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Preface

Civilization relies on a functioning infrastructure, which is more and more en-
abled through information and communication technologies (ICT). A dependable
information infrastructure is thus crucial for the modern society. On the other
hand, information and communication systems belong to the most complex ar-
tifacts ever built by mankind. The design and operation of these systems are
challenging tasks. Theories, methods and tools which help to master the prob-
lems encountered in the design process and the management of operations are
therefore of utmost importance for the future of information and communication
technology.

In view of the relevance of this topic in computer science, the Hasler Foun-
dation launched in 2002 a research program on “Dependable Information and
Communication Systems” (DICS). The call for projects was addressed to all
Swiss universities. More than 40 short project proposals were submitted. Of
these, 18 were selected for a hearing, in which a subset of these projects were
selected and invited to submit complete project proposals. Finally, nine projects
were selected for funding by the Hasler Foundation. All these projects were also
partially supported by the universities involved as well as by other third parties,
in particular by the Swiss National Foundation for Research.

The DICS projects started at the end of 2002 and the beginning of 2003.
The members of the project teams met twice at workshops organized by the
Hasler Foundation. The first one took place in Münchenwiler on March 16 and
17, 2004, the second workshop, which marked the conclusion of the projects,
in Löwenberg on October 13 and 14, 2005. Each time more than 40 scientists
participated in the workshop. The present volume documents the results of the
DICS research program. Of course, the subject of dependable information and
communication systems is not exhausted by this program. Much research is
still needed. Therefore at the end of 2005, the Hasler Foundation launched a
new program on “Managing Complexity of Information and Communication
Systems” (MICS), which is intended as a follow-up and an extension of DICS.

The Hasler Foundation’s existing endowments derive from the former Hasler
AG (1852-1986), a pioneer of the Swiss telecommunications industry. The foun-
dation is committed to promoting high-level research and education in the field
of information and telecommunication systems. DICS is one of the research pro-
grams launched and supported by the foundation. We refer readers to the website
www.haslerfoundation.ch for further information.

The Hasler Foundation thanks the editors and the authors of the present vol-
ume for their contributions. The editors also thank C. Schneuwly for assistance
in editing. Finally, we thank Springer for accepting this volume in the presti-
gious Lecture Notes in Computer Science. It is our hope that this volume helps



VI Preface

to encourage further research in the crucial field of dependability of information
and communication systems.

May 2006 Jürg Kohlas
Chairman of the Scientific Committee of the Hasler Foundation

Final DICS workshop, 13 October 2005: The participants at the training center of the
Swiss Federal Railways in Löwenberg ( oto: B. Meyer)Ph



Introduction

For all the marvels that information technology delivers, we should never forget
— and the users of our systems should never let us forget — that as the results we
produce become ever more impressive, the burden on us to make them perform
reliably grows ever heavier, simply because the more people rely on them the
more critical any failure can be. This is the whole topic of dependability, a central
issue in all disciplines of systems engineering.

No single publication could by itself do justice to this rich and vibrant field of
research; the present volume presents a snapshot of some of the most interesting
work being performed on this theme by teams in top Swiss universities. It covers
three key aspects of dependability:

– Dependable software
– Dependable computing
– Dependable networks

Following this triple focus, the book consists of three surveys in Part I, one
on each of these topics, then a collection of research contributions in Parts II,
III and IV; each of these parts is devoted again to one of the topics, in the same
order.

As the surveys in Part I will show, merely defining dependability is already a
significant task. Each survey identifies major issues of dependability and presents
the state of the art in providing solutions. Meyer’s survey on dependable soft-
ware uses a broad brush to explore the various techniques available for increasing
the reliability of software systems, from management standards such as CMMI
all the way down to static analysis, proofs and tests. Schiper’s survey on the
general topic of dependable systems introduces the fundamental, application-
independent techniques in the field, with a special emphasis on replication tech-
niques and the associated communication issues. The last survey, by Kurant,
Nguyen and Thiran, addresses the specific area of IP over fiber networks, clearly
essential in the future growth of the Internet and other networks; it focuses on
techniques for failure location, protection and restoration.

Part II explores some aspects of dependable software. In the first chapter of
this part, Arslan, Eugster, Meyer and Vaucouleur describe the current state of
the SCOOP method — Simple Concurrent Object-Oriented Programming —
and its implementation, designed to bring concurrent programming in its var-
ious incarnations (from multithreading to Internet programming) to the same
level of abstraction and dependability as its sequential counterpart. The result
is integrated in the object-oriented framework of the Eiffel language and funda-
mentally relies on notions of Design by Contract.

For a related set of applications of increasing importance, and in particular
Web services, XML has emerged as the communication vehicle of choice, but in
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today’s practice remains dissociated from programming languages, introducing
a detrimental gap. Emir, Maneth and Odersky present the Scala language and
framework which combine XML, Web Services and, again, concurrency in the
framework of an object-oriented programming language, allowing a seamless
integration of these different aspects under a single notational framework. As
the reader will undoubtedly note, the design is based on decisions very different
from those of SCOOP, providing the opportunity for interesting comparisons of
viewpoints.

It is often difficult in a single step to arrive at a correct software solution for a
complex problem; hence the idea of development by successive refinements. Baar,
Marković, Fondement and Strohmeier explore its application to the stepwise
development of object-oriented software by introducing the notion of contract
refinement and applying it to an extended example. Unlike the previous two
contributions this one uses, as its underlying technology, not a programming
language but the UML modeling notation.

UML also underlies the final contribution to Part II, by Buchs, Pedro and
Lúcio, devoted to the generation of test directly from specifications, expressed in
the Fondue subset of UML; subsetting is indeed necessary for defining a precise
semantics.

Part III is devoted to dependable computing, i.e., dependability at the middle-
ware or system level. The first paper by Bünzli et al. presents recent advances
in the context of group communication. Group communication is an abstrac-
tion that allows a distributed group of processes to provide a reliable service in
spite of possible failures within the group. Reliability is achieved by replication:
group communication provides the adequate communication abstraction among
the replicas. The paper addresses various aspects of group communication: pro-
tocol frameworks used to build group communication stacks, new architectures
for group communication stacks, specification of group communication, verifica-
tion of distributed algorithms related to group communication and verification
of group communication stacks.

The second paper, by Gerlach, Schaeli and Hersch, is devoted to dependability
in the context of parallel applications. The authors have built a framework called
DPS (Dynamic Parallel Schedules), based on a flow graph, for the development
of parallel applications on a cluster of workstations. The paper describes how
fault tolerance has been added to the DPS framework using two techniques:
backup threads (stateless and stateful) and checkpoints. A backup thread is
mapped on a different node than its primary thread, allowing the computation
to proceed in case of failures. Checkpointing allows a long-running computation
to be restarted from a state different from its initial state.

The last paper of Part III, by Pautasso, Bausch and Alonso, addresses a simi-
lar problem in the context of a virtual laboratory, characterized by long-running
and large-scale computations on a cluster. Virtual experiments are typically
modelled as workflows. The paper describes the JOpera workflow system and
focusses on its fault tolerant features. The system is able to adapt to processor
failures by rescheduling jobs. The system also tolerates failures within its kernel,
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by ensuring that process execution resumes in a consistent state after a failure.
Moreover, the kernel is able to automatically adapt its configuration to optimally
use the available resources.

Part IV is devoted to dependable networks. The paper by Ducatelle et al.
addresses the problem of failure location and traffic rerouting in large IP-over-
fiber and wireless ad hoc networks. Traffic rerouting takes place once the failure
has been located. Two algorithms for failure location are presented, one for
IP/WDM (Wave-length Division Multiplexing), the other for wireless sensor
networks. In a second part, failure restoration by rerouting is addressed. In
the context of wireless sensor networks, failure restoration is done by a routing
algorithm inspired from ant colonies.

The paper by Erlebach et al. addresses the robustness of the Internet. The
authors point out that the traditional model of the Internet as a graph of
autonomous system does not capture accurately the way traffic is routed, an
important factor of robustness. Traffic routing mainly depends on economic rela-
tionships between autonomic systems. Traffic routing can be incorporated using
the valley-free path model. However, this model makes the evaluation of the ro-
bustness computationally more difficult. Complexity and approximation results
for disjoint paths and minimum cuts in that model are discussed. Experimental
findings concerning the number of vertex-disjoint valid paths and the sizes of
minimal cuts are also summarized.

The last paper, by Albrecht, Kuhn and Wattenhofer, is devoted to peer-
to-peer (P2P) overlay networks. P2P systems are based on common desktop
machines (“peers”) distributed over a large-scale network such as the Internet.
The focus of most research in P2P systems is the development of an efficient
lookup operation: given a key, locate the peer responsible for the key. P2P sys-
tems are characterized by a high rate of peers joining and leaving the system
(called churns). The paper describes a robust P2P system that can cope with
such a highly dynamic situation. The idea is to maintain a simulated hypercube,
and to adapt to churns by rearranging peers or by adjusting the dimension of
the hypercube to the number of peers in the system.

May 2006 Bertrand Meyer, André Schiper
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Dependable Software 

Bertrand Meyer 

ETH Zurich 
http://se.ethz.ch 

Abstract. Achieving software reliability takes many complementary tech-
niques, directed at the process or at the products. This survey summarizes some 
of the most fruitful ideas. 

1   Overview 

Everyone who uses software or relies on devices or processes that use software — in 
other words, everyone — has a natural interest in guarantees that programs will 
perform properly. The following pages provide a review of techniques to improve 
software quality. 

There are many subcultures of software quality research, often seemingly sealed 
off from each other; mentioning process-based approaches such as CMMI to 
programming language technologists, or tests to people working on proofs, can be as 
incongruous as bringing up Balanchine among baseball fans. This survey disregards 
such established cultural fences and instead attempts to include as many as possible of 
the relevant areas, on the assumption that producing good software is hard enough 
that “every little bit counts” [60]. As a result we will encounter techniques of very 
diverse kinds. 

A note of warning to the reader seeking objectivity: I have not shied away from 
including references — easy to spot — to my own work, with the expectation (if a 
justification is needed) that it makes the result more lively than a cold inspection 
limited to other people’s products and publications. 

2   Scope and Terminology 

The first task is to define some of the fundamental terms. Even the first word of this 
article’s title, determined by the Hasler Foundation’s “Dependable Information and 
Communication Systems” project, requires clarification. 

2.1   Reliability and Dependability 

In the software engineering literature the more familiar term is not “dependable” but 
“reliable”, as in “software reliability”. A check through general-purpose and technical 
dictionaries confirms that the two have similar definitions and are usually translated 
identically into foreign languages. 

There does exist a definition of dependability [1] from the eponymous IFIP 
Working Group 10.4 [39] that treats reliability as only one among dependability 
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attributes, along with availability, safety, confidentiality, integrity and maintainability. 
While  possibly applicable to a computing system as a whole, this classification does 
not seem right for their software part, as some attributes such as availability are not 
properties of the software per se, others such as confidentiality are included in 
reliability (through one of its components, security), and the remaining ones such as 
maintainability are of dubious meaning for software, being better covered by other 
quality factors such as extendibility and reusability [57].  

As a consequence of these observations the present survey interprets dependability 
as meaning the same thing, for software, as reliability. 

2.2   Defining Reliability 

The term “software reliability” itself lacks a universally accepted definition. One 
could argue for taking it to cover all “external quality factors” such as ease of use, 
efficiency and extendibility, and even “internal quality factors” such as modularity. 
(The distinction, detailed in [57], is that external factors are the properties, immediate 
or longterm, that affect companies and people purchasing and using the software, 
whereas internal factors are perceptible only to software developers although in the 
end they determine the attainment of external factors.) 

It is reasonable to retain a more restricted view in which reliability only covers three 
external factors: correctness, robustness and security. This doesn’t imply that others are 
irrelevant; for example even the most correct, robust and secure system can hardly be 
considered dependable if in practice it takes ages to react to inputs, an efficiency 
problem. The same goes for ease of use: many software disasters on record happened 
with systems that implemented the right functions but made them available through 
error-prone user interfaces. The reasons for limiting ourselves to the three factors listed 
are, first, that including all others would turn this discussion into a survey of essentially 
the whole of software engineering (see [33]); second, that the techniques to achieve 
these three factors, although already very diverse, have a certain kindred spirit, not 
shared by those for enhancing efficiency (like performance optimization techniques), 
ease of use (like ergonomic design) and other external and internal factor. 

2.3   Correctness, Robustness, Security 

For the three factors retained, we may rely on the following definitions: 

• Correctness is a system’s ability to perform according to its specification in cases 
of use within that specification. 

• Robustness is a system’s ability to prevent damage in cases of erroneous use 
outside of its specification. 

• Security is a system’s ability to prevent damage in cases of hostile use outside of its 
specification. 

They correspond to levels of increasing departure from the specification. The  
specification of any realistic system makes assumptions, explicit or implicit, about the 
conditions of its use: a C compiler’s specification doesn’t define a generated program 
if the input is payroll data, any more than a payroll program defines a pay check if the 
input is a C program; and a building’s access control software specification cannot 
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define what happens if the building has burned. By nature, the requirements defined 
by robustness and security are different from those of correctness: outside of the 
specification, we can no longer talk of “performing” according to that specification, 
but only seek the more modest goal of “preventing damage”; note that this implies the 
ability to detect attempts at erroneous or hostile use. 

Security deserves a special mention as in recent years it has assumed a highly 
visible place in software concerns. This is a phenomenon to be both lamented, as it 
signals the end of a golden age of software development when we could concentrate 
on devising the best possible functionality without too much concern about the 
world’s nastiness, and at the same time taken to advantage, since it has finally brought 
home to corporations the seriousness of software quality issues, a result that decades 
of hectoring by advocates of modern software engineering practices had failed to 
achieve. One of the most visible signs of this phenomenon is Bill Gates’s edict 
famously halting all development in February of 2001 in favor of code reviews for 
hunting down security flaws. Many of these flaws, such as the most obnoxious, buffer 
overflow, are simply the result of poor software engineering practices. Even if 
focusing on security means looking at the symptom rather than the cause, fixing 
security implies taking a coherent look at software tools and techniques and requires, 
in the end, ensuring reliability as a whole. 

2.4   Product and Process 

Any comprehensive discussion of software issues must consider two complementary 
aspects: product and process. 

The products are the software elements whose reliability we are trying to assess; 
the process includes the mechanisms and procedures whereby people and their 
organizations build these products. 

2.5   The Products of Software 

The products themselves are diverse. In the end the most important one, for which we 
may assess correctness, robustness and security, is code. But even that simple term 
covers several kinds of product: source code as programmers see it, machine code as 
the computer executes it, and any intermediate versions as exist on modern platforms, 
such as the bytecode of virtual machines. 

Beyond code, we should consider many other products, which in their own ways 
are all “software”: requirements, specifications, design diagrams and other design 

documents, test data — but also test plans —, user documentation, teaching aids… 
To realize why it is important in the search for quality to pay attention to products 

other than code, it suffices to consider the results of numerous studies, some already 
decades old [10], showing the steep progression of the cost of correcting an error the 
later it is identified in the lifecycle. 

2.6   Deficiencies 

In trying to ascertain the reliability of a software product or process we must often — 
like a detective or a fire prevention engineer — adopt a negative mindset and look for 
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sources of violation of reliability properties. The accepted terminology here 
distinguishes three levels: 

• A failure is a malfunction of the software. Note that this term does not directly 
apply to products other than executable code. 

• A fault is a departure of the software product from the properties it should have 
satisfied. A failure always comes from a fault, although not necessarily a fault in 
the code: it could be in the specification, in the documentation, or in a nonsoftware 
product such as the hardware on which the system runs. 

• An error is a wrong human decision made during the construction of the system. 
“Wrong” is a subjective term, but for this discussion it’s clear what it means: a 
decision is wrong if it can lead to a fault (which can in turn cause failures). 

In a discussion limited to software reliability, all faults and hence all failures result 
from errors, since software is an intellectual product not subject to the slings and 
arrows of the physical world.  

The more familiar term for “error” is bug. The upper crust of the software 
engineering literature shuns it for its animist connotations. “Error” has the benefit of 
admitting that our mistakes don’t creep into our software: we insert them ourselves. In 
practice, as may be expected, everyone says “bug”. 

2.7   Verification and Validation 

Even with subjectivity removed from the definition of “error”, definitions for the 
other two levels above remains relative: what constitutes a “malfunction” (for the 
definition of failures) or a “departure” from desirable properties (for faults) can only 
be assessed with respect to some description of the expected characteristics. 

While such reference descriptions exist for some categories of software product — 
an element of code is relative to a design, the design is relative to a specification, the 
specification is relative to an analysis of the requirements — the chain always stops 
somewhere; for example one cannot in the end certify that the requirements have no 
fault, as this would mean assessing them against some higher-level description, and 
would only push the problem further to assessing the value of the description itself. 
Turtles all the way up. 

Even in the absence of another reference (another turtle) against which to assess a 
particular product, we can often obtain some evaluation of its quality by performing 
internal checks. For example: 

• A program that does not initialize one of its variables along a particular path is  
suspicious, independently of any of its properties vis-à-vis the fulfillment of its 
specification. 

• A poorly written user manual may not explicitly violate the prescriptions of another 
project document, but is problematic all the same. 

This observation leads to distinguishing two complementary kinds of reliability 
assessment, verification and validation, often combined in the abbreviation “V&V”: 

• Verification is internal assessment of the consistency of the product, considered 
just by itself. The last two examples illustrated properties that are subject to 
verification: for code; for documentation. Type checking is another example. 
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• Validation is relative assessment of a product vis-à-vis another that defines some  
of the properties that it should satisfy: code against design, design against 
specification, specification against requirements, documentation against standards, 
observed practices against company rules, delivery dates against project milestones, 
observed defect rates against defined goals, test suites against coverage metrics. 

A popular version of this distinction [10] is that verification is about ascertaining that 
the product is “doing things right” and validation that it is “doing the right thing”. It 
only applies to code, however, since a specification, a project plan or a test plan do 
not “do” anything. 

3   Classifying Approaches 

One of the reasons for the diversity of approaches to software quality is the 
multiplicity of problems they address. The following table shows a list of criteria, 
essentially orthogonal, for classifying them. 
 

Criteria for classifying approaches to software reliability 

A priori (build) A posteriori (assess and correct)

Process Product

Manual Tool-supported

Technology-neutral Technology-specific

Product- and phase-neutral vs Product- or phase-specific

Static (uses software text) Dynamic (requires execution)

Informal Mathematical

Complete (guarantee) Partial (some progress)

Free Commercial
 

The first distinction is cultural almost as much as it is technical. With a priori 
techniques the emphasis is methodological: telling development teams to apply certain 
rules to produce a better product. With a posteriori techniques, the goal is to examine a 
proposed software product or process element for possible deficiencies, with the aim of 
correcting them. While it is natural to state that the two are complementary rather than 
contradictory — a defense often used by proponents of “a posteriori” approaches such 
as testing when criticized for accepting software technology as it is rather than helping 
to improve it — they correspond to different views of the software world, one hopeful 
of prevention and the other willing to settle down for cure. 

The second distinction corresponds to the two dimensions of software engineering 
cited above: are we working on the products, or on the processes leading to them?  

Some approaches are of a methodological nature and just require applying some 
practices; we may call them manual, in contrast with techniques that are tool-
supported and hence at least partially automated. 
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An idea can be applicable regardless of technology choices; for example 
processbased techniques such as CMMI, discussed below, explicitly stay away from 
prescribing specific technologies. At the other extreme, certain techniques may be 
applicable only if you accept a certain programming language, specification method, 
tool or other technology choice. We may talk of technology-neutral and technology-
specific approaches; this is more a spectrum of possibilities than a black-and-white 
distinction, since many approaches assume a certain class of technologies—such as 
object-oriented development — encompassing many variants. 

Some techniques apply to a specific product or phase of the lifecycle: specification 
(a specification language), implementation (a static analyzer of code)… They are 
product-specific, or phase-specific. Others, such as configuration management tools, 
apply to many or all product kinds; they are product-neutral. “Product” is used here to 
denote one of the types of outcome of the software construction process.  

For techniques directed at program quality, an important division exists between 
dynamic approaches such as testing, which rely on executing the program, and purely 
static ones, such as static analysis and program proofs, which only need to analyze the 
program text. Here too some nuances exist: a simulation technique requires execution 
and hence can be classified as dynamic even though the execution doesn’t use the 
normal run-time environment; model-checking is classified as static even though in 
some respect it is close to testing.  

Some methods are based on mathematical techniques; this is obviously the case 
with program proofs and formal specification in general. Many are more informal.  

A technique intended to assess quality properties can give you a complete 
guarantee that they are satisfied, or—more commonly—some partial reassurance to 
this effect.  

The final distinction is economic: between techniques in the public domain — 
usable for free, in the ordinary sense of the term — and commercial ones.  

4   Process-Based Approaches 

We start with the least technical approaches, emphasizing management procedures 
and organizational techniques. 

4.1   Lifecycle Models 

One of the defining acts of software engineering was the recognition of the separate 
activities involved, in the form of “lifecycle models” that prescribe a certain order of 
tasks (see the figure on the adjacent page). The initial model is the so-called 
“waterfall” [11], still used as a reference for discussions of the software process 
although no longer recommended for literal application. Variants include: 

• The “V model” which retains the sequential approach of the waterfall but divides 
the process into two parts, the branches of the “V”; activities along the first branch 
are for development, those in the second branch are for verification and validation, 
each applied to the results of one of the steps along the first branch. 
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Waterfall V-shaped

Spiral (from [11])

Lifecycle models, illustrated

Cluster
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• The “Spiral model” [11] which focuses on reducing risk in project management, in 
particular the risk caused by the all-or-nothing attitude of the Waterfall approach. 
The spiral model suggests isolating subsets of the system’s functionality that are 
small enough to be implemented quickly, and when they have been implemented 
taking advantage of the experience to proceed to other parts of the system. The idea 
is connected with the notion of rapid prototyping. 

• The “Rational Unified Process”, distinguishing four phases, inception, elaboration, 
construction and transition, with a spiral-like iterative style of development and a 
set of recommended “best practices” such as configuration management. 

• The “Cluster model” [51] [57], emphasizing a different form of incrementality— 
building a system by layers, from the most fundamental to the most user-oriented 
— and a seamless process treating successive activities, from analysis to design, 
implementation and maintenance, as a continuum. This model also introduces, as 
part of the individual lifecycle of every cluster, a generalization step to prepare for 
future reuse of some of the developed elements. 

The figure shows pictorial representations of some of these models.  
Whatever their effect on how people actually develop software, the contribution of 

lifecycle models has been a classification and definition of the activities involved in 
software development, even when these activities are not executed as phases in the 
precise order mandated by, for example, the waterfall model. Software quality 
benefits in particular from: 

• A distinction between requirements, the recording of user requirements, and 
specification, their translation into a systematic form suitable for software 
development, where rigor and precision are essential. 

• Recognition of the importance of Verification and Validation tasks. 
• Recognition of post-delivery activities such as maintenance, although they still do 

not occupy a visible enough place. Many software troubles result from evolutions 
posterior to the initial release. 

• In the Cluster model, the presence, for each cluster, of the generalization task to 
prepare for reuse. 

• Also in the Cluster model, the use of a seamless and reversible approach which 
unifies the methods, tools, techniques and notations that help throughout the 
software process, rather than exaggerate them. (The textbook counter-example here 
is the use of UML for analysis and design [56].) 

• The growing emphasis on incrementality in the development process, even if this 
concept is understood differently in, for example, the spiral, cluster and RUP 
models.  

4.2   Organizational Standards 

Another process-related set of developments has had a major effect, largely 
beneficial, on some segments of the industry. In the early 1990s the US Department 
of Defense, concerned with the need to assess its suppliers’ software capabilities and 
to establish consistent standards, entrusted the Software Engineering Institute with the 
task of developing a “Capability Maturity Model”, whose current incarnation, CMMI 
[74] (the I is for Integration) provides a collection of standards applicable to various 
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disciplines, rather than a single model for software. Largely independently, the 
International Standard Organization has produced a set of software-oriented variants 
of its 9000-series quality standards, which share a number of properties with CMMI. 
The present discussion is based on CMMI. 

Beyond its original target community, CMM and CMMI have been the catalyst for 
one of the major phenomena of the IT industry starting in the mid-nineties: the 
development of offshore software production, especially in India [63]. CMMI 
qualification provides suppliers of outsourcing development services with quality 
standards and the associated possibility of independent certification, without which 
customers would not be have known how to trust distant, initially unknown contractors. 

CMMI is (in the earlier classification) product-neutral, phase-neutral and technology-
neutral. In its application to software it is intended only to determine how well an 
organization controls its development process by defining and documenting it, 
recording and assessing how it is applied in practice, and working to improve it. It 
doesn’t prescribe what the process should be, only how much you are on top of it. You 
could presumably be developing in PL/I on IBM 370 and get CMMI qualification. 

CMMI assesses both the capability level of individual “process areas” in (such as 
software) in an organization, and the maturity of an organization as a whole. It 
distinguishes five levels of increasing maturity:  

• Performed: projects happen and results get produced, but there is little control and 
no reproducibility; the process is essentially reactive. 

• Managed: processes are clearly defined for individual projects, but not for the 
organization as a whole. They remain largely reactive. 

• Defined: proactive process defined for the organization. 
• Quantitatively managed: the control mechanisms do not limit themselves to 

qualitative techniques, but add well-defined numerical measurements. 
• Optimizing: the mechanisms for controlling processes are sufficiently well 

established that the focus can shift on improving the organization and its processes. 

Through their emphasis on the process and its repeatability, CMMI and ISO standards 
help improve the quality of software development. One may expect such  improve-
ments of the process to have a positive effect on the resulting products as well; but 
they are only part of the solution. After a software error—one module of the software 
was expecting measures in the metric system, another was providing them in English 
units — was identified as the cause of the failure of the NASA Mars Orbiter Vehicle 
mission [82], an engineer from the project noted that the organization was heavily 
into ISO and other process standards. Process models and process-focused practices 
are not a substitute for using the best technological solutions. Tailored versions of 
CMMI that would not shy away from integrating specific technologies such as object 
technology could be extremely useful. In the meantime, the technology-neutral 
requirements of CMMI can be applied by organizations to get a better hold on their 
software processes.  

4.3   Extreme Programming 

The Extreme Programming movement [6] is a reaction against precisely the kinds of 
lifecycle models and process-oriented approaches just reviewed. XP (as it is also 
called) emphasizes instead the primacy of code. Some of the principal ideas include: 
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• Short release cycles to get frequent feedback. 
• Pair programming (two people at a keyboard and terminal). 
• Test-driven development. 
• A general distrust of specification and design: testing is the preferred guide of 

development. 
• Emphasis on programmers’ welfare. 

Some of these practices are clearly beneficial to quality but were developed prior to 
XP, in particular short release cycles (Microsoft’s “daily build” as described in 1995 
by Cusumano and Shelby [19], see also [54]) and the use of frequent testing as part of 
development (see e.g. “quality first” [55]). Those really specific to XP are of limited 
interest (while sometimes a good practice, pair programming cannot be imposed 
indiscriminately, both because it doesn’t work for some people and because those 
who find it useful may not find it useful all the time) or, in the case of tests viewed as 
a replacement for specifications, downright detrimental. See [75] and [64] for 
critiques of the approach. 

4.4   Code Inspections 

A long-established quality practice is the inspection, also known as review: a session 
designed to examine a certain software element with the aim of finding flaws. The 
most common form is code inspection, but the process can be applied to any kind of 
software engineering product. Rules include: 

• Small meeting: at most 8 people or so, including the developer of the element 
under review.  

• The elements under review and any supporting documents must be circulated in 
advance; the participants should have read them and identified possible criticisms 
before the meeting. The allotted time should be bounded, for example 2 or 3 hours. 

• The meeting must have a moderator to guide discussions and a secretary to record 
results. 

• The moderator should not be the developer’s manager. The intent is to evaluate 
products, not people. 

• The sole goal is to identify deficiencies and confirm that they are indeed 
deficiencies; correction is not part of the process and should not be attempted 
during the meeting. 

Code inspections can help avoid errors, but to assess their usefulness one must compare 
the costs with those of running automated tools that can catch some of the same problems 
without human intervention; static analyzers, discussed below, are an example.  

Some companies have institutionalized the rule that no developer may check in 
code (integrate it into the repository for a current or future product) without approval 
by one other developer, a limited form of code inspection that has a clearly beneficial 
effect by forcing the original developer to convince at least one other team member of 
the suitability of the contribution. 

4.5   Open-Source Processes 

A generalization of the idea of code inspection is the frequent assertion, by members 
of the open-source community, that the open-source process dramatically improves 
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quality by enabling many people to take a critical look at the software text; some have 
gone so far as to state that “given enough eyes, all bugs are shallow” [73]. 

As with many of the other techniques reviewed, we may see in this idea a 
beneficial contribution, but not a panacea. John Viega gives [78] the example of a 
widely used security program in which “in the past two years, several very subtle 
buffer overflow problems have been found… Almost all had been in the code for 
years, even though it had been examined many times by both hackers and security 
auditors One tool was able to identify one of the problems as potentially exploitable, 
but researchers examined the code thoroughly and came to the conclusion that there 
was no way the problem could be exploited.” (The last observation is anecdotal 
evidence for the above observation that tools such as static analyzers are potentially 
superior to human analysis.) 

While is no evidence that open-source software as a whole is better (or worse) than 
commercial software, and no absolute rule should be expected if only because of the 
wide variety of products and processes on both sides, it is clear that more eyes 
potentially see more bugs. 

4.6   Requirements Engineering 

In areas such as embedded systems, many serious software failures have been traced 
[45] to inadequate requirements rather than to deficiencies introduced in later phases. 
Systematic techniques for requirements analysis are available [76] [40] to improve 
this critical task of collecting customer wishes and translating them into a form that 
can serve as a basis for a software project. 

4.7   Design Patterns 

A process-related advance that has had a strong beneficial effect on software 
development is the emergence of design patterns [32]. A pattern is an architectural 
scheme that has been recognized as fruitful through frequent use in applications, and  
for which a precise description exists according to a standard format. Patterns provide 
a common vocabulary to developers, hence simplifying design discussions, and 
enable them to benefit from the collective wisdom of their predecessors.  

A (minority) view of patterns [62] [65] understands them as a first step towards the 
technique discussed next, reusable components. Patterns, in this interpretation, suffer 
from the limitation that each developer must manually insert the corresponding 
solutions into the architecture of every applicable system. If instead it is possible to 
turn the pattern into a reusable component, developers can directly reuse the 
corresponding solution through an API (Abstract Program Interface). The observation 
here is that it is better to reuse than to redo. Investigations [65] suggest that with the 
help of appropriate programming language constructs up to two thirds of common 
design patterns can be thus componentized. 

4.8   Trusted Components 

Quality improvement techniques, whether they emphasize the process or the product, 
are only as good as their actual application by programmers. The magnitude of the 
necessary education effort is enough to temper any hope of major short-term 
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improvements, especially given that many programmers have not had the benefit of a 
formal computer science education to start with. 

Another practical impediment to continued quality improvement comes from 
market forces. The short-term commercial interest of a company is generally to 
release software that is “good enough” [83]: software that has barely passed the 
threshold under which the market would reject it because of bad quality; not excellent 
software. The extra time and expense to go from the first to the second stage may 
mean, for the company, losing the market to a less scrupulous competitor, and 
possibly going out of business. For the industry as a whole, software quality has 
indeed improved regularly over time but tends to peak below the optimum. 

An approach that can overcome these obstacles is increased reliance on reusable 
components, providing pre-built solutions to problems that arise in many different 
applications, either regardless of the technical domain (general-purpose component 
libraries) or in particular fields (specialized libraries). Components have already 
changed the nature of software development by providing conveniently packaged 
implementations, accessible through abstract interfaces, of common aspects such as 
graphical user interfaces, database manipulation, basic numerical algorithms, 
fundamental data structures and others, thereby elevating the level at which 
programmers write their applications. When the components themselves are of good 
quality, such reuse has highly beneficial effects since developers can direct their 
efforts to the quality of the application-specific part of their programs. 

Examining more closely the relationship of components to quality actually highlights 
two separate effects: it is comforting to know that the quality of a system will benefit 
from the quality of its components; but we must note that reuse magnifies the bad as well 
as the good: imperfections can be even more damaging in components than in “one-ofa-
kind” developments, since they affect every application that relies on a component. 

The notion of trusted component [58] [61] follows from this analysis that one of 
the most pressing and promising tasks for improving software quality is the industrial 
production of reusable components equipped with a guarantee of quality. Producing 
such trusted components may involve most of the techniques discussed elsewhere in 
this article. For some of the more difficult ones, such as program proving, application 
to components may be the best way to justify the cost and effort and recoup the 
investment thanks to the scaling effect of component reuse: once a component has 
reached the level of quality at which it can really be trusted, it will benefit every 
application that relies on it. 

5   Tools and Environments 

Transitioning now to product-oriented solutions, we examine some of the progress in 
tools available to software developers — to the extent that it is relevant for software 
quality. 

5.1   Configuration Management 

Configuration management is a both practice (for the software developer) and a 
service (from the supporting tools), so it could in principle be classified under 



 Dependable Software 13 

“process” as well as under “product”. It belongs more properly to the latter category 
since it’s tools that make configuration management realistic; applied as a pure 
organizational practice without good tool support, it quickly becomes tedious and 
ceases being applied.  

Configuration management may be defined as the systematic collecting and 
registering of project elements, including in particular the ability to: 

• Register a new version of any project element. 
• Retrieve any previously registered version of any project element 
• Register dependencies, both between project elements and between registered 

versions of project elements (e.g. A relies on B, and version 10 of A requires 
version 7, 8 or 9 of B). 

• Construct composite products from their constituents — for example, build an 
executable version of a program from its modules — or reconstruct earlier 
versions, in accordance with registered dependencies. 

A significant number of software disasters on record followed from configuration 
management errors, typically due to reintroducing an obsolete version of a module 
when compiling a new release of a program, or using an obsolete version of some 
data file. Excuses no longer exist for such errors, as acceptable configuration 
management tools, both commercial and open-source, are widely available. These 
tools, while still far from what one could hope for, have made configuration 
management one of the most important practices of modern software development. 

Source code is not the only beneficiary of configuration management. Any product 
that evolves, has dependencies on other elements and may need restoring to an earlier 
state should be considered for inclusion in the configuration management repository. 
Besides code this may include project plans, specification and design documents, user 
manuals, training documents such as PowerPoint slides, test data files. 

5.2   Metrics and Models 

If we believe Lord Kelvin’s (approximate) maxim that all serious study is 
quantitative, then software and software development should be susceptible to 
measurement, tempered of course by Einstein’s equally famous quote that not 
everything measurable is worth measuring. A few software properties, process or 
product, are at the same time measurable, worth measuring and relevant to software 
reliability.  

On the process side, cost in its various dimensions is a prime concern. While it is 
important to record costs, if only for CMMI-style traceability, what most project 
managers want at a particular time is a model to estimate the cost of a future project or 
of the remainder of a current project. Such models do exist and can be useful, at least 
if the development process is stable and the project is comparable to previous ones: 
then by estimating a number of project parameters and relying on historical data for 
comparison one can predict costs—essentially, person-months—within reasonable 
average accuracy. A well-known cost model, for which free and commercial tools are 
available, is COCOMO II [12]. 

During the development of a system, faults will be reported. In principle they 
shouldn’t be comparable to the faults of a material product, since software is an 
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intellectual product and doesn’t erode, wear out or collapse under attack from the 
weather. In practice, however, statistical analysis shows that faults in large projects 
can follow patterns that resemble those of hardware systems and are susceptible to 
similar statistical prediction techniques. That such patterns can exist is in fact 
consistent with intuition: if the tests on the last five builds of a product under 
development have each uncovered one hundred new bugs each, it is unlikely that the 
next iteration will have zero bugs, or a thousand. Software reliability engineering 
[69][46] elaborates on these ideas to develop models for assessing and predicting 
failures, faults and errors. As with cost models, a requirement for meaningful 
predictions is the ability to rely on historical data for calibration. Reliability models 
are not widely known, but could help software projects understand, predict and 
manage anomalies better. 

More generally, numerous metrics have been proposed to provide quantitative 
assessments of software properties. Measures of complexity, for example, include: 
“source lines of code” (SLOC), the most primitive, but useful all the same; “function 
points” [25], which count the number of elementary mechanisms implemented by the 
software; measures of the complexity of the control graph, such as “cyclomatic 
complexity” [48][49]; and measures specifically adapted to object-oriented software 
[35][59]. The EiffelStudio environment [30] makes it possible to compute many metrics 
applied to a project under development, including measures regarding the use of 
contracts (section 8), and to compare them with values on record. While not necessarily 
meaningful in isolation, such measures elements are a useful control tool for the 
manager; they are in line with the CMMI’s insistence that an organization can only 
reach the higher levels of process maturity (4 and 5) by moving from the qualitative to 
the quantitative, and should be part of the data collected for such an effort.  

5.3   Static Analyzers 

Static analyzers are another important category of tools, increasingly integrated in 
development environments, whose purpose is to examine the software text for 
deficiencies. They lie somewhere between type checkers (themselves integrated in 
compilers) and full program provers, and will be studied below (7.2) after the 
discussion of proofs. 

5.4   Integrated Development Environments 

Beyond individual tools the evolution of software development has led to the 
widespread of integrated tool suites known as IDEs for Integrated (originally: 
Interactive) Development Environments. Among the best known are Microsoft’s 
Visual Studio [66] and IBM’s Eclipse [27]; EiffelStudio [30] is another example. 
These environments, equipped with increasingly sophisticated graphical user 
interfaces, provide under a single roof a whole battery of mechanisms to write 
software (editors), manage its evolution (configuration management), compile it 
(compilers, interpreters, optimizers), examine it effectively (browsers), run it and 
elucidate the sources of faults (debuggers, testers), analyze it for possible 
inconsistencies and errors (static analysis), generate code from design and analysis 
diagrams or the other way around (diagramming, “Computer-Aided Software 
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Engineering” or CASE, reverse engineering), change architecture in a safe way 
through tool-controlled transformations (refactoring), perform measurements as noted 
above (metric tools), and other tasks.  

This is one of the most active areas in software engineering; programmers, for 
whom IDEs are the basic daily tools, are directly interested in their quality, so that 
open-source projects such as Eclipse and EiffelStudio benefit from active community 
participation. The effect of these advanced frameworks on software reliability, while 
diffuse, is undeniable, as their increasing cleverness supports quality in several ways: 
finding bugs through static and dynamic techniques; avoiding new bugs through 
mechanisms such as refactoring; generating some of the code without manual 
intervention; and, more generally, providing a level of comfort that frees 
programmers from distractions and lets them apply their best skills to the hardest 
issues of software construction.  

6   Programming Languages 

The evolution of programming languages plays its part in the search for more reliable 
software. High-level languages contribute both positively, by providing higher levels 
of expression through advanced constructs freeing the programmer (in the same spirit 
as modern IDEs) from mundane, repetitive or irrelevant tasks, and negatively, by 
ruling out certain potentially unsafe constructs and, as a result, eradicate entire classes 
of bugs at the source.  

The realization that programming language constructs could exert a major 
influence on software quality both through what they offer and what they forbid dates 
back to structured programming [22] [20] which, in the early seventies, led to 
rejecting the goto as a control structure in favor of more expressive constructs — 
sequence, conditional, loop, recursion. The next major step was object-oriented 
programming, introducing a full new set of abstractions, in particular the notion of 
class, providing decomposition based on object types rather than individual 
operations, and techniques of inheritance and genericity. 

In both cases the benefit comes largely from being able to reason less operationally 
about software. A software text represents many possible executions, so many in fact 
that it is hard to understand the program — and hence to get it right — by thinking in 
terms of what happens at execution [22]. Both structured and object-oriented 
techniques make it possible to limit such operational thinking and instead understand 
the abstract properties of future run-time behaviors by applying the usual rules of 
logical reasoning. 

In drawing the list of programming languages’ most important contributions to  
quality, we must indeed put at the top all the mechanisms that have to do with 
structure. With ever larger programs addressing ever more ambitious goals, the 
production and maintenance of reliable software requires safe and powerful modular 
decomposition  facilities. Particularly noteworthy are: 

• As pointed out, the class mechanism, which provides a general basis for stable 
modules with a clear role in the overall architecture. 

• Techniques for information hiding, which protect modules against details of other 
modules, and permit independent evolution of the various parts of a system. 
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• Inheritance, allowing the classification and systematic organization of classes into 
structured collections, especially with multiple inheritance. 

• Genericity, allowing the construction of type-parameterized modules. 

Another benefit of modern languages is static typing which requires programmers to 
declare types for all the variables and other entities in their programs, then takes 
advantage of this information to detect possible inconsistencies in their use and reject 
programs, at compilation time, until all types fit. Static typing is particularly 
interesting in object-oriented languages since inheritance supports a flexible type 
system in which types can be compatible even if they are not identical, as long as one 
describes a specialization of the other. 

Another key advance is garbage collection, which frees programmers from having 
to worry about the details of memory management and removes an entire class of 
errors —such as attempts to access a previously freed memory cell—which can 
otherwise be particularly hard to detect and to correct, in particular because the 
resulting failures are often intermittent rather than deterministic. Strictly speaking, 
garbage collection is a property of the language implementation, but it’s the language 
definition that makes it possible, as with modern object-oriented languages, or not, as 
in languages such as C that permit arbitrary pointer arithmetic and type conversions. 

Exception handling, as present in modern programming languages, helps improve 
software robustness by allowing developers to include recovery code for run-time faults 
that would otherwise be fatal, such as arithmetic overflow or running out of memory.  

A mechanism that is equally far-reaching in its abstraction benefits is the 
“closure”, “delegate” or “agent” [62]. Such constructs wrap operations in objects that 
can then be passed around anonymously across modules of a system, making it 
possible to treat routines as first-class values. They drastically simplify certain kinds 
of software such as numerical applications, GUI programming and other event-driven 
(or “publishsubscribe”) schemes. 

The application of programming language techniques to improving software 
quality is limited by the continued reliance of significant parts of the software 
industry on older languages. In particular: 

• Operating systems and low-level system-related tend to be written in C, which 
retains its attractions for such applications in spite of widely known deficiencies, 
such as the possibility of buffer overflow. 

• The embedded and mission-critical community sometimes prefers to use lowlevel 
languages, including assembly, for fear of the risks potentially introduced by 
compilers and other supporting tools. 

The “Verifying Compiler Grand Challenge” [38] [77] is an attempt to support the 
development of tools that—even with such programming languages—will guarantee, 
during the process of compiling and thanks to techniques described in the following 
sections, the reliability of the programs they process. 

7   Static Verification Techniques 

Static techniques work solely from the analysis of the software text: unlike dynamic 
techniques such as tests they do not require any execution to verify software or report 
errors. 
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7.1   Proofs 

Perhaps the principal difference between mathematics and engineering is that only 
mathematics allows providing absolute guarantees. Given the proper axioms, I can 
assert with total confidence that two plus two equals four. But if I want to drive to 
Berne the best assurance I can get that my car will not break down is a probability. I 
know it’s higher than if I just drive it to the suburbs, and lower than if my goal were 
Prague, Alma-Ata, Peking or Bombay; I can make it higher by buying a new, better 
car; but it will never be one. Even with the highest attention to quality and 
maintenance, physical products will occasionally fail. 

Under appropriate assumptions, a program is like a mathematical proposition rather 
than a material device: any general property of the program—stating that all executions 
of the program will achieve a certain goal, or that at least one possible execution will—
is either true or false, and whether it is true or not is entirely determined by the text of 
the program, at least if we assume correct functioning of the hardware and of other 
software elements needed to carry out program execution (compiler, run-time system, 
operating system). Another way of expressing this observation is that a programming 
language is similar to a mathematical theory, in which certain propositions are true and 
others false, as determined by the axioms and inference rules.  

In principle, then, it should be possible to prove or disprove properties of 
programs, in particular correctness, robustness and security properties, using the same 
rigorous techniques as in the proofs of any mathematical theorem. This assumes 
overcoming a number of technical difficulties: 

• Programming languages are generally not defined as mathematical theories but 
through natural-language documents possessing a varying degree of precision. To 
make formal reasoning possible requires describing them in mathematical form; 
this is known as providing a mathematical semantics (or “formal semantics”) to a 
programming language and is a huge task, especially when it comes to modeling 
advanced mechanisms such as exception handling and concurrency, as well as the 
details of computer arithmetic since the computer’s view of integers and reals 
strays from their standard mathematical properties. 

• The theorems to be proved involve specific properties of programs, such as the 
value of a certain variable not exceeding a certain threshold at a certain state of the 
execution. Any proof process requires the ability to express such properties; this 
means extending the programming language with boolean-valued expressions, 
called assertions. Common languages other than Eiffel do not include an assertion 
mechanism; this means that programmers will have to resort to special extensions 
such as JML for Java [43] (see also Spec#, an extension of the C# language [5]) 
and annotate programs with the appropriate assertions. Some tools such as Daikon 
help in this process by extracting tentative assertions from the program itself [31].  

• In practice the software’s actual operation depends, as noted, on those of a 
supporting hardware and software environment; proofs of the software must be 
complemented by guarantees about that environment.  

• Not all properties lend themselves to easy enunciation. In particular, 
“nonfunctional” properties such as performance (response time, bandwidth, 
memory occupation) are hard to model. 
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• More generally, a proof is only as useful as the program properties being proven. 
What is being proved is not the perfection of the program in any absolute sense, nor 
even its quality, but only that it satisfies the assertions stated. It is never possible to 
know that all properties of interest have been included. This is not just a theoretical 
problem: security attacks often take advantage of auxiliary aspects of the program’s 
behavior, which its design and verification did not take into account.  

• Even if the language, the context and the properties of interest are fully specified 
semantically and the properties relevant, the proof process remains a challenge. It 
cannot in any case be performed manually, since even the proof of a few properties 
of a moderately sized programs quickly reaches into the thousands of proof steps. 
Fully automated proofs are, on the other hand, generally not possible. Despite 
considerable advances in computer-assisted proof technology (for programs as well 
as other applications) significant proofs still require considerable user interaction 
and expert knowledge. 

Of course the effort may well be worthwhile, especially in two cases: life-critical 
systems in transportation and defense to which, indeed, much proof work has been 
directed; and reusable components, for which the effort is justified—as explained in 
the discussion of Trusted Components above — by the scaling-up effect of reuse.  

Here are some of the basic ideas about how proofs work. A typical program 
element to prove would be, in Eiffel notation. 

decrement
-- Decrease counter by one.

require
counter > 0

do
counter := counter – 1

ensure
counter = old counter – 1
counter >= 0

end
 

This has a program body, the do clause, and two assertions, a “precondition” 
introduced by require and a “postcondition” introduced by ensure and consisting of 
two subclauses implicitly connected by an and. Assertions are essentially Boolean 
expressions of the language with the possibility, in a postcondition, of using the old 
notation to refer to values on entry: here the first subclause of the postcondition states 
that the value of counter will have been decreased by one after execution of the do 
clause. 

Program proofs deal with such annotated programs, also called contracted 
programs (see section 8 below). The annotations remind us that proofs and other 
software quality assurance technique can never give us absolute guarantees of quality: 
we can never say that a program is “correct”, only assess it — whether through 
rigorous techniques like proofs or using more partial ones such as those reviewed 
next—relatively to explicitly stated properties, expressed here through assertions 
integrated in the program text.  

From a programmer’s viewpoint the above extract is simply the text of a routine to 
be executed, with some extra annotations, the precondition and postcondition, 
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expressing properties to be satisfied before and after. But for proof purposes this text 
is a theorem, asserting that whenever the body (the do clause with its assignment 
instruction) is executed with the precondition satisfied it will terminate in such a way 
that the postcondition is satisfied. 

This theorem appears to hold trivially but — even before addressing the concern 
noted above that computer integers are not quite the same as mathematical integers — 
proving it requires the proper mathematical framework. The basic rule of axiomatic 
semantics (or “Hoare semantics” [37]) covering such cases is the assignment axiom, 
which for any variable x and expression e states that the following holds 

require Q (e) do x := e ensure Q (x)
 

whereQ (x) is an assertion which may depend on x ; thenQ (e) is the same assertion 
with every mention of x replaced by e, except for old x which must be replaced by x.  

This very general axiom captures the properties of assignment (in the absence of 
side effect in the evaluation of e); its remarkable feature is that it is applicable even if 
the source expression e contains occurrences of the target variable x, as in the 
example (where x is counter).  

We may indeed apply the axiom to prove the example’s correctness. Let Q1 (x) be 
x = old x – 1, corresponding to the first subclause of the postcondition, and Q2 (x) be 
x >= 0. Applying the rule to Q1 (counter), we replace counter by counter + 1 and 
old counter by counter; this gives counter – 1 = counter – 1, which trivially holds. 
Applying now the same transformations to Q2 (counter), we get counter – 1 >= 0, 
which is equivalent to the precondition counter > 0. This proves the correctness of 
our little assertion-equipped example.  

From there the theory moves to more complex constructions. An inference rule 
states that if you have proved 

require P do Instruction_1 ensure Q
 

and 

require Q do Instruction_2 ensure R
 

(note the postcondition of the first part matching the precondition of the second part) 
you are entitled to deduce 

require P do Instruction_1 ; Instruction_2 ensure Rt
 

and so on for more instructions. A rule in the same style enables you to deduce 
properties of if c then I1 else I2 end from properties of I1 and I2. More advanced is 
the case of loops: to prove the properties of  

from
Initialization

until
Exit

loop
Body

end
 



20 B. Meyer 

you need, in this general approach, to introduce a new assertion called the loop 
invariant and an integer expression called the loop variant. The invariant is a 
weakened form of the desired postcondition, which serves as approximation of the 
final goal; for example if the goal is to compute the maximum of a set of values, the 
invariant will be “Result is the maximum of the values processed so far”. The 
advantage of the invariant is that it is possible both to: 

• Ensure the invariant through initialization (the from clause in the above notation); 
in the example the invariant will be trivially true if we start with just one value and 
set Result to that value. 

• Preserve the invariant through one iteration of the loop body (the loop clause); in 
the example it suffices to extend the set of processed values by one element v and 
execute if v > Result then Result := v end. 

If indeed a loop possesses such an invariant and its execution terminates, then on exit 
the invariant will still hold (since it was ensured by the initialization and preserved by 
all the loop iterations), together with the Exit condition. The combination of these two 
assertions gives the postcondition of the loop. Seen the other way around, if we 
started from a desired postcondition and weakened it to get an invariant, we will 
obtain a correct program. In the example, if the exit condition states that we have 
processed all values of interest, combining this property with the invariant “Result is 
the maximum of the values processed so far” tells us that Result is the maximum of 
all values.  

Such reasoning is only interesting if the loop execution actually terminates; this is 
where the loop variant comes in. It is an integer expression which must have a 
nonnegative value after the Initialization and decrease, while remaining non-negative, 
whenever the Body is executed with the Exit condition not satisfied. The existence of 
such an expression is enough to guarantee termination since a non-negative integer 
value cannot decrease forever. In the example a variant isN — i where N is the total 
number of values being considered for the maximum (the proof assumes a finite set) 
and i the number of values processed. 

Axioms and inference rules similarly exist for other constructs of programming 
languages, becoming, as noted, more intricate as one moves on to more advanced 
mechanisms. 

For concurrent, reactive and real-time systems, boolean assertions of the kind 
illustrated above may not be sufficient; it is often convenient to rely on properties of 
temporal logic [47], which given a set of successive observations of a program’s 
execution, can express, for a boolean property Q: 

• forever Q: from now on, Q will always hold. 
• eventually Q: at some point in the future (where “future” includes now), Q will 

hold. 
• P until Q: Q will hold at some point in the future, and until then P will hold. 

Regardless of the kind of programs and properties being targeted, there are two 
approaches to producing program proofs. The analytic method takes programs as 
they exist, then after equipping them with assertions, either manually or with some 
automated aid as noted above, attempts the proof. The constructive method [24] [2] 
[68] integrates the proof process in the software construction process, often using 
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successive refinements to go from specification to implementation through a sequence 
of transformations, each proved to preserve correctness, and integrating more 
practical constraints at every step. Proof technology has had some notable successes, 
including in industrial systems (and in hardware design), but until recently has 
remained beyond the reach of most software projects. 

7.2   Static Analysis 

If hoping for a proof covering all the correctness, reliability and security properties of 
potential interest is often too ambitious, the problem becomes more approachable if 
we settle for a subset of these properties — a subset that may be very partial but very 
interesting. For example being able to determine that no buffer overflow can ever 
arise in a certain program—in other words, to provide a firm guarantee, through 
analysis of the program text, that every index used at run time to access an item in an 
array or a character in a string will be within the defined bounds—is of great practical 
value since this rules out a whole class of security attacks. 

Static analysis is the tool-supported analysis of software texts for the purpose of 
assessing specific quality properties. Being “static”, it requires no execution and 
hence can in principle be applied to software products other than code. Proofs are a 
special case, the most far-reaching, but other static analysis techniques are available. 

At the other extreme, a well-established form of elementary static analysis is type 
checking, which benefits programs written in a statically typed programming 
language.  Type checking, usually performed by the compiler rather than by a 
separate tool, ascertains the type consistency of assignments, routine calls and 
expressions, and rejects any program that contains a type incompatibility. 

More generally, techniques usually characterized as static analysis lie somewhere 
between such basic compiler checks and full program proofs. Violations that can 
typically be detected by static analysis include: 

• Variables that, on some control paths, would be accessed before being initialized 
(in languages such as C that do not guarantee initialization). 

• Improper array and string access (buffer overflow). 
• Memory properties: attempt to access a freed location, double freeing, memory 

leak… 
• Pointer management (again in low-level languages such as C): attempts to follow 

void or otherwise invalid pointers. 
• Concurrency control: deadlocks, data races. 
• Miscellaneous: certain cases of arithmetic overflow or underflow, changes to 

supposedly constant strings… 

Static analysis tools such as PREfix [72] have been regularly applied for several years 
to new versions of the Windows code base and have avoided many potential errors.  

One of the issues of static analysis is the occurrence of false alarms: inconsistency 
reports that, on inspection, do not reveal any actual error. This was the weak point of 
older static analyzers, such as the widely known Lint tool which complements the 
type checking of C compilers: for a large program they can easily swamp their users 
under thousand of messages, most of them spurious, but requiring a manual 
walkthrough to sort out the good from the bad. (In the search for errors, of course, the 
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“good” is what otherwise would be considered the bad: evidence of wrongdoing.) 
Progress in static analysis has been successful in considerably reducing the 
occurrence of false alarms.  

The popularity of static analysis is growing; the current trend is to extend the reach 
of static analysis tools ever further towards program proofs. Two examples are:  

• Techniques of abstract interpretation [18] with the supporting ASTRÉE tool [9], 
which has been used to prove the absence of run-time errors in the primary flight 
control software, written in C, for the Airbus A340 fly-by-wire system.  

• ESC-Java [21] and, more recently, the Boogie analyzer [4] make program proving 
less obtrusive by incrementally extending the kind of diagnostics with which 
programmers are familiar, for example type errors, to more advanced checks such 
as the impossibility to guarantee that an invariant is preserved. 

7.3   Model Checking 

The model checking approach to verification [36] [17] [3] is static, like proofs and 
static analysis, but provides a natural link to the dynamic techniques (testing) studied 
below. The inherent limitation of tests is that they can never be exhaustive; for any 
significant system—in fact, even for toy examples—the number of possible cases 
skyrockets into the combinatorial stratosphere, where the orders of magnitude invite 
lyrical comparisons with the number of particles in the universe.  

The useful measure is the number of possible states of a program. The notion of 
state was implicit in the earlier discussion of assertions. A state is simply a snapshot 
of the program execution, as could be observed, if we stop that execution, by looking 
up the contents of the program’s memory, or more realistically by using the debugger 
to examine the values of the program’s variables. Indeed it is the combination of all 
the variables’ values that determines the state. With every 64-bit integer variable 
potentially having 264

 values, it is not surprising that the estimates quickly go galactic.  
Model checking attempts exhaustive analysis of program states anyway by 

performing predicate abstraction. The idea is to simplify the program by replacing all 
expressions by boolean expressions (predicates), with only two possible values, so 
that the size of the state space decreases dramatically; it will still be large, but the 
power of modern computers, together with smart algorithms, can make its exploration 
tractable. Then to determine that a desired property holds — for example, a security 
property such as the absence of buffer overflows, or a timing property such as the 
absence of deadlock — it suffices to evaluate the corresponding assertion in all of the 
abstract states and, if a violation of that assertion (or counter-example) is found, to 
check that it also arises in the original program. 

For example, predicate abstraction will reduce a conditional instruction if a > b 
then... to if p then..., where p is a boolean. This immediately cuts down the number of 
cases from 2128 to 2. The drawback is that the resulting program is only a caricature 
of the original; it loses the relation of p to other predicates involving a and b. But it 
has an interesting property: if the original violates the assertion, then the abstracted 
version also does. So the next task is to look for any such violation in the abstracted 
version. This may be possible through exhaustive examination of its reduced state 
space, and if so is guaranteed to find any violation in the original program, but 
even so is not the end of the story, since the reverse proposition does not hold: a 
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counter-example in the abstracted program does not necessarily signal a counter-
example in the original. It could result from the artificial merging of several cases, for 
example if it occurs on a path — impossible in an execution of the original program 
— obtained by selecting both p and q as true where q is the abstraction of b > a + 1. 
Then examining the state space of the abstracted program will either: 

• Not find any violations, in which case it proves there was none in the original 
program.  

• Report violations, each of which might be an error in the original or simply a false 
alarm generated by the abstraction process. 

So the remaining task, if counter-examples have been found, is to ascertain whether 
they arise in the original. This involves defining the path predicate that leads to each 
counter-example, expressing it in terms of the original program variables (that is to 
say, removing the predicate abstraction, giving, in the example, a > b and b > a + 1) 
and determining if any combination of values for the program variables can satisfy the 
predicate: if such a combination, or variable assignment, exists, then the counter 
example is a real one; if not, as in the case given, it is spurious. 

This problem of predicate satisfiability is computationally hard; finding efficient 
algorithms is one of the central areas of research in model checking. 

The focus on counter-examples gives model checking a practical advantage over 
traditional proof techniques. Unless a software element was built with verification in 
mind (through a “constructive method” as defined above), the first attempt to verify it 
will often fail. With proofs, this failure doesn’t tell us the source of the problem—and 
could actually signal a limitation of the proof procedure rather than an error in the 
program. With model checking, you get a counter-example which directly shows 
what’s wrong. 

Model checking has captured considerable attention in recent years, first in 
hardware design and then in reactive and real-time systems, for which the assertions 
of interest are often expressed in temporal logic. 

8   Design by Contract 

The goal of developing software to support full proofs of correctness properties is, as 
noted, desirable but still unrealistic for most projects. Even a short brush with 
program proving methods suggests, however, that more rigor can be highly beneficial 
to software quality. The techniques of Design by Contract go in this direction and 
deliver part of the corresponding benefits without requiring the full formality of 
proof-directed development. 

The discussion of proofs introduced Eiffel notations such as 
• require assertion    -- A routine precondition 
• ensure assertion     -- A routine postcondition 

associated with individual routines. They are examples of contract elements which 
specify abstract semantic properties of program constructs. Contracts apply in 
particular to: 
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• Individual routines: precondition, stating the condition under which a routine is 
applicable; postcondition, stating what condition it will guarantee in return when it 
terminates. 

• In object-oriented programming, classes: class invariant, stating consistency 
conditions that must hold whenever an object is in a stable state. For example, the 
invariant for a “paragraph” class in a text processing system may state that the total 
length of letters and spaces is equal to the paragraph width. Every routine that can 
modify an instance of the class may assume the class invariant on entry (in addition 
to its precondition) and must restore it on exit (in addition to ensuring its 
postcondition). 

• Loops: invariant and (integer) variant as discussed above. 
• Individual instructions: “assert” or “check” constructs. 

The discipline of Design by Contract [53] [57] [67] gives a central role to these 
mechanisms in software development. It views the overall process of building a 
system as defining a multitude of relationships between “client” and “supplier” 
modules, each specified through a contract in the same manner as relationships 
between companies in the commercial world. 

The benefits of such a method, if carried systematically, extend throughout the 
lifecycle, supporting the goal of seamlessness discussed earlier: 

• Contracts can be used to express requirements and specifications in a precise yet 
understandable way, preferable to pure “bubbles and arrows” notations, although of 
course they can be displayed graphically too. 

• The method is also a powerful guide to design and implementation, helping 
developers to understand better the precise reason and context for every module 
they produce, and as a consequence to get the module right. 

• Contracts serve as a documentation mechanism: the “contract view” of a class, 
which discards implementation-dependent elements but retains externally relevant 
elements and in particular preconditions, postconditions and class invariants, often 
provides just the right form of documentation for software elements, especially 
reusable components: precise enough thanks to the contracts; abstract enough 
thanks to the removal of implementation properties; extracted from the program 
text, and hence having a better chance of being up to date (at least one major 
software disaster was traced [41] to a software element whose specification had 
changed, unbeknownst to the developers who reused it); cheap to produce, since 
this form of documentation can be generated by tools from the source text, rather 
than written separately; and multi-purpose, since the output can be tuned to any 
appropriate format such as HTML. Eiffel environments such as EiffelStudio 
produce such views [30], which serve as the basic form of software documentation. 

• Contracts are also useful for managers to understand the software at a high level of 
abstraction, and as a tool to control maintenance. 

• In object-oriented programming, contracts provide a framework for the proper use 
of inheritance, by allowing developers to specify the semantic framework within 
which routines may be further refined in descendant classes. This is connected with 
the preceding comment about management, since a consequence is to allowa 
manager to check that refinements to an design are consistent with its original 
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intent, which may have been defined by the top designers in the organization and 
expressed in the form of contracts. 

• Most visibly, contracts are a testing and debugging mechanism. Since an 
execution that violates an assertion always signals a bug, turning on contract 
monitoring during development provides a remarkable technique for identifying 
bugs. This idea is pursued further by some of the tools cited in the discussion of 
testing below.  

Design by Contract mechanisms are integrated in the design of the Eiffel language 
[52] [28] and a key part of the practice of the associated method. Dozens of contract 
extensions have been proposed for other programming languages (as well as UML 
[80]), including many designs such as JML [43] for Java and the Spec# extension of 
C# [5]. 

9   Testing 

Testing [70] [8] is the most widely used form of program verification, and still for 
many teams essentially the only one. In academic circles testing has long suffered 
from a famous comment [23] that (because of the astronomical number of possible 
states) “testing can only show the presence of bugs, but never to show their absence”. 
In retrospect it’s hard to find a rational explanation for why this comment ever 
detracted anyone from the importance of tests, since it in no way disproves the 
usefulness of testing: finding bugs is a very important task of software development. 
All it indicates is that we should understand that finding bugs is indeed the sole 
purpose of testing, and  not delude ourselves that test results directly reflect the level 
of quality of a product under development. 

9.1   Components of a Test 

Successful testing relies on a test plan: a strategy, expressed in a document, 
describing choices for the tasks of the testing process. These tasks include: 

• Determining which parts to test. 
• Finding the appropriate input values to exercise. 
• Determining the expected properties of the results (known as oracles). Input values 

and the associated oracles together make up test cases, the collection of which 
constitutes a test suite. 

• Instrumenting the software to run the tests (rather than perform its normal 
operation, or in addition to it); this is known as building a test harness, which may 
involve test drivers to solicit specific parts to be tested, and stubs to stand for parts 
of the system that will not be tested but need a placeholder when other parts call 
them. 

• Running the software on the selected inputs. 
• Comparing the outputs and behavior to the oracles. 
• Recording the test data (test cases, oracles, outputs) for future re-testing of the 

system, in particular regression testing, the task of verifying that previously 
corrected errors have not reappeared. 
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In addition there will be a phase of correction of the errors uncovered by the test, but 
in line with the above observations this is not part of testing in the strict sense. 

9.2   Kinds of Test 

One may classify tests with respect to their scope (this was used in the earlier 
description of the V model of the lifecycle): 

• Aunit test covers a module of the software. 
• Integration test covers a complete cluster or subsystem. 
• Asystem test covers the complete delivery. 
• User Acceptance Testing involves the participation of the recipients of the system 

(in addition to the developers, responsible for the preceding variants) to determine 
whether they are satisfied with the delivery. 

• Business Confidence Testing is further testing with the users, in conditions as close 
as possible to the real operating environment. 

An orthogonal classification addresses what is being tested: 

• Functional testing: whether the system fulfills the functions defined in the 
specification. 

• Performance testing: its use of resources. 
• Stress testing: its behavior under extreme conditions, such as heavy user load. 

Yet another dimension is intent: testing can be fault-directed to find deficiencies but 
also (despite the above warnings), conformance-directed to estimate satisfaction of 
desired properties, or acceptance testing for users to decide whether to approve the 
product. Regression testing, as noted, re-runs tests corresponding to previously 
identified errors; surprisingly to the layman, errors have a knack for surging back into 
the software, sometimes repeatedly, long after they were thought corrected. 

The testing technique, in particular the construction of test suites, can be: 

• Black-box: based on knowledge of the system’s specification only.  
• White-box: based on knowledge of the code, which makes it possible for example 

to try to exercise as much of that code as possible. 

Observing the state of the art in software testing suggests that four issues are critical: 
managing the test process; estimating the quality of test suites; devising oracles; 
and— the toughest — generating test cases automatically.  

9.3   Managing the Testing Process 

Test management has been made easier through the appearance of testing 
frameworks such as JUnit [42] and Gobo Eiffel Test [7] which record test harnesses 
to allow running the tests automatically. This removes a considerable part of the 
burden of testing and is important for regression testing.  

An example of a framework for regression testing of a compiler, incorporating 
every bug ever found since 1991, is EiffelWeasel [29]. Such automated testing require 
a solid multi-process infrastructure, to ensure for example that if a test run causes a 
crash the testing process doesn’t also crash but records the problem and moves on to 
the next test. 
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9.4   Estimating Test Quality 

Being able to estimate the quality of a test suite is essential in particular to know 
when to stop testing. The techniques are different for white-box and black-box 
testing. 

With white-box testing it is possible to define various levels of coverage, each 
assuming the preceding ones: instruction coverage, ensuring that through the 
execution of the selected test cases every instruction is executed at least once; branch 
coverage, where every boolean condition tests at least once to true and once to false; 
condition coverage, where this is also the case for boolean sub-expressions; path 
coverage, for which every path has been taken; loop coverage, where each loop body 
has been executed at least n times for set n.  

Another technique for measuring test suite quality in white-box approaches is 
mutation testing [79]. Starting with a program that passes its test suite, this 
consists of making modifications — similar, if possible, to the kind of errors that 
programmers would make — to the program, and running the tests again. If a 
“mutant” program still passes the tests, this indicates (once you have made sure the 
mutant is not equivalent to the original, in other words, the changes are meaningful) 
that the tests were not sufficient. Mutation testing is an active area of research [71]; 
one of the challenges is to use appropriate mutation operators, to ensure diversity of 
the mutants. 

With black-box testing the previous techniques are not available since they 
assume access to the source code to set up the test plan. It is possible to define 
notions of specification coverage to estimate whether the tests have exercised the 
various cases listed in the specification; if contracts are present, this will mean 
analyzing the various cases listed in the preconditions. Partition testing [81] is the 
general name for techniques (black- or white-box) that split the input domain into 
representative subsets, with the implication that any test suite must cover all the 
subsets. 

9.5   Defining Oracles 

An oracle, allowing interpretation of testing results, provides a decision criterion for 
accepting or rejecting the result of a test. The preparation of oracles can be as much 
work as the rest of the test plan. The best solution that can be recommended is to rely 
on contracts: any functional property of a software system (with the possible 
exception of some user-interface properties for which human assessment may be 
required) can be expressed as a routine postcondition or a class invariant. 

These assertions can be included in the test harness, but it is of course best, as 
noted in the discussion of Design by Contract, to make them an integral part of the 
software to be tested as it is developed; they will then provide the other benefits 
cited, such as aid to design and built-in documentation, and will facilitate regression 
testing. 

9.6   Test Case Generation 

The last of the four critical issues listed, test case generation, is probably the toughest; 
automatic generation in particular. Even though we can’t ever get close to exhaustive 
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testing, we want the test process to cover as many cases as possible, and especially to 
make sure they are representative of the various potential program executions—as can 
be assessed in white-box testing by coverage measures and mutation, but needs to be 
sought in any form of testing.  

For any realistic program, manually prepared tests will never cover enough cases; 
in addition, they are tedious to prepare. Hence the work on automatic test case 
generation, which tries to produce as many representative test cases as possible, 
typically working  from specifications only (black-box). Two tools in this area are 
Korat for JML [13] and AutoTest for Eiffel [15] (which draws on the advantage 
that—contracts being native to Eiffel—existing Eiffel software is typically equipped 
with large numbers of assertions, so that AutoTest can be run on software as is, and 
indeed has already uncovered a significant number of problems in existing programs 
and libraries).  

Manual tests, which benefit from human insight, remain indispensable. The two 
kinds are complementary: manual tests are good at depth, automatically generated 
tests at breadth. In particular, any run that ever uncovered a bug, whether through 
manual or automatic techniques, should become part of the regression test suite. 
AutoTest integrates manual tests and regression tests within the automatic test case 
generation and execution framework [44]. 

Automatic test case generation needs a strategy for selecting inputs. Contrary to 
intuition, random testing [34], which selects test data randomly from the input 
domain, can be an effective strategy if tuned to ensure a reasonably even distribution 
over that domain, a policy known as adaptive random testing [14] which has so far 
been applied to integers and other simple values (for which a clear notion of distance 
exists, so that “even distribution” is immediately meaningful). Recent work [16] 
extends the idea to object-oriented programming by defining a notion of object 
distance.  

10   Conclusion 

This survey has taken a broad sweep across many techniques that all have something 
to contribute to the aim of software reliability. While it has stayed away from the 
gloomy picture of the state of the industry which seems to be de rigueur in discussions 
of this topic, and is not justified given the considerable amount of quality-enhancing 
ideas, techniques and tools that are available today and the considerable amount of 
good work currently in progress, it cannot fail to note as a conclusion that the industry 
could do much more to take advantage of all these efforts and results.  

There is not enough of a reliability culture in the software world; too often, the 
order of concerns is cost, then deadlines, then quality. It is time to reassess priorities. 
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Abstract. Improving the dependability of computer systems is a criti-
cal and essential task. In this context, the paper surveys techniques that
allow to achieve fault tolerance in distributed systems by replication. The
main replication techniques are first explained. Then group communica-
tion is introduced as the communication infrastructure that allows the
implementation of the different replication techniques. Finally the diffi-
culty of implementing group communication is discussed, and the most
important algorithms are presented.

1 Introduction

Computer systems become every day more and more complex. As a consequence
the probability of problems in these systems increases over the years. To avoid
this from becoming a major issue, researchers have since many years worked
on improving the dependability of these systems. The methods involved are
traditionally classified as fault prevention, fault tolerance, fault removal and fault
forecasting [23]. Fault prevention refers to methods for preventing the occurrence
or the introduction of faults in the system. Fault tolerance refers to methods
allowing the system to provide a service complying with the specification in
spite of faults. Fault removal refers to methods for reducing the number and the
severity of faults. Fault forecasting refers to methods for estimating the presence
of faults (with the goal to locate and remove them). We concentrate here on
fault tolerance.

Several techniques to achieve fault tolerance have been developed over the
years. The different techniques are related to the specificity of applications. For
example, a centralized application differs from a distributed application involv-
ing several computing systems. We consider here distributed applications. Fault
tolerance for distributed applications can be achieved with different techniques:
transactions, checkpointing and replication.

Transactions have been introduced many years ago in the context of database
systems [3]. A transaction allows us to group a sequence of operations while
ensuring some properties on these operations, called ACID properties [3]: Atom-
icity, Consistency, Isolation and Durability. Atomicity requires that either all
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operations of the transaction are preformed, or none of them. Consistency is a
requirement on the set of operations, namely that the sequence of operations
brings the database from a consistent state to another consistent state. Trans-
actions can be executed concurrently. The isolation property requires that the
effect of transactions executed concurrently is the same as if the transactions
where executed in some sequential order (in isolation from each other). Durabil-
ity requires that the effect of the operations of the transaction are permanent,
i.e., survive crashes. Durability is achieved by storing data on stable storage,
e.g., on disk. Atomicity and durability are the two properties specifically related
to fault tolerance. A single protocol is used to ensure these two properties, the
so called atomic commitment protocol executed at the end of the transaction.
If all the data accessed by a transaction is located on the same machine, the
transaction is a centralized transaction. If the data is located on different ma-
chines, the transaction is a distributed transaction. Distributed transactions are
more difficult to implement then centralized transactions. The main technical
difficulty lies in the atomic commitment protocol. Except for this problem, the
implementation of distributed transactions derives more or less easily from the
implementation of centralized transactions. We discuss atomic commitment in
Section 4.5.

