) = i (since σ

is a non-fixing bijection of [η]). Now it can be seen that the cycle 〈(u1, 0)
j→

(u2, 0) i→ (u3, 0) . . .
j→ (uk, 0) i→ (u1, 0)〉 is an i, j-coloured cycle in G0. This is

a contradiction to the fact that G0 is acyclically coloured. Hence the colouring
C is acyclic.

Case 2 (a′(G�Pk)). This case is proved using similar arguments and we alter-
nately use two new colours α1 and α2 between Gi and Gi+1, where Gi coloured
with Ci mod 2. We omit proof details which is given in [11].

Case 3 (a′(G�Ck)). Consider G�Ck, k ≥ 3. Here we have k isomorphic copies
of G numbered G0, G1, . . . , Gk−2, Gk−1 such that there is a perfect matching
between successive copies Gi and G(i+1) mod k (see Figure 2). Our colouring is
as follows.

For each i, 1 ≤ i ≤ k − 2, colour the edges of Gi with C(i+1) mod 2.
As before, let α0, α1 be two new colours which are not in [η]. Let D0 be a

colouring of G0 defined by D0(e) = τ(C0(e)) where τ(i) = i+1, i < η, τ(η) = α1.
In order to colourGk−1, define a colouringD1(e) = μ(C0(e)) where μ(i) = i+2,

i < η − 1 and μ(η − 1) = α(k+1) mod 2, μ(η) = 2.
Now, colour any edge of the form ((u, i), (u, i+1)), 0 ≤ i < k−1 with the new

colour αi mod 2. Colour the edges of the form ((u, k − 1), (u, 0)) with the colour
1. Denote this colouring of G�Ck by C.

It can be shown that the colouring C is proper and acyclic. Again we omit the
proof details (refer [11] for details).
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G0 ···
α0

G1

α1

··· G2 ··· . . . ··· Gk−2

αk mod 2
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α0, α1

��

C1

α0, α1

��

C(k−1) mod 2

α0, α1

��

D1

1, αk mod 2

��

Fig. 2. Colouring of G � Ck

3 Algorithmic Aspects

There is very little study of algorithmic aspects of acyclic edge colouring. In [3],
Alon and Zaks prove that it is NP-complete to determine if a′(G) ≤ 3 for an
arbitrary graphG. They also describe a deterministic polynomial time algorithm
which obtains an acyclic (Δ+2)-edge-colouring for any graph G whose girth g is
at least cΔ3 for some large absolute constant c. Skulrattanakulchai [15] presents
a linear time algorithm to acyclically edge colour any graph with Δ ≤ 3 using
at most 5 colours.

All of our proofs given in the previous section are constructive and readily
translate to efficient (polynomial-time) algorithms which find optimal (or almost
optimal) acyclic edge colourings of the partial tori. Formally we have,

Theorem 3. Let G ∈ Pd be a graph (on n vertices and m edges) specified by its
Unique Prime Factorisation. Then, an acyclic edge colouring of G using Δ or
Δ+ 1 colours can be obtained in O(n+m) time. Also, the colouring is optimal
except when G is a product of a path and a number of odd cycles.

A brief and formal description of the algorithm appear in the full version of the
manuscript [11].

Before we finish, we need to say a few words about how the input is presented
to the algorithm. It is known from the work of Aurenhammer, Hagauer and
Imrich [5] that the UPF of a connected graph G (on n vertices and m edges)
can be obtained in O(m logn) time. Hence we assume that our connected input
G ∈ Pd is given by the list of its prime factors G1, . . . , Gd.

4 Conclusions

If G is isomorphic to the product of a path and a number of odd cycles, a′(G)
can take either of the values in {Δ,Δ + 1}. It would be interesting to classify
such graphs for which a′(G) = Δ and also to construct an optimal colouring
efficiently for such graphs.

Using similar arguments, a general bound on the acyclic chromatic index of
the Cartesian product of two graphs has been obtained. The results are being
written up.
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Abstract. Given a pair of integers 2 ≤ s ≤ k, define gs(k) to be the
minimum integer such that, for any regular multiple hypergraph H =
({1, . . . , k}, {e1, . . . , em}) with edge size at most s, there is a permutation
π on {1, . . . , m} (or edge ordering eπ(1), . . . , eπ(m)) such that g(H,π) =
max{max{|dHj (u)−dHj (v)| : u, v ∈ eπ(j+1)} : j = 0, . . . , m−1} ≤ gs(k),
where Hj = ({1, . . . , k}, {eπ(1), . . . , eπ(j)}). The so-called edge ordering
problem is to determine the value of gs(k) and to find a permutation π
such that g(H,π) ≤ gs(k). This problem was raised from a switch box
design problem, where the value of gs(k) can be used to design hyper-
universal switch boxes and an edge ordering algorithm leads to a routing
algorithm. In this paper, we show that (1) g2(k) = 1 for all k ≥ 3, (2)
gs(k) = 1 for 3 ≤ s ≤ k ≤ 6, and (3) gs(k) ≤ 2k for all k ≥ 7. We give a
heuristic algorithm for the edge ordering and conjecture that there is a
constant C such that gs(k) ≤ C for all k and s.

1 Introduction

All hypergraphs considered in this paper are multiple hypergraphs. Let H =
(V,E) be a hypergraph, where V is a vertex set and E is an edge set, i.e., e ⊂ V
for every e ∈ E. If edge size is at most s, i.e. |e| ≤ s for every e ∈ E, we say
H is an s-hypergraph. The degree of a vertex u in H , denoted by dH(u), is the
number of edges which contain (or cover) u, i.e., dH(u) = |{e ∈ E : u ∈ e}|. H is
said to be w-regular/regular if all its vertices have the same degree w. A regular
hypergraph is said to be minimal if it does not contain a proper spanning (with
the same vertex set) regular subhypergraph.

For a fixed integer k > 0, up to isomorphism, there are an infinite number of
regular hypergraphs on k vertices because multiple edges are allowed (i.e., two
or more edges can be the same subset of vertices). But the number of minimal
regular hypergraphs on k vertices is finite. To see this, we assume V = {1, . . . , k}.
Then V has 2k−1 different non-empty subsets, say S1, . . . , S2k−1. Subset Sj can
be represented by a column vector (a1,j , . . . , ak,j)T , where ai,j = 1 if i ∈ Sj or
otherwise ai,j = 0. Let Ak denote the matrix [ai,j ]k×(2k−1). Then a w-regular
hypergraph H corresponds to a nonnegative integer vector X = (x1, . . . , x2k−1)
satisfyingAkX

T−w(1, . . . , 1)T = 0, where xj denotes the multiplicity of Sj inH ,
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and vice versa. The system of equations AkX
T −w(1, . . . , 1)T = 0 is a system of

homogeneous linear Diophantine equations as only nonnegative integer solutions
are considered. A solution X of a linear Diophantine equation system is said to
be minimal if there is no other solution Y such that every component of Y is less
than or equal to the corresponding component of X . It is known that the set of
all minimal solutions of a homogeneous linear Diophantine equation system is a
finite set, called a Hilbert basis [4]. A minimal solution of AkX

T−w(1, . . . , 1)T =
0 corresponds to a minimal regular hypergraph on vertex set {1, . . . , k}, therefore
there are a finite number of minimal regular hypergraphs on k vertices.

Given a regular hypergraph H = (V,E) with V = {1, . . . , k} and E =
{e1, . . . , em}. Let π be a permutation on {1, . . . ,m}, then (eπ(1), . . . , eπ(m)) is an
ordering of the edges, and it determines a sequence of m+ 1 subhypergraphs

Hj = ({1, . . . , k}, {eπ(1), . . . , eπ(j)}), j = 0, . . . ,m,

or H0 = ({1, . . . , k}, ∅), Hj+1 = Hj + eij+1 , j = 0, . . . ,m− 1. We define

g(H,π) = max{max{|dHj (u)−dHj (v)| : u, v ∈ eπ(j+1)} : j = 0, . . . ,m−1}, (1)

g(H) = min{g(H,π) : over all permumations π}. (2)

For any pair of integers s, k with 2 ≤ s ≤ k, we define

gs(k) = max{g(H) : over all regular s-hypergraphs H on k vertices}. (3)

In particular, we denote gk(k) by g(k). We see that gs(k) is well-defined. Let
H be any regular s-hypergraph on k vertices, then H can be decomposed into
a union of edge disjoint minimal spanning regular s-hypergraphs R1, . . . , Rt,
H = R1+· · ·+Rt. Since we can obtain an ordering of edges ofH by ordering edges
of R1, . . . , Rt respectively and then put them together one following another, we
have the following relations g(H) ≤ max{g(R1), . . . , g(Rt)},
g(H) ≤ max{g(R) : over all minimal regular s-hypergraphs R on k vertices},
gs(k) ≤ max{g(R) : over all minimal regular s-hypergraphs R on k vertices}.

On the other hand, since a minimal regular s-hypergraph on k vertices is also a
regular s-hypergraph, by (3) we have

gs(k) ≥ max{g(R) : over all minimal regular s-hypergraphs R on k vertices}

gs(k) = max{g(R) : over all minimal regular s-hypergraphs R on k vertices}
(4)

Since there are a finite number of minimal regular s-hypergraphs on k vertices,
gs(k) is well-defined by (4). Furthermore, g2(k) ≤ g3(k) ≤ · · · ≤ gk(k) = g(k).

Edge Ordering Problem: 1. Given a pair of integers s, k with 2 ≤ s ≤ k,
determine the value of gs(k).
2. Given a regular s-hypergraph H on k vertices, find an edge permutation π0
such that g(H,π0) ≤ gs(k).
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The above edge ordering problem was motivated by the design of switch boxes
for interconnection networks, in which both the values of gs(k) and edge ordering
algorithm are crucial. The purpose of this paper is to present the problem and
some initial results, and to call for a general solution of the problem.

The rest of this paper is organized as follows. In Section 2, we prove that
g2(k) = 1 for all k ≥ 3. In Section 3, we show that gs(k) = 1 for 3 ≤ s ≤ k ≤ 6,
and that gs(k) ≤ 2k for all 3 ≤ s ≤ k. Section 4 presents a heuristic edge
ordering algorithm and experimental results. The experimental results show that
the algorithm can find an ordering π0 with g(H,π0) ≤ 1 for 99% of w-regular
hypergraphs on k vertices with k ≤ 6, w ≤ 9. In Section 5, we describe the
application of the edge ordering problem in switch box design, and the result of
using gs(k) ≤ 2k to design a three-stage interconnection network rearrangeable
for group communications of n ports with O(n5/3) switches, which is the first
three-stage interconnection network design with less than O(n2) switches.

2 Proof for g2(k) = 1

The following lemma was proved in [7] using the well-known Peterson’s theorem
in graph theory. Note that a 2-hypergraph becomes a graph if it does not contain
singleton edges. We can see if a graph G can be decomposed into a union of
1-factors (complete matching), then g2(G) = 0.

Lemma 2.1. Every even regular 2-hypergraph can be decomposed into a union
of 2-regular 2-hypergraphs.

Theorem 2.2. g2(k) = 1 for k ≥ 3.

Proof. First we show g2(k) ≥ 1. Let H0 be a 2-regular 2-hypergraph containing
a cycle with edges {1, 2}, {2, 3}, {1, 3}. For this odd cycle, whatever ordering of
the three edges, we have g(H0) = 1, so that g2(k) ≥ 1. Further more we see for
an 2-regular 2-hypergraph H , g(H) ≤ 1 and g(H) = 1 if and only if H contains
an odd cycle.

Next we show g2(k) ≤ 1. Let H be any r-regular 2-hypergraph on k vertices,
we show that g(H) ≤ 1. If r is even, then by Lemma 2.1, H can be decomposed
into the union of 2-regular 2-hypergraphs, H = R1 + · · ·+Rt, where each Ri is
a 2-regular 2-hypergraph. Then g(H) ≤ max{g(Ri) : i = 1, . . . , t} ≤ max{1 : i =
1, . . . , t} = 1. Otherwise r ≥ 3 is an odd number. Let H ′ be the (r+1)-regular 2-
hypergraph obtained by adding k singletons {1}, . . . , {k}. Then by Lemma 2.1,
H ′ can be decomposed into a disjoint union of m = (r + 1)/2 2-regular 2-
hypergraphs, H ′ = R′

1 + . . . R′
m, where each R′

i is a 2-regular 2-hypergraph.
Removing the k singletons {1}, . . . , {k} from R′

1, . . . , R
′
m, we obtain R1, . . . , Rm.

Then H is a disjoint union of R1, . . . , Rm, i.e., H = R1 + · · · + Rm. We next
show by induction on j that, there is an edge ordering πj on R1 + · · ·+Rj such
that g(R1 + · · ·+Rj , πj) ≤ 1.

Clearly, any ordering of the edges in R1 has the above property. Assume that
the elements ofR1+· · ·+Rn−1 have an ordering πn−1 with the property. We show
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that the elements of Rn can be added to the end of πn−1 so that the resulting
sequence also has the property. Let G = R1 + · · ·+Rn−1. Then the degree of a
vertex of G is either 2(n − 1) or 2(n − 1) − 1. The degree of 2-hypergraph Rn

is either 1 or 2 because all vertices of 2-hypergraph R′
n have degree 2 and Rn

is resulted from R′
n by removing some singletons of {1}, . . . , {k}. We order the

edges of Rn by components as follows. Let C be any connected component of
Rn. If all vertices of C have the same degree in G, then any ordering of edges
of C has the property. If C contains vertices of both degrees in G, a vertex of C
with degree 2(n− 1)− 1 in G must have degree 2 in C. For each maximal path
in C with 2(n− 1) and 2(n− 1)− 1 vertices appearing alternatively in G, order
edges at odd positions in the path. Add the remaining edges of C in any order.
Applying the same to all connected components of Rn, we obtain an ordering of
Rn. Adding this ordering of Rn to the end of πn−1, we obtain an edge ordering,
πn, of R1 + · · · + Rn. From the induction hypothesis and the construction, we
see that the obtained ordering of elements of R1 + · · · + Rn has the property.
By the induction, we eventually obtain an ordering of R having the property, so
that g(H) ≤ 1. Thus we proved g2(H) ≤ 1 for any 2-hypergraph H . Therefore,
we have g2(k) = 1.

It is known that the decomposition of an even regular 2-hypergraph into 2-factors
can be done in time polynomial in terms of the number of edges. By the proof
of the above theorem, we know finding an ordering π such that g(H,π) ≤ 1 for
a given w-regular 2-hypergraph H on k vertices can be done in polynomial time
in terms of k and w.

3 Proof for gs(k) = 1, 3 ≤ k ≤ 6 and gs(k) ≤ 2k

We calculate the exact value of gs(k) for 3 ≤ s ≤ k ≤ 6 using relation (4). That
is, we first find the set of all minimal regular s-hypergraphs H on k vertices,
determine g(H), and then gs(k). For example, when k = 2, there are only two
minimal regular hypergraphs, H1 = ({1, 2}, {{1}, {2}}), H2 = ({1, 2}, {{1, 2}}).
Clearly g(H1) = 0, g(H2) = 0. Therefore, g2(2) = g(2) = 0.

Theorem 3.1. gs(k) = 1 for 3 ≤ s ≤ k ≤ 6.

Proof. By Theorem 2.2 and the definition of gs(k), we have 1 = g2(k) ≤ · · · ≤
gk(k) = g(k) for 3 ≤ k ≤ 6. Therefore it suffices to prove g(k) = 1 for 3 ≤ k ≤ 6.

To simplify the proof, we add some reduction rules to eliminate the number
of minimal regular hypergraphs to be considered.

Rule 1. Only non-isomorphic minimal regular hypergraphs on k vertices need
to be considered. Here, two hypergraph graphs H1 = (V1, E1) and H2 = (V2, E2)
are isomorphic if there are two bijections φ : V1 → V2, ϕ : E1 → E2 such that
e = {vi1 , . . . , vit} ∈ E1 if and only if ϕ(e) = {φ(vi1 ), . . . , φ(vit )}. It can be seen
that if two regular hypergraphs H1 and H2 are isomorphic, then g(H1) = g(H2).

Rule 2. We only need to consider minimal regular hypergraphs such that every
two edges have intersection. This is because if there are two edges in a minimal
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regular hypergraph H without intersection, we can merge them into one edge,
the resulting minimal regular hypergraph H ′ satisfies g(H) ≤ g(H ′).

Rule 3. We only need to consider minimal regular hypergraphs containing no
singleton. This is because if a minimal regular hypergraphH contains a singleton
u, then all other edges of H must contain the singleton u according to Rule 2.
Then the degree of u would be bigger than the degree of other vertices. This
contradicts H being regular.

Now we consider the case when k = 3. Applying the above reduction rules,
there are only two non-isomorphic minimal regular hypergraphs with edge inter-
sections. H1 = ({1, 2, 3}, {{1, 2}, {2, 3}, {1, 3}}) and H2 = ({1, 2, 3}, {{1, 2, 3}}).
Clearly g(H1) = 1, g(H2) = 0, therefore, g(3) = 1.

For k = 4. First we see that the following minimal regular hypergraphs satisfy
the reduction rules.
H1 = ({1, . . . , 4}, {{1, 2, 3, 4}}),
H2 = ({1, . . . , 4}, {{1, 2, 3}, {1, 2, 4}, {3, 4}}),
H3 = ({1, . . . , 4}, {{1, 2, 3}, {1, 2, 4}, {3, 4, 1}, {2, 3, 4}}),
H4 = ({1, . . . , 4}, {{1, 2, 3}, {1, 4}, {2, 4}, {1, 2, 3}, {3, 4}}).

Secondly, we show that these are all of the non-isomorphic minimal regular
hypergraphs on {1, . . . , 4} that satisfy the reduction rules. Let H be a regular
hypergraph on V satisfying the reduction Rules 2 and 3. We show H must be
isomorphic to one of Hi, i = 1, . . . , 4 by six cases.

Case 1. H contains edge {1, 2, 3, 4}. Then H must be H1.
Case 2. H contains all types of edges {1, 2, 3}, {2, 3, 4}, {3, 4, 1}, {4, 1, 2}. Then
H is isomorphic to H3.
Case 3. H contains three types of edges {1, 2, 3}, {2, 3, 4}, {3, 4, 1}, {4, 1, 2}.
Without loss of generality, assume that H contains {1, 2, 3}, {2, 3, 4}, {3, 4, 1}.
Then H does not contain any one of {4}, {1}, {2}. H does not contain {1, 4}
because {{1, 2, 3}, {2, 3, 4}, {1, 4}} forms proper regular sub-hypergraph. Simi-
larly, H does not contain {1, 2} or {2, 4}. Therefore, H only contains the types
of edges of {1, 2, 3}, {2, 3, 4}, {3, 4, 1}, {3, 4}, {2, 3}, {1, 3}, {3}. All of these edges
contain 3, therefore H can not be regular, and a contradiction follows.
Case 4. H contains two types of edges {1, 2, 3}, {2, 3, 4}, {3, 4, 1}, {4, 1, 2}.
Without loss of generality, assume that H contains {1, 2, 3} and {2, 3, 4}. Then
H must contain edges of size 2. If H does contain {1, 4}, a contradiction will
follow (details are omitted). Therefore, H contains {1, 4}, then H is isomorphic
to H2.
Case 5. H contains one types of edges {1, 2, 3}, {2, 3, 4}, {3, 4, 1}, {4, 1, 2}. We
may assume that H contains {1, 2, 3}. Then H must contain at least one of
{3, 4}, {1, 4} and {2, 4} to cover vertex 4. If H contains all of {3, 4}, {1, 4} and
{2, 4}, then H does not contain {1, 2}, {2, 3} or {1, 3}. Now H only contains
the types of edges in {1, 2, 3}, {3, 4}, {1, 4}, {2, 4}. Let xi, i = 1, . . . , 4 denote
the number of occurrences of {1, 2, 3}, {3, 4}, {1, 4} and {2, 4} in H , respectively.
Then the following equations must hold: x1 + x3 = x1 + x4 = x1 + x2 = x2 +
x3 + x4 = r. Therefore, x2 = x3 = x4 = r

3 ≥ 1, and x1 = 2r
3 ≥ 2. Now H
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contains {1, 2, 3}, {1, 2, 3}, {3, 4}, {1, 4}, {2, 4}, which must be isomorphic to H4.
Otherwise, H either contains two of {3, 4}, {1, 4} and {2, 4}, or contains only
one of {3, 4}, {1, 4} and {2, 4}. Both cases lead to contradictions.
Case 6. H does not contain any one of {1, 2, 3}, {2, 3, 4},{3,4,1} and {4, 1, 2}.
Then H is a graph, we see no regular graph on four vertices would satisfy Rules.

In summary, we know H1, H2, H3, H4 are all non-isomorphic minimal regular
hypergraphs subject to the reduction rules. For each Hi, i = 1, . . . , 4, we see
g(Hi) = 1 with the given edge ordering. Therefore by (4), we have g3(4) =
g4(4) = 1.

For k = 5 and 6, we first use the known Hemmecke, Hemmecke, Malkin’s
4ti2 package [8] to calculate the Hilbert basis of AkX

T − w(1, . . . , 1)T = 0, and
then implement a brute force algorithm to minimize g(H,π) for permutations
π. The computation results show that for every minimal regular hypergraph
H of 5 or 6 vertices, we found an ordering π0 such g(H,π0) ≤ 1. Therefore,
g3(5) = g4(5) = g5(5) = 1, f3(6) = g4(6) = g5(6) = g6(6) = 1. The details are
omitted.

For 3 ≤ s ≤ k ≥ 7, no value of gs(k) is known. But we can prove an upper bound
for gs(k) using the following the vector sum result in [9,1].

Lemma 3.2 ([9]). Let v1, . . . ,vt be a sequence of k-dimensional vectors with∑t
i=1 vi = 0, ||vi|| ≤ 1(i = 1, . . . , t), there is a permutation i1, . . . , it, such that

max ||∑j
h=1 vih || ≤ k for every 1 ≤ j ≤ t, where the super norm ||v|| of a vector

v is defined to be the maximum of the absolute values of the components of v.

Theorem 3.3. g(k) ≤ 2k for any k ≥ 2.

Proof. Let H = (V,E) be any w-regular hypergraph on k vertices. Suppose that
V = {1, . . . , k} and E = {e1, . . . , em}. Let vi = (ni,1, . . . , ni,k) ∈ Rk be the
vector representation of ei, i = 1, . . . ,m.

For i = 1, . . . ,m, let v′
i = vi, and for i = m + 1, . . . ,m + w, let v′

i =
(−1, . . . ,−1) ∈ Rk. Then

∑m+w
i=1 v′

i = 0. By Lemma 3.2, there is a permuta-
tion i′1, . . . , i

′
m+w of 1, . . . ,m+w such that v′

i′
1
, . . . ,v′

i′
m+w

satisfy ||∑j
h=1 v′

i′
h
|| ≤

k, 1 ≤ s ≤ m+ w.
Removing the vectors equal to (−1, . . . ,−1) from the sequence v′

i′
1
, . . . ,v′

i′
m+w

,
we obtain a permutation vi1 , . . . ,vim of v1, . . . ,vm.

For any 1 ≤ j ≤ m−1, let v′
i′
j′

correspond to vij . Then there are j′− j vectors

in v′
i′
1
, . . . ,v′

i′
j′

which are equal to (−1, . . . ,−1). Then, for every 1 ≤ j ≤ m− 1,

we have
max{|dHj (u) − dHj (v)| : u, v ∈ eij+1}

= max{dHj (u) : u ∈ eij+1} − min{dHj (v) : v ∈ eij+1}
= max{∑j

h=1 ni,h : i ∈ eij+1} − min{∑j
h=1 ni,h : i ∈ eij+1}

≤ max{∑j
h=1 ni,h : 1 ≤ i ≤ k} − min{∑j

h=1 ni,h : 1 ≤ i ≤ k}
= max{∑j

h=1 ni,h : 1 ≤ i ≤ k} + (j′ − j) − (min{∑j
h=1 ni,h : 1 ≤ i ≤ k} + (j′ − j))

= max{∑j
h=1 ni,h + (j − j′) : 1 ≤ i ≤ k} − min{∑j

h=1 ni,h + (j′ − j) : 1 ≤ i ≤ k}
≤ 2||∑j′

h=1 v′
i′h

|| ≤ 2k.
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By the definitions (1)-(3) for gs(k), we have g(k) = gk(k) ≤ 2k.

In [1], a polynomial time algorithm was given to find a permutation of the vectors
with max ||∑j

h=1 vih || ≤ 3k/2 for every 1 ≤ j ≤ t. Applying that algorithm, we
can find an edge ordering π for regular hypergraph H in polynomial time with
g(H,π) ≤ 3k.

4 Heuristic Algorithm for Edge Ordering

The brute force algorithm for finding an edge ordering is far from efficient when
the number of edges is large. Efforts have been made on finding time efficient
heuristic algorithm for edge ordering. This section presents an advanced edge
ordering algorithm and primary experimental results. The algorithm determines
an ordering of edges by adding edges to construct the hypergraph one edge at a
time. The main idea of the algorithm is to define a rank function on the unused
edges. To determine which edge is to be added next, the algorithm calculates the
ranks of all unused edges and chooses the highest ranking one. The pseudo-code
for calculating the rank of an edge is as follows:

SET rank to 0
SET number_of_elements to 0
SET number_of_max_elements to 0
SET number_of_min_elements to 0
SET max_degree to smallest integer
SET min_degree to largest integer
FOR each vertex in the hypergraph

IF this vertex is in the edge THEN
INCREMENT number_of_elements
IF the degree of this vertex is greater than max_degree THEN

SET max_degree to degree of this vertex
END IF
IF the degree of this vertex is less than min_degree THEN

SET min_degree to degree of this vertex
END IF
DECREMENT rank

END IF
END FOR
FOR each vertex in the hypergraph

IF this vertex is in the edge THEN
INCREMENT rank by the difference of the degree of the

lowest priority vertex and the degree of this vertex
DECREMENT rank by the difference of the degree of this

vertex and the degree of the highest priority vertex
IF the degree of this vertex equals min_degree THEN

INCREMENT number_of_min_elements
ELSE
IF the degree of this vertex equals max_degree THEN

INCREMENT number_of_max_elements
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END IF
END IF

END FOR
IF number_of_elements equals number_of_min_elements and min_degree

equals degree of highest priority vertex THEN
INCREMENT rank by w_max

ELSE IF number_of_elements equals number_of_max_elements and
max_degree equals degree of lowest priority vertex THEN
DECREMENT rank by w_max

END IF
IF the difference of max_degree and min_degree is greater than 1 THEN

RETURN bad edge flag
ELSE RETURN rank

END IF

The running time of the above heuristic edge ordering algorithm isO(|V |2|E|2).
We implemented the algorithm and tested on minimal regular hypergraphs on 4, 5
and 6 vertices respectively. The computational results show that all minimal hy-
pergraphs on 4 or 5 vertices passed the test. Table 1 gives a summary of the com-
putation on 6 vertices, in which the first column gives the degree of the minimal
regular hypergraphs, the second column gives the number of minimal regular hy-
pergraphs passed the test, and third column gives the number of tested minimal
regular hypergraphs.

Table 1. Testing results for minimal regular hypergraphs on 6 vertices

w passed tested passed/tested (%)
1 62 62 100.0
2 1328 1328 100.0
3 12280 12292 99.9
4 27589 27624 99.9
5 20631 20777 99.3
6 8684 8844 98.2
7 3011 3035 99.2
8 753 762 98.8
9 201 201 100.0

Total 74539 74925 99.48

5 Applications in Interconnection Network Designs

This section describes the application of the edge ordering problem in design-
ing switch boxes for interconnection networks. As in [5], a switch box of k
sides and w terminals on each sides, written (k, w)-SB, can be represented as
a k-partite graph G with the j-th terminal on side i being denoted by a ver-
tex ti,j , i = 1, . . . , k, j = 1, ..., w, and a switch joining terminals ti,j and ti′,j′

(i = i′) being denoted by an edge ti,jti′,j′ . Let Vi = {ti,j : j = 1, . . . , w},
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i = 1, . . . , k. Then (V1, . . . , Vk) forms the partition of the vertices. A routing
requirement H for the (k, w)-SB can be represented as a w-regular hypergraph
H = ({1, . . . , k}, {e1, . . . , em}), where each edge ei represents a connection re-
quirement which needs to connect |ei| terminals on sides specified by the ele-
ments of ei. H is said to be routable in G (or G is routable for H) if G contains
a spanning subhypergraph with m vertex disjoint components T1, . . . , Tm such
that each Ti is connected and contains a vertex on side j if and only if j ∈ ei.
(T1, . . . , Tm) is called a routing of H in G and Ti a routing of ei. A (k, w)-SB
is said to be s-universal if it is routable for every w-regular s-hypergraph on
{1, . . . , k}. In particular, a 2-universal (k, w)-SB is also called a universal (k, w)-
SB (or simply (k, w)-USB)[3], and a k-universal (k, w)-SB is called a hyper-
universal (k, w)-SB (or simply (k, w)-HUSB)[5]. The complete (k, w)-SB, i.e.,
Kk,w = (V1 ∪ . . . ∪ Vk, {ti,jti′,j′ : i, i′ = 1, . . . , k, i = i′, j, j′ = 1, . . . , w}), is
s-universal for all 2 ≤ s ≤ k. The number of switches in Kk,w is k(k − 1)w2/2.

The optimal s-universal (k, w)-SB design problem is to design an s-universal
(k, w)-SB with the minimum number of switches. This problem has been studied
extensively in recent years for FPGA routing networks [2,3,5,6,7]. However, this
problem is not solved in general except for k ≤ 4 or s = 2 and w is even. Recently,
we found that using gs(k) we can design a much better approximation for the
optimal s-universal (k, w)-SB as follows. Let H(k,W, b) denote the (k, w)-SB
with terminals ti,j , 1 ≤ i ≤ k, 1 ≤ j ≤ w and switches ti,jti′,j′ , i = i′, |j − j′| ≤ b.
Lemma 5.1. H(k, w, gs(k)) is Ps-universal (k, w)-SB with at most (2gs(k) +
1)k(k − 1)w/2 switches.

Proof. For any w-regular s-hypergraph H = ({1, . . . , k}, {e1, . . . , em}), we first
find an edge ordering (eπ(1), . . . , eπ(m)) such that g(H,π) ≤ gs(k). Then we
find a routing of H in H(k, w, gs(k)) according to this ordering as follows. For
eπ(i), we find the routing of eπ(i) by choosing the first available terminals on the
sides specified by eπ(i) and switches joining the terminals. By the definition of
H(k, w, gs(k)) and the edge ordering property, there are always switches joining
the first available terminals. Since the degree of a vertex in H(k, w, gs(k)) is at
most (2gs(k) + 1)(k − 1) and it has kw vertices, the number of switches is at
most (2gs(k) + 1)k(k − 1)W/2.

By Lemma 5.1, Theorem 2.2, 3.1, and 3.3, we haveH(k, w, 1) is a (k, w)-USB for
all k ≥ 2 and w ≥ 1, H(k, w, 1) is a (k, w)-HUSB for 3 ≤ k ≤ 6, and H(k, w, 2k)
is a (k, w)-HUSB for all k ≥ 2. Moreover, by the proof of Lemma 5.1, we see an
edge ordering algorithm leads to a routing algorithm for H(k, w, gs(k)).

The switch box H(k, w, gs(k)) can be used in three-stage interconnection net-
work for group communications. Yen et al. [10] proposed the so-called Polygonal
Switching Network, denoted by PSN(r, w, k), which consists of k copies of r × w
full crossbar at the first and the third stages and a (k, w)-USB at the middle stage.
Here a r×w full crossbar canbe represented as a bipartite graph of r vertices on one
part andw vertices on the other part; it has rw edges. PSN(r, w, k) forms a three-
stage interconnection network rearrangeable for point-to-point communications of
rk ports connected by the rk wires from k crossbars provided r ≤ w.
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If the (k, w)-USB is substituted by an s-universal (k, w)-SBH(k, w, gs(k)), the
resulting PSN(r, w, k) (r ≤ w) will be rearrangeable for group communications
(with group size at most s), i.e. for any partition of the rk ports with group size
at most s, the switches in the network can be reconfigured so that the ports in
each group are connected and different groups are not connected. This is because
a partition of the ports will results in a routing requirement on the middle switch
box, so we can first find a routing for the routing requirement in the switch box
and then route to the corresponding ports through the crossbars.

In particular, PSN(n1/3, n2/3, n1/3) with H(n1/3, n2/3, 2n1/3) at the middle
stage will have O(n5/3) switches and it is rearrangeable for group communi-
cations of n ports. This is the first three-stage interconnection network design
rearrangeable for group communications of n ports with less thanO(n2) switches.

Moreover, we see that if there is a constant C such that gs(k) ≤ C for all
k ≥ C, then PSN(n1/2, n1/2, n1/2) with H(n1/2, n1/2, C) at the middle stage
will have O(n3/2) switches, this would be the best possible polygonal switching
network design. Therefore, to conclude this paper, we first conjecture the exis-
tence of such a constant, and secondly we call for an efficient solution to compute
gs(k) and an efficient algorithm for the edge ordering.
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Abstract. Partially blind signature was first introduced by Abe and
Fujisaki. Subsequently, Abe and Okamoto proposed a provably secure
construction for partially blind signature schemes with a formalized def-
inition in their work. In this paper, based on discrete logarithm problem
and the Schnorr’s blind signature scheme, we propose a new efficient
partially blind signature scheme. Follow the construction proposed by
Abe and Okamoto, we prove its security in random oracle model. The
computation and communication costs are both reduced in our scheme.
It will make privacy-oriented applications which based on partially blind
signatures more efficient and suitable for hardware-limited environment,
such as smart phones and PDAs.

1 Introduction

Blind signature schemes, first introduced by Chaum in [1], allow a user to get a
signature without giving the signer any information about the actual message.
The signer also can’t have a link between the users and the signatures. It’s a
useful property in privacy oriented e-services such as electronic cash and elec-
tronic voting system. However, it may not a good idea to blind everything in the
e-cash system[2]. As to prevent a customer’s double-spending, the bank has to
keep a spent database which stores all spent e-cash to check whether a specified
e-cash has been spent or not. Certainly, the spent database kept by the bank
may grow unlimitedly. The other problem is to believe the face value of e-cash in
the withdraw phase, the signer must assure that the message contains accurate
information without seeing it.

Partially blind signature scheme proposed in [2] helps to solve the problems
stated above. The scheme allows each of signatures contains an explicit infor-
mation which both the signer and the user have agreed on. For example, the
signer can attach the expiry date and denomination to his blind signatures as
an attribute. Accordingly, The attribute of the signatures can be verified inde-
pendently through those of the certified public key.

Based on different hard problem assumptions, many partially blind signature
schemes have been given. The schemes proposed in [2,3,4] are based on RSA
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algorithm, but the scheme in [2] does not have randomization property, which
is important to withstand the chosen plaintext attack[5], and the scheme in
[3] was also showed vulnerability on the chosen plaintext attack by [6]. The
schemes proposed in [7,8,9] are based on discrete logarithm problem and [9] costs
lower computation than [2,10]. The proposed partially blind signature schemes in
[10,11] are based on the theories of quadratic residues, and the scheme [11] makes
better performance than [10], but the signing protocol in [11] will give two valid
signatures corresponding to the same message. The schemes proposed in [12,13]
are based on bilinear pairings, but their verification of the signature require
pairing operation, which is several times slower than modular exponentiation
computation and not suitable for hardware-limited situations in client side, such
as smart phones and PDAs.

Our Contribution. Considering both security and efficiency, based on discrete
logarithm problem and the blind signature scheme in [14], we propose a new
efficient partially blind signature scheme. Follow the construction that given in
[7], we prove its security in random oracle model (ROM)[15]. Compared to the
schemes in [4,7,9], the computation and communication costs for the user and
the signer are both reduced in our scheme.

Organization. The rest of the paper is organized as follows. Section 2 describes
the basic definitions associated with partially blind signatures. In section 3, we
describe our efficient partially blind signature scheme, and then prove its security
in section 4 and compare the performance of the proposed scheme with others
related schemes in section 5. Section 6 concludes the paper.

2 Definitions

Abe and Okamoto introduced the notion of partially blind signatures in [7]. For
the following provable security, We give the definitions proposed in [8] which
provided a compact definitions based on [7]. In the phase of partially blind
signatures, the signer and the user are assumed to have agreed on a piece of
common information, denoted by info. An info may be sent from the user to the
signer. The paper [7] formalized this notion by providing a function Ag. Function
Ag is defined as a polynomial-time deterministic algorithm that completes the
negotiation of info between the signer and the user correctly. In our scheme, this
negotiation is considered to be done outside of the scheme.

Definition 1. (Partially Blind Signature Scheme) A partially blind signa-
ture scheme is a four-tuple(G,S,U ,V).

- G is a probabilistic polynomial-time algorithm, that takes security parameter
k and outputs a public and secret key pair(pk, sk).

- S and U are pair of probabilistic interactive Turing machines each of which
has a public input tape, a private input tape, a private random tape, a private
word tape, a private output tape, a public output tape, and input and output
communication tapes. The random tape and the input tapes are read-only,
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and the output tapes are write-only. The private work tape is read-write. The
public input tape of U contains pk generated by G(1k), the description of Ag,
and infou. The public input tape of S contains the description of Ag and
infos. The private input type of S contains sk, and that for U contains a
message msg. The lengths of infos, infou, and msg are polynomial in k. S
and U engage in the signature issuing protocol and stop in polynomial-time.
When they stop, the public output tape of S contains either completed or not-
completed. If it is completed, then its private output tape contains common
information info. Similarly, the private output tape of U contains either ⊥
or (info,msg, sig).

- V is a polynomial-time algorithm. V takes (pk, info,msg, sig) and outputs
either accept or reject.

Definition 2. (Partial Blindness)Let U0 and U1 be two honest users that
follow the signature issuing protocol. Let S∗ play the following Game A in the
presence of an independent umpire.

1. (pk, sk)← G(1k).
2. (msg0,msg1, infou0 , infou1 , Ag)← S∗(1k, pk, sk).
3. The umpire sets up the input tapes of U0, U1 as follows:

- The umpire selects b ∈R {0, 1} and places msgb and msg1−b on the
private input tapes of U0 and U1, respectively. b is not disclosed to S∗.

- Place infou0 and infou1 on the public input tapes of U0 and U1 respec-
tively. Also place pk and Ag on their public input tapes.

- Randomly select the contents of the private random tapes.
4. S∗ engages in the signature issuing protocol with U0 and U1 in a parallel

and arbitrarily interleaved fashion. If either signature issuing protocol fails
to complete, the game is aborted.

5. Let U0 and U1 output (msgb, info0, sigb) and (msg1−b, info1, sig1−b), re-
spectively, on their private tapes. If info0 = info1 holds, then the umpire
provides S∗ with the no additional information. That is, the umpire gives
⊥ to S∗. If info0 = info1 holds, then the umpire provides S∗ with the ad-
ditional inputs sigb, sig1−b ordered according to the corresponding messages
msg0,msg1.

6. S∗ outputs b′ ∈R {0, 1}. The signer S. wins the game if b′ = b.

A signature scheme is partially blind if, for every constant c > 0, there exists a
bound k0 such that for all probabilistic polynomial-time algorithm S∗, S∗ outputs
b′ = b with probability at most 1/2 + 1/kc for k > k0. The probability is taken
over the coin flips of G, U0, U1, and S∗.

Definition 3. (Unforgeability)Let S be an honest signer that follow the sig-
nature issuing protocol. Let U∗ play the following Game B in the presence of an
independent umpire.

1. (pk, sk)← G(1k).
2. Ag ← U∗(pk).
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3. The umpire places sk, Ag and a randomly taken infos on the proper input
tapes of S.

4. U∗ engages in the signature issuing protocol with S in a concurrent and
interleaving way. For each info, let �info be the number of executions of
the signature issuing protocol where S outputs completed and info is on its
output tapes. (For info that has never appeared on the private output tape
of S, define �info = 0.)

5. U∗ outputs a single piece of common information, info, and �info + 1 signa-
tures (msg1, sig1), · · · , (msg�info+1, sig�info+1).

A partially blind signature scheme is unforgeable if, for any probabilistic
polynomial-time algorithm U∗ that plays the above game, the probability that
the output of U∗ satisfies

V(pk, info,msgj , sigj) = accept

for all j = 1, · · · , �info + 1 is at most 1/kc where k > k0 for some bound k0
and some constant c > 0. The probability is taken over the coin flips of G, U∗,
and S.

Definition 4. (DLP (Discrete Logarithm Problem)): For x, g ∈R Zp,
given y = gx(mod p), compute x = logg y. We assume that DLP is hard, which
mean there is no polynomial time algorithm to solve it with non-negligible prob-
ability.

3 The Proposed Partially Blind Signature Scheme

The proposed efficient partially blind signature scheme is based on the theories of
DLP. Our scheme consists of five phases: Initialization, Requesting, Signing,
Extraction and Verifying, as described below.

1. Initialization. Signer S selects two large prime numbers p and q(typical
length: |p| = 1024, |q| = 160), which satisfied q|p − 1. Then chooses a
generator g ∈ Zp, g

q ≡ 1(mod p). S picks up a random number x ∈ Zq,
computes corresponding y = gx(mod p). a ‖ b denotes a concatenates b.
H,F , : {0, 1}∗ #→ Zq defined as two public hash functions. M is an arbitrary
message space. The public key of S is the tuple (y, p, q, g), x is the private
key.

2. Requesting. Assume that User U wants to get a partially blind signature
on message msg ∈ M , and then prepares a string info ∈ M that will be
sent to S for his agreement, this negotiation is considered to be done outside
of the scheme. Then S selects two random numbers r, d ∈R Zq, computes
z = F(info), then submits u = grzd(mod p) to U .

After receiving u, U also selects three random numbers v, w, e ∈R Zq, com-
putes z = F(info) and b = ze(mod p). Then computes C′ = H(msg||info||t)
while t = ubgvyw(mod p), sends C = w − C′ to S.
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3. Signing. After receiving C, S Signs C with the randomizing factor r and
his private key x, computes S = r + (C − z)x(mod q). Then S sends the
other randomizing number d and S to U .

4. Extraction. After receiving S and d, U computes S′ = S + v(mod q) and
N = d+ e(mod q). Hence, the resulting signature on the message msg and
the common information info is a tuple (msg, info, S′, C′, N).

5. Verifying. For the signature (msg, info, S′, C′, N), because

S′ = S + v, S = r + (C − z)x
and

C = w − C′, C′ = H(msg||info||t),
we can easily get

gS′
yz+C′

zN = ze+dgvgr+(C−z)xyz+C′
(mod p)

= ubgvyC−zyz+C′
(mod p)

= ubgvyC+C′
= ubgvyw = t(mod p).

Hence, we have the equation

H(msg||info||gS′
yz+C′

zN (mod p)) = H(msg||info||t) = C′.

The partially blind signature is accepted as valid if it satisfies the above
equation.

4 Security

In this section, we discuss some security properties of our partially blind signa-
ture scheme based on assuming the intractability of the DLP.

4.1 Randomization

Theorem 1. Given a response S produced by Signer S, user U cannot remove
the random factor r from S in polynomial time.

Proof. In the scheme, S selects a large integers r and computes u = gr(mod p),
and submits u to U . Then U sends C to S, and S returns S = r + (C − z)x.
If U wants to remove r from the corresponding signature S, he must derive the
unique pair (x, r) from (y, u). However, it is difficult for U to determine (x, r)
because the derivation is DLP. Hence, in the proposed scheme, U cannot remove
the random large integer r from the corresponding signature S of msg. 
�

4.2 Partial Blindness

Due to the Definition 2, for each instance numbered i of the proposed scheme,
signer S∗ can record Ci received from U who communicates with S∗ during the
instance i of the scheme. The tuple (Si, Ci, ri, di) is usually referred to as the
view of S∗ to the instance i of the scheme. Thus, we have the following theorem.
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Theorem 2. The proposed scheme is partially blind.

Proof. Since the tuple (msg, info, S′, C′, N) is produced, we have S′ = Si +
v, C′ = w − Ci, N = di + e and Si = ri + (Ci − z)x. From the view of S∗, Since
v, w, e are three random numbers selected by U from Zq and S∗ cannot know
v, w, e. The existence of a random triplet (v, w, e) that protects (S′, C′, N). Hence
S∗ can derive (v, w, e) from each view(Si, Ci, ri, Ni) such that Ci = w−C′,C′ =
H(msg||info||gS′

yz+C′
zN(mod p)) is satisfied where (Si, Ci, ri, Ni) regard as

(S,C, r,N). When the instance i #→ {0, 1}, therefore, even an infinitely powerful
S∗ can succeed in determining i with probability 1/2. 
�
From the proof of Theorem 2, we can know the importance of random factors
v, w, e. U must reselect v, w, e in a new instance of the proposed scheme and
protect factors v, e as a secret during the proceeding of the scheme. The random
factors v, w, e must be destroyed after the signature (msg, info, S′, C′, N) is
created.

4.3 Unforgeability

From Definition 3, we analyze the successful forgery with following the same
security argument given by Abe and Okamoto in [7]. Let us consider two types
of forgery against the partially blind signature.

1. A user U∗ can generate a valid partially blind signature while �info = 0.
2. Given a large number of valid partially blind signatures(0 < �info
< poly(log n)), U∗ can extract a new valid signature.

