Jiirg Kohlas
Bertrand Meyer
André Schiper (Eds.)

e
=
o
()
A=
e
AL
4
<V}
e
(ge]
i
(Fp)]

Survey

Dependable Systems:
Software, Computing,
Networks

Research Results of the DICS Program

LNCS 4028

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4028

Jirg Kohlas Bertrand Meyer
André Schiper (Eds.)

Dependable Systems:
Software, Computing,
Networks

Research Results of the DICS Program

@ Springer

Volume Editors

Jiirg Kohlas

University of Fribourg

Department of Informatics

Bd. de Pérolles 90, CH-1700 Fribourg, Switzerland
E-mail: juerg.kohlas @unifr.ch

Bertrand Meyer

ETH Zurich

Department of Computer Science
Clausiusstrasse 59, CH-8092 Zurich, Switzerland
E-mail: Bertrand.Meyer @inf.ethz.ch

André Schiper

EPFL, Faculté IC, Station 14
CH-1015 Lausanne, Switzerland
E-mail: andre.schiper@epfl.ch

Library of Congress Control Number: 2006929805

CR Subject Classification (1998): D.2, D.4, C.4,B.8
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-36821-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-36821-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11808107 06/3142 543210

Preface

Civilization relies on a functioning infrastructure, which is more and more en-
abled through information and communication technologies (ICT). A dependable
information infrastructure is thus crucial for the modern society. On the other
hand, information and communication systems belong to the most complex ar-
tifacts ever built by mankind. The design and operation of these systems are
challenging tasks. Theories, methods and tools which help to master the prob-
lems encountered in the design process and the management of operations are
therefore of utmost importance for the future of information and communication
technology.

In view of the relevance of this topic in computer science, the Hasler Foun-
dation launched in 2002 a research program on “Dependable Information and
Communication Systems” (DICS). The call for projects was addressed to all
Swiss universities. More than 40 short project proposals were submitted. Of
these, 18 were selected for a hearing, in which a subset of these projects were
selected and invited to submit complete project proposals. Finally, nine projects
were selected for funding by the Hasler Foundation. All these projects were also
partially supported by the universities involved as well as by other third parties,
in particular by the Swiss National Foundation for Research.

The DICS projects started at the end of 2002 and the beginning of 2003.
The members of the project teams met twice at workshops organized by the
Hasler Foundation. The first one took place in Miinchenwiler on March 16 and
17, 2004, the second workshop, which marked the conclusion of the projects,
in Lowenberg on October 13 and 14, 2005. Each time more than 40 scientists
participated in the workshop. The present volume documents the results of the
DICS research program. Of course, the subject of dependable information and
communication systems is not exhausted by this program. Much research is
still needed. Therefore at the end of 2005, the Hasler Foundation launched a
new program on “Managing Complexity of Information and Communication
Systems” (MICS), which is intended as a follow-up and an extension of DICS.

The Hasler Foundation’s existing endowments derive from the former Hasler
AG (1852-1986), a pioneer of the Swiss telecommunications industry. The foun-
dation is committed to promoting high-level research and education in the field
of information and telecommunication systems. DICS is one of the research pro-
grams launched and supported by the foundation. We refer readers to the website
www.haslerfoundation.ch for further information.

The Hasler Foundation thanks the editors and the authors of the present vol-
ume for their contributions. The editors also thank C. Schneuwly for assistance
in editing. Finally, we thank Springer for accepting this volume in the presti-
gious Lecture Notes in Computer Science. It is our hope that this volume helps

VI Preface

to encourage further research in the crucial field of dependability of information
and communication systems.

May 2006 Jiirg Kohlas
Chairman of the Scientific Committee of the Hasler Foundation

y 2

Final DICS workshop, 13 October 2005: The participants at the training center of the
Swiss Federal Railways in Lowenberg (Photo: B. Meyer)

Introduction

For all the marvels that information technology delivers, we should never forget
— and the users of our systems should never let us forget — that as the results we
produce become ever more impressive, the burden on us to make them perform
reliably grows ever heavier, simply because the more people rely on them the
more critical any failure can be. This is the whole topic of dependability, a central
issue in all disciplines of systems engineering.

No single publication could by itself do justice to this rich and vibrant field of
research; the present volume presents a snapshot of some of the most interesting
work being performed on this theme by teams in top Swiss universities. It covers
three key aspects of dependability:

— Dependable software
— Dependable computing
— Dependable networks

Following this triple focus, the book consists of three surveys in Part I, one
on each of these topics, then a collection of research contributions in Parts II,
IIT and IV; each of these parts is devoted again to one of the topics, in the same
order.

As the surveys in Part I will show, merely defining dependability is already a
significant task. Each survey identifies major issues of dependability and presents
the state of the art in providing solutions. Meyer’s survey on dependable soft-
ware uses a broad brush to explore the various techniques available for increasing
the reliability of software systems, from management standards such as CMMI
all the way down to static analysis, proofs and tests. Schiper’s survey on the
general topic of dependable systems introduces the fundamental, application-
independent techniques in the field, with a special emphasis on replication tech-
niques and the associated communication issues. The last survey, by Kurant,
Nguyen and Thiran, addresses the specific area of IP over fiber networks, clearly
essential in the future growth of the Internet and other networks; it focuses on
techniques for failure location, protection and restoration.

Part IT explores some aspects of dependable software. In the first chapter of
this part, Arslan, Eugster, Meyer and Vaucouleur describe the current state of
the SCOOP method — Simple Concurrent Object-Oriented Programming —
and its implementation, designed to bring concurrent programming in its var-
ious incarnations (from multithreading to Internet programming) to the same
level of abstraction and dependability as its sequential counterpart. The result
is integrated in the object-oriented framework of the Eiffel language and funda-
mentally relies on notions of Design by Contract.

For a related set of applications of increasing importance, and in particular
Web services, XML has emerged as the communication vehicle of choice, but in

VIII Organization

today’s practice remains dissociated from programming languages, introducing
a detrimental gap. Emir, Maneth and Odersky present the Scala language and
framework which combine XML, Web Services and, again, concurrency in the
framework of an object-oriented programming language, allowing a seamless
integration of these different aspects under a single notational framework. As
the reader will undoubtedly note, the design is based on decisions very different
from those of SCOOP, providing the opportunity for interesting comparisons of
viewpoints.

It is often difficult in a single step to arrive at a correct software solution for a
complex problem; hence the idea of development by successive refinements. Baar,
Markovié, Fondement and Strohmeier explore its application to the stepwise
development of object-oriented software by introducing the notion of contract
refinement and applying it to an extended example. Unlike the previous two
contributions this one uses, as its underlying technology, not a programming
language but the UML modeling notation.

UML also underlies the final contribution to Part II, by Buchs, Pedro and
Lucio, devoted to the generation of test directly from specifications, expressed in
the Fondue subset of UML; subsetting is indeed necessary for defining a precise
semantics.

Part I1I is devoted to dependable computing, i.e., dependability at the middle-
ware or system level. The first paper by Biinzli et al. presents recent advances
in the context of group communication. Group communication is an abstrac-
tion that allows a distributed group of processes to provide a reliable service in
spite of possible failures within the group. Reliability is achieved by replication:
group communication provides the adequate communication abstraction among
the replicas. The paper addresses various aspects of group communication: pro-
tocol frameworks used to build group communication stacks, new architectures
for group communication stacks, specification of group communication, verifica-
tion of distributed algorithms related to group communication and verification
of group communication stacks.

The second paper, by Gerlach, Schaeli and Hersch, is devoted to dependability
in the context of parallel applications. The authors have built a framework called
DPS (Dynamic Parallel Schedules), based on a flow graph, for the development
of parallel applications on a cluster of workstations. The paper describes how
fault tolerance has been added to the DPS framework using two techniques:
backup threads (stateless and stateful) and checkpoints. A backup thread is
mapped on a different node than its primary thread, allowing the computation
to proceed in case of failures. Checkpointing allows a long-running computation
to be restarted from a state different from its initial state.

The last paper of Part III, by Pautasso, Bausch and Alonso, addresses a simi-
lar problem in the context of a virtual laboratory, characterized by long-running
and large-scale computations on a cluster. Virtual experiments are typically
modelled as workflows. The paper describes the JOpera workflow system and
focusses on its fault tolerant features. The system is able to adapt to processor
failures by rescheduling jobs. The system also tolerates failures within its kernel,

Organization X

by ensuring that process execution resumes in a consistent state after a failure.
Moreover, the kernel is able to automatically adapt its configuration to optimally
use the available resources.

Part TV is devoted to dependable networks. The paper by Ducatelle et al.
addresses the problem of failure location and traffic rerouting in large IP-over-
fiber and wireless ad hoc networks. Traffic rerouting takes place once the failure
has been located. Two algorithms for failure location are presented, one for
IP/WDM (Wave-length Division Multiplexing), the other for wireless sensor
networks. In a second part, failure restoration by rerouting is addressed. In
the context of wireless sensor networks, failure restoration is done by a routing
algorithm inspired from ant colonies.

The paper by Erlebach et al. addresses the robustness of the Internet. The
authors point out that the traditional model of the Internet as a graph of
autonomous system does not capture accurately the way traffic is routed, an
important factor of robustness. Traffic routing mainly depends on economic rela-
tionships between autonomic systems. Traffic routing can be incorporated using
the wvalley-free path model. However, this model makes the evaluation of the ro-
bustness computationally more difficult. Complexity and approximation results
for disjoint paths and minimum cuts in that model are discussed. Experimental
findings concerning the number of vertex-disjoint valid paths and the sizes of
minimal cuts are also summarized.

The last paper, by Albrecht, Kuhn and Wattenhofer, is devoted to peer-
to-peer (P2P) overlay networks. P2P systems are based on common desktop
machines (“peers”) distributed over a large-scale network such as the Internet.
The focus of most research in P2P systems is the development of an efficient
lookup operation: given a key, locate the peer responsible for the key. P2P sys-
tems are characterized by a high rate of peers joining and leaving the system
(called churns). The paper describes a robust P2P system that can cope with
such a highly dynamic situation. The idea is to maintain a simulated hypercube,
and to adapt to churns by rearranging peers or by adjusting the dimension of
the hypercube to the number of peers in the system.

May 2006 Bertrand Meyer, André Schiper

Table of Contents

Part I: Surveys

Dependable Software
Bertrand Meyer

Dependable Systems
André Schiper

Survey on Dependable IP over Fiber Networks
Maciej Kurant, Hung X. Nguyen, Patrick Thiran

Part II: Dependable Software

SCOOP — Concurrency Made Easy
Volkan Arslan, Patrick Eugster, Piotr Nienaltowski,
Sebastien Vaucouleur

Scalable Programming Abstractions for XML Services
Burak Emir, Sebastian Maneth, Martin Odersky

Definition and Correct Refinement of Operation Specifications
Thomas Baar, Slavisa Markovié, Frédéric Fondement,
Alfred Strohmeier

Formal Test Generation from UML Models
Didier Buchs, Luis Pedro, Levi Lucio................ccuiion...

Part III: Dependable Computing

Advances in the Design and Implementation of Group Communication
Middleware
Daniel Biinzli, Rachele Fuzzati, Sergio Mena, Uwe Nestmann,
Olivier Rutti, André Schiper, Pawet T. Wojciechowski

Fault-Tolerant Parallel Applications with Dynamic Parallel Schedules:
A Programmer’s Perspective
Sebastian Gerlach, Basile Schaeli, Roger D. Hersch

Autonomic Computing for Virtual Laboratories
Cesare Pautasso, Win Bausch, Gustavo Alonso

XII Table of Contents

Part IV: Dependable Networks

Algorithms for Failure Protection in Large IP-over-fiber and Wireless
Ad Hoc Networks
Frederick Ducatelle, Luca Maria Gambardella, Maciej Kurant,
Hung X. Nguyen, Patrick Thiran

Robustness of the Internet at the Topology and Routing Level
Thomas Erlebach, Alexander Hall, Linda Moonen,
Alessandro Panconesi, Frits Spieksma, Danica Vukadinovié

Dependable Peer-to-Peer Systems Withstanding Dynamic Adversarial

Churn
Keno Albrecht, Fabian Kuhn, Roger Wattenhofer

Author Index

Dependable Software

Bertrand Meyer

ETH Zurich
http://se.ethz.ch

Abstract. Achieving software reliability takes many complementary tech-
niques, directed at the process or at the products. This survey summarizes some
of the most fruitful ideas.

1 Overview

Everyone who uses software or relies on devices or processes that use software — in
other words, everyone — has a natural interest in guarantees that programs will
perform properly. The following pages provide a review of techniques to improve
software quality.

There are many subcultures of software quality research, often seemingly sealed
off from each other; mentioning process-based approaches such as CMMI to
programming language technologists, or tests to people working on proofs, can be as
incongruous as bringing up Balanchine among baseball fans. This survey disregards
such established cultural fences and instead attempts to include as many as possible of
the relevant areas, on the assumption that producing good software is hard enough
that “every little bit counts” [60]. As a result we will encounter techniques of very
diverse kinds.

A note of warning to the reader seeking objectivity: I have not shied away from
including references — easy to spot — to my own work, with the expectation (if a
justification is needed) that it makes the result more lively than a cold inspection
limited to other people’s products and publications.

2 Scope and Terminology

The first task is to define some of the fundamental terms. Even the first word of this
article’s title, determined by the Hasler Foundation’s “Dependable Information and
Communication Systems” project, requires clarification.

2.1 Reliability and Dependability

In the software engineering literature the more familiar term is not “dependable” but
“reliable”, as in “software reliability”. A check through general-purpose and technical
dictionaries confirms that the two have similar definitions and are usually translated
identically into foreign languages.

There does exist a definition of dependability [1] from the eponymous IFIP
Working Group 10.4 [39] that treats reliability as only one among dependability

J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 1 —33, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 B. Meyer

attributes, along with availability, safety, confidentiality, integrity and maintainability.
While possibly applicable to a computing system as a whole, this classification does
not seem right for their software part, as some attributes such as availability are not
properties of the software per se, others such as confidentiality are included in
reliability (through one of its components, security), and the remaining ones such as
maintainability are of dubious meaning for software, being better covered by other
quality factors such as extendibility and reusability [57].

As a consequence of these observations the present survey interprets dependability
as meaning the same thing, for software, as reliability.

2.2 Defining Reliability

The term “software reliability” itself lacks a universally accepted definition. One
could argue for taking it to cover all “external quality factors” such as ease of use,
efficiency and extendibility, and even “internal quality factors” such as modularity.
(The distinction, detailed in [57], is that external factors are the properties, immediate
or longterm, that affect companies and people purchasing and using the software,
whereas internal factors are perceptible only to software developers although in the
end they determine the attainment of external factors.)

It is reasonable to retain a more restricted view in which reliability only covers three
external factors: correctness, robustness and security. This doesn’t imply that others are
irrelevant; for example even the most correct, robust and secure system can hardly be
considered dependable if in practice it takes ages to react to inputs, an efficiency
problem. The same goes for ease of use: many software disasters on record happened
with systems that implemented the right functions but made them available through
error-prone user interfaces. The reasons for limiting ourselves to the three factors listed
are, first, that including all others would turn this discussion into a survey of essentially
the whole of software engineering (see [33]); second, that the techniques to achieve
these three factors, although already very diverse, have a certain kindred spirit, not
shared by those for enhancing efficiency (like performance optimization techniques),
ease of use (like ergonomic design) and other external and internal factor.

2.3 Correctness, Robustness, Security

For the three factors retained, we may rely on the following definitions:

o Correctness is a system’s ability to perform according to its specification in cases
of use within that specification.

o Robustness is a system’s ability to prevent damage in cases of erroneous use
outside of its specification.

o Security is a system’s ability to prevent damage in cases of hostile use outside of its
specification.

They correspond to levels of increasing departure from the specification. The
specification of any realistic system makes assumptions, explicit or implicit, about the
conditions of its use: a C compiler’s specification doesn’t define a generated program
if the input is payroll data, any more than a payroll program defines a pay check if the
input is a C program; and a building’s access control software specification cannot

Dependable Software 3

define what happens if the building has burned. By nature, the requirements defined
by robustness and security are different from those of correctness: outside of the
specification, we can no longer talk of “performing” according to that specification,
but only seek the more modest goal of “preventing damage”; note that this implies the
ability to detect attempts at erroneous or hostile use.

Security deserves a special mention as in recent years it has assumed a highly
visible place in software concerns. This is a phenomenon to be both lamented, as it
signals the end of a golden age of software development when we could concentrate
on devising the best possible functionality without too much concern about the
world’s nastiness, and at the same time taken to advantage, since it has finally brought
home to corporations the seriousness of software quality issues, a result that decades
of hectoring by advocates of modern software engineering practices had failed to
achieve. One of the most visible signs of this phenomenon is Bill Gates’s edict
famously halting all development in February of 2001 in favor of code reviews for
hunting down security flaws. Many of these flaws, such as the most obnoxious, buffer
overflow, are simply the result of poor software engineering practices. Even if
focusing on security means looking at the symptom rather than the cause, fixing
security implies taking a coherent look at software tools and techniques and requires,
in the end, ensuring reliability as a whole.

2.4 Product and Process

Any comprehensive discussion of software issues must consider two complementary
aspects: product and process.

The products are the software elements whose reliability we are trying to assess;
the process includes the mechanisms and procedures whereby people and their
organizations build these products.

2.5 The Products of Software

The products themselves are diverse. In the end the most important one, for which we
may assess correctness, robustness and security, is code. But even that simple term
covers several kinds of product: source code as programmers see it, machine code as
the computer executes it, and any intermediate versions as exist on modern platforms,
such as the bytecode of virtual machines.

Beyond code, we should consider many other products, which in their own ways
are all “software”: requirements, specifications, design diagrams and other design
documents, test data — but also test plans —, user documentation, teaching aids. ..

To realize why it is important in the search for quality to pay attention to products
other than code, it suffices to consider the results of numerous studies, some already
decades old [10], showing the steep progression of the cost of correcting an error the
later it is identified in the lifecycle.

2.6 Deficiencies

In trying to ascertain the reliability of a software product or process we must often —
like a detective or a fire prevention engineer — adopt a negative mindset and look for

4 B. Meyer

sources of violation of reliability properties. The accepted terminology here
distinguishes three levels:

o A failure is a malfunction of the software. Note that this term does not directly
apply to products other than executable code.

o A fault is a departure of the software product from the properties it should have
satisfied. A failure always comes from a fault, although not necessarily a fault in
the code: it could be in the specification, in the documentation, or in a nonsoftware
product such as the hardware on which the system runs.

e An error is a wrong human decision made during the construction of the system.
“Wrong” is a subjective term, but for this discussion it’s clear what it means: a
decision is wrong if it can lead to a fault (which can in turn cause failures).

In a discussion limited to software reliability, all faults and hence all failures result
from errors, since software is an intellectual product not subject to the slings and
arrows of the physical world.

The more familiar term for “error” is bug. The upper crust of the software
engineering literature shuns it for its animist connotations. “Error” has the benefit of
admitting that our mistakes don’t creep into our software: we insert them ourselves. In
practice, as may be expected, everyone says ‘“bug”.

2.7 Verification and Validation

Even with subjectivity removed from the definition of “error”, definitions for the
other two levels above remains relative: what constitutes a “malfunction” (for the
definition of failures) or a “departure” from desirable properties (for faults) can only
be assessed with respect to some description of the expected characteristics.

While such reference descriptions exist for some categories of software product —
an element of code is relative to a design, the design is relative to a specification, the
specification is relative to an analysis of the requirements — the chain always stops
somewhere; for example one cannot in the end certify that the requirements have no
fault, as this would mean assessing them against some higher-level description, and
would only push the problem further to assessing the value of the description itself.
Turtles all the way up.

Even in the absence of another reference (another turtle) against which to assess a
particular product, we can often obtain some evaluation of its quality by performing
internal checks. For example:

o A program that does not initialize one of its variables along a particular path is
suspicious, independently of any of its properties vis-a-vis the fulfillment of its
specification.

o A poorly written user manual may not explicitly violate the prescriptions of another
project document, but is problematic all the same.

This observation leads to distinguishing two complementary kinds of reliability
assessment, verification and validation, often combined in the abbreviation “V&V”:

o Verification is internal assessment of the consistency of the product, considered
just by itself. The last two examples illustrated properties that are subject to
verification: for code; for documentation. Type checking is another example.

Dependable Software 5

o Validation is relative assessment of a product vis-a-vis another that defines some
of the properties that it should satisfy: code against design, design against
specification, specification against requirements, documentation against standards,
observed practices against company rules, delivery dates against project milestones,
observed defect rates against defined goals, test suites against coverage metrics.

A popular version of this distinction [10] is that verification is about ascertaining that
the product is “doing things right” and validation that it is “doing the right thing”. It
only applies to code, however, since a specification, a project plan or a test plan do
not “do” anything.

3 Classifying Approaches
One of the reasons for the diversity of approaches to software quality is the

multiplicity of problems they address. The following table shows a list of criteria,
essentially orthogonal, for classifying them.

Criteria for classifying approaches to software reliability

A priori (build) A posteriori (assess and correct)
Process Product

Manual Tool-supported
Technology-neutral Technology-specific

Product- and phase-neutral Vs Product- or phase-specific

Static (uses software text) Dynamic (requires execution)
Informal Mathematical

Complete (guarantee) Partial (some progress)

Free Commercial

The first distinction is cultural almost as much as it is technical. With a priori
techniques the emphasis is methodological: telling development teams to apply certain
rules to produce a better product. With a posteriori techniques, the goal is to examine a
proposed software product or process element for possible deficiencies, with the aim of
correcting them. While it is natural to state that the two are complementary rather than
contradictory — a defense often used by proponents of “a posteriori” approaches such
as testing when criticized for accepting software technology as it is rather than helping
to improve it — they correspond to different views of the software world, one hopeful
of prevention and the other willing to settle down for cure.

The second distinction corresponds to the two dimensions of software engineering
cited above: are we working on the products, or on the processes leading to them?

Some approaches are of a methodological nature and just require applying some
practices; we may call them manual, in contrast with techniques that are fool-
supported and hence at least partially automated.

6 B. Meyer

An idea can be applicable regardless of technology choices; for example
processbased techniques such as CMMI, discussed below, explicitly stay away from
prescribing specific technologies. At the other extreme, certain techniques may be
applicable only if you accept a certain programming language, specification method,
tool or other technology choice. We may talk of technology-neutral and technology-
specific approaches; this is more a spectrum of possibilities than a black-and-white
distinction, since many approaches assume a certain class of technologies—such as
object-oriented development — encompassing many variants.

Some techniques apply to a specific product or phase of the lifecycle: specification
(a specification language), implementation (a static analyzer of code)... They are
product-specific, or phase-specific. Others, such as configuration management tools,
apply to many or all product kinds; they are product-neutral. “Product” is used here to
denote one of the types of outcome of the software construction process.

For techniques directed at program quality, an important division exists between
dynamic approaches such as testing, which rely on executing the program, and purely
static ones, such as static analysis and program proofs, which only need to analyze the
program text. Here too some nuances exist: a simulation technique requires execution
and hence can be classified as dynamic even though the execution doesn’t use the
normal run-time environment; model-checking is classified as static even though in
some respect it is close to testing.

Some methods are based on mathematical techniques; this is obviously the case
with program proofs and formal specification in general. Many are more informal.

A technique intended to assess quality properties can give you a complete
guarantee that they are satisfied, or—more commonly—some partial reassurance to
this effect.

The final distinction is economic: between techniques in the public domain —
usable for free, in the ordinary sense of the term — and commercial ones.

4 Process-Based Approaches

We start with the least technical approaches, emphasizing management procedures
and organizational techniques.

4.1 Lifecycle Models

One of the defining acts of software engineering was the recognition of the separate
activities involved, in the form of “lifecycle models” that prescribe a certain order of
tasks (see the figure on the adjacent page). The initial model is the so-called
“waterfall” [11], still used as a reference for discussions of the software process
although no longer recommended for literal application. Variants include:

o The “V model” which retains the sequential approach of the waterfall but divides
the process into two parts, the branches of the “V”; activities along the first branch
are for development, those in the second branch are for verification and validation,
each applied to the results of one of the steps along the first branch.

Dependable Software 7

Lifecycle models, illustrated

Waterfall V-shaped
Feasibility \

gtud '\ | FEASIBILITY STUDY,

| | o
\’ Requirements ("REQUIREMENTS
™~ ANBLYSIS
|
i’

DISTRIBUTION

SYSTEM
VALIDATION

i
|

\’ | oLoeaLoesion |
,r '\ Ny
e Slobal DETAILED DESIGN
design -,
I
-
design
.r '-\
e Implemen-

tation ‘\

- .-

BUBSYSTEM
VALIDATION

UmIT
WALIDATION

\. Distribution
Cluster 1
Cluster \/ Cluster 2
I v
V&V 1 ”
(& Z\%) \’
2 V&V 5
.
Sy 6
T Vav
Progross
g 6

Evwlusie sleralivee,
ideretly, passivi -kks

' -
anal. | Prkmyn oy .
Goinan | | | ! k)
[—— —— L TEr s, oo, behmans
Faeroi sian ol a—
A Setuar
noculurrachs / Salwars F

| #crctenze|
R

mpemialioe|

Spiral (from [11])

Flan nacl phasee.

8 B. Meyer

o The “Spiral model” [11] which focuses on reducing risk in project management, in
particular the risk caused by the all-or-nothing attitude of the Waterfall approach.
The spiral model suggests isolating subsets of the system’s functionality that are
small enough to be implemented quickly, and when they have been implemented
taking advantage of the experience to proceed to other parts of the system. The idea
is connected with the notion of rapid prototyping.

o The “Rational Unified Process”, distinguishing four phases, inception, elaboration,
construction and transition, with a spiral-like iterative style of development and a
set of recommended “best practices” such as configuration management.

o The “Cluster model” [51] [57], emphasizing a different form of incrementality—
building a system by layers, from the most fundamental to the most user-oriented
— and a seamless process treating successive activities, from analysis to design,
implementation and maintenance, as a continuum. This model also introduces, as
part of the individual lifecycle of every cluster, a generalization step to prepare for
future reuse of some of the developed elements.

The figure shows pictorial representations of some of these models.

Whatever their effect on how people actually develop software, the contribution of
lifecycle models has been a classification and definition of the activities involved in
software development, even when these activities are not executed as phases in the
precise order mandated by, for example, the waterfall model. Software quality
benefits in particular from:

o A distinction between requirements, the recording of user requirements, and
specification, their translation into a systematic form suitable for software
development, where rigor and precision are essential.

¢ Recognition of the importance of Verification and Validation tasks.

o Recognition of post-delivery activities such as maintenance, although they still do
not occupy a visible enough place. Many software troubles result from evolutions
posterior to the initial release.

o In the Cluster model, the presence, for each cluster, of the generalization task to
prepare for reuse.

o Also in the Cluster model, the use of a seamless and reversible approach which
unifies the methods, tools, techniques and notations that help throughout the
software process, rather than exaggerate them. (The textbook counter-example here
is the use of UML for analysis and design [56].)

o The growing emphasis on incrementality in the development process, even if this
concept is understood differently in, for example, the spiral, cluster and RUP
models.

4.2 Organizational Standards

Another process-related set of developments has had a major effect, largely
beneficial, on some segments of the industry. In the early 1990s the US Department
of Defense, concerned with the need to assess its suppliers’ software capabilities and
to establish consistent standards, entrusted the Software Engineering Institute with the
task of developing a “Capability Maturity Model”, whose current incarnation, CMMI
[74] (the I is for Integration) provides a collection of standards applicable to various

Dependable Software 9

disciplines, rather than a single model for software. Largely independently, the
International Standard Organization has produced a set of software-oriented variants
of its 9000-series quality standards, which share a number of properties with CMMI.
The present discussion is based on CMMI.

Beyond its original target community, CMM and CMMI have been the catalyst for
one of the major phenomena of the IT industry starting in the mid-nineties: the
development of offshore software production, especially in India [63]. CMMI
qualification provides suppliers of outsourcing development services with quality
standards and the associated possibility of independent certification, without which
customers would not be have known how to trust distant, initially unknown contractors.

CMMI is (in the earlier classification) product-neutral, phase-neutral and technology-
neutral. In its application to software it is intended only to determine how well an
organization controls its development process by defining and documenting it,
recording and assessing how it is applied in practice, and working to improve it. It
doesn’t prescribe what the process should be, only how much you are on top of it. You
could presumably be developing in PL/I on IBM 370 and get CMMI qualification.

CMMI assesses both the capability level of individual “process areas” in (such as
software) in an organization, and the maturity of an organization as a whole. It
distinguishes five levels of increasing maturity:

o Performed: projects happen and results get produced, but there is little control and
no reproducibility; the process is essentially reactive.

o Managed: processes are clearly defined for individual projects, but not for the
organization as a whole. They remain largely reactive.

o Defined: proactive process defined for the organization.

o Quantitatively managed: the control mechanisms do not limit themselves to
qualitative techniques, but add well-defined numerical measurements.

o Optimizing: the mechanisms for controlling processes are sufficiently well
established that the focus can shift on improving the organization and its processes.

Through their emphasis on the process and its repeatability, CMMI and ISO standards
help improve the quality of software development. One may expect such improve-
ments of the process to have a positive effect on the resulting products as well; but
they are only part of the solution. After a software error—one module of the software
was expecting measures in the metric system, another was providing them in English
units — was identified as the cause of the failure of the NASA Mars Orbiter Vehicle
mission [82], an engineer from the project noted that the organization was heavily
into ISO and other process standards. Process models and process-focused practices
are not a substitute for using the best technological solutions. Tailored versions of
CMMI that would not shy away from integrating specific technologies such as object
technology could be extremely useful. In the meantime, the technology-neutral
requirements of CMMI can be applied by organizations to get a better hold on their
software processes.

4.3 Extreme Programming

The Extreme Programming movement [6] is a reaction against precisely the kinds of
lifecycle models and process-oriented approaches just reviewed. XP (as it is also
called) emphasizes instead the primacy of code. Some of the principal ideas include:

10 B. Meyer

o Short release cycles to get frequent feedback.

o Pair programming (two people at a keyboard and terminal).

o Test-driven development.

o A general distrust of specification and design: festing is the preferred guide of
development.

o Emphasis on programmers’ welfare.

Some of these practices are clearly beneficial to quality but were developed prior to
XP, in particular short release cycles (Microsoft’s “daily build” as described in 1995
by Cusumano and Shelby [19], see also [54]) and the use of frequent testing as part of
development (see e.g. “quality first” [55]). Those really specific to XP are of limited
interest (while sometimes a good practice, pair programming cannot be imposed
indiscriminately, both because it doesn’t work for some people and because those
who find it useful may not find it useful all the time) or, in the case of tests viewed as
a replacement for specifications, downright detrimental. See [75] and [64] for
critiques of the approach.

4.4 Code Inspections

A long-established quality practice is the inspection, also known as review: a session
designed to examine a certain software element with the aim of finding flaws. The
most common form is code inspection, but the process can be applied to any kind of
software engineering product. Rules include:

o Small meeting: at most 8 people or so, including the developer of the element
under review.

o The elements under review and any supporting documents must be circulated in
advance; the participants should have read them and identified possible criticisms
before the meeting. The allotted time should be bounded, for example 2 or 3 hours.

o The meeting must have a moderator to guide discussions and a secretary to record
results.

o The moderator should not be the developer’s manager. The intent is to evaluate
products, not people.

e The sole goal is to identify deficiencies and confirm that they are indeed
deficiencies; correction is not part of the process and should not be attempted
during the meeting.

Code inspections can help avoid errors, but to assess their usefulness one must compare
the costs with those of running automated fools that can catch some of the same problems
without human intervention; static analyzers, discussed below, are an example.

Some companies have institutionalized the rule that no developer may check in
code (integrate it into the repository for a current or future product) without approval
by one other developer, a limited form of code inspection that has a clearly beneficial
effect by forcing the original developer to convince at least one other team member of
the suitability of the contribution.

4.5 Open-Source Processes

A generalization of the idea of code inspection is the frequent assertion, by members
of the open-source community, that the open-source process dramatically improves

Dependable Software 11

quality by enabling many people to take a critical look at the software text; some have
gone so far as to state that “given enough eyes, all bugs are shallow” [73].

As with many of the other techniques reviewed, we may see in this idea a
beneficial contribution, but not a panacea. John Viega gives [78] the example of a
widely used security program in which “in the past two years, several very subtle
buffer overflow problems have been found... Almost all had been in the code for
years, even though it had been examined many times by both hackers and security
auditors One tool was able to identify one of the problems as potentially exploitable,
but researchers examined the code thoroughly and came to the conclusion that there
was no way the problem could be exploited.” (The last observation is anecdotal
evidence for the above observation that tools such as static analyzers are potentially
superior to human analysis.)

While is no evidence that open-source software as a whole is better (or worse) than
commercial software, and no absolute rule should be expected if only because of the
wide variety of products and processes on both sides, it is clear that more eyes
potentially see more bugs.

4.6 Requirements Engineering

In areas such as embedded systems, many serious software failures have been traced
[45] to inadequate requirements rather than to deficiencies introduced in later phases.
Systematic techniques for requirements analysis are available [76] [40] to improve
this critical task of collecting customer wishes and translating them into a form that
can serve as a basis for a software project.

4.7 Design Patterns

A process-related advance that has had a strong beneficial effect on software
development is the emergence of design patterns [32]. A pattern is an architectural
scheme that has been recognized as fruitful through frequent use in applications, and
for which a precise description exists according to a standard format. Patterns provide
a common vocabulary to developers, hence simplifying design discussions, and
enable them to benefit from the collective wisdom of their predecessors.