Checkpointing is another technique for achieving fault tolerance. It consists
of periodically saving the state of the computation on stable storage; in case of
a crash, the computation is restarted from the most recently saved state. The
technique has been developed for long running computations, e.g., simulations
that last for days or weeks, and run on multiple machines. These computations
are modelled as a set of processes communicating by exchanging messages. The
main problem is to ensure that, after crash and recovery, the computation is
restarted in a consistent state. We do not discuss checkpointing techniques here.
A good survey can be found in [13].

Replication is the technique that allows the progress of the computation dur-
ing failures (which is called failure masking). In a system composed of several
components, without replication, if one single component fails the system is no
more operational. Replicating a component C, and ensuring that the replicas
of C fail independently, allows the system to be tolerant to the failure of one
or several replicas of C. Replicating a component is very easy if the component
is stateless or if its state does not change during the computation. If the state
of the component changes during the computation, then maintaining the con-
sistency among the replicas is a difficult problem. Surprisingly, it is one of the
most difficult problems in distributed computing. We concentrate here on the
problems related to replication.

While replication allows us to mask failures, this is not the case of transactions
or checkpointing. However, the different techniques mentioned above can be
combined, e.g., transactions can be run on replicated data. Implementing such a
technique requires to combine transaction techniques and replication techniques.
This will not be discussed here.
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The rest of the paper is structured as follows. Section 2 introduces issues
related to replication, and presents the two main replication techniques. Section 3
defines group communication as the middleware layer providing the tools for
implementing the different replication techniques. The implementation of these
tools is discussed in Section 4. Finally, Section 5 concludes this survey.

2 Replication

In this section we first introduce a model for discussing replication. Then we
define what it means for replicas to be consistent. Finally we introduce the two
main replication techniques.

2.1 Model for Replication

Consider a system composed of a set of components. A component can be a
process, an object, or any other system structuring unit. Whatever the component
is, we can model the interaction between components in terms of inputs and
outputs. A component CO receives inputs and generates outputs. The inputs
are received from another component COin, and the outputs are sent to some
component COout. Whether COin is equal or not to COout does not make any
difference for CO. In the case COin = COout, the component CO is called a
server, and the component COin = COout is called a client (see Figure 1). In
this case we will denote the server component by S and the client component
by C. The input sent by the client C to the server S is called a request, and
the output sent by the server S to the client C is called a response. From the
point of view of the client, the pair request/response is sometimes called an
operation: for a client C, an operation consists of a request sent to a server and
the corresponding response. We assume here that the client is blocked while
waiting for the response.

COCOin = COout

serverclient

request

response

Fig. 1. Server and client

2.2 Consistency Criteria

A server S can have many clients C, C′, C′′, etc. For a non-replicated server S,
the simplest implementation is to handle client requests sequentially, one at
a time. A more efficient implementation could consist for the server to spawn
a new thread for each new incoming request. However, in this case the result
that the client obtains must be the same as if the operations were executed
sequentially, one after the other. The same holds if the server S is replicated,
with replicas S1, . . ., Sn: the result that the clients obtain must be the same as
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if the operations were executed sequentially by one single server. This can be
defined more precisely, by the consistency criterion called linearizability [17] (also
called atomic consistency [25]). A weaker consistency criterion is called sequential
consistency [20]. We discuss only linearizability, which is the consistency criterion
that is usually implemented.

Linearizability: An execution σ is linearizable if it is equivalent to a sequential
execution such that (i) the request and the response of each operation occur both
at some time t, and (ii) t is in the interval [treq, tres], where treq is the time when
the request is issued in σ, tres is the time when the response is received in σ. We
explain this definition on two examples. A formal definition can be found in [17].

Consider a server S that implements a register with the two operations read
and write:

– S.write(v) denotes the request to write value v in the register managed by
server S. The operation returns an empty response, denoted by ok.

– S.read( ) denotes the request to read the register managed by server S. The
operation returns the value read.

Figure 2 shows an execution σ that is linearizable:

– Client C issues the request write(0) at time t1, and receives the empty
response ok at time t3.

– Client C′ issues the request write(1) at time t2, and receives the empty
response ok at time t5.

– Client C issues the request read( ) at time t4, and receives the response 0 at
time t7.

– Client C′ issues the request read( ) at time t6, and receives the response 1
at time t8.

The bottom time-line in Figure 2 shows a sequential execution equivalent to
σ that satisfies the two requirements (i) and (ii) above (ta—the time at which
the request and the response of S.write(0) take place in σ—is in the interval
[t1, t3], tb—the time at which the request and the response of S.write(1) take
place in σ—is in the interval [t4, t7], etc.).

C

C’

S.write(0)

S.write(1)

S.read( )

S.read( )

Equivalent sequential
execution

t1

t2 t6

t3 t4

t5 t8

t7

ok 0

ok 1

ta tb tc td

Execution

Fig. 2. A linearizable execution
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Figure 3 shows an execution that is not linearizable. In an equivalent sequen-
tial execution write(1) issued by C′ must precede read( ) issued by C. So there
is no way to construct a sequential execution in which read( ) returns 0 to C.

C 

C’ 

S.write(0) 

S.write(1) 

S.read( ) 

S.read( ) 

ok 0 

ok 1 

Fig. 3. A non linearizable execution

2.3 Linearizability vs. Isolation

Linearizability differs from the isolation property of transactions. There are two
main differences. First, linearizability is defined on the whole sequence of oper-
ations issued by a client process in the system, while isolation is defined on a
subset of the operations of a client process. Consider for example that process
p issues operations op1 and op2 within transaction T1, and later operations op3
and op4 within transaction T2. Isolation does not require that the operations of
T1 are ordered before the operations of T2 (they can be ordered after those of
T2). However, if opi precedes opj on process p, then linearizability requires opi

to be ordered before opj .
The second difference is that linearizability does not ensure isolated execution

of a sequence of operations. If process p issues operation op1
p = S.read( ) that

returns v and later op2
p = S.write(v+1), and process q issues operation op1

q =
S.read( ) that returns v′ and later op2

q = S.write(v′+1), linearizability does not
prevent the operation op1

q of q to be executed between the two operations op1
p and

op2
p of p. There are basically two ways to prevent this from occurring. The first

solution is for p and q to explicitly use locks or semaphores. The second solution
is to add a new operation to the server S, e.g., increment, and to invoke this
single operation instead of read followed by write. The second solution is better
than the first one (locks and semaphores lead to problems in the presence of
failures).

2.4 Replication Techniques

In the previous section, linearizability defined the desired semantics for oper-
ations issued by clients on servers. In the definition of linearizability, servers
are black boxes. This means that the definition applies to non-replicated single-
threaded servers, to non-replicated multi-threaded servers, to replicated single-
threaded servers and to replicated multi-threaded servers. In this section we
address the question of implementing a replicated server while ensuring lin-
earizability. We discuss only the single-threaded case (the solution can easily be
extended to multi-threading). The two main replication techniques are called
active replication and passive replication. Other replication techniques can be
seen as variants or combinations of these two basic techniques.
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Active Replication: Active replication is also called state-machine replica-
tion [19,29]. The principle is illustrated on Figure 4, which shows a replicated
server S with three replicas S1, S2 and S3. The client sends its request to all the
replicas, each replica processes the request and sends back the response to the
client. The client waits for the first response and ignores the others. This client’s
behavior is correct if we assume that the servers do not behave maliciously, and
the servers are deterministic:1 in this case all the responses are identical.

In Figure 4 there is only one client. The problem becomes more difficult with
multiple clients that concurrently send their requests. In this case it is sufficient
that all replicas Si receive the clients’ requests in the same order, as shown in
Figure 5. This allow the replicas to process the clients’ requests in the same
order. In Section 3 we introduce a group communication primitive that ensures
such an ordering of client requests.

S1 

S2 

S3 

Client 

Request Response 

Request processing 

Fig. 4. Active replication

S1

S2

S3

Client C

Client C’

processing
request of C

processing
request of C’

Fig. 5. Active replication: requests re-
ceived in the same order

Passive Replication: The principle of passive replication is illustrated on
Figure 6, which shows the same replicated server S with its three replicas S1, S2
and S3. One of the replicas, here S1, is the primary replica; the other replicas,
S2 and S3 are called backups. The client sends its request only to the primary,
and waits for the response. Only the primary processes the request. Once this
is done, the primary sends an update message to the backups, to bring them to
a state that reflects the processing of the client request. In Figure 6 the update
message is also sent to the primary. The reason is that, if we include failures, it is
simpler to assume that the modification of the state of the primary occurs only
upon handling of the update message, and not upon processing of the request.

If several clients sent their requests at the same time, the primary processes
them sequentially, one after the other. Since the primary sends an update mes-
sage to the backups, the processing can be non-deterministic, contrary to active
replication. Note that this superficial presentation hides most of the problems
related to the implementation of passive replication. We mention them in the

1 A server is deterministic if its new state and the response depend only on the request
and on the state before processing the request.
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next paragraph. With active replication, the implementation problems are hid-
den in the implementation of the group communication primitive that orders the
clients’ requests.

S2 

S3 

Client 

Request Response 

Request processing 

Update 

S1 = primary 

Fig. 6. Passive replication

Problems Implementing Passive Replication: When the primary crashes,
a new primary must be selected. However, requiring the failure detection of the
primary to be reliable (i.e., never making mistakes) is a very constraining as-
sumption. For this reason, solutions to passive replication that do no require a
reliable failure detection mechanism for the primary have been developed. The
three main problems to address are the following: (a) prevention of multiple pri-
maries being able to process requests, (b) prevention of multiple executions of a
request, and (c) reception of the update message by all replicas. Problem (a) is
related to the unreliable failure detection mechanism. Problem (b) arises when
the current primary is falsely suspected to have crashed. Consider a client C
sending its request to the primary S1. Assume that S1 is incorrectly suspected
to have crashed, and S2 becomes the new primary. If this happens, and C did not
receive any response, it will resend its request to S2. This may lead to execute
the client request twice. Multiple execution of a request can be prevented by
attaching a unique identifier to each request (this request identifier being pig-
gybacked on the update message). Problem (c) arises when the primary crashes
while multicasting the update message. In this case, we must prevent the unde-
sirable situation where the update message is received by some replicas, but not
by all of them. In Section 3 we present the group communication primitive that
allows us to solve the problems (a) and (c).

3 Group Communication

In the previous section we have introduced the two basic replication techniques,
namely active replication and passive replication. We have also pointed out the
need for communication primitives with well defined ordering properties to im-
plement these techniques. Group communication is the infrastructure that pro-
vides these primitives. A group is simply a set of processes with an identifier.
Messages can be multicast to the members of some group g simply by referring
to the identifier of group g: the sender of the message does not need to know
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what processes are members of g. For example, if we consider a replicated server
S with three replicas S1, S2 and S3, we can refer to these replicas as the group
gS = {S1, S2, S3}. As illustrated by Figure 7, group communication is a mid-
dleware layer between the transport layer and the layer that implements repli-
cation. In this section we define the two main group communication primitives
for replication, namely atomic broadcast and generic broadcast. Before doing so,
we introduce some concepts needed to understand the various aspects of group
communication.

Replication technique 

Group communication 

Transport layer 

Fig. 7. Group communication

3.1 Various Group Models

Static Group vs. Dynamic Group: A static group is a group whose member-
ship is constant over time: a static group is initialized with a given membership,
and this membership never changes. This is the simplest type of group. However,
static groups are often too restrictive. For example consider the replicated server
S implemented by the group gS = {S1, S2, S3}. If one of the replicas Si crashes,
it might be desirable to replace Si with a new replica, in order to maintain the
same degree of replication. A group whose membership changes over time is
called a dynamic group. Dynamic groups require to manage the addition and
the removal of members to/from the group. This problem is called the group
membership problem: it is discussed in Section 3.4.

Benign vs. Malicious Faults: The group (or system) model encompasses also
the type of faults that are considered. The distinction is made between benign
faults and malicious faults (also called Byzantine faults). With benign faults, a
process or a channel does its job correctly, or does not do its job. A process crash,
or a channel that looses a message, are benign faults. With malicious faults, a
process or a channel can behave arbitrarily.

Crash-Stop vs. Crash-Recovery: In the context of benign faults, the dis-
tinction is made between the crash-stop and the crash-recovery process model.
In the crash-stop model processes do not have access to stable storage. In this
case, a process that crashes looses its state: upon recovery, the process is indis-
tinguishable from a newly started process. In the crash-recovery model processes
have access to stable storage, allowing them to periodically save their state. In
this case, a process that crashes can recover its most recently saved state.
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Combining These Models: Combining these three dimensions lead to differ-
ent models for group communication. The simplest model is the benign static
crash-stop model. Other models have been considered in the literature, but they
lead to more complexity in the specification of group communication and in the
algorithms. There are some subtle differences between the different models, as
we explain now.

Figure 8 shows the difference between active replication with dynamic crash-
stop groups (left) and active replication with static crash-recovery groups (right).
In the crash-stop model, to keep the same replication degree, a crashed process
(here replica S3) must be replaced with a new process (here S4). The initial
membership of the group gS is denoted by v0(gS) = {S1, S2, S3} (v stands for
view, see Section 3.4). When S3 crashes, the membership becomes v1(gS) =
{S1, S2}. Once S4 is added, we have the membership v2(gS) = {S1, S2, S4}.
Note that the state of p4 must be initialized. This is done by an operation
called state transfer : when S4 joins the group, the state of one of its members
(here S2) is used to initialize the state of S4. In the static crash-recovery model
(Figure 8, right), the same degree of replication is kept by assuming that crashed
replicas recover (here S3). However in this context, since S3 remains all the time
a member of gS , a message broadcast to the group while S3 is down must be
delivered to S3 (here m2). As a result, no state transfer is needed. The static
crash-recovery model is preferable to the dynamic crash-stop model whenever
the state of the replicas is large.

Fig. 8. Active replication with a dynamic crash-stop group (left), or a static crash-
recovery group (right)

In the following we consider mainly the static crash-stop model, which is
the most widely model considered in the literature, and the simplest. Dynamic
groups are briefly mentioned in Section 3.4.

3.2 Atomic Broadcast for Active Replication

One of the most important group communication primitives is atomic broad-
cast [9]. Atomic broadcast is also sometimes called total order broadcast, or sim-
ply abcast. The primitive ensures that messages are delivered ordered. To give a
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more formal specification of the properties of abcast, we need to introduce the
following notation:

– The atomic broadcast of message m to the members of some group g is
denoted by abcast(g, m).2

– The delivery of message m is denoted by adeliver(m).

It is important to make the distinction between abcast/adeliver, and the
send/receive primitives at the transport layer (see Figure 9). The semantics of
send/receive is defined by the transport layer. The semantics of abcast/adeliver
is defined by atomic broadcast. An atomic broadcast protocol uses the semantics
of send/receive to provide the semantics of abcast/adeliver.

Replication technique 

Group communication 

Transport layer 

abcast(g, m) adeliver(m) 

send(m) to p receive(m) 

Fig. 9. Send/receive vs. abcast/adeliver

The definition of atomic broadcast in the static crash-stop model relies on the
definition of a correct process: a process is correct if it does not crash. Otherwise
it is faulty. Note that even though these definitions are simple, they are easily
wrongly understood. Correct/faulty are predicates that characterize the whole
lifetime of a process. This means that if some process p crashes at time t = 10,
then p is faulty (even at time t = 9). With this definition, atomic broadcast in
the static/crash-stop model is specified by the following four properties [16,2]:3

– Validity: If a correct process executes abcast(g,m), then some correct process
in g eventually adelivers m or no process in g is correct.

– Uniform agreement: If a process in g adelivers a message m, then all correct
processes in g eventually adeliver m.

– Uniform integrity: For any message m, every process p adelivers m at most
once, and only if p is in g and m was previously abcast to g.

– Uniform total order: If process p in g adelivers message m before message
m′, then no process in g adelivers m′ before having previously adelivered m.

Validity, uniform agreement and uniform integrity define the primitive called
reliable broadcast.4 Atomic broadcast is defined as reliable broadcast with the
uniform total order property.
2 The primitive should be called atomic multicast. For simplicity, we keep the term

broadcast here.
3 More precisely, the specification corresponds to the primitive called uniform atomic

broadcast. We will call it here simply atomic broadcast.
4 More precisely, uniform reliable broadcast.
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It is easy to see that active replication is easily implemented using atomic
broadcast. If gS is the group of replicas that provide some service S, clients C
send requests using the primitive abcast(gS, req). The validity property ensures
that if C does not crash, its request is received by at least one member of
gS (unless all members of gS crash). Combining this guarantee with uniform
agreement ensures that all correct processes in gS eventually adeliver m. The
uniform total order property ensures that all replicas adeliver the clients’ requests
in the same order.

The response from a replica in gS to a client is sent using a unicast message,
i.e., a point-to-point message. The transport layer must ensure the following
quasi-reliable channel property [1]: if a correct process p sends message m to a
correct process q, then q eventually receives m. This property is stronger than
the property provided by TCP (if a TCP connection breaks, reliability is no
more guaranteed).

3.3 Generic Broadcast for Passive Replication

Atomic broadcast can also be used to implement passive replication, but this is
not necessarily the best solution in terms of cost. Atomic broadcast can be used
as follows. Consider a replicated server S defined by the (static) group gS , and
assume that the members of gS are ordered in a list. Initially, the member at
the head of the membership list is the primary. The primary sends the update
message to gS using abcast. Whenever some member of gS suspects the current
primary to have crashed, it abcasts the message 〈primary change〉. Upon ade-
livery of this message every process moves the process at the head of the list to
the tail. The new primary is the new process at the head of the list.

Passive replication can also be implemented using the group communication
primitive called generic broadcast [26,2], which can be cheaper to implement
than atomic broadcast. While atomic broadcast orders all messages, generic
broadcast orders only messages that conflict. Conflicts are defined by a relation
on the set of messages. This conflict relation is part of the specification of the
primitive, and makes the primitive generic. The generic broadcast of message m
to the group g is denoted by gbcast(g, m); the delivery of message m is denoted
by gdeliver(m). Formally, generic broadcast is defined by the same properties
that define atomic broadcast, except that the uniform total order property is
replaced with the following weaker property:

– Generic total order: If process p in g gdelivers message m before message m′,
and m, m′ conflict, then no process in g gdelivers m′ before having previously
gdelivered m.

We have seen that passive replication can be implemented with atomic broad-
cast for the update messages and the primary-change messages. Consider the
following conflict relation between these two types of messages:

– Messages of type primary-change do not conflict with messages of the same
type, but conflict with messages of type update.
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– Messages of type update conflict with messages of the same type, and also
with messages of type primary-change.

This ensures enough ordering to implement generic broadcast correctly. Note
that most of the time one single process considers itself to be the primary, and
during this period no concurrent update messages are issued. So most of the
time no concurrent conflicting messages are issued.

The implementation of generic broadcast (and atomic broadcast) is discussed
in Section 4.

3.4 About Group Membership

With dynamic groups, the successive membership of a group is called a view.
Consider for example a group g, with initially three processes p, q, r. This initial
membership is called the initial view of g, and is denoted by v0(g). Assume that
later r is removed from g. The new membership is denoted by v1(g) = {p, q}.
If s is added later to the group the resulting membership is denoted by v2(g) =
{p, q, s}. So the history of a dynamic group is represented as a sequence of views,
and all group members must see the sequence of views in the same order. The
problem of maintaining the membership of a dynamic group is called the group
membership problem [28].

3.5 About View Synchronous Broadcast

View synchronous broadcast or vscast (sometimes also called view synchrony), is
another group communication primitive, defined in a dynamic group model [4,8].
However, the importance of vscast has been overestimated, and stems from a
time where the difference between static groups and dynamic groups was not
completely understood.

Consider some message m vscast by process p in view vi(g): vscast orders m
with respect to view changes. In other words, vscast ensures that m is delivered
by all processes in the same view vj . The property is also called same view
delivery [8]. A stronger property, called sending view delivery, requires i = j:
the view in which the message is delivered is the view in which the message was
sent [8].

The overestimated importance given to view synchronous broadcast has led
to several misunderstandings. The first is that dynamic groups are needed to
implement passive replication: Section 3.3 has sketched an implementation of
passive replication with a static group. The second misunderstanding is that the
specification of group communication with dynamic groups is inherently different
from the specification of group communication with static groups. This is not
the case, as shown in [27].

3.6 Group Communication vs. Quorum Systems

In the previous sections we have shown the use of group communication for
implementing replication. Quorum systems, which generalize the majority voting
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technique, is another technique for replication, anterior to group communication
and also more widely known. In this section we explain the advantage of group
communication over quorum systems in the context of replication [12].

Definition of Quorum Systems: Consider a set Π ={p1, . . . , pn} of processes.
The set of all subsets of Π is called the powerset of Π , and is denoted by 2Π .
We have for example:

{p1}, {p2}, {p1, p2}, {p2, p3, p4}, . . . , {p1, . . . , pn} ∈ 2Π .

A quorum system of Π is defined as any set Q ⊂ 2Π such that any two Qi ∈ Q
have a non empty intersection:

∀Q1, Q2 ∈ Q, we have Q1 ∩ Q2 �= ∅.

Each Qi ∈ Q is called a quorum. For example, if Π = {p1, p2, p3}, then the set
Q = {{p1, p2}, {p1, p3}, {p2, p3}} is a quorum system of Π ; {p1, p2}, {p1, p3},
{p2, p3} are quorums.

Quorum Systems for Implementing a Fault Tolerant Register: The
use of quorums systems for fault tolerance can be illustrated on a very simple
example: a server that implements a register. A register is an object with two
operations read and write: read returns the value of the register, i.e., the most
recent value written; write overwrites the value of the register.

The register can be made fault tolerant by replication on three replicas e.g.,
Π = {p1, p2, p3} with the quorum system Q = {{p1, p2}, {p1, p3}, {p2, p3}}. Each
operation needs only to be executed on one quorum of Q, i.e., on {p1, p2}, on
{p1, p3}, or on {p2, p3}. In other words, the quorum system Q tolerates the crash
of one out of the three replicas. Using the quorum system Q, linearizability of
the read and write operations is easy to implement [12].

Requiring Isolation: A fault tolerant register is easy to implement using quo-
rum systems. However, clients usually want to perform more complex operations.
Consider for example the operations (a) increment a register and (b) decrement
a register. These two operations can be implemented as follows: (1) read the
register, then (2) update the value read, and finally (3) write back the new
value. However, one client C may increment the register, while at the same time
another client C′ decrements the register. To ensure a correct execution, the
two operations must be executed in mutual exclusion. With group communica-
tion, no mutual exclusion is needed: atomic broadcast can be used to send the
corresponding operation to the replicated servers.

This difference between quorum systems and group communication is illus-
trated in Figure 10. The left part illustrates the quorum solution, and the right
part the group communication solution. In the quorum solution, the increment
operation is performed by the client, after reading the register and before writing
the new value. The implementation requires mutual exclusion, represented by
ECS (enter critical section) and LCS (leave critical section). In the group com-
munication solution, the increment operation is sent to the replicas using atomic
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Fig. 10. Replication: quorum systems (left) vs. group communication (right)

broadcast; no mutual exclusion is required.5 Implementing atomic broadcast
requires weaker assumptions about the crash detection mechanism than imple-
menting mutual exclusion [12].

4 Implementation of Group Communication

In the previous section we have seen the role of group communication for repli-
cation. We discuss now the implementation of the two group communication
primitives that we have introduced, namely atomic broadcast and generic broad-
cast. We consider only static groups, non Byzantine processes and the crash-stop
model.

4.1 Impossibility Results

Consider a static group g, and processes in g communicating by message ex-
change. The most general assumption is to consider that the time between the
sending of a message m and the reception of m by its destination is not bounded,
i.e., the transmission delay can be arbitrarily long. Similarly, if we model the ex-
ecution of a process as a sequence of steps, the most general assumption is to
consider that while the slowest process performs one step, the fastest process
can perform an unbounded number of steps. These two assumptions define the
asynchronous system model. The absence of bounds for the message transmission
delay models an open network in which the load of the links are unknown. The
absence of bounds on the relative speed of processes models processes running
on CPUs with an unknown load. The asynchronous system model is the most
general model, but it has a major drawback: several problems are impossible to
solve in that model when one single process may crash.

One of these problems is consensus. The problem is defined on a set of pro-
cesses, e.g., on some group g. Every process p in g starts with an initial value
vp, and all correct processes in g have to decide on some common value v that
is the initial value of one of the processes. Formally, the consensus problem is
defined by the following properties [7]:
5 The reader may wonder why no increment operation can be sent with quorum sys-

tems. Sending the increment operation requires atomic broadcast!
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– Validity: If a process decides v, then v is the initial value of some process.
– Agreement: No two correct processes decide differently.
– Termination: Every correct process eventually decides some value.

An explanation of problem solvability is needed here. Consider a distributed al-
gorithm AP that is supposed to solve problem P . Algorithm AP can be launched
many times. Due to the variability of the transmission delay of messages, each
execution of AP can go through a different sequence of states. However, in all of
these executions, AP must solve P . If there is one single execution in which this
is not the case, then we say that algorithm AP does not solve P . This clarifi-
cation is important in the context of the consensus problem: it has been shown
that consensus is not solvable by a deterministic algorithm in an asynchronous
system with reliable links if one single process may crash. This result is known
as the FLP impossibility result [14].

The FLP impossibility result is easy to extend to atomic broadcast by the
following argument [10]. Assume for a contradiction that atomic broadcast can
be implemented in an asynchronous system with process crashes. Then consensus
can be solved as follows (in the context of some group g):

– Each process p in g executes abcast(vp), where vp is p’s initial value.
– Let v be the first message adelivered by p.
– Process p decides v.

If there is a least one correct process, then at least one message is adelivered.
By the property of atomic broadcast, every correct process adelivers the same
first message, and so decides on the same value. Consensus is solved, which shows
the contradiction.

4.2 Models for Solving Consensus

Consensus and atomic broadcast are not solvable in an asynchronous system
when processes may crash. We thus need to find a system model in which consen-
sus is solvable (whenever consensus is solvable, atomic broadcast is also solvable,
see Section 4.3). One such system is the synchronous system model, defined by
the following two properties:

– There is a known bound on the transmission delay of messages.
– There is a known bound on the relative speed of processes.

Consensus is solvable in a synchronous system [24], but the synchronous sys-
tem model has drawbacks from a practical point of view. The model requires to
consider the worst case: the worst case for the transmission delay of messages,
the worst case for the relative speed of processes. These bounds have a direct
impact on the time it takes to detect the crash of a process: the higher these
bounds are, the higher the time it takes to detect a process crash, i.e., the longer
it takes to react to a crash. In a replicated service a long reaction to a crash
leads to a long delay before clients get the replies.
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The drawback of the synchronous model has led to look for system models
weaker than the synchronous model, but strong enough to solve consensus (and
so atomic broadcast). The first of these models is called the partially synchronous
model [11]. The model considers bounds on the message transmission delay and
on the relative speed of processes. There are two variants of the model:

1. There is a bound on the relative speed of processes and a bound on the
message transmission delay, but these bounds are not known.

2. There is a known bound on the relative speed of processes and on the message
transmission delay, but these bounds hold only from some unknown point on.

The two definitions are equivalent, but the first variant seems more appealing
from a practical point of view.

A different approach was proposed later in [7]. It consists in augmenting the
asynchronous model with an oracle that satisfies some well defined properties.
In other words, the system is assumed to be asynchronous, but the processes
can query an oracle about the status crashed/not crashed of processes. For this
reason the oracle is called failure detector oracle, or simply failure detector. If
the failure detector returns the reply crashed q to process p, we say p suspects q.
Note that this information may be incorrect: failure detectors can make mistakes.
The legal replies to a query of the failure detector are defined by two properties
called completeness and accuracy. For example, the replies of the failure detector
called �S must satisfy the following completeness and accuracy properties [7]:

– Strong completeness: Eventually every process that crashes is permanently
suspected to have crashed by every correct process.

– Eventual weak accuracy: There is a time after which some correct process is
never suspected by any correct process.

Consensus is solvable in the asynchronous system augmented with the failure
detector �S and a majority of correct processes [7]. Moreover, it has been shown
that �S is the weakest failure detector that allows us to solve consensus in an
asynchronous system [6]. This result shows the power of the failure detector
approach and explains its popularity.

4.3 Solving Consensus

The first algorithm to solve consensus in a model weaker than the synchronous
model is the consensus algorithm by Dwork, Lynch and Stockmeyer for the par-
tially synchronous model [11]. The algorithm – called here DLS – requires a ma-
jority of correct processes, and is based on the rotating coordinator paradigm.
In this paradigm, the computation is decomposed into rounds r = 0, 1, 2, . . .,
and in each round another process, in some predetermined order, is the coor-
dinator. Typically, with n processes p0, . . . pn−1, the coordinator of round r is
process pr mod n. In each round the coordinator leads the computation in order
to try to decide on a value. The algorithm is based on the notions of locked value
and acceptable value. The coordinator of round r tries to lock a value, say v, and
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if it learns that a majority of processes have locked v in round r, it can decide v.
If the coordinator of round r is suspected to have crashed, then the computation
proceeds to the next round r + 1 with a new coordinator. Note that a process
can become coordinator more than once, e.g., in rounds k, n + k, 2n + k, etc.
The key property of the DLS algorithm is that the safety properties of consensus
(validity and agreeement) hold even if the properties of the partially synchronous
model do not hold. In other words, these properties are only needed for liveness,
i.e., to ensure the termination property of consensus.

Two other consensus algorithms had a major impact and led to the devel-
opment of variations of these algorithms. The first one is the Paxos algorithm
proposed by Lamport [21,22]. The second one is the Chandra-Toueg consensus
algorithm (denoted CT hereafter) based on the failure detector �S [7]. Paxos
and CT, similarly to DLS, require a majority of correct processes. CT, similarly
to DLS, is based on the rotating coordinator paradigm. Paxos is also based on
a coordinator, but the coordinator role is not predetermined as in the rotating
coordinator paradigm, but determined during the computation (the algorithm
tolerates multiple coordinators for the same round). Paxos and CT are also
based on the notion of locked value (but there is no notion of acceptable value):
each coordinator, one after the other, tries to lock a value v, and if it learns
that a majority of processes have locked v, it can decide v. In this sense Paxos
and CT are very similar. The two algorithms also share the key property of
DLS, namely that no matter how asynchronous the system behaves, the safety
properties of consensus are never violated. However, Paxos and CT differ on the
following issues:

– CT requires reliable channels, while Paxos tolerates message loss (similarly
to DLS ).

– The condition for termination is rigorously defined for CT, namely the even-
tual weak accuracy property of �S. No such condition that ensure termina-
tion exists for Paxos.

Note that after the publication of Paxos, the failure detector Ω – which even-
tually outputs at each process the identity of the same correct process [6] – has
been mentioned as ensuring the termination of Paxos. However, this makes sense
only if we consider Paxos with reliable channels.

4.4 Implementing Atomic Broadcast and Generic Broadcast

A large number of atomic broadcast algorithms have been proposed in the last 20
years. These algorithms can be classified according to several criteria. One of those
criteria is the mechanisms used for message ordering [9]: fixed sequencer, moving
sequencer, privilege-based, communication history, destinations agreement. For ex-
ample in a fixed sequencer algorithm, one process is elected as the sequencer and
is responsible for ordering messages. Obviously this solution is not tolerant to the
crash of the sequencer. The solution must be completed by a mechanism for elect-
ing a new sequencer in case the current sequencer crashes. This is usually done us-
ing a group membership service (see Section 3.4) to remove the current sequencer
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from the group. Once this is done, a new sequencer can be elected. Thus the so-
lution implements atomic broadcast in the context of dynamic groups (see Sec-
tion 3.1). The same comment applies to most of the implementations of atomic
broadcast described in the literature. These implementations require order to pro-
vide order : the group membership service orders views, and this order is used to
implement the ordering required by atomic broadcast.

Atomic broadcast can also be solved in the context of static groups. The
solutions rely on consensus (which explains the fundamental role of the consensus
problem in the context of fault tolerance computing). The consensus problem
allows processes to agree on a value. This value can be of any type. Atomic
broadcast can be implemented by solving a sequence of consensus problems,
where each instance of consensus agrees on a set of messages. The idea is the
following [7]. Consider a static group g and abcast(g, m). Each process p in g
has a variable kp used to number the various instances of consensus. Whenever
p has received messages that need to be ordered, p starts a new instance of
consensus, uniquely identified by kp, with the set of messages to be ordered as
its initial value. By the properties of consensus, all processes agree on the same
set of messages for consensus #kp, say msg(kp). Then the messages in the set
msg(kp) are adelivered in some deterministic order (e.g., according to their IDs),
and before the messages in the set msg(kp + 1). This solution for static groups
can be extended to dynamic groups [27].

The implementation of generic broadcast is more difficult to sketch. The basic
idea of the implementation is to control whether conflicting messages have been
gbcast. As long as only non conflicting messages are gbcast, these messages can
be gdelivered without invoking consensus, i.e., without the cost of consensus.
However, as soon as conflicting messages are detected, the gdelivery of messages
require to execute an instance of the consensus problem. More details can be
found in [26,2].

4.5 Solving the Atomic Commitment Problem

In Section 1 we have mentioned the atomic commitment problem as the main
problem related to the implementation of distributed transactions. The problem
has similarities with the consensus problem, but also has significant differences.

In the atomic commitment problem, each process involved in the transaction
votes at the end of the transaction. The vote can be yes or no. A yes vote
indicates that the process is ready to commit the transaction; a no vote indicates
that the process cannot commit the transaction. As in the consensus problem,
all processes must decide on the same outcome: commit or abort. The conditions
under which commit and abort can be decided make the difference between
consensus and atomic commitment. If one single process votes no, the decision
must be abort ; if no failure occurs and all processes vote yes, then the decision
must be commit ; if there are failures, the decision can be abort. So “failures” can
influence the decision of atomic commitment, which is not the case for consensus.

Another important difference is that, for practical reasons, the atomic com-
mitment problem needs to be solved in the crash-recovery model (in the context
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of transactions, processes have access to stable storage). A third difference is
related the notion of blocking vs. non-blocking solution, a difference that has not
been made for consensus (the distinction between a blocking and a non-blocking
solution exists only in the crash-recovery model). In the crash-recovery model, a
protocol is blocking if a single crash during the execution of the protocol prevents
the termination of the protocol until the crashed process recovers. In contrast,
a non-blocking protocol can terminate despite one single process crash (or even
despite more than one crash).

The most popular atomic commitment protocol is the blocking 2PC (2 Phase
Commit) protocol [3]. The first non-blocking atomic commitment protocol was
proposed by Skeen [30]. At that time the consensus problem was not yet identified
as the key problem in distributed fault tolerant computing. This explains that
the protocol proposed in [30] does not solve atomic commitment by reduction to
consensus. Today such a reduction is considered to be the best way to solve the
non-blocking atomic commitment problem (see for example [15], for a solution
in the crash-stop model).

5 Conclusion

More than twenty years of research have contributed to a very good understand-
ing of many issues related to fault tolerance, replication and group communi-
cation. However, the understanding of theoretical issues is not the same in all
models. For example, while static group communication in the crash-stop model
has reached maturity, the same level of maturity has not yet been reached for
dynamic group communication or for group communication in the crash-recovery
model. More work needs also to be done to quantitatively compare different al-
gorithms in the context of replication. Typically, while a lot of atomic broadcast
algorithms have been published, little has been done to compare these algo-
rithms from a quantitative point of view. Specifically, more work needs to be
done to compare these algorithms under different fault-loads, as done for exam-
ple in [31]. Addressing real-time constraints, e.g., [18], needs also to get more
attention. Finally, note that recent advances in the design and implementation
of group communication middeleware are presented in another chapter of this
book [5].
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Abstract. This paper gives a survey of the techniques for failure loca-
tion, protection and restoration in IP over optical fiber networks.

The first part of the paper reviews failure location algorithms at the
optical and the IP layers. We classify the failure location algorithms at
the optical layer into two main categories: the model based approach,
that builds an abstract model of the network and uses this model to
diagnose failures, and the learning based approach, that views the net-
work as a black box and diagnoses failures using a set of rules obtained
either by learning or by the expertise of the human manager. At the
IP layer, we focus on the location of one of the main sources of failure:
lossy links. The lossy link location algorithms can also be classified into
two categories: the correlation approach, that requires strong correlation
between monitoring packets, and the simple tomography approach, that
requires some knowledge of the distribution of lossy links.

The second part of the paper describes the main strategies that en-
sure survivability in IP-over-fiber networks. After a failure, traffic can be
restored either at the optical layer or at the IP layer. Protection at the
optical layer amounts to dedicate some lightpaths to reroute the traf-
fic disrupted by the failure. Restoration at the IP layer eliminates the
need to set up back-up optical paths, but requires to map the IP layer
on the optical layer in a survivable way. We describe the most common
approaches achieving this.

1 Introduction

Communication networks in general, and the Internet in particular, are overlays
of multiple layers. Each layer has different functions and all the layers cooperate
to deliver data from the source to the destination. The simplest layer stack is IP
(Internet Protocol) over physical. The physical layer is the one where bits of data
are sent. It can be wired or wireless. We consider the case where the physical layer
is optical and where quick failure detection and restoration are crucial because
a failure can result in the loss of tetra (109) bits of data per second. In today’s
backbone networks, to increase the capacity of the optical fibers, the optical
layer uses the Wavelength Division Multiplexing (WDM) technique to send data
simultaneously at different wavelengths over a single fiber. The upper layer in
this simple stack is the IP layer, where packets of data are routed. Although
there exist layers on top of IP (e.g., application layer), they are beyond the
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scope of this paper and we do not consider them here. In reality, there may exist
some other layers in between the IP and WDM layers; the most frequent layer
in backbone networks is SONET/SDH. SONET and SDH are a set of network
interface standards and multiplexing schemes developed to support the adoption
of optical fiber as a transmission medium. They use Time Division Multiplexing
(TDM). SDH is the European standard whereas SONET is the US counterpart.
This means that IP packets are transported over optical fibers that multiplex
several connections either in time (TDM) at the SONET or SDH layer or in
frequency (WDM) at the optical layer.

Failures occur frequently in communication networks. For instance, an average
inter-failure time for the Sprint backbone network is about 12 hours [1]. Every
network needs therefore to have a failure management system that can detect
failures and take measures to guarantee the successful and timely delivery of
data. When a failure occurs, it first needs to be detected and located. Then
the traffic needs to be rerouted around the failure and the failing component
has to be replaced [2]. In communication networks, failures at a lower layer will
affect the performance of its upper layers, but the latter also have their own
failures, unrelated to the lower layers. For example, a high optical signal-to-
noise ratio (SNR) caused by a bent fiber will cause heavy losses on the IP links
traversing the optical link, but heavy losses on these IP links can also be caused
by overloaded network traffic, which is not visible at the optical layer. For this
reason, each network layer uses its own failure management system. Moreover
the failure management mechanisms at different layers need to cooperate with
each other to avoid task duplication and increase efficiency.

We begin the paper with the first failure management task, which is to detect
and locate a failure. Section 2 explores the various methods that are used, first
to locate a faulty link at optical layer and next to locate a lossy link at the IP
layer. In Section 3, we move to the second step in failure management, which
is to engineer the network so that traffic is restored after the occurrence of a
failure. We review the main methods used at the optical and the IP layer of an
IP-over-fiber network. We conclude the paper in Section 4.

2 Failure Location in Optical and IP Networks

All existing techniques performing failure diagnosis rely on the analysis of symp-
toms and events that are generated during the occurrence of the failure. Simple
failure location mechanisms are often based on locally monitored variables, such
as the temperature of a device. The irregular values reached by these variables are
logged as errors. Critical errors are sent to the network manager as alarms. Based
on them, a failure is located. This is not a trivial task because some particular sets
of alarms can have multiple possible explanations. Moreover, the set of alarms is
sometimes noisy making the problem even more difficult. The noise is introduced
by corrupted alarms, which are those alarms that unexpectedly arrive at the man-
agement system when they should not (false alarms) or those that do not arrive at
the management system when they should (missing alarms).
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The nature of failures and the available monitoring information are signifi-
cantly different for the optical and the IP layer. Therefore, each layer needs to
have its own failure location method. We address them separately in the follow-
ing two subsections.

2.1 Failure Location at the Optical Layer

We are interested in detecting and locating failures of equipments at the optical
layer. Some of the most common optical equipments and their operations are
shown in the simple network of Fig. 1. A detailed survey of the failure location
algorithms at the optical layer of an IP/SDH/WDM network can be found in [3].
In this section, we summarize the the most important algorithms discussed in [3]
and add new developments that were not covered in that paper. We begin with
a discussion of the available monitoring information. We then describe the types
of failures that can be found at the optical layer and the alarms they generate.
Finally, we compare and contrast the various methods that have been proposed
in the literature to solve the failure location problem at the optical layer.

Tx2

Tx3

Rx1

  Rx2

OF = Optical fiber

Rx = Receiver

Tx = Transmitter

Mux = Multiplexer

Demux = Demultiplexer

DEMUX

Tx1

Rx3

OF

MUX

λ1
λ1

λ2λ2

λ3λ3

Fig. 1. A simple WDM network with three transmitters and three receivers. The three
wavelengths coming out of Tx1, Tx2 and Tx3 are multiplexed at the multiplexer MUX
before being transmitted on fiber OF. At the destination, these three wavelengths are
demultiplexed at the demultiplexer DEMUX and then forwarded to Rx1, Rx2 and Rx3,
respectively.

Available Monitoring Information. A failure at the optical layer can gen-
erate a large number of alarms within the optical layer, as well as from all of the
layers above, such as SONET/SDH and IP. A failure location algorithm at the
optical layer needs therefore to correlate alarms from all of these layers.

– At the optical layer, the monitoring information is delivered by the micro-
controllers that control the optical equipments. Not all optical equipments
are controlled. In an optical network, the most common optical equipments
able to provide monitoring information and generate alarms are transmit-
ters, receivers, switches, 3Rs (Re-generators/Re-shaper/Re-timer), protec-
tion switches, and amplifiers (a more detailed description can be found
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in [4]). Transmitters send alarms when either the temperature or the in-
coming power is beyond a prescribed range. Receivers send alarms when the
input optical power is under an acceptable level. 3Rs send alarms when they
cannot lock to the incoming signal. Protection switches send alarms when
they change the switch position due to an unacceptable incoming optical
power. Switches send alarms when the connection of a particular input and
a particular output cannot be established. Amplifiers send alarms when the
pump laser does not work properly or when incoming power is not suffi-
cient. Furthermore, if adequate testing equipment is deployed, the manage-
ment system can obtain information about the quality of the optical signal
such as signal to noise ratio and crosstalk by measuring the Bit Error Rate
(BER) [5]. Devices measuring direct optical signal can be divided into two
categories. (i) Global testing equipment (GTE), such as spectrum analyzers,
measures the quality of the overall optical signal in a fiber. GTEs are able
to produce the measurements of frequency and time of all wavelengths in a
fiber. Examples of the GTEs are the MS26665C and MS2667C of Anritsu [6].
(ii) Individual testing equipment(ITE) can measure only properties of a sin-
gle wavelength and depends on the transmission technology (ATM, SONET,
SDH, etc.). An example of the ITEs is the MP1552 of Anritsu [6].

– At the SDH/SONET layer, the important failure notifications handled by
SDH are loss of signal (LOS), loss of frame (LOF), loss of pointer(LOP) [7],
degraded signal, and excessive error [8]. The SDH/SONET interface has also
a set of mechanisms that are used for sending alarms upstream and down-
stream of the optical path to guarantee fast failure detection and recovery [9].

All of the above monitoring information is obtained passively without intro-
ducing any additional traffic into the network. We call this approach passive
monitoring. A complementary technique is active monitoring where additional
end-to-end connections (called probes) are created to measure the optical signal
quality, see e.g. [10]. A degradation of the probing signal indicates failures at
some of the optical devices used by the connection. More details of the recent
progress in monitoring the performance of optical networks can be found in [11].

Fig. 2 provides a simple illustration of the available monitoring information for
failures at the optical layer in an IP/SDH/WDM optical network. The data format
at the IP layer is in packets, at the SDH/SONET layer it is in frames multiplexed
in several time channels, and at the WDM layer it is in connections multiplexed
in several wavelengths. When there is a failure at the physical layer, alarms from
several layers will be sent to their own management platforms and failure protec-
tion and restoration mechanisms will be triggered at each layer. In the example of
Fig. 2, when Node 1 fails, the WDM layer could start a failure location mechanism
based on the alarms generated at the physical layer (for example a Loss of Optical
Power at the receiver of Node 2). Otherwise, the SDH/SONET layer will react by
applying protection in order to restore the interrupted connection based on the
SDH alarms Loss of frame, Loss of Pointer, etc. issued by the SDH equipments. If
the SDH layer cannot restore the end-to-end connection, the IP routers will detect
the failure and try to find an alternative IP path.
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Fig. 2. Example of available monitoring information in an IP/SDH/WDM network.
The notations PL, MSL, and RSL represent SDH Path, Multiplex Section and Regen-
erator Section layers, respectively.

Failures at the Optical Layer. We distinguish two types of failures at the
optical layer: hard and soft failures.

– Hard failures are unexpected events that suddenly interrupt the optical chan-
nel. An example of a hard failure is a fiber cut. These failures can be detected
at the optical layer from alarms sent by hardware devices.

– Soft failures are events that progressively degrade the quality of the signal
transmission. An example of a soft failure is the variation of temperature
of a laser: the output wavelength will drift as the laser heats up or cools
down. In this case, the wavelength drift creates interferences with adjacent
channels. The detection of soft failures often requires information from the
upper layers, such as a SDH/SONET error frame rate. For example, when
the wavelength is shifted, devices at the WDM layer will not detect any
abnormality, but monitoring devices at the SDH and IP layer will observe
increases in BER or SNR.

Failure Location Algorithms. In optical networks, a failure at an optical
component not only results in faulty behavior at that component, but can also
cause degradations in the signals sent from that component to other components.
The other components may also forward the abnormal signals further. This man-
ifestation is called failure propagation, and needs to be taken into account by the
failure location mechanisms. Locating failures from the information provided by
monitoring devices in systems with failure propagation such as optical networks
is known to be NP-hard [12, 13, 14]. Many approaches have been proposed to
solve this intractable problem. We divide them into two main categories: the
model based methods and the learning based methods.

The model based methods [15, 16, 17, 18, 4] first construct an accurate and
workable model for the networks on the basis of the functional and physical
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properties of the network components, and then make a diagnosis by comparing
actual observations with forecasts from the model. The advantages of the model
based methods are that they are able to cope with incomplete information and
unforeseen failures, and do not require learning. Their drawback is the difficulty
of developing a good model for complex networks. We study three model based
methods in this paper:

– (1a) the probabilistic reasoning system developed by Katzela and Schwartz
[15],

– (1b) the FSM system developed by Li and Ramaswami [17],
– (1c) the deterministic system developed by Mas and Thiran [13].

The learning based methods view the system as a black box delivering out-
puts when a particular failure occurs. They learn the relationship between input
events and output diagnosis, which can be done in different ways: by capturing
the human expert knowledge and implementing it in an efficient way (expert
systems) [19, 20, 21], by recording the history of previous cases that occurred
in the past (cased-based systems) [22], by artificial neural networks [23, 24] or
by any other algorithm with statistical learning capabilities [25]. The main ad-
vantage of the black box methods is that they do not require detailed model of
the networks. However they need long learning processes. We consider the two
learning based methods:

– (2a) the expert system presented by Jakobson et al. [26],
– and (2b) the case based system proposed by Lewis [22].

There are also hybrid methods [27,28,29] that combine the two aforementioned
approaches and inherit both their advantages and disadvantages.

Comparison of Failure Location Algorithms. We now compare the failure
location methods introduced in the previous section (1a, 1b, 1c, 2a, and 2b) by
applying them to the example network in Fig. 2. These techniques are compared
with respect to the input data they need and their methodology.

Input data is the information required by the failure location algorithms from
the monitoring tools (timestamps, failure probabilities). It is different for the
five studied algorithms.

– Method (1a) needs (i) network topology, (ii) the failure probabilities of each
node and link and (iii) the probabilities that a failure at one component will
propagate to the others (failure propagation probability). For the example
network in Fig. 2, the graph representing the physical layer could look like
the one shown in Fig. 3, where each element is either a network node or a
fiber, and has an associated failure probability pi. Every link between two
nodes has a weight pij , which is the failure propagation probability.

– Method (1b) needs the network topology and the finite state machine (FSM)
for that specific network. In order to design the FSM, the network manager
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Fig. 3. The probabilistic graph model for the network in Fig. 2

has to define the failures that have to be located, and the events that deter-
mine the status of the network, which can be either alarms informing about
a problem or notifications informing about the resolution of a problem. In
the simple example network in Fig. 2, considering up to two simultaneous
failures, the FSM looks like the set of interconnected states shown in Fig. 4.

– Method (1c) does not need the topology but instead requires the set of
established end-to-end connections in the network. Each connection is then
viewed as a channel containing an ordered set of network elements. Fig. 5
shows the model for the example network with three channels.

– Method (2a) needs to have the manager experiences and translates these
experiences into a set of “if/then/else” rules. In our example, the rules could
be:

If loss of light 23 then
If loss of light 24 then

If loss of light 12 then link 12 fails
else node 2 fails

else link 23 fails
– Method (2b) takes as input the history of all previous solved failures: sets of

alarms that are received and their diagnosis results. In our example, some
solved scenarios would be:

Loss of light 23 is caused by failure of link 23.
Loss of light 23 and loss of light 24 are caused
by failure of node 2.

Methodology is the actual algorithm used to locate the failure. The method-
ologies of the five studied techniques are:

– Method (1a) first designs the directed dependency graph as in Fig. 3 and then
applies a divide and conquer algorithm [15], in two phases. In the first phase,
called the partitioning phase that can be done off-line, it groups iteratively
the nodes by taking the two nodes of the graph i, j, for which the failure
propagation probability pij is largest, and by replacing them by a single
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Fig. 4. The FSM model for the network in Fig. 2

new node k whose failure probability is pk = pi + pj × pji + pj + pi × pij .
The new propagation probabilities pkl and plk, involving another node l and
the new node k are the maximum of the previous propagation probabilities:
pkl = max{pil, pjl}, plk = max{pli, plj}. The iterations stop when the all
nodes in the dependency graph are merged into a single node that is also
the root of the tree. The second phase, called the selection phase, is carried
out on-line when alarms arrive at the management system. The algorithm
starts from the root node of the tree obtained at the end of the partitioning
phase and traverses the tree by choosing the branches that explain most
alarms and that have a greater probability of containing the faulty element.
It stops when it finds the smallest most likely set of elements explaining all
the received alarms.
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Optical hardware components
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Channel 3

SDH Multiplex Section Terminating Element (MSTE)

SDH Path Terminating Element (PTE)

SDH Regenerator Terminating Element (RSTE)

SDH monitoring components

Channel 3
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Fig. 5. The deterministic graph model for the network in Fig. 2
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– Method (1b) needs to design the FSM that models the failure behavior of
the network. It first defines a set of states, each state being associated to
a failure scenario that may occur in the network. A last state is added to
this set to represent the normal operation of the network. Given this set of
states, the transition between states is defined by the events that have to be
received from the network. When events (alarms or repairs) arrive, the FSM
changes its state. The output of the FSM is the actual state that the system
is in.

– Method (1c) consists of two stages. In the first stage, which can be done
off-line, the algorithm determines which alarms will ring when a network
component fails. In the second stage, which is carried out when alarms arrive,
the algorithm first corrects possible alarm errors by determining the most
likely set of erroneous alarms. The algorithm then solves the resulting failure
location problem with the cleaned alarms by iteratively picking the network
component whose failure generates the largest number of alarms, until all
alarms are covered by at least one failure.

– Method (2a) first defines all the rules given by the expert knowledge of the
manager. When alarms are received, the corresponding rule will provide a
diagnosis. If no rule has been established for the received alarms, either no
result or a default result will be given.

– In method (2b), given the alarm input, the delivered outputs are the already
solved failure scenarios corresponding to the closest match in the history
database. When the result is confirmed by the manager, the new case is
then added to the database.

Table 1 summarizes the comparisons of different failures location methods at the
optical layer.

Table 1. Comparative table of the properties of the failure location algorithms at
the optical layer described in this section: HF= Hard failure, SF= soft failure, Mem-
ory= Memory usage, Diagn.= On-line diagnostic phase (alarm processing) complexity,
Prepr.= Off-line pre-processing phase complexity, FP= Knowledge of failure probabil-
ities required. Ext. means that the method could have this property, but at the expense
of a quite important extension of the database/rules/etc.

HF SF Memory Diagn. Prepr. FP
1(a) Probabilistic model Yes No Medium Medium High Yes

1(b) FSM Yes No Low Low High Yes
1(c) Deterministic model Yes Yes High Low High No

2(a) Expert System Yes Ext. Low Low Low No
2(b) Case based System Yes Ext. High Medium Low No

2(c) Neural network Yes Ext. Low Low High No
2(d) Proactive system Yes Yes Medium High Low No
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2.2 Failure Location at the IP Layer

In this section we survey failure detection and location mechanisms at the IP
layer. As in the previous section, we begin with a discussion of the available
monitoring information. We then describe the types of failures that occur at this
layer. Finally, we will compare and contrast the various methods that have been
proposed in the literature.

Available Monitoring Information at the IP Layer. At the IP layer,
performance information can be obtained in different ways, depending on the
accessibility to the individual routers.

– Direct measurements at routers: Network managers can configure
routers in their network to maintain information about their own perfor-
mance. For example, routers can keep count of the numbers of packets
dropped due to some reasons. These information can be collected and trans-
mitted to the network manager using mechanisms such as SNMP [30] at
regular time intervals. Collecting performance information requires signifi-
cant memory and computing resources from the routers. Even though sam-
pling techniques can be used to reduce these requirements, in practice, the
direct measurements can only be made at intervals of minutes (typically five
minutes). Therefore, despite their potential to give accurate information for
the network manager, direct measurements are the least reliable and infor-
mative way to collect performance data.

– Passive measurements using dedicated monitors: Network managers
can also deploy passive monitors in the network at multiple points to mea-
sure the performance of packets, such as the arrival time of a packet at a
specific monitor [31]. From these measurements, performance metrics such
as one way delay and packet losses on the segments between monitors can
be inferred. These methods have the advantages of being non-intrusive and
quite accurate, see e.g. [32]. The drawback is that they require monitors
to be installed at multiple locations and can be deployed only by the net-
work owner. Even though packet monitors are cheap, their deployment and
maintenance costs are substantial.

– End-to-end measurements: In this approach, one infers the state of the
network devices through the observed performance of end-to-end monitoring
packets. A special feature of the probing approach is that it allows people
without privilege rights to measure the networks. This approach is impor-
tant in today’s IP networks where traffic traverses different administrative
domains and there is no incentive for the owners of each sub-network to col-
lect and freely distribute vital statistics of their networks. There are many
different types of probes one can use, namely ICMP response packets, TCP
SYN/ACK, DNS, HTTP page downloads, as well as dedicated probe pro-
tocols. These factors have led the end-to-end measurement approach to be
the most the widely deployed method [33, 34]. Note here that end-to-end
information can be obtained either actively by injecting probing traffic into
the network, or passively by listening to existing traffic in the network.
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Since most of the measurement data available for the failure diagnosis of wide
area IP networks is end-to-end, we only consider these measurements in this paper.

Failures at the IP Layer. The IP layer employs a sophisticated set of routing
mechanisms to carry data between end points whenever possible. However, the
IP layer can only provide a best effort service and does not guarantee the timely
nor even the successful delivery of the data.

Many applications, such as voice or video, require strict loss and delay require-
ments for acceptable quality. For example, at loss rates of 4-6% or more, video
conferencing becomes irritating and non-native language speakers are unable to
communicate. The occurrence of long delays of 4 seconds or more at a frequency
of 4-5% or more is also irritating for interactive activities, such as telnet or X
windows. Paxson [33] reports that a loss of 5% has a significant adverse effect on
TCP performance, because it will greatly limit the size of the congestion win-
dow and hence the transfer rate, whereas 3% is often substantially less serious. A
loss rate of 2.5% makes conversations using Voice over Internet Protocol (VoIP)
slightly annoying. A more realistic burst loss pattern results in VoIP distortion
going from not annoying to slightly annoying when the loss rate goes from 0 to
1% [35]. Round trip times (RTTs) should be RTT < 400ms for the interactive
applications. VoIP requires a RTT < 250ms or it is hard for the listener to know
when to speak [35].

Failure management at the IP layer is mainly concerned with the ability of
the network to deliver data within some bounds on loss rates and/or delays. Of
the various metrics (loss, delay, throughput) that one can use to evaluate the
performance of an IP network, loss is the most critical; this is because other
metrics can be inferred from it. For example, the throughput of a TCP connec-
tion can be calculated using loss and delay information [36]. In this section, we
concentrate only on the detection and location of IP links that have loss rates
above 1% (lossy links). A lossy link can be caused either by failures at the optical
layer or by congestions at the IP layer. We do not distinguish these two cases in
this paper. Knowing the locations of lossy links, an application can significantly
improve its performance by rerouting around them [37].

Lossy Link Location Problem Definition. We focus on the techniques that
can be used to infer lossy links using end-to-end measurements. The inference of
internal link properties given end-to-end observations is called network tomog-
raphy. Most tomography works consider tree topologies like the one depicted
in Fig. 6. Each node in the tree represents a router or an end-host. Each link
represents a connection between two routers/hosts. Note here that the link can
be a single physical link or a chain of physical links connected by intermediate
routers. Probing packets are sent from the source at the root node to the re-
ceivers at the leaf nodes along paths that pass through several internal nodes.
The goal of loss tomography is to estimate individual link loss rates based on
the loss rate perceived at a few end nodes.

The network is modelled as a directed graph G = (V , E), where the set V
of nodes denote the network routers/hosts and the set E of edges represent the
communication links connecting them. The number of nodes and edges is denoted



66 M. Kurant, H.X. Nguyen, and P. Thiran

by nv = |V|, and ne = |E|, respectively. For a known topology G = (V , E) and
a set of end-to-end paths P , np = |P|, we compute the routing matrix D of
dimension np × ne as follows. The entry Dij = 1 if the path Pi contains the link
ej and Dij = 0 otherwise. A row of D therefore corresponds to a path, whereas
a column corresponds to a link.

Let φi denote the packet transmission probability on path Pi and φej the
packet transmission probability on link ej . Clearly, the loss rate of a link ej

equals to 1 − φej . Therefore, estimating the link loss rates amounts to estimat-
ing the variables φej from the measured path transmission rates φi. Assuming
independence among loss events on links, the relation between the path-wise and
link-wise transmission rates reads

y = Dx =
[ np∑

j=1

xjDij

]
1≤i≤ne

(1)

where yi = log(φi) and xj = log(φej ): y is the vector of measurements, e.g. path
packet transmission rates, and x is the vector of link transmission rates.

The network loss tomography problem boils down to solving the linear system
of equations (1) to find x given y and D.

Lossy Link Location Algorithms at the IP Layer. Equations (1) cannot
be solved directly because most of the time the matrix D is rank deficient, that
is, rank(D) < min(np, ne) (the rank of D is the maximal number of columns
(rows respectively) of D which are linearly independent). The non-uniqueness of
link loss rates is illustrated in the example of Fig. 6 [38].

0

2 3

φe1

φe2
φe3

1

0

2 3

φe1c

φe2c−1 φe3c−1

1

Fig. 6. In the figure, the nodes are the network routers/hosts and the directed links
are the communication links connecting them. φej denotes the transmission rate of link
ej and c is a constant between max{φe2 , φe3} and 1/φe1 . Both set of link transmission
rates give the same end-to-end transmission rates. Link transmission rates therefore
cannot be uniquely calculated from end-to-end transmission rates.
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Two techniques can overcome the non-uniqueness solution problem to identify
lossy links at the IP layer. The first approach, called the correlation approach,
introduces additional constraints to (1) by creating a correlation between probing
packets. The second approach, called the simple tomography approach, exploits
the distribution of link loss rates on the Internet to solve (1).

The correlation approach can be realized by either using multicast [39] or uni-
cast probing packets [40,41]. Multicast packets are sent to a group of subscribing
receivers. At internal branching points, each multicast packet is replicated and
sent along each branching path. In contrast, unicast packets are sent to only one
receiver. To correlate them, the unicast packets to different receivers are sent
almost at the same time such that they experience the same loss behavior on
the common links shared by different receivers. Several challenges exist in bring-
ing the multicast or unicast methods into widespread fruition. On one hand,
multicast is not widely deployed. On the other hand, methods based on unicast
probing incur costs to deploy appropriate data collection softwares. We study in
this paper three correlation based methods:

– (1a) the multicast method developed by [39],
– (1b) the unicast packet pair method developed by [40],
– (1c) the unicast packet train method developed by [41].

The difficulties encountered in the previous methods motivate the simple to-
mography approach that does not require the correlations between probing pack-
ets [42, 38]. The simple tomography approach is based on the assumption that
network links are generally lossless and that only a few links are responsible
for dropped packets. The major advantage of this approach is that applications
already monitor packets from end-to-end. Simple tomography methods do not
seek to calculate the exact loss rate for each link. Instead, they use a threshold
tl, called link threshold, to determine whether a link ek is good (φek

≥ tl) or bad
(lossy) (φek

< tl). The threshold tl can be set either to meet a given transmission
rate target, or on the basis of data history that shows a clear value separating
well and badly performing links. The problem of identifying lossy links without
finding exact link loss rates amounts to finding the most probable solution for
the observed end-to-end data. Knowing that bad links are not frequent, the most
probable solution is the one giving the least number of lossy links. Let us con-
sider the example in Fig. 6. Assuming that the threshold separating good and
bad links is 0.99, if the end-to-end transmission rates to the sink of both nodes 2
and 3 are below 0.98 (≈ 0.99× 0.99), the most probable explanation is that link
0-1 is lossy (having transmission rate less than 0.99). Other explanations require
at least two links to be lossy, and are therefore much less likely. We consider in
particular two simple tomography methods:

– (2a) the simple tomography using Monte-Carlo simulation method developed
in [42],

– and (2b) the simple tomography using set-cover heuristic method in Duffield
[38].
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Comparison of Lossy Link Location Algorithms at the IP layer. We
now compare the lossy link location methods introduced in the previous section
(1a, 1b, 1c, 2a, and 2b) by applying them to the example network in Fig. 6.
These techniques may be compared with respect to the network support they
require and their methodology.

Network support is the additional support needed by the loss link location
algorithms in addition to the network topology. It is different for the five studied
algorithms.

– Method (1a) requires (i) multicast support from all the routers and (ii)
specific software packages installed at the multicast sender and receivers to
send, collect and analyze the multicast traffic.

– Methods (1b) and (1c) need to have some specific softwares installed at the
unicast sender and receivers to send, collect and analyze the unicast traffic.

– Methods (2a) and (2b) do not need any additional support from the network.

Methodology is the actual algorithm used to locate the lossy links. The
methodologies of the five studied techniques are:

– Method (1a) uses multicast packets to calculate the link loss rates. In the
network of Fig. 6, if a multicast packet is sent by the sender at node 0 and
received by the receiver at node 2 but not the one at node 3, then it can be
immediately determined that the loss occurred on link 3 (successful reception
at node 2 implies that the multicast packet reached the internal node 1). By
performing such measurements repeatedly, the loss rates on the two links 2
and 3 can be estimated; these estimates and measurements enable to deduce
the loss rate on link 1. To illustrate the method further, let φ2|3 be the ratio
of the number of multicast packets simultaneously received at both nodes 2
and 3, relatively to the total number received at node 3. In other words, φ2|3
is the empirical probability of success on link 2 conditional upon success on
link 3, which provides a simple estimate of φe2 . Similarly, we define φ3|2 as
the probability of success on link 3 conditional upon success on link 2, and
let φ1 and φ2 be the transmission rates of multicast packets for node 2 and
3. We can then write⎛

⎜⎜⎝
log φ2
log φ2
log φ2|3
log φ3|2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 0
1 0 1
0 1 0
0 0 1

⎞
⎟⎟⎠

⎛
⎝ log φe1

log φe2

log φe3

⎞
⎠ . (2)

A least square estimate of φej is easily computed for this over-determined
system of equations. Sophisticated and effective algorithms have been derived
for large scale network tomography in [39].

– Method (1b) was introduced in [40] to overcome the fact that most routers in
the Internet today do not support multicast and that performance observed
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by multicast packets differs significantly from that observed by unicast traf-
fic. In method (1b), back-to-back packet pairs, each consisting of two packets
sent one after the other by the sender, are sent to every pair of receivers.
When two packets of a pair arrive back-to-back in a common queue, the
successful transmission of one packet indicates, with high probability, the
successful transmission of the other packet. If two back-to-back packets are
sent to node j from the previous node ρ(j) on a path, then let βj be the
conditional probability that the first packet of a pair arrives at node j from
ρ(j) given that the second packet sent by ρ(j) has arrived successfully at
node j. βj is very close to 1. Denote the complete set of conditional success
probability by β = {β}ne

j=1, where ne is the number of links. In this case,
the network tomography problem boils down to determining the values of
φej and βj that best explain the probing results. Maximizing the likelihood
is not simple and, consequently, numerical optimization strategies are re-
quired. The most commonly used method is the expectation-maximization
algorithm (EM) [40].

– Method (1c) also uses back-to-back unicast packets but in a different way.
The main objective of method (1c) is to create multicast probing using uni-
cast packets. In method (1c), the sender sends a sequence (a train) of many
back-to-back packets to all receivers (instead of packet pairs to all pairs of
receivers as in method (1b)). Contrary to method (1b) where the conditional
probabilities βj are treated as variables, method (1c) assumes that βj = 1
for all j. By viewing each packet train as a multicast packet, method (1c)
then uses techniques in method (1a) to infer the link loss rates.

– Method (2a) is a simple tomography method proposed by [42], which means
that it does not seek to calculate the exact link loss rates, but that it de-
termines whether a link is lossy or not. Method (2a) uses the sophisticated
Monte Carlo Markov Chain Simulation (MCMC method) to determine the
lossy link. It tries to determine the posterior distribution, P(x|y), of the link
loss rates in logarithmic scale x given the observed path data, y. Knowing
P(x|y), one can draw samples from this distribution where each sample is
a vector containing the transmission rates for all links in the network that
can explain the observed data. The method then collects the transmission
rates of each link in all samples and compares them with the threshold tl.
If the majority of the sampled transmission rates of a link are bad (< tl),
then the link is declared as bad. Otherwise it is declared as good. In general,
it is hard to compute P(x|y) directly because of the complex integrations,
especially when x is a vector, as in the present case. It is also difficult to ob-
tain samples of the distribution P(x|y). Hence method (2a) uses an indirect
approach to collect them by constructing a Markov chain whose station-
ary distribution is exactly equal to P(x|y). When such a Markov chain is
run for a sufficiently large number of steps, it converges to its stationary
distribution. The method then gathers samples from this stationary distrib-
ution and views them as samples from the posterior distribution P(x|y). This
way, it does not have to determine the distribution P(x|y) and then draw the
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Table 2. Comparative table of the properties of the methods described in this section
for lossy link location at the IP layer: the column Loss Rates indicates whether the
method can infer the exact loss rates, and the column Meas. Errors indicates whether
the method can handle measurements errors, e.g., errors in estimating the end-to-end
loss rates.

Monitoring Costs Processing Time Loss Rates Meas. Errors

1(a) Multicast tomography High Low Yes Yes

1(b) Unicast packet pair Medium High Yes Yes

1(c) Unicast packet train Medium Low Yes Yes

2(a) MCMC Low High No Yes

2(b) SCFC Low Low No No

samples from it. For the detailed construction of the Markov chain, we refer
to [42].

– Method (2b) is a simple tomography method proposed by Duffield [38]
(Duffield called this approach the SCFC algorithm). It first determines a
threshold tp = tnlink

l , with nlink is the number of links in the path, for all
paths. It then determines all end-to-end paths that have bad transmission
rates, that is, whose transmission rate is below tp. By observing that a path
is bad if and only if one of its links is bad and that bad links are rare, it tries
to find the smallest number of links whose badness can explain the badness
of all bad end-to-end paths. The SCFC method adopts a greedy heuristic
that iteratively chooses at each step the link that can explain the largest
number of bad paths and infers that the link is lossy.

Table 2 gives a summary of the comparisons of different lossy link location
methods at the IP layer.

3 Failure Protection and Restoration in IP/WDM
Networks

Failures must not only be identified and located. The network must be designed
so that the traffic is protected against them, which implies rerouting rapidly the
traffic when a failure occurs, until it is repaired.

So far, we distinguished between a first generation IP/SONET/WDM network
and a second generation IP/WDM network. In the context of failure protection,
however, speaking at a functional level, there are no big differences between IP/
SONET/WDM networks protecting traffic at the SONET layer, and IP/WDM
networks protecting traffic at the optical layer, since the optical layer should take
over all protection and restoration functionalities of the SONET layer. Therefore
in this section we do not make a distinction between both architectures and we use
the SONET/SDH and optical layer indifferently. This brings us to the analysis of
two layers: the physical layer (optical) and the logical layer (IP).

The physical layer topology is a set of optical switches (nodes) and fibers
(links) interconnecting them. Each logical link is mapped on the physical topol-
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ogy as a lightpath. A lightpath may span multiple fiber links. A set of all light-
paths defines a mapping of the logical graph on the physical graph. Given the
physical and logical topologies, the problem of finding a mapping and assigning
wavelengths to all logical links is called the Routing and Wavelength Assignment
(RWA) problem. In its general form, the RWA problem does not take failure re-
silience into account - its objective is to minimize the network resources. A survey
on RWA algorithms can be found in [43]. The difficulty of the RWA problem de-
pends partially on the type of physical nodes used in the network. Perhaps the
simplest kind of physical node is an optical crossconnect (OXC). It switches the
optical signal from an input port to an output port without wavelength conver-
sion. In this case a lightpath must occupy the same wavelength on all fiber links
it traverses, which is called a wavelength continuity constraint. Physical nodes
can be equipped with wavelength converters to alleviate this constraint: some
can offer a full conversion capability (that is, any wavelength can be converted
to any other wavelength), others only offer limited conversion capability (that
is, a wavelength can only be converted to the neighboring wavelengths on the
spectrum). When the full wavelength conversion is available at every node, the
RWA problem is in fact reduced to the routing problem only.

Generally, there are two approaches for providing survivability of IP-over-
WDM networks: protection and restoration [44]. Protection is the mechanism
in which the traffic is switched to available resources when a failure occurs. It
needs to be very fast, the commonly accepted standard for physical layer is 50
ms. Protection routes must therefore be pre-computed, and wavelengths must be
reserved in advance at the time of connection setup. For speed requirements, pro-
tection may require fairly simple topologies (rings rather than complex meshes)
and may be performed in a distributed way, without relying on a central manage-
ment entity to coordinate actions. Restoration is the mechanism in which new
routes are established on the fly, after a failure has occurred. This is much slower
than protection and requires enough free resources available at the moment of
the failure.

The failure protection and restoration tasks can be carried out at different
layers. Often, the logical layer uses restoration (IP restoration) and the physical
layer uses protection (optical protection). We illustrate these approaches in the
toy example in Fig. 7, where three IP connections are mapped on a six-node
physical topology. Assume that each fiber can carry two wavelengths λ1 and
λ2, each of the capacity of one unit of traffic. Fig. 7a shows an example of
protection at the physical layer. This is achieved by setting up three primary
lightpaths (set in bold), all on wavelength λ1, which are used to carry the traffic
in absence of failures. For each primary lightpath we also prepare a backup
lightpath (dashed) on wavelength λ2. If the fiber (5,6) fails then all the traffic
on the primary lightpath (1,6,5,4) on λ1, is routed over the backup lightpath
(1,3,4) on λ2. Note that due to very small reaction times, these mechanisms are
transparent to the logical layer.

The Internet Protocol (IP) is also capable of restoring the traffic around a
failed facility. It is illustrated in Fig. 7b. Here each logical (IP) link has only
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one corresponding lightpath. Routers periodically exchange keep-alive or hello
messages to check the health of neighboring links and nodes. A failure of the fiber
(5,6) does not trigger any action at the physical layer. Instead, after the loss of a
few successive hello messages between the routers 1 and 4, the logical link (1,4)
is deduced to have failed. Now, the traffic between the nodes 1 and 4 is rerouted
in the logical topology via node 3. In order to enable this, two requirements
must be met; first, a single physical failure cannot cut the connectivity at the
logical layer, and second, the links at the logical layer must be overprovisioned,
in order to be able to absorb the additional traffic rerouted after a failure. Let
us assume that in the example in Fig. 7b all logical links initially carry (before a
failure) the same amount t of traffic. In order to enable the IP restoration, t can
be, at most, half of one traffic unit (i.e., half of the optical channel capacity).
Note, however, that overprovisioning has a positive side effect of keeping the
links under-utilized during regular operations and therefore of maintaining all
delays short in the network.