Theorem 3. The proposed scheme is unforgeable in the situation of type 1.

Proof. We assume a successful forger U∗ who plays Game B and produces a valid
signature (msg, info, S′, C′, N) with probability μ > 1/kc, such that �info = 0.
By exploiting U∗, we construct a machine M that forges the non-blind signature
of the proposed scheme in a passive environment. M simulates random oracles
F and H.

Let qF and qH be the maximum number of queries that U∗ asked from F and
H, respectively. Let qS be the maximum number of queries of signer S. Selects
i ∈ {1, 2, · · · , qH + qS}, U∗ sends the tuple (msgi, infoi, ti) to the oracle H for
computing its hash value H(msgi||infoi||ti). Simultaneously, U∗ asks F to get
z = F(info). F returns zi = gωi(mod p), where wi ∈R Zq. M knows ωi from
each pair of (zi, ωi) in F . All of the parameters are limited by a polynomial in k.
As the same proof construction in [7], we can easily know the success probability
of M which is denoted by μ′.

μ′ =
μ

(qH + qS)(qF + qS)
.

Then we use M to solve DLP. From the above construction. M can get
a valid signature tuple (t1, S′

1, C
′
1, N1) in polynomial running time after 1/μ′
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trials, with probability at least 1 − e−1(here, e is base of natural logarithms).
Because U∗ only can get hash value from H. Next, we use the standard replay
technique [16,17]. That is, we repeat with the same random tape and a different
choice of H, we can get another valid signature (t2, S′

2, C
′
2, N2) after 2/μ′ trials,

with probability at least (1 − e−1)/2, and we have t1 = t2. From the equation
C′ = H(msg||info||gS′

yz+C′
zN(mod p)), we have

S′
1 + (C′

1 + z1) · x+ ω1 ·N1 = S′
2 + (C′

2 + z2) · x+ ω2 ·N2.

Since H was changed choice in the second time run, both S′
1 = S′

2 and C′
1 = C′

2
have a overwhelming probability in 1− 2−k, M can get x from

x =
(S′

2 − S′
1) + (ω2 ·N2 − ω1 ·N1)

(C′
1 − C′

2) + (z1 − z2) (mod q).

It means M can solve DLP in polynomial running time. 
�
Next we consider the forgery attempts in situation of type 2. We prove the
security of our scheme where the common information is not all the same in
Game B.

Theorem 4. The proposed scheme is unforgeable in the situation of type 2.

Proof. We assume a successful forger U∗
f who wins Game B with a probability

η, which is a non-negligible in polynomial running time. Then we construct
an machine M that simulates the signer in Game B. Let Ŝ denote the signer
simulated by M. M simulates two random oracles F and H. F returns zi =
gωi(mod p), where ωi ∈R Zq. We assume M don’t know ωi this time. M uses
U∗

f as a black-box and breaks the intractability assumption of DLP to compute
ω such that z = gω(mod p).

After �info times execution with Ŝ, U∗
f has got a set of successful challenge tu-

ple (msg1, info1, t1), (msg2, info2, t2), · · · , (msg�info
, info�info , t�info). U∗

f sends
the tuple (msgi, infoi, ti) to the random oracle H for computing its hash value
H(msgi||infoi||ti).

From the above construction, U∗
f can win Game B and forge a valid signa-

ture with a successful challenge tuple (msg�info+1, info�info+1, t�info+1) after 1/η
trails, with probability at least 1 − e−1. First we consider the situation that
there exists i ∈ {1, 2, · · · , �info}, msgi = msg�info+1, infoi = info�info+1 and
ti = t�info+1. Because U∗ only can get hash value from H, We have

gS′
�info+1yC′

�info+1zN�info+1 = gS′
iyC′

izNi

such that
S′

�info+1 +N�info+1 · ω = S′
i +Ni · ω.

Hence, we can compute ω from

ω =
S′

�info+1 − S′
i

N�info+1 −Ni
(mod q).
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Then we consider the situation that there does not exist i ∈ {1, 2, · · · , �info},
msgi = msg�info+1, infoi = info�info+1 and ti = t�info+1. This derives to the
same forgery attempts in the situation of type 1. 
�
From Theorem 3 and Theorem 4, we have the following theorem.

Theorem 5. The proposed scheme is unforgeable if �info < poly(log n) for all
info.

5 Performance Concerns

We will discuss the performance of the proposed scheme from the costs of com-
munication and computation. Table 1 gives us a detail costs comparison amongst
related partially blind signature schemes[4,7,9]. The techniques to perform the
modular exponentiation computation are not used because they need additional
storage, which is limited in some application environments.

Table 1. The Comparisons of the partially blind signature schemes

Our Scheme Abe00 [7] Huang03 [9] Cao05 [4]

Mathematical foundation DLP DLP DLP/CRT RSA
Signer’s computation 2Te + 1Tm 3Te + 2Tm 2Te + 4Tm 2Te + 2Tm + Ti

User’s computation 3Te + 3Tm 4Te + 4Tm 4Te + 2Tm 3Te + 5Tm

Verifier’s computation 3Te + 2Tm 4Te + 2Tm 5Te + 3Tm 3Te + 2Tm

Signature size 2|m|+ 3|q| 2|m|+ 4|q| 2|m|+ 3|n| 2|m|+ 2|n|
*Te: time for one exponentiation computation; Tm: time for one multiplication compu-
tation; Ti: time for one inverse computation; Typical length: |q| = 160bit, |n| = 1024bit.

With regard to estimate the computational costs, we count only modular
exponentiation and multiplication. An inverse computation demands the same
amount of computation as a modular exponentiation. We also do not calculate
the computational costs on hash operations because it is much more faster than
modular exponentiation computation, and each schemes takes nearly same times
of hash operation. By Table 1, from the computational costs and signature sizes,
our scheme all shows more efficient than the schemes in [4,7,9].

6 Conclusion

In this paper, we proposed an efficient partially blind signature scheme based
on DLP and the Schnorr’s blind signature scheme, and we proved its security
in ROM. The computation and communication costs are both reduced in our
scheme. It will makes privacy oriented applications which based on partially
blind signatures more efficient and suitable for hardware-limited environment,
such as smart phones and PDAs.
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Abstract. We consider model based estimates for set-up time. The gen-
eral setting we are interested in is the following: given a disk and a se-
quence of read/write requests to certain locations, we would like to know
the total time of transitions (set-up time) when these requests are served
in an orderly fashion. The problem becomes nontrivial when we have, as
is typically the case, only the counts of requests to each location rather
then the whole input, in which case we can only hope to estimate the
required time. Models that estimate the set-up time have been suggested
and heavily used as far back as the sixties. However, not much theory ex-
ists to enable a qualitative understanding of such models. To this end we
introduce several properties through which we can study different models
such as (i) super-additivity which means that the set-up time estimate
decreases as the input data is refined (ii) monotonicity which means that
more activity produces more set-up time, and (iii) an approximation
guarantee for the estimate with respect to the worst possible time.

We provide criteria for super-additivity and monotonicity to hold for
popular models such as the independent reference model (IRM). The cri-
teria show that the estimate produced by these models will be monotone
for any reasonable system. Wealso show that the IRMbased estimate func-
tions, upto a factor of 2, as a worst case estimate to the actual set-up time.

To establish our theoretical results we use the theory of finite metric
spaces, and en route show a result of independent interest in that theory,
which is a strengthening of a theorem of Kelly [4] about the properties
of metrics that are formed by concave functions on the line.

1 Introduction

Set-up times which are associated with moving a system from one state to an-
other play a major role in the performance analysis of systems. Perhaps the most
glaring example is provided by disk based storage systems in which the states
correspond to locations on the disk. In this case the total duration of the move-
ments of the disk’s head (from one location to another or from one disk track to
another), aka the set-up time is the dominant feature in the total service time,
and hence a lot of effort is put in order to minimize it by means of reordering
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the disk’s content. Interestingly enough, in this application as well as in other
real world applications, the above task becomes a problem with partial input.
The reason is simple: to collect all transition information will be too costly and
will render the original optimization useless as the set-up time will be second
to the input collection time. Instead, the only information typically available is
the state counts, ie the number of times that each state was requested. In graph
terminology we want to know the length of a path in a weighted graph where
we only know the number of times that each node was visited.

In order to estimate the set-up time, researchers have used stochastic models,
ie stochastic processes with parameters that are inherited from the observed
count. The simplest of these models, the Independent Reference Model (IRM) is
very intuitive: the requests at any time are drawn (independently of the previous
state) from a distribution proportional to the count vector. This simple model
is the most popular model for the analysis of storage system performance; see
for for example [1,3,6,7,8,9] among many.

In this paper we consider new and basic properties of set-up time estimates
and check whether they hold for the IRM model. In a full version of the paper
we will consider other models such as the so called the Partial Markov Model
(PMM). These properties relate the set-up time estimates to the worst case case
and examine the changes in the estimate due to a different way of collecting
the data. The applicability of these properties to various models is an evidence
to their quality, and moreover they allow for a rigorous study of models that
are heavily used, often with not enough underlying rationale. It is interesting
to note that while the IRM is one of the oldest models of user access patterns,
dating back to the sixties, the basic properties considered above have never been
explored. What follows is a brief description of these properties.

Given time intervals I ⊂ J it is obvious that a system suffers at least as much
set-up time during J as it does during I. The monotonicity property simply
says that the set-up time estimate of the model reflects that fact, ie it gives
an estimate for J which is at least as big as the one for I. A model is said
to be super-additive if the addition of input information (by means of higher
resolution of measurements) does not increase the set-up time estimate. It is
almost immediate that super-additivity implies monotonicity and that it applies
to the worst case time which provides the largest possible set-up time consistent
with a given input data. The last property compares the set-up time estimate
with the worst case estimate (which is NP hard to compute). Showing that
the estimate of a model does not deviate much from the worst case estimate is
tantamount to showing that is not over optimistic.

Our Results: We show that monotonicity applies to the IRM , regardless of
the metric involved. We further show that IRM set-up time estimate is a 1/2
approximation to the worst case. Our results concerning super-additivity have
the following curious feature: Super additivity holds in the IRM model pro-
vided that the “time-metric”, ie the times associated with the transition times
between pair of states, belongs to the well studied class of metric spaces known as
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negative type metrics. Not all metric spaces belong to this class, but as we show,
the time metrics that come from motion of disk drives in fact do, owing to the
physical features of the system. Therefore IRM is indeed super additive with
respect to these I/O systems. These results show that the IRM can be used to
produce reliably conservative estimates which are easy to calculate and that eas-
ily lend themselves to compactness-of-input/accuracy tradeoff. Following these
observations the first and second authors used the IRM set-up time estimate as
a central ingredient in a commercially available application which dynamically
reconfigures data in a disk array. Details of the application and successful results
from real production environments are to be presented elsewhere.

Techniques: Naturally, much of the notions and proofs come from and use the
theory of metric spaces. The classes of interest in this discussion are �1-metrics
and negative type metrics, as well as the general class of metrics. In the process of
establishing our results we extend a result of Kelly on the properties of invariant
metrics on the real line coming from concave functions.

Organization: The rest of the paper is organized as follows. Section 2 In-
troduces set-up times and discusses some basic definitions and facts from the
theory of metric spaces relevant to our discussion. Section 3 describes the ba-
sic models which we will study and introduces the concepts of monotonicity,
super additivity, dominance and approximation. In section 4 we prove criteria
for monotonicity and super additivity of the IRM estimate in terms of metric
properties of the set-up time function. Finally, Section 5 discusses properties of
metric arising from the seek times in disk drives.

2 Preliminaries

2.1 Set-Up Time

Throughout the paper we let X represent the states of a system. In this section
we let n denote the number of states in X . Following [1] section 6.2, we let the
function d : X ×X −→ R+, be the set-up time function; namely, for i, j ∈ X ,
d(xi, xj) represents the amount of time which is required to switch the system
from state i to state j.

The abstract notion of a state can acquire many different meanings in different
applications. For example, the states can refer to different tasks that the system
needs to accomplish as in production systems and processors, or, to physical
locations where tasks should be conducted as in storage systems. We assume
that there is some process which generates a sequence of requests for the states
of X .

Given a time interval I let xI = x = x1, ..., xm be the sequence of requests
for states of X during I. The Total set-up time during time interval I is simply
the sum of the set-up times between consecutive requests

T (x) =
m−1∑
j=1

d(xj , xj+1)
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In some cases we are not given the sequence of requests (a trace) but rather
some partial information about the sequence x. We wish to estimate the total
set-up time of the sequence using the information available to us. In this paper
we shall assume that the partial information available to us is the activity vector
a = aI = (a1, ..., an), where ai is the number of requests for state i during time
interval I. We will assume that in general a can be any vector with integer
nonnegative entries. We let a =

∑
i ai be the total number of requests.

2.2 Metric Spaces

The theory of finite metric spaces will be used in the statements and proofs of
our results. The following section provides some basic definitions and facts about
metric spaces which will be needed later on.

We continue with a few standard definitions. A pair (X, d) where X is a set
and d is a function d : X ×X −→ R+ is called a metric-space if (i) d(x, x) = 0
for all x ∈ X and d(x, y) > 0 for x = y, (ii) d(x, y) = d(y, x) for all x, y ∈ X
and (iii) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X . If instead of property (i)
we only require that d(x, x) = 0 we say that (X, d) form a semi-metric. If we
do not require the symmetry property, we say that (X, d) form a Pseudometric.
One can “symmetrize” such an object by taking d∗(x, y) = (d(x, y) + d(y, x))/2.
It can be easily seen that d∗ satisfies 1’ and 3’ if d does. Set-up time functions
can be reasonably assumed to satisfy the triangle inequality since one way to
switch from state x to state z is to first switch from x to y and then from y to
z. Set-up time functions cannot always be assumed to be symmetric as can be
seen from rotational latency in disk drives.

Certain metric spaces are induced by norms. The �p norm on Rn is ‖x‖p =
(
∑n

i=1 |xi|p) 1
p where x = (x1, . . . , xn). A metric space (X, d) is called an �p-

metric if there exists a mapping φ : X −→ Rn such that d(x, y) = ‖φ(x)−φ(y)‖p

for all x, y ∈ X . We sometimes say Euclidean metric instead of �2-metric. A space
(X, d) is negative type if (X,

√
d) is Euclidean.

Some Basic Facts About Metric Spaces. Assume (X, d) is a finite metric
space, X = {x1, . . . , xn}. There are two classical criteria for it to be Euclidean.

– Schoenberg’s criterion: (X, d) is Euclidean if and only if for all n real numbers
v1, . . . , vn with

∑
i vi = 0 we have

∑
i,j vivjd

2(xi, xj) ≤ 0. (This criterion is
the reason for the name negative type, as by definition, d is Euclidean iff d2

is negative type.)
– Cayley’s criterion: Consider the order n − 1 matrix M with entries Mi,j =
d2(xi, xn)+d2(xj , xn)−d2(xi, xj), i, j = 1, . . . , n−1. Then (X, d) is Euclidean
if and only if the matrix M is positive semi definite, ie, all of its eigenvalues
are nonnegative.

We say that a metric (X, d) is L1 if there exist functions fx, x ∈ X such that
d(x, y) =

∫
R |fx(t)− fy(t)|dt. It is known that a finite metric space is L1 iff it is

�1. Another well known fact we later use is that every �1-metric is negative type
[5]. Negative type distances do not necessarily satisfy the triangle inequality.
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A distance function can be defined on the line given a real positive function F
with certain properties. We define the distance dF between i and j as dF (i, j) =
F (|i − j|). utilized in this paper. We note that if F is convex then dF satisfies
the triangle inequality and thus provides a metric.

3 Models and Their Properties

Recall that our input is an activity vector, that is the count of requests to the
different states; however, in order to know the total set-up time we need to
know the actual sequence of requests. In the absence of the actual sequence we
use models for estimating set-up time. A model for estimating set-up time is
an interpretation of an activity vector as a distribution over sequences, and the
resulting estimate is then the expected set-up time for a random sequence drawn
from this distribution. For example some models will interpret an activity vector
(100, 100) as a uniform distribution of sequences that visit either location 1 or 2,
while other will consider the distribution in which either all first 100 requests are
for the first location or all of them were for the other; clearly the two different
models in the above example will produce very different time estimates.

3.1 Examples of Models and Estimates

We now describe a few models M and their associated set-up time estimates.

The IRM (Independent Reference Model). The IRM models independent
random requests to states in X , taking into account that the different states are
not uniformly popular. The model is parameterized by a probability distribution
p = pi on the set of states X . The model itself is then given by the product
measure on Xa. The product measure reflects an underlying assumption that
requests are generated independently of each other. To be compatible with the
observed activity vector we set the request probability for state i to be pi = ai/a
and the length of the generated sequence to be a. For this model the expected
total set-up time is

T (a, d; IRM) = a
∑
i,j

pipjd(xi, xj) =
1
a

∑
i,j

aiajd(xi, xj)

We will refer to T (a, d; IRM) as the IRM estimate. For ease of notation we will
sometimes use T (a, d) instead of T (a, d; IRM).

The next model is not discussed in details in this extended abstract, and our
results about it will be presented in the full version of the paper.

The PMM (Partial Markov Models) ri of not moving to another state, and
in the event of a move, the next state is j with probability qj , independent of
the current requested state. Consequently, the transition probabilities of moving
from i to j are pi,j = (1 − ri)qj for i = j and pi,i = ri + (1 − ri)qi. Here
0 ≤ ri, qi ≤ 1. We call the vector r = (ri) the locality vector of the model. Given
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a locality vector r and an observed activity vector a for some time interval I
there exists a unique partial Markov model P which is compatible with r and
a. By compatibility we mean that r is the locality vector of P and a/a is the
stationary distribution of P which expresses the expected reference probabilities
in the model P . Fix the vector r = (ri). We let P r denote the partial Markov
model which for each interval I uses the model P compatible with r and aI to
model the request stream during I (note that P 0 is simply the IRM). The P r

estimate is
T (a, d;P r) = a(

∑
i,j

(ai/a)P r
i,jd(xi, xj))

Partial Markov models are useful in capturing locality of reference pheno-
menon, [1,2], which means that a request to state i is likely to be followed by
another request to state i within a short time span. Many applications naturally
exhibit this type of behavior. The larger the entries of the locality vector r, the
more likely states are to repeat in succession. In the partial Markov model the
number of repetitive successions is distributed geometrically.

The Worst Case (Supremum) Model. In the worst case model W we as-
sume that the sequence of states during time interval I was the sequence which
maximizes the total set-up time among all sequences which are consistent with
the vector a. The measure is thus a δ measure on the worst case sequence.
Consequently,

T (a, d;W ) = max
a∑

i=1

d(xi, xi+1)

where the maximum is over all sequences of states in X , of length a that agree
with the frequency vector a and x1 = xa+1. We refer to T (a, d;W ) as the worst
case estimate.

3.2 Properties of Models

We introduce notions which will allow us to examine the behavior of model based
estimates with regards to changes in the input data and to compare estimates
for different models.

Super Additivity. Let I be a time interval and let I1, ..., Ik be a subdivision of
I into subintervals. Accordingly, we have aI =

∑
j = 1kaIj . A model M is said

to be super additive with respect to a set-up time function d if the inequality

T (aI , d;M) ≥
k∑

j=1

T (aIj , d;M) (1)

always holds. Super additivity may be interpreted as stating that the addition
of input information, namely, aIj instead of aI , never increases the estimate.

Monotonicity. We say that a vector a = (ai) dominates a vector b = (bi) if
for all i, ai ≥ bi. We use the notation a ≥ b to denote dominance. A model M
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is said to be monotone with respect to d if for any pair of time intervals I ⊂ J
we have T (aI , d;M) ≤ T (aJ , d;M), or stated otherwise, for any pair of vectors
a,b with nonnegative entries and such that a ≥ b we have

T (a, d;M) ≥ T (b, d;M) (2)

Approximation. Let 0 < α < 1. Given a set up function d, a model M1 is
said to be provide an α approximation to a model M2 (and vice versa) if for any
activity vector a we have

α ≤ T (a, d;M1)
T (a, d;M2)

≤ 1
α

(3)

We say that a model M is conservative if it α approximates the worst case model
W for some α > 0.

4 Metric Space Criteria for Properties of Models

In this section we establish criteria for monotonicity and super additivity of the
IRM estimates in terms of metric properties of the set-up time function d. We
also establish a criterion for the IRM estimate to be a 1/2 approximation to the
worst case estimate.

Theorem 1. (A criterion for Super additivity) The IRM estimate is super ad-
ditive with respect to d if and only if d is negative type.

Proof. It is enough to establish super additivity for a subdivision of I into two
subintervals, that is to show that for all nonnegative vectors a = (ai),b = (bi),

T (a + b, d) ≥ T (a, d) + T (b, d) (4)

Let a =
∑

i ai and b =
∑

i bi. Then

T (a + b, d)− T (a, d)− T (b, d)

=
∑
i�=j

(ai + bi)(aj + bj)d(xi, xj)
a+ b

−
∑
i�=j

aiajd(xi, xj)
a

−
∑
i�=j

bibjd(xi, xj)
b

=
1

ab(a+ b)

∑
i�=j

d(xi, xj)(aibjab+ ajbiab− aiajb
2 − bibja2)

=
1

ab(a+ b)

∑
i�=j

d(xi, xj)(aib− bia)(bja− ajb)

= − ab

a+ b

∑
i�=j

d(xi, xj)
(
ai

a
− bi
b

)(
aj

a
− bj
b

)
.
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Setting vi =
ai

a
− bi
b

, we get

T (a + b, d)− T (a, d)− T (b, d) = − ab

a+ b

∑
i�=j

vivjd(xi, xj). (5)

We note that
∑

i vi = 0, hence by Schoenberg’s criterion the IRM estimate is
super additive if d is negative type. Conversely if the IRM estimate is super
additive then ∑

i,j

vivjd(xi, xj) ≤ 0

for all v of the form a/a− b/b where a,b are vectors with integer non negative
entries. After scaling we may deduce that the property holds whenever a,b have
rational non negative entries and by density of the rationals for all a,b with
non negative entries. Every vector v = (v1, . . . , vh) such that

∑
i vi = 0 has a

multiple of the form 1
aa − 1

bb, where a,b have non negative entries. Indeed if
ai = max{vi, 0} and bi = max{−vi, 0}, then a = b and 1

aa − 1
bb = 1

av, hence
Schoenberg’s criterion holds and d is negative type.

Theorem 2. (criteria for monotonicity) The IRM estimate is monotone with
respect to d if and only for every choice of k, the matrix B(k, d)i,j = d(xi, xk) +
d(xk, xj)−d(xi, xj) defines a nonnegative quadratic form when restricted to vec-
tors with nonnegative entries. In particular, if d is a pseudo metric or negative
type then the IRM estimate is monotone with respect to d.

Proof. We check the sign of the partial derivatives of T (a, d) with respect to ak

(where k ∈ {1, . . . , n} is an arbitrary element).

∂

∂ak
T (a, d)

=
a(
∑

i aid(xi, xk) +
∑

j ajd(xj , xk))−∑i,j aiajd(xi, xj)
a2

=
1
a2

∑
i,j

aiaj(d(xi, xk) + d(xj , xk)− d(xi, xj)) =
1
a2 aBat

where B = B(k, d) is the matrix with ij entry d(xi, xk) + d(xj , xk) − d(xi, xj).
Assume that for all k, B(k, d) is positive semi definite on vectors with nonneg-
ative entries then ∂

∂ak
T (a, d) ≥ 0 for all k and all activity vectors a. It follows

from the Mean-value Theorem that if a ≥ b then T (a, d) ≥ T (b, d). Conversely
if there are a ≥ 0 and k such that aB(k, d)at < 0 then taking b which is identical
to a except that bk is slightly smaller than ak we get T (a, d) < T (b, d), which
proves the first statement of part 3.

If d is a semi-metric then B has nonnegative entries and so aB(k, d)at ≥ 0 and
if d is negative type then by Cayley’s criterion aB(k, d)at ≥ 0 which completes
the proof.
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Theorem 3. (Comparison of the IRM estimate and worst case estimate) If d
satisfies the triangle inequality then for all activity vectors a we have

2T (a, d; IRM) ≥ T (a, d;W ) (6)

where W is the worst case model.

Proof. Assume first that the activity vector is the vector (1, 1, . . . , 1). The IRM
estimate here is 1

n

∑
i,j d(xi, xj), while the worst case estimate is the length of

the longest Hamiltonian cycle in the complete graph on X with edge weights
given by d. Assume without loss of generality that the longest Hamiltonian path
in X is 1, 2, . . . , n. Since d satisfies the triangle inequality we have for 1 ≤ i < n
and for j ∈ X d(xi, xi+1) ≤ d(xi, xj) + d(xj , xi+1) (the n + 1 point coincides
with the first point). Summing over all i, j we get

n

n∑
i=1

d(xi, xi+1) ≤ 2
∑
i,j

d(xi, xj).

Therefore 2T (a, d; IRM) ≥ T (a, d;W ). To complete the proof we need to con-
sider a general activity vector (a1, . . . , an). Let X ′ be the metric space with a
points that is composed of groups of aj points of type j. Given d on X we induce
a metric on X ′ by letting the distance between a point of type i and a point
of type j be d(xi, xj). Clearly X ′ also satisfies the triangle inequality. We have
thus reduced the problem to the case of the activity vector (1, 1, . . . , 1) and are
done.

5 Set-Up Time Functions of a Disk

In this section we show that the radial seek time function of a disk drive, which
is the standard set-up function in storage system research is an �1-metric and
in particular is negative type. From this we conclude that the IRM estimates
are super additive when applied to disk seek times. Data on disk drives resides
on tracks which form concentric circles of varying radii r around the center of
a platter. To get from a track at radius r1 to another track at radius r2 the
head of the device performs a radial motion. The time it takes the disk head to
perform this radial motion is known as (radial) seek time. Seek time is translation
invariant Furthermore, the acceleration and deceleration of the head dictate that
the seek time from r1 to r2 has the form

dF (r1, r2) = F (|r1 − r2|)
where F is a concave non decreasing function.

If we let X be the set of data locations on the disk then a theorem of Kelly
proved in [4] can be interpreted as stating that (X, dF ) is negative type. We
prove a stronger result of independent interest using a much simpler proof.

Theorem 4. Let F be a concave nondecreasing function with F (0) = 0 and let
X ⊂ R. Then (X, dF ) is an �1 metric space.
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Proof. Let X = {x1, . . . , xn}. Consider

Y = {|xi − xj | : 1 ≤ i, j ≤ n}
the set of possible distances in X , and order the elements of Y as 0 = y0 < y1 <
y2 < . . . < ym. let G be the piecewise linear function which

(i) coincides with F on Y
(ii) is linear on all intervals [yi, yi+1] and
(iii) is constant on [ym,∞) (that is, gets the value F (ym) there).

Obviously (X, dF ) = (X, dG) since F = G on the set of all relevant values Y , so
it is enough to prove the claim for G, which is also non decreasing and concave.
We now define functions Hs,t as follows.

Hs,t(x) = sx if x < t and st otherwise.

We also let si = G(yi)−G(yi−1)
yi−yi−1

be the sequence of slopes of G. We now claim
that G is a convex combination of functions of the form Hs,t.

The proof proceeds by induction on m. If m = 0 then G = H1,0 = 0. For
m > 0, look at the function G̃ = G−Hsm,ym . It is not hard to see that G̃(0) = 0,
G̃ is constant beyond ym−1 and is piecewise linear with breakpoints y1, . . . , ym−1.
A piecewise linear function is concave and nondecreasing if and only if its slopes
are decreasing and nonnegative, and so s1 ≥ s2 ≥ . . . ≥ sm ≥ 0, and similarly
s1 − sm ≥ s2 − sm ≥ . . . ≥ sm−1 − sm ≥ 0. But, these are the slopes of G′

and it is therefore concave and nondecreasing. We may now apply the induction
hypothesis to G̃ and this proves the claim.

Since a sum of �1-metrics is also an �1-metric, we are left with the task of
showing that for a function F = Hs,y, the resulting metric dF is an �1-metric.
Notice that dF (i, j) = s · min{|i − j|, y}. Let fi = 1

2sχ[xi,xi+y] be the function
whose value is 1

2s on the interval [xi, xi + y] and zero otherwise. It is easy to see
that for any i, j ∈ R

dF (i, j) = s ·min{|i− j|, y} =
∫
R
|fi(x) − fj(x)|dx

This shows that dF is an L1 metric and hence l1.

Combining theorem 1 with theorem 4 we get

Theorem 5. The IRM estimate is super additive with respect to the seek time
function dF for any physical disk drive.

6 Conclusions and Future Work

We have introduced several natural properties of set-up time estimates and stud-
ied them for the IRM. We have shown that the IRM estimate satisfies monotonic-
ity which is a “sanity check” for set-up time estimates, and further that the IRM
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is an easily computable approximation to the worst case estimate. In the specific
but important context of seek functions in disk drives we showed that the IRM
shares another formal property that holds for worst case estimates namely super
additivity. It would be interesting to explore monotonicity, super additivity and
various approximation relations among other models. One interesting class of
examples are the renewal models which were suggested by Opderbeck and Chu
in [6]. The IRM is a special case of such models where the renewal model is based
on exponential inter-arrival times. It would be interesting to investigate other
cases such as hyperexponential, gamma or Pareto bounded heavy tail distribu-
tions. Such an investigation will likely require refined definitions for properties
such as monotonicity and super additivity since the associated models are not
Markovian.

Acknowledgments. We would like to thank Timothy Chow for helpful discus-
sions regarding a preliminary version of this paper.
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Abstract. An axis-parallel k–dimensional box is a Cartesian product
R1 × R2 × · · · × Rk where Ri (for 1 ≤ i ≤ k) is a closed interval of the
form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the
minimum dimension k, such that G is representable as the intersection
graph of (axis–parallel) boxes in k–dimensional space. The concept of
boxicity finds applications in various areas such as ecology, operation
research etc.

A number of NP-hard problems are either polynomial time solvable
or have much better approximation ratio on low boxicity graphs. For
example, the max-clique problem is polynomial time solvable on bounded
boxicity graphs and the maximum independent set problem has log n
approximation ratio for boxicity 2 graphs. In most cases, the first step
usually is computing a low dimensional box representation of the given
graph. Deciding whether the boxicity of a graph is at most 2 itself is
NP-hard.

We give an efficient randomized algorithm to construct a box represen-
tation of any graph G on n vertices in 1.5(Δ + 2) ln n dimensions, where
Δ is the maximum degree of G. We also show that box(G) ≤ (Δ+2) ln n
for any graph G. Our bound is tight up to a factor of ln n. The only pre-
viously known general upper bound for boxicity was given by Roberts,
namely box(G) ≤ n/2. Our result gives an exponentially better upper
bound for bounded degree graphs.

We also show that our randomized algorithm can be derandomized to
get a polynomial time deterministic algorithm.

Though our general upper bound is in terms of maximum degree Δ,
we show that for almost all graphs on n vertices, its boxicity is upper
bound by c ·(dav +1) ln n where dav is the average degree and c is a small
constant. Also, we show that for any graph G, box(G) ≤ √

8ndav ln n,
which is tight up to a factor of b

√
lnn for a constant b.

1 Introduction

Let F = {Sx ⊆ U : x ∈ V } be a family of subsets of a universe U , where V is an
index set. The intersection graph Λ(F) of F has V as vertex set, and two distinct
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vertices x and y are adjacent if and only if Sx∩Sy = ∅. Representations of graphs
as the intersection graphs of various geometrical objects is a well studied topic
in graph theory. Probably the most well studied class of intersection graphs are
the interval graphs, where each Sx is a closed interval on the real line.

A well known concept in this area of graph theory is the boxicity, which was
introduced by F. S. Roberts in 1969 [17]. This concept generalizes the concept of
interval graphs. A k–dimensional box is a Cartesian product R1 ×R2 × · · · ×Rk

where Ri (for 1 ≤ i ≤ k) is a closed interval of the form [ai, bi] on the real line. For
a graphG, its boxicity is the minimum dimension k, such thatG is representable as
the intersection graph of (axis–parallel) boxes in k–dimensional space. We denote
the boxicity of a graphG by box(G). The graphs of boxicity 1 are exactly the class
of interval graphs. This concept finds applications in niche overlap in ecology and
to problems of fleet maintenance in operations research. (See [12].)

In many algorithmic problems related to graphs, the availability of certain
convenient representations turn out to be extremely useful. Probably, the most
well-known and important examples are the tree decompositions and path de-
compositions [5]. Many NP-hard problems are known to be polynomial time
solvable given a tree(path) decomposition of the input graph that has bounded
width. Similarly, the representation of graphs as intersections of “disks” or
“spheres” lies at the core of solving problems related to frequency assignments in
radio networks, computing molecular conformations etc. For the maximum inde-
pendent set problem which is hard to approximate within a factor of n(1/2)−ε for
general graphs, a PTAS is known for disk graphs given the disk representation
[13,1] and an FPTAS is known for unit disk graphs [22]. In a similar way, the
availability of box representation in low dimension make some well known NP
hard problems like the max-clique problem, polynomial time solvable since there
are only O((2n)k) maximal cliques in boxicity k graphs. Though the complex-
ity of finding the maximum independent set is hard to approximate within a
factor n(1/2)−ε for general graphs, it is approximable to a logn factor for boxi-
city 2 graphs (the problem is NP-hard even for boxicity 2 graphs) given a box
representation [2,4].

It was shown by Cozzens [11] that computing the boxicity of a graph is NP–
hard. This was later improved by Yannakakis [23], and finally by Kratochvil [16]
who showed that deciding whether the boxicity of a graph is at most 2 itself
is NP–complete. Therefore it is interesting to design efficient algorithms to rep-
resent small boxicity graphs in low dimensions. To the best of our knowledge,
the only known strategy till date for computing a box representation for general
graphs is by Roberts [17], but it guarantees only a box representation in n/2
dimensions for any graph G on n vertices and m edges. In this paper, we give a
randomized algorithm that guarantees an exponentially better bound (O(ln n)
instead of n/2) for the dimension in case of bounded degree graphs. To be pre-
cise, our approach yields a box representation for any graph G on n vertices
and maximum degree Δ in 1.5(Δ+ 2) lnn dimensions in O(Δm lnn) time with
high probability. We also derandomize our algorithm to obtain a deterministic
polynomial time algorithm to do the same.



400 L.S. Chandran and N. Sivadasan

In a recent manuscript [8] the authors showed that for any graphG, box(G) ≤
tw(G) + 2, where tw(G) is the treewidth of G. This result implies that the class
of ‘low boxicity’ graphs properly contains the class of ‘low treewidth graphs’. It
is well known that almost all graphs on n vertices and m = c · n edges (for a
sufficiently large constant c) haveΩ(n) treewidth [15]. In this paper we show that
almost all graphs on n vertices and m edges have boxicity at most c′ m

n lnn for a
small constant c′. An implication of this result is that for almost all graphs, there
is an exponential gap between its boxicity and treewidth. Hence it is interesting
to take a relook at those NP-hard problems that are polynomial time solvable
in bounded treewidth graphs and see whether they are also polynomial time
solvable for bounded boxicity graphs.

Researchers have also tried to bound the boxicity of graph classes with special
structure. Scheinerman [18] showed that the boxicity of outer planar graphs is
at most 2. Thomassen [20] proved that the boxicity of planar graphs is bounded
above by 3. Upper bounds for the boxicity of many other graph classes such as
chordal graphs, AT-free graphs, permutation graphs etc. were shown in [8] by
relating the boxicity of a graph with its treewidth. Researchers have also tried to
generalize or extend the concept of boxicity in various ways. The poset boxicity
[21], the rectangle number [9], grid dimension [3], circular dimension [14,19] and
the boxicity of digraphs [10] are some examples.

1.1 Our Results

We summarize below the results of this paper.

1. We show that for any graph G on n vertices, box(G) ≤ (Δ + 2) lnn. This
bound is tight up to a factor of lnn.

2. In fact, we show a randomized algorithm to construct a box representation
of G in 1.5(Δ+ 2) lnn dimensions, that runs in O(Δm lnn) time with high
probability, where m is the number of edges in G.

3. Next we show a polynomial time deterministic algorithm to construct a
box representation in (Δ + 2) lnn dimensions by derandomizing the above
randomized algorithm.

4. Though the general upper bound that we show is in terms of the maximum
degree Δ, we also investigate the relation between boxicity and average de-
gree. We show that for almost all graphs on n vertices and m edges, the
boxicity is O((dav + 1) lnn), where dav is the average degree.

5. We also derive a upper bound for boxicity of general graphs in terms of
average degree. We show that for any graph G, box(G) ≤ √8ndav lnn, which
is tight up to a factor of b

√
lnn for a constant b.

We refer the reader to the complete version [7] for the missing proofs.

1.2 Definitions and Notations

Let G be a undirected simple graph on n vertices. The vertex set of G is denoted
as V (G) = {1, · · · , n} (or V in short). Let E(G) denote the edge set of G.
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We denote by G, the complement of G. We say the edge e is missing in G, if
e ∈ E(G). A graph G′ is said to be a super graph of G where V (G) = V (G′), if
E(G) ⊆ E(G′). For a vertex u ∈ V , let N(u) denote the set of neighbors of u in
G and let d(u) denote the degree of u in G, i.e. d(u) = |N(u)| . Let Δ denote
the maximum degree of G.

Definition 1 (Projection). Let π be a permutation of the set {1, · · · , n}. Let
X ⊆ {1, · · · , n}. The projection of π onto X denoted as πX is defined as follows.
Let X = {u1, . . . , ur} such that π(u1) < π(u2) < ... < π(ur). Then πX(u1) =
1, πX(u2) = 2, · · · , πX(ur) = r.

Definition 2 (Interval Representation). An interval graph can be repre-
sented as the intersection graph of closed intervals on real line. To define an
interval representation of an interval graph G, we define the two functions l :
V → R and r : V → R. The interval corresponding to a vertex v denoted as I(v)
is given by [l(v), r(v)], where l(v) and r(v) are the left and right end points of
the interval corresponding to v.

Definition 3. We define a map M(G, π) which associates a permutation π of
the vertices {1, 2, · · · , n} to an interval super graph G′ of G, as follows: Consider
any vertex u ∈ V (G). Let nu ∈ N(u) ∪ {u} be the vertex such that π(nu) =
minw∈N(u)∪{u} π(w). Then associate the interval [π(nu), π(u)] to the vertex u,
and let G′ be the resulting interval graph. It is easy to verify that G′ is a super
graph of G. We define M(G, π) = G′.

1.3 Box Representation and Interval Graph Representation

Let G = (V,E(G)) be a graph and let I1, . . . , Ik be k interval graphs such that
each Ij = (V,E(Ij)) is defined on the same set of vertices V . If

E(G) = E(I1) ∩ · · · ∩E(Ik),

then we say that I1, . . . , Ik is an interval graph representation of G. The following
equivalence is well-known.

Theorem 1 (Roberts [17]). The minimum k such that there exists an inter-
val graph representation of G using k interval graphs I1, . . . , Ik is the same as
box(G).

Recall that a k–dimensional box representation of G is a mapping of each vertex
u ∈ V to R1(u) × · · · × Rk(u), where each Ri(u) is a closed interval of the
form [�i(u), ri(u)] on the real line. It is straightforward to see that an interval
graph representation of G using k interval graphs I1, . . . , Ik, is equivalent to a k–
dimensional box representation in the following sense. Let Ri(u) = [�i(u), ri(u)]
denote the closed interval corresponding to vertex u in an interval realization of
Ii. Then the k–dimensional box corresponding to u is simply R1(u)×· · ·×Rk(u).
Conversely, given a k–dimensional box representation of G, the set of intervals
{Ri(u) : u ∈ V } forms the ith interval graph Ii in the corresponding interval
graph representation.
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When we say that a box representation in t dimensions is output by an algo-
rithm, the algorithm actually outputs the interval graph representation: that is,
the interval representation of the constituent interval graphs.

2 The Randomized Construction

Consider the following randomized procedure RAND which outputs an interval
super graph of G. Let Δ be the maximum degree of G.

RAND
Input: G.
Output: G′ which is an interval super graph of G.

begin
step1. Generate a permutation π of {1, . . . , n} uniformly at random.
step2. Return G′ = M(G, π).

end.

Lemma 1. Let e = (u, v) ∈ E(G). Let G′ be the output of RAND(G). Then,

Pr
[
e /∈ E(G′)

]
=

1
2

(
d(u)

d(u) + 2
+

d(v)
d(v) + 2

)
≤ Δ

Δ+ 2
.

Proof. We have to estimate the probability that u and v are adjacent in G′.
That is, I(u) ∩ I(v) = ∅.

Let nu ∈ N(u) be a vertex such that it minimizes minw∈N(u) π(w). Similarly,
let nv ∈ N(v) be a vertex such that it minimizes minw∈N(v) π(w).

It is easy to see that I(u) ∩ I(v) = ∅ if (a) π(nu) < π(v) < π(u). This is
because, if the above condition holds, then, recalling the definition of M(G, π),
it follows that l(u) < r(v) < r(u), which implies that r(v) ∈ I(u)∩I(v). Similarly,
if (b) π(nv) < π(u) < π(v) then also I(u) ∩ I(v) = ∅. On the other hand, it is
easy to see that I(u) ∩ I(v) = ∅ only if either (a) or (b) hold. Again, the above
two events ( (a) and (b)) are mutually exclusive. Hence

Pr
[
e /∈ E(G′)

]
= Pr[π(nu) < π(v) < π(u)] + Pr[π(nv) < π(u) < π(v)] .

We bound Pr[π(nu) < π(v) < π(u)] as follows. Let X = {u} ∪N(u) ∪ {v}. Let
πX be the projection of π onto X . Clearly, the event π(nu) < π(v) < π(u)
translates to saying that πX(v) < πX(u) and πX(v) = 1. Note that πX can
be any permutation of |X | elements with equal probability, which is 1

(d(u)+2)! .
The number of permutations where πX(v) < πX(u) equals (d(u) + 2)!/2. Now
the number of permutations where πX(v) = 1 equals (d(u) + 1)!. Note that the
set of permutations with πX(v) = 1 is a subset of the set of permutations with
πX(v) < πX(u). It follows that

Pr[πX(v) < πX(u) and πX(v) = 1] =
(d(u) + 2)!/2− (d(u) + 1)!

(d(u) + 2)!
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which is d(u)
2(d(u)+2) . Using similar arguments, it follows that Pr[π(nv) <

π(u) < π(v)] = d(v)
2(d(v)+2) . Combing the two bounds, the result follows.

Lemma 2. Let I1, I2, · · · , It be the output generated by t invocations of
RAND(G). If t ≥ 3

2 (Δ + 2) lnn then E(G) = E(I1) ∩ E(I2) ∩ · · · ∩ E(It)
with high probability .

As mentioned in the proof of Lemma 2, if we fix t = (Δ + 2) lnn, the resulting
intersection graph is G with probability at least 1/2. Hence we have the following
Corollary.

Corollary 1. Let G be a graph on n vertices and with maximum degree Δ. Then
box(G) ≤ (Δ+ 2) lnn .

The following Lemma is straightforward.

Lemma 3. The RAND procedure can be implemented in O(m + n) time as-
suming that a permutation of {1, . . . , n} can be generated uniformly at random
in O(n) time.

The following theorem is a direct consequence of Lemma 2 and Lemma 3.

Theorem 2. Given a graph G on n vertices and m edges, with high probabil-
ity, a box representation of G in (Δ + 2) lnn dimensions can be constructed in
O(Δm lnn) time, where Δ is the maximum degree of G.

Tight example: We remark that for any given Δ and n > Δ + 1, we can
construct a graph G on n vertices and with maximum degree Δ such that
box(G) ≥ �(Δ + 2)/2�. We assume that Δ is even for the ease of explana-
tion. Roberts [17] has shown that for any even number k, there exists a graph
on k vertices with degree k− 2 and boxicity k/2. We call such graphs as Roberts
graph. The Roberts graph on n vertices is obtained by removing the edges of a
perfect matching from a complete graph on n vertices. We take such a graph by
fixing k = Δ + 2 and we let the remaining n − (Δ + 2) vertices to be isolated
vertices. Clearly, the boxicity of such a graph is also k/2 = (Δ + 2)/2, where
as the maximum degree is Δ. Thus our upper bound is tight up to a factor of
2 lnn.

3 Derandomization

In this section we derandomize the above randomized algorithm to obtain a
deterministic polynomial time algorithm to output the box representation in
(Δ+ 2) lnn dimensional space for a given graph G on n vertices with maximum
degree Δ.

Lemma 4. Let G = (V,E) be the graph. Let E(G) be the edge set of the com-
plement of G. Let H ⊆ E(G). Then we can construct an interval super graph G′

of G in polynomial time such that |E(G′) ∩H | ≥ 2
Δ+2 |H |.
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Theorem 3. Let G be a graph on n vertices with maximum degree Δ. The box
representation of G in (Δ+ 2) lnn dimensions can be constructed in polynomial
time,

Proof. Let h = |E(G)|. It follows from Lemma 4 that we can construct t interval
graphs such that the number of edges of E(G) which is not missing in any of

these t interval graphs is at most
(

Δ
Δ+2

)t

h. If
(

Δ
Δ+2

)t

h < 1, then we are done.

