
J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 1 – 33, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Dependable Software 

Bertrand Meyer 

ETH Zurich 
http://se.ethz.ch 

Abstract. Achieving software reliability takes many complementary tech-
niques, directed at the process or at the products. This survey summarizes some 
of the most fruitful ideas. 

1   Overview 

Everyone who uses software or relies on devices or processes that use software — in 
other words, everyone — has a natural interest in guarantees that programs will 
perform properly. The following pages provide a review of techniques to improve 
software quality. 

There are many subcultures of software quality research, often seemingly sealed 
off from each other; mentioning process-based approaches such as CMMI to 
programming language technologists, or tests to people working on proofs, can be as 
incongruous as bringing up Balanchine among baseball fans. This survey disregards 
such established cultural fences and instead attempts to include as many as possible of 
the relevant areas, on the assumption that producing good software is hard enough 
that “every little bit counts” [60]. As a result we will encounter techniques of very 
diverse kinds. 

A note of warning to the reader seeking objectivity: I have not shied away from 
including references — easy to spot — to my own work, with the expectation (if a 
justification is needed) that it makes the result more lively than a cold inspection 
limited to other people’s products and publications. 

2   Scope and Terminology 

The first task is to define some of the fundamental terms. Even the first word of this 
article’s title, determined by the Hasler Foundation’s “Dependable Information and 
Communication Systems” project, requires clarification. 

2.1   Reliability and Dependability 

In the software engineering literature the more familiar term is not “dependable” but 
“reliable”, as in “software reliability”. A check through general-purpose and technical 
dictionaries confirms that the two have similar definitions and are usually translated 
identically into foreign languages. 

There does exist a definition of dependability [1] from the eponymous IFIP 
Working Group 10.4 [39] that treats reliability as only one among dependability 
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attributes, along with availability, safety, confidentiality, integrity and maintainability. 
While  possibly applicable to a computing system as a whole, this classification does 
not seem right for their software part, as some attributes such as availability are not 
properties of the software per se, others such as confidentiality are included in 
reliability (through one of its components, security), and the remaining ones such as 
maintainability are of dubious meaning for software, being better covered by other 
quality factors such as extendibility and reusability [57].  

As a consequence of these observations the present survey interprets dependability 
as meaning the same thing, for software, as reliability. 

2.2   Defining Reliability 

The term “software reliability” itself lacks a universally accepted definition. One 
could argue for taking it to cover all “external quality factors” such as ease of use, 
efficiency and extendibility, and even “internal quality factors” such as modularity. 
(The distinction, detailed in [57], is that external factors are the properties, immediate 
or longterm, that affect companies and people purchasing and using the software, 
whereas internal factors are perceptible only to software developers although in the 
end they determine the attainment of external factors.) 

It is reasonable to retain a more restricted view in which reliability only covers three 
external factors: correctness, robustness and security. This doesn’t imply that others are 
irrelevant; for example even the most correct, robust and secure system can hardly be 
considered dependable if in practice it takes ages to react to inputs, an efficiency 
problem. The same goes for ease of use: many software disasters on record happened 
with systems that implemented the right functions but made them available through 
error-prone user interfaces. The reasons for limiting ourselves to the three factors listed 
are, first, that including all others would turn this discussion into a survey of essentially 
the whole of software engineering (see [33]); second, that the techniques to achieve 
these three factors, although already very diverse, have a certain kindred spirit, not 
shared by those for enhancing efficiency (like performance optimization techniques), 
ease of use (like ergonomic design) and other external and internal factor. 

2.3   Correctness, Robustness, Security 

For the three factors retained, we may rely on the following definitions: 

• Correctness is a system’s ability to perform according to its specification in cases 
of use within that specification. 

• Robustness is a system’s ability to prevent damage in cases of erroneous use 
outside of its specification. 

• Security is a system’s ability to prevent damage in cases of hostile use outside of its 
specification. 

They correspond to levels of increasing departure from the specification. The  
specification of any realistic system makes assumptions, explicit or implicit, about the 
conditions of its use: a C compiler’s specification doesn’t define a generated program 
if the input is payroll data, any more than a payroll program defines a pay check if the 
input is a C program; and a building’s access control software specification cannot 
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define what happens if the building has burned. By nature, the requirements defined 
by robustness and security are different from those of correctness: outside of the 
specification, we can no longer talk of “performing” according to that specification, 
but only seek the more modest goal of “preventing damage”; note that this implies the 
ability to detect attempts at erroneous or hostile use. 

Security deserves a special mention as in recent years it has assumed a highly 
visible place in software concerns. This is a phenomenon to be both lamented, as it 
signals the end of a golden age of software development when we could concentrate 
on devising the best possible functionality without too much concern about the 
world’s nastiness, and at the same time taken to advantage, since it has finally brought 
home to corporations the seriousness of software quality issues, a result that decades 
of hectoring by advocates of modern software engineering practices had failed to 
achieve. One of the most visible signs of this phenomenon is Bill Gates’s edict 
famously halting all development in February of 2001 in favor of code reviews for 
hunting down security flaws. Many of these flaws, such as the most obnoxious, buffer 
overflow, are simply the result of poor software engineering practices. Even if 
focusing on security means looking at the symptom rather than the cause, fixing 
security implies taking a coherent look at software tools and techniques and requires, 
in the end, ensuring reliability as a whole. 

2.4   Product and Process 

Any comprehensive discussion of software issues must consider two complementary 
aspects: product and process. 

The products are the software elements whose reliability we are trying to assess; 
the process includes the mechanisms and procedures whereby people and their 
organizations build these products. 

2.5   The Products of Software 

The products themselves are diverse. In the end the most important one, for which we 
may assess correctness, robustness and security, is code. But even that simple term 
covers several kinds of product: source code as programmers see it, machine code as 
the computer executes it, and any intermediate versions as exist on modern platforms, 
such as the bytecode of virtual machines. 

Beyond code, we should consider many other products, which in their own ways 
are all “software”: requirements, specifications, design diagrams and other design 

documents, test data — but also test plans —, user documentation, teaching aids… 
To realize why it is important in the search for quality to pay attention to products 

other than code, it suffices to consider the results of numerous studies, some already 
decades old [10], showing the steep progression of the cost of correcting an error the 
later it is identified in the lifecycle. 

2.6   Deficiencies 

In trying to ascertain the reliability of a software product or process we must often — 
like a detective or a fire prevention engineer — adopt a negative mindset and look for 
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sources of violation of reliability properties. The accepted terminology here 
distinguishes three levels: 

• A failure is a malfunction of the software. Note that this term does not directly 
apply to products other than executable code. 

• A fault is a departure of the software product from the properties it should have 
satisfied. A failure always comes from a fault, although not necessarily a fault in 
the code: it could be in the specification, in the documentation, or in a nonsoftware 
product such as the hardware on which the system runs. 

• An error is a wrong human decision made during the construction of the system. 
“Wrong” is a subjective term, but for this discussion it’s clear what it means: a 
decision is wrong if it can lead to a fault (which can in turn cause failures). 

In a discussion limited to software reliability, all faults and hence all failures result 
from errors, since software is an intellectual product not subject to the slings and 
arrows of the physical world.  

The more familiar term for “error” is bug. The upper crust of the software 
engineering literature shuns it for its animist connotations. “Error” has the benefit of 
admitting that our mistakes don’t creep into our software: we insert them ourselves. In 
practice, as may be expected, everyone says “bug”. 

2.7   Verification and Validation 

Even with subjectivity removed from the definition of “error”, definitions for the 
other two levels above remains relative: what constitutes a “malfunction” (for the 
definition of failures) or a “departure” from desirable properties (for faults) can only 
be assessed with respect to some description of the expected characteristics. 

While such reference descriptions exist for some categories of software product — 
an element of code is relative to a design, the design is relative to a specification, the 
specification is relative to an analysis of the requirements — the chain always stops 
somewhere; for example one cannot in the end certify that the requirements have no 
fault, as this would mean assessing them against some higher-level description, and 
would only push the problem further to assessing the value of the description itself. 
Turtles all the way up. 