Despite the requirements it imposes, the IP restoration approach turns out
to be more resource efficient than optical protection. This is partially due to the

Fig. 7. An illustration of the basic concept of optical protection (left) and IP restoration
(right). The logical topology consisting of three IP links is mapped on the physical
topology with six nodes and seven optical fibers. Each fiber can carry two wavelengths
λ1 and λ2, each of the capacity of one unit of traffic. The lightpaths are represented
by the arrows in the mapping. For example, the logical link (1,4) uses the lightpath
(1,6,5,4). In the WDM protection scheme, the primary lightpaths use λ1 and are set
in solid, whereas the backup lightpaths use λ2 and are dashed.
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different granularity of the approaches: at a packet level in IP restoration vs. at a
wavelength level in optical protection. Assume, for instance, that initially every
logical link is loaded with at most half a unit of traffic. Under this assumption,
both failure protection schemes in Fig. 7 can deal with any single fiber failure.
Note that the primary lightpaths in the optical protection scheme are exactly the
same as the lightpaths set up in IP restoration, hence the resources used by them
are the same. The optical protection approach, however, commits additional
resources by setting up the backup lightpaths, which makes it more resource-
consuming. This effect is even stronger in denser and bigger topologies.

A major difficulty in optical networks that support various upper layers is that
each layer performs its own protection and mechanisms independently from the
others. This can lead to undesirable races between layers to protect traffic. For
example, if the optical layer is protection enabled and if it did not recover from
the failure very rapidly, the logical layer might happen to detect the failure. It
will start rerouting the IP traffic around the failed link(s) or router(s). The lack
of coordination between layers can therefore create a quite intricate situation.
The problem of inter-layer coordination is addressed for example in [45, 46, 47].
Having protection at only one layer might simplify the problem, but one still
needs then to choose the layer at which it should be done. It is not obvious
which layer is more suitable for failure protection/restoration; each has pros and
cons [48, 44]. First of all, some failures, such as a failed line card in a router,
cannot be detected at the lower layer, but only at the IP layer (i.e., by IP
restoration). Another advantage of IP restoration, as we have seen above, is its
resource efficiency. Unfortunately, it is also inherently slow - failure detection
at the logical layer takes tens of seconds at least, and time scales at which
restoration occurs are typically at least three orders of magnitude larger than the
protection processes at the physical layer. However, many real network operators
deploy IP restoration only, and find it an effective and cost–efficient solution
(see e.g., [49]). Some multi-layer protection/restoration schemes can adequately
combine the advantages of each layer and still avoid most of their disadvantages
[46], but do not eliminate the complexity of coordinating the different restoration
schemes at the various layers (some solutions are proposed in [46]). One way to
bypass some of this complexity race is to allocate the restoration task to a
different layer for different traffic classes1, which also brings benefits in resource
usage [50].

We discuss now in more details the techniques used to protect and restore
traffic, first at the physical layer, and next at the logical layer.

3.1 Protection and Restoration at the Physical Layer Only

All protection techniques involve some redundant capacity with the network
to reroute traffic in case of a failure. There are essentially two basic protection
mechanisms used in point-to-point links: 1+1 protection, and 1:1 protection(and
its generalization to 1:n protection).
1 A traffic class might be defined for instance by its origin/destination, bandwidth or

maximal delay and jitter.
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In 1+1 protection, traffic is transmitted simultaneously on two separate fibers
on disjoint routes. The receiver selects the signal at the destination that has the
largest incoming power. If that fiber is cut, it will automatically switch to the
other fiber. This is the fastest and simplest protection, because no signalling is
needed. It is however very inefficient in terms of resources, as every unit of traffic
requires twice as much capacity. As a result, it is used in some ring networks
(Unidirectional path-switched rings, see [51]), but not in large, meshed WDM
networks.

In 1:1 and, more generally speaking, 1:n protection, traffic is transmitted only
on one fiber (called working or primary fiber). If this fiber is cut, the sender and
receiver both switch to the other fiber (called protection or back-up fiber). This is
not as fast nor as simple as 1+1 protection, because the destination must detect
the failure first and then signal it to the source, which will then switch over to
the protection fiber. The advantage of 1:1 protection is that the capacity on the
back-up fiber can be spared for unprotected traffic, which will be preempted in
case of a failure, or can be shared between n multiple, physically disjoint working
paths, in which case one speaks of 1:n protection rather than 1:1 protection (the
latter applies only to a back-up path which is not shared among multiple primary
paths). Sharing a back-up path among n disjoint working paths can spare a large
amount of bandwidth, but at the cost of an increased amount of signalling. On
the contrary, having a dedicated path requires the reservation of many more
resources, but requires less signalling. The gain in spatial reuse of 1:1 protection
schemes over 1+1 is already important for rings [51], but gets even much larger
in meshed WDM networks.

Protection around the failed facility can be done at different points in the
network: either around the two end-points of the the failed link, by line protec-
tion; or between the source and destination of each connection traversing the
failed link, by path protection. Protection at the line layer is simpler, but path
protection requires less bandwidth and can better handle node failures.

Routing and assigning wavelength in an optical network to guarantee its sur-
vivability by either 1+1 or 1:1 protection can be formulated as an Integer Linear
Programming (ILP) problem. Ramamurthy and Mukherjee [52] use the ILP for-
mulation to compare quantitatively the two schemes, together with the variants
of link and path protection. The 1:1 path protection leads to significant savings in
capacity utilization over the 1:1 link and 1+1 protection schemes. Since for large
topologies the ILP formulation approach becomes computationally difficult, a
number of heuristics have been proposed [53].

Protection is the most common mechanism deployed at the optical layer,
because WDM or SONET/SDH connections are usually long-lived, and rarely
set up on demand. Some authors advocate the possibility of restoration at the
optical layer, which would spare more bandwidth than protection, but can also
introduce significant delays to restore the traffic [54]. The complexity of restoring
traffic at the optical layer (compared to protection at same layer, or restoration
at the IP layer) makes it unlikely that operators rely primarily on restoration at
the optical layer in the near future.
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3.2 Restoration at the Logical Layer by Survivable Mapping

Recall from the beginning of Section 3, that in order to make the IP restoration
work, the logical topology must remain connected after a failure. This require-
ment can be met by an appropriate mapping of the logical topology on the
physical topology.2 More specifically, if the logical topology remains connected
after any single physical link failure, then the underlying mapping is called a
survivable mapping.

Although the survivable mapping problem can be viewed as a specific version
of the Routing and Wavelength Assignment (RWA) problem, it is often defined
relaxing some basic assumptions of RWA, such as the wavelength continuity or
even the capacity constraints. This results in a survivable mapping problem that
is independent of RWA and can be addressed separately.

The problem of finding survivable mapping is NP-complete [55] and has drawn
recently a lot of attention. It was first identified by Crochat et.al. [56], and
named “design protection”. Some authors focused on simplified versions of the
survivable mapping problem, assuming a cycle (ring) topology at the physical
layer [57, 58] or the logical layer [55, 59]. The others addressed the general case,
with arbitrary topologies at both layers. In general, the existing approaches can
be divided into three groups: (i) exact algorithms based on Integer Linear Pro-
gramming (ILP), (ii) pure heuristics and (iii) heuristics with provable properties.
Below we describe each of them in more details, and compare in Table 3.

ILP. The ILP solutions can be found for example in [55, 44, 60]. In [55] it was
observed that a mapping is survivable if and only if no physical link is shared by
all logical links belonging to a cut-set of the logical graph.3 This observation is
used in [55] to formulate an ILP model for the survivable mapping problem: for
each logical link and for each cut-set of the logical graph, a constraint is added
to the ILP. This leads to exact solutions, but also to excessive run-times [61]
for networks of a non-trivially small size (few tens of nodes). To overcome this
difficulty two relaxations to ILP are proposed in [55], by including only cut-sets
of small sizes. This considerably accelerates the algorithm, but can easily lead
to suboptimal solutions. Facing the same time-complexity problem of ILP, the
authors of [44] and [60] decided to try a heuristic approach.

Heuristics. Despite many differences, the heuristics used to solve the surviv-
able mapping problem share the same general methodology. They start with
some initial mapping (e.g., shortest path) and try to improve it at subsequent
iterations. Probably the most often used heuristic is Tabu Search. It is a version
of a steepest descent search algorithm that stores a list (called a Tabu List) of
recent moves to avoid them. This allows Tabu Search escape the local minima.

2 We assume that the logical and the physical topologies are given and cannot be
changed.

3 A cut-set of a network is defined by a cut of the network: a cut is a partition of the
set of nodes V into two sets S and V − S, and the cut-set defined by this cut is the
set of edges which have one endpoint in S and one in V − S.
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Table 3. Comparison of efficiency and functionalities of four approaches to search for
a survivable mapping. The question mark “?” means that the option might be possible
to realize, but, to the best of our knowledge, nobody did it to date.

Functionality ILP Tabu Search FastSurv SMART
Scalability Low Average High Very high

Capacity and other constraints Yes Yes Yes No
Verification of a solution existence Yes No No Yes

Node/span/multiple failures ? ? Yes Yes
Tracing and repairing the vulnerable areas No No No Yes

For more details refer to [62]. Tabu Search was used with success to solve the sur-
vivability problem in many settings, e.g., without capacity constraints [56], with
capacity constraints [63, 64] or additionally meeting maximum delay require-
ments [60]. Another general heuristic applied to solve the survivable mapping
problem is Simulated Annealing in [48]. There is also a number of heuristics
developed specifically to solve this problem, e.g., in [44] and [65]. The FastSurv
algorithm introduced recently in [65], exploits the observation already mentioned
in the ILP paragraph, which takes use of cut-sets in the logical topology. How-
ever, unlike in [55], the FastSurv algorithm systematically and indirectly learns
about the importance of particular cut-sets and focuses only on the most rele-
vant ones. This approach results in much better efficiency and scalability than
those of other heuristics.

Heuristics with Provable Properties. The SMART algorithm proposed
in [66, 67] does not fall in either group above. It is based on a breakdown of
the problem into a set of independent smaller problems, which are easy to solve.
Each of them is solved separately, and then the solutions are combined to obtain
a survivable mapping of the entire topology. This makes SMART the fastest and
most scalable heuristic to date. Moreover, the formal analysis in [67] revealed
that SMART can also serve as a scalable method of verification of the existence
of a survivable mapping and a tool tracing and repairing the vulnerable areas
of the network. These two features are completely novel in the field.4 It should
be noted, however, that one of the main assumptions of the analysis in [67]
is relaxing the capacity constrains. In the presence of some additional real-life
constraints such as limited fiber capacity or maximum delay, the SMART ap-
proach loses its efficiency and properties. Therefore SMART is more used to
getting some topological insight into the problem than to finding an engineering
solution, which makes this approach in a sense complementary to others.

3.3 Other Types of Failures

So far we have only considered single physical link failures. They may result from
a fiber cut, a fault of a single interface card in the optical switch, or a fault of an
4 The ILP can also verify the existence of a survivable mapping, but as we argued

before, it is not scalable.
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optical amplifier. They are the most common type of failures in optical networks,
but not the only one. If we allow for the physical location of the fibers, we extend
single link failures to single span failures. A span is a bundle of fibers partially
placed together for cost reasons (e.g., along railway and electricity lines). A single
cut can break all of these fibers at once, in which case we speak of a span failure. We
can also encounter node failures; they are the consequence of a failure of equipment
at nodes, such as switches. In our context a node failure is equivalent to a failure of
all physical links neighboring to the node. Finally, we consider double–link failures,
i.e., independent failures of any two physical links. Usually such a situation takes
place when the second failure occurs before the first one is repaired. This is not
very common, but possible. For example, in the Sprint network, the time between
two successive optical failures ranges from 5.5 sec to 7.5 days with a mean of 12
hours [1]. Most of them are repaired automatically within several minutes, but
those requiring human intervention (e.g., after a fiber cut) may last hours or days.
It is quite probable that during that period another physical failure occurs.

These failure scenarios were addressed mainly by physical layer protection:
the span failures in [68,69], the node failures in [70], and the double-link failures
in [71, 72, 73]. The IP restoration mechanisms considered these failures in [66]
(all types of failures) and [67] (link and node failures).

4 Conclusion

We have addressed the failure management problem in IP/WDM optical net-
works. This issue can be decomposed with respect to two criteria. First, we
distinguish the failure location from the failure restoration. The former aims
at identifying the failing component based on the feedback from the network,
whereas the latter consists in rerouting the traffic affected by the failure. These
two tasks have different objectives and require different approaches. The second
line of division is defined by the existence of at least two layers in the network:
the IP layer and the optical layer. Each layer applies its own specific mechanisms
to transport traffic, which significantly affects the way a failure is handled.

Following this view, we have discussed and made a detailed comparison of
numerous failure management techniques, separately for failure location and
restoration, and distinguishing between the IP and the optical layer. In con-
trast to previous surveys that have focused only on some particular aspects,
our approach results in a global overview of failure management possibilities in
IP/WDM networks.

References

1. Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C.N., Diot, C.: Char-
acterization of Failures in an IP Backbone. In: Proceedings of the IEEE INFO-
COM’04. (2004)

2. Abek, F., Hegerin, H., Neumair, B.: Integrated Management of Networked Systems.
Morgan Kaufmann Publishers (1998)



78 M. Kurant, H.X. Nguyen, and P. Thiran

3. Mas, C., Thiran, P.: An efficient algorithm for locating soft and hard failures
in WDM network. JSAC special issue on Protocols and Architectures for next
generation optical WDM networks 18 (2000) 1900–1911

4. Mas, C., Nguyen, H.X., Thiran, P.: Failure location in WDM networks. In: Opti-
cal WDM Networks: Past Lessons and Path Ahead. Kluwer Academic Publishers
(2004)

5. ITU-T COM 15 121: Signal Quality Monitoring in Optical networks. (1999)
6. Anritsu: Catalog of measuring instrument (1993)
7. ITU-T Rec. G.872. Architecture of Optical Transport Networks (1998)
8. ITU-T Rec. G.806. Characteristics of Transport Equipment - Description Method-

ology and Generic Functionality (2000)
9. Wautersa, N., Ocahoglu, G., Struyve, K., Falcao, P.: Survivability in a new pan-

european carrier’s network based on WDM and SDH technology: Current imple-
mentations and future requirements. IEEE Communication Magazine 37(8) (1999)
63–69

10. Tao, W., Somani, A.K.: Attack monitoring and monitor placement in all-optical
networks. In: Proceedings of IEEE GBN 2001. (2001)

11. Kilper, D., Bach, R., Blumenthal, D.J., Einstein, D., Landolsi, T., Ostar, L., Preiss,
M., Willner, A.E.: Optical performance monitoring. Journal of Lightwave Tech-
nology 22 (Jan 2004) 294–304

12. N.S.V.Rao: Computational complexity issues in operative dianosis of graph based
systems. IEEE Transactions on Computers 42 (1993) 447–457

13. Nguyen, H.X., Thiran, P.: Failure location in all optical networks: the assymetry
between false and missing alarms. In: Proceedings of ITC 19. (2005)

14. Ducatelle, F., Gambardella, L.M., Kurant, M., Nguyen, H.X., Thiran, P.: Algo-
rithms for Failure Protection in Large IP-over-Fiber and Wireless Ad Hoc Net-
works. In Dependable Systems: Software, Computing, Networks, eds. J. Kohlas,
B. Meyer, A. Schiper, Lecture Notes in Computer Science 4028, Springer, 2006
(this volume)

15. Katzela, I., Schwartz, M.: Scheme for fault identification in communication net-
works. IEEE/ACM Transaction on Networking 3 (1995)

16. Wang, C., Schwart, M.: Identification of faulty links in dynamics-routed networks.
IEEE Journal on selected Areas in Communications (1993) 1449–1460

17. Li, C.S., Ramaswami, R.: Fault Detection and Isolation in transparent All-Optical
Networks. In: IBM Research Report. Volume RC-20028. (1995)

18. Bouloutas, A., Hart, G., Schwartz, M.: Fault identification using a fsm model with
unreliable partially observed data sequences. IEEE Transactions on Communica-
tions 41 (1993) 1074–1083

19. Gu, K., et al.: Realization of an expert system for an online fault diagnosis and
restoration in a bulk power system. In: Proc. 4th International Symposium expert
Systems Application Power Systems. (1993)

20. Brugnoni, S., et al.: An expert system for rel time fault diagnosis of the ital-
ian communications network. In: Proceedings of Integrated network management.
Volume 3. (1993) 617–628

21. Jakobson, G., Weissman, M.E., Brenner, L., Lafond, C., Matheus, C.: Grace: Build-
ing next generation event correlation services. In: IEEE/IFIP: Network Operations
and Management Symposium NOMS, 2000. (2000)

22. Lewis, L.: A case-based reasoning approach to the resolution of faults in commu-
nications networks. In Integrated network management III (1993) 671–682



Survey on Dependable IP over Fiber Networks 79

23. Maki, Y., Loparo, K.A.: Neural network approach to fault detetin and diagnosis
in industrial processes. IEEE Transactions on Control Systems Technology 5(6)
(2001) 529–541

24. Rodriguez, C., Rementeria, S., Martin, J., Lafuente, A., Perez, J.: A modular
neural network approach to fault diagnosis. IEEE Transactions on Neural Networks
(March 1996)

25. Ho, L., Cavuto, D., Papavassilou, S., Zawadzki, A.: Adaptive and automated detec-
tion of service anomalies in transaction-oriented wans. IEEE Journal on Selected
Areas Communications 18(5) (May 2000) 744–757

26. Jakobson, G., Weissman, M.E.: Alarm correlation. IEEE Network (1993) 52–59
27. Hood, C., Ji, C.: Proactive network-fault detection. IEEE Transactions on relia-

bility 46(3) (Sep 2000)
28. Lin, A.: A hybrid approach to fault diagnosis in network and system management.

HP Technical Report (1998)
29. Gardner, R., Harle, D.: Alarm correlation and nerwork fault resolution using ko-

honen self-organising map. In: In proceedings of Globecom 97. (1997) 1398–1402
30. Stallings, W.: SNMP, SNMPv2, SNMPv3 and RMON 1 and 2. Addision-Wesley

Longman Inc (1999)
31. Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins

of internet flow rates. In: Proceedings of the ACM SIGCOMM Conference. (2002)
32. Choi, B.Y., Moon, S., Zhang, Z.L., Papagiannaki, K., Diot, C.: Analysis of point-

to-point packet delay in an operatinal network. In: Proceedings of the INFOCOM.
(2004)

33. Paxson, V.: Measurement and Analysis of End-to-End Internet Dynamics. PhD
thesis, Univ. of Cal., Berkeley (1997)

34. Almes, G., Kalidini, S., Zekauskas, M.: A one-way delay metric for IPPM. IETF,
IP Performance metrics, request for comments:2680 (1999)

35. ITU-T Rec. G.113. [G.113 Appendix I (05/02)] Provisional planning values for the
equipment impairment factor Ie and packet-loss robustness factor Bpl (2002)

36. Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behaviour of the
TCP congestion avoidance algorithm. Computer Communication Review 27 (1997)

37. Tao, V., Xu, K., Estepa, A., Fei, T., Gao, L., Guerin, R., Kurose, J., Towsley, D.,
Zhang, Z.L.: Improving voip quality through path switching. In: Proceedings of
IEEE Infocom. (March 2005)

38. Duffield, N.: Simple network perormance tomography. In: Proceedings of the
IMC’03, Miami Beach, Florida (2003)

39. Caceres, R., Duffield, N.G., Horowitz, J., Towsley, D.: Multicast-based inference
of network-internal loss characteristics. IEEE Transactions on Information Theory
45 (1999) 2462–2480

40. Coates, M., Nowak, R.: Network loss inference using unicast end-to-end mea-
surement. In: Proceedings of the ITC Seminar on IP Traffic, Measurements and
Modelling, Monterey (2000)

41. Duffield, N., Presti, F.L., Paxson, V., Towsley, D.: Inferring link loss using striped
unicast probes. In: Proceedings of the IEEE Infocom 2001, Alaska (2001)

42. Padmanabhan, V.N., Qiu, L., Wang, H.J.: Server-based inference of internet per-
formance. In: Proceedings of the IEEE INFOCOM’03, San Francisco, CA (2003)

43. Zang, H., Jue, J.P., Mukherjee, B.: A review of routing and wavelength assignment
approaches for wavelength-routed optical wdm networks. SPIE Optical Networks
Magazine (1) 47–60



80 M. Kurant, H.X. Nguyen, and P. Thiran

44. Sahasrabuddhe, L., Ramamurthy, S., Mukherjee, B.: Fault management in IP-
Over-WDM Networks: WDM Protection vs. IP Restoration. IEEE Journal on
Selected Areas in Communications 20 (2002) 21–33

45. Demeester, P., et al.: Resilience in multilayer networks. IEEE Communications
Magazine (August 1999) 70–75

46. Colle, D., et al.: Data-centric optical networks and their survivability. IEEE Journal
on Selected Areas in Communications 20 (2002) 6–20

47. Zhang, H., Durresi, A.: Differentiated Multi-Layer Survivability in IP/WDM Net-
works. Proceeding of Network Operations and Management Symposium (2002)

48. Fumagalli, A., Valcarenghi, L.: IP Restoration vs. WDM Protection: Is There an
Optimal Choice? IEEE Network (2000)

49. Iannaccone, G., Chuah, C.N., Bhattacharyya, S., Diot, C.: Feasibility of IP restora-
tion in a tier-1 backbone. (Sprint ATL Research Report Nr. RR03-ATL-030666)

50. Nucci, A., Taft, N., Barakat, C., Thiran, P.: Controlled use of excess backbone
bandwidth for providing new services in IP-over-WDM networks. IEEE Journal
on Selected Areas in Communications JSAC-22 (2004) 1692–1707

51. Gerstel, O., Ramaswami, R.: Optical Layer Survivability-An Implementation Per-
spective. IEEE Journal on Selected Areas in Communications 18 (2000) 18851923

52. Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, Part I - Pro-
tection. Proc. of IEEE INFOCOM’99 (1999)

53. Mohan, G., Somani, A.K.: Routing dependable connections with specified failure
restoration guarantess in WDM networks. Proc. of IEEE INFOCOM’02 (2002)

54. Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, Part II -
Restoration. Proc. of IEEE ICC’99 (1999)

55. Modiano, E., Narula-Tam, A.: Survivable lightpath routing: a new approach to
the design of WDM-based networks. IEEE Journal on Selected Areas in Commu-
nications 20 (2002) 800–809

56. Armitage, J., Crochat, O., Boudec, J.Y.L.: Design of a Survivable WDM Photonic
Network. Proceedings of IEEE INFOCOM 97 (1997)

57. Lee, H., Choi, H., Subramaniam, S., Choi, H.A.: Survival Embedding of Logi-
cal Topology in WDM Ring Networks. Information Sciences : An International
Journal, Special Issue on Photonics, Networking and Computing (2002)

58. Lee, H., Choi, H., Choi, H.A.: Restoration in IP over WDM optical networks. In
Proceedings of the 30th ICPP Workshop on Optical Networks (2001)

59. Sen, A., Hao, B., Shen, B., Lin, G.: Survivable routing in WDM networks log-
ical ring in arbitrary physical topology. Proceedings of the IEEE International
Communication Conference ICC02 (2002)

60. Giroire, F., Nucci, A., Taft, N., Diot, C.: Increasing the Robustness of IP Backbones
in the Absence of Optical Level Protection. Proc. of IEEE INFOCOM 2003 (2003)

61. Leonardi, E., Mellia, M., Marsan, M.A.: Algorithms for the Logical Topology
Design in WDM All-Optical Networks. Optical Networks Magazine (2000)

62. Glover, F., Taillard, E., Werra, D.: A user’s guide for tabu search. Annals of
Operations Research (1993) 3–28

63. Crochat, O., Boudec, J.Y.L.: Design Protection for WDM Optical Networks. IEEE
Journal of Selected Areas in Communication 16 (1998) 1158–1165
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Abstract. The metaphor of objects as entities encompassing both logic
and state, simplifying the design and development of particularly large-
scale applications, is well established in the industry. However, large
applications are rarely monolithic components that carry out a single
sequential task; most applications are composed of many components
running in parallel. Yet, the vast majority of such applications are built
in a rather ad-hoc manner, typically by making use of threading li-
braries and explicit synchronization through low-level mechanisms such
as semaphores, locks, or monitors layered on top of objects.

The Simple Concurrent Object-Oriented Programming (SCOOP)
model strives for a higher-level abstraction for concurrency, naturally
woven into “traditional” object-oriented constructs. Thanks to the full
support for contracts and other object-oriented mechanisms and tech-
niques — inheritance, polymorphism, dynamic binding, genericity, and
agents — SCOOP offers the programmer a simple yet powerful frame-
work for efficient development of concurrent systems.

This paper presents a survey of SCOOP, including (1) the foundations
of the SCOOP paradigm, its computation and synchronization models
(focusing on simplicity), and our more recent developments. These are
(2) an extended type system for eliminating synchronization defects (im-
proving safety), (3) support for transactional semantics for subcompu-
tations (enforcing atomicity), and (4) an event library for programming
real-time concurrent tasks (allowing for predictability).

1 Introduction

The object-oriented paradigm promotes ease of design, development, and main-
tenance of applications by reflecting in a natural manner the real-world scenar-
ios which these applications are portraying. Its support for intuitive reasoning
has made object-orientation a widely adopted choice for devising large-scale
industrial applications. The object paradigm however suffers from a weakness
that may soon become a show-stopper: concurrency. Though nature presents
itself as concurrent in many ways, the integration of objects with concurrency
has namely not taken place in a natural way. Problems arise from aliasing, or
substitution, which are cornerstones of the object paradigm. Yet, virtually all

J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 82–102, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



SCOOP – Concurrency Made Easy 83

industrial-scale applications developed currently span several concurrent tasks
that proceed autonomously from time to time, and require controlled interaction
at chosen points.

Established practices for concurrent programming include the explicit use
of threading libraries and rather low-level synchronization mechanisms such as
locks, semaphores, or monitors, for protecting objects from conflicting accesses
and modifications, hampering the consistency of these objects. Threading models
and precise semantics of basic concurrency control mechanisms however may
diverge on different platforms, slightly only at first glance, but actually with
sensible effects, making concurrent programming still a closed book reserved to
experts. The software field badly needs a concurrent programming technique
enjoying the same simplicity and inspiring the same confidence as the accepted
constructs of sequential programming.

As its name suggests, the Simple Concurrent Object-Oriented Programming
(SCOOP) [1] model is an attempt to provide this simple basis. SCOOP follows
the ambition of supporting programmers in writing correct and efficient soft-
ware, by taking object-oriented programming as given, in a form based on the
concepts of Design by Contract [2]. SCOOP extends these concepts in a minimal
way (essentially one language keyword and a few library mechanisms) to cover
concurrency and distribution. To address requirements of concurrent processing
(e.g., mutual exclusion, wait conditions) SCOOP gives new semantics to well-
known constructs (e.g., argument passing, preconditions) where the standard
sequential semantics could not be applied anyway.

Being high-level, the SCOOP model is applicable to many different physical
setups, including multiprocessing, multithreading, or distributed computing. By
taking advantage of the inherent concurrency in object-oriented programming,
programmers are shielded from low-level concepts such as explicit thread cre-
ation, manipulation, and synchronization. In short, the SCOOP model associates
one or more objects with a conceptual processor, which is the only one to execute
on these objects, and can be mapped to an operating system process, thread, etc.
The keyword separate is used to denote entities that reference objects which,
from the point of view of the client object, may be under the control of a different
processor. The appearance of such variables inherently triggers synchronization
in certain situations, according to well-defined consistency rules.

The contributions of this paper consists in providing a concise overview of the
SCOOP model and its recent refinements, divided into four aspects:

– Simplicity. We present the basic SCOOP paradigm, by laying out its archi-
tecture, its basic model of computation, as well as its synchronization scheme.
The latter perspective on SCOOP is elucidated by explaining the consistency
rules defining the semantics of “traditional” object-oriented constructs such
as feature calls, argument passing, or preconditions, and by summarizing
scheduling policies.

– Safety. By having a single processor execute a single operation at a time on
a given object, the SCOOP model avoids data races. Nonetheless, there are
situations in which the basic SCOOP model may exhibit synchronization
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defects. We propose an ownership-like type system to address these issues,
and derive from it the consistency rules for SCOOP. The proposed type
system makes it possible to eliminate potential synchronization faults at
compile-time; it also integrates with SCOOP other advanced mechanisms of
Eiffel, such as agents and attached types.

– Atomicity. The SCOOP model is augmented with transactional semantics,
in order to support atomic features, features whose use takes either full effect
or none, even in the face of hardware failures. This effort has also been ini-
tiated in view of exploiting the many recent efforts on transactional support
at the operating system level. We provide the programmer the choice be-
tween cooperating concurrency (traditional SCOOP semantics) and conflict-
ing concurrency (transactional semantics) and the possibility of combining
these. Our approach also marries two error recovery modes for transaction
aborts, namely backward recovery (rollback) and forward recovery (compen-
sation [3] for cases where the effects of partial computations can not simply
be undone).

– Predictability. We present a real-time event library (RTEL) which is built
on top of an existing event library [4] designed initially without real-time
concerns in mind. Introducing both concurrency and timing constraints en-
ables the successful application of event-driven programming techniques to
embedded real-time applications. The known advantages of modular devel-
opment and reasoning of object-oriented languages, as well as the sepa-
ration of concerns enforced by the event-driven style of programming [5]
are retained. To achieve predictability in real-time applications, the RTEL
is designed to support in particular the modeling of periodic, sporadic, as
well as aperiodic tasks of real-time applications, thus ensuring their tim-
ing constraints such as worst-case execution time (WCET), deadline, and
periodicity.

The design of the basic SCOOP model, as well as any of the amendments
represented by the last three contributions outlined above has followed the same
directives, which consist namely in guiding the programmer with language con-
structs which (1) anchor safety statically, yet (2) are minimally intrusive, and
(3) preserve flexibility. By abiding to these principles, SCOOP makes concurrent
object-oriented programming simple and can easily be integrated with other lan-
guages.1 The three additions are presented by providing motivating scenarios,
examples, and reporting on their implementation status.

Roadmap. Section 2 overviews the basic SCOOP model. Section 3 presents
improvements to the type system fostering safety. Section 4 describes atomic
features – features supporting transactional semantics. Section 5 reports on our
real-time event library (RTEL), an event library for modeling and devising real-
time tasks within SCOOP. Section 6 presents conclusions and future work.

1 Note that contracts have been recently added to several mainstream programming
languages, e.g., Java (JML [6]), C# (Spec# [7]).
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2 Simplicity: The SCOOP Model

2.1 Computation

In object-oriented computation, the basic mechanism is a feature call such as
x. f (a), with the following semantics (Figure 1): the client object calls feature
f on the supplier object attached to x, with argument a. In a sequential setting,
such calls are synchronous, blocking the client until the supplier has terminated
the execution of the feature.

To support concurrency, SCOOP allows the use of more than one conceptual
processor to handle execution of features. More precisely, every object in SCOOP
is associated with a single processor, which represents a thread of control. The
processor associated with an object is the only one to execute feature calls on
that object. We say that a processor handles, and owns the object; a processor
in the general case owns several objects, and this set of objects owned by a
processor constitute the domain of that processor.

If the client and supplier objects in a feature call have different handlers, the
call becomes asynchronous: in Figure 1, the computation on Object 1 can move
ahead without waiting for the call on Object 2 to terminate. Processors are the
principal new concept for adding concurrency to the framework of sequential
object-oriented computation. A processor does not have to be associated with a
physical processor; it may be implemented by a process of the operating system,
or a thread in a multithreading environment. In the .NET Framework, processors
can be mapped to application domains [8].

Fig. 1. Processors

Viewed by the software, a processor is an abstract concept; the same con-
current application may be executed on very different architectures without any
change to its source text.

2.2 Separateness

Since the effect of a call depends on whether the client and the supplier objects
are handled by the same processor or by different ones, the software text must
distinguish unambiguously between these two cases. For declarations of vari-
ables or functions, normally appearing as x: SOME CLASS, a new form is now
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possible, x: separate SOME CLASS. The keyword separate indicates that x
is potentially handled by a different processor, so that calls on x will be asyn-
chronous. With such a declaration, any creation instruction create x.make ( )
will use a new processor to handle calls on x. The declaration does not spec-
ify which processor to use for handling the object. What matters is that this
processor is different from the processor handling the current object.

If a target of a call is a separate expression, i.e., a separate entity or an
expression involving at least one separate entity, such a call is referred to as
separate call. In Figure 1, x is a separate entity for Object 1, Object 2 referred
to by x is a separate object, and x. f (a) is a separate call.

2.3 Synchronization

SCOOP addresses the synchronization and communication needs of concurrent
programming, including mutual exclusion, locking and waiting, through argu-
ment passing and Design by Contract.

Argument Passing. A basic rule of SCOOP is that a separate call — x . f
(a) where x is separate — is only permitted if x itself is an argument of the
enclosing routine, and that calling a routine with such a separate argument will
cause waiting until the corresponding separate object is exclusively available to
the caller. So if the client calls r (a), or y.r (a), where r is defined as

r (x: separate SOME TYPE) is ...

the call will wait until no other client is using a in this way. This rule provides
the basic synchronization mechanism for SCOOP. It avoids a pitfall of concur-
rent programming, which consists in assuming that in two successive calls on a
separate object, such as

that stack .push (some value)
...
x := that stack .top

nothing may have happened to the object in between – so that in the example
above the object assigned to x is the object referred to by some value previously
stored at the top of the stack. In a concurrent setting, other clients may interfere
with the object that stack between the two calls. As mentioned, both calls above
require that stack to be an argument of the enclosing routine(s) in SCOOP. If
these are different routines, no confusion is likely; if they are the same routine,
the rule guarantees that the routine will hold the object for the entire duration
of every call, to the exclusion of any other clients.

Preconditions. In Eiffel, a routine such as put in Figure 2 may have a pre-
condition and a postcondition. A precondition clause involving a call with a
separate target, such as buffer . is full , is called a separate precondition. The
other clause appearing here, value /= Void, is not separate. In sequential pro-
grams, preconditions are correctness requirements that the client object must
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fulfill before calling the routine on the supplier object. If one or more precondi-
tions are not met, the client has broken the contract; for example, it has tried
to store a value into a full buffer. Since the execution is sequential, the state of
the buffer cannot change (no other client can try to consume an element from
the buffer in the meantime). In a concurrent context this does not apply any
more; the buffer may be full when the client object is trying to store a value into
it, but nothing prevents another client object from consuming an element from
the buffer later on. A non-satisfied separate precondition does not necessarily
break the contract; it just forces the client object to wait until the precondition
is satisfied. This inapplicability in a concurrent context of the usual sequential
interpretation of preconditions leads to the SCOOP use of separate precondi-
tions, namely as wait conditions rather than correctness conditions. We have
shown the basic synchronization rule: in the case of a separate argument, any
call will wait until the object is available. To obtain the full synchronization
mechanism, we add the rule that if the routine has a precondition clause using
such a separate argument as target, for example not buffer . is full the call will
wait until both of the following conditions are satisfied:

a. The object is available.
b. The separate precondition is satisfied.

The wait semantics only apply to separate preconditions. Others, such as value
/= Void, retain their usual meaning as correctness conditions.

2.4 Scheduling

In the following paragraphs we illustrate the concepts of SCOOP and scheduling
through the well-known producer-consumer scenario. Some objects are producing
values and storing them into the shared buffer buf (see Figure 2); others are
consuming elements from that buffer (see Figure 3). For both producers and
consumers, the respective buf object is a separate object, declared as such in the
source code. To perform any call to buf, a client (producer or consumer) must
obtain an exclusive lock on buf. The SCOOP rule then implies embedding all the
calls to buf in routines store and consume one. Direct calls to buf .put, buf . item,
and buf .remove would be invalid.

To call consume one from routine consume n, a consumer will pass buf as
argument. In the SCOOP access control policy, when one or more arguments of
a routine are separate objects, the client must obtain exclusive locks on all these
objects before executing the routine. Here the consumer object must obtain an
exclusive lock on buf before executing consume one. If another object is currently
holding the lock, the client must wait until the lock has been released, then try
to acquire it. The default policy is FIFO. More precisely, locking takes place as
follows:

I. A client attempts to acquire the locks on all the relevant objects.
II. The separate precondition clauses are evaluated. If they do not all hold, the

object releases the lock and goes back to 1.
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III. The routine is executed.
IV. The locks are released.

Releasing all locks in case not all separate preconditions are satisfied allows other
clients to access corresponding supplier objects and change their state, so that
the wait conditions required by another client may eventually be met.

The above locking policy facilitates building correct concurrent programs and
reasoning about them:

– No interference between client objects is possible since at most one client
may hold a lock on a supplier object at any time. This helps find which
object is responsible for possible breaches in the contract, such as breaking
the supplier’s invariant.

– The precondition rules ensure that correct calls do not violate the integrity
of the supplier object.

class PRODUCER
feature

store (buffer : separate BUFFER [G]; value: G) is
−− Store value into buffer.

require
buffer not full : not buffer . is full
value provided : value /= Void

do
buffer .put (value)
ensure

buffer not empty: not buffer .is empty
end

random gen: RANDOM GENERATOR
buf : separate BUFFER [INTEGER]
produce n (n: INTEGER) is

−− Produce n integer values and store them into a buffer.
local

value : INTEGER
i : INTEGER

do
from i := 1
until i > n
loop

value := random gen.next
store (buf , value)
−− buf.put (value) is forbidden here
i := i + 1

end
end

end

Fig. 2. Producers
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class CONSUMER
feature

consume one (buffer: separate BUFFER [G]) is
−− Consume one element from buffer.

require
buffer specified : buffer /= Void

buffer not empty: not buffer .is empty
do

value := buffer .item
buffer .remove
ensure
buffer not full : not buffer . is full

end
buf : separate BUFFER [INTEGER]
consume n (n: INTEGER) is

−− Consume n elements from a buffer.
local

i : INTEGER
do

from i := 1
until i > n
loop

consume one (buf)
−− buf.item and buf.remove are forbidden here
i := i + 1

end
end

end

Fig. 3. Consumers

2.5 A Note on Asynchrony

Thanks to the asynchronous semantics of separate calls, a client executing sepa-
rate calls is not blocked and can proceed with the rest of its computation. Later
on, however, it may need to resynchronize with the supplier. Rather than in-
troducing a specific language mechanism for this purpose, SCOOP relies on a
variant of wait-by-necessity [9] which consists in causing the client to wait on the
result of calls to queries (in particular functions), since it needs the result to pro-
ceed, whereas commands (procedures) do not require waiting. This mechanism
is automatic and does not require any effort from the programmer.

2.6 Implementation and Tools

SCOOP is not supported by any existing Eiffel compiler. Therefore, we devel-
oped the scoop2scoopli preprocessor that allows programmers to write SCOOP
programs, have them type-checked according to the refined typing rules (see 3)
and translated into standard Eiffel code with embedded library calls (library
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calls map SCOOP constructs to the underlying concurrency platform). We de-
cided to provide a binding for several concurrency platforms. So far, we deliv-
ered a thread-based library implementation – SCOOPLI – that supports POSIX
threads and .NET Multithreading. The preprocessor and the library are available
for download at http://se.inf.ethz.ch/research/scoop.html.

We are developing a library for distributed computing. It is currently based on
web services but we are planning to support other communication infrastructures
as well. We are also thinking of a multi-threaded implementation on a widespread
real-time operating system.

3 Safety: Extended Type System for SCOOP

SCOOP programs are free of data races by construction – since all operations
on a given object are executed by its handling processor and all processors are
sequential, at most one operation might be executed on the object at any time
(operations cannot be preempted). Nevertheless, other synchronization defects
– atomicity violations and deadlocks– might still occur. In this paper, we focus
on atomicity violations.

3.1 Separateness Consistency Rules

Atomicity violations are caused by an incorrect interleaving of feature calls issued
by different client objects. The synchronization policy of SCOOP (see section 2.3)
should prevent them. Unfortunately, the locking mechanism alone, although very
restrictive, does not solve the problem. That is why the original SCOOP model
introduced four additional separateness consistency rules [2]. The rules impose
further restrictions on operations (assignment, argument passing) that involve
separate entities. For example, it is required that the target of an assignment be
declared as separate if the source of the assignment is separate.

Although the rules are easily understandable by a programmer, they are too
informal to be used by a compiler. Also, they do not support the agent mecha-
nism (see below) and they are too restrictive – in particular the rule for expanded
types (value types) eliminates many useful programs. We also demonstrated that
they are not sound – it is possible to write programs that satisfy them and still
exhibit atomicity violations.

3.2 Type System

To provide a sound basis for safe concurrency, it is necessary to refine and for-
malize the rules. It is impossible to check the rules statically using the standard
Eiffel type system because separateness is a property of objects, not classes; the
conformance of separate and non-separate entities cannot be expressed stati-
cally in terms of subclassing. Therefore, we propose a type system (inspired by
the ownership type system for JavaCard [10]) that augments Eiffel’s types with
processor tags. Correctly typed programs are guaranteed to be free of atomicity
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violations. A type checker can check the type conformance of SCOOP programs
at compile time.

Let TypeId denote the set of declared type identifiers of a given Eiffel program.
We define the set of tagged types for a given class as

TaggedType
.= ProcessorId × TypeId

where ProcessorId is the set of processor tags declared in the class. Processor
tags denote processors — in a similar sense as entities denote references to
objects. Each class implicitly declares two processor tags: • (current processor)
and � (some processor). The subtype relation � on tagged types is the smallest
reflexive, transitive relation satisfying the following axioms, where α is a tag,
S, T ∈ TypeId, and �Eiffel denotes the conformance relation on TypeId:

(α, T ) � (α, S) ⇐⇒ T �Eiffel S (1)

(α, T ) � (�, T ) (2)

The extended type system allows us to reason precisely about the locality of
objects that are represented by separate and non-separate entities. Typing rules
are defined in such a way that all potential atomicity violations are eliminated
(the interleaving of pure queries is not regarded as an atomicity violation since
a pure query does not modify the state of the object it is applied to). The
typing rules are straightforward – in fact, the proper definition of the notion
of type conformance takes care of most problems. Here is an example rule (for
assignment):

[Assign]
Γ � l :: (α, T ), Γ � e :: (β, S), Γ � (β, S) � (α, T )

Γ � l := e

This rule is very similar to the standard Eiffel rule for assignment — both of
them state that an assignment is correctly typed if and only if the type of its
target conforms to the type of its source. The only difference is that [Assign]
relies on the extended the notion of conformance as expressed by axioms 1
and 2.

To demonstrate the improvements brought by the enhanced type system (both
in terms of safety and flexibility), we use the code examples in Figures 4 and 5.
Figure 4 shows the class code written in the original SCOOP model; Figure 5
shows the same code rewritten using the enhanced syntax that allows for explicit
declaration of object locality. Processor tags (here p1) are declared as entities of
a special type PROCESSOR. They may only appear in type annotations, e.g.
a list : separate <p1> LIST [X] (this means “ a list is handled by the proces-
sor corresponding to p1”; more formally, a list :: (p1, LIST [X ])).
If the original SCOOP code, feature call element.some operation in routine r of
class C will be invalid because it is a separate call and its target does not appear
as a formal argument of routine r, as required by the separate call rule. Never-
theless, feature call a list .item.some operation that has the same semantics as
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element.some operation is treated as correct although it introduces a potential
atomicity violation. The evaluation of a list .item yields a separate object and
the subsequent application of some operation to that object should be rejected
by the compiler because there is no guarantee that the processor handling the
target of that call is reserved by the client object. Nevertheless, there is no con-
sistency rule that takes care of such cases. As a result, potentially unsafe code is
accepted by the compiler. With the new typing rules, the compiler will reject the
call a list .item.some operation because a list.item :: (�, X) and the compiler
cannot decide whether the corresponding processor (�) is locked within the scope
of the routine (see Figure 5). Therefore, the atomicity violation will be avoided.
As we can see, the new type system eliminates the sources of unsoundness in the
original SCOOP model.

On the other hand, feature s does not conform to the original consistency
rules. As a result, it is rejected by the compiler although it is perfectly safe,

class C
feature

r ( a list : separate LIST [X]) is
local

element: separate X
do

element := a list .item
element.some operation −− Rejected
a list .item.some operation −− This call should be rejected too!

end

s ( a list : separate LIST [X]) is
local

element: separate X
do

element := a list .item
a list .extend (element) −− This call should be accepted!

end
...

end

class LIST [G]
feature

item: G
−− Item at current position

extend (an element: G)
−− Add ‘an element’ to end.

...
end

Fig. 4. Original SCOOP code with synchronization faults
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i.e. it does not introduce any potential atomicity violations. This is because
the reasoning about the locality of separate objects is very restricted in the
original model – we can only say that an object is handled by the current pro-
cessor or by some processor. So, when assigning the result of a list .item to
element, we lose the information about the exact locality of element. Although
we know that element is handled by the same processor as a list (the result of
item is non-separate w.r.t. a list ), the type checker cannot use that informa-
tion when checking the subsequent call to a list .extend. Feature extend expects
an argument that is non-separate w.r.t. a list , but the type checker only sees
element as being handled by some processor and therefore non-conforming to
the required type (see Figure 4). Thanks to the possibility of specifying the lo-
cality of objects through the use of processor tags, the code of routine s can be

class C

feature −− Processor tags
p1: PROCESSOR

feature
r ( a list : separate LIST [X]) is

local
element: separate X

do
element := a list .item
element.some operation −− Rejected
a list .item.some operation −− Rejected

end

s ( a list : separate <p1> LIST [X]) is
local

element: separate <p1> X
do

element := a list .item
a list .extend (element) −− Accepted

end
...

end

class LIST [G] feature
item: G

−− Item at current position

extend (an element: G)
−− Add ‘an element’ to end.

...
end

Fig. 5. New type rules reveal synchronization faults
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enriched (see Figure 5) so that the type-checker accepts it. We explicitly say that
element is handled by the same processor as a list (in this case p1). The assign-
ment element := a list . item type-checks correctly because element :: (p1, X)
and a list.item :: (p1, X) – note that the type of an expression is evaluated
taking into account the locality of its target and the locality of the result type.
Similarly, the call to a list .extend (element) is correctly typed – the expected
type of the actual argument is (p1, X) and element has exactly that type. Here,
the new type system allows for an increased flexibility. The SCOOP model be-
comes much more expressive.

The augmented type system for SCOOP allows for modular checking of safety
properties. The type checker only needs to know the interface of the classes that
the currently checked class uses (as supplier or parent); it is not necessary to
consider the full program code. In order to achieve that modularity in the pres-
ence of polymorphism, we had to refine the rules for feature redefinition. We
introduced a contravariant rule for formal arguments, i.e. their processor tags
may only be preserved or generalized to �. Conversely, the rule for query results
is covariant, i.e. the processor tag may only be preserved or specialized. Note
that such specialization is only possible if the original tag is �.

3.3 Agents

Agents are used in Eiffel to “wrap” routine calls [11]. One can think of agents
as a more sophisticated form of .NET delegates. Typing agent expressions is
tricky even in a sequential context, so we expected that the integration of the
mechanism with SCOOP would be difficult. Recall that the semantics of argu-
ment passing in SCOOP is such that the processor handling a separate object
passed as an actual argument to a routine call will be locked (see section 2.3).
Nevertheless, when an agent is passed as actual argument to a feature call, we
should lock the handler of its target rather than the agent itself. Also, the types
of the actual arguments passed to an agent call must be evaluated w.r.t. the the
agent’s target; this is complicated by the fact that the arguments are wrapped
in a tuple.

We decided to treat agents as any other objects but give appropriate rules for
agent creation, so that the type of an agent expression reflects the locality of its
target. More precisely, the processor tag of the agent’s type is identical to the
processor tag of the target’s type. A special typing rule is given for agent calls –
the tuple of arguments is “stripped down” and each of its elements is considered
separately.

The proposed solution supports polymorphism. Unfortunately, it cannot be
applied to agents with an open target because the locality of the potential target
is not known at the time of agent construction. This is not an issue if the agent
under consideration is declared as non-separate. We are currently investigating
the possibility of using detachable types for typing open-target agent expressions.
Another, somewhat less satisfactory solution would be to impose a run-time
check at call time for separate agents with an open target.
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4 Atomicity: Transactional Semantics

Numerous fundamental impossibility results in the field of distributed systems
[12] make many of the simple approaches taken in the concurrent case simply
not viable in a typical asynchronous distributed setting. Hence, the distributed
version of the SCOOP model requires special care. We propose a transactional
extension to the initial SCOOP model in order to help programmers in the
construction of reliable distributed software.

4.1 Introduction to the Transactional Model

We propose programming language support for the specification of atomicity
properties of particular features (routines or attributes). With such support, the
application programmer is assisted by the compiler in constructing reliable dis-
tributed software. This extension to the initial SCOOP model aims at supporting
atomic features - features whose use takes either full effect or none. The rollback
capabilities introduced allows for an optimistic concurrency model and hence to
a potential increase in the level of concurrency. Some computations cannot be
rolled-backed. In order to circumvent this problem we propose to add support
for compensation. We define the concept of compensation and explain how we
provide explicit support for compensation at the language level.

Our approach builds on the extensive work which has already been done in
the field of transactional systems [13] (the concept of nested transactions has
been thoroughly explored since the seminal work of Moss [14]). Butler et al. [3]
proposed a formalization of a compensation language in CSP which influenced
the compensation scheme that we describe in this section.

4.2 Syntactic Extensions

We propose the addition of a keyword atomic to the programming language.
Routines can be declared to be atomic by replacing respectively the usual do
... end block delimiters by atomic ... end. Attribute accesses are inherently

atomic. That is, any read and write of an attribute is atomic. Calling an atomic
feature implicitly results in creating a corresponding transaction (a commit is
attempted at the end of the feature). Figure 6 illustrates the syntax.

Semantics. Naturally atomic features, like non-atomic ones, can have pre- and
postconditions. Just like in the original SCOOP model, preconditions on sep-
arate objects have wait condition semantics in the case of atomic features. An
atomic feature fails and returns with an exception if its processing encounters an
error other than a conflict with the computations performed by any concurrently
executing atomic feature (i.e., any competing transaction). The composition of
atomic features will be discussed in Section 4.3.

Inheritance and Atomicity. Inheritance is a fundamental concept for code
reuse. Redefinition of a feature should only provide equal or stronger guarantees
to a client. The guarantees provided by atomic features are clearly stronger
than those provided by non-atomic features. In others terms, atomicity is a
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class BANK ACCOUNT
feature

deposit (sum: INTEGER)
require
sum >= 0

atomic
balance = balance + sum

ensure
balance = old balance + sum

end
...

end −− class BANK ACCOUNT

class ATM
−− An ATM client with an atomic transfer feature

feature

transfer (source : separate BANK ACCOUNT;
destination : separate BANK ACCOUNT;
sum: INTEGER)

require
sum >= 0

source .may withdraw(sum)
atomic

source . debit (sum)
destination . credit (sum)

ensure
source .balance = old source.balance − sum
destination .balance = old source.balance + sum

end
end −− class ATM

Fig. 6. Bank account and ATM with atomicity

special case of non-atomicity. This leads to the rule that features can be redefined
from non-atomic to atomic but not vice-versa. This rule will be enforced at
compilation.

4.3 Composition of Atomic Features

Nesting. Atomicity can be straightforwardly ensured if it is transitive. That
is, if all features called within atomic features are atomic themselves, one can
ensure that the (partial) effects of an atomic feature can be “undone”. A nested
call to an atomic feature can then trigger the start of a nested transaction, i.e.,
a sub-transaction [14].
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class CLIENT
feature

client id : INTEGER

plan holidays(agency: separate TRAVEL AGENCY;
atm: separate ATM;
client account : separate BANK ACCOUNT)

local
ticket id : separate INTEGER REF

atomic
−− compensated call
agency. order ticket ( client id ) ÷ agency.cancel ticket( client id )
−− atomic call
atm.transfer( client account ,agency.account,amount)
...

end
...

end −− class CLIENT

Fig. 7. Compensation example

Compensation. Constraining atomic features to calling only other atomic fea-
tures would however be overly restrictive, as it would eliminate the possibility
of including many routines whose effects can by their very nature simply not
be undone. For such situations, in which rollbacks are unfeasible, we adopt the
approach of “rolling forward” computation to compensate [3] as best as possible
for the operations that can not be undone. Calls within an atomic feature can
be issued to an atomic feature, or to any other feature if the client defines a
corresponding compensation clause. That is, the compiler will reject any atomic
features that contains calls to non-atomic features for which no compensation
clause is mentioned.

Syntactically, a compensation clause is demarked by separating it from associ-
ated feature through a character ‘÷’. Consider the example in Figure 7. A client
orders a ticket from a travel agency (a non-atomic operation where the obvious
parameters such as departure date, destination etc. are omitted for simplicity).
The code declares a command call to the same travel agency to cancel a possi-
bly issued ticket in case of a transaction abort. Let’s assume that the command
call to order ticket completed successfully. Its corresponding compensation op-
eration will be listed in the sequence of compensation routines to be called in
case of a rollback. If the ATM fails for some reason before the final commit,
the processor executing the call to the routine plan holidays will execute the
compensation routines in the reverse of the order in which they were defined.
In this case, this simply results in calling the travel agency to cancel the ticket
order.
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Limitations of Compensation. Depending on the application and on the spe-
cific operations performed, a compensation can not always recover completely
the initial state (the state at the beginning of the transaction). It is thus impor-
tant to note that compensation is not a perfect solution, but is more a trade-off
that allows to partially tackle the problem of non-recoverable actions. It should
also be emphasized that the goal of compensation is not to replace the usual
exception mechanisms (see [15]).

5 Predictability: A Real-Time Event Library

The ability to model periodic, sporadic and aperiodic tasks in a way ensuring
their timing constraints such as worst-case execution time (WCET), deadline and
periodicity is a major concern in embedded real-time programming. Through the
use of our real-time event library (RTEL) based on SCOOP the predictability of
such embedded real-time programs can be achieved, while retaining the advan-
tages of modular development and reasoning of object-oriented languages and
the benefit of event-driven programming.

5.1 Overview

The basic goal of RTEL is to support the modelling of periodic, sporadic and
aperiodic tasks. RTEL is built on top of an existing event library ([4]) designed
initially without concurrency and real-time concerns in mind. In order to model
e.g. a periodic task using RTEL the following steps must be carried out:

– The publisher creates an event type
– The subscriber subscribes an object (which is called subscribed object) to an

event type
– The publisher publishes an event

Following our previous ([4]) and recent work ([16]) we use a small sample
application to show the basic capabilities of the concurrent event library for em-
bedded and real-time programming. The details of the RTEL have been omitted
due to space limitations, but they can be found in [16]. In our simple applica-
tion we want to observe the temperature, humidity, and pressure of containers
in a chemical plant. The measurements are supposed to originate from external
physical sensors. Whenever the value(s) of one or more measured physical at-
tributes change(s), the concerned parts of our system (e.g. an actuator and/or
display units) are notified, so that they can update the values or take appropriate
actions.

Now assume that in our example we would like to control a certain actuator,
e.g., a valve which adjusts the heater according to temperature changes. Since
the temperature can change at any time, it is modeled using a periodic task (i.e.
a real-time task which is activated regularly at fixed rates/periods [17]). In order
to model a periodic task, the timing constraints periodicity T , the deadline d
and the WCET c (cost) must be specified. The deadline d is the point in time by
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class SENSOR

feature − Access

temperature: INTEGER
−− Container temperature

set temperature (t : INTEGER)
−− Set temperature to t.

feature − Events

temperature event: separate EVENT TYPE [TUPLE [INTEGER]]
−− Event associated with attribute temperature

end − class SENSOR

Fig. 8. SENSOR

which a real-time job must be completed, where a job is defined as an instance
of a task [17]). The WCET is the maximum amount of time needed to finish a
task. Assume that the periodicity is T = 10 ms, c = 5 ms, and d = T = 10 ms.
This means that every 10 ms the task is released anew, assuming that the total
time needed for reading the temperature value from the physical temperature
sensor and for the actuator to perform the necessary actions is c = 5 ms.

5.2 Creating an Event Type

Class SENSOR (Figure 8) is an abstraction of a sensor that measures among
others the temperature.

Furthermore, an event type temperature event corresponding to the change of
attribute temperature (through the feature set temperature) is defined in class
SENSOR as follows:

temperature event: separate EVENT TYPE [TUPLE [INTEGER]]

The temperature event is defined using the class EVENT TYPE, declared
as EVENT TYPE [EVENT DATA → TUPLE]. It is a generic class with con-
strained generic parameter EVENT DATA representing a tuple of arbitrary
types. In the case of temperature event, the value of this generic parameter is
TUPLE [INTEGER] since the actual event data (i.e., temperature value) is of
type INTEGER [4]. Note that other attributes such as humidity and pressure
have been omitted due to space limitations.

The keyword separate reflects the concurrent nature of the temperature
event. In this context, the object to which the attribute temperature event is
attached will be handled by a different processor than the processor of the
object declaring temperature event. As a consequence, all feature calls on the
temperature event attribute will be executed asynchronously.
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After having declared temperature event in class SENSOR, we should make
sure that the corresponding event is published whenever the temperature
changes. Feature set temperature of class SENSOR performs the following call
for this purpose:

call temperature (temperature event, [temperature])

An instance of class SENSOR is a publisher of the temperature event
temperature event.

5.3 Subscribing to an Event Type

Our example includes two further classes, which will subscribe to the event
published by SENSOR. First, we introduce class ACTUATOR with the feature
adjust valve (t : INTEGER). An instance of ACTUATOR is a subscribed ob-
ject: it reacts to the published events by executing the corresponding routine,
e.g. adjust valve .

Second, we introduce class CONTROLLER, which is in charge of subscrib-
ing the feature adjust valve of class ACTUATOR listed above to the corre-
sponding event type temperature event. An instance of class CONTROLLER
is a subscriber. In order to subscribe feature adjust valve of actuator (of

type ACTUATOR) to event type temperature event, the subscriber (instance of
CONTROLLER) makes the following call:

sensor.temperature event. subscribe periodic
(..., agent actuator.adjust valve (?) , ...)

As a result, feature adjust valve of actuator will be called each time tem-
perature event is published. The actual argument of feature subscribe periodic
(actually subscribe periodic has five formal arguments) in class EVENT TYPE
is a so-called agent which can be roughly viewed as a function pointer. The ques-
tion mark reflects an open argument that will be filled with concrete event data
(a value of type INTEGER here) when feature adjust valve is actually executed
[11]. To be more precise, the first formal argument of subscribe periodic requires
actually another agent expression; the complete feature call tosubscribe periodic
is thus:

if sensor.temperature event. subscribe periodic
(agent physical sensor.read and set temperature,
agent actuator.adjust valve (?) , 10, 10, 5) then

−− here periodic subscription was successful .
end

Note that class PHYSICAL SENSOR is responsible for accessing the low-
level device, i.e., the physical sensor for reading the temperature, humidity, and
pressure. Class SENSOR (representing a software sensor) on the other hand is
more abstract and hence application-specific, e.g. it adds event types such as
temperature event, humidity event, and pressure event.
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5.4 Publishing an Event

By executing set temperature (of class SENSOR) through physical sensor , the
temperature event temperature event (in class SENSOR) will be published. The
event type guarantees (by relying on an appropriate scheduler) that the agent
physical sensor .read temperature is released every T = 10 ms. In order to do
this, the feature subscribe periodic of class EVENT TYPE returns a boolean
value to indicate that class EVENT TYPE can indeed fulfill the subscription
with the specified timing constraints T = 10 ms, d = 10 ms, and c = 5 ms. If
this is infeasible, the return value will be false, and the subscription will not take
place.

6 Conclusions and Future Work

We have presented the SCOOP model for concurrent object-oriented program-
ming. SCOOP offers a comprehensive approach for building high-quality concur-
rent and distributed systems. The simplicity and expressive power of the model
is achieved by taking object-oriented programming in a simple and pure form,
based on the concepts of Design by Contract that have proved highly successful
in improving the quality of sequential programs, and extending them in a mini-
mal way to cover concurrency and distribution. The mechanism largely derives
from examining the consequences of the notion of contract in a non-sequential
setting. The model is applicable to many different physical setups, from multipro-
cessing to multithreading, network programming, Web services, highly parallel
processors for scientific computation, and distributed computation.

We have proposed three refinements of SCOOP whose purpose is to improve
the crucial aspects of the model: safety, predictability, support for atomicity. We
achieve safe concurrency through the use of an augmented type system that
refines and formalizes the separateness consistency rules to statically eliminate
synchronization defects. We also provide a support for transactional semantics
of features. Finally, we present an event library for programming real-time con-
current tasks within the SCOOP framework.

We are currently working on several mechanism that have not been discussed
in this paper. In particular, we want to reduce the amount of necessary locking
by allowing the interleaving of pure query calls made by different clients, and
use detachable types to better express the need for locking. We are planning to
provide a uniform treatment of exceptions in sequential and concurrent contexts.
We are also investigating the feasibility of providing specific support for aperiodic
real-time tasks.
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Abstract. Traditional programming paradigms and styles do not lend
themselves easily to XML services. This has led to engineered systems
that are characterized by a mix of special purpose and general purpose
languages. Such systems are brittle, hard to understand and do not scale
well - hence they are not dependable. We describe some facets of the
Scala programming language targeted at XML services that unify the
disparate worlds through a judicious combination of existing and new
programming language constructs. More concretely, we describe use cases
of case classes, regular pattern matching and comprehensions. Programs
that use these abstractions can deliver XML services in a scalable and
manageable way. We discuss the essential design decisions we took, the
experience we gained during development, and identify directions of fur-
ther research.

1 Introduction

Service-orientation is an emerging paradigm that promises a deep impact on pro-
gramming. Similar to the rise of object-oriented systems when graphical user in-
terfaces became the norm, service-oriented systems are motivated by two strong
trends: the move from single-machine, homogeneous execution environments to
distributed and heterogeneous ones, and the move from fine-grained and propri-
etary transmission formats to coarse-grained, standardized and semistructured
ones.

The reasons behind this paradigm shift lie in new challenges posed by pro-
gramming applications and services for the internet. For the last 20 years, the
most common programming model has been object-oriented: System components
are objects, and computation is done by method calls. Methods themselves take
object references as parameters. This is a beautifully simple abstraction, which
describes computation adequately as long as we are dealing with a single com-
puter. At first, it seems that the concept of remote method calls lets one extend
this programming model to distributed systems. However, this approach does
not scale up well to wide-scale networks where messages can be delayed and
components may fail.
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Web services address the message delay problem by increasing granularity,
using method calls with larger, structured arguments, typically represented as
XML data. They address the failure problem by using transparent replication
and avoiding server state. Conceptually, they are tree transformers that consume
incoming message documents and produce outgoing ones.

Should this paradigm shift have an effect on programming languages? There
are at least two arguments that suggest this: First, today’s object-oriented lan-
guages are not very good at analyzing and transforming structured data, such
as XML trees. Since such trees usually contain only fields but no methods, they
have to be decomposed and constructed from the “outside”, that is from code
that is external to the tree definition itself. In an object-oriented language, the
ways of doing so are limited. In the most common solution (characterized by
W3C’s Document Object Model [16]), all tree nodes are values of a common
type. This makes it easy to write generic traversal functions, but forces appli-
cations to operate on a very low conceptual level, which often loses important
semantic distinctions present in the XML data. More semantic precision is ob-
tained if different internal types model different kinds of nodes. But then tree
decompositions require the use of run-time type tests and type casts to adapt
the treatment to the kind of node encountered. Such type tests and type casts
are generally not considered good object-oriented style. They are rarely efficient,
and not easy to use.

By contrast, tree transformation is the natural domain of functional languages.
Their algebraic data types, pattern matching and higher-order functions make
these languages ideal for the task. It’s no wonder, then, that specialized languages
for transforming XML data such as W3C’s XSLT [16] are functional.

The second reason for the popularity of functional languages in web-service
programming is the fact that handling mutable state is problematic in this set-
ting. Components with mutable state are harder to replicate or to restore after a
failure. Data with mutable state is harder to cache than immutable data. Func-
tional language constructs make it relatively easy to build components without
mutable state.

Many web services are constructed by combining different languages. For in-
stance, a service might use XSLT to handle document transformation, XQuery
for database access, and Java for the “business logic”. The downside of this
approach is that the necessary amount of cross-language glue can make appli-
cations cumbersome to write, verify, and maintain. A particular problem is that
cross-language interfaces are usually not statically typed. Hence, the benefits of
a static type system are missing where they are needed most – at the join points
of components written using different paradigms.

Conceivably, the glue problem could be addressed by a “multi-paradigm” lan-
guage that would express object-oriented, concurrent, as well as functional aspects
of an application. But one needs to be careful not to simply replace cross-language
glue by awkward interfaces between different paradigms within the language it-
self. Ideally, one would hope for a fusion which unifies concepts found in different
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paradigms instead of an agglutination, which merely includes them side by side.
This fusion is what we try to achieve with the Scala programming language [13].

Scala is both object-oriented and functional. It is a pure object-oriented lan-
guage in the sense that every value is an object. Types and behavior of objects
are described by classes. Classes can be composed using mixin composition. Scala
is designed to work seamlessly with two mainstream object-oriented languages
– Java and C#.

Scala is also a functional language in the sense that every function is a value.
Nesting of function definitions and higher-order functions are naturally sup-
ported. Scala also supports a general notion of pattern matching which can
model the algebraic types used in many functional languages. Furthermore, this
notion of pattern matching naturally extends to the processing of XML data.

In this paper, we focus on the elements that make Scala suitable for pro-
gramming web services and applications. These are in particular its support for
pattern matching, with its specialization to XML data, as well as its support for
higher-order functions, with for-comprehensions as a convenient front-end syn-
tax for querying. Other innovations of Scala, which have to do with component
abstraction and composition, are described elsewhere [14].

Related Work

There has been extensive research in general purpose languages that tackle data
integration and concurrency in innovative ways, yet retain some form of static
type safety.

The designers of the research language Mawl [2] have introduced a notion of
forms and a notion of session with the goal to produce valid HTML services.
Their form language is a custom extension of HTML, and the language ensures
that only valid HTML is sent to the client.

Sessions were taken up by the authors of Bigwig [5] and its successors JWig [6].
While the former is aimed at HTML, the latter provides more general
XML transformations, while keeping the statically checked validity guarantees.
Widespread use of JWig seems however inhibited because of its reliance on a
particular validation language.

Bierman et al. propose Cω [4] an object-oriented language in which an over-
loaded dot operator can be used for XPath like querying. Distribution is ap-
proached by chords, which in turn are based on the join calculus. This language
furthermore integrates Benton et al.’s concurrency abstractions for C# [3].

XJ [11] is an extension to Java that aims at binding types from XML schemata
and providing XPath primitives in an imperative context. XPath expressions
are used for bulk updates, and a combination of static analysis techniques and
runtime checks is used to guarantee type safety.

Xtatic [10] is an extension to C# that introduces regular expression types
and sophisticated runtime representation of XML values. Programmers can take
advantage of the underlying .NET concurrency model.

Our work in data binding is similar to the approach Wallace and Runciman
take for Haskell XML integration [17]. The authors create specialized type defi-
nitions from a given DTD.
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The W3C has standardized the XSLT and XQuery languages [16] for transfor-
mation and querying of XML. The former was intended as a language for simple
transformations but quickly grew beyond its initial goal. The latter is designed
as the XML equivalent of the database-hosted structured query language (SQL).
Both languages are functional in the sense that they do not permit imperative
update of XML trees.

The rest of this paper is structured as follows. Section 2 gives an introduction
to case classes and pattern matching; these features, known from the functional
programming domain, are useful for handling algebraic datatypes and structured
data in particular. Section 3 is the core section of this paper; it describes the
XML library of Scala. Starting with the XML data model in Scala, it describes
parsing and validation, regular sequence pattern matching, and querying XML
using for comprehensions. Section 4 shows two examples of simple XML services,
and their implementation in Scala. When dealing with more advanced service
architectures one will have to deal with concurrent requests and events. Scala’s
programming abstractions for concurrency are shortly described in Section 5.
Section 6 concludes.

2 Case Classes and Pattern Matching

In this section we start by recalling the conventional, object-oriented way of de-
composing data. Then we introduce case classes and describe the semantics of pat-
tern matching. Finally, regular sequence patterns are discussed; as will be seen in
the next section, these are particularly useful for decomposing XML data.

2.1 Object-Oriented Decomposition

When dealing with structured data, a common object-oriented design pattern is
to create a set of classes, some of which act as structural containers for others
(cf. the Composite pattern [9]). For inspecting structured data, a programmer
can solely rely on virtual method calls of methods provided by such classes.

As an example, consider a simple evaluator for propositional logic, consist-
ing of propositional variables and connectives. We can decompose the evaluator
according to the term structure as follows:

trait Term {
def eval(env: Array[Boolean]): Boolean;

}
class True() extends Term {
def eval(env: Array[Boolean]) = true;

}
class Var(i: Int) extends Term {
def eval(env: Array[Boolean]) = env(i);

}
class Not(term: Term) extends Term {
def eval(env: Array[Boolean]) = !term.eval(env);

}
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class And(left: Term, right: Term) extends Term {
def eval(env: Array[Boolean]) = left.eval(env) && right.eval(env);

}

The given program models propositional formulas with an abstract class (called
trait) Term which defines a deferred eval method that takes an environment as
a parameter. Concrete subclasses of Term model the various term variants. Note
that the compiler has enough information to infer the result type, it is thus
omitted for brevity.

This object-oriented decomposition scheme generally requires the anticipation
of all operations traversing a given structure. Moreover, non-local inspections
cannot be implemented by one method alone, several dispatches are necessary.
Often internal methods have to be exposed to some degree. Adding new methods
is tedious and error-prone, because it requires all classes to be either changed or
subclassed. A related problem is that implementations of operations are dis-
tributed over all participating classes making it difficult to understand and
change them.

The Visitor pattern [9] can be used to separate operations from structure,
however, it still breaks encapsulation, it does not deal with non-local inspections
either and requires significant amounts of boilerplate code.

2.2 Pattern Matching over Class Hierarchies

Functional languages like ML and Haskell have embraced algebraic datatypes
for the purpose of separating structure from operations. Operations on such
datatypes are simply functions which use pattern matching as the basic decom-
position principle. Such an approach makes it possible to implement a single
eval function without exposing artificial auxiliary functions.

Scala provides a natural way for tackling the above programming task in a
functional way by supplying the programmer with a mechanism for creating
structured data representations similar to algebraic datatypes and a decompo-
sition mechanism based on pattern matching.

Instead of adding algebraic types to the core language, Scala enhances the
class abstraction mechanism to simplify the construction of structured data.
Classes tagged with the case modifier automatically define a constructor with
the same arguments as the primary constructor. Singleton objects (or objects,
for short) are classes that have only one instance, hence serve as constants:

abstract class Term ;
case object True extends Term ;
case class Var(i: Int) extends Term ;
case class Not(term: Term) extends Term ;
case class And(left: Term, right: Term) extends Term ;

Given these definitions, it is now possible to create the propositional formula x1∧
¬(¬x2 ∧ x3) without using the new primitive, simply by calling the constructors
associated with case classes: And(Var(1), Not(And(Not(Var(2)), Var(3)))).
The fields of each case class can be accessed with the usual dot notation, e.g. as
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in x.left. Furthermore, Scala’s pattern matching expressions provide a concise
means of decomposition that uses these constructors as patterns:

def eval(term: Term, env: Array[Boolean]): Boolean = term match {
case True => true;
case Var(i) => env(i);
case Not(t) => !eval(t, env);
case And(left, right) => eval(left, env) && eval(right, env); }

Note that apart from the pleasing localization of the intended behavior in one
method, there is now a way to change the representation of environments to
bitfields without needing to touch the source code of the Term classes. More-
over, it becomes easy to perform non-local inspections through the use of nested
patterns as happens in the following function.

def simpl(term: Term): Term = term match {
case True | Var(_) => term
case Not(Not(x)) => simpl(x)
case Not(x) => Not(simpl(x1))
case And(left, right) => And(simpl(left), simpl(right)) }

The matching expression x match { case pat1 => e1 case pat2 => e2 ...}
matches value x against the patterns pat1, pat2, etc. in the given order. The
value x is called the scrutinee. A pattern pati is a term built up from variables,
case class constructors, and some predefined match primitives (like the wild-
card _ and the choice operator |). To match the scrutinee against pat1, pat2,
etc. means to find the first pattern pati that can be made equal to x by bind-
ing its variables to terms appropriately. If such a pattern is found then ei is
executed, after replacing in ei each variable of pati by its binding. If no such
pattern is found, then a run time error is generated. The wildcard pattern _
matches any value. Choice patterns p1|p2 may not contain variables and match
the union of values that are matched by their subpatterns. A constructor pattern
Constr(p1, ..., pn) matches any value that is an instance of the corresponding case
class, and whose arguments match the arguments patterns. Hence, patterns can
be terms of arbitrary depth (cf. the pattern Not(Not(x)) in the function simpl.

