
J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 1 – 33, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dependable Software

Bertrand Meyer

ETH Zurich
http://se.ethz.ch

Abstract. Achieving software reliability takes many complementary tech-
niques, directed at the process or at the products. This survey summarizes some
of the most fruitful ideas.

1 Overview

Everyone who uses software or relies on devices or processes that use software — in
other words, everyone — has a natural interest in guarantees that programs will
perform properly. The following pages provide a review of techniques to improve
software quality.

There are many subcultures of software quality research, often seemingly sealed
off from each other; mentioning process-based approaches such as CMMI to
programming language technologists, or tests to people working on proofs, can be as
incongruous as bringing up Balanchine among baseball fans. This survey disregards
such established cultural fences and instead attempts to include as many as possible of
the relevant areas, on the assumption that producing good software is hard enough
that “every little bit counts” [60]. As a result we will encounter techniques of very
diverse kinds.

A note of warning to the reader seeking objectivity: I have not shied away from
including references — easy to spot — to my own work, with the expectation (if a
justification is needed) that it makes the result more lively than a cold inspection
limited to other people’s products and publications.

2 Scope and Terminology

The first task is to define some of the fundamental terms. Even the first word of this
article’s title, determined by the Hasler Foundation’s “Dependable Information and
Communication Systems” project, requires clarification.

2.1 Reliability and Dependability

In the software engineering literature the more familiar term is not “dependable” but
“reliable”, as in “software reliability”. A check through general-purpose and technical
dictionaries confirms that the two have similar definitions and are usually translated
identically into foreign languages.

There does exist a definition of dependability [1] from the eponymous IFIP
Working Group 10.4 [39] that treats reliability as only one among dependability

2 B. Meyer

attributes, along with availability, safety, confidentiality, integrity and maintainability.
While possibly applicable to a computing system as a whole, this classification does
not seem right for their software part, as some attributes such as availability are not
properties of the software per se, others such as confidentiality are included in
reliability (through one of its components, security), and the remaining ones such as
maintainability are of dubious meaning for software, being better covered by other
quality factors such as extendibility and reusability [57].

As a consequence of these observations the present survey interprets dependability
as meaning the same thing, for software, as reliability.

2.2 Defining Reliability

The term “software reliability” itself lacks a universally accepted definition. One
could argue for taking it to cover all “external quality factors” such as ease of use,
efficiency and extendibility, and even “internal quality factors” such as modularity.
(The distinction, detailed in [57], is that external factors are the properties, immediate
or longterm, that affect companies and people purchasing and using the software,
whereas internal factors are perceptible only to software developers although in the
end they determine the attainment of external factors.)

It is reasonable to retain a more restricted view in which reliability only covers three
external factors: correctness, robustness and security. This doesn’t imply that others are
irrelevant; for example even the most correct, robust and secure system can hardly be
considered dependable if in practice it takes ages to react to inputs, an efficiency
problem. The same goes for ease of use: many software disasters on record happened
with systems that implemented the right functions but made them available through
error-prone user interfaces. The reasons for limiting ourselves to the three factors listed
are, first, that including all others would turn this discussion into a survey of essentially
the whole of software engineering (see [33]); second, that the techniques to achieve
these three factors, although already very diverse, have a certain kindred spirit, not
shared by those for enhancing efficiency (like performance optimization techniques),
ease of use (like ergonomic design) and other external and internal factor.

2.3 Correctness, Robustness, Security

For the three factors retained, we may rely on the following definitions:

• Correctness is a system’s ability to perform according to its specification in cases
of use within that specification.

• Robustness is a system’s ability to prevent damage in cases of erroneous use
outside of its specification.

• Security is a system’s ability to prevent damage in cases of hostile use outside of its
specification.

They correspond to levels of increasing departure from the specification. The
specification of any realistic system makes assumptions, explicit or implicit, about the
conditions of its use: a C compiler’s specification doesn’t define a generated program
if the input is payroll data, any more than a payroll program defines a pay check if the
input is a C program; and a building’s access control software specification cannot

 Dependable Software 3

define what happens if the building has burned. By nature, the requirements defined
by robustness and security are different from those of correctness: outside of the
specification, we can no longer talk of “performing” according to that specification,
but only seek the more modest goal of “preventing damage”; note that this implies the
ability to detect attempts at erroneous or hostile use.

Security deserves a special mention as in recent years it has assumed a highly
visible place in software concerns. This is a phenomenon to be both lamented, as it
signals the end of a golden age of software development when we could concentrate
on devising the best possible functionality without too much concern about the
world’s nastiness, and at the same time taken to advantage, since it has finally brought
home to corporations the seriousness of software quality issues, a result that decades
of hectoring by advocates of modern software engineering practices had failed to
achieve. One of the most visible signs of this phenomenon is Bill Gates’s edict
famously halting all development in February of 2001 in favor of code reviews for
hunting down security flaws. Many of these flaws, such as the most obnoxious, buffer
overflow, are simply the result of poor software engineering practices. Even if
focusing on security means looking at the symptom rather than the cause, fixing
security implies taking a coherent look at software tools and techniques and requires,
in the end, ensuring reliability as a whole.

2.4 Product and Process

Any comprehensive discussion of software issues must consider two complementary
aspects: product and process.

The products are the software elements whose reliability we are trying to assess;
the process includes the mechanisms and procedures whereby people and their
organizations build these products.

2.5 The Products of Software

The products themselves are diverse. In the end the most important one, for which we
may assess correctness, robustness and security, is code. But even that simple term
covers several kinds of product: source code as programmers see it, machine code as
the computer executes it, and any intermediate versions as exist on modern platforms,
such as the bytecode of virtual machines.

Beyond code, we should consider many other products, which in their own ways
are all “software”: requirements, specifications, design diagrams and other design

documents, test data — but also test plans —, user documentation, teaching aids…
To realize why it is important in the search for quality to pay attention to products

other than code, it suffices to consider the results of numerous studies, some already
decades old [10], showing the steep progression of the cost of correcting an error the
later it is identified in the lifecycle.

2.6 Deficiencies

In trying to ascertain the reliability of a software product or process we must often —
like a detective or a fire prevention engineer — adopt a negative mindset and look for

4 B. Meyer

sources of violation of reliability properties. The accepted terminology here
distinguishes three levels:

• A failure is a malfunction of the software. Note that this term does not directly
apply to products other than executable code.

• A fault is a departure of the software product from the properties it should have
satisfied. A failure always comes from a fault, although not necessarily a fault in
the code: it could be in the specification, in the documentation, or in a nonsoftware
product such as the hardware on which the system runs.

• An error is a wrong human decision made during the construction of the system.
“Wrong” is a subjective term, but for this discussion it’s clear what it means: a
decision is wrong if it can lead to a fault (which can in turn cause failures).

In a discussion limited to software reliability, all faults and hence all failures result
from errors, since software is an intellectual product not subject to the slings and
arrows of the physical world.

The more familiar term for “error” is bug. The upper crust of the software
engineering literature shuns it for its animist connotations. “Error” has the benefit of
admitting that our mistakes don’t creep into our software: we insert them ourselves. In
practice, as may be expected, everyone says “bug”.

2.7 Verification and Validation

Even with subjectivity removed from the definition of “error”, definitions for the
other two levels above remains relative: what constitutes a “malfunction” (for the
definition of failures) or a “departure” from desirable properties (for faults) can only
be assessed with respect to some description of the expected characteristics.

While such reference descriptions exist for some categories of software product —
an element of code is relative to a design, the design is relative to a specification, the
specification is relative to an analysis of the requirements — the chain always stops
somewhere; for example one cannot in the end certify that the requirements have no
fault, as this would mean assessing them against some higher-level description, and
would only push the problem further to assessing the value of the description itself.
Turtles all the way up.

Even in the absence of another reference (another turtle) against which to assess a
particular product, we can often obtain some evaluation of its quality by performing
internal checks. For example:

• A program that does not initialize one of its variables along a particular path is
suspicious, independently of any of its properties vis-à-vis the fulfillment of its
specification.

• A poorly written user manual may not explicitly violate the prescriptions of another
project document, but is problematic all the same.

This observation leads to distinguishing two complementary kinds of reliability
assessment, verification and validation, often combined in the abbreviation “V&V”:

• Verification is internal assessment of the consistency of the product, considered
just by itself. The last two examples illustrated properties that are subject to
verification: for code; for documentation. Type checking is another example.

 Dependable Software 5

• Validation is relative assessment of a product vis-à-vis another that defines some
of the properties that it should satisfy: code against design, design against
specification, specification against requirements, documentation against standards,
observed practices against company rules, delivery dates against project milestones,
observed defect rates against defined goals, test suites against coverage metrics.

A popular version of this distinction [10] is that verification is about ascertaining that
the product is “doing things right” and validation that it is “doing the right thing”. It
only applies to code, however, since a specification, a project plan or a test plan do
not “do” anything.

3 Classifying Approaches

One of the reasons for the diversity of approaches to software quality is the
multiplicity of problems they address. The following table shows a list of criteria,
essentially orthogonal, for classifying them.

Criteria for classifying approaches to software reliability

A priori (build) A posteriori (assess and correct)

Process Product

Manual Tool-supported

Technology-neutral Technology-specific

Product- and phase-neutral vs Product- or phase-specific

Static (uses software text) Dynamic (requires execution)

Informal Mathematical

Complete (guarantee) Partial (some progress)

Free Commercial

The first distinction is cultural almost as much as it is technical. With a priori
techniques the emphasis is methodological: telling development teams to apply certain
rules to produce a better product. With a posteriori techniques, the goal is to examine a
proposed software product or process element for possible deficiencies, with the aim of
correcting them. While it is natural to state that the two are complementary rather than
contradictory — a defense often used by proponents of “a posteriori” approaches such
as testing when criticized for accepting software technology as it is rather than helping
to improve it — they correspond to different views of the software world, one hopeful
of prevention and the other willing to settle down for cure.