A (minority) view of patterns [62] [65] understands them as a first step towards the
technique discussed next, reusable components. Patterns, in this interpretation, suffer
from the limitation that each developer must manually insert the corresponding
solutions into the architecture of every applicable system. If instead it is possible to
turn the pattern into a reusable component, developers can directly reuse the
corresponding solution through an API (Abstract Program Interface). The observation
here is that it is better to reuse than to redo. Investigations [65] suggest that with the
help of appropriate programming language constructs up to two thirds of common
design patterns can be thus componentized.

4.8 Trusted Components

Quality improvement techniques, whether they emphasize the process or the product,
are only as good as their actual application by programmers. The magnitude of the
necessary education effort is enough to temper any hope of major short-term

12 B. Meyer

improvements, especially given that many programmers have not had the benefit of a
formal computer science education to start with.

Another practical impediment to continued quality improvement comes from
market forces. The short-term commercial interest of a company is generally to
release software that is “good enough” [83]: software that has barely passed the
threshold under which the market would reject it because of bad quality; not excellent
software. The extra time and expense to go from the first to the second stage may
mean, for the company, losing the market to a less scrupulous competitor, and
possibly going out of business. For the industry as a whole, software quality has
indeed improved regularly over time but tends to peak below the optimum.

An approach that can overcome these obstacles is increased reliance on reusable
components, providing pre-built solutions to problems that arise in many different
applications, either regardless of the technical domain (general-purpose component
libraries) or in particular fields (specialized libraries). Components have already
changed the nature of software development by providing conveniently packaged
implementations, accessible through abstract interfaces, of common aspects such as
graphical user interfaces, database manipulation, basic numerical algorithms,
fundamental data structures and others, thereby elevating the level at which
programmers write their applications. When the components themselves are of good
quality, such reuse has highly beneficial effects since developers can direct their
efforts to the quality of the application-specific part of their programs.

Examining more closely the relationship of components to quality actually highlights
two separate effects: it is comforting to know that the quality of a system will benefit
from the quality of its components; but we must note that reuse magnifies the bad as well
as the good: imperfections can be even more damaging in components than in “one-ofa-
kind” developments, since they affect every application that relies on a component.

The notion of trusted component [58] [61] follows from this analysis that one of
the most pressing and promising tasks for improving software quality is the industrial
production of reusable components equipped with a guarantee of quality. Producing
such trusted components may involve most of the techniques discussed elsewhere in
this article. For some of the more difficult ones, such as program proving, application
to components may be the best way to justify the cost and effort and recoup the
investment thanks to the scaling effect of component reuse: once a component has
reached the level of quality at which it can really be trusted, it will benefit every
application that relies on it.

5 Tools and Environments

Transitioning now to product-oriented solutions, we examine some of the progress in
tools available to software developers — to the extent that it is relevant for software
quality.

5.1 Configuration Management

Configuration management is a both practice (for the software developer) and a
service (from the supporting tools), so it could in principle be classified under

Dependable Software 13

“process” as well as under “product”. It belongs more properly to the latter category
since it’s tools that make configuration management realistic; applied as a pure
organizational practice without good tool support, it quickly becomes tedious and
ceases being applied.

Configuration management may be defined as the systematic collecting and
registering of project elements, including in particular the ability to:

o Register a new version of any project element.

o Retrieve any previously registered version of any project element

o Register dependencies, both between project elements and between registered
versions of project elements (e.g. A relies on B, and version 10 of A requires
version 7, 8 or 9 of B).

o Construct composite products from their constituents — for example, build an
executable version of a program from its modules — or reconstruct earlier
versions, in accordance with registered dependencies.

A significant number of software disasters on record followed from configuration
management errors, typically due to reintroducing an obsolete version of a module
when compiling a new release of a program, or using an obsolete version of some
data file. Excuses no longer exist for such errors, as acceptable configuration
management tools, both commercial and open-source, are widely available. These
tools, while still far from what one could hope for, have made configuration
management one of the most important practices of modern software development.

Source code is not the only beneficiary of configuration management. Any product
that evolves, has dependencies on other elements and may need restoring to an earlier
state should be considered for inclusion in the configuration management repository.
Besides code this may include project plans, specification and design documents, user
manuals, training documents such as PowerPoint slides, test data files.

5.2 Metrics and Models

If we believe Lord Kelvin’s (approximate) maxim that all serious study is
quantitative, then software and software development should be susceptible to
measurement, tempered of course by Einstein’s equally famous quote that not
everything measurable is worth measuring. A few software properties, process or
product, are at the same time measurable, worth measuring and relevant to software
reliability.

On the process side, cost in its various dimensions is a prime concern. While it is
important to record costs, if only for CMMI-style traceability, what most project
managers want at a particular time is a model to estimate the cost of a future project or
of the remainder of a current project. Such models do exist and can be useful, at least
if the development process is stable and the project is comparable to previous ones:
then by estimating a number of project parameters and relying on historical data for
comparison one can predict costs—essentially, person-months—within reasonable
average accuracy. A well-known cost model, for which free and commercial tools are
available, is COCOMO II [12].

During the development of a system, faults will be reported. In principle they
shouldn’t be comparable to the faults of a material product, since software is an

14 B. Meyer

intellectual product and doesn’t erode, wear out or collapse under attack from the
weather. In practice, however, statistical analysis shows that faults in large projects
can follow patterns that resemble those of hardware systems and are susceptible to
similar statistical prediction techniques. That such patterns can exist is in fact
consistent with intuition: if the tests on the last five builds of a product under
development have each uncovered one hundred new bugs each, it is unlikely that the
next iteration will have zero bugs, or a thousand. Software reliability engineering
[69][46] elaborates on these ideas to develop models for assessing and predicting
failures, faults and errors. As with cost models, a requirement for meaningful
predictions is the ability to rely on historical data for calibration. Reliability models
are not widely known, but could help software projects understand, predict and
manage anomalies better.

More generally, numerous metrics have been proposed to provide quantitative
assessments of software properties. Measures of complexity, for example, include:
“source lines of code” (SLOC), the most primitive, but useful all the same; “function
points” [25], which count the number of elementary mechanisms implemented by the
software; measures of the complexity of the control graph, such as “cyclomatic
complexity” [48][49]; and measures specifically adapted to object-oriented software
[35][59]. The EiffelStudio environment [30] makes it possible to compute many metrics
applied to a project under development, including measures regarding the use of
contracts (section 8), and to compare them with values on record. While not necessarily
meaningful in isolation, such measures elements are a useful control tool for the
manager; they are in line with the CMMTI’s insistence that an organization can only
reach the higher levels of process maturity (4 and 5) by moving from the qualitative to
the quantitative, and should be part of the data collected for such an effort.

5.3 Static Analyzers

Static analyzers are another important category of tools, increasingly integrated in
development environments, whose purpose is to examine the software text for
deficiencies. They lie somewhere between type checkers (themselves integrated in
compilers) and full program provers, and will be studied below (7.2) after the
discussion of proofs.

5.4 Integrated Development Environments

Beyond individual tools the evolution of software development has led to the
widespread of integrated tool suites known as IDEs for Integrated (originally:
Interactive) Development Environments. Among the best known are Microsoft’s
Visual Studio [66] and IBM’s Eclipse [27]; EiffelStudio [30] is another example.
These environments, equipped with increasingly sophisticated graphical user
interfaces, provide under a single roof a whole battery of mechanisms to write
software (editors), manage its evolution (configuration management), compile it
(compilers, interpreters, optimizers), examine it effectively (browsers), run it and
elucidate the sources of faults (debuggers, testers), analyze it for possible
inconsistencies and errors (static analysis), generate code from design and analysis
diagrams or the other way around (diagramming, “Computer-Aided Software

Dependable Software 15

Engineering” or CASE, reverse engineering), change architecture in a safe way
through tool-controlled transformations (refactoring), perform measurements as noted
above (metric tools), and other tasks.

This is one of the most active areas in software engineering; programmers, for
whom IDEs are the basic daily tools, are directly interested in their quality, so that
open-source projects such as Eclipse and EiffelStudio benefit from active community
participation. The effect of these advanced frameworks on software reliability, while
diffuse, is undeniable, as their increasing cleverness supports quality in several ways:
finding bugs through static and dynamic techniques; avoiding new bugs through
mechanisms such as refactoring; generating some of the code without manual
intervention; and, more generally, providing a level of comfort that frees
programmers from distractions and lets them apply their best skills to the hardest
issues of software construction.

6 Programming Languages

The evolution of programming languages plays its part in the search for more reliable
software. High-level languages contribute both positively, by providing higher levels
of expression through advanced constructs freeing the programmer (in the same spirit
as modern IDEs) from mundane, repetitive or irrelevant tasks, and negatively, by
ruling out certain potentially unsafe constructs and, as a result, eradicate entire classes
of bugs at the source.

The realization that programming language constructs could exert a major
influence on software quality both through what they offer and what they forbid dates
back to structured programming [22] [20] which, in the early seventies, led to
rejecting the goto as a control structure in favor of more expressive constructs —
sequence, conditional, loop, recursion. The next major step was object-oriented
programming, introducing a full new set of abstractions, in particular the notion of
class, providing decomposition based on object types rather than individual
operations, and techniques of inheritance and genericity.

In both cases the benefit comes largely from being able to reason less operationally
about software. A software text represents many possible executions, so many in fact
that it is hard to understand the program — and hence to get it right — by thinking in
terms of what happens at execution [22]. Both structured and object-oriented
techniques make it possible to limit such operational thinking and instead understand
the abstract properties of future run-time behaviors by applying the usual rules of
logical reasoning.

In drawing the list of programming languages’ most important contributions to
quality, we must indeed put at the top all the mechanisms that have to do with
structure. With ever larger programs addressing ever more ambitious goals, the
production and maintenance of reliable software requires safe and powerful modular
decomposition facilities. Particularly noteworthy are:

e As pointed out, the class mechanism, which provides a general basis for stable
modules with a clear role in the overall architecture.

o Techniques for information hiding, which protect modules against details of other
modules, and permit independent evolution of the various parts of a system.

16 B. Meyer

o Inheritance, allowing the classification and systematic organization of classes into
structured collections, especially with multiple inheritance.
o Genericity, allowing the construction of type-parameterized modules.

Another benefit of modern languages is static typing which requires programmers to
declare types for all the variables and other entities in their programs, then takes
advantage of this information to detect possible inconsistencies in their use and reject
programs, at compilation time, until all types fit. Static typing is particularly
interesting in object-oriented languages since inheritance supports a flexible type
system in which types can be compatible even if they are not identical, as long as one
describes a specialization of the other.

Another key advance is garbage collection, which frees programmers from having
to worry about the details of memory management and removes an entire class of
errors —such as attempts to access a previously freed memory cell—which can
otherwise be particularly hard to detect and to correct, in particular because the
resulting failures are often intermittent rather than deterministic. Strictly speaking,
garbage collection is a property of the language implementation, but it’s the language
definition that makes it possible, as with modern object-oriented languages, or not, as
in languages such as C that permit arbitrary pointer arithmetic and type conversions.

Exception handling, as present in modern programming languages, helps improve
software robustness by allowing developers to include recovery code for run-time faults
that would otherwise be fatal, such as arithmetic overflow or running out of memory.

A mechanism that is equally far-reaching in its abstraction benefits is the
“closure”, “delegate” or “agent” [62]. Such constructs wrap operations in objects that
can then be passed around anonymously across modules of a system, making it
possible to treat routines as first-class values. They drastically simplify certain kinds
of software such as numerical applications, GUI programming and other event-driven
(or “publishsubscribe”) schemes.

The application of programming language techniques to improving software
quality is limited by the continued reliance of significant parts of the software
industry on older languages. In particular:

o Operating systems and low-level system-related tend to be written in C, which
retains its attractions for such applications in spite of widely known deficiencies,
such as the possibility of buffer overflow.

o The embedded and mission-critical community sometimes prefers to use lowlevel
languages, including assembly, for fear of the risks potentially introduced by
compilers and other supporting tools.

The “Verifying Compiler Grand Challenge” [38] [77] is an attempt to support the
development of tools that—even with such programming languages—will guarantee,
during the process of compiling and thanks to techniques described in the following
sections, the reliability of the programs they process.

7 Static Verification Techniques

Static techniques work solely from the analysis of the software text: unlike dynamic
techniques such as tests they do not require any execution to verify software or report
errors.

Dependable Software 17

7.1 Proofs

Perhaps the principal difference between mathematics and engineering is that only
mathematics allows providing absolute guarantees. Given the proper axioms, I can
assert with total confidence that two plus two equals four. But if I want to drive to
Berne the best assurance I can get that my car will not break down is a probability. I
know it’s higher than if I just drive it to the suburbs, and lower than if my goal were
Prague, Alma-Ata, Peking or Bombay; I can make it higher by buying a new, better
car; but it will never be one. Even with the highest attention to quality and
maintenance, physical products will occasionally fail.

Under appropriate assumptions, a program is like a mathematical proposition rather
than a material device: any general property of the program—stating that all executions
of the program will achieve a certain goal, or that at least one possible execution will—
is either true or false, and whether it is true or not is entirely determined by the text of
the program, at least if we assume correct functioning of the hardware and of other
software elements needed to carry out program execution (compiler, run-time system,
operating system). Another way of expressing this observation is that a programming
language is similar to a mathematical theory, in which certain propositions are true and
others false, as determined by the axioms and inference rules.

In principle, then, it should be possible to prove or disprove properties of
programs, in particular correctness, robustness and security properties, using the same
rigorous techniques as in the proofs of any mathematical theorem. This assumes
overcoming a number of technical difficulties:

o Programming languages are generally nor defined as mathematical theories but
through natural-language documents possessing a varying degree of precision. To
make formal reasoning possible requires describing them in mathematical form;
this is known as providing a mathematical semantics (or “formal semantics”) to a
programming language and is a huge task, especially when it comes to modeling
advanced mechanisms such as exception handling and concurrency, as well as the
details of computer arithmetic since the computer’s view of integers and reals
strays from their standard mathematical properties.

o The theorems to be proved involve specific properties of programs, such as the
value of a certain variable not exceeding a certain threshold at a certain state of the
execution. Any proof process requires the ability to express such properties; this
means extending the programming language with boolean-valued expressions,
called assertions. Common languages other than Eiffel do not include an assertion
mechanism; this means that programmers will have to resort to special extensions
such as JML for Java [43] (see also Spec#, an extension of the C# language [5])
and annotate programs with the appropriate assertions. Some tools such as Daikon
help in this process by extracting tentative assertions from the program itself [31].

e In practice the software’s actual operation depends, as noted, on those of a
supporting hardware and software environment; proofs of the software must be
complemented by guarantees about that environment.

e Not all properties lend themselves to easy enunciation. In particular,
“nonfunctional” properties such as performance (response time, bandwidth,
memory occupation) are hard to model.

18 B. Meyer

e More generally, a proof is only as useful as the program properties being proven.
What is being proved is not the perfection of the program in any absolute sense, nor
even its quality, but only that it satisfies the assertions stated. It is never possible to
know that all properties of interest have been included. This is not just a theoretical
problem: security attacks often take advantage of auxiliary aspects of the program’s
behavior, which its design and verification did not take into account.

o Even if the language, the context and the properties of interest are fully specified
semantically and the properties relevant, the proof process remains a challenge. It
cannot in any case be performed manually, since even the proof of a few properties
of a moderately sized programs quickly reaches into the thousands of proof steps.
Fully automated proofs are, on the other hand, generally not possible. Despite
considerable advances in computer-assisted proof technology (for programs as well
as other applications) significant proofs still require considerable user interaction
and expert knowledge.

Of course the effort may well be worthwhile, especially in two cases: life-critical
systems in transportation and defense to which, indeed, much proof work has been
directed; and reusable components, for which the effort is justified—as explained in
the discussion of Trusted Components above — by the scaling-up effect of reuse.

Here are some of the basic ideas about how proofs work. A typical program
element to prove would be, in Eiffel notation.

decrement
-- Decrease counter by one.
require
counter> 0
do
counter := counter — 1
ensure
counter = old counter — 1
counter>=0
end

This has a program body, the do clause, and two assertions, a ‘“precondition”
introduced by require and a “postcondition” introduced by ensure and consisting of
two subclauses implicitly connected by an and. Assertions are essentially Boolean
expressions of the language with the possibility, in a postcondition, of using the old
notation to refer to values on entry: here the first subclause of the postcondition states
that the value of counter will have been decreased by one after execution of the do
clause.

Program proofs deal with such annotated programs, also called contracted
programs (see section 8 below). The annotations remind us that proofs and other
software quality assurance technique can never give us absolute guarantees of quality:
we can never say that a program is “correct”, only assess it — whether through
rigorous techniques like proofs or using more partial ones such as those reviewed
next—relatively to explicitly stated properties, expressed here through assertions
integrated in the program text.

From a programmer’s viewpoint the above extract is simply the text of a routine to
be executed, with some extra annotations, the precondition and postcondition,

Dependable Software 19

expressing properties to be satisfied before and after. But for proof purposes this text
is a theorem, asserting that whenever the body (the do clause with its assignment
instruction) is executed with the precondition satisfied it will terminate in such a way
that the postcondition is satisfied.

This theorem appears to hold trivially but — even before addressing the concern
noted above that computer integers are not quite the same as mathematical integers —
proving it requires the proper mathematical framework. The basic rule of axiomatic
semantics (or “Hoare semantics” [37]) covering such cases is the assignment axiom,
which for any variable x and expression e states that the following holds

require Q (e) do x:= e ensure Q (x)

whereQ (x) is an assertion which may depend on x ; thenQ (e) is the same assertion
with every mention of X replaced by e, except for old x which must be replaced by x.

This very general axiom captures the properties of assignment (in the absence of
side effect in the evaluation of e); its remarkable feature is that it is applicable even if
the source expression € contains occurrences of the target variable X, as in the
example (where x is counter).

We may indeed apply the axiom to prove the example’s correctness. Let Q1 (x) be
X =old x — 1, corresponding to the first subclause of the postcondition, and Q2 (x) be
X >= 0. Applying the rule to Q1 (counter), we replace counter by counter + 1 and
old counter by counter; this gives counter — 1 = counter — 1, which trivially holds.
Applying now the same transformations to Q2 (counter), we get counter — 1 >= 0,
which is equivalent to the precondition counter > 0. This proves the correctness of
our little assertion-equipped example.

From there the theory moves to more complex constructions. An inference rule
states that if you have proved

require P do Instruction_1 ensure Q

and

require Q do Instruction_2 ensure R

(note the postcondition of the first part matching the precondition of the second part)
you are entitled to deduce

require P do Instruction_1; Instruction_2 ensure Rt

and so on for more instructions. A rule in the same style enables you to deduce
properties of if ¢ then |1 else 12 end from properties of |1 and 12. More advanced is
the case of loops: to prove the properties of

from
Initialization
until
Exit
loop
Body
end

20 B. Meyer

you need, in this general approach, to introduce a new assertion called the loop
invariant and an integer expression called the loop variant. The invariant is a
weakened form of the desired postcondition, which serves as approximation of the
final goal; for example if the goal is to compute the maximum of a set of values, the
invariant will be “Result is the maximum of the values processed so far”. The
advantage of the invariant is that it is possible both to:

o Ensure the invariant through initialization (the from clause in the above notation);
in the example the invariant will be trivially true if we start with just one value and
set Result to that value.

o Preserve the invariant through one iteration of the loop body (the loop clause); in
the example it suffices to extend the set of processed values by one element v and
execute if v > Result then Result := v end.

If indeed a loop possesses such an invariant and its execution terminates, then on exit
the invariant will still hold (since it was ensured by the initialization and preserved by
all the loop iterations), together with the Exit condition. The combination of these two
assertions gives the postcondition of the loop. Seen the other way around, if we
started from a desired postcondition and weakened it to get an invariant, we will
obtain a correct program. In the example, if the exit condition states that we have
processed all values of interest, combining this property with the invariant “Result is
the maximum of the values processed so far” tells us that Result is the maximum of
all values.

Such reasoning is only interesting if the loop execution actually terminates; this is
where the loop variant comes in. It is an integer expression which must have a
nonnegative value after the Initialization and decrease, while remaining non-negative,
whenever the Body is executed with the Exit condition not satisfied. The existence of
such an expression is enough to guarantee termination since a non-negative integer
value cannot decrease forever. In the example a variant isN — i where N is the total
number of values being considered for the maximum (the proof assumes a finite set)
and i the number of values processed.

Axioms and inference rules similarly exist for other constructs of programming
languages, becoming, as noted, more intricate as one moves on to more advanced
mechanisms.

For concurrent, reactive and real-time systems, boolean assertions of the kind
illustrated above may not be sufficient; it is often convenient to rely on properties of
temporal logic [47], which given a set of successive observations of a program’s
execution, can express, for a boolean property Q:

o forever Q: from now on, Q will always hold.

o eventually Q: at some point in the future (where “future” includes now), Q will
hold.

o P until Q Q will hold at some point in the future, and until then P will hold.

Regardless of the kind of programs and properties being targeted, there are two
approaches to producing program proofs. The analytic method takes programs as
they exist, then after equipping them with assertions, either manually or with some
automated aid as noted above, attempts the proof. The constructive method [24] [2]
[68] integrates the proof process in the software construction process, often using

Dependable Software 21

successive refinements to go from specification to implementation through a sequence
of transformations, each proved to preserve correctness, and integrating more
practical constraints at every step. Proof technology has had some notable successes,
including in industrial systems (and in hardware design), but until recently has
remained beyond the reach of most software projects.

7.2 Static Analysis

If hoping for a proof covering all the correctness, reliability and security properties of
potential interest is often too ambitious, the problem becomes more approachable if
we settle for a subset of these properties — a subset that may be very partial but very
interesting. For example being able to determine that no buffer overflow can ever
arise in a certain program—in other words, to provide a firm guarantee, through
analysis of the program text, that every index used at run time to access an item in an
array or a character in a string will be within the defined bounds—is of great practical
value since this rules out a whole class of security attacks.

Static analysis is the tool-supported analysis of software texts for the purpose of
assessing specific quality properties. Being “static”, it requires no execution and
hence can in principle be applied to software products other than code. Proofs are a
special case, the most far-reaching, but other static analysis techniques are available.

At the other extreme, a well-established form of elementary static analysis is type
checking, which benefits programs written in a statically typed programming
language. Type checking, usually performed by the compiler rather than by a
separate tool, ascertains the type consistency of assignments, routine calls and
expressions, and rejects any program that contains a type incompatibility.

More generally, techniques usually characterized as static analysis lie somewhere
between such basic compiler checks and full program proofs. Violations that can
typically be detected by static analysis include:

o Variables that, on some control paths, would be accessed before being initialized
(in languages such as C that do not guarantee initialization).

o Improper array and string access (buffer overflow).

¢ Memory properties: attempt to access a freed location, double freeing, memory
leak...

o Pointer management (again in low-level languages such as C): attempts to follow
void or otherwise invalid pointers.

o Concurrency control: deadlocks, data races.

o Miscellaneous: certain cases of arithmetic overflow or underflow, changes to
supposedly constant strings...

Static analysis tools such as PREfix [72] have been regularly applied for several years
to new versions of the Windows code base and have avoided many potential errors.
One of the issues of static analysis is the occurrence of false alarms: inconsistency
reports that, on inspection, do not reveal any actual error. This was the weak point of
older static analyzers, such as the widely known Lint tool which complements the
type checking of C compilers: for a large program they can easily swamp their users
under thousand of messages, most of them spurious, but requiring a manual
walkthrough to sort out the good from the bad. (In the search for errors, of course, the

22 B. Meyer

“good” is what otherwise would be considered the bad: evidence of wrongdoing.)
Progress in static analysis has been successful in considerably reducing the
occurrence of false alarms.

The popularity of static analysis is growing; the current trend is to extend the reach
of static analysis tools ever further towards program proofs. Two examples are:

« Techniques of abstract interpretation [18] with the supporting ASTREE tool [9],
which has been used to prove the absence of run-time errors in the primary flight
control software, written in C, for the Airbus A340 fly-by-wire system.

o ESC-Java [21] and, more recently, the Boogie analyzer [4] make program proving
less obtrusive by incrementally extending the kind of diagnostics with which
programmers are familiar, for example type errors, to more advanced checks such
as the impossibility to guarantee that an invariant is preserved.

7.3 Model Checking

The model checking approach to verification [36] [17] [3] is static, like proofs and
static analysis, but provides a natural link to the dynamic techniques (testing) studied
below. The inherent limitation of tests is that they can never be exhaustive; for any
significant system—in fact, even for toy examples—the number of possible cases
skyrockets into the combinatorial stratosphere, where the orders of magnitude invite
lyrical comparisons with the number of particles in the universe.

The useful measure is the number of possible states of a program. The notion of
state was implicit in the earlier discussion of assertions. A state is simply a snapshot
of the program execution, as could be observed, if we stop that execution, by looking
up the contents of the program’s memory, or more realistically by using the debugger
to examine the values of the program’s variables. Indeed it is the combination of all
the variables’ values that determines the state. With every 64-bit integer variable
potentially having 2% values, it is not surprising that the estimates quickly go galactic.

Model checking attempts exhaustive analysis of program states anyway by
performing predicate abstraction. The idea is to simplify the program by replacing all
expressions by boolean expressions (predicates), with only two possible values, so
that the size of the state space decreases dramatically; it will still be large, but the
power of modern computers, together with smart algorithms, can make its exploration
tractable. Then to determine that a desired property holds — for example, a security
property such as the absence of buffer overflows, or a timing property such as the
absence of deadlock — it suffices to evaluate the corresponding assertion in all of the
abstract states and, if a violation of that assertion (or counter-example) is found, to
check that it also arises in the original program.

For example, predicate abstraction will reduce a conditional instruction if a > b
then... to if p then..., where p is a boolean. This immediately cuts down the number of
cases from 2128 to 2. The drawback is that the resulting program is only a caricature
of the original; it loses the relation of p to other predicates involving a and b. But it
has an interesting property: if the original violates the assertion, then the abstracted
version also does. So the next task is to look for any such violation in the abstracted
version. This may be possible through exhaustive examination of its reduced state
space, and if so is guaranteed to find any violation in the original program, but
even so is not the end of the story, since the reverse proposition does not hold: a

Dependable Software 23

counter-example in the abstracted program does not necessarily signal a counter-
example in the original. It could result from the artificial merging of several cases, for
example if it occurs on a path — impossible in an execution of the original program
— obtained by selecting both p and q as true where q is the abstraction of b > a + 1.
Then examining the state space of the abstracted program will either:

o Not find any violations, in which case it proves there was none in the original
program.

o Report violations, each of which might be an error in the original or simply a false
alarm generated by the abstraction process.

So the remaining task, if counter-examples have been found, is to ascertain whether
they arise in the original. This involves defining the path predicate that leads to each
counter-example, expressing it in terms of the original program variables (that is to
say, removing the predicate abstraction, giving, in the example,a >b and b > a + 1)
and determining if any combination of values for the program variables can satisfy the
predicate: if such a combination, or variable assignment, exists, then the counter
example is a real one; if not, as in the case given, it is spurious.

This problem of predicate satisfiability is computationally hard; finding efficient
algorithms is one of the central areas of research in model checking.

The focus on counter-examples gives model checking a practical advantage over
traditional proof techniques. Unless a software element was built with verification in
mind (through a “constructive method” as defined above), the first attempt to verify it
will often fail. With proofs, this failure doesn’t tell us the source of the problem—and
could actually signal a limitation of the proof procedure rather than an error in the
program. With model checking, you get a counter-example which directly shows
what’s wrong.

Model checking has captured considerable attention in recent years, first in
hardware design and then in reactive and real-time systems, for which the assertions
of interest are often expressed in temporal logic.

8 Design by Contract

The goal of developing software to support full proofs of correctness properties is, as
noted, desirable but still unrealistic for most projects. Even a short brush with
program proving methods suggests, however, that more rigor can be highly beneficial
to software quality. The techniques of Design by Contract go in this direction and
deliver part of the corresponding benefits without requiring the full formality of
proof-directed development.

The discussion of proofs introduced Eiffel notations such as
e require assertion -- A routine precondition
e ensure assertion -- A routine postcondition

associated with individual routines. They are examples of contract elements which
specify abstract semantic properties of program constructs. Contracts apply in
particular to:

24

L]

B. Meyer

Individual routines: precondition, stating the condition under which a routine is
applicable; postcondition, stating what condition it will guarantee in return when it
terminates.

In object-oriented programming, classes: class invariant, stating consistency
conditions that must hold whenever an object is in a stable state. For example, the
invariant for a “paragraph” class in a text processing system may state that the total
length of letters and spaces is equal to the paragraph width. Every routine that can
modify an instance of the class may assume the class invariant on entry (in addition
to its precondition) and must restore it on exit (in addition to ensuring its
postcondition).

Loops: invariant and (integer) variant as discussed above.

Individual instructions: “assert” or “check” constructs.

The discipline of Design by Contract [53] [57] [67] gives a central role to these
mechanisms in software development. It views the overall process of building a
system as defining a multitude of relationships between “client” and “supplier”
modules, each specified through a contract in the same manner as relationships
between companies in the commercial world.

The benefits of such a method, if carried systematically, extend throughout the
lifecycle, supporting the goal of seamlessness discussed earlier:

Contracts can be used to express requirements and specifications in a precise yet
understandable way, preferable to pure “bubbles and arrows” notations, although of
course they can be displayed graphically too.

The method is also a powerful guide to design and implementation, helping
developers to understand better the precise reason and context for every module
they produce, and as a consequence to get the module right.

Contracts serve as a documentation mechanism: the “contract view” of a class,
which discards implementation-dependent elements but retains externally relevant
elements and in particular preconditions, postconditions and class invariants, often
provides just the right form of documentation for software elements, especially
reusable components: precise enough thanks to the contracts; abstract enough
thanks to the removal of implementation properties; extracted from the program
text, and hence having a better chance of being up to date (at least one major
software disaster was traced [41] to a software element whose specification had
changed, unbeknownst to the developers who reused it); cheap to produce, since
this form of documentation can be generated by tools from the source text, rather
than written separately; and multi-purpose, since the output can be tuned to any
appropriate format such as HTML. Eiffel environments such as FEiffelStudio
produce such views [30], which serve as the basic form of software documentation.
Contracts are also useful for managers to understand the software at a high level of
abstraction, and as a tool to control maintenance.

In object-oriented programming, contracts provide a framework for the proper use
of inheritance, by allowing developers to specify the semantic framework within
which routines may be further refined in descendant classes. This is connected with
the preceding comment about management, since a consequence is to allowa
manager to check that refinements to an design are consistent with its original

Dependable Software 25

intent, which may have been defined by the top designers in the organization and
expressed in the form of contracts.

e Most visibly, contracts are a testing and debugging mechanism. Since an
execution that violates an assertion always signals a bug, turning on contract
monitoring during development provides a remarkable technique for identifying
bugs. This idea is pursued further by some of the tools cited in the discussion of
testing below.

Design by Contract mechanisms are integrated in the design of the Fiffel language
[52] [28] and a key part of the practice of the associated method. Dozens of contract
extensions have been proposed for other programming languages (as well as UML
[80]), including many designs such as JML [43] for Java and the Spec# extension of
C# [5].

9 Testing

Testing [70] [8] is the most widely used form of program verification, and still for
many teams essentially the only one. In academic circles testing has long suffered
from a famous comment [23] that (because of the astronomical number of possible
states) “testing can only show the presence of bugs, but never to show their absence”.
In retrospect it’s hard to find a rational explanation for why this comment ever
detracted anyone from the importance of tests, since it in no way disproves the
usefulness of testing: finding bugs is a very important task of software development.
All it indicates is that we should understand that finding bugs is indeed the sole
purpose of testing, and not delude ourselves that test results directly reflect the level
of quality of a product under development.

9.1 Components of a Test

Successful testing relies on a test plan: a strategy, expressed in a document,
describing choices for the tasks of the testing process. These tasks include:

o Determining which parts to test.

» Finding the appropriate input values to exercise.

o Determining the expected properties of the results (known as oracles). Input values
and the associated oracles together make up test cases, the collection of which
constitutes a fest suite.

o Instrumenting the software to run the tests (rather than perform its normal
operation, or in addition to it); this is known as building a test harness, which may
involve test drivers to solicit specific parts to be tested, and stubs to stand for parts
of the system that will not be tested but need a placeholder when other parts call
them.

« Running the software on the selected inputs.

o Comparing the outputs and behavior to the oracles.

o Recording the test data (test cases, oracles, outputs) for future re-testing of the
system, in particular regression testing, the task of verifying that previously
corrected errors have not reappeared.

26 B. Meyer

In addition there will be a phase of correction of the errors uncovered by the test, but
in line with the above observations this is not part of testing in the strict sense.

9.2 Kinds of Test

One may classify tests with respect to their scope (this was used in the earlier
description of the V model of the lifecycle):

o Aunit test covers a module of the software.

o Integration test covers a complete cluster or subsystem.

o Asystem test covers the complete delivery.

o User Acceptance Testing involves the participation of the recipients of the system
(in addition to the developers, responsible for the preceding variants) to determine
whether they are satisfied with the delivery.

o Business Confidence Testing is further testing with the users, in conditions as close
as possible to the real operating environment.

An orthogonal classification addresses what is being tested:

o Functional testing: whether the system fulfills the functions defined in the
specification.

o Performance testing: its use of resources.

o Stress testing: its behavior under extreme conditions, such as heavy user load.