Even in the absence of another reference (another turtle) against which to assess a 
particular product, we can often obtain some evaluation of its quality by performing 
internal checks. For example: 

• A program that does not initialize one of its variables along a particular path is  
suspicious, independently of any of its properties vis-à-vis the fulfillment of its 
specification. 

• A poorly written user manual may not explicitly violate the prescriptions of another 
project document, but is problematic all the same. 

This observation leads to distinguishing two complementary kinds of reliability 
assessment, verification and validation, often combined in the abbreviation “V&V”: 

• Verification is internal assessment of the consistency of the product, considered 
just by itself. The last two examples illustrated properties that are subject to 
verification: for code; for documentation. Type checking is another example. 
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• Validation is relative assessment of a product vis-à-vis another that defines some  
of the properties that it should satisfy: code against design, design against 
specification, specification against requirements, documentation against standards, 
observed practices against company rules, delivery dates against project milestones, 
observed defect rates against defined goals, test suites against coverage metrics. 

A popular version of this distinction [10] is that verification is about ascertaining that 
the product is “doing things right” and validation that it is “doing the right thing”. It 
only applies to code, however, since a specification, a project plan or a test plan do 
not “do” anything. 

3   Classifying Approaches 

One of the reasons for the diversity of approaches to software quality is the 
multiplicity of problems they address. The following table shows a list of criteria, 
essentially orthogonal, for classifying them. 
 

Criteria for classifying approaches to software reliability 

A priori (build) A posteriori (assess and correct)

Process Product

Manual Tool-supported

Technology-neutral Technology-specific

Product- and phase-neutral vs Product- or phase-specific

Static (uses software text) Dynamic (requires execution)

Informal Mathematical

Complete (guarantee) Partial (some progress)

Free Commercial
 

The first distinction is cultural almost as much as it is technical. With a priori 
techniques the emphasis is methodological: telling development teams to apply certain 
rules to produce a better product. With a posteriori techniques, the goal is to examine a 
proposed software product or process element for possible deficiencies, with the aim of 
correcting them. While it is natural to state that the two are complementary rather than 
contradictory — a defense often used by proponents of “a posteriori” approaches such 
as testing when criticized for accepting software technology as it is rather than helping 
to improve it — they correspond to different views of the software world, one hopeful 
of prevention and the other willing to settle down for cure. 

The second distinction corresponds to the two dimensions of software engineering 
cited above: are we working on the products, or on the processes leading to them?  

Some approaches are of a methodological nature and just require applying some 
practices; we may call them manual, in contrast with techniques that are tool-
supported and hence at least partially automated. 
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An idea can be applicable regardless of technology choices; for example 
processbased techniques such as CMMI, discussed below, explicitly stay away from 
prescribing specific technologies. At the other extreme, certain techniques may be 
applicable only if you accept a certain programming language, specification method, 
tool or other technology choice. We may talk of technology-neutral and technology-
specific approaches; this is more a spectrum of possibilities than a black-and-white 
distinction, since many approaches assume a certain class of technologies—such as 
object-oriented development — encompassing many variants. 

Some techniques apply to a specific product or phase of the lifecycle: specification 
(a specification language), implementation (a static analyzer of code)… They are 
product-specific, or phase-specific. Others, such as configuration management tools, 
apply to many or all product kinds; they are product-neutral. “Product” is used here to 
denote one of the types of outcome of the software construction process.  

For techniques directed at program quality, an important division exists between 
dynamic approaches such as testing, which rely on executing the program, and purely 
static ones, such as static analysis and program proofs, which only need to analyze the 
program text. Here too some nuances exist: a simulation technique requires execution 
and hence can be classified as dynamic even though the execution doesn’t use the 
normal run-time environment; model-checking is classified as static even though in 
some respect it is close to testing.  

Some methods are based on mathematical techniques; this is obviously the case 
with program proofs and formal specification in general. Many are more informal.  

A technique intended to assess quality properties can give you a complete 
guarantee that they are satisfied, or—more commonly—some partial reassurance to 
this effect.  

The final distinction is economic: between techniques in the public domain — 
usable for free, in the ordinary sense of the term — and commercial ones.  

4   Process-Based Approaches 

We start with the least technical approaches, emphasizing management procedures 
and organizational techniques. 

4.1   Lifecycle Models 

One of the defining acts of software engineering was the recognition of the separate 
activities involved, in the form of “lifecycle models” that prescribe a certain order of 
tasks (see the figure on the adjacent page). The initial model is the so-called 
“waterfall” [11], still used as a reference for discussions of the software process 
although no longer recommended for literal application. Variants include: 

• The “V model” which retains the sequential approach of the waterfall but divides 
the process into two parts, the branches of the “V”; activities along the first branch 
are for development, those in the second branch are for verification and validation, 
each applied to the results of one of the steps along the first branch. 
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Spiral (from [11])

Lifecycle models, illustrated

Cluster
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• The “Spiral model” [11] which focuses on reducing risk in project management, in 
particular the risk caused by the all-or-nothing attitude of the Waterfall approach. 
The spiral model suggests isolating subsets of the system’s functionality that are 
small enough to be implemented quickly, and when they have been implemented 
taking advantage of the experience to proceed to other parts of the system. The idea 
is connected with the notion of rapid prototyping. 

• The “Rational Unified Process”, distinguishing four phases, inception, elaboration, 
construction and transition, with a spiral-like iterative style of development and a 
set of recommended “best practices” such as configuration management. 

• The “Cluster model” [51] [57], emphasizing a different form of incrementality— 
building a system by layers, from the most fundamental to the most user-oriented 
— and a seamless process treating successive activities, from analysis to design, 
implementation and maintenance, as a continuum. This model also introduces, as 
part of the individual lifecycle of every cluster, a generalization step to prepare for 
future reuse of some of the developed elements. 

The figure shows pictorial representations of some of these models.  
Whatever their effect on how people actually develop software, the contribution of 

lifecycle models has been a classification and definition of the activities involved in 
software development, even when these activities are not executed as phases in the 
precise order mandated by, for example, the waterfall model. Software quality 
benefits in particular from: 

• A distinction between requirements, the recording of user requirements, and 
specification, their translation into a systematic form suitable for software 
development, where rigor and precision are essential. 

• Recognition of the importance of Verification and Validation tasks. 
• Recognition of post-delivery activities such as maintenance, although they still do 

not occupy a visible enough place. Many software troubles result from evolutions 
posterior to the initial release. 

• In the Cluster model, the presence, for each cluster, of the generalization task to 
prepare for reuse. 

• Also in the Cluster model, the use of a seamless and reversible approach which 
unifies the methods, tools, techniques and notations that help throughout the 
software process, rather than exaggerate them. (The textbook counter-example here 
is the use of UML for analysis and design [56].) 

• The growing emphasis on incrementality in the development process, even if this 
concept is understood differently in, for example, the spiral, cluster and RUP 
models.  

4.2   Organizational Standards 

Another process-related set of developments has had a major effect, largely 
beneficial, on some segments of the industry. In the early 1990s the US Department 
of Defense, concerned with the need to assess its suppliers’ software capabilities and 
to establish consistent standards, entrusted the Software Engineering Institute with the 
task of developing a “Capability Maturity Model”, whose current incarnation, CMMI 
[74] (the I is for Integration) provides a collection of standards applicable to various 
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disciplines, rather than a single model for software. Largely independently, the 
International Standard Organization has produced a set of software-oriented variants 
of its 9000-series quality standards, which share a number of properties with CMMI. 
The present discussion is based on CMMI. 

Beyond its original target community, CMM and CMMI have been the catalyst for 
one of the major phenomena of the IT industry starting in the mid-nineties: the 
development of offshore software production, especially in India [63]. CMMI 
qualification provides suppliers of outsourcing development services with quality 
standards and the associated possibility of independent certification, without which 
customers would not be have known how to trust distant, initially unknown contractors. 