The second distinction corresponds to the two dimensions of software engineering
cited above: are we working on the products, or on the processes leading to them?

Some approaches are of a methodological nature and just require applying some
practices; we may call them manual, in contrast with techniques that are tool-
supported and hence at least partially automated.

6 B. Meyer

An idea can be applicable regardless of technology choices; for example
processbased techniques such as CMMI, discussed below, explicitly stay away from
prescribing specific technologies. At the other extreme, certain techniques may be
applicable only if you accept a certain programming language, specification method,
tool or other technology choice. We may talk of technology-neutral and technology-
specific approaches; this is more a spectrum of possibilities than a black-and-white
distinction, since many approaches assume a certain class of technologies—such as
object-oriented development — encompassing many variants.

Some techniques apply to a specific product or phase of the lifecycle: specification
(a specification language), implementation (a static analyzer of code)… They are
product-specific, or phase-specific. Others, such as configuration management tools,
apply to many or all product kinds; they are product-neutral. “Product” is used here to
denote one of the types of outcome of the software construction process.

For techniques directed at program quality, an important division exists between
dynamic approaches such as testing, which rely on executing the program, and purely
static ones, such as static analysis and program proofs, which only need to analyze the
program text. Here too some nuances exist: a simulation technique requires execution
and hence can be classified as dynamic even though the execution doesn’t use the
normal run-time environment; model-checking is classified as static even though in
some respect it is close to testing.

Some methods are based on mathematical techniques; this is obviously the case
with program proofs and formal specification in general. Many are more informal.

A technique intended to assess quality properties can give you a complete
guarantee that they are satisfied, or—more commonly—some partial reassurance to
this effect.

The final distinction is economic: between techniques in the public domain —
usable for free, in the ordinary sense of the term — and commercial ones.

4 Process-Based Approaches

We start with the least technical approaches, emphasizing management procedures
and organizational techniques.

4.1 Lifecycle Models

One of the defining acts of software engineering was the recognition of the separate
activities involved, in the form of “lifecycle models” that prescribe a certain order of
tasks (see the figure on the adjacent page). The initial model is the so-called
“waterfall” [11], still used as a reference for discussions of the software process
although no longer recommended for literal application. Variants include:

• The “V model” which retains the sequential approach of the waterfall but divides
the process into two parts, the branches of the “V”; activities along the first branch
are for development, those in the second branch are for verification and validation,
each applied to the results of one of the steps along the first branch.

 Dependable Software 7

Waterfall V-shaped

Spiral (from [11])

Lifecycle models, illustrated

Cluster

8 B. Meyer

• The “Spiral model” [11] which focuses on reducing risk in project management, in
particular the risk caused by the all-or-nothing attitude of the Waterfall approach.
The spiral model suggests isolating subsets of the system’s functionality that are
small enough to be implemented quickly, and when they have been implemented
taking advantage of the experience to proceed to other parts of the system. The idea
is connected with the notion of rapid prototyping.

• The “Rational Unified Process”, distinguishing four phases, inception, elaboration,
construction and transition, with a spiral-like iterative style of development and a
set of recommended “best practices” such as configuration management.

• The “Cluster model” [51] [57], emphasizing a different form of incrementality—
building a system by layers, from the most fundamental to the most user-oriented
— and a seamless process treating successive activities, from analysis to design,
implementation and maintenance, as a continuum. This model also introduces, as
part of the individual lifecycle of every cluster, a generalization step to prepare for
future reuse of some of the developed elements.

The figure shows pictorial representations of some of these models.
Whatever their effect on how people actually develop software, the contribution of

lifecycle models has been a classification and definition of the activities involved in
software development, even when these activities are not executed as phases in the
precise order mandated by, for example, the waterfall model. Software quality
benefits in particular from:

• A distinction between requirements, the recording of user requirements, and
specification, their translation into a systematic form suitable for software
development, where rigor and precision are essential.

• Recognition of the importance of Verification and Validation tasks.
• Recognition of post-delivery activities such as maintenance, although they still do

not occupy a visible enough place. Many software troubles result from evolutions
posterior to the initial release.

• In the Cluster model, the presence, for each cluster, of the generalization task to
prepare for reuse.

• Also in the Cluster model, the use of a seamless and reversible approach which
unifies the methods, tools, techniques and notations that help throughout the
software process, rather than exaggerate them. (The textbook counter-example here
is the use of UML for analysis and design [56].)

• The growing emphasis on incrementality in the development process, even if this
concept is understood differently in, for example, the spiral, cluster and RUP
models.

4.2 Organizational Standards

Another process-related set of developments has had a major effect, largely
beneficial, on some segments of the industry. In the early 1990s the US Department
of Defense, concerned with the need to assess its suppliers’ software capabilities and
to establish consistent standards, entrusted the Software Engineering Institute with the
task of developing a “Capability Maturity Model”, whose current incarnation, CMMI
[74] (the I is for Integration) provides a collection of standards applicable to various

 Dependable Software 9

disciplines, rather than a single model for software. Largely independently, the
International Standard Organization has produced a set of software-oriented variants
of its 9000-series quality standards, which share a number of properties with CMMI.
The present discussion is based on CMMI.

Beyond its original target community, CMM and CMMI have been the catalyst for
one of the major phenomena of the IT industry starting in the mid-nineties: the
development of offshore software production, especially in India [63]. CMMI
qualification provides suppliers of outsourcing development services with quality
standards and the associated possibility of independent certification, without which
customers would not be have known how to trust distant, initially unknown contractors.

CMMI is (in the earlier classification) product-neutral, phase-neutral and technology-
neutral. In its application to software it is intended only to determine how well an
organization controls its development process by defining and documenting it,
recording and assessing how it is applied in practice, and working to improve it. It
doesn’t prescribe what the process should be, only how much you are on top of it. You
could presumably be developing in PL/I on IBM 370 and get CMMI qualification.

CMMI assesses both the capability level of individual “process areas” in (such as
software) in an organization, and the maturity of an organization as a whole. It
distinguishes five levels of increasing maturity:

• Performed: projects happen and results get produced, but there is little control and
no reproducibility; the process is essentially reactive.

• Managed: processes are clearly defined for individual projects, but not for the
organization as a whole. They remain largely reactive.

• Defined: proactive process defined for the organization.
• Quantitatively managed: the control mechanisms do not limit themselves to

qualitative techniques, but add well-defined numerical measurements.
• Optimizing: the mechanisms for controlling processes are sufficiently well

established that the focus can shift on improving the organization and its processes.

Through their emphasis on the process and its repeatability, CMMI and ISO standards
help improve the quality of software development. One may expect such improve-
ments of the process to have a positive effect on the resulting products as well; but
they are only part of the solution. After a software error—one module of the software
was expecting measures in the metric system, another was providing them in English
units — was identified as the cause of the failure of the NASA Mars Orbiter Vehicle
mission [82], an engineer from the project noted that the organization was heavily
into ISO and other process standards. Process models and process-focused practices
are not a substitute for using the best technological solutions. Tailored versions of
CMMI that would not shy away from integrating specific technologies such as object
technology could be extremely useful. In the meantime, the technology-neutral
requirements of CMMI can be applied by organizations to get a better hold on their
software processes.

4.3 Extreme Programming

The Extreme Programming movement [6] is a reaction against precisely the kinds of
lifecycle models and process-oriented approaches just reviewed. XP (as it is also
called) emphasizes instead the primacy of code. Some of the principal ideas include:

10 B. Meyer

• Short release cycles to get frequent feedback.
• Pair programming (two people at a keyboard and terminal).
• Test-driven development.
• A general distrust of specification and design: testing is the preferred guide of

development.
• Emphasis on programmers’ welfare.

Some of these practices are clearly beneficial to quality but were developed prior to
XP, in particular short release cycles (Microsoft’s “daily build” as described in 1995
by Cusumano and Shelby [19], see also [54]) and the use of frequent testing as part of
development (see e.g. “quality first” [55]). Those really specific to XP are of limited
interest (while sometimes a good practice, pair programming cannot be imposed
indiscriminately, both because it doesn’t work for some people and because those
who find it useful may not find it useful all the time) or, in the case of tests viewed as
a replacement for specifications, downright detrimental. See [75] and [64] for
critiques of the approach.

4.4 Code Inspections

A long-established quality practice is the inspection, also known as review: a session
designed to examine a certain software element with the aim of finding flaws. The
most common form is code inspection, but the process can be applied to any kind of
software engineering product. Rules include:

• Small meeting: at most 8 people or so, including the developer of the element
under review.

• The elements under review and any supporting documents must be circulated in
advance; the participants should have read them and identified possible criticisms
before the meeting. The allotted time should be bounded, for example 2 or 3 hours.

• The meeting must have a moderator to guide discussions and a secretary to record
results.

• The moderator should not be the developer’s manager. The intent is to evaluate
products, not people.

• The sole goal is to identify deficiencies and confirm that they are indeed
deficiencies; correction is not part of the process and should not be attempted
during the meeting.

Code inspections can help avoid errors, but to assess their usefulness one must compare
the costs with those of running automated tools that can catch some of the same problems
without human intervention; static analyzers, discussed below, are an example.

Some companies have institutionalized the rule that no developer may check in
code (integrate it into the repository for a current or future product) without approval
by one other developer, a limited form of code inspection that has a clearly beneficial
effect by forcing the original developer to convince at least one other team member of
the suitability of the contribution.

4.5 Open-Source Processes

A generalization of the idea of code inspection is the frequent assertion, by members
of the open-source community, that the open-source process dramatically improves

 Dependable Software 11

quality by enabling many people to take a critical look at the software text; some have
gone so far as to state that “given enough eyes, all bugs are shallow” [73].