Yet another dimension is intent: testing can be fault-directed to find deficiencies but
also (despite the above warnings), conformance-directed to estimate satisfaction of
desired properties, or acceptance testing for users to decide whether to approve the
product. Regression testing, as noted, re-runs tests corresponding to previously
identified errors; surprisingly to the layman, errors have a knack for surging back into
the software, sometimes repeatedly, long after they were thought corrected.

The testing technique, in particular the construction of test suites, can be:

o Black-box: based on knowledge of the system’s specification only.
o White-box: based on knowledge of the code, which makes it possible for example
to try to exercise as much of that code as possible.

Observing the state of the art in software testing suggests that four issues are critical:
managing the test process; estimating the quality of test suites; devising oracles;
and— the toughest — generating test cases automatically.

9.3 Managing the Testing Process

Test management has been made easier through the appearance of testing
frameworks such as JUnit [42] and Gobo Eiffel Test [7] which record test harnesses
to allow running the tests automatically. This removes a considerable part of the
burden of testing and is important for regression testing.

An example of a framework for regression testing of a compiler, incorporating
every bug ever found since 1991, is EiffelWeasel [29]. Such automated testing require
a solid multi-process infrastructure, to ensure for example that if a test run causes a
crash the testing process doesn’t also crash but records the problem and moves on to
the next test.

Dependable Software 27

9.4 Estimating Test Quality

Being able to estimate the quality of a test suite is essential in particular to know
when to stop testing. The techniques are different for white-box and black-box
testing.

With white-box testing it is possible to define various levels of coverage, each
assuming the preceding ones: instruction coverage, ensuring that through the
execution of the selected test cases every instruction is executed at least once; branch
coverage, where every boolean condition tests at least once to true and once to false;
condition coverage, where this is also the case for boolean sub-expressions; path
coverage, for which every path has been taken; loop coverage, where each loop body
has been executed at least n times for set n.

Another technique for measuring test suite quality in white-box approaches is
mutation testing [79]. Starting with a program that passes its test suite, this
consists of making modifications — similar, if possible, to the kind of errors that
programmers would make — to the program, and running the tests again. If a
“mutant” program still passes the tests, this indicates (once you have made sure the
mutant is not equivalent to the original, in other words, the changes are meaningful)
that the tests were not sufficient. Mutation testing is an active area of research [71];
one of the challenges is to use appropriate mutation operators, to ensure diversity of
the mutants.

With black-box testing the previous techniques are not available since they
assume access to the source code to set up the test plan. It is possible to define
notions of specification coverage to estimate whether the tests have exercised the
various cases listed in the specification; if contracts are present, this will mean
analyzing the various cases listed in the preconditions. Partition testing [81] is the
general name for techniques (black- or white-box) that split the input domain into
representative subsets, with the implication that any test suite must cover all the
subsets.

9.5 Defining Oracles

An oracle, allowing interpretation of testing results, provides a decision criterion for
accepting or rejecting the result of a test. The preparation of oracles can be as much
work as the rest of the test plan. The best solution that can be recommended is to rely
on contracts: any functional property of a software system (with the possible
exception of some user-interface properties for which human assessment may be
required) can be expressed as a routine postcondition or a class invariant.

These assertions can be included in the test harness, but it is of course best, as
noted in the discussion of Design by Contract, to make them an integral part of the
software to be tested as it is developed; they will then provide the other benefits
cited, such as aid to design and built-in documentation, and will facilitate regression
testing.

9.6 Test Case Generation

The last of the four critical issues listed, test case generation, is probably the toughest;
automatic generation in particular. Even though we can’t ever get close to exhaustive

28 B. Meyer

testing, we want the test process to cover as many cases as possible, and especially to
make sure they are representative of the various potential program executions—as can
be assessed in white-box testing by coverage measures and mutation, but needs to be
sought in any form of testing.

For any realistic program, manually prepared tests will never cover enough cases;
in addition, they are tedious to prepare. Hence the work on automatic test case
generation, which tries to produce as many representative test cases as possible,
typically working from specifications only (black-box). Two tools in this area are
Korat for JML [13] and AutoTest for Eiffel [15] (which draws on the advantage
that—contracts being native to Eiffel—existing Eiffel software is typically equipped
with large numbers of assertions, so that AutoTest can be run on software as is, and
indeed has already uncovered a significant number of problems in existing programs
and libraries).

Manual tests, which benefit from human insight, remain indispensable. The two
kinds are complementary: manual tests are good at depth, automatically generated
tests at breadth. In particular, any run that ever uncovered a bug, whether through
manual or automatic techniques, should become part of the regression test suite.
AutoTest integrates manual tests and regression tests within the automatic test case
generation and execution framework [44].

Automatic test case generation needs a strategy for selecting inputs. Contrary to
intuition, random testing [34], which selects test data randomly from the input
domain, can be an effective strategy if tuned to ensure a reasonably even distribution
over that domain, a policy known as adaptive random testing [14] which has so far
been applied to integers and other simple values (for which a clear notion of distance
exists, so that “even distribution” is immediately meaningful). Recent work [16]
extends the idea to object-oriented programming by defining a notion of object
distance.

10 Conclusion

This survey has taken a broad sweep across many techniques that all have something
to contribute to the aim of software reliability. While it has stayed away from the
gloomy picture of the state of the industry which seems to be de rigueur in discussions
of this topic, and is not justified given the considerable amount of quality-enhancing
ideas, techniques and tools that are available today and the considerable amount of
good work currently in progress, it cannot fail to note as a conclusion that the industry
could do much more to take advantage of all these efforts and results.

There is not enough of a reliability culture in the software world; too often, the
order of concerns is cost, then deadlines, then quality. It is time to reassess priorities.

Acknowledgments

The material in this chapter derives in part from the slides for an ETH industry course
on Testing and Software Quality Assurance prepared with the help of Ilinca Ciupa,
Andreas Leitner and Bernd Schoeller. The discussion of CMMI benefited from the

Dependable Software 29

work of Peter Kolb in the preparation of another ETH course, “Software Engineering
for Outsourced and Offshored Development”. Bernd Schoeller and Ilinca Ciupa
provided important comments on the draft.

“Design by Contract” is a trademark of Eiffel Software.

The context for this survey was provided by the Hasler Foundation’s grant for our
SCOOP work in the DICS project. We are very grateful for the opportunities that the
grant and the project have provided, in particular for the experience gained in the two
DICS workshops in 2004 and 2005.

References

Note: All URLSs listed were active in April 2006.

(1]

(2]

(4]

[5]

[10]
(11]

[12]

Algirdas Avizienis, Jean-Claude Laprie and Brian Randell: Fundamental Concepts of
Dependability, in Proceedings of Third Information Survivability Report, October 2000,
pages 7-12, available among other places at citeseer.ist.psu.edu/article/avizienisO1
fundamental.html.

Ralph Back: A Calculus of Refinements for Program Derivations, in Acta Informatica,
vol. 25, 1988, pages 593-624, available at crest.cs.abo.fi/publications/public/1988/
ACalculusOfRefinementsForProgramDerivationsA.pdf.

Thomas Ball and Sriram K. Rajamani: Automatically Validating Temporal Safety
Properties of Interfaces, in SPIN 2001, Proceedings of Workshop on Model Checking of
Software, Lecture Notes in Computer Science 2057, Springer-Verlag, May 2001, pages
103-122, available at tinyurl.com/qrm9m.

Mike Barnett, Robert DeLine, Manuel Fihndrich, K. Rustan M. Leino, Wolfram Schulte:
Verification of object-oriented programs with invariants, in Journal of Object Technology,
vol. 3, no. 6, Special issue: ECOOP 2003 workshop on Formal Techniques for Java-like
Programs, June 2004, pages 27-56, available at www jot.fm/issues/issue_2004_06/article2.
Mike Barnett, K. Rustan M. Leino and Wolfram Schulte: The Spec# Programming
System: An Overview, in CASSIS 2004: Construction and Analysis of Safe, Secure
Interoperable Smart devices, Lecture Notes in Computer Science 3362, Springer-Verlag,
2004, available at research.microsoft.com/specsharp/papers/krml136.pdf; see also other
Spec# papers at research.microsoft.com/specsharp/.

Kent Beck and Cynthia Andres: Extreme Programming Explained: Embrace Change. 2™
edition, Addison-Wesley, 2004.

Eric Bezault: Gobo Eiffel Test, online documentation at www.gobosoft.com/eiffel/gobo/
getest/index.html.

Robert Binder: Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-
Wesley, 1999.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérdme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux and Xavier Rival: ASTREE: A Static Analyzer for Large
Safety-Critical Software, in Applied Deductive Verification, Dagstuhl Seminar 3451,
November 2003, available at www.di.ens.fr/~cousot/COUSOTtalks/Dagstuhl-3451-
2003.shtml. See also ASTREE page at www.astree.ens.fr.

Barry W. Boehm: Software Engineering Economics, Prentice Hall, 1981.

Barry W. Boehm: A Spiral Model of Software Development and Enhancement, in
Computer (IEEE), vol. 21, no. 5, May 1988, pages 61-72.

Barry W. Boehm et al.: Software Cost Estimation with COCOMO 11, Prentice Hall, 2000.

30

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

(22]
[23]
[24]

[25]
[26]

[27]
[28]
[29]

[30]
[31]

B. Meyer

Chandrasekhar Boyapati, Sarfraz Khurshid and Darko Marinov: Korat: Automated
Testing Based on Java Predicates, in Proceedings of the 2002 International Symposium
on Software Testing and Analysis (ISSTA), Rome, July 22--24, 2002, available at
tinyurl.com/qwwd3.

T.Y. Chen, H. Leung and I.K. Mak: Adaptive random testing, in Advances in Science -
ASIAN 2004: Higher-Level Decision Making, 9th Asian Computing Science Conference,
ed. Michael J. Maher, Lecture Notes in Computer Science 3321, Springer-Verlag, 2004,
available at tinyurl.com/lpxn5.

Ilinca Ciupa and Andreas Leitner: Automated Testing Based on Design by Contract, in
Proceedings of Net.ObjectsDays 2005, 6th Annual Conference on Object-Oriented and
Internet-Based Technologies, Concepts and Applications for a Networked World, 2005,
pages 545-557, available at se.ethz.ch/people/ciupa/papers/soqua05.pdf. See also
AutoTest page at se.ethz.ch/research/autotest.

Ilinca Ciupa, Andreas Leitner, Manuel Oriol and BertrandMeyer: Object Distance and its
Application to Adaptive Random testing of Object-Oriented Programs, submitted for
publication, 2006, available at se.ethz.ch/~meyer/publications/testing/object_distance.pdf.
Edmund M. Clarke Jr., Orna Grumberg and Doron A. Peled: Model Checking, MIT
Press, 1999.

Patrick Cousot: Verification by Abstract Interpretation, in International Symposium on
Verification Theory & Practice Honoring Zohar Manna’s 64th Birthday, ed. Nachum
Dershowitz, Lecture Notes in Computer Science 2772, Springer-Verlag, 2003, pages
243-268.

Michael Cusumano and Richard Selby: Microsoft Secrets, The Free Press, 1995.
Ole-Johan Dahl, Edsger W. Dijkstra and C.A.R. Hoare: Structured Programming,
Academic Press, 1971.

David L. Detlefs, K. Rustan, M. Leino, Greg Nelson, and James B. Saxe: Extended
Static Checking, Research Report 159, Compaq Systems Research Center, December
1998, available at ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/researchreports/
SRC-159.pdf.

Edsger W. Dijkstra: Go To Statement Considered Harmful, in Communications of the ACM,
Vol. 11, No. 3, March 1968, pages 147-148, available at www.acm.org/classics/oct95/.
Edsger W. Dijkstra: Notes on Structured Programming, in [20]; original typescript
available at www.cs.utexas.edu/users/EWD/ewd02xx/EWD249 . PDF.

Edsger W. Dijkstra: A Discipline of Programming, Prentice Hall, 1978.

Brian J. Dreger: Function Point Analysis, Prentice Hall, 1989.

Paul Dubois, Mark Howard, Bertrand Meyer, Michael Schweitzer and Emmanuel Stapf:
From Calls to Agents, in Journal of Object-Oriented Programming (JOOP), vol. 12, no.
6, September 1999, available at se.ethz.ch/~meyer/publications/joop/agent.pdf.

Eclipse pages at www.eclipse.org.

ECMAV/ISO: Eiffel: Analysis, Design and Programming Language, standard ECMA 367,
accepted in April 2006 as ISO standard, available at www.ecmainternational.org/
publications/standards/Ecma-367.htm.

Eiffel open-source development site at eiffelsoftware.origo.ethz.ch/index.php/
Main_Page.

Eiffel Software: EiffelStudio documentation, online at eiffel.com.

Michael D. Ernst, J. Cockrell,William G. Griswold and David Notkin: Dynamically
Discovering Likely Program Invariants to Support Program Evolution, in IEEE
Transactions on Software Engineering, vol. 27, no. 2, February 2001, pages 1-25,
available at pag.csail.mit.edu/~mernst/pubs/invariants-tse2001.pdf.

[32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

Dependable Software 31

Erich Gamma, Richard Helms, Ralph Johnson and John Vlissides: Design Patterns,
Addison-Wesley, 1994.

Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, Software Engineering, 2nd edition,
Prentice Hall, 2003.

Richard Hamlet: Random Testing, in Encyclopedia of Software Engineering, ed.
J. J. Marciniak, 1994, available at tinyurl.com/rcjxg.

Brian Henderson-Sellers: Object-Oriented Metrics: Measures of Complexity, Prentice
Hall, 1995.

Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis and Sergio Yovine: Symbolic
Model Checking for Real-Time Systems, in Logic in Computer Science, Proceedings of
7th Symposium in Logics for Computer Science, Santa Cruz, California, 1992, pages
394-406, available at tinyurl.com/Ib5fm.

C.A.R. Hoare: An axiomatic basis for computer programming, in Communications of the
ACM, Vol. 12, no. 10, October 1969, pages 576 - 580, available at tinyurl.com/ory2s.
C.AR. Hoare and Jayadev Misra: Verified Software: Theories, Tools, Experiments,
Vision of a Grand Challenge Project, October 2005, foundation paper for the VSTTE
conference [77], available at vstte.ethz.ch/pdfs/vstte-hoare-misra.pdf.

IFIPWorking Group 10.4 on dependable computing and fault tolerance: home page at
www.dependability.org.

Michael Jackson: Problem Frames: Analysing and Structuring Software Development
Problems, Addison-Wesley, 2001.

Jean-Marc Jézéquel and Bertrand Meyer: Design by Contract: The Lessons of Ariane, in
Computer (IEEE), vol. 30, no. 1, January 1997, pages 129-130, available at
archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html.

JUnit pages at SourceForge: junit.sourceforge.net.

Gary T. Leavens and Yoonsik Cheon: Design by Contract with JML (Draft), at
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf; see also other JML papers at
www.cs.iastate.edu/~leavens/JML/.

Andreas Leitner, Ilinca Ciupa, Bertrand Meyer and Mark Howard: Reconciling Manual
and Automated Testing: The AutoTest Experience, submitted for publication, 2006.
Nancy G. Leveson: System Safety in Computer-Controlled Automotive Systems, SAE
Congress, March 2000, available at sunnyday.mit.edu/papers/sae.pdf.

Michael R. Lyu (ed.): Handbook of Software Reliability Engineering, IEEE Computer
Society Press and McGraw-Hill, 1995; also available online at
www.cse.cuhk.edu.hk/~lyu/book/reliability/.

Zohar Manna and Amir Pnueli: The temporal logic of reactive and concurrent systems,
Springer-Verlag, 1992.

Thomas J. McCabe: A Complexity Measure, in 1EEE Transactions on Software
Engineering, vol. 2, no. 4, December 1976, pages 308-320.

Thomas J. McCabe and Charles W. Butler: Design Complexity Measurement and
Testing, in Communications of the ACM, vol. 32, no. 12, December 1989, pages 1415-
1425.

Bertrand Meyer: Introduction to the Theory of Programming Languages, Prentice Hall,
1990.

Bertrand Meyer, The New Culture of Software Development: Reflections on the Practice
of Object-Oriented Design, in Advances in Object-Oriented Software Engineering, eds.
D. Mandrioli, B. Meyer, Prentice Hall, 1991.

Bertrand Meyer: Eiffel: The Language, 2nd printing, Prentice Hall, 1992.

32

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]
[72]

[73]

B. Meyer

Bertrand Meyer: Applying “Design by Contract”, in Computer (IEEE), 25, 10, October
1992, pages 40-51.

Bertrand Meyer: Object Success, Prentice Hall, 1995.

Bertrand Meyer: Practice to Perfect: The Quality First Model, in Computer (IEEE), May
1997, pages 102-106, available at se.ethz.ch/~meyer/publications/computer/
quality_first.pdf.

Bertrand Meyer: UML: The Positive Spin, in American Programmer, 1997, available at
archive.eiffel.com/doc/manuals/technology/bmarticles/uml/page.html.

Bertrand Meyer: Object-Oriented Software Construction, 2™ edition, Prentice Hall, 1997.

Bertrand Meyer, Christine Mingins and Heinz Schmidt: Providing Trusted Components
to the Industry, in Computer (IEEE), vol. 31, no. 5, May 1998, pages 104-105, available
at se.ethz.ch/~meyer/publications/computer/trusted.pdf.

Bertrand Meyer: The Role of Object-Oriented Metrics, in Computer (IEEE), vol. 31, no.
11, November 1998, pages 123-125, available at se.ethz.ch/~meyer/publications/
computer/metrics.

Bertrand Meyer, Every Little Bit Counts: Towards Reliable Software, in Computer
(IEEE_, vol. 32, no. 11, November 1999, pages 131-133, available at se.ethz.ch/~meyer/
publications/computer/reliable.pdf.

Bertrand Meyer: The Grand Challenge of Trusted Components, in ICSE 25 (International
Conference on Software Engineering, Portland, Oregon, May 2003), IEEE Computer
Press, 2003.

Bertrand Meyer: The Power of Abstraction, Reuse and Simplicity: An Object- Oriented
Library for Event-Driven Design, in From Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan Dahl, eds. Olaf Owe, Stein Krogdahl, Tom Lyche,
Lecture Notes in Computer Science 2635, Springer-Verlag, 2004, pages 236-271,
available at se.ethz.ch/~meyer/publications/Incs/events.pdf.

Bertrand Meyer: Offshore Development: The Unspoken Revolution in Software
Engineering, in Computer (IEEE), January 2006, pages 122-124, available at
se.ethz.ch/~meyer/publications/computer/outsourcing.pdf.

Bertrand Meyer: What will remain of Extreme Programming?, in EiffelWorld, Vol. 5, no.
2, February 2006, available at www.eiffel.com/general/monthly_column/2006/
February.html.

Bertrand Meyer and Karine Arnout: Componentization: the Visitor Example, to appear in
Computer (IEEE), 2006, draft available at se.ethz.ch/~meyer/publications/computer/
visitor.pdf.

Microsoft: Visual Studio pages at msdn.microsoft.com/vstudio.

Richard Mitchell and Jim McKim: Design by Contract by Example, Addison-Wesley,
2001.

Carroll Morgan: Programming from Specifications, 2™ edition, Prentice Hall, 1994,
available at web.comlab.ox.ac.uk/oucl/publications/books/PfS/.

John Musa: Software Reliability Engineering, 2" edition, McGraw-Hill, 1998.

Glenford J. Myers, Corey Sandler, Tom Badgett and Todd M. Thomas: The Art of
Software Testing, 2™ edition, Wiley, 2004.

Jeff Offutt: Mutation testing papers at www.ise.gmu.edu/~ofut/rsrch/mut.html.

John Pincus: presentations (mostly PowerPoint slides) on PREfix and PREfast at
research.microsoft.com/users/jpincus/.

Eric Raymond: The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary, O’ Reilly, 1999; earlier version available at www.firstmonday.
org/issues/issue3_3/raymond/.

[74]
[75]

[76]

[77]

[78]

[79]
[80]
[81]
[82]

[83]

Dependable Software 33

Software Engineering Institute, CMMI site, available at www.sei.cmu.edu/cmmi.

Matt Stephens and Doug Rosenberg: Extreme Programming Refactored: The Case
Against XP, aPress, 2003.

Axel van Lamsweerde: Goal-Oriented Requirements Engineering: A Guided Tour, in
Proceedings of the S5th IEEE International Symposium on Requirements Engineering,
August 2001, available at tinyurl.com/mscpj.

Verified Software: Theories, Tools, Experiments: International IFIP conference, ETH
Zurich, October 2005, see VSTTE conference site at vstte.ethz.ch.

John Viega: The Myth of Open-Source Security, 2000, available at www.
developer.com/tech/article.php/626641; follow-up article, Open-Source Security: Still at
Mpyth, September 2004, available at www.onlamp.com/pub/a/security/2004/09/16/
open_source_security_myths.html.

Jeffrey M. Voas and Gary McGraw: Software Fault Injection: Inoculating Programs
Against Errors, Wiley, 1998.

Jos Warmer and Anneke Kleppe: The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd edition, Addison-Wesley, 2003.

Elaine J. Weyuker and Bingchiang Jeng: Analyzing Partition Testing Strategies, in IEEE
Transactions on Software Engineering, vol. 17, no. 9, July 1991, pp. 97-108.

Wikipedia: entry “Mars Climate Orbiter”, available at en.wikipedia.org/wiki/
Mars_Climate_Orbiter.

Edward Yourdon: When Good Enough Software Is Best, in Software (IEEE), vol. 12, no.
3, May 1995, pages 79-81.

Dependable Systems*

André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
Andre.Schiper@epfl.ch

Abstract. Improving the dependability of computer systems is a criti-
cal and essential task. In this context, the paper surveys techniques that
allow to achieve fault tolerance in distributed systems by replication. The
main replication techniques are first explained. Then group communica-
tion is introduced as the communication infrastructure that allows the
implementation of the different replication techniques. Finally the diffi-
culty of implementing group communication is discussed, and the most
important algorithms are presented.

1 Introduction

Computer systems become every day more and more complex. As a consequence
the probability of problems in these systems increases over the years. To avoid
this from becoming a major issue, researchers have since many years worked
on improving the dependability of these systems. The methods involved are
traditionally classified as fault prevention, fault tolerance, fault removal and fault
forecasting [23]. Fault prevention refers to methods for preventing the occurrence
or the introduction of faults in the system. Fault tolerance refers to methods
allowing the system to provide a service complying with the specification in
spite of faults. Fault removal refers to methods for reducing the number and the
severity of faults. Fault forecasting refers to methods for estimating the presence
of faults (with the goal to locate and remove them). We concentrate here on
fault tolerance.

Several techniques to achieve fault tolerance have been developed over the
years. The different techniques are related to the specificity of applications. For
example, a centralized application differs from a distributed application involv-
ing several computing systems. We consider here distributed applications. Fault
tolerance for distributed applications can be achieved with different techniques:
transactions, checkpointing and replication.

Transactions have been introduced many years ago in the context of database
systems [3]. A transaction allows us to group a sequence of operations while
ensuring some properties on these operations, called ACID properties [3]: Atom-
icity, Consistency, Isolation and Durability. Atomicity requires that either all

* Almost the same paper appears under the title Group Communication: from practice
to theory in Proceedings SOFSEM 2006: Theory and Practice of Computer Science,
Merin, Czech Republic, January 2006, Springer, LNCS 383, pages 117-137, 2006.

J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 34-54, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dependable Systems 35

operations of the transaction are preformed, or none of them. Consistency is a
requirement on the set of operations, namely that the sequence of operations
brings the database from a consistent state to another consistent state. Trans-
actions can be executed concurrently. The isolation property requires that the
effect of transactions executed concurrently is the same as if the transactions
where executed in some sequential order (in isolation from each other). Durabil-
ity requires that the effect of the operations of the transaction are permanent,
i.e., survive crashes. Durability is achieved by storing data on stable storage,
e.g., on disk. Atomicity and durability are the two properties specifically related
to fault tolerance. A single protocol is used to ensure these two properties, the
so called atomic commitment protocol executed at the end of the transaction.
If all the data accessed by a transaction is located on the same machine, the
transaction is a centralized transaction. If the data is located on different ma-
chines, the transaction is a distributed transaction. Distributed transactions are
more difficult to implement then centralized transactions. The main technical
difficulty lies in the atomic commitment protocol. Except for this problem, the
implementation of distributed transactions derives more or less easily from the
implementation of centralized transactions. We discuss atomic commitment in
Section 4.5.

Checkpointing is another technique for achieving fault tolerance. It consists
of periodically saving the state of the computation on stable storage; in case of
a crash, the computation is restarted from the most recently saved state. The
technique has been developed for long running computations, e.g., simulations
that last for days or weeks, and run on multiple machines. These computations
are modelled as a set of processes communicating by exchanging messages. The
main problem is to ensure that, after crash and recovery, the computation is
restarted in a consistent state. We do not discuss checkpointing techniques here.
A good survey can be found in [13].

Replication is the technique that allows the progress of the computation dur-
ing failures (which is called failure masking). In a system composed of several
components, without replication, if one single component fails the system is no
more operational. Replicating a component C, and ensuring that the replicas
of C fail independently, allows the system to be tolerant to the failure of one
or several replicas of C. Replicating a component is very easy if the component
is stateless or if its state does not change during the computation. If the state
of the component changes during the computation, then maintaining the con-
sistency among the replicas is a difficult problem. Surprisingly, it is one of the
most difficult problems in distributed computing. We concentrate here on the
problems related to replication.

While replication allows us to mask failures, this is not the case of transactions
or checkpointing. However, the different techniques mentioned above can be
combined, e.g., transactions can be run on replicated data. Implementing such a
technique requires to combine transaction techniques and replication techniques.
This will not be discussed here.

36 A. Schiper

The rest of the paper is structured as follows. Section 2 introduces issues
related to replication, and presents the two main replication techniques. Section 3
defines group communication as the middleware layer providing the tools for
implementing the different replication techniques. The implementation of these
tools is discussed in Section 4. Finally, Section 5 concludes this survey.

2 Replication

In this section we first introduce a model for discussing replication. Then we
define what it means for replicas to be consistent. Finally we introduce the two
main replication techniques.

2.1 Model for Replication

Consider a system composed of a set of components. A component can be a
process, an object, or any other system structuring unit. Whatever the component
is, we can model the interaction between components in terms of inputs and
outputs. A component CO receives inputs and generates outputs. The inputs
are received from another component CO;,, and the outputs are sent to some
component CO,,:. Whether CO;, is equal or not to CO,,; does not make any
difference for C'O. In the case CO;,, = CO,yyy, the component CO is called a
server, and the component CO;, = CO,y: is called a client (see Figure 1). In
this case we will denote the server component by S and the client component
by C. The input sent by the client C' to the server S is called a request, and
the output sent by the server S to the client C' is called a response. From the
point of view of the client, the pair request/response is sometimes called an
operation: for a client C', an operation consists of a request sent to a server and
the corresponding response. We assume here that the client is blocked while
waiting for the response.

request
CO,,=CO,, » co
response

\i

client server

Fig. 1. Server and client

2.2 Consistency Criteria

A server S can have many clients C, C’, C”, etc. For a non-replicated server S,
the simplest implementation is to handle client requests sequentially, one at
a time. A more efficient implementation could consist for the server to spawn
a new thread for each new incoming request. However, in this case the result
that the client obtains must be the same as if the operations were executed
sequentially, one after the other. The same holds if the server S is replicated,
with replicas Si, ..., Sy: the result that the clients obtain must be the same as

Dependable Systems 37

if the operations were executed sequentially by one single server. This can be
defined more precisely, by the consistency criterion called linearizability [17] (also
called atomic consistency [25]). A weaker consistency criterion is called sequential
consistency [20]. We discuss only linearizability, which is the consistency criterion
that is usually implemented.

Linearizability: An execution o is linearizable if it is equivalent to a sequential
execution such that (i) the request and the response of each operation occur both
at some time ¢, and (7) ¢ is in the interval [tyeq, tres], Where t,.¢q is the time when
the request is issued in o, t,.s is the time when the response is received in 0. We
explain this definition on two examples. A formal definition can be found in [17].

Consider a server S that implements a register with the two operations read
and write:

— S.write(v) denotes the request to write value v in the register managed by
server S. The operation returns an empty response, denoted by ok.

— S.read() denotes the request to read the register managed by server S. The
operation returns the value read.

Figure 2 shows an execution ¢ that is linearizable:

— Client C issues the request write(0) at time ¢1, and receives the empty
response ok at time t3.

— Client C" issues the request write(1) at time to, and receives the empty
response ok at time t5.

— Client C issues the request read() at time ¢4, and receives the response 0 at
time t7.

— Client C” issues the request read() at time tg, and receives the response 1
at time tg.

The bottom time-line in Figure 2 shows a sequential execution equivalent to
o that satisfies the two requirements (i) and (%) above (t,—the time at which
the request and the response of S.write(0) take place in 0—is in the interval
[t1,t3], ty—the time at which the request and the response of S.write(1) take
place in o—is in the interval [t4,t7], etc.).

S.write(0) ok S.read() 0
c | [l -
[T 1 o
Execution t1 : t3 t4 t7
c) I S.write(1 1 ok S.read() 1
c !]) A | | g
| | L | | |
") L5 ote ! t8
Equivalent sequential ‘ z_‘ Y
X o ————»
execution
t t t

a tbc d

Fig. 2. A linearizable execution

38 A. Schiper

Figure 3 shows an execution that is not linearizable. In an equivalent sequen-
tial execution write(1) issued by C” must precede read() issued by C. So there
is no way to construct a sequential execution in which read() returns 0 to C.

c S.write(0) ok S.read()
|

4o

Fig. 3. A non linearizable execution

2.3 Linearizability vs. Isolation

Linearizability differs from the isolation property of transactions. There are two
main differences. First, linearizability is defined on the whole sequence of oper-
ations issued by a client process in the system, while isolation is defined on a
subset of the operations of a client process. Consider for example that process
p issues operations op; and ops within transaction 77, and later operations ops
and op4 within transaction T5. Isolation does not require that the operations of
Ty are ordered before the operations of T» (they can be ordered after those of
T5). However, if op; precedes op; on process p, then linearizability requires op;
to be ordered before op;.

The second difference is that linearizability does not ensure isolated execution
of a sequence of operations. If process p issues operation opzl, = S.read() that
returns v and later op? = S.write(v+1), and process g issues operation op) =
S.read() that returns v’ and later op2 = S.write(v'+1), linearizability does not
prevent the operation opé of ¢ to be executed between the two operations opll7 and
opf, of p. There are basically two ways to prevent this from occurring. The first
solution is for p and ¢ to explicitly use locks or semaphores. The second solution
is to add a new operation to the server S, e.g., increment, and to invoke this
single operation instead of read followed by write. The second solution is better
than the first one (locks and semaphores lead to problems in the presence of
failures).

2.4 Replication Techniques

In the previous section, linearizability defined the desired semantics for oper-
ations issued by clients on servers. In the definition of linearizability, servers
are black boxes. This means that the definition applies to non-replicated single-
threaded servers, to non-replicated multi-threaded servers, to replicated single-
threaded servers and to replicated multi-threaded servers. In this section we
address the question of implementing a replicated server while ensuring lin-
earizability. We discuss only the single-threaded case (the solution can easily be
extended to multi-threading). The two main replication techniques are called
active replication and passive replication. Other replication techniques can be
seen as variants or combinations of these two basic techniques.

Dependable Systems 39

Active Replication: Active replication is also called state-machine replica-
tion [19,29]. The principle is illustrated on Figure 4, which shows a replicated
server S with three replicas S, So and S3. The client sends its request to all the
replicas, each replica processes the request and sends back the response to the
client. The client waits for the first response and ignores the others. This client’s
behavior is correct if we assume that the servers do not behave maliciously, and
the servers are deterministic:' in this case all the responses are identical.

In Figure 4 there is only one client. The problem becomes more difficult with
multiple clients that concurrently send their requests. In this case it is sufficient
that all replicas S; receive the clients’ requests in the same order, as shown in
Figure 5. This allow the replicas to process the clients’ requests in the same
order. In Section 3 we introduce a group communication primitive that ensures
such an ordering of client requests.

clientC | |

processing

Client | | request of C

Request processing

processing
request of C’

> clientc’ |

Fig. 4. Active replication Fig.5. Active replication: requests re-
ceived in the same order

Passive Replication: The principle of passive replication is illustrated on
Figure 6, which shows the same replicated server S with its three replicas S1, S
and Ss. One of the replicas, here Si, is the primary replica; the other replicas,
So and Ss are called backups. The client sends its request only to the primary,
and waits for the response. Only the primary processes the request. Once this
is done, the primary sends an update message to the backups, to bring them to
a state that reflects the processing of the client request. In Figure 6 the update
message is also sent to the primary. The reason is that, if we include failures, it is
simpler to assume that the modification of the state of the primary occurs only
upon handling of the update message, and not upon processing of the request.
If several clients sent their requests at the same time, the primary processes
them sequentially, one after the other. Since the primary sends an update mes-
sage to the backups, the processing can be non-deterministic, contrary to active
replication. Note that this superficial presentation hides most of the problems
related to the implementation of passive replication. We mention them in the

1 A server is deterministic if its new state and the response depend only on the request
and on the state before processing the request.

40 A. Schiper

next paragraph. With active replication, the implementation problems are hid-
den in the implementation of the group communication primitive that orders the
clients’ requests.

Client

Response
S1 = primary

Request processing
S2

.
Update \
S3
.