CMMI is (in the earlier classification) product-neutral, phase-neutral and technology-
neutral. In its application to software it is intended only to determine how well an 
organization controls its development process by defining and documenting it, 
recording and assessing how it is applied in practice, and working to improve it. It 
doesn’t prescribe what the process should be, only how much you are on top of it. You 
could presumably be developing in PL/I on IBM 370 and get CMMI qualification. 

CMMI assesses both the capability level of individual “process areas” in (such as 
software) in an organization, and the maturity of an organization as a whole. It 
distinguishes five levels of increasing maturity:  

• Performed: projects happen and results get produced, but there is little control and 
no reproducibility; the process is essentially reactive. 

• Managed: processes are clearly defined for individual projects, but not for the 
organization as a whole. They remain largely reactive. 

• Defined: proactive process defined for the organization. 
• Quantitatively managed: the control mechanisms do not limit themselves to 

qualitative techniques, but add well-defined numerical measurements. 
• Optimizing: the mechanisms for controlling processes are sufficiently well 

established that the focus can shift on improving the organization and its processes. 

Through their emphasis on the process and its repeatability, CMMI and ISO standards 
help improve the quality of software development. One may expect such  improve-
ments of the process to have a positive effect on the resulting products as well; but 
they are only part of the solution. After a software error—one module of the software 
was expecting measures in the metric system, another was providing them in English 
units — was identified as the cause of the failure of the NASA Mars Orbiter Vehicle 
mission [82], an engineer from the project noted that the organization was heavily 
into ISO and other process standards. Process models and process-focused practices 
are not a substitute for using the best technological solutions. Tailored versions of 
CMMI that would not shy away from integrating specific technologies such as object 
technology could be extremely useful. In the meantime, the technology-neutral 
requirements of CMMI can be applied by organizations to get a better hold on their 
software processes.  

4.3   Extreme Programming 

The Extreme Programming movement [6] is a reaction against precisely the kinds of 
lifecycle models and process-oriented approaches just reviewed. XP (as it is also 
called) emphasizes instead the primacy of code. Some of the principal ideas include: 
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• Short release cycles to get frequent feedback. 
• Pair programming (two people at a keyboard and terminal). 
• Test-driven development. 
• A general distrust of specification and design: testing is the preferred guide of 

development. 
• Emphasis on programmers’ welfare. 

Some of these practices are clearly beneficial to quality but were developed prior to 
XP, in particular short release cycles (Microsoft’s “daily build” as described in 1995 
by Cusumano and Shelby [19], see also [54]) and the use of frequent testing as part of 
development (see e.g. “quality first” [55]). Those really specific to XP are of limited 
interest (while sometimes a good practice, pair programming cannot be imposed 
indiscriminately, both because it doesn’t work for some people and because those 
who find it useful may not find it useful all the time) or, in the case of tests viewed as 
a replacement for specifications, downright detrimental. See [75] and [64] for 
critiques of the approach. 

4.4   Code Inspections 

A long-established quality practice is the inspection, also known as review: a session 
designed to examine a certain software element with the aim of finding flaws. The 
most common form is code inspection, but the process can be applied to any kind of 
software engineering product. Rules include: 

• Small meeting: at most 8 people or so, including the developer of the element 
under review.  

• The elements under review and any supporting documents must be circulated in 
advance; the participants should have read them and identified possible criticisms 
before the meeting. The allotted time should be bounded, for example 2 or 3 hours. 

• The meeting must have a moderator to guide discussions and a secretary to record 
results. 

• The moderator should not be the developer’s manager. The intent is to evaluate 
products, not people. 

• The sole goal is to identify deficiencies and confirm that they are indeed 
deficiencies; correction is not part of the process and should not be attempted 
during the meeting. 

Code inspections can help avoid errors, but to assess their usefulness one must compare 
the costs with those of running automated tools that can catch some of the same problems 
without human intervention; static analyzers, discussed below, are an example.  

Some companies have institutionalized the rule that no developer may check in 
code (integrate it into the repository for a current or future product) without approval 
by one other developer, a limited form of code inspection that has a clearly beneficial 
effect by forcing the original developer to convince at least one other team member of 
the suitability of the contribution. 

4.5   Open-Source Processes 

A generalization of the idea of code inspection is the frequent assertion, by members 
of the open-source community, that the open-source process dramatically improves 
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quality by enabling many people to take a critical look at the software text; some have 
gone so far as to state that “given enough eyes, all bugs are shallow” [73]. 

As with many of the other techniques reviewed, we may see in this idea a 
beneficial contribution, but not a panacea. John Viega gives [78] the example of a 
widely used security program in which “in the past two years, several very subtle 
buffer overflow problems have been found… Almost all had been in the code for 
years, even though it had been examined many times by both hackers and security 
auditors One tool was able to identify one of the problems as potentially exploitable, 
but researchers examined the code thoroughly and came to the conclusion that there 
was no way the problem could be exploited.” (The last observation is anecdotal 
evidence for the above observation that tools such as static analyzers are potentially 
superior to human analysis.) 

While is no evidence that open-source software as a whole is better (or worse) than 
commercial software, and no absolute rule should be expected if only because of the 
wide variety of products and processes on both sides, it is clear that more eyes 
potentially see more bugs. 

4.6   Requirements Engineering 

In areas such as embedded systems, many serious software failures have been traced 
[45] to inadequate requirements rather than to deficiencies introduced in later phases. 
Systematic techniques for requirements analysis are available [76] [40] to improve 
this critical task of collecting customer wishes and translating them into a form that 
can serve as a basis for a software project. 

4.7   Design Patterns 

A process-related advance that has had a strong beneficial effect on software 
development is the emergence of design patterns [32]. A pattern is an architectural 
scheme that has been recognized as fruitful through frequent use in applications, and  
for which a precise description exists according to a standard format. Patterns provide 
a common vocabulary to developers, hence simplifying design discussions, and 
enable them to benefit from the collective wisdom of their predecessors.  

A (minority) view of patterns [62] [65] understands them as a first step towards the 
technique discussed next, reusable components. Patterns, in this interpretation, suffer 
from the limitation that each developer must manually insert the corresponding 
solutions into the architecture of every applicable system. If instead it is possible to 
turn the pattern into a reusable component, developers can directly reuse the 
corresponding solution through an API (Abstract Program Interface). The observation 
here is that it is better to reuse than to redo. Investigations [65] suggest that with the 
help of appropriate programming language constructs up to two thirds of common 
design patterns can be thus componentized. 

4.8   Trusted Components 

Quality improvement techniques, whether they emphasize the process or the product, 
are only as good as their actual application by programmers. The magnitude of the 
necessary education effort is enough to temper any hope of major short-term 
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improvements, especially given that many programmers have not had the benefit of a 
formal computer science education to start with. 

Another practical impediment to continued quality improvement comes from 
market forces. The short-term commercial interest of a company is generally to 
release software that is “good enough” [83]: software that has barely passed the 
threshold under which the market would reject it because of bad quality; not excellent 
software. The extra time and expense to go from the first to the second stage may 
mean, for the company, losing the market to a less scrupulous competitor, and 
possibly going out of business. For the industry as a whole, software quality has 
indeed improved regularly over time but tends to peak below the optimum. 

An approach that can overcome these obstacles is increased reliance on reusable 
components, providing pre-built solutions to problems that arise in many different 
applications, either regardless of the technical domain (general-purpose component 
libraries) or in particular fields (specialized libraries). Components have already 
changed the nature of software development by providing conveniently packaged 
implementations, accessible through abstract interfaces, of common aspects such as 
graphical user interfaces, database manipulation, basic numerical algorithms, 
fundamental data structures and others, thereby elevating the level at which 
programmers write their applications. When the components themselves are of good 
quality, such reuse has highly beneficial effects since developers can direct their 
efforts to the quality of the application-specific part of their programs. 