As with many of the other techniques reviewed, we may see in this idea a
beneficial contribution, but not a panacea. John Viega gives [78] the example of a
widely used security program in which “in the past two years, several very subtle
buffer overflow problems have been found… Almost all had been in the code for
years, even though it had been examined many times by both hackers and security
auditors One tool was able to identify one of the problems as potentially exploitable,
but researchers examined the code thoroughly and came to the conclusion that there
was no way the problem could be exploited.” (The last observation is anecdotal
evidence for the above observation that tools such as static analyzers are potentially
superior to human analysis.)

While is no evidence that open-source software as a whole is better (or worse) than
commercial software, and no absolute rule should be expected if only because of the
wide variety of products and processes on both sides, it is clear that more eyes
potentially see more bugs.

4.6 Requirements Engineering

In areas such as embedded systems, many serious software failures have been traced
[45] to inadequate requirements rather than to deficiencies introduced in later phases.
Systematic techniques for requirements analysis are available [76] [40] to improve
this critical task of collecting customer wishes and translating them into a form that
can serve as a basis for a software project.

4.7 Design Patterns

A process-related advance that has had a strong beneficial effect on software
development is the emergence of design patterns [32]. A pattern is an architectural
scheme that has been recognized as fruitful through frequent use in applications, and
for which a precise description exists according to a standard format. Patterns provide
a common vocabulary to developers, hence simplifying design discussions, and
enable them to benefit from the collective wisdom of their predecessors.

A (minority) view of patterns [62] [65] understands them as a first step towards the
technique discussed next, reusable components. Patterns, in this interpretation, suffer
from the limitation that each developer must manually insert the corresponding
solutions into the architecture of every applicable system. If instead it is possible to
turn the pattern into a reusable component, developers can directly reuse the
corresponding solution through an API (Abstract Program Interface). The observation
here is that it is better to reuse than to redo. Investigations [65] suggest that with the
help of appropriate programming language constructs up to two thirds of common
design patterns can be thus componentized.

4.8 Trusted Components

Quality improvement techniques, whether they emphasize the process or the product,
are only as good as their actual application by programmers. The magnitude of the
necessary education effort is enough to temper any hope of major short-term

12 B. Meyer

improvements, especially given that many programmers have not had the benefit of a
formal computer science education to start with.

Another practical impediment to continued quality improvement comes from
market forces. The short-term commercial interest of a company is generally to
release software that is “good enough” [83]: software that has barely passed the
threshold under which the market would reject it because of bad quality; not excellent
software. The extra time and expense to go from the first to the second stage may
mean, for the company, losing the market to a less scrupulous competitor, and
possibly going out of business. For the industry as a whole, software quality has
indeed improved regularly over time but tends to peak below the optimum.

An approach that can overcome these obstacles is increased reliance on reusable
components, providing pre-built solutions to problems that arise in many different
applications, either regardless of the technical domain (general-purpose component
libraries) or in particular fields (specialized libraries). Components have already
changed the nature of software development by providing conveniently packaged
implementations, accessible through abstract interfaces, of common aspects such as
graphical user interfaces, database manipulation, basic numerical algorithms,
fundamental data structures and others, thereby elevating the level at which
programmers write their applications. When the components themselves are of good
quality, such reuse has highly beneficial effects since developers can direct their
efforts to the quality of the application-specific part of their programs.

Examining more closely the relationship of components to quality actually highlights
two separate effects: it is comforting to know that the quality of a system will benefit
from the quality of its components; but we must note that reuse magnifies the bad as well
as the good: imperfections can be even more damaging in components than in “one-ofa-
kind” developments, since they affect every application that relies on a component.

The notion of trusted component [58] [61] follows from this analysis that one of
the most pressing and promising tasks for improving software quality is the industrial
production of reusable components equipped with a guarantee of quality. Producing
such trusted components may involve most of the techniques discussed elsewhere in
this article. For some of the more difficult ones, such as program proving, application
to components may be the best way to justify the cost and effort and recoup the
investment thanks to the scaling effect of component reuse: once a component has
reached the level of quality at which it can really be trusted, it will benefit every
application that relies on it.

5 Tools and Environments

Transitioning now to product-oriented solutions, we examine some of the progress in
tools available to software developers — to the extent that it is relevant for software
quality.

5.1 Configuration Management

Configuration management is a both practice (for the software developer) and a
service (from the supporting tools), so it could in principle be classified under

 Dependable Software 13

“process” as well as under “product”. It belongs more properly to the latter category
since it’s tools that make configuration management realistic; applied as a pure
organizational practice without good tool support, it quickly becomes tedious and
ceases being applied.

Configuration management may be defined as the systematic collecting and
registering of project elements, including in particular the ability to:

• Register a new version of any project element.
• Retrieve any previously registered version of any project element
• Register dependencies, both between project elements and between registered

versions of project elements (e.g. A relies on B, and version 10 of A requires
version 7, 8 or 9 of B).

• Construct composite products from their constituents — for example, build an
executable version of a program from its modules — or reconstruct earlier
versions, in accordance with registered dependencies.

A significant number of software disasters on record followed from configuration
management errors, typically due to reintroducing an obsolete version of a module
when compiling a new release of a program, or using an obsolete version of some
data file. Excuses no longer exist for such errors, as acceptable configuration
management tools, both commercial and open-source, are widely available. These
tools, while still far from what one could hope for, have made configuration
management one of the most important practices of modern software development.

Source code is not the only beneficiary of configuration management. Any product
that evolves, has dependencies on other elements and may need restoring to an earlier
state should be considered for inclusion in the configuration management repository.
Besides code this may include project plans, specification and design documents, user
manuals, training documents such as PowerPoint slides, test data files.

5.2 Metrics and Models

If we believe Lord Kelvin’s (approximate) maxim that all serious study is
quantitative, then software and software development should be susceptible to
measurement, tempered of course by Einstein’s equally famous quote that not
everything measurable is worth measuring. A few software properties, process or
product, are at the same time measurable, worth measuring and relevant to software
reliability.

On the process side, cost in its various dimensions is a prime concern. While it is
important to record costs, if only for CMMI-style traceability, what most project
managers want at a particular time is a model to estimate the cost of a future project or
of the remainder of a current project. Such models do exist and can be useful, at least
if the development process is stable and the project is comparable to previous ones:
then by estimating a number of project parameters and relying on historical data for
comparison one can predict costs—essentially, person-months—within reasonable
average accuracy. A well-known cost model, for which free and commercial tools are
available, is COCOMO II [12].

During the development of a system, faults will be reported. In principle they
shouldn’t be comparable to the faults of a material product, since software is an

14 B. Meyer

intellectual product and doesn’t erode, wear out or collapse under attack from the
weather. In practice, however, statistical analysis shows that faults in large projects
can follow patterns that resemble those of hardware systems and are susceptible to
similar statistical prediction techniques. That such patterns can exist is in fact
consistent with intuition: if the tests on the last five builds of a product under
development have each uncovered one hundred new bugs each, it is unlikely that the
next iteration will have zero bugs, or a thousand. Software reliability engineering
[69][46] elaborates on these ideas to develop models for assessing and predicting
failures, faults and errors. As with cost models, a requirement for meaningful
predictions is the ability to rely on historical data for calibration. Reliability models
are not widely known, but could help software projects understand, predict and
manage anomalies better.

More generally, numerous metrics have been proposed to provide quantitative
assessments of software properties. Measures of complexity, for example, include:
“source lines of code” (SLOC), the most primitive, but useful all the same; “function
points” [25], which count the number of elementary mechanisms implemented by the
software; measures of the complexity of the control graph, such as “cyclomatic
complexity” [48][49]; and measures specifically adapted to object-oriented software
[35][59]. The EiffelStudio environment [30] makes it possible to compute many metrics
applied to a project under development, including measures regarding the use of
contracts (section 8), and to compare them with values on record. While not necessarily
meaningful in isolation, such measures elements are a useful control tool for the
manager; they are in line with the CMMI’s insistence that an organization can only
reach the higher levels of process maturity (4 and 5) by moving from the qualitative to
the quantitative, and should be part of the data collected for such an effort.

5.3 Static Analyzers

Static analyzers are another important category of tools, increasingly integrated in
development environments, whose purpose is to examine the software text for
deficiencies. They lie somewhere between type checkers (themselves integrated in
compilers) and full program provers, and will be studied below (7.2) after the
discussion of proofs.

5.4 Integrated Development Environments

Beyond individual tools the evolution of software development has led to the
widespread of integrated tool suites known as IDEs for Integrated (originally:
Interactive) Development Environments. Among the best known are Microsoft’s
Visual Studio [66] and IBM’s Eclipse [27]; EiffelStudio [30] is another example.
These environments, equipped with increasingly sophisticated graphical user
interfaces, provide under a single roof a whole battery of mechanisms to write
software (editors), manage its evolution (configuration management), compile it
(compilers, interpreters, optimizers), examine it effectively (browsers), run it and
elucidate the sources of faults (debuggers, testers), analyze it for possible
inconsistencies and errors (static analysis), generate code from design and analysis
diagrams or the other way around (diagramming, “Computer-Aided Software

 Dependable Software 15

Engineering” or CASE, reverse engineering), change architecture in a safe way
through tool-controlled transformations (refactoring), perform measurements as noted
above (metric tools), and other tasks.

This is one of the most active areas in software engineering; programmers, for
whom IDEs are the basic daily tools, are directly interested in their quality, so that
open-source projects such as Eclipse and EiffelStudio benefit from active community
participation. The effect of these advanced frameworks on software reliability, while
diffuse, is undeniable, as their increasing cleverness supports quality in several ways:
finding bugs through static and dynamic techniques; avoiding new bugs through
mechanisms such as refactoring; generating some of the code without manual
intervention; and, more generally, providing a level of comfort that frees
programmers from distractions and lets them apply their best skills to the hardest
issues of software construction.