That is, we are done if t ln
(

Δ
Δ+2

)
+ lnh < 0 is true. Clearly this is true, if

t > lnh

ln(Δ+2
Δ ) . Using the fact that ln Δ+2

Δ ≥ 2
Δ − 1

2 ( 2
Δ)2, we obtain box(G) ≤

Δ2

2(Δ−1) lnh ≤ (Δ + 2) lnn. By Lemma 4, each interval graph is constructed in
polynomial time. Hence the total running time is still polynomial. Thus the
theorem follows.

Proof (Lemma 4). We derandomize the RAND algorithm to devise a determin-
istic algorithm to construct G′.

Our deterministic strategy defines a permutation π on the vertices {1, · · · , n}
of G. The desired G′ is then obtained as M(G, π). Let the ordered set Vn =<
v1, · · · , vn > denote the final permutation given by π. We construct Vn in a step
by step fashion. At the end of step i, we have already defined the first i elements
of the permutation, namely the ordered set Vi =< v1, · · · , vi >, where each vj is
distinct. Let V0 denote the empty set. Having obtained Vi for i ≥ 0, we compute
Vi+1 in the next step as follows.

Given an ordered set Vi of i vertices < v1, v2, · · · , vi >, let Vi $ u denote the
ordered set of the i + 1 vertices < v1, v2, · · · , vi, u >. (We will abuse notation
and use Vi to denote the underlying unordered set also, when there is no chance
of confusion.) Let V0 $ u denote < u >.

Consider the RAND algorithm whose output is denoted as G′′. For each
e ∈ H , let xe denote the indicator random variable which is 1 if e ∈ E(G′′), and
0 otherwise. Let XH =

∑
e∈H xe.

Let Z(Vi) for i ≥ 0 denote the event that the first i elements of the ran-
dom permutation generated by RAND is given by the ordered set Vi =<
v1, · · · , vi >. Note that Pr[Z(V0)] = 1 since the first 0 elements of any per-
mutation is the empty set V0.

Let xe|Z(Vi) denote the indicator random variable corresponding to xe con-
ditioned on the event Z(Vi).

Similarly, let the random variable XH |Z(Vi) denote the number of missing
edges in G′′ conditioned on the event Z(Vi).
For i ≥ 0, Let fe(Vi) denote Pr[xe = 1 | Z(Vi)] and let F (Vi) denote
E[XH | Z(Vi)]

Note that fe(V0) denote Pr[xe = 1] and F (V0) denote E[XH ].
Clearly

F (Vi) =
∑
e∈H

fe(Vi).
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By Lemma 1, we know that for any e ∈ H , fe(V0) ≥ 2
Δ+2 . Thus F (V0) ≥ 2|H|

Δ+2 .
Clearly,

E[XH |Z(Vi)] =
1

|V − Vi|
∑

u∈V −Vi

E[XH |Z(Vi $ u)] .

Let u ∈ V − Vi be such that

E[XH |Z(Vi $ u)] = max
w∈V −Vi

E[XH |Z(Vi $ w] .

Define Vi+1 = Vi $ u. It follows that

F (Vi+1) = E[XH |Z(Vi+1)] ≥ E[XH |Z(Vi)] = F (Vi).

In particular, it is also true that F (V1) ≥ F (V0).
After n steps, we obtain the final permutation Vn. Applying the above in-

equality n times, it follows that

F (Vn) = E[XH |Z(Vn)] ≥ E[ZH ] = F (V0).

Recalling that F (V0) ≥ 2|H|
Δ+2 , we have F (Vn) ≥ 2|H|

Δ+2 .
Let π be the permutation which maps < 1, · · · , n > to Vn. The final interval

super graph G′ output by our deterministic strategy is M(G, π). By definition,
F (Vn) is the total number of edges from H that are missing in G′. We have
shown that F (Vn) ≥ 2|H|

Δ+2 as claimed.
It remains to show that the above deterministic strategy takes only polynomial

time. For that we need the following lemma.

Lemma 5. For any ordered set Uj =< u1, · · · , uj > and any e ∈ H, fe(Uj) can
be computed exactly in polynomial time.

Given a vertex w ∈ V − Vi, F (Vi $ w) is simply
∑

e∈H fe(Vi $ w). It follows
from Lemma 5 that F (Vi $ w) can be computed in polynomial time. Recall
that given Vi, Vi+1 is Vi $ u where u maximizes F (Vi $ w) among the vertices
from w ∈ V − Vi. Clearly such a u can also be found in polynomial time. Since
there are only n steps before computing Vn, the overall running time is still
polynomial.

4 In Terms of Average Degree

It is natural to ask whether our upper bound of (Δ + 2) lnn still holds even if
we replace Δ by the average degree dav. Unfortunately this is not the case as
illustrated by the following example. Consider the following graph G = (V,E) on
n vertices. We take a Roberts graph on n1 vertices such that n1(n1−2)/n = dav

and we let the remaining n − n1 vertices to be isolated vertices. The average
degree of this graph is clearly dav (recall the definition of Roberts graph) and
its boxicity is at least n1/2 ≥ 1

2

√
ndav. If we substitute Δ by dav in our upper

bound, we obtain that the boxicity of this graph is at most (dav + 2) lnn, which
is far below the actual boxicity. Still, we can prove the following general upper
bound in terms of the average degree.
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Theorem 4. For a graph G = (V,E) on n vertices and average degree dav,
box(G) ≤ √8ndav ln(n). Moreover, there exists a graph G with n vertices and
average degree dav such that box(G) ≥ 1

2

√
ndav.

Proof. We show the upper bound as follows. Let x =
√

ndav

2 ln(n) . Let V ′ denote the
set of vertices inG whose degree is greater than or equal to x. It is straightforward
to verify that |V ′| ≤ ndav

x . Let G′′ be the induced sub graph of G induced on
V − V ′. That is, each vertex in G′′ has degree at most x. By Theorem 2, we
obtain that box(G′′) ≤ 2x ln(n). Since box(G′′) + |V ′| is a trivial upper bound
for box(G), it follows that box(G) ≤ 2x ln(n) + ndav

x = 2
√

2ndav ln(n). The
example graph discussed in the beginning of this section serves as the example
that illustrate the lower bound.

4.1 Boxicity of Random Graphs

Though in general boxicity of a graph is not upper bound by (dav + 2) lnn,
where dav is the average degree, we now show that for almost all graphs, the
boxicity is at most c(dav + 1) lnn, for a small positive constant c. We show
the following. Let G be a random graph drawn according to the G(n,m) model
[6], where n is the number of vertices and m is the number of edges. Then
Pr
[
box(G) ≤ 8(2m

n + 1) lnn)
] ≥ 1 − 2

n2 . (Note that dav = 2m/n). It follows
immediately that for almost all graphs on n vertices and m edges, the boxicity
is upper bound by 8(dav + 1) lnn.

Theorem 5. For a random graph G on n vertices and m edges drawn according
to G(n,m) model,

Pr
[
box(G) ≤ 8

(
2m
n

+ 1
)

lnn
]
≥ 1− 2

n2 .
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Abstract. In this paper we show a lower bound for the on-line version
of Heilbronn’s triangle problem in d dimensions. Specifically, we provide
an incremental construction for positioning n points in the d-dimensional
unit cube, for which every simplex defined by d + 1 of these points has
volume Ω(1/n(d+1) ln (d−2)+2).

1 Introduction

The off-line version of the famous triangle problem was posed by Heilbronn
[Ro51] more than 50 years ago. It is formulated as follows:

Given n points in the unit square, what is H2(n), the maximum possible
area of the smallest triangle defined by some three of these points?

There is a large gap between the best currently-known lower and upper bounds
on H2(n), Ω(log n/n2) [KPS82] and O(1/n8/7−ε) (for any ε > 0) [KPS81]. Jiang
et al. [JLV02] showed that the expected area of the smallest triangle, when the
n points are put uniformly at random in the unit square, is Θ(1/n3). Bare-
quet [Ba01] generalized the off-line problem to d dimensions:

Given n points in the d-dimensional unit cube, what is Hd(n), the max-
imum possible volume of the smallest simplex defined by some d+ 1 of
these points?

The best currently-known lower bound on Hd(n) is Ω(log n/nd) [Le03]. Other
versions, in which the dimension of the optimized simplex is lower than that of
the cube, were investigated in [Le04, BN05, Le05].

The on-line version of the triangle problem is harder than the off-line version
because the value of n is not specified in advance. In other words, the points
are positioned one after the other in a d-dimensional unit cube, while n is incre-
mented by one after every point-positioning step. The procedure can be stopped
at any time, and the already-positioned points must have the property that every
� Work on this paper by the first author has been supported in part by the European
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subset of d + 1 points defines a polytope whose volume is at least some quan-
tity Hon−line

d (n), where the goal is to maximize this quantity. Schmidt [Sc71]
showed that Hon−line

2 (n) = Ω(1/n2). Barequet [Ba04] used nested packing ar-
guments to demonstrate that Hon−line

3 (n) = Ω(1/n10/3) = Ω(1/n3.333...) and
Hon−line

4 (n) = Ω(1/n127/24) = Ω(1/n5.292...).
In this paper we present a nontrivial generalization of the latter method

to d dimensions, showing that for a fixed value of d we have Hon−line
d (n) =

Ω( 1
n(d+1) ln (d−2)+2 ). Specifically, we provide an incremental procedure for posi-

tioning n points (one by one) in a d-dimensional unit cube so that no subset
of up to d+ 1 points is “too dense.” Specifically, the distance between any two
points is at least a1/n

1/d (for some constant a1 > 0), no three points define a
triangle whose area is less than a2/n

2/(d−1) (for some constant a2 > 0), and so
on. The values of the constants are tuned at the end of the construction. It is
then proven that all the d-dimensional simplices defined by (d+ 1)-tuples of the
points have volume Ω(1/n(d+1) ln (d−2)+2).

2 The Construction

2.1 Notation and Plan

We use the following notation. Let pi1 , pi2 , ..., piq be any q points in �d. Then,
|pi1pi2 | denotes the distance between two points pi1 , pi2 ; |pi1pi2pi3 | denotes the
area of the triangle pi1pi2pi3 ; |pi1pi2pi3pi4 | denotes the 3-dimensional volume of
the tetrahedron pi1pi2pi3pi4 ; and, in general, |pi1pi2 . . . piq | denotes the volume of
the (q−1)-dimensional simplex pi1pi2 . . . piq . We denote by Cd the d-dimensional
unit cube, and by Bd

r a d-dimensional ball of radius r. The line defined by the
pair of points pi1 , pi2 is denoted by �i1i2 .

Throughout the construction we refer to d as a fixed constant. Therefore, we
omit factors that depend solely on d, except when they appear in powers of n.

We want to construct a set S of n points in Cd such that

[1] |pi1pi2 | ≥ V2 = a1/n
1/d, for any pair of distinct points pi1 , pi2 ∈ S and for

some constant a1 > 0.
[2] |pi1pi2pi3 | ≥ V3 = a2/n

2/(d−1), for any triple of distinct points pi1 , pi2 , pi3 ∈
S and for some constant a2 > 0.

[3] |pi1pi2pi3pi4 | ≥ V4 = a3/n
4d2−5d−1

d(d−1)(d−2) , for any quadruple of distinct points
pi1 , pi2 , pi3 , pi4 ∈ S and for some constant a3 > 0.

...
[q − 1] |pi1pi2 . . . piq | ≥ Vq = aq−1Vq−1/(aq−2n

d(q−2)+q−3
d(d−q+2) ), for any q-tuple (4 ≤

q ≤ d + 1) of distinct points pi1 , pi2 , . . . , piq ∈ S and for some constant
aq−1 > 0.

The goal is to construct S incrementally. That is, assume that we have al-
ready constructed a subset Sv of v points, for v < n, which satisfies the above
conditions [1]–[q − 1]. We want to show that there exists a new point p ∈ Cd

that satisfies
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[1’] |ppi1 | ≥ V2 = a1/n
1/d, for each point pi1 ∈ S.

[2’] |ppi1pi2 | ≥ V3 = a2/n
2/(d−1), for any pair of distinct points pi1 , pi2 ∈ S.

[3’] |ppi1pi2pi3 | ≥ V4 = a3/n
4d2−5d−1

d(d−1)(d−2) , for any triple of distinct points pi1 , pi2 , pi3

∈ S.

...
[(q − 1)’] |ppi1pi2 . . . piq−1 | ≥ Vq = aq−1Vq−1/(aq−2n

d(q−2)+q−3
d(d−q+2) ), for any q-tuple

(4 ≤ q ≤ d+ 1) of distinct points pi1 , pi2 , . . . , piq ∈ S.

We will show this by summing up the volumes of the “forbidden” portions of
Cd where one of the inequalities [1’]–[(q − 1)’] is violated, and by showing that
the sum of these volumes is less than 1. This implies the existence of the desired
point p, which we then add to Sv to form Sv+1. We continue in this manner
until the entire set S is constructed.

2.2 Forbidden Balls

The forbidden regions where one of the inequalities [1’] is violated are v d-
dimensional balls of radius r1 = a1/n

1/d.1 Their total volume is at most

v|Bd
r1
| = O

( v
n

)
= O(1).

2.3 Forbidden Cylinders

The forbidden regions where one of the inequalities [2’] is violated are
(
v
2

)
d-

dimensional “cylinders” Gij , for 1 ≤ i < j ≤ v. The cylinder Gij is centered at
�ij , its length is at most

√
d, and its cross-section perpendicular to �ij is a (d−1)-

dimensional sphere of radius r2 = 2V3
V2

= 2a2
n2/(d−1)·|pipj | = Θ

(
1

n2/(d−1)|pipj |
)

(see
Figure 1).

The overall volume of the “cylinders” (within Cd) is at most∑
1≤i<j≤v

(|Bd−1
r2
|
√
d) =

∑
1≤i<j≤v

O

(
1

n2|pipj|d−1

)
. (1)

To bound this sum, we fix pi and sum over pj . We use a d-dimensional spherical
packing argument that exploits the fact that Sv satisfies [1]. Specifically, we have

∑
j �=i

1
|pipj |d−1 ≤

O(n1/d)∑
t=1

Mtn
d−1

d

ad−1
1 td−1

, (2)

where Mt is the number of points of Sv that lie in the d-dimensional spherical
shell centered at pi with inner radius a1t/n

1/d and outer radius a1(t+ 1)/n1/d;

1 Recall that |Bd
r | = πd/2rd/Γ (d/2 + 1) = Θ(rd), where Γ (·) is the continuous gener-

alization of the factorial function.
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Gij

pi

pj

2a2
n2/(d−1)|pipj |

�ij

2a2
n2/(d−1)|pipj |

Fig. 1. A cylinder in �d

see Figure 2. There are O(n1/d) such spherical shells (within Cd). Because of [1],
the number of such points is Mt = O(td−1). This follows by an argument of
packing spheres of volume Θ(1/n) within a shell whose volume is Θ

(
td−1

n

)
.

Hence, the sum in Equation (2) is O(n). Summing this over all pi, we obtain
a final bound of O(vn). Substituting this in Equation (1), we see that the total
volume of the forbidden cylinders is O(v/n) = O(1).

2.4 Forbidden Prisms

The forbidden regions where one of the inequalities [3’] is violated are
(
v
3

)
d-

dimensional “prisms” φijk, for 1 ≤ i < j < k ≤ v. The base area (a portion of a
2-dimensional flat) of φijk is at most d, and its “height” is a (d− 2)-dimensional

sphere of radius r3 = 3V4
V3

= O

(
1

n
4d2−5d−1

d(d−1)(d−2) |pipjpk|

)
. The overall volume of the

prisms (within Cd) is at most

∑
1≤i<j<k≤v

(|Bd−2
r3
| · d) =

∑
1≤i<j<k≤v

O

⎛⎝ 1

n
4d2−5d−1

d(d−1) |pipjpk|d−2

⎞⎠ . (3)

To bound this sum, we fix pi, pj and sum over pk. We use a d-dimensional
cylindrical packing argument that exploits the fact that Sv satisfies [1] and [2].
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a1
n1/d2

1

3

pi

O(n1/d)

Fig. 2. A spherical packing of balls in �d

The cylinders are centered at �ij ; see Figure 3, where the line �ij emanates from
pi toward pj through the dth dimension. Specifically, we have

∑
k �=i,j

1
|pipjpk|d−2 ≤

N0n
2(d−2)

d−1

ad−2
2

+
O(n1/d)∑

t=1

2d−2Ntn
d−2

d

ad−2
1 td−2|pipj |d−2

, (4)

where N0 is the number of points of Sv that lie in the innermost d-dimensional
cylinder of the packing (centered at �ij and of radius a1/n

1/d), and Nt is the
number of points of Sv that lie in the cylindrical shell centered at �ij with inner
radius a1t/n

1/d and outer radius a1(t+ 1)/n1/d.
Obviously, N0 = O(n1/d), since the volume of the (d − 1)-dimensional cross-

sectional sphere of the innermost cylinder is O(1/n
d−1

d ) and because of [1]. Also,
we have Nt = O(td−2n1/d). This follows by an argument of packing spheres of
volume Θ(1/n) within a shell whose volume is Θ

(
td−2

n
d−1

d

)
.

Hence, the quantity in Equation (4) is

O

(
n

2d2−3d−1
d(d−1) +

n

|pipj|d−2

)
.

Substituting this in Equation (3), we obtain the upper bound on the total
volume of the forbidden prisms



The On-Line Heilbronn’s Triangle Problem in d Dimensions 413

�ij

2
1

3

a1
n1/d

pi

pj

O(n1/d)

Fig. 3. A d-dimensional cylindrical packing (an extruded (d−1)-dimensional spherical
packing) of balls in �d

O

⎛⎝ ∑
1≤i<j≤v

⎛⎝ 1
n2 +

1

n
3d2−4d−1

d(d−1) |pipj |d−2

⎞⎠⎞⎠
= O

⎛⎝ v2

n2 +
1

n
3d2−4d−1

d(d−1)

∑
1≤i<j≤v

1
|pipj|d−2

⎞⎠ . (5)

We bound the sum in the second summand similarly to our bounding of the
term in Equation (2) (in Section 2.3). We fix pi and use a d-dimensional spherical
packing argument within spherical shells centered at pi. Arguing as above, we
obtain

∑
j �=i

1
|pipj |d−2 ≤

O(n1/d)∑
t=1

Mtn
d−2

d

ad−2
1 td−2

=
O(n1/d)∑

t=1

O(td−1)n
d−2

d

ad−2
1 td−2

= O(n).

Summing this over all pi, we obtain a final bound of O(vn). Substituting this
in Equation (5), we see that the total volume of the forbidden prisms is

O

(
v2

n2 +
v

n
2d2−3d−1

d(d−1)

)
= O(1).
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2.5 General Forbidden Zones

In Sections 2.2, 2.3, and 2.4 we computed the total volume of the forbidden zones
in which the respective inequalities [1’]–[3’] are violated. These zones correspond
to q = 2, 3, 4, respectively. In this section we analyze the general case 4 < q ≤
d+ 1.

The forbidden regions where one of the inequalities [(q − 1)’] is violated are(
v

q−1

)
d-dimensional zones ψi1i2...iq−1 (for 1 ≤ i1 < i2 < . . . < iq−1 ≤ v and

4 < q ≤ d + 1), whose “bases” are portions of (q − 2)-dimensional flats with
volume at most d(q−2)/2. The “height” of the zone ψi1i2...iq−1 is a (d − q + 2)-

dimensional sphere of radius rq−1 = O(Vq/Vq−1) = O
(

Vq

|pi1pi2 ...piq−1 |
)
. The total

volume of the zones (within Cd) is at most

∑
1≤i1<...<iq−1≤v

O(|Bd−q+2
rq−1

|d q−2
2 ) =

∑
1≤i1<...<iq−1≤v

O

(
V d−q+2

q

|pi1pi2 . . . piq−1 |d−q+2

)
.

(6)
To bound this sum, we fix pi1 , pi2 , . . . , piq−2 and sum over piq−1 . We use a packing
argument that exploits the fact that Sv satisfies [1]–[q−2]. The packing consists
of the Cartesian product of the (q−3)-dimensional flat π = πi1i2...iq−2 that passes
through pi1 , pi2 , . . . , piq−2 , and spheres whose centers belong to π and extend to
the (d− q + 3)-dimensional space orthogonal to π. Specifically, we have

∑
iq−1 �=i1,...,iq−2

1
|pi1pi2 . . . piq−1 |d−q+2

≤ Z0

V d−q+2
q−1

+
O(n1/d)∑

t=1

⎛⎝Zt ·O
(

n
1
d

a1t|pi1pi2 . . . piq−2 |

)d−q+2
⎞⎠ , (7)

where Z0 is the number of points of Sv that lie in the innermost shape of the
packing (centered at the flat π and of radius a1/n

1/d), and Zt is the number of
points of Sv that lie in the shell centered at π with inner radius a1t/n

1/d and
outer radius a1(t+ 1)/n1/d.

Obviously, Z0 = O(n
q−3

d ), since the volume of the innermost shape is
O(1/n

d−q+3
d ) and because of [1]. Also, we have Zt = O(td−q+2n

q−3
d ). This fol-

lows by an argument of packing spheres of volume Θ(1/n) within a shell whose
volume is Θ(td−q+2/n

d−q+3
d ).

Hence, the sum in Equation (7) is

O

(
n

q−3
d

V d−q+2
q−1

+
n

|pi1pi2 . . . piq−2 |d−q+2

)
. (8)

Substituting this in Equation (6), we obtain the upper bound on the total volume
of the forbidden zones
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O

⎛⎝V d−q+2
q

∑
1≤i1<···<iq−2≤v

(
n

q−3
d

V d−q+2
q−1

+
n

|pi1pi2 . . . piq−2 |d−q+2

)⎞⎠
= O

⎛⎝n q−3
d vq−2

(
Vq

Vq−1

)d−q+2

+
∑

1≤i1<...<iq−2≤v

n

(
Vq

Vq−2

)d−q+2
⎞⎠ .

Combining this with the equality Vq = aq−1Vq−1

aq−2n
d(q−2)+q−3

d(d−q+2)
, we see that the total

forbidden volume is

O

⎛⎝1 +
∑

1≤i1<...<iq−2≤v

n

(
Vq

Vq−2

)d−q+2
⎞⎠ . (9)

In order to show that the bound in Equation (9) is O(1), it remains to prove
that the second summand in it is smaller than 1. This amounts to proving that
the second summand in Equation (8) is smaller than the first summand in it.
From [q − 2] we know that Vq−1 = aq−2Vq−2

aq−3n
d(q−3)+q−4

d(d−q+3)
for 4 < q ≤ d + 1. By

substituting this in Equation (8), we obtain the equal quantity

O

⎛⎝n q−3
d

(
aq−3n

d(q−3)+q−4
d(d−q+3)

aq−2Vq−2

)d−q+2

+
n

V d−q+2
q−2

⎞⎠
= O

⎛⎝n (q−3)d2+(−q2+7q−13)d−2q2+12q−17
d(d−q+3)

V d−q+2
q−2

+
n

V d−q+2
q−2

⎞⎠ . (10)

The second summand in Equation (8) is smaller than the first summand in it
if and only if the second summand in Equation (10) is smaller than the first
summand in it. That is, we have to prove that

n
d2(q−3)+d(−q2+7q−13)−2q2+12q−17

d(d−q+3) > n,

i.e., the inequality

(q − 3)d2 + (−q2 + 7q − 13)d− 2q2 + 12q − 17
d(d − q + 3)

> 1,

which, after simple manipulations, is

(q − 4)d2 − (q − 4)2d− 2q2 + 12q − 17 > 0.

However, it is easily verified that
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(q − 4)d2 − (q − 4)2d− 2q2 + 12q − 17 = (q − 4)(d− q + 2)(d+ 2)− 1 ≥ 5 > 0,

using the facts that q ≥ 5, d− q ≥ −1, and d ≥ 4.

2.6 Epilogue

We are now ready to bound Hon−line
d (n), the maximum possible volume of the

smallest simplex defined by some d + 1 of n points in the d-dimensional unit
cube. In other words, we want to lower bound Vd+1. For this purpose we use its
recursive definition and write

Vd+1 =
d+1∏
q=4

(
aq−1

aq−2n
d(q−2)+q−3

d(d−q+2)

)
· V3 =

ad

n(∑d+1
q=4

d(q−2)+q−3
d(d−q+2) )+ 2

d−1

. (11)

Let us upper bound the power of n in Equation 11:

d+1∑
q=4

d(q − 2) + q − 3
d(d− q + 2)

+
2

d− 1

=
d+1∑
q=4

(
q − 1− 1/d
d− q + 2

)
− 1
d

d+1∑
q=4

(
d− q + 2
d− q + 2

)
+

2
d− 1

=
d−2∑
t=1

d+ 1− 1/d− t
t

− (1− 2/d) +
2

d− 1

< (d+ 1− 1/d)(ln (d− 2) + 1)− (d− 2)− (1− 2/d) + 2/(d− 1)
= (d+ 1) ln (d− 2) + 2− (ln (d− 2)− 1)/d+ 2/(d− 1)
< (d+ 1) ln (d− 2) + 2,

where we use the facts that
∑k

t=1 1/t < ln k+1 and 2/(d−1)−(ln (d− 2)−1)/d <
0 for d sufficiently large (d ≥ 24). We see that Vd+1 >

ad

n(d+1) ln (d−2)+2 .
It remains to show that the constants a1, a2, . . . , ad can be fixed so that the

total volume of the forbidden zones is strictly less than 1. To this aim note that
among these constants, the total volume of the forbidden balls depends only on
a1, the total volume of the forbidden prisms depends only on a1, a2, and so on.
This allows us to fix the values of the constants sequentially so that the total
volume of any type of forbidden shapes is strictly less than 1/d. (See [Ba04] for
the implementation of this technique for d = 3, 4.)

This completes the proof of the main theorem:

Theorem 1. Hon−line
d (n) = Ω(1/n(d+1) ln (d−2)+2). �

3 Conclusion

In this paper we show by using nested packing arguments that Hon−line
d (n) =

Ω(1/n(d+1) ln (d−2)+2). This compares favorably with the best-known lower
bound [Le03] in the off-line case Hoff−line

d (n) = Ω(log n/nd).
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Abstract. A planar polyomino of size n is an edge-connected set of n
squares on a rectangular 2-D lattice. Similarly, a d-dimensional poly-
cube (for d ≥ 2) of size n is a connected set of n hypercubes on an
orthogonal d-dimensional lattice, where two hypercubes are neighbors if
they share a (d − 1)-dimensional face. There are also two-dimensional
polyominoes that lie on a triangular or hexagonal lattice. In this paper
we describe a generalization of Redelmeier’s algorithm for counting two-
dimensional rectangular polyominoes [Re81], which counts all the above
types of polyominoes. For example, our program computed the number
of distinct 3-D polycubes of size 18. To the best of our knowledge, this
is the first tabulation of this value.

Keywords: Polycubes, lattice animals, subgraph counting.

1 Introduction

A polyomino of size (or order) n is an edge-connected set of n squares on the
regular square lattice Z2. Fixed polyominoes are considered distinct if they have
different shapes or orientations. In the literature, the symbol A(n) usually de-
notes the number of fixed polyominoes of size n. We have A(1) = 1, A(2) = 2,
A(3) = 6, A(4) = 19, and so on. Two main open problems related to polyomi-
noes are the number of polyominoes of order n, and the limit of their growth
rate as n tends to infinity.

Redelmeier [Re81] introduced the first efficient algorithm for counting poly-
ominoes, in the sense that it generates all the polyominoes sequentially and
without repetitions. Thus, it only has to count the number of generated poly-
ominoes but does not have to compare every generated polyomino to all the
previously-generated polyominoes. Since the algorithm generates each polyomino
in constant time, its total running time is O(A(n)). Redelmeier implemented his
algorithm in Algol W (and for efficiency also in the PDP assembly language). The
program required about 10 months of CPU time on a PDP-11/70 to compute
the number of all fixed polyominoes of up to order 24.
� Work on this paper by the second author has been supported in part by the European
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The best currently-known algorithm (in terms of running time) for counting
fixed polyominoes is that of Jensen [Je01]. This is a so-called transfer-matrix
algorithm, which does not generate all the polyominoes. Instead, it generates
classes of polyominoes with identical “boundaries,” while being able to compute
efficiently the number of polyominoes in each such class. Jensen was able to
compute A(n) up to n = 56 [Je03].

3-D polyominoes are called polycubes [Lu71]. A poly-

(a) 3-D dominoes

u

(b) 3-D trominoes

Fig. 1. Fixed 3-D
dominoes and tro
minoes

cube of size n is a face-connected set of n cubes in Euclid-
ean three-dimensional space. We denote by A3(n) the
number of distinct fixed polycubes of size n. Figure 1(a,b)
shows the three (resp., 15) polycubes of size 2 (resp., 3).
Therefore, A3(2) = 3, A3(3) = 15, and so on. Polyomi-
noes and polycubes have triggered the imagination of not
only mathematicians. Extensive studies of them can also
be found in the statistical-physics literature, where fixed
polyominoes and polycubes are usually referred to as lat-
tice animals (of dimension 2 or 3). Animals play an im-
portant role in computing the mean cluster density in
percolation processes, in particular those of fluid flow in
random media [BH57].

Similarly, d-dimensional polycubes of size n are con-
nected sets of n hypercubes on the orthogonal d-D lattice
Zd, where connections are through (d − 1)-dimensional
faces. We denote by Ad(n) the number of distinct fixed d-dimensional polycubes
of size n.

We are aware of only three previous attempts to count fixed polycubes:

– Lunnon [Lu72b] analyzed three-dimensional polycubes by considering sym-
metry groups, and computed (manually!) A3(n) up to n = 6.

– Lunnon [Lu75] computed multi-dimensional polyominoes by considering
polycubes that could fit into restricted boxes. For example, he computed
A3(n) up to n = 12.

– Sykes et al. [SGG76] used a method proposed by Martin [Ma74] in order to
derive and analyze series expansions on a three-dimensional lattice (but did
not compute new values of A3(n)).

In the plane we also consider regular hexagonal and triangular lattices. Consis-
tent with the previous definition, fixed hexagonal and triangular polyominoes
are edge-connected sets of cells of the respective lattices. (Again, “fixed” poly-
ominoes are considered distinct if they have different shapes or orientations.)
We denote by H(n) and T (n) the respective numbers of such polyominoes. Lun-
non [Lu72a] computed the values of these series up to H(12) and T (16). To the
best of our knowledge, values of T (n) were computed up to n = 28 (see se-
quence A001420 in [EIS], J. Myers credited). Vöge and Guttmann [VG03] used
a transfer-matrix approach to tabulate H(n) up to n = 35.

Redelmeier’s algorithm is based on counting connected subgraphs in the un-
derlying graph of the two-dimensional orthogonal lattice. However, it does not

-
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depend on any property of the graph. Therefore, in order to generalize the algo-
rithm to higher dimensions and to other types of lattices, we basically need to
compute the respective underlying graphs and apply the same subgraph-counting
algorithm. The intricate issues in this task, for us, were to define precisely which
subgraphs need to be counted, and to handle the exponential growth in the size
of the graphs in higher dimensions efficiently. The subgraph-counting method is
inferior to the transfer-matrix mathod, but the latter cannot be adapted easily
to higher dimensions.

In this paper we describe a generalization of Redelmeier’s algorithm for count-
ing fixed polyominoes that includes all the types mentioned above. For example,
we used our implementation of the algorithm to compute the values of A3(18)
and T (29)–T (31). To the best of our knowledge, this is the first tabulation of
these values, as well as a few terms of Ad(n), for d > 3.

2 The Original Algorithm

In this section we briefly describe Redelmeier’s algorithm for counting two-
dimensional polyominoes. The reader is referred to the original paper [Re81]
for the full details.

Redelmeier’s algorithm is a procedure for connected-subgraph counting, where
the underlying graph is induced by the square lattice. Since translated copies
of a fixed polyomino are considered identical, one must decide upon a canonical
form. Redelmeier’s choice was to fix the leftmost square of the bottom row of a
polyomino at the origin, that is, at the square (0,0). (Note that coordinates are
associated with squares and not with their corners.) Thus, he needed to count
the number of edge-connected sets of squares (that contain the origin) in

{(x, y) | (y > 0) or (y = 0 and x ≥ 0)}.
The squares in this set are located above the thick line in Figure 2(a). The shaded
area in this figure consists of all the reachable cells, that is, possible locations
of squares of polyominoes of order 5. Counting these sets of squares amounts to
counting all the connected subgraphs of the graph shown in Figure 2(b), which
contain the vertex a1. The algorithm [Re81] is shown in Figure 3. Line 4(a)

0 1 2 3 4-3-4

4

3

2

1

0

-2

-1

-1

a1 b2

b1

c4

c3

c2

c1

d6

d5

d4

d3

d2

d1

e8

e7

e6

e5

e4

e3

e2

e1

a1

b2

c4c3c2

d6d5d4d3d2d1

e8e7e6e5e4e2e1

b1

c1

e3

(a) Reachable cells in polyominoes (b) Corresponding graph

Fig. 2. Polyominoes as subgraphs of a specific base graph
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Initialize the parent to be the empty polyomino, and the untried set
to contain only the origin. The following steps are repeated until the
untried set is exhausted.
1. Remove an arbitrary element from the untried set.
2. Place a cell at this point.
3. Count this new polyomino.
4. If the size is less than n:

(a) Add new neighbors to the untried set.
(b) Call this algorithm recursively with the new parent being the

current polyomino, and the new untried set being a copy of the
current one.

(c) Remove the new neighbors from the untried set.
5. Remove newest cell.

Fig. 3. Redelmeier’s algorithm [Re81, p. 196]

deserves some attention. By “new neighbors” we mean only neighbors of the
new cell c that was placed in line 2, which were not neighbors of any cells of the
polyomino before c was placed. This ensures that we will not count the same
polyomino more than once.

This sequential subgraph-counting algorithm can be applied to any graph
(which, indeed, is exactly what we do in the next sections), and it has the
property that it never produces the same subgraph twice.

3 Polycubes in Higher Dimensions

In this section we describe the extension of Redelmeier’s algorithm to counting
polycubes in orthogonal lattices in higher dimensions.

3.1 Three Dimensions

We first demonstrate the extension of the algorithm in three dimensions. To
this aim we need only modify the underlying graph so that it will represent a
three-dimensional cubic lattice. Then we must decide upon a canonical form of

a1 b2 c4

d
1

c
1

b
1

c
3

d
5

d2 c2 d4

d3

d6

d12

d13 c7 d11

d14 c8 b3 c6 d10

d
7

c
5

d
9

d8

d17

d18 c9 d16

d
15

d19

(a) z = 0 (b) z = 1 (c) z = 2 (d) z = 3

Fig. 4. Reachable cubes in a 3D lattice
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a polycube. We fix the origin at the leftmost cube in the “closest” row in the
bottom layer. This way polycubes are built only at

{(x, y, z) | (z > 0) or ((z=0) and (y > 0)) or ((z = 0) and (y = 0) and x ≥ 0)}.

The origin cube is shown in light grey in Figure 4(a). The colored areas in
Figure 4 are the possible locations of cells of polycubes of order 4. The corre-
sponding graph in which the polycubes are counted is drawn in Figure 5.

3.2 Higher Dimensions

We now describe how to generalize the algorithm to d dimensions.

a1

b1 b2 b3

c1 c3 c5c2 c4 c6 c8c7 c9

d
1

d
5

d
9

d
3

d
7

d
2

d
6

d
4

d
8

d
15

d
13

d
17

d
16

d
14

d
18

d
19d11

d
10 d12

Fig. 5. The underlying graph in three
dimensions

Cell Labeling. Our first version of
the program, which counted only 3-D
polycubes, built the underlying graph
by using three nested loops and map-
ping the 3-D lattice cells to a linear
array. It computed the position in the
array by the formula z0 ·X ·Y +y0 ·X+
x0, where X and Y were the ranges of
the x and y coordinates, respectively,
and (x0, y0, z0) was the location of the
three-dimensional cell.

It is not possible to generalize this method to the d-dimensional case, since
we cannot code an unknown number d of nested loops. Instead, we use a single
loop as follows. Each point in the d-dimensional space is specified as a vector
x = (x1, x2, . . . , xd). In order to convert this vector into a single integer, we
regard it as a number in some base t ∈ N with d digits. Consequently, x translates
to the number Γ (x) =

∑d
k=1 xkt

k−1.
We choose t large enough so that no two cells are mapped to the same number.

The minimum possible choice of t is simply the size of the range of coordinates
attainable by reachable cells of polycubes. This number is the generalization of
X and Y in three dimensions. Obviously, t = 2n−2, where n is the polycube size.
A clear benefit of this representation is the ability to move efficiently between
neighboring cells. The images under Γ (·) of the immediate neighbors of a cell x
along the kth direction are Γ (x)± tk−1.

Canonical Cell. As in two and three dimensions, we need to decide upon a
canonical cell 0 = (c1, . . . , cd), from which the algorithm starts executing. It
is easy to verify that a cell x = (x1, . . . , xd) is reachable if and only if x ≥ 0
lexicographically. Setting 0 = (0, . . . , 0) is undesirable since this would result in
reachable cells with negative coordinates. To avoid this, we fix 0 = (n−2, . . . , n−
2, 0). Reachable cells are then in the d-dimensional box defined by (0, . . . , 0) and
xM = (2n−3, . . . , 2n−3, n−1). The function Γ (·) subsequently maps reachable
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Algorithm GraphOrthodD(int n, int d)
begin

1. o := Γ ((n − 2, . . . , n − 2, 0)); M := (2n − 2)d−1n − 1;
2. for i = o, . . . , M do

2.1 b := 1; counter := 0;
2.2 for j = 1, . . . , d do

2.2.1 if i + b ≥ o then do
2.2.1.1 neighbors[i][counter] := i + b;
2.2.1.2 counter := counter+1;

end if
2.2.2 if i − b ≥ o then do

2.2.2.1 neighbors[i][counter] := i − b;
2.2.2.2 counter := counter+1;

end if
2.2.3 b := b(2n − 2);

end for
2.3 neighbors num[i] := emphcounter;

end for
end GraphOrthodD

Fig. 6. Computing the graph for a d-dimensional orthogonal lattice

cells to numbers in the range 0 to M = Γ (xM ) =
∑d−1

k=1(2n − 3)(2n− 2)k−1 +
(n− 1)(2n− 2)d−1 = (2n− 2)d−1n− 1.1

Building the Graph. Figure 6 shows the algorithm for building the d-D graph.
The cell-neighborhood relations are kept in the array neighbors[x][y], where x
is the identity number of the current cell and y is a serial number in the range
(1, . . . , 2d) (all possible directions in d dimensions).2 The array neighbors num
holds the the numbers of actual neighbors of each cell, and the variable b is used
to traverse the lattice in all possible directions.

4 Nonrectangular Planar Lattices

In this section we describe our extensions of the algorithm to counting planar tri-
angular and hexagonal polyominoes. For both cases Lunnon [Lu72a] considered
cells with three coordinates (albeit in the plane) while we invoke a preprocessing
step that computes a neighborhood graph of cells with only two coordinates.

4.1 Triangular Polyominoes

Triangular polyominoes are also called polyiamonds.
1 In fact, xM is not reachable. The reachable cell with the largest image under Γ is

y =(n−2, . . . , n−2, n−1) (the top cell of a “stick” aligned with the dth direction).
We have Γ (y) = (td+1 − 2td−1 − t + 2)/(2(t − 1)), where t = 2n − 2.

2 The actual implementation used the range (0, . . . , 2d − 1).
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Cell representation. For a triangu-

Fig. 7. Representing a triangular lattice
by a rectangular lattice (bold segments
indicate removed adjacency relations)

lar lattice we use equilateral triangles
in two inverse orientations. We model
a triangular lattice by a rectangular
lattice with a restriction on the neigh-
borhood relations: A cell whose x coor-
dinate is even (resp., odd) has only an
upper (resp., lower) neighboring cell
but not a lower (resp., upper) neigh-
bor. All cells have right and left neigh-
bors; see Figure 7.

Canonical cell. As in the orthogonal case, we choose the canonical cell to be
the leftmost triangle in the lowest row. Since we have two types of triangles
(“up” and “down,” e.g., (0, 1) and (0, 0), respectively, in Figure 7), there are
two possible types of canonical cells. Nevertheless, it turns out that it suffices
to count only triangular polyominoes whose canonical cell is of one type, say,
“down.” Recall that we denote by T (n) the number of triangular polyominoes
of size n. Let T ′(n) mark the number of triangular polyominoes whose canonical
call is “down.” Observe that T (n) = T ′(n)+T ′(n−1). To see this, note that when
the canonical cell is “up,” its only possible neighbor is its right “down” neighbor.
Therefore, the number of triangular polyominoes of size n whose canonical cell
is “up” is the same as the number of polyominoes of size (n−1) whose canonical
cell is “down,” the right neighbor of the original canonical cell.

Building the graph. We build the graph as in the orthogonal case. We set the left
and right neighbors of a cell in exactly the same way, and choose whether to set
an upper or lower neighbor by comparing the parity of the sum of coordinates
of the current cell to that of the canonical cell (where equality implies that the
neighbor is “up”). The entire algorithm is given in the full version of the paper.

4.2 Hexagonal Polyominoes

In [VG03], hexagonal polyominoes have already been counted by a transfer-
matrix method, which is much faster than our subgraph-counting approach. For
completeness, we also describe this case here.

Cell representation. We can model a hexagonal lattice by using a rectangular lat-
tice with a special type of adjacency relationship. Namely, consider a hexagonal
lattice as a rectangular lattice in which every second column is “slid down” by half
a square. Every two adjacent squares (even along half of a cell boundary edge) in
the modified lattice are considered neighbors (see Figure 8). Thus, we allow the
cell to have six neighbors in the hexagonal lattice instead of four as in the rec-
tangular lattice. The two additional neighbors are diagonal—either the upper or
the lower diagonal cells, depending on the parity of the x coordinate of the cell.
In the example shown in Figure 8, the two additional neighbors of (1, 1) (odd x
coordinate) are (0, 0) and (2, 0) (the two lower diagonal cells), while the neighbors
of (2, 1) (even x coordinate) are (1, 2) and (3, 2) (the two upper diagonal cells).
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Canonical cell. In the hexagonal case
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Fig. 8. Representing a hexagonal
lattice by a rectangular lattice

we need a sharper definition for the canon-
ical cell. While it is still defined as the
leftmost cell in the lowest row, the mean-
ing of a “row” is now restricted only to
hexagons that are aligned horizontally. In
other words, in our example, (1, 0) is not
in the same row as (2, 0). Consequently,
every row in the rectangular lattice be-
comes two rows in the hexagonal lattice—
an upper and a lower hexagonal row. We
fix the canonical cell to always be in the upper hexagonal row. While building
the graph, we do not include cells that are below that upper row. Thus, if (2, 0)
is the canonical cell, then (3, 0) is not reachable and is, therefore, not included
in the graph.

n A3(n) Ref.
1 1
2 3
3 15
4 86
5 534
6 3,481 [Lu72b]
7 23,502
8 162,913
9 1,152,870

10 8,294,738
11 60,494,549
12 446,205,905 [Lu75]
13 3,322,769,321
14 24,946,773,111
15 188,625,900,446
16 1,435,074,454,755
17 10,977,812,452,428 [EIS]@

18 84,384,157,287,999 Here
@Attributed to A. Flammenkamp in 1999.

Table 1. Numbers of fixed three-
dimensional polycubes

Building the graph. The algorithm
for building the graph is quite similar
to that of the rectangular case. While
processing the current cell, we also
verify that it is not in a level lower
than that of the canonical cell (the
“lowesthexagonal row”).Wealso take
care to to add the diagonal neigh-
bors. The entire algorithm is given
in the full version of the paper.

5 Results

Time and space complexity. The al-
gorithm for building the graph in the
d-dimensional orthogonal lattice (see
Figure 6) consists of one main loop(2)
that handles every cell once. For each
cell it computes its up to 2d neigh-
bors, each neighbor in constant time.
Since there are M = (2n− 2)d−1n−
1 = Θ(nd) cells, the time needed to
create the graph is Θ(dnd). However,
the running time of the algorithm is dominated by the time needed to count the
subgraphs, i.e., Θ(Ad(n)). It is widely believed that this term is roughly expo-
nential in n, where the base of the exponent is a constant that depends only on
d (e.g., about 4.06 for d = 2 [Je03]). The space complexity of the algorithm is
the size of the graph, that is, Θ(dnd). Similarly, for the planar triangular and
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We implemented the algorithm in C and ran the program (with the various
lattice types) in an MS Windows environment. Values of A3(n) were computed
on an IBM workstation with one 1.7GHz Pentium4 processor and 1GB of RAM.
All the other values were computed on an IBM X500 with four 2.4GHz XEON
processors and 3.5GB of RAM.