Fig. 6. Passive replication

Problems Implementing Passive Replication: When the primary crashes,
a new primary must be selected. However, requiring the failure detection of the
primary to be reliable (i.e., never making mistakes) is a very constraining as-
sumption. For this reason, solutions to passive replication that do no require a
reliable failure detection mechanism for the primary have been developed. The
three main problems to address are the following: (a) prevention of multiple pri-
maries being able to process requests, (b) prevention of multiple executions of a
request, and (¢) reception of the update message by all replicas. Problem (a) is
related to the unreliable failure detection mechanism. Problem (b) arises when
the current primary is falsely suspected to have crashed. Consider a client C'
sending its request to the primary Sj. Assume that S is incorrectly suspected
to have crashed, and S becomes the new primary. If this happens, and C' did not
receive any response, it will resend its request to Ss. This may lead to execute
the client request twice. Multiple execution of a request can be prevented by
attaching a unique identifier to each request (this request identifier being pig-
gybacked on the update message). Problem (¢) arises when the primary crashes
while multicasting the update message. In this case, we must prevent the unde-
sirable situation where the update message is received by some replicas, but not
by all of them. In Section 3 we present the group communication primitive that
allows us to solve the problems (a) and (c).

3 Group Communication

In the previous section we have introduced the two basic replication techniques,
namely active replication and passive replication. We have also pointed out the
need for communication primitives with well defined ordering properties to im-
plement these techniques. Group communication is the infrastructure that pro-
vides these primitives. A group is simply a set of processes with an identifier.
Messages can be multicast to the members of some group g simply by referring
to the identifier of group g¢: the sender of the message does not need to know

Dependable Systems 41

what processes are members of g. For example, if we consider a replicated server
S with three replicas Sy, So and S3, we can refer to these replicas as the group
gs = {S51,52,53}. As illustrated by Figure 7, group communication is a mid-
dleware layer between the transport layer and the layer that implements repli-
cation. In this section we define the two main group communication primitives
for replication, namely atomic broadcast and generic broadcast. Before doing so,
we introduce some concepts needed to understand the various aspects of group
communication.

Replication technique

Group communication

Transport layer

Fig. 7. Group communication

3.1 Various Group Models

Static Group vs. Dynamic Group: A static group is a group whose member-
ship is constant over time: a static group is initialized with a given membership,
and this membership never changes. This is the simplest type of group. However,
static groups are often too restrictive. For example consider the replicated server
S implemented by the group gs = {1, 52, 53}. If one of the replicas S; crashes,
it might be desirable to replace S; with a new replica, in order to maintain the
same degree of replication. A group whose membership changes over time is
called a dynamic group. Dynamic groups require to manage the addition and
the removal of members to/from the group. This problem is called the group
membership problem: it is discussed in Section 3.4.

Benign vs. Malicious Faults: The group (or system) model encompasses also
the type of faults that are considered. The distinction is made between benign
faults and malicious faults (also called Byzantine faults). With benign faults, a
process or a channel does its job correctly, or does not do its job. A process crash,
or a channel that looses a message, are benign faults. With malicious faults, a
process or a channel can behave arbitrarily.

Crash-Stop ws. Crash-Recovery: In the context of benign faults, the dis-
tinction is made between the crash-stop and the crash-recovery process model.
In the crash-stop model processes do not have access to stable storage. In this
case, a process that crashes looses its state: upon recovery, the process is indis-
tinguishable from a newly started process. In the crash-recovery model processes
have access to stable storage, allowing them to periodically save their state. In
this case, a process that crashes can recover its most recently saved state.

42 A. Schiper

Combining These Models: Combining these three dimensions lead to differ-
ent models for group communication. The simplest model is the benign static
crash-stop model. Other models have been considered in the literature, but they
lead to more complexity in the specification of group communication and in the
algorithms. There are some subtle differences between the different models, as
we explain now.

Figure 8 shows the difference between active replication with dynamic crash-
stop groups (left) and active replication with static crash-recovery groups (right).
In the crash-stop model, to keep the same replication degree, a crashed process
(here replica S3) must be replaced with a new process (here Si). The initial
membership of the group gg is denoted by vg(g9s) = {51, 52,53} (v stands for
view, see Section 3.4). When S3 crashes, the membership becomes v (gs) =
{S1,52}. Once Sy is added, we have the membership va(gs) = {S1,S52,54}.
Note that the state of py must be initialized. This is done by an operation
called state transfer: when Sy joins the group, the state of one of its members
(here S5) is used to initialize the state of Sy. In the static crash-recovery model
(Figure 8, right), the same degree of replication is kept by assuming that crashed
replicas recover (here S3). However in this context, since S3 remains all the time
a member of gg, a message broadcast to the group while S5 is down must be
delivered to Ss (here mg). As a result, no state transfer is needed. The static
crash-recovery model is preferable to the dynamic crash-stop model whenever
the state of the replicas is large.

client client -
m1 m2 m3
S1
s2 .
crash state || trapsfer s L : ! -

crash recover

Fig. 8. Active replication with a dynamic crash-stop group (left), or a static crash-
recovery group (right)

In the following we consider mainly the static crash-stop model, which is
the most widely model considered in the literature, and the simplest. Dynamic
groups are briefly mentioned in Section 3.4.

3.2 Atomic Broadcast for Active Replication

One of the most important group communication primitives is atomic broad-
cast [9]. Atomic broadcast is also sometimes called total order broadcast, or sim-
ply abcast. The primitive ensures that messages are delivered ordered. To give a

Dependable Systems 43

more formal specification of the properties of abcast, we need to introduce the
following notation:

— The atomic broadcast of message m to the members of some group g is
denoted by abcast(g, m).2
— The delivery of message m is denoted by adeliver(m).

It is important to make the distinction between abcast/adeliver, and the
send/receive primitives at the transport layer (see Figure 9). The semantics of
send/receive is defined by the transport layer. The semantics of abcast/adeliver
is defined by atomic broadcast. An atomic broadcast protocol uses the semantics
of send/receive to provide the semantics of abcast/adeliver.

Replication technique
adeliver(m)

abcast(g, m) l

i
Group communication
T receive(m)

send(m) to p i
Transport layer

Fig. 9. Send/receive vs. abcast/adeliver

The definition of atomic broadcast in the static crash-stop model relies on the
definition of a correct process: a process is correct if it does not crash. Otherwise
it is faulty. Note that even though these definitions are simple, they are easily
wrongly understood. Correct/faulty are predicates that characterize the whole
lifetime of a process. This means that if some process p crashes at time ¢ = 10,
then p is faulty (even at time ¢ = 9). With this definition, atomic broadcast in
the static/crash-stop model is specified by the following four properties [16,2]:3

Validity: If a correct process executes abcast(g,m), then some correct process

in g eventually adelivers m or no process in g is correct.

— Uniform agreement: If a process in g adelivers a message m, then all correct
processes in g eventually adeliver m.

— Uniform integrity: For any message m, every process p adelivers m at most
once, and only if p is in g and m was previously abcast to g.

— Uniform total order: If process p in g adelivers message m before message

m/, then no process in g adelivers m’ before having previously adelivered m.

Validity, uniform agreement and uniform integrity define the primitive called
reliable broadcast.* Atomic broadcast is defined as reliable broadcast with the
uniform total order property.

2 The primitive should be called atomic multicast. For simplicity, we keep the term
broadcast here.

3 More precisely, the specification corresponds to the primitive called uniform atomic
broadcast. We will call it here simply atomic broadcast.

4 More precisely, uniform reliable broadcast.

44 A. Schiper

It is easy to see that active replication is easily implemented using atomic
broadcast. If gg is the group of replicas that provide some service S, clients C'
send requests using the primitive abcast(gs, req). The validity property ensures
that if C' does not crash, its request is received by at least one member of
gs (unless all members of gg crash). Combining this guarantee with uniform
agreement ensures that all correct processes in gg eventually adeliver m. The
uniform total order property ensures that all replicas adeliver the clients’ requests
in the same order.

The response from a replica in gg to a client is sent using a unicast message,
i.e., a point-to-point message. The transport layer must ensure the following
quasi-reliable channel property [1]: if a correct process p sends message m to a
correct process ¢, then ¢ eventually receives m. This property is stronger than
the property provided by TCP (if a TCP connection breaks, reliability is no
more guaranteed).

3.3 Generic Broadcast for Passive Replication

Atomic broadcast can also be used to implement passive replication, but this is
not necessarily the best solution in terms of cost. Atomic broadcast can be used
as follows. Consider a replicated server S defined by the (static) group gs, and
assume that the members of gg are ordered in a list. Initially, the member at
the head of the membership list is the primary. The primary sends the update
message to gg using abcast. Whenever some member of gg suspects the current
primary to have crashed, it abcasts the message (primary change). Upon ade-
livery of this message every process moves the process at the head of the list to
the tail. The new primary is the new process at the head of the list.

Passive replication can also be implemented using the group communication
primitive called generic broadcast [26,2], which can be cheaper to implement
than atomic broadcast. While atomic broadcast orders all messages, generic
broadcast orders only messages that conflict. Conflicts are defined by a relation
on the set of messages. This conflict relation is part of the specification of the
primitive, and makes the primitive generic. The generic broadcast of message m
to the group g is denoted by gbcast(g, m); the delivery of message m is denoted
by gdeliver(m). Formally, generic broadcast is defined by the same properties
that define atomic broadcast, except that the uniform total order property is
replaced with the following weaker property:

— Generic total order: If process p in g gdelivers message m before message m/,
and m, m’ conflict, then no process in g gdelivers m’ before having previously
gdelivered m.

We have seen that passive replication can be implemented with atomic broad-
cast for the update messages and the primary-change messages. Consider the
following conflict relation between these two types of messages:

— Messages of type primary-change do not conflict with messages of the same
type, but conflict with messages of type update.

Dependable Systems 45

— Messages of type update conflict with messages of the same type, and also
with messages of type primary-change.

This ensures enough ordering to implement generic broadcast correctly. Note
that most of the time one single process considers itself to be the primary, and
during this period no concurrent update messages are issued. So most of the
time no concurrent conflicting messages are issued.

The implementation of generic broadcast (and atomic broadcast) is discussed
in Section 4.

3.4 About Group Membership

With dynamic groups, the successive membership of a group is called a view.
Consider for example a group ¢, with initially three processes p, ¢, r. This initial
membership is called the initial view of g, and is denoted by vg(g). Assume that
later 7 is removed from g. The new membership is denoted by v1(g) = {p, ¢}
If s is added later to the group the resulting membership is denoted by v2(g) =
{p, q, s}. So the history of a dynamic group is represented as a sequence of views,
and all group members must see the sequence of views in the same order. The
problem of maintaining the membership of a dynamic group is called the group
membership problem [28].

3.5 About View Synchronous Broadcast

View synchronous broadcast or vscast (sometimes also called view synchrony), is
another group communication primitive, defined in a dynamic group model [4,8].
However, the importance of vscast has been overestimated, and stems from a
time where the difference between static groups and dynamic groups was not
completely understood.

Consider some message m vscast by process p in view v;(g): vscast orders m
with respect to view changes. In other words, vscast ensures that m is delivered
by all processes in the same view v;. The property is also called same view
delivery [8]. A stronger property, called sending view delivery, requires ¢ = j:
the view in which the message is delivered is the view in which the message was
sent [8].

The overestimated importance given to view synchronous broadcast has led
to several misunderstandings. The first is that dynamic groups are needed to
implement passive replication: Section 3.3 has sketched an implementation of
passive replication with a static group. The second misunderstanding is that the
specification of group communication with dynamic groups is inherently different
from the specification of group communication with static groups. This is not
the case, as shown in [27].

3.6 Group Communication vs. Quorum Systems

In the previous sections we have shown the use of group communication for
implementing replication. Quorum systems, which generalize the majority voting

46 A. Schiper

technique, is another technique for replication, anterior to group communication
and also more widely known. In this section we explain the advantage of group
communication over quorum systems in the context of replication [12].

Definition of Quorum Systems: Consider aset [T ={p1,...,pn} of processes.
The set of all subsets of IT is called the powerset of II, and is denoted by 2.
We have for example:

{pl}a {pQ}a {p17p2}7 {p2ap3ap4}a ey {ph e apn} S 2H

A quorum system of II is defined as any set @ C 27 such that any two Q; € Q
have a non empty intersection:

VQ1,Q2 € Q, we have Q1 N Q2 # 0.

Each Q; € Q is called a quorum. For example, if IT = {p1, p2, ps}, then the set

Q = {{p1,p2},{p1,ps}, {p2,p3}} is a quorum system of IT; {p1,p2}, {p1,ps3},
{p2,p3} are quorums.

Quorum Systems for Implementing a Fault Tolerant Register: The
use of quorums systems for fault tolerance can be illustrated on a very simple
example: a server that implements a register. A register is an object with two
operations read and write: read returns the value of the register, i.e., the most
recent value written; write overwrites the value of the register.

The register can be made fault tolerant by replication on three replicas e.g.,
IT = {p1,p2, p3} with the quorum system Q = {{p1, p2}, {p1, 3}, {p2, p3}}. Bach
operation needs only to be executed on one quorum of @, i.e., on {p1,ps2}, on
{p1,ps}, or on {pa, p3}. In other words, the quorum system @ tolerates the crash
of one out of the three replicas. Using the quorum system @, linearizability of
the read and write operations is easy to implement [12].

Requiring Isolation: A fault tolerant register is easy to implement using quo-
rum systems. However, clients usually want to perform more complex operations.
Consider for example the operations (a) increment a register and (b) decrement
a register. These two operations can be implemented as follows: (1) read the
register, then (2) update the value read, and finally (3) write back the new
value. However, one client C' may increment the register, while at the same time
another client C’ decrements the register. To ensure a correct execution, the
two operations must be executed in mutual exclusion. With group communica-
tion, no mutual exclusion is needed: atomic broadcast can be used to send the
corresponding operation to the replicated servers.

This difference between quorum systems and group communication is illus-
trated in Figure 10. The left part illustrates the quorum solution, and the right
part the group communication solution. In the quorum solution, the increment
operation is performed by the client, after reading the register and before writing
the new value. The implementation requires mutual exclusion, represented by
Ecs (enter critical section) and Leg (leave critical section). In the group com-
munication solution, the increment operation is sent to the replicas using atomic

Dependable Systems 47

Ecs Increment

|
Client !
p1

abcast (Increment)

- N/
. — /A

Read Write Increment

4

-
I\v 8

Fig. 10. Replication: quorum systems (left) vs. group communication (right)

broadcast; no mutual exclusion is required.® Implementing atomic broadcast
requires weaker assumptions about the crash detection mechanism than imple-
menting mutual exclusion [12].

4 Implementation of Group Communication

In the previous section we have seen the role of group communication for repli-
cation. We discuss now the implementation of the two group communication
primitives that we have introduced, namely atomic broadcast and generic broad-
cast. We consider only static groups, non Byzantine processes and the crash-stop
model.

4.1 Impossibility Results

Consider a static group g, and processes in ¢ communicating by message ex-
change. The most general assumption is to consider that the time between the
sending of a message m and the reception of m by its destination is not bounded,
i.e., the transmission delay can be arbitrarily long. Similarly, if we model the ex-
ecution of a process as a sequence of steps, the most general assumption is to
consider that while the slowest process performs one step, the fastest process
can perform an unbounded number of steps. These two assumptions define the
asynchronous system model. The absence of bounds for the message transmission
delay models an open network in which the load of the links are unknown. The
absence of bounds on the relative speed of processes models processes running
on CPUs with an unknown load. The asynchronous system model is the most
general model, but it has a major drawback: several problems are impossible to
solve in that model when one single process may crash.

One of these problems is consensus. The problem is defined on a set of pro-
cesses, e.g., on some group g. Every process p in g starts with an initial value
vp, and all correct processes in g have to decide on some common value v that
is the initial value of one of the processes. Formally, the consensus problem is
defined by the following properties [7]:

5 The reader may wonder why no increment operation can be sent with quorum sys-
tems. Sending the increment operation requires atomic broadcast!

48 A. Schiper

— Validity: If a process decides v, then v is the initial value of some process.
— Agreement: No two correct processes decide differently.
— Termination: Every correct process eventually decides some value.

An explanation of problem solvability is needed here. Consider a distributed al-
gorithm Ap that is supposed to solve problem P. Algorithm Ap can be launched
many times. Due to the variability of the transmission delay of messages, each
execution of Ap can go through a different sequence of states. However, in all of
these executions, Ap must solve P. If there is one single execution in which this
is not the case, then we say that algorithm Ap does not solve P. This clarifi-
cation is important in the context of the consensus problem: it has been shown
that consensus is not solvable by a deterministic algorithm in an asynchronous
system with reliable links if one single process may crash. This result is known
as the FLP impossibility result [14].

The FLP impossibility result is easy to extend to atomic broadcast by the
following argument [10]. Assume for a contradiction that atomic broadcast can
be implemented in an asynchronous system with process crashes. Then consensus
can be solved as follows (in the context of some group g):

— Each process p in g executes abcast(v,), where v, is p’s initial value.
— Let v be the first message adelivered by p.
— Process p decides v.

If there is a least one correct process, then at least one message is adelivered.
By the property of atomic broadcast, every correct process adelivers the same
first message, and so decides on the same value. Consensus is solved, which shows
the contradiction.

4.2 Models for Solving Consensus

Consensus and atomic broadcast are not solvable in an asynchronous system
when processes may crash. We thus need to find a system model in which consen-
sus is solvable (whenever consensus is solvable, atomic broadcast is also solvable,
see Section 4.3). One such system is the synchronous system model, defined by
the following two properties:

— There is a known bound on the transmission delay of messages.
— There is a known bound on the relative speed of processes.

Consensus is solvable in a synchronous system [24], but the synchronous sys-
tem model has drawbacks from a practical point of view. The model requires to
consider the worst case: the worst case for the transmission delay of messages,
the worst case for the relative speed of processes. These bounds have a direct
impact on the time it takes to detect the crash of a process: the higher these
bounds are, the higher the time it takes to detect a process crash, i.e., the longer
it takes to react to a crash. In a replicated service a long reaction to a crash
leads to a long delay before clients get the replies.

Dependable Systems 49

The drawback of the synchronous model has led to look for system models
weaker than the synchronous model, but strong enough to solve consensus (and
so atomic broadcast). The first of these models is called the partially synchronous
model [11]. The model considers bounds on the message transmission delay and
on the relative speed of processes. There are two variants of the model:

1. There is a bound on the relative speed of processes and a bound on the
message transmission delay, but these bounds are not known.

2. There is a known bound on the relative speed of processes and on the message
transmission delay, but these bounds hold only from some unknown point on.

The two definitions are equivalent, but the first variant seems more appealing
from a practical point of view.

A different approach was proposed later in [7]. It consists in augmenting the
asynchronous model with an oracle that satisfies some well defined properties.
In other words, the system is assumed to be asynchronous, but the processes
can query an oracle about the status crashed/not crashed of processes. For this
reason the oracle is called failure detector oracle, or simply failure detector. If
the failure detector returns the reply crashed g to process p, we say p suspects q.
Note that this information may be incorrect: failure detectors can make mistakes.
The legal replies to a query of the failure detector are defined by two properties
called completeness and accuracy. For example, the replies of the failure detector
called ©S must satisfy the following completeness and accuracy properties [7]:

— Strong completeness: Eventually every process that crashes is permanently
suspected to have crashed by every correct process.

— FEventual weak accuracy: There is a time after which some correct process is
never suspected by any correct process.

Consensus is solvable in the asynchronous system augmented with the failure
detector ©S and a majority of correct processes [7]. Moreover, it has been shown
that ©S is the weakest failure detector that allows us to solve consensus in an
asynchronous system [6]. This result shows the power of the failure detector
approach and explains its popularity.

4.3 Solving Consensus

The first algorithm to solve consensus in a model weaker than the synchronous
model is the consensus algorithm by Dwork, Lynch and Stockmeyer for the par-
tially synchronous model [11]. The algorithm — called here DLS — requires a ma-
jority of correct processes, and is based on the rotating coordinator paradigm.
In this paradigm, the computation is decomposed into rounds r = 0,1,2,...,
and in each round another process, in some predetermined order, is the coor-
dinator. Typically, with n processes pog,...pn—1, the coordinator of round r is
process prmodn- In each round the coordinator leads the computation in order
to try to decide on a value. The algorithm is based on the notions of locked value
and acceptable value. The coordinator of round r tries to lock a value, say v, and

50 A. Schiper

if it learns that a majority of processes have locked v in round r, it can decide v.
If the coordinator of round r is suspected to have crashed, then the computation
proceeds to the next round r + 1 with a new coordinator. Note that a process
can become coordinator more than once, e.g., in rounds k, n + k, 2n + k, etc.
The key property of the DLS algorithm is that the safety properties of consensus
(validity and agreeement) hold even if the properties of the partially synchronous
model do not hold. In other words, these properties are only needed for liveness,
i.e., to ensure the termination property of consensus.

Two other consensus algorithms had a major impact and led to the devel-
opment of variations of these algorithms. The first one is the Pazos algorithm
proposed by Lamport [21,22]. The second one is the Chandra-Toueg consensus
algorithm (denoted CT hereafter) based on the failure detector ¢S [7]. Pazos
and CT, similarly to DLS, require a majority of correct processes. CT, similarly
to DLS, is based on the rotating coordinator paradigm. Pazos is also based on
a coordinator, but the coordinator role is not predetermined as in the rotating
coordinator paradigm, but determined during the computation (the algorithm
tolerates multiple coordinators for the same round). Pazos and CT are also
based on the notion of locked value (but there is no notion of acceptable value):
each coordinator, one after the other, tries to lock a value v, and if it learns
that a majority of processes have locked v, it can decide v. In this sense Pazos
and CT are very similar. The two algorithms also share the key property of
DLS, namely that no matter how asynchronous the system behaves, the safety
properties of consensus are never violated. However, Pazos and CT differ on the
following issues:

— CT requires reliable channels, while Pazos tolerates message loss (similarly
to DLS).

— The condition for termination is rigorously defined for CT, namely the even-
tual weak accuracy property of ©S. No such condition that ensure termina-
tion exists for Pazos.

Note that after the publication of Pazos, the failure detector {2 — which even-
tually outputs at each process the identity of the same correct process [6] — has
been mentioned as ensuring the termination of Pazos. However, this makes sense
only if we consider Pazos with reliable channels.

4.4 Implementing Atomic Broadcast and Generic Broadcast

A large number of atomic broadcast algorithms have been proposed in the last 20
years. These algorithms can be classified according to several criteria. One of those
criteria is the mechanisms used for message ordering [9]: fized sequencer, moving
sequencer, privilege-based, communication history, destinations agreement. For ex-
ample in a fized sequencer algorithm, one process is elected as the sequencer and
is responsible for ordering messages. Obviously this solution is not tolerant to the
crash of the sequencer. The solution must be completed by a mechanism for elect-
ing a new sequencer in case the current sequencer crashes. This is usually done us-
ing a group membership service (see Section 3.4) to remove the current sequencer

Dependable Systems 51

from the group. Once this is done, a new sequencer can be elected. Thus the so-
lution implements atomic broadcast in the context of dynamic groups (see Sec-
tion 3.1). The same comment applies to most of the implementations of atomic
broadcast described in the literature. These implementations require order to pro-
vide order: the group membership service orders views, and this order is used to
implement the ordering required by atomic broadcast.

Atomic broadcast can also be solved in the context of static groups. The
solutions rely on consensus (which explains the fundamental role of the consensus
problem in the context of fault tolerance computing). The consensus problem
allows processes to agree on a value. This value can be of any type. Atomic
broadcast can be implemented by solving a sequence of consensus problems,
where each instance of consensus agrees on a set of messages. The idea is the
following [7]. Consider a static group g and abcast(g, m). Each process p in g
has a variable k, used to number the various instances of consensus. Whenever
p has received messages that need to be ordered, p starts a new instance of
consensus, uniquely identified by k,, with the set of messages to be ordered as
its initial value. By the properties of consensus, all processes agree on the same
set of messages for consensus #k,, say msg(k,). Then the messages in the set
msg(k,) are adelivered in some deterministic order (e.g., according to their IDs),
and before the messages in the set msg(k, + 1). This solution for static groups
can be extended to dynamic groups [27].

The implementation of generic broadcast is more difficult to sketch. The basic
idea of the implementation is to control whether conflicting messages have been
ghcast. As long as only non conflicting messages are gbcast, these messages can
be gdelivered without invoking consensus, i.e., without the cost of consensus.
However, as soon as conflicting messages are detected, the gdelivery of messages
require to execute an instance of the consensus problem. More details can be
found in [26,2].

4.5 Solving the Atomic Commitment Problem

In Section 1 we have mentioned the atomic commitment problem as the main
problem related to the implementation of distributed transactions. The problem
has similarities with the consensus problem, but also has significant differences.

In the atomic commitment problem, each process involved in the transaction
votes at the end of the transaction. The vote can be yes or mo. A yes vote
indicates that the process is ready to commit the transaction; a no vote indicates
that the process cannot commit the transaction. As in the consensus problem,
all processes must decide on the same outcome: commit or abort. The conditions
under which commit and abort can be decided make the difference between
consensus and atomic commitment. If one single process votes no, the decision
must be abort; if no failure occurs and all processes vote yes, then the decision
must be commit; if there are failures, the decision can be abort. So “failures” can
influence the decision of atomic commitment, which is not the case for consensus.

Another important difference is that, for practical reasons, the atomic com-
mitment problem needs to be solved in the crash-recovery model (in the context

52 A. Schiper

of transactions, processes have access to stable storage). A third difference is
related the notion of blocking vs. non-blocking solution, a difference that has not
been made for consensus (the distinction between a blocking and a non-blocking
solution exists only in the crash-recovery model). In the crash-recovery model, a
protocol is blocking if a single crash during the execution of the protocol prevents
the termination of the protocol until the crashed process recovers. In contrast,
a non-blocking protocol can terminate despite one single process crash (or even
despite more than one crash).

The most popular atomic commitment protocol is the blocking 2PC (2 Phase
Commit) protocol [3]. The first non-blocking atomic commitment protocol was
proposed by Skeen [30]. At that time the consensus problem was not yet identified
as the key problem in distributed fault tolerant computing. This explains that
the protocol proposed in [30] does not solve atomic commitment by reduction to
consensus. Today such a reduction is considered to be the best way to solve the
non-blocking atomic commitment problem (see for example [15], for a solution
in the crash-stop model).

5 Conclusion

More than twenty years of research have contributed to a very good understand-
ing of many issues related to fault tolerance, replication and group communi-
cation. However, the understanding of theoretical issues is not the same in all
models. For example, while static group communication in the crash-stop model
has reached maturity, the same level of maturity has not yet been reached for
dynamic group communication or for group communication in the crash-recovery
model. More work needs also to be done to quantitatively compare different al-
gorithms in the context of replication. Typically, while a lot of atomic broadcast
algorithms have been published, little has been done to compare these algo-
rithms from a quantitative point of view. Specifically, more work needs to be
done to compare these algorithms under different fault-loads, as done for exam-
ple in [31]. Addressing real-time constraints, e.g., [18], needs also to get more
attention. Finally, note that recent advances in the design and implementation
of group communication middeleware are presented in another chapter of this
book [5].

Acknowledgments. I would like to thank Sergio Mena and Olivier Riitti for their
comments on an earlier version of the paper.

References

1. M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: a timeout-free failure detector
for quiescent reliable communication. In Proceedings of the 11th International
Workshop on Distributed Algorithms (WDAG’97), pages 126-140, Saarbriicken,
Germany, September 1997.

2. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Thrifty generic
broadcast. In Proceedings of the 14th International Symposium on Distributed
Computing (DISC’2000), October 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.
25.

Dependable Systems 53

. P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recov-

ery in Distributed Database Systems. Addison-Wesley, 1987.

. K. Birman and T. Joseph. Reliable Communication in the Presence of Failures.

ACM Trans. on Computer Systems, 5(1):47-76, February 1987.

. D. Biinzli, R. Fuzzati, S. Mena, U. Nestmann, O. Riitti, A.Schiper, and P. Woj-

ciechowski. Advances in the Design and Implementation of Group Communication
Middleware. This book, Part III, Chapter 8.

. T. D. Chandra, V. Hadzilacos, and S. Toueg. The Weakest Failure Detector for

Solving Consensus. Journal of ACM, 43(4):685-722, 1996.

. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed

systems. Journal of ACM, 43(2):225-267, 1996.

. G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications:

A Comprehensive Study. ACM Computing Surveys, 4(33):1-43, December 2001.

. X. Défago, A. Schiper, and P. Urban. Totally Ordered Broadcast and Multicast Al-

gorithms: Taxonomy and Survey. ACM Computing Surveys, 4(36):1-50, December
2004.

D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony needed for
distributed consensus. Journal of ACM, 34(1):77-97, January 1987.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of ACM, 35(2):288-323, April 1988.

Richard Ekwall and André Schiper. Replication: Understanding the Advantage of
Atomic Broadcast over Quorum Systems. Journal of Universal Computer Science,
11(5):703-711, May 2005.

E.N. Elnozahy, L. Alvisi, Y-M. Wang, and D.B. Johnson. A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Computing Surveys,
34(3):375-408, September 2002.

M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of ACM, 32:374-382, April 1985.

R. Guerraoui, M. Larrea, and A. Schiper. Reducing the cost for Non-Blocking in
Atomic Commitment. In IEEE 16th Intl. Conf. Distributed Computing Systems,
pages 692-697, May 1996.

V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems.
Technical Report 94-1425, Department of Computer Science, Cornell University,
May 1994.

M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. on Progr. Languages and Syst., 12(3):463-492, 1990.

J.-F. Hermant and G. Le Lann. Fast Asynchronous Uniform Consensus in Real-
Time Distributed Systems. IEEFE Transactions on Computers, 51(8):931-944, Au-
gust 2002.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Comm. ACM, 21(7):558-565, July 1978.

L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. on Computers, C28(9):690-691, 1979.

L. Lamport. The Part-Time Parliament. TR 49, Digital SRC, September 1989.
L. Lamport. The Part-Time Parliament. ACM Trans. on Computer Systems,
16(2):133-169, May 1998.

J.C. Laprie, editor. Dependability: Basic Concepts and Terminology. Springer-
Verlag, 1992.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

J. Misra. Axioms for memory access in asynchronous hardware systems. ACM
Trans. on Progr. Languages and Syst., 8(1):142-153, 1986.

54

26

27.

28.

29.

30.

31.

A. Schiper

F. Pedone and A. Schiper. Handling Message Semanticas with Generic Broadcast
Protocols. Distributed Computing, 15(2):97-107, April 2002.

A. Schiper. Dynamic Group Communication. Distributed Computing, 18(5):359—
374, April 2006.

A. Schiper and S. Toueg. From Set Membership to Group Membership: A Sep-
aration of Concerns. IEFEE Transactions on Dependable and Secure Computing
(TDSC), 3(1):2-12, Jan.-March 2006.

F. B. Schneider. Implementing Fault Tolerant Services Using the State Machine
Approach: A Tutorial. Computing Surveys, 22(4):299-319, December 1990.

D. Skeen. Nonblocking Commit Protocols. In ACM SIGMOD Intl. Conf. on
Management of Data, pages 133-142, 1981.

Péter Urbédn, Ilya Shnayderman, and André Schiper. Comparison of failure de-
tectors and group membership: Performance study of two atomic broadcast algo-
rithms. In Proc. Int’l Conf. on Dependable Systems and Networks, pages 645-654,
San Francisco, CA, USA, June 2003.

Survey on Dependable IP over Fiber Networks

Maciej Kurant, Hung X. Nguyen, and Patrick Thiran

LCA-School of Communications and Computer Sciencs
EPFL, CH-1015 Lausanne, Switzerland
maciej.kurant, hung.nguyen, patrick.thiran@epfl.ch

Abstract. This paper gives a survey of the techniques for failure loca-
tion, protection and restoration in IP over optical fiber networks.

The first part of the paper reviews failure location algorithms at the
optical and the IP layers. We classify the failure location algorithms at
the optical layer into two main categories: the model based approach,
that builds an abstract model of the network and uses this model to
diagnose failures, and the learning based approach, that views the net-
work as a black box and diagnoses failures using a set of rules obtained
either by learning or by the expertise of the human manager. At the
IP layer, we focus on the location of one of the main sources of failure:
lossy links. The lossy link location algorithms can also be classified into
two categories: the correlation approach, that requires strong correlation
between monitoring packets, and the simple tomography approach, that
requires some knowledge of the distribution of lossy links.

The second part of the paper describes the main strategies that en-
sure survivability in IP-over-fiber networks. After a failure, traffic can be
restored either at the optical layer or at the IP layer. Protection at the
optical layer amounts to dedicate some lightpaths to reroute the traf-
fic disrupted by the failure. Restoration at the IP layer eliminates the
need to set up back-up optical paths, but requires to map the IP layer
on the optical layer in a survivable way. We describe the most common
approaches achieving this.