6 Programming Languages

The evolution of programming languages plays its part in the search for more reliable
software. High-level languages contribute both positively, by providing higher levels
of expression through advanced constructs freeing the programmer (in the same spirit
as modern IDEs) from mundane, repetitive or irrelevant tasks, and negatively, by
ruling out certain potentially unsafe constructs and, as a result, eradicate entire classes
of bugs at the source.

The realization that programming language constructs could exert a major
influence on software quality both through what they offer and what they forbid dates
back to structured programming [22] [20] which, in the early seventies, led to
rejecting the goto as a control structure in favor of more expressive constructs —
sequence, conditional, loop, recursion. The next major step was object-oriented
programming, introducing a full new set of abstractions, in particular the notion of
class, providing decomposition based on object types rather than individual
operations, and techniques of inheritance and genericity.

In both cases the benefit comes largely from being able to reason less operationally
about software. A software text represents many possible executions, so many in fact
that it is hard to understand the program — and hence to get it right — by thinking in
terms of what happens at execution [22]. Both structured and object-oriented
techniques make it possible to limit such operational thinking and instead understand
the abstract properties of future run-time behaviors by applying the usual rules of
logical reasoning.

In drawing the list of programming languages’ most important contributions to
quality, we must indeed put at the top all the mechanisms that have to do with
structure. With ever larger programs addressing ever more ambitious goals, the
production and maintenance of reliable software requires safe and powerful modular
decomposition facilities. Particularly noteworthy are:

• As pointed out, the class mechanism, which provides a general basis for stable
modules with a clear role in the overall architecture.

• Techniques for information hiding, which protect modules against details of other
modules, and permit independent evolution of the various parts of a system.

16 B. Meyer

• Inheritance, allowing the classification and systematic organization of classes into
structured collections, especially with multiple inheritance.

• Genericity, allowing the construction of type-parameterized modules.

Another benefit of modern languages is static typing which requires programmers to
declare types for all the variables and other entities in their programs, then takes
advantage of this information to detect possible inconsistencies in their use and reject
programs, at compilation time, until all types fit. Static typing is particularly
interesting in object-oriented languages since inheritance supports a flexible type
system in which types can be compatible even if they are not identical, as long as one
describes a specialization of the other.

Another key advance is garbage collection, which frees programmers from having
to worry about the details of memory management and removes an entire class of
errors —such as attempts to access a previously freed memory cell—which can
otherwise be particularly hard to detect and to correct, in particular because the
resulting failures are often intermittent rather than deterministic. Strictly speaking,
garbage collection is a property of the language implementation, but it’s the language
definition that makes it possible, as with modern object-oriented languages, or not, as
in languages such as C that permit arbitrary pointer arithmetic and type conversions.

Exception handling, as present in modern programming languages, helps improve
software robustness by allowing developers to include recovery code for run-time faults
that would otherwise be fatal, such as arithmetic overflow or running out of memory.

A mechanism that is equally far-reaching in its abstraction benefits is the
“closure”, “delegate” or “agent” [62]. Such constructs wrap operations in objects that
can then be passed around anonymously across modules of a system, making it
possible to treat routines as first-class values. They drastically simplify certain kinds
of software such as numerical applications, GUI programming and other event-driven
(or “publishsubscribe”) schemes.

The application of programming language techniques to improving software
quality is limited by the continued reliance of significant parts of the software
industry on older languages. In particular:

• Operating systems and low-level system-related tend to be written in C, which
retains its attractions for such applications in spite of widely known deficiencies,
such as the possibility of buffer overflow.

• The embedded and mission-critical community sometimes prefers to use lowlevel
languages, including assembly, for fear of the risks potentially introduced by
compilers and other supporting tools.

The “Verifying Compiler Grand Challenge” [38] [77] is an attempt to support the
development of tools that—even with such programming languages—will guarantee,
during the process of compiling and thanks to techniques described in the following
sections, the reliability of the programs they process.

7 Static Verification Techniques

Static techniques work solely from the analysis of the software text: unlike dynamic
techniques such as tests they do not require any execution to verify software or report
errors.

 Dependable Software 17

7.1 Proofs

Perhaps the principal difference between mathematics and engineering is that only
mathematics allows providing absolute guarantees. Given the proper axioms, I can
assert with total confidence that two plus two equals four. But if I want to drive to
Berne the best assurance I can get that my car will not break down is a probability. I
know it’s higher than if I just drive it to the suburbs, and lower than if my goal were
Prague, Alma-Ata, Peking or Bombay; I can make it higher by buying a new, better
car; but it will never be one. Even with the highest attention to quality and
maintenance, physical products will occasionally fail.

Under appropriate assumptions, a program is like a mathematical proposition rather
than a material device: any general property of the program—stating that all executions
of the program will achieve a certain goal, or that at least one possible execution will—
is either true or false, and whether it is true or not is entirely determined by the text of
the program, at least if we assume correct functioning of the hardware and of other
software elements needed to carry out program execution (compiler, run-time system,
operating system). Another way of expressing this observation is that a programming
language is similar to a mathematical theory, in which certain propositions are true and
others false, as determined by the axioms and inference rules.

In principle, then, it should be possible to prove or disprove properties of
programs, in particular correctness, robustness and security properties, using the same
rigorous techniques as in the proofs of any mathematical theorem. This assumes
overcoming a number of technical difficulties:

• Programming languages are generally not defined as mathematical theories but
through natural-language documents possessing a varying degree of precision. To
make formal reasoning possible requires describing them in mathematical form;
this is known as providing a mathematical semantics (or “formal semantics”) to a
programming language and is a huge task, especially when it comes to modeling
advanced mechanisms such as exception handling and concurrency, as well as the
details of computer arithmetic since the computer’s view of integers and reals
strays from their standard mathematical properties.

• The theorems to be proved involve specific properties of programs, such as the
value of a certain variable not exceeding a certain threshold at a certain state of the
execution. Any proof process requires the ability to express such properties; this
means extending the programming language with boolean-valued expressions,
called assertions. Common languages other than Eiffel do not include an assertion
mechanism; this means that programmers will have to resort to special extensions
such as JML for Java [43] (see also Spec#, an extension of the C# language [5])
and annotate programs with the appropriate assertions. Some tools such as Daikon
help in this process by extracting tentative assertions from the program itself [31].

• In practice the software’s actual operation depends, as noted, on those of a
supporting hardware and software environment; proofs of the software must be
complemented by guarantees about that environment.

• Not all properties lend themselves to easy enunciation. In particular,
“nonfunctional” properties such as performance (response time, bandwidth,
memory occupation) are hard to model.

18 B. Meyer

• More generally, a proof is only as useful as the program properties being proven.
What is being proved is not the perfection of the program in any absolute sense, nor
even its quality, but only that it satisfies the assertions stated. It is never possible to
know that all properties of interest have been included. This is not just a theoretical
problem: security attacks often take advantage of auxiliary aspects of the program’s
behavior, which its design and verification did not take into account.

• Even if the language, the context and the properties of interest are fully specified
semantically and the properties relevant, the proof process remains a challenge. It
cannot in any case be performed manually, since even the proof of a few properties
of a moderately sized programs quickly reaches into the thousands of proof steps.
Fully automated proofs are, on the other hand, generally not possible. Despite
considerable advances in computer-assisted proof technology (for programs as well
as other applications) significant proofs still require considerable user interaction
and expert knowledge.

Of course the effort may well be worthwhile, especially in two cases: life-critical
systems in transportation and defense to which, indeed, much proof work has been
directed; and reusable components, for which the effort is justified—as explained in
the discussion of Trusted Components above — by the scaling-up effect of reuse.

Here are some of the basic ideas about how proofs work. A typical program
element to prove would be, in Eiffel notation.

decrement
-- Decrease counter by one.

require
counter > 0

do
counter := counter – 1

ensure
counter = old counter – 1
counter >= 0

end

This has a program body, the do clause, and two assertions, a “precondition”
introduced by require and a “postcondition” introduced by ensure and consisting of
two subclauses implicitly connected by an and. Assertions are essentially Boolean
expressions of the language with the possibility, in a postcondition, of using the old
notation to refer to values on entry: here the first subclause of the postcondition states
that the value of counter will have been decreased by one after execution of the do
clause.

Program proofs deal with such annotated programs, also called contracted
programs (see section 8 below). The annotations remind us that proofs and other
software quality assurance technique can never give us absolute guarantees of quality:
we can never say that a program is “correct”, only assess it — whether through
rigorous techniques like proofs or using more partial ones such as those reviewed
next—relatively to explicitly stated properties, expressed here through assertions
integrated in the program text.

From a programmer’s viewpoint the above extract is simply the text of a routine to
be executed, with some extra annotations, the precondition and postcondition,

 Dependable Software 19

expressing properties to be satisfied before and after. But for proof purposes this text
is a theorem, asserting that whenever the body (the do clause with its assignment
instruction) is executed with the precondition satisfied it will terminate in such a way
that the postcondition is satisfied.

This theorem appears to hold trivially but — even before addressing the concern
noted above that computer integers are not quite the same as mathematical integers —
proving it requires the proper mathematical framework. The basic rule of axiomatic
semantics (or “Hoare semantics” [37]) covering such cases is the assignment axiom,
which for any variable x and expression e states that the following holds

require Q (e) do x := e ensure Q (x)

whereQ (x) is an assertion which may depend on x ; thenQ (e) is the same assertion
with every mention of x replaced by e, except for old x which must be replaced by x.