Table 2. Numbers of fixed d-dimensional polycubes

n A4(n) A5(n) A6(n) A7(n) A8(n) A9(n)
1 1 1 1 1 1 1
2 4 5 6 7 8 9
3 28 45 66 91 120 153
4 234 495 901 1,484 2,276 3,309
5 2,162 6,095 13,881 27,468 49,204
6 21,272 80,617 231,008 551,313
7 218,740 1,121,075 4,057,660
8 2,323,730 16,177,405 74,174,927
9 25,314,097 240,196,280 1,398,295,989
10 281,345,096 3,648,115,531
11 3,178,474,308 56,440,473,990
12 36,400,646,766 886,696,345,225
13 421,693,622,520 14,111,836,458,890
14 4,933,625,049,464
15 58,216,226,287,844

n T (n) n T (n) n T (n)
1 2 12 39,169 23 4,236,446,214
2 3 13 110,194 24 12,341,035,217
3 6 14 311,751 25 36,009,329,450
4 14 15 886,160 26 105,229,462,401
5 36 16 2,529,260 27 307,942,754,342
6 94 17 7,244,862 28 902,338,712,971
7 250 18 20,818,498 29 2,647,263,986,022
8 675 19 59,994,514 30 7,775,314,024,683
9 1,838 20 173,338,962 31 22,861,250,676,074

10 5,053 21 501,994,070
11 14,016 22 1,456,891,547

Table 3. Numbers of fixed triangular polyominoesOn the 3-D orthogonal lat-
tice the program yielded, af-
ter 51.37 days, the values re-
ported in Table 1. The values
of A3(n) for all 1 ≤ n ≤ 17
agree with previous works.

Table 2 shows found values
of Ad(n) in higher dimensions.
The running times in 4, 5, and
6-Dwere 47.44 days, 12.03 hours,
and 2:00 minutes, resp. In higher
dimensions the running times
were negligible since memory
constraints did not allow high
values of n.

Table 3 lists the numbers of triangular polyominoes computed in 19.9 days.

hexagonal lattices, the size of the graphs is Θ(n2), and the running times are
linear in the number of counted polyominoes.
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Abstract. While the complexity of min-max and min-max regret ver-
sions of most classical combinatorial optimization problems has been
thoroughly investigated, there are very few studies about their approxi-
mation. For a bounded number of scenarios, we establish a general ap-
proximation scheme which can be used for min-max and min-max regret
versions of some polynomial problems. Applying this scheme to short-
est path and minimum spanning tree, we obtain fully polynomial-time
approximation schemes with much better running times than the ones
previously presented in the literature.

Keywords: min-max, min-max regret, approximation, fptas, shortest
path, minimum spanning tree.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires
to specify parameters, in particular objective function coefficients, which may
be uncertain or imprecise. Uncertainty/imprecision can be structured through
the concept of scenario which corresponds to an assignment of plausible values
to parameters. There exist two natural ways of describing the set of all possible
scenarios. In the interval data case, each numerical parameter can take any
value between a lower and an upper bound. In the discrete scenario case, which
is considered here, the scenario set is described explicitly. Kouvelis and Yu [6]
proposed the min-max and min-max regret criteria, stemming from decision
theory, to construct solutions hedging against parameters variations. The min-
max criterion aims at constructing solutions having a good performance in the
worst case. The min-max regret criterion, less conservative, aims at obtaining a
solution minimizing the maximum deviation, over all possible scenarios, of the
value of the solution from the optimal value of the corresponding scenario.

Complexity of the min-max and min-max regret versions has been studied
extensively during the last decade. In [6], for the discrete scenario case, the
complexity of min-max (regret) versions of several combinatorial optimization
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problems was studied, including shortest path and minimum spanning tree. In
general, these versions are shown to be harder than the classical versions. More
precisely, if the number of scenarios is not constant, these problems become
strongly NP -hard, even when the classical problems are solvable in polynomial
time. On the other hand, for a constant number of scenarios, min-max (regret)
versions of these polynomial problems usually become weakly NP -hard.

While the complexity of these problems was studied thoroughly, their approx-
imation was not studied until now, except in [2]. That paper investigated the
relationships between min-max (regret) and multi-objective versions, and showed
the existence, in the case of a bounded number of scenarios, of fully polynomial-
time approximation schemes (fptas) for min-max versions of several classical
optimization problems (shortest path, minimum spanning tree, knapsack). The
interest of studying these relationships is that, unlike for min-max (regret) ver-
sions, fptas, which determine an approximation of the non-dominated set (or
Pareto set), have been proposed for the multi-objective version (see, e.g., [9,
11]). Approximation algorithms for the min-max version, which basically consist
of selecting one min-max solution from an approximation of the non-dominated
set, are then easy to derive but critically depend on the running time of the
approximation scheme for the multi-objective version.

In this paper, we adopt an alternative perspective and develop a general
approximation scheme, using the scaling technique, which can be applied to
min-max (regret) versions of some problems, provided that some conditions are
satisfied. The advantage of this approach is that the resulting fptas usually have
a much better running time than those derived using multi-objective fptas.

After presenting some background concepts in section 2, we introduce in sec-
tion 3 the general approximation scheme. In section 4 we present applications
of this general scheme to shortest path and minimum spanning tree, giving in
each case fptas with better running times than previously known fptas based on
multi-objective versions.

2 Preliminaries

We consider in this paper the class C of 0-1 problems with a linear objective
function defined as: {

min
∑m

i=1 cixi ci ∈ N

x ∈ X ⊂ {0, 1}m

This class encompasses a large variety of classical combinatorial problems,
some of which are polynomial-time solvable (shortest path problem, minimum
spanning tree, . . . ) and others are NP -hard (knapsack, set covering, . . . ). The
size of a solution x ∈ X is the number of variables xi which are set to 1.

2.1 Min-Max, Min-Max Regret Versions

Given a problem P ∈ C, the min-max (regret) version associated to P has for
input a finite set of scenarios S where each scenario s ∈ S is represented by a
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vector (cs1, . . . , c
s
m). We denote by val(x, s) =

∑m
i=1 c

s
ixi the value of solution

x ∈ X under scenario s ∈ S and by val∗s the optimal value in scenario s.
The min-max optimization problem corresponding to P , denoted by Min-

Max P , consists of finding a solution x having the best worst case value across
all scenarios, which can be stated as: minx∈X maxs∈S val(x, s).

Given a solution x ∈ X , its regret, R(x, s), under scenario s ∈ S is defined as
R(x, s) = val(x, s) − val∗s . The maximum regret Rmax(x) of solution x is then
defined as Rmax(x) = maxs∈S R(x, s).

The min-max regret optimization problem corresponding to P , denoted by
Min-Max Regret P , consists of finding a solution x minimizing the maximum
regret Rmax(x) which can be stated as: minx∈X maxs∈S{val(x, s)− val∗s}.

When P is a maximization problem, the max-min and min-max regret versions
associated to P are defined similarly.

2.2 Approximation

Let us consider an instance I, of size |I|, of an optimization problem and a
solution x of I. We denote by opt(I) the optimum value of instance I. The
performance ratio of x is r(x) = max

{
val(x)
opt(I) ,

opt(I)
val(x)

}
, and its error is ε(x) =

r(x) − 1. For a function f , an algorithm is an f(n)-approximation algorithm if,
for any instance I of the problem, it returns a solution x such that r(x) ≤ f(|I|).
An optimization problem has a fully polynomial-time approximation scheme (an
fptas , for short) if, for every constant ε > 0, it admits an (1 + ε)-approximation
algorithm which is polynomial both in the size of the input and in 1/ε. The class
of problems having an fptas is denoted by FPTAS.

2.3 Matrix Tree Theorem

In this section we describe classical results concerning the matrix tree theorem
that will enable us to derive approximation schemes for min-max and min-max
regret versions of spanning tree.

The matrix tree theorem provides a way of counting all the spanning trees in
a graph (see, e.g., [10]). Consider a graph G = (V,E) with |V | = n, |E| = m
and let cij denote the cost of edge (i, j) ∈ E.

Define an n× n matrix A whose entries are given as follows:

aij =

⎧⎨⎩
−cij if i = j and (i, j) ∈ E∑

(i,�)∈E ci� if i = j

0 otherwise

Define Ar as the submatrix of A obtained by deleting the rth row and column
and D(Ar) as its determinant. The matrix tree theorem [10] states the following
equality:

D(Ar) =
∑
T∈T

∏
(i,j)∈T

cij (1)

where T is the set of all spanning trees of G.
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As indicated in [3], this theorem can be extended to count the number of
spanning trees of value v for each possible value v using a matrix depending on
one variable. Following this idea, we can extend the matrix tree theorem to the
multiple scenarios case as in [5]. Define the n×n matrix A(y1, . . . , yk) as follows:

aij(y1, . . . , yk) =

⎧⎪⎨⎪⎩
−∏k

s=1 y
cs

ij
s if i = j and (i, j) ∈ E∑

(i,�)∈E

∏k
s=1 y

cs
i�

s if i = j

0 otherwise

Then, the determinant of the submatrix Ar(y1, . . . , yk) obtained by deleting
any rth row and column is given by

D(Ar(y1, . . . , yk)) =
∑

v1,...,vk∈V T
av1,...,vk

k∏
s=1

yvs
s (2)

where av1,...,vk
is the number of spanning trees with value vs in scenario s, for

all s ∈ S and V T is the set of values reached on all scenarios, for all spanning
trees of G.

Equality (2) is obtained by replacing each cij in (1) by
∏k

s=1 y
cs

ij
s . Then each

product term in (1) corresponding to tree T becomes
∏k

s=1 y
∑

(i,j)∈T cs
ij

s .

3 A General Approximation Scheme

We establish now a general result giving a sufficient condition for the existence
of fptas for min-max (regret) versions of problems P in C.
Theorem 1. Given a problem Min-Max (Regret) P, if

1. for any instance I, a lower and an upper bound L and U of opt can be
computed in time p(|I|), such that U ≤ q(|I|)L, where p and q are two
polynomials with q non decreasing and q(|I|) ≥ 1,

2. and there exists an algorithm that finds for any instance I an optimal solu-
tion in time r(|I|, U) where r is a non decreasing polynomial,

then Min-Max (Regret) P is in FPTAS.

Proof. Let I be an instance of Min-Max P or Min-Max Regret P defined on
a scenario set S where each scenario s ∈ S is represented by a vector (cs1, . . . , c

s
m).

We use the technique of scaling in order to provide an fptas. In order to obtain a
solution with an error bounded by ε, we need a lower bound of opt(I). Moreover,
for obtaining a polynomial algorithm, we have to use a lower bound that is
polynomially related to an upper bound.

When I is an instance of Min-Max P , consider I the instance of Min-Max P
derived from I where each scenario s ∈ S is represented by a vector (cs1, . . . , c

s
m),

with csi = � tcs
i

εL � and t is an upper bound of the size of any feasible solution of I.
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Let x∗ and x∗ denote respectively an optimal solution of instance I and I. Let
val(x, s) denote the value of a solution x in scenario s for I. We have

csi <
εL

t
(csi + 1), for all s ∈ S,

and thus, val(x∗, s) < εL
t val(x

∗, s) + εL, for all s ∈ S,

which implies maxs∈S val(x∗, s) < εL
t maxs∈S val(x∗, s) + εL.

Since x∗ is an optimal solution in I, we have

opt(I) = max
s∈S

val(x∗, s) ≤ max
s∈S

val(x∗, s)

and thus, the value of an optimal solution of I has, in I, the value

max
s∈S

val(x∗, s) <
εL

t
max
s∈S

val(x∗, s) + εL ≤ opt(I) + εL ≤ opt(I)(1 + ε).

A similar result can be obtained for Min-Max Regret P . Let I be an
instance of Min-Max Regret P and let I denote the instance derived from
I, by scaling each entry csi as follows: csi = � 2tcs

i

εL �, where t is an upper bound
of the size of any feasible solution of I. Let x∗ and x∗ denote respectively an
optimal solution of instance I and I and let x∗s , x

∗
s denote respectively, an optimal

solution of instance I and I in scenario s.
Then, we have, for all s ∈ S,

val(x∗, s)− val(x∗s , s) <
εL

2t
val(x∗, s)− val(x∗s, s) +

ε

2
L

≤ εL

2t
(val(x∗, s)− val(x∗s , s)) +

ε

2
L

≤ εL

2t
(val(x∗, s)− val(x∗s , s)) +

ε

2
L

and thus

max
s∈S

{val( x∗ , s)− val(x∗s, s)} < max
s∈S

{
εL

2t
(val(x∗, s)− val(x∗s, s))

}
+
ε

2
L

≤ max
s∈S

{
εL

2t
(val(x∗, s)− val(x∗s, s))

}
+
ε

2
L

≤ max
s∈S

{val(x∗, s)− val(x∗s, s) + val(x∗s , s)−
εL

2t
val(x∗s, s)}+

ε

2
L

≤ max
s∈S

{val(x∗, s)− val(x∗s, s) + val(x∗s, s)−
εL

2t
val(x∗s, s)}+

ε

2
L

≤ max
s∈S

{val(x∗, s)− val(x∗s, s)}+ εL ≤ opt(I)(1 + ε)

We show in the following that such a solution x∗ of instance I for Min-Max
P or Min-Max Regret P can be obtained in polynomial time in |I| and 1

ε .
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The bounds L and U can be computed in time p(|I|) by hypothesis. In order
to compute an optimal solution for I, we apply the algorithm (that exists by
hypothesis) that runs in time r(|I |, U(I)).

In the case where I is an instance of Min-Max P , since opt(I) ≤ topt(I)
εL ≤

tU
εL ≤ tq(|I|)

ε , and q, r are non decreasing, the total time for computing the (1+ε)-
approximation is p(|I|) + r(|I |, U(I)) ≤ p(|I|) + r(|I |, q(|I |)L(I)) ≤ p(|I|) +
r(|I|, q(|I|) tq(|I|)

ε ).
In the case where I is an instance of Min-Max Regret P , since opt(I) ≤

2topt(I)
εL + t ≤ 2tU

εL + t ≤ 2tq(|I|)
ε + t, and q, r are non decreasing, the total time

for computing the (1 + ε)-approximation is (k + 1)p(|I|) + r(|I |, U(I)) ≤ (k +
1)p(|I|) + r(|I |, q(|I|)L(I)) ≤ (k + 1)p(|I|) + r(|I|, q(|I|)( tq(|I|)

ε + t)). �

We discuss now the two conditions of the previous theorem. The following result
shows that the first condition can be satisfied easily if the underlying problem
P is solvable in polynomial time.

Proposition 1. If a minimization problem P is solvable in polynomial time,
then for any instance on a set of k scenarios of Min-Max P and Min-Max
Regret P, there exist a lower and an upper bound L and U of opt computable
in polynomial time, such that U ≤ kL.

Proof. Consider an instance I of Min-Max P defined on a set S of k scenarios
where each scenario s ∈ S is represented by (cs1, . . . , csm) and let X be the set
of feasible solutions of I. We define the following instance I ′ of a single scenario
problem minx∈X

∑
s∈S

1
kval(x, s) obtained by taking objective function coeffi-

cients c′i =
∑k

s=1
cs

i

k , i = 1, . . . ,m. Let x∗ be an optimal solution of I ′. We take
as lower and upper bounds L =

∑
s∈S

1
kval(x

∗, s) and U = maxs∈S val(x∗, s).
Clearly, we have

L = min
x∈X

∑
s∈S

1
k
val(x, s) ≤ min

x∈X

∑
s∈S

1
k

(max
s∈S

val(x, s)) = min
x∈X

max
s∈S

val(x, s) = opt

and

min
x∈X

max
s∈S

val(x, s) ≤ max
s∈S

val(x∗, s) ≤
∑
s∈S

val(x∗, s) = k
∑
s∈S

1
k
val(x∗, s) = kL

Consider now an instance I of Min-Max Regret P defined on a set S of
k scenarios and let X be the set of feasible solutions of I. Let x∗ ∈ X be an
optimal solution of the single scenario instance I ′ derived from I as for the min-
max case. We take as lower and upper bounds L =

∑
s∈S

1
k (val(x∗, s) − val∗s)

and U = maxs∈S(val(x∗, s)− val∗s). Clearly, we have

L = min
x∈X

1
k

∑
s∈S

(val(x, s) − val∗s) ≤ min
x∈X

1
k
kmax

s∈S
(val(x, s)− val∗s) = opt

and
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min
x∈X

max
s∈S

(val(x, s)−val∗s) ≤ max
s∈S

(val(x∗, s)−val∗s) ≤
∑
s∈S

(val(x∗, s)−val∗s) = kL

If any instance of P of size n is solvable in time p(n), where p is a polynomial,
then bounds L and U are computable in O(p(|I|/k)). �

If P is polynomially approximable, then the first condition of Theorem 1 can
be satisfied for Min-Max P . More precisely, if P is f(n)-approximable where
f(n) is a polynomial, given an instance I of Min-Max P , let x̃ be an f(|I|/k)-
approximate solution in I ′ (defined as in the proof of Proposition 1), then we
have L = 1

f(|I|/k)

∑
s∈S

1
kval(x̃, s) and U = maxs∈S val(x̃, s), and thus U ≤

kf(|I|/k)L.
The second condition of Theorem 1 can be weakened for Min-Max P by

requiring only a pseudo-polynomial algorithm, that is an algorithm polynomial
in |I| and max(I) = maxi,s c

s
i . Indeed, knowing an upper bound U , we can

eliminate any variable xi such that csi > U on at least one scenario s ∈ S.
Condition 2 is then satisfied applying the pseudo-polynomial algorithm on this
modified instance.

Min-Max and Min-Max Regret versions of some problems, like shortest
path, knapsack, admit pseudo-polynomial time algorithms based on dynamic
programming [6]. For some dynamic programming formulations, we can easily
obtain algorithms satisfying condition 2, by discarding partial solutions with
value more than U on at least one scenario. We illustrate this approach in section
4.1 for the shortest path problem.

For other problems, which are not known to admit pseudo-polynomial al-
gorithms based on dynamic programming, specific algorithms are required. We
present an algorithm verifying condition 2 for Min-Max Spanning Tree
(section 4.2).

Unfortunately, these algorithms cannot be adapted directly in order to obtain
algorithms satisfying condition 2 for min-max regret versions. The basic diffi-
culty here is that, if we can find an algorithm in r(|I|, U(I)) for any instance
I of Min-Max P , the direct extension of this algorithm for the corresponding
instance I ′ of Min-Max Regret P will be in r(|I ′|, U(I ′) + optmax) where
optmax = maxs∈S val

∗
s is a value which is not necessarily polynomially related

to U(I ′).
However, for problems whose feasible solutions have a fixed size such as span-

ning tree, we reduced the min-max regret version to a min-max version in [2]. In
this context, we need to consider instances where some coefficients are negative
and possibly non integral but any feasible solution has a non-negative integral
value. For an optimization problem P , we denote by P ′ the extension of P to
these instances. More precisely, we proved the following theorem.

Theorem 2. ([2]) For any polynomial-time solvable minimization problem P
whose feasible solutions have a fixed size and for any function f : N → (1,∞), if
Min-Max P ′ has a polynomial-time f(n)-approximation algorithm, then Min-
Max Regret P has a polynomial-time f(n)-approximation algorithm.
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4 Applications

In this section, we apply the previous results to min-max (regret) shortest path,
and minimum spanning tree. We also compare the running time for our algo-
rithms and for the fptas obtained using an approximation of the non-dominated
set, and show a significant improvement.

4.1 Shortest Path

In [6], Kouvelis and Yu proved the NP -hardness of min-max and min-max regret
versions of shortest path, even for two scenarios.

Consider an instance I defined by a directed graph G = (V,A), with V =
{1, . . . , n} and |A| = m, and a set S of k scenarios giving for each arc (i, j) ∈ A
its cost csij under scenario s. Denote by cij the vector of size k formed by csij ,
s ∈ S. We are interested in optimal paths from 1 to any other vertex.

We give now pseudo-polynomial algorithms satisfying condition 2 of Theo-
rem 1 for Min-Max (Regret) Shortest Path.

Proposition 2. Given U an upper bound on the optimal value, then Min-Max
Shortest Path and Min-Max Regret Shortest Path can be solved in time
O(nmUk).

Proof. We propose for each problem, an enumeration algorithm based on a dy-
namic programming formulation, that produces the set of all vectors of values
(or regrets), for which all coordinates are less than or equal to U , and selects
from this set an optimal vector. Let u = (U, . . . , U) denote the vector of size k.

Considering first Min-Max Shortest Path, we describe an algorithm that
computes at each stage �, the set V �

j of all possible vectors of values at most U
corresponding to paths from 1 to j of length at most �, � = 1, . . . , n − 1, j =
2, . . . , n. The algorithm starts by initializing V 0

1 = {(0, . . . , 0)}, where (0, . . . , 0)
is a vector of size k and computes V �

j at each stage � for each vertex j, � =
1, . . . , n− 1, j = 2, . . . , n as follows:

V �
j = ∪i∈Γ −1(j){vj = vi + cij : vi ∈ V �−1

i and vj ≤ u} (3)

Finally, the algorithm selects, as an optimal vector, a vector in V n−1
j such

that its largest coordinate is minimum, for j = 2, . . . , n.
Consider now Min-Max Regret Shortest Path. Let (val∗s)i, s ∈ S, i =

1, . . . , n, be the value of a shortest path in graph G from 1 to i under scenario
s and let (val∗)i be the vector of size k of these values (val∗s)i, s ∈ S.

We describe an algorithm that computes at each stage �, the set R�
j of all

possible vectors of regrets at most U corresponding to paths from 1 to j of
length at most �, � = 1, . . . , n− 1, j = 2, . . . , n. Consider arc (i, j) ∈ A and let
Pi be a path in G from 1 to i of regret ri

s = val(Pi, s) − (val∗s)i, s ∈ S. Denote
by Pj the path constructed from Pi by adding arc (i, j). The regret of Pj is
rj
s = val(Pi, s)+ csij − (val∗s)j = ri

s +(val∗s)i + csij − (val∗s)j , s ∈ S. The algorithm
starts by initializing R0

1 = {(0, . . . , 0)} and for 1 ≤ � ≤ n− 1 and 2 ≤ j ≤ n let

R�
j = ∪i∈Γ −1(j){rj = ri + (val∗)i + cij − (val∗)j : ri ∈ R�−1

i and rj ≤ u} (4)
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Finally, the algorithm selects, as an optimal vector, a vector in Rn−1
j such

that its largest coordinate is minimum, for j = 2, . . . , n.
We point out that, for both algorithms, any path of interest can be obtained

using standard bookkeeping techniques that do not affect the complexity of these
algorithms.

In order to prove the correctness of these algorithms, we show that V n−1
j ,

resp. Rn−1
j , contains all vectors of values, resp. regrets, at most U corresponding

to paths from 1 to j, j = 2, . . . , n. For this, we need to justify that we can
eliminate, at any stage, any vector which violates the upper bound U , without
losing any vector at the end.

Indeed, for the min-max version, if such a solution vi is obtained then any of
its extensions computed in (3) would also violate U due to the non-negativity of
vectors cij .

Similarly, for the min-max regret version, if such a solution ri is obtained then
any of its extensions computed in (4) would also violate U since vectors of the
form (val∗)i + cij − (val∗)j are non-negative.

Both algorithms can be implemented in time O(nmUk). �

Corollary 1. Min-Max (Regret) Shortest Path are in FPTAS.

Proof. Using Theorem 1, Propositions 1 and 2, we derive an fptas whose running
time is O(mnk+1

εk ). �

Warburton describes in [11] an fptas for approximating the non-dominated set
for the multi-objective version of the shortest path problem. From this fptas,
Warburton derives an fptas for Min-Max Shortest Path in acyclic graphs
with running time O(n2k+1

ε2k−2 ), whereas our running time, for general graphs, is
better.

4.2 Minimum Spanning Tree

In [6], Kouvelis and Yu proved the NP -hardness of min-max and min-max regret
versions of minimum spanning tree, even for two scenarios. We first describe
algorithms for Min-Max Spanning Tree with running time polynomial in a
suitably chosen upper bound on the optimal value.

Consider an instance of Min-Max Spanning Tree represented by a graph
G = (V,E) where |V | = n, |E| = m, csij is the cost of edge (i, j) in scenario
s ∈ S and |S| = k.

Proposition 3. Given U an upper bound on the optimal value, then Min-Max
Spanning Tree can be solved in time O(mn4Uk logU).

Proof. We can solve Min-Max Spanning Tree using an extension of the matrix
tree theorem to the multiple scenarios case as presented in section 2.3.

The optimal value opt of Min-Max Spanning Tree can be computed by
considering, for each monomial in (2), the largest power vmax = maxs=1,...,k vs.
The minimum value of vmax over all monomials corresponds to opt.
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Actually, instead of computing all monomials, we can use, as suggested in
[5], the algorithm presented in [7]. When applied to matrix Ar(y1, . . . , yk), this
algorithm can compute the determinant polynomial up to a specified degree
in each variable in opposition to the classical method of Edmonds [4]. In this
case, it is sufficient to compute the polynomial determinant up to degree U in
each variable ys for s = 1, . . . , k. The algorithm in [7] requires O(n4) multipli-
cations and additions of polynomials. The time needed to multiply two mul-
tivariate polynomials of maximum degree ds in variable ys for s = 1, . . . , k is∏k

s=1 ds log
∏k

s=1 ds [1]. Thus, the running time to compute the polynomial de-
terminant is O(n4Uk logU).

Once an optimal vector is identified, a corresponding spanning tree can be
constructed using self reducibility [8]. It consists of testing iteratively, for each
edge if the graph obtained by contracting this edge admits a spanning tree of the
required vector of adjusted values on all scenarios (subtracting iteratively the
vector of costs csij , s ∈ S, for each edge (i, j) being tested to the required vector of
values). In at most m−(n−1) iterations such a spanning tree is obtained. Hence,
the self reducibility requires O(m) computations of determinant polynomial. �

Corollary 2. Min-Max Spanning Tree is in FPTAS.

Proof. Using Theorem 1, Propositions 1 and 3, we derive an fptas whose running
time is O(mnk+4

εk log n
ε ). �

Corollary 3. Min-Max Regret Spanning Tree is in FPTAS.

Proof. Notice that Theorem 1 and Proposition 3 remain true even for the in-
stances of spanning tree where some coefficients are negative but any feasible
solution has a non-negative value. Thus, Min-Max Spanning Tree′ is in FP-
TAS. The result follows from Theorem 2. The running time of the fptas is
O(mnk+4

εk log n
ε ). �

In this case, we obtain fptas with better running times for Min-Max (Re-
gret) Spanning Tree. Indeed, the running time of the fptas obtained in
[2] using the general multi-objective approximation scheme presented in [9] is
O(nk+4

ε2k (logU)k log n
ε ).
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Abstract. In this paper we present approximation results for the class con-
strained bin packing problem that has applications to Video-on-Demand Systems.
In this problem we are given bins of capacity B with C compartments, and n
items of Q different classes. The problem is to pack the items into the minimum
number of bins, where each bin contains items of at most C different classes and
has total items size at most B. We present several approximation algorithms for
off-line and online versions of the problem.

1 Introduction

In this paper we study the class constrained version of the well known bin packing
problem, which we denote by CCBP (Class Constrained Bin Packing). In this problem
we are given a tuple I = (L, s, c, C,Q) where L = (a1, . . . , an) is a list of items,
each item ai ∈ L with size 0 < sai ≤ B and class cai ∈ {1, . . . , Q}, and a set of
bins, each one with capacity B and C compartments. A packing P of L is a partition
of the items into bins, where each part has total items size at most B and the num-
ber of different classes in each part is at most C. The problem is to find a packing of
L into the minimum number of bins. In the online version of the CCBP problem the
items must be packed in the order (a1, . . . , an), where each item ai must be packed
without knowledge of further items. We consider that 1 < C < Q, otherwise the
CCBP problem can be solved as the original bin packing problem. That is, if C = 1
then items of different classes must be packed into different bins and if C ≥ Q then
the class constraints are irrelevant. We also consider the version of this problem with
bins of different sizes. In this case we have T different bins size. The input instance
is a tuple I = (L, s, c, w, C,Q) where w : {1, . . . , T} → R+ is a function of bins
size. We assume w.l.o.g. that for each i ∈ {1, . . . , T}, w(i) ≤ B. In this case, the
problem is to pack all items into bins such that the total size of used bins is mini-
mized. This problem is denoted by VCCBP (Variable Class Constrained Bin Packing).
Packing problems with class constraints have many applications in multimedia stor-
age systems, resource allocation and in operations research like manufacturing systems
[9,8,10,11,5,7,3].
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Notation: In the online case, the bins used to pack the items are classified as open or
closed. An empty bin is declared open when it receives its first item, and remains so until
it is declared closed. Only open bins may receive items. Once a bin is closed, it cannot
be declared open again. We consider the bounded and unbounded space versions for the
online CCBP problem. In the l-bounded space problem an algorithm must keep at any
time during its execution at most l open bins. In the unbounded version, an algorithm
may keep an unbounded number of open bins. We define s(I) = s(L) =

∑
a∈L s(a).

Given an integer M , we denote by [M ] the set {1, . . . ,M}. Given two sequences
La = (a1, . . . , an) and Lb = (b1, . . . , bm), we denote the concatenation of these two
lists by La‖Lb. Given a packing P we denote by |P| the number of bins in P . Through-
out this paper, we use the terms color and class with the same meaning. We say that a
bin is colored if it contains items of C different classes

Related Work: A special case of the CCBP problem is the Bin Packing problem, which
is a well known problem in the literature. We refer the reader to Coffman et al. [1] for
a survey on approximation algorithms for bin packing problems. Recently the class-
constrained versions of packing problems have obtained attention. In [3,2], Dawande
et. al claimed to present an approximation scheme for the off-line VCCBP problem
when the number of different classes Q in the input instance is bounded by a constant.
In [9], Shachnai and Tamir presented a dual polynomial time approximation scheme
for the off-line class constrained bin packing problem (CCBP) when the number of
different classes in the input instance is bounded by a constant. In [8], Shachnai and
Tamir presented theoretical results for a Multiple Knapsack problem with class con-
straints where all items have unit size. They introduced this problem with applications
to video-on-demand servers. Subsequently to this work, Golubchik et al. [5] presented
an approximation scheme to the problem. Later, Kashyap and Khuller [7], and Shachnai
and Tamir [10] also presented approximation schemes to the problem, but they consider
that the class requirement of items are not equal to all classes. Shachnai and Tamir in
[11], presented algorithms for the online CCBP problem when all items have equal
size. In this case they provide a lower bound of 2 to the problem and also algorithms
that have a competitive ratio of 2.

Results: In this paper we show that the bounded space online CCBP problem does not
admit a constant competitive ratio algorithm. Moreover if any item of the instance have
size at least ε < B we show that there is no algorithm with competitive ratio better than
O(1/Cε). For the unbounded space problem, we show that the First-Fit algorithm has
competitive ratio in [2.7, 3]. We also present another online algorithm with competitive
ratio in [2.666, 2.75]. We also present some results for the off-line problem. When all
items have equal size, we present an (1 + 1/C)-approximation algorithm. When items
have size at most B/m, for some integerm, we show an algorithm with approximation
factor (1 + 1/C + 1/min{C,m}). In all these cases, we consider that the number of
different classes Q is part of the input. The VCCBP problem was first considered by
Dawande et al. [3,2] where a tentative of an APTAS was considered whenQ is bounded
by a constant. We observed that their algorithm does not lead to an APTAS as claimed.
In this paper we show the points where their algorithm fails and present an APTAS for
the VCCBP problem for fixed Q.
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Organization: In Section 2 we present the application of the CCBP problem to data
placement of videos. In Section 3, we present practical approximation algorithms for
the CCBP problem. In Section 4, we present lower and upper bounds for the online
CCBP problem and in Section 5 we present an APTAS for the VCCBP problem when
Q is bounded by a constant.

2 Applications of the CCBP Problem to Data Placement on
Video-on-Demand Servers

The first work to consider packing problems with class constraints as a data placement
problem is the one presented by Shachnai and Tamir [8]. They considered the knapsack
version of the CCBP problem. In this caseN bins are given, and the objective is to pack
the maximum number of items satisfying the class constraints in each bin. Suppose we
have a server of videos with N hard disks, each disk j ∈ {1, . . . , N} with capacity Cj

and load capacity Bj . That is, each disk j can store Cj movies and can attend at most
Bj simultaneous requests for videos. The problem is to construct a server such that,
based on expected requests for movies (computed by movies popularity), the number of
attended requests is maximized. The total load capacity of the server isBT =

∑N
j=1 Bj .

The movies considered to be stored in the server are F1, F2, . . . , Ff with popularity
parameters p1, p2, . . . , pf , where

∑f
i=1 pi = 1. Given these popularity parameters we

compute expected requests for each movie at any time. These expected requests are, for
each i, defined as ri = BT pi. Notice that

∑f
i=1 ri = BT (we assume that each ri is an

integer).
Consider for example that we have a server with two hard disks. Disk 1 has C1 = 2

and B1 = 4 and disk 2 has C2 = 2 and B2 = 8. There are three movies F1, F2 and
F3, with popularity parameters p1 = 1/4, p2 = 1/4 and p3 = 1/2. Computing the
expected requests one obtain r1 = 3, r2 = 3 and r3 = 6. One optimal solution can be
constructed as follows: one copy of movie F1 is done in disk 1 (with 2 loads), a copy
of movie F2 is done in disk 1 (with 2 loads) and disk 2 (1 load) , and a copy of movie
F3 is done in disk 2 (with 6 loads). Notice that not all load capacity of the disks can
be used. We call a perfect placement when all load capacity is used, i.e, all requests are
allocated.

This problem was shown to be NP-hard by Shachnai and Tamir [8], and Golubchik
et al. [5] show that even if all disks are equal, i.e, have same load and store capacities,
the problem remains NP-hard. We can also consider the following problem: given a
set of requests for a set of movies, construct a server using the minimum number of
disks. This problem is also NP-hard since, given an instance for the data placement
with N disks, a perfect placement exists, if and only if we can find a packing for all
requests using at mostN disks. When all disks are equal, we can see this data placement
problem as a special case of the CCBP problem. In this case we have an instance I =
(L, s, c, C,Q), where each item i ∈ L is a request for a load of class ci ∈ Q (the
movie type). All items have the same size and C is the capacity of the disks, i.e, the
number of different movies that the disk can store. That is, we want to construct a video
server storing the videos and distributing all the requests minimizing the number of
used disks.
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3 Practical Approximation Algorithms

In this section we consider the problem where all items have unit size. As we saw, this
problem is NP-hard and has applications in the data placement problem for video-on-
demand. In this case, we can consider that items are given as a list of sets U1, . . . , UQ,
where each set Ui has ni items of unit size with class i. Each bin packs at mostB items
of at most C different sets. The problem is to pack all sets of items in the minimum
number of bins.

We adapt here, an algorithm known as Moving-Window (MW) first presented by
Shachnai and Tamir [8] and also used later by Golubchik et al. [5] and Kashyap and
Khuller [7]. All these papers are devoted to the knapsack version of the problem, where
one must pack the maximum number of items in a given number of bins.

Moving-Window (MW): The algorithm keeps a vector R = (R[1], R[2], . . . , R[Q])
representing non-packed items in such a way thatR[i] is the number of remaining items
to be packed of some set Uj . The vector is maintained in non-decreasing order of the
values R[i] during all the execution of the algorithm. If at any given moment, it is
packed part of the items represented by R[i], then the vector must be reordered. In any
iteration of the algorithm, it tries to pack C different sets to obtain a packing of a new
bin. For that, the algorithm keeps a window of C sets. At first, the window goes from
R[1] to R[C]. If

∑C
i=1R[i] ≥ B then the algorithm packs the corresponding sets of

R[1], R[2], . . . , R[j], where j ≤ C is the first index such that
∑j

i=1R[i] ≥ B. Notice
that R[j] may be partially packed. The totally packed sets are removed from the vector.
If
∑C

i=1R[i] < B then the algorithm moves the window to the right, until that for the
first time the window has C sets such that their sizes are greater or equal than B. If this
is the case, the C sets are packed and the vector R is reordered (if the last considered
set was partially packed). Then the algorithm restarts. If in some iteration, the window
reaches the end of the vector R, i.e, the C largest sets have total size smaller than B,
then the algorithm generates bins by packing entirelyC sets in each bin, except perhaps
in the last bin that can have less than C sets.

Let B1, . . . , BN be the bins generated by the algorithm MW in the order they were
generated. LetNF be the number of full bins andNC be the number of bins that are not
full which we call colored. Let N = NF +NC . Notice that bins B1, . . . , BNF , are the
full bins. When the algorithm creates the first non-full bin, when the window reaches
the end of R and the C largest sets have total size smaller than B, all other generated
bins becomes non-full having C different sets each, except perhaps the last.

Lemma 1. If any of the first NF bins produced by the algorithm MW packs less than
C different sets (classes), then the algorithm produces an optimal solution.

In this way, we consider that for each of the NF first bins, the algorithm packs in each
iteration, exactly C different sets and at most one of these sets is partially packed.
Clearly, for the remaining NC bins, all of them packs totally C different sets except
perhaps in the last bin. Let OPT(I) be the number of bins used by an optimal solution
to pack instance I . Notice that we must haveNF ≤ OPT(I)−1 otherwise the algorithm
generated an optimal solution. We have the following result.
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Lemma 2. After the MW algorithm has generated the first OPT(I) bins, there exists
at most NF sets to be packed.

With this result we can give the approximation factor of the MW algorithm. We can
also show that the bound of the next theorem is tight.

Theorem 1. The MW algorithm has an asymptotic approximation factor of (1 + 1
C )

for the CCBP problem when all items are equal sized.

Notice that the MW algorithm is based on a heuristic that tries to pack C different sets
in each bin. But the way the algorithm works, it tends to pack small and large sets in
different bins. A good heuristic is to pack large and small sets together, in such a way
that each generated bin has a good use of its capacity, while trying to pack C different
sets in each bin. For that, we propose a new algorithm that we call Modified-Moving-
Window (MW′). Experimental tests shows that this algorithm produce better solutions
than the MW algorithm.

Modified-Moving-Window (MW′): This algorithm is similar to the MW algorithm
since it also keeps a window of size C over a vector R = (R[1], R[2], . . . , R[Q]) that
is maintained in non-decreasing order of the values R[i]. The algorithm also moves a
window of size C until the total size of the sets in the window contains B or more
items. In the MW′ algorithm, we consider that the vector R is a circular list. At first,
the window consists of the sets R[1], . . . , R[C]. If the total size of these sets is greater
than or equal toB, then the algorithm packs the setsR[1], . . . , R[j], where j ≤ C is the
first index such that

∑j
i=1 R[i] ≥ B, with the last set R[j] probably partially packed. If

the total size of these sets is smaller thanB then instead of doing a move to the right, as
in the original MW algorithm, the algorithm performs a move to the left and considers
the sets R[Q], R[1], . . . , R[C − 1]. The algorithm performs moves to the left until the
total size of the C sets are greater than or equal toB. In this case it packs the C sets and
restarts. If the algorithm performsC moves to the left, and then considers the C largest
sets, and these sets have total size less than B, then the algorithm generates a packing
as the original MW algorithm, by packing entirely C sets in each bin.

It is not hard to prove similar results to Lemma 1 and Lemma 2 to the MW′ algo-
rithm. We can prove the following result which is also a tight bound.

Theorem 2. The MW′ algorithm has an asymptotic approximation factor of (1 + 1
C )

for the CCBP problem where all items have the same size.

Now we consider the case where items in each set may have different sizes. This case
is also interesting for applications of the data-placement problem to video-on-demand
servers. Suppose that users have different network access speeds. In this case, requests
for load resources may have different sizes. Suppose that the maximum size of an item
is bounded byB/m for somem ≥ 1. Problems with this restriction are also called para-
metric packing problems. Given an integerm, we denote this version of the problem as
Parametric Class Constrained Bin Packing (PCCBPm) problem.

Let I be an instance of the PCCBPm problem, m ≥ 1. Consider that the input in-
stance I consists of sets U1, . . . , UQ. We now present an algorithm to pack this instance.
Although items may have different sizes, consider that each item with size s, s > 1,
is broken into s unit sized pieces. Now apply the MW algorithm for this modified
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instance. Now consider this packing for the original items. For each full bin it may hap-
pen that the last item is fractionally packed. For each bin where this happens, remove
the item from the bin. Notice that there are at most NF items removed from the gener-
ated packing. For these remaining items, generate new bins packing at least min{m,C}
items in each bin except perhaps in the last bin.

Theorem 3. There exists an algorithm for the PCCBPm problem, where each item has
size at most B/m, for some m ≥ 1, with asymptotic approximation factor bounded by
(1 + 1/min{m,C}+ 1/C).

4 The Online CCBP Problem

From now on, we consider that the capacity of the bin is B = 1, and each item e has
size 0 < se ≤ 1. In this section we consider the online class constrained bin packing
problem. In this case each item in the list of items L = (a1, . . . , an), is packed without
knowledge of subsequent items in the list.

First we present inapproximability results for the bounded space online CCBP prob-
lem. In this case, the basic strategy is to compare the result obtained by any on-line
algorithm with the optimum off-line packing. The idea to obtain the lower bounds is
to construct an instance where the list of items consists of n sublists. All sublists are
identical and consists of very small items all of them of different classes. Since any
bounded space algorithm cannot keep too many opened bins, each one of the lists are
almost packed separately to each other. In an optimal off-line solution we can group
items of the same class of all sublists and pack them together.

Theorem 4. Let l be a constant, then the l-bounded space online CCBP problem does
not admits an algorithm with constant competitive ratio. Moreover, if each item has
size at least ε < 1 then the online CCBP problem does not admits an algorithm with
competitive ratio better than O(1/Cε).

Given these results, for the remaining of this section we only consider the unbounded
space online CCBP problem. Given an online algorithmA for the bin-packing problem,
we can obtain an online algorithmA∗ for the online CCBP problem in a straightforward
manner. To pack the next item e, the algorithmA∗ works as follows: Let ce be the class
of the item e, B be the list of bins in the order they were opened. Let Be be the list of
bins of B, in the same order of B, where each bin has at least one item of class ce or
has items of at most C − 1 different classes. The item e is packed with algorithm A
into the bins of Be.

One of the most famous algorithm for the bin-packing problem is the First-Fit (FF)
algorithm. This algorithm packs the next item into the first bin, in the order they were
opened, that has sufficient space for the item. Notice that the algorithm FF∗ is online,
since it only looks for the item it is packing and it is unbounded since it keeps all bins
opened. In fact it closes a bin only if the bin is full.

We can show the following result for the algorithm FF∗. We note that the upper
bound was previously shown by Dawande et al. [2].

Theorem 5. The algorithm FF∗ has a competitive ratio in [2.7, 3] for the online CCBP
problem.
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The idea to prove the upper bound of this theorem is to consider separately bins that are
filled by at least half of its capacity and bins that are not. In the first case the number
of bins is bounded by 2OPT(I). In the later case we can prove that all bins are colored,
except perhaps the last, and then using the fact that �Q/C� ≤ OPT(I), we can bound
the number of used bins by OPT(I) + 1. The idea to prove the lower bound is to use an
intricate instance presented by Johnson et al. [6] that provides a lower bound of 1.7 for
the FF algorithm in the bin packing problem and add at the beginning of the input list
very small items all of them of different classes.

Now we present another online algorithm, which we denote byAC , with competitive
ratio in the interval (2.666, 2.75]. Algorithm AC : Let Pi be lists of empty bins, for
i = 1, 2, 3. For each item e given in the input instance let i = 1 if 1 ≥ se > 1/2;
i = 2 if 1/2 ≥ se > 1/3; and i = 3 if 1/3 ≥ se. The algorithm packs item e using the
algorithm FF∗ in the bins of Pi. We can show the following result for this algorithm.

Theorem 6. AlgorithmAC has a competitive ratio in [2.666, 2.75].

5 An APTAS for Bounded Number of Classes

In this section we present an APTAS for the off-line VCCBP problem. The input in-
stance for this problem is a tuple I = (L, s, c, w, C,Q). The problem is to find a pack-
ing of all items minimizing the total size of used bins. In this section we consider that
the maximum size of a bin is 1 and that the number of different classes Q in the input
instance, is bounded by a constant. As was noticed by Dawande et al. [3,2], we only use
bins such that their size are at least ε, since this condition does not affect too much the
cost of the solution, i.e, the algorithm remains an APTAS.

We give a brief description of the algorithm of Dawande et al. [3,2] and present the
points where their algorithm fails. Let I be an instance for the VCCBP problem and let
Lb be the items in L with size at least ε2 (big items) and let Ls be the remaining items
in L (small items). Let n = |Lb|. The algorithm sorts the list Lb in non-increasing order
of size and partition this list into groups (lists) L1, . . . , LM , each one with �nε2� items
except perhaps the last list that can have less than �nε2� items. Call the first item in
each group as the group-leader. Let L′

i be the list having |L′
i| = |Li| items, where each

item has size equal to the size of the group-leader of Li. Let L′ = L′
1‖ . . . ‖L′

M .
For the list L′ it is possible to generate all configurations of bins in constant time.

Given an item size and an item color, denote by di the number of items of this type i ∈
[t]. LetN be the total number of bin configurations. Let xj be a variable that represents
the number of times a configuration j ∈ [N ] is used in a solution, aij be the coefficient
that represents the number of times an item type i ∈ [t] is used in configuration j and
wj the size of the bin used in configuration j. The next step of the algorithm is to solve
the following linear program:

min
N∑

j=1

wjxj

N∑
j=1

aijxj ≥ di ∀ i ∈ [t] (1)

xj ≥ 0 ∀ j ∈ [N ], (2)

(LP)
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The algorithm solves this linear program and generates an integer solution by round-
ing up the variables x. The solution is a packing for the list L′ that is used to generate a
packing for the list Lb.