1 Introduction

Communication networks in general, and the Internet in particular, are overlays
of multiple layers. Each layer has different functions and all the layers cooperate
to deliver data from the source to the destination. The simplest layer stack is IP
(Internet Protocol) over physical. The physical layer is the one where bits of data
are sent. It can be wired or wireless. We consider the case where the physical layer
is optical and where quick failure detection and restoration are crucial because
a failure can result in the loss of tetra (10°) bits of data per second. In today’s
backbone networks, to increase the capacity of the optical fibers, the optical
layer uses the Wavelength Division Multiplexing (WDM) technique to send data
simultaneously at different wavelengths over a single fiber. The upper layer in
this simple stack is the IP layer, where packets of data are routed. Although
there exist layers on top of IP (e.g., application layer), they are beyond the

J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 55-81, 2006.
© Springer-Verlag Berlin Heidelberg 2006

56 M. Kurant, H.X. Nguyen, and P. Thiran

scope of this paper and we do not consider them here. In reality, there may exist
some other layers in between the IP and WDM layers; the most frequent layer
in backbone networks is SONET/SDH. SONET and SDH are a set of network
interface standards and multiplexing schemes developed to support the adoption
of optical fiber as a transmission medium. They use Time Division Multiplexing
(TDM). SDH is the European standard whereas SONET is the US counterpart.
This means that IP packets are transported over optical fibers that multiplex
several connections either in time (TDM) at the SONET or SDH layer or in
frequency (WDM) at the optical layer.

Failures occur frequently in communication networks. For instance, an average
inter-failure time for the Sprint backbone network is about 12 hours [1]. Every
network needs therefore to have a failure management system that can detect
failures and take measures to guarantee the successful and timely delivery of
data. When a failure occurs, it first needs to be detected and located. Then
the traffic needs to be rerouted around the failure and the failing component
has to be replaced [2]. In communication networks, failures at a lower layer will
affect the performance of its upper layers, but the latter also have their own
failures, unrelated to the lower layers. For example, a high optical signal-to-
noise ratio (SNR) caused by a bent fiber will cause heavy losses on the IP links
traversing the optical link, but heavy losses on these IP links can also be caused
by overloaded network traffic, which is not visible at the optical layer. For this
reason, each network layer uses its own failure management system. Moreover
the failure management mechanisms at different layers need to cooperate with
each other to avoid task duplication and increase efficiency.

We begin the paper with the first failure management task, which is to detect
and locate a failure. Section 2 explores the various methods that are used, first
to locate a faulty link at optical layer and next to locate a lossy link at the IP
layer. In Section 3, we move to the second step in failure management, which
is to engineer the network so that traffic is restored after the occurrence of a
failure. We review the main methods used at the optical and the IP layer of an
IP-over-fiber network. We conclude the paper in Section 4.

2 Failure Location in Optical and IP Networks

All existing techniques performing failure diagnosis rely on the analysis of symp-
toms and events that are generated during the occurrence of the failure. Simple
failure location mechanisms are often based on locally monitored variables, such
as the temperature of a device. The irregular values reached by these variables are
logged as errors. Critical errors are sent to the network manager as alarms. Based
on them, a failure is located. This is not a trivial task because some particular sets
of alarms can have multiple possible explanations. Moreover, the set of alarms is
sometimes noisy making the problem even more difficult. The noise is introduced
by corrupted alarms, which are those alarms that unexpectedly arrive at the man-
agement system when they should not (false alarms) or those that do not arrive at
the management system when they should (missing alarms).

Survey on Dependable IP over Fiber Networks 57

The nature of failures and the available monitoring information are signifi-
cantly different for the optical and the IP layer. Therefore, each layer needs to
have its own failure location method. We address them separately in the follow-
ing two subsections.

2.1 Failure Location at the Optical Layer

We are interested in detecting and locating failures of equipments at the optical
layer. Some of the most common optical equipments and their operations are
shown in the simple network of Fig. 1. A detailed survey of the failure location
algorithms at the optical layer of an IP/SDH/WDM network can be found in [3].
In this section, we summarize the the most important algorithms discussed in [3]
and add new developments that were not covered in that paper. We begin with
a discussion of the available monitoring information. We then describe the types
of failures that can be found at the optical layer and the alarms they generate.
Finally, we compare and contrast the various methods that have been proposed
in the literature to solve the failure location problem at the optical layer.

Tx = Transmitter ~Demux = Demultiplexer

Tx1 Rx = Receiver Mux = Multiplexer
A1

OF = Optical fiber

Tx3

Fig. 1. A simple WDM network with three transmitters and three receivers. The three
wavelengths coming out of Tx1, Tx2 and Tx3 are multiplexed at the multiplexer MUX
before being transmitted on fiber OF. At the destination, these three wavelengths are
demultiplexed at the demultiplexer DEMUX and then forwarded to Rx1, Rx2 and Rx3,
respectively.

Available Monitoring Information. A failure at the optical layer can gen-
erate a large number of alarms within the optical layer, as well as from all of the
layers above, such as SONET/SDH and IP. A failure location algorithm at the
optical layer needs therefore to correlate alarms from all of these layers.

— At the optical layer, the monitoring information is delivered by the micro-
controllers that control the optical equipments. Not all optical equipments
are controlled. In an optical network, the most common optical equipments
able to provide monitoring information and generate alarms are transmit-
ters, receivers, switches, 3Rs (Re-generators/Re-shaper/Re-timer), protec-
tion switches, and amplifiers (a more detailed description can be found

58 M. Kurant, H.X. Nguyen, and P. Thiran

in [4]). Transmitters send alarms when either the temperature or the in-
coming power is beyond a prescribed range. Receivers send alarms when the
input optical power is under an acceptable level. 3Rs send alarms when they
cannot lock to the incoming signal. Protection switches send alarms when
they change the switch position due to an unacceptable incoming optical
power. Switches send alarms when the connection of a particular input and
a particular output cannot be established. Amplifiers send alarms when the
pump laser does not work properly or when incoming power is not suffi-
cient. Furthermore, if adequate testing equipment is deployed, the manage-
ment system can obtain information about the quality of the optical signal
such as signal to noise ratio and crosstalk by measuring the Bit Error Rate
(BER) [5]. Devices measuring direct optical signal can be divided into two
categories. (i) Global testing equipment (GTE), such as spectrum analyzers,
measures the quality of the overall optical signal in a fiber. GTEs are able
to produce the measurements of frequency and time of all wavelengths in a
fiber. Examples of the GTEs are the MS26665C and MS2667C of Anritsu [6].
(ii) Individual testing equipment(ITE) can measure only properties of a sin-
gle wavelength and depends on the transmission technology (ATM, SONET,
SDH, etc.). An example of the ITEs is the MP1552 of Anritsu [6].

— At the SDH/SONET layer, the important failure notifications handled by
SDH are loss of signal (LOS), loss of frame (LOF), loss of pointer(LOP) [7],
degraded signal, and excessive error [8]. The SDH/SONET interface has also
a set of mechanisms that are used for sending alarms upstream and down-
stream of the optical path to guarantee fast failure detection and recovery [9].

All of the above monitoring information is obtained passively without intro-
ducing any additional traffic into the network. We call this approach passive
monitoring. A complementary technique is active monitoring where additional
end-to-end connections (called probes) are created to measure the optical signal
quality, see e.g. [10]. A degradation of the probing signal indicates failures at
some of the optical devices used by the connection. More details of the recent
progress in monitoring the performance of optical networks can be found in [11].

Fig. 2 provides a simple illustration of the available monitoring information for
failures at the optical layer in an IP/SDH/WDM optical network. The data format
at the IP layer is in packets, at the SDH/SONET layer it is in frames multiplexed
in several time channels, and at the WDM layer it is in connections multiplexed
in several wavelengths. When there is a failure at the physical layer, alarms from
several layers will be sent to their own management platforms and failure protec-
tion and restoration mechanisms will be triggered at each layer. In the example of
Fig. 2, when Node 1 fails, the WDM layer could start a failure location mechanism
based on the alarms generated at the physical layer (for example a Loss of Optical
Power at the receiver of Node 2). Otherwise, the SDH/SONET layer will react by
applying protection in order to restore the interrupted connection based on the
SDH alarms Loss of frame, Loss of Pointer, etc. issued by the SDH equipments. If
the SDH layer cannot restore the end-to-end connection, the IP routers will detect
the failure and try to find an alternative IP path.

Survey on Dependable IP over Fiber Networks 59

—_— ' Node 4
i PL SONET/
‘ ‘ MSL SDH
RSL equipment

| [| Optical

| Hardware
Node 1 Link 12 Node 2 Link 23 Node 3

Fig. 2. Example of available monitoring information in an IP/SDH/WDM network.
The notations PL, MSL, and RSL represent SDH Path, Multiplex Section and Regen-
erator Section layers, respectively.

Failures at the Optical Layer. We distinguish two types of failures at the
optical layer: hard and soft failures.

— Hard failures are unexpected events that suddenly interrupt the optical chan-
nel. An example of a hard failure is a fiber cut. These failures can be detected
at the optical layer from alarms sent by hardware devices.

— Soft failures are events that progressively degrade the quality of the signal
transmission. An example of a soft failure is the variation of temperature
of a laser: the output wavelength will drift as the laser heats up or cools
down. In this case, the wavelength drift creates interferences with adjacent
channels. The detection of soft failures often requires information from the
upper layers, such as a SDH/SONET error frame rate. For example, when
the wavelength is shifted, devices at the WDM layer will not detect any
abnormality, but monitoring devices at the SDH and IP layer will observe
increases in BER or SNR.

Failure Location Algorithms. In optical networks, a failure at an optical
component not only results in faulty behavior at that component, but can also
cause degradations in the signals sent from that component to other components.
The other components may also forward the abnormal signals further. This man-
ifestation is called failure propagation, and needs to be taken into account by the
failure location mechanisms. Locating failures from the information provided by
monitoring devices in systems with failure propagation such as optical networks
is known to be NP-hard [12,13, 14]. Many approaches have been proposed to
solve this intractable problem. We divide them into two main categories: the
model based methods and the learning based methods.

The model based methods [15,16,17,18,4] first construct an accurate and
workable model for the networks on the basis of the functional and physical

60 M. Kurant, H.X. Nguyen, and P. Thiran

properties of the network components, and then make a diagnosis by comparing
actual observations with forecasts from the model. The advantages of the model
based methods are that they are able to cope with incomplete information and
unforeseen failures, and do not require learning. Their drawback is the difficulty
of developing a good model for complex networks. We study three model based
methods in this paper:

) the probabilistic reasoning system developed by Katzela and Schwartz

The learning based methods view the system as a black box delivering out-
puts when a particular failure occurs. They learn the relationship between input
events and output diagnosis, which can be done in different ways: by capturing
the human expert knowledge and implementing it in an efficient way (expert
systems) [19, 20, 21], by recording the history of previous cases that occurred
in the past (cased-based systems) [22], by artificial neural networks [23,24] or
by any other algorithm with statistical learning capabilities [25]. The main ad-
vantage of the black box methods is that they do not require detailed model of
the networks. However they need long learning processes. We consider the two
learning based methods:

— (2a) the expert system presented by Jakobson et al. [26],
— and (2b) the case based system proposed by Lewis [22].

There are also hybrid methods [27,28,29] that combine the two aforementioned
approaches and inherit both their advantages and disadvantages.

Comparison of Failure Location Algorithms. We now compare the failure
location methods introduced in the previous section (la, 1b, lc, 2a, and 2b) by
applying them to the example network in Fig. 2. These techniques are compared
with respect to the input data they need and their methodology.

Input data is the information required by the failure location algorithms from
the monitoring tools (timestamps, failure probabilities). It is different for the
five studied algorithms.

— Method (1a) needs (i) network topology, (ii) the failure probabilities of each
node and link and (iii) the probabilities that a failure at one component will
propagate to the others (failure propagation probability). For the example
network in Fig. 2, the graph representing the physical layer could look like
the one shown in Fig. 3, where each element is either a network node or a
fiber, and has an associated failure probability p;. Every link between two
nodes has a weight p;;, which is the failure propagation probability.

— Method (1b) needs the network topology and the finite state machine (FSM)
for that specific network. In order to design the FSM, the network manager

Survey on Dependable IP over Fiber Networks 61

Fig. 3. The probabilistic graph model for the network in Fig. 2

has to define the failures that have to be located, and the events that deter-
mine the status of the network, which can be either alarms informing about
a problem or notifications informing about the resolution of a problem. In
the simple example network in Fig. 2, considering up to two simultaneous
failures, the FSM looks like the set of interconnected states shown in Fig. 4.

— Method (1c) does not need the topology but instead requires the set of
established end-to-end connections in the network. Each connection is then
viewed as a channel containing an ordered set of network elements. Fig. 5
shows the model for the example network with three channels.

— Method (2a) needs to have the manager experiences and translates these
experiences into a set of “if/then/else” rules. In our example, the rules could
be:

If loss of light 23 then
If loss of light 24 then
If loss of light 12 then link 12 fails
else node 2 fails
else link 23 fails

— Method (2b) takes as input the history of all previous solved failures: sets of
alarms that are received and their diagnosis results. In our example, some
solved scenarios would be:

Loss of light 23 is caused by failure of link 23.
Loss of light 23 and loss of light 24 are caused
by failure of node 2.

Methodology is the actual algorithm used to locate the failure. The method-
ologies of the five studied techniques are:

— Method (1a) first designs the directed dependency graph as in Fig. 3 and then
applies a divide and conquer algorithm [15], in two phases. In the first phase,
called the partitioning phase that can be done off-line, it groups iteratively
the nodes by taking the two nodes of the graph 4, j, for which the failure
propagation probability p;; is largest, and by replacing them by a single

62

M. Kurant, H.X. Nguyen, and P. Thiran

Light 24 recovered
Loss of light 24

Link 12 & 24

Loss of light 24
Light 24 recovered

Link 23 & 24

Light 24 recovere:

Fig. 4. The FSM model for the network in Fig. 2

new node k whose failure probability is pr = p; + p;j X pjs +pj + pi X pij-
The new propagation probabilities px; and pyi, involving another node I and
the new node k are the maximum of the previous propagation probabilities:
pri = max{p;,pji}, pi = max{py,p;}. The iterations stop when the all
nodes in the dependency graph are merged into a single node that is also
the root of the tree. The second phase, called the selection phase, is carried
out on-line when alarms arrive at the management system. The algorithm
starts from the root node of the tree obtained at the end of the partitioning
phase and traverses the tree by choosing the branches that explain most
alarms and that have a greater probability of containing the faulty element.
It stops when it finds the smallest most likely set of elements explaining all

the received alarms.

Channel 1 Channel 1

Channel

Channel 3

CHOAX-

Optical hardware components §SDH monitoring components

@ Transmitter (Tx) D SDH Path Terminating Element (PTE)
O Optical fiber (OF) Z] SDH Multiplex Section Terminating Element (MSTE)
A Receiver (Rx) % SDH Regenerator Terminating Element (RSTE)

Fig. 5. The deterministic graph model for the network in Fig. 2

Channel 2

OO0

Survey on Dependable IP over Fiber Networks 63

— Method (1b) needs to design the FSM that models the failure behavior of
the network. It first defines a set of states, each state being associated to
a failure scenario that may occur in the network. A last state is added to
this set to represent the normal operation of the network. Given this set of
states, the transition between states is defined by the events that have to be
received from the network. When events (alarms or repairs) arrive, the FSM
changes its state. The output of the FSM is the actual state that the system
is in.

— Method (1c) consists of two stages. In the first stage, which can be done
off-line, the algorithm determines which alarms will ring when a network
component fails. In the second stage, which is carried out when alarms arrive,
the algorithm first corrects possible alarm errors by determining the most
likely set of erroneous alarms. The algorithm then solves the resulting failure
location problem with the cleaned alarms by iteratively picking the network
component whose failure generates the largest number of alarms, until all
alarms are covered by at least one failure.

— Method (2a) first defines all the rules given by the expert knowledge of the
manager. When alarms are received, the corresponding rule will provide a
diagnosis. If no rule has been established for the received alarms, either no
result or a default result will be given.

— In method (2b), given the alarm input, the delivered outputs are the already
solved failure scenarios corresponding to the closest match in the history
database. When the result is confirmed by the manager, the new case is
then added to the database.

Table 1 summarizes the comparisons of different failures location methods at the
optical layer.

Table 1. Comparative table of the properties of the failure location algorithms at
the optical layer described in this section: HF'= Hard failure, SF'= soft failure, Mem-
ory= Memory usage, Diagn.= On-line diagnostic phase (alarm processing) complexity,
Prepr.= Off-line pre-processing phase complexity, F'P= Knowledge of failure probabil-
ities required. Ezt. means that the method could have this property, but at the expense
of a quite important extension of the database/rules/etc.

HF SF Memory Diagn. Prepr. FP

1(a) Probabilistic model Yes No Medium Medium High Yes
1(b) FSM Yes No Low Low High Yes

1(c) Deterministic model Yes Yes High Low High No
2(a) Expert System Yes Ext. Low Low Low No
2(b) Case based System Yes Ext. High Medium Low No
2(c) Neural network Yes Ext. Low Low High No
2(d) Proactive system Yes Yes Medium High Low No

64 M. Kurant, H.X. Nguyen, and P. Thiran

2.2 Failure Location at the IP Layer

In this section we survey failure detection and location mechanisms at the IP
layer. As in the previous section, we begin with a discussion of the available
monitoring information. We then describe the types of failures that occur at this
layer. Finally, we will compare and contrast the various methods that have been
proposed in the literature.

Available Monitoring Information at the IP Layer. At the IP layer,
performance information can be obtained in different ways, depending on the
accessibility to the individual routers.

— Direct measurements at routers: Network managers can configure
routers in their network to maintain information about their own perfor-
mance. For example, routers can keep count of the numbers of packets
dropped due to some reasons. These information can be collected and trans-
mitted to the network manager using mechanisms such as SNMP [30] at
regular time intervals. Collecting performance information requires signifi-
cant memory and computing resources from the routers. Even though sam-
pling techniques can be used to reduce these requirements, in practice, the
direct measurements can only be made at intervals of minutes (typically five
minutes). Therefore, despite their potential to give accurate information for
the network manager, direct measurements are the least reliable and infor-
mative way to collect performance data.

— Passive measurements using dedicated monitors: Network managers
can also deploy passive monitors in the network at multiple points to mea-
sure the performance of packets, such as the arrival time of a packet at a
specific monitor [31]. From these measurements, performance metrics such
as one way delay and packet losses on the segments between monitors can
be inferred. These methods have the advantages of being non-intrusive and
quite accurate, see e.g. [32]. The drawback is that they require monitors
to be installed at multiple locations and can be deployed only by the net-
work owner. Even though packet monitors are cheap, their deployment and
maintenance costs are substantial.

— End-to-end measurements: In this approach, one infers the state of the
network devices through the observed performance of end-to-end monitoring
packets. A special feature of the probing approach is that it allows people
without privilege rights to measure the networks. This approach is impor-
tant in today’s IP networks where traffic traverses different administrative
domains and there is no incentive for the owners of each sub-network to col-
lect and freely distribute vital statistics of their networks. There are many
different types of probes one can use, namely ICMP response packets, TCP
SYN/ACK, DNS, HTTP page downloads, as well as dedicated probe pro-
tocols. These factors have led the end-to-end measurement approach to be
the most the widely deployed method [33,34]. Note here that end-to-end
information can be obtained either actively by injecting probing traffic into
the network, or passively by listening to existing traffic in the network.

Survey on Dependable IP over Fiber Networks 65

Since most of the measurement data available for the failure diagnosis of wide
area [P networks is end-to-end, we only consider these measurements in this paper.

Failures at the IP Layer. The IP layer employs a sophisticated set of routing
mechanisms to carry data between end points whenever possible. However, the
IP layer can only provide a best effort service and does not guarantee the timely
nor even the successful delivery of the data.

Many applications, such as voice or video, require strict loss and delay require-
ments for acceptable quality. For example, at loss rates of 4-6% or more, video
conferencing becomes irritating and non-native language speakers are unable to
communicate. The occurrence of long delays of 4 seconds or more at a frequency
of 4-5% or more is also irritating for interactive activities, such as telnet or X
windows. Paxson [33] reports that a loss of 5% has a significant adverse effect on
TCP performance, because it will greatly limit the size of the congestion win-
dow and hence the transfer rate, whereas 3% is often substantially less serious. A
loss rate of 2.5% makes conversations using Voice over Internet Protocol (VoIP)
slightly annoying. A more realistic burst loss pattern results in VoIP distortion
going from not annoying to slightly annoying when the loss rate goes from 0 to
1% [35]. Round trip times (RTTSs) should be RTT < 400ms for the interactive
applications. VoIP requires a RTT < 250ms or it is hard for the listener to know
when to speak [35].

Failure management at the IP layer is mainly concerned with the ability of
the network to deliver data within some bounds on loss rates and/or delays. Of
the various metrics (loss, delay, throughput) that one can use to evaluate the
performance of an IP network, loss is the most critical; this is because other
metrics can be inferred from it. For example, the throughput of a TCP connec-
tion can be calculated using loss and delay information [36]. In this section, we
concentrate only on the detection and location of IP links that have loss rates
above 1% (lossy links). A lossy link can be caused either by failures at the optical
layer or by congestions at the IP layer. We do not distinguish these two cases in
this paper. Knowing the locations of lossy links, an application can significantly
improve its performance by rerouting around them [37].

Lossy Link Location Problem Definition. We focus on the techniques that
can be used to infer lossy links using end-to-end measurements. The inference of
internal link properties given end-to-end observations is called network tomog-
raphy. Most tomography works consider tree topologies like the one depicted
in Fig. 6. Each node in the tree represents a router or an end-host. Each link
represents a connection between two routers/hosts. Note here that the link can
be a single physical link or a chain of physical links connected by intermediate
routers. Probing packets are sent from the source at the root node to the re-
ceivers at the leaf nodes along paths that pass through several internal nodes.
The goal of loss tomography is to estimate individual link loss rates based on
the loss rate perceived at a few end nodes.

The network is modelled as a directed graph G = (V,), where the set V
of nodes denote the network routers/hosts and the set £ of edges represent the
communication links connecting them. The number of nodes and edges is denoted

66 M. Kurant, H.X. Nguyen, and P. Thiran

by n, = |V|, and n. = ||, respectively. For a known topology G = (V,€) and
a set of end-to-end paths P, n, = |P|, we compute the routing matrix D of
dimension n, x n as follows. The entry D;; = 1 if the path P; contains the link
e;j and D;; = 0 otherwise. A row of D therefore corresponds to a path, whereas
a column corresponds to a link.

Let ¢; denote the packet transmission probability on path P; and ¢e; the
packet transmission probability on link e;. Clearly, the loss rate of a link e;
equals to 1 — ¢.;. Therefore, estimating the link loss rates amounts to estimat-
ing the variables ¢, from the measured path transmission rates ¢;. Assuming
independence among loss events on links, the relation between the path-wise and
link-wise transmission rates reads

y=Dx = [i%l)ij] (1)

1<i<ne

where y; = log(¢;) and x; = log(¢e,): y is the vector of measurements, e.g. path
packet transmission rates, and x is the vector of link transmission rates.

The network loss tomography problem boils down to solving the linear system
of equations (1) to find z given y and D.

Lossy Link Location Algorithms at the IP Layer. Equations (1) cannot
be solved directly because most of the time the matrix D is rank deficient, that
is, rank(D) < min(np,ne) (the rank of D is the maximal number of columns
(rows respectively) of D which are linearly independent). The non-uniqueness of
link loss rates is illustrated in the example of Fig. 6 [38].

2 3 2 3

Fig. 6. In the figure, the nodes are the network routers/hosts and the directed links
are the communication links connecting them. ¢., denotes the transmission rate of link
e; and c is a constant between max{de,, Pe; } and 1/¢.,. Both set of link transmission
rates give the same end-to-end transmission rates. Link transmission rates therefore
cannot be uniquely calculated from end-to-end transmission rates.

Survey on Dependable IP over Fiber Networks 67

Two techniques can overcome the non-uniqueness solution problem to identify
lossy links at the IP layer. The first approach, called the correlation approach,
introduces additional constraints to (1) by creating a correlation between probing
packets. The second approach, called the simple tomography approach, exploits
the distribution of link loss rates on the Internet to solve (1).

The correlation approach can be realized by either using multicast [39] or uni-
cast probing packets [40,41]. Multicast packets are sent to a group of subscribing
receivers. At internal branching points, each multicast packet is replicated and
sent along each branching path. In contrast, unicast packets are sent to only one
receiver. To correlate them, the unicast packets to different receivers are sent
almost at the same time such that they experience the same loss behavior on
the common links shared by different receivers. Several challenges exist in bring-
ing the multicast or unicast methods into widespread fruition. On one hand,
multicast is not widely deployed. On the other hand, methods based on unicast
probing incur costs to deploy appropriate data collection softwares. We study in
this paper three correlation based methods:

— (1a) the multicast method developed by [39],
— (1b) the unicast packet pair method developed by [40],
— (1c) the unicast packet train method developed by [41].

The difficulties encountered in the previous methods motivate the simple to-
mography approach that does not require the correlations between probing pack-
ets [42,38]. The simple tomography approach is based on the assumption that
network links are generally lossless and that only a few links are responsible
for dropped packets. The major advantage of this approach is that applications
already monitor packets from end-to-end. Simple tomography methods do not
seek to calculate the exact loss rate for each link. Instead, they use a threshold
t1, called link threshold, to determine whether a link ey, is good (¢., > ;) or bad
(lossy) (¢e, < t1). The threshold ¢; can be set either to meet a given transmission
rate target, or on the basis of data history that shows a clear value separating
well and badly performing links. The problem of identifying lossy links without
finding exact link loss rates amounts to finding the most probable solution for
the observed end-to-end data. Knowing that bad links are not frequent, the most
probable solution is the one giving the least number of lossy links. Let us con-
sider the example in Fig. 6. Assuming that the threshold separating good and
bad links is 0.99, if the end-to-end transmission rates to the sink of both nodes 2
and 3 are below 0.98 (= 0.99 x 0.99), the most probable explanation is that link
0-1 is lossy (having transmission rate less than 0.99). Other explanations require
at least two links to be lossy, and are therefore much less likely. We consider in
particular two simple tomography methods:

— (2a) the simple tomography using Monte-Carlo simulation method developed
in [42],

— and (2b) the simple tomography using set-cover heuristic method in Duffield
[38].

68 M. Kurant, H.X. Nguyen, and P. Thiran

Comparison of Lossy Link Location Algorithms at the IP layer. We
now compare the lossy link location methods introduced in the previous section
(1a, 1b, 1c, 2a, and 2b) by applying them to the example network in Fig. 6.
These techniques may be compared with respect to the network support they
require and their methodology.

Network support is the additional support needed by the loss link location
algorithms in addition to the network topology. It is different for the five studied
algorithms.

— Method (1a) requires (i) multicast support from all the routers and (ii)
specific software packages installed at the multicast sender and receivers to
send, collect and analyze the multicast traffic.

— Methods (1b) and (1c) need to have some specific softwares installed at the
unicast sender and receivers to send, collect and analyze the unicast traffic.

— Methods (2a) and (2b) do not need any additional support from the network.

Methodology is the actual algorithm used to locate the lossy links. The
methodologies of the five studied techniques are:

— Method (1a) uses multicast packets to calculate the link loss rates. In the
network of Fig. 6, if a multicast packet is sent by the sender at node 0 and
received by the receiver at node 2 but not the one at node 3, then it can be
immediately determined that the loss occurred on link 3 (successful reception
at node 2 implies that the multicast packet reached the internal node 1). By
performing such measurements repeatedly, the loss rates on the two links 2
and 3 can be estimated; these estimates and measurements enable to deduce
the loss rate on link 1. To illustrate the method further, let ¢o3 be the ratio
of the number of multicast packets simultaneously received at both nodes 2
and 3, relatively to the total number received at node 3. In other words, ¢o|3
is the empirical probability of success on link 2 conditional upon success on
link 3, which provides a simple estimate of ¢e,. Similarly, we define ¢35 as
the probability of success on link 3 conditional upon success on link 2, and
let ¢1 and ¢- be the transmission rates of multicast packets for node 2 and
3. We can then write

log ¢2 110
log ¢
log ¢2 _ 101 logi !)
IOg d)g 3 010 €2 ’
| log ¢
IOg ¢3|2 001 s

A least square estimate of ¢, is easily computed for this over-determined
system of equations. Sophisticated and effective algorithms have been derived
for large scale network tomography in [39).

— Method (1b) was introduced in [40] to overcome the fact that most routers in
the Internet today do not support multicast and that performance observed

Survey on Dependable IP over Fiber Networks 69

by multicast packets differs significantly from that observed by unicast traf-
fic. In method (1b), back-to-back packet pairs, each consisting of two packets
sent one after the other by the sender, are sent to every pair of receivers.
When two packets of a pair arrive back-to-back in a common queue, the
successful transmission of one packet indicates, with high probability, the
successful transmission of the other packet. If two back-to-back packets are
sent to node j from the previous node p(j) on a path, then let 3; be the
conditional probability that the first packet of a pair arrives at node j from
p(J) given that the second packet sent by p(j) has arrived successfully at
node j. B; is very close to 1. Denote the complete set of conditional success
probability by 8 = {8}, where n. is the number of links. In this case,
the network tomography problem boils down to determining the values of
¢e; and §; that best explain the probing results. Maximizing the likelihood
is not simple and, consequently, numerical optimization strategies are re-
quired. The most commonly used method is the expectation-maximization
algorithm (EM) [40].

Method (1c) also uses back-to-back unicast packets but in a different way.
The main objective of method (1c) is to create multicast probing using uni-
cast packets. In method (1c), the sender sends a sequence (a train) of many
back-to-back packets to all receivers (instead of packet pairs to all pairs of
receivers as in method (1b)). Contrary to method (1b) where the conditional
probabilities [3; are treated as variables, method (1lc) assumes that §; = 1
for all j. By viewing each packet train as a multicast packet, method (1c)
then uses techniques in method (1a) to infer the link loss rates.

Method (2a) is a simple tomography method proposed by [42], which means
that it does not seek to calculate the exact link loss rates, but that it de-
termines whether a link is lossy or not. Method (2a) uses the sophisticated
Monte Carlo Markov Chain Simulation (MCMC method) to determine the
lossy link. It tries to determine the posterior distribution, P(z|y), of the link
loss rates in logarithmic scale x given the observed path data, y. Knowing
P(x|y), one can draw samples from this distribution where each sample is
a vector containing the transmission rates for all links in the network that
can explain the observed data. The method then collects the transmission
rates of each link in all samples and compares them with the threshold ¢;.
If the majority of the sampled transmission rates of a link are bad (< ¢;),
then the link is declared as bad. Otherwise it is declared as good. In general,
it is hard to compute P(z|y) directly because of the complex integrations,
especially when z is a vector, as in the present case. It is also difficult to ob-
tain samples of the distribution P(z|y). Hence method (2a) uses an indirect
approach to collect them by constructing a Markov chain whose station-
ary distribution is exactly equal to P(x|y). When such a Markov chain is
run for a sufficiently large number of steps, it converges to its stationary
distribution. The method then gathers samples from this stationary distrib-
ution and views them as samples from the posterior distribution P(z|y). This
way, it does not have to determine the distribution P(x|y) and then draw the

70 M. Kurant, H.X. Nguyen, and P. Thiran

Table 2. Comparative table of the properties of the methods described in this section
for lossy link location at the IP layer: the column Loss Rates indicates whether the
method can infer the exact loss rates, and the column Meas. Errors indicates whether
the method can handle measurements errors, e.g., errors in estimating the end-to-end
loss rates.

Monitoring Costs|Processing Time|Loss Rates| Meas. Errors
1(a) Multicast tomography High Low Yes Yes
1(b) Unicast packet pair Medium High Yes Yes
1(c) Unicast packet train Medium Low Yes Yes
2(a) MCMC Low High No Yes
2(b) SCFC Low Low No No

samples from it. For the detailed construction of the Markov chain, we refer
to [42].

— Method (2b) is a simple tomography method proposed by Duffield [38]
(Duffield called this approach the SCFC algorithm). It first determines a
threshold ¢, = ¢]"""**, with 1, is the number of links in the path, for all
paths. It then determines all end-to-end paths that have bad transmission
rates, that is, whose transmission rate is below ¢,. By observing that a path
is bad if and only if one of its links is bad and that bad links are rare, it tries
to find the smallest number of links whose badness can explain the badness
of all bad end-to-end paths. The SCFC method adopts a greedy heuristic
that iteratively chooses at each step the link that can explain the largest
number of bad paths and infers that the link is lossy.

Table 2 gives a summary of the comparisons of different lossy link location
methods at the IP layer.

3 Failure Protection and Restoration in IP/WDM
Networks

Failures must not only be identified and located. The network must be designed
so that the traffic is protected against them, which implies rerouting rapidly the
traffic when a failure occurs, until it is repaired.

So far, we distinguished between a first generation IP/SONET/WDM network
and a second generation IP/WDM network. In the context of failure protection,
however, speaking at a functional level, there are no big differences between IP/
SONET/WDM networks protecting traffic at the SONET layer, and IP/WDM
networks protecting traffic at the optical layer, since the optical layer should take
over all protection and restoration functionalities of the SONET layer. Therefore
in this section we do not make a distinction between both architectures and we use
the SONET /SDH and optical layer indifferently. This brings us to the analysis of
two layers: the physical layer (optical) and the logical layer (IP).