This very general axiom captures the properties of assignment (in the absence of
side effect in the evaluation of e); its remarkable feature is that it is applicable even if
the source expression e contains occurrences of the target variable x, as in the
example (where x is counter).

We may indeed apply the axiom to prove the example’s correctness. Let Q1 (x) be
x = old x – 1, corresponding to the first subclause of the postcondition, and Q2 (x) be
x >= 0. Applying the rule to Q1 (counter), we replace counter by counter + 1 and
old counter by counter; this gives counter – 1 = counter – 1, which trivially holds.
Applying now the same transformations to Q2 (counter), we get counter – 1 >= 0,
which is equivalent to the precondition counter > 0. This proves the correctness of
our little assertion-equipped example.

From there the theory moves to more complex constructions. An inference rule
states that if you have proved

require P do Instruction_1 ensure Q

and

require Q do Instruction_2 ensure R

(note the postcondition of the first part matching the precondition of the second part)
you are entitled to deduce

require P do Instruction_1 ; Instruction_2 ensure Rt

and so on for more instructions. A rule in the same style enables you to deduce
properties of if c then I1 else I2 end from properties of I1 and I2. More advanced is
the case of loops: to prove the properties of

from
Initialization

until
Exit

loop
Body

end

20 B. Meyer

you need, in this general approach, to introduce a new assertion called the loop
invariant and an integer expression called the loop variant. The invariant is a
weakened form of the desired postcondition, which serves as approximation of the
final goal; for example if the goal is to compute the maximum of a set of values, the
invariant will be “Result is the maximum of the values processed so far”. The
advantage of the invariant is that it is possible both to:

• Ensure the invariant through initialization (the from clause in the above notation);
in the example the invariant will be trivially true if we start with just one value and
set Result to that value.

• Preserve the invariant through one iteration of the loop body (the loop clause); in
the example it suffices to extend the set of processed values by one element v and
execute if v > Result then Result := v end.

If indeed a loop possesses such an invariant and its execution terminates, then on exit
the invariant will still hold (since it was ensured by the initialization and preserved by
all the loop iterations), together with the Exit condition. The combination of these two
assertions gives the postcondition of the loop. Seen the other way around, if we
started from a desired postcondition and weakened it to get an invariant, we will
obtain a correct program. In the example, if the exit condition states that we have
processed all values of interest, combining this property with the invariant “Result is
the maximum of the values processed so far” tells us that Result is the maximum of
all values.

Such reasoning is only interesting if the loop execution actually terminates; this is
where the loop variant comes in. It is an integer expression which must have a
nonnegative value after the Initialization and decrease, while remaining non-negative,
whenever the Body is executed with the Exit condition not satisfied. The existence of
such an expression is enough to guarantee termination since a non-negative integer
value cannot decrease forever. In the example a variant isN — i where N is the total
number of values being considered for the maximum (the proof assumes a finite set)
and i the number of values processed.

Axioms and inference rules similarly exist for other constructs of programming
languages, becoming, as noted, more intricate as one moves on to more advanced
mechanisms.

For concurrent, reactive and real-time systems, boolean assertions of the kind
illustrated above may not be sufficient; it is often convenient to rely on properties of
temporal logic [47], which given a set of successive observations of a program’s
execution, can express, for a boolean property Q:

• forever Q: from now on, Q will always hold.
• eventually Q: at some point in the future (where “future” includes now), Q will

hold.
• P until Q: Q will hold at some point in the future, and until then P will hold.

Regardless of the kind of programs and properties being targeted, there are two
approaches to producing program proofs. The analytic method takes programs as
they exist, then after equipping them with assertions, either manually or with some
automated aid as noted above, attempts the proof. The constructive method [24] [2]
[68] integrates the proof process in the software construction process, often using

 Dependable Software 21

successive refinements to go from specification to implementation through a sequence
of transformations, each proved to preserve correctness, and integrating more
practical constraints at every step. Proof technology has had some notable successes,
including in industrial systems (and in hardware design), but until recently has
remained beyond the reach of most software projects.

7.2 Static Analysis

If hoping for a proof covering all the correctness, reliability and security properties of
potential interest is often too ambitious, the problem becomes more approachable if
we settle for a subset of these properties — a subset that may be very partial but very
interesting. For example being able to determine that no buffer overflow can ever
arise in a certain program—in other words, to provide a firm guarantee, through
analysis of the program text, that every index used at run time to access an item in an
array or a character in a string will be within the defined bounds—is of great practical
value since this rules out a whole class of security attacks.

Static analysis is the tool-supported analysis of software texts for the purpose of
assessing specific quality properties. Being “static”, it requires no execution and
hence can in principle be applied to software products other than code. Proofs are a
special case, the most far-reaching, but other static analysis techniques are available.

At the other extreme, a well-established form of elementary static analysis is type
checking, which benefits programs written in a statically typed programming
language. Type checking, usually performed by the compiler rather than by a
separate tool, ascertains the type consistency of assignments, routine calls and
expressions, and rejects any program that contains a type incompatibility.

More generally, techniques usually characterized as static analysis lie somewhere
between such basic compiler checks and full program proofs. Violations that can
typically be detected by static analysis include:

• Variables that, on some control paths, would be accessed before being initialized
(in languages such as C that do not guarantee initialization).

• Improper array and string access (buffer overflow).
• Memory properties: attempt to access a freed location, double freeing, memory

leak…
• Pointer management (again in low-level languages such as C): attempts to follow

void or otherwise invalid pointers.
• Concurrency control: deadlocks, data races.
• Miscellaneous: certain cases of arithmetic overflow or underflow, changes to

supposedly constant strings…

Static analysis tools such as PREfix [72] have been regularly applied for several years
to new versions of the Windows code base and have avoided many potential errors.

One of the issues of static analysis is the occurrence of false alarms: inconsistency
reports that, on inspection, do not reveal any actual error. This was the weak point of
older static analyzers, such as the widely known Lint tool which complements the
type checking of C compilers: for a large program they can easily swamp their users
under thousand of messages, most of them spurious, but requiring a manual
walkthrough to sort out the good from the bad. (In the search for errors, of course, the

22 B. Meyer

“good” is what otherwise would be considered the bad: evidence of wrongdoing.)
Progress in static analysis has been successful in considerably reducing the
occurrence of false alarms.

The popularity of static analysis is growing; the current trend is to extend the reach
of static analysis tools ever further towards program proofs. Two examples are:

• Techniques of abstract interpretation [18] with the supporting ASTRÉE tool [9],
which has been used to prove the absence of run-time errors in the primary flight
control software, written in C, for the Airbus A340 fly-by-wire system.

• ESC-Java [21] and, more recently, the Boogie analyzer [4] make program proving
less obtrusive by incrementally extending the kind of diagnostics with which
programmers are familiar, for example type errors, to more advanced checks such
as the impossibility to guarantee that an invariant is preserved.

7.3 Model Checking

The model checking approach to verification [36] [17] [3] is static, like proofs and
static analysis, but provides a natural link to the dynamic techniques (testing) studied
below. The inherent limitation of tests is that they can never be exhaustive; for any
significant system—in fact, even for toy examples—the number of possible cases
skyrockets into the combinatorial stratosphere, where the orders of magnitude invite
lyrical comparisons with the number of particles in the universe.

The useful measure is the number of possible states of a program. The notion of
state was implicit in the earlier discussion of assertions. A state is simply a snapshot
of the program execution, as could be observed, if we stop that execution, by looking
up the contents of the program’s memory, or more realistically by using the debugger
to examine the values of the program’s variables. Indeed it is the combination of all
the variables’ values that determines the state. With every 64-bit integer variable
potentially having 264

 values, it is not surprising that the estimates quickly go galactic.
Model checking attempts exhaustive analysis of program states anyway by

performing predicate abstraction. The idea is to simplify the program by replacing all
expressions by boolean expressions (predicates), with only two possible values, so
that the size of the state space decreases dramatically; it will still be large, but the
power of modern computers, together with smart algorithms, can make its exploration
tractable. Then to determine that a desired property holds — for example, a security
property such as the absence of buffer overflows, or a timing property such as the
absence of deadlock — it suffices to evaluate the corresponding assertion in all of the
abstract states and, if a violation of that assertion (or counter-example) is found, to
check that it also arises in the original program.

For example, predicate abstraction will reduce a conditional instruction if a > b
then... to if p then..., where p is a boolean. This immediately cuts down the number of
cases from 2128 to 2. The drawback is that the resulting program is only a caricature
of the original; it loses the relation of p to other predicates involving a and b. But it
has an interesting property: if the original violates the assertion, then the abstracted
version also does. So the next task is to look for any such violation in the abstracted
version. This may be possible through exhaustive examination of its reduced state
space, and if so is guaranteed to find any violation in the original program, but
even so is not the end of the story, since the reverse proposition does not hold: a

 Dependable Software 23

counter-example in the abstracted program does not necessarily signal a counter-
example in the original. It could result from the artificial merging of several cases, for
example if it occurs on a path — impossible in an execution of the original program
— obtained by selecting both p and q as true where q is the abstraction of b > a + 1.
Then examining the state space of the abstracted program will either:

• Not find any violations, in which case it proves there was none in the original
program.

• Report violations, each of which might be an error in the original or simply a false
alarm generated by the abstraction process.

So the remaining task, if counter-examples have been found, is to ascertain whether
they arise in the original. This involves defining the path predicate that leads to each
counter-example, expressing it in terms of the original program variables (that is to
say, removing the predicate abstraction, giving, in the example, a > b and b > a + 1)
and determining if any combination of values for the program variables can satisfy the
predicate: if such a combination, or variable assignment, exists, then the counter
example is a real one; if not, as in the case given, it is spurious.

This problem of predicate satisfiability is computationally hard; finding efficient
algorithms is one of the central areas of research in model checking.