Such a functional decomposition scheme has the advantage that new functions
can be added easily to the system. On the other hand, integrating a new case
class might require changes in all pattern matching expressions. For extensibility,
the Scala compiler does not check exhaustiveness of patterns, meaning to ensure
that any scrutinee must match at least one of the patterns. For the moment it
neither checks redundancy, i.e. when a pattern can never match due to a more
general earlier pattern. We plan to add redundancy checks in the future.

Patterns in Scala are linear in the sense that a variable may appear only once
within a pattern. However, it is possible to add to a pattern p a “guard”, i.e.,
an if expression that involves the variables of pat. For instance, the pattern
case And(x, y) if x == y matches only terms of the form And(t, t). Hence,
using such equality guards it is possible to express arbitrary constraints between
variables.
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The case modifier can appear anywhere on a class hierarchy. It is possible to
extend a case class, and case classes can extend non-case classes, which enables
more involved designs than the flat one presented above. The only restriction
that applies is that a case class may not directly or indirectly be derived from
another case class.

2.3 Regular Sequence Pattern Matching

The case class declarations introduced above determine the exact number of con-
tained objects, similar to a function declaration determining the exact number of
arguments. But often programmers need to deal with a number of sequence ele-
ments that is not known in advance. This can be done using sequence parameters.

The last parameter of a formal parameter list can be turned into a sequence
parameter by marking its type T with a star (*), which is a shorthand for
the type Seq[T ]. This works for case class declarations as well as for function
declarations. The example from above can thus be extended with a conjunction
over an arbitrary number of terms as follows:

case class BigAnd(terms: Term*) extends Term ;

The field terms is of the type Seq[Term]. The Seq trait offers functionality to
obtain the length of the sequence, to access its elements, and to iterate over
them. Such a sequence parameter offers syntactic convenience by permitting an
arbitrary number of arguments in function and constructor calls. A conjunction
over an arbitrary number of terms like ¬x1 ∧ x2 ∧ x3 can now be expressed as
BigAnd(Not(Var(1)),Var(2),Var(3)).

The following code transforms BigAnds into a series of Ands.

def toAnd(b:BigAnd): Term = {
val it = b.terms.elements;
var t = True;
while(it.hasNext) { t = And(it.next, t); }
return t; }

In practice, the data to be passed to the constructor may often already
be in some sequence representation. In this case, a sequence escape is used
to guide the compiler. The code val xs = List(Not(Var(1)),Var(2),Var(3));
BigAnd(xs:_*) constructs the same conjunction as above, using the sequence
escape xs:_*. If the annotation were missing, the compiler would signal a type
error since xs of type Seq[Term] cannot be used as a Term.

Let us now discuss how sequences can be decomposed, using pattern matching.
A regular sequence pattern is a regular expression that possibly is annotated
with variable bindings [8]. A variable binding is written x@p where p is a regular
pattern that may not contain other variable bindings. For regular expression
constructs we use the following standard notations;

– concatenation: p,p concatenates sequence patterns
– the star operator: p* denotes zero or more occurrences of p
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– the plus operator: p+ denotes one or more occurrences of p
– the option operator: p? denotes p or the empty sequences.

A choice pattern is a sequence pattern if one of its branches is a sequence pattern.
Variables binding a sequence pattern that matches elements of some type T are
of type Seq[T].

Regular patterns can be applied to sequences of any type, not just case classes.
Here is an example of a text-processing task using regular patterns:

def findRest(z: Seq[Char]): Seq[Char] = z match {
case Seq(_*, ’G’, ’o’, ’o’*, ’g’, ’l’, ’e’, rest@(_*)) => rest }

This pattern is used to search for the sequence of letters "Gogle" or "Google",
or . . . . If the input z matches, then the function returns what remains after the
occurrence, otherwise it generates a runtime error. Possible ambiguities (e.g., for
several occurrences of ’Goo*gle-words’ in z) are resolved using the (left) shortest
match policy which chooses the shortest match for each possibility (such as
_*), coming from the left. In the example this coincides with matching the first
occurrence of "Goo*gle" in the input z.

As (conventional) pattern matching is well suited for decomposing ranked
trees (i.e., trees in which each node has a fixed number of children), regular
sequence pattern matching is the counterpart for decomposing unranked trees.
As we will see in the following section, regular sequence pattern matching is
particularly useful in the context of XML, because XML documents are naturally
modeled as unranked trees.

3 XML Facilities in Scala

XML [16] has emerged as the lingua franca of the web. Henceforth, all major pro-
gramming languages are providing, in varying degrees, support to handle XML
data. XML documents describe tree-structured data. Functional programming
languages, starting with Lisp, have always been particularly well-suited in deal-
ing with trees and tree-structured data. It therefore comes as no surprise that
Scala with its functional features is well-suited for XML processing.

The next two subsections describe basic features of XML processing in Scala:
our data model of XML, how to express XML documents in Scala code, how
to parse XML documents, and how to validate a document against a given
schema while parsing. Then, in Section 3.3 we describe how regular sequence
pattern matching can be applied to XML data. After a short discussion on
namespaces and attributes, section 3.5 describes how to express XML queries
with for comprehensions. Finally, we show how to realize queries on XML data,
using Scala’s elegant concept of for comprehensions.

3.1 Data Model

We give an introduction to Scala’s XML data model by contrasting it with the
W3C’s Document Object Model (DOM), which is characteristic for a number
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<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">
<shipTo country="US">
<name>Alice Smith</name> <street>123 Maple Street</street>
<city>Mill Valley</city> <state>CA</state> <zip>90952</zip>

</shipTo>
<billTo country="US">

<name>Robert Smith</name> <street>8 Oak Avenue</street>
<city>Old Town</city> <state>PA</state> <zip>95819</zip>

</billTo>
<comment>Hurry, my lawn is going wild!</comment>
<items>
<item partNum="872-AA">

<productName>Lawnmower</productName> <quantity>1</quantity>
<USPrice>148.95</USPrice> <comment>Confirm this is electric</comment>

</item>
<item partNum="926-AA">

<productName>Baby Monitor</productName> <quantity>1</quantity>
<USPrice>39.98</USPrice> <shipDate>1999-05-21</shipDate>

</item>
</items>
</purchaseOrder>

Listing 1.1. Extract from XML document

of related object-oriented XML data models. The DOM has been implemented
in several programming languages, including Java. We will also compare code
written using Java and DOM with code written using Scala.

item

productName USPricequantity shipDate

"Baby Monitor" "1" "39.98" "1999-05-21"

Fig. 1. DOM of a purchase order item

Consider the XML fragment in Listing 1.1. It shows a purchase order con-
sisting of two items. The tree structure inherent in such a purchase order is
essentially an unranked, ordered tree. Within DOM, such tree structures are
doubly-linked: there are pointers to each child of a node and back, and pointers
from each node to its next and previous sibling. Figure 1 depicts the DOM tree
structure of a purchase order.

From a programmer’s perspective the availability of many tree pointers
(parent-child, child-parent, next-sibling, previous-sibling) might offer high flex-
ibility. However, code that uses parent and previous-sibling pointers is hard to
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Listing 1.2. Processing with Java and DOM

read and possibly introduces circularities thus leading to nontermination. More-
over, it increases the footprint of DOM: (1) DOM representations are very mem-
ory costly (usually at least 4-5 times the space of the original XML document
on disk) and (2) program code using DOM is overly verbose.

In contrast, Scala has a much thinner model of XML: an XML document
is seen as an immutable, ordered (singly-linked) unranked tree. This model
agrees with the functional view of a tree in which no pointers to parent or
previous-sibling nodes are provided. Programmers can obtain those nodes by
storing them in temporary variables upon a traversal. Two major advantages
of this representation are (1) memory efficiency (usually around 1-2 times the
space of the original XML document on disk) and (2) clean, concise program
code.

Before describing the library classes, we demonstrate the latter point consider
as example simple programming task over the purchase order data. We want to

import org.w3c.dom.Document;
import org.w3c.dom.Element;
...
//Retrieve the Document object
DocumentBuilder fact = DocumentBuilderFactory.newInstance().newDocumentBuilder();
Document po = fact.parse(new File("po.xml"));
Element root = po.getDocumentElement();

//Retrieve all partNums and compute the grand total for the purchase order
double total = 0;
NodeList children = root.getChildNodes();
for (int i = 0; i < children.getLength(); i++) {

Node node = children.item(i);
//Find the items child element
if ("items".equals(node.getLocalName())) {

NodeList itemList = node.getChildNodes();
for (int j = 0; j < itemList.getLength(); j++) {

Node item = itemList.item(j);

//Get the partNum attribute value
NamedNodeMap attrs = item.getAttributes();
System.out.println("partNum:" + attrs.getNamedItem("partNum"));

//Find the USPrice child element
NodeList itemChildren = item.getChildNodes();
for (int k = 0; k < itemChildren.getLength(); k++) {

Node child = itemChildren.item(k);
if ("USPrice".equals(child.getLocalName()) {
total += Double.valueOf(child.getNodeValue()).doubleValue();

} } } } }
System.out.println("Grand total = " + total);
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import scala.xml.XML;
val doc = XML.loadFile("po.xml");
var total = 0;
for(val z <- doc \\ "item";

val y <- z \ "USPrice") {
Console.println("partnum: " + z \ "@partNum");
total = total + Double.valueOf(y.text)

}
Console.println("Grand total " + total);

Listing 1.3. Processing with Scala

– collect the partNum attributes and
– compute the sum of the prices in the USPrice elements.

Using DOM within Java, this task is realized by the code shown in Listing 1.2.
Each node is mapped to an object, whose children are accessed by obtaining
a NodeList using the getChildNodes() method, and then accessing each child
using a call like item(i). The label of a node is accessed via the getLocalName().

A corresponding Scala code is shown in Listing 1.3. It uses a for comprehension
to search for all pairs (z,y) such that z is an item-node and y is a USPrice-child
of z. For comprehensions are explained in detail in Section 3.5.

The Node class embodies Scala’s tree model of XML. It describes the com-
ponents of an XML node, namely the namespace prefix, the label, a pointer to
the namespace bindings in scope, the attributes and the children. This library
class provides also methods for XML serialization, namespace/attribute lookup,
XPath selection etc.

abstract class Node extends NodeSeq {
def prefix: String;
def label: String;
def scope: NamespaceBinding;
def attributes: MetaData;
def child: Seq[Node]; ... }

NodeSeq is a wrapper class that acts as a proxy for an arbitrary sequence of nodes
– this can be a list, an array, or any other custom representation (a single Node
acts as a singleton sequence). It adds methods \ and \\ than can be used like
corresponding XPath operators / and //.

abstract class NodeSeq extends Seq[Node] { ...
def \(that: String): NodeSeq = {...}
def \\(that: String): NodeSeq = {...} }

Note that the operators \\ and \ are not build-in operators of the Scala
language, but, are just ordinary methods, since operator characters can be used
as method names. Scala resolves an expression of the form a id b into the more
familiar a.id(b). A fixed precedence scheme guides the parser and determines
in which direction operations associate.
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Concrete subclasses of Node exist for elements, text nodes, comments, process-
ing instructions, and entity references. The informed reader might wonder about
namespace and root nodes – the root node is represented by a class Document, and
namespace nodes are instances of NamespaceBinding which is described further
down.

Elements are by default represented using the scala.xml.Elem class, which is
– not surprisingly – a case class. The accessor methods for the constructor argu-
ments provide exactly the methods required by the superclass scala.xml.Node.

case class Elem(prefix: String, label: String, attributes: MetaData,
scope: NamespaceBinding, child: Node*) extends Node { ... }

3.2 Literals, Parsing, and Validation

XML syntax can be used directly in a Scala program, e.g., in value definitions.

val labPhoneBook =
<phonebook>
<descr>Phone numbers of<b>XML</b> hackers.</descr>
<entry>
<name>Burak</name>
<phone where="work"> +41 21 693 68 67 </phone>
<phone where="mobile"> +41 78 601 54 36 </phone>

</entry>
</phonebook>;

The value labPhoneBook is an XML tree; for instance, one of its nodes has the
label phone, a child sequence consisting of a single text node labeled by +41 2..,
and a map from the attribute key where to the value "work". Within XML syntax
it is possible to escape to Scala using the brackets { and } (similar to the conven-
tion used in XQuery). For example, a date node with a child text node consisting
of the current date can be defined by <date>{ df.format(new java.util.Date())
}</date>.

Parsing XML data is done by means of the load method of the object
scala.xml.XML. Scala’s XML parser is of course entirely written in Scala, and is
also used to parse the XML literals described above. The XML standard actually
describes two variants of XML parsers – the validating and the non-validating
ones. The parser library parser provides support for validation, which can be
enabled as shown in the following lines.

val fil = new java.io.File("data.xml");
val prs = new scala.xml.parsing.ConstructingParser(fil, true)

with ValidatingMarkupHandler ; // true = preserve whitespace
prs.nextch; // initialize parser
val d = prs.document(); // returns Document instance
val elem = d.docElem;
val dtd = d.dtd;

The above code is a case of so-called mixin composition: a mixin class
ValidatingMarkupHandler overrides certain members of the existing class
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ConstructingParser, changing their behavior from non-validating to validating.
In general, mixin composition is a flexible means to pull together pieces of code
that have been factored out into components [14].

The user also has the possibility to connect an event handler to the parser,
which gets called back whenever a subelement has been successfully parsed. This
allows to traverse the document without necessarily constructing it in memory.
It can be useful, for instance, in order to run an optimized query directly during
parse time of the document and without actually constructing the document, or,
if based on the element name different representations (of different types) are to
be constructed.

3.3 Regular Matching on XML Nodes

XML nodes can be decomposed using pattern matching. Scala allows to use
XML syntax here too, albeit only to match elements. The following example
shows how to add an entry to a phonebook element.

import scala.xml.{ Node, XML } ;
def add(pbook: Node, newEntry: Node): Node =
pbook match {
case <phonebook>{ cs @ _* }</phonebook> =>
<phonebook>{ cs }{ newEntry }</phonebook>

}
val newPhoneBook =
add(XML.load("savedPhoneBook"),

<entry>
<name>Sebastian</name>
<phone where="work">+41 21 693 68 67</phone>

</entry>);

The add function performs a match on the phonebook element, binding its child
sequence to the variable cs (the regular sequence pattern _* matches an arbitrary
sequence). Then it constructs a new phonebook element with child sequence cs
followed by the node newEntry. Note that the pattern cs @ _* appears inside
code braces, it would otherwise be interpreted as literal text.

The compiler turns the above shorthand into constructor calls of the class
scala.xml.Elem. New temporary variables are introduced to deal with namespace
definitions and redefinitions and prefixed and unprefixed attributes. If we ignore
those for a moment, the resulting code is equivalent to the following (which could
equally well be written by a user that despises angle brackets)

import scala.xml._ ;
def add(pbook: Node, newEntry: Node): Node =
pbook match {
case Elem(_,"phonebook",_,_,cs @ _*) =>
Elem(null, "phonebook", Null, $scope,

(new scala.xml.NodeBuffer() &+ ch &+ newEntry):_*)
}
val newPhoneBook = add(XML.load("savedPhoneBook"),
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Elem(null, "entry", Null, $scope, Null,
Elem(null, "name", Null, $scope, Text("Sebastian"))
Elem(null, "phone", new UnprefixedAttribute("where","work", Null), $scope,

Text("+41 21 693 68 67"))));

More involved patterns are possible. The following pattern traverses the children
of a node and finds out whether a book with the title <scala/xml> comes before a
book with the title XSLT Reference, and if so, returns the book elements between
those two.

books match {
case <books>{ _*, <book><title>&lt;scala/xml&gt;</title>{ _ * }</book>,

mid @ _*, <book><title>XSLT Reference</title>{ _ * }</book>,
_* }</books> => mid

case _ => Nil
}

3.4 Namespaces and Attributes

Attributes and namespaces are implemented as immutable, linked lists. At-
tributes with namespace prefixes are distinguished from ones without. For the
reader not versed in the namespace issues regarding XML, it might suffice to
know that the Namespaces in XML Recommendation [16] specification, which
has been introduced long after the XML specification, provides a means to ‘pack-
age’ related names by associating them with a uniform resource identifier (URI).
The association avoids name collisions and happens indirectly by (1) binding
URIs to prefixes and (2) prefixing names using the syntax ns:localname.

For convenience, a default namespace may be declared that applies to un-
prefixed names. Finally, it is also possible to undeclare prefix bindings. As an
example, consider the following element:

<seat class="Y" ht:class="blink" xmlns:ht="urn:hypertext">33B</seat>

This element defines two distinct class attributes, the second being in the
namespace determined by the ht prefix. This prefix is bound by a namespace
declaration xmlns:html="urn:hypertext", which happens to be in the same ele-
ment. Here is the equivalent Scala code, with an explanation below:

Elem(null, "seat",
new UnprefixedAttribute("class","Y",

new PrefixedAttribute("ht","class","blink", Null)),
new NamespaceBinding("ht","urn:hypertext", TopScope),
Text("33B"))

The default namespace is identified by the null reference. Namespaces are en-
coded in a linked list of namespaces bindings (and “un-bindings”). The nodes
of the list are shared among nodes of the same subtree. In this way, we fully
support namespaces in Scala’s literal syntax and library. The programmer can
extend an existing scope scp with the above binding is achieved by writing
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new NamespaceBinding("html","urn:hypertext", p), with object TopScope act-
ing as the top-level (empty) scope.

3.5 XML Queries through For Comprehension

For comprehensions are a functional feature used e.g. in Haskell to concisely
express computations on lists. In general, a for comprehension consists of gener-
ators (a sequence expression whose elements will subsequently be assigned to a
variable) and filters (boolean expressions that eliminate some of the elements).
The following code shows how to concisely compute a list pairs of numbers i, j
between 0 and 100 where i = 3n and j < i.

for (val i <- List.range(0, 100); i % 3 == 0; val j <- List.range(0, i); )
yield Pair(i, j);

For comprehensions are related to queries on XML data in a way that com-
plements pattern matching. Where the latter yields at most one result for a
pattern, queries are usually used to compute all matches of a query. Scala’s flex-
ible comprehension mechanism can be used to this end, allowing for a concise
and elegant style that closely resembles XQuery. In the following example, we
select all entry elements from labAddressbook and from labPhoneBook into the
variables a and p, respectively. Whenever the name contents of two such entries
coincide, a result element is generated which has as children the address and
phone number, taken from the appropriate entry.

for (val a <- labAddressBook \\ "entry";
val p <- labPhoneBook \\ "entry";
a \ "name" == p \ "name") yield

<result>{ a.child }{ p \ "phone" }</result>

Note the variable order inside the for comprehension: labAddressBook is tra-
versed in document order (=depth-first left-to-right) and for each entry found,
labPhoneBook is traversed in document order. Hence, the order of entries in the
result will be the order of entries in labAddressBook; If a and p are exchanged
inside the for, then the order of results will be as in labPhoneBook.

3.6 Data Binding

Types of XML documents are usually specified by so called schemas. The act
of checking conformance to a schema is called validation. Popular schema for-
malisms are DTD (Document Type Definition), XML Schema [16], and RELAX
NG [12]. At this moment a simple support for DTDs is available through the
schema2src tool. It converts a DTD to a set of class definitions which can only
be instantiated with XML data that is valid with respect to the DTD.

The idea here is to map the generic tree representation to case classes. We
can create one case class per element tag, and place code that validates in the
constructor. The validating code uses Scala’s regular expression library. The val-
idation functions can also be called separately, and the tool is written in an
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<!ELEMENT phonebook (descr, entry*)>
<!ELEMENT descr (#PCDATA | b)*>
<!ELEMENT b (#PCDATA)>
<!ELEMENT entry (name, phone+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ATTLIST phone where (home|mobile|work) "home">

Listing 1.4. A typical DTD

extensible way to accommodate user-defined modules for custom schema lan-
guages.

XML documents that are represented generically can be validated and option-
ally translated into the specialized representation, by using the so-called binder
object.

val pb = dtd.binder.validate(<phonebook> ... </phonebook>);
pb match {
case phonebook(_, _*,

entry(md,
name(Text("Sebastian")),
p@phone(_,_*)), _*)) => p }

Existing XML documents can then be validated against the DTD using a
special load method which tries to instantiate the corresponding classes. Scala’s
regular expression library is used to convert content models to finite automata.

4 Services

In this section, we will give some examples that show how Scala can be used
to create web services. For reasons of space, we will only give basics of servlet
programming and refer the interested reader to the real life applications that
were written in Scala and are in active use.

4.1 Common Gateway Interface

Web services were born out of ad hoc interfaces to webservers that became
standardized in one way or another. The earliest of them, the Common Gateway
Interface (CGI), may be considered as the first defining protocol of web services.
CGI programs can be written in almost any language, but the cost of real life
CGI programs is influenced by two crucial issues:

First, new variants of CGI use long-running processes that communicate with
the web server and handle requests concurrently. Scala’s suitability for concur-
rency will be analyzed in detail in the next section. Second, writing server side
programs is made hard due to inversion of control and state [15]. We are cur-
rently working on an implementation for an infrastructure for web services that
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class MyServlet extends HttpServlet {
def getTime = java.util.Calendar.getInstance().getTime();

def doGet(req:HttpServletRequest, res:HttpServletResponse) = {
val page = <html>

<head> <title>Hello, Servlet World!</title> </head>
<body>

<h1>Hello, Servlet World!</h1>
<p> The time is <b>{ getTime.toString() }</b> </p>

</body>
</html>;

res.getWriter().write( page.toString() );
} }

Listing 1.5. A friendly Scala servlet

solves the control issue using continuations. This task is greatly simplified by
having first-class functions in the language.

4.2 Servlets

On the Java platform, using the CGI is usually discarded in favor of servlets.
These are small portions of object-oriented code centered around a servlet con-
tainer or servlet engine which maps URL requests of the HTTP protocol to
method calls.

Programmers can choose among many servlet containers to run their Java
servlets It is easy to write servlets in Scala making use of the tight integration
between the two languages. A sample servlet is given in Listing 1.5.

Built on top of the servlet technology, we have implemented a range of web
services that are in active use. These are the Scala bugtracking system, and an
online auction software. Both are three-tier systems that generate XHTML for
presentation purposes. We found developing real life applications quite useful
to guide the design of the XML library and testing the implementation of the
literal syntax.

4.3 Remote Invocations

The concept of a web services does not (and might never) benefit from an agreed
upon definition. Nevertheless, specifications like XMLRPC and the Simple Ob-
ject Access Protocol (SOAP) have emerged as language-independent remote
method invocation protocols that enjoy some popularity in this context. Space
limitations hinder us from giving a full example; given the above explanations
it is clear that Scala provides everything needed to handle SOAP fragments like
the following one of a Google service. For the networking tasks, the relevant Java
network library are at the programmer’s disposal.
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<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:doSpellingSuggestion xmlns:ns1="urn:GoogleSearch"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<key xsi:type="xsd:string">00000000000000000000000000000000</key>
<phrase xsi:type="xsd:string">Boogle</phrase>

</ns1:doSpellingSuggestion>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

We can summarize that by these properties of Scala’s XML syntax and data
model, applications benefit from improved integration over present solutions
built from Java plus XML libraries.

5 Concurrency

Finally, we shall point out that concurrency is an application area for which
Scala is particularly well suited. Consider the task of implementing an electronic
auction service. We focus here on an Erlang-style actor process model [1] to
implement the participants of the auction. An alternative approach to concurrent
programming in Scala using pi-calculus is described elsewhere [7].

Actors are objects to which messages are sent. Every process has a “mailbox” of
its incoming messages which is represented as a queue. It can work sequentially
through the messages in its mailbox, or search for messages matching some
pattern.

For every traded item there is an auctioneer process that publishes informa-
tion about the traded item, that accepts offers from clients, and that communi-
cates with the seller and winning bidder to close the transaction. We present an
overview of a simple implementation here.

In Listing 1.6, we define the messages that are exchanged during an auction.
There are two traits: AuctionMessage for messages from clients to the auction
service, and AuctionReply for replies from the service to the clients. Both classes
are extended with a number of cases.

Listing 1.7 presents a Scala implementation of a class Auction for auction
processes that coordinate the bidding on one item. Objects of this class are
created by indicating (1) a seller process which needs to be notified when the
auction is over, (2) a minimal bid, and (3) the date when the auction is to be
closed.

The process behavior is defined by its run method. That method repeatedly
selects (using receiveWithin) a message and reacts to it, until the auction is
closed, which is signaled by a TIMEOUT message. Before finally stopping, it stays
active for another period determined by the timeToShutdown constant and replies
to further offers that the auction is closed.
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trait AuctionMessage;
case class Offer(bid: int, client: Actor) extends AuctionMessage;
case class Inquire(client: Actor) extends AuctionMessage;

trait AuctionReply;
case class Status(asked: int, expire: Date) extends AuctionReply;
case object BestOffer extends AuctionReply;
case class BeatenOffer(maxBid: int) extends AuctionReply;
case class AuctionConcluded(seller: Actor, client: Actor)

extends AuctionReply;
case object AuctionFailed extends AuctionReply;
case object AuctionOver extends AuctionReply;

Listing 1.6. Implementation of an Auction Service

class Auction(seller: Actor, minBid: int, closing: Date) extends Actor {
val timeToShutdown = 36000000; // msec
val bidIncrement = 10;
override def run() = {
var maxBid = minBid - bidIncrement;
var maxBidder: Actor = _;
var running = true;
while (running) {
receiveWithin ((closing.getTime() - new Date().getTime())) {
case Offer(bid, client) =>
if (bid >= maxBid + bidIncrement) {
if (maxBid >= minBid) maxBidder send BeatenOffer(bid);
maxBid = bid; maxBidder = client; client send BestOffer;

} else {
client send BeatenOffer(maxBid);

}
case Inquire(client) =>
client send Status(maxBid, closing);

case TIMEOUT =>
if (maxBid >= minBid) {
val reply = AuctionConcluded(seller, maxBidder);
maxBidder send reply; seller send reply;

} else {
seller send AuctionFailed;

}
receiveWithin(timeToShutdown) {
case Offer(_, client) => client send AuctionOver
case TIMEOUT => running = false;

} } } } }

Listing 1.7. Implementation of an Auction Service
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Here are some further explanations of the constructs used in this program:

– The receiveWithin method of class Actor takes as parameters a time span
given in milliseconds and a function that processes messages in the mail-
box. The function can be expressed directly as a matching expression. The
receiveWithin method selects the first message in the mailbox which matches
one of these patterns and applies the corresponding action to it.

– The last case of receiveWithin is guarded by a TIMEOUT pattern. If no other
messages are received in the meantime, this pattern is triggered after the time
span which is passed as argument to the enclosing receiveWithin method.
TIMEOUT is a particular instance of class Message, which is triggered by the
Actor implementation itself.

– Reply messages are sent using syntax of the form destination send
SomeMessage, which expands to destination.send(SomeMessage) as described
before.

All the constructs discussed above are offered as methods in the library class
Actor. That class is itself implemented in Scala, based on the underlying thread
model of the host language (e.g. Java, or .NET). The implementation of all
features of class Actor used here is given in Section 5.2.

5.1 Mailboxes

Mailboxes are high-level, flexible constructs for process synchronization and com-
munication. They allow sending and receiving of messages. A message in this
context is an arbitrary object. There is a special message TIMEOUT which is used
to signal a time-out.

case object TIMEOUT;

Mailboxes implement the following signature.

class MailBox {
def send(msg: Any): unit;
def receive[a](f: PartialFunction[Any, a]): a;
def receiveWithin[a](msec: long)(f: PartialFunction[Any, a]): a;

}

The state of a mailbox consists of a multi-set of messages. Messages are added
to the mailbox using the send method. Messages are removed using the receive
method, which is passed a message processor f as argument. This is a partial
function from messages to some result type, which can be implemented as a
pattern matching expression. The receive method blocks until there is a message
in the mailbox for which its message processor is defined. The matching message
is then removed from the mailbox and the blocked thread is restarted by applying
the message processor to the message.
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Here’s how the mailbox class can be implemented:

class MailBox {
private abstract class Receiver extends Signal {
def isDefined(msg: Any): boolean;
var msg = null;

}

We define an internal class for receivers with a test method isDefined, which
indicates whether the receiver is defined for a given message. The receiver inherits
from class Signal a notify method which is used to wake up a receiver thread.
When the receiver thread is woken up, the message it needs to be applied to is
stored in the msg variable of Receiver.

private val sent = new LinkedList[Any];
private var lastSent = sent;
private val receivers = new LinkedList[Receiver];
private var lastReceiver = receivers;

The mailbox class maintains two linked lists, one for sent but unconsumed mes-
sages, the other for waiting receivers.

def send(msg: Any): unit = synchronized {
var r = receivers, r1 = r.next;
while (r1 != null && !r1.elem.isDefined(msg)) { r = r1; r1 = r1.next }
if (r1 != null) {
r.next = r1.next; r1.elem.msg = msg; r1.elem.notify;

} else {
lastSent = insert(lastSent, msg);

} }

The send method first checks whether a waiting receiver is applicable to the sent
message. If yes, the receiver is notified. Otherwise, the message is appended to
the linked list of sent messages.

def receive[a](f: PartialFunction[Any, a]): a = {
val msg: Any = synchronized {
var s = sent, s1 = s.next;
while (s1 != null && !f.isDefinedAt(s1.elem)) { s = s1; s1 = s1.next }
if (s1 != null) {
s.next = s1.next; s1.elem

} else {
val r = insert(lastReceiver, new Receiver {
def isDefined(msg: Any) = f.isDefinedAt(msg);

});
lastReceiver = r;
r.elem.wait();
r.elem.msg

} }
f(msg)

}
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The receive method first checks whether the message processor function f can
be applied to a message that has been sent but not consumed yet. If yes, the
thread continues immediately by applying f to the message. Otherwise, a new
receiver is created and linked into the receivers list, and the thread waits for a
notification on this receiver. Once the thread is woken up again, it continues by
applying f to the message that was stored in the receiver. The insert method on
linked lists is defined as follows.

def insert(l: LinkedList[a], x: a): LinkedList[a] = {
l.next = new LinkedList[a];
l.next.elem = x;
l.next.next = l.next;
l }

The mailbox class also offers a method receiveWithin which blocks for only a
specified maximal amount of time. If no message is received within the spec-
ified time interval (given in milliseconds), the message processor argument f
will be unblocked with the special TIMEOUT message. The implementation of
receiveWithin is quite similar to receive:

def receiveWithin[a](msec: long)(f: PartialFunction[Any, a]): a = {
val msg: Any = synchronized {
var s = sent, s1 = s.next;
while (s1 != null && !f.isDefinedAt(s1.elem)) {
s = s1; s1 = s1.next ;

}
if (s1 != null) {
s.next = s1.next; s1.elem

} else {
val r = insert(lastReceiver, new Receiver {

def isDefined(msg: Any) = f.isDefinedAt(msg);
});
lastReceiver = r;
r.elem.wait(msec);
if (r.elem.msg == null) r.elem.msg = TIMEOUT;
r.elem.msg

}
}
f(msg)

}
} // end MailBox

The only differences are the timed call to wait, and the statement following it.

5.2 Actors

The auction service was based on high-level actor processes, that work by in-
specting messages in their mailbox using pattern matching. An actor is simply a
thread whose communication primitives are those of a mailbox. Actors are hence
defined as a mixin composition extension of Java’s standard Thread class with
the MailBox class.

abstract class Actor extends Thread with MailBox;
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6 Conclusion

We have discussed Scala’s facilities for dealing with semistructured data and
concurrency. We have shown that the combination of functional and object-
oriented programming constructs lets one design expressive high-level libraries
that are also easy to use. Two examples of this approach were Scala’s libraries
for XPath-style XML navigation and Erlang-style actors.

Of course, moving a construct from a language to a library is not a silver
bullet by itself. However, the library-based approach has two benefits. First, the
core language can be kept simpler and more general. Second, libraries are much
easier to upgrade and extend than core language constructs.

In future work, we plan to further pursue the library based approach. Our next
targets are a framework for database integration and a web service infrastructure
based on continuations. Scala is available under a free software license under
http://scala.epfl.ch.
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Abstract. Modern incremental and iterative software engineering pro-
cesses advocate to build software systems by first creating a highly simpli-
fied and abstract model of the system which is then moved by applying a
series of model improvements toward implementation. Models of software
systems at any level of abstraction should contain, besides structural in-
formation, a precise description of the expected system behavior. This
paper formalizes relations between models of the same system at differ-
ent levels of abstraction, classifies approaches for describing behavior of
system operations, and investigates how these system operation descrip-
tions can be kept synchronized with frequent changes of the system’s
structure.
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1 Introduction

In the Analysis phase of the software development lifecycle, the expected be-
havior of the system under development has to be described as clearly as pos-
sible. Many methodologies, e.g. Rational Unified Process [1], Catalysis [2], and
Fusion [3], propose to start with a high-level class model that represents only
coarsely the actual state space of the system. The system’s behavior is mod-
eled by operations attached to classes and precisely described by a contract
consisting of a pre- and postcondition [4,5] (see also the survey [6] in this vol-
ume). In practice, contracts are often given only informally. Formal contracts
– written in a formal specification language – have some obvious advantages
such as being a non-ambiguous criterion for the correctness of the implemented
system. After the Analysis phase has been finished, the developed class model
serves as a starting point for further design activities. In the Design phase,
the state space of the system is typically explored thoroughly in order to de-
fine the best possible way how the system can provide the behavior that has
been specified in the Analysis phase. This includes to iteratively refine the
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current class model until it can be implemented directly in a chosen program-
ming language.

Although the sketched development process can help to master the complexity
of software development and to implement provably correct systems, it has not
been widely adopted in industry yet. Many practitioners shy away from the
effort to annotate class diagrams with formal contracts and to apply formal
refinements when working on the system’s design. We see two main reasons for
the resistance to develop software by stepwise refinement. Firstly, the semantics
of a contract language does not always meet the needs of developers. It is much
more common to annotate a contract in an informal language such as English
than in a formal language. Secondly, there is no common understanding on what
refinement should mean and what it is good for in practice. Both problems are
amplified by the lack of tool support. The contract language for UML, the Object
Constraint Language (OCL), is not supported yet by any of the major UML tool
vendors. A useful support for a contract language has to include also support for
rewriting contracts when refining a (more) abstract class diagram to a (more)
concrete one.

Despite their rare usage in practice, formal contract languages offer many
advantages that fit well with recent trends in software engineering. Component-
based development [7] is based on the idea of assembling applications from pre-
fabricated modules (components). The functionality of a component is described
best by a formal contract. Ideally, a component would carry also a formal proof to
have implemented this contract correctly. Another motivation for using formal
contract languages is model-driven development [8], which puts the modeling
artifacts and not the implementation code to the forefront. The Model Driven
Architecture (MDA) initiative of the OMG [9] aims at a framework for defining
systems using a wide range of structural and behavioral views. The ultimate goal
of MDA is to raise the level of abstraction at which systems are developed.

This paper discusses the purpose and semantics of contract languages and
refinement steps. In Sect. 2, we divide existing formal contract languages into
two groups called restrictive and constructive languages. After giving in Sect. 3
some formal definitions on the syntax and semantics of contracts, it is shown in
Sect. 4 by example how a class diagram can be refined. Furthermore, the impact
of a refinement on the syntactical correctness of operation contracts is shown.
We make a proposal how refinement can be defined not as a syntactic transfor-
mation but based on the semantics of the involved class diagram. Based on this
notion of refinement, we introduce correctness criteria for rewritten contracts
in the refined diagram. For refactorings, which can be seen as a specific form
of refinement, we discuss how operation contracts can be rewritten fully auto-
matically without changing their semantics. In Sect. 5, constructive specification
languages are discussed in more detail. Sometimes, constructive languages only
allow to describe deterministic contracts. This shortcoming, however, can be
remedied by integrating some elements of restrictive languages into constructive
languages. Section 6 concludes the paper.
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2 Restrictive vs. Constructive Languages

Formal languages for defining a contract, i.e. a pair of pre- and postcondition,
can be divided into two groups. The distinction is based on the technique of
formulating the postcondition of a contract. Restrictive languages focus in the
postcondition on Which properties must be satisfied in the post-state? The post-
condition is formalized as a predicate (a Boolean expression), which is evaluated
to true in all valid post-states. Otherwise stated, the postcondition restricts the
set of possible post-states. Well-known examples for restrictive languages are
Eiffel [10], OCL [11], JML [12], and Z [13]. Constructive languages, instead, fo-
cus in the postcondition on Which state transition is realized by the operation?
The contract prescribes how for a given pre-state the post-state is constructed.
Well-known examples for constructive languages are Abstract State Machines
(ASMs)[14], B [15], and UML’s Action Language [16].

If an operation would be specified both with a restrictive and a constructive
contract, then the properties of the post-state, which are given in the restrictive
contract, could be entailed from a constructive contract. Some special purpose
logics such as Hoare-Logic [17], Dynamic Logic [18] or even tools such as KeY
[19] could be used to formally show this entailment relationship. The fact that
restrictive contracts are comparably weak is also illustrated by the presence
of the well-known frame problem [20,21]. Constructive languages, on the other
hand, have the tendency to allow only deterministic specifications, which prevent
any variations among the implementations of the specified operation.

We illustrate here briefly the main problems faced by restrictive and construc-
tive specifications on a trivial example. A more detailed discussion on how the
frame problem can be handled in restrictive languages is found in [22].

Let class A have two integer attributes a1, a2 and one operation op(). The
intended behavior of op() is to double the value of attribute a1. A contract in
the restrictive language OCL typically looks as follows:
context A: : op ( )

post : s e l f . a1 = s e l f . a1@pre + s e l f . a1@pre
Since this contract has no precondition the predicate true is implicitly as-

sumed. The postcondition is given in form of a restriction on the post-state: a
post-state is valid as long as the value of attribute a1 on object self (which is the
object on which op() is invoked) is doubled compared to the value of a1 in the
pre-state (represented by a1@pre). Although it was intended, the OCL contract
does not imply that the change of attribute a1 is the only effect of operation op().
According to this contract, also implementations of op() are correct that change
the value of a2, or create new objects, or delete existing objects. A version of the
OCL contract that really captures completely the intended behavior would be
possible but its postcondition would be longwinded and had to mention explicitly
all properties of the underlying class diagram that are not affected by op() (e.g.
self.a2=self.a2@pre and A.allInstances()=A.allInstances()@pre).

The intended behavior could be given more easily and directly if a constructive
language is used for formulating the contract. Operation op() could be specified
in B by

op() � a1 := a1*2
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Here, the precondition is omitted as well (implicitly true) and the postcon-
dition is given in form of a pseudo-program which is ’executable’ on a given
pre-state. In difference to the restrictive contract, the semantics of the pseudo-
program assumes an additional ’and nothing else changed’ policy. Thus, imple-
mentations of op() that change, for instance, the value of attribute a2 would be
not correct according to this contract written in B.

As discussed more detailed in Sect. 5, constructive languages suffer from a
problem that is opposite to the frame problem. Whereas restrictive contracts can
hardly express which parts of the system state remain unchanged, constructive
contracts can hardly expressed that some parts of the system can arbitrarily
change.

3 A Formal Contract Language

This section formalizes a contract language, giving its syntax and semantics.
We have chosen the language of UML class diagrams (see [23,24] for a general
introduction) and the Object Constraint Language (OCL) [25,11] as a formal,
restrictive language to specify contracts for operations. Our formalization will be
the basis to define precisely our notion of refinement and correctness presented
in Sect. 4.

The first two definitions formally capture the notion of class and object di-
agrams in a mathematical way. The well-known graphical notation of these di-
agrams are intentionally ignored here, but can be added straightforwardly as
Fig. 1 illustrates.

Definition 1 (Class Diagram). A class diagram cd is a tuple (Class, Att,
Asso, Oper, owner, atttype, associates, mult, opsig, �) where

– Class, Att, Asso, Oper are disjunctive finite sets containing symbols for
classes, attributes, associations, and operations

– owner, atttype are total functions on Att yielding the owning class and the
type of attributes

– associates is a total function on Asso yielding the list of classes connected
by associations

– mult is a total function on Asso yielding the list of multiplicities (sets of
non-negative natural numbers) annotated on association ends

– opsig is a total function on Oper yielding the list of parameter types; we
assume the owning class of the operation to be always the first element of
the list

– � is a partial order on Class reflecting its generalization hierarchy

The information given in a class diagram can easily be converted into a signa-
ture Σ of a sorted, first-order predicate logic. Every class name C becomes a
sort symbol C, every attribute at becomes a function symbol at : owner(at) →
atttype(at), the generalization hierarchy � is embedded in the sort hierarchy �.
Furthermore, we assume signature Σ to contain also entries for all declarations
made in the standard OCL library. Thus, the set of sort symbols in Σ contains
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OCL’s standard types Integer, Real, String, Set(T). There are function sym-
bols in Σ for all pre-defined OCL operations such as includes: Collection(T)
× T → Boolean and the sort hierarchy � has entries for pre-defined types, e.g.
Integer � Real, etc.

The first-order predicate logic for Σ is semantically interpreted by usual first-
order structures. For the pre-defined symbols of the OCL library, a fixed interpre-
tation is assumed. For example, the standard sort Integer is always interpreted
as the set of natural numbers, the symbol includes is always interpreted as the
set-theoretical is-element-of relationship, etc.

In our context, it is useful and common to call interpretations also states.
That is the reason why the interpretations I of signature Σ are also denoted
as StateΣ. Two interpretations for Σ can differ only in the interpretation of
the symbols that stem from the class diagram. This part of interpretations can
be depicted by object diagrams. Consequently, object diagrams and states are
isomorphic structures. Object diagrams are denoted as a mathematical tuple in
the same style as class diagrams. Figure 1 shows a simple example of a class and
an object diagram both in the usual graphical notation and as mathematical
tuples.

Definition 2 (Object Diagram). Let cd=(Class, Att, Asso, Oper, owner,
atttype, associates, mult, opsig, �) be a given class diagram. An object diagram
od for cd is a tuple (Obj, Slot, Link) where

– Obj is a total function on Class. Obj(C) yields the finite set of all existing
objects (we also say all instances) of class C.
We also write ObjC instead of Obj(C).

– Slot is a total function on Att. Slot(at) yields a total function from
Obj(owner(at)) to Obj(atttype(at)).
We also write Slotat instead of Slot(at).

– Link is a total function on Asso. Link(as) yields a set of object lists where
the i-th object in each list must be an instance of the i-th element of accoci-
ates(as).
We also write Linkas instead of Link(as).

If as is a binary association (i.e. associates(as) is a list of length two), we
use oppas(o) as an abbreviation for {o′ | (o, o′) ∈ Linkas ∨ (o′, o) ∈ Linkas}.
Otherwise stated, oppas(o) denotes the set of opposite ends of links in which
object o is participating. If oppas(o) is a singleton set, we use oppas(o) also
to refer to the contained element, i.e. oppas(o) might also stand as an abbre-
viation for μo′ | (o, o′) ∈ Linkas ∨ (o′, o) ∈ Linkas.

– The cardinality of Linkas must satisfy the restrictions expressed by the mul-
tiplicities attached to as. More formally: Let as be an n-ary association and
i=1,...,n. The function prj(i, list) extracts the i-th element from list. Then,
for all i, for all tuple ∈ Linkas the following holds:
#{tuple′ |

∧
j=1..i−1,1+1,..,n prj(j, tuple′) = prj(j, tuple)} ∈ prj(i, mult(as))

– If C1 � C2 then ObjC1 ⊆ ObjC2.
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Food**Person

age:Integer
birthday()

likes

icecream:Food

anne:Person

age=12
likes

jon:Person

age=25

likes

Class = {Person, Food},
Att = {age}, Asso = {likes}, Oper = {birthday},
owner = {(age, Person)}, atttype = {(age, Integer)},
accociates = {(likes, (Person, Food))},
mult = {(likes, (N+, N

+))},
opsig = {(birthday, (Person))},
�= {}

ObjPerson = {anne, jon}, ObjFood = {icecream},
Slotage = {(anne, 12), (jon, 25)},
Linklikes = {(anne, icecream), (jon, icecream)}

Fig. 1. Class and object diagram in both graphical and textual notation

A contract for an operation op() is a pair (pre, post) where pre, post are pred-
icate formulas over Σ. Both formulas can contain variables that are declared
as formal parameters of op() (note, that the pre-defined OCL variable self is
handled in our formalism also as a formal parameter of op()). The precondition
pre is evaluated on a given pre-state s1 and a given binding argval of the for-
mal parameters. The evaluation is defined formally by structural induction on
all OCL expressions (see OCL’s language definition [11] for details). We write
(s1, argval) |=Σ pre iff pre is evaluated in s1 under the binding argval to true.
The postcondition post is similarly evaluated in a pre-state s1, an argument
binding argval, and a post-state s2. We write (s1, argval, s2) |=Σ post iff post
is evaluated to true.

Definition 3 (Semantics of Contract). Let cd be a given class diagram, Σ
the induced signature, op() an operation in cd, and (pre, post) a contract for
op().

A label transition system (LTS) for op() is a pair (StateΣ, ρ) where StateΣ

denotes all possible states for Σ and ρ is a subset of StateΣ ×Argval ×StateΣ.
Here, Argval denotes all bindings of the formal parameters of op() to concrete
values.

We say that lts1 = (StateΣ, ρ1) is larger then lts2 = (StateΣ, ρ2), denoted
by lts2 � lts1, iff ρ2 ⊆ ρ1.

The semantics of contract (pre, post) is the largest LTS semop = (StateΣ , ρ)
such that (s1, argval, s2) ∈ ρ implies that either (s1, argval) �|=Σ pre or
(s1, argval, s2) |=Σ post.

Informally stated, the semantics of a contract is a LTS where the relation ρ con-
tains exactly the state transitions which are possible according to the contract.

Definition 4 (Implementation, Partial/Total Correctness). Let cd be a
given class diagram, Σ the induced signature, op() an operation in cd, and
(pre, post) a contract for op().
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An implementation of operation op() is a deterministic LTS (StateΣ, ρ) on
all possible states and argument bindings. A LTS (StateΣ, ρ) is called deter-
ministic on state s1 and argument binding argval iff (s1, argval, s2) ∈ ρ and
(s1, argval, s2′) ∈ ρ implies s2 = s2′.

An implementation (StateΣ , ρ) of operation op() is called partially correct if
(State, ρ) � semop.

An implementation (StateΣ, ρ) of operation op() is called totally correct if it is
partially correct and ρ is total on all pre-states allowed by precondition pre. More
formally: If (s1, argval) |=Σ pre then there exists s2 such that (s1, argval, s2) ∈ ρ.

Definition 5 (Non-deterministic Contract). Let (pre, post) be a contract
for operation op(). We call this contract deterministic if semop is deterministic
on all allowed states s1 and argument bindings argval that satisfy the precondi-
tion: (s1, argval) |=Σ pre. Otherwise, the contract is called non-deterministic.

Note that deterministic contracts allow only one implementation on the allowed
pre-states.

4 Correct Refinement of OCL Contracts

This section proposes a refinement notion that is purely based on the semantics
of the involved class diagrams and does not impose any syntactical restrictions on
them. Our approach is motivated by a simple case study on developing software
to control a Drink Vending Machine (DVM). For some types of refinement,
called refactorings, we derive in Sect. 4.4 some automatic rewriting rules for the
contracts attached to the abstract class model.

4.1 Example: Drink Vending Machine (DVM)

A Drink Vending Machine (DVM) must be able to interact with both customers
and service persons. The main functionality offered to customers is selling a
drink. When a customer wants to buy a drink, s/he first has to select among
the different drink kinds the machine offers, then to insert sufficient money, and
finally to take the delivered drink from the drawer. A service person should be
able to replenish the DVM with new drinks, to empty the money box of the
DVM, to fix problems with the drawer, etc. For a realistic model of the DVM
(see [26] for details), all possible exceptional cases have to be taken into account,
e.g. that all drinks of a certain kind are sold out when a customer wants to buy
it or that the capacity of the moneybox has been exceeded.

In this paper, we concentrate only on the formal specification of system op-
eration sellDrink(). The operation sellDrink() is responsible for delivering
drinks and for maintaining the number of available drinks in the DVM. Infor-
mally, this operation (1) checks, if the money inserted by the customer, called
credit, is sufficient for buying the desired drink, (2) checks, if the desired drink
is available, and (3) decrements the counter of how many drinks of the selected
type are available in the system.
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DVM

sellDrink(drinkName, credit)

Drink

price: Integer
name: String
avUnits: Integer

*1

context DVM inv :
s e l f . dr ink−>f o rA l l (d1 , d2 | d1 . name=d2 . name implies d1=d2 )

Fig. 2. System description on abstract layer

An initial model for the DVM could look like the class diagram given in Fig. 2.
The operation sellDrink() declared on class DVM has two parameters. The
parameter drinkName (of type String, what has been suppressed in the diagram)
denotes the kind of drink the customer has selected, for instance tomato juice,
orange juice, cola, beer, etc. The parameter credit (of type Integer) represents
the amount of money inserted by the customer. The class Drink represents all
possible kinds of drinks offered by the DVM. The attributes name and price
are self-explaining, the attribute avUnits represents the number of units that
are still available within the DVM for sale. The invariant attached to the class
diagram ensures the uniqueness of drink names.

The intended behavior of sellDrink is deterministic. Whenever the selected
kind of drink is available and the inserted money is sufficient to buy the drink, the
value of attribute avUnits on the corresponding Drink object should be decre-
mented by 1 and nothing else should happen. Be aware that at the beginning of
a software development project, most operations are specified by deterministic
contracts. This is due to the fact that the system model is quite abstract and
hides most of the details that cause the complexity of the real system.

For the initial system model given in Fig. 2, a restrictive contract for operation
sellDrink() would typically look like the following OCL specification:

context DVM: : s e l lD r i nk ( drinkName : String , c r e d i t : Integer )
pre :

s e l f . dr ink−>s e l e c t (d | d . name=drinkName and
d . p r i c e<=c r ed i t and
d . avUnits>0)−> s i z e ( ) = 1

post :
s e l f . dr ink−>s e l e c t (d | d . name=drinkName )

−> f o rA l l ( d1 | d1 . avUnits=d1 . avUnits@pre −1)

The precondition formalizes the steps (1) and (2), which have been infor-
mally given above, and the postcondition decrements the attribute avUnits on
the selected Drink object by one. This contract written in OCL, however, does
not capture the intended behavior since it is not deterministic and would allow
within the execution of sellDrink(), for example, to change the name of the
drink, what is surely not intended. In other words, the semantics of the contract
language does not fit the needs of developers working on analysis documents.
Some restrictive languages have made provision to handle the frame problem by
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Shelf

unitsOnShelf: Integer

Drink

price: Integer

DrinkKind

name: String

DVM

sellDrink(drinkName, credit) 1

1

1

1

1

1

1

* sh1

sh2

dk

context DVM inv :
s e l f . dr ink . dk−>f o rA l l ( d1 , d2 | d1 . name=d2 . name implies d1=d2 )

Fig. 3. System description on concrete layer

adding to the two standard clauses of a contract, pre- and postcondition, a third
clause that is often called ’modifies’. The language OCL does not have such a
third clause, yet. Nevertheless, we will use, despite all its weaknesses, the above
shown contract for sellDrink() as the starting point for the next refinement of
the system model.

4.2 Refinement of Class Diagrams

The initial system model shown in Fig. 2 has some obvious drawbacks, also
known as design smells. The class Drink has three attributes, which all serve
different purposes. The name of a drink is something very static whereas the
price for one unit might be subject of very frequent changes. Furthermore, the
number of units currently available is rather an attribute of the DVM than one of
class Drink. Thus, all three attributes should be owned by different classes.

Let us assume that in addition to addressing these smells an improved model
should take into account a new detail on DVMs, namely that for each kind of
drinks a DVM has exactly two shelves. A new class diagram reflecting these
changes is shown in Fig. 3. In the remainder of the paper, we name this diagram
cdiag whereas the diagram in Fig. 2 is named adiag (for concrete and abstract
diagram).

The improvements of the new diagram cdiag are basically two changes. Firstly,
the attributes name and price were decoupled by (1) introducing a new class
DrinkKind, (2) connecting it with class Drink using an association with multi-
plicities 1-1, and (3) moving attribute name from Drink to DrinkKind. Secondly,
the new class Shelf became the owner of attribute avUnits (after renaming it
to unitsOnShelf). Moreover, the new detail of the state space that each kind of
drinks is stored on exactly two shelves is reflected by the two new associations
sh1 and sh2.
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This informal definition how adiag has been refined to cdiag is not enough
if one wants to argue formally on the correctness of such a step, e.g. in respect
of the expected behavior of both original and refined system. Thus, we present
now what refinement should mean in our context and how one can define the
refinement relationship between two given (potentially completely different) di-
agrams in a formal way. Unlike the types of refinement foreseen in the UML
(see [24]), our refinement definition does not map syntactical constructs from
the concrete diagram to the abstract diagram. Instead, the main idea is to give
a mapping from states of the concrete system to states of the abstract system.
This technique goes back to a proposal made by Hoare in [27]. Please note that,
unlike the refinement calculus presented in [28] for Eiffel, we do not aim here to
bridge the gap from a UML model of a system to its implementation written in
an implementation language such as Java.

Definition 6 (State Mapping). Let cda, cdc be two class diagrams, which
are called abstract and concrete class diagram, respectively. A refinement is a
relationship between them and is defined by a mapping function map for states
and a mapping function argmap for argument vectors of operations.

A state mapping is a total function map : StateΣcdc → StateΣcda . We will
consider only such refinements for which a surjective mapping function map can
be defined.

The function argmap is defined as a family of functions
argmapop : I(opsigc(op)) → I(opsiga(op)) where op ∈ Oper.

It is often possible to define for the same class diagrams cda, cdc more than
one mapping function. For example, let cda be the class diagram consisting of
only one class B and two attributes b1, b2 of type Integer, and cdc be the class
diagram consisting of class B and two attributes b3, b4 of type Integer. Then,
two possibilities of how map could be defined are:

1. Obja
B := Objc

B,
Slota

b1(o) := Slotc
b3(o), Slota

b2(o) := Slotc
b4(o) where o ∈ Objc

B = Obja
B

Linka := Linkc = ∅
2. Obja

B := Objc
B,

Slota
b1(o) := Slotc

b4(o), Slota
b2(o) := Slotc

b3(o) where o ∈ Objc
B = Obja

B

Linka := Linkc = ∅

In its first version, map assigns the value for attribute b3, b4 to the values
for the abstract attributes b1, b2. In the second version, it is vice versa, b3 is
mapped to b2 and b4 is mapped to b1. For the sake of brevity, we often omit in
the definition of map the assignment for those components in the abstract object
diagram that remain the same as in the concrete object diagram. For example,
the first refinement could also be given as Slota

b1(o) := Slotc
b3(o),Slota

b2(o) :=
Slotc

b4(o) since Obja
B ,Linka are the same as Objc

B,Linkc. An even shorter
definition would be possible: Slota

b1 := Slotc
b3,Slota

b2 := Slotc
b4.

The second mapping function argmap maps the input parameters for the
operation of the concrete layer to input parameters for the operation of the
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abstract layer. Suppose, class B had an operation inc(Integer) in both cda and
cdc. The mapping function argmapop could be defined as follows:

argmapop((o, i)) = (o, i + 3)

The variable o represents the object on which op is invoked. An invocation
with parameter i at the concrete layer is mapped to an invocation on the same
object o with parameter i + 3 at the abstract layer. As for map, we will omit
the definition for argmap if it maps argument vectors of the concrete layer to
identical vectors on the abstract layer.

The intended mapping for the DVM example is:
Slota

name(oppdk(o)) = Slotc
name(o)

Slota
avUnits(oppsh1(o)) = Slotc

unitsOnShelf (o) + Slotc
unitsOnShelf (oppsh2(oppsh1(o)))

4.3 Refinement of Contracts

It is obvious that the formal contract for sellDrink() in adiag cannot be simply
copied to cdiag. The copied contract would be neither syntactically nor seman-
tically correct. Contracts have to be adapted to the new class diagram, a new
version for sellDrink() could look like the following:

context DVM: : s e l lD r i nk ( drinkName : String , c r e d i t : Integer )
pre :

s e l f . dr ink−>s e l e c t (d | d . dk . name=drinkName and
d . p r i c e<=c r ed i t and

(d . sh1 . un it sOnShel f>0 or
d . sh2 . un it sOnShel f>0))−> s i z e ( ) = 1

post :
s e l f . dr ink−>s e l e c t (d | d . dk . name=drinkName )

−> f o rA l l ( d1 |
d1 . sh1 . un it sOnShel f+d1 . sh2 . un it sOnShel f=
d1 . sh1 . unitsOnShelf@pre+d1 . sh2 . unitsOnShelf@pre −1)

For the precondition, the attribute access d.name in the original contract
was changed to d.dk.name in order to reflect moving of attribute name from
Drink to DrinkKind. Furthermore, it must be tested now if at least one shelf
has units available. More interesting changes have been made in the postcondi-
tion. The original postcondition, which strived to describe a deterministic state
change, now became intentionally non-deterministic. Instead of decreasing at-
tribute avUnits, an implementation of sellDrink() could change attribute
unitsOnShelf either for the first or the second shelf (sh1, sh2). This is achieved
by the under-specified postcondition saying that the sum of unitsOnShelf for
both shelves is decreased by one.

Note that the new contract leaves the decision open which one of the shelves
decreases its number of units. In other words, an implementation of sellDrink()
that first makes the first shelf empty before selling drinks from the second shelf
should be possible as well as an implementation that sells units from the second
shelf before the ones from the first shelf or an implementation that alternates
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between both shelves. Of course, an implementation has to realize a concrete,
fixed algorithm but the decision which algorithm to take is deferred here to a
later phase of the software development project.

In the following, we want to answer the question whether the new version
of the OCL contract is correct in respect to the contract given for sellDrink
in adiag. A very basic criterion for correctness of the refined system is that
every state transition which the concrete system is allowed to make has its
’counterpart’ in the abstract system. Otherwise stated, whenever one can observe
a behavior on the concrete system, ’the corresponding behavior’ on the abstract
system is allowed as well. The, somehow, imprecise terms ’counterpart’ and
’corresponding behavior’ are made clear in the following formal definition as a
projection of behavior from the concrete layer to the abstract layer under the
state mapping, which is defined when the underlying class diagram is refined.

Definition 7 (Correct Contract Refinement). Let class diagrams cda,cdc

and refinement functions map, argmap be given. Furthermore, let op() be an
operation declared in both diagrams, and (prea, posta), (prec, postc) be its con-
tracts. The semantics of the contracts are the LTSs sema

op = (StateΣcda , ρa),
semc

op = (StateΣcdc , ρc).
The contract (prec, postc) for op() is called to be a correct refinement of the

abstract contract (prea, posta) if the following holds:
For all argument bindings argval for op() at the concrete layer, for all s1, s2 ∈

StateΣcdc : if (s1, argval, s2) ∈ ρc then (map(s1), argmapop(argval), map(s2))
∈ ρa

After giving a formal correctness criterion for the refinement of contracts, it is, of
course, interesting to discuss whether or not the refined contract for sellDrink()
shown above is correct according to this criterion. We do not answer this question
immediately but will describe in the next subsection a technique to ensure the
correctness of simple refinements. The same technique is powerful enough also
to argue on the correctness of more complicated refinements.

4.4 Refactorings as Simple Refinements

The refinement from adiag to cdiag was defined so far as a monolithic step.
One could also think to achieve the same by a concatenation of much smaller
refinements: 1) create class DrinkKind and connect it to Drink with 1-1 asso-
ciation 2) move attribute name from Drink to DrinkKind 3) create class Shelf
and connect it to Drink with 1-1 association 4) move attribute avUnits from
Drink to Shelf 5) rename attribute avUnits as unitsOnShelf 6) add a second
1-1 association between Drink and Shelf.

From these six steps, the first five steps do not change (up to isomorphism) the
state space of the system but just restructure the model. Such steps, called refac-
torings, are small improvements that lead to better design since they directly
address poor structures of the model (smells). A smell can be the duplication
of attributes or operations, a heavy class having too many responsibilities, too
many dependencies between classes, etc. Typical changes done by refactorings
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include moving attributes and operations up and down in the inheritance hier-
archy of the classes, moving attributes and operations to newly created classes,
giving attributes, operations, classes a new name, etc. The main characteristic
of these changes is that they do not make the system description closer to the
implementation level but keep it at the same level of abstraction.

In recent years, much research has been devoted to refactoring (see [29] for an
overview). Most of these works, however, have concentrated on the refactoring
of implementation code. Fowler gives in [30] a catalog of refactorings for Java
programs. A typical refactoring rule describes in a first step changes on the Java
declarations, e.g. moving a field to a new class to make the original class less
heavy, and in a second step, how the remaining Java program must be updated
in order to become consistent with the changed declaration, e.g. every access to
the original field must be forwarded to the new class.

In [31], we have formalized a catalog of basic refactorings for UML class
diagrams together with the necessary changes on attached OCL constraints.
The above given correctness criterion offers now the possibility to argue on the
semantical correctness of the refactorings. To do this, we have to assume that
every refactoring is associated with a unique mapping function. This mapping
function is not part of refactoring catalogs yet, but is in most cases obvious.

Changes on Class Diagram Changes on OCL Mapping

Source

a1

Target

Target

a1

Source

exp.a1
1 1

1 1

exp.target.a1

asso

asso Slota
a1(oppasso(o)) :=

Slotc
a1(o)

Fig. 4. Refactoring MoveAttribute

As an example we formalize in Fig. 4 the refactoring MoveAttribute, which
moves in a first step the attribute from the source class to a target class if both
classes are connected by an 1-1 association. Actually, there are even more side
conditions that must hold, e.g. that the target class has not already an attribute
with the same name as the moved attribute. These side conditions are dropped
here for the sake of brevity, the interested reader is referred to the formalized
version of this rule given in [31]. In a second step, all OCL constraints attached
to the class model must be updated by substituting each attribute access of form
exp.a1 with the new expression exp.target.a1. The expression exp.target is
a navigation from source to target class. Note that updating the attached OCL
constraints can be done automatically.

We finish this section with a theorem on the correctness of the defined
refactoring.
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Theorem 1 (Correctness of MoveAttribute). The refactoring Move-
Attribute refines contracts correctly.

Proof. Let cda, cdc be the original and refactored diagram, op() an operation,
and (prea, posta), (prec, postc) the original and the refactored contract for
op(). The two contracts induce the two LTSs sema

op = (Statea
Σ, ρa) and

semc
op = (Statec

Σ, ρc). According to the correctness criterion we have to
show that for every tuple (s1, argval, s2) ∈ ρc, there is a tuple
(map(s1), argmap(argval), map(s2)) ∈ ρa.
The condition (s1, argval, s2) ∈ ρc means (s1, argval) |=Σcdc prec and
(s1, argval, s2) |=Σcdc postc. The constraints prec, postc are by construction
only different from prea, posta at subexpressions of form exp.target.a1.
According to the semantics of OCL, this expression is evaluated in s to the
same value as exp.a1 in map(s). Thus, we have
(s1, argval) |=Σcdc prec if and only if (map(s1), map(argval)) |=Σcda prea

and, furthermore, (s1, argval, s2) |=Σcdc postc if and only if
(map(s1), argmap(argval), map(s2)) |=Σcda posta. �

5 Constructive Specifications

In the preceding section, we have discussed the problems related with refinement
of class diagrams and how contracts have to be updated accordingly. We have
seen, that a refinement sometimes requires to rewrite a deterministic contract
by a non-deterministic one.

For the DVM example we tried to capture the intended behavior of opera-
tion sellDrink() with a restrictive constraint in OCL. Due to the immanent
frame problem of restrictive languages, it is practically impossible to formalize
deterministic contracts, which, however, are often needed in the first phases of
a software development project.

In this section, we discuss how more appropriate contracts for sellDrink()
can be given using a constructive specification language. The specification lan-
guage of our choice is QVT [32], a special form of graph transformations.

5.1 Graph Transformations

Graph transformations (see [33] for an overview) were originally developed to
manage the manipulation of graphs. Since system states are easily representable
as graphs, they can also be used as a tool to describe state changes, i.e. the
intended behavior of operations.

A graph is manipulated by applying a graph transformation rule on it. Every
graph transformation rule consists of a Left Hand Side (LHS) pattern and a
Right Hand Side (RHS) pattern. Both patterns consist of labeled nodes and
links, which might occur in both patterns. The rule is applied by, firstly, searching
subgraphs in the given graph that match with LHS and, secondly, by rewriting
the matching subgraphs with new subgraphs derived from RHS. If a node/link
in the given graph matches with a node/link that occurs, according to its label,
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only in LHS then this node/link is removed from the given graph. If a node/link
occurs only in RHS then a corresponding element is created. Nodes can also
have slots for attribute values. These values are updated according to the allowed
values of variables occurring in the rule. Finally, a rule has a name (reflecting the
operation it specifies) and parameters (reflecting the signature of the operation).

sellDrink(self:DVM,drinkName:String, credit:Integer)

d:Drink

name=drinkName
price=x
avUnits=y-1

d:Drink

name=drinkName
price=x
avUnits=y

{when}
x<=credit and y > 0

self:DVMself:DVM

Fig. 5. Constructive contract for sellDrink() on abstract layer

As an example, we consider the specification of sellDrink() as shown in
Fig. 5. This rule has to be read – as an operation contract – as follows: Whenever
in a pre-state an object d of class Drink is linked with the object self on which
sellDrink() was invoked and the value of its attribute name matches with
parameter drinkName and the value for attribute price is less than or equal to
parameter credit and the value of attribute avUnits is greater than 0, then
the post-state is derived from the pre-state by decreasing the value of attribute
avUnits by 1.

Note that the post-state is constructed from the pre-state. This is despite
the fact that the specification is, unlike in B or ASM, not given in form of a
pseudo-program but by a pair of matching patterns. The given contract is truly
deterministic since it completely prescribes the update from the pre- to the post-
state. The semantics of the graph transformation rules stipulates that all parts
of the pre-state that do not match with LHS remain unchanged.

5.2 Graph Transformations for Non-deterministic Specifications

One common problem of constructive languages is the tendency to allow only
the formulation of deterministic contracts (due to the construction of a unique
post-state). Actually, many graph transformation systems, e.g. AGG [34], allow
only to describe deterministic rules because they insist on having an executable
specification. The formalism of our choice, QVT, is an exception and allows
to use variables that only occur in RHS. Consequently, these variables are not
bound after the first step of the rule application (the matching of a subgraph
with LHS). The value for the variables can freely be chosen in the second rule
application step, when the matching subgraph is rewritten with a new graph
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derived from RHS. The variable values, however, can be restricted by an OCL
constraint given in the when-clause of the rule.

The non-deterministic contract for sellDrink on the concrete layer is shown
in Fig. 6. There are two new variables y1’ and y2’ in RHS whose values can
be chosen non-deterministically as long as the restrictions imposed by the OCL
constraint in the when-clause are obeyed.

sellDrink(self:DVM,drinkName:String, credit:Integer)

sh1:Shelf

unitsOnShelf=y1

sh2:Shelf

unitsOnShelf=y2

d:Drink

price=x
sh1:Shelf

unitsOnShelf=y1'

d:Drink

price=x

sh1 sh1

sh2sh2

{when}
x<=credit and (y1>0 or y2>0) and y1+y2=(y1'+y2')-1 and  (y1=y1' or y2=y2')

sh2:Shelf

unitsOnShelf=y2'
dk:DrinkKind

name=drinkName

dk:DrinkKind

name=drinkName

self:DVM self:DVM

dk dk

Fig. 6. Constructive, non-deterministic contract for sellDrink on concrete layer

The integration of a when-clause into transformation rules can be seen as an
attempt to mix constructive with restrictive specification style. This idea is actu-
ally not new, also the constructive language B provides with ANY-WHERE and
the language ASM with its non-deterministic choices analogous constructs. These
non-deterministic constructs in turn have again inspired the language designers
of restrictive languages to include them. For instance offers OCL a construct
any() that should mimic the ANY-WHERE construct of B. The integration of
any() in OCL has caused, however, a lot of contradictions in the language seman-
tics as analyzed in [35]. This is another striking example for a mis-conception, if
the fundamental differences between restrictive and constructive specifications
languages are not sufficiently understood.

6 Conclusions

In this paper, we have formalized relations between models of the same software
system situated at different levels of abstraction. We assume the system to be
described by UML class diagrams with OCL constraints attached, but our results
can easily be applied also to other specification formalisms.

Moreover, we have given a classification of formal contract definition lan-
guages in respect to the underlying specification technique they offer. For graph
transformations, which can be seen as a constructive specification language, we
propose an approach to express non-determinism by enriching them with restric-
tive specification elements.
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Another contribution of this paper is the investigation how changes made on
structural part of a model can influence contracts for operations. In order to
cope with this problem, we have defined criteria for the correctness of contract
refinements. We were able to prove for a simple kind of standard refinement,
a well-known refactoring rule, that its application preserves the semantical cor-
rectness of contracts.
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29. Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Trans.
Software Eng., 30(2):126–139, 2004.

30. Martin Fowler. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley, 1999.
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Abstract. In this paper we will explain our approach for generating
test cases for a UML system model. Despite the fact that UML authors
claim that UML semantics are precise enough to define non-ambiguous
models, we find that the overlap of the different views makes it diffi-
cult to explore and make deductions on the state space of the modeled
system in order to generate test cases. Our approach is thus based on
a subset of UML (inspired from the Fondue approach) for which we
have defined clear transformation semantics. We provide these seman-
tics by delineating transformation rules using the MDA (Model Driven
Architecture) architecture. We transform UML models into CO-OPN
(Concurrent Object Oriented Petri Nets) ones, CO-OPN being a formal
specification language defined in our Laboratory.

We have also defined a language for expressing test intentions for CO-
OPN models. This language allows selecting interesting executions (tests
cases) of a model by providing constraints over all possible traces of that
model. By exploring the model’s semantics with the tools we have built
for our CO-OPN language we are able to generate test cases based on
those test intentions. We are also able to partially eliminate redundancy
in the produced test cases by finding equivalence classes in the model
operation’s inputs.

1 Introduction

As the complexity and size of a system increases, modeling techniques that
address abstraction and decomposition play a very important role. At the same
time different view points of the system are envisaged in order to fully describe it
by means of a model. This raises the problem of relating and keeping consistent
the different models that represent, sometimes orthogonally, several perspectives
of the system. At the same time, the need to isolate errors in the implementation
motivates our work that aims to automatically generating test sets from a well
defined model. Figure 1 shows the general picture of our approach that will be
explained in detail during this article.
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Our development approach encompasses three steps: Analysis − Prototyping
− Implementation. For the analysis phase we use the UML Fondue[1] devel-
opment method that allows specifying a system using different view points by
means of different diagrams - at the same time with Fondue we can produce a
complete description of the system by providing a logical relation between each
individual diagram.

The product of the implementation phase is a system that will be used to
execute the tests produced by the test case generation framework. In our Model-
based testing approach, there is an implementation relation between the model
(developed during the Analysis phase) and the System Under Test (SUT) based
on the idea that the observational behavior of both model and implementation
are compatible.

Taking into account that the objective of our current work is to automatically
generate a set of tests that will afterwards be applied to the SUT, we need to
transform the system specification into the language that we use for the purpose
of test case generation - CO-OPN [2] (Concurrent Object Oriented Petri Nets).

Fig. 1. The process of test generation from UML

In order to produce test sets from the system’s model, we developed a language
(TestSel) that allows expressing test intentions for the system specification. This
language provides the syntax and semantics that permits narrowing the initial
(usually infinite) number of tests present in a system specification.

2 From UML to CO-OPN

Our approach aims at easily generating tests from a well known and widely
used modeling language. One of the key points to achieve this is being able
to transform UML Fondue models into models of a specification language that
provides an unambiguous representation of the system. In this section we will
focus on the activities that allow achieving point 2 from point 1 in Fig. 1,
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i.e. UML model creation and transformation into CO-OPN. Before we continue
detailing how this process is accomplished, we will briefly introduce: Fondue [1]
(UML Dialect) - the source language; and CO-OPN [3] the target language.

UML Fndue provides two main artifacts: Concept and Behavior Models. The
first one is represented as UML class diagrams and defines the static structure of
the system. The Behavior Model defines the input and output communication of
the system, and is divided in three models: Environment, Protocol and Operation
- represented respectively by UML collaboration diagrams, UML state charts and
OCL operations.