Examining more closely the relationship of components to quality actually highlights 
two separate effects: it is comforting to know that the quality of a system will benefit 
from the quality of its components; but we must note that reuse magnifies the bad as well 
as the good: imperfections can be even more damaging in components than in “one-ofa-
kind” developments, since they affect every application that relies on a component. 

The notion of trusted component [58] [61] follows from this analysis that one of 
the most pressing and promising tasks for improving software quality is the industrial 
production of reusable components equipped with a guarantee of quality. Producing 
such trusted components may involve most of the techniques discussed elsewhere in 
this article. For some of the more difficult ones, such as program proving, application 
to components may be the best way to justify the cost and effort and recoup the 
investment thanks to the scaling effect of component reuse: once a component has 
reached the level of quality at which it can really be trusted, it will benefit every 
application that relies on it. 

5   Tools and Environments 

Transitioning now to product-oriented solutions, we examine some of the progress in 
tools available to software developers — to the extent that it is relevant for software 
quality. 

5.1   Configuration Management 

Configuration management is a both practice (for the software developer) and a 
service (from the supporting tools), so it could in principle be classified under 
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“process” as well as under “product”. It belongs more properly to the latter category 
since it’s tools that make configuration management realistic; applied as a pure 
organizational practice without good tool support, it quickly becomes tedious and 
ceases being applied.  

Configuration management may be defined as the systematic collecting and 
registering of project elements, including in particular the ability to: 

• Register a new version of any project element. 
• Retrieve any previously registered version of any project element 
• Register dependencies, both between project elements and between registered 

versions of project elements (e.g. A relies on B, and version 10 of A requires 
version 7, 8 or 9 of B). 

• Construct composite products from their constituents — for example, build an 
executable version of a program from its modules — or reconstruct earlier 
versions, in accordance with registered dependencies. 

A significant number of software disasters on record followed from configuration 
management errors, typically due to reintroducing an obsolete version of a module 
when compiling a new release of a program, or using an obsolete version of some 
data file. Excuses no longer exist for such errors, as acceptable configuration 
management tools, both commercial and open-source, are widely available. These 
tools, while still far from what one could hope for, have made configuration 
management one of the most important practices of modern software development. 

Source code is not the only beneficiary of configuration management. Any product 
that evolves, has dependencies on other elements and may need restoring to an earlier 
state should be considered for inclusion in the configuration management repository. 
Besides code this may include project plans, specification and design documents, user 
manuals, training documents such as PowerPoint slides, test data files. 

5.2   Metrics and Models 

If we believe Lord Kelvin’s (approximate) maxim that all serious study is 
quantitative, then software and software development should be susceptible to 
measurement, tempered of course by Einstein’s equally famous quote that not 
everything measurable is worth measuring. A few software properties, process or 
product, are at the same time measurable, worth measuring and relevant to software 
reliability.  

On the process side, cost in its various dimensions is a prime concern. While it is 
important to record costs, if only for CMMI-style traceability, what most project 
managers want at a particular time is a model to estimate the cost of a future project or 
of the remainder of a current project. Such models do exist and can be useful, at least 
if the development process is stable and the project is comparable to previous ones: 
then by estimating a number of project parameters and relying on historical data for 
comparison one can predict costs—essentially, person-months—within reasonable 
average accuracy. A well-known cost model, for which free and commercial tools are 
available, is COCOMO II [12]. 

During the development of a system, faults will be reported. In principle they 
shouldn’t be comparable to the faults of a material product, since software is an 
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intellectual product and doesn’t erode, wear out or collapse under attack from the 
weather. In practice, however, statistical analysis shows that faults in large projects 
can follow patterns that resemble those of hardware systems and are susceptible to 
similar statistical prediction techniques. That such patterns can exist is in fact 
consistent with intuition: if the tests on the last five builds of a product under 
development have each uncovered one hundred new bugs each, it is unlikely that the 
next iteration will have zero bugs, or a thousand. Software reliability engineering 
[69][46] elaborates on these ideas to develop models for assessing and predicting 
failures, faults and errors. As with cost models, a requirement for meaningful 
predictions is the ability to rely on historical data for calibration. Reliability models 
are not widely known, but could help software projects understand, predict and 
manage anomalies better. 

More generally, numerous metrics have been proposed to provide quantitative 
assessments of software properties. Measures of complexity, for example, include: 
“source lines of code” (SLOC), the most primitive, but useful all the same; “function 
points” [25], which count the number of elementary mechanisms implemented by the 
software; measures of the complexity of the control graph, such as “cyclomatic 
complexity” [48][49]; and measures specifically adapted to object-oriented software 
[35][59]. The EiffelStudio environment [30] makes it possible to compute many metrics 
applied to a project under development, including measures regarding the use of 
contracts (section 8), and to compare them with values on record. While not necessarily 
meaningful in isolation, such measures elements are a useful control tool for the 
manager; they are in line with the CMMI’s insistence that an organization can only 
reach the higher levels of process maturity (4 and 5) by moving from the qualitative to 
the quantitative, and should be part of the data collected for such an effort.  

5.3   Static Analyzers 

Static analyzers are another important category of tools, increasingly integrated in 
development environments, whose purpose is to examine the software text for 
deficiencies. They lie somewhere between type checkers (themselves integrated in 
compilers) and full program provers, and will be studied below (7.2) after the 
discussion of proofs. 

5.4   Integrated Development Environments 

Beyond individual tools the evolution of software development has led to the 
widespread of integrated tool suites known as IDEs for Integrated (originally: 
Interactive) Development Environments. Among the best known are Microsoft’s 
Visual Studio [66] and IBM’s Eclipse [27]; EiffelStudio [30] is another example. 
These environments, equipped with increasingly sophisticated graphical user 
interfaces, provide under a single roof a whole battery of mechanisms to write 
software (editors), manage its evolution (configuration management), compile it 
(compilers, interpreters, optimizers), examine it effectively (browsers), run it and 
elucidate the sources of faults (debuggers, testers), analyze it for possible 
inconsistencies and errors (static analysis), generate code from design and analysis 
diagrams or the other way around (diagramming, “Computer-Aided Software 
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Engineering” or CASE, reverse engineering), change architecture in a safe way 
through tool-controlled transformations (refactoring), perform measurements as noted 
above (metric tools), and other tasks.  

This is one of the most active areas in software engineering; programmers, for 
whom IDEs are the basic daily tools, are directly interested in their quality, so that 
open-source projects such as Eclipse and EiffelStudio benefit from active community 
participation. The effect of these advanced frameworks on software reliability, while 
diffuse, is undeniable, as their increasing cleverness supports quality in several ways: 
finding bugs through static and dynamic techniques; avoiding new bugs through 
mechanisms such as refactoring; generating some of the code without manual 
intervention; and, more generally, providing a level of comfort that frees 
programmers from distractions and lets them apply their best skills to the hardest 
issues of software construction.  

6   Programming Languages 

The evolution of programming languages plays its part in the search for more reliable 
software. High-level languages contribute both positively, by providing higher levels 
of expression through advanced constructs freeing the programmer (in the same spirit 
as modern IDEs) from mundane, repetitive or irrelevant tasks, and negatively, by 
ruling out certain potentially unsafe constructs and, as a result, eradicate entire classes 
of bugs at the source.  

The realization that programming language constructs could exert a major 
influence on software quality both through what they offer and what they forbid dates 
back to structured programming [22] [20] which, in the early seventies, led to 
rejecting the goto as a control structure in favor of more expressive constructs — 
sequence, conditional, loop, recursion. The next major step was object-oriented 
programming, introducing a full new set of abstractions, in particular the notion of 
class, providing decomposition based on object types rather than individual 
operations, and techniques of inheritance and genericity. 