The focus on counter-examples gives model checking a practical advantage over
traditional proof techniques. Unless a software element was built with verification in
mind (through a “constructive method” as defined above), the first attempt to verify it
will often fail. With proofs, this failure doesn’t tell us the source of the problem—and
could actually signal a limitation of the proof procedure rather than an error in the
program. With model checking, you get a counter-example which directly shows
what’s wrong.

Model checking has captured considerable attention in recent years, first in
hardware design and then in reactive and real-time systems, for which the assertions
of interest are often expressed in temporal logic.

8 Design by Contract

The goal of developing software to support full proofs of correctness properties is, as
noted, desirable but still unrealistic for most projects. Even a short brush with
program proving methods suggests, however, that more rigor can be highly beneficial
to software quality. The techniques of Design by Contract go in this direction and
deliver part of the corresponding benefits without requiring the full formality of
proof-directed development.

The discussion of proofs introduced Eiffel notations such as
• require assertion -- A routine precondition
• ensure assertion -- A routine postcondition

associated with individual routines. They are examples of contract elements which
specify abstract semantic properties of program constructs. Contracts apply in
particular to:

24 B. Meyer

• Individual routines: precondition, stating the condition under which a routine is
applicable; postcondition, stating what condition it will guarantee in return when it
terminates.

• In object-oriented programming, classes: class invariant, stating consistency
conditions that must hold whenever an object is in a stable state. For example, the
invariant for a “paragraph” class in a text processing system may state that the total
length of letters and spaces is equal to the paragraph width. Every routine that can
modify an instance of the class may assume the class invariant on entry (in addition
to its precondition) and must restore it on exit (in addition to ensuring its
postcondition).

• Loops: invariant and (integer) variant as discussed above.
• Individual instructions: “assert” or “check” constructs.

The discipline of Design by Contract [53] [57] [67] gives a central role to these
mechanisms in software development. It views the overall process of building a
system as defining a multitude of relationships between “client” and “supplier”
modules, each specified through a contract in the same manner as relationships
between companies in the commercial world.

The benefits of such a method, if carried systematically, extend throughout the
lifecycle, supporting the goal of seamlessness discussed earlier:

• Contracts can be used to express requirements and specifications in a precise yet
understandable way, preferable to pure “bubbles and arrows” notations, although of
course they can be displayed graphically too.

• The method is also a powerful guide to design and implementation, helping
developers to understand better the precise reason and context for every module
they produce, and as a consequence to get the module right.

• Contracts serve as a documentation mechanism: the “contract view” of a class,
which discards implementation-dependent elements but retains externally relevant
elements and in particular preconditions, postconditions and class invariants, often
provides just the right form of documentation for software elements, especially
reusable components: precise enough thanks to the contracts; abstract enough
thanks to the removal of implementation properties; extracted from the program
text, and hence having a better chance of being up to date (at least one major
software disaster was traced [41] to a software element whose specification had
changed, unbeknownst to the developers who reused it); cheap to produce, since
this form of documentation can be generated by tools from the source text, rather
than written separately; and multi-purpose, since the output can be tuned to any
appropriate format such as HTML. Eiffel environments such as EiffelStudio
produce such views [30], which serve as the basic form of software documentation.

• Contracts are also useful for managers to understand the software at a high level of
abstraction, and as a tool to control maintenance.

• In object-oriented programming, contracts provide a framework for the proper use
of inheritance, by allowing developers to specify the semantic framework within
which routines may be further refined in descendant classes. This is connected with
the preceding comment about management, since a consequence is to allowa
manager to check that refinements to an design are consistent with its original

 Dependable Software 25

intent, which may have been defined by the top designers in the organization and
expressed in the form of contracts.

• Most visibly, contracts are a testing and debugging mechanism. Since an
execution that violates an assertion always signals a bug, turning on contract
monitoring during development provides a remarkable technique for identifying
bugs. This idea is pursued further by some of the tools cited in the discussion of
testing below.

Design by Contract mechanisms are integrated in the design of the Eiffel language
[52] [28] and a key part of the practice of the associated method. Dozens of contract
extensions have been proposed for other programming languages (as well as UML
[80]), including many designs such as JML [43] for Java and the Spec# extension of
C# [5].

9 Testing

Testing [70] [8] is the most widely used form of program verification, and still for
many teams essentially the only one. In academic circles testing has long suffered
from a famous comment [23] that (because of the astronomical number of possible
states) “testing can only show the presence of bugs, but never to show their absence”.
In retrospect it’s hard to find a rational explanation for why this comment ever
detracted anyone from the importance of tests, since it in no way disproves the
usefulness of testing: finding bugs is a very important task of software development.
All it indicates is that we should understand that finding bugs is indeed the sole
purpose of testing, and not delude ourselves that test results directly reflect the level
of quality of a product under development.

9.1 Components of a Test

Successful testing relies on a test plan: a strategy, expressed in a document,
describing choices for the tasks of the testing process. These tasks include:

• Determining which parts to test.
• Finding the appropriate input values to exercise.
• Determining the expected properties of the results (known as oracles). Input values

and the associated oracles together make up test cases, the collection of which
constitutes a test suite.

• Instrumenting the software to run the tests (rather than perform its normal
operation, or in addition to it); this is known as building a test harness, which may
involve test drivers to solicit specific parts to be tested, and stubs to stand for parts
of the system that will not be tested but need a placeholder when other parts call
them.

• Running the software on the selected inputs.
• Comparing the outputs and behavior to the oracles.
• Recording the test data (test cases, oracles, outputs) for future re-testing of the

system, in particular regression testing, the task of verifying that previously
corrected errors have not reappeared.

26 B. Meyer

In addition there will be a phase of correction of the errors uncovered by the test, but
in line with the above observations this is not part of testing in the strict sense.

9.2 Kinds of Test

One may classify tests with respect to their scope (this was used in the earlier
description of the V model of the lifecycle):

• Aunit test covers a module of the software.
• Integration test covers a complete cluster or subsystem.
• Asystem test covers the complete delivery.
• User Acceptance Testing involves the participation of the recipients of the system

(in addition to the developers, responsible for the preceding variants) to determine
whether they are satisfied with the delivery.

• Business Confidence Testing is further testing with the users, in conditions as close
as possible to the real operating environment.

An orthogonal classification addresses what is being tested:

• Functional testing: whether the system fulfills the functions defined in the
specification.

• Performance testing: its use of resources.
• Stress testing: its behavior under extreme conditions, such as heavy user load.

Yet another dimension is intent: testing can be fault-directed to find deficiencies but
also (despite the above warnings), conformance-directed to estimate satisfaction of
desired properties, or acceptance testing for users to decide whether to approve the
product. Regression testing, as noted, re-runs tests corresponding to previously
identified errors; surprisingly to the layman, errors have a knack for surging back into
the software, sometimes repeatedly, long after they were thought corrected.

The testing technique, in particular the construction of test suites, can be:

• Black-box: based on knowledge of the system’s specification only.
• White-box: based on knowledge of the code, which makes it possible for example

to try to exercise as much of that code as possible.

Observing the state of the art in software testing suggests that four issues are critical:
managing the test process; estimating the quality of test suites; devising oracles;
and— the toughest — generating test cases automatically.

9.3 Managing the Testing Process

Test management has been made easier through the appearance of testing
frameworks such as JUnit [42] and Gobo Eiffel Test [7] which record test harnesses
to allow running the tests automatically. This removes a considerable part of the
burden of testing and is important for regression testing.

An example of a framework for regression testing of a compiler, incorporating
every bug ever found since 1991, is EiffelWeasel [29]. Such automated testing require
a solid multi-process infrastructure, to ensure for example that if a test run causes a
crash the testing process doesn’t also crash but records the problem and moves on to
the next test.

 Dependable Software 27

9.4 Estimating Test Quality

Being able to estimate the quality of a test suite is essential in particular to know
when to stop testing. The techniques are different for white-box and black-box
testing.

With white-box testing it is possible to define various levels of coverage, each
assuming the preceding ones: instruction coverage, ensuring that through the
execution of the selected test cases every instruction is executed at least once; branch
coverage, where every boolean condition tests at least once to true and once to false;
condition coverage, where this is also the case for boolean sub-expressions; path
coverage, for which every path has been taken; loop coverage, where each loop body
has been executed at least n times for set n.

Another technique for measuring test suite quality in white-box approaches is
mutation testing [79]. Starting with a program that passes its test suite, this
consists of making modifications — similar, if possible, to the kind of errors that
programmers would make — to the program, and running the tests again. If a
“mutant” program still passes the tests, this indicates (once you have made sure the
mutant is not equivalent to the original, in other words, the changes are meaningful)
that the tests were not sufficient. Mutation testing is an active area of research [71];
one of the challenges is to use appropriate mutation operators, to ensure diversity of
the mutants.

With black-box testing the previous techniques are not available since they
assume access to the source code to set up the test plan. It is possible to define
notions of specification coverage to estimate whether the tests have exercised the
various cases listed in the specification; if contracts are present, this will mean
analyzing the various cases listed in the preconditions. Partition testing [81] is the
general name for techniques (black- or white-box) that split the input domain into
representative subsets, with the implication that any test suite must cover all the
subsets.

9.5 Defining Oracles

An oracle, allowing interpretation of testing results, provides a decision criterion for
accepting or rejecting the result of a test. The preparation of oracles can be as much
work as the rest of the test plan. The best solution that can be recommended is to rely
on contracts: any functional property of a software system (with the possible
exception of some user-interface properties for which human assessment may be
required) can be expressed as a routine postcondition or a class invariant.

These assertions can be included in the test harness, but it is of course best, as
noted in the discussion of Design by Contract, to make them an integral part of the
software to be tested as it is developed; they will then provide the other benefits
cited, such as aid to design and built-in documentation, and will facilitate regression
testing.