CO-OPN is a formal specification language built to allow the expression of
models of complex concurrent systems. Its semantics is formally defined in [4],
making it a precise tool not only for modeling, but, thanks to its operational se-
mantics, also for prototyping and test generation. It groups a set of object-based
concepts such as the notion of class (and object), concurrency, sub-typing and
inheritance that we use to define the system specification coherently regarding
notions used by other standard modeling approaches. An additional coordina-
tion layer provides the designer with an abstract way of representing interaction
between modeling entities and an abstract mapping to distributed computations.

The CO-OPN object oriented modeling language is based on Algebraic Data
Types (ADT) and Petri Nets. It’s syntax and semantics allow using heteroge-
neous Object Oriented (OO) concepts for system specification. The specifications
are collections of ADT s, classes and context - the CO-OPN modules. Detailed
information about CO-OPN language can be found in [2].

2.1 The Model by Example

This section will explain, by means of an example, how we use UML Fondue
in order to model our system. We start presenting the case study by stating
the problem description and we continue defining the model using the Fondue
methodology. The example is not intended to be a complete and exhaustive one,
but rather an illustration of the full process for our approach.

The proposed system consists of a mobile phone with a SIM card that can
be authenticated with a PIN number. The phone has three different function-
ing states: phoneOff - when the phone is not operating; phoneStandBy - when
the mobile phone is waiting for the user to insert a PIN number; phoneOn -
corresponding to the state where the phone is ready to perform calls.

The behavior of the system is such that the user is asked for a PIN number in
order to be able to turn the phone to the phoneOn state that allows performing
calls. The inserted PIN (stored in the SIM card) is checked and there can be
at most three consecutive wrong attempts. If this number is reached the card’s
state changes from unlockedPin to lockedPin.

Environment Model: This model precises the incoming and outgoing mes-
sages of the system. In Fig. 2 it is possible to observe the incoming messages:
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Fig. 2. Fondue Environment Model for the Mobile Phone System

turnOn, turnOff, insertPin and resetCard. The last one is used for demonstration
purposes in case the SIM card becomes locked after the maximum number of
unsuccessful insertPin operations is reached. The system is able to send the user
the following messages with self-descripting meanings: phoneReady; phoneOff;
cardPinLocked; wrongPin; and correctPin.

Concept Model: The static structure of the system is accomplished by the
realization of the Concept Model. This structure is defined as an UML class
diagram and it is presented in Fig. 3 for our example system.

Fig. 3. Fondue Concept Model for the Mobile Phone System

We consider the system composed by two classes related as presented in the
figure. The diagram shows a system in which one user can have one or more mo-
bile phones (represented by the association User −→ UserPhone). The UserPhone
is identified by its IMEI1 and by its state (state attribute in UserPhone class)
and provides an association of cardinality 1..1 with class Card. The SIM card

1 International Mobile Equipment Identity Number (IMEI) is an unique electronic
serial number of the Global System for Mobile Communication (GSM) mobile phone
handsets.
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(class Card in the figure) is identified by phoneNumber, cardPin, cardState and
nPinTries representing respectively: the phone number associated to the card; its
valid Pin; the card’s state; the number of previous Pin insertions with a wrong
value. Both state and cardState attributes are defined by the CardControler and
UserPhoneControler enumerators. These enumerators provide the allowed states
of the two transition systems that will be further specified by the two Protocol
Diagrams.

Protocol Model: With Fondue’s Protocol Model it is possible to specify the
dynamic behavior of the system over logical time. This model is expressed by
means of UML state charts which capture the way the system responds to re-
quests depending on its current state.

(a) (b)

Fig. 4. Fondue Protocol Models - (a): UserPhoneControler state machine; (b): CardCon-
troler state machine

As can be seen in Fig. 4, some of the actions (in the same system state) can
lead to more than one system state - this presents a typical example of unwanted
non-determinism in the system’s specification. The non-determinism can be sup-
pressed in the Operation Schemas by means of OCL constraints expressed using
pre and post-conditions.

Operation Schemas: Describe the services offered by the system. For simplic-
ity, in this section we are going to present only one of the Operation Schemas:
the operation insertPin(pin:Pin) that is presented in Fig. 5.

This operation describes the behavior that the system should have when the
message insertPin is sent. Albeit the sequence of allowed transitions has already
been defined in the Protocol Model, this definition identifies possible points of
non-determinism in system’s state phoneReady and provides the necessary logic
in order to solve them.

2.2 Transformation Process

In order to perform the transformation from Fondue to CO-OPN we need to
clearly define the methodology both in terms of technology used and in what
concerns the formal definitions: Regarding the former one, our approach proposes
that we use the MDA [5] technology as base framework. This implies using the
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Fig. 5. Fondue Operation Schema for operation insertPin(pin:Pin) for the Mobile Phone
System

metamodel of both languages and defining the transformation based on them;
The metamodel of a language is a description of all the concepts that can be
used in that language - it is also known as its abstract syntax. A metamodel is
composed of metaclasses and their relationships - in conjunction they compose
the complete metamodel of the language. Thus, every element in an ordinary
language is an instance of the respective metaclass. Metamodels are models and
this implies that we can manipulate them - they simply reside in another level
of abstraction; The second aspect implies a clear and formal definition of trans-
formation rules and mapping. This definition must be formally expressed and
mapped into a transformation language (see for example [6] or [7]). The trans-
formation language is the artifact that will allow executing the transformation
and will act as the bridge between the technology used and the transformation
definition. Transformations are composed of a series of rules which are applied
to the source Fondue model. Each rule attempts to find some pattern in the
source model and, if successful, generate some corresponding pattern in a target
CO-OPN model. One can see the transformation rule as consisting of two parts
of a graph: a left-hand side (LHS); and a right-hand side (RHS).

These two aspects together can precisely define and execute a transformation
from a Language A to a Language B - In particular we are interested in the
transformation from UML Fondue to CO-OPN that we are going to detail in
the remaining parts of this section.

The sequence of the transformation is presented in Fig. 6 using a Petri Net.
The places with a token represent the set of different types of Fondue Diagrams.
When firing transitions T 1 to T 4 in the figure, the transformation will evolve
transforming, step by step, each one of the Fondue diagrams. Each transition
represents the process of transforming one diagram and the place after it contains
the result of that process together with the result of the previous transformation.
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Fig. 6. UML Fondue to CO-OPN transformation sequence

Albeit each transition is meant to represent the transformation of a specific type
of Fondue diagram, with the exception of T 1 all the others need information from
other diagram(s) besides the one that the transition concerns. More specifically:

– Transition T 2 (transformation of the Concept Model) includes two distinct
tasks: transformation of the Concept Model itself: and a second iteration in
the Environment Model transformation to complement the transformation of
the input messages with their parameters. The Environment Model provides
the input messages to the system but no information is specified in what
concerns the possible parameters for each message.

– Transition T 3 (Protocol Model’s transformation) needs the availabilty of the
Environment Model information so that it can check if the specified system
transitions correspond to messages previously defined in the Environment
Model. At the same time, information regarding the Concept Model is also
required in order to inspect if the names of the Protocol Models have any
class/enumerator with the same name in the Concept Model and if the states
defined in the Protocol Diagram correspond to the ones provided by the
Concept Model.

– Transition T 4 (Operation Schema transformation process) requires infor-
mation from all the other Fondue models: from the Environment Model in
order to understand if the name of the Operation is already defined; from
the Concept Model to analyze if the invoked methods (and the classes that
correspond to the type of the object) have been defined; from the Protocol
Model to control if the states defined in the pre and post-conditions have
been defined.

2.3 Transformation Description

The transformation process from Fondue to CO-OPN consists in the composition
of the transformation of each one of the Fondue models. A transformation from
Fondue to CO-OPN is a function:

∀F ∈ Fondue, ∃C ∈ COOPN : Tr(F ) = C (1)
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At the same time, the transformation Tr(F ) is a composition of the transfor-
mation of each one of the Fondue models:

∀F =< e, c, p, o >∈ Fondue, e ∈ E, c ∈ C, p ∈ P, o ∈ O :

Tr(F ) = T env
r (e) + T con

r (c) + T prot
r (p) + T op

r (o) (2)

with, E the set of Fondue Environment diagrams, C the set of Fondue Con-
cept diagrams, P the set of Fondue Protocol diagrams and O the set of Fondue
Operation Schemas. The ’+’ operator is the disjoint union.

Having generically defined the transformation from Fondue to CO-OPN, in
the following lines we will particularize how the transformation from each type
of Fondue diagram is done.

Environment Diagram: This transformation constitutes the first iteration in
order to achieve the complete transformation from Fondue to CO-OPN. The
Environment Diagram is composed of one System, messages going to the sys-
tem and messages sent by the system to the outside - as presented in Fig. 2.
Being S, Mi, Mo the System, the set of input messages and the set output mes-
sages respectively we can formalize the transformation of a Fondue Environment
diagram as:

∀s ∈ S, mi ∈ Mi, mo ∈ Mo :
T env

r (E) = T env
r (s) + T env

r (mi) + T env
r (mo) (3)

Taking into account that one system is transformed in a CO-OPN Context,
the input messages into methods of the Context and the output messages into
gates of the CO-OPN Context, and being Γ the set of CO-OPN Contexts, M
the set of CO-OPN Methods and G the set of CO-OPN gates:

∀s ∈ S, mi ∈ Mi, mo ∈ Mo :
T env

r (E) = Id(co) + Id(m) + Id(g) (4)

where Id is the isomorphic transformation between Fondue and CO-OPN.

Concept Model: The transformation of the Concept Model is basically the
transformation of a reduced UML class model.

Generically, the transformation of the Concept Model is performed as follows:

– the class name in the Concept Model is transformed into the name of a class
in CO-OPN;

– the attributes are transformed in Places2 in the CO-OPN class;
– the class associations are CO-OPN classes with source and target values;
– get and set methods must be created in order to access and modify each one

of the class attributes;
2 A Place in a CO-OPN class is like a place in a Petri Net with the difference that, in

CO-OPN, a Place is of a certain type provided by the associated ADT.
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– both the user defined and primitive data types are transformed in CO-OPN
ADTs.

Taking this into account, for class Card in the Concept Model from Fig. 3, the
result of the transformation of a CO-OPN class will be as presented in Fig. 7.

Fig. 7. Class Card transformed from Fondue to CO-OPN

Protocol Model: This transformation is similar to transformations from UML
state charts to Petri Nets (like in [8]). Fig. 8 present the equivalent Petri Net in
the CO-OPN MobilePhoneController class to the Protocol Model in 4(b).

Fig. 8. Protocol Model UserPhoneController transformed from Fondue to CO-OPN

Operation Schemas: The transformation in what concerns the Operation
Schemas can be defined as:

∀op ∈ Mi, msg ∈ Mo, pre ∈ PRE, post ∈ POST, ∃o ∈ O :
Tr(o) =< Tr(op), Tr(msg), Tr(pre)..Tr(post) > (5)
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taking into account that: O is the set of Fondue Operation Schemas; PRE set
of pre-conditions; POST the set of post-conditions;

The pre and post-conditions are based on control operators (if...then...else...),
affectation based on OCL expressions.

For transformation, all expressions of type

{if lexpr then expr else expr|logicalvar := oclexpr|expr, expr} (6)

will be transformed into only positive conditional axioms. For example, for an
OCL expression like the one that follows:

if cond1 then
if cond2 then do1 else do2

else
do3

The transformation will result into three positive conditional axioms:

if cond1 and cond2 then do1; if cond1 and not(cond2) then do2; if
not(cond1) then do3;

or, more specifically in CO-OPN syntax:

(cond1) = true & (cond2) = true => op With do1 (cond1) = true &
(cond2) = false => op With do2 (cond1) = false => op With do3

In general, the transformation will produce several components in CO-OPN
of format: TrOCL(lexpr) =< logical expr, synchronisation >.

We should note that, for logical expressions that are simple boolean conditions
without access to elements in Class model, we will have synchronization = �.
Moreover, the ”..” operator is used to gather the result of each sub expressions.
It means conjunction of logical expressions and sequence of synchronizations.
The result will be one CO-OPN axiom for each flatenned axiom.

Consider the following piece of the Operation Schema in Fig. 5:

elseif c.cardPin <> pin
c.nPinTries = c.nPinTries@pre + 1 and
sender^wrongPin
if c.nPinTries = 3 then

c.CardStatus::lockedPin and
c.nPinTries = 0

end

The CO-OPN resulting axioms for class Card will be of form:

(c.getcardPin p = pin)=false
=>insertPin pin With wrongPin // c.getnPinTries n .. c.setnPinTries n+1

(c.getcardPin p = pin)=false and (c.getnPinTries 3 = true)
=>insertPin pin With c.setcardStatus lockedPin // c.setnPinTries 0

where the operator // represents the execution in parallel of the different ex-
pressions.
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2.4 Transformation Execution

The transformation execution is the ”map” from the transformation formaliza-
tion into one (or several) transformation languages. Since not all of the transfor-
mation languages provide the same functionalities we decided to adopt several
of them. Thus, we will use them in order to ”enrich” each other and to be able to
provide an execution to our transformation. In Fig. 9 it is possible to see the gen-
eral process of the transformation execution. The grey parts of the Fig. represent
what was previously mentioned: more than one approach of transformation can
be adopted. In this case we present an architecture using a transformation lan-
guage that is based on a transformation model (e.g. the Model Transformation
Language [7] (MTL)) and another based on directly specifying transformation
rules (e.g. Mod-Transf - a XML and ruled based transformation language [9]).

In general, the mechanism of executing the transformation follows the stan-
dard process defined by the Object Management Group (OMG). This means
defining and using the Meta Model of each one of the languages as an instance
of the Meta Object Facility[10] (MOF). The transformation rules (or transfor-
mation model that is also an instance of MOF) can be written profiting from the
fact that the source (Fondue in our approach) and the target (CO-OPN) lan-
guages’ abstract syntaxes are defined using the exact same methodology. As for
the technology used, standards for (meta)model exploration and creation have
been defined meaning that we can use them in order to coherently execute the
transformation.

The basic idea of this particular transformation is to give part of the source
language semantics using the transformation rules applied to the abstract syntax,
being the other part provided directly and automatically by the fact that the
transformation leads to a CO-OPN model (like described in [11]). This leads
to a model in the CO-OPN formal specification language allowing state space
exploration and thus automatic test generation as explained in the next sections.

Fig. 9. General transformation execution
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2.5 Tools

The software utilities we have under development in our laboratory that support
the work described previously include: model transformation tools that handle
MOF models exploration; generic model browsing; Java interfaces generation
in order to generically explore a model of a given type; model transformation
features. The tool is capable to cope with plugins (basically the definition of
the transformation rules and their algorithms) that will use existing generated
Java interfaces to achieve the transformation. These interfaces are a direct Java
mapping for accessing the metamodels (and their instances) of both target and
source languages.

3 Introduction to Model Based Testing (Using CO-OPN
Specifications)

Our approach to test case generation stems from the pioneer works of Bernot,
Gaudel and Marre [12] on model-based testing using formal specifications. This
work has been extended by Barbey and Péraire in their Phd. Thesis which
address the problematic of testing Object Oriented systems and finding practical
tools for doing so.

In a nutshell, the approach can be described as follows: given a non-ambiguous
model of the SUT (System Under Test), the test engineer will provide hypothe-
ses about the functioning of the SUT. The purpose of these hypotheses is to
generalize the SUT’s behavior so that equivalent behaviors can be mapped into
classes of system inputs – the test cases. By generalizing the behavior of the SUT
we reduce the amount of system inputs necessary to perform exhaustive testing,
which is in the general case infinite as Bernot, Gaudel and Marre describe in
[12]. In fact, if we look at an SUT as being a black box with a number of avail-
able operations, the number of test cases necessary to fully test that system will
include all possible sequences of calls to the SUT’s operations. Moreover, if the
operations the SUT makes available include parameters, all the possible values
of those parameters will have to be explored. The generalization hypotheses are
then provided either about sequences of calls to operations of the SUT, or about
the values that are the parameters of those operations. Ideally, our approach will
reduce a test set of infinite size to one of finite size that can be applied the SUT
in practicable time.

Clearly, the approach is biased by the quality of the hypotheses the test engi-
neer will provide about the functioning of the SUT: while hypotheses which are
too weak will lead to test sets which are too large to be practical, hypotheses
which are not correct generalizations of the SUT’s behavior will lead to test sets
which are not representative of the full behavior of the SUT.

3.1 The Model and the SUT (System Under Test)

Since in model-based testing the idea is to compare the SUT with its model, let
us now discuss the model. Firstly, it is necessary that there exists a one-to-one
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morphism between the signatures of the operations of the SUT and the ones
of the model – otherwise is makes no sense to try to compare them. By being
non-ambiguous, the model allows exploring a state space which is in principle
more abstract but equivalent to the one of the SUT. The test cases that are
inferred from the hypotheses about the SUT behavior can be ”run” through the
model in order to provide them with semantics (i.e., are the test cases valid or
invalid behaviors according to the model).

Another purpose of the SUT’s model is to provide a means for automatically
determining classes of input parameters to SUT’s operations that will produce
an equivalent behavior in those operations (see chapter 4 of the well-known book
[13] from Glenford J. Meyers for an introduction to the subject). Given that our
modeling language CO-OPN includes syntactic constructs to define the behavior
of operations over the SUT, we perform an analysis of these constructs in order
to find those equivalence classes.

3.2 Oracle and Test Driver

Other important issues related to testing are the test driver and the oracle as
Péraire, Barbey and Buchs describe in [14,15]. The purpose of the test driver is
to provide a means of applying the generated tests to the SUT. The test driver
will also be in charge of recovering the observable results of executing the test
cases. These results will be passed to the oracle which will decide of the success
of the test, i.e., of the conformance of the results observed in the SUT to the ones
predicted by the model. We will not go further into these topics in this paper,
although some experiments we have realized which have produced interesting
results are reported in [16].

3.3 Formalization of the Approach

We can then summarize the objective of model-based testing as follows: being P
a program belonging to the class of all possibles SUTs, SP a CO-OPN specifi-
cation, � a satisfaction relation between SUTs and CO-OPN specifications and
�o an oracle satisfaction relation between SUTs and test sets:

P � SP ⇔ P �o TSP (7)

We would like to find TSP which is a set of tests having the same semantics
as SP . Ideally, comparing the SUT to the model would be equivalent to com-
paring the SUT to the test set TSP . The latter comparison is done by the oracle
which examines the result of running the test cases through the test driver.
However, our approach includes hypotheses about the SUT, which means we
extend equation 7 to the following (where TSP,H stands for a test set having the
same semantics as SP but reduced by hypotheses H3 which generalize behaviors
of P ):

(P satisfies H) ⇒ (P � SP ⇔ P �o TSP,H) (8)
3 In fact, since the oracle cannot always decide P satisfies a test case, it may become

necessary to include in H additional hypotheses that extend the oracle’s capability
of observation.
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The equivalence on right hand side of equation 8 holds only when SUT P
satisfies hypotheses H . Since it is not trivial to prove that an SUT satisfies
hypotheses about its behavior, the quality of the obtained test set will necessarily
depend on the quality of the hypotheses – which reflect the knowledge the test
engineer has about the functioning of the SUT.

In the following sections of this paper we will focus on how tests are actually
generated from a CO-OPN specification which results from the transformation of
the initial UML model of the SUT. Figure 1 puts in evidence this test generation
process, which consists on enriching the CO-OPN model with test intentions (or
hypotheses about the SUT’s behavior) and deriving the resulting tests using a
set of tools we have developed for that purpose.

4 Testing CO-OPN Specifications: Brief Discussion on
Methodology

Aspreviouslydescribed, theCO-OPNspecification language is anObject-Oriented
formalism. When designing an approach to test CO-OPN specifications we want
to take into consideration the fact that we want to test specifications as a whole,
but also its parts. A first important remark to be done about our test methodology
is that since it follows the model-based philosophy, we will always perform back-
box testing. However, we can perform black-box testing focusing on a part of the
specification. In Fig. 10 we exemplify testing at different levels of detail of the same
specification. Three cases can be differentiated:

Fig. 10. Testing a CO-OPN specification at different level of detail

– Testing a context : A context is a particular feature of the CO-OPN language
given it only acts as a coordinator for the objects it holds. Since a CO-OPN
context does not have its own state, only one instance of a given context
exists in a specification and there are no variables of type context. Typically
contexts are used as the outermost layer of a specification, defining methods
and gates which correspond to inputs and outputs of the system. In terms
of test artifacts, the outermost context corresponds to the interface of the
SUT;
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– Testing a class: In figure 10 it is possible to differentiate two scenarios while
testing a class:
• A class in the model corresponds to a class in the SUT : In this case we

are in the scenario of unit testing a class. We can consider the class to
be an SUT on its own and generate tests for it. We can envisage using
a commercially well known unit test driver such as JUnit [17] for Java
in order to practically apply the tests. However, if a class has references
to objects (as they usually do), these references need to be initialized so
the class can be tested correctly. If the references are initialized when
the object is built, there is no problem. However, if the references are
passed by reference to the class constructor, it may become necessary
that the test is also able to pre-generate those references;

• A class in the model corresponds to a subsystem in the SUT : It may hap-
pen that there is no direct mapping between a CO-OPN class and an
implementation class. A CO-OPN class may correspond to a subsystem
of several classes in the implementation. In this case the implementa-
tion subsystem has to be encapsulated by the interface defined in the
specification. The test driver will then have to perform the connections
between the calls to the interface and their mapping on the subsystem.

5 The Test Selection Language TestSel

The test intentions appearing in figure 1 are expressed in our test selection lan-
guage TestSel. Barbey, Péraire and Buchs present in [15,14] specifically devised
templates of hypotheses (can be considered as building bricks for more complex
hypotheses) and a methodology for applying them. They claim in their work the
methodology they present leads to a good quality of hypotheses, thus to test
sets that uncover errors in a wide range of possible SUTs. TestSel extends their
work by introducing language constructs to compose templates of hypotheses.
With these constructs we are able to build refined hypotheses about the SUT’s
behavior. In order to present TestSel we will start by the language we have
chosen to represent our test cases which is called HML (Hennessy-Milner Logic).

5.1 Test Representation Media - The HML Formalism

HML is a simple temporal logic built to express properties of processes. Its
capability to express process properties as graphs of events over time makes it
an interesting language for expressing test cases. In particular, HMLSP stands
for the language of HML formulas over a given CO-OPN specification SP . By
this we mean that HMLSP corresponds to HML formulas over CO-OPN events,
where a CO-OPN event corresponds to a pair 〈Input, Output〉 – Input and
Output being synchronizations over the CO-OPN specification’s methods and
gates respectively. In the following definition of the abstract syntax of HMLSP ,
T represents the always true constant (verified by any process in any state) and
EventSP is the set containing all the Input/Output synchronization pairs over
SP .
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Definition 1. Syntax of HMLSP

– T ∈ HMLSP

– f ∈ HMLSP ⇒ (¬f) ∈ HMLSP

– f, g ∈ HMLSP ⇒ (f ∧ g) ∈ HMLSP

– f ∈ HMLSP ⇒ (〈e〉f) ∈ HMLSP where e ∈ EventSP

We express CO-OPN’s semantics using transition systems, so before providing
the semantics of HMLSP let us start by defining the notion of transition system:
the transition system denoted by a CO-OPN specification SP is a quadruple
〈Q, EventSP ,→, i〉 ∈ Γ (Γ being the class of all transition systems) where Q
is the set of all states in SP , →⊆ Q × EventSP × Q and i is a non empty
initial state. We also define equivalence in the CO-OPN world as the bisimulation
equivalence ⇔ (see Biberstein’s Phd thesis [4] on CO-OPN’s semantics) between
the transition systems denoting the semantics of CO-OPN models. Taking again
equation 7, we can better define the satisfaction relation � between an SUT P
and a CO-OPN specification SP using the bisimulation relation. Being G(P )
and G(SP ) transition systems representing the semantics of P and of SP we
can write:

P � SP ⇔ G(P ) ⇔ G(SP )4 (9)

The semantics of HMLSP is defined in terms of the satisfaction relation
�HMLSP between the transition system denoted by specification SP and HMLSP

formulas. Formally, given a transition system G = 〈Q, Event(SP ),→, i〉 denot-
ing SP and a state q ∈ Q, the satisfaction relation �HMLSP ⊆ Γ ×Q×HMLSP

is defined as:

Definition 2. Semantics of HMLSP

– G, q �HMLSP T
(specification SP always satisfies formula T at state q)

– G, q �HMLSP (¬f) ⇔ G, q �HMLSP f
(¬f is satisfied by specification SP at state q if SP in that same state q does
not satisfy f)

– G, q �HMLSP (f ∧ g) ⇔ G, q �HMLSP f and G, q �HMLSP g
(f ∧ g is satisfied by specification SP at state q if f is satisfied by SP at
state q and g is satisfied by SP at state q)

– G, q �HMLSP (e〈f〉) ⇔ ∃e ∈ EventSP such that q
e−→ q′∈→ and G, q �HMLSP

f
(e〈f〉 is satisfied by SP at state q if there is an event e ∈ EventSP leading
from state q to q′ and f is satisfied by SP at from state q′).

If we consider G to be the transition system representing the semantics of a
CO-OPN specification SP and q ∈ Q the initial state of model SP , the test set
obtained from a set of HMLSP formulas is such that:
4 We will not discuss how to obtain a transition system from a CO-OPN specification

SP, given that the purpose of this paper is not to explain the semantics of a CO-OPN
specification – we rather aim at expressing the relation between the test language
and the specification language.
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Definition 3. Test Set for a given set of formulae F ⊆ HMLSP :

TestSP,G(F ) = {〈f, Result〉 ∈ F × {true, false} |
(G, q �HMLSP f and Result = true) or

(G, q �HMLSP f and Result = false)} (10)

In this way we classify HMLSP formulas as valid or invalid behaviors of the
model of the SUT described by SP .

5.2 Full Agreement Between HML and CO-OPN Semantics

We are now in measure to define more precisely the satisfaction relation �o used
in equation 8. Being G(P ) the transition system representing the semantics of
SUT P (which we want to observe through the execution of test cases), G(SP )
the transition system representing the semantics of the CO-OPN specification
SP and F ⊆ HMLSP , the �o relation is given by:

Definition 4. Oracle satisfaction �o

P �o TestSP,G(SP )(F ) ⇔ TestSP,G(P )(F ) = TestSP,G(SP )(F ) (11)

Equation 4 illustrates the fact of applying a test set to an SUT. It states that
a CO-OPN specification SP and an SUT P should satisfy any set of HMLSP

formulas is the same manner. In other words, SP and P should have the same
behavior.

We will not go deeply into this subject, but it is possible to use HML as a
testing language because there exists a full agreement between CO-OPN equiv-
alence and HML equivalence. CO-OPN equivalence is given by the bisimulation
relation and Hennessy has shown in [18] that two transition systems can be
distinguished by HML if and only if they are not bisimulation equivalent.

According to equation 7 we are checking if SUT P has the same semantics
as specification SP . We do this by first calculating a test set TSP with the same
semantics as SP (definition 3) and then checking if P also satisfies TSP through
black-box observation of its behavior when the tests are ran. This said, the full
agreement between CO-OPN equivalence and HML equivalence is fundamental
for our approach. It is this result that allows us to say that comparing an SUT
P to a CO-OPN specification SP through the usage a test set TSP is equiva-
lent to comparing directly the transition systems denoted by P and SP using
bisimulation. In other words, this means that we don’t lose discriminating power
between � and �o.

5.3 Advantages and Disadvantages of HML as a Test Formalism

Another interesting aspect of using HML as a test representation media is the
fact that we can make use of not (¬) and and (∧) operators. The not operator
allows us to state that an SUT does not produce a given behavior, while the
and operator allows us to discriminate branching non-determinism. While the
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semantics of these operators is straightforward as previously explained in this
paper, it may be not trivial to apply them in practice while testing a real SUT.
Let us exemplify by imagining the application of a negative HML formula (a
negative test case) to an SUT. In this case, the oracle would have to decide
about the satisfaction of the negative formula which is not a trivial task. In fact
if the SUT blocks during the execution of a negative test case, the oracle may not
always be able to distinguish between the blockage required by the specification
and a blockage provoked by a fault present in the SUT. By a blockage in a
CO-OPN specification we understand the fact that an operation is not available
from a given state. In that sense the we need the oracle to able to distinguish
between that kind of blockages and the blockages that are due to errors in the
code of the SUT.

On the other hand, if we would like to apply to an SUT a test case represented
by a conjunctive HML formula (including and operators) other problems would
arise: the semantics of the and operator are so that for a transition system to
verify a formula (f ∧g) both f and g have to be satisfied starting from the same
state. Practically, to apply a formula (f ∧ g) to an SUT a test driver would have
to be able to either first test f and then g, or the reverse. In order to be able
to do this, a ”backtracking” capability of the SUT would be necessary in order
to go back to the state where the formula splits. Although we do not provide
solutions for an oracle and a test driver capable of testing negative or conjunctive
formulas, we point these two problems as issues to take into consideration while
using HML as a test case formalism.

5.4 Example – A Set of Selection Hypotheses for the Mobile Phone
Example

Before presenting formally the structure of TestSel we will provide an example
of a set of test selection hypotheses for the mobile phone example provided in
section 2.1. The example in Fig. 11 is given in the concrete syntax of TestSel
that we have implemented in our IDE for the CO-OPN language. This IDE is
called CoopnBuilder and includes editors for context, class and ADT modules
of CO-OPN specifications. TestSel is implemented as an extra module for CO-
OPN specifications. Instances of these types of modules are called constraint
modules – is the sense that they constrain the whole set of possible executions
of the SUT.

Fig. 11 depicts a single constraint module called NatelCons. CoopnBuilder
allows multiple constraints modules per CO-OPN specification. Informally, the
structure of a constraint module includes the following sections:

– Interface: defines the name of the constraints that are defined by a module.
Each constraint name corresponds to a set of HML formulas and the union
of all these sets is the final test set defined by the module. In the future we
would like to compose constraints coming from several modules;

– Body: declares the properties necessary to the construction of the constraints
declared in the interface. It includes five sections:
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Fig. 11. Test selection hypotheses for the Mobile Phone example

• Contraints : declares the constraints defined locally to help in the con-
struction of the exported constraints. They are not exported from the
module;

• Use: declares specification modules (namely class and ADT modules)
that are used to build the constraints;

• Axioms : declares axioms and rules that establish elementary behaviors
of the SUT. The conjunction of these behaviors in the constraint module
corresponds to the reduction hypotheses as it was stated in section 3;

• Variables : establishes the type of the variables used in the definitions of
the Axioms section;

• External: declares functions used in HML formulas (test cases) during
testing time (as opposed to test generation time). The purpose of these
functions is to calculate values over non-deterministic outputs of the
SUT. For further explanations on this subject we direct the interested
reader to [19].

The Axioms section is clearly the most relevant one. In this paper we will
not provide a textual description of the semantics of the language of constraint
module’s axioms since it can be found in [19]. However, some comments about
the axioms that can be found in Fig. 11 follow. Please keep in mind that an
axiom is of the form condition => assignment where the assignement (of a set
of HML formulas to the set represented by the constraint name) only happens
if the condition holds.
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– axiom 1

subUniformity(p) => HML(<turnOn with null>,<insertPin(p) with g> T) in pinTest;

This axiom generates test cases that start by turning on the phone and then
insert a pin value. The subuniformity operator selects for variable p values
according to the behavior of the operation insertPin, which either validates
or invalidates the introduced pin number. This axioms will then produce
two tests: turn on the phone and insert a correct pin; turn on the phone and
insert an incorrect pin. The language makes available two more operators
exhaust and uniformity that are similar to subuniformity but that select all
values or only one value in the domain from the variable in parameter, re-
spectively.

– axioms 2 and 3

[] in nWrongPins;
f in nWrongPins => f . HML(<insertPin(newPin(1 1 1 1)) with g> T) in nWrongPins;

This couple of axioms is used to produce the same set of tests. Axiom 3 is
recursive since it builds an HML formula that inserts a wrong pin and then
concatenates it (”.” is the concatenation symbol for HML formulas) with
formulas of the same type. Axiom 2 represents the base HML formula T,
which is the stop condition for the recursion in axiom 3 (given that axiom
3 is defined in terms of itself). The tests produced by these axioms are se-
quences of any size of wrong pins insertions (assuming (newPin 1 2 3 4) is
the correct pin).

– axiom 4

f in nWrongPins & nbEvents(f) < 4 => HML(<turnOn with null>) . f .
HML(<insertPin(newPin(1 2 3 4)) with g> T) in insertPins;

This axiom uses a nbEvents operator that limits the number of events in
HML formula f. In this case the idea is to use the previously defined con-
straint name nWrongPins to build sequences of at most four wrong pins.
These sequences are then concatenated at the beginning with an operation
to turn on the phone and at the end with a correct pin insertion (notice how-
ever that the output of the event is variable). The idea in this case is to test
if the system only blocks at the introduction of more than three wrong pins
and behaves correctly in the remaining cases. Examples of other operators
over HML formulas are: depth – number of events of the deepest branch of
an HML formula; nbOccurences – number of occurrences of a method name
in an HML formula; positive – HML formulas without not (¬) operators;
sequence – HML formulas without and (∧) operators.

5.5 The Structure of TestSel

As its name indicates, TestSel is a test selection language rather than a test
reduction language. Despite the fact that we have defined in 3 the process of
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finding tests as the progressive reduction of exhaustive test set, this process
cannot be reproduced in the real world for a simple reason: it is not possible to
generate the exhaustive (infinite) test set in finite time and then reduce it. In
order to overcome this operational difficulty while still employing the presented
theoretical framework, we have thus decided to implement practically the test
finding process as one of selection – using logic programming principles. The
basic approach is explained by Barbey in [15], where he starts by defining the
language HMLSP,X – our HMLSP language extended with variables. The test
selection is then practically achieved by instantiation of the variables present
in HMLSP,X formulas. Given a CO-OPN specification SP , the set XHML of
variables over HML formulas and the set XEvent of variables over SP ’s events,
the syntax of HMLSP,X is defined as follows:

Definition 5. Syntax of HMLSP,X

– T ∈ HMLSP

– x ∈ XHML ⇒ x ∈ HMLSP,X

– f ∈ HMLSP,X ⇒ (¬f) ∈ HMLSP,X

– f, g ∈ HMLSP,X ⇒ (f ∧ g) ∈ HMLSP,X

– f ∈ HMLSP ⇒ (〈e〉f) ∈ HMLSP where e ∈ EventSP,X)

The set EventSP,X includes CO-OPN pairs 〈Input, Output〉, Input and Output
being synchronizations including variables. Two CO-OPN events can be synchro-
nized simultaneously, in sequence or in parallel. A CO-OPN event is a method
or a gate name, followed by a set of parameters. EventSP,X includes variables
on methods or gates names of the specifications (which we will call XMG) as
well as variables over event parameters – these can be sets of values described in
ADT modules (which we will call XS) of the specification or references to objects
of classes defined in the specification (which we will call XC).

We can then consider the exhaustive test set to be represented by 〈f, r〉 where
f ∈ HMLSP,X . In fact, given that f has free variables it cannot be applied
directly to the SUT. Hypotheses about the behavior of the SUT will serve the
purpose of instantiating those free variables – leading to ground HML formulas
that can be used as a test cases for an SUT. The process of test selection can then
be seen as the process of transforming an HMLSP,X formula into an HMLSP

one, by means of hypotheses about the SUT that can be translated in constraints
on the formula’s variables.

The Abstract Syntax of TestSel. Before providing an example of using
TestSel we will present its abstract syntax. The purpose of this section is to
layout the basis for being able to precisely define the semantics of TestSel.
While reading this section, please keep in mind section 5.4 of this paper where
the syntax and the semantics of TestSel was informally introduced. TestSel has
three syntactic layers, namely:

– CO-OPN event : includes the possible Input/Output synchronizations pairs
of a CO-OPN specification. The set of these pairs for a specification SP is
given in definition 5 by the set EventSP,XS ;
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– HML: set of HMLSP,X formulas over a CO-OPN specification SP ;
– Constraints : constraints over variables of HMLSP,X formulas. Our language

allows constraints over variables that represent: execution paths – sequences
of events with HML operators ∧ and ¬); values that are parameters of oper-
ations – CO-OPN class instances or CO-OPN sorts (sets of values) defined
in ADT modules.

The abstract syntax of the first two layers in the above list has already been
provided in definition 5. In what concerns the third layer we will provide the
abstract syntax of a constraint module over a specification SP . The language
will be defined in a top-down fashion:

Definition 6. Constraint module
A constraint module over a CO-OPN specification SP is a quintuplet

〈SP, K, ax, X, FSP 〉 ∈ ΨSP , where:

– SP is a CO-OPN specification;
– K is the set of constraint names defined by the constraints module;
– X is a set of typed variables XHML ∪ XMG ∪ XC ∪ XS;
– FSP is a set of function signatures defined in ADT modules of specification

SP ;
– ax ⊆ AXK,X,SP is a set of axioms defined over HMLSP,X formulas, prede-

fined operators, constraint names in K and variables in X;

Intuitively speaking, a constraint module for a specification SP will define a
set of constraint names – each name representing a different generalization of a
behavior of the SUT. The constraints are defined by axioms that belong to the
AXK,X,SP language. Still, before proceeding with the definition of this language
we will present the syntax of terms over HMLSP,X formulas as this will be
necessary for subsequent definitions:

Definition 7. The terms THMLSP,X over HMLSP,X

– t ∈ HMLSP,X ⇒ t ∈ THMLSP,X

– t1, t2 ∈ HMLSP,X ⇒ t1 . t2 ∈ THMLSP,X

The intuition behind this definition 7 is to provide us with the necessary syntax
for the concatenation of HMLSP,X formulas. We thus define the language of
constraint axioms over a CO-OPN specification SP as follows:

Definition 8. Given K, X and SP as defined previously, a constraint axiom is
a triplet belonging to the relation AXK,X,SP such that:

AXK,X,SP = CondK,X,SP × THMLSP,X × K

where:

– CondK,X,SP is a conjunction of atomic conditions;
– THMLSP,X is term built from HMLSP,X formulas;
– K is a constraint name.



Formal Test Generation from UML Models 167

This syntax for constraint axioms allows us to see constraints as sets of HML
formulas – an instantiated HMLSP,X formula Formula is produced by a con-
straint ConsName only if we can find a substitution to the variables of formula
that satisfies the condition Condition. We are now missing the definition of
CondK,X,SP :

Definition 9. Conditions CondK,X,SP of a behavioral axiom
Given K, X and SP as defined previously, the set CondK,X,SP is a conjunc-

tion of atomic conditions such that:

∀n ∈ N, aci ∈ ACK,X,SP , i ∈ {0..n}, ac1 ∧ ac2 ∧ . . . acn ∈ CondK,X,SP

Finally we will define the set ACK,X,SP of atomic conditions. An atomic condi-
tion is a constraint over variables of X .

Definition 10. Atomic conditions ACK,X,SP

∀k ∈ K, t ∈ THMLSP,X , tn, tn′ ∈ TNAT , tb, tb′ ∈ TBOOL, x ∈ XS,

t in k, uniform(x), exhaust(x), tn cmpOpN tn′, tb cmpOpB tb′ ∈ ACK,X,SP

where cmpOpN ∈ {=, <>, <, >, <=, >=} and cmpOpB ∈ {=, <>}.

TNAT represents the set of terms over arithmetic expressions. Given t ∈
THMLSP,X , TNAT is defined as:

n, depth(t), nbEvents(t), nbOccurrences(m, t), tn opN tn′ ∈ TNAT

where n ∈ N, m is a method name defined in SP , tn, tn′ ∈ TNAT and opN ∈
{+,−, ∗, /}.

TBOOL represents the set of terms over boolean expressions. Given t ∈
THMLSP,X , TBOOL is defined as:

{true, false}, onlyConstructor(t), onlyMutator(t), onlyObserver(t), sequence(t),
positive(t), trace(t) ∈ TBOOL

Semantics of TestSel. After having described the abstract syntax of TestSel,
we are now in measure of providing its semantics:

Definition 11. Semantics of TestSel
Given a CO-OPN specification SP , the semantics of a constraint module

CONS = 〈SP, K, ax, X, FSP 〉 ∈ ΨSP is the set of all HMLCONS
SP formulas such

that:
HMLCONS

SP =
⋃

axiom∈ax

{f ∈ HMLSP | f � axiom}

The informal meaning of definition 11 is the following: for each axiom of the
constraints module all the HMLSP formulas (without variables) that satisfy it
are collected in a set. The set of test cases produced by a constraint module
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is the union of all sets of test cases produced by each individual axiom. We
will not further develop the � relation in this paper. In order to verify if f �
axiom we have to find a substitution of the variables of axiom so that we can
find f . In particular, the substitution of variables that are quantified with the
subuniformity operator is complex given that it becomes necessary to analyze
the behavior of the operations in the CO-OPN specification.

In order to finish this section of the paper we will state the validity of the test
sets obtained by the constraint modules of our TestSel language:

Theorem 1. Given a CO-OPN specification SP and a constraint module
CONS, the test set TestSP,G(SP )(HMLCONS

SP ) obtained from CONS is a valid
test set, meaning it does not reject correct programs.

Proof.
TestSP,G(SP )(HMLCONS

SP ) ⊆ TestSP,G(SP )(HMLSP )

is trivial by construction. ��

In theorem 1 we show that test sets that are selected by TestSel for a CO-OPN
specification SP are part of the exhaustive test set. Thus the selection process
does not introduce invalid test cases in the final test set. Validity of the tests
is necessary but not sufficient for measuring the quality of a test set. In fact,
we would have to prove that the union of all the behaviors described by all the
constraint modules about a specification corresponds to a correct generalization
of the behavior of the specification. This can be reduced to the problem of
measuring the coverage of the obtained test set.

5.6 Tools for Test Production

As we have already mentioned in this paper, an IDE for the CO-OPN language
called CoopnBuilder already exists. We have used this infrastructure in order
to implement our language TestSel, as can be seen from the example in 5.4.
From this front end we are able to produce Prolog code that generates the test
sets. The reason why we have used Prolog for this task has to do with the fact
that the resolution mechanism of this language allows relatively straightforward
mapping between its semantics and the semantics of TestSel. In fact, Prolog
is a theorem prover that tries to verify if a logical clause can be induced from
the available rules. If the logical clause to be proved includes variables, Prolog
will find all the substitutions for those variables that make the clause true. This
is similar to the semantics of TestSel – we want to find substitutions for the
axioms of a constraint module that make the constraints over the variables of
those axioms true. In this process we find fully instantiated HML formulas which
are sequences of inputs for the SUT.

On the other hand, only (syntactically) finding is sequences of inputs is not
enough. We also need to provide them with semantics in order to turn them
into test cases, as shown in definition 3. To do that we have two options at
our disposal: a prototyping tool that turns CO-OPN specifications into Java
programs [20]; a translator that converts CO-OPN specifications into Prolog
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programs [21]. Both options are currently implemented and allow verifying if an
HML formula is a valid behavior of a CO-OPN specification. We are inclined to
pursue the latter option given that the integration with the Prolog code produced
from the constraint modules becomes more natural. Other reasons for this choice
have to do with the fact that Prolog is a language where the concepts of code
and data are mixed. This allows a natural reflection which is extremely useful
for analyzing and decomposing the behavior of the operations defined in the
specification.

In figure 12 we present some of the tests which are (semi) automatically
generated by our tool. In fact, the four lines in the Fig. represent four solutions
to the constraint name insertPins declared in the constraint module of figure 11
for the Mobile Phone example. Our tool is not yet able to verify if the tests
generated are valid or invalid behaviors of the specification, so we have chosen
them by hand. In fact, given that in the axiom for the insertPins constraint (and
previously, in the axiom for the nWrongPins constraint) the variable g is a gate
that remains to be instantiated, many other solutions are possible. However,
they will all represent invalid behaviors of the specification.

6 Related Work

A large number of papers on model-based test case generation exists in the liter-
ature. However, not many deal with models expressed in semi-formal languages
such as UML.

At the university of Franche-Comté an approach to test case generation similar
to ours is being developed. Legeard and Peureux explain in [22] their method
which consists in: translating a UML specification into a program in an adapted
logic programming language similar to Prolog; explore symbolically the state
space of the model searching for values for parameters of operations that are
interesting to test.

Fig. 12. Tests generated for the Mobile Phone example
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Jan Philipps et al explain in [23] their approach which starts from a model
described in AUTOFOCUSTM , a tool based on UML-RT (for Real-Time sys-
tems). The framework also makes use of a logic programming language to explore
symbolically the state space.

7 Conclusion

In this paper we have presented our work on automatic test case generation for
UML (Fondue) models. We have decided to tackle the problem in two phases, the
first one being the translation of UML into a the formal specification language
CO-OPN. CO-OPN has clearly defined semantics which allow us to explore the
model soundly in order to produce test cases. The translation process that we
formally define is based on the decomposition of the Fondue sub-models (envi-
ronment, concept, protocol and operations) and their individual mapping into
CO-OPN modules (ADT, classes and contexts). We also take into consideration
the fact that the Fondue modules overlap or complement each other at certain
points and include these implicit semantics in the translation. The process is
introduced also by means of an example of a specification of a mobile phone.

The second phase of the problem concerns the automatics test generation.
Here also we present a formal process, insisting on the definition of a language
that will enable this process. We define the language at several layers of complex-
ity, which allow to take our theory of testing into consideration while adapting
it to the test selection needs of an engineer. We also provide a semi formal se-
mantics for this language and illustrate it generating a test set for the mobile
phone specification.

Tools are currently being implemented for the process we describe. We are
already able to partially automate the processes we describe.
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ber 2001.

2. Didier Buchs and Nicolas Guelfi. A formal specification framework for object-
oriented distributed systems. IEEE Transactions on Software Engineering,
26(7):635–652, july 2000.

3. Olivier Biberstein, Didier Buchs, and Nicolas Guelfi. CO-OPN/2: A concurrent
object-oriented formalism. In Proc. Second IFIP Conf. on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), Canterbury, UK, July 21-23
1997, pages 57–72. Chapman and Hall, Lo, 1997.

4. Olivier Biberstein. CO-OPN/2: An Object-Oriented Formalism for the Specifica-
tion of Concurrent Systems. PhD thesis, University of Geneva, 1997.

5. Object Management Group. Mda guide version 1.0.1. Technical report, OMG,
June 2003.



Formal Test Generation from UML Models 171

6. Octavian Patrascoiu. YATL:Yet Another Transformation Language. In Proceed-
ings of the 1st European MDA Workshop, MDA-IA, pages 83–90. University of
Twente, the Nederlands, January 2004.

7. Triskell team. MTL Documentation. URL: http://modelware.inria.fr/rubrique4.
html.

8. Zhaoxia Hu and Sol M. Shatz. Mapping uml diagrams to a petri net notation
for system simulation. In Frank Maurer and Günther Ruhe, editors, SEKE, pages
213–219, 2004.

9. Triskell team. Mod-Transf - xml and ruled based transformation language. URL:
http://modelware.inria.fr/rubrique15.html.

10. Object Management Group. Meta-Object Facility specification, April 2002. url:
http://www.omg.org/technology/documents/formal/mof.htm.

11. Luis Pedro, Levi Lucio, and Didier Buchs. Prototyping Domain Specific Languages
with COOPN. In Rapid Integration of Software Engineering techniques, volume
LNCS 3943. Springer-Verlag, 2006.

12. M.-C. Gaudel G. Bernot and B. Marre. Software testing based on formal specifi-
cations: a theory and a tool. IEEE Software Engineering Journal, 6(6):387–405,
1991.

13. Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., New
York, NY, USA, 1979.
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Abstract. Group communication is a programming abstraction that al-
lows a distributed group of processes to provide a reliable service in spite
of the possibility of failures within the group. The goal of the project was
to improve the state of the art of group communication in several direc-
tions: protocol frameworks, group communication stacks, specification,
verification and robustness. The paper discusses the results obtained.

1 Introduction

Group communication is a programming abstraction that allows a distributed
group of processes to provide a reliable service in spite of possible failures
within the group. Group communication encompasses broadcast protocols (e.g.,
reliable broadcast, atomic broadcast), membership protocols, and agreement
protocols.Group communication is a middleware technology, lying between an
application layer and a transport layer. Developing and maintaining a group
communication middleware is a non-trivial, error-prone and complex task. In
this context, the goal of the project was to improve the state of the art in sev-
eral directions: flexibility, reusability, formalization, verification and validation.
Due to space constraints, a detailed presentation of all the contributions was
not possible. The paper gives an overview of the results obtained, structured as
shown in Figure 1. Details can be found in the referenced papers.

Protocol frameworks: Flexibility and reusability of a middleware layer—and of
any piece of software—can be achieved by decomposing the middleware into
protocols that can be assembled. The glue that allows to assemble the protocols is
called a protocol framework. The features of a protocol framework are essential to
the protocol composer: they can make life more or less easy. Typically, adequate
features can reduce the errors at assembly time, i.e., when the protocols are glued
together to build a group communication middleware. Protocol frameworks are
addressed in Section 2, where we start by presenting the features of traditional
protocol frameworks, before presenting the novel aspects that have been designed
and implemented within the project.
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Group Communication Stacks (Sect 3)
Traditional Stacks (Sect 3.1)

The new stack: Fortika (Sect 3.2, 3.3)

Specifications (Sect 4)
Specifications for refined models (Sect 4.1)

Formal specification of FDs (Sect 4.2)

Verification and Testing (Sect 5)
Formal methods for verification (Sect 5.1)

Fault injection (Sect. 5.2)
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Protocol Frameworks (Section 2)
Performance: Concurrency (Sect 2.2)

Composability: Header-driven model (Sect 2.2)
Maintainability: Samoa and DPU (Sect 2.2)

Language Issues (Sect 2.3)
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Fig. 1. Structure of the paper

Group communication stacks: A good protocol framework is essential to achieve
flexibility and reusability, but is by itself not sufficient. It is also required to
identify the “right” components (or protocols). In the context of group com-
munication this is a difficult task, because of the difficulty of the problems to
solve. Components derive from algorithms that solve these problems. In Section 3
we explain that the traditional architecture of a group communication middle-
ware has considered group membership as one of its most basic components. We
discuss the deficiencies of this choice and propose a different architecture. We
believe that the new architecture has a much better chance to be flexible, i.e., to
adapt to a changing environment. As a consequence, the components are much
more likely to be reusable.

Specifications: In group communication, formalization plays an important role
at two levels: (i) at the level of the specification of the problems to be solved, and
(ii) at the level of solving these problems. At the specification level, we need a
precise characterization of the desired properties of group communication prim-
itives or services. At the solution level, we need to characterize the assumptions
that allow us to solve the problems. These issues have been addressed in the past.
However, it is only for static groups and in the so-called crash-stop model (in
which processes do not recover after a crash) that specifications of group commu-
nication are widely accepted and agreed upon. Specifications for dynamic group
communication have been proposed, but they differ significantly from static spec-
ifications, which is not satisfactory. In Section 4 we show that it is possible to
specify dynamic group communication in such a way that, if the group happens
to be static, then we obtain the well-known static specifications. We also address
specifications of group communication in the crash-recovery model (in which pro-
cesses have access to stable storage to save their state). Specifications for the
crash-recovery model have been proposed in the past, but they fail to capture the
fundamental difference between the crash-stop and the crash-recovery model. In
Section 4 we discuss how this issue can be addressed. Section 4 also addresses
an important formalization issue related to solving group communication prob-
lems. The concept of unreliable failure detectors has been introduced some time
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ago. The section proposes a fresh look at failure detectors by representing them
via transition systems (as known from operational semantics), with the goal of
bringing the definitions closer to our formal reasoning techniques.

Verification and testing: Section 5 is devoted to verification and testing. Con-
sensus is one of the most fundamental problems in group communication. Many
of the algorithms for solving consensus have been described in pseudo code, and
their proofs use concepts that are sometimes not rigorously defined. Here, we pro-
pose a formal approach to the proof of a rigorously defined consensus algorithm.
Finally, Section 5 describes an experiment conducted on our new Fortika group
communication middleware that was build within the project. Fault injection
has been used to study how Fortika reacts to memory and network corruption—
faults that Fortika was not designed to handle. The experiments allowed us to
identify a few weaknesses and to correct them. The result is a very robust group
communication middleware.

2 Protocol Frameworks

We first present the most significant existing frameworks. Then, we discuss some
novel ideas that advance the state of the art of protocol composition, covering
programming models, concurrency support and dynamic protocol update. Fi-
nally, we study languages to ensure the safe usage of concurrency support.

2.1 Existing Frameworks

Protocol frameworks are programming tools to build complex middleware out
of simpler off-the-shelf building blocks, called protocols. This modular approach
yields advantages such as customization, code reuse, extensibility, and ease of
maintenance. Altogether, this eases the implementation of group communication
middlewares (and, in turn, the implementation of fault tolerant applications).

Most of the existing frameworks are based on an event-driven programming
model. In such a model, a protocol is structured as a set of events, handlers,
bindings, and a state that can be private or shared with other protocols. Events
carry data and are triggered by protocols. The handlers contain the code of the
protocol and can modify the state and trigger events. A binding is a mapping
between an event type and one or several event handlers. When a handler triggers
an event, all handlers bound to its type are executed thereby possibly triggering
new events. Composing protocols consists in binding events of a protocol to
handlers of other protocols [14].

Cactus. Cactus [2] is an evolution of the x-kernel [4] protocol framework. Com-
position with x-kernel was strictly layered, i.e., a protocol could only communi-
cate with the protocols immediately above or below. Cactus introduces a finer-
grain level of composition where several microprotocols can be assembled to
form an x-kernel protocol. Each microprotocol can communicate with any other
microprotocol in the same protocol using events.
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Cactus supports concurrent execution of its microprotocols. Concurrency in-
side composite protocols requires synchronization policies in order to preserve
the properties provided by the composite protocols. The C version of Cactus
offers basic guarantees in the presence of concurrency, such as atomic execu-
tion of handlers. In the Java version of Cactus, however, it wholly depends on
the programmer, who must implement the required synchronization policy using
standard language facilities (such as locks, semaphores, monitors, etc...). This
approach, besides being tricky and error-prone, harms modularity, since a com-
poser has to adapt the code of the microprotocols composed in order to come
up with an adequate concurrency management.

Appia. Appia [1] is a re-engineering of the Ensemble group communication
toolkit [3]. In Ensemble, programmers can compose protocols in layered stacks
where there can only be one protocol per level in the composition. In contrast,
Appia allows more flexible composition, where there may be several protocols
per level.

Appia features a validation check for composition. Every protocol declares
which event types it accepts, requires and provides. At composition time, Ap-
pia verifies that all required events are provided by some protocol, rejecting all
compositions that do not pass this check. However, the fact that the direction
of events is not taken into account makes this verification superficial.

Unlike Cactus, Appia does not allow concurrent execution of protocols. All
events are dispatched by a single-threaded scheduler. This frees the protocol
programmer from the burden of dealing with concurrency, deadlocks, etc. How-
ever, this absence of concurrency prevents Appia from making the most of high-
performant systems (e.g., multi-processor platforms).

2.2 Novel Aspects

Our project brought up new programming abstractions that either improve over,
or provide an alternative to existing protocol frameworks. First we describe a
new header-driven programming model to program protocols in frameworks.
This model solves well-known composition problems of the event-driven model
and thereby enables the use of powerful composition languages (e.g. ml module
systems) to structure protocols and stacks. Then, we describe a runtime sys-
tem to support concurrency inside a protocol stack without the need to make
the protocols themselves aware of concurrency. Finally, we describe SAMOA—
a novel protocol framework that implements the runtime system, and provides
other interesting features such as dynamic protocol update.

A Header-Driven Programming Model. All recent frameworks use a
general-purpose event-driven programming model to manage interactions be-
tween protocols. However in complex compositions, where protocols offer their
service to more than one protocol, the one-to-many interaction scheme of events
introduces composition problems by mixing up the targets to which data should
be delivered. In other words, protocols may receive events with data that is not
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targeted at them. This problem compromises the use of powerful composition
languages on top of an event-driven model, because ad hoc mechanisms need
to be introduced to “route” events to the right protocols. Moreover, the event
model doesn’t properly handle peer interactions, where a protocol interacts with
its peer running on another node by using the service of a lower-level protocol.
The way events handle this ubiquitous pattern is critical in three ways: (1) it is
complex, because invariants known at design time need to be enforced by the
composer; (2) it is obscure, because the indirections introduced by the events
hide, in the code, the logical structure of peer interactions; (3) it is unsafe, be-
cause misbindings can lead to runtime type errors or erratic behaviour. To solve
these problems we propose in [6] a novel and simple alternative that shifts the
driving force behind interactions from events to the headers (data) they carry.

In the event-driven model, protocols typically encapsulate communication
data for their peers in the messages and headers that are carried by events.
A message is a list of headers and a header is a typed container for data. Pro-
tocols often use a single event handler to manage the reception of messages.
Nevertheless, some protocols need to get different kinds of data via this single
handler. In order to do so they introduce a tag name in the header to indicate
the kind of information being transmitted. Since a header usually remains inter-
nal to a protocol and its peers, it is not restrictive to impose that each header
shall be named and that each name shall be declared by at most one protocol
in a composition. A protocol composition satisfying these constraints has the
following interesting property. If we look at the names of a message’s sequence
of headers, we can approximately see the sequence of protocols—the route—that
will handle the message when it is processed by the composition of protocols.
In other words the message’s sequence of headers drives its processing in the
composition. The event model prevents us from exploiting this property. Thus
instead of having events at the core of our interaction scheme we should have
headers. This is the essence of our proposal.

The essential ingredients of a header-driven model are headers and messages.
As before, a message is a list of headers. But headers are named containers
carrying statically typed data. To construct a header, its name must be defined.
A header handler defines a header name and associates a computation to the
deconstruction of every message that starts with this name. Message dispatch is
the interaction scheme, it deconstructs messages. When a message is dispatched,
the unique header handler corresponding to the head of the message is invoked
with the head’s data and the tail of the message as arguments. Compared to
the event model we can say that (1) header handlers replace event handlers, (2)
message dispatch replaces event triggering, and (3) the event binding mechanism
is dropped.

The resulting header-driven model has several advantages. It solves the com-
position problems of the event model, it simplifies inter-protocol dependencies
and hence the task of composing protocols, and it concisely handles peer inter-
actions and explicitly reveals their logical structure (no binding indirections).
Moreover, the header-driven model provides better static typing, which avoids
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runtime type errors and erratic behaviours that can occur in the event model.
Our approach was validated by a proof-of-concept implementation [11].

Automatic Concurrency Control for Protocol Stacks. Implementing
atomic processing of concurrent messages in a protocol stack is notoriously hard
and error-prone. Atomic transactions can greatly help programming. Every fresh
message is processed by a new transaction with the guarantee of isolation—a
property known from standard ACID (Atomicity, Concurrency, Isolation and
Durability) transactions1. The usual implementation of atomic transactions de-
pends however on rollback-recovery—if some operations of concurrent transac-
tions conflict with respect to isolation, then the transactions are started again.
Rolling back some of the input/output (I/O) effects is problematic, e.g. re-
sending messages that have been output to the network may confuse the dis-
tributed protocol. To evade this problem, we have designed rollback-free concur-
rency control algorithms for protocol frameworks [28]. The algorithms implement
runtime versioning and scheduling of transaction operations.

The basic idea of versioning is the following. Tickets (or versions) are assigned
to isolation-only transactions (called tasks) that allow them to acquire verlocks,
i.e., versioning locks protecting isolation-critical operations. On task creation, a
task obtains incremented version values for all verlocks that it wants. The task
can acquire a verlock only when the verlock’s counter has reached the version
count. The counters are monotonically increasing counters, one per verlock. The
counter is increased when the verlock has been released by a given task for the
last time.

In [28], we described three variants of versioning algorithms (Basic, Bound,
and Route), which differ in the precision of detecting when verlocks are actually
requested for the last time. To detect this moment, upon a task creation, the
algorithms require some data about the task to be passed as the argument.
Different variants of the algorithms can be characterized as follows:

– Basic: it gives an almost serial execution, however only verlock names must
be known a priori (they can be inferred statically, as described in Sec-
tion 2.3);

– Bound : it requires a least-upper-bound (supremum) on verlock access to be
known a priori ; in general, this variant allows for more parallelism than
Basic, but it performs like Basic if supremum cannot be reached;

– Route: it allows for even more parallelism than Bound, however it demands
a priori a complete tree of potential accesses to verlocks within scope of a
task, where a branch in the tree corresponds to a thread of execution.

The SAMOA Protocol Framework and Dynamic Update. We have
developed SAMOA, a novel protocol framework that improves over the exist-
ing protocol frameworks in two respects. Firstly, type-safe dynamic protocol
(re)binding guarantees that no runtime errors can happen due to protocol in-
teractions. Secondly, isolation-only, rollback-free transactions (or tasks) make it
1 This property is similar to atomicity in the programming language community.
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easier for programmers to encode concurrent protocols that may have irrevoca-
ble I/O effects; the implementation of tasks uses concurrency control algorithms
described above. An experimental implementation of SAMOA as a package in
Java is available [20]. Some of the key features of SAMOA are the possibil-
ity to load protocols on-the-fly and to dynamically bind and unbind protocols.
Based on these features, we have implemented efficient mechanisms for dynamic
protocol update. The problem of dynamic protocol update has been addressed
in [27]. Essentially, we must guarantee global service availability and correct-
ness while a distributed update operation takes place. To validate these ideas,
we have implemented the Adaptive Group Communication (AGC) middleware
in which protocols can be replaced dynamically. The AGC middleware uses the
Fortika group communication protocols that supports both the crash-stop and
crash-recovery models (see Sections 3 and 4.1).

2.3 Language Issues

The use of isolated tasks in our implementation of SAMOA in Java is not safe,
i.e., the programmer must carefully determine and declare certain data about
tasks for the concurrency control algorithms to work correctly. Below we describe
the design of a safe programming language that removes this drawback.

Another problem with the existing protocol frameworks that support concur-
rency (such as SAMOA and Cactus) is that it is not possible to reuse protocols
that contain any synchronization constructs, such as spawning a new task, with-
out inspecting the code of these protocols (since these constructs may need to
be removed in the new stack). To remove this drawback, we have proposed to
separate the synchronization code and the protocol code. In the end of this
subsection, we discuss the design of two languages for this separation. These
languages could become an integral part of any future protocol frameworks.

Language Design For Isolated Tasks with I/O Effects. To spawn a new
task, the SAMOA programmer uses a construct isolated R e, where e is a
concurrent, isolated task. In the simplest case (Basic versioning algorithm), ar-
gument R is just a list of service names that may be requested by the task e.
Unfortunately, a wrong argument R compromises safety (and therefore also cor-
rectness!). How could one make this construct safe for programmers? The idea
is to design a type system that can verify at compile time whether the argument
R is correct. A type system—implemented as part of the compilation tool—can
prove that any program execution preserves given properties expressed as types
(informally: “well typed programs can’t go wrong”).

In [26,25], we designed a typed language for expressing rollback-free transac-
tions (tasks) in modular protocols. It has a construct isolated R e to spawn
a new task e, where task expression e is executed by a new thread. Any return
result of this evaluation is ignored—the only visible outcome of task execution
are any data and I/O effects. Any threads spawn by e are part of the same task.
The concurrent execution of tasks satisfies the isolation property. The argument
R in isolated R e is a list of verlock names. A new verlock x can be created
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with newlock x : m in e, where m is an effect type of a single verlock. We
normally create a fresh verlock for each communication channel (I/O effects),
and each data structure (memory change effects). Verlocks can be shared by
concurrent tasks.

We can use verlocks in the expression sync e′ e. The expression has a se-
mantics that is roughly similar to synchronized in Java, i.e., expression e′ is
evaluated first and yields verlock x (of type m), which is then acquired when
possible. Expression e is then evaluated to some v. Finally, the verlock is re-
leased and v returned by the whole expression. There is, however, an important
difference. What is a locking strategy? Or, when exactly the verlock x is ac-
quired when executing the expression sync x e? Verlock x of type m is acquired
when two conditions are satisfied: (1) the effect m caused by e does not conflict
(with respect to isolation) with the effects of other concurrent tasks, and (2)
lock x is free (i.e., the standard locking principle applies). The second condi-
tion is required just to avoid races inside a task; it can be dropped if tasks are
single-threaded.

In [26,25], we have defined the iso-calculus, a typed call-by-value lambda calcu-
lus that is extended with threads, verlocks and tasks. It gives formal semantics to
the constructs described above. The iso-calculus has a type system that guaran-
tees that well-typed programs satisfy isolation. Programs that do not guarantee
isolation are rejected. Formally, the following type soundness theorem holds: if
expression e is typeable, then all terminating executions that evaluate (“com-
pute”) e to value v satisfy isolation. The type system essentially guarantees two
properties: (1) all operations that need to be isolated are protected by verlocks
(“no race conditions can happen”), and (2) all verlocks required by a task are
known before the task commences (“safe versioning”). It builds on Flanagan
and Abadi’s [10] type system for safe locking with singleton kinds. The formal
proof of the type soundness theorem for the iso-calculus appeared in [25].

Declarative Synchronization for Protocol Reuse. One of the promises of
modular protocol design is the reuse of protocol components in different protocol
stacks. However, in practice, protocol reuse is problematic. Concurrent compo-
nents within a stack implement a synchronization policy. Reusing selected com-
ponents in a different stack often requires to modify component code, so that it
implements a policy of the new stack. Unfortunately, this is a counterexample
to protocol modularity.

The above problem does not exist if we separate the synchronization and pro-
tocol code. Two approaches to such separation of concerns have been developed
within our project: (1) static [24], in which synchronization policy (that may
include isolation) is declared between components using concurrency combina-
tors, and (2) dynamic [23], in which synchronization policy is declared between
semantic rôles using abstract types. In [24], we defined a property, called com-
position safety, that informally means that any runtime execution of a protocol
can satisfy the synchronization policy declared using the language of concurreny
combinators. The main result of this work was to show that the property can be
verified statically, thus eliminating runtime errors due to wrong composition.
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3 Group Communication Stacks

Flexibility and modularity of a group communication middleware requires a pro-
tocol framework with the right features. However, this is not enough. Flexibility
and modularity requires also to identify the right components (or protocols).
In this section we first point out common features of the most representative
group communication stacks implemented in the past. Then we describe the
new architecture of our new Fortika group communication stack, and explain its
advantages. A more detailed discussion can be found in [16].

3.1 Traditional Group Communication Stacks

In any group communication stack, atomic broadcast is one of the most funda-
mental communication primitives provided.1 However, there is not one single
way to implement atomic broadcast. The architecture of traditional group com-
munication stacks is shown on Figure 2(a). Their main characteristics are the
following:

Failure Detection

Network

Application

Atomic Broadcast

Group Membership

(a)

Group Membership

Atomic Broadcast

Consensus

Failure Detection

Network

Application

(b)

Fig. 2. (a) Traditional group communication stack, and (b) new group communication
stack

Group membership and failure detection are strongly coupled: Failure detection
is a low level mechanism that provides information (possibly incorrect) about the
status crashed/alive of processes in a group (see Section 3.2). This information
can be inconsistent, in the sense that two processes p, q might have a different
perception of the processes in the group. On the contrary, the group membership
service provides a consistent view of the successive membership of the group (see
Section 4.1). In traditional architectures these two components are strongly cou-
pled: failure detection is a sub-component of the group membership component,
which acts as a failure detection for the rest of the system.
1 Atomic broadcast delivers messages to all processes of a group in the same global

order.
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Atomic broadcast algorithms rely on group membership: The traditional proto-
col stacks use atomic broadcast algorithms that require the help of the group
membership to avoid blocking in the case of the failure of some critical process.
Basically these algorithms operate in two modes, a failure-free mode and a fail-
ure mode. A notification of removal of a process from the group (e.g., due to a
failure suspicion) leads the protocol to switch to the failure mode.

The consensus abstraction is barely used: The traditional protocol stacks have
not recognized the important role of consensus (see [21]) for solving agreement
problems, e.g., group membership, atomic broadcast. These stacks have group
membership (and not consensus) as their most basic component.

3.2 Fortika: The New Group Communication Stack

The architecture of Fortika, our new group communication stack, is shown on
Figure 2(b). Fortika’s protocols can be composed using several protocol frame-
works: Samoa, Cactus or Appia. The main differences in Fortika’s architecture
compared with the traditional one are the following:

Group membership and failure detection are decoupled: The strong coupling be-
tween failure detection and group membership in the traditional stacks was mo-
tivated by the atomic broadcast algorithms (see Section 3.1). Decoupling group
membership from failure detection has the following advantage: failure suspicions
do not necessarily lead to the costly process exclusion operation.

Group membership relies on atomic broadcast and not the opposite: Atomic
broadcast can be solved by a sequence of instances of consensus (see [21]). Such
a solution does not rely on a group membership service, and works without
blocking if no more than half of the processes in the group crash.

Since the group membership component does not need to be below the atomic
broadcast component, it can be placed above. This means that group membership
can be implemented using atomic broadcast, which is quite natural, since the
group membership service must deliver totally ordered views.

A consensus component is part of the stack: Since consensus plays a basic role
in a group communication stack, it should appear as one of the bottom most
component. Note that the consensus component requires the service of an (un-
reliable) failure detection component.

3.3 Assessment of the New Architecture

The two main advantages of the new architecture are the following.

Less complex stack: With traditional stacks, ordering is solved in two places: (1)
within the group membership component for views, and (2) within the atomic
broadcast component for messages. This is clearly not optimal, and introduces
unnecessary complexity. The redundancy disappears in the new architecture.
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Higher responsiveness: The performance of group communication must not only
be measured in failure-free executions, but also in the case of failures. In the case
of failures an important factor is the time needed to detect the failure (i.e., the
crash of a process). The critical factor is thus the time-out of failure detectors.
However, reducing the time-outs increases the probability of false suspicions.
Decoupling failure suspicions from process exclusion has a big advantage: (1) a
small value can be chosen for failure suspicion and (2) a large value for process
exclusion. The factor that influences the performance of atomic broadcast is the
short time-out value, and a wrong failure suspicion costs here very little. On the
contrary, the exclusion of falsely suspected process has a high overhead, which
can be avoided by choosing a large time-out value for exclusions.

4 Specifications

We discuss now more formal aspects related to group communication. We first
address results related to the specification of group communication primitives.
Here, we report on two contributions that each advance the state of the art, one
by providing original specifications in the sparsely investigated territory of the
crash-recovery model, and the other by revisiting and revising on specifications
in the better investigated field of dynamic group communication. Finally, we
propose an improved specification style for specifications, taking the example
of unreliable failure detectors, to bring the respective mathematical definitions
closer to our formal reasoning techniques.

4.1 Advances on Specifications in Refined Computing Models

Various models have been considered for group communication, namely
static/dynamic groups, groups with benign/malicious faults, groups with crash-
stop/crash-recovery processes [21]. These models not only influence the im-
plementation of group communication, but also their specification. The model
mostly considered in the literature is the static/crash-stop model with benign
faults. Simple and widely adopted specifications for this model have been given
in [12]. However, the static/crash-stop model does not cover the needs of a lot of
applications. We discuss here group communication in the static crash-recovery
model and in the dynamic crash-stop model.

Group Communication in the Crash-Recovery Model. In the crash-stop
model processes do not have access to stable storage. In such a model a pro-
cess that crashes loses all its state: upon recovery it cannot be distinguished
from a newly starting process. The crash-stop model is attractive from an effi-
ciency point of view: no stable storage means no costly logging operation, i.e.,
more efficient algorithms. However, the crash-stop model has also limitations.
Algorithms developed in this model do not tolerate the crash of all processes.
Moreover, access to stable storage is natural for many applications. This gives a
strong motivation to consider group communication in the crash-recovery model.
We consider here atomic broadcast.
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Atomic broadcast in the crash-recovery model has been considered in [19].
However, as we explain in [15], the specification fails to capture the fundamental
difference between the crash-stop and the crash-recovery model. In the crash-
stop model there is no need to distinguish (1) the state of the application from
(2) the state of the group communication infrastructure (if processes do not re-
cover after a crash, the distinction is irrelevant). Indeed, in this case the two
states are always trivially synchronized. This is no more the case when processes
do recover. In this case the distinction—for each process—between application
state and group communication state, requires to synchronize the checkpointing
of these two parts of a process state. For this purpose we introduce a commit
primitive. Thus atomic broadcast is defined in terms of the traditional abcast
primitive (used by the application to broadcast a message), the traditional ade-
liver primitive (by which the group communication infrastructure provides a
message to the application) and the new commit primitive. When executed by
the application, commit tells the following to the group communication infras-
tructure: the application state, up to the most recent event, is saved on stable
state. Implicitly, this leads the commit primitive to play two roles: (i) veto (e.g.,
no right to adeliver a message that was already adelivered before the commit),
and (ii) obligation (e.g., for another process to adeliver a message).

Rather than giving here a formal specification of atomic broadcast in terms
of abcast, adeliver and commit, we give the intuition of the specification on two
examples.