The physical layer topology is a set of optical switches (nodes) and fibers
(links) interconnecting them. Each logical link is mapped on the physical topol-

Survey on Dependable IP over Fiber Networks 71

ogy as a lightpath. A lightpath may span multiple fiber links. A set of all light-
paths defines a mapping of the logical graph on the physical graph. Given the
physical and logical topologies, the problem of finding a mapping and assigning
wavelengths to all logical links is called the Routing and Wavelength Assignment
(RWA) problem. In its general form, the RWA problem does not take failure re-
silience into account - its objective is to minimize the network resources. A survey
on RWA algorithms can be found in [43]. The difficulty of the RWA problem de-
pends partially on the type of physical nodes used in the network. Perhaps the
simplest kind of physical node is an optical crossconnect (OXC). It switches the
optical signal from an input port to an output port without wavelength conver-
sion. In this case a lightpath must occupy the same wavelength on all fiber links
it traverses, which is called a wavelength continuity constraint. Physical nodes
can be equipped with wavelength converters to alleviate this constraint: some
can offer a full conversion capability (that is, any wavelength can be converted
to any other wavelength), others only offer limited conversion capability (that
is, a wavelength can only be converted to the neighboring wavelengths on the
spectrum). When the full wavelength conversion is available at every node, the
RWA problem is in fact reduced to the routing problem only.

Generally, there are two approaches for providing survivability of IP-over-
WDM networks: protection and restoration [44]. Protection is the mechanism
in which the traffic is switched to available resources when a failure occurs. It
needs to be very fast, the commonly accepted standard for physical layer is 50
ms. Protection routes must therefore be pre-computed, and wavelengths must be
reserved in advance at the time of connection setup. For speed requirements, pro-
tection may require fairly simple topologies (rings rather than complex meshes)
and may be performed in a distributed way, without relying on a central manage-
ment entity to coordinate actions. Restoration is the mechanism in which new
routes are established on the fly, after a failure has occurred. This is much slower
than protection and requires enough free resources available at the moment of
the failure.

The failure protection and restoration tasks can be carried out at different
layers. Often, the logical layer uses restoration (IP restoration) and the physical
layer uses protection (optical protection). We illustrate these approaches in the
toy example in Fig. 7, where three IP connections are mapped on a six-node
physical topology. Assume that each fiber can carry two wavelengths A\; and
A2, each of the capacity of one unit of traffic. Fig. 7a shows an example of
protection at the physical layer. This is achieved by setting up three primary
lightpaths (set in bold), all on wavelength A1, which are used to carry the traffic
in absence of failures. For each primary lightpath we also prepare a backup
lightpath (dashed) on wavelength As. If the fiber (5,6) fails then all the traffic
on the primary lightpath (1,6,5,4) on A;, is routed over the backup lightpath
(1,3,4) on Az. Note that due to very small reaction times, these mechanisms are
transparent to the logical layer.

The Internet Protocol (IP) is also capable of restoring the traffic around a
failed facility. It is illustrated in Fig. 7b. Here each logical (IP) link has only

72 M. Kurant, H.X. Nguyen, and P. Thiran

one corresponding lightpath. Routers periodically exchange keep-alive or hello
messages to check the health of neighboring links and nodes. A failure of the fiber
(5,6) does not trigger any action at the physical layer. Instead, after the loss of a
few successive hello messages between the routers 1 and 4, the logical link (1,4)
is deduced to have failed. Now, the traffic between the nodes 1 and 4 is rerouted
in the logical topology via node 3. In order to enable this, two requirements
must be met; first, a single physical failure cannot cut the connectivity at the
logical layer, and second, the links at the logical layer must be overprovisioned,
in order to be able to absorb the additional traffic rerouted after a failure. Let
us assume that in the example in Fig. 7b all logical links initially carry (before a
failure) the same amount ¢ of traffic. In order to enable the IP restoration, ¢ can
be, at most, half of one traffic unit (i.e., half of the optical channel capacity).
Note, however, that overprovisioning has a positive side effect of keeping the
links under-utilized during regular operations and therefore of maintaining all
delays short in the network.

Despite the requirements it imposes, the IP restoration approach turns out
to be more resource efficient than optical protection. This is partially due to the

a) Optical protection b) IP restoration

Fig. 7. An illustration of the basic concept of optical protection (left) and IP restoration
(right). The logical topology consisting of three IP links is mapped on the physical
topology with six nodes and seven optical fibers. Each fiber can carry two wavelengths
A1 and Az, each of the capacity of one unit of traffic. The lightpaths are represented
by the arrows in the mapping. For example, the logical link (1,4) uses the lightpath
(1,6,5,4). In the WDM protection scheme, the primary lightpaths use A; and are set
in solid, whereas the backup lightpaths use A2 and are dashed.

Survey on Dependable IP over Fiber Networks 73

different granularity of the approaches: at a packet level in IP restoration vs. at a
wavelength level in optical protection. Assume, for instance, that initially every
logical link is loaded with at most half a unit of traffic. Under this assumption,
both failure protection schemes in Fig. 7 can deal with any single fiber failure.
Note that the primary lightpaths in the optical protection scheme are exactly the
same as the lightpaths set up in IP restoration, hence the resources used by them
are the same. The optical protection approach, however, commits additional
resources by setting up the backup lightpaths, which makes it more resource-
consuming. This effect is even stronger in denser and bigger topologies.

A major difficulty in optical networks that support various upper layers is that
each layer performs its own protection and mechanisms independently from the
others. This can lead to undesirable races between layers to protect traffic. For
example, if the optical layer is protection enabled and if it did not recover from
the failure very rapidly, the logical layer might happen to detect the failure. It
will start rerouting the IP traffic around the failed link(s) or router(s). The lack
of coordination between layers can therefore create a quite intricate situation.
The problem of inter-layer coordination is addressed for example in [45, 46, 47].
Having protection at only one layer might simplify the problem, but one still
needs then to choose the layer at which it should be done. It is not obvious
which layer is more suitable for failure protection/restoration; each has pros and
cons [48,44]. First of all, some failures, such as a failed line card in a router,
cannot be detected at the lower layer, but only at the IP layer (i.e., by IP
restoration). Another advantage of IP restoration, as we have seen above, is its
resource efficiency. Unfortunately, it is also inherently slow - failure detection
at the logical layer takes tens of seconds at least, and time scales at which
restoration occurs are typically at least three orders of magnitude larger than the
protection processes at the physical layer. However, many real network operators
deploy IP restoration only, and find it an effective and cost—efficient solution
(see e.g., [49]). Some multi-layer protection/restoration schemes can adequately
combine the advantages of each layer and still avoid most of their disadvantages
[46], but do not eliminate the complexity of coordinating the different restoration
schemes at the various layers (some solutions are proposed in [46]). One way to
bypass some of this complexity race is to allocate the restoration task to a
different layer for different traffic classes!, which also brings benefits in resource
usage [50].

We discuss now in more details the techniques used to protect and restore
traffic, first at the physical layer, and next at the logical layer.

3.1 Protection and Restoration at the Physical Layer Only

All protection techniques involve some redundant capacity with the network
to reroute traffic in case of a failure. There are essentially two basic protection
mechanisms used in point-to-point links: 1+1 protection, and 1:1 protection(and
its generalization to 1:n protection).

! A traffic class might be defined for instance by its origin/destination, bandwidth or
maximal delay and jitter.

74 M. Kurant, H.X. Nguyen, and P. Thiran

In 1+1 protection, traffic is transmitted simultaneously on two separate fibers
on disjoint routes. The receiver selects the signal at the destination that has the
largest incoming power. If that fiber is cut, it will automatically switch to the
other fiber. This is the fastest and simplest protection, because no signalling is
needed. It is however very inefficient in terms of resources, as every unit of traffic
requires twice as much capacity. As a result, it is used in some ring networks
(Unidirectional path-switched rings, see [51]), but not in large, meshed WDM
networks.

In 1:1 and, more generally speaking, 1:n protection, traffic is transmitted only
on one fiber (called working or primary fiber). If this fiber is cut, the sender and
receiver both switch to the other fiber (called protection or back-up fiber). This is
not as fast nor as simple as 1+1 protection, because the destination must detect
the failure first and then signal it to the source, which will then switch over to
the protection fiber. The advantage of 1:1 protection is that the capacity on the
back-up fiber can be spared for unprotected traffic, which will be preempted in
case of a failure, or can be shared between n multiple, physically disjoint working
paths, in which case one speaks of 1:n protection rather than 1:1 protection (the
latter applies only to a back-up path which is not shared among multiple primary
paths). Sharing a back-up path among n disjoint working paths can spare a large
amount of bandwidth, but at the cost of an increased amount of signalling. On
the contrary, having a dedicated path requires the reservation of many more
resources, but requires less signalling. The gain in spatial reuse of 1:1 protection
schemes over 141 is already important for rings [51], but gets even much larger
in meshed WDM networks.

Protection around the failed facility can be done at different points in the
network: either around the two end-points of the the failed link, by line protec-
tion; or between the source and destination of each connection traversing the
failed link, by path protection. Protection at the line layer is simpler, but path
protection requires less bandwidth and can better handle node failures.

Routing and assigning wavelength in an optical network to guarantee its sur-
vivability by either 1+1 or 1:1 protection can be formulated as an Integer Linear
Programming (ILP) problem. Ramamurthy and Mukherjee [52] use the ILP for-
mulation to compare quantitatively the two schemes, together with the variants
of link and path protection. The 1:1 path protection leads to significant savings in
capacity utilization over the 1:1 link and 1+1 protection schemes. Since for large
topologies the ILP formulation approach becomes computationally difficult, a
number of heuristics have been proposed [53].

Protection is the most common mechanism deployed at the optical layer,
because WDM or SONET/SDH connections are usually long-lived, and rarely
set up on demand. Some authors advocate the possibility of restoration at the
optical layer, which would spare more bandwidth than protection, but can also
introduce significant delays to restore the traffic [54]. The complexity of restoring
traffic at the optical layer (compared to protection at same layer, or restoration
at the IP layer) makes it unlikely that operators rely primarily on restoration at
the optical layer in the near future.

Survey on Dependable IP over Fiber Networks 75

3.2 Restoration at the Logical Layer by Survivable Mapping

Recall from the beginning of Section 3, that in order to make the IP restoration
work, the logical topology must remain connected after a failure. This require-
ment can be met by an appropriate mapping of the logical topology on the
physical topology.? More specifically, if the logical topology remains connected
after any single physical link failure, then the underlying mapping is called a
survivable mapping.

Although the survivable mapping problem can be viewed as a specific version
of the Routing and Wavelength Assignment (RWA) problem, it is often defined
relaxing some basic assumptions of RWA, such as the wavelength continuity or
even the capacity constraints. This results in a survivable mapping problem that
is independent of RWA and can be addressed separately.

The problem of finding survivable mapping is NP-complete [55] and has drawn
recently a lot of attention. It was first identified by Crochat et.al. [56], and
named “design protection”. Some authors focused on simplified versions of the
survivable mapping problem, assuming a cycle (ring) topology at the physical
layer [57,58] or the logical layer [55,59]. The others addressed the general case,
with arbitrary topologies at both layers. In general, the existing approaches can
be divided into three groups: (i) exact algorithms based on Integer Linear Pro-
gramming (ILP), (ii) pure heuristics and (iii) heuristics with provable properties.
Below we describe each of them in more details, and compare in Table 3.

ILP. The ILP solutions can be found for example in [55,44,60]. In [55] it was
observed that a mapping is survivable if and only if no physical link is shared by
all logical links belonging to a cut-set of the logical graph.? This observation is
used in [55] to formulate an ILP model for the survivable mapping problem: for
each logical link and for each cut-set of the logical graph, a constraint is added
to the ILP. This leads to exact solutions, but also to excessive run-times [61]
for networks of a non-trivially small size (few tens of nodes). To overcome this
difficulty two relaxations to ILP are proposed in [55], by including only cut-sets
of small sizes. This considerably accelerates the algorithm, but can easily lead
to suboptimal solutions. Facing the same time-complexity problem of ILP, the
authors of [44] and [60] decided to try a heuristic approach.

Heuristics. Despite many differences, the heuristics used to solve the surviv-
able mapping problem share the same general methodology. They start with
some initial mapping (e.g., shortest path) and try to improve it at subsequent
iterations. Probably the most often used heuristic is Tabu Search. It is a version
of a steepest descent search algorithm that stores a list (called a Tabu List) of
recent moves to avoid them. This allows Tabu Search escape the local minima.

2 We assume that the logical and the physical topologies are given and cannot be
changed.

3 A cut-set of a network is defined by a cut of the network: a cut is a partition of the
set of nodes V into two sets S and V' — S, and the cut-set defined by this cut is the
set of edges which have one endpoint in S and one in V — §.

76 M. Kurant, H.X. Nguyen, and P. Thiran

Table 3. Comparison of efficiency and functionalities of four approaches to search for
a survivable mapping. The question mark “?” means that the option might be possible
to realize, but, to the best of our knowledge, nobody did it to date.

Functionality ILP Tabu Search FastSurv SMART
Scalability — Low Average High Very high

Capacity and other constraints Yes Yes Yes No
Verification of a solution existence Yes No No Yes
Node/span/multiple failures ? ? Yes Yes

Tracing and repairing the vulnerable areas No No No Yes

For more details refer to [62]. Tabu Search was used with success to solve the sur-
vivability problem in many settings, e.g., without capacity constraints [56], with
capacity constraints [63, 64] or additionally meeting maximum delay require-
ments [60]. Another general heuristic applied to solve the survivable mapping
problem is Simulated Annealing in [48]. There is also a number of heuristics
developed specifically to solve this problem, e.g., in [44] and [65]. The FastSurv
algorithm introduced recently in [65], exploits the observation already mentioned
in the ILP paragraph, which takes use of cut-sets in the logical topology. How-
ever, unlike in [55], the FastSurv algorithm systematically and indirectly learns
about the importance of particular cut-sets and focuses only on the most rele-
vant ones. This approach results in much better efficiency and scalability than
those of other heuristics.

Heuristics with Provable Properties. The SMART algorithm proposed
in [66,67] does not fall in either group above. It is based on a breakdown of
the problem into a set of independent smaller problems, which are easy to solve.
Each of them is solved separately, and then the solutions are combined to obtain
a survivable mapping of the entire topology. This makes SMART the fastest and
most scalable heuristic to date. Moreover, the formal analysis in [67] revealed
that SMART can also serve as a scalable method of verification of the existence
of a survivable mapping and a tool tracing and repairing the vulnerable areas
of the network. These two features are completely novel in the field.* It should
be noted, however, that one of the main assumptions of the analysis in [67]
is relaxing the capacity constrains. In the presence of some additional real-life
constraints such as limited fiber capacity or maximum delay, the SMART ap-
proach loses its efficiency and properties. Therefore SMART is more used to
getting some topological insight into the problem than to finding an engineering
solution, which makes this approach in a sense complementary to others.

3.3 Other Types of Failures

So far we have only considered single physical link failures. They may result from
a fiber cut, a fault of a single interface card in the optical switch, or a fault of an

4 The ILP can also verify the existence of a survivable mapping, but as we argued
before, it is not scalable.

Survey on Dependable IP over Fiber Networks 77

optical amplifier. They are the most common type of failures in optical networks,
but not the only one. If we allow for the physical location of the fibers, we extend
single link failures to single span failures. A span is a bundle of fibers partially
placed together for cost reasons (e.g., along railway and electricity lines). A single
cut can break all of these fibers at once, in which case we speak of a span failure. We
can also encounter node failures; they are the consequence of a failure of equipment
at nodes, such as switches. In our context a node failure is equivalent to a failure of
all physical links neighboring to the node. Finally, we consider double~link failures,
i.e., independent failures of any two physical links. Usually such a situation takes
place when the second failure occurs before the first one is repaired. This is not
very common, but possible. For example, in the Sprint network, the time between
two successive optical failures ranges from 5.5 sec to 7.5 days with a mean of 12
hours [1]. Most of them are repaired automatically within several minutes, but
those requiring human intervention (e.g., after a fiber cut) may last hours or days.
It is quite probable that during that period another physical failure occurs.

These failure scenarios were addressed mainly by physical layer protection:
the span failures in [68,69], the node failures in [70], and the double-link failures
in [71,72,73]. The IP restoration mechanisms considered these failures in [66]
(all types of failures) and [67] (link and node failures).

4 Conclusion

We have addressed the failure management problem in IP/WDM optical net-
works. This issue can be decomposed with respect to two criteria. First, we
distinguish the failure location from the failure restoration. The former aims
at identifying the failing component based on the feedback from the network,
whereas the latter consists in rerouting the traffic affected by the failure. These
two tasks have different objectives and require different approaches. The second
line of division is defined by the existence of at least two layers in the network:
the IP layer and the optical layer. Each layer applies its own specific mechanisms
to transport traffic, which significantly affects the way a failure is handled.

Following this view, we have discussed and made a detailed comparison of
numerous failure management techniques, separately for failure location and
restoration, and distinguishing between the IP and the optical layer. In con-
trast to previous surveys that have focused only on some particular aspects,
our approach results in a global overview of failure management possibilities in
IP/WDM networks.

References

1. Markopoulou, A., lannaccone, G., Bhattacharyya, S., Chuah, C.N., Diot, C.: Char-
acterization of Failures in an IP Backbone. In: Proceedings of the IEEE INFO-
COM’04. (2004)

2. Abek, F., Hegerin, H., Neumair, B.: Integrated Management of Networked Systems.
Morgan Kaufmann Publishers (1998)

78

o 3 O Ot

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Kurant, H.X. Nguyen, and P. Thiran

. Mas, C., Thiran, P.: An efficient algorithm for locating soft and hard failures
in WDM network. JSAC special issue on Protocols and Architectures for next
generation optical WDM networks 18 (2000) 1900-1911

. Mas, C., Nguyen, H.X., Thiran, P.: Failure location in WDM networks. In: Opti-
cal WDM Networks: Past Lessons and Path Ahead. Kluwer Academic Publishers
(2004)

. ITU-T COM 15 121: Signal Quality Monitoring in Optical networks. (1999)

. Anritsu: Catalog of measuring instrument (1993)

. ITU-T Rec. G.872. Architecture of Optical Transport Networks (1998)

. ITU-T Rec. G.806. Characteristics of Transport Equipment - Description Method-
ology and Generic Functionality (2000)

. Wautersa, N., Ocahoglu, G., Struyve, K., Falcao, P.: Survivability in a new pan-

european carrier’s network based on WDM and SDH technology: Current imple-

mentations and future requirements. IEEE Communication Magazine 37(8) (1999)

63-69

Tao, W., Somani, A.K.: Attack monitoring and monitor placement in all-optical

networks. In: Proceedings of IEEE GBN 2001. (2001)

Kilper, D., Bach, R., Blumenthal, D.J., Einstein, D., Landolsi, T., Ostar, L., Preiss,

M., Willner, A.E.: Optical performance monitoring. Journal of Lightwave Tech-

nology 22 (Jan 2004) 294-304

N.S.V.Rao: Computational complexity issues in operative dianosis of graph based

systems. IEEE Transactions on Computers 42 (1993) 447-457

Nguyen, H.X., Thiran, P.: Failure location in all optical networks: the assymetry

between false and missing alarms. In: Proceedings of ITC 19. (2005)

Ducatelle, F., Gambardella, L.M., Kurant, M., Nguyen, H.X., Thiran, P.: Algo-

rithms for Failure Protection in Large IP-over-Fiber and Wireless Ad Hoc Net-

works. In Dependable Systems: Software, Computing, Networks, eds. J. Kohlas,

B. Meyer, A. Schiper, Lecture Notes in Computer Science 4028, Springer, 2006

(this volume)

Katzela, 1., Schwartz, M.: Scheme for fault identification in communication net-

works. IEEE/ACM Transaction on Networking 3 (1995)

Wang, C., Schwart, M.: Identification of faulty links in dynamics-routed networks.

IEEE Journal on selected Areas in Communications (1993) 1449-1460

Li, C.S., Ramaswami, R.: Fault Detection and Isolation in transparent All-Optical

Networks. In: IBM Research Report. Volume RC-20028. (1995)

Bouloutas, A., Hart, G., Schwartz, M.: Fault identification using a fsm model with

unreliable partially observed data sequences. IEEE Transactions on Communica-

tions 41 (1993) 1074-1083

Gu, K., et al.: Realization of an expert system for an online fault diagnosis and

restoration in a bulk power system. In: Proc. 4th International Symposium expert

Systems Application Power Systems. (1993)

Brugnoni, S., et al.: An expert system for rel time fault diagnosis of the ital-

ian communications network. In: Proceedings of Integrated network management.

Volume 3. (1993) 617-628

Jakobson, G., Weissman, M.E., Brenner, L., Lafond, C., Matheus, C.: Grace: Build-

ing next generation event correlation services. In: IEEE/IFIP: Network Operations

and Management Symposium NOMS, 2000. (2000)

Lewis, L.: A case-based reasoning approach to the resolution of faults in commu-

nications networks. In Integrated network management III (1993) 671-682

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Survey on Dependable IP over Fiber Networks 79

Maki, Y., Loparo, K.A.: Neural network approach to fault detetin and diagnosis
in industrial processes. IEEE Transactions on Control Systems Technology 5(6)
(2001) 529-541

Rodriguez, C., Rementeria, S., Martin, J., Lafuente, A., Perez, J.: A modular
neural network approach to fault diagnosis. IEEE Transactions on Neural Networks
(March 1996)

Ho, L., Cavuto, D., Papavassilou, S., Zawadzki, A.: Adaptive and automated detec-
tion of service anomalies in transaction-oriented wans. IEEE Journal on Selected
Areas Communications 18(5) (May 2000) 744-757

Jakobson, G., Weissman, M.E.: Alarm correlation. IEEE Network (1993) 52-59
Hood, C., Ji, C.: Proactive network-fault detection. IEEE Transactions on relia-
bility 46(3) (Sep 2000)

Lin, A.: A hybrid approach to fault diagnosis in network and system management.
HP Technical Report (1998)

Gardner, R., Harle, D.: Alarm correlation and nerwork fault resolution using ko-
honen self-organising map. In: In proceedings of Globecom 97. (1997) 1398-1402
Stallings, W.: SNMP, SNMPv2, SNMPv3 and RMON 1 and 2. Addision-Wesley
Longman Inc (1999)

Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins
of internet flow rates. In: Proceedings of the ACM SIGCOMM Conference. (2002)
Choi, B.Y., Moon, S., Zhang, Z.L., Papagiannaki, K., Diot, C.: Analysis of point-
to-point packet delay in an operatinal network. In: Proceedings of the INFOCOM.
(2004)

Paxson, V.: Measurement and Analysis of End-to-End Internet Dynamics. PhD
thesis, Univ. of Cal., Berkeley (1997)

Almes, G., Kalidini, S., Zekauskas, M.: A one-way delay metric for IPPM. IETF,
IP Performance metrics, request for comments:2680 (1999)

ITU-T Rec. G.113. [G.113 Appendix I (05/02)] Provisional planning values for the
equipment impairment factor Ie and packet-loss robustness factor Bpl (2002)
Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behaviour of the
TCP congestion avoidance algorithm. Computer Communication Review 27 (1997)
Tao, V., Xu, K., Estepa, A., Fei, T., Gao, L., Guerin, R., Kurose, J., Towsley, D.,
Zhang, Z.L.: Improving voip quality through path switching. In: Proceedings of
IEEE Infocom. (March 2005)

Duffield, N.: Simple network perormance tomography. In: Proceedings of the
IMC’03, Miami Beach, Florida (2003)

Caceres, R., Duffield, N.G., Horowitz, J., Towsley, D.: Multicast-based inference
of network-internal loss characteristics. IEEE Transactions on Information Theory
45 (1999) 2462-2480

Coates, M., Nowak, R.: Network loss inference using unicast end-to-end mea-
surement. In: Proceedings of the ITC Seminar on IP Traffic, Measurements and
Modelling, Monterey (2000)

Duffield, N., Presti, F.L., Paxson, V., Towsley, D.: Inferring link loss using striped
unicast probes. In: Proceedings of the IEEE Infocom 2001, Alaska (2001)
Padmanabhan, V.N.; Qiu, L., Wang, H.J.: Server-based inference of internet per-
formance. In: Proceedings of the IEEE INFOCOM’03, San Francisco, CA (2003)
Zang, H., Jue, J.P., Mukherjee, B.: A review of routing and wavelength assignment
approaches for wavelength-routed optical wdm networks. SPIE Optical Networks
Magazine (1) 47-60

80

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

M. Kurant, H.X. Nguyen, and P. Thiran

Sahasrabuddhe, L., Ramamurthy, S., Mukherjee, B.: Fault management in IP-
Over-WDM Networks: WDM Protection vs. IP Restoration. IEEE Journal on
Selected Areas in Communications 20 (2002) 21-33

Demeester, P., et al.: Resilience in multilayer networks. IEEE Communications
Magazine (August 1999) 70-75

Colle, D., et al.: Data-centric optical networks and their survivability. IEEE Journal
on Selected Areas in Communications 20 (2002) 6-20

Zhang, H., Durresi, A.: Differentiated Multi-Layer Survivability in IP/WDM Net-
works. Proceeding of Network Operations and Management Symposium (2002)
Fumagalli, A., Valcarenghi, L.: IP Restoration vs. WDM Protection: Is There an
Optimal Choice? IEEE Network (2000)

Tannaccone, G., Chuah, C.N., Bhattacharyya, S., Diot, C.: Feasibility of IP restora-
tion in a tier-1 backbone. (Sprint ATL Research Report Nr. RR03-ATL-030666)
Nucci, A., Taft, N., Barakat, C., Thiran, P.: Controlled use of excess backbone
bandwidth for providing new services in IP-over-WDM networks. IEEE Journal
on Selected Areas in Communications JSAC-22 (2004) 1692-1707

Gerstel, O., Ramaswami, R.: Optical Layer Survivability-An Implementation Per-
spective. IEEE Journal on Selected Areas in Communications 18 (2000) 18851923
Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, Part I - Pro-
tection. Proc. of IEEE INFOCOM’99 (1999)

Mohan, G., Somani, A.K.: Routing dependable connections with specified failure
restoration guarantess in WDM networks. Proc. of IEEE INFOCOM’02 (2002)
Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, Part II -
Restoration. Proc. of IEEE ICC’99 (1999)

Modiano, E., Narula-Tam, A.: Survivable lightpath routing: a new approach to
the design of WDM-based networks. IEEE Journal on Selected Areas in Commu-
nications 20 (2002) 800-809

Armitage, J., Crochat, O., Boudec, J.Y.L.: Design of a Survivable WDM Photonic
Network. Proceedings of IEEE INFOCOM 97 (1997)

Lee, H., Choi, H., Subramaniam, S., Choi, H.A.: Survival Embedding of Logi-
cal Topology in WDM Ring Networks. Information Sciences : An International
Journal, Special Issue on Photonics, Networking and Computing (2002)

Lee, H., Choi, H., Choi, H.A.: Restoration in IP over WDM optical networks. In
Proceedings of the 30th ICPP Workshop on Optical Networks (2001)

Sen, A., Hao, B., Shen, B., Lin, G.: Survivable routing in WDM networks log-
ical ring in arbitrary physical topology. Proceedings of the IEEE International
Communication Conference ICC02 (2002)

Giroire, F., Nucci, A., Taft, N., Diot, C.: Increasing the Robustness of IP Backbones
in the Absence of Optical Level Protection. Proc. of IEEE INFOCOM 2003 (2003)
Leonardi, E., Mellia, M., Marsan, M.A.: Algorithms for the Logical Topology
Design in WDM All-Optical Networks. Optical Networks Magazine (2000)
Glover, F., Taillard, E., Werra, D.: A user’s guide for tabu search. Annals of
Operations Research (1993) 3-28

Crochat, O., Boudec, J.Y.L.: Design Protection for WDM Optical Networks. IEEE
Journal of Selected Areas in Communication 16 (1998) 1158-1165

Nucci, A., Sanso, B., Crainic, T., Leonardi, E., Marsan, M.A.: Design of Fault-
Tolerant Logical Topologies in Wavelength-Routed Optical IP Networks. Proc. of
IEEE Globecom 2001 (2001)

Ducatelle, F., Gambardella, L.: Survivable routing in ip-over-wdm networks: An
efficient and scalable local search algorithm. Optical Switching and Networking
(2005) To appear.

66.

67.

68.

69.

70.

71.

72.

73.

Survey on Dependable IP over Fiber Networks 81

Kurant, M., Thiran, P.: Survivable Mapping Algorithm by Ring Trimming
(SMART) for large IP-over-WDM networks. Proc. of BroadNets 2004 (2004)
Kurant, M., Thiran, P.: On survivable routing of mesh topologies in IP-over-WDM
networks. Proc. of IEEE INFOCOM’05 (2005)

Li, G., Doverspike, B., Kalmanek, C.: Fiber Span Failure Protection in Mesh
Optical Networks. Optical Networks Magazine 3 (2002) 21-31

Zang, H., Ou, C., Mukherjee, B.: Path-protection routing and wavelength-
assignment (rwa) in wdm mesh networks under duct-layer constraints. IEEE/ACM
Transactions on Networking 11 (2003) 248-258

Kim, S., Lumetta, S.: Addressing node failures in all-optical networks. Journal of
Optical Networking 1 (2002) 154-163

Choi, H., Subramaniam, S., Choi, H.A.: On Double-Link Failure Recovery in WDM
Optical Networks. Proc. of IEEE INFOCOM’02 (2002)

He, W., Sridharan, M., Somani, A.K.: Capacity Optimization for Surviving Double-
Link Failures in Mesh-Restorable Optical Networks. Proc. of OptiComm’02 (2002)
Clouqueur, M., Grover, W.D.: Mesh-restorable Networks with Complete Dual-
failure Restorability and with Selectively Enhanced Dual-failure Restorability
Properties,. Proc. of OptiComm’02 (2002)

SCOOP — Concurrency Made Easy

Volkan Arslan, Patrick Eugster, Piotr Nienaltowski, and Sebastien Vaucouleur

Chair of Software Engineering
Swiss Federal Institute of Technology Zurich
CH-8092 Zurich, Switzerland
scoop@se.inf.ethz.ch
http://se.inf.ethz.ch/research/scoop.html

Abstract. The metaphor of objects as entities encompassing both logic
and state, simplifying the design and development of particularly large-
scale applications, is well established in the industry. However, large
applications are rarely monolithic components that carry out a single
sequential task; most applications are composed of many components
running in parallel. Yet, the vast majority of such applications are built
in a rather ad-hoc manner, typically by making use of threading li-
braries and explicit synchronization through low-level mechanisms such
as semaphores, locks, or monitors layered on top of objects.

The Simple Concurrent Object-Oriented Programming (SCOOP)
model strives for a higher-level abstraction for concurrency, naturally
woven into “traditional” object-oriented constructs. Thanks to the full
support for contracts and other object-oriented mechanisms and tech-
niques — inheritance, polymorphism, dynamic binding, genericity, and
agents — SCOOP offers the programmer a simple yet powerful frame-
work for efficient development of concurrent systems.

This paper presents a survey of SCOOP, including (1) the foundations
of the SCOOP paradigm, its computation and synchronization models
(focusing on simplicity), and our more recent developments. These are
(2) an extended type system for eliminating synchronization defects (im-
proving safety), (3) support for transactional semantics for subcompu-
tations (enforcing atomicity), and (4) an event library for programming
real-time concurrent tasks (allowing for predictability).

1 Introduction

The object-oriented paradigm promotes ease of design, development, and main-
tenance of applications by reflecting in a natural manner the real-world scenar-
ios which these applications are portraying. Its support for intuitive reasoning
has made object-orientation a widely adopted choice for devising large-scale
industrial applications. The object paradigm however suffers from a weakness
that may soon become a show-stopper: concurrency. Though nature presents
itself as concurrent in many ways, the integration of objects with concurrency
has namely not taken place in a natural way. Problems arise from aliasing, or
substitution, which are cornerstones of the object paradigm. Yet, virtually all

J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 82-102, 2006.
© Springer-Verlag Berlin Heidelberg 2006

SCOOP — Concurrency Made Easy 83

industrial-scale applications developed currently span several concurrent tasks
that proceed autonomously from time to time, and require controlled interaction
at chosen points.

Established practices for concurrent programming include the explicit use
of threading libraries and rather low-level synchronization mechanisms such as
locks, semaphores, or monitors, for protecting objects from conflicting accesses
and modifications, hampering the consistency of these objects. Threading models
and precise semantics of basic concurrency control mechanisms however may
diverge on different platforms, slightly only at first glance, but actually with
sensible effects, making concurrent programming still a closed book reserved to
experts. The software field badly needs a concurrent programming technique
enjoying the same simplicity and inspiring the same confidence as the accepted
constructs of sequential programming.

As its name suggests, the Simple Concurrent Object-Oriented Programming
(SCOOP) [1] model is an attempt to provide this simple basis. SCOOP follows
the ambition of supporting programmers in writing correct and efficient soft-
ware, by taking object-oriented programming as given, in a form based on the
concepts of Design by Contract [2]. SCOOP extends these concepts in a minimal
way (essentially one language keyword and a few library mechanisms) to cover
concurrency and distribution. To address requirements of concurrent processing
(e.g., mutual exclusion, wait conditions) SCOOP gives new semantics to well-
known constructs (e.g., argument passing, preconditions) where the standard
sequential semantics could not be applied anyway.

Being high-level, the SCOOP model is applicable to many different physical
setups, including multiprocessing, multithreading, or distributed computing. By
taking advantage of the inherent concurrency in object-oriented programming,
programmers are shielded from low-level concepts such as explicit thread cre-
ation, manipulation, and synchronization. In short, the SCOOP model associates
one or more objects with a conceptual processor, which is the only one to execute
on these objects, and can be mapped to an operating system process, thread, etc.
The keyword separate is used to denote entities that reference objects which,
from the point of view of the client object, may be under the control of a different
processor. The appearance of such variables inherently triggers synchronization
in certain situations, according to well-defined consistency rules.