9.6 Test Case Generation

The last of the four critical issues listed, test case generation, is probably the toughest;
automatic generation in particular. Even though we can’t ever get close to exhaustive

28 B. Meyer

testing, we want the test process to cover as many cases as possible, and especially to
make sure they are representative of the various potential program executions—as can
be assessed in white-box testing by coverage measures and mutation, but needs to be
sought in any form of testing.

For any realistic program, manually prepared tests will never cover enough cases;
in addition, they are tedious to prepare. Hence the work on automatic test case
generation, which tries to produce as many representative test cases as possible,
typically working from specifications only (black-box). Two tools in this area are
Korat for JML [13] and AutoTest for Eiffel [15] (which draws on the advantage
that—contracts being native to Eiffel—existing Eiffel software is typically equipped
with large numbers of assertions, so that AutoTest can be run on software as is, and
indeed has already uncovered a significant number of problems in existing programs
and libraries).

Manual tests, which benefit from human insight, remain indispensable. The two
kinds are complementary: manual tests are good at depth, automatically generated
tests at breadth. In particular, any run that ever uncovered a bug, whether through
manual or automatic techniques, should become part of the regression test suite.
AutoTest integrates manual tests and regression tests within the automatic test case
generation and execution framework [44].

Automatic test case generation needs a strategy for selecting inputs. Contrary to
intuition, random testing [34], which selects test data randomly from the input
domain, can be an effective strategy if tuned to ensure a reasonably even distribution
over that domain, a policy known as adaptive random testing [14] which has so far
been applied to integers and other simple values (for which a clear notion of distance
exists, so that “even distribution” is immediately meaningful). Recent work [16]
extends the idea to object-oriented programming by defining a notion of object
distance.

10 Conclusion

This survey has taken a broad sweep across many techniques that all have something
to contribute to the aim of software reliability. While it has stayed away from the
gloomy picture of the state of the industry which seems to be de rigueur in discussions
of this topic, and is not justified given the considerable amount of quality-enhancing
ideas, techniques and tools that are available today and the considerable amount of
good work currently in progress, it cannot fail to note as a conclusion that the industry
could do much more to take advantage of all these efforts and results.

There is not enough of a reliability culture in the software world; too often, the
order of concerns is cost, then deadlines, then quality. It is time to reassess priorities.

Acknowledgments

The material in this chapter derives in part from the slides for an ETH industry course
on Testing and Software Quality Assurance prepared with the help of Ilinca Ciupa,
Andreas Leitner and Bernd Schoeller. The discussion of CMMI benefited from the

 Dependable Software 29

work of Peter Kolb in the preparation of another ETH course, “Software Engineering
for Outsourced and Offshored Development”. Bernd Schoeller and Ilinca Ciupa
provided important comments on the draft.

“Design by Contract” is a trademark of Eiffel Software.
The context for this survey was provided by the Hasler Foundation’s grant for our

SCOOP work in the DICS project. We are very grateful for the opportunities that the
grant and the project have provided, in particular for the experience gained in the two
DICS workshops in 2004 and 2005.

References

Note: All URLs listed were active in April 2006.

[1] Algirdas Avizienis, Jean-Claude Laprie and Brian Randell: Fundamental Concepts of
Dependability, in Proceedings of Third Information Survivability Report, October 2000,
pages 7-12, available among other places at citeseer.ist.psu.edu/article/avizienis01
fundamental.html.

[2] Ralph Back: A Calculus of Refinements for Program Derivations, in Acta Informatica,
vol. 25, 1988, pages 593-624, available at crest.cs.abo.fi/publications/public/1988/
ACalculusOfRefinementsForProgramDerivationsA.pdf.

[3] Thomas Ball and Sriram K. Rajamani: Automatically Validating Temporal Safety
Properties of Interfaces, in SPIN 2001, Proceedings of Workshop on Model Checking of
Software, Lecture Notes in Computer Science 2057, Springer-Verlag, May 2001, pages
103-122, available at tinyurl.com/qrm9m.

[4] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, Wolfram Schulte:
Verification of object-oriented programs with invariants, in Journal of Object Technology,
vol. 3, no. 6, Special issue: ECOOP 2003 workshop on Formal Techniques for Java-like
Programs, June 2004, pages 27-56, available at www.jot.fm/issues/issue_2004_06/article2.

[5] Mike Barnett, K. Rustan M. Leino and Wolfram Schulte: The Spec# Programming
System: An Overview, in CASSIS 2004: Construction and Analysis of Safe, Secure
Interoperable Smart devices, Lecture Notes in Computer Science 3362, Springer-Verlag,
2004, available at research.microsoft.com/specsharp/papers/krml136.pdf; see also other
Spec# papers at research.microsoft.com/specsharp/.

[6] Kent Beck and Cynthia Andres: Extreme Programming Explained: Embrace Change. 2nd

edition, Addison-Wesley, 2004.
[7] Éric Bezault: Gobo Eiffel Test, online documentation at www.gobosoft.com/eiffel/gobo/

getest/index.html.
[8] Robert Binder: Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-

Wesley, 1999.
[9] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,

Antoine Miné, David Monniaux and Xavier Rival: ASTRÉE: A Static Analyzer for Large
Safety-Critical Software, in Applied Deductive Verification, Dagstuhl Seminar 3451,
November 2003, available at www.di.ens.fr/~cousot/COUSOTtalks/Dagstuhl-3451-
2003.shtml. See also ASTRÉE page at www.astree.ens.fr.

[10] Barry W. Boehm: Software Engineering Economics, Prentice Hall, 1981.
[11] Barry W. Boehm: A Spiral Model of Software Development and Enhancement, in

Computer (IEEE), vol. 21, no. 5, May 1988, pages 61-72.
[12] Barry W. Boehm et al.: Software Cost Estimation with COCOMO II, Prentice Hall, 2000.

30 B. Meyer

[13] Chandrasekhar Boyapati, Sarfraz Khurshid and Darko Marinov: Korat: Automated
Testing Based on Java Predicates, in Proceedings of the 2002 International Symposium
on Software Testing and Analysis (ISSTA), Rome, July 22--24, 2002, available at
tinyurl.com/qwwd3.

[14] T.Y. Chen, H. Leung and I.K. Mak: Adaptive random testing, in Advances in Science -
ASIAN 2004: Higher-Level Decision Making, 9th Asian Computing Science Conference,
ed. Michael J. Maher, Lecture Notes in Computer Science 3321, Springer-Verlag, 2004,
available at tinyurl.com/lpxn5.

[15] Ilinca Ciupa and Andreas Leitner: Automated Testing Based on Design by Contract, in
Proceedings of Net.ObjectsDays 2005, 6th Annual Conference on Object-Oriented and
Internet-Based Technologies, Concepts and Applications for a Networked World, 2005,
pages 545-557, available at se.ethz.ch/people/ciupa/papers/soqua05.pdf. See also
AutoTest page at se.ethz.ch/research/autotest.

[16] Ilinca Ciupa, Andreas Leitner, Manuel Oriol and BertrandMeyer: Object Distance and its
Application to Adaptive Random testing of Object-Oriented Programs, submitted for
publication, 2006, available at se.ethz.ch/~meyer/publications/testing/object_distance.pdf.

[17] Edmund M. Clarke Jr., Orna Grumberg and Doron A. Peled: Model Checking, MIT
Press, 1999.

[18] Patrick Cousot: Verification by Abstract Interpretation, in International Symposium on
Verification Theory & Practice Honoring Zohar Manna’s 64th Birthday, ed. Nachum
Dershowitz, Lecture Notes in Computer Science 2772, Springer-Verlag, 2003, pages
243-268.

[19] Michael Cusumano and Richard Selby: Microsoft Secrets, The Free Press, 1995.
[20] Ole-Johan Dahl, Edsger W. Dijkstra and C.A.R. Hoare: Structured Programming,

Academic Press, 1971.
[21] David L. Detlefs, K. Rustan, M. Leino, Greg Nelson, and James B. Saxe: Extended

 Static Checking, Research Report 159, Compaq Systems Research Center, December
1998, available at ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/researchreports/
SRC-159.pdf.

[22] Edsger W. Dijkstra: Go To Statement Considered Harmful, in Communications of the ACM,
Vol. 11, No. 3, March 1968, pages 147-148, available at www.acm.org/classics/oct95/.

[23] Edsger W. Dijkstra: Notes on Structured Programming, in [20]; original typescript
available at www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF.

[24] Edsger W. Dijkstra: A Discipline of Programming, Prentice Hall, 1978.
[25] Brian J. Dreger: Function Point Analysis, Prentice Hall, 1989.
[26] Paul Dubois, Mark Howard, Bertrand Meyer, Michael Schweitzer and Emmanuel Stapf:

From Calls to Agents, in Journal of Object-Oriented Programming (JOOP), vol. 12, no.
6, September 1999, available at se.ethz.ch/~meyer/publications/joop/agent.pdf.

[27] Eclipse pages at www.eclipse.org.
[28] ECMA/ISO: Eiffel: Analysis, Design and Programming Language, standard ECMA 367,

accepted in April 2006 as ISO standard, available at www.ecmainternational.org/
publications/standards/Ecma-367.htm.

[29] Eiffel open-source development site at eiffelsoftware.origo.ethz.ch/index.php/
Main_Page.

[30] Eiffel Software: EiffelStudio documentation, online at eiffel.com.
[31] Michael D. Ernst, J. Cockrell,William G. Griswold and David Notkin: Dynamically

Discovering Likely Program Invariants to Support Program Evolution, in IEEE
Transactions on Software Engineering, vol. 27, no. 2, February 2001, pages 1-25,
available at pag.csail.mit.edu/~mernst/pubs/invariants-tse2001.pdf.