The next step of the algorithm is to pack the small items into the packing obtained
from the linear program step. To do this, it uses a first-fit strategy: Pack an item in the
first bin that has enough space to accommodate it and that satisfy the color constraints.
Dawande et al. [3,2] claimed that this algorithm is an APTAS for the VCCBP problem.
The list Lb was partitioned into lists L1‖ . . . ‖LM . Let L′′

i be a list having |L′′
i | = |Li|

items, where each item has size equal to the group-leader of the list Li+1, for i =
1, . . . ,M − 1, and L′′

M be an empty list. Let L′′ = L′′
1‖ . . . ‖L′′

M . Clearly OPT(L′′) ≤
OPT(Lb).

Dawande et al. claimed that the following relation is valid

OPT (L′) ≤ OPT (L′′) + �nε2� ≤ OPT (Lb) + �nε2�,

given the argument that L′ and L′′ differ only in their first and last groups. Although it
seems to be true, notice that the color of items of L′

i and L′′
i−1 may be different. Then, it

is not clear how to construct a packing for L′
2‖ . . . ‖L′

M given a packing for L′′. Let X
be the number of bins used by their algorithm. After packing the small items using the
first-fit strategy, they claimed that at least X − �Q

C � bins have residual capacity at most
ε. This is also not true. Suppose all small items have different colors from the big items.
It is easy to construct examples where optimal packings for the big items given by the
linear program have all bins with C different colors and the residual space is larger than
a given ε. In this way, no small item will be packed in the bins obtained by the linear
program step and then, all these bins will have residual capacity greater than ε.

Now we present an APTAS for the VCCBP problem. We show how to pack big
items doing a linear rounding for each different color. The algorithm to pack the big
items generates a polynomial number of packings for the big items, and also provide
information of how to pack small items. The algorithm to pack the small items is based
in the solution of a linear program. The algorithm generates a polynomial number of
packings such that at least one is very close to the optimal.

Let Lb be the items in L with size at least ε2 (big items) and let Ls be the remaining
items in L (small items). The algorithm that packs the list Lb, which we denote by ALR,
uses the linear rounding technique, presented by Fernandez de la Vega and Lueker [4],
and considers only items with size at least ε2. The algorithm ALR returns a pair (PB,P),
where PB is a packing for a list of very big items and P is a set of packings for the
remaining items of Lb.

Let X and Y be two lists of items. We say that X � Y if there is an injection
fc : Xc → Yc for each c ∈ [Q] such that s(e) ≤ s(f(e)) for all e ∈ Xc. For a list of
itemsX , denote byX the list with precisely |X | items with size equal to the size of the
smallest item in X .

The algorithm ALR consists in the following: Let L1, . . . , LQ be the partition of the
input list Lb into colors 1, . . . , Q and let nc = |Lc| for each color c. The algorithm
ALR sorts each list Lc in non-increasing order of size and then partition the list Lc

into at most M = �1/ε3� groups L1
c, L

2
c , . . . , L

M
c , where Lc = L1

c‖ . . . ‖LM
c . Each

group has �ncε
3� items except perhaps the last list (with the smallest items) that can
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have less than �ncε
3� items. Let LB = ∪Q

c=1L
1
c . The algorithm generates a packing

PB of LB with cost at most O(ε)OPT(I) and a set P with a polynomial number of
packings for the items in Lb \ LB. The packing PB is generated by the algorithm FF∗

(presented in Section 4) with bins of size 1. The algorithm generates a set of packings

P, of polynomial size, for the list (L1
1‖ . . . ‖LM−1

1 ‖ . . . ‖L1
Q‖ . . . ‖LM−1

Q ). This can be
done in polynomial time as the next lemma guarantees.

Lemma 3. Given an instance I = (Lb, s, c, w, C,Q), where the number of distinct item
sizes of each color is at most a constant M , the number of different colors is bounded
by a constant Q and each item e ∈ Lb has size se ≥ ε2, then there exists a polynomial
time algorithm that generates all possible packings of Lb. Moreover, each bin of each
generated packing has an indication of the possible colors that may be used by further
small items.

Since Li
c % Li+1

c , for i = 1, . . . ,M − 1 and each color c, it is easy to construct
a packing for the list L2

1‖ . . . ‖LM
1 ‖ . . . ‖ L2

Q‖ . . . ‖LM
Q , given a packing for the list

(L1
1‖ . . . ‖LM−1

1 ‖ . . . ‖L1
Q‖ . . . ‖LM−1

Q ).
Let P = {B1, . . . , Bk} be a packing of Lb and suppose we have to pack a list Ls

of small items, with size at most ε2, into P . The packing of the small items is obtained
from a solution of a linear program. LetNi ⊆ [Q] be the set of possible colors that may
be used to pack the small items into the binBi of the packingP . For each color c ∈ Ni,
define a non-negative variable xi

c. The variable xi
c indicates the total size of small items

of color c to be packed in the bin Bi. Denote by s(Bi) the total size of items already
packed in the binBi and byw(Bi) the capacity of binBi. Consider the following linear
program denoted by LPS:

max
k∑

i=1

∑
c∈Ni

xi
c

s(Bi) +
∑
c∈Ni

xi
c ≤ w(Bi) ∀ i ∈ [k] (1)

k∑
i=1

xi
c ≤ s(Sc) ∀ c ∈ [C], (2)

(LPS)

where Sc is the set of small items of color c in Ls.
Given a packing P , and a list Ls of small items, the algorithm first solves the linear

program LPS, and then packs small items in the following way: For each variable xi
c it

packs, while possible, the small items of color c into the bin Bi, so that the total size
of the packed small items is at most xi

c. The possible remaining small items are packed
using the algorithm FF∗ into new bins of size 1. The algorithm to pack small items has
polynomial time, since the linear program LPS can be solved in polynomial time.

The small items that are packed into new bins use at most⌈
(s(Ls)−

∑k
i=1
∑

c∈Ni
xi

c)
(1− ε2) +

|P|ε2Q
(1 − ε2)

⌉
+ �Q/C�
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new bins, since each bin is filled by at least (1− ε2) except perhaps by at most �Q/C�
bins. The algorithm packs the small items in each packing P ∈ P. In the end, the
algorithm generates another set of packings P′ for all items. At least one of the generated
packings has size at most (1+O(ε))OPT(I)+β, for a constant β. The algorithm returns
the packing with smallest cost. We can prove that the presented algorithm is an APTAS
for the VCCBP.

Theorem 7. Let I = (L, s, c, w, C,Q), be an instance for the VCCBP problem. The
packing P returned by the algorithm satisfy w(P) ≤ (1 +O(ε))OPT(I) + β, where β
is a constant.

References

1. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin pack-
ing: a survey. In D. Hochbaum, editor, Approximation Algorithms for NP-hard Problems,
chapter 2, pages 46–93. PWS, 1997.

2. M. Dawande, J. Kalagnanam, and J. Sethuraman. Variable sized bin packing with color
constraints. Technical report, IBM, T.J. Watson Research Center, NY, 1998.

3. M. Dawande, J. Kalagnanam, and J. Sethuraman. Variable sized bin packing with color
constraints. In Proceedings of Graco 2001, volume 7 of Electronic Notes in Dicrete Mathe-
matics, 2001.

4. W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ε in linear
time. Combinatorica, 1(4):349–355, 1981.

5. L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algorithms
for data placement on parallel disks. In Proceedings of SODA, pages 223–232, 2000.

6. D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case perfor-
mance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing,
3:299–325, 1974.

7. S. R. Kashyap and S. Khuller. Algorithms for non-uniform size data placement on parallel
disks. In Proceedings of FSTTCS, volume 2914 of Lecture Notes in Computer Science, pages
265–276, 2003.

8. H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack prob-
lem. Algorithmica, 29:442–467, 2001.

9. H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained
packing problems. Journal of Scheduling, 4(6):313–338, 2001.

10. H. Shachnai and T. Tamir. Approximation schemes for generalized 2-dimensional vector
packing with application to data placement. In Proceedings of 6th RANDOM-APPROX,
volume 2764 of Lecture Notes in Computer Science, pages 165–177, 2003.

11. H. Shachnai and T. Tamir. Tight bounds for online class-constrained packing. Theoretical
Computer Science, 321(1):103–123, 2004.



MAX-SNP Hardness and Approximation of
Selected-Internal Steiner Trees

Sun-Yuan Hsieh� and Shih-Cheng Yang

Department of Computer Science and Information Engineering,
National Cheng Kung University,

No. 1, University Road, Tainan 701, Taiwan
hsiehsy@mail.ncku.edu.tw

Abstract. In this paper, we consider an interesting variant of the well-
known Steiner tree problem: Given a complete graph G = (V, E) with a
cost function c : E → R+ and two subsets R and R′ satisfying R′ ⊂ R ⊆
V , a selected-internal Steiner tree is a Steiner tree which contains (or
spans) all the vertices in R such that each vertex in R′ cannot be a leaf.
The selected-internal Steiner tree problem is to find a selected-internal
Steiner tree with the minimum cost. In this paper, we show that the
problem is MAX SNP-hard even when the costs of all edges in the input
graph are restricted to either 1 or 2. We also present an approximation
algorithm for the problem.

1 Introduction

The Steiner tree problem is succinctly a minimum interconnection problem. The
most basic version is in a graph: Given a weighted graph G = (V,E) with a cost
function c : E → R+ on the edges and a subset R ⊆ V of vertices, a Steiner
tree is a connected and acyclic subgraph of G which spans all the vertices in R.
The vertices in R are usually referred to as terminals and the others in V \ R
are Steiner (or optional) vertices. Note that a Steiner tree may contain some
Steiner vertices. The total cost (cost for short) of a Steiner tree is defined to be
the sum of the costs of all its edges. The so-called Steiner tree problem (STP
for short) is to find a Steiner minimum tree (or an optimal Steiner tree), i.e., a
Steiner tree with the minimum cost in G [4]. The decision version of STP was
shown to be NP-complete [6].

There are practical applications such that some terminal vertices are required
to be internal vertices in a Steiner tree and the others may not. For example, in
a network resource allocation, some specified servers (terminals) are allowed to
act as transmitters and the others need not have this restriction. Consequently,
in a solution tree, some terminals are restricted to be internal vertices and the
others can be leaves or internal vertices. In this paper, we study an interesting
variant of the Steiner tree problem: Given a complete graph G = (V,E) with a
cost function c : E → R+ and two subsets R and R′ satisfying R′ ⊂ R ⊆ V ,
the selected-internal Steiner tree problem (SISTP for short) is to find a Steiner
� Correspondence author.
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minimum tree which spans all the vertices in R such that each vertex in R′

cannot be a leaf. For convenience, we call such a tree as optimal selected-internal
Steiner tree, and call the vertices in R′ the demanded terminals. We first show
that SISTP is MAX SNP-hard. We then present an approximation algorithm for
the problem.

2 Preliminaries

This paper considers finite, simple, and loopless graph G = (V,E), where V and
E are the vertex and edge sets of G, respectively. We also use the notations V (G)
and E(G) to denote the vertex and edge sets of G, respectively. For a graph G,
the degree of v in G, denoted by degG(v), is the number of edges incident to v in
G. A path of length k from a vertex v0 to a vertex vk in a graph G = (V,E) is a
sequence 〈v0, v1, v2, . . . , vk〉 of vertices such that (vi−1, vi) ∈ E for i = 1, 2, . . . , k.
We use PG[u, u′] to denote a path from u to u′ in G. A path is simple if all vertices
in the path are distinct.

A tree T is a connected, acyclic, and undirected graph. A vertex in T with
degree 1 is called a leaf. A nonleaf vertex in T is an internal vertex. For graph-
theoretic terminologies and notations not mentioned here, please refer to [9].

Definition 1. A function c : V × V → R+ is called a metric if it satisfies the
following three conditions: (1) c(x, y) ≥ 0 for any x, y ∈ V , where equality holds
if and only if x = y; (2) c(x, y) = c(y, x) for any x, y ∈ V ; (3) The triangle
inequality c(x, y) ≤ c(x, z) + c(z, y) holds for any x, y, z ∈ V .

The cost function c used throughout this paper is metric. For an edge e in a
tree T , c(e) is the cost of e, and c(T ) is the sum of all the edge costs of T . If
we reduce the co-domain of c from R+ to {1, 2}, then the restricted SISTP is
called the (1,2)-Selected-Internal Steiner Tree Problem (SISTP(1,2) for short).
The problem STP(1,2) can be defined similarly.

Definition 2. Given two optimization problem Π1 and Π2, we say that Π1 L-
reduces to Π2 if there exist polynomial-time algorithms A1 and A2, and positive
constants α and β such that for any instance I1 of Π1, the following conditions
are satisfied:

1. The algorithm A1 produces an instance A1(I1) of Π2 such that OPT(A1(I1))
≤ α · OPT(I1), where OPT(I1) and OPT(A1(I1)) represent the costs of op-
timal solutions of I1 and A1(I1), respectively.

2. Given any solution of A1(I1) with cost cost2, the algorithmA2 produces a so-
lution of I1 with cost cost1 in polynomial time such that |cost1−OPT(I1)| ≤
β · |cost2 − OPT(A1(I1))|.

A problem is said to be MAX SNP-hard if all MAX SNP problems can be L-
reduced to this problem. Note that the problem itself may not be MAX SNP. It
was shown that if any MAX SNP-hard problem has a polynomial-time approx-
imation scheme (PTAS), then P=NP [1,2].1 In other words, it is very unlikely
1 A problem has a PTAS if the problem can be approximated within a factor, 1 + ε,

in polynomial time for any ε > 0.
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that for a MAX SNP-hard problem to have a PTAS. On the other hand, if Π1
L-reduces to Π2 and Π2 has a PTAS, then Π1 has a PTAS [7].

3 MAX SNP-Hardness Results

In this section, we will show that SISTP(1,2) is MAX SNP-hard.

Algorithm A1(I1)

Input: The input instance I1 = (G1, R1, c1) of STP(1,2), where G1 = (V1, E1) is a
complete graph, R1 ⊆ V1, and the cost function c1 : E1 → {1, 2}.

Output: The input instance I2 = (G2, R2, R
′
2, c2) of SISTP(1,2).

1: Create one auxiliary vertex a and auxiliary edge set E′ = {(a, vi)| vi ∈ V1}.
2: Construct G2 = (V2, E2), where V2 = V1 ∪ {a} and E2 = E1 ∪ E′. Let R′

2 = {a}
and R2 = R1 ∪ {a}.

3: Define the cost function c2 : E2 → {1, 2} such that for each e ∈ E2,

c2(e) =

{
c1(e) if e ∈ E1,
2 otherwise.

Fig. 1. An algorithm for the input instance transformation from STP(1,2) to SISTP(1,2)

Lemma 1. [3] STP(1,2) is MAX SNP-hard.

Next, we go on to show the MAX SNP-hardness for the problem by providing an
L-reduction from STP(1,2) to SISTP(1,2). An algorithm for the input instance
transformation from STP(1,2) to SISTP(1,2) is presented in Figure 1.

Lemma 2. OPT(A1(I1)) ≤ 5OPT(I1).

Proof. Let S∗ be an optimal Steiner tree of I1. Let e = (u, v) be any edge of S∗.
By deleting the edge e from S∗ and adding two auxiliary edges (a, u) and (a, v),
we obtain another tree S∗ − (u, v) + (a, u) + (a, v), which is clearly a selected-
internal Steiner tree for A1(I1). Note that a becomes an internal vertex of the
resulting tree. Then,

OPT(A1(I1)) ≤ c2(S∗)− c2(e) + c2(a, u) + c2(a, v)
= c1(S∗)− c1(e) + 4
≤ OPT(I1) + 4 (1)
≤ OPT(I1) + 4OPT(I1)
≤ 5OPT(I1). Q.E.D.

We now present a polynomial-time algorithm A2 shown in Figure 2 to obtain
a solution of I1 from a solution of A1(I1). Let T1, T2, . . . , Tk be the resulting trees
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Algorithm A2(T, A1(I1))

Input: A selected-internal Steiner tree T of A1(I1).
Output: A Steiner tree of I1.

1: Delete the auxiliary vertex a in T . Since a is an internal vertex of T , at least two
subtrees resulted. Let T1, T2, . . . , Tk be the resulting subtrees after deleting a such
that each tree contains at least one terminal, i.e., V (Ti) ∩ R �= ∅ for all 1 ≤ i ≤ k.

2: Merge T1, T2, . . . , Tk into one tree using k − 1 edges in E(G1) \ (
⋃k

i=1 E(Ti)) in
which the cost of these k − 1 edges is as smallest as possible.

Fig. 2. An algorithm generates a solution of I1 from a solution of A1(I1)

obtained after executing Step 1 of Algorithm A2. A path 〈v1, v2, . . . , vl〉 is said to
be a (p, q)-bridge, where p, q ∈ {1, 2, . . . , k} and p = q, iff v1 ∈ V (Tp), vl ∈ V (Tq),
and v2, v3, . . . , vl−1 ∈ V (G1) −

⋃k
i=1 V (Ti). The following two propositions are

useful to show Lemma 3.

Proposition 1. If T is an optimal selected-internal Steiner tree of A1(I1), then
each subtree obtained after deleting the auxiliary vertex a from T contains at
least one terminal.

Proof. Assume, by contradiction, that there exists some subtree Ti with no ter-
minal. Then, T−Ti is another selected-internal Steiner tree whose cost is smaller
than that of T . This is a contradiction. Q.E.D.

Proposition 2. Let T be an optimal selected-internal Steiner tree of A1(I1),
and let T1, T2, . . . , Tk be the resulting trees obtained after executing Step 1 of
Algorithm A2. If k > 2, then the cost of any (p, q)-bridge is at least 2.

Proof. Let rp and rq be the roots of Tp and Tq, respectively. Assume, by con-
tradiction, that there is a (p, q)-bridge whose cost is 1. Clearly, such a bridge is
exactly an edge, denoted by e. By the fact that k > 2, T − (a, rq) + e remains
a selected-internal Steiner tree whose cost is smaller then that of T . This is
contrary to the assumption that T is optimal. Q.E.D.

Lemma 3. If T is an optimal selected-internal Steiner tree of the instance
A1(I1), then an output tree returned by Algorithm A2 is an optimal Steiner
tree of the instance I1.

Proof. Let T1, T2, . . . , Tk be the resulting trees obtained after executing Step 1 of
Algorithm A2. Let r1, r2, . . . , rk be the roots of T1, T2, . . . , Tk, respectively. Also
let T ′ be an output tree returned by Algorithm A2. Assume, by contradiction,
that T ′ is not optimal, i.e., there exists another Steiner tree of I1 whose cost is
smaller than that of T ′. Let T ′′ be such a tree with the smallest Steiner vertices.

Case 1. k > 2. According to Algorithm A2 and Proposition 2, the k− 1 edges
used to merge T1, T2, . . . , Tk into one tree are all cost 2. That is, T ′ is obtained
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from T by deleting k cost-2 edges, and adding k − 1 cost-2 edges. Then, we
have that

c(T ) = c(T ′) + 2 (2)

According to Proposition 2 and the assumption that T ′′ contains the smallest
Steiner vertices, there is a cost-2 edge (x, y) in T ′′. By the execution of
Algorithm A1, each vertex v of T ′′ is adjacent to the auxiliary vertex a,
through the auxiliary edge (v, a). Then, we can obtain another selected-
internal Steiner tree Q = T ′′ − (x, y) + (x, a) + (y, a) is another selected-
internal Steiner tree such that

c(Q) = c(T ′′)− 2 + 4
= c(T ′′) + 2. (3)

Since c(T ′′) < c(T ′), c(Q) < c(T ) by Equations 2 and 3. This contradicts to
the assumption that T is optimal.

Case 2. k = 2. Assume that e is the edge used in Step 2 of Algorithm A2 to
merge T1 and T2.
Case 2.1. The cost of e equals 1. By the execution of Algorithm A2, we

have that

c(T ) = c(T ′) + 3. (4)

If there is a cost-2 edge (x, y) in T ′′, then T ′′ − (x, y) + (x, a) + (y, a) is
a selected-internal Steiner tree with cost c(T ′′) + 2, which is obviously
smaller than c(T ) = c(T ′) + 3 by the fact that c(T ′′) < c(T ′). This is a
contradiction. Otherwise, if all the edges of T ′′ have cost 1, then we can
select an arbitrary edge (x′, y′) and obtain a selected-internal Steiner
tree T ′′ − (x′, y′) + (x′, a) + (y′, a) with cost c(T ′′) + 3. According to
Equation 4, the cost of this selected-internal Steiner tree is smaller than
that of T , which is a contradiction.

Case 2.2. The cost of e equals 2. It is not difficult to show that T ′′ contains
a cost-2 edge. As with a proof similar to that of Case 2.1, the result
holds. Q.E.D.

Lemma 4. Let cost2 denote the cost of any solution S of I2 = A1(I1) and let
cost1 denote the cost of a solution of I1 returned by A2(S, I2). Then, |cost1 −
OPT(I1)| ≤ 3|cost2 − OPT(A1(I1))|.

Proof. If |cost2−OPT(A1(I1))| = 0, then S is an optimal solution of A1(I1). By
Lemma 3, cost1 is the optimal cost of I1. Therefore, 0 = |cost1 − OPT(I1)| =
|cost2 − OPT(A1(I1))| ≤ 3|cost2 − OPT(A1(I1))|. Now we consider the case of
|cost2−OPT(A1(I1))| > 0, i.e., the solution of I2 with cost cost2 is not optimal.
By the execution of Algorithm A2 (Step 2), we know that cost1 ≤ cost2 − 2.
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Hence,

|cost1 − OPT(I1)| ≤ |cost2 − 2− OPT(I1)|
≤ |cost2 − 2− (OPT(A1(I1))− 4)| /∗ by Equation 1 ∗/
≤ |cost2 − OPT(A1(I1)) + 2|
≤ 3|cost2 − OPT(A1(I1))|. Q.E.D.

Note that Algorithms A1 and A2 can be implemented to run in polynomial time.
By Lemmas 2 and 4, we have the following result.

Theorem 1. SISTP(1,2) is MAX SNP-hard.

4 An Approximation Algorithm for SISTP

In this section, we present an approximation Algorithm ASISTP for SISTP. Let
ASTP denote the best-known approximation algorithm for STP with ratio ρ =
1 + ln 3

2 ≈ 1.55 [8], and also let SA = (VA, EA) be the Steiner tree returned
by ASTP . To make sure that the solution of SISTP exists, in what follows, we
assume that |R \R′| ≥ 2 if R′ = ∅.

Let T be a Steiner tree of the instance I = (G,R,R′, c) of the problem SISTP.
A vertex v ∈ V (T ) is said to be a demand-leaf iff v is a leaf of T and v ∈ R′.
The following property is useful to our algorithm.

Lemma 5. Let T be a Steiner tree of the instance I = (G,R,R′, c) of the
problem SISTP such that |R \ R′| ≥ 2. If v is a demand-leaf of T , then there
is an internal vertex mv ∈ V (T ) satisfying one of the following two
conditions:

1. degT (mv) = 2 and mv ∈ R′;
2. degT (mv) ≥ 3.

Proof. If neither Condition (1) nor Condition (2) holds, then the resulting tree
T is a path 〈v, v1, v2, . . . , vn−1〉 such that v, v1, v2, . . . , vn−2 are all in R′. Then,
|R \ R′| ≤ 1 < 2, which contradicts to the assumption that |R \ R′|
≥ 2. Q.E.D.

The skeleton of our algorithm is first to applyASTP to obtain a Steiner tree SA =
(VA, EA) spanning R, and then transform it to a selected-internal Steiner tree by
using Lemma 5 to make each demand-leaf of SA to be an interval vertex. We now
present our approximation algorithm in Figure 3. We call the two verticesmv and
tv selected by Algorithm ASISTP for each demand-leaf v as the medium vertex
and the target vertex of v, respectively. The following properties are obtained
from the algorithm.

Lemma 6. During the execution of Algorithm ASISTP , assume that v is a
demand-leaf of the current tree T handled by the algorithm in some iteration
of the for-loop. Then, we have the following observations:
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1. degT (mv) will be decreased by 1 in the next iteration.
2. degT (tv) will be unchanged in the next iteration.
3. degT (v) will be increased by 1, and fixed as 2 until the algorithm terminates.

Proof. Straightforward. Q.E.D.

Algorithm ASISTP (G, R, R′, c)

Input: A complete graph G = (V, E) with a metric cost function c : E → R+, and
two subsets R and R′ satisfying R′ ⊂ R ⊆ V and |R \ R′| ≥ 2 if R′ �= ∅.

Output: A selected-internal Steiner tree Ts.

1: Use ASTP to find a Steiner tree SA = (VA, EA) spanning R in G.
2: S′

A ← SA.
3: if there is a demand-leaf in S′

A then
4: for each demand-leaf v in the current tree S′

A do
5: Select the nearest vertex mv ∈ V (S′

A) satisfying one of the following condi-
tion:

6: (1) degS′
A
(mv) = 2 and mv �∈ R′

7: (2) degS′
A
(mv) ≥ 3. � The existence of mv is ensured by Lemma 5

8: Choose a vertex tv ∈ V (S′
A) which is adjacent to mv but does not belong

to the path PS′
A
[v, mv].

9: E(S′
A) ← E(S′

A) ∪ {(v, tv)}.
10: E(S′

A) ← E(S′
A) \ {(mv, tv)}.

11: Return Ts ← S′
A.

Fig. 3. An algorithm to construct a selected-internal Steiner tree

Lemma 7. Suppose that v0 is a demand-leaf of SA and vk is the medium ver-
tex of v0 selected by Algorithm ASISTP , i.e., mv0 = vk. Let PSA [v0, vk] =
〈v0, v1, . . . , vk〉 be a path of SA. Then, during the executing of Algorithm ASISTP

before v0 being handled, there always exists a path PT [v0, vk] in the current tree T ,
which is extended from PSA [v0, vk] such that the following three properties hold:

1. The length of PT [v0, vk] is at least k.
2. The path PT [v0, vk] contains all the vertices of PSA [v0, vk] and also retains

their relative order as v0 → v1 → v2 → · · · → vk.
3. If PT [v0, vk]\PSA [v0, vk] = ∅, then the vertices in PT [v0, vk]\PSA [v0, vk] are

all in R′, and each has a fixed degree of 2 until the algorithm terminates.

Proof. The lemma can be shown by induction on the number h of demand-leaves
handled before v0. Q.E.D.

Lemma 8. Suppose that u and v are two different demand-leaves of SA such
that u is handled by the algorithm before v. Then, the two paths PSA [u,mu] and
PSA [v,mv] are edge-disjoint.
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We can generalize Lemma 8 to obtain the following Lemma.

Lemma 9. Let v1, v2, . . . , vl be an order of the demand-leaves of SA handled by
Algorithm ASISTP . Then, the paths PSA [v1,mv1 ], PSA [v2,mv2 ], . . . , PSA [vl,mvl

]
are pairwise edge-disjoint.

The following lemma is used to analyze the approximation ratio of our algorithm
in Theorem 2.

Lemma 10. Suppose that v is a demand-leaf of the current tree T , which is
being handled by the algorithm ASISTP . Then, the target vertex tv does not
belong to PSA [v,mv].

Proof. According to Line 8 of the algorithm, it is clear that tv does not belong
to PT [v,mv], i.e., tv is not a vertex in PT [v,mv]. Assume that PT [v,mv] =
〈v0(= v), v1, v2, . . . , vk(= mv)〉. By Lemma 7(2), the vertices of PSA [v,mv] are
contained in PT [v,mv] and the relative order of the vertices in PSA [v,mv] are
retained in PT [v,mv], i.e., PSA [v,mv] = 〈v0, vi1 , vi2 , . . . , vij , vk〉, where 0 < i1 <
i2 < · · · < ij < k. Therefore, tv is not a vertex in PSA [v,mv]. Q.E.D.

The following lemma can be obtained using triangle inequalities.

Lemma 11. Let P = 〈v1, v2, · · · , vk−1, vk〉 be a path of a graph G = (V,E) with
a metric cost function c : E → R+, and let P ′ = 〈v1, v2, · · · , vk−2, vk−1〉. Then,

c(v1, vk)− c(vk−1, vk) ≤ c(P ′), where c(P ′) =
k−2∑
j=1

c(vj , vj+1).

Let LR = {v| v ∈ R is a leaf of SA} and LR′ = {v| v is a demand-leaf of SA}.
Note that LR′ ⊆ LR. Define φ = min{|LR \LR′ |, |R \R′|−2}. We now show our
main result.

Theorem 2. Let e1, e2, . . . , ei denote the first i smallest-cost edges of SA =
(VA, EA). Algorithm ASISTP is a (2 − σ

c(SA) )ρ-approximation algorithm for
SISTP, where ρ is the best-known approximation ratio of the Steiner tree problem
and σ is defined as follows:

σ =

⎧⎪⎨⎪⎩
c(SA) if R′ = ∅,

φ∑
i=1

c(ei) otherwise.

Moreover, 0 ≤ σ
c(SA) ≤ 1.

Proof. It is clear that Algorithm ASISTP correctly constructs a selected-internal
Steiner tree. We now analyze the approximation ratio. Let Ts, T ∗ and S∗ be the
output of ASISTP , the optimal solution of SISTP and the optimal solution of
STP, respectively. Since SA is the output of Algorithm ASTP , we have that

c(SA) ≤ ρc(S∗). (5)
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Since T ∗ is a feasible solution of STP,

c(S∗) ≤ c(T ∗). (6)

By Equations 5 and 6, we have that

c(SA) ≤ ρc(T ∗).

Next, we consider the following two cases according to the demanded-terminal
set R′.

Case 1: R′ = ∅. Then, c(Ts) = c(SA) ≤ ρc(T ∗) = (2 − c(SA)
c(SA) )ρc(T

∗). The
theorem holds.

Case 2: R′ = ∅ and |R \R′| ≥ 2. According to Algorithm ASISTP ,

c(Ts) = c(SA) +
∑

v∈LR′

(c(v, tv)− c(mv, tv)).

By Lemmas 10 and 11, we know that∑
v∈LR′

(c(v, tv)− c(mv, tv)) ≤
∑

v∈LR′

c(PSA [v,mv]).

DefineQ to be the set obtained by selecting arbitrary φ(= min{|LR\LR′ |, |R\
R′| − 2}) elements from LR \ LR′ . Note that

Q =

⎧⎪⎨⎪⎩
∅ if φ = 0,
LR \ LR′ if φ = |LR \ LR′ |,
a proper subset of LR \ LR′ otherwise.

If we transform LR′ ∪ Q into internal vertices using Algorithm ASISTP

(G,R,Q ∪ R′, c), then the resulting tree remains a selected-internal Steiner
tree. (Note that the algorithm actually transform only LR′ into internal ver-
tices.) By above observation together with Lemma 9, we have∑

v∈LR′

c(PSA [v,mv]) +
∑
v∈Q

c(PSA [v,mv]) ≤ c(SA).

Therefore, we can obtain the following result: c(Ts) = c(SA) +
∑

v∈LR′
(c(v, tv)−

c(mv, tv)) ≤ c(SA)+
∑

v∈LR′
c(PSA [v,mv])≤c(SA)+

(
c(SA)− ∑

v∈Q

c(PSA [v,mv])

)

≤ 2c(SA)−
|Q|∑
i=1

c(ei) = 2c(SA)−
φ∑

i=1
c(ei) =

⎛⎝2−
φ∑

i=1
c(ei)

c(SA)

⎞⎠ c(SA) ≤⎛⎝2−
φ∑

i=1
c(ei)

c(SA)

⎞⎠ ρc(T ∗). Therefore, c(Ts)
c(T ∗) ≤

⎛⎝2−
φ∑

i=1
c(ei)

c(SA)

⎞⎠ ρ. It is clear that

0 ≤ σ
c(SA) ≤ 1. Therefore, the result holds. Q.E.D.
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Abstract. Interval graphs play important roles in analysis of DNA
chains in Benzer [1], restriction maps of DNA in Waterman and Griggs
[11] and other related areas. In this paper, we study a new combinato-
rial optimization problem, named as the minimum clique partition prob-
lem with constrained weight, for interval graphs. For a weighted interval
graph G and a bound B, partition the weighted intervals of this graph G
into the smallest number of cliques, where each clique, consisting of some
intervals whose intersection on a real line is not empty, has its weight not
beyond B. We obtain the following results: (1) This problem is NP -hard
in the strong sense, and it cannot be approximated within a ratio 3

2 − ε
in polynomial-time for any ε > 0; (2) We design some approximation
algorithms with different constant ratios to this problem; (3) For the
case where all intervals have the same weight, we also design an optimal
algorithm to solve the problem in linear time.

Keywords: Interval graph, cliques, approximation algorithm.

1 Introduction

An undirected graph G = (V,E) is an interval graph if, for each vertex v ∈ V ,
v can be associated an open interval Iv of the real line, such that any pair of
distinct vertices u, v ∈ V are connected by an edge in E if and only if Iu∩Iv = ∅.
The family {Iv}v∈V is an interval representation of G.

Interval graphs have many applications in the molecular biology, scheduling
of tasks executed, timing of traffic lights, and so on. Benzer [1] invented interval
graphs to study analysis of DNA chains, i.e., the linearity of the chain for higher
organisms, and interval graph aids in locating genes along the DNA sequence;
Waterman and Griggs [11] utilized interval graphs to study an important rep-
resentation of DNA called restriction maps; Papadimitriou and Yannakakis [7]
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utilized interval graphs to study the scheduling interval-order tasks; Roberts [8]
utilized interval graphs to consider the problem of timing of traffic lights to opti-
mize some criterion such as average waiting time. Other applications of interval
graphs shall be found in [3,5,9,12].

Since such an interval graph is a special one of perfect graphs [5], there many
research papers have studied some combinatorial optimization problems in in-
terval graphs, such as computing the maximum coloring number, a maximum
independent set and a maximum clique in such an interval graph. In this paper,
we study the graph partition problem with some bounds in weighted interval
graphs, where each clique consists of some intervals in G whose intersection on
a real line is not empty.

Our problem, named as Minimum Clique Partition Problem with Constrained
Weight for Interval Graphs (MCPCW), is stated in details as follows:

Instance: a weighted interval graph G = (V,E;w) with intervals I1, . . ., In,
having weights w1, . . ., wn, and a bound B;

Question: Find a partition of these n intervals into the smallest number of
cliques, each clique having its weight not beyond B.

We knew that Kaplan and Shamir [6] studied a problem related to ours, they
studied some pathwidth, bandwidth and completion problems to proper inter-
val graphs with small cliques. We noticed Bodlaender and Jansen [2] studied
the restrictions of graph partition problems in several classes of graphs without
weights, and they obtained some results: the problem to partition a cograph
into bounded cliques (independent sets, respectively) remains NP-hard, and the
problem to partition an unweighted interval graph into bounded cliques is solv-
able in linear-time by using an algorithm of Papadimitriou and Yannakakis [7].
But, when we study the clique partition problem with a bound B for weighted
interval graphs, it becomes NP-hard to compute such a minimum number of
cliques, each having weight not beyond B. To our knowledge by now, there is
no approximation algorithms to this new combinatorial optimization problem,
then we design some approximation algorithms with constant ratios to the prob-
lem, and we also redesign a new linear-time algorithm to solve the problem in
the version where all intervals have the same weights. Our new linear-time algo-
rithm is completely different from the one of Bodlaender and Jansen in [2], and
the technique they used heavily depends on the one of scheduling interval-order
tasks in [7], but our linear-time algorithm in the section 4 only depends on the
new sorting technique defined in the section 3 and the Greedy method.

This paper is structured in the following sections. In the section 2, we prove
that the MCPCW problem is NP -hard in a strong sense, by transformed from
the 3-Partition problem, and that it cannot be approximated within a ratio
3
2 − ε for any ε > 0; Some approximation algorithms with constant ratios are
designed to this problem in the section 3; For the case where each interval has the
same weight, we design an optimal algorithm to solve the problem in linear-time
in the section 4; We give the conclusions and remarks in the last section.
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2 Hardness of the MCPCW Problem

In this section, we study the hardness of the MCPCW problem, and then we
also prove that the MCPCW problem cannot be approximated within a ratio
3
2 − ε in polynomial time for any ε > 0.

Theorem 1. The MCPCW problem is NP -hard in a strong sense.

Proof. We prove the NP-hardness of the MCPCW problem by transforming any
instance of 3-Partition problem to an instance of the MCPCW problem. The
3-Partition problem is one of the earliest known natural NP -hard problems
in a strong sense [4].

Consider an instance I of the 3-Partition problem: Given the set S = {a1,
a2, . . ., a3k} of 3k integers to satisfy B

4 < aj <
B
2 for each 1 ≤ j ≤ 3k and

Σ3k
j=1aj = kB, ask whether S can be partitioned into k subsets S1, S2, . . ., Sk

such that, for each i = 1, 2, . . . , k, Si exactly contains three elements of S and
Σa∈Sia = B.

We construct a reduction τ from I of the 3-Partition problem to an instance
τ(I) of the MCPCW problem: a weighted interval graph G with intervals I1,
. . ., I3k, for j = 1, 2, . . . , 3k, each interval Ij having its left endpoint o(Ij) = j−1,
right endpoint d(Ij) = 3k in the real line and possessing its weight aj , and the

bound B = Σ3k
j=1aj

k .
Now, we prove the following claim: There exists a feasible solution to an in-

stance I of 3-Partition problem if and only if the instance τ(I) of the MCPCW
problem has its optimal solution with value k.

In fact, for any feasible solution of an instance I of 3-Partition problem, the
set S is partitioned into k subsets S1, S2, . . ., Sk such that, for i = 1, 2, . . . , k, Si

exactly contains three elements of S and
∑

a∈Si
a = B, then we construct a par-

tition to the instance τ(I) of the MCPCW problem: for each Si = {ai1 , ai2 , ai3},
keep the clique Ci = {Ii1 , Ii2 , Ii3}, and then we obtain the partition of these 3k
intervals into k cliques, each clique exactly having its weight B.

Conversely, if the instance τ(I) of the MCPCW problem has an optimal
partition {C1, C2, . . . , Ck} with the smallest integer k, having

∑
a∈Ci

a ≤ B for
each i = 1, 2, . . . , k. By the facts Σ3k

j=1aj = kB and B
4 < aj <

B
2 for each

1 ≤ j ≤ 3k, we obtain
∑

a∈Ci
a = B for each 1 ≤ i ≤ k and then each clique Ci

exactly contains three elements from S, i.e., Si = {ai1 , ai2 , ai3} and
∑

a∈Ci
a = B

for each 1 ≤ i ≤ k. So the instance I of the 3-Partition problem has the
partition S1, S2, . . ., Sk.

Hence, the NP-hardness in a strong sense of the MCPCW problem follows
the fact that the 3-Partition problem is one of the earliest known natural
NP -hard problems in a strong sense. This reaches at the conclusion of the
theorem.

We know that the MCPCW problem is NP -hard in a strong sense from the
theorem 1; moreover, we obtain the following strong result.

Theorem 2. For any ε >, there is no approximation algorithm of a ratio 3
2 − ε

for the MCPCW problem.
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Proof. Suppose that there were such an approximation algorithm A, then we
show how to solve the Partition problem by the algorithm A, i.e., deciding if
there is a way to partition n nonnegative numbers a1, a2, . . ., an into two sets,
each adding up to 1

2Σ
n
i=1ai.

For an instance I of the Partition problem consisting of n nonnegative
numbers a1, a2, . . ., an, we construct a reduction τ from I of the Partition
problem to an instance τ(I) of the MCPCW problem: an interval graph G with
intervals I1, . . ., In, for j = 1, 2, . . . , n, each interval Ij having its left endpoint
o(Ij) = j − 1, right endpoint d(Ij) = n in the real line and possessing its weight
aj , and the bound B = 1

2Σ
n
i=1ai.

Clearly, the answer to the Partition problem is ‘yes’ if and only if the
MCPCW problem exactly has two cliques of weight 1

2Σ
n
i=1ai.

When we use the algorithm A on the instance τ(I), it produces an output
to satisfy m ≤ (3

2 − ε)OPT , where OPT is the optimal value to the instance
τ(I). If OPT = 2, then the preceding formula implies m = 2, showing that
the Partition problem has a feasible solution; If OPT ≥ 3, then we get m ≥
OPT ≥ 3, implying that the Partition problem has no feasible solution. So
the algorithm A solves the Partition problem in polynomial-time. But the
Partition problem remains NP -hard [4], a contradiction.

Hence, the theorem holds.

3 Some Approximation Algorithms for MCPCW

Since the MCPCW problem is NP -hard and there is no polynomial-time algo-
rithm to optimally solve it, we design some approximation algorithms for it in
this section.

In order to simply describe our approximation algorithms, we shall utilize an
optimal algorithm from Tarjan [10] to compute a maximum independent set in
such an interval graph, by utilizing some technique of minimum-cost flow with
value 1, and this optimal algorithm runs in time O(n). For convention, we denote
such an algorithm as Max-Set.

Before we design approximation algorithms for the MCPCW problem, we give
the rules of the sequel index sorting. For a weighted interval graph G = (V,E;w)
with intervals I1, . . ., In, denote o(i) and d(i) respectively as the left endpoint
and the right endpoint, located on the real line from left to right, of the interval
Ii for each 1 ≤ i ≤ n, each interval Ii having its weight wi.

We denote a linear order ‘≤’ on G: for any two intervals Ii, Ij of G, denote
Ii ≤ Ij if and only if (1) either d(i) < d(j), or (2) d(i) = d(j) and o(i) < o(j), or
(3) d(i) = d(j), o(i) = o(j) and wi ≤ wj . It takes O(nlogn) steps to sort these
n intervals, heavily depending on this linear order ‘≤’ on the rule (3). When all
intervals have the same weight, i.e., when we do not care the weights of these n
intervals, the precede order ‘≤’ is also linear, but the sorting time in this case
runs in O(n). We shall changeably to utilize these two linear orders in the sequel,
but their different running times depend on the rule choices. For any subgraph
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G′ of the interval graph G, it is known that the partial order ‘≤’ on G′ is a linear
order [9], too.

We design first approximation algorithm for the MCPCW problem:

Algorithm Clique-Partition I
Input: a weighted interval graphG = (V,E;w) with intervals I1, . . ., In, having

weights w1, . . ., wn, and a bound B;
Output: m disjoint cliques consisting of these n intervals, each clique having

its weight not beyond B.
Begin
Step 1: Use the algorithm Max-Set to compute a maximum independent set
I = {Ii1 , Ii2 , . . ., Iir} in G;

Step 2: Use the Greedy method to obtain r disjoint cliques C1, C2, . . ., Cr,
where Ct contains the interval Iit , for each 1 ≤ t ≤ r, such that {C1, C2, . . .,
Cr} is a partition of these n intervals;

Step 3: For each clique Cj = {Ij1 , Ij2 , . . . , Ijmj
}, where 1 ≤ j ≤ r and Ij1 = Iij ,

choose some suitable cliques as follows: for 1 ≤ t ≤ mj and the ‘alive cliques’
C1

j , . . ., Ck
j containing the intervals Ij1 , Ij2 , . . . , Ijt−1 (for convention, the

‘alive clique’ is empty when t = 1 for the initiation), add the current interval
Ijt into some ‘alive clique’ Ck′

j if the total weight sum of Ijt and the intervals
in the original clique Ck′

j is not greater than B, where 1 ≤ k′ ≤ k, otherwise
open a new ‘alive clique’ as Ck+1

j to contain the current interval Ijt as the
first interval, until t > mj ;

Step 4: Output all cliques obtained from the step 3.
End of Clique-Partition I

Theorem 3. The algorithm Clique-Partition I is an approximation algorithm
with ratio 3 for the MCPCW problem, it runs in the time O(n2).

Proof. For 1 ≤ j ≤ r, let Outj be the set of cliques produced by the step 3 of the
algorithm Clique-Partition I on each clique Cj and denote OUT =

⋃r
j=1Outj .

Then, such |Outj | cliques must contain at least |Outj | − 1 cliques whose weight
is greater than B

2 , otherwise |Outj | will be decreased. Thus

m∑
i=1

wi >
B

2
(|Out1| − 1) +

B

2
(|Out2| − 1) + · · ·+ B

2
(|Outr | − 1)

=
B

2
(|Out1|+ |Out2|+ · · ·+ |Outr| − r)

=
B

2
(|OUT | − r)

implying

|OUT | < 2
∑m

i=1 wi

B
+ r ≤ 2|OPT |+ |OPT | = 3|OPT |

where the second inequality depends on the two facts that the optimal solution
has two lower bounds

∑m
i=1 wi

B and r, i.e., |OPT | ≥
∑m

i=1 wi

B and |OPT | ≥ r.
So the algorithm Clique-Partition I has a ratio 3.
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Now, we analyze the complexity of the algorithm Clique-Partition I: (1) the
step 1 needsO(n) steps to compute a maximum independent set in such an interval
graph in Tarjan [10]; (2) by using Gready method, the step 2 needs O(n) steps
to to find such a clique partition of these n intervals; (3) since each interval must
be chosen in a clique and the index sorting only depends the rules (1) and (2), the
steps in the step 3 totally needs time in O(m2

1) + O(m2
2) + · · · + O(m2

r), i.e., at
most O(n2). Hence, the whole algorithm needs running time in O(n2).