The contributions of this paper consists in providing a concise overview of the
SCOOP model and its recent refinements, divided into four aspects:

— Simplicity. We present the basic SCOOP paradigm, by laying out its archi-
tecture, its basic model of computation, as well as its synchronization scheme.
The latter perspective on SCOOP is elucidated by explaining the consistency
rules defining the semantics of “traditional” object-oriented constructs such
as feature calls, argument passing, or preconditions, and by summarizing
scheduling policies.

— Safety. By having a single processor execute a single operation at a time on
a given object, the SCOOP model avoids data races. Nonetheless, there are
situations in which the basic SCOOP model may exhibit synchronization

84 V. Arslan et al.

defects. We propose an ownership-like type system to address these issues,
and derive from it the consistency rules for SCOOP. The proposed type
system makes it possible to eliminate potential synchronization faults at
compile-time; it also integrates with SCOOP other advanced mechanisms of
Eiffel, such as agents and attached types.

— Atomicity. The SCOOP model is augmented with transactional semantics,
in order to support atomic features, features whose use takes either full effect
or none, even in the face of hardware failures. This effort has also been ini-
tiated in view of exploiting the many recent efforts on transactional support
at the operating system level. We provide the programmer the choice be-
tween cooperating concurrency (traditional SCOOP semantics) and conflict-
ing concurrency (transactional semantics) and the possibility of combining
these. Our approach also marries two error recovery modes for transaction
aborts, namely backward recovery (rollback) and forward recovery (compen-
sation [3] for cases where the effects of partial computations can not simply
be undone).

— Predictability. We present a real-time event library (RTEL) which is built
on top of an existing event library [4] designed initially without real-time
concerns in mind. Introducing both concurrency and timing constraints en-
ables the successful application of event-driven programming techniques to
embedded real-time applications. The known advantages of modular devel-
opment and reasoning of object-oriented languages, as well as the sepa-
ration of concerns enforced by the event-driven style of programming [5]
are retained. To achieve predictability in real-time applications, the RTEL
is designed to support in particular the modeling of periodic, sporadic, as
well as aperiodic tasks of real-time applications, thus ensuring their tim-
ing constraints such as worst-case execution time (WCET), deadline, and
periodicity.

The design of the basic SCOOP model, as well as any of the amendments
represented by the last three contributions outlined above has followed the same
directives, which consist namely in guiding the programmer with language con-
structs which (1) anchor safety statically, yet (2) are minimally intrusive, and
(3) preserve flexibility. By abiding to these principles, SCOOP makes concurrent
object-oriented programming simple and can easily be integrated with other lan-
guages.! The three additions are presented by providing motivating scenarios,
examples, and reporting on their implementation status.

Roadmap. Section 2 overviews the basic SCOOP model. Section 3 presents
improvements to the type system fostering safety. Section 4 describes atomic
features — features supporting transactional semantics. Section 5 reports on our
real-time event library (RTEL), an event library for modeling and devising real-
time tasks within SCOOP. Section 6 presents conclusions and future work.

! Note that contracts have been recently added to several mainstream programming
languages, e.g., Java (JML [6]), C# (Spec# [7]).

SCOOP — Concurrency Made Easy 85

2 Simplicity: The SCOOP Model

2.1 Computation

In object-oriented computation, the basic mechanism is a feature call such as
z.f (a), with the following semantics (Figure 1): the client object calls feature
f on the supplier object attached to z, with argument a. In a sequential setting,
such calls are synchronous, blocking the client until the supplier has terminated
the execution of the feature.

To support concurrency, SCOOP allows the use of more than one conceptual
processor to handle execution of features. More precisely, every object in SCOOP
is associated with a single processor, which represents a thread of control. The
processor associated with an object is the only one to execute feature calls on
that object. We say that a processor handles, and owns the object; a processor
in the general case owns several objects, and this set of objects owned by a
processor constitute the domain of that processor.

If the client and supplier objects in a feature call have different handlers, the
call becomes asynchronous: in Figure 1, the computation on Object 1 can move
ahead without waiting for the call on Object 2 to terminate. Processors are the
principal new concept for adding concurrency to the framework of sequential
object-oriented computation. A processor does not have to be associated with a
physical processor; it may be implemented by a process of the operating system,
or a thread in a multithreading environment. In the .NET Framework, processors
can be mapped to application domains [8].

Object 1 Object 2
f(a: A) is
prev_instruction require
x.f(a) , al= Void
) . ensure
next_instruction not a.is_empty
end
PROCESSOR 1 PROCESSOR2

Fig. 1. Processors

Viewed by the software, a processor is an abstract concept; the same con-
current application may be executed on very different architectures without any
change to its source text.

2.2 Separateness

Since the effect of a call depends on whether the client and the supplier objects
are handled by the same processor or by different ones, the software text must
distinguish unambiguously between these two cases. For declarations of vari-
ables or functions, normally appearing as z: SOME CLASS, a new form is now

86 V. Arslan et al.

possible, x: separate SOME CLASS. The keyword separate indicates that z
is potentially handled by a different processor, so that calls on z will be asyn-
chronous. With such a declaration, any creation instruction create z.make ()
will use a new processor to handle calls on z. The declaration does not spec-
ify which processor to use for handling the object. What matters is that this
processor is different from the processor handling the current object.

If a target of a call is a separate expression, i.e., a separate entity or an
expression involving at least one separate entity, such a call is referred to as
separate call. In Figure 1, z is a separate entity for Object 1, Object 2 referred
to by z is a separate object, and z. f (a) is a separate call.

2.3 Synchronization

SCOOP addresses the synchronization and communication needs of concurrent
programming, including mutual exclusion, locking and waiting, through argu-
ment passing and Design by Contract.

Argument Passing. A basic rule of SCOOP is that a separate call — z.f
(a) where z is separate — is only permitted if z itself is an argument of the
enclosing routine, and that calling a routine with such a separate argument will
cause waiting until the corresponding separate object is exclusively available to
the caller. So if the client calls r (a), or y.r (a), where r is defined as

r (x: separate SOME TYPE) is ...

the call will wait until no other client is using a in this way. This rule provides
the basic synchronization mechanism for SCOOP. It avoids a pitfall of concur-
rent programming, which consists in assuming that in two successive calls on a
separate object, such as

that stack .push (some value)

z := that stack.top

nothing may have happened to the object in between — so that in the example
above the object assigned to z is the object referred to by some value previously
stored at the top of the stack. In a concurrent setting, other clients may interfere
with the object that stack between the two calls. As mentioned, both calls above
require that stack to be an argument of the enclosing routine(s) in SCOOP. If
these are different routines, no confusion is likely; if they are the same routine,
the rule guarantees that the routine will hold the object for the entire duration
of every call, to the exclusion of any other clients.

Preconditions. In Eiffel, a routine such as put in Figure 2 may have a pre-
condition and a postcondition. A precondition clause involving a call with a
separate target, such as buffer. is full , is called a separate precondition. The
other clause appearing here, value /= Void, is not separate. In sequential pro-
grams, preconditions are correctness requirements that the client object must

SCOOP — Concurrency Made Easy 87

fulfill before calling the routine on the supplier object. If one or more precondi-
tions are not met, the client has broken the contract; for example, it has tried
to store a value into a full buffer. Since the execution is sequential, the state of
the buffer cannot change (no other client can try to consume an element from
the buffer in the meantime). In a concurrent context this does not apply any
more; the buffer may be full when the client object is trying to store a value into
it, but nothing prevents another client object from consuming an element from
the buffer later on. A non-satisfied separate precondition does not necessarily
break the contract; it just forces the client object to wait until the precondition
is satisfied. This inapplicability in a concurrent context of the usual sequential
interpretation of preconditions leads to the SCOOP use of separate precondi-
tions, namely as wait conditions rather than correctness conditions. We have
shown the basic synchronization rule: in the case of a separate argument, any
call will wait until the object is available. To obtain the full synchronization
mechanism, we add the rule that if the routine has a precondition clause using
such a separate argument as target, for example not buffer. is full the call will
wait until both of the following conditions are satisfied:

a. The object is available.
b. The separate precondition is satisfied.

The wait semantics only apply to separate preconditions. Others, such as value
/= Void, retain their usual meaning as correctness conditions.

2.4 Scheduling

In the following paragraphs we illustrate the concepts of SCOOP and scheduling
through the well-known producer-consumer scenario. Some objects are producing
values and storing them into the shared buffer buf (see Figure 2); others are
consuming elements from that buffer (see Figure 3). For both producers and
consumers, the respective buf object is a separate object, declared as such in the
source code. To perform any call to buf, a client (producer or consumer) must
obtain an exclusive lock on buf. The SCOOP rule then implies embedding all the
calls to buf in routines store and consume one. Direct calls to buf. put, buf.item,
and buf. remove would be invalid.

To call consume one from routine consume n, a consumer will pass buf as
argument. In the SCOOP access control policy, when one or more arguments of
a routine are separate objects, the client must obtain exclusive locks on all these
objects before executing the routine. Here the consumer object must obtain an
exclusive lock on buf before executing consume one. If another object is currently
holding the lock, the client must wait until the lock has been released, then try
to acquire it. The default policy is FIFO. More precisely, locking takes place as
follows:

I. A client attempts to acquire the locks on all the relevant objects.
II. The separate precondition clauses are evaluated. If they do not all hold, the
object releases the lock and goes back to 1.

88 V. Arslan et al.

III. The routine is executed.
IV. The locks are released.

Releasing all locks in case not all separate preconditions are satisfied allows other
clients to access corresponding supplier objects and change their state, so that
the wait conditions required by another client may eventually be met.

The above locking policy facilitates building correct concurrent programs and
reasoning about them:

— No interference between client objects is possible since at most one client
may hold a lock on a supplier object at any time. This helps find which
object is responsible for possible breaches in the contract, such as breaking
the supplier’s invariant.

— The precondition rules ensure that correct calls do not violate the integrity
of the supplier object.

class PRODUCER
feature
store (buffer: separate BUFFER [G]; value: G) is
—— Store value into buffer.
require
buffer not full : not buffer. is full
value provided: walue /= Void
do
buffer.put (value)
ensure
buffer not empty: not buffer.is empty
end
random gen: RANDOM GENERATOR
buf: separate BUFFER [INTEGER]
produce n (n: INTEGER) is
—— Produce n integer values and store them into a buffer.
local
value: INTEGER
i: INTEGER
do
from i:=1
until ¢ > n
loop
value := random gen.next
store (buf, value)
—— buf.put (value) is forbidden here
ii=14+1
end
end
end

Fig. 2. Producers

SCOOP — Concurrency Made Easy 89

class CONSUMER
feature
consume one (buffer: separate BUFFER [G]) is
—— Consume one element from buffer.
require
buffer specified : buffer /= Void
buffer not empty: not buffer.is empty

do

value := buffer.item

buffer . remove

ensure

buffer not full : not buffer. is full
end

buf: separate BUFFER [INTEGER]
consume n (n: INTEGER) is
—— Consume n elements from a buffer.
local
i: INTEGER
do
from ¢:=1
until i > n
loop
consume one (buf)
—— buf.item and buf.remove are forbidden here
i =1 41
end
end
end

Fig. 3. Consumers

2.5 A Note on Asynchrony

Thanks to the asynchronous semantics of separate calls, a client executing sepa-
rate calls is not blocked and can proceed with the rest of its computation. Later
on, however, it may need to resynchronize with the supplier. Rather than in-
troducing a specific language mechanism for this purpose, SCOOP relies on a
variant of wait-by-necessity [9] which consists in causing the client to wait on the
result of calls to queries (in particular functions), since it needs the result to pro-
ceed, whereas commands (procedures) do not require waiting. This mechanism
is automatic and does not require any effort from the programmer.

2.6 Implementation and Tools

SCOOQOP is not supported by any existing Eiffel compiler. Therefore, we devel-
oped the scoop2scoopli preprocessor that allows programmers to write SCOOP
programs, have them type-checked according to the refined typing rules (see 3)
and translated into standard Eiffel code with embedded library calls (library

90 V. Arslan et al.

calls map SCOOP constructs to the underlying concurrency platform). We de-
cided to provide a binding for several concurrency platforms. So far, we deliv-
ered a thread-based library implementation — SCOOPLI — that supports POSIX
threads and .NET Multithreading. The preprocessor and the library are available
for download at http://se.inf.ethz.ch/research/scoop.html.

We are developing a library for distributed computing. It is currently based on
web services but we are planning to support other communication infrastructures
as well. We are also thinking of a multi-threaded implementation on a widespread
real-time operating system.

3 Safety: Extended Type System for SCOOP

SCOOP programs are free of data races by construction — since all operations
on a given object are executed by its handling processor and all processors are
sequential, at most one operation might be executed on the object at any time
(operations cannot be preempted). Nevertheless, other synchronization defects
— atomicity violations and deadlocks— might still occur. In this paper, we focus
on atomicity violations.

3.1 Separateness Consistency Rules

Atomicity violations are caused by an incorrect interleaving of feature calls issued
by different client objects. The synchronization policy of SCOOP (see section 2.3)
should prevent them. Unfortunately, the locking mechanism alone, although very
restrictive, does not solve the problem. That is why the original SCOOP model
introduced four additional separateness consistency rules [2]. The rules impose
further restrictions on operations (assignment, argument passing) that involve
separate entities. For example, it is required that the target of an assignment be
declared as separate if the source of the assignment is separate.

Although the rules are easily understandable by a programmer, they are too
informal to be used by a compiler. Also, they do not support the agent mecha-
nism (see below) and they are too restrictive — in particular the rule for ezpanded
types (value types) eliminates many useful programs. We also demonstrated that
they are not sound — it is possible to write programs that satisfy them and still
exhibit atomicity violations.

3.2 Type System

To provide a sound basis for safe concurrency, it is necessary to refine and for-
malize the rules. It is impossible to check the rules statically using the standard
Eiffel type system because separateness is a property of objects, not classes; the
conformance of separate and non-separate entities cannot be expressed stati-
cally in terms of subclassing. Therefore, we propose a type system (inspired by
the ownership type system for JavaCard [10]) that augments Eiffel’s types with
processor tags. Correctly typed programs are guaranteed to be free of atomicity

SCOOP — Concurrency Made Easy 91

violations. A type checker can check the type conformance of SCOOP programs
at compile time.

Let Typeld denote the set of declared type identifiers of a given Eiffel program.
We define the set of tagged types for a given class as

TaggedType = Processorld x Typeld

where Processorld is the set of processor tags declared in the class. Processor
tags denote processors — in a similar sense as entities denote references to
objects. Each class implicitly declares two processor tags: e (current processor)
and T (some processor). The subtype relation < on tagged types is the smallest
reflexive, transitive relation satisfying the following axioms, where « is a tag,
S,T € Typeld, and =<g;ffe denotes the conformance relation on T'ypeld:

(,T) 2 (a, 8) <= T Zgifre S (1)

(a,T) = (T.T) (2)

The extended type system allows us to reason precisely about the locality of
objects that are represented by separate and non-separate entities. Typing rules
are defined in such a way that all potential atomicity violations are eliminated
(the interleaving of pure queries is not regarded as an atomicity violation since
a pure query does not modify the state of the object it is applied to). The
typing rules are straightforward — in fact, the proper definition of the notion
of type conformance takes care of most problems. Here is an example rule (for
assignment):

I'tl:(a,T), I'kFe:=(B,5), I'F(B,9) =2 (a,T)

[Assign] I'Fl:=e

This rule is very similar to the standard Eiffel rule for assignment — both of
them state that an assignment is correctly typed if and only if the type of its
target conforms to the type of its source. The only difference is that [Assign]
relies on the extended the notion of conformance as expressed by axioms 1
and 2.

To demonstrate the improvements brought by the enhanced type system (both
in terms of safety and flexibility), we use the code examples in Figures 4 and 5.
Figure 4 shows the class code written in the original SCOOP model; Figure 5
shows the same code rewritten using the enhanced syntax that allows for explicit
declaration of object locality. Processor tags (here pI) are declared as entities of
a special type PROCESSOR. They may only appear in type annotations, e.g.
a list : separate <p1> LIST [X] (this means “ a list is handled by the proces-
sor corresponding to p1”; more formally, a list :: (pl, LIST[X])).
If the original SCOOP code, feature call element.some operation in routine r of
class C'will be invalid because it is a separate call and its target does not appear
as a formal argument of routine r, as required by the separate call rule. Never-
theless, feature call a list .item.some operation that has the same semantics as

92 V. Arslan et al.

element.some operation is treated as correct although it introduces a potential
atomicity violation. The evaluation of a list .item yields a separate object and
the subsequent application of some operation to that object should be rejected
by the compiler because there is no guarantee that the processor handling the
target of that call is reserved by the client object. Nevertheless, there is no con-
sistency rule that takes care of such cases. As a result, potentially unsafe code is
accepted by the compiler. With the new typing rules, the compiler will reject the
call a list .item.some operation because a list.item :: (T,X) and the compiler
cannot decide whether the corresponding processor (T) is locked within the scope
of the routine (see Figure 5). Therefore, the atomicity violation will be avoided.
As we can see, the new type system eliminates the sources of unsoundness in the
original SCOOP model.

On the other hand, feature s does not conform to the original consistency
rules. As a result, it is rejected by the compiler although it is perfectly safe,

class C
feature
r (a list : separate LIST [X]) is
local
element: separate X
do
element := a list .item
element.some operation —— Rejected
a list .item.some operation —— This call should be rejected too!
end

s (a list : separate LIST [X]) is
local
element: separate X
do
element := a list .item
a list . extend (element) —— This call should be accepted!
end

end
class LIST [G]
feature

item: G

—— Item at current position

extend (an element: G)
—— Add ‘an element’ to end.

end

Fig. 4. Original SCOOP code with synchronization faults

SCOOP — Concurrency Made Easy 93

i.e. it does not introduce any potential atomicity violations. This is because
the reasoning about the locality of separate objects is very restricted in the
original model — we can only say that an object is handled by the current pro-
cessor or by some processor. So, when assigning the result of a list .item to
element, we lose the information about the exact locality of element. Although
we know that element is handled by the same processor as a list (the result of
item is non-separate w.r.t. a list), the type checker cannot use that informa-
tion when checking the subsequent call to a list . extend. Feature extend expects
an argument that is non-separate w.r.t. a list, but the type checker only sees
element as being handled by some processor and therefore non-conforming to
the required type (see Figure 4). Thanks to the possibility of specifying the lo-
cality of objects through the use of processor tags, the code of routine s can be

class C

feature —— Processor tags
pl: PROCESSOR

feature
r (a list : separate LIST [X]) is

local
element: separate X

do
element := a list .item
element.some operation —— Rejected
a list .item.some operation —— Rejected

end

s (a list : separate <pI> LIST [X]) is
local
element: separate <pi1> X
do
element := a list .item
a list . extend (element) —— Accepted
end

end
class LIST [G) feature
item: G

—— Item at current position

extend (an element: G)
—— Add ‘an element’ to end.

end

Fig. 5. New type rules reveal synchronization faults

94 V. Arslan et al.

enriched (see Figure 5) so that the type-checker accepts it. We explicitly say that
element is handled by the same processor as «a list (in this case p1). The assign-
ment element := a list .item type-checks correctly because element :: (pl, X)
and a list.item :: (pl,X) — note that the type of an expression is evaluated
taking into account the locality of its target and the locality of the result type.
Similarly, the call to a list . extend (element) is correctly typed — the expected
type of the actual argument is (p1, X) and element has exactly that type. Here,
the new type system allows for an increased flexibility. The SCOOP model be-
comes much more expressive.

The augmented type system for SCOOP allows for modular checking of safety
properties. The type checker only needs to know the interface of the classes that
the currently checked class uses (as supplier or parent); it is not necessary to
consider the full program code. In order to achieve that modularity in the pres-
ence of polymorphism, we had to refine the rules for feature redefinition. We
introduced a contravariant rule for formal arguments, i.e. their processor tags
may only be preserved or generalized to T. Conversely, the rule for query results
is covariant, i.e. the processor tag may only be preserved or specialized. Note
that such specialization is only possible if the original tag is T.

3.3 Agents

Agents are used in Eiffel to “wrap” routine calls [11]. One can think of agents
as a more sophisticated form of .NET delegates. Typing agent expressions is
tricky even in a sequential context, so we expected that the integration of the
mechanism with SCOOP would be difficult. Recall that the semantics of argu-
ment passing in SCOOP is such that the processor handling a separate object
passed as an actual argument to a routine call will be locked (see section 2.3).
Nevertheless, when an agent is passed as actual argument to a feature call, we
should lock the handler of its target rather than the agent itself. Also, the types
of the actual arguments passed to an agent call must be evaluated w.r.t. the the
agent’s target; this is complicated by the fact that the arguments are wrapped
in a tuple.

We decided to treat agents as any other objects but give appropriate rules for
agent creation, so that the type of an agent expression reflects the locality of its
target. More precisely, the processor tag of the agent’s type is identical to the
processor tag of the target’s type. A special typing rule is given for agent calls —
the tuple of arguments is “stripped down” and each of its elements is considered
separately.

The proposed solution supports polymorphism. Unfortunately, it cannot be
applied to agents with an open target because the locality of the potential target
is not known at the time of agent construction. This is not an issue if the agent
under consideration is declared as non-separate. We are currently investigating
the possibility of using detachable types for typing open-target agent expressions.
Another, somewhat less satisfactory solution would be to impose a run-time
check at call time for separate agents with an open target.

SCOOP — Concurrency Made Easy 95

4 Atomicity: Transactional Semantics

Numerous fundamental impossibility results in the field of distributed systems
[12] make many of the simple approaches taken in the concurrent case simply
not viable in a typical asynchronous distributed setting. Hence, the distributed
version of the SCOOP model requires special care. We propose a transactional
extension to the initial SCOOP model in order to help programmers in the
construction of reliable distributed software.

4.1 Introduction to the Transactional Model

We propose programming language support for the specification of atomicity
properties of particular features (routines or attributes). With such support, the
application programmer is assisted by the compiler in constructing reliable dis-
tributed software. This extension to the initial SCOOP model aims at supporting
atomic features - features whose use takes either full effect or none. The rollback
capabilities introduced allows for an optimistic concurrency model and hence to
a potential increase in the level of concurrency. Some computations cannot be
rolled-backed. In order to circumvent this problem we propose to add support
for compensation. We define the concept of compensation and explain how we
provide explicit support for compensation at the language level.

Our approach builds on the extensive work which has already been done in
the field of transactional systems [13] (the concept of nested transactions has
been thoroughly explored since the seminal work of Moss [14]). Butler et al. [3]
proposed a formalization of a compensation language in CSP which influenced
the compensation scheme that we describe in this section.

4.2 Syntactic Extensions

We propose the addition of a keyword atomic to the programming language.
Routines can be declared to be atomic by replacing respectively the usual do
. end block delimiters by atomic ... end. Attribute accesses are inherently
atomic. That is, any read and write of an attribute is atomic. Calling an atomic
feature implicitly results in creating a corresponding transaction (a commit is
attempted at the end of the feature). Figure 6 illustrates the syntax.

Semantics. Naturally atomic features, like non-atomic ones, can have pre- and
postconditions. Just like in the original SCOOP model, preconditions on sep-
arate objects have wait condition semantics in the case of atomic features. An
atomic feature fails and returns with an exception if its processing encounters an
error other than a conflict with the computations performed by any concurrently
executing atomic feature (i.e., any competing transaction). The composition of
atomic features will be discussed in Section 4.3.

Inheritance and Atomicity. Inheritance is a fundamental concept for code
reuse. Redefinition of a feature should only provide equal or stronger guarantees
to a client. The guarantees provided by atomic features are clearly stronger
than those provided by non-atomic features. In others terms, atomicity is a

96 V. Arslan et al.

class BANK ACCOUNT
feature

deposit(sum: INTEGER)
require
sum >= 0
atomic
balance = balance + sum
ensure
balance = old balance + sum
end

end —— class BANK ACCOUNT

class ATM
—— An ATM client with an atomic transfer feature
feature

transfer (source: separate BANK ACCOUNT;
destination: separate BANK ACCOUNT;
sum: INTEGER)

require
sum >= 0
source. may withdraw(sum)
atomic

source. debit (sum)
destination . credit (sum)
ensure
source. balance = old source.balance — sum
destination . balance = old source.balance + sum
end
end —— class ATM

Fig. 6. Bank account and ATM with atomicity

special case of non-atomicity. This leads to the rule that features can be redefined
from non-atomic to atomic but not vice-versa. This rule will be enforced at

compilation.

4.3 Composition of Atomic Features

Nesting. Atomicity can be straightforwardly ensured if it is transitive. That
is, if all features called within atomic features are atomic themselves, one can
ensure that the (partial) effects of an atomic feature can be “undone”. A nested
call to an atomic feature can then trigger the start of a nested transaction, i.e.,

a sub-transaction [14].

SCOOP — Concurrency Made Easy 97

class CLIENT
feature

client id : INTEGER

plan holidays(agency: separate TRAVEL AGENCY;
atm: separate ATM,;
client account : separate BANK ACCOUNT)
local
ticket id : separate INTEGER REF
atomic
—— compensated call
agency. order ticket (client id) =+ agency.cancel ticket(client id)
—— atomic call
atm. transfer(client account ,agency.account,amount)

end

end —— class CLIENT

Fig. 7. Compensation example

Compensation. Constraining atomic features to calling only other atomic fea-
tures would however be overly restrictive, as it would eliminate the possibility
of including many routines whose effects can by their very nature simply not
be undone. For such situations, in which rollbacks are unfeasible, we adopt the
approach of “rolling forward” computation to compensate [3] as best as possible
for the operations that can not be undone. Calls within an atomic feature can
be issued to an atomic feature, or to any other feature if the client defines a
corresponding compensation clause. That is, the compiler will reject any atomic
features that contains calls to non-atomic features for which no compensation
clause is mentioned.

Syntactically, a compensation clause is demarked by separating it from associ-
ated feature through a character ‘+’. Consider the example in Figure 7. A client
orders a ticket from a travel agency (a non-atomic operation where the obvious
parameters such as departure date, destination etc. are omitted for simplicity).
The code declares a command call to the same travel agency to cancel a possi-
bly issued ticket in case of a transaction abort. Let’s assume that the command
call to order ticket completed successfully. Its corresponding compensation op-
eration will be listed in the sequence of compensation routines to be called in
case of a rollback. If the ATM fails for some reason before the final commit,
the processor executing the call to the routine plan holidays will execute the
compensation routines in the reverse of the order in which they were defined.
In this case, this simply results in calling the travel agency to cancel the ticket
order.

98 V. Arslan et al.

Limitations of Compensation. Depending on the application and on the spe-
cific operations performed, a compensation can not always recover completely
the initial state (the state at the beginning of the transaction). It is thus impor-
tant to note that compensation is not a perfect solution, but is more a trade-off
that allows to partially tackle the problem of non-recoverable actions. It should
also be emphasized that the goal of compensation is not to replace the usual
exception mechanisms (see [15]).

5 Predictability: A Real-Time Event Library

The ability to model periodic, sporadic and aperiodic tasks in a way ensuring
their timing constraints such as worst-case execution time (WCET), deadline and
periodicity is a major concern in embedded real-time programming. Through the
use of our real-time event library (RTEL) based on SCOOP the predictability of
such embedded real-time programs can be achieved, while retaining the advan-
tages of modular development and reasoning of object-oriented languages and
the benefit of event-driven programming.

5.1 Overview

The basic goal of RTEL is to support the modelling of periodic, sporadic and
aperiodic tasks. RTEL is built on top of an existing event library ([4]) designed
initially without concurrency and real-time concerns in mind. In order to model
e.g. a periodic task using RTEL the following steps must be carried out:

— The publisher creates an event type

— The subscriber subscribes an object (which is called subscribed object) to an
event type

— The publisher publishes an event

Following our previous ([4]) and recent work ([16]) we use a small sample
application to show the basic capabilities of the concurrent event library for em-
bedded and real-time programming. The details of the RTEL have been omitted
due to space limitations, but they can be found in [16]. In our simple applica-
tion we want to observe the temperature, humidity, and pressure of containers
in a chemical plant. The measurements are supposed to originate from external
physical sensors. Whenever the value(s) of one or more measured physical at-
tributes change(s), the concerned parts of our system (e.g. an actuator and/or
display units) are notified, so that they can update the values or take appropriate
actions.

Now assume that in our example we would like to control a certain actuator,
e.g., a valve which adjusts the heater according to temperature changes. Since
the temperature can change at any time, it is modeled using a periodic task (i.e.
a real-time task which is activated regularly at fixed rates/periods [17]). In order
to model a periodic task, the timing constraints periodicity 7', the deadline d
and the WCET c¢ (cost) must be specified. The deadline d is the point in time by

SCOOP — Concurrency Made Easy 99

class SENSOR
feature — Access

temperature: INTEGER

—— Container temperature

set temperature (t: INTEGER)

—— Set temperature to t.
feature — FEvents

temperature event: separate EVENT TYPE [TUPLE [INTEGER])
—— Event associated with attribute temperature

end — class SENSOR

Fig. 8. SENSOR

which a real-time job must be completed, where a job is defined as an instance
of a task [17]). The WCET is the maximum amount of time needed to finish a
task. Assume that the periodicity is 7' = 10 ms, ¢ = 5 ms, and d = T' = 10 ms.
This means that every 10 ms the task is released anew, assuming that the total
time needed for reading the temperature value from the physical temperature
sensor and for the actuator to perform the necessary actions is ¢ = 5 ms.

5.2 Creating an Event Type

Class SENSOR (Figure 8) is an abstraction of a sensor that measures among
others the temperature.
Furthermore, an event type temperature event corresponding to the change of

attribute temperature (through the feature set temperature) is defined in class
SENSOR as follows:

temperature event: separate EVENT TYPE [TUPLE [INTEGER]]

The temperature event is defined using the class EVENT TYPE, declared
as EVENT TYPE [EVENT DATA — TUPLE]. It is a generic class with con-
strained generic parameter FVENT DATA representing a tuple of arbitrary
types. In the case of temperature event, the value of this generic parameter is
TUPLE [INTEGER] since the actual event data (i.e., temperature value) is of
type INTEGER [4]. Note that other attributes such as humidity and pressure
have been omitted due to space limitations.

The keyword separate reflects the concurrent nature of the temperature
event. In this context, the object to which the attribute temperature event is
attached will be handled by a different processor than the processor of the
object declaring temperature event. As a consequence, all feature calls on the
temperature event attribute will be executed asynchronously.

100 V. Arslan et al.

After having declared temperature event in class SENSOR, we should make
sure that the corresponding event is published whenever the temperature
changes. Feature set temperature of class SENSOR performs the following call
for this purpose:

call temperature (temperature event, [temperature])

An instance of class SENSOR is a publisher of the temperature event
temperature event.

5.3 Subscribing to an Event Type

Our example includes two further classes, which will subscribe to the event
published by SENSOR. First, we introduce class ACTUATOR with the feature
adjust valve (t: INTEGER). An instance of ACTUATOR is a subscribed ob-
ject: it reacts to the published events by executing the corresponding routine,
e.g. adjust valve.

Second, we introduce class CONTROLLER, which is in charge of subscrib-
ing the feature adjust valve of class ACTUATOR listed above to the corre-
sponding event type temperature event. An instance of class CONTROLLER

is a subscriber. In order to subscribe feature adjust valve of actuator (of
type ACTUATOR) to event type temperature event, the subscriber (instance of
CONTROLLER) makes the following call:

sensor.temperature event. subscribe periodic
(..., agent actuator.adjust valve (7), ...)

As a result, feature adjust valve of actuator will be called each time tem-
perature event is published. The actual argument of feature subscribe periodic
(actually subscribe periodic has five formal arguments) in class EVENT TYPE
is a so-called agent which can be roughly viewed as a function pointer. The ques-
tion mark reflects an open argument that will be filled with concrete event data
(a value of type INTEGER here) when feature adjust valve is actually executed
[11]. To be more precise, the first formal argument of subscribe periodic requires
actually another agent expression; the complete feature call tosubscribe periodic
is thus:

if semsor.temperature event. subscribe periodic
(agent physical sensor.read and set temperature,
agent actuator. adjust valve (7), 10, 10, 5) then

—— here periodic subscription was successful .
end

Note that class PHYSICAL SENSOR is responsible for accessing the low-
level device, i.e., the physical sensor for reading the temperature, humidity, and
pressure. Class SENSOR (representing a software sensor) on the other hand is
more abstract and hence application-specific, e.g. it adds event types such as
temperature event, humidity event, and pressure event.

SCOOP — Concurrency Made Easy 101

5.4 Publishing an Event

By executing set temperature (of class SENSOR) through physical sensor, the
temperature event temperature event (in class SENSOR) will be published. The
event type guarantees (by relying on an appropriate scheduler) that the agent
physical sensor.read temperature is released every T = 10 ms. In order to do
this, the feature subscribe periodic of class EVENT TYPEFE returns a boolean
value to indicate that class EVENT TYPE can indeed fulfill the subscription
with the specified timing constraints 7' = 10 ms, d = 10 ms, and ¢ = 5 ms. If
this is infeasible, the return value will be false, and the subscription will not take
place.

6 Conclusions and Future Work

We have presented the SCOOP model for concurrent object-oriented program-
ming. SCOOP offers a comprehensive approach for building high-quality concur-
rent and distributed systems. The simplicity and expressive power of the model
is achieved by taking object-oriented programming in a simple and pure form,
based on the concepts of Design by Contract that have proved highly successful
in improving the quality of sequential programs, and extending them in a mini-
mal way to cover concurrency and distribution. The mechanism largely derives
from examining the consequences of the notion of contract in a non-sequential
setting. The model is applicable to many different physical setups, from multipro-
cessing to multithreading, network programming, Web services, highly parallel
processors for scientific computation, and distributed computation.