(i) Veto role of commit. Consider the following two sequences of events on
process p:
• Scenario 1: adeliverp(m); crashp; recoveryp; adeliverp(m);
• Scenario 2: adeliverp(m); commitp; crashp; recoveryp; adeliverp(m);
Scenario 1 is ok, but not Scenario 2. In Scenario 2, commit marks the point
at which p’s execution will resume after a crash. So m cannot be adelivered a
second time after recovery. The absence of commit in the first scenario allows
m to be adelivered again after p’s recovery: the crash leads p to “forget” the
adelivery of m.

(ii) Obligation role of commit. Consider the following two sequences of events
on process p:
• Scenario 1: adeliverp(m); crashp; recoverp;
• Scenario 2: adeliverp(m); commitp; crashp; recoverp;
In Scenario 1, since p crashed after having adelivered m (i.e., the adelivery of
m is “forgotten”), no other process is obliged to adeliver m. In Scenario 2, the
execution of commit by p after the adelivery of m (i.e., upon recovery p “remem-
bers” having adelivered m), forces other processes q to adeliver m. Note that
the obligation is only on so-called good processes, i.e., processes that never crash
or processes that crash only a finite number of times and always recover after a
crash [5].

These two examples show that the execution of commit by process p makes
all preceding events on p become “permanent”. Without commit, events are
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volatile. The specification of atomic broadcast in the crash-recovery model is
based on this distinction. The details can be found in [15]. A prototype has been
implemented in our Fortika group communication middleware (see Section 3).

Dynamic Group Communication. While the specification of group commu-
nication in the crash-recovery model has been addressed only by few authors, the
specification of dynamic group communication has received a lot of attention [9].
Nevertheless these specifications are not really satisfactory. The main problem is
that the specifications for dynamic groups are not close to the specifications for
static groups. Specifically, if we consider the specifications for dynamic groups
in the special case of a static group, we do not obtain the widely adopted static
specifications [12].

In the existing group communication specifications for dynamic groups, the
key component is the group membership service, which is responsible for adding
and removing processes to/from a group. Consider some group g. The successive
membership of g is modelled using the notion of view : the requirement on the
group membership is that it delivers the successive views of g to its members
in the same order. For example if v0(g) = {p, q, r} is the initial view of g,
and then the successive views are v1(g) = {p, q} and v2(g) = {p, q, s}, then all
processes see the membership changes in the same order. In the existing group
communication specifications for dynamic groups, the specification of the group
communication service is used to specify the basic communication primitive,
called view synchronous broadcast or simply vscast. Vscast basically requires that
messages that are vscast are ordered with respect to view changes [9]. Finally,
atomic broadcast is defined as vscast with an additional order property.

This might look similar to the specification of atomic broadcast with static
groups, where atomic broadcast is defined as reliable broadcast (or rbcast) with
an additional order property [21]. Unfortunately, when comparing the specifi-
cations of (i) rbcast with static groups and (ii) vscast with dynamic groups,
it is hard to see their similarities. However, it is possible to specify dynamic
group communication such that the dynamic specifications reduce to the stan-
dard static specifications when the group membership does not change.

With static groups, the specification distinguishes correct processes (that do
not crash) and faulty processes (that crash). The obligations (to deliver mes-
sages) are only on correct processes. With dynamic groups, the situation is
slightly different. Consider a group g. The obligations (to deliver messages) must
only be on correct processes that are members of g. If some process crashes or
leaves g, its obligation with respect to g disappear. Symmetrically, if a process
joins g, it starts to have obligations with respect to g. This can be expressed by
the notion of g-correct process, derived from the notion of v-correct process [22].
Informally, process p is v-correct in some view v if p installs view v and does not
crash while its view is v; process p is g-correct if it is correct in the first view of
g it belongs to, and in all successive views of g.

With the notion of v-correct and g-correct process we can define dynamic
reliable broadcast almost as (static) reliable broadcast. Reliable broadcast is
defined by validity, uniform agreement and uniform integrity (for a definition
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of these properties, see [21]). Dynamic reliable broadcast can be defined by (i)
the same uniform integrity property, (ii) slightly modified validity and uniform
agreement properties (correct must be replaced with g-correct or v-correct), and
(iii) a new uniform same view delivery property [22]:

– Uniform same view delivery: if two processes p and q deliver message m in
view vp (for p) and vq (for q), then vp = vq.

This specification of dynamic reliable broadcast is a generalization of static
reliable broadcast: if the group is static, dynamic reliable broadcast reduces to
static reliable broadcast.

Dynamic atomic broadcast can then be defined as dynamic reliable broadcast
with an additional total order property, which only slightly differs from the
static total order property. Details can be found in [22], which also shows that
the group membership specification can be trivially obtained from the dynamic
atomic broadcast specification.

4.2 Proof-Oriented Specification Style for Failure Detectors

The concept of unreliable failure detectors was introduced by Chandra and
Toueg [8] as a means to add weak forms of synchrony into asynchronous systems,
mostly of the crash-stop model mentioned in the previous Section 4.1. Various
kinds of such failure detectors, as we also use in the group communication ar-
chitecture of Figure 2, have been identified as each being the weakest to solve
some specific distributed programming problem [7]. Here, we provide—for the
purpose of specification—a fresh look at the concept of failure detectors from
the point of view of programming languages, using the formal tool of operational
semantics, with the goal of bringing it closer to our formal reasoning techniques
(see Section 5.1).

According to Chandra and Toueg [8], at any given time t ∈ T, the failure
detector (FD) of some process outputs a list of (names of) processes that it cur-
rently suspects to have crashed. As mentioned in Section 3, FDs are unreliable:
they may make mistakes, they may disagree among themselves, and they may
even change their mind indefinitely often.

In Table 1, we propose a uniform specification scheme—based on a two-layered
transition system—to describe the operational semantics of process networks in
the context of failure detectors. One layer describes—by separate sets of rules—
both the transitions N −→ N ′ of process networks (here, left unspecified to
keep the setting parametric, but should be derived from the description of the
algorithm) and the transitions Γ −→ Γ ′ of the network’s environment (keeping
track of crashes and providing failure detection, as indicated by rule (env)). A
process i in a network carries out essentially two kinds of transitions N −→ N ′,
distinguished by whether it requires the suspicion of some process j by process i,
or not. Formally, we use labels suspectj@i and τ@i to indicate these two kinds.
Another layer, with the rules (tau) and (suspect), deals exclusively with the
compatibility of network and environment transitions, conveniently focusing on
the environment conditions for the two kinds of transitions of process networks.
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Table 1. Uniform “Abstract” Operational Semantics Scheme

(env)
“ failure detection events happens in the environment ”

Γ −→ Γ ′

(tau)
Γ −→ Γ ′ N

τ@i−−−−→ N ′ “ i not crashed in Γ ”
Γ � N −→ Γ ′ � N ′

(suspect)

Γ −→ Γ ′ N
suspectj@i−−−−−−−−−→ N ′

“ i not crashed in Γ ” “ j may be suspected by i in Γ ”

Γ � N −→ Γ ′ � N ′

For example, the boxed condition exploits the failure detector information that
in our scheme is to be provided via the environment component Γ .

Runs are sequences of system transitions, as derivable by operational seman-
tics rules. A process is correct in a given run, if it does not crash in this run.

Chandra and Toueg specified FDs by means of failure patterns F : T → 2P

and failure detector histories H : T×P → 2P. We refer to the respective runs as
T-runs, since time T lies at the core of the statically fixed components F and H .
This (F, H)-based model is easily reformulated in our two-layered scheme [17].

Probably the main novelty of Chandra and Toueg’s paper [8] was the defini-
tion and study of a number of FDs that only differ in their degree of reliability,
as expressed by a combination of safety and liveness properties. These are formu-
lated in terms of permitted and enforced suspicions according to the respective
failures reported in F and the failure detection recorded in H :

completeness addresses crashed processes that must be suspected
by (the FDs of) “complete” processes.

accuracy addresses correct processes that must not be suspected
by (the FDs of) “accurate” processes.

These properties are implicitly quantified for all possible runs. The words “com-
plete” and “accurate” processes indicate some flexibility in the definition of the
set of processes that the property shall be imposed on. Many instantiations of
completeness and accuracy have been proposed.

Inspired by the FD called Ω [7], we observed that the common principle
behind the (F, H)-based notions of accuracy is that of “justified trust”. The key
role is played by correct processes—those that, according to F , were immortal
in the given run—that are trusted forever (according to H) in the given run,
either eventually or already from the very beginning. In a dynamic operational
semantics scenario, as opposed to the static view of (F, H), we rather model the
moment when such a process becomes forever trusted. Dynamically, however, we
must also ensure this process not to crash afterwards—it must become immortal
at this very moment. We call such a process trusted-immortal.
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Table 2. Operational Semantics Scheme with Reliable Information

(D-env)
(TI ∪ TI) ∩ C = ∅ (C ∪ C) ∩ TI = ∅ |C ∪ C| ≤ maxfail(n)

(TI, C) −→ (TI 	 TI, C 	 C)

(D-tau)
(TI,C) = Γ −→ Γ ′ N

τ@i−−−−→ N ′ i 
∈ C

Γ � N −→ Γ ′ � N ′

(X -suspect)
(TI,C) = Γ −→ Γ ′ N

suspectj@i−−−−−−−−−→ N ′ i 
∈ C conditionX (Γ, j)

Γ � N −→ Γ ′ � N ′

Note, here, that our treatment of trusted immortals is to be seen in the very
same way as Chandra and Toueg’s treatment of (F, H): the ultimate goal is to
provide some mathematical device to specify (not: implement) in retrospective
view “what may have happened” in an acceptable run according to FD-sensitive
information. They fix this information statically, while we allow it to develop
dynamically and, by that, we can simplify the style of specification.

With this idea, we proposed a new model [17] capable to represent all of the
FDs of [8] solely based on information that is not fixed before a run starts, but is
dynamically appearing along its way. It turns out that two kinds of information
suffice: (1) which processes have crashed, and (2) which processes have become
trusted-immortal. Both kinds of information may occur at any moment in time,
but they remain irrevocable in any continuation of the current run.

In Table 2, environments Γ = (TI,C) record sets TI of trusted-immortal pro-
cesses and sets C of crashed processes. Rule (D-env) precisely models their non-
deterministic appearance in full generality: in a single step, an environment may
be increased by further trusted-immortal processes (∈TI) or crashed processes
(∈C). Rule (D-tau) permits actions τ@i if i �∈ C. Rule (X -suspect) requires in
addition that the suspected process j is permitted to be suspected by Γ , depends
on the FD accuracy that we intend to model.

Our D-representations of FDs are proved extensionally equivalent with the
T-representations proposed in [8] via mutual “inclusion” of their sets of runs.
Essentially, this works by looking for a mutual simulation of T-runs and D-runs
sharing the same network run (by projecting onto the N -component). In general,
proofs using the new instead of the old representation are considerably simpler.

5 Verification and Testing

Verification and testing are complementary, but equally important aspects. Up
to now, in our new architecture, we have focused on two aspects: the formal
verification of the consensus component, based on an operational semantics, and
the experimental validation of the Fortika group communication stack, through
the technique of fault injection. While the formal verification seeks to prove
that a consensus component does precisely what it should, the experimental
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validation seeks to “stress-test” the robustness of a component by confronting
with environment conditions that go beyond what it should be able to cope with.

5.1 Formal Verification of the Consensus Component

As pointed out in Section 3.2, consensus is a fundamental component that plays
a basic role in the new architecture. The properties it provides to the above
components are:

1. Validity: If a process decides a value v, then v was proposed by some process.
2. Agreement : No two correct processes decide differently.
3. Termination: Every correct process (eventually) decides some value.

Any correct implementation of the consensus component must guarantee the
respect of these three properties. Since consensus is one of the basic building
blocks of the new group communication stack (see Figure 2(b)), the correctness of
its implementation is fundamental for the stability of the whole new architecture.

Many algorithms are available to implement the consensus component. This
variety is due to the existence of different models (of communication, of fail-
ure, etc) and the necessity of taking advantage of the properties provided by
underlying components. A common trait of many of these algorithms is that
they are described in pseudo code—i.e., with neither formal syntax nor formal
semantics—and the proofs of their correctness are given informally, with brief
argumentations expressed in natural language. Thus, the pseudo code sometimes
leaves space to interpretation and the correctness proofs sometimes require the
readers to actually prove themselves substantial parts or subresults for which
only informal arguments were given. To convincingly argue for the stability and
correctness of the whole architecture, we consider it vital to rely on a consensus
implementation that has been proved correct formally.

Given the model in which our architecture was placed (reliable communica-
tion, crash failure) and given the presence of failure detectors, the algorithm
that we chose to implement the consensus component was the one proposed by
Chandra and Toueg in [8]. This algorithm makes use of reliable broadcast and
failure detector abstractions. It also assumes a majority of correct processes.

Before explaining the algorithm, it is worth here to briefly clarify the meaning
of the terms Quasi-reliable Point-to-Point and Reliable Broadcast abstractions
that we will use in our description. Both Quasi-reliable Point-to-Point and Re-
liable Broadcast are components that lie in what we call Network layer (Figure
2). As their name suggest, they are (quasi) reliable in that they guarantee the re-
ception and non-corruption of messages sent by correct processes. Quasi-reliable
Point-to-Point takes care of messages exchanged between two processes, while
Reliable Broadcast distributes messages to all the correct processes in a group.
Since the implementation of these two components does not influence the consen-
sus algorithm, in our study we represent them as abstractions providing specific
features and properties. Now everything is in place to describe the Chandra-
Toueg consensus algorithm.

The Chandra-Toueg algorithm (Figure 3) proceeds in rounds and is based
on the rotating coordinator paradigm: for each round number, a single process
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Fig. 3. A round in the Chandra-Toueg consensus algorithm

is predetermined to play a coordinator role, while all other processes in this
round play the role of participants. Each of the n processes holds a local round
counter and, at any time, knows who the coordinator of its current round is. For
every round, each participant sends its current value to the coordinator of this
round. The coordinator chooses one of the proposals it has received and sends
it to all participants. These, in turn, are supposed to acknowledge the receipt.
If the coordinator receives a majority of positive acknowledgments, it reliably
broadcasts the value to all participants: this is going to be the decision. If a
participant is not able to receive the coordinator proposal while waiting for it,
and if the underlying failure detector component allows, then this participant
may instead suspect the coordinator to have crashed. In this case, the participant
sends a negative acknowledgement and moves to the next round, sending the very
same value of the previous round to the new coordinator.

Correctness of the algorithm means that its resulting runs—more precisely:
all runs satisfying the requirements on the underlying communication and coor-
dination services—satisfy the three Consensus properties. In [8], Chandra and
Toueg also provide sketches of proofs (written in natural language) of Validity,
Agreement and Termination.

Such proofs make heavy reference to the concept of round. However, there is
nothing like the global round number of a reachable global state in a system run.
A round is only a local concept, and no relation between runs and asynchronous
rounds is ever properly clarified. We consider this as problematic.

Moreover, there are two main reasons that make us argue against the approach
of using only pseudo code. The first one is that the algorithm is not sufficiently
complete. In fact, it describes only local behavior of processes and does not
include any representation of the network. Also, the involved data structures are
underspecified. In particular, there is almost no description of how and where the
messages are buffered when waiting to be sent and once they have been received.
The second reason is that, due to the absence of a precise formal semantics in the
pseudo code, the algorithm description does not offer an unambiguous derivation
of runs from the code. This is crucial because the specification of correctness
properties is exclusively based on the notion of system runs. More precisely, it
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is based on runs of the full distributed system, including the point-to-point and
broadcast messages that are buffered within the network, as well as the behavior
of the failure detector mechanism.

For these reasons, the proofs would profit much from the introduction of global
knowledge on:

– system states and their past, which could provide us with precise information
about which processes have been in which round in the past and what they
precisely did when they were there;

– broadcast messages, which could provide us with precise information about
what values are the chosen ones and about the processes that already know
such values and the ones that still ignore them;

– point-to-point messages, which could provide us with precise information
about what messages are ready to be sent but would still be lost in the case
of a crash of the sender, what messages are about to be received and cannot
be lost any longer should their original sender crash, what messages have
already been received thus probably influencing the following behavior of
their receiver.

Thus, in our work [18], we provide a mathematical structure that describes
the global idealized run-time system comprising all processes and the network.
Moreover, in order to simplify the proofs, our structure also plays the role of a
system history, never forgetting any information during the computation.

Formally, the consensus algorithm is specified in terms of inference rules that
define computation steps as transitions between configurations of the form:

some condition
Γ � 〈B,Q,S 〉 −→ Γ ′ � 〈B′,Q′,S′ 〉

Γ is the environment component, presented in Section 4.2, that records sets TI
of trusted-immortal processes and sets C of crashed processes. B contains the
(histories of) messages sent during the execution of the algorithm through the
Reliable Broadcast service. Q contains the (histories of) messages sent during
the execution of the algorithm through the Quasi-reliable Point-to-Point service.
S models the state of the n processes. We can access the current state of each
single process using its identifier, i.e. S(i) is the current state of process i.

The condition for the execution of the rule is usually a condition on the
state of a particular process and on the messages that such process has received
up to that point. For example, “process i should be in a waiting state and
the message containing the coordinator proposal should not figure among the
messages received by i”. The condition can also be extended with requirements
on the environment component. For example, “the coordinator of round r should
not be in the TI set”. The execution of the rule modifies the contents of (some of)
the structures. For example, the state of process i changes and a new message
is sent, or broadcast.

As mentioned also in Section 4.2, runs are considered as sequences of system
transitions derivable by operational semantics rules. In this way we can generate
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all, and only, the runs that would be possible if we were executing the algorithm
in reality. We can study such runs examining what happens step by step and
verifying claims on the overall execution. The proofs of the properties of consen-
sus are therefore made by showing that all the sequences of system transitions
derivable by the given operational semantics rules, that represent all the possible
runs generated by the algorithm, satisfy Validity, Agreement and Termination.

Summing up, in order to counter the observed incompleteness of the algorithm
description in pseudo-code format, we have developed appropriate description
techniques that incorporate the lacking information; also, in order to counter
the observed ambiguity due to the lack of precise semantics of the pseudo-code
with respect to the underlying system model, we have built the algorithm upon
a formal description. We have then defined runs as sequential executions of the
semantics rules and have kept track of the changes induced by the application of
such rules in the B, Q and S structures. With this apparatus, we have eventually
all the formal means for reasoning on rounds, as well as on time and on messages
sent/in-transit/received, thus the proofs of correctness of the algorithm are now
much more detailed, rigorous and credible.

5.2 Testing the Robustness of Fortika

Fault injection is a well-known technique to assess a system’s resilience to error
conditions. In a joint work with the University of Illinois [13], we set up an error-
injection testbed in order to study how Fortika (see Section 3.2) reacts to data
corruption. We carried out several error injection campaigns, which performed
thousands of error injections, consisting in flipping a random bit in main mem-
ory or in a network message. It is important to point out that Fortika has been
designed with a benign-fault model in mind, that is, only crash faults were con-
sidered (see Section 4.1). The memory and network corruption errors addressed
in these experiments go far beyond the model’s assumptions. Thus, our goals
were not to find out whether Fortika is resilient to these faults, but rather to
analize (and later minimize) any unacceptable behavior of the system.

Memory Injections. We performed a preliminary injection campaign for each
memory segment: code (errors directly injected into the executed code), stack
(local variables altered), and heap (allocated variables dynamically corrupted).

The most important result from these experiments was the high frequency of
partial process crashes. In many experiments (26% for stack injections) the sys-
tem completely hung. Further analysis showed that multithreading was behind
such system-wide hangs: quite often, an error injection threw a Java runtime
exception; the Java Virtual Machine stopped the offending thread, but let the
others continue execution. We call this partial crash: some threads were working
but some were not (e.g., the injected process could be sending heartbeats but
omitting other messages). We enhanced the design of Fortika to cope with mem-
ory corruption and avoid partial crashes (as well as other problems, see details
in [13]). Table 3 summarizes the results of memory injections for the improved
Fortika design. This table shows the low rate of executions with unacceptable



192 D. Bünzli et al.

behavior (between 0% and 6%) with respect to total manifested errors, which are
defined as errors that visibly affect the system behavior (though not necessarily
causing an incorrect execution).

Table 3. Memory injection results after im-
proving Fortika

Memory Injected Manifested Unacceptable∗

Segment Errors Errors Behavior
Heap 15177 1221 0
Text

libjava.so 1000 616 36 (5.8%)
libjvm.so 910 269 7 (2.6%)
libnet.so 755 215 2 (1%)

Stack 5509 1825 109 (6.0%)

Table 4. Network injection re-
sults after improving Fortika

Total injected errors 1062
Manifested errors∗ 625
Message not detected

a) No propagation 76 (12%)
b) Propagation 6 ( 1%)

∗ Percentages with respect to manifested errors are shown in parentheses.

Network Injections. In the network injection campaigns, an incoming message
is altered (after checksum verification), thus resulting in an invalid input to
the process. The goal is to analyze how far can an incorrect message get into
the receiving process, and how badly it can affect the system. Most Fortika
messages contain marshalled Java objects, thus, the desirable behavior is that
Java unmarshalling routines detect and block incorrect messages.

A preliminary injection campaign evidenced a fairly high rate of incorrectly
unmarshalled messages: up to 25% for certain messages types. In these experi-
ments, the unmarshalling routines were unable to detect the corrupted message
and allocated incorrect objects in memory. Further analysis showed that compat-
ibility between different versions of the same Java class, a core feature of standard
Java serialization, seriously harms robustness against corrupted messages. In the
same way as with memory injections, we revised the design of Fortika in order to
better react to incorrectly unmarshalled messages. The injection results for the
new design are shown in Table 4, where we can see that only 13% of corrupted
messages are not detected during unmarshalling, and sneack into the receiving
process. Even in those cases, we see that the error seldom propagates to other
processes (1% of all manifested errors).

6 Conclusion

We started from the goal to improve the state of the art of group communi-
cation by having groups with complementary scientific backgrounds—possibly
characterized as distributed computing, programming languages and concur-
rency theory—join their forces. By now, we have already managed to achieve a
number of interesting individual results that witness the potential for successful
collaboration. Although much more work remains to be done, we consider our
project as a promising first concrete step towards formally defined and verified
implementations of flexibly reusable group communication middleware.
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vs. Cactus: Comparing protocol composition frameworks. In 22nd Symposium on
Reliable Distributed Systems. Florence, Italy, October 2003.
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16. Sergio Mena, André Schiper, and Pawe�l T. Wojciechowski. A Step Towards a New
Generation of Group Communication Systems. In Markus Endler and Douglas
Schmidt, editors, Proceedings of Middleware 2003: The 4th ACM/IFIP/USENIX
International Middleware Conference (Rio de Janeiro, Brazil), volume 2672 of
LNCS, pages 414–432. Springer, June 2003.

17. Uwe Nestmann and Rachele Fuzzati. Unreliable failure detectors via operational
semantics. In Vijay A. Saraswat, editor, Proceedings of ASIAN 2003, volume 2896
of LNCS, pages 54–71. Springer, December 2003.

18. Uwe Nestmann, Rachele Fuzzati, and Massimo Merro. Modeling consensus in a
process calculus. In Roberto Amadio and Denis Lugiez, editors, Proceedings of
CONCUR 2003, volume 2761 of LNCS, pages 399–414. Springer, August 2003.

19. L. Rodrigues and M. Raynal. Atomic Broadcast in Asynchronous Crash-Recovery
Distributed Systems and Its Use in Quorum-Based Replication. IEEE Transactions
on Knowledge and Data Engineering, 15(5):1205–1217, September 2003.

20. The SAMOA Protocol Framework. http://lsrwww.epfl.ch/samoa.
21. A. Schiper. Dependable Systems. This book, Part I, Chapter 2.



194 D. Bünzli et al.

22. A. Schiper. Dynamic Group Communication. ACM Distributed Computing,
18(5):359–374, April 2006.

23. Vlad Tanasescu and Pawe�l T. Wojciechowski. Role-based declarative synchro-
nization for reconfigurable systems. In Manuel Hermenegildo and Daniel Cabeza,
editors, Proceedings of PADL 2005: The 7th International Symposium on Practical
Aspects of Declarative Languages (Long Beach, CA, USA), volume 3350 of LNCS,
pages 52–66. Springer, January 2005.

24. Pawe�l T. Wojciechowski. Concurrency combinators for declarative synchronization.
In Wei-Ngan Chin, editor, Proceedings of APLAS 2004: The 2nd Asian Symposium
on Programming Languages and Systems (Taipei, Taiwan), volume 3302 of LNCS,
pages 163–178. Springer, November 2004.

25. Pawe�l T. Wojciechowski. Isolation-only transactions by typing and versioning.
Technical Report IC-2004-104, School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL), December 2004. 47pp.

26. Pawe�l T. Wojciechowski. Isolation-only transactions by typing and versioning. In
Proceedings of PPDP ’05: The 7th ACM-SIGPLAN International Symposium on
Principles and Practice of Declarative Programming (Lisboa, Portugal), July 2005.

27. Pawe�l T. Wojciechowski and Olivier Rütti. On correctness of dynamic protocol
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Abstract. Dynamic Parallel Schedules (DPS) is a flow graph based
framework for developing parallel applications on clusters of worksta-
tions. The DPS flow graph execution model enables automatic pipelined
parallel execution of applications. DPS supports graceful degradation of
parallel applications in case of node failures. The fault-tolerance mech-
anism relies on a set of backup threads stored in the volatile storage of
alternate nodes that are kept up to date by both duplicating transmit-
ted data objects and performing periodical checkpointing. The current
state of a failed node can be reconstructed on its backup threads by
re-executing the application since the last checkpoint. A valid execu-
tion order is automatically deduced from the flow graph. The addition
of fault-tolerance to a DPS application requires only minor changes to
the application’s source code. The present contribution focuses on the
development of fault-tolerant parallel applications with DPS from a pro-
grammer’s perspective.

1 Introduction and Related Work

Clusters of commodity workstations are rapidly growing in size and complexity as
computation power requirements increase. The large number of computing nodes
incorporated within a cluster dramatically increases the likelihood of node fail-
ures during program executions. Therefore, ongoing research focuses on graceful
degradation and the continuation of program execution despite individual node
failures.

In the context of message-passing systems, two major classes of recovery
schemes have been proposed: checkpoint-based and message log-based recovery
[8].

Checkpoint based approaches store the current state of computation to sta-
ble storage. Coordinated checkpointing on all participating nodes [16] may be
achieved by stopping in an ordered manner all computations and communi-
cations, and performing a two-phase commit in order to create a consistent
distributed checkpoint. Checkpointing can also be performed independently on
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all participating nodes (uncoordinated checkpointing). This removes the perfor-
mance bottlenecks induced by the global synchronization required for coordi-
nated checkpoints and allows checkpointing at convenient times, for example
when the data size associated with a checkpoint is very small. Several check-
points need to be stored on each node, and a consistent state from which to
restart has to be found when a failure occurs [4]. In unfavorable situations, the
recovery can lead to the domino effect, where no consistent checkpoint other than
the initial state can be found. In order to eliminate the domino effect, additional
constraints on checkpointing sequences need to be introduced, for example based
on the applications’ communication patterns [17].

Message logging approaches store in addition to checkpoints all the messages
flowing through the system. The logged messages allow bringing a node to any
given state by re-executing its application code with the corresponding sequence
of logged input messages. Three types of message logging are usually considered:
pessimistic, optimistic and causal. Pessimistic logging logs every received mes-
sage to stable storage before processing it. This ensures that the log is always
up to date, but incurs a performance penalty due to the blocking logging opera-
tion. The penalty can be reduced by using specific storage hardware, or by using
sender-based message logging [13][5]. Optimistic logging begins processing mes-
sages without waiting for a successful write to stable storage [15]. The overhead
of pessimistic logging is removed, but several messages might be lost in case of
failures. When the system is restarted it must roll back to a previous consistent
state on all nodes. Finally, causal logging also provides low overhead and lim-
its the backtracking that has to be performed during recovery. It does however
require the construction of an antecedence graph for messages, and requires a
rather complex recovery scheme [9].

These mechanisms make no assumptions about the internal structure of the
applications other than the use of message passing for communications between
processes. They are thus very well suited for applications written with general-
purpose message passing libraries such as MPI [7]. When parallel applications are
described using high-level approaches, additional information about the struc-
ture of the application is available. For example, task graphs [6] or Calypso [2]
make use of such information for recovering and resuming computation after a
failure. In order to keep the fault-tolerance mechanism efficient, the application
developer often needs to provide specific hints or to use certain constructs within
the application. These modifications are required for example in order to allow
an application to be restarted from a stored checkpoint.

Fault-tolerance schemes also vary in the assumptions they make about the
number and nature of failures that can be recovered. Placing additional limita-
tions on the recoverable cases may enable significant optimizations when com-
pared to the general case. For example, if the system has never more than one
failure at a time, stable storage can be replaced with transfers to neighboring
nodes [14]. Such a scheme has the advantage of allowing the application to re-
cover without having to fetch data from the stable storage of the failed node.
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Dynamic Parallel Schedules (DPS) is a high-level framework for developing
parallel applications [10]. The DPS framework supports fault-tolerance using a
combined message logging and checkpointing approach [11]. The fault-tolerance
mechanism uses the parallel application’s structure exposed in the application’s
high-level description in order to hide most of the complexity of fault-tolerance
from the application developer. However, the support for fault-tolerance is not
fully transparent; the developer needs to take some specific requirements into
account. In the present paper, we describe the implications of developing fault-
tolerant applications from a developer’s perspective.

2 The Dynamic Parallel Schedules Framework

DPS applications are defined as directed acyclic graphs of operations. The fun-
damental types of operations are leaf, split, merge and stream operations. The
inputs and outputs of the operations are strongly typed data objects. Figure 1
illustrates the flow graph of a simple parallel application, describing the asyn-
chronous flow of data between operations.

 ProcessData Split Merge 

Subtask 
Description 

Task
Description Subtask 

Result 

Task 
Result 

Subtask 
Description 

Subtask
Description 

Subtask
Result 

Subtask
Result 

Fig. 1. Flow graph describing data distribution (split), parallel processing, and collec-
tion of results (merge)

The split operations are used to divide the incoming data objects into smaller
objects representing subtasks. These subtasks are subsequently sent to the next
operations specified by the flow graph (e.g. ProcessData). The leaf operations
process the incoming data objects, and produce one output data object for each
input data object. The merge operations are used to collect the results into a
single large output object. Once all the results corresponding to the data ob-
jects originally sent by a split operation have been collected, the larger resulting
data object is sent out. Successive data objects arriving at the entry of a split
operation yield successive new instances of the split-merge operation pair.

The stream operations combine a merge operation with a subsequent split op-
eration. Instead of waiting for the merge operation to receive all its data objects
before allowing the subsequent split operation to send new data objects, the
stream operation can stream out new data objects based on groups of incoming
data objects. Stream operations allow programmers to finely tune their pro-
cessing pipeline and therefore to ensure a maximal utilization of the underlying
hardware.



198 S. Gerlach, B. Schaeli, and R.D. Hersch

All operations, including split and merge operations are extensible constructs
where the developer provides his own code to control how processing requests or
data are distributed, and how processed sub-results are merged into one result.
The data objects circulating in the flow graph may contain any combination of
simple types or complex types such as arrays or lists. The following source code
shows a typical implementation for a split operation within DPS, where a task
is split into smaller parts.

class Split : public dps::SplitOperation
<SplitInDataObject, SplitOutDataObject> // Data object types

{
IDENTIFY(Split)

public:
// This method is called when the input data object is received
void execute(SplitInDataObject *in)
{
// Split task into NB_PARTS small parts
for(Int32 splitIndex=0;splitIndex<NB_PARTS;splitIndex++)
{
SplitOutDataObject *sot=new SplitOutDataObject();

// Fill the output data object with meaningful data

postDataObject(sot);
}

}
};

Other operations are implemented by deriving them from other base classes
depending on their functionality, such as dps::LeafOperation or dps:: Merge-
Operation.

Operations within a flow graph are carried out within threads grouped in
thread collections. Figure 2 illustrates the distribution of flow graph elements
into thread collections for a simple compute farm application. Two thread col-
lections are created. The first, MasterThread, handles the global split and merge
operations, and contains only a single thread. The second, WorkerThreads, han-
dles the parallel computation, and contains one thread for each compute node.

A DPS thread is a logical construct representing an execution environment for
a set of operations. In data parallel applications, data is stored within threads
that are distributed across the available compute nodes. Threads are imple-
mented as standard C++ objects. Figure 3 shows an example of a grid-based
data structure distributed on 3 threads. Each thread stores additional data in or-
der to enable neighborhood dependent computations. DPS threads are mapped
to operating system threads, although not necessarily in a one-to-one relation-
ship. For instance several DPS threads residing on a single processor node may
share a single operating system thread.
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Fig. 2. A flow graph and its associated thread collections
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Fig. 3. Distribution of a grid-based data structure on 3 threads, each thread also storing
copies of its neighboring grid lines (borders)

The selection of the thread within a thread collection on which an operation
is to be executed is accomplished by evaluating at runtime a user defined routing
function attached to the corresponding directed edge of the flow graph. Com-
munication patterns such as the neighborhood exchanges illustrated in Figure 4
required for updating a distributed data structure (Figure 3) can easily be spec-
ified by using relative thread indices. The first part of the flow graph ensures
that all nodes have sufficient neighborhood information available, and the second
part performs the computation on all nodes. The intermediate synchronization
ensures that the global state remains consistent.

By transferring data objects as soon as they are computed, and maintaining
queues of arriving data objects, execution of DPS applications is fully pipelined
and asynchronous. Data object queues are associated with the thread that con-
tains the operations that will consume them. This macro data flow behavior
enables automatic overlapping of communications and computations. In order
to limit the size of the data object queues stored in threads, DPS provides a
flow control mechanism that can be used to limit the number of data objects
in circulation between a split operation and the corresponding merge operation.
The flow control mechanism suspends the split operation until the processed
data objects have been received by the corresponding merge operation.
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Fig. 4. A flow graph for one iteration of an iterative neighborhood-dependant parallel
computation

The flow graph together with its collections of threads and its routing func-
tions forms a parallel schedule. A parallel schedule describes a fine to medium-
grained parallel application. Its operations represent the small subtasks that are
executed in a pipeline-parallel manner according to the flow graph. The DPS
communication layer, hidden from the application programmer, relies on TCP
sockets, and uses an optimized data serialization scheme that minimizes memory
copies.

3 Fault-Tolerance in DPS

DPS provides a fault-tolerance mechanism that allows applications to continue
execution despite node failures. The fault-tolerance mechanism is implemented
by providing a scheme for the recovery of flow graph program execution seg-
ments located on a failed node. The scheme is composed of two distinct recovery
mechanisms. The first general purpose mechanism enables the reconstruction of
the state of a thread upon node failure. The second specialized mechanism is an
optimization for threads that do not store any local state information.

DPS detects node failures by monitoring communications. A node is consid-
ered to be failed when it is not able to communicate with another node. The
TCP/IP network layer used by DPS reports failures when communications fail
or disconnections occur.

3.1 General Purpose Recovery Mechanism

The general purpose mechanism relies on a set of backup threads that are
mapped onto an alternate set of nodes as illustrated in Figure 5. When a data
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object is sent to an operation on a given thread, a copy is also sent to the backup
thread. Upon occurrence of a failure, the current state of the threads that were
on the failed node is reconstructed on the backup threads by re-executing op-
erations. The valid execution sequence of operations is automatically deduced
from the flow graph of the corresponding DPS application by applying a simple
data object numbering scheme.

Operations are assumed to be deterministic, i.e. for a given initial thread state
and a set of incoming data objects, they will always produce the same output.
This assumption is necessary to ensure that the reconstruction on a backup
thread will yield a state identical to the state that was present on the failed
thread.

Backup threads Active threads 

Node 1 Thread [1] 

Node 2 

Node 3 

Thread [2] 

Thread [3] Thread [2] 

Thread [1] 

Thread [3] 

Fig. 5. Mapping of a thread collection with backup threads

In order to shorten the reconstruction time of a failed node, one may replicate
the state of the active threads onto the corresponding backup threads (periodic
checkpointing). When the backup thread is subsequently used for reconstructing
the thread state after a failure of the active thread, reconstruction is initiated
from the replicated state rather than from the initial state. Each DPS thread has
three components that must be conserved for successful reconstruction: the cur-
rent local thread state, the queue of data objects that wait for processing, and the
state of suspended operations within that thread. Since replicating the current
state also removes part of the pending data object queue on the backup thread,
it reduces the memory requirements on the backup nodes. This checkpointing
operation can be carried out asynchronously and independently on all individual
threads. Independent checkpointing of individual threads enables the compute
nodes to remain potentially busy during the checkpointing process by executing
operations attached to other threads mapped to the same node. The effective
overhead induced by stopping a thread in order to checkpoint can therefore be
kept very low.

Since both active and backup threads are stored in the volatile storage of the
processing nodes, only a single copy of the thread is left after a failure. In order
to ensure that the application can survive successive failures, it is necessary to
rapidly create a new backup thread for the remaining copy. The new backup
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thread is created by checkpointing the surviving thread copy immediately after
activation, in order to minimize the time during which the application is fragile.
This general-purpose fault-tolerance mechanism allows the computation to con-
tinue as long as for each thread within every thread collection either the active
thread or its backup thread remains valid.

3.2 Recovery for Threads Without Local State Data

For threads that do not store any local state data (stateless threads), the recovery
mechanism can be simplified. If the general purpose mechanism would be used,
the backup threads would store only the duplicated data objects. It is therefore
more efficient not to send out the duplicate data objects, but rather to keep
them on the sender node. Since the operations running on stateless threads do
not use any local state, these operations can be executed on any thread. If a
stateless thread fails, it is removed from the thread collection. The sender node
resends the data objects to another thread in the collection. The execution of
the application can continue as long as at least one thread remains valid within
the stateless thread collection.

The flow graph provides information about the runtime execution patterns of
applications, allowing the framework to transparently select the appropriate re-
covery mechanism for the graph segments. For compute bound applications, the
fault-tolerance overheads during normal program execution remain low thanks
to the asynchronous communications that occur in parallel with computations.
A detailed description of both fault-tolerance mechanisms and the associated
performance overheads can be found in [11].

4 Implementing Fault-Tolerance

The following sections focus on the elements that must be taken care of by the
developer of a fault-tolerant application. As an example, we use two applications:
a compute farm application, where a master node distributes computation tasks
onto worker nodes, and a complex application with a distributed state that is
updated iteratively. These applications use the flow graphs illustrated in Fig-
ures 2 and 4 respectively. The DPS fault-tolerance mechanism is presented in
two steps. The first step aims at adding fault-tolerance, allowing the application
to survive multiple failures. The second step ensures an efficient reconstruction
process by enabling checkpointing.

4.1 Simple Compute Farm Applications

A fault-tolerant compute farm application needs to be able to survive two types
of failures: the failure of a worker node, and the failure of the master node. Since
the worker threads do not store any local data, these threads can be handled by
the specialized sender-based stateless thread recovery mechanism provided by
DPS. Since this mechanism simply redistributes the unprocessed worker tasks
to the surviving worker threads, no changes are required in the source code
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implementation of the application. Therefore, when the application is running,
any node other than the one running the master thread can fail at any time. As
long as one worker node remains active, the program execution is unaffected.

Fault-tolerance on the master thread is important, since this thread is running
the split and merge operations. At least one backup thread needs to be added to
the mapping of the thread collection MasterThread. This will allow the master
thread to be reconstructed on other nodes participating in the computation,
ensuring successful completion if the initial master thread fails. The backup
thread is simply created by adding a list of valid backup nodes to the mapping
of the master thread collection:

masterThread.addThread("node1+node2+node3");

In this example, the master thread is located on node1 and its backup thread
on node2. The third node node3 will take over the role as backup if either of the
other nodes fails in order to ensure support for multiple subsequent failures.

On a master node failure, the split operation is restarted from the beginning,
and all processing requests are sent again. The routing function does not nec-
essarily return constant results for a given data object when the total number
of threads varies, some data objects will get routed to different nodes on re-
execution, and part of the computation may possibly be performed again. Those
data objects that are resent to the same nodes will be caught by a mechanism for
eliminating duplicate data objects [11]. This additional reconstruction overhead
can be reduced by periodically checkpointing the main thread, i.e. by replicating
its current state to the backup thread as described in section 5.

4.2 Applications Storing a Distributed State

Applications that store local data within their computation threads need backup
threads. For example, let us consider an application using a thread collection
computeThreads, containing three computation threads mapped onto nodes
node1, node2 and node3. Each thread needs to have at least one backup thread.
In order to ensure that the thread collection can survive failures until a single
node is left, we use all nodes as backups for each thread, creating a round-robin
mapping as shown in Figure 6. The proposed mapping can be obtained with the
following mapping string:

computeThreads.addThread
("node1+node2+node3 node2+node3+node1 node3+node1+node2");

This mapping ensures that any two nodes may fail without preventing the
application from completing successfully. The thread mapping strings (“node1+
node2+node3 node2+node3+node1 node3+node1+node2”) with round robin
mapping of backup threads may be generated automatically by the DPS frame-
work [12]. In order to ensure acceptable reconstruction times, it is again necessary
to perform periodic checkpointing.
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5 Checkpointing Support

In order to provide support for checkpointing, long-running operations that may
be suspended (split and merge operations) need some minor modifications, so as
to allow them to be restarted from other points than from the beginning. Since
operations are simple C++ functions, and since the language does not provide
a simple means to checkpoint the current state of a function and to restart
it later, the application needs to help the framework in order to obtain the
desired functionality. The required modifications are independent of the general
application structure, since the changes affect only individual operations. For
the following discussion, we use the split and merge operations of the compute
farm application (Figure 2) as example.

The first functionality that the application needs to provide is the ability to
checkpoint the current state of the operation. For the split operation previously
shown in section 2, the loop counter splitIndex needs to be made serializable,
allowing the operation to be recreated from a checkpoint. Since DPS provides
an automatic serialization mechanism for data objects, we reuse this mechanism
for operations. Therefore, the split operation uses the automatic serialization
syntax for its data members as follows:

class Split : public dps::SplitOperation
<SplitInDataObject, SplitOutDataObject, MasterThread>

{
CLASSDEF(Split)
BASECLASS(dps::OperationBase)

MEMBERS
ITEM(Int32,splitIndex) // Current loop counter

CLASSEND;

The second functionality that the application needs to provide is the ability
to restart the operation from a saved checkpoint. DPS uses the input data object
parameter of the function to distinguish between a normal call to the operation
and a restarted call. When the operation is initially called during normal execu-
tion, it receives a valid non-NULL input data object. However, when it is being
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restarted from a checkpoint after a failure, no input data object is passed as
parameter (i.e. the input data object pointer is NULL). This particular case is
used to skip the initialization of the internal variables, since they have already
been set up by the checkpoint:

public:
// Split operation
void execute(SplitInDataObject *in)
{
// If the input data object is NULL, the operation is
// being restarted from a checkpoint. Otherwise, we need to
// initialize our variables.
if(in)
splitIndex=0;

The content of the loop itself is kept unchanged. The update of the loop
counter has been moved to a position before the call to postDataObject, since it
is at this point that a checkpoint is taken when a checkpoint is requested. The
loop condition can be checked with a while statement.

// Loop until all output data objects have been generated
while(splitIndex<NB_PARTS)
{
SplitOutDataObject *sot=new SplitOutDataObject(splitIndex);
splitIndex++;

postDataObject(sot);
}

}

Finally, the application needs to call the checkpointing function for the main
thread collection. Since checkpointing is fully asynchronous within the DPS
framework, this can be done anywhere. In the present example, we add the
checkpointing request within the main loop of the Split operation. Three check-
points are requested, one for every 25% of output data objects posted. We intro-
duce an additional member variable next that indicates at which point the next
checkpoint is due. This variable is checked within the loop, and checkpoints are
requested accordingly. This variable also needs to be serializable like the loop
counter.

// Loop until all output data objects have been generated
while(splitIndex<NB_PARTS)
{
// Do some periodic checkpointing in Split
if(splitIndex>next)
{

next+=NB_PARTS/4;
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// This is an asynchronous call, the checkpoint will be
// taken shortly after.
getController()->getThreadCollection<MasterThread>

("master").checkpoint();
}

SplitOutDataObject *sot=new SplitOutDataObject(splitIndex);
splitIndex++;

postDataObject(sot);
}

Calling the checkpoint function does not immediately create a checkpoint,
but informs the framework that a checkpoint should be taken as soon as possi-
ble. Since all the threads within a thread collection are independent, they are
checkpointed individually. The checkpointing process is started as soon as the
currently executing operation on the current thread ends or is suspended (for
example when waiting for its next input data object). When no operation is
running on a thread, its state is guaranteed to be consistent. The checkpoint
is then sent to the backup thread. The checkpoint is composed of the current
local state of the active thread, the list of currently suspended operations as
well as the list of all the data objects that have been processed since the last
update. The new state replaces the previous state stored on the backup thread,
and the listed data objects are removed from the backup thread’s data object
queue. When the checkpointing process is complete, execution resumes normally
on the thread. In the above example, the checkpoint is taken on the call to
postDataObject immediately following the call to checkpoint.

When checkpointing is used on this type of application, it is important to
enable flow control, in order to ensure that the split operation does not post all
subtasks at once. If flow control is disabled, all the checkpoints are taken at the
same time after termination of the execution of the split function, making the
complete process useless. With flow control enabled, the checkpoints are taken
as expected, since the split operation is periodically suspended while waiting for
the merge operation to catch up.

The Merge operation needs similar changes in order to ensure that the current
output data object state is correctly preserved when checkpointing. The following
source code describes the original merge operation before adding code for fault-
tolerance:

class Merge : public dps::MergeOperation
<MergeInDataObject, MergeOutDataObject >

{
void execute(MergeInDataObject *in)
{
// Create output data object
MergeOutDataObject *output=new MergeOutDataObject();
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// Wait until all the computation results have been received
do
{
// Add the result contained in the input data object ’in’
// to the output data object

}
while((in=waitForNextDataObject())!=NULL);

postDataObject(output);
}

}

The local state of the operation is entirely contained in the output data object,
which is updated for each incoming data object in a while loop. Therefore, in
order to enable restarting, the output data object needs to be stored within the
merge operation class. In the DPS framework, the dps::SingleRef class is used
to store a serializable pointer.

class Merge : public dps::MergeOperation
<MergeInDataObject, MergeOutDataObject >

{
CLASSDEF(Merge)
BASECLASS(dps::OperationBase)

MEMBERS
// The output data object
ITEM(dps::SingleRef<MergeOutDataObject>,output)

CLASSEND;

Just like the Split operation, the Merge operation uses the state of the input
data object for initialization of the output data object. The loop within the
merge operation is unchanged compared with the non fault-tolerant code, since
the local state is already updated before calling waitForNextDataObject. In the
fault-tolerant case, the last operation of the flow graph is responsible for storing
the result of the parallel computation, rather than posting a data object to
the caller of the parallel schedule. This is necessary to ensure that the parallel
application terminates even when the original master node that initiated the
execution of the parallel schedule is dead. Since the merge operation is the last
operation in the flow graph, the operation ends with a call to endSession in the
DPS controller, which causes the application to terminate. Since the application
terminates from within the merge operation, the output data object is never
posted.

void execute(MergeInDataObject *in)
{
// If the operation is not being restarted, initialize the
// output data object
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if(in!=NULL)
output=new MergeOutDataObject();

// Wait until all the computation results have been received
do
{
// Add the result from the input data object ’in’ to the
// output data object if in is not NULL

}
while((in=waitForNextDataObject())!=NULL);

// Store computation result before terminating application

getController()->endSession(true);
}

5.1 Serializing Thread States

For applications that store a local thread state, it is necessary to ensure that the
local thread state can be copied correctly within the checkpointing process. This
is achieved by using the DPS serialization mechanism. Consider the following
thread with local data:

struct ComputeThread
{
int data; // Single integer stored in thread

};

The thread is simply converted to the serializable form as follows:

struct ComputeThread
{
CLASSDEF(ComputeThread)
MEMBERS
ITEM(int,data) // Single integer stored in thread

CLASSEND;
};

6 Conclusions and Future Work

DPS is a novel high-level environment for developing parallel applications spec-
ified as executable flow graphs. The DPS framework provides dynamic handling
of resources, in particular the ability to specify the mapping of threads to nodes
at runtime, and to modify this mapping during program execution. Flow graphs
and updatable thread mappings are the foundation on which we build fault-
tolerance.
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We implement fault-tolerance by providing a hybrid recovery scheme using
two compatible mechanisms for the recovery of flow graph program execution
segments located on a failed node. The first general purpose mechanism relies on
duplicate data objects sent to backup nodes in order to enable the reconstruc-
tion of the state of a thread upon node failure. Backup threads are kept up to
date by periodical checkpointing of thread states. Upon occurrence of a failure,
the current state of the threads that were on the failed node is reconstructed
on the backup threads by re-executing operations. The valid execution sequence
of operations is automatically deduced from the flow graph of the correspond-
ing DPS application by applying a simple sender-based data object numbering
scheme. A second specialized sender-based mechanism is used for operations
that do not depend on local state information, such as graph segments com-
prising simple compute farms. Since no state needs to be reconstructed in case
of failures, the duplicate communications are avoided. The flow graph provides
information about the runtime execution patterns of applications, allowing the
framework to transparently select the appropriate recovery mechanism for the
graph segments. For compute bound applications, the fault-tolerance overheads
during normal program execution remain low thanks to the DPS asynchronous
communications that occur in parallel with computations.

The general-purpose fault-tolerance mechanism allows computation to con-
tinue as long as for each thread within every thread collection either the active
thread or its backup thread remains valid. The optional compatible stateless
recovery mechanism requires that at least one thread remains valid within ev-
ery stateless thread collection, and that the threads hosting the surrounding
split-merge pair are recoverable with the general purpose recovery mechanism.

The fault-tolerance mechanisms are not fully transparent to the application
developer. However, only minor changes need to be made to the application in
order to enable fault-tolerance. The required changes are due to limitations of
the C++ language. Some aspects, such as checkpointing requests, are currently
left to the programmer. These requests could also be performed automatically by
the framework by monitoring the applications flow graph. The resulting fault tol-
erance scheme may then become more transparent to the application developer.

The complete DPS software package is available on the Web under the GPL
license at http://dps.epfl.ch. The complete source code for the applications pre-
sented in this paper can also be found at this address.
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Abstract. Virtual laboratories can be characterized by their long-
lasting, large-scale computations, where a collection of heterogeneous
tools is integrated into data processing pipelines. Such virtual experi-
ments are typically modeled as scientific workflows in order to guaran-
tee their reproduceability. In this chapter we present JOpera, one of the
first autonomic infrastructures for managing virtual laboratories. JOpera
provides a sophisticated Eclipse-based graphical environment to design,
monitor and debug distributed computations at a high level of abstrac-
tion. The chapter describes the architecture of the workflow execution
environment, emphasizing its support for the integration of heteroge-
neous tools and evaluating its autonomic capabilities, both in terms of
reliable execution (self-healing) and automatic performance optimization
(self-tuning).

1 Introduction

More and more scientific disciplines are switching from in vitro to in silico re-
search where natural phenomena are explored using a computer in a virtual
laboratory instead of being observed in the field. On the one hand, this is due to
the fact that the cost of storing observations has become lower than the cost of
making them. On the other hand, scientific workflow tools [15] – such as the one
described in this chapter – have been developed in order to make it easier for
scientist to process and analyze such observations by composing an increasingly
large number of basic analysis and simulation tools.

Although virtual laboratories are typically associated with very large amounts
of data, data processing is even more critical than data management due to the
sheer computational complexity involved. Given the heterogeneity and complex-
ity of the underlying distributed execution environments and the long duration
of the computations involved, it is not feasible to manually manage the lifecycle
of such virtual experiments. Instead, a virtual laboratory infrastructure should
� This work is partly supported by grants from the Hasler Foundation (DISC Project

No. 1820).

J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 211–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



212 C. Pautasso, W. Bausch, and G. Alonso

automate most tasks related to the reliable and reproduceable execution of such
computations. Ideally, a virtual laboratory infrastructure should provide a team
of scientists with support for easily creating and efficiently running virtual ex-
periments. Additionally, virtual laboratories are rarely designed in a top-down
fashion. They typically emerge from a collection of disconnected pieces of data
processing code (e.g., written in Fortran) and glue scripts (e.g., in Perl [1])
that are developed and maintained by individual scientists. Such an ad-hoc ap-
proach leads to systems that are difficult to modify and maintain, cannot be
easily shared among researchers and involves rather primitive and unsystematic
methods for running, monitoring, and steering the computations.

Considering that all of these problems are a major source of inefficiencies,
it becomes clear that an organized way to store and manage information and
meta-information about the entire lifecycle of a virtual experiment is critical
to its success. Thus, not only high level languages and abstractions to define
such computations are needed but also efficient execution tools integrated with
user-friendly management and monitoring environments are required.

In this chapter we focus on how this functionality has been provided in
JOpera [16], an autonomic process support system specifically tailored for virtual
laboratories. The JOpera project has its roots in the BioOpera [5] project and it
has been developed at the Information and Communications Systems Research
Group of ETH Zurich. JOpera extends the Eclipse platform with a graphical
environment where scientists can use a drag, drop and connect programming
metaphor to define distributed computations out of reusable components. The re-
sulting high-level models are then automatically compiled into Java bytecode so
that they can be efficiently executed by the system. In case of virtual laboratories
where a large number of computations are concurrently executed, JOpera can
distribute their execution across a cluster of computers in order to provide the
appropriate level of performance. Moreover, JOpera includes self-management
capabilities, where the distributed engine can automatically determine its opti-
mal configuration based on its current workload. With this, the need for manual
intervention and tuning the system’s performance is greatly reduced.

The rest of this chapter is organized as follows. We discuss in more detail the
problems of virtual laboratories by showing some typical examples in Section 2.
In order to address these challenges, scientific workflow tools such as JOpera offer
a solution based on two aspects. The first one consists of a language targeted
towards modeling virtual experiments at a high level of abstraction (Section 3).
The second one – presented in Section 4 – lies in the middleware infrastructure
supporting the execution of such a language. An evaluation of the autonomic
capabilities of the system is discussed in Section 5 before concluding the chapter
in Section 6.

2 Motivation

This section illustrates the issues scientists running large scale virtual experi-
ments need to cope with. Each example represents a pattern frequently
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encountered in a virtual experiment. Each of these patterns has different char-
acteristics and requires a different type of support from the virtual laboratory
infrastructure.

2.1 Structured Computations

A structured computation involves a set of applications that needs to be executed
in a specific order. These applications run on different operating systems and
hardware platforms. They exchange data with each other through a number
of input and output mechanisms (e.g., command line input parameters, input
and output files, web page downloads) This data is produced at different points
in time throughout the computation and may have to be converted between
different formats. Programming such application may prove to be too difficult
for ordinary users, if appropriate high level programming tools are not available.

In addition to design-time support, run-time support is also important. For
instance, considering a distributed environment, manually taking care of routing
data from task to task at the right time becomes difficult, time consuming and
error-prone. Thus, data transfers should be automated, not just to improve the
efficiency of the virtual experiment, but also to collect important lineage and
data provenance information. The goal is to automatically log all of the necessary
meta-data in order to support the correct interpretation of the results of a virtual
experiment, i.e., by tracing how this was generated.

An example of this structured computation pattern can be found in the bio-
science domain. Microarray technology is a promising approach to find clues
concerning the function of specific genes in a cell’s metabolism. The idea is to
expose the cell to an artificially created stimulus (also called condition) and ob-
serve the cellular response in terms of the level of activity (or the expression
level) of some genes over time. Development of appropriate computational mod-
els as well as innovation in wet lab equipment have made it possible to move
elements of the microarray processing pipeline into virtual laboratories.

Such a virtual microarray experiment involves a range of data extraction,
transformation and correction steps that need to be performed prior to a complex
statistical analysis of the data. Figure 1 provides a high-level overview of the
procedure, which is described in more detail in [3]. This microarray processing
pipeline was implemented with BioOpera by integrating existing, standalone,
publicly available software packages written in different programming languages
and maintained by different reseach groups [5].

2.2 Embarrassingly Parallel Computations

Whereas the main challenge of the Microarray analysis pipeline concerns the
specification of the complex interactions between a large set of heterogeneous
tools, in this section we deal with the evolution of the execution environment
when running long-lived computations.

An embarrassingly parallel computation consists of a set of tasks that can
be processed independently of each other. This kind of computations are com-
monly used in a virtual laboratory setting as, given enough execution capacity,
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Fig. 1. Microarray analysis pipeline: from raw samples to correlated expression
patterns

their execution time can be reduced by executing all tasks in parallel. However,
when such a pattern is implemented without appropriate support from the vir-
tual laboratory infrastructure, several challenges become apparent. For instance,
choices need to be made concerning the granularity of the tasks, how to sched-
ule tasks to run on the available resources (e.g., whether several tasks can share
a single processor), and finally, how to handle the failure of individual tasks.
Without appropriate support, the onus for such chores lies on the user. Not sur-
prisingly, manually and painstakingly maintaining such computation becomes
the dominant factor in the overall cost of performing such virtual experiments
and does not scale to a large number of tasks running on a large number of
computers.

An example of this kind of computation is a sequence alignment, a problem
that lies at the heart of comparative genomics. Given an unknown set of nucleo
or peptide sequences, the initial step into any inquiry concerning the evolution,
structure, and function (e.g., [8,9,20]) of these biomolecules consists of the cross-
comparison of each sequence in this set against every sequence of a reference data
set such as Swiss-Prot [6] - an All vs. All, if the two data sets coincide. Typically,
a single comparison requires seconds of CPU time, depending on the method that
is being used and the length of the sequences being compared, and that the total
number of pairwise sequence comparisons is in the order of billions. From this,
several years of CPU time are required to perform the whole experiment. Being
composed out of a number of pairwise sequence comparisons independent of each
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other, an All vs. All is embarrassingly easy to parallelize: each alignment can be
computed independently.

Ample details concerning a month-long lifecycle of running such a computa-
tion with BioOpera can be found in [4]. Throughout the computation, processor
availability has been subject to substantial unexpected and uncontrolled fluctu-
ation. Without load balancing or job migration across machines to compensate
for resource failures, utilization of the overall available computing resources is
bound to be suboptimal. Also, a failure of the node coordinating the computa-
tion halts the entire computation. Dealing with these issues manually is indeed
inefficient and time consuming. If a computation environment made out of hun-
dreds of hosts is considered, it is clear that all of the previously described aspects
of its execution should be controlled automatically.

2.3 Parameter-Sweep Computations

This pattern represents a combination of the ones discussed in the previous two
sections. A parameter sweep computation [2] consists of applying the same al-
gorithm to all parameter value combinations in a predefined parameter space.
Since each each parameter combination can be typically processed independently,
parameter sweeps are embarassingly parallel and share the requirements for a
reliable and distributed execution environment. Concerning structured computa-
tions, not only a complex computation is applied to each parameter combination
but also traceability needs to be guaranteed (i.e., in order to correlate which re-
sults have been produced by which input parameter values).

An example parameter sweep application to which JOpera has been suc-
cessfully applied involved the simulation of protocols for wireless ad-hoc net-
works [21]. Communication partners in such networks are in motion with respect
to each other and may leave and join the network at any time. Additionally, the
network is infrastructureless. Unlike in mobile telephony, for instance, there is
no fixed infrastructure that keeps track of nodes and routes data from sender
to receiver. Data is directly routed through the mobile nodes and routing paths
have to be recomputed as nodes move in and out of transmission range.

The objective of the experiment described here is to compare the simulated
behavior of a set of resource reservation protocols under certain assumptions
like congestion, network latency or node population distribution. In order to
gain a complete understanding of the problem, this parameter space should be
explored in its entirety. Although an individual simulation is on average relatively
short, on the order of 20 seconds of CPU time, the size of the parameter space
makes running the entire simulation challenging. Each simulation depends on
17 parameters, resulting in around 1.5 million independent simulations. Again,
parallel execution on a cluster of computers is mandatory to ensure that the
results are delivered in a reasonable amount of time.

2.4 Discussion

From the previous examples it is clear that a virtual laboratory infrastruc-
ture needs to cope with a variety of design-time and run-time problems. These
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involve providing good abstractions to model the structure of computations that
are built by integrating heterogeneous scientific tools. However, modeling is not
enough, as computations need to be reliably and efficiently executed in a dis-
tributed (and failure-prone) environment. The main features of such a virtual
laboratory infrastructure can be categorized as follows:

Modeling. An easy to use, intuitive programming environment should be pro-
vided so that scientific computations can be specified at a high level of ab-
straction by fostering the reuse of existing tools.

Integration. Virtual laboratories must cope with heterogeneity, not only re-
garding data formats but also concerning the environments on which analysis
tools are executed.

Distribution. Distribution is another property of virtual laboratories, as local
and remote (e.g., Web-based) data sources and tools have to be accessed.

Steering. In addition to reporting their status and progress, long-running com-
putations require support for interacting with them in order to proactively
steer their execution.

Scalability. In this context, the notion of scalability needs to be extended to
encompass the virtual laboratory infrastructure itself, which should scale to
handle a very large number of virtual experiments.

Fault Tolerance. Given that most of today’s Grid and cluster environments
are failure prone, various failure masking and exception handling approaches
should be in place in order to minimize the number of troubleshooting ac-
tivities to be performed.

Combining all of these features and mechanisms with the appropriate self-
management strategies yields an autonomic infrastructure for managing virtual
laboratories as we are going to describe in the following sections.

3 Modeling Virtual Experiments with Processes

A language for modeling virtual experiments should allow scientists to model all
aspects of a virtual laboratory (e.g., which tools to use, what are their depen-
dencies, how to invoke them, where the data should be stored) in a well-defined,
formalized way so that these experiments can not only be executed in a fully
automatic fashion but the management of related metadata is also automated.

Thus, the main challenge in designing such a language lies in keeping the
balance between two extremes. On the one hand, a risk lies in abstracting away
too many details – e.g., like the data flow, typically disregarded in many busi-
ness process modeling languages – that are of primary importance for modeling
executable scientific computations. On the other hand, a lower-bound is defined
by traditional scripting languages (e.g., Perl or Python). These languages can
also be used as the glue to patch together and run virtual experiments. However,
they lack the necessary abstractions to deal with issues such as reuse of scien-
tific tools and algorithms, scalable, reliable and persistent execution, simplified
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orchestration of distributed components, interactive monitoring and steering of
computations as well as tracking lineage and data provenance meta-data.

In the following, we give an overview about the abstractions provided by
JOpera’s languages (Processes and Programs) and how they fit together (Binding
and Flow).

3.1 Modeling the Flow with Processes

Processes can be seen as an executable blueprint of a distributed application built
using a pipe-and-filter architectural style [7]. Processes model computations as a
combination of heterogeneous tools which are to be executed as the computation
goes through its various stages. Processes can be run once over a certain input
dataset, or can also be applied over a range of input parameter values.

In JOpera, processes model the interactions between a set of programs. A
JOpera process consists of a set of tasks linked by data and control flow de-
pendencies. Tasks represent each step of the computation to be carried out.
Executing a task involves the invocation of an external program or the call of
another sub-process.

Both the data and the control flow of a process can be formally described
as a graph. The edges of the control flow graph link the tasks of a process and
define their partial order of execution. These edges can be labeled with boolean
expressions in order to select upon which condition they are activated and thus
provide support for adding alternative or multiple branches, loops and synchro-
nization points in the control flow. The data flow edges link data parameters of
tasks declaring how information is transferred from one program to the next.
Processes also have input and output parameters, so that it is possible to pass
information to a process when starting it and retrieving its results when it is
completed. Data flow and control flow are related since tasks consuming data
cannot be started before all tasks producing the required data have successfully
completed their execution. Thus, when executing a process, JOpera analyzes
its structure and concurrently schedules all tasks that are found to be indepen-
dent. If enough computing resources are available, these tasks will be executed
concurrently.

Traditionally, workflow management tools have used a visual syntax to graph-
ically depict the flow linking the various scientific tools together into a process.
This is also the approach followed in JOpera with its JOpera Visual Composition
Language (JVCL). With it, both the control flow and data flow of a process can
be specified using a very simple, graph-based visual notation. Nevertheless, the
JOpera visual composition language supports advanced constructs (e.g., itera-
tion, streaming, reflection, recursion, nesting, or dynamic late binding) without
resorting to ad-hoc (and difficult to interpret) extensions of the visual syntax.
We refer the reader to [18] for an in-depth presentation of the JVCL language.

3.2 Binding Processes with Programs

The notion of binding in JOpera defines the flexible relationship between processes
(i.e., the compositions) and programs (i.e., the components). Although processes
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model how a virtual experiment is composed out of a set of programs, the de-
scription of the programs themselves is kept – by design – separate from the
processes. This separation has several advantages. It enhances the reusability
of the programs, which can be shared among different processes. Likewise, the
same process can be reused by binding it with different programs.

More precisely, a binding defines what are the constraints to be satisfied by
a program in order to be included in a process [19]. Such a binding can be
evaluated along the entire lifecycle of a process: at design-time (early binding), at
compilation-time, at deployment-time, at run-time (late and very late binding).

Given the goal of supporting an open and heterogeneous set of programs,
JOpera makes very little assumptions about the mechanisms that are used to
invoke their functionality. Instead JOpera provides a meta-library of component
types that can be used to define programs. Programs wrap existing tools employ-
ing the most appropriate invocation mechanism both in terms of performance
but also development convenience [17]. Proof of the openness of the JOpera ser-
vice meta-model is provided in Table 1 where all currently supported component
types are listed. Depending on the relevant aspects that should be taken into
account when designing a virtual experiment, these components can be classified
along the following dimensions:

Granularity. Both fine-grained (e.g., Java snippets) and coarse-grained (e.g.,
Web services) programs are supported by JOpera within a single process.
Furthermore, the overhead of invoking each component type is proportional
to its granularity. In other words, JOpera can leverage the standardized
(but relatively inefficient) SOAP protocol without being constrained by it.
If necessary, more efficient invocation mechanisms can still be selected to
access fine-grained programs.

Local vs. Remote Invocation. At run-time, programs can be separated from
a process by an increasingly large distance. For example, Java methods are
invoked by a thread running within the same Java virtual machine where
the process is running. Legacy UNIX applications invoked through the lo-
cal operating system shell run in a separate operating system process with
respect to the one running the JOpera process. Additionally, programs can
represent the execution of an application on a remote host through a secure
shell connection and, going even further away, jobs submitted to a resource
management and scheduling system (e.g., Condor [14] or Globus [10]) to be
executed on a cluster of computers in a remote Grid environment.

Data-Driven vs. Computation-Oriented. In addition to computations, pro-
grams can also be used to manage the data that is required and produced by
other programs. Data-driven programs are used to model data transfers (e.g.,
file-staging through secure copy or GridFTP), access to persistent storage
(e.g., SQL database queries), and can play the role of mediators and adapters
(e.g., Java snippets or XML data transformations written in XPath, XSLT,
or XQuery).

Interaction Style. In addition to synchronous (RPC-style) interactions, where
a program models the complete invocation of an external tool, we have also
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Table 1. Summary of the component types currently supported by JOpera

Component Type Description

Local Computation
UNIX Application (UNIX) Execute a command line through the local oper-

ating system
Java Method (JAVA) Call a local Java method
Java Snippet (JAVA.SNIPPET) Embed a Java snippet into the process

Remote Computation
Java Remote
Method

(JAVA.RMI) Invoke a remote Java method

Web Service (SOAP) Web service call (using raw SOAP messages)
Web Service (WSIF) Web service call (using the WSIF framework [13])
Secure Shell (SSH) Execute a remote command through a secure shell

connection

Data Transfer
Web Page (HTTP) Download (or upload) a page from a web site
Secure Copy (SCP) Transfer a file with secure copy

Database
Database Query (SQL) Send any SQL statement to a JDBC compliant

database
Telegraph Query (TELEGRAPH) Subscribe to a telegraph stream described by an

SQL query

XML transformation
X-Path Query (XPATH) Query an XML document with X-Path
Style Sheet Trans-
formation

(XSLT) Transform an XML document with an XSL trans-
formation

Cluster/Grid computing
Globus [10] (GLOBUS) Submit a job to a grid managed by Globus
Condor [14] (CONDOR) Submit a job to a cluster managed by Condor

Internal
JOpera Echo (ECHO) Echo a message back
JOpera Process (OPERA) Spawn another process
JOpera API (API) Call the API of JOpera

Human-oriented
Workflow task (WF) Add a new activity to a user’s worklist

applied JOpera’s meta-model to provide support for asynchronous interac-
tions, where the execution of a program involves a one-way message exchange
or the start (or termination) of an independently running application. In this
case, data exchanges between the process and the program can occur at any
time, i.e., when the program is started (input), after it has completed (out-
put) but also during its execution (streaming).

Machine-Bound vs. Human-Oriented. Although most computational tools
are usually meant to be executed in non-interactive mode, parts of a process
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may also explicitly include a task requiring some form of human intervention,
e.g., to validate partial results and steer the process accordingly or take some
manual corrective actions before the computation is carried on.

Data vs. Metadata. Reflection and introspection are also two important fea-
tures of JOpera’s visual composition language. With these it becomes pos-
sible, e.g., to control the execution of a process from another process, or to
dynamically discover properties about the execution environment and use
this information from within a process. For example, it is possible to dy-
namically detect how many resources are available and partition a dataset
accordingly or measure the invocation time of a remote Web service to detect
whether a service-level agreement has been violated.

Additional component types can be easily added to JOpera by plugging a
service invocation adapter into the corresponding extension point, as we are
going to show in the next section.

4 An Autonomic Infrastructure for Virtual Laboratories

The architecture of JOpera is composed of a set of Eclipse plug-ins (Figure 2).
Following Eclipse’s design guidelines, we have separated plug-ins responsible for
the user interface (UI) from plug-ins that work with the internal process data
model. Along an orthogonal dimension, we have also separated the design-time
from the run-time functionality, so that, if necessary, the system can be deployed
in a partial configuration (e.g., where only the run-time monitoring features are
enabled). The compiler, which links the design-time to the run-time part has
been developed in its own plug-in. On the run-time side, the run-time kernel
provides the basic process execution infrastructure used by the compiled code.
It is extended by the service invocation adapters plug-ins, which implement the
mechanisms and provide support for the protocols used to invoke the various
kinds of components that were described in the previous section. Finally, the API
wrappers are used to expose the functionality of the kernel to clients supporting
a variety of protocols.

4.1 Design-Time Tools

The JVCL model core plug-in contains the functionality used at design-time to
manage the information about programs and processes described in the JOpera
Visual Composition Language. This includes the ability of internalizing such in-
formation loading it from an XML serialization. This plug-in also manages an
object-oriented in-memory model of the processes and programs which has been
automatically produced from the corresponding schema using a generative pro-
gramming approach. Clients observing the model may use its event notification
facilities to be notified when parts of the model are changed, e.g., to perform
some incremental validation or to update the information displayed by the cor-
responding UI views. This way, after each modification, the model is checked
incrementally for consistency with respect to various criteria. In case a violation
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Fig. 2. JOpera is built as a set of Eclipse plugins

is detected, a specific problem (or a warning) marker is attached to the part
of the model that triggered it. Such verification happens in the background,
without user intervention so that errors and potential problems are reported
immediately. In an agile development environment, such immediate feedback is
nowadays taken for granted as it contributes to reducing the overhead of the typ-
ical compose-compile-fix development cycle and it is very important to decrease
the slope of the environment’s learning curve.

The editor UI plug-in contains the user-interface code that presents the con-
tent of the currently open processes to the developer. We use two different kinds
of visual user interfaces to display and edit the structure of a process. List-based
forms are used to choose the services to be composed and to define their interface
parameters. Additionally, the control flow and data flow graphs of the processes
are edited in a visual environment. Such visual editor is implemented by extend-
ing the Graphical Editing Framework (GEF) of Eclipse to use the visual syntax
of the JVCL language. In addition to providing a new kind of editor, the UI
plug-in reuses the existing Outline, Problems and Property views of Eclipse to
display the structure of the active composition, its current error and warning
markers and the attributes of its selected graph elements (Figure 3).

4.2 Run-Time Tools

Following a model-driven approach and by leveraging Eclipse’s incremental re-
source builders, JOpera’s JVCLtoJava compiler plug-in incrementally recompiles
the modified composition to Java executable code whenever a process is saved.
This Java code is then once more compiled by Eclipse’s integrated Java compiler
into bytecode. The latter is then automatically and transparently re-deployed
for execution by dynamically loading it into JOpera’s run-time execution kernel.
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Fig. 3. JOpera: Design-time Editor and Background Model Checker

Fig. 4. JOpera: Run-time Process Monitor and Debugger

At this point, a valid, compiled composition is ready to be executed. Unlike
most current model-driven environments, the progress of the execution can be
followed interactively in the same environment – and most important – using
the same visual syntax that was used to define it. Thus, not only JOpera fea-
tures a so-called reverse model transformation, where the original visual process
definition is extracted back from the compiled bytecode, but is also able to join
this with the current state of the execution. This way, the visual representation
is augmented at run-time with color-coded information representing the state of
the execution of each of the service invocations (e.g., white for not yet executed,
yellow for active, blue for finished, red representing a failure). Using the tools pro-
vided by the debugging UI plug-in (Figure 4), individual data parameters can be
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Fig. 5. Layered Architecture of the JOpera Process Execution Engine

inspected, so that – for example, in case a Web service is involved – the actual
SOAP request and response messages can be displayed for debugging purposes.
Similarly, in case a remote execution fails it is possible to distinguish whether
the remote host could not be reached from the actual failure of the execution.