 Dependable Software 31

[32] Erich Gamma, Richard Helms, Ralph Johnson and John Vlissides: Design Patterns,
Addison-Wesley, 1994.

[33] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, Software Engineering, 2nd edition,
Prentice Hall, 2003.

[34] Richard Hamlet: Random Testing, in Encyclopedia of Software Engineering, ed.
J. J. Marciniak, 1994, available at tinyurl.com/rcjxg.

[35] Brian Henderson-Sellers: Object-Oriented Metrics: Measures of Complexity, Prentice
Hall, 1995.

[36] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis and Sergio Yovine: Symbolic
Model Checking for Real-Time Systems, in Logic in Computer Science, Proceedings of
7th Symposium in Logics for Computer Science, Santa Cruz, California, 1992, pages
394-406, available at tinyurl.com/lb5fm.

[37] C.A.R. Hoare: An axiomatic basis for computer programming, in Communications of the
ACM, Vol. 12, no. 10, October 1969, pages 576 - 580, available at tinyurl.com/ory2s.

[38] C.A.R. Hoare and Jayadev Misra: Verified Software: Theories, Tools, Experiments,
Vision of a Grand Challenge Project, October 2005, foundation paper for the VSTTE
conference [77], available at vstte.ethz.ch/pdfs/vstte-hoare-misra.pdf.

[39] IFIPWorking Group 10.4 on dependable computing and fault tolerance: home page at
www.dependability.org.

[40] Michael Jackson: Problem Frames: Analysing and Structuring Software Development
Problems, Addison-Wesley, 2001.

[41] Jean-Marc Jézéquel and Bertrand Meyer: Design by Contract: The Lessons of Ariane, in
Computer (IEEE), vol. 30, no. 1, January 1997, pages 129-130, available at
archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html.

[42] JUnit pages at SourceForge: junit.sourceforge.net.
[43] Gary T. Leavens and Yoonsik Cheon: Design by Contract with JML (Draft), at

ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf; see also other JML papers at
www.cs.iastate.edu/~leavens/JML/.

[44] Andreas Leitner, Ilinca Ciupa, Bertrand Meyer and Mark Howard: Reconciling Manual
and Automated Testing: The AutoTest Experience, submitted for publication, 2006.

[45] Nancy G. Leveson: System Safety in Computer-Controlled Automotive Systems, SAE
Congress, March 2000, available at sunnyday.mit.edu/papers/sae.pdf.

[46] Michael R. Lyu (ed.): Handbook of Software Reliability Engineering, IEEE Computer
Society Press and McGraw-Hill, 1995; also available online at
www.cse.cuhk.edu.hk/~lyu/book/reliability/.

[47] Zohar Manna and Amir Pnueli: The temporal logic of reactive and concurrent systems,
Springer-Verlag, 1992.

[48] Thomas J. McCabe: A Complexity Measure, in IEEE Transactions on Software
Engineering, vol. 2, no. 4, December 1976, pages 308-320.

[49] Thomas J. McCabe and Charles W. Butler: Design Complexity Measurement and
Testing, in Communications of the ACM, vol. 32, no. 12, December 1989, pages 1415-
1425.

[50] Bertrand Meyer: Introduction to the Theory of Programming Languages, Prentice Hall,
1990.

[51] Bertrand Meyer, The New Culture of Software Development: Reflections on the Practice
of Object-Oriented Design, in Advances in Object-Oriented Software Engineering, eds.
D. Mandrioli, B. Meyer, Prentice Hall, 1991.

[52] Bertrand Meyer: Eiffel: The Language, 2nd printing, Prentice Hall, 1992.

32 B. Meyer

[53] Bertrand Meyer: Applying “Design by Contract", in Computer (IEEE), 25, 10, October
1992, pages 40-51.

[54] Bertrand Meyer: Object Success, Prentice Hall, 1995.
[55] Bertrand Meyer: Practice to Perfect: The Quality First Model, in Computer (IEEE), May

1997, pages 102-106, available at se.ethz.ch/~meyer/publications/computer/
quality_first.pdf.

[56] Bertrand Meyer: UML: The Positive Spin, in American Programmer, 1997, available at
archive.eiffel.com/doc/manuals/technology/bmarticles/uml/page.html.

[57] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.
[58] Bertrand Meyer, Christine Mingins and Heinz Schmidt: Providing Trusted Components

to the Industry, in Computer (IEEE), vol. 31, no. 5, May 1998, pages 104-105, available
at se.ethz.ch/~meyer/publications/computer/trusted.pdf.

[59] Bertrand Meyer: The Role of Object-Oriented Metrics, in Computer (IEEE), vol. 31, no.
11, November 1998, pages 123-125, available at se.ethz.ch/~meyer/publications/
computer/metrics.

[60] Bertrand Meyer, Every Little Bit Counts: Towards Reliable Software, in Computer
(IEEE_, vol. 32, no. 11, November 1999, pages 131-133, available at se.ethz.ch/~meyer/
publications/computer/reliable.pdf.

[61] Bertrand Meyer: The Grand Challenge of Trusted Components, in ICSE 25 (International
Conference on Software Engineering, Portland, Oregon, May 2003), IEEE Computer
Press, 2003.

[62] Bertrand Meyer: The Power of Abstraction, Reuse and Simplicity: An Object- Oriented
Library for Event-Driven Design, in From Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan Dahl, eds. Olaf Owe, Stein Krogdahl, Tom Lyche,
Lecture Notes in Computer Science 2635, Springer-Verlag, 2004, pages 236-271,
available at se.ethz.ch/~meyer/publications/lncs/events.pdf.

[63] Bertrand Meyer: Offshore Development: The Unspoken Revolution in Software
Engineering, in Computer (IEEE), January 2006, pages 122-124, available at
se.ethz.ch/~meyer/publications/computer/outsourcing.pdf.

[64] Bertrand Meyer: What will remain of Extreme Programming?, in EiffelWorld, Vol. 5, no.
2, February 2006, available at www.eiffel.com/general/monthly_column/2006/
February.html.

[65] Bertrand Meyer and Karine Arnout: Componentization: the Visitor Example, to appear in
Computer (IEEE), 2006, draft available at se.ethz.ch/~meyer/publications/computer/
visitor.pdf.

[66] Microsoft: Visual Studio pages at msdn.microsoft.com/vstudio.
[67] Richard Mitchell and Jim McKim: Design by Contract by Example, Addison-Wesley,

2001.
[68] Carroll Morgan: Programming from Specifications, 2nd edition, Prentice Hall, 1994,

available at web.comlab.ox.ac.uk/oucl/publications/books/PfS/.
[69] John Musa: Software Reliability Engineering, 2nd edition, McGraw-Hill, 1998.
[70] Glenford J. Myers, Corey Sandler, Tom Badgett and Todd M. Thomas: The Art of

Software Testing, 2nd edition, Wiley, 2004.
[71] Jeff Offutt: Mutation testing papers at www.ise.gmu.edu/~ofut/rsrch/mut.html.
[72] John Pincus: presentations (mostly PowerPoint slides) on PREfix and PREfast at

research.microsoft.com/users/jpincus/.
[73] Eric Raymond: The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary, O’ Reilly, 1999; earlier version available at www.firstmonday.
org/issues/issue3_3/raymond/.

 Dependable Software 33

[74] Software Engineering Institute, CMMI site, available at www.sei.cmu.edu/cmmi.
[75] Matt Stephens and Doug Rosenberg: Extreme Programming Refactored: The Case

Against XP, aPress, 2003.
[76] Axel van Lamsweerde: Goal-Oriented Requirements Engineering: A Guided Tour, in

Proceedings of the 5th IEEE International Symposium on Requirements Engineering,
August 2001, available at tinyurl.com/mscpj.

[77] Verified Software: Theories, Tools, Experiments: International IFIP conference, ETH
Zurich, October 2005, see VSTTE conference site at vstte.ethz.ch.

[78] John Viega: The Myth of Open-Source Security, 2000, available at www.
developer.com/tech/article.php/626641; follow-up article, Open-Source Security: Still at
Myth, September 2004, available at www.onlamp.com/pub/a/security/2004/09/16/
open_source_security_myths.html.

[79] Jeffrey M. Voas and Gary McGraw: Software Fault Injection: Inoculating Programs
Against Errors, Wiley, 1998.

[80] Jos Warmer and Anneke Kleppe: The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd edition, Addison-Wesley, 2003.

[81] Elaine J. Weyuker and Bingchiang Jeng: Analyzing Partition Testing Strategies, in IEEE
Transactions on Software Engineering, vol. 17, no. 9, July 1991, pp. 97-108.

[82] Wikipedia: entry “Mars Climate Orbiter”, available at en.wikipedia.org/wiki/
Mars_Climate_Orbiter.

[83] Edward Yourdon: When Good Enough Software Is Best, in Software (IEEE), vol. 12, no.
3, May 1995, pages 79-81.

	Overview
	Scope and Terminology
	Reliability and Dependability
	Defining Reliability
	Correctness, Robustness, Security
	Product and Process
	The Products of Software
	Deficiencies
	Verification and Validation

	Classifying Approaches
	Process-Based Approaches
	Lifecycle Models
	Organizational Standards
	Extreme Programming
	Code Inspections
	Open-Source Processes
	Requirements Engineering
	Design Patterns
	Trusted Components

	Tools and Environments
	Configuration Management
	Metrics and Models
	Static Analyzers
	Integrated Development Environments

	Programming Languages
	Static Verification Techniques
	Proofs
	Static Analysis
	Model Checking

	Design by Contract
	Testing
	Components of a Test
	Kinds of Test
	Managing the Testing Process
	Estimating Test Quality
	Defining Oracles
	Test Case Generation

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