In both cases the benefit comes largely from being able to reason less operationally 
about software. A software text represents many possible executions, so many in fact 
that it is hard to understand the program — and hence to get it right — by thinking in 
terms of what happens at execution [22]. Both structured and object-oriented 
techniques make it possible to limit such operational thinking and instead understand 
the abstract properties of future run-time behaviors by applying the usual rules of 
logical reasoning. 

In drawing the list of programming languages’ most important contributions to  
quality, we must indeed put at the top all the mechanisms that have to do with 
structure. With ever larger programs addressing ever more ambitious goals, the 
production and maintenance of reliable software requires safe and powerful modular 
decomposition  facilities. Particularly noteworthy are: 

• As pointed out, the class mechanism, which provides a general basis for stable 
modules with a clear role in the overall architecture. 

• Techniques for information hiding, which protect modules against details of other 
modules, and permit independent evolution of the various parts of a system. 
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• Inheritance, allowing the classification and systematic organization of classes into 
structured collections, especially with multiple inheritance. 

• Genericity, allowing the construction of type-parameterized modules. 

Another benefit of modern languages is static typing which requires programmers to 
declare types for all the variables and other entities in their programs, then takes 
advantage of this information to detect possible inconsistencies in their use and reject 
programs, at compilation time, until all types fit. Static typing is particularly 
interesting in object-oriented languages since inheritance supports a flexible type 
system in which types can be compatible even if they are not identical, as long as one 
describes a specialization of the other. 

Another key advance is garbage collection, which frees programmers from having 
to worry about the details of memory management and removes an entire class of 
errors —such as attempts to access a previously freed memory cell—which can 
otherwise be particularly hard to detect and to correct, in particular because the 
resulting failures are often intermittent rather than deterministic. Strictly speaking, 
garbage collection is a property of the language implementation, but it’s the language 
definition that makes it possible, as with modern object-oriented languages, or not, as 
in languages such as C that permit arbitrary pointer arithmetic and type conversions. 

Exception handling, as present in modern programming languages, helps improve 
software robustness by allowing developers to include recovery code for run-time faults 
that would otherwise be fatal, such as arithmetic overflow or running out of memory.  

A mechanism that is equally far-reaching in its abstraction benefits is the 
“closure”, “delegate” or “agent” [62]. Such constructs wrap operations in objects that 
can then be passed around anonymously across modules of a system, making it 
possible to treat routines as first-class values. They drastically simplify certain kinds 
of software such as numerical applications, GUI programming and other event-driven 
(or “publishsubscribe”) schemes. 

The application of programming language techniques to improving software 
quality is limited by the continued reliance of significant parts of the software 
industry on older languages. In particular: 

• Operating systems and low-level system-related tend to be written in C, which 
retains its attractions for such applications in spite of widely known deficiencies, 
such as the possibility of buffer overflow. 

• The embedded and mission-critical community sometimes prefers to use lowlevel 
languages, including assembly, for fear of the risks potentially introduced by 
compilers and other supporting tools. 

The “Verifying Compiler Grand Challenge” [38] [77] is an attempt to support the 
development of tools that—even with such programming languages—will guarantee, 
during the process of compiling and thanks to techniques described in the following 
sections, the reliability of the programs they process. 

7   Static Verification Techniques 

Static techniques work solely from the analysis of the software text: unlike dynamic 
techniques such as tests they do not require any execution to verify software or report 
errors. 
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7.1   Proofs 

Perhaps the principal difference between mathematics and engineering is that only 
mathematics allows providing absolute guarantees. Given the proper axioms, I can 
assert with total confidence that two plus two equals four. But if I want to drive to 
Berne the best assurance I can get that my car will not break down is a probability. I 
know it’s higher than if I just drive it to the suburbs, and lower than if my goal were 
Prague, Alma-Ata, Peking or Bombay; I can make it higher by buying a new, better 
car; but it will never be one. Even with the highest attention to quality and 
maintenance, physical products will occasionally fail. 

Under appropriate assumptions, a program is like a mathematical proposition rather 
than a material device: any general property of the program—stating that all executions 
of the program will achieve a certain goal, or that at least one possible execution will—
is either true or false, and whether it is true or not is entirely determined by the text of 
the program, at least if we assume correct functioning of the hardware and of other 
software elements needed to carry out program execution (compiler, run-time system, 
operating system). Another way of expressing this observation is that a programming 
language is similar to a mathematical theory, in which certain propositions are true and 
others false, as determined by the axioms and inference rules.  

In principle, then, it should be possible to prove or disprove properties of 
programs, in particular correctness, robustness and security properties, using the same 
rigorous techniques as in the proofs of any mathematical theorem. This assumes 
overcoming a number of technical difficulties: 

• Programming languages are generally not defined as mathematical theories but 
through natural-language documents possessing a varying degree of precision. To 
make formal reasoning possible requires describing them in mathematical form; 
this is known as providing a mathematical semantics (or “formal semantics”) to a 
programming language and is a huge task, especially when it comes to modeling 
advanced mechanisms such as exception handling and concurrency, as well as the 
details of computer arithmetic since the computer’s view of integers and reals 
strays from their standard mathematical properties. 

• The theorems to be proved involve specific properties of programs, such as the 
value of a certain variable not exceeding a certain threshold at a certain state of the 
execution. Any proof process requires the ability to express such properties; this 
means extending the programming language with boolean-valued expressions, 
called assertions. Common languages other than Eiffel do not include an assertion 
mechanism; this means that programmers will have to resort to special extensions 
such as JML for Java [43] (see also Spec#, an extension of the C# language [5]) 
and annotate programs with the appropriate assertions. Some tools such as Daikon 
help in this process by extracting tentative assertions from the program itself [31].  

• In practice the software’s actual operation depends, as noted, on those of a 
supporting hardware and software environment; proofs of the software must be 
complemented by guarantees about that environment.  

• Not all properties lend themselves to easy enunciation. In particular, 
“nonfunctional” properties such as performance (response time, bandwidth, 
memory occupation) are hard to model. 
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• More generally, a proof is only as useful as the program properties being proven. 
What is being proved is not the perfection of the program in any absolute sense, nor 
even its quality, but only that it satisfies the assertions stated. It is never possible to 
know that all properties of interest have been included. This is not just a theoretical 
problem: security attacks often take advantage of auxiliary aspects of the program’s 
behavior, which its design and verification did not take into account.  

• Even if the language, the context and the properties of interest are fully specified 
semantically and the properties relevant, the proof process remains a challenge. It 
cannot in any case be performed manually, since even the proof of a few properties 
of a moderately sized programs quickly reaches into the thousands of proof steps. 
Fully automated proofs are, on the other hand, generally not possible. Despite 
considerable advances in computer-assisted proof technology (for programs as well 
as other applications) significant proofs still require considerable user interaction 
and expert knowledge. 

Of course the effort may well be worthwhile, especially in two cases: life-critical 
systems in transportation and defense to which, indeed, much proof work has been 
directed; and reusable components, for which the effort is justified—as explained in 
the discussion of Trusted Components above — by the scaling-up effect of reuse.  

Here are some of the basic ideas about how proofs work. A typical program 
element to prove would be, in Eiffel notation. 

decrement
-- Decrease counter by one.

require
counter > 0

do
counter := counter – 1

ensure
counter = old counter – 1
counter >= 0

end
 

This has a program body, the do clause, and two assertions, a “precondition” 
introduced by require and a “postcondition” introduced by ensure and consisting of 
two subclauses implicitly connected by an and. Assertions are essentially Boolean 
expressions of the language with the possibility, in a postcondition, of using the old 
notation to refer to values on entry: here the first subclause of the postcondition states 
that the value of counter will have been decreased by one after execution of the do 
clause. 

Program proofs deal with such annotated programs, also called contracted 
programs (see section 8 below). The annotations remind us that proofs and other 
software quality assurance technique can never give us absolute guarantees of quality: 
we can never say that a program is “correct”, only assess it — whether through 
rigorous techniques like proofs or using more partial ones such as those reviewed 
next—relatively to explicitly stated properties, expressed here through assertions 
integrated in the program text.  