The persistent state of the execution and the navigation over the control flow
graph of the process are managed by the JOpera Process Execution Engine.
Figure 5 shows its various interfaces, towards clients used to access the func-
tionality of processes and towards the local or remote programs invoked from a
process. Processes are executed by the engine’s run-time kernel, which delegates
the interaction with different component types to a set of service invocation

Fig. 6. Scaling the runtime kernel by replication
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adapters. Its API can be accessed using a variety of means so that processes
deployed in the kernel are automatically published, e.g., as Web and Grid ser-
vices [12]. In this regard, JOpera can be seen as an open platform for heteroge-
neous service
composition since it is possible to extend the kinds of services that can be com-
posed by adding user-defined service invocation plug-ins.

In order to handle large workloads, the run-time kernel can be distributed
on a cluster of computers as shown in Figure 6. Processes submitted by clients
for execution are stored into a central queue so that they can be scheduled for
execution on a node of the kernel having enough free capacity. As we are going
to discuss in the next section, depending on the number and characteristics of
the processes to be executed, one node of the cluster may not provide sufficient
execution capacity. In this case, additional nodes can be dynamically allocated
to the kernel by the autonomic manager component [11].

5 Evaluation

In this section we present some experimental results on the autonomic capabili-
ties of JOpera. They validate the architecture of the system and show that it is
possible to automatically deal with a significant set of failures and, in general,
changes in the execution environment (self-healing) but also react to changes in
the workload to be executed (self-configuration).

5.1 Self-healing Capabilities

Dealing with Outages in the Execution Cluster. In this experiment we
tested the system’s ability to cope with changes in the resource set allocated
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to the execution of the All vs. All process using a reduced input data set. The
workload consisted of 256 independent jobs, each requiring an average CPU time
of 4 minutes.

Figure 7 shows a trace of the experiment execution using the distributed
engine. The y-axis measures both the number of processors in the cluster as well
as the number of jobs (each job is allocated to one processor). The dashed line
represents the number of available processors. At time t, the Total line indicates
the number of jobs running in the cluster. The Rescheduled Jobs line indicates
how many jobs at a future point in time are going to be rescheduled due to a
failure of the node where they have been running. Thus, the area under this line
represent the amount of CPU time lost due to failures.

In general, Figure 7 demonstrates the ability of the kernel to adapt a running
computation to the set of available processors, which has shrunk and grown
many times throughout the experiment. The kernel is able to take advantage of
new machines by immediately scheduling jobs on them and to reschedule lost
jobs. Automatic rescheduling can be observed whenever a processor fails: the
availability line drops since less processors are available for the computation.
Upon such event, the kernel immediately retracts the jobs running on the failed
processors to reschedule them on another node. In the graph, this is shown by
the Rescheduled Jobs line closely following the number of available processors.
Since a copy of the input data used by a task is stored persistently by the kernel
as part of the state of the process execution, lost jobs can be recovered by sending
a copy of such input data to another processor.
Kernel Recovery. Recovery of the kernel ensures that process execution re-
sumes in a consistent state after a failure has interrupted the kernel’s normal
operation. In order to determine the overhead of such recovery, we measured the
time taken by the various recovery steps:

1. Re-loading process instance state information from persistent storage;
2. Navigating through them in order to determine what are the tasks to be

recovered;
3. Synchronizing the state of the tasks which are remotely executed.

The results of Figure 8 clearly indicate that the recovery times grow linearly
with the number of tasks that were active at the time of the failure. More
specifically, the most expensive operation is the loading of the instance data
from the database, which takes 5 milliseconds when there are no tasks to be
recovered, up to 50 seconds when loading 40 process instances composed of 100
tasks each. Since navigation is performed in main memory it is two orders of
magnitude faster: less than 0.4 seconds for 4000 tasks. Synchronization with
the cluster nodes is the step presenting the most time variability. This can be
explained by the fact that when a recovering kernel attempts to contact a remote
node to find out about the state of the task being recovered, it blocks either until
the remote node responds or until the connection times out, which is the case
if the remote node has failed. In addition to this timeout penalty all jobs lost
due to node failures are automatically rescheduled adding to the duration of the
recovery procedure.
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Fig. 8. Overhead of recovering a run-time kernel from persistent state

5.2 Self-configuration Capabilities

Whereas the previous section described the self-healing capabilities of the sys-
tem, where the kernel can survive failures of the underlying cluster environment,
in this section we explore how the kernel can automatically adapt its configu-
ration to optimally use the available resources. First, we show that the kernel
can be replicated in order to service a given workload with better performance.
Second, we show that the kernel, through its autonomic manager, can automati-
cally determine a suitable degree of replication for a given workload. To this end,
we have been analyzing the effect of a replication strategy where up to 7 copies
of the kernel are employed to run the parameter-sweep experiment described in
Section 2.3. The process uses from 200 up to 1000 concurrent tasks to computer
over an increasingly larger input dataset.

Figure 9 shows the results for the static replication strategy, where the number
of replicas (x-axis) of the kernel has been manually configured to study the effect
of replication on the process turnaround time (y-axis). Overall, replication has
a beneficial impact on turnaround time. The system scales well, as a 5-fold
increase in workload can be handled with constant time by a 7-fold increase in
the number of kernel replicas. Still, for smaller workloads, it is not necessary
to fully replicate the execution environment, as – due to Amdahl’s law – the
speedup is limited, as it can be observed for the smallest workload (200 tasks),
where no improvement can be observed after 2 kernels have been used.

With this, a trade-off can be identified between minimizing the turnaround
time of the processes while optimally using the available resources. Due to the
potential variability of the workloads, especially if a virtual experiment has been
made accessible through a Web service interface, it is important that the process
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Fig. 9. Impact of replicating the kernel over a cluster

execution infrastructure is capable of automatically adjusting its configuration
in response to the current workload.

Self-configuration can be achieved through an autonomic manager, which au-
tomatically adapts the degree of replication of the system to fit a specific work-
load. This component consists of 1) a basic resource manager, which keeps track
of the nodes that can be used to run replicas of the kernel; 2) a performance
monitoring component that observes the state of the system at regular intervals,
detects imbalances and uses the 3) kernel reconfiguration services, to modify the
number of replicas without disrupting normal system operation.

More precisely, the manager observes the aggregate number of tasks waiting
to be executed by each replica as well as the number of processes waiting to be
executed in the central queue (Figure 6). This value gives an indication of the
backlog of the system and if it exceeds a configurable threshold, a new replica is
added to the system. Conversely, if this value falls below a threshold, the replica
with the least amount of work is disabled and shut down.

Figure 10 illustrates the manager’s decisions by indicating when a worker has
been added or removed from the computation. The x-axis shows the turnaround
time, the y-axis the number of replicas involved in the computation (at least one
replica is kept active at all times) and the z-axis represents different workload
sizes, going from 200 tasks up to 1000 tasks.

These results show the capability of the autonomic manager to adapt the
system to the workload without any human intervention. A limited amount of
replicas was used to execute small workloads, whereas an increasingly larger
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number of replicas was used as the workload size increased. On the one hand,
clients benefit from this adaptation as it keeps turnaround times low and sta-
ble in spite of different workloads. On the other hand, the virtual laboratory
infrastructure can automatically adjust the amount of resources dedicated to
execute the client’s processes.

6 Conclusion

The paradigm shift from in-vitro to in-silico research, observed in many scientific
disciplines, has resulted in the challenge of building virtual laboratory platforms.
While early virtual laboratories consisted of a few applications integrated on the
user interface level (e.g. in a browser), today’s virtual laboratory environments
evolved into a workbench supporting teams of scientists in specifying, running,
monitoring and evaluating virtual experiments. Crucial to the success of such
platforms is its ability to automate all aspects of a computation to the largest
degree in order to make large scale computations manageable.

To this end, in this chapter we have presented the JOpera system, which
brings autonomic computing techniques to meet the requirements of virtual lab-
oratories. With it, all components (computing nodes, software tools, middleware
infrastructure) that deal with the specification and the execution of a virtual
experiment can be integrated using an autonomic platform. This platform com-
bines appropriate mechanisms and strategies to 1) raise the level of abstraction
at which virtual experiments can be defined, executed and debugged; 2) mask
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the complexity of dealing with outages in a distributed execution environment
and 3) automatically tune the system’s configuration for optimal performance.
All in all, thanks to its autonomic computing features, JOpera is a significant
step towards the goal of providing scientists with an environment that lets them
concentrate on doing science while avoiding to deal with the computer science.
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Abstract. We address failure location and restoration in both optical
and wireless ad hoc networks. First, we show how Maximum Likelihood
inference can improve failure location algorithms in the presence of false
and missing alarms. Next, we present two efficient algorithms for map-
ping an IP network on an optical network in such a way that it is pro-
tected against failures at the optical layer. The first algorithm offers
a method to formally verify the existence of a solution, contrary to all
other heuristics known to date. The second algorithm is a heuristic search
that takes capacity constraints in account. Both algorithms are shown
to be faster by orders of magnitude than existing solutions. Finally, we
develop a new routing algorithm for wireless mobile ad hoc networks,
adopting ideas from the Ant Colony Optimization metaheuristic. The
routing scheme can adapt to network and traffic changes and uses mul-
tipath routing and an efficient local repair mechanism to improve failure
resilience.

1 Introduction

An IP-over-fiber network is a typical building block of the Internet’s backbone.
It usually belongs to a single Internet Service Provider (ISP), and is centrally
monitored and managed. The physical infrastructure of an IP-over-fiber network
consists of a mesh of optical fibers usually put in the ground along roads, rails,
or power-lines. Currently, with the help of the Wavelength Division Multiplexing
(WDM) technique, a single optical fiber can carry many signals independently.
The IP links are realized as end-to-end connections routed on this mesh. The
topology formed by the IP links is a result of a centralized optimization process
and reflects the long term user demands. This stack is called an IP-over-WDM
network; its topology rarely changes.

In contrast, a wireless ad-hoc network consists of a group of nodes that com-
municate with each other through wireless radio channels. There is no fixed
infrastructure. Moreover, in some scenarios the nodes are mobile. There is no
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centralized control or overview. There are no designated routers: nodes serve as
routers for each other, and data packets are forwarded from node to node in a
multi-hop fashion. Wireless ad-hoc networks are not yet widely deployed, but
their first real-life applications are beginning to emerge.

Although the IP-over-WDM and wireless ad-hoc settings are quite different in
nature, they share a number of problems and challenges. One of them is failures
of network components. There are many possible sources of failures. In IP-over-
WDM networks it might be a fiber cut, a failure of optical equipment (switch,
router, amplifier), software errors, system misconfiguration, to name a few. In
fact, in real IP backbones failures occur almost every day [1]. Moreover, due
to huge capacities of optical fibers, even a single failure may result in a very
significant disruption of the network functionality. In wireless ad-hoc networks
the main source of failures is the instability of the wireless medium, which results
in frequent failures of existing links and arrivals of new links1. This happens in
terms of minutes [2]. The phenomenon is especially strong if we allow for mobility.
Another typical problem is the limited battery power of nodes, eventually causing
a node failure.

Failures often result from random events and thus are unavoidable. Therefore
one of the crucial properties of a communication network is handling failures. It
is twofold. First, a failure should be located. Since permanent and full network
monitoring is resource inefficient, the network operators often limit it, at the
cost of having only a partial knowledge of the present network state, such as
a set of end-to-end measurements. In this setting, locating a failure becomes a
nontrivial task. Second, once a failure is located, the traffic must be rerouted
and the network operability restored. The mechanisms ensuring this should take
into account all important failure scenarios and a number of physical constraints
(e.g., link capacities).

In this paper we address both issues: failure location and restoration. In Sec-
tion 2 we present the algorithms that can be used for failure location in IP-
over-WDM and wireless networks. Next we give a number of various algorithms
for failure restoration in Section 3 (optical networks) and in Section 4 (wireless
ad-hoc networks). Finally, in Section 5 we conclude the paper.

2 Failure Location

When a failure occurs in the network, monitoring devices (passive or active)
detect the failure and generate alarms to warn the management system. The
management system then needs to infer the location of the failures based on the
received alarms. The failure location task in communication networks is hindered
not only by the existence of multiple possible explanations for some sets of alarms
but also by corrupted alarms, which are those alarms that unexpectedly arrive
at the management system when they should not (false alarms), or those that
do not arrive at the management system when they should (missing alarms).

1 The terms link and edge, as well as node and vertex, will be used interchangeably.
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The nature of failures and available monitoring information differ significantly
in IP-over-WDM and wireless networks. Each type of network therefore needs
to have its own failure location methods. We present in this section two fail-
ure location algorithms that can be used to locate failures in IP-over-fiber and
wireless sensor networks, respectively.

2.1 Failure Location in IP-over-WDM Networks

Failures of optical devices often manifest themselves in the degradation or loss
of optical signals. Passive monitors are widely deployed in these networks to
assess the signal health. When a monitor observes a significant drop in the
signal quality, it sends an alarm to the management system. Alarms can be
generated by devices at the optical, SDH/SONET or IP layer. A full review of
the available monitoring information is provided in [3]. Failure location in IP-
over-WDM networks is known to be NP-hard [4] and several algorithms have
been proposed to solve this intractable problem in the literature (see [3] for
a complete review of the existing failure location algorithms). Although many
researchers [4] have suggested that failure location algorithms must be able to
cope with alarm errors, most location algorithms today avoid this issue because
of the complexity of covering all possible failures and corrupted alarms.

In optical networks, most network monitoring devices use a threshold to decide
whether they should send alarms or not. For instance, an SDH device counts the
number of errors it encounters in a time window and generates an alarm if
the count is greater than a threshold, otherwise it remains silent [5]. Network
operators have the option of trading false alarms for missing alarms and vice
versa by tuning the parameters of monitoring devices. We have studied the
failure location problem in an all-optical IP-over-WDM network when there are
false and missing alarms in [6]. We have rigorously shown that for a network
with binary alarms (alarms are either present or not), there is an asymmetry
between false alarms and missing alarms. We have proven that false alarms can
be corrected in polynomial time, but the correction of missing alarms is NP-
hard. The correction of missing alarms is indeed equivalent to the red-blue set
cover problem [7]. Because of this asymmetry, false alarms have a lesser effect on
the accuracy of the diagnosis results than missing alarms do. Network operators
therefore, when allowed, should set the threshold low to favor false alarms.

To handle corrupted alarms, we have proposed in [6] a polynomial time algo-
rithm that can accurately locate failures with corrupted alarms. The algorithm
takes as inputs the network topology and the positions of the monitors (this
information is available in most IP-over-WDM networks). The algorithm con-
sists of two steps. In the first step, called the Error Correction (EC ) step, the
algorithm uses a maximum likelihood reasoning to identify and correct the most
probable set of corrupted alarms. In the second step, called the MFAULT step,
the algorithm then uses a set-cover heuristic to locate the faulty components
with the cleaned alarms. The failure location algorithm performs well in simu-
lated networks of real topologies as shown in Fig. 1.
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Fig. 1. Performance of the proposed failure location algorithm in the NSFNET
topology [6]. The number of corrupted alarms is kept constant but the fraction of
missing alarms is varied from 0 to 1, where 1 means all corrupted alarms are missing
alarms. The algorithm is evaluated in terms of detection rate (DR), which is the frac-
tion of failures that are correctly identified; and false positive rate (FPR), which is the
fraction of failures that are wrongly identified. The algorithm achieves detection rates
above 75% in all settings and the fewer missing alarms we have, the more accurate the
algorithm is.

2.2 Failure Location in Wireless Sensor Networks

Contrary to IP-over-optical networks, qualities of wireless links vary significantly
in the order of minutes [2]. In wireless sensor networks, it is not essential to mon-
itor and locate all bad links (links with high loss rates), as the network should
quickly self-organize around them. The problem occurs when all links surround-
ing a sensor node are lossy, because of low battery or physical obstacles. In this
case, there is no other choice to access this node than to use a lossy link. The
failure location task in a wireless sensor network therefore mainly concerns the
identification of links that are consistently used to transport data but have bad
quality. Diagnosing sensor networks is challenging because the networks cannot
support much monitoring traffic and change their routing topologies frequently.

In [8] we have proposed to use only end-to-end application traffic to infer
the bad performing links in sensor networks. Due to the lack of other network
monitoring means, end-to-end application traffic is the most reliable source of
network performance indication in wireless sensor networks. The inference of
internal link properties given end-to-end observations is called network tomog-
raphy. A detailed survey of the current tomography techniques is provided in [3].
In most networks end-to-end data do not provide enough information to identify
the exact link loss rates but enough to identify the worst performing links.

We have introduced in [8] two inference techniques to infer lossy links in wire-
less sensor networks. The first algorithm (the LLIS algorithm) uses the maximum
likelihood inference principle, whereas the second one (the MCMC algorithm)
adopts the Bayesian principle. Both algorithms handle well noisy end-to-end
data and routing changes in wireless sensor networks.
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The LLIS algorithm first uses a threshold tp to determine whether the loss
rate on an end-to-end path is good or bad. After classifying all paths as good
and bad, the algorithm then tries to find the smallest set of links whose badness
would explain the badness of all paths in the network. The LLIS algorithm has
the advantage of being simple. But, it is sensitive to estimation errors of end-to-
end transmission rates and the choice of the path threshold tp. The end-to-end
transmission rates are only accurate when we have a sufficiently large number of
packets. To handle the cases where there are not sufficient data to calculate the
end-to-end transmission rates, we have proposed to use the second technique,
namely the Bayesian inference technique [9] that is less vulnerable to end-to-end
loss rates but also much more complex. The idea here is to try to generate a set
of possible link loss rates that can explain the observations of end-to-end data.
If the majority of the possible loss rates of a link are bad, then it is likely that
the link is bad, otherwise it is good. For details of the MCMC method, please
refer to [9].
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Fig. 2. Performance of the failure location algorithms (LLIS and MCMC) on the Sen-
sorscope [10] network. We consider only links that are used to route more than t
packets. As t increases, the algorithms become more accurate because of two reasons:
(1) end-to-end data are more reliable, and (2) there are less errors generated by routing
changes.

The performance of both inference algorithms (LLIS and MCMC) are eval-
uated by simulations and real network traces in [8]. Both algorithms achieve
accurate failure location results with high detection and low false positive rates
as shown in Fig. 2.

3 Failure Protection and Restoration in IP-over-WDM
Networks

The Wavelength Division Multiplexing (WDM) technique allows the same opti-
cal fiber to carry many signals independently, each using different wavelengths
(colors). In real networks the number of these signals is in the order of tens (in
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Fig. 3. IP-over-WDM network. (a) Given the physical and logical topologies, every
logical edge (here e) is mapped on the physical topology as a lightpath. (b) An example
of a mapping that is not survivable. After a failure of the indicated physical link, the
logical topology becomes disconnected (the node v gets separated from the rest of the
logical graph). (c) An example of a survivable mapping. One can easily check that after
any single physical link failure the logical topology remains connected.

the Sprint network the maximum number is 25 [1]). Specialized labs can reach
hundreds and thousands. Therefore a single failure of a physical fiber might have
very significant consequences on the network, and should be carefully handled.

In an IP-over-WDM network we distinguish two layers : the physical graph is
a mesh of optical fibers (edges) and optical switches (nodes). The logical graph is
a mesh of IP connections (edges) and IP routers (nodes). Since we assume that
on every optical switch lies an IP router, the sets of nodes at both layers are
identical. Each logical link is mapped on the physical topology as a lightpath (see
Fig. 3a). The set of all lightpaths defines a mapping of the logical graph on the
physical graph. To construct a mapping, many objectives should be taken into
account. One of them is the robustness to failures, or survivability. This issue
is especially important in the IP-over-WDM architectures, where one physical
link can carry many lightpaths, and thus where a single physical link failure may
bring down a large number of logical links. A survey of different approaches for
providing survivability of IP-over-WDM networks can be found in [3]. In this
paper we consider exclusively the IP restoration approach that was shown to
be effective and cost–efficient (see e.g., Sprint network [11]). In IP restoration,
failures are detected by IP routers, and alternative routes in the logical topology
are found. In order to enable this, the logical topology should remain connected
after a failure of a physical link; this in turn may be guaranteed by an appropriate
mapping of logical links on the physical topology. We call such a mapping a
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survivable mapping. In Fig. 3 we present two examples of mappings: the first one
is not survivable (b) and the second one is survivable (c).

The problem of finding a survivable mapping was first defined in [12], and
many algorithms solving this problem (with different variations) have been pro-
posed since then. In general, they can be divided into two groups: exact al-
gorithms based on Integer Linear Programming (ILP), and heuristics. The ILP
solutions can be found for example in [13,14]. They lead to an unacceptably high
complexity for networks of a non-trivially small size [15] (larger than a few tens
of nodes). This is because the survivable mapping problem is NP-complete [16].
To avoid this prohibitive complexity, the second line of approach uses various
heuristics, such as Tabu Search [12,17,18,14], Simulated Annealing [19] and oth-
ers [20,21].

In this paper we describe two recent algorithms solving the survivable mapping
problem: SMART [22,23] and FastSurv [24,25,26]. These algorithms are very
efficient, and somewhat complementary. SMART is the fastest and the most
scalable algorithm known to date. Moreover, the formal analysis of SMART [23]
has led to new applications: the formal verification of the existence of a survivable
mapping, and a tool tracing and repairing the vulnerable areas of the network.
SMART can be applied only if we assume unlimited capacities of the physical
links. In a more realistic scenario, the FastSurv algorithm shows its strengths.
FastSurv can be easily adapted to any set of real-life constraints, while still being
much faster and more scalable than the other heuristics known to date.

In the following subsections we present versions of the SMART and FastSurv
algorithms that solve the basic survivability problem (single physical edge fail-
ures, no capacity constraints). A number of specific properties of the algorithms
and their possible extensions are described in a later section.

We will use the following notation. The physical and logical topologies are
represented by undirected graphs Gphi = (V, P ) and Glog = (V, L), respectively.
V is the set of vertices (common for both layers), P and L are the sets of
undirected edges. Note that according to our assumption, we take V phi ≡ V log ≡
V . The mapping is represented in a form of a |P |×|L| binary matrix M = {mp,l},
where mp,l = 1 if the logical link l uses the physical link p in its mapping. A
mapping M is survivable if after the failure of any single physical link p ∈ P ,
the logical topology Glog remains connected. More formally, M is survivable, if
for every physical link p ∈ P the graph

Glog
p = Glog \ {l : mp,l = 1} (1)

is connected.

3.1 SMART

One of the main operations in the SMART algorithm is contraction [27]. Con-
tracting an edge e ∈ E in a graph G = (V, E) is deleting that edge and merging
its end–nodes into one. The result is called a contracted graph Gcon. We will also
allow contracting a set of edges A ⊂ E. Note that the order of the edges in A
does not affect the result.
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Fig. 4. Illustration of the SMART algorithm. We have four layers, from bottom to top:
physical topology Gphi, mapping, logical topology Glog and contracted logical topology
Gcon. During a run of the SMART algorithm, only the contracted topology and the
mapping change from one iteration to the next one. The logical and physical topologies
are included only for the context; therefore they are set in grey. At each iteration a
cycle C picked from the contracted topology is set in bold. This cycle is defined as a
set C of logical links. (Although C is always a cycle in the contracted topology Gcon, it
does not necessarily form a cycle in the logical topology Glog; see e.g., Iteration 2 and
3.) Next, a disjoint mapping MC is found for the set C. Then C is contracted in Gcon,
resulting in a new contracted logical topology Gcon used at the subsequent iteration.
Once Gcon has converged to a single node, the underlying mapping is survivable. If
there are still some unmapped logical links, they can be mapped in any way (e.g.,
a shortest path). Now we combine the lightpaths found in all iterations to obtain a
mapping M (last column) of the entire logical topology. The mapping M is survivable.

Now we present the idea of the SMART algorithm. First choose from the
logical topology Glog a cycle C ⊂ L and map it disjointly (i.e., not using the
same physical edge twice). The disjoint mapping of a logical cycle ensures that
this cycle will remain connected after any single physical link failure. In other
words, the cycle C is already mapped in a survivable way. Now, we contract
the cycle C in the logical topology Glog and repeat the above procedure for the
resulting graph. We iterate this operation until the contracted logical topology
converges to a single node, which guarantees survivability. The example run of
SMART is illustrated in Fig. 4. The pseudo-code of the SMART algorithm is:

Initialization. Contracted logical topology Gcon := Glog.
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Step 1: Pick a cycle C in Gcon.
Step 2: Use DisjointMap (see below) to map disjointly the cycle C on the phys-

ical topology. Denote this mapping by MC . (MC is of the size of M , with
non-zero elements appearing only in the rows corresponding to the logical
edges in C)

Step 3: Contract C in Gcon.
IF Gcon consists of one node, THEN RETURN survivable mapping M which
is a superposition of all disjoint mappings MC found before: M =

∨
i MCi .

END.
Step 4: GOTO Step 1.

DisjointMap. In Step 2 of the SMART algorithm, we have to find a disjoint
mapping of the set C of logical links. The problem is equivalent to the edge-
disjoint paths problem [28] that is proven to be NP-complete. Therefore we
apply the following heuristic we call DisjointMap . Let each physical edge have
a weight (these weights will be used exclusively within DisjointMap) and let this
weight be initially set to one. At each iteration, map the logical links from C
with shortest path. If no physical link is used more than once, a disjoint solution
is found. Otherwise, the weight of each physical link used more than once is
increased, and a new iteration starts.

Clearly, DisjointMap does not guarantee success. Therefore after several un-
successful iterations it fails. In this case, the SMART algorithm cannot proceed
to Step 3. Instead it comes back to Step 1 and picks another cycle; a choice of
a short cycle will help the heuristic to converge rapidly. After a rare event of
several consecutive failures of Step 2, the SMART algorithm quits returning the
partial mapping M =

∨
i MCi (some rows of M remain empty).

It is possible that even if the contracted graph Gcon converges to a single
node, there are still some unmapped logical links. They would form self-loops in
Gcon. We can map them in any way (e.g., with shortest path), which does not
affect the survivability of the resulting full mapping.

3.2 FastSurv

FastSurv is a heuristic algorithm that works in an iterative manner. It starts
from an initial mapping M(0) obtained with a simple method. At each iteration
t, the algorithm evaluates the current solution M(t) and tries to improve it by
rerouting a number of logical links.

The improvement phase is based on an observation made in [13] that a map-
ping is survivable if and only if no physical link is shared by all logical links
belonging to a cut-set of Glog.2 E.g., in Fig. 3b, logical links a and b share a
physical link and cause unsurvivability because {a, b} is a cut-set of Glog. In
Fig. 3c, however, a, e and f share a link, but this does not cause unsurvivability
because {a, e, f} is not a cut-set of Glog. An exact solution method based on this

2 A cut-set of a network is defined by a cut of the network: a cut is a partition of the
set of nodes V into two sets S and V − S, and the cut set defined by this cut is the
set of edges that have one endpoint in S and one in V − S.
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idea (such as the ILP method of [13]) needs to take all cut-sets into account as
hard constraints when constructing a mapping, which can be difficult and ineffi-
cient. In FastSurv, we use the notion of cut-sets in a heuristic way. Specifically,
the algorithm keeps track of information about which pairs of logical links li and
lj cause unsurvivability when they are routed together over the same physical
link, and which do not. If li and lj form a cut-set of size two (such as {a, b} in
Fig. 3), they cause unsurvivability each time they are routed together. If li and
lj are part of a larger cut-set (e.g., in Fig. 3, a and e are part of the larger cut-set
{a, c, e, f}), they only cause unsurvivability if all the other logical links of the
same cut-set are also routed on the same link. The routing of these other logical
links depends on the specific situation (the current mapping M(t)), which in
FastSurv changes slowly from iteration to iteration since each time a number of
logical links are rerouted. FastSurv updates at each iteration according to the
current mapping the information about which pairs of logical links cause unsur-
vivability when they share a link, and uses this information to reroute logical
links. This way, FastSurv can focus on the cut-sets which are important in the
current situation when trying to improve the survivability of the mapping. The
pseudo code for FastSurv is as follows:

Initialization. Calculate M(0) and set the number of iterations t to 0.
Step 1: Evaluate M(t).
Step 2: Update the information about which pairs of logical links cause un-

survivability when they share a physical link, based on the evaluation of
M(t).

Step 3: RETURN M(t) IF ((M(t) is survivable) OR (t = maximum number
of iterations)).

Step 4: Calculate M(t + 1) by rerouting logical links of M(t) using the infor-
mation of Step 2.

Step 5: Increase t and GOTO Step 1.

To obtain M(0), the logical links are routed on Gphi one after the other in
random order. We use shortest path routing, with the cost of a physical link p
equal to the number of logical links that are already routed over p. This simple
algorithm avoids that some links carry many more logical links than others,
which would make them more vulnerable with respect to survivability.

In Step 1, M(t) is evaluated by considering all physical links p of P individ-
ually, and investigating whether the remaining logical graph Glog

p (as defined in
formula (1)) is connected. Physical links whose failure leaves Glog

p disconnected
are called unsurvivable physical links, and the logical links that are routed over
them are called unsurvivable logical links. The algorithm uses a binary vector
U = {up}(t), where up(t) = 1 if p is an unsurvivable physical link in M(t) and
up(t) = 0 otherwise.

The information about which pairs of logical links cause unsurvivability when
they share a physical link is kept in a |L|× |L| matrix Z = {zli,lj}. Z is updated
according to the formulas (2)-(4) below. In formula (2), ali,lj(t) is defined as the
number of times that logical links li and lj share a physical link in M(t), and in
formula (3), bli,lj (t) is defined as the number of times that this shared physical
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link is unsurvivable in M(t). Dividing bli,lj (t) by ali,lj (t), one obtains a ratio
that can be seen as an estimate (based on the experience of iteration t) of the
probability that combining logical links li and lj on a physical link will make that
physical link unsurvivable. zli,lj is then defined in formula (4) as the exponential
average of this probability estimate (with α = 0.2 in the experiments).

ali,lj (t) =
∑

p

mp,li(t)mp,lj (t) ∀li, lj ∈ L (2)

bli,lj (t) =
∑

p

up(t)mp,li(t)mp,lj (t) ∀li, lj ∈ C (3)

zli,lj =

{
αzli,lj + (1 − α)

bli,lj
(t)

ali,lj
(t) if ali,lj (t) > 0

zli,lj if ali,lj (t) = 0
(4)

In Step 4, FastSurv reroutes all logical links that are unsurvivable in the
current mapping (survivable logical links are left mapped as they were), using
the probability estimates of Z. A shortest path algorithm is applied in which the
cost of a path for a logical link li is the probability that li will be unsurvivable
somewhere along its path. The probability Probli

path that li will be unsurvivable
on a path is the probability that it will be unsurvivable on at least one physical
link of the path. The probability Probli

p that li will be unsurvivable on a physical
link p of the path is the probability that li will cause unsurvivability when routed
together with any of the other logical links lj which use p,3 which is estimated
in zli,lj . We use formula (5) to estimate Probli

p and formula (6) to estimate
Probli

path.

Probli
p = 1 −

∏
lj on p

(1 − zli,lj ) (5)

Probli
path = 1 −

∏
p on path

(1 − Probli
p ) (6)

3.3 Time Complexity

SMART. The complexity of one iteration of SMART is dominated by the
DisjointMap function in Step 2 of the algorithm. Assuming a small size of the
cycles C (in order of O(1)), this heuristic has a complexity O(Dijkstra) that is
at most O(N2), where N is the number of nodes in the graph. To estimate the
number of iterations before SMART converges, we note that a single iteration
maps one cycle, which reduces the number of nodes by at least one. So we need
at most O(N) iterations. It results in a total complexity of SMART equal to
O(N3).

In practice, the physical graph is sparse, i.e., has got O(N) edges, which
reduces the complexity of O(Dijkstra) to O(N log N). Consequently, the com-
plexity of SMART drops to O(N2 log N).
3 Other logical links can already be using p either because they were not removed after

the previous iteration or because they were rerouted before li.
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FastSurv. Each iteration of FastSurv consists of an evaluation and a num-
ber of logical link reroutings. Rerouting a single logical link has a complexity
O(Dijkstra) (which is maximally of O(N2)) and the evaluation of survivability
has a maximal complexity of O(N4) [26]. Therefore, given that the maximum
number of logical links to be rerouted in one iteration is the total number of
logical links, which is O(N) (we follow [17], where logical networks of a fixed
degree are considered), a single iteration of FastSurv has a maximal complexity
of O(N4). Since the maximal number of iterations is a parameter independent
of N (and usually small), the overall complexity of FastSurv is O(N4) as well.

3.4 Results

ILP Approach. In [13] the necessary and sufficient conditions for a mapping to
be survivable are specified (see Subsection 3.2 for details). These conditions are
injected into the Integer Linear Programming (ILP) formulation, that is used to
find a survivable mapping. Then a simple relaxation (ILP-Relax) for the ILP is
introduced, which substantially reduces the processing time.

We ran the SMART and FastSurv algorithms for exactly the same topologies
as in [13], namely NSFNET as the physical topology and the same 300 random
graphs of degree d̄ = 3, 4 and 5 as those in [13] for the logical topologies. A
survivable mapping was found in all runs when using ILP, ILP-Relax, SMART
and FastSurv approaches. Therefore it is interesting to compare the run–times
of the algorithms. The machines were not the same, yet comparable (Sun Sparc
Ultra-10 vs. Pentium 500). However, we must stress that SMART and FastSurv
were implemented in pure C++, whereas ILP required a dedicated program
(CPLEX), which could significantly affect the results. The run-times from [13]
are reprinted in Table 1; the last two columns show the results of SMART and
FastSurv. The SMART algorithm is several orders of magnitude faster than
pure ILP, and about 3 orders of magnitude faster than the relaxed version of
ILP. FastSurv is about one order of magnitude slower than SMART. Note that,
in contrast to ILP, the degree of the logical topology hardly affects the run-time
of SMART and FastSurv.

Tabu Search and Large Topologies. One of the most efficient and widely
used techniques to solve a survivable mapping problem is Tabu Search. Our
implementation of Tabu Search follows the one in [12]; we will refer to it as
Tabu97. Since Tabu Search turned out to be substantially faster than the ILP
approach (described in the previous section), we carried out the simulations

Table 1. Run-times of ILP, SMART and FastSurv

Average degree d̄ ILP ILP-Relax SMART FastSurv
3 8.3 sec 1.3 sec 0.0028 sec 0.0117 sec
4 2 min 53 sec 1.5 sec 0.0028 sec 0.0155 sec
5 19 min 17 sec 2.0 sec 0.0029 sec 0.0166 sec
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for relatively large graphs and studied the scalability of Tabu Search, FastSurv
and SMART. To emulate larger real-life physical topologies we generate square
lattices where each vertex is connected by an edge to its four closest neighbors
only. Next a fraction f of these edges is deleted; we call them f -lattices. We
keep only these f -lattices that are 2–edge–connected.4 The parameter f ranges
from 0 to 0.35. The maximal value 0.35 was chosen in such a way that even the
smallest topologies could be 2–edge–connected. Since the logical graph is less
regular (for instance, there is no reason why it should be planar), the logical
topologies are 2-edge-connected random graphs of average vertex degree d̄ = 4.
The number of vertices ranges from N = 16 to 900.

In Fig. 5 we present the results obtained in simulations on a Pentium 4 ma-
chine, for the three algorithms implemented in C++. In Fig. 5a we investigate
the run–times of the Tabu97, FastSurv and SMART. The observed complex-
ities of the algorithms are polynomial, with O(N3.6) for Tabu97, O(N2.8) for
FastSurv, and O(N2.4) for SMART5. These values fit in the theoretical maximal
bounds that are O(N5), O(N4) and O(N3), respectively. Note that Tabu97 took
about 11 hours when solving a 900 node problem, which is a lot more than the
3 minutes measured for FastSurv and the 25 seconds for SMART.

Fig. 5b is related to the effectiveness of the algorithms, i.e., their ability to find
a survivable mapping. Although FastSurv and SMART are comparable (with a
slight advantage of the former), Tabu97 is significantly worse, especially for larger
topologies. It should be noted that for every N a fraction of studied topologies
is impossible to be mapped in a survivable way, which makes the upper bound
of the effectiveness smaller than one.

3.5 Extensions

In the previous sections we have defined the survivability problem by taking
into account single physical edge failures only, and assuming no capacity or
other real-life constraints. We have described and compared the versions of the
SMART and FastSurv algorithms, solving this basic survivability problem. How-
ever, these algorithms have a number of useful properties that can be exploited.
In that regard they turn out to differ substantially. In particular, a proper appli-
cation of the SMART algorithm gives us a valuable insight into the survivability
problem, whereas FastSurv can be easily extended to a setting with any set of
real-life constraints (e.g., limited fiber capacities). We briefly describe some of
the possible applications below.

Capacity Constraints. An optical fiber connection can only carry a limited
number of different lightpaths, which is a capacity constraint for each physical
4 A graph G is k-edge-connected if G is connected and every set of edges disconnecting

G has at least k edges [27]. Clearly, 2-edge-connectivity of both physical and logical
graphs is a necessary condition for the existence of a survivable mapping.

5 The measured value of SMART complexity O(N2.4) is larger than the theoretical
bound O(N2 log N). This is probably because the DisjointMap function often takes
several (not one) iterations to converge.
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Fig. 5. Test results for Tabu97, FastSurv and SMART using logical and physical net-
works of increasing number of nodes (16 − 900). The logical networks are random
graphs, whereas the physical networks are f -lattices, with f ranging from 0 till 0.35
with a step size of 0.05. Each data point represents an average over 1000 different test
problems and over all values for f . (a) shows the run time in CPU seconds as a function
of the number of nodes in a log-log scale. For each curve we indicate the exponent of
its power-law fit. (b) shows the fraction of successfully mapped topologies as a function
of the number of nodes.

link. Here we present an extended version of the FastSurv algorithm that can find
a survivable mapping while considering the limited physical link capacities. For
SMART such an extension is less straightforward due to its particular approach.

Like the basic FastSurv survivable routing algorithm, the extended FastSurv
algorithm starts from an initial solution that it tries to improve in subsequent
iterations. The algorithm uses two different types of iterations. Survivability
iterations are identical to the iterations of the basic FastSurv algorithm and
aim at improving survivability while relaxing the capacity constraint.Capacity
iterations reduce the number of capacity constraint violations while relaxing the
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survivability goal. The algorithm alternates between a number of survivability
iterations and a number of capacity iterations, and stops when it finds a mapping
that is survivable and satisfies all link capacity constraints (or when a maximum
number of iterations is reached).

In each capacity iteration, the algorithm tries to improve the current mapping
by rerouting logical links that were routed on overfull physical links. For the
rerouting, we use the shortest path routing where the cost of a physical link is
equal to the number of logical links already routed over this physical link divided
by the maximum capacity of the physical link, except when the number of logical
links is higher than or equal to the capacity, in which case the number is not
divided by the capacity. This way physical links that are full are avoided.

In a large series of tests, we have shown that the extended FastSurv algorithm
outperforms tabu search in terms of solution quality and time [26]. Moreover, it
is much more scalable.

Verification of the Existence of a Survivable Solution. If a heuristic
fails, nothing can be claimed about the existence of a survivable mapping. To
date, the only general method verifying the existence of a survivable mapping
was an exhaustive search run for the entire logical topology Glog. Due to NP-
completeness of the survivable mapping problem, the exhaustive approach is
not realizable in practice for topologies larger than a few nodes. The SMART
algorithm can substantially simplify this procedure. It turns out that it is suf-
ficient to verify only the resulting contracted graph Gcon (from a terminated
run), instead of Glog. This makes the verification of the existence of a survivable
mapping often possible for moderate and large topologies [23].

Tracing and Repairing the Vulnerable Areas in the Network. A second
novel application of SMART is tracing the vulnerable areas in the network and
pointing where new link(s) should be added to enable a survivable mapping.

Once we know that a particular pair of physical and logical topologies cannot
(or can difficultly) be mapped in a survivable way, a natural question is to
modify the topologies to enable such a mapping. Where should a new logical
link lnew be added? The SMART algorithm helps us answer this question. Run
SMART and wait until it terminates. Since a survivable mapping does not exist,
the contracted topology Gcon will not converge to a single node. Most probably
Gcon will shrink to a small structure (in comparison with the original logical
graph Glog) and the algorithm will give up. Consider the graph Gcon. Addition
of the new logical link lnew to the logical topology results in addition of lnew

also to Gcon. In [23] it was shown that if lnew forms a self-loop in Gcon, then its
introduction will never help survivability. In other words, to enable a survivable
mapping we should locate lnew in such a way, that it connects two different
vertices in Gcon.

The simulation results in [23] have shown that the SMART-aided introduction
of a new logical link greatly helps, contrary to a completely random choice of
location of this link.

Node, Span and Double Link Failures. So far we have only considered
survivability with respect to single physical link failures, which are the most
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common type of failures in WDM networks. Here, we describe how FastSurv
and SMART can be adapted to deal with more complicated failures such as
span, node and double link failures. A span is a bundle of physical links that
have been placed together for cost reasons (e.g., along railway and electricity
lines). A single cut can break all of these physical links at once, in which case
we speak of span failure [29]. We can also encounter node failures [30]; they
are the consequence of a failure of equipment at nodes, such as switches. In our
context a node failure is equivalent to a failure of all physical links neighboring
the node. Finally, we consider double–link failures, i.e., independent failures of
any two physical links [31]. Usually such a situation takes place when the second
failure occurs before the first one is repaired.

Adapting FastSurv to deal with span failures is straightforward. Although the
basic algorithm described in Subsection 3.2 kept track of which pairs of logical
links cause unsurvivability when they share a link, it should now consider which
pairs of logical links cause unsurvivability when they share a span. To adapt
SMART we have to modify only the DisjointMap function used in Step 2 to
produce span-disjoint mappings (instead of only link-disjoint).

The adaptation of FastSurv to deal with node failures is again not difficult: the
algorithm should consider which pairs of logical links cause unsurvivability when
they are routed together over the same node. Since a logical link can never be
routed survivably with respect to its end nodes, logical links incident on a node
should not be considered to share that node. For SMART, we make DisjointMap
generate node-disjoint mappings.

To deal with double link failures, FastSurv should investigate survivability
with respect to all pairs of physical links, and register which pairs of logical
links cause unsurvivability when routed over these pairs of physical links. In the
case of SMART, any logical cycle C processed by the algorithm can clearly be
disconnected by a double failure. In order to enable protection against double
failures we take small 3-edge-connected structures instead of this cycle, as shown
in Fig. 6. Note that the contracted logical graph can have multi-edges, and so
do these structures. The rest of the SMART algorithm remains unchanged. In
particular the DisjointMap heuristic searches for a link-disjoint mapping, as in
its original version.

 

Fig. 6. Examples of 3-edge-connected structures that might be used by SMART to
handle double failures
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3.6 Conclusion

Table 2 summarizes the efficiency and functionality of SMART and FastSurv,
and compares them with ILP and Tabu97. Both algorithms are much faster and
more scalable than any solution proposed to date. As for the possible exten-
sions and particular properties, the two algorithms can be regarded as being
complementary. SMART provides us with a method of formal verification of the
existence of a survivable mapping and a tool tracing and repairing the vulnera-
ble areas of the network, whereas FastSurv can be easily adapted to any set of
real-life requirements such as capacity constraints.

Table 2. Comparison of the efficiency and functionalities of SMART, FastSurv, ILP
and Tabu97. The question mark “?” means that the option might be possible to realize,
but that, to the best of our knowledge, no one has yet done it to date.

Functionality SMART FastSurv ILP Tabu
fast and scalable �� � × ×

capacity and other constraints × � � �
verification of a solution existence � × � ×

node failures � � ? ?
span failures � � ? ?

multiple failures � � ? ?
tracing and repairing the vulnerable areas � × × ×

4 Failure Restoration in Mobile Ad Hoc Networks by
Rerouting

Mobile Ad Hoc Networks (MANETs) [32] are wireless ad hoc networks in which
all nodes are mobile. Due to this mobility, the network topology, which is formed
by the wireless links established between nodes that are in each other’s vicinity, is
dynamic, with regular failures of existing links and arrivals of new links. Dealing
with these constant changes is made more difficult by other challenges, such as
the low bandwidth of the shared wireless channel, which is mainly due to the need
to use inefficient decentralized mechanisms for medium access control, the limited
resources of mobile devices (battery power and memory), the high error rates
and signal interference in wireless communication, the lack of central control,
etc.. In this setting a failure restoration problem boils down to constructing a
scalable and highly adaptive routing algorithm. It should also be robust and
efficient, and work in a distributed way. The abilities to deal with link failures
and to take advantage of new opportunities arising from the appearance of new
links are crucial.

In this section, we describe a novel routing algorithm for MANETs which is
adaptive and failure resilient. It takes inspiration from Ant Colony Optimization
(ACO) [33] and the related class of ACO routing algorithms [34], and uses both
reactive and proactive strategies to deal with the dynamic MANET topology.
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In what follows, we first give a short overview of the current state of the art in
MANET routing. Next, we give an introduction to the field of ACO and ACO
routing. Then we describe the working of our algorithm, and finally we provide
some results from simulation tests.

4.1 MANET Routing

Over the course of the last 10 years a large number of different MANET routing
protocols have been proposed (see [32,35] for overviews). All these algorithms
deal with the dynamic aspects of MANETs in their own way, using reactive or
proactive behavior, or a combination of both. Reactive behavior means that an
algorithm gathers routing information in response to an event, such as the start
of a data session or the failure of a link on an existing route. Proactive behavior
means that the algorithm also gathers routing information at other times, so
that it is readily available when the event happens.

In the MANET literature, the classical distinction is between table-driven,
on-demand and hybrid algorithms. Table-driven algorithms, such as e.g. Destina-
tion-Sequenced Distance-Vector Routing (DSDV) [36], are purely proactive: all
nodes try to maintain routes to all other nodes at all times. This means that they
need to keep track of all topology changes, which can become difficult if there
are a lot of nodes or if they are very mobile. On-demand algorithms, such as
Ad-Hoc On-Demand Distance Vector Routing (AODV) [37] and Dynamic Source
Routing (DSR) [38], are purely reactive: nodes only gather routing information
when a data session to a new destination starts, or when a route that is in use
fails. Reactive algorithms are generally more scalable since they greatly reduce
the overhead [39], but they can suffer from oscillations in performance because
they are never prepared for disruptive events. In practice, many algorithms are
hybrid algorithms (e.g. Zone Routing Protocol (ZRP) [40]), using both proactive
and reactive components in order to combine the best of both worlds.

The traditional distinction between table-driven, on-demand and hybrid pro-
tocols tells only part of the story. One can classify MANET routing algorithms
along a wide range of other dimensions. An important classification with respect
to the work presented here is the difference between single path and multi-path
algorithms. Many algorithms that use more than one path between each source
and destination have been proposed (see [41] for an overview). They differ in the
way multiple paths are set up, maintained and used. Multiple paths can serve
as a way to enhance throughput, or as a way to increase robustness to link fail-
ures by providing backup paths. A disadvantage is that more overhead is needed
because more than one path needs to be maintained.

4.2 ACO and ACO Routing

ACO (Ant Colony Optimization) is a framework for optimization inspired by
the mechanisms used by ant colonies to find the shortest path between their
nest and a food source [33]. Ants leave behind a trail of a volatile chemical
substance called pheromone; they also move preferentially in the direction of a
higher pheromone intensity [42]. Since shorter paths can be completed quicker
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and more frequently by the ants, they get marked with higher pheromone in-
tensity. These paths therefore attract more ants, which in turn increases the
pheromone level. Finally, there is convergence of the majority of the ants onto
the shortest path, with only a few ants continuing exploration of other paths.
In ACO, artificial ants build solutions to an optimization problem guided by an
artificial pheromone matrix, and update the matrix according to the quality of
the solution they have constructed. ACO was first developed as a meta-heuristic
for combinatorial optimization, and its first applications were for the travelling
salesman problem [43]. Later, it has been applied to a whole range of different
problems (see [33] for an overview).

The application of the ACO ideas to the problem of routing in wired networks
led to the development of ACO routing algorithms [34], such as Ant Based Con-
trol (ABC) [44] and AntNet [45]. The main idea behind ACO routing is the ac-
quisition of routing information through path sampling using ant agents. These
lightweight agents are generated concurrently and independently by the nodes,
with the task to try out a path to an assigned destination. An ant going from
source s to destination d collects information about the cost of its path (e.g.
end-to-end delay) and, tracing its way back from d to s, uses this information to
update routing tables at intermediate nodes. The routing tables contain values
indicating the relative goodness of each routing decision. The routing tables are
updated by the ants and they are also used by the ants to find their way to their
destination: at each node ants stochastically choose a next hop, giving higher
probability to those next hops that are associated with higher goodness values.
This way, the routing table entries play the role of artificial pheromone values in
the ant learning process. The routing tables are therefore also called pheromone
tables, and their entries pheromone values. The continuous generation of ants
results in the availability at each node of a bundle of paths, each with an esti-
mated measure of quality. These paths are used to route data packets. Like the
ants, data packets are routed stochastically, choosing with a higher probability
those links associated with higher pheromone values. This way data for a same
destination are adaptively spread over multiple paths (but with a preference for
the best paths), resulting in load balancing.

4.3 A Novel ACO Routing Algorithm for MANETs

ACO routing algorithms have properties that are useful for MANETs. First of
all, the continuous exploration of paths provides adaptivity, which is crucial
in the dynamic MANET environment. Although ACO routing algorithms for
wired networks were mainly designed to provide adaptivity with respect to data
load changes, the same techniques can be extended to provide adaptivity with
respect to topology changes, allowing for the use of new links and adjusting
routing information after link failures. Second, the use of multiple paths provides
a way to both increase throughput via data load spreading and to proactively
deal with link failures by providing backup paths. Finally, the fact that routing
information is learned from the accumulated experience of agents that sample
full paths offers robustness, in two different ways. First of all, loss of agents
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is not a problem: it leads to slower updates, but not to wrong information.
Second, route cost estimates are based on real experiences. This is in contrast
with information bootstrapping techniques used in traditional distance vector
routing algorithms [46], where nodes calculate route cost estimates based on the
estimates reported by neighboring nodes. Although information bootstrapping
is an efficient process, it is slow to converge after changes and can easily lead to
errors in dynamic environments. Sampling full paths provides extra guarantees
with respect to the correctness of the information.

There are however also disadvantages for MANETs in ACO routing. Firstly,
ACO routing algorithms are normally purely proactive, maintaining routing in-
formation between all pairs of nodes at all times. Following this approach, a lot
of unnecessary overhead is created, making the algorithm less efficient. Also, the
lack of reactive components decreases adaptivity, because no specific reactions
are triggered after a disruptive event. A second important disadvantage of ACO
routing algorithms is the fact that the repeated path sampling using ant agents
can come into conflict with the limited bandwidth in MANETs. Moreover, the
high change rate of MANETs commands a higher sampling rate to keep routing
information up to date, further aggravating the problem.

Here we present AntHocNet, an attempt to build an efficient, adaptive and ro-
bust routing algorithm for MANETs using the design principles from ACO rout-
ing. The algorithm has a hybrid architecture, combining a reactive path setup
phase, which is typical for purely reactive algorithms such as AODV [37], with
proactive monitoring and exploration using sampling with ant agents. Further re-
active elements are introduced for dealing with link failures: while proactive path
sampling allows for the updating of information about current paths and for the
finding of new paths, the use of mechanisms to reactively deal with link failures
enhances direct adaptivity. A last important feature of AntHocNet is the fact
that the process of path sampling using ant agents is supported by a lightweight
information bootstrapping mechanism: the routing information learned by the
ant agents is spread over the networks in a process we call pheromone diffusion.
Although information bootstrapping is more efficient, it is less reliable and ro-
bust than ant sampling, and it is therefore used as a secondary process to guide
and speed up the learning by the ants.

In what follows, we first give a general overview of the AntHocNet algorithm,
and then discuss each of its components in more detail. For other, more detailed
descriptions of the algorithm, we refer the interested reader to [47,48,49,50,51].

Overview of the Algorithm. In AntHocNet nodes only actively gather and
maintain routing information for destinations they are currently communicating
with. At the start of a communication session, the source node gathers initial
routing information in a reactive path setup phase. During the course of the
session, the source node engages in proactive route maintenance and exploration.
To this end, it periodically sends out ant-like agents, to sample paths to the
destination, very much like in ACO routing algorithms for wired networks. This
basic mechanism is supported by the previously discussed pheromone diffusion
process: the routing information obtained via repeated ant sampling is spread
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between the nodes of the MANET via information bootstrapping to provide
secondary guidance. When a link failure is detected during the course of a session,
this is dealt with using reactive link failure mechanisms, such as a local route
repair mechanism and the spreading of failure notification messages. The use of
all of these mechanisms together results in the availability of a set of multiple
paths for each communication session. Data packets are spread stochastically
over these different paths, according to the learned pheromone tables.

Pheromone Routing Tables. Like other ACO routing algorithms, AntHocNet
uses the datagram model of IP networks, where paths are expressed in the form
of tables kept locally at each node. A pheromone table T i at node i is a matrix,
where each entry T i

nd ∈ R of the table is an artificial pheromone value indicating
the estimated goodness of going from i over neighbor n to reach destination d.
Goodness is a combined measure of path end-to-end delay and number of hops.
Since AntHocNet only maintains information about destinations that are active
in a communication session, and since the neighbors of a node change continually,
the filling of the pheromone tables is sparse and dynamic. The learned tables
are used to route data packets in a stochastic forwarding process (see further).

Reactive Path Setup. When a source node s starts a communication session
with a destination node d, and it does not have routing information for d avail-
able, it broadcasts a reactive forward ant to obtain initial information. At each
node, the ant is either unicast or broadcast, depending on whether the current
node has or has not routing information for d. If pheromone information is avail-
able, the ant chooses its next hop n with the probability Pnd which depends on
the relative goodness of n as a next hop, expressed in the pheromone variable
T i

nd:

Pnd =
(T i

nd)β∑
j∈N i

d
(T i

jd)β
, β ≥ 1, (7)

where N i
d is the set of neighbors of i over which a path to d is known, and β

is a parameter value that controls the exploratory behavior of the ants. If no
pheromone information is available, the ant is broadcast. Due to subsequent
broadcasts, many duplicate copies of the same ant travel to the destination. A
node that receives multiple copies only accepts the first and discards the others.
This way, only one path is set up initially. During the course of the commu-
nication session more paths are added via the proactive path exploration and
maintenance mechanism to provide a mesh of multiple paths for data forwarding.

Each forward ant keeps a list P = [1, 2, . . . , d] of the nodes it has visited.
Upon arrival at the destination d, it is converted into a backward ant that travels
back to the source retracing P . At each intermediate node i ∈ P (i < d), the
backward ant reads a locally maintained estimate T̂ i

i+1 of the time it takes to
reach the neighbor i+1 the ant is coming from. The time T̂ i

d it would take a data
packet to reach d from i over P is calculated incrementally as the sum of the
local estimates T̂ j

j+1 gathered by the ant between i and d. A pheromone value
is a goodness measure, expressed as an inverted cost, which takes into account
both end-to-end delay and number of hops. It has the dimension of an inverted
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time. Therefore, to calculate the pheromone update value τ i
d, we combine the

estimated delay T̂ i
d with the number of hops to the destination h as follows:

τ i
d =

(
T̂ i

d + hThop

2

)−1

, (8)

where Thop is a fixed value representing the time to take one hop in unloaded
conditions. Defining τ i

d like this is a way to avoid possibly large oscillations in
the time estimates gathered by the ants (e.g., due to local bursts of traffic) and
to take into account both end-to-end delay and number of hops. The pheromone
value T i

nd is updated as follows:

T i
nd = γT i

nd + (1 − γ)τ i
d, γ ∈ [0, 1]. (9)

Once the backward ant makes it back to the source, a full path is set up and
the source can start sending data. If the backward ant does not arrive for some
reason, a timer will run out at the source, and the whole process is started again.
Proactive Path Maintenance and Exploration. During the course of a
session, source nodes send out proactive forward ants to update the information
about currently used paths and to try to find new paths. They follow pheromone
and update routing tables in the same way as reactive forward ants. As pointed
out previously, the ant sending rate needed to keep up with the constant changes
of a MANET environment is quite high, so that the process comes into conflict
with the typically limited bandwidth in such networks. Moreover, to find entirely
new paths, blind exploration through random walks or broadcasts would be
needed, again leading to excessive bandwidth consumption. Therefore, we use
a supporting process, called pheromone diffusion. It provides a second way of
updating pheromone information about existing paths and can give information
to guide exploratory behavior.

Pheromone diffusion is implemented using hello messages, broadcast period-
ically and asynchronously by the nodes. In these messages, the sending node n
places a list of destinations it has information about, including for each of these
destinations d the best pheromone value T n

m∗d, m
∗ ∈ Nn

d , which n has available
for d. A node i receiving the hello message from n first registers that n is its
neighbor. Then, for each destination d listed in the message, it can derive an
estimate of the goodness of going from i to d over n, combining the cost of hop-
ping from i to n with the reported pheromone value T n

m∗d. We call the obtained
estimate the bootstrapped pheromone variable Bi

nd, since it is built up using an
estimate which is non-local to i. This bootstrapped pheromone variable can in
turn be forwarded in the next hello message sent out by i, giving rise to a boot-
strapped pheromone field over the MANET. This way of spreading information
over a network is based on information bootstrapping techniques used in dy-
namic programming and it is often used in traditional routing algorithms for
wired networks [46]. It is an efficient process, but can be slow to converge.

For the maintenance of existing paths, a bootstrapped pheromone is used di-
rectly. If i already has a pheromone entry T i

nd in its routing table for destination
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d going over neighbor n, Bi
nd is treated as an update of the goodness estimate

of this path, and is used directly to replace T i
nd. Due to the slow multi-step

forwarding of bootstrapped pheromone in hello messages, this information does
not provide the most accurate view of the current situation. However, the infor-
mation is obtained via a lightweight, efficient process, and is complemented by
the explicit path updating done by the ants. In this way we have two updating
frequencies in the path maintenance process.

For path exploration, a bootstrapped pheromone is used indirectly. If i does
not yet have a value for T i

nd in its routing table, Bi
nd could indicate a possible

new path from i to d over n. However, this path has never been sampled ex-
plicitly by an ant, and due to the slow convergence of the multi-step pheromone
bootstrapping process it could be inaccurate, containing undetected loops or
dangling links. It is therefore not used directly for data forwarding. It is seen as
a sort of virtual pheromone, which needs to be tested. Proactive forward ants
will use both the regular and the virtual pheromone to find their way to the
destination, so that they can test the proposed new paths. This way, promis-
ing virtual pheromone is investigated, and if the investigation is successful it is
turned into a regular path that can be used for data.

Reactively Dealing with Link Failures. Nodes can detect link failures when
unicast transmissions fail, or when expected periodic hello messages were not re-
ceived from a neighbor. When a neighbor disappears, the node takes a number
of actions. First, it removes the neighbor from its neighbor table and all associ-
ated entries from its pheromone table. Next, the node broadcasts a link failure
message to notify other nodes of the changed situation. The message contains a
list of the destinations to which the node lost its best path, and the new best
pheromone to this destination (if it still has entries for the destination). All its
neighbors receive the message and update their pheromone table using the new
estimates. If they in turn lost their best only path to a destination, they will
broadcast a message on to their neighbors, until all concerned nodes are notified
of the new situation.

If after the link failure an intermediate node is left with data packets to send
but without paths to their destination, the node will start a local route repair.
The node broadcasts a route repair ant that travels to the involved destination
like a reactive forward ant: it follows available routing information when it can
and is broadcast otherwise. One important difference is that it has a restricted
number of broadcasts so that its proliferation is limited. If the local repair fails,
the node broadcasts a link failure message to notify other nodes. If the source
of a communication session is left with no paths to the destination, it starts a
new path setup phase.

Stochastic Data Routing. Data are forwarded according to the values of the
pheromone entries. Like in other ACO routing algorithms, nodes in AntHocNet
forward data stochastically. When a node has multiple next hops for the desti-
nation d of the data, it randomly selects one of them, with probability Pnd. Pnd

is calculated in the same way as for reactive forward ants, using equation (7).
However, a higher value for the exponent β is used in order to avoid the least



254 F. Ducatelle et al.

good paths. The probabilistic routing strategy leads to data load spreading ac-
cording to the estimated quality of the paths. If estimates are kept up-to-date,
this leads to automatic load balancing. When a path is clearly worse than others,
it is avoided, and its congestion is relieved. Other paths get more traffic, leading
to higher congestion, which makes their end-to-end delay increase. By adapting
the data traffic, the nodes spread the data load evenly over the network.

4.4 Simulation Results

AntHocNet’s performance was evaluated in an extensive set of simulation tests
using QualNet [52]. We have studied the behavior of the algorithm under dif-
ferent conditions for network size, connectivity and change rate, radio channel
capacity, data traffic patterns, and node mobility. Performance was measured in
terms of data delivery ratio, end-to-end packet delay and delay jitter as mea-
sures of effectiveness, and routing overhead in number of control packets per
successfully delivered data packet as measure of efficiency. To assess the perfor-
mance of our algorithm relative to the state of the art in the field, we compare
to AODV [37], which is a de facto standard algorithm and is commonly used in
comparative studies. Due to space limitations, we only present a small subset
of the results of these simulation tests. For the full set of experiments we again
refer to [47,48,49,50,51].

For the tests reported on here, we used MANET scenarios in which 100 nodes
are randomly placed in an area of 3000 × 1000 m2. Each test lasts 900 seconds.
Data traffic is generated by 20 constant bit rate (CBR) sources sending one 64-
byte packet per second. Each source starts sending at a random time between
0 and 180 seconds after the start of the simulation, and keeps sending until the
end. The radio range of the nodes is 300 meters, and the data rate is 2 Mbit/s. At
the MAC layer we use the IEEE 802.11b DCF protocol as is common in MANET
research. The nodes move according to the random waypoint (RWP) mobility
model [38]: they choose a random destination point and a random speed, move
to the chosen point with the chosen speed, and then rest at that point for a
fixed amount of pause time before they choose a new destination and speed.
The speed is chosen between 0 and 20 m/s. The pause time is the variable over
which we compare the algorithms.

We created experiments using pause times from 0 up to 480 seconds. Higher
pause times lead to slower changing environments (so less link failures), but also
to sparser scenarios and hence to lower connectivity. This is because moving
nodes tend to cluster around the middle of the MANET area, whereas nodes
that pause are spread out randomly (see [53] for properties of the node distribu-
tion under RWP mobility). For each pause time we made 10 different test runs.
The results of the tests are presented in Figs. 7 (average delay and delivery ratio)
and 8 (average jitter and overhead). AntHocNet shows much better effectiveness
than AODV, in terms of average delay, delivery ratio and jitter. AODV has better
efficiency, measured as routing overhead, but the difference is rather small. The
bad efficiency for high pause times is due to the reduced connectivity: AntHocNet
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has a high frequency to retry failed path setups, leading to high overhead in case
source and destination are not connected.
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Fig. 7. Average delay and delivery ratio for increasing pause times
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In order to illustrate the difference in adaptivity between AntHocNet and
AODV, we show the detailed evolution of the end-to-end delay (rather than
showing average values) over the course of a test run in which some important
events take place. We use the same setup as before, but keep the pause time
constant at 30 seconds, and use different data traffic patterns in order to intro-
duce disruptive events. 10 randomly chosen sources start to send to one single
destination between 100 and 110 seconds after the simulation begins, and they
keep on sending until the end. After 300 seconds, 20 new sources start to send
to a different single destination. 200 seconds later these stop again. All sources
send four 64 byte packets per second. Fig. 9 shows, for one communication
session,how the end-to-end delay, averaged per 10 seconds, evolves throughout
the simulation. The arrival of 20 new sessions after 300 seconds leads to a long
period of unstable behavior. The congestion caused by the increased data traf-
fic not only leads to longer queueing times, but also to higher interference that
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can cause transmissions to fail. Since failed transmissions are usually treated as
link failures by routing algorithms, they often trigger strong reactions. As can
be seen in the figure, AntHocNet deals with this challenge in a much smoother
way than AODV. After the end of the 20 sessions, at second 500, the situation
stabilizes again, but faster for AntHocNet than for AODV.
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Fig. 9. Evolution of the end-to-end delay over the course of a test run

4.5 Conclusions

In this section we have described AntHocNet, a novel ACO routing algorithm
for MANETs. It is a hybrid algorithm that combines reactive route setup with
proactive route maintenance and exploration. The main learning mechanism
based on path sampling using ant agents is supported by a lightweight informa-
tion bootstrapping process. Link failures are also dealt with in a hybrid way:
proactive protection is provided by the use of multiple paths, whereas reactive
mechanisms like route repair and link failure notification messages are used to en-
hance the adaptivity in the highly mobile MANET environments. In simulation
tests, we show that AntHocNet can outperform AODV in different environments,
and for different evaluation measures. A detailed examination of the evolution
of the algorithm’s performance during the course of an experiment illustrates its
adaptivity.

5 Conclusion

In this paper we have presented a number of recent algorithms for failure location
and restoration in both IP-over-fiber and wireless ad-hoc networks.

For failure location we use a Maximum Likelihood inference to correct error
alarms. This approach, together with a standard set-cover heuristic, turned out
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to handle false and missing alarms far better than the techniques proposed to
date.

For failure restoration in IP-over-fiber networks we described two different al-
gorithms, SMART and FastSurv. Both are much faster and more scalable than
any solution proposed to date. Moreover, each approach has a number of possi-
ble extensions. SMART provides us with a novel method of formal verification
of the existence of a survivable mapping and a tool tracing and repairing the
vulnerable areas of the network, whereas FastSurv can be easily adapted to any
set of real-life requirements such as capacity constraints.

In wireless ad-hoc networks the connectivity changes so quickly, that failure
restoration is in fact equivalent to a highly adaptive routing algorithm. Therefore
we addressed this problem separately, and proposed AntHocNet - a routing algo-
rithm inspired by Ant Colony Optimization. AntHocNet outperforms standard
algorithms in terms of efficiency and scalability.
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Abstract. Classical measures of network robustness are the number of
disjoint paths between two nodes and the size of a smallest cut separating
them. In the Internet, the paths that traffic can take are constrained by
the routing policies of the individual autonomous systems (ASs). These
policies mainly depend on the economic relationships between ASs, e.g.,
customer-provider or peer-to-peer. Paths that are consistent with these
policies can be modeled as valley-free paths. We give an overview of
existing approaches to the inference of AS relationships, and we survey
recent results concerning the problem of computing a maximum number
of disjoint valley-free paths between two given nodes, and the problem of
computing a smallest set of nodes whose removal disconnects two given
nodes with respect to all valley-free paths. For both problems, we discuss
NP-hardness and inapproximability results, approximation algorithms,
and exact algorithms based on branch-and-bound techniques. We also
summarize experimental findings that have been obtained with these
algorithms in a comparison of different graph models of the AS-level
Internet with respect to robustness properties.

1 Introduction

A substantial part of today’s communication takes place over the Internet. There-
fore, the robustness of the Internet is an issue of fundamental importance. A clas-
sical method for assessing the robustness of a network is to model the network
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topology as a graph and compute the number of vertex-disjoint or edge-disjoint
paths between pairs of nodes, or to compute the sizes of vertex cuts or edge cuts.
This method has been used to analyze the robustness of the Internet as well.
For example, the number of vertex- and edge-disjoint paths is computed for an
undirected model of the Internet topology on the level of autonomous systems
(ASs) as well as for the topology of one Internet Service Provider in [27]. Here,
the undirected model of the AS-level Internet consists of an undirected graph
that has an undirected edge between two ASs if there is at least one physical link
between them. Such a model is also referred to as an (undirected) AS graph. It
turns out, however, that the way traffic is routed in the Internet is not captured
accurately if standard models of graphs and paths are used. This is due to the
routing policies that restrict the paths along which traffic can flow; these routing
policies depend mainly on the economic relationships between ASs. Therefore, it
becomes necessary to incorporate the effects of routing policies into the network
model considered; this is achieved by the valley-free path model.

In this paper, we give a short overview of different methods that have been
used to infer the relationships between ASs, and we survey recent algorithmic
results on the generalization of classical robustness measures to the valley-free
path model. While these robustness measures can be computed efficiently in the
standard graph model using network flow techniques (see, e.g., [2]), it turns out
that the generalization to the valley-free path model makes them computation-
ally more difficult.

We discuss complexity and inapproximability results as well as efficient ap-
proximation algorithms with provable performance guarantees that have been
presented in [10,11]. Furthermore, we outline exact algorithms presented in [12]
that make it possible to obtain optimal results on Internet graphs of realistic
size in reasonable time. We also summarize some of the experimental findings
of [12], which are concerned with vertex-disjoint paths and vertex cuts in the
valley-free path model computed with these algorithms for real Internet graphs.

We consider the Internet on the level of ASs. An AS is a subnetwork under
separate administrative control. Individual ASs can consist of tens to thousands
of routers and hosts. Two ASs that are connected by at least one physical link
exchange routing information using the Border Gateway Protocol (BGP).

As a prerequisite for a robustness analysis of the Internet, it is necessary to
understand the routes along which traffic can be sent. Each AS uses a local
routing policy that determines which routes are announced to which neighbor-
ing ASs. For commercial reasons, details about these policies are not publicly
available. This makes it difficult to create an accurate model that can be used
in the analysis of the robustness of the Internet.

Information about the types of commercial agreements between ASs can be
found in [17,18,4]. The economic relationships between ASs have a significant
impact on Internet routing. For example, the routing policies arising from these
economic relationships have been shown to be a contributing factor in BGP path
inflation [15,25,26] and slow route convergence [20]. Therefore, an undirected
graph model of the Internet that does not incorporate the effects of routing
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policies is too simplistic. On the other hand, it would be infeasible to include all
aspects of the many different commercial agreements in the model. Therefore,
Gao [14] proposed a classification of AS relationships into three main categories:
customer-provider relationships, peer-to-peer relationships, and sibling relation-
ships.

If two ASs are in a customer-provider relationship, the provider announces all
its routes (i.e., the set of all paths from that provider to some destination that
are stored in its routing table) to the customer, but the customer announces to
the provider only its own routes (i.e., routes with a destination inside its own AS)
and routes of its customers. Roughly speaking, this implies that the customer
can send traffic for arbitrary destinations to the provider, but the provider can
send traffic to the customer only if the destination is in the customer’s AS or
in an AS that is itself a customer of the customer. This policy is used because
customers do not want to forward traffic from one provider to another provider.
If two ASs are in a peer-to-peer relationship, they exchange their own routes
and routes of their customers, but not routes of their providers or other peers. If
they are siblings, they exchange all their routes. Sibling relationships typically
exist between different ASs owned by the same company.

It was observed by Gao [14] that valid paths between ASs follow a particular
structure: no path contains more than one peer-to-peer relationship, and once
a provider-customer or peer-to-peer relationship is encountered on the path, no
customer-provider relationship can follow. If we imagine providers at a higher
level than their customers and peers at the same level, the allowed types of paths
are “only up,” “only down,” and “first up and then down.” Valid paths can have
only one “peak” (which can consist of a single AS or of two ASs connected by a
peer-to-peer relationship) and they must not contain “valleys.” Therefore, such
paths are called valley-free paths [14]. A formal definition of valley-free paths
will be given in Section 3. In the remainder of this paper, we will use the terms
“valley-free path” and “valid path” interchangeably.

Since information about economic relationships between ASs is not publicly
available, several heuristic algorithms have been proposed for inferring these re-
lationships from BGP routing table information [14,24,8,9]. However, it is not
clear how accurate the relationship classifications produced by these algorithms
are. Thus, it is an interesting question how the models produced by these algo-
rithms differ from each other, especially with respect to robustness properties.

1.1 Outline

The remainder of this survey is structured as follows. In Section 2, we give a brief
overview of existing approaches dealing with the inference of AS relationships.
In Section 3, we give formal definitions of the valley-free path model and the
disjoint paths and cut problems considered in later sections. Section 4 gives an
overview of the complexity and approximation results for disjoint valid paths
and minimum valid cuts from [10,11]. In Section 5, we explain the primal-dual
formulation of the problem proposed in [12], and we outline the exact algorithms
for the computation of disjoint valid paths and of minimum valid cuts that are
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presented in [12]. In Section 6, we summarize some of the experimental findings
that have been obtained in [12] concerning the number of vertex-disjoint valid
paths and the sizes of minimum cuts in four different graph models with inferred
relationships and in the undirected model. We give our conclusions in Section 7.