This establishes the conclusion of the theorem.

Now, we design another new approximation algorithm for the MCPCW problem
that has a better ratio than before. For convention, the interval is called as a large
interval if this interval has its weight greater than B

2 , otherwise the interval is
called as a small interval. Our second approximation algorithm for the MCPCW
problem is designed:

Algorithm Clique-Partition II
Input: a weighted interval graphG = (V,E;w) with intervals I1, . . ., In, having

weights w1, . . ., wn, and a bound B;
Output: m disjoint cliques consisting of these n intervals, each clique having

its weight not beyond B.
Begin
Step 1: For each large interval Ii, let a clique Ci only contain such a large

interval Ii; and after remove all large intervals from G, the current interval
graph G only contains small intervals;

(/*We only consider all small intervals below/*)
Step 2: Sort all small intervals according to the precede rules (1) and (2),

without loss of generality, the small intervals in G are sorted as I1, . . ., In′

depending on the rules (1) and (2);
Step 3: Depending on the linear order ‘≤’ on G, choose a smallest element,
Imin, in the current graph G as the alive interval; and find the maximal
clique C from the current graph G to contain such an alive interval Imin,
without loss of generality, all intervals in such maximal clique C are sorted
as Ii, Ii+1, . . ., Ij , where Ii = Imin;

Step 4: Use the similar method at the step 3 in the algorithm Clique-Partition I,
and then obtain mi disjoint cliques Ci1 , Ci2 , . . ., Cimi

from the current alive
clique C, simultaneously, the cliques Ci1 , Ci2 , . . ., Cimi−1

must have weights
greater than B

2 ;
– Step 4.1: If the clique Cimi

has its weight greater than B
2 , then put G :=

G−⋃mi

t=1 Cit and produce the mi cliques Ci1 , Ci2 , . . ., Cimi
;

– Step 4.2: If mi ≥ 2 and the clique Cimi
has its weight not greater than B

2 ,
then put G := G −⋃mi−1

t=1 Cit and produce the mi − 1 cliques Ci1 , Ci2 , . . .,
Cimi−1

;
– Step 4.3: If mi = 1 and the clique Cimi

(=C) has its weight not greater
than B

2 , then put G := G− C and produce the clique C;
Step 5: Continue to execute the step 3 until G = ∅;
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Step 6: Output all cliques obtained from the steps 1 and 4.
End of Clique-Partition II

We shall notice the facts: (1) when the step 4.1 or 4.3 executes for a time, the
step 4 will exactly produce the mi cliques Ci1 , Ci2 , . . ., Cimi

for this time; (2)
but when the step 4.2 executes for a time, the step 4 will only produce the mi−1
cliques Ci1 , Ci2 , . . ., Cimi−1 for this time.

Now, we provide a proof of the correctness for the algorithm Clique-Partition
II and its running complexity.

Theorem 4. The algorithm Clique-Partition II is an approximation algorithm
with ratio 2 for the MCPCW problem, it runs in the time O(n2).

Proof. For convention, we may assume that the output cliques are ordered as
C0

1 , . . ., C0
j0 , C

1
1 , . . ., C1

j1 , C
2
1 , . . ., C2

j2 , . . ., C
t
1, . . ., Ct

jt
, where C0

1 , . . ., C0
j0

are sequentially produced at the step 1, each clique having its weight greater
than B

2 , and C1
j1

, C2
j2

, . . ., Ct
jt

are sequentially produced at the step 4.3, each
clique having its weight not greater than B

2 except the last clique Ct
jt

(we note
that the clique Ct

jt
has its weight greater than B

2 when Ct
jt

is the last clique
produced before the algorithm stops at the step 4.1, otherwise the clique Ct

jt
has

its weight not greater than B
2 ), and the other cliques are sequentially produced

at the steps 4.1 or 4.2, each clique having its weight greater than B
2 . So the

number of output cliques is m = j0 + j1 + j2 + · · ·+ jt. And these m cliques are
disjoint by the choices in the algorithm.

By the choice at the step 4.3 of our algorithm, any two cliques Ck
jk

, Ck′
jk′ of C1

j1 ,
C2

j2
, . . ., Ct

jt
can not be covered simultaneously by a clique in any optimal solution

OPT , otherwise at least one of Ck
jk

, Ck′
jk′ is not maximal clique, contradicting the

choice at the step 4.3. Since the other cliques obtained at the step 4.1 or 4.2 or
the step 1 have the weight greater than B

2 , then the cliques C1
1 , . . ., C1

j1
must be

covered by at least � j1
2 � cliques from any optimal solution OPT , and the cliques

C2
1 , . . ., C2

j2
must be covered by at least � j2

2 � cliques from any optimal solution
OPT , and so on.

For each 1 ≤ k ≤ t, denote ε(jk) = 1 if jk is odd and ε(jk) = 0 otherwise.
When ε(jk) = 0, i.e., ji is even, the ji cliques Ck

1 , . . ., Ck
jk

must be covered by at
least jk+ε(jk)

2 cliques in any optimal solution OPT ; but when ε(jk) = 1, i.e., ji
is odd, the ji− 1 cliques Ck

1 , . . ., Ck
jk−1 must be covered by at least jk−1

2 cliques
in any optimal solution OPT , and both of the clique Ck

jk
and any clique from

C0
1 , . . ., C0

j0
must be covered by at least one clique in any optimal solution OPT .

This shows that

|OPT | ≥ max{ j0 −
∑t

k=1 ε(jk)
2

, 0}+
t∑

k=1

jk + ε(jk)
2

≥ j0 + j1 + · · ·+ jt
2

=
m

2
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which implies m ≤ 2|OPT |. So the algorithm Clique-Partition II has a ratio 2
for the MCPCW problem.

Now, we analyze the complexity of the algorithm Clique-Partition II: (1) the
step 1 needs at most 2n steps to find all large intervals to construct the cliques,
each having weight greater than B

2 ; (2) the step 2 needs at most 2n steps to
sort the smaller intervals, depending on the rules 1-2; (3) for the current interval
graph G at each time executed, it needs a constant time to choose the minimum
element Imin from the current interval graph G, so it totally needs time at most
in O(n); (4) since each interval must be chosen in a clique, so the steps during the
steps 3-4, except the steps to find minimum element from the current G, totally
needs time in O(n2) similarly to the step 3 in the algorithm Clique-Partition I.
Hence, the whole algorithm needs running time in O(n2).

This establishes the conclusion of the theorem.

4 Linear Algorithm for the Special Case of MCPCW

In this section, we study the MCPCW problem in the version where all intervals
have the same weight 1. When we utilize the algorithms Clique-Partition I or II
on this special interval graph, we obtain a feasible solution whose value is not
greater than three or two times that of optimal solution. But when we slightly
modify the algorithm Clique-Partition II in some ways, we design an optimal
algorithm in the linear-time for the the MCPCW problem in this special version.

Our method to design an optimal algorithm in linear-time depend on the
following ideas: (1) sort all intervals depending on the rules 1-2; (2) choose a
suitable maximal clique C; (3) choose some cliques, each having its weight not
greater than B, from the intervals of C by distinguishing the cardinality of such
suitable maximal clique C; (4) repeatedly execute steps (2)-(3) until G = ∅.

Since the precede partial order ‘≤’ is a linear order on the original interval
graph G, then this partial order ‘≤’ is also a linear order on the current inter-
val subgraph of G. We can sort all intervals in the time O(n), and choose the
smallest element, Imin, in the constant time at each choice in the current inter-
val subgraph of G; Again, execute this process repeatedly until this subgraph
becomes empty. Our linear optimal algorithm is described in detail as follows:

Algorithm: Clique-Partition III
Input: a interval graph G = (V,E;w) with intervals I1, . . ., In, and a bound B;
Output: m disjoint cliques consisting of these n intervals, each clique contain-

ing intervals not beyond B.
Begin
Step 1: Sort all intervals of G according to the precede rules 1-2 of the linear

order ‘≤’ on G;
Step 2: Choose the smallest element, Imin, in G as the alive interval; and find

the maximal clique C from G to contain such an alive interval Imin, and
then sort all intervals in C according to the precede rules 1-2, without loss
of generality, all intervals in C are sorted as Ii1 , Ii2 , . . ., Iir , where Ii1 = Imin;
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Step 3: For the current alive clique C = {Ii1 , Ii2 , . . . , Iir}, choose the new cliques
from C, depending on the following choice regulations:
– Step 3.1: If r < B, i.e., |C| < B, then output the alive clique C only
containing these r intervals; and put G := G− {Ii1 , Ii2 , . . . , Iir};
– Step 3.2: If r ≥ B, set r = sB + r0, where s = � r

B � and 0 ≤ r0 < B, then
output the s cliques C1 = {Ii1 , . . . , IiB}, C2 = {IiB+1 , . . . , Ii2B}, . . ., Cs =
{Ii(s−1)B+1 , . . . , IisB}; and G := G− {Ii1 , . . . , IiB , . . . , Ii(s−1)B+1 , . . . , IisB};

Step 4: Continue to execute the step 2 until G = ∅;
Step 5: Output all cliques at the step 3.
End of Clique-Partition III

Theorem 5. The algorithm Clique-Partition III is a linear optimal algorithm
for the special version of the MCPCW problem, where all intervals have the
same weight 1.

Proof. For convention, we may assume that the output cliques are ordered as C1
1 ,

. . ., C1
j1

, C2
1 , . . ., C2

j2
, . . ., Ct

1, . . ., C
t
jt

, where C1
j1

, C2
j2

, . . ., Ct
jt

are sequentially
produced at the step 3.1 for the case r < B, each clique having its weight less
than B except the last clique Ct

jt
(we note that the clique Ct

jt
exactly has its

weight B when Ct
jt

is the last clique produced before the algorithm stops at the
step 3.2), and the other cliques are sequentially produced at the step 3.2 for the
case r ≥ B in the sequential times, each clique exactly having its weight B. So
the number of output cliques is m = j1 + j2 + · · ·+ jt. And these m cliques are
disjoint by the choices in the algorithm.

By the choice at the step 3.1 of our algorithm, any two cliques Ck
jk

, Ck′
jk′ of

C1
j1

, C2
j2

, . . ., Ct
jt

can not be covered simultaneously by a clique in any optimal
solution OPT , otherwise at least one of Ck

jk
and Ck′

jk′ is not maximal clique,
contradicting the choice at the step 3.1.

Since the other cliques obtained at the step 3.2 have the same weight B,
then the cliques C1

1 , . . ., C1
j1

must be covered by at least j1 cliques from any
optimal solution OPT , and the cliques C1

j1
, C2

1 , . . ., C2
j2

must be covered by at
least j2 + 1 cliques from any optimal solution OPT , and so on. Then, for any
optimal solution OPT , we must have |OPT | ≥ j1 + j2 + · · ·+ jt = m, implying
|OPT | = m.

Hence, the output cliques C1
1 , . . ., C1

j1 , C
2
1 , . . ., C2

j2 , . . ., C
t
1, . . ., C

t
jt

are the
elements of an optimal solution OPT to the special version of the MCPCW
problem.

Now, we analyze the complexity of the algorithm Clique-Partition III: (1) the
step 1 needs 2n steps to sort the n intervals; (2) for the current interval graph G
at each time, it needs a constant time to choose the minimum element Imin from
the current interval graph G, so it totally needs at most time in O(n) to find
such minimum elements; (3) since each interval must be chosen in a clique, so
the steps during the steps 2-3, except the steps to find minimum element from
the current G, totally needs time in O(n). Hence, the whole algorithm needs
running time in O(n), i.e., the whole algorithm runs in linear-time.

This establishes the conclusion of the theorem.
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5 Conclusion

In this paper, we study the minimum clique partition problem with constrained
weight for interval graphs, and we have proved that this new problem is NP-hard
and it cannot be approximated within a ratio 3

2 − ε in polynomial-time for any
ε > 0, and then we have designed some approximation algorithms with different
constant ratios to this problem and an optimal algorithm in linear-time to solve
the problem for the version where all intervals have the same weights.

For the future work, we shall design an approximation algorithm for the
MCPCW problem with a ratio 3

2 , which shall show the tight ratio 3
2 , by adding

result of the theorem 2. On the other way, we shall design some approximation
algorithms within a ratio 2 to possess lower complexity.
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Abstract. We define a language to be overlap-free if any two distinct
strings in the language do not overlap with each other. We observe that
overlap-free languages are a proper subfamily of infix-free languages and
also a proper subfamily of comma-free languages. Based on these obser-
vations, we design a polynomial-time algorithm that determines overlap-
freeness of a regular language. We consider two cases: A language is
specified by a nondeterministic finite-state automaton and a language is
described by a regular expression. Furthermore, we examine the prime
overlap-free decomposition of overlap-free regular languages and show
that the prime overlap-free decomposition is not unique.

1 Introduction

Regular languages are popular in many applications such as editors, programming
languages and software systems in general. People often use regular expressions
for searching in text editors or for UNIX command; for example, vi, emacs and
grep. Moreover, regular expression searching is also used in pattern matching.

The pattern matching problem is to find all matching substrings of a text T
with respect to a pattern L. If L is a regular language given by a regular ex-
pression, then the problem becomes the regular-expression matching problem.
Many researchers have investigated various regular-expression matching prob-
lems [1, 3, 7, 18]. One question in regular-expression matching is how many
matching substrings are in T . Given a regular expression E and a text T , there
can be at most n2 matching substrings in T with respect to L(E), where n is the
size of T . For example, E = (a+ b)∗ and T = aabababa · · ·abaa over the alpha-
bet {a, b}. These matching substrings often overlap and nest with each other. To
avoid this situation, researchers restrict the search to find and report only a lin-
ear subset of the matching substrings. We call it linearizing restriction. There are
two well-known linearizing restrictions in the literature: The longest match rule,
which is a generalization of the leftmost longest match rule of IEEE POSIX [14]
and the shortest-match substring search rule of Clarke and Cormack [3]. These
two rules have different semantics and, therefore, identify different matching

� The author was supported by KIST Tangible Space Initiative Grant 2E19020.

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 469–478, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



470 Y.-S. Han and D. Wood

substrings for same pattern and text in general. On the other hand, Han and
Wood [10] showed that if the pattern language is infix-free, then both rules give
the same output. Furthermore, they proposed another linearizing restriction,
leftmost non-overlapping match rule that only reports non-overlapping match-
ing substrings of T . This new rule leads us to define a new subfamily of regular
languages, overlap-free regular languages. We define a language L to be overlap-
free if any two strings in L do not overlap with each other. (We give a formal
definition in Section 3.) If we use an overlap-free regular language as pattern, it
guarantees that all matching substrings of a text do not overlap with each other
and, therefore, ensures a linear number of matching substrings.

As a continuation of our investigations of subfamilies of regular languages,
it is natural to examine overlap-free regular languages and the prime overlap-
free decomposition problem since overlap-free regular languages are a proper
subfamily of regular languages. Our goal is to design an efficient algorithm that
determines overlap-freeness of a given regular language and to study the prime
overlap-free decomposition and its uniqueness.

We define some basic notions in Section 2. In Section 3, we define overlap-
free languages and design an efficient algorithm that determines overlap-freeness
of a given regular language L based on the structural properties of L. Then,
in Section 4, we demonstrate that an overlap-free regular language does not
have a unique prime overlap-free decomposition. We also develop an algorithm
for computing a prime overlap-free decomposition from a minimal deterministic
finite-state automaton (DFA) of an overlap-free regular language.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the
empty language and the character λ denotes the null string. A finite-state au-
tomaton (FA) A is specified by a tuple (Q,Σ, δ, s, F ), where Q is a finite set of
states, Σ is an input alphabet, δ ⊆ Q × Σ × Q is a (finite) set of transitions,
s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q| be the number
of states in Q and |δ| be the number of transitions in δ. Then, the size |A| of
A is |Q| + |δ|. Given a transition (p, a, q) in δ, where p, q ∈ Q and a ∈ Σ, we
say that p has an out-transition and q has an in-transition. Furthermore, p is a
source state of q and q is a target state of p. A string x over Σ is accepted by A
if there is a labeled path from s to a state in F such that this path spells out the
string x. Thus, the language L(A) of an FA A is the set of all strings that are
spelled out by paths from s to a final state in F . We say that A is non-returning
if the start state of A does not have any in-transitions and A is non-exiting if
the final state of A does not have any out-transitions. We assume that A has
only useful states; that is, each state of A appears on some path from the start
state to some final state.

Given two strings x and y over Σ, x is a prefix of y if there exists z ∈ Σ∗

such that xz = y and x is a suffix of y if there exists z ∈ Σ∗ such that zx = y.
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Furthermore, x is said to be a substring or an infix of y if there are two strings u
and v such that uxv = y. Given a set X of strings over, X is infix-free if no
string in X is an infix of any other string in X . Similarly, X is prefix-free if no
string in X is a prefix of any other string in X .

3 Overlap-Free Regular Languages

Given two strings x and y, we say that x and y overlap with each other if either
a suffix of x is a prefix of y or a suffix of y is a prefix of x. For example, x = abcd
and y = cdee overlap.

Definition 1. Given a (regular) language L, we define L to be overlap-free if
any two distinct strings in L do not overlap with each other.

Since we examine overlap of strings, we can think of the derivative operation [2].
The derivative x\L of a language L with respect to a string x is the language
{y | xy ∈ L}.

Proposition 1. If a language L is overlap-free, then x\L ∪ L is prefix-free for
any string x.

Let us examine the relationship with other families of languages. By Definition 1,
overlap-free languages are a proper subfamily of infix-free languages. Golomb et
al. [6] introduced comma-free languages: A language L is comma-free if LL ∩
Σ+LΣ+ = ∅. Comma-free languages are also a proper subfamily of infix-free
languages [15]. We compare these two subfamilies of infix-free languages and
establish the following result:

Proposition 2. Overlap-free languages are a proper subfamily of comma-free
languages.

A regular language is represented by an FA or described by a regular expression.
Thus, we define a regular expression E to be overlap-free if L(E) is overlap-free
and an FA A to be overlap-free if L(A) is overlap-free.

We now investigate the decision problem of overlap-freeness of a regular lan-
guage. Given a language L, L is prefix-free if and only if L∩LΣ+ = ∅ [15]. If L
is a regular language, then we can check the emptiness of L∩LΣ+ in polynomial
time. Thus, if we can find a proper string x, then we can use Proposition 1 for
deciding overlap-freeness of L. However, we do not know which string is proper
unless we check the emptiness of (x\L ∪ L) ∩ (x\L ∪ L)Σ+ and certainly it is
undesirable to try all possible strings over Σ. Recently, Han et al. [8] introduced
state-pair graphs and proposed an algorithm for determining infix-freeness of a
regular language L based on the structural properties of L. Based on state-pair
graphs, we design algorithms that determine overlap-freeness of a regular lan-
guage. Since an overlap-free language must be infix-free, we assume that a given
language L is infix-free. Note that we can check infix-freeness of L in quadratic
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time in the size of the representation of L [8]; if L is not infix-free, then L is not
overlap-free.

First, we consider when a language is given by an FA. Given an FA A =
(Q,Σ, δ, s, F ), we assign a unique number for each state in A from 1 to m,
where m is the number of states in A.

Definition 2. Given an FA A = (Q,Σ, δ, s, F ), we define the state-pair
graph GA = (VG, EG) of A, where VG is a set of nodes and EG is a set of
edges, as follows:

VG = {(i, j) | i and j ∈ Q} and
EG = {((i, j), a, (x, y)) | (i, a, x) and (j, a, y) ∈ δ and a ∈ Σ}.

The crucial property of state-pair graphs is that if there is a string w spelled out
by two distinct paths in A, for example, one path is from i to x and the other
path is from j to y, then, there is a path from (i, j) to (x, y) in GA that spells
out the same string w. Note that state-pair graphs do not require given FAs to
be deterministic. The complexity of the state-pair graph GA = (VG, EG) for an
FA A = (Q,Σ, δ, s, F ) is as follows:

Proposition 3. Given an FA A = (Q,Σ, δ, s, F ) and its state-pair graph GA,
|GA| ≤ |Q|2 + |δ|2.

a

b
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d
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2

3

4
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b

c

b

c

d

1, 1

2, 2

3, 3

4, 4

1, 2 3, 2 3, 4
b c

(a) (b)

2, 1 2, 3 4, 3
b c

Fig. 1. (a) is an FA A for L(ab∗c + bc∗d) and (b) is the corresponding state-pair
graph GA. We omit all nodes without transitions in GA. Note that L(A) is not overlap-
free.

Fig. 1 illustrates the state-pair graph for a given FA A. Note that the lan-
guage L(A) = L(ab∗c + bc∗d) in Fig. 1 is not overlap-free since abc and bcd
overlap, and the overlapped string bc appears on the path from (1, 2) to (3, 4) in
GA.



Overlap-Free Regular Languages 473

Since we assume that L(A) is infix-free, a final state ofA has no out-transitions
and the start state has no in-transitions. Namely, A is non-returning and non-
exiting. Therefore, if A has more than one final state, then all final states can
be merged into a single final state since they are equivalent. From now on, we
assume that a given FA is non-returning and non-exiting and has only one final
state.

Theorem 1. Given an FA A = (Q,Σ, δ, s, f), L(A) is overlap-free if and only
if the state-pair graph GA for A has no path from (1, i) to (j,m), where i = m
and j = 1, and 1 denotes the start state and m denotes the final state.

We can identify such a path in Theorem 1 in linear time in the size of GA

using Depth-First Search (DFS) [4]. Thus, we obtain the following result from
Proposition 3 and Theorem 1:

Theorem 2. Given an FA A = (Q,Σ, δ, s, f), we can determine whether or not
L(A) is overlap-free in O(|Q|2 + |δ|2) worst-case time.

Since O(|δ|) = O(|Q|2) in the worst-case for NFAs, the runtime is O(|Q|4) in
the worst-case. On the other hand, if a regular language is given by a regular
expression E, then we can construct an FA for E that improves the worst-case
running time. Since the complexity of state-pair graphs is closely related to
the number of states and the number of transitions of input FAs, we use an
FA construction that gives fewer states and transitions. One possibility is the
Thompson construction [18].

Given a regular expression E, the Thompson construction takes O(|E|) time
and the resulting Thompson automaton has O(|E|) states and O(|E|) transi-
tions [13]; namely, O(|Q|) = O(|δ|) = O(|E|). Even though Thompson automata
are a subfamily of NFAs, they define all regular languages. Therefore, we can use
Thompson automata to determine overlap-freeness of a regular language. Since
Thompson automata allow null-transitions, we include the null-transition case
to construct the edges for state-pair graphs as follows:

VG = {(i, j) | i and j ∈ Q} and
EG = {((i, j), a, (x, y)) | (i, a, x) and (j, a, y) ∈ δ and a ∈ Σ ∪ {λ}}.

The complexity of the state-pair graph based on this new construction is the
same as before; namely, O(|Q|2 + |δ|2). Therefore, we establish the following
result for checking regular expression overlap-freeness.

Theorem 3. Given a regular expression E, we can determine whether or not
L(E) is overlap-free in O(|E|2) worst-case time.

Furthermore, we can use state-pair graphs for determining comma-freeness of
regular languages. A regular language L is comma-free if and only if LL ∩
Σ+LΣ+ = ∅. Because of the assumption that a given FA A is infix-free, (oth-
erwise, L(A) is not comma-free.) A has a single final state that has no out-
transitions. Using this structural property, we construct an FA A′ for LL by
catenating two As; see Fig. 2 for an example.
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A A

A′
ww

i j

A

Fig. 2. Given an FA A = (Q,Σ, δ, s, f), we construct A′ by merging the final state of
one A and the start state of the other A. If L(A) is not comma-free, then there exist
two paths, one is from A′ = AA and the other is from A, and both path spell out the
same string w.

Now we construct the state-pair graph for L(A). The construction of state-
pair graph for the comma-free case is slightly different from the state-pair graph
in Definition 2. Given an FA A = (Q,Σ, δ, s, f), let A′ = (Q′, Σ, δ′, s′, f ′) be the
catenation of two As; namely, L(A′) = L(A)L(A). The state-pair graph GA =
(VG, EG) for the comma-free case is defined as follows:

VG = {(i, j) | i ∈ Q and j ∈ Q′} and
EG = {((i, j), a, (x, y)) | (i, a, x) ∈ δ, (j, a, y) ∈ δ′ and a ∈ Σ}.

Theorem 4. Given an FA A = (Q,Σ, δ, s, f), L(A) is comma-free if and only
if there is no path from (1, i) to (m, j), for i = 1 and j = m, in the state-pair
graph GA for A. Moreover, we can determine comma-freeness in O(|Q|2 + |δ|2)
worst-case time.

A subfamily of languages with certain properties is often closed under catenation.
For example, prefix-free languages, bifix-free languages, infix-free languages and
outfix-free languages are all closed under catenation, respectively [8, 9, 11]. Now
we characterize the family of overlap-free (regular) languages in terms of closure
properties.

Theorem 5. The family of overlap-free (regular) languages is closed under in-
tersection but not under catenation, union, complement or star.

4 Prime Overlap-Free Regular Languages and
Decomposition

Decomposition is the reverse operation of catenation. If L = L1 ·L2, then L is the
catenation of L1 and L2 and L1 ·L2 is a decomposition of L. We call L1 and L2
factors of L. Note that every language L has a decomposition, L = {λ}·L, where
L is a factor of itself. We call {λ} a trivial language. We define a language L to
be prime if L = L1 ·L2, for any non-trivial languages L1 and L2. Then, the prime
decomposition of L is to decompose L into L1L2 · · ·Lk, where L1, L2, · · · , Lk are
prime languages and k ≥ 1 is a constant.

Mateescu et al. [16, 17] showed that the primality of regular languages is
decidable and the prime decomposition of a regular language is not unique. Czy-
zowicz et al. [5] showed that for a given prefix-free regular language L, the prime
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prefix-free decomposition is unique and the decomposition can be computed in
O(m) worst-case time, where m is the size of the minimal DFA for L. Han et
al. [8] investigated the prime infix-free decomposition of infix-free regular lan-
guages and demonstrated that the prime infix-free decomposition is not unique.
On the other hand, the prime outfix-free decomposition of outfix-free regular
languages is unique [11]. We investigate prime overlap-free regular languages
and decomposition.

4.1 Prime Overlap-Free Regular Languages

Definition 3. We define a regular language L to be a prime overlap-free lan-
guage if L = L1 · L2, for any overlap-free regular languages L1 and L2.

From now on, when we say prime, we mean prime overlap-free.

Definition 4. We define a state b in a DFA A to be a bridge state if the fol-
lowing conditions hold:

1. State b is neither a start nor a final state.
2. For any string w ∈ L(A), its path in A must pass through b only once.
3. State b is not in any cycles in A.
4. L(A1) and L(A2) are overlap-free.

Given an overlap-free DFA A = (Q,Σ, δ, s, f) with a bridge state b ∈ Q, we can
partition A into two subautomata A1 and A2 as follows: A1 = (Q1, Σ, δ1, s, b)
and A2 = (Q2, Σ, δ2, b, f), where Q1 is a set of states that appear on some
path from s and b in A, δ1 is a set of transitions that appear on some path
from s and b in A, Q2 = Q \ Q1 ∪ {b} and δ2 = δ \ δ1. See Fig. 3 for an
example.

Note that the second requirement in Definition 4 ensures that the decompo-
sition of L(A) is L(A1) · L(A2) and the third requirement is from the property
that overlap-free FAs must be non-returning and non-exiting.

Theorem 6. An overlap-free regular language L is prime if and only if the
minimal DFA A for L does not have any bridge states.

We tackle the decomposition problem based on FA partitioning using bridge
states. Note that Czyzowicz et al. [5] demonstrated the use of FA partitioning
for the prefix-free decomposition and Han and Wood [12] proposed an efficient
algorithm that computes shorter regular expressions from FAs based on FA par-
titioning. In many applications, FAs become more and more complicated and the
size of FAs is too large to fit into main memory. Therefore, FA decomposition is
necessary and FA partitioning is one approach for solving this problem.

4.2 Prime Decomposition of Overlap-Free Regular Languages

The prime decomposition for an overlap-free regular language L is to represent
L as a catenation of prime overlap-free regular languages. If L is prime, then L
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b

1 2

3 4 6 7

8 9

1 2

3 4 bb 6 7

8 9

Fig. 3. An example of the partitioning of an FA at a bridge state b

itself is a prime decomposition. Thus, given an overlap-free regular language L,
we, first, determine whether or not L is prime. If L is not prime, then there
should be some bridge state(s) and we decompose L using the bridge state(s).
Let A1 and A2 be two subautomata partitioned at a bridge state for L. If both
L(A1) and L(A2) are prime, then a prime decomposition of L is L(A1) · L(A2).
Otherwise, we repeat the preceding procedure for a non-prime language.

Let B denote a set of bridge states for a given minimal DFA A. The number
of states in B is at most m, where m is the number of states in A. Note that
once we partition A at b ∈ B into A1 and A2, then only the states in B \ {b}
can be bridge states in A1 and A2. (It is not necessary for all remaining states
to be bridge states as demonstrated in Fig. 4.) Therefore, we can determine the
primality of L(A) by checking whether or not A has bridge states. Moreover,
we can compute a prime decomposition of L(A) using these bridge states. Since
there are at most m bridge states in A, we can compute a prime decomposition
of L(A) after a finite number of decompositions at bridge states.

Note that the first three requirements in Definition 4 are based on the struc-
tural properties of A. We call a state that satisfies the first three requirements
a candidate bridge state. We first compute all candidate bridge states and, then
we determine whether or not each candidate bridge state satisfies the fourth
requirement in Definition 4.

Proposition 4 (Han et al. [8]). Given a minimal DFA A = (Q,Σ, δ, s, f), we
can identify all candidate bridge states in O(|Q| + |δ|) worst-case time.

Let CB denote a set of candidate bridge states that we compute from an overlap-
free DFA A based on Proposition 4. Then, for each state bi ∈ CB, we check
whether or not two subautomata A1 and A2 partitioned at bi are overlap-free. If
both A1 and A2 are overlap-free, then L is not prime and, thus, we decompose
L into L(A1) ·L(A2) and continue to check and decompose for each A1 and A2,
respectively, using the remaining states in CB \ {bi}.
Theorem 7. Given a minimal DFA A = (Q,Σ, δ, s, f) for an overlap-free reg-
ular language, we can determine primality of L(A) in O(m3) worst-case time
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and compute a prime decomposition for L(A) in O(m4) worst-case time, where
m = |Q|.
The algorithm for computing a prime decomposition for L(A) in Theorem 7
looks similar to the algorithm for the infix-free regular language case studied by
Han et al. [8]. However, there is one big difference between these two algorithms
because of the different closure properties of two families: In fact, Han et al. [8]
speeded up their algorithm by linear factor based on the fact that infix-free
languages are closed under catenation whereas overlap-free languages are not
closed as shown in Theorem 5.

b1 b2
c a b a c

b

b1
c a b a c

b
A

A1 A2

Fig. 4. States b1 and b2 are bridge states for A. However, once we decompose A at b2,
then b1 is no longer a bridge state in A1 since b1 now violates the fourth requirement
in Definition 4. Similarly, if we decompose A at b1, then b2 is not a bridge state.

We observe that a bridge state bi of a minimal DFA A may not be a bridge
state anymore if A is partitioned at a different bridge state bj . See Fig. 4 for an
example: It hints that the prime overlap-free decomposition might not be unique.
Note that the prime prefix-free decomposition for a prefix-free regular language
is unique [5] whereas the prime infix-free decomposition for an infix-free regular
language is not unique [8]. Since overlap-free languages are a proper subfamily of
prefix-free languages and a proper subfamily of infix-free languages, it is natural
to examine the uniqueness of prime overlap-free decomposition. The following
example demonstrates that the prime overlap-free decomposition is not unique.

L(c(aba+ b)c) =
{
L1(c(aba+ b)) · L2(c).
L2(c) · L3((aba+ b)c).

The language L is overlap-free but not prime and it has two different prime
decompositions, where L1, L2 and L3 are prime overlap-free languages.
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On the Combinatorial Representation of
Information
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Abstract. Kolmogorov introduced a combinatorial measure of the in-
formation I(x : y) about the unknown value of a variable y conveyed
by an input variable x taking a given value x. The paper extends this
definition of information to a more general setting where ‘x = x’ may
provide a vaguer description of the possible value of y. As an applica-
tion, the space P({0, 1}n) of classes of binary functions f : [n] → {0, 1},
[n] = {1, . . . , n}, is considered where y represents an unknown function
t ∈ {0, 1}[n] and as input, two extreme cases are considered: x = xMd

and x = xM′
d

which indicate that t is an element of a set G ⊆ {0, 1}n

that satisfies a property Md or M′
d respectively. Property Md (or M′

d)
means that there exists an E ⊆ [n], |E| = d, such that |trE(G)| = 1 (or
2d) where trE(G) denotes the trace of G on E. Estimates of the infor-
mation value I(xMd : t) and I(xM′

d
: t) are obtained. When d is fixed,

it is shown that I(xMd : t) ≈ d and I(xM′
d

: t) ≈ 1 as n → ∞.

Keywords:Information theory, combinatorial complexity,VC-dimension.

1 Introduction

Kolmogorov [5] sought for a measure of information of ‘finite objects’. He consid-
ered three approaches, the so-called combinatorial, probabilistic and algorithmic.
The probabilistic approach corresponds to the well-established definition of the
Shannon entropy which applies to stochastic settings where an ‘object’ is repre-
sented by a random variable. In this setting, the entropy of an object and the
information conveyed by one object about another are well defined. Kolmogorov’s
algorithmic-notion of the information contained in a finite binary string s is the
length of the minimal-size program that can compute it and is denoted by K(s).
This notion of the information contained in s, which is fundamentally different
from the Shannon information since s is non-stochastic, has been developed into
the so-called Kolmogorov Complexity field [6].

In the combinatorial approach, Kolmogorov investigated another non stochas-
tic measure of information for an object x. Here x is taken to be a variable with
a range of possible values in some finite set E = {x1, . . . , xn} ⊂ X where X is
any set of objects. To distinguish between a variable and its possible values we
use sans serif fonts such as x to denote variables and normal fonts x to denote
fixed elements of sets. We write x ⊂ E to denote that the unknown value of the

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 479–488, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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variable x is contained in E while x ∈ E refers to a specific x as being an element
of E. Kolmogorov [5] defined the ‘entropy’ of x as H(x) = log |E| where |E| de-
notes the cardinality of E and all logarithms henceforth are taken with respect
to 2. If the value of x is known to be x then this much entropy is ‘eliminated’ by
providing log |E| bits of ‘information’.

The conditional entropy between two variables x and y is defined based on a
set A ⊆ X × Y that consists of all ‘allowed’ values of pairs (x, y) ∈ X × Y . The
entropy of y is defined as H(y) = log |ΠY (A)| where ΠY (A) ≡ {y ∈ Y : (x, y) ∈
A} denotes the projection of A on Y . Let

Ax = {y ∈ Y : (x, y) ∈ A} (1)

then the conditional combinatorial entropy of y given ‘x = x’ is defined as

H(y|x) = log |Ax|. (2)

Kolmogorov defines the information conveyed by ‘x = x’ about y by the quantity

I(x : y) = H(y)−H(y|x) (3)

where in both definitions one of the variables, in this case x, takes a known fixed
value x while the second variable y is left unknown.

In many applications, knowing ‘x = x’ conveys only vague information about
y. For instance, in problems which involve the analysis of discrete classes of struc-
tures, e.g., sets of Boolean functions on a finite domain, an algorithmic search
is made for some optimal element in this set based only on partial information.
Formally, let n be a positive integer and consider the domain [n] = {1, . . . , n}.
Let F = {0, 1}[n] be the set of all binary functions f : [n] → {0, 1}. The power
set P(F ) represents the family of all sets G ⊆ F . Let us denote byM a property
of a set G and write G |= M. Suppose that we seek to know some unknown tar-
get function t ∈ F . Any partial information about t which may be expressed by
t ∈ G |= M can effectively reduce the search space. Typically, one is interested
in some estimate of the value of such partial information. Kolmogorov’s frame-
work may be applied here by letting the variable x take as values x the possible
descriptions of properties M of subsets G ⊆ F . The variable y represents the
unknown ‘object’, i.e., the target t, which may be any element in F . The input
‘x = x’ conveys that t is in some subset G that has some particular property
Mx. Therefore as a measure of information, one option is to compute the value
I(x : y) of the information in x about y.

Kolmogorov’s combinatorial representation of information (3) is not sufficient
in this setting since it requires that the target y be restricted to a fixed set Ax

on knowledge of ‘x = x’. To see this, suppose it is given that x = x, i.e., that t
is in a set that satisfies property Mx. Consider the collection {Gz}z∈Zx of all
subsets Gz ⊆ F that have this property. Clearly, t ∈ ⋃z∈Zx

Gz hence we may
at first consider Ax =

⋃
z∈Zx

Gz. However, this ignores some useful information
implicit in this collection as we now show: consider two properties M0 and
M1 with corresponding index sets Zx0 and Zx1 such that

⋃
z∈Zx0

Gz =
⋃

z∈Zx1
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Gz ≡ F ′ ⊆ F . Suppose that most of the sets Gz , z ∈ Zx0 are small while
the sets Gz, z ∈ Zx1 are large. Clearly, property M0 is more informative than
M1 since starting with knowledge that t is in a set that satisfies property M0
should take less additional information (once it becomes available) to completely
specify t. If, as above, we let Ax0 =

⋃
z∈Zx0

Gz and Ax1 =
⋃

z∈Zx1
Gz then we

have I(x0 : y) = I(x1 : y) which wrongly implies that both properties are equally
informative. A more general definition of information which applies also to such
setting is needed and is proposed in this paper.

The remaining sections are organized as follows: in Section 2 we state a new
definition of combinatorial information. In Section 3 we apply this to the setting
of binary function classes and state two results. Section 4 contains the technical
work.

2 Combinatorial Formulation of Information

Our aim is to extend Kolmogorov’s information measure (3) to a more general
setting (as discussed in Section 1) where the knowledge of ‘x = x’ may leave
some vagueness about the possible set of values of y. As in [5], we seek a non-
probabilistic representation of the information conveyed by x about y and the
set A ⊆ X × Y represents the ‘degree of freedom’ of x and y. As a first attempt
let us try to extend (3) by using one extension of the combinatorial conditional
entropy (see [7]) which treats both x and y as unknown variables and is defined
as follows:

H(y|x) = max
x∈X

log |Ax|

where Ax is defined in (1). Substituting this for H(y|x) in (3) gives

I(x : y) = log |ΠY (A)| −max
x∈X

log |Ax|. (4)

There are two immediate difficulties with this definition: first, here x is unknown
and therefore the definition departs from Kolmogorov’s definitions of (2) and (3)
where the value of x is known to be x. The second problem can perhaps be best
seen from the following example:

Example 1. Let X = Y = Z = N, where N denotes the natural numbers. Let
z0 ∈ Z and let E ⊂ N be a set with z0 ∈ E. Let A ⊂ Z×Y satisfy the following:
Az = E if z = z0, Az = {z} if z ∈ E where Az is defined as in (1). Suppose
‘x = x’ means that the unknown value of y is an element of at least one set
Az, z ∈ Zx and Zx = {z0}

⋃
E. How much information is conveyed about the

unknown value of the variable y by the statement ‘x = x’?

This is an example of partial-information where knowing ‘x = x’ still leaves some
uncertainty about the set of possible values of y. If (4) is used then the informa-
tion in x conveyed about y is zero since log |ΠY (A)| = log |E| = maxz∈Zx log |Az |.
A zero value is clearly not representative of the amount of information since
knowing ‘x = x’ means that for half the number of possible pairs {(z, y) ∈ A :
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z ∈ Zx} the value of y can be exactly determined. Hence the information value
should be greater than zero.

Consider extending Kolmogorov’s representation of uncertainty by letting A
and B be two sets which consist of all permissible pairs (z, y) ∈ Z × Y and
(x, z) ∈ X × Z, respectively. We view the set B as defining the allowed pairs
(x, z) of property descriptions x and class-index values z ∈ Zx. The sets Az ⊆ Y ,
by definition, satisfy the property described by x. We propose the following
combinatorial measure for the information conveyed by ‘x = x’ about y:

Definition 1. Let X,Y, Z be general sets of objects. Let A ⊂ Z×Y , B ⊂ X×Z.
For any x ∈ ΠX(B) denote by Zx = {z ∈ Z : (x, z) ∈ B} ⊂ ΠZ(B) and for
any z ∈ Zx let Az = {y ∈ Y : (z, y) ∈ A} ⊂ ΠY (A). Let ‘x = x’ mean that the
unknown value of y is contained in at least one set Az where z ∈ Zx. Then the
information conveyed by ‘x = x’ about y is defined as

I(x : y) ≡ log |ΠY (A)| −
∑
k≥2

ωx(k) log k (5)

where ωx(k) = |{z:|Az|=k,z ∈Zx}|
|Zx| .

In words, (5) is a sequence of values {I(x : y)}{x: x∈ΠX(B)} that correspond
to inputs x each describing some property common to all sets Az ⊂ ΠY (A),
z ∈ Zx ⊂ ΠZ(B) whose union covers all the possibilities for the unknown value
of y. Henceforth, the sets A,B are assumed fixed and known.

In order to understand the motivation behind Definition 1, first note that
it is consistent with Kolmogorov’s definition (3) in that x appears as taking
a known value x and the representation of uncertainty is done as in [5] via a
set-theoretic approach since all expressions in (5) involve set-quantities, e.g.,
cardinality, projections. Note that (3) is a special case of Definition 1 with Zx

being a singleton set. The factor of log k comes from log |Az | which from (2) is
the combinatorial conditional-entropy H(y|z).

The knowledge conveyed by ‘x = x’ still results in some uncertainty which
is represented by a set Zx of possible values for z. This induces an uncer-
tainty in the value of y which is now manifested through several sets {Az}z∈Zx

each satisfying the property described by x and whose union covers the range
of possible values of y. A detailed application of Definition 1 is considered in
Section 3.

There is a straightforward analogy between this combinatorial measure of
information and Shannon’s information formula. Let Zx and Y be two random
variables with Y having a uniform probability distribution given Zx. Then

I(Y : Zx) = H(Y)−H(Y|Zx)

with H(Y|Zx) =
∑

z PZx(z)H(Y|Zx = z) =
∑

k≥2 PZx(H(Y|z) = log k) log k.
The factor ωx(k) in the sum of (5) is analogous to the probability PZx(H(Y|z) =
log k).
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Let us now evaluate this information measure for Example 1. We have |Zx| =
|E|+ 1 and the sum in (5) has only two terms, k = 1 which applies for all z ∈ E
and k = |E| for z = z0. Hence∑
k≥2

|{z : |Az |=k, z ∈ Zx}|
|Zx| log k=

|E|
|E|+1

log 1+
1

|E|+1
log |E| = 1

|E|+1
log |E|.

Since ΠY (A) = E then I(x : y) = (1 − α) log |E| where α = 1/(|E| + 1). As
H(y) = log |ΠY (A)| = log |E|, then I(x : y) equals (1− α) times the combinato-
rial entropy of y. It thus reflects the fact that for a fraction (1−α) of the set Zx

the knowledge of ‘x = x’ identifies the value of y exactly (zero uncertainty) and
for the remaining α|Zx| elements, this knowledge leaves the uncertainty about y
unchanged at log |E| bits. In the next section, we apply this information measure
to binary function classes.

3 Binary Function Classes

As in Section 1, let n be a positive integer, denote by [n] = {1, . . . , n}, F =
{0, 1}n and write P(F ) for the power set which consists of all subsets G ⊆ F .
An element f of F is referred to as a binary function f : [n] → {0, 1}. Let
G |= M represent the statement “G satisfies property M”. In order to apply
Kolmogorov’s combinatorial representation of information we let the variable y
represent the unknown target t in F and the input variable x describe the possible
properties M of sets G ⊆ F which may contain t. The aim is to compute the
value of information I(xM : t) for various inputs x = xM.

Before we proceed, let us recall a few basic definitions from set theory. For
any fixed subset E ⊆ [n] of cardinality d and any f ∈ F denote by f|E ∈ {0, 1}d

the restriction of f on E. For a set G ⊆ F of functions, the set trE(G) = {f|E :
f ∈ G} is called the trace of G on E. The properties considered next are based
on the trace of a class and are defined in terms of an integer variable d in the
following general form: d = max{|E| : E ⊆ [n], condition on trE(G) holds}. The
first definition taking such form is the so-called Vapnik-Chervonenkis dimension.

Definition 2. The Vapnik-Chervonenkis dimension of a set G ⊆ F , denoted
VC(G), is defined as VC(G) ≡ max{|E| : E ⊆ [n], |trE(G)| = 2|E|}.
The next definition considers the other possible extreme for the size of the
trace.

Definition 3. Let L(G) be defined as L(G) ≡ max{|E| : E ⊆ [n], |trE(G)| = 1}.
For any class G ⊆ F define the following two properties: Md≡ ‘L(G) is at least
d’, M′

d ≡ ‘VC(G) is at least d’.
As an application of the information-measure of Definition 1 we state the fol-

lowing results (for clarity, we defer the proof sketches to the next section). Hence-
forth, for two sequences an, bn, we write an ≈ bn to denote that limn→∞ an

bn
= 1.