We have proposed three refinements of SCOOP whose purpose is to improve
the crucial aspects of the model: safety, predictability, support for atomicity. We
achieve safe concurrency through the use of an augmented type system that
refines and formalizes the separateness consistency rules to statically eliminate
synchronization defects. We also provide a support for transactional semantics
of features. Finally, we present an event library for programming real-time con-
current tasks within the SCOOP framework.

We are currently working on several mechanism that have not been discussed
in this paper. In particular, we want to reduce the amount of necessary locking
by allowing the interleaving of pure query calls made by different clients, and
use detachable types to better express the need for locking. We are planning to
provide a uniform treatment of exceptions in sequential and concurrent contexts.
We are also investigating the feasibility of providing specific support for aperiodic
real-time tasks.

Acknowledgements

We are very grateful to the Hasler Foundation who provided the financial support
for the SCOOP project. We would also like to thank the Swiss National Science
Foundation and Microsoft Research for their support.

102

V. Arslan et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Meyer, B.: Systematic Concurrent Object-Oriented Programming. Communica-

tions of the ACM 36 (1993) 56-80

. Meyer, B.: Object-Oriented Software Construction. Second edn. Prentice Hall

(1997)
Butler, M., Hoare, C., Ferreira, C.: A Trace Semantics for Long-Running Trans-
actions. In: 25 Years Communicating Sequential Processes. (2004) 133-150

. Arslan, V., Nienaltowski, P., Arnout, K.: Event Library: An Object-Oriented Li-

brary for Event-Driven Design. In: Joint Modular Languages Conference on Mod-
ular Programming Languages (JMLC 2003). (2003) 174-183

Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.M.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys 35 (2003) 114-131

Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K.R.M.,
Poll, E.: An Overview of JML Tools and Applications. Eighth International Work-
shop on Formal Methods for Industrial Critical Systems (FMICS ’03) (2003)
Mike Barnett and K. Rustan M. Leino, and Wolfram Schulte: The Spec# Pro-
gramming System: An Overview. In: CASSIS 2004. Springer (2004)
Nienaltowski, P., Arslan, V., Meyer, B.: Concurrent object-oriented programming
on .NET. IEE Proceedings - Software 150 (2003) 308-314

Caromel, D.: Towards a Method of Object-Oriented Concurrent Programming.
Communications of the ACM 36 (1993) 90-102

Dietl, W., Miiller, P., Poetzsch-Heffter, A.: A type system for checking applet iso-
lation in Java Card. In Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean,
T., eds.: Construction and Analysis of Safe, Secure and Interoperable Smart devices
(CASSIS). Volume 3362 of Lecture Notes in Computer Science., Springer-Verlag
(2004) 129-150

ECMA: Eiffel Analysis, Design and Programming Language. ECMA Standard 367
(2005)

Fich, F.E., Ruppert, E.: Hundreds of Impossibility Results for Distributed Com-
puting. Distributed Computing 16 (2003) 121-163

Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann Pub-
lishers, San Francisco, CA (2002)

Moss, J.E.B.: Nested Transactions: an Approach to Reliable Distributed Comput-
ing. Technical Report 260, Massachusetts Institute of Technology, Laboratory for
Computer Science (1981)

Vaucouleur, S., Eugster, P.: Atomic Features. In: Proceedings of the Workshop on
Synchronization in Concurrent Object-Oriented Languages (SCOOL), OOPSLA.
(2005)

Arslan, V., Eugster, P.: Modeling Embedded Real-time Applications with Objects
and Events (to appear). In: Proceedings of the 3rd Workshop on Object-Oriented
Modelling of Embedded Real-Time Systems (OMER-3). (2005)

Brega, R.: A Combination of System Software Techniques Aimed at Raising the
Runtime-Safety of Complex Mechatronic Applications. PhD thesis, ETH Zurich,
Switzerland (2002)

Scalable Programming Abstractions
for XML Services

Burak Emir, Sebastian Maneth*, and Martin Odersky

School of Computer and Communication Sciences
EPFL, CH-1015 Lausanne, Switzerland
burak.emir@epf.ch, sebastian.maneth@nicta.com.au,
martin.odersky@epfl.ch

Abstract. Traditional programming paradigms and styles do not lend
themselves easily to XML services. This has led to engineered systems
that are characterized by a mix of special purpose and general purpose
languages. Such systems are brittle, hard to understand and do not scale
well - hence they are not dependable. We describe some facets of the
Scala programming language targeted at XML services that unify the
disparate worlds through a judicious combination of existing and new
programming language constructs. More concretely, we describe use cases
of case classes, regular pattern matching and comprehensions. Programs
that use these abstractions can deliver XML services in a scalable and
manageable way. We discuss the essential design decisions we took, the
experience we gained during development, and identify directions of fur-
ther research.

1 Introduction

Service-orientation is an emerging paradigm that promises a deep impact on pro-
gramming. Similar to the rise of object-oriented systems when graphical user in-
terfaces became the norm, service-oriented systems are motivated by two strong
trends: the move from single-machine, homogeneous execution environments to
distributed and heterogeneous ones, and the move from fine-grained and propri-
etary transmission formats to coarse-grained, standardized and semistructured
ones.

The reasons behind this paradigm shift lie in new challenges posed by pro-
gramming applications and services for the internet. For the last 20 years, the
most common programming model has been object-oriented: System components
are objects, and computation is done by method calls. Methods themselves take
object references as parameters. This is a beautifully simple abstraction, which
describes computation adequately as long as we are dealing with a single com-
puter. At first, it seems that the concept of remote method calls lets one extend
this programming model to distributed systems. However, this approach does
not scale up well to wide-scale networks where messages can be delayed and
components may fail.

* Present address: National ICT Australia, Kensington NSW 1466, Australia.

J. Kohlas, B. Meyer, and A. Schiper (Eds.): Dependable Systems, LNCS 4028, pp. 103-126, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

104 B. Emir, S. Maneth, and M. Odersky

Web services address the message delay problem by increasing granularity,
using method calls with larger, structured arguments, typically represented as
XML data. They address the failure problem by using transparent replication
and avoiding server state. Conceptually, they are tree transformers that consume
incoming message documents and produce outgoing ones.

Should this paradigm shift have an effect on programming languages? There
are at least two arguments that suggest this: First, today’s object-oriented lan-
guages are not very good at analyzing and transforming structured data, such
as XML trees. Since such trees usually contain only fields but no methods, they
have to be decomposed and constructed from the “outside”’, that is from code
that is external to the tree definition itself. In an object-oriented language, the
ways of doing so are limited. In the most common solution (characterized by
W3C’s Document Object Model [16]), all tree nodes are values of a common
type. This makes it easy to write generic traversal functions, but forces appli-
cations to operate on a very low conceptual level, which often loses important
semantic distinctions present in the XML data. More semantic precision is ob-
tained if different internal types model different kinds of nodes. But then tree
decompositions require the use of run-time type tests and type casts to adapt
the treatment to the kind of node encountered. Such type tests and type casts
are generally not considered good object-oriented style. They are rarely efficient,
and not easy to use.

By contrast, tree transformation is the natural domain of functional languages.
Their algebraic data types, pattern matching and higher-order functions make
these languages ideal for the task. It’s no wonder, then, that specialized languages
for transforming XML data such as W3C’s XSLT [16] are functional.

The second reason for the popularity of functional languages in web-service
programming is the fact that handling mutable state is problematic in this set-
ting. Components with mutable state are harder to replicate or to restore after a
failure. Data with mutable state is harder to cache than immutable data. Func-
tional language constructs make it relatively easy to build components without
mutable state.

Many web services are constructed by combining different languages. For in-
stance, a service might use XSLT to handle document transformation, XQuery
for database access, and Java for the “business logic”. The downside of this
approach is that the necessary amount of cross-language glue can make appli-
cations cumbersome to write, verify, and maintain. A particular problem is that
cross-language interfaces are usually not statically typed. Hence, the benefits of
a static type system are missing where they are needed most — at the join points
of components written using different paradigms.

Conceivably, the glue problem could be addressed by a “multi-paradigm” lan-
guage that would express object-oriented, concurrent, as well as functional aspects
of an application. But one needs to be careful not to simply replace cross-language
glue by awkward interfaces between different paradigms within the language it-
self. Ideally, one would hope for a fusion which unifies concepts found in different

Scalable Programming Abstractions for XML Services 105

paradigms instead of an agglutination, which merely includes them side by side.
This fusion is what we try to achieve with the Scala programming language [13].

Scala is both object-oriented and functional. It is a pure object-oriented lan-
guage in the sense that every value is an object. Types and behavior of objects
are described by classes. Classes can be composed using mixin composition. Scala
is designed to work seamlessly with two mainstream object-oriented languages
— Java and C#-.

Scala is also a functional language in the sense that every function is a value.
Nesting of function definitions and higher-order functions are naturally sup-
ported. Scala also supports a general notion of pattern matching which can
model the algebraic types used in many functional languages. Furthermore, this
notion of pattern matching naturally extends to the processing of XML data.

In this paper, we focus on the elements that make Scala suitable for pro-
gramming web services and applications. These are in particular its support for
pattern matching, with its specialization to XML data, as well as its support for
higher-order functions, with for-comprehensions as a convenient front-end syn-
tax for querying. Other innovations of Scala, which have to do with component
abstraction and composition, are described elsewhere [14].

Related Work

There has been extensive research in general purpose languages that tackle data
integration and concurrency in innovative ways, yet retain some form of static
type safety.

The designers of the research language Mawl 2] have introduced a notion of
forms and a notion of session with the goal to produce valid HTML services.
Their form language is a custom extension of HTML, and the language ensures
that only valid HTML is sent to the client.

Sessions were taken up by the authors of Bigwig [5] and its successors JWig [6].
While the former is aimed at HTML, the latter provides more general
XML transformations, while keeping the statically checked validity guarantees.
Widespread use of JWig seems however inhibited because of its reliance on a
particular validation language.

Bierman et al. propose Cw [4] an object-oriented language in which an over-
loaded dot operator can be used for XPath like querying. Distribution is ap-
proached by chords, which in turn are based on the join calculus. This language
furthermore integrates Benton et al.’s concurrency abstractions for C# [3].

XJ [11] is an extension to Java that aims at binding types from XML schemata
and providing XPath primitives in an imperative context. XPath expressions
are used for bulk updates, and a combination of static analysis techniques and
runtime checks is used to guarantee type safety.

Xtatic [10] is an extension to C# that introduces regular expression types
and sophisticated runtime representation of XML values. Programmers can take
advantage of the underlying .NET concurrency model.

Our work in data binding is similar to the approach Wallace and Runciman
take for Haskell XML integration [17]. The authors create specialized type defi-
nitions from a given DTD.

106 B. Emir, S. Maneth, and M. Odersky

The W3C has standardized the XSLT and XQuery languages [16] for transfor-
mation and querying of XML. The former was intended as a language for simple
transformations but quickly grew beyond its initial goal. The latter is designed
as the XML equivalent of the database-hosted structured query language (SQL).
Both languages are functional in the sense that they do not permit imperative
update of XML trees.

The rest of this paper is structured as follows. Section 2 gives an introduction
to case classes and pattern matching; these features, known from the functional
programming domain, are useful for handling algebraic datatypes and structured
data in particular. Section 3 is the core section of this paper; it describes the
XML library of Scala. Starting with the XML data model in Scala, it describes
parsing and validation, regular sequence pattern matching, and querying XML
using for comprehensions. Section 4 shows two examples of simple XML services,
and their implementation in Scala. When dealing with more advanced service
architectures one will have to deal with concurrent requests and events. Scala’s
programming abstractions for concurrency are shortly described in Section 5.
Section 6 concludes.

2 Case Classes and Pattern Matching

In this section we start by recalling the conventional, object-oriented way of de-
composing data. Then we introduce case classes and describe the semantics of pat-
tern matching. Finally, regular sequence patterns are discussed; as will be seen in
the next section, these are particularly useful for decomposing XML data.

2.1 Object-Oriented Decomposition

When dealing with structured data, a common object-oriented design pattern is
to create a set of classes, some of which act as structural containers for others
(cf. the Composite pattern [9]). For inspecting structured data, a programmer
can solely rely on virtual method calls of methods provided by such classes.

As an example, consider a simple evaluator for propositional logic, consist-
ing of propositional variables and connectives. We can decompose the evaluator
according to the term structure as follows:

trait Term {
def eval(env: Array[Boolean]): Boolean;
}
class True() extends Term {
def eval(env: Array[Boolean]) = true;
}
class Var(i: Int) extends Term {
def eval(env: Array[Boolean]) = env(i);
}
class Not(term: Term) extends Term {
def eval(env: Array[Boolean]) = !term.eval(env);

3

Scalable Programming Abstractions for XML Services 107

class And(left: Term, right: Term) extends Term {
def eval(env: Array[Boolean]) = left.eval(env) && right.eval(env);
}

The given program models propositional formulas with an abstract class (called
trait) Term which defines a deferred eval method that takes an environment as
a parameter. Concrete subclasses of Term model the various term variants. Note
that the compiler has enough information to infer the result type, it is thus
omitted for brevity.

This object-oriented decomposition scheme generally requires the anticipation
of all operations traversing a given structure. Moreover, non-local inspections
cannot be implemented by one method alone, several dispatches are necessary.
Often internal methods have to be exposed to some degree. Adding new methods
is tedious and error-prone, because it requires all classes to be either changed or
subclassed. A related problem is that implementations of operations are dis-
tributed over all participating classes making it difficult to understand and
change them.

The Visitor pattern [9] can be used to separate operations from structure,
however, it still breaks encapsulation, it does not deal with non-local inspections
either and requires significant amounts of boilerplate code.

2.2 Pattern Matching over Class Hierarchies

Functional languages like ML and Haskell have embraced algebraic datatypes
for the purpose of separating structure from operations. Operations on such
datatypes are simply functions which use pattern matching as the basic decom-
position principle. Such an approach makes it possible to implement a single
eval function without exposing artificial auxiliary functions.

Scala provides a natural way for tackling the above programming task in a
functional way by supplying the programmer with a mechanism for creating
structured data representations similar to algebraic datatypes and a decompo-
sition mechanism based on pattern matching.

Instead of adding algebraic types to the core language, Scala enhances the
class abstraction mechanism to simplify the construction of structured data.
Classes tagged with the case modifier automatically define a constructor with
the same arguments as the primary constructor. Singleton objects (or objects,
for short) are classes that have only one instance, hence serve as constants:

abstract class Term ;

case object True extends Term ;

case class Var(i: Int) extends Term ;

case class Not(term: Term) extends Term ;

case class And(left: Term, right: Term) extends Term ;

Given these definitions, it is now possible to create the propositional formula x; A
—(—x2 A x3) without using the new primitive, simply by calling the constructors
associated with case classes: And(Var(1l), Not(And(Not(Var(2)), Var(3)))).
The fields of each case class can be accessed with the usual dot notation, e.g. as

108 B. Emir, S. Maneth, and M. Odersky

in x.left. Furthermore, Scala’s pattern matching expressions provide a concise
means of decomposition that uses these constructors as patterns:

def eval(term: Term, env: Array[Boolean]): Boolean = term match {

case True => true;
case Var(i) = env(i);
case Not(t) = leval(t, env);

case And(left, right) => eval(left, env) && eval(right, env); }

Note that apart from the pleasing localization of the intended behavior in one
method, there is now a way to change the representation of environments to
bitfields without needing to touch the source code of the Term classes. More-
over, it becomes easy to perform non-local inspections through the use of nested
patterns as happens in the following function.

def simpl(term: Term): Term = term match {

case True | Var() = term
case Not(Not(x)) => simpl(x)
case Not(x) => Not(simpl(x1))

case And(left, right) => And(simpl(left), simpl(right)) }

The matching expression z match { case pat, => e; case pat, => ez ...}
matches value x against the patterns pat;, pat,, etc. in the given order. The
value x is called the scrutinee. A pattern pat; is a term built up from variables,
case class constructors, and some predefined match primitives (like the wild-
card _ and the choice operator |). To match the scrutinee against pat,, pats,
etc. means to find the first pattern pat; that can be made equal to by bind-
ing its variables to terms appropriately. If such a pattern is found then e; is
executed, after replacing in e; each variable of pat, by its binding. If no such
pattern is found, then a run time error is generated. The wildcard pattern _
matches any value. Choice patterns p;|p2 may not contain variables and match
the union of values that are matched by their subpatterns. A constructor pattern
Constr(p1, ..., pn) matches any value that is an instance of the corresponding case
class, and whose arguments match the arguments patterns. Hence, patterns can
be terms of arbitrary depth (cf. the pattern Not(Not(x)) in the function simpl.

Such a functional decomposition scheme has the advantage that new functions
can be added easily to the system. On the other hand, integrating a new case
class might require changes in all pattern matching expressions. For extensibility,
the Scala compiler does not check exhaustiveness of patterns, meaning to ensure
that any scrutinee must match at least one of the patterns. For the moment it
neither checks redundancy, i.e. when a pattern can never match due to a more
general earlier pattern. We plan to add redundancy checks in the future.

Patterns in Scala are linear in the sense that a variable may appear only once
within a pattern. However, it is possible to add to a pattern p a “guard”, i.e.,
an if expression that involves the variables of pat. For instance, the pattern
case And(x, y) if x == y matches only terms of the form And(t, t). Hence,
using such equality guards it is possible to express arbitrary constraints between
variables.

Scalable Programming Abstractions for XML Services 109

The case modifier can appear anywhere on a class hierarchy. It is possible to
extend a case class, and case classes can extend non-case classes, which enables
more involved designs than the flat one presented above. The only restriction
that applies is that a case class may not directly or indirectly be derived from
another case class.

2.3 Regular Sequence Pattern Matching

The case class declarations introduced above determine the exact number of con-
tained objects, similar to a function declaration determining the exact number of
arguments. But often programmers need to deal with a number of sequence ele-
ments that is not known in advance. This can be done using sequence parameters.

The last parameter of a formal parameter list can be turned into a sequence
parameter by marking its type T with a star (x), which is a shorthand for
the type Seq[T']. This works for case class declarations as well as for function
declarations. The example from above can thus be extended with a conjunction
over an arbitrary number of terms as follows:

case class BigAnd(terms: Term+) extends Term ;

The field terms is of the type Seq[Term]. The Seq trait offers functionality to
obtain the length of the sequence, to access its elements, and to iterate over
them. Such a sequence parameter offers syntactic convenience by permitting an
arbitrary number of arguments in function and constructor calls. A conjunction
over an arbitrary number of terms like —x1 A 22 A x3 can now be expressed as
BigAnd(Not(Var(1)),Var(2),Var(3)).

The following code transforms BigAnds into a series of Ands.

def toAnd(b:BigAnd): Term = {
val it = b.terms.elements;
var t = True;
while(it.hasNext) { t = And(it.next, t); }
return t; }

In practice, the data to be passed to the constructor may often already
be in some sequence representation. In this case, a sequence escape is used
to guide the compiler. The code val xs = List(Not(Var(1)),Var(2),Var(3));
BigAnd(xs:_*) constructs the same conjunction as above, using the sequence
escape xs:_*. If the annotation were missing, the compiler would signal a type
error since xs of type Seq[Term] cannot be used as a Term.

Let us now discuss how sequences can be decomposed, using pattern matching.
A regular sequence pattern is a regular expression that possibly is annotated
with variable bindings [8]. A variable binding is written x@p where p is a regular
pattern that may not contain other variable bindings. For regular expression
constructs we use the following standard notations;

— concatenation: p,p concatenates sequence patterns
— the star operator: p* denotes zero or more occurrences of p

110 B. Emir, S. Maneth, and M. Odersky

— the plus operator: p+ denotes one or more occurrences of p
— the option operator: p? denotes p or the empty sequences.

A choice pattern is a sequence pattern if one of its branches is a sequence pattern.
Variables binding a sequence pattern that matches elements of some type T are
of type Seq[T].

Regular patterns can be applied to sequences of any type, not just case classes.
Here is an example of a text-processing task using regular patterns:

def findRest(z: Seq[Char]): Seq[Char] = z match {

case Seq(_*, 'G’, ’o’, 'o’«, 'g’, ’1’, ’'e’, rest@(_x)) => rest }

This pattern is used to search for the sequence of letters "Gogle" or "Google",
or If the input z matches, then the function returns what remains after the
occurrence, otherwise it generates a runtime error. Possible ambiguities (e.g., for
several occurrences of ’Goo*gle-words’ in z) are resolved using the (left) shortest
match policy which chooses the shortest match for each possibility (such as
_+*), coming from the left. In the example this coincides with matching the first
occurrence of "Gooxgle" in the input z.

As (conventional) pattern matching is well suited for decomposing ranked
trees (i.e., trees in which each node has a fixed number of children), regular
sequence pattern matching is the counterpart for decomposing unranked trees.
As we will see in the following section, regular sequence pattern matching is
particularly useful in the context of XML, because XML documents are naturally
modeled as unranked trees.

3 XML Facilities in Scala

XML [16] has emerged as the lingua franca of the web. Henceforth, all major pro-
gramming languages are providing, in varying degrees, support to handle XML
data. XML documents describe tree-structured data. Functional programming
languages, starting with Lisp, have always been particularly well-suited in deal-
ing with trees and tree-structured data. It therefore comes as no surprise that
Scala with its functional features is well-suited for XML processing.

The next two subsections describe basic features of XML processing in Scala:
our data model of XML, how to express XML documents in Scala code, how
to parse XML documents, and how to validate a document against a given
schema while parsing. Then, in Section 3.3 we describe how regular sequence
pattern matching can be applied to XML data. After a short discussion on
namespaces and attributes, section 3.5 describes how to express XML queries
with for comprehensions. Finally, we show how to realize queries on XML data,
using Scala’s elegant concept of for comprehensions.

3.1 Data Model

We give an introduction to Scala’s XML data model by contrasting it with the
W3C’s Document Object Model (DOM), which is characteristic for a number

Scalable Programming Abstractions for XML Services 111

<?xml version="1.0"7>
<purchaseOrder orderDate="1999-10-20">
<shipTo country="US">
<name>Alice Smith</name> <street>123 Maple Street</street>
<city>Mill Valley</city> <state>CA</state> <zip>90952</zip>
</shipTo>
<billTo country="US">
<name>Robert Smith</name> <street>8 Oak Avenue</street>
<city>01ld Town</city> <state>PA</state> <zip>95819</zip>
</billTo>
<comment>Hurry, my lawn is going wild!</comment>

<items>
<item partNum="872-AA">
<productName>Lawnmower</productName> <quantity>1</quantity>
<USPrice>148.95</USPrice> <comment>Confirm this is electric</comment>
</item>

<item partNum="926-AA">
<productName>Baby Monitor</productName> <quantity>1l</quantity>
<USPrice>39.98</USPrice> <shipDate>1999-05-21</shipDate>
</item>
</items>
</purchaseOrder>

Listing 1.1. Extract from XML document

of related object-oriented XML data models. The DOM has been implemented
in several programming languages, including Java. We will also compare code
written using Java and DOM with code written using Scala.

i

v vl [y v
productName 2 quantity 2 USPrice < shipDate
v v v
"Baby Monitor" "1 "39.98" "1999-05-21"

Fig. 1. DOM of a purchase order item

Consider the XML fragment in Listing 1.1. It shows a purchase order con-
sisting of two items. The tree structure inherent in such a purchase order is
essentially an unranked, ordered tree. Within DOM, such tree structures are
doubly-linked: there are pointers to each child of a node and back, and pointers
from each node to its next and previous sibling. Figure 1 depicts the DOM tree
structure of a purchase order.

From a programmer’s perspective the availability of many tree pointers
(parent-child, child-parent, next-sibling, previous-sibling) might offer high flex-
ibility. However, code that uses parent and previous-sibling pointers is hard to

112 B. Emir, S. Maneth, and M. Odersky

import org.w3c.dom.Document;
import org.w3c.dom.Element;

//Retrieve the Document object

DocumentBuilder fact = DocumentBuilderFactory.newInstance().newDocumentBuilder();
Document po = fact.parse(new File("po.xml"));

Element root = po.getDocumentElement();

//Retrieve all partNums and compute the grand total for the purchase order
double total = 0;
NodeList children = root.getChildNodes();
for (int i = 0; i < children.getLength(); i++) {
Node node = children.item(i);
//Find the items child element
if ("items".equals(node.getLocalName())) {
NodeList itemList = node.getChildNodes();
for (int j = 0; j < itemList.getLength(); j++) {
Node item = itemList.item(j);

//Get the partNum attribute value
NamedNodeMap attrs = item.getAttributes();
System.out.println("partNum:" + attrs.getNamedItem("partNum"));

//Find the USPrice child element
NodeList itemChildren = item.getChildNodes();
for (int k = 0; k < itemChildren.getLength(); k++) {
Node child = itemChildren.item(k);
if ("USPrice".equals(child.getLocalName()) {
total += Double.valueOf(child.getNodeValue()).doubleValue();
Frril
System.out.println("Grand_total =" + total);

Listing 1.2. Processing with Java and DOM

read and possibly introduces circularities thus leading to nontermination. More-
over, it increases the footprint of DOM: (1) DOM representations are very mem-
ory costly (usually at least 4-5 times the space of the original XML document
on disk) and (2) program code using DOM is overly verbose.

In contrast, Scala has a much thinner model of XML: an XML document
is seen as an immutable, ordered (singly-linked) unranked tree. This model
agrees with the functional view of a tree in which no pointers to parent or
previous-sibling nodes are provided. Programmers can obtain those nodes by
storing them in temporary variables upon a traversal. Two major advantages
of this representation are (1) memory efficiency (usually around 1-2 times the
space of the original XML document on disk) and (2) clean, concise program
code.

Before describing the library classes, we demonstrate the latter point consider
as example simple programming task over the purchase order data. We want to

Scalable Programming Abstractions for XML Services 113

import scala.xml.XML;

val doc = XML.loadFile("po.xml");

var total = O;

for(val z <- doc \\ "item";

val v <- z \ "USPrice") {

Console.println("partnum: " + z \ "@partNum");
total = total + Double.valueOf(y.text)

}

Console.println("Grand total " + total);

Listing 1.3. Processing with Scala

— collect the partNum attributes and
— compute the sum of the prices in the USPrice elements.

Using DOM within Java, this task is realized by the code shown in Listing 1.2.
Each node is mapped to an object, whose children are accessed by obtaining
a NodeList using the getChildNodes() method, and then accessing each child
using a call like item(i). The label of a node is accessed via the getLocalName ().

A corresponding Scala code is shown in Listing 1.3. It uses a for comprehension
to search for all pairs (z,y) such that z is an item-node and v is a USPrice-child
of z. For comprehensions are explained in detail in Section 3.5.

The Node class embodies Scala’s tree model of XML. It describes the com-
ponents of an XML node, namely the namespace prefix, the label, a pointer to
the namespace bindings in scope, the attributes and the children. This library
class provides also methods for XML serialization, namespace/attribute lookup,
XPath selection etc.

abstract class Node extends NodeSeq {

def prefix: String;

def label: String;

def scope: NamespaceBinding ;
def attributes: MetaData;

def child: Seq[Node]; ... }

NodeSeq is a wrapper class that acts as a proxy for an arbitrary sequence of nodes
— this can be a list, an array, or any other custom representation (a single Node
acts as a singleton sequence). It adds methods \ and \\ than can be used like
corresponding XPath operators / and //.

abstract class NodeSeq extends Seq[Node] {
def \(that: String): NodeSeq = {...}
def \\(that: String): NodeSeq = {...} }

Note that the operators \\ and \ are not build-in operators of the Scala
language, but, are just ordinary methods, since operator characters can be used
as method names. Scala resolves an expression of the form a id b into the more
familiar a.id(b). A fixed precedence scheme guides the parser and determines
in which direction operations associate.

114 B. Emir, S. Maneth, and M. Odersky

Concrete subclasses of Node exist for elements, text nodes, comments, process-
ing instructions, and entity references. The informed reader might wonder about
namespace and root nodes — the root node is represented by a class Document, and
namespace nodes are instances of NamespaceBinding which is described further
down.

Elements are by default represented using the scala.xml.Elem class, which is
— not surprisingly — a case class. The accessor methods for the constructor argu-
ments provide exactly the methods required by the superclass scala.xml.Node.

case class Elem(prefix: String, label: String, attributes: MetaData,
scope: NamespaceBinding, child: Node*) extends Node { ... }

3.2 Literals, Parsing, and Validation

XML syntax can be used directly in a Scala program, e.g., in value definitions.

val labPhoneBook =
<phonebook>
<descr>Phone numbers ofXML hackers.</descr>
<entry>
<name>Burak</name>
<phone where="work'"> +41 21 693 68 67 </phone>
<phone where="mobile"> +41 78 601 54 36 </phone>
</entry>
</phonebook>;

The value 1abPhoneBook is an XML tree; for instance, one of its nodes has the
label phone, a child sequence consisting of a single text node labeled by +41 2. .,
and a map from the attribute key where to the value "work". Within XML syntax
it is possible to escape to Scala using the brackets { and } (similar to the conven-
tion used in XQuery). For example, a date node with a child text node consisting
of the current date can be defined by <date>{ df.format(new java.util.Date())
}</date>.

Parsing XML data is done by means of the load method of the object
scala.xml.XML. Scala’s XML parser is of course entirely written in Scala, and is
also used to parse the XML literals described above. The XML standard actually
describes two variants of XML parsers — the validating and the non-validating
ones. The parser library parser provides support for validation, which can be
enabled as shown in the following lines.

val fil = new java.io.File("data.xml");
val prs = new scala.xml.parsing.ConstructingParser (fil, true)
with ValidatingMarkupHandler ; // true = preserve whitespace

prs.nextch; // initialize parser

val d = prs.document(); // returns Document instance
val elem = d.docElem;

val dtd = d.dtd;

The above code is a case of so-called mixin composition: a mixin class
ValidatingMarkupHandler overrides certain members of the existing class

Scalable Programming Abstractions for XML Services 115

ConstructingParser, changing their behavior from non-validating to validating.
In general, mixin composition is a flexible means to pull together pieces of code
that have been factored out into components [14].

The user also has the possibility to connect an event handler to the parser,
which gets called back whenever a subelement has been successfully parsed. This
allows to traverse the document without necessarily constructing it in memory.
It can be useful, for instance, in order to run an optimized query directly during
parse time of the document and without actually constructing the document, or,
if based on the element name different representations (of different types) are to
be constructed.

3.3 Regular Matching on XML Nodes

XML nodes can be decomposed using pattern matching. Scala allows to use
XML syntax here too, albeit only to match elements. The following example
shows how to add an entry to a phonebook element.

import scala.xml.{ Node, XML } ;
def add(pbook: Node, newEntry: Node): Node =
pbook match {
case <phonebook>{ cs @ _» }</phonebook> =>
<phonebook>{ cs }{ newEntry }</phonebook>
}

val newPhoneBook =
add(XML. load("savedPhoneBook "),
<entry>
<name>Sebastian</name>
<phone where="work'">+41 21 693 68 67</phone>
</entry>);

The add function performs a match on the phonebook element, binding its child
sequence to the variable cs (the regular sequence pattern _x matches an arbitrary
sequence). Then it constructs a new phonebook element with child sequence cs
followed by the node newEntry. Note that the pattern cs @ _x appears inside
code braces, it would otherwise be interpreted as literal text.

The compiler turns the above shorthand into constructor calls of the class
scala.xml.Elem. New temporary variables are introduced to deal with namespace
definitions and redefinitions and prefixed and unprefixed attributes. If we ignore
those for a moment, the resulting code is equivalent to the following (which could
equally well be written by a user that despises angle brackets)

import scala.xml._ ;
def add(pbook: Node, newEntry: Node): Node =
pbook match {
case Elem(_, "phonebook",_,_,cs @ _*) =
Elem(null, "phonebook", Null, $scope,
(new scala.xml.NodeBuffer() &+ ch &+ newEntry):_x)
}
val newPhoneBook = add(XML.load("savedPhoneBook"),

116 B. Emir, S. Maneth, and M. Odersky

Elem(null, "entry", Null, $scope, Null,
Elem(null, "name", Null, $scope, Text('"Sebastian"))

Elem(null, "phone", new UnprefixedAttribute(""where", "work", Null), $scope,
Text("+41 21 693 68 67"))));

More involved patterns are possible. The following pattern traverses the children
of a node and finds out whether a book with the title <scala/xml> comes before a
book with the title XSLT Reference, and if so, returns the book elements between
those two.

books match {
case <books>{ _*, <book><title><scala/xml></title>{ _ * }</book>,
mid @ _*, <book><title>XSLT Reference</title>{ _ * }</book>,
_* }</books> => mid
case _ = Nil

}

3.4 Namespaces and Attributes

Attributes and namespaces are implemented as immutable, linked lists. At-
tributes with namespace prefixes are distinguished from ones without. For the
reader not versed in the namespace issues regarding XML, it might suffice to
know that the Namespaces in XML Recommendation [16] specification, which
has been introduced long after the XML specification, provides a means to ‘pack-
age’ related names by associating them with a uniform resource identifier (URI).
The association avoids name collisions and happens indirectly by (1) binding
URISs to prefixes and (2) prefixing names using the syntax ns:localname.

For convenience, a default namespace may be declared that applies to un-
prefixed names. Finally, it is also possible to undeclare prefix binding