2 Inference of AS Relationships

As it is necessary to know the economic relationships between ASs in order to
model the effects of routing policies on the paths traffic can take in the Internet,
several researchers have considered the problem of inferring AS relationships
from other information. In particular, the BGP tables provided by the University
of Oregon Route Views project [23] are often used as input. These tables contain
a large number of BGP paths, i.e., sequences of ASs that represent paths from
a source AS to a destination AS.

Gao [14] was the first to propose a heuristic algorithm for inferring AS rela-
tionships. Her algorithm uses BGP paths as input and can be sketched as follows.
For each BGP path, the AS with largest degree (in the undirected AS graph) is
taken to be the top provider of the path. Pairs of consecutive ASs before the top
provider are assumed to have a customer-provider relationship, and pairs of con-
secutive ASs after the top provider are assumed to have a provider-customer re-
lationship. Pairs that are assigned a customer-provider and a provider-customer
relationship in this way (this happens if the pair occurs on two paths in such a
way that it is assigned one relationship via the first path and a different relation-
ship via the second path) are reclassified as siblings. Finally, a heuristic method
is used to classify some edges incident to the top providers of BGP paths as
peer-to-peer edges. An implementation of Gao’s algorithm is available from [13].

Further work on the inference of AS relationships is presented by Subramanian
et al. [24]. They formalize the inference problem as the optimization problem of
giving an orientation to the edges of an undirected AS graph with the goal of
maximizing the number of paths in the given BGP tables that become valid for
this orientation. This problem is called the Type-of-Relationship (ToR) problem.
They leave its complexity as an open question. They also present a heuristic
algorithm for the inference of AS relationships. Their algorithm exploits the
structure of partial views of the AS graph seen from different locations in the
Internet. For each location, BGP paths from that location (AS) to a number
of other ASs are used to construct a local graph. By repeated pruning of leaf
vertices in that local graph, rank numbers are assigned to each AS in such a
way that larger ranks correspond to a perceived higher level of the AS. As this
procedure is repeated for all available locations, each AS receives a vector of
ranks. Finally, an edge is classified as a peer-to-peer relationship if the rank
vectors of its endpoints are equal in many components, and as a customer-
provider relationship if the number of components of the rank vector that have
a smaller value for the first AS is much larger than the number of components
with a smaller value for the second AS. Some edges are left unclassified by this
approach, and it is meaningful to consider them as sibling edges. Relationship
classifications produced with the algorithm of [24] are available from [1].
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Independently, Di Battista et al. [8] and Erlebach et al. [9] have resolved the
open question of [24] and proved that the ToR problem is NP-hard. Further-
more, in [9] an inference algorithm is proposed that translates the problem into
a maximum satisfiability problem with two literals per clause (MAX 2SAT) and
then applies a known MAX 2SAT approximation algorithm. The truth assign-
ment given by the MAX 2SAT algorithm is converted into an AS relationship
classification for the original problem. The classification produced by their al-
gorithm uses only customer-provider edges. In [8], another inference algorithm
is presented that also exploits the relationship of the inference problem to the
2SAT problem, but in a different way: The algorithm creates a 2SAT instance
that is satisfiable if and only if there is an orientation of the undirected AS graph
that makes all given paths valid. As such an orientation does not exist in gen-
eral, the algorithm repeatedly applies a heuristic procedure that removes paths
from the input until the resulting 2SAT instance is satisfiable. The satisfying
assignment then gives a classification of most edges of the undirected AS graph
as customer-provider relationships, but leaves some relationships undetermined.
The software bgpSat implementing the algorithm of [8] is available at [7].

Rimondini et al. [22] compare the algorithms from [24] and [8]. They study the
relationships that are found by the same algorithm on data sets for different dates
(stability analysis) and compare the classifications found by the two algorithms
on the same data set (algorithm independence analysis). They find that the
classifications produced by both algorithms are stable and very similar.

Xia and Gao [30] use BGP community attribute data and IRR (Internet Rout-
ing Registry) databases to obtain accurate information about the relationships
for a certain subset of AS pairs. Then they use this partial information to check
the correctness of the relationship classifications produced by the algorithms
from [14] and [24]. They find that both algorithms achieve a very good overall
accuracy, but perform poorly with respect to peer-to-peer relationships: only
about 25% (about 49%) of the peer-to-peer relationships covered by the partial
information are classified correctly by the algorithm from [24] (from [14]). Moti-
vated by this shortcoming of existing algorithms, they propose a new algorithm
that uses the partial information as a starting point. Based on the partial in-
formation, the algorithm filters out BGP paths that cannot be valley-free and
uses inference rules to determine the classifications of additional edges that are
implied by the starting set. Edges that remain unclassified are then treated with
the algorithm from [14]. They conclude that their new algorithm outperforms the
existing algorithms with respect to the achieved accuracy, especially concerning
peer-to-peer edges.

3 ToR Graphs, Valid Cuts, and Disjoint Valid Paths

The AS relationships discussed in Section 1 can be represented in a graph model
as follows [12]: The vertices of the graph are the ASs. The graph is a mixed graph,
i.e. it can contain directed and undirected edges. If there is at least one physical
link between two ASs x and y, their corresponding vertices are connected in one
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of the following three ways: If x and y are in a peer-to-peer relationship, there is
an undirected edge {x, y}. If x is a customer of y, there is a directed edge (x, y).
If x and y are siblings, there is a directed edge (x, y) as well as a directed edge
(y, x). A graph constructed in this way is called a ToR graph, as the problem
of classifying the relationships between ASs is called the Type-of-Relationship
(ToR) problem in [24,8,9].

The following definition of valid paths captures the notion of “valley-free”
paths arising from BGP routing policies. A path p = v1, v2, . . . , vr from v1 to vr

in a ToR graph G = (V, E) is called valid if it satisfies one of the following two
conditions [14,12]:

– The path consists of a sequence of sibling edges or customer-provider edges
in forward direction, followed by a sequence of sibling edges or customer-
provider edges in reverse direction. Formally, this means that there exists j,
1 ≤ j ≤ r, such that (vi, vi+1) ∈ E for 1 ≤ i ≤ j − 1 and (vi, vi−1) ∈ E for
j + 1 ≤ i ≤ r.

– The path consists of a sequence of sibling edges or customer-provider edges
in forward direction, followed by a single peer-to-peer edge, followed by a
sequence of sibling edges or customer-provider edges in reverse direction.
Formally, this means that there exists j, 1 ≤ j ≤ r, such that (vi, vi+1) ∈ E
for 1 ≤ i ≤ j − 1, {vj , vj+1} ∈ E, and (vi, vi−1) ∈ E for j + 2 ≤ i ≤ r.

Otherwise, a path is called invalid. From now on, when we refer to paths in a
ToR graph, we mean valid paths. A path from s to t is also called an s-t path.

If p = v1, v2, . . . , vr is a valid path, we imagine p as consisting of a forward
part and a backward part. If p contains an undirected edge {vj , vj+1}, the initial
part of p up to vj is the forward part, and the rest of p, starting with vj+1,
is the backward part. If p does not contain an undirected edge, the backward
part begins with the first customer-provider edge that is traversed in reverse
direction. Intuitively, the forward part goes “up” in the Internet hierarchy and
the backward part goes “down.”

As we are interested in robustness, where the traditional metrics are cut size
and number of disjoint paths, we now present suitable adaptations of these con-
cepts to the valley-free path model. Let s, t ∈ V be two distinct vertices in a
ToR graph G = (V, E). A set C ⊆ V \ {s, t} is a valid s-t-cut if there is no valid
path from s to t in G − C. A smallest such set C is called a min valid s-t-cut.
Two valid s-t-paths are called vertex-disjoint (or simply disjoint) if the only
vertices that they have in common are s and t. The optimization problems that
we are interested in are those of computing minimum size cuts and maximum
size sets of disjoint paths: the min valid s-t-cut problem and the max disjoint
valid s-t-paths problem.

An approximation algorithm A for an optimization problem Π is a polynomial
algorithm that always outputs a feasible solution (we consider only instances
where a feasible solution always exists). A is a ρ-approximation algorithm (has
approximation ratio ρ) if the objective value of the solution that it outputs is at
most a factor of ρ away from the optimal solution, for every problem instance.
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In a ToR graph, two ASs with at least one physical link between them are
connected by a single edge (or a single pair of edges, in the case of siblings). If we
work with this graph model, computing edge cuts or edge-disjoint paths would
not be very meaningful; for example, cutting a single edge of the ToR graph
might correspond to cutting many links of the real Internet, so a small edge cut
in the ToR graph does not imply a small robustness in the real network. For this
reason, we only consider vertex cuts and vertex-disjoint paths in this survey. We
refer to [10,11] for approximation and complexity results concerning edge cuts
and edge-disjoint paths.

4 Complexity and Approximation Results

In this section, we discuss complexity and approximation results from [10,11] for
disjoint paths and minimum cuts in the valley-free path model. First, note that
it is easy to see that a peer-to-peer edge (undirected edge) between A and B
can be replaced by two customer-provider edges from A to X and from B to X,
where X is a new node, without affecting the solutions to the min valid s-t-cut
problem and the max disjoint valid s-t-paths problem. Similarly, it is easy to see
that a pair of directed edges representing a sibling relationship can be replaced
by a small subgraph consisting only of customer-provider edges. See Fig. 1 for
an illustration. Therefore, without loss of generality, in this section we consider
a model with only customer-provider edges.

A

B

A

B

A

B

X

A

B

Fig. 1. Peer-to-peer relationships (left) and sibling relationships (right) can be replaced
by customer-provider relationships

4.1 The Two-Layer Model

First, we introduce the two-layer model that leads to a relaxation of flows and
cuts in ToR graphs [11]. From a ToR graph G = (V, E) and s, t ∈ V we construct
a two-layer model H , which is a directed graph, in the following way. First, create
two copies of the graph G, called the lower and the upper layer. Reverse all edge
directions in the upper layer, and connect each node v in the lower layer with
a directed edge to the corresponding copy of v, denoted v′, in the upper layer.
Finally, merge the two s-nodes (of lower and upper layer) and also the two
t-nodes, and remove the incoming edges of s and the outgoing edges of t.

A valid path p = v1, . . . , vr in G with v1 = s and vr = t corresponds to a
directed path in H in the following way: The forward part of p is routed in the
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lower layer, then there is a possible transition to the upper layer with a (v, v′)
type edge, and finally the backward part of p is routed in the upper layer. If p
has only a forward or only a backward part, the corresponding path in H uses
only one of the two layers. See Fig. 2 for an illustration.

ts

backward partforward part

G′

G upper layer

lower layer

ts

H reverse(G′)

G′

Fig. 2. Path in ToR graph G and corresponding path in the two-layer model H [11].
G′ denotes G − {s, t}.

Two paths in H that correspond to disjoint valid paths in G are also disjoint,
but two disjoint paths in H do not necessarily give disjoint valid paths in G:
One path might use a node in one layer and the other path the counterpart in
the other layer, giving two valid path that both go through the same node of G.

From a valid s-t-cut CG in G one can easily construct an s-t-cut in H of
cardinality 2|CG|: It suffices to take both copies of the nodes in CG. On the
other hand, s-t-cuts in H do not necessarily have the property that a node v is
in the cut if and only if also its counterpart v′ is in the cut.

4.2 Min Valid s-t-Cut

The min valid s-t-cut problem was shown to be NP-hard and APX -hard in
[10,11]. The APX -hardness result implies that there is a constant ρ > 1 such
that it is not possible to find a ρ-approximation algorithm for the min valid
s-t-cut problem unless P = NP [3].

Given a ToR graph G = (V, E) and s, t ∈ V (where we assume that there is
no direct edge in G between s and t, because otherwise a valid s-t-cut does not
exist), the min valid s-t-cut approximation algorithm proposed in [11] works as
follows: First, the two-layer model H is constructed. Then, a min s-t-cut CH

in H is computed, using a min s-t-cut algorithm for standard directed graphs.
Note that the min s-t-cut problem can be solved in polynomial time for standard
directed graphs [2]. Finally, a valid s-t-cut CG in G is constructed by including
all nodes of which at least one copy is contained in CH .

It is easy to see that |CG| ≤ |CH | holds and CG is a valid s-t-cut in G. Fur-
thermore, the cardinality of CH is at most twice the cardinality of the optimum
valid s-t-cut in G, yielding the following theorem.

Theorem 1 (Erlebach et al. [11]). There is a 2-approximation algorithm for
the min valid s-t-cut problem in ToR graphs.
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4.3 Max Disjoint Valid s-t-Paths

It was shown in [11] that finding the maximum number of disjoint valid s-t paths
for given vertices s and t in a ToR graph G = (V, E) is NP -hard. Moreover, the
number of paths is inapproximable within a factor 2 − ε for any ε > 0, unless
P equals NP , and it is even NP -hard to decide if there are at least two disjoint
valid paths between s and t.

We proceed to describe the approximation algorithm presented in [11]. First,
let us introduce some terminology. If the forward part of a valid s-t path p1
intersects the backward part of a path p2 at a node v, this is called a crossing
at v. If two valid s-t paths cross at v, they can be recombined at the crossing to
form a new path, consisting of the initial part of p1: s, . . . , v and the final part
of p2: v, . . . , t.

The algorithm works as follows. First, the two-layer model H is constructed,
and a maximum cardinality set PH of vertex-disjoint s-t-paths in H is computed
using standard methods based on network flow [2]. Let PG be the set of valid
s-t-paths in G that correspond to the paths in PH . Note that the paths in PG are
not necessarily vertex-disjoint, since the forward part of one path can intersect
the backward part of another path. Now the idea is to recombine the forward
parts and the backward parts so as to obtain a set of disjoint valid s-t-paths in
the end. To achieve this, the algorithm repeatedly selects a path p whose forward
part has not yet been recombined and has at least one remaining crossing. If the
first crossing on that forward part is at node v, the path p is recombined with the
path p′ whose backward part contains v. Crossings preceding v on the backward
part of p′ are discarded, and if p′ was previously recombined with another path
p′′, the status of the forward part of p′′ reverts back to “not yet recombined.”
The process is repeated until each forward part is either recombined or has no
remaining crossing. The set of recombined paths is output as the solution.

It is shown in [11] that the algorithm runs in polynomial time and the set of
paths output by the algorithm is vertex-disjoint. The analysis of the approxi-
mation ratio of the algorithm can be sketched as follows. Assume that k is the
optimal number of paths. Clearly, |PG| ≥ k. In the end, for each path p in PG

at least one of its two parts, the forward part or the backward part, must have
been recombined. Thus, at least |PG|/2 ≥ k/2 disjoint valid s-t paths are found.
This gives the following theorem.

Theorem 2 (Erlebach et al. [11]). There is a 2-approximation algorithm for
the max disjoint valid s-t-paths problem.

4.4 On the Gap Between Disjoint Paths and Minimum Cuts

In the standard model of paths in directed or undirected graphs, Menger’s the-
orem states that the maximum number of disjoint s-t-paths is equal to the size
of a minimum s-t-cut (provided that there is no direct edge from s to t). It is
shown in [11] that for the valley-free path model there is always a valid s-t-cut
that is at most twice as large as the maximum number of vertex-disjoint valid
s-t-paths. An example showing that the bound of 2 is tight is given in Fig. 3.
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In this example, the size of a minimum valid s-t-cut is 2, while the maximum
number of disjoint valid s-t-paths is 1.

s t

Fig. 3. ToR graph demonstrating a gap of 2 between disjoint paths and cuts [11]

4.5 Max Disjoint Valid s-t-Paths in DAGs

We briefly discuss the problem of computing disjoint valid paths in directed
acyclic graphs. This is motivated by the consideration that in a strictly hierar-
chical network, one would obtain ToR graphs that are acyclic. For acyclic graphs,
finding the maximum number of disjoint valid s-t-paths was proved to be NP-
hard in [10,11]. While it is NP-hard to decide whether there are two disjoint
valid paths from s to t in a general ToR graph, it was shown in [10,11] that this
decision problem can be solved in polynomial time for any constant number of
paths in acyclic graphs.

5 Exact Algorithms

In this section, we first review the integer programming formulations given in
[12] for the max disjoint valid s-t-paths problem and for the min valid s-t-
cut problem, and then outline the exact algorithms proposed in [12] for these
problems.

The max disjoint valid s-t-paths problem and the min valid s-t-cut problem
can be formulated as integer linear programs in a straightforward way. Let P be
the set of all valid s-t paths, and let Vp be the set of all vertices (except s and
t) contained in a path p ∈ P . The integer linear program for the max disjoint
valid s-t-paths problem uses a 0–1 variable xp for each valid path p, indicating
whether the path is used or not, and looks as follows:

(P) Maximize
∑
p∈P

xp (1)

s.t.
∑

p:v∈Vp

xp ≤ 1 ∀v ∈ V \ {s, t} (2)

xp ∈ {0, 1} ∀p ∈ P (3)

The objective function (1) counts the number of s-t-paths that are part of the
solution. Constraints (2) ensure that each vertex can be contained in at most
one path.



270 T. Erlebach et al.

The min valid s-t-cut problem can be formulated as an integer linear program
using a 0–1 variable yv for every v ∈ V \ {s, t} that indicates whether v is taken
in the cut or not:

(D) Minimize
∑

v∈V \{s,t}
yv (4)

s.t.
∑
v∈Vp

yv ≥ 1 ∀p ∈ P (5)

yv ∈ {0, 1} ∀v ∈ V \ {s, t} (6)

As observed in [12], the LP-relaxations of (P) and (D), i.e., the linear programs
in which the variables xp and yv can take arbitrary values in the interval [0, 1],
constitute a primal-dual pair of linear programs.

Formulation (P) has exponentially many variables (since the number of valid
s-t paths can be exponential in the number of vertices), and, correspondingly,
formulation (D) has exponentially many constraints. Nevertheless, it is shown in
[12] that optimal solutions to the LP-relaxations of (P) and (D) can be computed
in polynomial time without explicitly constructing the linear programs, since the
separation problem [16] for (D) can be solved using a shortest-path computation
in the two-layer model with suitable edge weights. Furthermore, it is described
in [12] how the LP-relaxation of (P) can be solved in practice using column
generation, or that of (D) using a cutting-plane approach. However, the optimal
solutions to the LP-relaxations can be fractional (i.e., the variables can have
values strictly between 0 and 1), and a branch-and-bound approach must be
employed to arrive at optimal integral solutions.

In [12], two exact algorithms for the max disjoint valid s-t-paths problem
are proposed. The first one is a branch-and-price algorithm [5,28] based on the
integer programming formulation (1)-(3). It solves the LP-relaxation of (P) using
column generation. If the obtained solution is fractional, it identifies a fractional
vertex, i.e., a vertex v at least three of whose incident edges are used by fractional
paths, and then creates a branch for each possible way of deleting all but two
of the incident edges of v (the two edges that are not deleted must be such that
they can be used consecutively on a valid path). In this way, no integral solution
is excluded, and moreover v cannot be a fractional vertex in any of the branches.
Implemented in a branch-and-bound framework, this approach yields an optimal
integral solution to (P).

The second algorithm is a pure branch-and-bound algorithm that does not
solve the LP-relaxation of (P). Instead, it uses the two-layer model H as a
relaxation of (P). The algorithm computes a largest set PH of vertex-disjoint
paths in H . If the obtained paths are also vertex-disjoint in G, they represent an
optimal solution. If they are not vertex-disjoint, there must be a vertex v such
that both copies of v are used by the paths in PH . In this case, two branches
are created using suitable modifications of H : In one branch, v can only be used
in the upper layer, and in the other branch, v can only be used in the lower
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layer (or for a transition from lower to upper layer). Again, no integral solution
is excluded, and the algorithm computes an optimal integral solution to (P).

The exact algorithm for the min valid s-t-cut problem from [12] can be out-
lined as follows. The algorithm solves the LP-relaxation of (D) using a cutting-
plane approach. If the optimal solution to the LP-relaxation is fractional, a
vertex v with yv-value strictly between 0 and 1 is selected, and two branches are
created: The constraint yv = 0 is added to the LP-relaxation in one branch, and
the constraint yv = 1 in the other. Implementing this in a branch-and-bound
framework, one obtains optimal integral solutions to (D).

6 Experimental Results

In this section we briefly summarize some of the experimental results described
in [12]. Internet graphs from five different dates between April 2001 and February
2004 are considered. Undirected graph models for the five dates are constructed
using BGP table information available from the University of Oregon Route
Views project [23]. They are referred to as undirected BGP graphs. Four differ-
ent ToR graphs are constructed for each date from the undirected BGP graph
using the AS relationship classification algorithms of [9,8,24,14]. As all four algo-
rithms are heuristics, they typically output different relationship classifications.
Nevertheless, about 90% of all edges are classified in the same way by different
algorithms [12].

In [12], 47 representative ASs are selected, and all computations are carried
out for all 1,081 pairs among these ASs. The selected ASs are geographically well
spread and contain various types of ASs: bigger and smaller Internet Service
Providers, telecom nodes (e.g. Japanese and Belgian telecom), well-connected
universities and research centers (e.g. University of Stanford, University of Ore-
gon, and National Center for Supercomputing Applications), exchange points
(e.g. London and Hongkong Internet Exchange), etc.

As described in [12], the algorithms have been implemented in C++ using
CPLEX 9.0 [19] to solve linear programs and the LEDA library [21] to process
graphs. For all computations, several preprocessing methods have been applied
to the graph input data. In particular, vertices with degree 1 were pruned, leaving
graphs with up to 11,000 vertices and 30,000 edges for the main computations.

The two exact algorithms for the max disjoint valid s-t-paths problem de-
scribed in Section 5 have been used in [12] to calculate the maximum number
of vertex-disjoint paths for all pairs among the selected 47 ASs. The conclusion
is that both algorithms perform well on the average: The majority of problem
instances are solved in a few seconds of computation time. The branch-and-
bound algorithm was faster than the branch-and-price algorithm in over 70% of
the instances, but its running-times displayed a higher variability, and on some
instances it could not be run to completion. Furthermore, it usually needed a
larger number of branching nodes. The min valid s-t-cut algorithm described in
Section 5 has also been implemented and evaluated experimentally in [12]. Its
performance was even better than that of the disjoint paths algorithms, with an



272 T. Erlebach et al.

average running-time under 2 seconds per AS pair. Furthermore, it was shown
in [12] that the approximation algorithms discussed in Section 4 run very fast on
the ToR graphs used in the experiments (less than one second of computation
time per AS pair). The approximation algorithms mostly give solutions that are
optimal or at most one away from the optimum.

The minimum valid cut sizes and the numbers of disjoint valid paths computed
by the exact algorithms for the ToR graphs were compared to the corresponding
quantities in the undirected BGP graphs in [12]. It turns out that the numbers
for all four types of ToR graphs are similar and significantly smaller than for the
undirected BGP graphs. For more than 70% of all pairs, the number of disjoint
paths (and the minimum cut size) is at least 1.5 times as large in the undirected
BGP graphs as in the ToR graphs, and for approximately 44%, these values in
the undirected BGP graphs are at least twice as large as in the ToR graphs.
While the values for the different ToR graphs are similar, it is observed in [12]
that, generally, graphs produced with the algorithm from [8] have the highest
values and graphs produced with the algorithm from [24] have the lowest values.
The average number of disjoint paths was between 7.4 and 8.1 in the different
ToR graphs (with a maximum of 65), and about 13.5 in the undirected BGP
graphs (with a maximum of 107). The values for the cut sizes are very similar,
as it was found that the number of disjoint paths and the cut size was the same
for most of the AS pairs in the ToR graphs, although these quantities could be
a factor of two apart in general ToR graphs.

The trends over time of the number of disjoint paths and the cut sizes were
also analyzed in [12]. One interesting observation is that from January 2003 to
February 2004, about 70% of the AS pairs display increasing connectivity in the
undirected BGP graph, but only about 50% of the pairs do so in the four ToR
graphs.

7 Conclusions

We have given a survey of recent results concerning disjoint valid s-t-paths and
valid s-t-cuts in the valley-free path model. These problems arise in the analysis
of the AS topology of the Internet if commonly used routing policies are taken
into account. The size of a minimum valid s-t-cut can be viewed as a reason-
able measure of the robustness of the Internet connection between ASs s and t.
The minimum cut size indicates the number of ASs that must fail in order to
completely disconnect s and t. Therefore, the discussed concepts and algorithms
could be useful for network administrators who want to assess the quality of
their network’s connection to the Internet.

After giving an overview of existing approaches to the inference of AS relation-
ships, we have surveyed the exact and approximation algorithms from [10,11,12]
and summarized the experimental results of [12] obtained from the computation
of disjoint valid paths and valid cuts in four different types of graphs with in-
ferred AS relationships (ToR graphs) and in undirected BGP graphs. The exact
algorithms require a small amount of computation time to find optimal values,
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and the approximation algorithms run very fast and give solutions close to opti-
mal. The algorithms and experimental findings make it possible to quantify the
differences in connectivity between ToR graphs and the traditional undirected
model of the Internet, which ignores routing policies. The use of ToR graphs in-
stead of undirected graphs is essential for Internet analysis and simulations that
are concerned with connectivity properties, e.g. in studies concerning topological
robustness or multi-path routing.

From a theoretical perspective, the problems we have considered may be seen
as instances of a more general family of problems where paths in the graph
must obey certain restrictions. One example of such a restriction is given by
oriented paths (paths containing at least one directed edge) in mixed graphs,
as considered by Wanke and Kötter [29]. Another example is given by paths
in graphs with labeled edges where a path is valid only if the sequence of its
edge labels forms a word from a given formal language; shortest-path problems
for this type of restriction are studied by Barrett et al. [6] in the context of
transportation problems. It would be interesting to study the max disjoint s-t-
paths problem and min s-t-cut problem in such a setting.

References

1. S. Agarwal, L. Subramanian, J. Rexford, and R.H. Katz. Characterizing the
Internet hierarchy from multiple vantage points, project web-page, 2002–2003.
http://www.cs.berkeley.edu/∼sagarwal/research/BGP-hierarchy/.

2. A. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs, N.J., 1993.

3. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation. Combinatorial Optimization Problems
and their Approximability Properties. Springer, Berlin, 1999.

4. P. Baake and T. Wichmann. On the economics of Internet peering. Netnomics,
1(1), 1999.

5. C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-
and-price: Column generation for solving huge integer programs. Operations Re-
search, 46(3):316–329, 1998.

6. C. L. Barrett, R. Jacob, and M. Marathe. Formal language constrained path
problems. SIAM J. Comput., 30(3):809–837, 2000.

7. G. Di Battista, M. Patrignani, and M. Pizzonia. Computing the types
of the relationships between Autonomous Systems, project web-page.
http://www.dia.uniroma3.it/∼compunet/relationships/.

8. G. Di Battista, M. Patrignani, and M. Pizzonia. Computing the types of the
relationships between autonomous systems. In Proceedings of INFOCOM’03, 2003.

9. T. Erlebach, A. Hall, and T. Schank. Classifying customer-provider relationships
in the Internet. In Proceedings of the IASTED International Conference on Com-
munications and Computer Networks, pages 538–545, 2002.

10. T. Erlebach, A. Hall, A. Panconesi, and D. Vukadinović. Cuts and disjoint
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Abstract. The most essential difference between classical distributed
data structures and peer-to-peer systems is the dynamic behavior of the
latter. Unlike traditional systems which consist of a fixed set of ma-
chines of which a few might occasionally fail in some way, peer-to-peer
systems are characterized by continuous joins and leaves at a high rate
(called churn). We address this dynamism in two ways. We present a
general information aggregation method which can be used to imple-
ment deterministic join and leave protocols which keep the network in a
well-balanced state. We also use the information aggregation algorithm
together with a primitive called token distribution to obtain a general
way of constructing efficient peer-to-peer systems which are resilient to
dynamic, adversarial joins and leaves. In each time step, an adversary
is allowed to insert and delete a bounded number of arbitrary peers.
The system adapts to this churn by rearranging peers or adjusting the
topology whenever necessary.

1 Introduction

Storing and handling data in an efficient way lie at the heart of any data-driven
computing system. Compared to a traditional client/server approach, decen-
tralized peer-to-peer (P2P) systems have the advantage to be more reliable,
available, and efficient because there is no single point of failure and because
the load is distributed to many machines. P2P systems are based on common
desktop machines (“peers”), distributed over a large-scale network such as the
Internet. These peers share and manage data that is conventionally stored on a
central server. Usually, peers are under the control of individual users who turn
their machines on or off at any time. Such peers join and leave the P2P system
at high rates (“churn”), a problem that is not existent in orthodox distributed
systems. In other words, a P2P system consists of unreliable components only.
Nevertheless, the P2P system should provide a reliable and efficient service.

The growing popularity of real-world P2P systems has spawned a thriving
research community. The focus of most research is the development of an effi-
cient lookup operation: given a search key, a peer responsible for the key must
be identified. This operation is related to hashing and is therefore sometimes
also known as distributed hashing in conjunction with a distributed hash table
(DHT).

J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 275–294, 2006.
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Following the seminal work of Plaxton et al. [26], an assortment of variants
of P2P systems and distributed hashing algorithms have been proposed in the
literature, such as CAN [28], Chord [32], Tapestry [36], or Kademlia [22].1 Gen-
erally, these systems assign overlay identifiers (IDs) to peers. The IDs are used
to organize peers in different topologies (or overlay networks), such as ring, tree,
or hypercube topologies. Furthermore, the lookup operation is performed by
routing on the topology to a peer with an ID that is “nearest” to a given key.

An important lingering problem is how overlay IDs are assigned to peers. Since
a P2P system is completely decentralized and highly dynamic, present solutions
often assign the overlay IDs randomly: a newly joining (“bootstrapping”) peer
connects to an arbitrary peer in the P2P system and chooses a random overlay
ID, e.g. by hashing its own IP address. Similarly to a lookup operation, the newly
joining peer is routed to its place—determined by the chosen overlay ID—in the
P2P system and connects to its neighbors.

It is often argued that random overlay ID assignment will balance the keys
well. This is not quite true; in fact, a balls-into-bins analysis will reveal that
there is a logarithmic imbalance factor [7]. In other words, with high probability
a highly loaded peer stores a factor of Θ(log n) more keys than a peer with
average load.

In the first part of this paper, we propose an abstract distributed aggregation
service for P2P networks. The service allows to (approximately) calculate the
value of system-wide variables, such as the number of peers in the system. But it
can also be applied to a broader application area, such such as system monitoring,
e.g. the “health” of a system [35], or publish/subscribe mechanisms, e.g. how
many peers are interested in some topic. Although we describe this service for
tree topologies only, our approach directly translates to several other topologies
as well.

Using this service, we present a non-randomized join algorithm (and therefore
the assignment of overlay IDs), which leads to well-balanced P2P systems. Based
on the depth of the tree, which is calculated by our aggregation mechanism, the
algorithm determines the largest “gap” in the overlay ID space in which a newly
joining peer is inserted.

In the second part of the paper, we go a step further and develop a system
which is able to handle dynamic joins and leaves. Using the information aggre-
gation scheme of the first part, we always have a current estimate on the total
number of peers in the system which allows us to adapt the topology of the
network appropriately.

Most P2P systems in the literature are analyzed against an adversary who
can crash a functionally bounded number of random peers. After crashing a few
peers the system is given sufficient time to recover again. Our scheme significantly
differs from this in two major aspects. First, we assume that joins and leaves
occur in a worst-case manner. We think of an adversary which can remove and

1 A variety of applications have been proposed to be run on top of a P2P system,
including file sharing tools [8,12], file systems [10,23,11], and spam filter systems
[4,37].
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add a bounded number of peers. The adversary cannot be fooled by any kind of
randomness. It can choose which peers to crash and how peers join. Note that
we use the term “adversary” to model worst-case behavior. We do not consider
Byzantine faults. Second, the adversary does not have to wait until the system
is recovered before it crashes the next batch of peers. Instead, the adversary can
constantly crash peers while the system is trying to stay alive. Indeed, our system
is never fully repaired but always fully functional. In particular, our system is
resilient against an adversary which continuously attacks the “weakest part” of
the system. Such an adversary could for example insert a crawler into the P2P
system, learn the topology of the system, and then repeatedly crash selected
peers, in an attempt to partition the P2P network. Our system counters such an
adversary by continuously moving the remaining or newly joining peers towards
the sparse areas.

Clearly, we can not allow our adversary to have unlimited capabilities. In
particular, in any constant time interval, the adversary can at most add and/or
remove Θ(log n) peers, n being the total number of peers presently in the system.
Since the peer degree—or the routing state per peer—is also in O(log n), this is
asymptotically optimal: If the adversary was allowed to remove as many peers
as the the peer degree, it would be able to disconnect a peer completely from
the system by crashing all the peer’s neighbors. Our model covers an adversary
which repeatedly takes down machines by a distributed denial of service attack,
but only a bounded number of machines at each point in time. Our system is
synchronous and we assume messages to be delivered timely, that is, in at most
constant time between any pair of operational peers. It would be possible to
adapt the system for an asynchronous environment; in this case, the propagation
delay of the slowest message defines the notion of time which is needed for the
adversarial model.

In principle, our P2P system could be based on almost any of the common
P2P topologies [19]. To obtain a system which is as simple as possible, we decided
to use a hypercube as the basic structure of our scheme. Each peer is part of a
distinct hypercube node; each hypercube node consists of Θ(log n) peers. Peers
have connections to other peers of their hypercube node and to peers of the
neighboring hypercube nodes. In the case of joins or leaves, some of the peers
have to change to another hypercube node such that up to constant factors, all
hypercube nodes own the same number of peers at all times. If the total number
of peers grows or shrinks above or below a certain threshold, the dimension of
the hypercube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can be seen as a dynamic
token distribution problem [24] on the hypercube. Each node of a graph (hyper-
cube) has a certain number of tokens, the goal is to distribute the tokens along
the edges of the graph such that all nodes end up with the same or almost the
same number of tokens. While tokens are moved around, an adversary constantly
inserts and deletes tokens. Our P2P system builds on two basic components: i)
an algorithm which performs the described dynamic token distribution and ii)
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an information aggregation algorithm which is used to estimate the number of
peers in the system and to adapt the dimension accordingly.

Based on the described structure, we get a fully scalable, efficient P2P sys-
tem which tolerates O(log n) worst-case joins and/or crashes per constant time
interval. As in other P2P systems, peers have O(log n) neighbors, and the usual
operations (e.g. search) take time O(log n). The main contribution of the paper,
however, is to propose and study a model which allows for dynamic adversarial
churn. Our basic algorithms (dynamic token distribution and information aggre-
gation) can also be applied to other P2P topologies [19], they can even be used
for P2P systems that go beyond distributed hash tables (DHT).

The remainder of the paper is organized as follows. We give a summary of rele-
vant related work in Section 2. Section 3 introduces our information aggregation
service and show how it can be used to obtain a deterministic join algorithm. In
Section 4, we describe our P2P system which is resilient to dynamic, adversarial
churn.

2 Related Work

A plethora of different overlay networks with various interesting technical prop-
erties have been proposed over the last years (e.g. [1,3,5,6,16,18,21,26,28,32,36]).
There is generally a tradeoff between the number of hops it takes to lookup a
specific key and the size of the routing table maintained on every node. For in-
stance, with high probability, Chord [32] guarantees O(logn) hops and maintains
a routing table with O(log n) entries, while in Kelips [15] lookups are resolved
in constant time but this involves O(

√
n) of memory space.

Algorithms for the clever assignment of IDs to joining peers are primarily
used to achieve load balancing. At a high level, the idea of employing system
information, such as provided by our aggregation scheme, in order to assign
IDs to joining peers can be found, in a local scope though, in CAN [28]. CAN
proposes a join algorithm in which the joining peer chooses a random ID, and
the peer responsible for this ID returns another ID that would split the most
loaded peer among itself and all its neighbors.

In Chord [32], multiple virtual nodes are mapped to each physical peer to over-
come the logarithmic imbalance factor. That is, each peer is (virtually) inserted
O(log n) times with unrelated identifiers into the Chord ring. Rao et al. [27] ex-
plore different algorithms to re-arrange load among virtual servers. Simulation
results show that it is possible to reach up to 95% of the optimal load balancing.
While virtual nodes are primarily used to balance key/data item pairs among
peers, our approach can easily be adapted to match other criteria, such as the
number of requests per peer, the total disk space available, or even combinations
thereof. On the other hand, our join algorithm could be combined with virtual
nodes.

Byers et al. [7] applied the “power of two choices”-paradigm to reduce the
logarithmic imbalance to a factor of log log n/ log d + O(1), where d ≥ 2 is the
number of different hash functions. Among d peers, the least loaded one is chosen
to store an item, while the others only redirect to it. In contrast, our approach
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neither needs to store additional (redirect) information per item nor does it
lengthen the search path.

The Astrolabe system [33] is a distributed information management system,
which the authors describe as a decentralized hierarchical database. Astrolabe
employs an aggregation technique that is similar to the one presented in this
paper, although more powerful using a SQL-like query style. In comparison to
our work, Astrolabe as well as its follow up work Willow [34] are presented
as new stand-alone systems, whereas our aggregation scheme is intended to be
integrated into existing P2P systems, such as Kademlia [22] or Chord [32]. An
aggregation scheme which is based on gossiping techniques can be found in [17].

Zhang et al. [35] introduced another infrastructure providing system meta
information. In this approach, a “Self-Organized Meta Data Overlay” (SOMO)
tree is built and maintained on top of an arbitrary DHT, such as CAN [28].
The tree grows and shrinks dynamically as the system size changes. All the
information is aggregated bottom up along this tree, and disseminated down
again. Since SOMO implements a hierarchical approach, it can be used in a
plug-in like fashion independently of the underlying P2P topology. Although
this offers a variety of features, it can be criticized from a “pure P2P mindset,”
as done by the authors themselves. In some sense, our aggregation mechanism
provides SOMO functionality in a downright P2P style, with zero message over-
head. Furthermore, we consider the deterministic assignment of SOMO’s root
node a drawback. Although in the case of failures, another node automatically
takes over the responsibility of the SOMO root node, with permanent—probably
malicious—failures of the changing root node, the SOMO service is at risk. Since
our approach operates on the regular P2P topology, it does not have a single
point of failure. Therefore, it provides reliable information even in malicious
environments.

Due to the nature of P2P systems, fault-tolerance has been a prime issue
from the beginning. The systems usually tolerate a large number of random
faults. However after crashing a few peers the systems are given sufficient time
to recover again. From an experimental point of view, churn has been studied
in [29], where practical design tradeoffs in the implementation of existing P2P
networks are considered.

Resilience to worst-case failures has been studied in [13,30]. They propose a
system where, w.h.p., (1− ε)-fractions of peers and data survive the adversarial
deletion of up to half of all nodes. Unlike in our work the failure model is static.
Moreover, if the total number of peers changes by a constant factor, the whole
structure has to be rebuilt from scratch.

Scalability and resilience to worst-case joins and leaves has been addressed by
Abraham et al. in [2]. The focus lies on maintaining a balanced network rather
than on fault-tolerance in the presence of concurrent faults. In contrast to our
paper, whenever a join or leave happens, the network has some time to adapt.

The only paper which explicitly treats arbitrarily concurrent worst-case joins
and leaves is by Li et al. [20]. The main difference to our work is that Li et
al. consider a completely asynchronous model where messages can be arbitrarily
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delayed. The stronger communication model is compensated by a weaker failure
model. It is assumed that peers do not crash. Leaving peers execute an appro-
priate “exit” protocol and do not leave before the system allows this; crashes are
not allowed.

3 Distributed Aggregation Service

The Distributed Aggregation Service is an abstract decentralized service which
provides approximate2 information about a P2P system.

The service is built on top of the regular P2P structure. We present our results
for “tree” topology P2P systems, such as Kademlia [22]. But the basic idea can
be applied to several other topologies as well.

For completeness, we give a quick overview on a Kademlia-like tree topology.
Each peer is assigned a unique overlay identifier, a binary bit string. This ID
specifies the “domain space” of the peer; a peer is responsible for storing all
keys that are within its domain space. In particular, a key is stored by the peer
whose bit string matches the longest prefix of the key. A peer p with the bit
string b1b2 . . . bk keeps contact with k other peers—its “neighbors.” Neighbor pi

(i = 1, . . . , k) of peer p features a similar bit string as peer p; in particular, all
the first (i − 1) bits are the same as the bits of peer p, and the bit i itself is
inverted. Note that various systems handle the remaining bits differently; this
difference is not relevant in this paper.

The basic idea of our aggregation service is now as follows: a peer p with the
bit string b1b2 . . . bk is considered to be an “expert” on all the sub domains of
all the prefixes of its bit string, that is, for b1b2 . . . bi, i = 0, . . . , k. The expert
knowledge is constructed inductively through information exchange with the
neighbor peers. The peer p is by definition an expert about its own sub domain
b1b2 . . . bk. Also, the peer p can deduce the state in sub domain b1b2 . . . bi by
aggregating its own knowledge on sub domain b1b2 . . . bi+1, which is available by
induction, with the knowledge provided by neighbor peer pi+1 about sub domain
b1b2 . . . bi+1. In the end, peer p can deduce the state of the whole P2P system,
which is equivalent to the sub domain of the empty prefix.

For illustration, we give an example: we use our aggregation service to learn
the total number of peers in the P2P system. We assume to have a stable P2P
system, as shown in Figure 1.

We describe our example from the perspective of peer p with the bit string
001 (see Figure 2). Peers (periodically) exchange sub domain information with
their neighbors. In particular, peer p sends the information that there is one peer
in sub domain 001 to neighbor peer p3 (with ID 000), and in exchange learns
that there is one peer in sub domain 000 from neighbor p3. Literally summing
up one and one, peer p deduces that there are 2 peers with prefix 00. Similarly,
on the next higher level, peer p exchanges information with neighbor peer p2

2 The exact up-to-date state of the whole system cannot be known. This would be
equivalent to consensus in an asynchronous and dynamic distributed system, which
is well known to be impossible [14].
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ID:001

01

1

000

10

ID:1100

ID:011

Fig. 1. A sample illustration of sub domains. Dashed circles indicate the partitioning
of the system into sub domains for peer 001.

(ID 011) to learn that there are 2 peers with prefix 01. This sums up to a total
of 4 peers with prefix 0. In a last step, peer p learns from neighbor peer p1 (ID
1100) that there are 5 peers with prefix 1.

Since there are 4 peers with prefix 0 and 5 peers with prefix 1, peer p knows
that there is a total of 9 peers in the P2P system. Note that our aggregation
mechanism runs simultaneously at every peer, and, therefore, provides informa-
tion in a bottom-up aggregated manner at every peer.

The accuracy of our aggregation service depends on the message propaga-
tion mechanisms of the implementation. In a static system, that is, without
peers joining or leaving, the service provides exact information without message
overhead. In a dynamic system, however, more accuracy requires more frequent
message exchange between neighbors. A good tradeoff is to piggyback aggrega-
tion information on top of ordinary messages and generate new messages only if
the traffic is generally low.

Besides computing the total number of peers in the system, our aggregation
scheme can deliver a wide range of information, such as the average up-time of
peers, the total amount of bytes stored in the system, or, as we show in the next
section, the minimal depth of a peer in the tree structure.

3.1 Join Algorithm

The insertion of new peers is an essential and challenging operation in a P2P
system. In this section, we introduce a join algorithm as an example application
using information provided by our aggregation service describe in Section 3.

For our join algorithm, we employ the minimal depth service. The depth of
a peer is defined as the length of its bit string. Note that we use bit strings of
variable length. If the bit strings would be of fixed length, the depth of a peer
is the length of the so far assigned prefix of its bit string.

The minimal depth service works as follows (we consider the example given in
Figures 1 and 2 again): peer p with ID 001 wants to know in which sub domain
a peer with minimal depth can be found. From its neighboring peer p3 (ID 000)
it knows that the minimal depth is 3, and so deduces that with prefix 00 the
minimal depth is 3, since both the sub domain of p3 and p have the same minimal
depth. In the next inductive step, through information exchanged with neighbor
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ID:1100

ID:001 ID:000

ID:011

“1 in 000“

2 peers

4 peers

9 peers

“1 in 001“

“2 in 00“ “2 in 01“

“4 in 0“ “5 in 1“

Fig. 2. Illustration of the messages exchanged by peer p (ID 001) for the example given
in Figure 1

p2 (ID 01), peer p learns that the minimal depth in the sub domain of p2 is 3
as well. In a last step, peer p gets to know from neighbor p1 (ID 1100) that the
minimal depth in its sub domain is 2. Thus, the overall minimal depth is 2, and
the aggregation service provides peer p with this result.

Generally, using the depth join algorithm (DJ), each peer can deduce the
minimal depth of its sub domains. A new peer (joiner) is first routed through the
P2P system to sub domains with the smallest minimal depth and then assigned
an overlay ID. At every peer passed, one bit of the bit string of the joiner is
fixed; this guarantees termination. If a peer (inserter) cannot route the joiner
any further, it becomes responsible for inserting the new peer. The inserter
assigns the joiner its own bit string plus a 1, and appends a 0 to its own bit
string, thus splitting its domain space in half. In our example, the joiner would
be routed to the peer with ID 10, which splits its current domain space in half,
inserts the new peer with ID 101 into the system, and chooses the ID 100 as its
own. Afterwards, the tree is balanced with a minimal depth of 3.

It is worth mentioning that the number of peers in a certain sub domain is not
a good criterion for inserting new peers. Consider Figure 1 again. A newly joining
peer is inserted on the left half of the tree, that is with prefix 0, because the sub
domain with prefix 0 is sparser. Since the most loaded peer (ID 10) remains at
depth 2, this does not reduce the imbalance in the P2P system. Therefore, we
chose the minimal depth as our criterion for inserting peers.

Note that our join approach can also adapt to other criteria than the depth of a
node, such as the average number of requests per node, the available disk space or
cpu time, or even combinations thereof. Moreover, it can be used with other load
balancing strategies, such as load-stealing or load-shedding as described in [7].

As an additional feature, our join algorithm also works against attackers: a
malicious adversary might attack a random join system by simply taking out all
the peers of a sparse sub domain, making that sub domain even sparser, and
raising the load of the remaining peers in the sub domain. Our non-randomized
solution will constantly guide newly joining peers towards the sub domain with
smallest minimal depth, filling the gaps of the peers that left.
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4 Dynamic Adversarial Churn

Compared to classic distributed systems, a major characteristic of P2P sys-
tems is their high dynamism. Whereas in classic systems—except for occasional
failures—the set of network nodes is fixed, in P2P systems, typically new peers
join and leave all the time. In the second part of the paper, we describe a P2P
system which can cope with such a highly dynamic situation. We describe a
distributed protocol which maintains a simulated hypercube in the presence of
an adversary which constantly adds and removes peers. The goal of the mainte-
nance algorithm is twofold. It guarantees that each node always contains at least
one peer which stores the node’s data. Further, it adapts the hypercube dimen-
sion to the total number of peers in the system. This is achieved by two basic
components. First, we present a dynamic token distribution algorithm for the
hypercube. Based on the information aggregation scheme of Section 3, we then
describe a protocol which allows the nodes of the system to coordinate dimen-
sion changes of the hypercube. Section 4 is organized as follows. After specifying
our communication model in Section 4.1, the token distribution and information
aggregation protocols are described in Sections 4.2 and 4.3, respectively. The
two components are then put together in Sections 4.4–4.6. Thereby, Section 4.4
defines the overlay topology of our P2P system and Section 4.5 provides a de-
tailed description of the algorithm maintaining the given topology. To obtain a
simpler algorithm and a more readable proof, we describe a system with peer
degree O(log2 n) in Section 4.4 and 4.5. In Section 4.6, we outline how to obtain
a system with peer degree O(log n) while asymptotically preserving all desired
properties.

4.1 Model

We consider the synchronous message passing model where time is divided into
rounds. In every round, each peer can send a message to all its neighbors and
receive the messages from all neighbors. Additionally, we have an adversary
A(J, L, λ) which may perform J arbitrary joins and L arbitrary leaves (crashes)
in each interval of λ rounds.

We assume that a joining peer π1 contacts an arbitrary peer π2 which already
belongs to the system; π2 then triggers the necessary actions for π1’s integration.
A peer may be contacted by several joining peers simultaneously. In contrast to
other systems where peers have to do some finalizing operations before leaving,
we consider the more general case where peers depart or crash without notice.

4.2 Dynamic Token Distribution

The problem of distributing peers uniformly throughout a hypercube is a special
instance of a token distribution problem, first introduced by Peleg and Upfal [24].
The problem has its origins in the area of load balancing, where the workload
is modeled by a number of tokens or jobs of unit size; the main objective is
to distribute the total load equally among the processors. Such load balancing
problems arise in a number of parallel and distributed applications including job
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scheduling in operating systems, packet routing, large-scale differential equations
and parallel finite element methods. More applications can be found in [31].

Formally, the goal of a token distribution algorithm is to minimize the maxi-
mum difference of tokens at any two nodes, denoted by the discrepancy φ. This
problem has been studied intensively; however, most of the research is about the
static variant of the problem, where given an arbitrary initial token distribution,
the goal is to redistribute these tokens uniformly. In the dynamic variant on the
other hand, the load is dynamic, that is, tokens may arrive and depart during
the execution of the token distribution algorithm. In our case, peers may join
and leave the simulated hypercube at arbitrary times, so the emphasis lies on
the dynamic token distribution problem on a d-dimensional hypercube topology.

We use two variants of the token distribution problem: In the fractional token
distribution, tokens are arbitrarily divisible, whereas in the integer token dis-
tribution tokens can only move as a whole. In our case, tokens represent peers
and are inherently integer. However, it turns out that the study of the fractional
model is useful for the analysis of the integer model.

We use a token distribution algorithmwhich is based on the dimension exchange
method [9,25]. Basically, the algorithm cycles continuously over the d dimensions
of the hypercube. In step s, where i = s mod d, every node u = β0...βi...βd−1
having a tokens balances its tokens with its adjacent node in dimension i, v =
β0...βi...βd−1, having b tokens, such that both nodes end up with a+b

2 tokens in
the fractional token distribution. On the other hand, if the tokens are integer, one
node is assigned �a+b

2  tokens and the other one gets !a+b
2 " tokens.

It has been pointed out in [9] that the described algorithm yields a perfect
discrepancy φ = 0 after d steps for the static fractional token distribution. In
[25], it has been shown that in the worst case, φ = d after d steps in the static
integer token distribution.

In the following, the dynamic integer token distribution problem is studied,
where a “token adversary” A(J, L, 1) adds at most J and removes at most L
tokens at the beginning of each step. In particular, we will show that if the
initial distribution is perfect, i.e., φ = 0, our algorithm maintains the invariant
φ ≤ 2J + 2L + d at every moment of time.

For the dynamic fractional token distribution, the tokens inserted and deleted
at different times can be treated independently and be superposed. Therefore,
the following lemma holds.

Lemma 1. For the dynamic fractional token distribution, the number of tokens
at a node depends only on the token insertions and deletions of the last d steps
and on the total number of tokens in the system.

Proof. Assume that a total amount of T tokens are distributed in two different
ways on the d-dimensional hypercube. According to [9], each node has exactly
T
2d tokens after d steps in the absence of an adversary. On the other hand, the
token insertions and removals of the adversary that happen in-between can be
treated as an independent superposition, as the corresponding operations are all
linear. ��
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We can now bound the discrepancy of the integer token distribution algorithm
by comparing it with the fractional problem.

Lemma 2. Let v be a node of the hypercube. Let τv(t) and τv,f (t) denote the
number of tokens at v for the integer and fractional token distribution algorithms
at time t, respectively. We have ∀t : |τv(t) − τv,f (t)| ≤ d

2 .

Proof. For t = 0, we have τv(t) = τv,f (t). For symmetry reasons, it is sufficient
to show the upper bound τv(t) ≤ τv,f (t) + d

2 . We first prove by induction that
τv(t) ≤ τv,f (t) + t

2 at time t.
For the induction step, we consider two neighbors u and v which exchange

tokens. We have

τv(t + 1) ≤
⌈

τv(t) + τu(t)
2

⌉
≤

⌈⌊
τv,f (t) + t

2

⌋
+

⌊
τu,f (t) + t

2

⌋
2

⌉

≤
⌊
τv,f (t) + t

2

⌋
+

⌊
τu,f (t) + t

2

⌋
2

+
1
2

≤ τv,f (t + 1) +
t + 1

2
.

The second inequality follows from the induction hypothesis and the fact that
τv(t) and τu(t) are integers. Note that adding or removing tokens has no influence
on the difference between τv and τv,f because it modifies τv and τv,f in the same
way.

So far, we have seen that the number of integer tokens can deviate from the
number of fractional tokens by at most d

2 after the first d steps. In order to
show that this holds for all times t, we consider a fractional token distribution
problem τ̂v,f for which τ̂v,f (t − d) = τv(t − d). Using the above argument, we
have τv(t−d) ≤ τ̂v,f (t) and by Lemma 1, we get τ̂v,f (t) = τv,f (t). This concludes
the proof. ��

Lemma 3. In the presence of an adversary A(J, L, 1), it always holds that the
integer discrepancy φ ≤ 2J + 2L + d.

Proof. We show that the fractional discrepancy φf is bounded by 2J +2L. Since
Lemma 2 implies that for the integer discrepancy φi it holds that φi − φf ≤ d,
the claim follows. Let Jt ≤ J and Lt ≤ L be the insertions and deletions that
happen at the beginning of step t. First, we consider the case of joins only, i.e.,
Lt = 0. Assume that all Jt tokens are inserted at node v = β0...βi...βd−1 where
i = t mod d. In the upcoming paragraph, all indices are implicitly modulo d.
In step t, according to the token distribution algorithm, v keeps Jt/2 tokens
and sends Jt/2 to node u = β0...βi...βd−1. In step t + 1, Jt/4 are sent to nodes
β0...βiβi+1...βd−1 and β0...βiβi+1...βd−1, and so on. Thus, after step t + d − 1,
every node in the d-dimensional hypercube has the same share of Jt

2d tokens from
that insertion. We conclude that a node can have at most all insertions of this
step, half of the insertions of the last step, a quarter of all insertions two steps
ago and so on:
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Jt +
Jt−1

2
+

Jt−2

4
+ ... +

Jt−(d−1)

2d−1︸ ︷︷ ︸
< 2J

+
Jt−d

2d
+

Jt−(d+1)

2d
+

Jt−(d+2)

2d
+ ...︸ ︷︷ ︸

shared by all nodes

Since Jt−i ≤ J for i = 0, 1, 2, . . ., we have φf ≤ 2J . For the case of only token
deletions, the same argument can be applied, yielding a discrepancy of at most
2L. Finally, if there are both insertions and deletions which do not cancel out
each other, we have φf ≤ 2J + 2L. ��

4.3 Information Aggregation

When the total number of peers in the d-dimensional hypercube system ex-
ceeds a certain threshold, all nodes β0 . . . βd−1 have to split into two new nodes
β0 . . . βd−10 and β0 . . . βd−11, yielding a (d + 1)-dimensional hypercube. Analo-
gously, if the number of peers falls beyond a certain threshold, nodes β0 . . . βd−20
and β0 . . . βd−21 have to merge their peers into a single node β0 . . . βd−2, yield-
ing a (d − 1)-dimensional hypercube. Using the ideas introduced in Section 3,
we present an algorithm which provides the same estimated number of peers in
the system to all nodes in every step allowing all nodes to split or merge syn-
chronously, that is, in the same step. The description is again made in terms of
tokens rather than peers.

Assume that in order to compute the total number of tokens in a d-dimensional
hypercube, each node v = β0 . . . βd−1 maintains an array Γv[0, . . . , d], where
Γv[i] for i ∈ {0, . . . , d} stores the estimated number of tokens in the sub-cube
consisting of the nodes sharing v’s prefix β0 . . . βd−1−i. Further, assume that at
the beginning of each step, an adversary inserts and removes an arbitrary number
of tokens at arbitrary nodes. Each node v = β0 . . . βd−1−i . . . βd−1 then calculates
the new array Γ ′

v[0, . . . , d]. For this, v sends Γv[i] to its adjacent node u =
β0 . . . βd−1−i . . . βd−1, for i ∈ {0, . . . , d−1}. Then, Γ ′

v[0] is set to the new number
of tokens at v which is the only node with prefix β0 . . . βd−1. For i ∈ {1, . . . , d},
the new estimated number of tokens in the prefix domain β0 . . . βd−1−(i+1) is
given by the total number of tokens in the domain β0 . . . βd−1−i plus the total
number of tokens in domain β0 . . . βd−1−i provided by node u, that is, Γ ′

v[i+1] :=
Γv[i] + Γu[i].

Lemma 4. Consider two arbitrary nodes v1 and v2 of the d-dimensional hyper-
cube. Our algorithm guarantees that Γv1 [d] = Γv2 [d] at all times t. Moreover, it
holds that this value is the correct total number of tokens in the system at time t−d.

Proof. We prove by induction that at time t + k, all nodes sharing the prefix
β0 . . . βd−1−k for k ∈ {0, . . . , d} store the same value Γv[k] which represents the
correct state of that sub-domain in step t. Because there is only one node with
prefix β0 . . . βd−1, the lemma is clear for k = 0. By the induction hypothesis, all
nodes v with prefix β0 . . . βd−1−(k+1) βd−1−k share the same value Γv[k] which
corresponds to the state of the system k steps earlier, and the same holds for all
nodes u with prefix β0 . . . βd−1−(k+1)βd−1−k. In step k+1, all these nodes having
the same prefix β0 . . . βd−1−(k+1) obviously store the same value Γ ′

v[k + 1] =
Γ ′

u[k + 1] = Γv[k] + Γu[k]. ��
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4.4 Simulated Hypercube

Based on the components presented in the previous sections, both the topol-
ogy and the maintenance algorithm will now be described in detail. Given an
adversary A(d + 1, d + 1, 6) which inserts and removes at most d + 1 peers in
any time interval of 6 rounds we present a system for which 1) the out-degree
of every peer is bounded by Θ(log2 n) where n is the total number of peers in
the system, 2) the network diameter is bounded by Θ(log n), and 3) every node
of the simulated hypercube has always at least one peer which stores its data
items, so no data item will ever be lost.

We start with a description of the overlay topology. As already mentioned, the
peers are organized to simulate a d-dimensional hypercube, where the hypercube’s
nodes are represented by a group of peers. A data item with identifier id is stored
at the node whose identifier matches the first d bits of the hash-value of id .

The peers of each node v are divided into a core Cv of at most 2d+3 peers and
a periphery Pv consisting of the remaining peers; all peers within the same node
are completely connected (intra-connections). Moreover, every peer is connected
to all core peers of the neighboring nodes (inter-connections). Figure 3 shows
an example for d = 2.

The data items belonging to node v are replicated on all core peers, while the
peripheral peers are used for the balancing between the nodes according to the
peer distribution algorithm and do not store any data items. The partition into
core and periphery has the advantage that the peers which move between nodes
do not have to replace the data of the old node by the data of the new nodes in
most cases.

4.5 6-Round (Maintenance) Algorithm

The 6-round (maintenance) algorithm maintains the simulated hypercube topol-
ogy described in the previous section given an adversary A(d + 1, d + 1, 6). In

Fig. 3. A simulated 2-dimensional hypercube with four nodes, each consisting of a
core and a periphery. All peers within the same node are completely connected to
each other, and additionally, all peers of a node are connected to all core peers of the
neighboring nodes. Only the core peers store data items, while the peripheral peers
may move between the nodes to balance biased adversarial changes.
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particular, it ensures that 1) every node has at least one core peer all the times
and hence no data is lost; 2) each node always has Θ(d) peers (the number of
peers turns out to be between 3d + 10 and 45d + 86); 3) only peripheral peers
are moved between nodes, thus the unnecessary copying of data is avoided.

In the following, we refer to a complete execution of all six rounds (Round
1 – Round 6) of the maintenance algorithm as a phase. Basically, the 6-round
algorithm balances the peers across one dimension in every phase according to
the token distribution algorithm as described in Section 4.2; additionally, the
total number of peers in the system is computed with respect to an earlier state
of the system by the information aggregation algorithm of Section 4.3 to expand
or shrink the hypercube if the total number of peers exceeds or falls below a
certain threshold. In our system, we use the lower threshold LT = 8d + 16 and
the upper threshold UT = 40d + 80 for the total number of peers per node on
average.3

While peers may join and leave the system at arbitrary times, the 6-round
algorithm considers the (accumulated) changes only once per phase. That is, a
snapshot of the system is made in Round 1; Rounds 2 – 6 then ignore the
changes that might have happened in the meantime and depend solely on the
snapshot at the beginning of the phase.

Round 1
Outline: Each node v makes a snapshot of the currently active peers, denoted
by the ID set Sv. The later rounds will only be based on these sets.
Sent Messages: Each peer of a node v sends a packet with its own ID and the
(potentially empty) ID set of its joiners to all adjacent peers within v.

Round 2
Outline: Based on the snapshot of Round 1, the core peers of a node v know
the total number of peers in the node, size(v) := |Sv|. This information is needed
for the peer distribution algorithm (see Section 4.2) and for the estimation of
the total number of peers in the system (see Section 4.3).
Local Computations: The core peers compute size(v) := |Sv|.
Sent Messages: Each peer informs its joiners about Sv. The core peers Cv

additionally send the number size(v) to their neighboring core Cu, where node u
is v’s neighbor in dimension i (the node with which v has to balance its peers in
this phase). The core also exchanges the new estimated total number of peers in
its domains with the corresponding adjacent cores (according to the algorithm
presented in Section 4.3).

Round 3
Outline: At the beginning of this round, every peer within a node v knows
Sv, and the transfer for the peer distribution algorithm can be prepared. Let v
again be an arbitrary node and u its adjacent node in dimension i. We assume

3 Note that since we consider the threshold on average, and since these values are
provided with a delay of d phases in a d-dimensional hypercube (see Lemma 4), the
number of peers at an individual node may lie outside [LT ,UT ].
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that size(v) > size(u); the case where size(v) ≤ size(u) is analogous and not
described further here. The ID set T of peers that have to move from node v

to node u are the size(v)−size(u)
2 (arbitrarily rounded) peers in the periphery Pv

having the smallest identifiers.
Local Computations: The peers in each node v compute the new periphery
Pv := Sv \ Cv. The core remains the same.
Sent Messages: All cores forward the information about the new estimated
total number of peers in the system to their peripheral peers. Moreover, the core
of the larger node Cv sends the identifiers of the peers that need to be transferred
T to Cu, and the number size(v)−size(u)

2 to the new periphery Pv.

Round 4
Outline: The transfer for the peer distribution algorithm is continued. Moreover,
this round prepares the dimension reduction if necessary.
Sent Messages: The core Cu informs the peers in T about all neighboring cores
Cuj , where uj is the neighbor of u in dimension j for j ∈ {0, . . . , d − 1}, about
Cu itself, about Su and about its peripheral peers Pu. Moreover, Cu informs its
own periphery Pu about the newcomers T .

If the estimated total number of peers in the system is beyond the threshold,
the core peers of a node v which will be reduced send their data items plus the
identifiers of all their peripheral peers (with respect to the situation after the
transfer) to the core of their adjacent node v.

Round 5
Outline: This round finishes the peer distribution, establishes the new periph-
eries, and prepares the building of a new core. If the hypercube has to grow in
this phase, the nodes start to split, and vice versa if the hypercube is going to
shrink.
Local Computations: Given the number size(v)−size(u)

2 , the peripheral peers
Pv can compute the set T selecting the size(v)−size(u)

2 smallest elements in Pv.
From this, the new periphery Pv := Pv \ T is computed. Analogously, the peers
in node u (including T ) can compute the new periphery Pu := Pu ∪ T .

Then, all peers of each node v calculate the new core Cnew
v : It consists of the

peers of the old core which have still been alive in Round 1, i.e., Cold
v := Cv ∩Sv ,

plus the 2d+3−|Cv ∩Sv | smallest IDs in the new periphery Pv, denoted by C�
v .

Hence, the new core is given by Cnew
v := Cold

v ∪ C�
v , and the new periphery by

Pnew
v := Pv \ C�

v .
If the hypercube has to grow in this phase, the smallest 2d + 3 peers in the

new periphery Pnew
v become the new core of the expanded node, Cv. Half of

the remaining peripheral peers, the ones with the smaller identifiers, build the
new periphery Pv, and the other half becomes Pv. All these operations can be
computed locally by every peer.
Sent Messages: The old core Cold

v informs all its neighboring nodes (i.e., their
old cores) about the new core Cnew

v . Moreover, Cold
v sends its data items to the

peers in C�
v .
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If the hypercube is about to grow, Cold
v sends the necessary data items to the

core peers of the new node, Cv. Moreover, Cold
v informs its neighboring (old) cores

about the IDs of its expanded core Cv.
If the hypercube is about to shrink, all cores Cold

v inform their periphery about
the peers arriving from the expanded node and the peers in the expanded node
about the new core Cnew

v and its periphery. Cold
v copies also the data items of

Cold
v to the peers CΔ

v .

Round 6
Outline: Building the new cores and accomplishing the dimension change if
necessary.
Local Computations: If the hypercube has been reduced, every peer can now
compute the new periphery Pv.
Sent Messages: The old core Cold

v forwards the information about the new
neighboring cores to the peers CΔ

v ∪ Pv.
If the hypercube has grown, Cold

v forwards the expanded cores of its neighbor-
ing nodes to all peers in its expanded node v. Note that his requires that Cold

v

remembers the peripheral peers that have been transferred to v in Round 5.

Theorem 1. Given an adversary A(d+1, d+1, 6) which inserts and removes at
most d+1 peers per phase, the described 6-round algorithm ensures that 1) every
node always has at least one core peer and hence no data is lost; 2) each node
has between 3d+10 and 45d+86 peers, yielding a logarithmic network diameter;
3) only peripheral peers are moved between nodes, thus the unnecessary copying
of data is avoided.

Proof. We first consider a simpler system without the separation into core and
periphery, where the maintenance algorithm simply runs the peer distribution
algorithm and the information aggregation algorithm to count the total number
of peers in the system, and expands or reduces the hypercube with respect to
the thresholds LT = 8d + 16 and UT = 40d + 80 presented above. Moreover,
assume that these operations are performed in quiet phases, where the adversary
may remove at most d + 1 and add at most d + 1 peers only in-between.

For this simpler system, it holds that every node in the simulated
d-dimensional hypercube has at least 3d + 10 and at most 45d + 86 peers at
every moment of time. Moreover, after the hypercube has changed its dimension
from dold to dnew , the dimension will remain stable for at least 2dnew +1 phases.
We will now prove these properties.

We consider the cases where the average number of peers per node μ falls
beyond the lower threshold 8dold +16 or exceeds the upper threshold 40dold +80
in turn. Note that such an event will lead to a dimension change with a delay of
dold phases only, see Lemma 4. We prove that after the change, μ ∈ {8dnew +
16, . . . , 40dnew + 80} for at least dnew + 1 phases. The dimension remains stable
for at least 2dnew + 1 phases which implies—together with Lemma 3—that the
discrepancy before the next change is limited by 2(dnew+1)+2(dnew+1)+dnew =
5dnew + 4.
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Case μ < 8d + 16: At time t − dold, it held that μ < 8dold + 16 while at
time t − dold − 1 we had μ ≥ 8dold + 16. In dold + 1 phases, there are at most
(dold + 1)(dold + 1) = d2

old + 2dold + 1 leaves, so μ ≥ 8dold + 16 − d2
old+2dold+1

2dold
>

8dold+14 before merging. Clearly, there must be a node with more than 8dold+14
peers, hence, given the discrepancy of 5dold + 4 (see Lemma 3), every node has
more than 3dold + 10 peers before merging.

What about the maximum? At time t − dold, μ < 8dold + 16, and there have
been at most dold(dold + 1) joins in dold steps, so μ < 8dold + 16 + dold(dold+1)

2dold
<

8dold + 18 before merging, and μ < 16dold + 36 afterwards. The maximum node
has less than 21dnew + 61 peers.

Next, we show that μ ≥ 8dnew + 16 for the next dnew + 1 phases after a
reduction. At time t−dold−1, μ ≥ 8dold+16 = 8dnew+24. The reduction doubles
the average number of peers per node, so μ ≥ 16dnew +48. Further, there are at
most (dold + 1)(dold + 1) + (dnew + 1)(dnew + 1) = 2d2

new + 6dnew + 5 leaves in
the meantime, so μ ≥ 16dnew +48− 2d2

new+6dnew+5
2dnew

> 16dnew +41 > 8dnew +16.
Finally, μ ≤ 40dnew +80 for dnew +1 phases. At time t−dold, μ < 8dnew +24,

so μ < 16dnew +48 after the reduction. There are at most dold(dold +1)+(dnew +
1)(dnew + 1) = 2d2

new + 5dnew + 3 joins, so μ < 16dnew + 48 + 2d2
new+5dnew+3

2dnew
<

16dnew + 54 < 40dnew + 80.
Case μ > 40d + 80: At time t − dold, μ > 40dold + 80 = 40dnew + 40, so

μ > 20dnew + 20 after splitting; there are at most dold(dold + 1) = d2
new − dnew

leaves in dold steps, so μ > 20dnew +20− d2
new−dnew

2dnew
> 20dnew +19. According to

Lemma 3, the minimum node has more than 15dnew +15 peers after splitting. At
time t−dold−1, μ ≤ 40dold+80, and there are at most (dold+1)(dold+1) = d2

old+
2dold + 1 joins. So before splitting, μ ≤ 40dold + 80 + d2

old+2dold+1
2dold

< 40dold + 82,
and the maximum node has at most 45dold + 86 peers.

Next, we show that μ ≥ 8dnew + 16 for the next dnew + 1 phases after the
expansion. At time t − dold, μ > 40dold + 80 = 40dnew + 40, so μ > 20dnew + 20
after the expansion. Moreover, there are at most dold(dold+1)+(dnew+1)(dnew+
1) = 2d2

new+dnew+1 leaves, and μ > 20dnew+20− 2d2
new+dnew+1

2dnew
> 20dnew+17 ≥

8dnew+16. Finally, μ ≤ 40dnew+80 for the next dnew+1 steps: At time t−dold−1,
μ ≤ 40dold+80 = 40dnew+40, so μ ≤ 20dnew +20 after the expansion; moreover,
there are at most (dold +1)(dold +1)+ (dnew +1)(dnew +1) = 2d2

new +2dnew +1
joins, so μ ≤ 20dnew + 20 + 2d2

new+2dnew+1
2dnew

< 20dnew + 24 < 40dnew + 80.
In our real system, repairing takes six rounds and runs concurrently to the

adversary. However, as all operations in the whole phase are based upon the
state of Round 1, a phase can be considered as running uninterruptedly, that
is, as if the adversary inserted d + 1 and removed d + 1 peers only between the
phases. Thus, the properties shown above also hold in our system. However, we
additionally have to postulate that there is always at least one core peer. We
know that it is always possible to select 2d + 3 core peers in Round 5 with
respect to the state of Round 1. These peers have to survive until Round 6 of
the next phase, so for twelve normal rounds in total; however, as the adversary
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Aadv(d + 1, d + 1, 6) may remove at most 2d + 2 peers in twelve rounds, this
clearly holds.

Finally, we show that there are indeed enough peripheral peers in Round 3
such that core peers do not have to change the node for the peer distribution,
that is: In Round 3, it holds that |Pv| > size(v)−size(u)

2 . From the considerations
made above, we know that size(v) ≥ 3d+10 and size(u) ≥ 3d+10. As v has at
most 2d + 3 core peers, we have |Pv| ≥ size(v)− (2d + 3) ≥ size(v)− size(u) >
size(v)−size(u)

2 . ��

4.6 Reducing the Degrees

In order to enhance clarity, we described a scheme which is as simple as possible.
In this section, we briefly outline the necessary changes which allow to reduce
the peer degree from O(log2 n) to O(log n).

The reason for the high peer degree are the connections between adjacent
nodes of the underlying hypercube. Each peer of a given hypercube node is
connected to a logarithmic number of peers in each neighboring hypercube node.
It is clear that in order to significantly reduce the peer degrees, we have to
replace the complete bipartite graphs between cores and peripheries of adjacent
hypercube nodes by a sparser structure. It can be shown that connectivity can
still be guaranteed if we choose a sparse graph where every peer is connected to
only one core peer of each adjacent hypercube node and where every core peer
has only a constant number of connections to each adjacent hypercube node. We
will need a few more rounds in the maintenance algorithm because sending a
message from a hypercube node to all peers of an adjacent hypercube node now
takes two rounds instead of one round. If all constants are chosen carefully, it
can be shown that we obtain a system with peer degree O(log n) and diameter
O(log n). The system tolerates O(log n) worst-case joins and leaves per time unit.
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