Denote the standard normal probability distribution and cumulative distribution
by φ(x) = (1

√
2π) exp(−x2/2) and Φ(x) =

∫ x

−∞ φ(z)dz, respectively.
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Theorem 1. Let 1 ≤ d ≤ n and t be an unknown element of F . Then the
information value in knowing that t ∈ G, where G |= Md, is

I(xMd
: t) = log |F | −

∑
k≥2

ωxMd
(k) log k

≈ n−
Φ (−a) log

(
2n

1+2d

)
+ 2−(n−d)/2φ(a) +O(2−(n−d))

1−
(

2d

1+2d

)2n

with n increasing and where a = 2(n−d)/2 − 2(1 + 2d)2−(n+d)/2.

Remark 1. For large n, the above is approximately

I(xMd
: t) ( n− log

(
2n

1 + 2d

)
( n− (n− d) = d.

A rough explanation to this result is as follows: given that it has a cardinality
k, the chance that a random class satisfies propertyMd decreases exponentially
with respect to k. As shown in the proof, this implies that the majority of classes
that satisfy Md have cardinality k = 2n/(1 + 2d).

The next result is for the property M′
d.

Theorem 2. Let d be any fixed integer satisfying 1 ≤ d ≤ n − 1 and t be an
unknown element of F . Then the information value in knowing that t ∈ G, where
G |= M′

d, is

I(xM′
d

: t) = log |F | −
∑
k≥2

ωxM′
d

(k) log k

≈ n−
(n− 1)

(
2nΦ (a) + 2n/2φ (a)

(
1 + a2

(n−1)2n

))
2nΦ(a) + 2n/2φ(a)

as n increases, where a = 2n−2d+1

2n/2 .

Remark 2. For large n, the information value is approximately I(xM′
d

: t) ( 1.
A rough explanation is as follows: for all k ≥ 2d, the chance that a random
class of cardinality k has property M′

d tends to 1 (Lemma 3 below). When d is
insignificant compared to n this implies that the property holds for almost every
class. The majority of classes in P(F ) have cardinality k = 2n−1 which is one
half the total number of functions on [n]. Thus there is approximately 1 bit of
information in knowing that t is an element of a class that has this property.

4 Technical Results

In this section we provide the sketch of proofs of Theorems 1 and 2. Our ap-
proach is to estimate the number of sets G ⊆ F that satisfy a property M. We
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employ a probabilistic method by which a random class is generated and the
probability that it satisfies M is computed. As we use the uniform probability
distribution on elements of the power set P(F ) then probabilities yield cardi-
nalities of the corresponding sets. The computation of ωx(k) and hence of (5)
follows directly. It is worth noting that, as in [4], the notion of probability is
only used here for simplifying some of the counting arguments and thus, unlike
Shannon’s information, it plays no role in the actual definition of information.
Before proceeding with the proofs, in the next section we describe the probability
model for generating a random class.

4.1 Random Class Generation

In this subsection we describe the underlying probabilistic processes with which
a random class is generated. A random class F is constructed through 2n inde-
pendent coin tossings, one for each function in F , with a probability of success
(i.e., selecting a function into F) equal to p. The probability distribution Pn,p is
formally defined on P(F ) as Pn,p(F = G) = p|G|(1−p)2n−|G|. In our application,
we choose p = 1/2 and denote the probability distribution as Pn ≡ Pn, 1

2
. Hence

for any element G ∈ P(F ), the probability that the random class F equals G is

αn ≡ Pn(F = G) =
(

1
2

)2n

(6)

and the probability of F having a cardinality k is Pn(|F| = k) =
(2n

k

)
αn, 1 ≤

k ≤ 2n. The following fact easily follows from the definition of the conditional
probability: for any set B ⊆ P(F ),

Pn(F ∈ B| |F| = k) =
∑

G∈B αn(2n

k

)
αn

=
|B|(2n

k

) . (7)

Denote by F (k) = {G ∈ P(F ) : |G| = k} the collection of binary-function classes
of cardinality k, 1 ≤ k ≤ 2n. Consider the uniform probability distribution on
F (k) which is defined as follows: given parameters n and 1 ≤ k ≤ 2n then for
any G ∈ P(F ),

P ∗
n,k(G) =

1(2n

k

) , if G ∈ F (k), (8)

and P ∗
n,k(G) = 0 otherwise. Hence from (7) and (8) it follows that for any

B ⊆ P(F ),
Pn(F ∈ B| |F| = k) = P ∗

n,k(F ∈ B). (9)

It will be convenient to use another probability distribution which estimates
P ∗

n,k and is defined by the following process of random-class construction. First,
construct a random n×k binary matrix by fair-coin tossings with the nk elements
taking values 0 or 1 independently with probability 1/2. Denoting by Q∗

n,k the
probability measure corresponding to this process, then for any matrix U ∈
Un×k({0, 1}),

Q∗
n,k(U) =

1
2nk

. (10)
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Denote by S a simple binary matrix as one all of whose columns are distinct [1]. It
is easy to verify that the conditional distribution of the set of columns of a random
binary matrix, knowing that the matrix is simple, is the uniform distributionP ∗

n,k.
As it turns out, the distributionQ∗

n,k leads to simpler computations of the asymp-
totic probability of several types of events that are associated with the properties
of Theorems 1 and 2. The following result will enable us to replace P ∗

n,k by Q∗
n,k

(due to space limitation we omit the proof which can be found in [9]).

Lemma 1. Assume kn ) 2n/2 and let B ⊆ P(F ). If P ∗
n,kn

(B) and Q∗
n,kn

(B)
converge with increasing n then they converge to the same limit.

We now proceed to sketch the proofs of the Theorems in Section 3.

4.2 Proofs

Note that for any propertyM, the quantity ωx(k) in (5) is the ratio of the number
of classesG ∈ F (k) that satisfyM to the total number of classes that satisfyMx.
It is therefore equal to Pn(|F| = k | F |= Mx). Our approach starts by computing
the probability Pn(F |= Mx | |F| = k) from which Pn(|F| = k | F |= Mx) and
then ωx(k) may be obtained.

4.3 Proof Sketch of Theorem 1

We start with an auxiliary lemma which states that the probability Pn(F |=
Md | |F| = k) possesses a zero-one behavior.

Lemma 2. Let F be a class of cardinality kn and randomly drawn according
to the uniform distribution P ∗

n,kn
on F (kn). Then as n increases, the probability

P ∗
n,kn

(F |= Md) that F satisfies property Md tends to 0 or 1 if kn * log(2n/d)
or kn ) (log(n))/d, respectively.

Proof sketch: For brevity, we sometimes write k for kn. Using Lemma 1 it suffices
to show that Q∗

n,k(F |= Md) tends to 1 or 0 under the stated conditions. For
any set S ⊂ [n], |S| = d and any fixed v ∈ {0, 1}d, under the probability
distribution Q∗

n,k, the event Ev that every function f ∈ F satisfies f|S = v has
a probability (1/2)kd. Denote by ES the event that all functions in the random
class F have the same restriction on S. It is easy to show that Q∗

n,k(ES) =
2d(1/2)kd = 2−(k−1)d. The event that F has property Md, i.e., that L(F) ≥ d,
equals the union of ES , over all S ⊆ [n] of cardinality d. It follows that Q∗

n,k(F |=
Md) ≤ 2−(k−1)dnd(1 − o(1))/d!. For k = kn * log(2n/d) the right hand side
tends to zero which proves the first statement. Let the mutually disjoint sets
Si = {id + 1, id + 2, . . . , d(i + 1)} ⊆ [n], 0 ≤ i ≤ m − 1 where m = �n/d�.
The event that Md is not true equals

⋂
S:|S|=dES . It is easy to show that its

probability is no larger than 1−mQ∗
n,k(E[d]) which equals 1− ⌊n

d

⌋
2−(k−1)d and

tends to zero when k = kn ) (log(n))/d. 
�
By the premise of Theorem 1, the input ‘x = x’ describes the target t as an
element of a class that satisfies property Md. In this case the quantity ωx(k) is
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the ratio of the number of classes of cardinality k that satisfy Md to the total
number of classes that satisfy Md. Since by (6) the probability distribution Pn

is uniform over the space P(F ) whose size is 22n

then using (9) it follows that
the sum in (5) equals

2n∑
k=2

ωx(k) log(k) =
2n∑

k=2

P ∗
n,k(Md)Pn(k)∑2n

j=1 P
∗
n,j(Md)Pn(j)

log k. (11)

Let N = 2n, then by Lemma 1 and from the proof of Lemma 2, as n (hence N)
increases, it follows that

P ∗
n,k(Md) ≈ Q∗

n,k(Md) =
(

1
2

)d(k−1)

A(N, d) (12)

where A(N, d) satisfies log N
d ≤ A(N, d) ≤ logd N

d! . Let p = 1/(1 + 2d) then using
(12) the ratio in (11) is ∑N

k=2

(
N
k

)
pk(1 − p)N−k log k∑N

j=1

(
N
j

)
pj(1− p)N−j

.

Using the DeMoivre-Laplace limit theorem [2], the binomial distribution PN,p(k)

with parameters N and p satisfies PN,p(k) ≈ 1
σφ
(

k−μ
σ

)
, N →∞ where φ(x) is

the standard normal probability density function and μ = Np, σ =
√
Np(1− p).

Simple algebra then yields that (11) is asymptotically equal to

2n∑
k=2

ωx(k) log k ≈
Φ (−a) log

(
2n

1+2d

)
+ 2−(n−d)/2φ(a) +O(2−(n−d))

1−
(

2d

1+2d

)2n (13)

where a = 2(n−d)/2 − 2(1 + 2d)2−(n+d)/2. In Theorem 1, the set ΠY (A) is the
class F (see Definition 1) hence log |F | = n and I(x : t) = n−∑k≥2 ωx(k) log k.
Combining with (13) the statement of Theorem 1 follows. �

4.4 Proof Sketch of Theorem 2

We start with an auxiliary lemma that states a threshold value for the cardinality
of a random element of F (k) that satisfies property M′

d.

Lemma 3. For any integer d > 0 let k be an integer satisfying k ≥ 2d. Let F be
a class of cardinality k and randomly drawn according to the uniform distribution
P ∗

n,k on F (k). Then limn→∞ P ∗
n,k(M′

d) = 1.

Proof sketch: It suffices to prove the result for k = 2d since P ∗
n,k(F |= M′

d) ≥
P ∗

n,2d(F |= M′
d). As in the proof of Lemma 2, by Lemma 1 it suffices to show

that Q∗
n,2d(F |= M′

d) tends to 1. Denote by Ud the ‘complete’ matrix with d

rows and 2d columns formed by all 2d binary vectors of length d, ranked for



488 J. Ratsaby

instance in alphabetical order. The event “F |= M′
d” occurs if there exists a

subset S = {i1, . . . , id} ⊆ [n] such that the submatrix whose rows are indexed
by S and columns by [2d], is equal to Ud. Let Si, 0 ≤ i ≤ m − 1, be the sets
defined in the proof of Lemma 2 and consider them corresponding events, the ith

event defined as having a submatrix whose rows are indexed by Si and is equal to
Ud. The probability that at least one of the events occurs is 1− (1− 2−d2d

)�n/d�

which tends to 1 as n increases. 
�
When k < 2d there does not exist a set E ⊆ [n] of cardinality d such that

|trE(F)| = 2d and hence P ∗
n,k(M′

d) = 0. Hence with Lemma 3, it follows that
the sum in (5) is

2n∑
k=2d

P ∗
n,k(M′

d)Pn(k) log k∑2n

j=2d P ∗
n,j(M′

d)Pn(j)
. (14)

From the proof of Lemma 3, it follows that for all k ≥ 2d, P ∗
n,k(M′

d) ≈ 1 −
(1− β)rk, β = 2−d2d

, r = n
d2d . Since β is an exponentially small positive real we

approximate (1− β)rk by 1− rkβ and take P ∗
n,k(M′

d) ≈ rkβ. As in the proof of
Theorem 1, resorting to a normal-approximation of the binomial we obtain that
(14) tends to

log(N/2)
(
Φ(a)N/2 +

(
1 + a2

N log(N/2)

)
φ(a)

√
N/2
)

Φ(a)N/2 + φ(a)
√
N/2

where a = (N/2−2d)/
√
N/4. Substituting back for a and assuming that d+1 ≤ n

then the above tends to log(N/2) = logN − 1. With N = 2n, and by Definition
1, the statement of the Theorem follows. �
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Finding Small OBDDs for Incompletely
Specified Truth Tables Is Hard

Jesper Torp Kristensen and Peter Bro Miltersen

Department of Computer Science, University of Aarhus, Denmark

Abstract. We present an efficient reduction mapping undirected graphs
G with n = 2k vertices for integers k to tables of partially specified
Boolean functions g : {0, 1}4k+1 → {0, 1, ⊥} so that for any integer m, G
has a vertex colouring using m colours if and only if g has a consistent
ordered binary decision diagram with at most (2m + 2)n2 + 4n decision
nodes. From this it follows that the problem of finding a minimum-sized
consistent OBDD for an incompletely specified truth table is NP-hard
and also hard to approximate.

1 Introduction

In this paper we consider the following problem: Given a partially defined Boolean
function f : {0, 1}k → {0, 1,⊥} (with ⊥ being interpreted as “don’t care”), find
or approximate the minimum representation of f as an Ordered Binary Decision
Diagram (OBDD). For details about OBDDs, see the comprehensive monograph
by Wegener [15]. Throughout the paper, we consider OBDDs with a fixed vari-
able ordering. For concreteness and simplicity, we assume the ordering to be
x1 < x2 < . . . < xk for Boolean functions on k variables and always define the
functions we use with its arguments in the same order, i.e., the i’th argument of a
function g : {0, 1}k → {0, 1} is assigned to the variable xi. The size of an OBDD
is the number of its decision nodes. We say that an OBDD D represents or is
consistent with f : {0, 1}k → {0, 1,⊥} when the fully defined Boolean function
gD : {0, 1}k → {0, 1} defined by the diagram is consistent with f , i.e., satisfies
gD(x) = f(x) whenever f(x) =⊥.

The corresponding minimization problem for fully defined Boolean functions
was shown to be in P in the original papers introducing OBDDs by Bryant [2,3].
Indeed, his efficient algorithm for minimizing OBDD size is one of the main
attractions of using OBDD representation for Boolean functions. The minimum-
size OBDD problem for partially defined Boolean functions was considered pre-
viously in two almost simultaneous papers [12,7], both showing NP-hardness for
versions of the problem. The hardness results of the two papers differ mainly by
the way the partially defined Boolean function is to be represented.

More precisely, Sauerhoff and Wegener [12] showed the following decision
problem D1 to be NP-complete.

D1: Given two OBDDs representing two Boolean functions g1, g2 : {0, 1}k →
{0, 1} and an integer s, does the partially defined Boolean function f given by

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 489–496, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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f(x) =⊥ for those x for which g1(x) = 0 and f(x) = g2(x) for those x for which
g1(x) = 1 have an OBDD of size less than s?

Hirata, Shimozono and Shonohara [7,13] showed the following decision prob-
lem D2 to be NP-complete1.

D2: Given two explicitly listed sets S0, S1 ⊆ {0, 1}k and an integer s, does the
partially defined Boolean function f given by f(x) = 0 for x ∈ S0, f(x) = 1 for
x ∈ S1 and f(x) =⊥ otherwise have an OBDD of size less than s?

To compare the strengths of the two results, we observe that it is immediate
that the problem D2 polynomial-time many-one reduces to D1: Given two sets
S0 and S1 we can easily construct small OBDDs representing functions g1 and
g2 so that g1(x) = 1 if and only if x ∈ S0∪S1 and g2(x) = 1 if and only if x ∈ S1.
On the other hand, conversion from representation of the input as two OBDDs
to representation as two explicitly given sets in general incurs an exponential
blowup in size and is hence not a polynomial-time reduction. Hence, the NP-
hardness result of Hirata, Shimozono and Shonohara is stronger than the one of
Sauerhoff and Wegener.

In this paper we look at a third input representation and consider the following
decision problem.

D3: Given a table of f : {0, 1}k → {0, 1,⊥} as a string of length 2k over {0, 1,⊥}
and an integer s, does f have an OBDD of size less than s?

The main result of the present paper is thatD3 is NP-complete. To be precise,
we establish the following reduction.

Theorem 1. There is a polynomial time computable reduction mapping undi-
rected graphs G with n = 2k vertices for integers k to tables of partially specified
Boolean functions g : {0, 1}4k+1 → {0, 1,⊥} so that for any integer K, G has a
vertex colouring using K colours if and only if g has a consistent ordered binary
decision diagram with at most (2K + 2)n2 + 4n decision nodes.

Then, NP-hardness of D3 follows from the NP-hardness of graph colouring (see,
e.g., Garey and Johnson [6]).

To compare the strength of our result to the result of Hirata, Shimozono and
Shonohara, we observe that it is immediate that the problem D3 polynomial-
time many-one reduces to D2: Given a table of f , we can certainly efficiently list
the sets S0 := {x|f(x) = 0} and S1 := {x|f(x) = 1}. On the other hand, conver-
sion from representation as two sets S1, S2 to a full table on the domain {0, 1}n

may incur an exponential blowup in size. This happens when the sets S0 and
S1 are small (i.e., when f is undefined on most of the domain {0, 1}n). Hence,
our NP-hardness result is stronger than the NP-hardness result of Hirata, Shi-
mozono and Shonohara. Also, the proof of Hirata, Shimozono and Shonohara
uses functions undefined everywhere on {0, 1}k except on a subset of size kO(1),
so their proof does not tell us anything about the hardness of the problem in a
1 Very similar results were obtained by Pitt and Warmuth [11] and Simon [14] for

deterministic finite automata, a model closely related to OBDDs.
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situation where the functions considered are defined on a non-negligible fraction
of the domain {0, 1}k and it does not yield our hardness result.

We find our stronger result well-motivated, as we’ll explain next: A practi-
cal relevance of concrete NP-hardness results are their redirection of attention
from the construction of efficient algorithms towards the construction of good
heuristics for the problems at hand. This point is made explicitly by Sauerhoff
and Wegener who cite several studies in the VLSI verification domain where the
problem of finding minimum size OBDDs for given partial Boolean functions
arise. For these applications, the input mode of Sauerhoff and Wegener is indeed
the relevant one: The Boolean functions arising when formally verifying correct-
ness of VLSI chips have truth tables so huge that representing them explicitly
is out of the question, so typically, they are defined by OBDDs to begin with,
as assumed by Sauerhoff and Wegener. Thus, for these applications our result
provides no new “redirection signal”.

However, there are other natural applications of using OBDDs for partially
defined functions where the function to be encoded is given explicitly as a ta-
ble. An application studied in the master’s thesis [10] of the first author is the
compression of endgame tables for chess. Such an endgame table may provide,
for any chess position with a given set of pieces (say, a King and a Queen for
White and a King and a Rook for Black) a Boolean value indicating whether
the player with material advantage has a winning strategy. Given an encoding
of chess positions as Boolean vectors, we may think of the table as a Boolean
function f : {0, 1}n → {0, 1} where f(x) is the value of the chess position with
Boolean encoding x. One may vary the way chess positions are represented as
Boolean vectors, but any natural and efficiently computable encoding will have
many Boolean vectors not representing any position. The values assigned to such
vectors are inconsequential, so we may think of them as undefined values and
hence of the table as defining a partially defined Boolean function. The potential
usefulness of endgame tables for chess playing software is obvious. However, to
be actually useful for such applications, an endgame table must support fast
lookup and thus it should, preferably, reside in fast memory. For most endgame
tables, this means that some compression scheme has to be applied on the table.
Unfortunately, most state-of-the-art lossless compression schemes do not sup-
port efficient retrieval of individual bits of the compressed table (i.e., efficient
table lookup). Here, representing the table by an OBDD seems to be an attrac-
tive alternative. From a theoretical point of view, Kiefer, Flajolet and Yang [9]
showed that representation by OBDDs has the important universality property:
The compression rate achieved asymptotically (i.e., for long inputs, and up to
a low-order additive term) matches the block entropy of the string to be com-
pressed for any constant block size. At the same time, by construction, a table
represented by an OBDD supports fairly fast lookups (we may lookup an entry
in the table by following a path from the root to a leaf in the OBDD). In his
master’s thesis [10], the first author obtained encouraging practical results on
using OBDDs to compress endgame tables for chess while preserving efficient
lookup. To achieve this, heuristics had to be used to minimize the OBDDs. The
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hardness result of the present paper indicates that such heuristics cannot be
replaced with efficient algorithms.

We finally note that we may combine our reduction with known results con-
cerning hardness of approximation for graph colouring to show that the minimum
consistent OBDD problem is also hard to approximate. In particular, Feige and
Killian [5] showed the following theorem2. Recall that ZPP is the class of deci-
sion problems which can be solved in expected polynomial time by a randomized
algorithm.

Theorem 2 (Feige and Killian). For any ε > 0, if NP = ZPP, no polyno-
mial time algorithm distinguishes between the following two classes of graphs:

– Graphs G = (V,E) with chromatic number less than |V |ε.
– Graphs G = (V,E) with chromatic number bigger than |V |1−ε.

Combining Theorem 1 with Theorem 2, noticing that we in Theorem 2 without
loss of generality can assume that the graphs considered have n = 2k vertices
for an integer k, we immediately obtain:

Corollary 1. Let ε > 0 be an arbitrary constant. If NP = ZPP, no polynomial
time algorithm distinguishes between the following two classes of incompletely
specified truth tables f : {0, 1}k → {0, 1,⊥}:
– Truth tables for which a consistent OBDD of size less than 2(0.5+ε)k exists.
– Truth tables for which all consistent OBDDs have size more than 2(0.75−ε)k

In particular, unless NP equals ZPP, no efficient approximation algorithm
for the minimum consistent OBDD problem has an approximation factor of
2(0.25−ε)k, for any constant ε > 0. Somewhat weaker non-approximability results
for chromatic number assuming only NP = P are known [1]; these may be com-
bined with our reduction to show similarly weaker non-approximability results
for our minimum consistent OBDD problem. We omit the details.

2 The Reduction

We consider an auxiliary problem. Given a family (si) of truth tables si :
{0, 1}k → {0, 1,⊥} of partially defined Boolean functions and a family (gi) of
truth tables gj : {0, 1}k → {0, 1} of fully defined Boolean functions, we say that
the family (gj) covers the family (si) if for every si there is some gj consistent
with si. The minimum truth table cover problem is the following optimization
problem: Given a family (si) of n = 2k truth tables of partially defined Boolean
functions (represented as a collection of n strings of length 2k over {0, 1,⊥}),
find the smallest family (gj) that covers (si).

We present a reduction from the graph colouring problem to the minimum
truth table cover problem:
2 Subsequently, the theorem was refined by Khot [8] and Engebretsen and Holmerin

[4] who replaced the constant ε in Theorem 2 with specific subconstant functions.
However, when combining inapproximability results for chromatic number with our
reduction, such improvements are more or less irrelevant.
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Lemma 1. There is a polynomial time computable reduction mapping undi-
rected graphs G with n = 2k vertices for integers k to a collection of n tables of
partially specified Boolean functions si : {0, 1}k → {0, 1,⊥}, i = 1, . . . , n so that
for any integer K, G has a vertex colouring using K colours if and only if (si)
has a truth table cover of size K.

Proof. Given a graph G = (V,E) with V = {0, . . . , n− 1}, we define

si(j) =

⎧⎨⎩
0 if i = j ∧ (i, j) ∈ E;
1 if i = j;
⊥ otherwise.

Note that we in the definition of si identify an integer j with its binary repre-
sentation. We shall do so in the following as well. It is an easy observation that
the reduction has the desired property.

In the rest of the section, we reduce the minimum truth table cover prob-
lem to the minimum consistent OBDD problem, thus completing the proof of
Theorem 1.

We need in our reduction an auxiliary family of functions gp,m
j : {0, 1}p →

{0, 1} where p is an arbitrary non-negative integer, 1 ≤ m ≤ 22p

and 0 ≤ j ≤
m− 1. The family must have the following properties.

1. For fixed p,m, the functions gp,m
j , j ∈ {0, . . . ,m− 1} are all different.

2. The truth table for gp,m
j can be generated in time polynomial in 2p (given

the parameters p,m, j),
3. For fixed p,m, the family (gp,m

j ), j ∈ {0, . . . ,m− 1} is computed by a multi-
source OBDD (an OBDD withm sources, one for each member of the family)
of size at most m+ 2

√
m+ 3p.

Note that the third property makes the construction of the family a bit tricky:
The sources of the desired multi-source OBDD use almost its entire “node bud-
get”. We give an inductively defined construction. For p = 0, the construction
is trivial as we must have m = 1 or m = 2. For p > 0 we let q = �√m�.
Note that q ≤ 22p−1

since
√

22p = 22p−1
is an integer. We define for integers

i, j ∈ {0, . . . , q − 1}:

gp,m
jq+i(x1x2 . . . xp) =

{
gp−1,q

i (x2 . . . xp) if x1 = 0;
gp−1,q

j (x2 . . . xp) if x1 = 1.

The construction clearly satisfies properties 1 and 2. Also, if we let Bp,m be the
size of a multi-source OBDD computing the family (gp,m

j ) we have by induction
that Bp,m = Bp−1,q +m ≤ q + 2

√
q + 3(p− 1) +m ≤ m+ 2

√
m+ 3p, so it also

satisfies property 3.
We consider the values k ≥ 5 and n = 2k fixed in the discussion to follow. For

j ∈ {0, . . . , n2 − 1} we let bj = gk,n2

j . By property 3 of the family (gk,n2

j ), the
family (bj) is computed by a multi-source OBDD of size at most n2 + 3n.
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Our reduction from minimum truth table cover to the minimum consistent
OBDD problem is then defined as follows. It maps the minimum truth table
cover instance {si}i=1,...,n, si : {0, 1}k → {0, 1,⊥} to the truth table of the
partial function g : {0, 1}k × {0, 1}2k × {0, 1} × {0, 1}k → {0, 1,⊥} defined by:

g(i, j, t, z) =
{
bj(z) if t = 0;
si(z) if t = 1. (1)

(where we again identify integers with their binary notation). By property 2 of
the family (gk,n2

j ) the reduction is polynomial time computable. In the remainder
of this section, we show that the composition of the reduction with the reduction
of Lemma 1 has the property claimed in Theorem 1.

Lemma 2. For any integer K, if (si) has a cover of size K, then g has a
consistent OBDD of size at most (2K + 2)n2 + 4n.

Proof. We can assume K ≤ n. Let T be the cover. Let s′i be a total function in
T consistent with si. Then, a total function h consistent with g is

h(i, j, t, z) =
{
bj(z) if t = 0;
s′i(z) if t = 1.

Let us give an upper bound for the size of an OBDD computing h. For each
truth table s ∈ T , there is an OBDD of size at most n − 1 computing s (as
n − 1 is the number of decision nodes in a complete decision tree on k = logn
Boolean variables). There is a multi-source OBDD computing all functions bj
of size n2 + 3n by construction. The number of different subfunctions of h of
the form (j, t, z)→ h(i0, j, t, z) (for some i0) is K, the size of the cover. Each of
these subfunctions can be computed by an OBDD with an additional 22k+1−1 =
2n2−1 nodes above the OBDDs for (s′i) and (bj). Having constructed OBDDs for
all these subfunctions, an OBDD for h needs at most an additional n− 1 nodes
to read the first k input bits to decide which subfunction to use. Thus, h can be
computed by an OBDD of size at most (n−1)+K(2n2−1)+K(n−1)+n2+3n ≤
(2K + 2)n2 + 4n.

Lemma 3. Let a minimum-sized OBDD G consistent with g be given. Viewing
G as a graph, the subgraph of G induced by nodes reading variables xk+1, . . . ,
x3k, x3k+1 (i.e. nodes reading the Boolean variables defining arguments j and
t in equation (1)) forms a forest of disjoint complete binary trees (each tree
containing 22k+1 − 1 = 2n2 − 1 nodes).

Proof. Let a minimum-sized OBDD G consistent with g be given, computing a
function h. First note that since all the functions bj are different, any OBDD
consistent with g must read all variables xk+1, . . . , x3k on all paths through
the OBDD. For the same reason, the left and right son of any node reading
any variable xk+1, . . . , x3k must be different. Thus, the subgraph of G induced
by nodes reading variables xk+1, . . . , x3k, x3k+1 is a union of complete binary
trees. To prove the lemma, we just have to prove that they are disjoint. This
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follows if we show that any two nodes v and v′ both reading a variable xk+m,
m ∈ {1, . . . , 2k} cannot share a son u. Assume to the contrary that they do
and without loss of generality that u is a left son of v (corresponding to reading
xk+m = 0 in v).

The node v corresponds to a subfunction of h of the form

(x, t, z)→ h(a1, c1 · x, t, z)
for constants a1 ∈ {0, 1}k and c1 ∈ {0, 1}m−1 and variables x ∈ {0, 1}2k−m+1,
t ∈ {0, 1}, z ∈ {0, 1}k. Here c1 · x denotes concatenation of the bit-strings c1
and x.

The node v′ corresponds to a subfunction of h of the form

(x, t, z)→ h(a2, c2 · x, t, z)
for constants a2 ∈ {0, 1}k and c2 ∈ {0, 1}m−1 and variables x ∈ {0, 1}2k−m+1,
t ∈ {0, 1}, z ∈ {0, 1}k.

Since u is a son of v as well as v′ and all the bj’s are different we must have
that c1 = c2 and that u is a left son of v′. Also, we must have the partial truth
tables sa1 and sa2 are consistent, i.e., that they agree on inputs where neither
has value ⊥. Thus, we can get a smaller OBDD than G also consistent with
g by removing the node v′ and redirecting to v any incoming arc to v′. This
contradicts G being minimum-sized.

Lemma 4. Assume n > 3. For any integer K, if g has a consistent OBDD of
size at most (2K + 2)n2 + 4n, then (si) has a cover of size at most K.

Proof. We can assume K ≤ n. Let a minimum-sized OBDD consistent with g
of size at most (2K + 2)n2 + 4n be given, computing a function h. According
to Lemma 3, the nodes reading variables xk+1, ...x3k+1 induces a collection of
disjoint complete binary trees. There must be at most K trees in this collection:
Otherwise the contribution of nodes from the trees would amount to at least
(2n2 − 1)(K + 1) nodes. Also, all members of the family (bi) are subfunctions
of g and since they are distinct and fully defined, each must be computed at a
distinct node in the diagram, yielding n2 additional nodes. In total, there would
be at least (2n2−1)(K+1)+n2 nodes which is strictly more than (2K+2)n2+4n
nodes.

Let (vi) be the roots of the trees. The corresponding subfunctions of h are
(x, t, y) → h(ai, x, t, y) for constants ai. The functions j → h(ai, 0, 1, j) then
form a cover for the family (si) of size at most K.

Combining Lemma 1, Lemma 2 and Lemma 4, we have proved Theorem 1
and are done.
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Abstract. We consider the problem of drawing a directed graph in two
dimensions with a minimum number of crossings such that for every
node the incoming edges appear consecutively in the cyclic adjacency
lists. We show how to adapt the planarization method and the recently
devised exact crossing minimization approach in a simple way. We report
experimental results on the increase in the number of crossings involved
by this additional restriction on the set of feasible drawings. It turns out
that this increase is negligible for most practical instances.

1 Introduction

The importance of automatic graph drawing stems from the fact that many
different types of data can be modeled by graphs. In most applications, the
interpretation of an edge is asymmetric, so that the graph is intrinsically directed.
This is the case, e.g., for metabolic networks. Here, the incoming edges of a
reaction node correspond to reactants, while the outgoing edges correspond to
products of the modeled reaction. Consequently, a good layout of such a network
should separate incoming from outgoing edges, e.g., by letting the incoming edges
enter on one side of the node and letting the outgoing edges leave on the opposite
side. By this, the human viewer is able to distinguish reactants from products
much more easily; see Figure 1.

In spite of its practical relevance, the direction of edges is ignored by many
graph drawing algorithms. The graph is processed as an undirected graph first;
only after the positions of nodes and edges have been determined the direction
is visualized by replacing lines by arrows. An important exception is given by
hierarchical drawings, in which incoming and outgoing edges are separated by
definition. Furthermore, a polynomial time algorithm for hierarchical drawings of
digraphs that allows directed cycles and produces the minimum number of bends
is given by Bertolazzi, Di Battista and Didimo in [1]. However, the restriction to
this special type of drawing might lead to many more crossings than necessary.

In this paper, our aim is to adapt the planarization method in order to obtain
the desired separation of incoming and outgoing edges. We focus on the pla-
narization step itself, i.e., the computation of a planar embedding of the graph
after eventually adding virtual nodes representing edge crossings. The objective
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NADH

MDH

OAA

Fig. 1. Two drawings of the same graph, both have three crossings, with unsorted (left)
and sorted (right) incoming and outgoing edges; gray nodes represent reactions

is to add as few such nodes as possible. For a comprehensive survey over the
planarization approach, see [11].

In order to obtain the separation of edges, we consider the additional bimodal
restriction that all incoming edges appear consecutively in all cyclic adjacency
lists. We show how to adapt the well-known approach based on finding a planar
subgraph first and then reinserting the missing edges one after the other in a very
efficient way. We use an experimental evaluation to investigate the question of
how many additional crossings have to be expected from restricting the class of
feasible embeddings in this way. The results show that—for practical instances—
this increase is usually negligible.

We do not address the question of how to realize the resulting embedding
by an actual drawing of the graph. Notice however that once we have such an
embedding at hand, it is easily possible to adapt, e.g., the orthogonal layout
algorithm such that incoming and outgoing edges lie on opposite sides [12].

In Section 2 we recall the concept of bimodality and describe the basic trans-
formation used by the evaluated algorithms. Next we propose a postprocessing
technique that can be combined with any crossing reduction approach, see Sec-
tion 3. Then we look into the planarization method; the problem of finding a
planar subgraph is considered in Section 4, while edge reinsertion is dealt with in
Section 5. In Section 6, we discuss a recently developed exact approach for cross-
ing minimization. In Section 7, we present an experimental evaluation showing
that the number of crossings computed by different methods does not grow much
by our additional requirement. Section 8 summarizes the results.

2 Bimodal Embeddings

An embedding of a graph G = (V,E) is called bimodal if and only if for every
vertex v of G the circular list of the edges around v is partitioned into two
(possibly empty) linear lists of edges, one consisting of the incoming edges and
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the other consisting if the outgoing edges. A planar digraph is bimodally planar
if and only if it has a bimodal embedding that is planar. This structure was first
investigated by Bertolazzi, Di Battista, and Didimo in [1]. Bimodal planarity of
a graph G can be decided by testing planarity of a simple transformation of G
in O(|V |) time [1]. The transformation is applied in the following way: for every
node v of G expand v by an expansion edge e and add all incoming edges of v
to one end-node v− of e and all outgoing edges to the other end-node v+ of e.
The resulting graph is denoted by Gd = (Vd,Ed) in the following. We call Gd the
d-graph of G. An illustration of this construction is given in Figure 2.

v−

v+

v

Fig. 2. A directed graph G and its d-graph Gd. The bold edge is an expansion edge.
Note that Gd is equal to K3,3.

Throughout this paper, we will denote the set of all expansion edges by E′. We
use this simple transformation for adapting techniques for undirected crossing
minimization to the directed variant. Planar directed graphs are not necessarily
bimodally planar. By Kuratowski’s theorem, this can only happen if aK3,3 orK5
subdivision is created by the transformation into a d-graph. Note that for graphs
with all nodes of degree at most three the transformation of G to Gd is trivial, as
no nodes are split in this case. In particular, this holds for cubic graphs that are
defined by the property that all nodes have degree three. Therefore, a directed
cubic graph is bimodally planar if and only if it is planar. This is also true
for graphs in which each node has at most one incoming edge or at most one
outgoing edge.

3 Naive Post-processing Approach

We first discuss a post-processing procedure that can be used after applying
any crossing reduction algorithm or heuristic to the d-graph Gd. Our aim is
to embed Gd such that no expansion edge crosses any other edge; contracting
expansion edges then yields an embedding of G with the desired separation of
incoming and outgoing edges. So assume that any embedding of Gd is given. We
first delete all edges crossing any expansion edge. If two expansion edges cross
each other, we delete one of them. Next, we reinsert all deleted edges one after
another, starting with the deleted expansion edges. As explained in Section 5.1
below, we can insert a single edge with a minimal number of crossings for the
fixed embedding computed so far such that crossings with expansion edges are
prevented. If reinserting an expansion edge produces any crossings, the crossed
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(non-expansion) edges have to be deleted and put to the end of the queue of
edges to be reinserted. At the end of this reinsertion process, no expansion edge
will cross any other edge. However, the number of crossings of the remaining
edges might grow significantly in this approach. In the following sections, we
explain how to get better results by adapting well-known crossing minimization
approaches for our purposes, especially the planarization approach.

4 Maximum Bimodally Planar Subgraphs

It is well-known that the maximum planar subgraph problem—the problem of
finding a planar subgraph of a given graph that contains a maximum number of
edges—is NP-hard. Recently, it was shown that this remains true even for cubic
graphs:

Theorem 1 (Faria et al. [4]). The maximum planar subgraph problem is
NP-hard for cubic graphs.

As a cubic graph is equal to its d-graph, we derive that this also holds for the
maximum bimodally planar subgraph problem:

Corollary 1. It is an NP-hard problem to compute a maximum bimodally pla-
nar subgraph of a directed graph, even for a cubic graph.

For computing maximal bimodally planar subgraphs, i.e., bimodally planar sub-
graphs such that adding any further edge of G destroys bimodally planarity, we
do the following: it is easy to see that the bimodally planar subgraphs of G are in
one-to-one correspondence to the planar subgraphs of Gd containing all expan-
sion edges. Thus we have to modify a given maximal planar subgraph algorithm
such that it never deletes any expansion edge. Methods for finding maximal pla-
nar subgraphs have been studied intensively [8,10,3]; here we only discuss the
incremental method; see Section 4.1. We also have a look at the exact approach;
see Section 4.2.

4.1 Incremental Method

Starting with the empty subgraph (VH , ∅) of some graph H = (VH , EH), the
incremental method tries to add one edge from EH after the other. Whenever
adding an edge would destroy planarity, it is discarded, otherwise it is added
permanently to the subgraph being constructed. The result is a maximal planar
subgraph of H , which however is not a maximum planar subgraph in general. To
find a maximal bimodally planar subgraph of G, we have to compute a maximal
planar subgraph of its d-graph Gd. However, this subgraph must always contain
all expansion edges, so that the latter can be contracted at the end. We thus
have to start with the subgraph (Vd, E

′)—which is obviously planar—instead of
the empty subgraph (Vd, ∅). Then we try to add the remaining edges Ed \ E′

as before. The resulting subgraph of Gd corresponds to a maximal bimodally
planar subgraph H of G.
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4.2 Exact Method

An exact approach for finding a maximum planar subgraph of H = (VH , EH)
based on polyhedral techniques was devised in [9]. The problem is modeled by
an integer linear program (ILP) as follows: for every edge e ∈ EH , a binary
variable xe is introduced, having value one if and only if e belongs to the chosen
subgraph. To enforce that the modeled subgraph is planar, one has to make sure
that it contains no Kuratowski subgraph of H , i.e., no subdivision of K5 or K3,3.
In terms of the model, this is equivalent to the constraint

∑
e∈K xe ≤ |K| − 1

for every (edge set of a) Kuratowski graph K in G. As we search for a planar
subgraph containing the maximal number of edges, the number of variables set
to one should be maximized. The integer linear program is thus

max
∑

e∈EH
xe

s.t.
∑

e∈K xe ≤ |K| − 1 for all Kuratowski subgraphs K of G

xe ∈ {0, 1} for all e ∈ EH .

This ILP can now be solved by branch-and-cut. However, in order to improve the
runtime of such algorithms and hence obtain a practical solution method, one has
to further investigate this formulation and exhibit other classes of valid inequali-
ties as well as fast techniques for finding violated constraints for a given fractional
solution. For details, the reader is referred to [9]. This solution approach can eas-
ily be adapted to our situation: we have to ensure that the edges in E′ always
belong to the chosen subgraph, i.e., we have to add the constraint xe = 1 to
the ILP, for each expansion edge e ∈ E′. Observe that this type of constraint
is harmless with respect to the complexity of the problem, as it cuts out a face
from the polytope spanned by the feasible solutions of the ILP.

5 Edge Reinsertion

After calculating a maximal (resp., maximum) bimodally planar subgraph, the
deleted edges have to be reinserted. Our objective is to reinsert them one by
one so that the minimum number of crossings are produced for each edge. This
can be done in two different ways: either by inserting an edge into a fixed bi-
modally planar embedding of the bimodally planar subgraph, see Section 5.1,
or by inserting an edge optimally over all bimodally planar embeddings of the
bimodally planar subgraph, see Section 5.2. Again, we have to treat expansion
edges differently, as they may not be involved in any edge crossings.

5.1 Fixed Embedding

Given a fixed embedding Γ (Gd) of Gd, it is easy to insert an edge e(v, w)
into Γ (Gd) such that a minimal number of crossings is produced. For this, one
can use the extended dual graph D of Γ (Gd), the nodes of which are the faces
of Γ (Gd) plus two nodes vD and wD corresponding to v and w. For each edge
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in Ed \ E′, we have the dual edge in D. Additionally, we connect v (resp., w)
with all nodes in D corresponding to faces that are adjacent to v (resp., w) in
Γ (Gd). Then we calculate the shortest path from v to w in the extended dual
graph and insert the edge e into Γ (Gd) along this path, replacing crossings by
dummy nodes. Clearly, the shortest path does not cross any edge of E′ as its
dual edge is not included in D. This can be done in O(|V |) time.

5.2 All Embeddings

In the previous section we have considered reinserting an edge into a fixed em-
bedding. For getting fewer edge crossings, a powerful method is to calculate the
shortest path between two nodes v and w over all embeddings. In [6] a linear time
algorithm is presented for finding an optimal embedding which allows to insert
e with the minimum number of crossings. It uses the SPQR-tree and BC-tree
data-structures for representing all planar embeddings of a connected graph. In
the same straightforward way as explained in the previous section, this approach
can be adapted such that no expansion edge is crossed by any reinserted edge.
The resulting algorithm runs in O(|V |) time.

6 Exact Bimodal Crossing Minimization

It is a well-known fact that the general crossing minimization problem for undi-
rected graphs is NP-hard [5]. More recent results show that this is even true for
graphs with all nodes of degree three:

Theorem 2 (Hliněný [7], Pelsmajer, Schaefer, Štefankovič [13]). The
crossing minimization problem is NP-hard for cubic graphs.

Corollary 2. It is an NP-hard problem to compute a drawing of G separating
incoming and outgoing edges such that the number of crossings is minimal. This
even holds for cubic graphs.

Despite the NP-hardness of undirected crossing minimization, an exact approach
has been devised recently [2]; a branch-and-cut algorithm is proposed for mini-
mizing the number of crossings over all possible drawings. The first step in this
approach is to replace every edge of the graph by a path of length (at most)
|E|. After this, one may assume that every edge has a crossing with at most
one other edge. The ILP model used in this approach contains a variable xef

for all pairs of edges (e, f) ∈ E × E, having value one if and only if there is a
crossing between e and f in the drawing to be computed. By appropriate linear
constraints, one can ensure that the given solution is realizable, i.e., corresponds
to some drawing of G. Again, it is easy to adjust this method to our problem,
i.e., the problem of computing a crossing-minimal drawing with incoming and
outgoing edges separated. For this, we can apply the above algorithm to the
graph Gd. Then we only have to make sure that the expansion edges do not
have any crossings in the computed solution. We can thus do the adjustment
as follows: first observe that the edges in E′ do not have to be replaced by a



Bimodal Crossing Minimization 503

path at all, as they are not allowed to produce crossings. Now we can just omit
the variable xef whenever e ∈ E′ or f ∈ E′, and thereby set this variable to
zero implicitly. The resulting ILP will thus have exactly the same number of
variables as the original ILP for the non-transformed graph. It will not become
harder structurally, as it arises from setting variables to zero.

7 Experimental Comparison

In the previous sections, we showed how to adapt several crossing minimization
algorithms and heuristics in a simple way such that for directed graphs the
sets of incoming and outgoing edges are separated in the adjacency lists. This
is obtained by transforming the original directed graph into a new undirected
graph where certain edges do not allow any crossings. From the nature of this
transformation and the described modifications, it is obvious that the runtime
is not affected negatively. We also observed this in our experiments. For this
reason, we focused on the number of crossings in the evaluation reported in the
following: we are interested in comparing the number of crossings when (a) the
direction of edges is ignored, i.e., crossing minimization is done as usual, and
(b) we apply the transformation in order to separate incoming from outgoing
edges. Theoretically, the crossing number cannot decrease by our modification,
but it is possible that it grows considerably. However, our experiments show
that for practical graphs the number of crossings is not increased significantly.
In fact, the increase in the number of crossings is marginal compared with the
variance due to the randomness of the heuristics, such that for many instances
the number of crossings after the transformation even decreases. Combining this
observation with the simpleness of implementation and the fact that runtime
does not increase, our claim is that these techniques should always be applied
when dealing with (meaningfully) directed edges. For the experiments, we used
the instances of the Rome library of directed graphs [14], consisting of two sets
of graphs called north and random. The former contains 1277 directed acyclic
graphs on 10 to 100 nodes derived from real-world instances. The latter contains
909 directed acyclic graphs randomly generated in a specific way, they are much
denser in general. We first applied the simple incremental method (Section 4.1)
combined with the optimal edge reinsertion over all embeddings (Section 5.2).
As mentioned above, it turned out that the increase in the number of crossings
when separating incoming and outgoing edges is very small in general. This is
shown in Figure 3 (a) and (b), where each instance is given by a plus sign.
Its x-coordinate is the number of crossings before the transformation and the y-
coordinate is the number of crossings afterwards. In particular, each cross on the
diagonal line represents an instance with the same number of crossings before
and afterwards. A cross above the diagonal represents an instance for which the
number of crossings increases. Due to the randomness of the heuristics, there are
also crosses below the diagonal, in particular for the random instances.