From a programmer’s viewpoint the above extract is simply the text of a routine to 
be executed, with some extra annotations, the precondition and postcondition, 
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expressing properties to be satisfied before and after. But for proof purposes this text 
is a theorem, asserting that whenever the body (the do clause with its assignment 
instruction) is executed with the precondition satisfied it will terminate in such a way 
that the postcondition is satisfied. 

This theorem appears to hold trivially but — even before addressing the concern 
noted above that computer integers are not quite the same as mathematical integers — 
proving it requires the proper mathematical framework. The basic rule of axiomatic 
semantics (or “Hoare semantics” [37]) covering such cases is the assignment axiom, 
which for any variable x and expression e states that the following holds 

require Q (e) do x := e ensure Q (x)
 

whereQ (x) is an assertion which may depend on x ; thenQ (e) is the same assertion 
with every mention of x replaced by e, except for old x which must be replaced by x.  

This very general axiom captures the properties of assignment (in the absence of 
side effect in the evaluation of e); its remarkable feature is that it is applicable even if 
the source expression e contains occurrences of the target variable x, as in the 
example (where x is counter).  

We may indeed apply the axiom to prove the example’s correctness. Let Q1 (x) be 
x = old x – 1, corresponding to the first subclause of the postcondition, and Q2 (x) be 
x >= 0. Applying the rule to Q1 (counter), we replace counter by counter + 1 and 
old counter by counter; this gives counter – 1 = counter – 1, which trivially holds. 
Applying now the same transformations to Q2 (counter), we get counter – 1 >= 0, 
which is equivalent to the precondition counter > 0. This proves the correctness of 
our little assertion-equipped example.  

From there the theory moves to more complex constructions. An inference rule 
states that if you have proved 

require P do Instruction_1 ensure Q
 

and 

require Q do Instruction_2 ensure R
 

(note the postcondition of the first part matching the precondition of the second part) 
you are entitled to deduce 

require P do Instruction_1 ; Instruction_2 ensure Rt
 

and so on for more instructions. A rule in the same style enables you to deduce 
properties of if c then I1 else I2 end from properties of I1 and I2. More advanced is 
the case of loops: to prove the properties of  

from
Initialization

until
Exit

loop
Body

end
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you need, in this general approach, to introduce a new assertion called the loop 
invariant and an integer expression called the loop variant. The invariant is a 
weakened form of the desired postcondition, which serves as approximation of the 
final goal; for example if the goal is to compute the maximum of a set of values, the 
invariant will be “Result is the maximum of the values processed so far”. The 
advantage of the invariant is that it is possible both to: 

• Ensure the invariant through initialization (the from clause in the above notation); 
in the example the invariant will be trivially true if we start with just one value and 
set Result to that value. 

• Preserve the invariant through one iteration of the loop body (the loop clause); in 
the example it suffices to extend the set of processed values by one element v and 
execute if v > Result then Result := v end. 

If indeed a loop possesses such an invariant and its execution terminates, then on exit 
the invariant will still hold (since it was ensured by the initialization and preserved by 
all the loop iterations), together with the Exit condition. The combination of these two 
assertions gives the postcondition of the loop. Seen the other way around, if we 
started from a desired postcondition and weakened it to get an invariant, we will 
obtain a correct program. In the example, if the exit condition states that we have 
processed all values of interest, combining this property with the invariant “Result is 
the maximum of the values processed so far” tells us that Result is the maximum of 
all values.  

Such reasoning is only interesting if the loop execution actually terminates; this is 
where the loop variant comes in. It is an integer expression which must have a 
nonnegative value after the Initialization and decrease, while remaining non-negative, 
whenever the Body is executed with the Exit condition not satisfied. The existence of 
such an expression is enough to guarantee termination since a non-negative integer 
value cannot decrease forever. In the example a variant isN — i where N is the total 
number of values being considered for the maximum (the proof assumes a finite set) 
and i the number of values processed. 

Axioms and inference rules similarly exist for other constructs of programming 
languages, becoming, as noted, more intricate as one moves on to more advanced 
mechanisms. 

For concurrent, reactive and real-time systems, boolean assertions of the kind 
illustrated above may not be sufficient; it is often convenient to rely on properties of 
temporal logic [47], which given a set of successive observations of a program’s 
execution, can express, for a boolean property Q: 

• forever Q: from now on, Q will always hold. 
• eventually Q: at some point in the future (where “future” includes now), Q will 

hold. 
• P until Q: Q will hold at some point in the future, and until then P will hold. 

Regardless of the kind of programs and properties being targeted, there are two 
approaches to producing program proofs. The analytic method takes programs as 
they exist, then after equipping them with assertions, either manually or with some 
automated aid as noted above, attempts the proof. The constructive method [24] [2] 
[68] integrates the proof process in the software construction process, often using 
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successive refinements to go from specification to implementation through a sequence 
of transformations, each proved to preserve correctness, and integrating more 
practical constraints at every step. Proof technology has had some notable successes, 
including in industrial systems (and in hardware design), but until recently has 
remained beyond the reach of most software projects. 

7.2   Static Analysis 

If hoping for a proof covering all the correctness, reliability and security properties of 
potential interest is often too ambitious, the problem becomes more approachable if 
we settle for a subset of these properties — a subset that may be very partial but very 
interesting. For example being able to determine that no buffer overflow can ever 
arise in a certain program—in other words, to provide a firm guarantee, through 
analysis of the program text, that every index used at run time to access an item in an 
array or a character in a string will be within the defined bounds—is of great practical 
value since this rules out a whole class of security attacks. 

Static analysis is the tool-supported analysis of software texts for the purpose of 
assessing specific quality properties. Being “static”, it requires no execution and 
hence can in principle be applied to software products other than code. Proofs are a 
special case, the most far-reaching, but other static analysis techniques are available. 

At the other extreme, a well-established form of elementary static analysis is type 
checking, which benefits programs written in a statically typed programming 
language.  Type checking, usually performed by the compiler rather than by a 
separate tool, ascertains the type consistency of assignments, routine calls and 
expressions, and rejects any program that contains a type incompatibility. 

More generally, techniques usually characterized as static analysis lie somewhere 
between such basic compiler checks and full program proofs. Violations that can 
typically be detected by static analysis include: 

• Variables that, on some control paths, would be accessed before being initialized 
(in languages such as C that do not guarantee initialization). 

• Improper array and string access (buffer overflow). 
• Memory properties: attempt to access a freed location, double freeing, memory 

leak… 
• Pointer management (again in low-level languages such as C): attempts to follow 

void or otherwise invalid pointers. 
• Concurrency control: deadlocks, data races. 
• Miscellaneous: certain cases of arithmetic overflow or underflow, changes to 

supposedly constant strings… 

Static analysis tools such as PREfix [72] have been regularly applied for several years 
to new versions of the Windows code base and have avoided many potential errors.  

One of the issues of static analysis is the occurrence of false alarms: inconsistency 
reports that, on inspection, do not reveal any actual error. This was the weak point of 
older static analyzers, such as the widely known Lint tool which complements the 
type checking of C compilers: for a large program they can easily swamp their users 
under thousand of messages, most of them spurious, but requiring a manual 
walkthrough to sort out the good from the bad. (In the search for errors, of course, the 
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“good” is what otherwise would be considered the bad: evidence of wrongdoing.) 
Progress in static analysis has been successful in considerably reducing the 
occurrence of false alarms.  

The popularity of static analysis is growing; the current trend is to extend the reach 
of static analysis tools ever further towards program proofs. Two examples are:  

• Techniques of abstract interpretation [18] with the supporting ASTRÉE tool [9], 
which has been used to prove the absence of run-time errors in the primary flight 
control software, written in C, for the Airbus A340 fly-by-wire system.  

• ESC-Java [21] and, more recently, the Boogie analyzer [4] make program proving 
less obtrusive by incrementally extending the kind of diagnostics with which 
programmers are familiar, for example type errors, to more advanced checks such 
as the impossibility to guarantee that an invariant is preserved. 