Another interesting finding is the negligible increase in the number of crossings
for planar graphs: if G is planar, then Gd is not necessarily planar. Anyway, if
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Fig. 3. Numbers of crossings before and after the transformation, using the incremental
planar subgraph heuristic. For non-planar graphs, the average increase is 0.36 % (a),
0.59 % (b), 0.95 % (c), and 0.87 % (d), respectively.

we consider all 854 planar north instances, then the average number of crossings
after the transformation is only 0.04, i.e., in most cases the graph remains planar.
The set of random instances does not contain any planar graph. We next applied
the optimal planar subgraph method (Section 4.2), again in combination with the
optimal edge reinsertion over all embeddings (Section 5.2). As many instances
could not be solved within a reasonable running time, we had to set a time limit
of five CPU minutes (on an Athlon processor with 2.0 GHz). Within this time
limit, 89% of the north instances and 33% of the random instances could be
solved. The results are shown in Figure 4; the general picture is similar to the
one for the incremental method.

The directed graphs contained in the libraries north and random are all
acyclic. This fact might favor a small number of additional crossings. For this
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Fig. 4. Numbers of crossings before and after the transformation, using the optimal
planar subgraph method. For non-planar graphs, the average increase is 3.30 % (a) and
4.21 % (b), respectively.

reason, we also examined graphs with a random direction for each edge. To allow
us to compare the corresponding results to the results presented so far, we used
the north and random instances again, this time with the direction of each edge
reversed with a probability of 1/2. The results obtained with the incremental
heuristic are displayed in Figure 3 (c) and (d). In fact, the increase in the number
of crossings induced by sorting adjacency lists is more obvious now compared to
Figure 3 (a) and (b), but it is still very small. Nevertheless, we conjecture that in
theory the requirement of separating incoming and outgoing edges may induce a
quadratic number of edge crossings even for planar graphs. We have constructed
a family of directed planar graphs Gk such that Gk has O(k) edges and such
that the planarization heuristic has always produced Ω(k2) crossings when sep-
arating incoming from outgoing edges. The graph Gk is defined as follows: it
consists of two wheel graphs W2k sharing their rim; one of them has all spokes
directed from the rim to the hub, the other one has spokes with alternating
direction. We applied the planarization method to the graphs Gk many times,
with enforced separation of incoming and outgoing edges. For all k, the smallest
number of crossings we could find was

∑k
i=1�i/2� = Θ(k2). We conjecture that

this is the minimum number of crossings for all bimodal drawings of Gk. This
would mean that a quadratic number of crossings is unavoidable even for planar
graphs.

8 Conclusion

We can summarize the statement of this paper as follows: whenever the direc-
tion of edges in a graph carries significant information, this should be stressed by
separating incoming and outgoing edges in the adjacency lists. We have shown
how crossing reduction algorithms can be adapted in order to comply with this
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requirement. The necessary changes are not only easy to implement but also
neutral with respect to runtime. As our experiments show, the number of cross-
ings can be expected to grow only slightly for practical instances.
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Abstract. Many real-life scheduling, routing and location problems can
be formulated as combinatorial optimization problems whose goal is to
find a linear layout of an input graph in such a way that the number of
edge crossings is minimized. In this paper, we study a restricted version of
the linear layout problem where the order of vertices on the line is fixed,
the so-called fixed linear crossing number problem (FLCNP). We show
that this NP-hard problem can be reduced to the well-known maximum
cut problem. The latter problem was intensively studied in the literature;
efficient exact algorithms based on the branch-and-cut technique have
been developed. By an experimental evaluation on a variety of graphs,
we show that using this reduction for solving FLCNP compares favorably
to earlier branch-and-bound algorithms.

1 Introduction

For a given simple graph G = (V,E) with vertex set V and edge set E, a linear
embedding of G is a special type of embedding in which vertices of V are placed
on a horizontal line L and edges are drawn as semicircles above or below L; see
Fig. 1. This type of drawing was first introduced by Nicholson [12] in order to
develop a heuristic algorithm for the generalNP-complete crossing minimization
problem [4]. However, Masuda et al. proved that it is still NP-hard to find a
linear embedding of a given graph with a minimum number of crossings, even if
the ordering of vertices on L is predetermined [10]. The latter problem is called
the fixed linear crossing number problem (FLCNP).

Crossing minimization for linear embeddings has important applications in
different areas such as sorting permutations [6], fault tolerant VLSI design [13],
complexity theory [3], and compact graph encodings [11]. Moreover, the problem
FLCNP is of general interest in graph drawing and information visualization,
where the number of edge crossings has a big effect on the readability of graph
layout [2]. It was also shown to be a subproblem in communications network
management graphics facilities such as CNMgraf [5]. Sorting with parallel stacks

� Partially supported by the Marie Curie RTN ADONET 504438 funded by the EU.
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v1 v2 v3 v4 v5 v6 v7 v8

Fig. 1. A linear embedding

is similar to FLCNP where the layout of vertices is fixed, although the objective
is to find a layout with no crossings at all.

Recently, heuristic methods, as well as exact algorithms, have been proposed to
find optimal or near-optimal solutions of linear layout problems. Cimikowski [1]
presented different powerful heuristics as well as an exact branch-and-bound algo-
rithm for FLCNP. In the worst case, the latter enumerates all possible assignments
of edges to the two sides of L (up to symmetry). However, the idea of branch-and-
bound is to use known bounds on the objective function in order to skip most
feasible solutions during the enumeration. Cimikowski’s algorithm is able to find
exact solutions for graphs with up to 50 edges.

In this paper, we introduce a new exact algorithm for the problem FLCNP
that is based on a reduction to the maximum cut problem (MAXCUT). The same
reduction yields a simple test for fixed linear planarity. Computational results
for our approach are compared to those obtained with the exact algorithm of [1],
on exactly the same test data and equipment. Our approach yields a remarkable
improvement in terms of computational efficiency.

This paper is organized as follows. In Sect. 2, the problem under considera-
tion is formalized and necessary notation is introduced. In Sect. 3, we describe
the reduction from FLCNP to MAXCUT and present a corresponding opti-
mization algorithm. Experimental results are analyzed in Sect. 4, and Sect. 5
concludes.

2 Preliminaries

Throughout this paper, we consider an undirected, simple graph G = (V,E)
with vertex set V and edge set E. A vertex ordering (or vertex permutation)
of G is a bijection δ : V → {1, 2, . . . , |V |}. For a pair of vertices (v, w), we will
shortly write v < w instead of δ(v) < δ(w).

In a fixed linear embedding of G, we assume that the vertices of G are placed
on a straight horizontal line L according to a fixed vertex ordering. Moreover,
each edge is drawn as a semicircle; see Fig. 1. Consequently, edges may be routed
above or below L but never cross L. Notice that three edges cannot intersect in
one point unless it is a common endpoint.
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For a given graph G and vertex ordering δ, a pair of edges e1 = (v1, w1)
and e2 = (v2, w2) is potentially crossing if e1 and e2 cross each other when
routed on the same side of L. Clearly, e1 and e2 are potentially crossing if and
only if v1 < v2 < w1 < w2 or v2 < v1 < w2 < w1.

In this paper, we are interested in the number of crossings in fixed linear
embeddings of G. There is a crossing between e1 and e2 if, and only if:

– e1 and e2 are potentially crossing, and
– e1 and e2 are embedded on the same side of L.

We are going to address the following optimization problem:

Fixed linear crossing number problem (FLCNP): Given a graph G = (V,E)
with a fixed vertex ordering, find a corresponding linear embedding of G with a
minimum number of edge crossings.

It is easy to see that the number of edge crossings in a linear embedding only
depends on the order of vertices and the sides to which the edges are assigned, but
not on the exact positions of the vertices. In particular, as the vertex ordering is
fixed as part of the input of FLCNP, the only remaining choice is whether edges
are drawn above or below the line L. Thus, with respect to the crossing number,
there are essentially 2|E| different fixed linear embeddings of G. Nevertheless,
the problem FLCNP was shown to be NP-hard by Masuda et al. [10].

3 A New Algorithm

The exact algorithm used by Cimikowski [1] to solve the problem FLCNP is
based on the branch-and-bound technique: basically, all possible solutions of the
problem are enumerated. The set of solutions is given by a binary enumeration
tree, where each inner node corresponds to a decision whether a chosen edge
is drawn above or below the horizontal line. In the worst case, an exponential
number of solutions has to be enumerated. However, the basic idea of branch-
and-bound is the pruning of branches in this tree: at some node of the tree,
a certain set of edges is already fixed. According to this information, one can
derive a lower bound on the number of crossings subject to these fixed edges. If
this lower bound is at most as good as a feasible solution that has already been
found, e.g., by some heuristics, it is clear that the considered subtree cannot
contain a better solution, so it does not have to be explored.

In the following, we describe a different approach for solving FLCNP exactly.
We show that the problem is, in fact, a special case of the well-known MAXCUT
problem; see Sect. 3.1. The latter has been studied intensively in the literature. In
particular, branch-and-cut algorithms have been developed; see Sect. 3.2, which
we use for our experimental evaluation presented in Sect. 4.

3.1 Reduction to MAXCUT

In this section, we show that the problem FLCNP can easily be reduced to the
maximum cut problem given as follows:



510 C. Buchheim and L. Zheng

Maximum Cut Problem (MAXCUT): Given an undirected graph G′ = (V ′, E′),
find a partition of V ′ into disjoint sets V1 and V2 such that the number of
edges from E′ that have one endpoint in V1 and one endpoint in V2 is
maximal.

For an instance of FLCNP, i.e., a given graph G = (V,E) with a fixed vertex
permutation, we construct the associated conflict graph G′ = (V ′, E′) as follows:
the vertices ofG′ are in one-to-one correspondence to the edges of G, i.e., V ′ = E.
Two vertices of G′ corresponding to edges e1, e2 ∈ E are adjacent if, and only
if, e1 and e2 are potentially crossing. See Fig. 2 for an illustration.

v1 v2 v3 v4 v5 v6 v7 v8

e1

e2

e4

e3

e5
e6

e7 e8

e9 e10 e11

v1'

v2'

v3'

v4'

v5'
v6'

v7'

v8'

v9'

v10'v11'

Fig. 2. The graph G and its associated conflict graph G′

Definition 1. Let G be a graph with a fixed vertex permutation. Given a vertex
partition (V1, V2) of its conflict graph G′, the associated cut embedding is the
fixed linear embedding of G where edges corresponding to V1 and V2 are embedded
to the half spaces above and below the vertex line, respectively.

Theorem 1. Consider a partition (V1, V2) of V ′. Then the corresponding cut
embedding is a fixed linear embedding of G with a minimum number of crossings
if, and only if, (V1, V2) is a maximum cut in G′.

Proof. Let F ′ be the set of edges in G′ with one endpoint in V1 and one endpoint
in V2, i.e., the cut given by (V1, V2). By definition of G′, we know that every
crossing in the cut embedding associated to (V1, V2) corresponds to an edge
in G′ such that either both its endpoints belong to V1, or both belong to V2,
i.e., to an edge in E′ \ F ′. Thus, the number of crossings is |E′| − |F ′|. As |E′|
is constant for a fixed vertex permutation, the result follows. 
�
Theorem 2. For a graph G = (V,E) with a fixed vertex permutation, there is a
planar fixed linear embedding of G if, and only if, the associated conflict graph G′

of G is bipartite.

Proof. Suppose H is a planar fixed linear embedding of G. Let E1 and E2 repre-
sent the two edge sets above and below the horizontal vertex line, respectively.
Then the vertices of G′ consist of two vertex sets V1 corresponding to E1 and V2
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corresponding to E2. Since H is planar, there is no edge connecting vertices
from the same set. So G′ is bipartite. On the other hand, if G′ is bipartite, the
resulting cut embedding of G is obviously planar. 
�
Observe that testing whether the graph G′ is bipartite can be done in linear
time (with respect to G′) by two-coloring a DFS-tree.

3.2 Solving MAXCUT by Branch-and-Cut

By Theorem 1, we can use any algorithm for MAXCUT in order to solve FLCNP.
One of the most successful approaches for solving MAXCUT to optimality in
practice is branch-and-cut.

It would go beyond the scope of this paper to explain this approach in detail.
Roughly, the problem is modelled as an integer linear program (ILP). This ILP is
first solved as a linear program (LP), i.e., the integrality constraints are relaxed.
LPs are solved very quickly in practice. If the LP-solution is integer, we can stop.
Otherwise, one tries to add cutting planes that are valid for all integer solutions
of the ILP but not necessary for (fractional) solutions of the LP. If such cutting
planes are found, they are added to the LP and the process is reiterated.

We have to resort to the branching part only if no more cutting planes are
found. In general, only a small portion of the enumeration tree has to be explored,
as many branches can be pruned. Compared to a pure branch-and-bound ap-
proach as presented in [1], the number of subproblems to be considered is very
small in general. This, however, depends on the quality of the cutting planes
being added. The latter in turn depend on the specific problem; finding good
cutting planes is a sophisticated task. Fortunately, the MAXCUT problem has
been investigated intensively, so that many classes of cutting planes are known.

More detailed information on algorithms for MAXCUT using cutting plane
techniques can be found in [7,9]. Observe that MAXCUT can also be adressed
by semidefinite programming methods; see e.g. [8]. These methods perform well
on very dense instances, while being outperformed by ILP approaches on sparse
or large graphs. For this reason, we chose the latter method for our experiments.

4 Experimental Results

In order to evaluate the practical performance of our new exact approach to
FLCNP presented in the previous section, we performed extensive experiments.
In this section, we report the results and compare them to the results obtained
with the branch-and-bound algorithm proposed by Cimikowski [1]. The set of
test instances is exactly the same as used in [1].

These instances mainly arise from network models of computer architectures;
in general they are hamiltonian. The fixed order of nodes, as part of the input of
FLCNP, is then determined by a hamiltonian cycle in the graph, as an ordering
of the vertices along a hamiltonian cycle tends to yield a smaller number of
crossings in general. In our experiments, we always used the same ordering as
chosen in [1] for ensuring comparability.
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More specifically, the networks considered are the following, see also [1]:

– complete graphs Kn for n = 5, . . . , 13
– hypercubic networks : this class of graphs includes the hypercubes Qd and

several derivatives of hypercubes such as the cube-connected-cycles CCCd,
the twisted cubes TQd, the crossed cubes CQd, the folded cubes FLQd, the
hamming cubes HQd, the binary de Bruijn graphs DBd and the undirected
de Bruijn graphs UDBd, the wrapped butterfly graphs WBFd and the shuffle-
exchange graphs SXd

– other interconnection networks, including the d×d tori Td,d, the star graphs
STd, the pancake graphs PKd, and the pyramid graphs PMd

– circular graphs: the circular graph Cn(a1, . . . , ak) is regular and hamiltonian.

In Table 1, we contrast our runtime results with those of the branch-and-bound
algorithm presented in [1]; we list all instances for which runtimes are reported
in [1]. For a better comparison, we ran both algorithms on the same machine, a
Pentium 4 with 2.8 GHz. The running times for the branch-and-bound algorithm
were obtained with the original implementation used in [1]. In the remainder of
this section, all running times are given in CPU seconds.

Table 1. Running times for exact approaches

instance B&B [1] MAXCUT
Q4 0.01 0.00
CCC3 0.02 0.00
SX4 0.01 0.00
FLQ4 0.13 0.42
UDB5 0.43 0.07
C26(1, 3) 0.46 0.00
T6,6 1.27 0.04
CCC4 2.59 0.01
K10 2.27 3.21
SX5 2.16 1.84
C20(1, 2, 3) 16.69 0.39
T7,7 64.89 0.15
C22(1, 2, 3) 73.16 0.39
K11 148.21 24.56
Q5 612.35 1.67
K12 1925.51 79.15
K13 > 86400.00 2119.12

Notice that in our approach we did not use any initial heuristics, in order
to give clearer and independent runtime figures. Nevertheless, as obvious from
Table 1, our approach is much faster than the branch-and-bound algorithm.
This is particularly true for sparse instances, e.g., Q5. However, our approach
outperforms [1] also on the larger complete graphs.

For all other instances, only heuristic results are given in [1]. Tables 2 and 3
state the results of our approach, sorted as in [1]. In all tables, the columns
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Table 2. Experimental results, part I

instance best heuristic [1] worst heuristic [1] exact solution MAXCUT runtime
K5 1 1 1 0.00
K6 3 4 3 0.00
K7 9 11 9 0.01
K8 18 24 18 0.06
K9 36 46 36 0.83
K10 60 80 60 3.21
K11 100 130 100 24.56
K12 150 200 150 79.15
K13 225 295 225 2119.12
Q4 8 8 8 0.00
Q5 62 80 60 1.67
Q6 370 512 368 17924.24
Q7 1874 2688 [1894] > 86400.00
CCC3 0 4 0 0.00
CCC4 16 24 16 0.01
CCC5 104 148 104 3.99
SX4 7 8 7 0.00
SX5 60 74 60 1.84
SX6 281 333 [285] > 86400.00
SX7 1315 1554 [1319] > 86400.00
UDB4 5 5 5 0.00
UDB5 28 34 28 0.07
UDB6 149 183 148 19.88
UDB7 629 815 [646] > 86400.00
UDB8 2384 3065 [2387] > 86400.00
FLQ3 4 6 4 0.00
FLQ4 36 44 36 0.42
FLQ5 208 256 208 5981.78
FLQ6 1036 1320 [1061] > 86400.00
FLQ7 4712 6144 [4804] > 86400.00
TQ3 1 1 1 0.00
TQ4 8 10 8 0.00
TQ5 65 83 63 1.42
TQ6 372 516 372 28694.06
TQ7 1866 2693 [1916] > 86400.00
CQ3 1 1 1 0.00
CQ4 12 12 12 0.01
CQ5 88 106 88 6.47
CQ6 494 588 [508] > 86400.00
CQ7 2475 3056 [2481] > 86400.00
HQ3 5 6 5 0.00
HQ4 50 57 50 1.86
HQ5 303 361 [303] > 86400.00
HQ6 1523 1885 [1531] > 86400.00
HQ7 6913 8734 [7057] > 86400.00
WBF3 22 30 22 0.02
WBF4 164 205 158 22.54
WBF5 904 1066 [948] > 86400.00
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Table 3. Experimental results, part I

instance best heuristic [1] worst heuristic [1] exact solution MAXCUT runtime
T3,3 3 4 3 0.00
T4,4 8 8 8 0.00
T5,5 20 30 20 0.02
T6,6 24 38 24 0.04
T7,7 48 70 48 0.15
T8,8 48 80 48 0.16
T9,9 88 142 88 0.71
T10,10 80 190 80 0.69
ST4 11 13 11 0.01
ST5 570 699 [572] > 86400.00
PK4 10 11 10 0.01
PK5 500 564 [514] > 86400.00
PM3 4 26 4 0.00
PM4 439 796 439 28964.87
C20(1, 2) 0 4 0 0.00
C20(1, 2, 3) 22 28 22 0.39
C20(1, 2, 3, 4) 70 98 70 1.49
C22(1, 2) 0 2 0 0.00
C22(1, 2, 3) 24 32 24 0.39
C22(1, 3, 5, 7) 200 254 200 191.70
C24(1, 3) 12 16 12 0.00
C24(1, 3, 5) 72 92 72 1.68
C24(1, 3, 5, 7) 216 282 216 266.11
C26(1, 3) 14 18 14 0.00
C26(1, 3, 5) 82 102 82 22.79
C26(1, 4, 7, 9) 364 446 364 19392.85
C28(1, 3) 16 20 14 0.00
C28(1, 3, 5) 86 110 86 3.38
C28(1, 2, 3, 4) 98 138 98 3.90
C28(1, 3, 5, 7, 9) 560 714 [560] > 86400.00
C30(1, 3, 5) 96 120 90 2.77
C30(1, 3, 5, 8) 302 348 [298] > 86400.00
C30(1, 2, 4, 5, 7) 392 470 [396] > 86400.00
C32(1, 2, 4, 6) 160 202 160 21.65
C34(1, 3, 5) 110 132 104 5.83
C34(1, 4, 8, 12) 574 670 [572] > 86400.00
C36(1, 2, 4) 36 60 36 0.03
C36(1, 3, 5, 7) 328 422 328 5624.53
C38(1, 7) 84 98 84 14.70
C38(1, 4, 7) 190 236 190 149.04
C40(1, 5) 56 64 56 5.04
C42(1, 4) 42 46 42 0.07
C42(1, 3, 6) 158 170 150 651.18
C42(1, 2, 4, 6) 210 284 210 115.16
C44(1, 4, 5) 180 200 180 53.72
C44(1, 4, 7, 10) 632 830 [648] > 86400.00
C46(1, 4) 46 50 46 0.07
C46(1, 5, 8) 296 374 294 1104.35
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show the following data: the name of the instance, the number of crossings
produced by the best and worst heuristics of [1], respectively, the optimal number
of crossings (when successfully computed by our approach), and the runtime of
our algorithm. However, as some instance are far too large for exact solution,
we had to set a general time limit of 24 hours. Whenever this limit was reached,
we report the best crossing number found instead of the optimal solution; the
figures are then put into brackets. Where an optimal solution was found for an
instance that was not solved to proven optimality before, we use italics. Bold
figures indicate that our algorithm could improve the best heuristic solution.

It is remarkable that many instances can be solved very quickly by our ap-
proach while others cannot even be solved in one CPU day. In other words, the
border line between easy instances (those solvable within 25 seconds, say) and
hard ones (those unsolved even in one day) is very sharp, few instances do not
fall into one of these categories.

Our results can also help to evaluate the quality of the heuristic methods. In
fact, it turns out that many heuristics proposed by [1] are able to find optimal or
near-optimal solutions even for larger instances. In summary, we think that small
to medium sized instances should be solved to optimality in general, whereas for
larger instances one can at least be confident that the heuristic solution is not
too far away from the optimum.

The algorithm we used for solving the MAXCUT problem is generally better
adapted to sparse graphs. This is reflected in the runtime figures presented in
this section. Therefore, practical instances tend to be easy for our approach.

5 Conclusion and Future Work

We have presented a new exact algorithm for the fixed linear crossing number
problem, running significantly faster than earlier exact algorithms. The essential
part of our approach is the reduction to the maximum cut problem. After this
transformation, the problem can be solved with a sophisticated mathematical
programming algorithm, based on the extensive knowledge that has been gath-
ered for the maximum cut problem by intensive research. Moreover, testing the
existence of a planar fixed linear embedding of a given graph can be done in an
easy way using this transformation. We believe that this principle can also be
applied to other linear embedding problems with different objective functions.

Our experimental results show that many medium sized instances can be
solved very quickly by our approach. However, for many large instances we
cannot find optimal solutions. For these instances, the heuristics proposed by
Cimikowski [1] are a good compromise between running time and quality. In
fact, our evaluation shows that in most cases at least one of these heuristics is
able to find the optimal solution.

In consequence, we plan to integrate good heuristics into our branch-and-cut
algorithm in order to further improve running times. In general, this can be done
in the same way as in the branch-and-bound approach. We are convinced that
this will considerably increase the performance of our approach.
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Since the generation of edge crossings largely depends on the original vertex
ordering, it is crucial to study the general version of the linear crossing number
problem. We plan to develop heuristic or exact algorithms finding vertex order-
ings leading to a minimal number of potential edge crossings. Having done this,
we will be able to evaluate our approach on instances without a predetermined
order of vertices. In particular, we plan to test its performance on the graphs in
the well-known Rome library. As these graphs are usually very sparse, we are
convinced that we will be able to solve most of these instances to optimality.

Acknowledgement. We would like to thank Frauke Liers for providing us her
implementation of a branch-and-cut algorithm for the maximum cut problem.
Moreover, we are grateful to Robert Cimikowski for making his implementation
and experimental data available to us.
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5. R. S. Gilbert and W. K. Kleinöder. CNMgraf – graphic presentation services for
network management. In Proc. 9th Symposium on Data Communication, pages
199–206, 1985.

6. T. Harju and L. Ilie. Forbidden subsequences and permutations sortable on two
parallel stacks. In Where mathematics, computer science, linguistics and biology
meet, pages 267–275. Kluwer, 2001.

7. M. Laurent. The max-cut problem. In M. Dell’Amico, F. Maffioli, and S. Martello,
editors, Annotated Bibliography in Combinatorial Optimization. Wiley, 1997.

8. M. Laurent and F. Rendl. Semidefinite programming and integer programming.
In Discrete Optimization, pages 393–514. Elsevier, 2005.
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Abstract. Several studies have reported that the linear program relaxation of in-
teger multi-commodity network flow problems often provides integer optimal 
solutions. We explore this phenomenon with a 0-1 multi-commodity network 
with mutual arc capacity constraints. Characteristics of basic solutions in the 
linear programming relaxation problem of the 0-1 multi-commodity problem 
are identified. Specifically, necessary conditions for a linear programming re-
laxation to have a non-integer solution are presented. Based on the observed 
characteristics, a simple illustrative example problem is constructed to show 
that its LP relaxation problem has integer optimal solutions with a relatively 
high probability. Furthermore, to investigate whether or not and under what 
conditions this tendency applies to large-sized problems, we have carried out 
computational experiments by using randomly generated problem instances. 
The results of our computational experiment indicate that there exists a narrow 
band of arc density in which the 0-1 multi-commodity problems possess no in-
teger optimal solutions. 

1   Introduction  

The integer multi-commodity minimum cost network flow problem (IMNFP), which 
has been applied in various fields such as transportation, production, and communica-
tion systems, involves finding optimal integral flows that satisfy arc capacity con-
straints on an underlying network. The problem is known to be NP-hard even in its 
simplest form, viz. in a planar graph with unit arc capacities [1]. Moreover, coupled 
by various side constraints, many IMNFP problems in practice usually take further 
complication. Subsequently, several studies have developed heuristic procedures or 
efficient branch-and-bound based procedures for IMNFP problems with side con-
straints ([2],[3],[5],[7],[9],[11], [12] ). 

Some of these studies have reported that the linear program (LP) relaxation of in-
stances of the IMNFP with or without side constraints often provides integer optimal 
solutions or excellent bounds ( [5], [9], [12] ). Löbel [9] considered the IMNFP with 
arc cover constraints as coupling constraints for vehicle scheduling in public transit 
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and suggested the column generation technique for solving large-scale linear prob-
lems. In his computational experiments using instances based on real-world data, the 
LP relaxation gave tight bounds in several problem instances. In fact, the LP relaxa-
tion was observed to yield integer optimal solutions for a few problem instances. 
Faneyte, Spieksma, and Woeginger[5] studied the 0-1 MNFP with node cover con-
straints as coupling constraints for the crew-scheduling problem and presented a 
branch-and-price algorithm for arc-chain formulation. Their computational experi-
ments also showed that the LP relaxation for most of the instances based on practical 
data for a crane rental company gave an integer optimal solution. In addition, they in-
dicated the short length of feasible paths in their instances as one possible explanation 
for this phenomenon. For some instances with longer possible paths, however, the LP 
relaxation provided an integer optimal solution. For the IMNFP on a ring network, 
Ozdaglar and Bertsekas [12] reported that the LP relaxation gave an integer optimal 
solution for almost all instances. Moreover, similar findings for some instances of the 
IMNFP with side constraints, viz. the LP relaxation often provides an integer optimal 
solution, are observed in [2], [3], [7], and [11].  

In some special classes of the IMNFP, it has been shown that the LP relaxation 
gives an integer optimal solution. Evans [4] described a sufficient condition under 
which the IMNFP can be transformed into an equivalent single-commodity problem, 
and Kleitmann, Martin-Lof, Rothschild, and Whinston [8] showed that if each node in 
a network were a source or sink for at least (k-1) of the k commodities, the optimal so-
lution would be integral. Along this line of research, we investigate the 0-1 MNFP, a 
sub-class problem of IMNFP, to explore the effectiveness of the LP relaxation. The 0-
1 MNFP has been applied to several practical problems, such as the crew-scheduling 
problem and telecommunications ([2], [5], [11]). 

We have identified some characteristics of basic feasible solutions of the LP re-
laxation. Also, by using them, we have constructed an example to show that its LP re-
laxation problem has integer optimal solutions with a relatively high probability. As 
the construction of the example is pathological, we have conducted computational ex-
periments by using randomly generated problem instances in order to investigate 
whether or not and under what conditions the LP relaxation provides integer optimal 
solutions.  

This paper is organized as follows. Section 2 below describes the problem under 
consideration, along with some definitions of notation. It also includes the characteris-
tics of basic feasible solutions of the LP relaxation and a simple illustrative example. 
Section 3 discusses the results of computational experiments and Section 4 contains 
concluding remarks. 

2   The 0-1 MNFP and Characteristics of the Problem 

We consider the 0-1 MNFP on a digraph G(V, E) with a node set V and an arc set E. 
Given a set of commodities K, each commodity k is assumed to have a single origin 
and single destination. Let i and j be an arc and path index, respectively. Let kΨ and 
Pj denote the set of origin-destination paths of commodity k and the set of arcs in path 
j, respectively. Also, let cj (j∈ kΨ ) and ui represent the cost of shipping commodity k 
along path j and the bundle (mutual arc) capacity of arc i, respectively. Without loss 
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of generality, we will assume that all arcs have capacities. Moreover, δij denotes the 
Kronecker delta to indicate whether an arc i belongs to Pj ; i.e. δij equals 1 if i∈Pj and 
equals zero otherwise. The decision variable yj is a binary variable to indicate whether 
or not commodity is shipped along path j. Then, the arc-chain formulation of the 0-1 
MNFP is expressed as 
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In the above formulation, zi is a slack variable. Constraints (1) represent that each 
commodity must be shipped on a unique path and Constraints (2) represent that total 
flow on an arc can not exceed its capacity. An LP relaxation problem is obtained by 
relaxing integrality constraints (3) and the rank of the constraint matrix in the relaxed 
problem is (|K|+|E|), where |K| denotes the cardinality of set K. Given a basic feasible 
solution of the LP relaxation problem, let By and Bz denote index sets of basic path 
variables and basic slack variables, respectively. Moreover, we use By

k as an index set 
of basic path variables for commodity k. Also, let Nz denote a set of arcs of which 
slack variables are nonbasic. As the arcs that belong to Nz are saturated, we will call 
them saturated nonbasic arcs. Note that there can be saturated basic arcs because of 
degeneracy.  

In a basic feasible solution of the LP relaxation problem, at least one path variable 
should be basic for each commodity, i.e. |By

k| 1 for all k. Thus, a basic matrix B of 
the LP relaxation problem can be expressed as 
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Each of the first |K| columns corresponds to one path variable for each commodity, 
which we shall call a primary path variable. The next |Nz| columns correspond to non-
primary path variables in the basis and the last |Bz| columns correspond to slack vari-
ables of the arcs in Bz. The first |K| rows are flow constraints and the next |Nz| and last 
|Bz| rows correspond to the capacity constraints of saturated arcs in Nz and basic arcs 
in Bz, respectively. Now, let D = D3 - D2D1. Then, the inverse of the basic matrix is 
expressed as 
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The integrality of basic solutions is closely related to the characteristics of matrix D. 
The matrix D is square and its rank is |Nz|. Moreover, it can be described by using the 
relationship of paths and saturated arcs. We assume that, in the matrix B, the (i+|K|)th 
row corresponds to the capacity constraints of arc i and the jth column corresponds to 
path j. Also, we assume the rth column (for r=1,2,…,|K|) corresponds to the primary path 
of commodity r. Let i=1,2,…, |Nz| and j=|K |+1, …, |K |+|Nz| be the arc and path index, 
respectively. Also, let kj be an commodity index of path j.  In addition, (D)ij, (D)i., and 
(D).j denote an element, row, and column of matrix D, respectively. Element (D1)r,j-|K|  = 
1 if r= kj; otherwise it is zero. It notes that (D1)r,j-|K|  = 1 if path j is a path of commodity 
r. Moreover, element (D2)ir =1 if i∈Pr, otherwise (D2)ir =0. Therefore,  
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Then, the element of matrix D is given as, for i=1,2,…, |Nz| and j=|K |+1, …, |K |+|Nz| 
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The above observation clearly indicates that that matrix D can be obtained from the 
relationship of the basic path variables and saturated nonbasic arcs and that the ele-
ments in matrix D are 0, 1, or -1. Similar observation applies to the term D5 - D4D1, 
which is a term in the inverse of a basic matrix. As a parenthetical note, if D is uni-
modular, then the corresponding basic feasible solution is integral.  

Now, we state some properties of basic solutions. 

Proposition 1. Every integer feasible solution of the 0-1 MNFP is a basic feasible 
solution of its LP relaxation problem.  

Proof) For a given integer feasible solution, each commodity has exactly one path 
with its flow equal to 1. Let the index set of these variables be By and the arc set E be 
Bz. Then, from a constraint matrix, a matrix B consisting of columns corresponding to 
the path variables in By and slack variables of arcs in Bz is given as 

=
×

×

||||
4

||||

ID

0I
B

EE

KK  
 

Matrix B is nonsingular and its rank is (|K|+|E|). Therefore, the matrix B is a basis of 
an LP relaxation.  

As one of the properties for non-integer basic solutions, a relationship between |K|, 
|Nz|, and |By| is established in [6] and [10]. 
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Proposition 2. (By Maurras and Vaxès [10] and Farvoleden et al [6])  Every non-
integer basic feasible solution of the LP relaxation problem satisfies |By| = |Nz|+|K|. 

Proof. From equation (5), the result immediately follows.  

In the above proposition, if |Nz|=0, then |By|=|K| and the corresponding solution is in-
tegral.  

Proposition 3. There should be at least two saturated nonbasic arcs in a non-integer 
basic feasible solution of the LP relaxation problem; viz. |Nz|  2. 

Proof. Suppose that |Nz| < 2. If |Nz|=0, the solution is integral. Moreover, if |Nz|=1, 
matrix D is [1] and the solution is integral.  

Proposition 3 above can be strengthened by the main proposition of the paper below. 
It states that there should be at least two saturated nonbasic arcs on the same path for 
a non-integer basic solution. 

Proposition 4. For a non-integer basic feasible solution of the LP relaxation problem 
with a basic matrix B of the form given in (4), | Nz ∩Pj

 |  2 for some j∈ By.  

Proof. Suppose that | Nz ∩ Pj |  1 for all j∈ By. By (5), each column of matrix D has 
at most two nonzero elements because | Nz ∩ Pj

 |  1 for all j∈ By. Since in this case 
the matrix D takes the form of node-arc incidence matrix obtained by removing a 
node in a general network, it is unimodular. This is a contradiction because the solu-
tion is assumed to be nonintegral.  

The above two propositions describe necessary conditions for the LP relaxation problem 
to have non-integer vertices and they are closely related to the form of basic matrices.  

It is possible to approximate the probability that LP relaxations have integer opti-
mal solutions for simple problems, in which we relax the assumption that all arcs have 
capacities. As an example, we consider an instance with |K|=2, |E|=2, and four feasi-
ble paths for each commodity, in which E is a set of arcs with capacities only. Fig. 
1(a) shows the constraint and basic matrices corresponding to a non-integer basic so-
lution and one of their extended forms. The four paths include (i) a path including 
none of the two capacity-constrained arcs, (ii) a path including both of the two capac-
ity-constrained arcs, and (iii) a couple of paths including exactly one of the two ca-
pacity-constrained arcs. Each of the paths may include some uncapacitated arcs that 
are not included in E, but they will not appear in the constraint matrix. There are nine 
feasible integer solutions and, by Proposition 1, all of them are basic solutions of the 
LP relaxation. By Propositions 2 and 3, |Nz| = 2, |By| = 4, |By

k| = 2 (for k=1,2). Then, 
two non-integer basic feasible solutions can be drawn to satisfy the necessary condi-
tion in Proposition 4. The extended form of a basic matrix corresponds to the case in 
which one path of commodity 1 includes all saturated nonbasic arcs and each path of 
commodity 2 includes exclusively one saturated nonbasic arc.  

Suppose that the arc capacity is set equal to 1 and the cost for each path is selected 
randomly among integer values between 1 and Cmax in the above example. Consider 
the pseudo-probability Pu that all optimal solutions are integral and the pseudo-
probability Po that at least one of the optimal solutions is integral. To get Pu and Po for 
a given Cmax, we obtained optimal solutions for all possible cases (Cmax

8 cases) of path 
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Fig. 1. The constraint and basic matrices of a non-integer basic solution and the pseudo-
probabilities Po and Pu according to Cmax for an instance with |K|=2, |E|=2 

costs and counted the number of corresponding cases. The term “pseudo” is used to 
indicate that the sample space generated as such provides “pseudo” elementary 
events, which may not be equally likely. Fig. 1(b) shows the results. When all path 
costs are identically one, i.e. Cmax=1, Pu =0 and Po =1. Moreover, Pu =95.7% and 
Po=97.5% at Cmax=13. Also, pseudo-probability Pu increases while pseudo-probability 
Po decreases as Cmax increases and that they converges as Cmax increases. Because Po 
is always greater than or equals to Pu for a specific value of Cmax the pseudo-
probability Po is greater than 95.7%. Considering the pseudo-probability and the sim-
ple ratio of the number of integer solutions to that of basic feasible solutions (9/11), 
we conclude that the probability that the LP relaxation has an integer optimal solution 
must be high in our example problem. For simple instances like the example above, it 
may be possible to identify all basic feasible solutions and to approximate the prob-
abilities Po and Pu. In general, however, it will be difficult to calculate the probability 
for a large-sized problem instance. 

3   Computational Results 

Conceivably, as the number of uncapacitated arcs increases, so does the chance of 
obtaining integer solution of the LP relaxation problem. Moreover, there might be a spe-
cific band of arc density within which the chance of obtaining non-integer optimal solu-
tion of the LP relaxation problem is high. If so, then many observations made by earlier 
studies on the integrality of the LP relaxation solution could be partially explained.  

We performed computational experiments using randomly generated instances of the 
0-1 MNFP to search for trends that the  LP  relaxation had an integer optimal  solution 
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in large-size instances. For this purpose, we considered four factors: the number of 
commodities (|K|=10, 30, 50, 70), the arc density (d=0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
15%), the number of nodes (|V|=100, 200, 300), and the maximum arc capacity 
(Umax=1, 0.1*|K|). The arc density d, defined as the number of arcs over the 
number of possible arcs, specified the number of arcs in the random instance, viz. 
d*(|V|-1)*|V| arcs, where |V| denotes the number of nodes.  

To generate instances, we used a path-based generation scheme. First, for each 
commodity, source and destination nodes were randomly selected and a path from the 
source to the destination node was constructed. The length of a path was randomly de-
termined between 1 and the minimum of |V|-1 and d*(|V|-1)*|V|/|K|. If needed, addi-
tional arcs were randomly generated. In addition, the arc capacities were determined 
randomly between 1 and the maximum arc capacity Umax, and each arc was assigned a 
random cost between 1 and 100. For each combination of the four factors, 100 in-
stances were generated and Cplex 9.0 was used to solve the generated instances. We 
obtained LP optimal solutions of the generated problem instances and counted the 
number of instances of which the optimal solution was integral.  

Tables 1 and 2 show the results for Umax with 1 and 0.1*|K|, respectively. In all but 
three cases, there were at least 50 instances with an integer optimal solution, particu-
larly more than 90 instances for all cases when Umax=0.1*|K|. Moreover, the mini-
mum number of instances with an integer optimal solution was 29, when Umax =1, 
|V|=300, |K|=70, and d=1%.  

In Table 1, for the given number of nodes and commodities, the number of in-
stances with an integer optimal solution is minimal at a specific arc density and 
increases when the arc density is far apart from the specific level. There are two ex-
planations for this: in our procedure to generate problem instances, candidate paths 
likely share few arcs at low arc densities; at high arc densities, there are many arcs 
and the paths with low cost likely share few arcs.  

Table 1. The number of instances in which the LP relaxation yields optimal solution when 
Umax=1 

 |V|=100 |V|=200 |V|=300 

|K| 
d 

10 30 50 70 10 30 50 70 10 30 50 70 

0.5% - - - - 91 100 100 100 92 59 97 99 

1% 100 100 100 100 97 64 83 100 100 91 65 28 

2% 97 97 100 100 100 91 68 45 100 97 93 81 

3% 97 74 71 95 99 97 90 70 100 99 97 93 

4% 98 80 58 51 100 99 98 87 100 99 99 100 

5% 100 92 70 49 100 98 95 85 100 100 99 98 

6% 100 90 78 42 100 98 96 98 100 100 100 99 

7% 99 96 88 67 100 100 99 97 100 100 99 100 

8% 99 92 83 67 100 100 100 100 100 99 100 99 

9% 100 98 85 68 100 100 98 98 100 100 100 99 

10% 99 98 90 78 100 99 100 99 100 100 100 100 

15% 100 100 97 90 100 100 98 100 100 100 100 100 
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Table 2. The number of instances in which the LP relaxation yields optimal solution when 
Umax=0.1*|K| 

 |V|=100 |V|=200 |V|=300 

|K| 
d 

10 30 50 70 10 30 50 70 10 30 50 70 

0.5%  - - - 91 100 100 100 92 86 99 100 

1% 100 100 100 100 97 89 98 100 100 98 97 98 

2% 97 98 100 100 100 100 99 100 100 100 100 100 

3% 97 95 98 100 99 100 99 100 100 100 100 99 

4% 98 97 98 100 100 100 100 100 100 100 100 100 

5% 100 99 100 99 100 100 100 100 100 100 100 100 

6% 100 98 99 100 100 100 100 100 100 100 100 100 

7% 99 99 100 100 100 100 100 98 100 100 100 100 

8% 99 99 99 100 100 100 100 100 100 100 100 100 

9% 100 99 100 100 100 100 100 100 100 100 100 100 

10% 99 100 99 100 100 99 100 100 100 100 100 100 

15% 100 99 100 100 100 100 100 100 100 100 100 100 

Although the results in Tables 1 and 2 indicate that instances give integer optimal 
solutions with a high probability for the given number of nodes and commodities, 
there may be arc densities at which most instances give non-integer optimal solutions. 
In our cases indeed, the results reveal that the range of arc densities at which most in-
stances have non-integer optimal solutions is very narrow, if it exists. As an example, 
consider the case with Umax=1, |V|=300, and |K|=70 in Table 1; most instances may 
have non-integer optimal solutions at some arc densities between 0.5 and 2%; how-
ever, the range of arc densities at which most instances have non-integer optimal solu-
tions is very narrow for this case, if exists, as shown in Fig. 2. In Fig. 2, the minimum 
number of instances with an integer optimal solution was 21, when d=0.8%.  

 

Fig. 2. The result according to the arc density when |V|=300 and |K|=70 
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In Table 1, the range of arc densities, at which the number of instances with integer 
optimal solutions is large, widens as the number of commodities decreases. In the 
case with Umax=1, |V|=100, and |K|=70, there are less than 90 problem instances with 
integer optimal solutions at arc densities from 4 to 10%. In contrast, for |K|=30, the 
number is less than 90 at arc densities of 3 and 4%. As the number of nodes increases, 
the range of arc densities at which there are more than 90 instances with an integer 
optimal widens.  

 

Fig. 3. The results for dc levels of 20, 40, 60, 80, and 100% when |V|=100 and |K|=70 

When the 0-1 MNFP is applied to crew or vehicle scheduling problems, it would 
have many arcs without capacity. To see the effects of varying the number of arcs 
with capacity, we performed additional experiments. For |V|=100 and |K|=70, five 
different ratios dc of arcs with capacity were used to generate instances, i.e., 20, 40, 
60, 80, and 100%, where dc is defined as the ratio of the number of arcs with capacity 
over the number of arcs. For each case, 100 instances were generated and tested. Fig. 
3 shows that the number of instances with integer optimal solutions increases as dc 
decreases. 

4   Conclusion 

Motivated by the observations made by several studies, in which the LP relaxations of 
instances of the IMNFP often gave integer optimal solutions or excellent bounds, we 
have examined the 0-1 MNFP with mutual arc capacity constraints to explore this 
phenomenon. The characteristics of basic feasible solutions in the LP relaxation were 
examined and the necessary conditions for a basis in the LP relaxation problem to be 
non-integral were identified. Our computational experiments showed that the LP re-
laxation frequently provided an integer optimal solution, except when the arc density 
was within a specific range. Moreover, when the capacities of the arcs were large or 
the proportion of arcs with capacities was small, the LP relaxation yielded an integer 
optimal solution. 
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Our results are applicable to the 0-1 MNFP with side constraints related to a single 
path, such as hop constraints, because the constraints are considered implicitly in sub-
problems used to generate a feasible path. However, further study is needed to address 
other side constraints such as resource constraints. 
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