7.3   Model Checking 

The model checking approach to verification [36] [17] [3] is static, like proofs and 
static analysis, but provides a natural link to the dynamic techniques (testing) studied 
below. The inherent limitation of tests is that they can never be exhaustive; for any 
significant system—in fact, even for toy examples—the number of possible cases 
skyrockets into the combinatorial stratosphere, where the orders of magnitude invite 
lyrical comparisons with the number of particles in the universe.  

The useful measure is the number of possible states of a program. The notion of 
state was implicit in the earlier discussion of assertions. A state is simply a snapshot 
of the program execution, as could be observed, if we stop that execution, by looking 
up the contents of the program’s memory, or more realistically by using the debugger 
to examine the values of the program’s variables. Indeed it is the combination of all 
the variables’ values that determines the state. With every 64-bit integer variable 
potentially having 264

 values, it is not surprising that the estimates quickly go galactic.  
Model checking attempts exhaustive analysis of program states anyway by 

performing predicate abstraction. The idea is to simplify the program by replacing all 
expressions by boolean expressions (predicates), with only two possible values, so 
that the size of the state space decreases dramatically; it will still be large, but the 
power of modern computers, together with smart algorithms, can make its exploration 
tractable. Then to determine that a desired property holds — for example, a security 
property such as the absence of buffer overflows, or a timing property such as the 
absence of deadlock — it suffices to evaluate the corresponding assertion in all of the 
abstract states and, if a violation of that assertion (or counter-example) is found, to 
check that it also arises in the original program. 

For example, predicate abstraction will reduce a conditional instruction if a > b 
then... to if p then..., where p is a boolean. This immediately cuts down the number of 
cases from 2128 to 2. The drawback is that the resulting program is only a caricature 
of the original; it loses the relation of p to other predicates involving a and b. But it 
has an interesting property: if the original violates the assertion, then the abstracted 
version also does. So the next task is to look for any such violation in the abstracted 
version. This may be possible through exhaustive examination of its reduced state 
space, and if so is guaranteed to find any violation in the original program, but 
even so is not the end of the story, since the reverse proposition does not hold: a 
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counter-example in the abstracted program does not necessarily signal a counter-
example in the original. It could result from the artificial merging of several cases, for 
example if it occurs on a path — impossible in an execution of the original program 
— obtained by selecting both p and q as true where q is the abstraction of b > a + 1. 
Then examining the state space of the abstracted program will either: 

• Not find any violations, in which case it proves there was none in the original 
program.  

• Report violations, each of which might be an error in the original or simply a false 
alarm generated by the abstraction process. 

So the remaining task, if counter-examples have been found, is to ascertain whether 
they arise in the original. This involves defining the path predicate that leads to each 
counter-example, expressing it in terms of the original program variables (that is to 
say, removing the predicate abstraction, giving, in the example, a > b and b > a + 1) 
and determining if any combination of values for the program variables can satisfy the 
predicate: if such a combination, or variable assignment, exists, then the counter 
example is a real one; if not, as in the case given, it is spurious. 

This problem of predicate satisfiability is computationally hard; finding efficient 
algorithms is one of the central areas of research in model checking. 

The focus on counter-examples gives model checking a practical advantage over 
traditional proof techniques. Unless a software element was built with verification in 
mind (through a “constructive method” as defined above), the first attempt to verify it 
will often fail. With proofs, this failure doesn’t tell us the source of the problem—and 
could actually signal a limitation of the proof procedure rather than an error in the 
program. With model checking, you get a counter-example which directly shows 
what’s wrong. 

Model checking has captured considerable attention in recent years, first in 
hardware design and then in reactive and real-time systems, for which the assertions 
of interest are often expressed in temporal logic. 

8   Design by Contract 

The goal of developing software to support full proofs of correctness properties is, as 
noted, desirable but still unrealistic for most projects. Even a short brush with 
program proving methods suggests, however, that more rigor can be highly beneficial 
to software quality. The techniques of Design by Contract go in this direction and 
deliver part of the corresponding benefits without requiring the full formality of 
proof-directed development. 

The discussion of proofs introduced Eiffel notations such as 
• require assertion    -- A routine precondition 
• ensure assertion     -- A routine postcondition 

associated with individual routines. They are examples of contract elements which 
specify abstract semantic properties of program constructs. Contracts apply in 
particular to: 
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• Individual routines: precondition, stating the condition under which a routine is 
applicable; postcondition, stating what condition it will guarantee in return when it 
terminates. 

• In object-oriented programming, classes: class invariant, stating consistency 
conditions that must hold whenever an object is in a stable state. For example, the 
invariant for a “paragraph” class in a text processing system may state that the total 
length of letters and spaces is equal to the paragraph width. Every routine that can 
modify an instance of the class may assume the class invariant on entry (in addition 
to its precondition) and must restore it on exit (in addition to ensuring its 
postcondition). 

• Loops: invariant and (integer) variant as discussed above. 
• Individual instructions: “assert” or “check” constructs. 

The discipline of Design by Contract [53] [57] [67] gives a central role to these 
mechanisms in software development. It views the overall process of building a 
system as defining a multitude of relationships between “client” and “supplier” 
modules, each specified through a contract in the same manner as relationships 
between companies in the commercial world. 

The benefits of such a method, if carried systematically, extend throughout the 
lifecycle, supporting the goal of seamlessness discussed earlier: 

• Contracts can be used to express requirements and specifications in a precise yet 
understandable way, preferable to pure “bubbles and arrows” notations, although of 
course they can be displayed graphically too. 

• The method is also a powerful guide to design and implementation, helping 
developers to understand better the precise reason and context for every module 
they produce, and as a consequence to get the module right. 

• Contracts serve as a documentation mechanism: the “contract view” of a class, 
which discards implementation-dependent elements but retains externally relevant 
elements and in particular preconditions, postconditions and class invariants, often 
provides just the right form of documentation for software elements, especially 
reusable components: precise enough thanks to the contracts; abstract enough 
thanks to the removal of implementation properties; extracted from the program 
text, and hence having a better chance of being up to date (at least one major 
software disaster was traced [41] to a software element whose specification had 
changed, unbeknownst to the developers who reused it); cheap to produce, since 
this form of documentation can be generated by tools from the source text, rather 
than written separately; and multi-purpose, since the output can be tuned to any 
appropriate format such as HTML. Eiffel environments such as EiffelStudio 
produce such views [30], which serve as the basic form of software documentation. 

• Contracts are also useful for managers to understand the software at a high level of 
abstraction, and as a tool to control maintenance. 

• In object-oriented programming, contracts provide a framework for the proper use 
of inheritance, by allowing developers to specify the semantic framework within 
which routines may be further refined in descendant classes. This is connected with 
the preceding comment about management, since a consequence is to allowa 
manager to check that refinements to an design are consistent with its original 
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intent, which may have been defined by the top designers in the organization and 
expressed in the form of contracts. 

• Most visibly, contracts are a testing and debugging mechanism. Since an 
execution that violates an assertion always signals a bug, turning on contract 
monitoring during development provides a remarkable technique for identifying 
bugs. This idea is pursued further by some of the tools cited in the discussion of 
testing below.  

Design by Contract mechanisms are integrated in the design of the Eiffel language 
[52] [28] and a key part of the practice of the associated method. Dozens of contract 
extensions have been proposed for other programming languages (as well as UML 
[80]), including many designs such as JML [43] for Java and the Spec# extension of 
C# [5]. 

9   Testing 

Testing [70] [8] is the most widely used form of program verification, and still for 
many teams essentially the only one. In academic circles testing has long suffered 
from a famous comment [23] that (because of the astronomical number of possible 
states) “testing can only show the presence of bugs, but never to show their absence”. 
In retrospect it’s hard to find a rational explanation for why this comment ever 
detracted anyone from the importance of tests, since it in no way disproves the 
usefulness of testing: finding bugs is a very important task of software development. 
All it indicates is that we should understand that finding bugs is indeed the sole 
purpose of testing, and  not delude ourselves that test results directly reflect the level 
of quality of a product under development. 

9.1   Components of a Test 

Successful testing relies on a test plan: a strategy, expressed in a document, 
describing choices for the tasks of the testing process. These tasks include: 

• Determining which parts to test. 
• Finding the appropriate input values to exercise. 
• Determining the expected properties of the results (known as oracles). Input values 

and the associated oracles together make up test cases, the collection of which 
constitutes a test suite. 

• Instrumenting the software to run the tests (rather than perform its normal 
operation, or in addition to it); this is known as building a test harness, which may 
involve test drivers to solicit specific parts to be tested, and stubs to stand for parts 
of the system that will not be tested but need a placeholder when other parts call 
them. 

• Running the software on the selected inputs. 
• Comparing the outputs and behavior to the oracles. 
• Recording the test data (test cases, oracles, outputs) for future re-testing of the 

system, in particular regression testing, the task of verifying that previously 
corrected errors have not reappeared. 
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In addition there will be a phase of correction of the errors uncovered by the test, but 
in line with the above observations this is not part of testing in the strict sense. 

9.2   Kinds of Test 

One may classify tests with respect to their scope (this was used in the earlier 
description of the V model of the lifecycle): 

• Aunit test covers a module of the software. 
• Integration test covers a complete cluster or subsystem. 
• Asystem test covers the complete delivery. 
• User Acceptance Testing involves the participation of the recipients of the system 

(in addition to the developers, responsible for the preceding variants) to determine 
whether they are satisfied with the delivery. 

• Business Confidence Testing is further testing with the users, in conditions as close 
as possible to the real operating environment. 

An orthogonal classification addresses what is being tested: 

• Functional testing: whether the system fulfills the functions defined in the 
specification. 

• Performance testing: its use of resources. 
• Stress testing: its behavior under extreme conditions, such as heavy user load. 

Yet another dimension is intent: testing can be fault-directed to find deficiencies but 
also (despite the above warnings), conformance-directed to estimate satisfaction of 
desired properties, or acceptance testing for users to decide whether to approve the 
product. Regression testing, as noted, re-runs tests corresponding to previously 
identified errors; surprisingly to the layman, errors have a knack for surging back into 
the software, sometimes repeatedly, long after they were thought corrected. 

The testing technique, in particular the construction of test suites, can be: 

• Black-box: based on knowledge of the system’s specification only.  
• White-box: based on knowledge of the code, which makes it possible for example 

to try to exercise as much of that code as possible. 

Observing the state of the art in software testing suggests that four issues are critical: 
managing the test process; estimating the quality of test suites; devising oracles; 
and— the toughest — generating test cases automatically.  

9.3   Managing the Testing Process 

Test management has been made easier through the appearance of testing 
frameworks such as JUnit [42] and Gobo Eiffel Test [7] which record test harnesses 
to allow running the tests automatically. This removes a considerable part of the 
burden of testing and is important for regression testing.  

An example of a framework for regression testing of a compiler, incorporating 
every bug ever found since 1991, is EiffelWeasel [29]. Such automated testing require 
a solid multi-process infrastructure, to ensure for example that if a test run causes a 
crash the testing process doesn’t also crash but records the problem and moves on to 
the next test. 
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9.4   Estimating Test Quality 

Being able to estimate the quality of a test suite is essential in particular to know 
when to stop testing. The techniques are different for white-box and black-box 
testing. 

With white-box testing it is possible to define various levels of coverage, each 
assuming the preceding ones: instruction coverage, ensuring that through the 
execution of the selected test cases every instruction is executed at least once; branch 
coverage, where every boolean condition tests at least once to true and once to false; 
condition coverage, where this is also the case for boolean sub-expressions; path 
coverage, for which every path has been taken; loop coverage, where each loop body 
has been executed at least n times for set n.  

Another technique for measuring test suite quality in white-box approaches is 
mutation testing [79]. Starting with a program that passes its test suite, this 
consists of making modifications — similar, if possible, to the kind of errors that 
programmers would make — to the program, and running the tests again. If a 
“mutant” program still passes the tests, this indicates (once you have made sure the 
mutant is not equivalent to the original, in other words, the changes are meaningful) 
that the tests were not sufficient. Mutation testing is an active area of research [71]; 
one of the challenges is to use appropriate mutation operators, to ensure diversity of 
the mutants. 

With black-box testing the previous techniques are not available since they 
assume access to the source code to set up the test plan. It is possible to define 
notions of specification coverage to estimate whether the tests have exercised the 
various cases listed in the specification; if contracts are present, this will mean 
analyzing the various cases listed in the preconditions. Partition testing [81] is the 
general name for techniques (black- or white-box) that split the input domain into 
representative subsets, with the implication that any test suite must cover all the 
subsets. 

9.5   Defining Oracles 

An oracle, allowing interpretation of testing results, provides a decision criterion for 
accepting or rejecting the result of a test. The preparation of oracles can be as much 
work as the rest of the test plan. The best solution that can be recommended is to rely 
on contracts: any functional property of a software system (with the possible 
exception of some user-interface properties for which human assessment may be 
required) can be expressed as a routine postcondition or a class invariant. 

These assertions can be included in the test harness, but it is of course best, as 
noted in the discussion of Design by Contract, to make them an integral part of the 
software to be tested as it is developed; they will then provide the other benefits 
cited, such as aid to design and built-in documentation, and will facilitate regression 
testing. 

9.6   Test Case Generation 

The last of the four critical issues listed, test case generation, is probably the toughest; 
automatic generation in particular. Even though we can’t ever get close to exhaustive 
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testing, we want the test process to cover as many cases as possible, and especially to 
make sure they are representative of the various potential program executions—as can 
be assessed in white-box testing by coverage measures and mutation, but needs to be 
sought in any form of testing.  

For any realistic program, manually prepared tests will never cover enough cases; 
in addition, they are tedious to prepare. Hence the work on automatic test case 
generation, which tries to produce as many representative test cases as possible, 
typically working  from specifications only (black-box). Two tools in this area are 
Korat for JML [13] and AutoTest for Eiffel [15] (which draws on the advantage 
that—contracts being native to Eiffel—existing Eiffel software is typically equipped 
with large numbers of assertions, so that AutoTest can be run on software as is, and 
indeed has already uncovered a significant number of problems in existing programs 
and libraries).  

Manual tests, which benefit from human insight, remain indispensable. The two 
kinds are complementary: manual tests are good at depth, automatically generated 
tests at breadth. In particular, any run that ever uncovered a bug, whether through 
manual or automatic techniques, should become part of the regression test suite. 
AutoTest integrates manual tests and regression tests within the automatic test case 
generation and execution framework [44]. 

Automatic test case generation needs a strategy for selecting inputs. Contrary to 
intuition, random testing [34], which selects test data randomly from the input 
domain, can be an effective strategy if tuned to ensure a reasonably even distribution 
over that domain, a policy known as adaptive random testing [14] which has so far 
been applied to integers and other simple values (for which a clear notion of distance 
exists, so that “even distribution” is immediately meaningful). Recent work [16] 
extends the idea to object-oriented programming by defining a notion of object 
distance.  

10   Conclusion 

This survey has taken a broad sweep across many techniques that all have something 
to contribute to the aim of software reliability. While it has stayed away from the 
gloomy picture of the state of the industry which seems to be de rigueur in discussions 
of this topic, and is not justified given the considerable amount of quality-enhancing 
ideas, techniques and tools that are available today and the considerable amount of 
good work currently in progress, it cannot fail to note as a conclusion that the industry 
could do much more to take advantage of all these efforts and results.  

There is not enough of a reliability culture in the software world; too often, the 
order of concerns is cost, then deadlines, then quality. It is time to reassess priorities. 
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