
X. Zhou et al. (Eds.): EUC Workshops 2006, LNCS 4097, pp. 72 – 82, 2006.
© IFIP International Federation for Information Processing 2006

Completing UML Model of Component-Based System
with Middleware for Performance Evaluation

Yong Zhang, Ningjiang Chen, Jun Wei, and Tao Huang

Institute of Software, Chinese Academy of Sciences
{yzhang, river, wj, tao}@otcaix.iscas.ac.cn

Abstract. To free analysts from knowing about the internal details of
middleware when evaluating the performance of component-based system
(CBS), this paper proposes a framework to automatically integrate middleware
component interactions and their performance attributes to application Unified
Model Language (UML) model. The framework defines a general sub-model
template library of middleware, a middleware usage description file, and an
approach to compositing application-specific sub-model instances and
application UML models. The process is illustrated by a case study.

1 Introduction

Performance effect of software architectural decision can be evaluated at an early
phase by constructing and analyzing quantitative performance model, which capture
the interaction between the main components of the system as well as the
performance attributes of the component themselves. Some approaches to deriving
performance model from architecture description have been proposed [1] [2].

A range of component-based server-side technologies, such as Enterprise Java
Beans, CORBA, and COM+/.NET, support the design and deployment of application
components in a component container environment, which help to CBS faster
development cycles, decreased effort, and greater software reuse. The application
component's behavior is a combination of the application-specific code and the
underlying container services it utilizes, which will obviously impact the architecture
and the performance of component application. The container and supporting
platform must be taken into account for accurate performance predictions [3] [4] [5].

At times, container environment (or middleware) is not included as a part of
application architecture description, and its performance information is missing.
Some works to address this question have already been undertaken [6]-[10]. Using
these approaches require analyst to know detailed knowledge of middleware internals
and modeling language itself, which decreases the ease of use of modeling, then
hinders successful application of early performance analysis.

From performance evaluation perspective, this paper proposes a framework to
automatically integrate middleware information to application UML models. The
resulting UML models can represent structure and behaviors of both application
and middleware, from which performance model including the impact of middleware
can be derived by some existing methods. So, performance analysts do not have
to know about middleware internal details, when evaluating the performance of

 Completing UML Model of Component-Based System with Middleware 73

component-based system hosted by middleware. The process is illustrated by a case
study based on EJB container middleware.

The rest of this paper is organized as follows. In section 2, we briefly describe the
structure of the framework. The details of proposed framework and techniques to
integrate middleware performance information to UML models are presented in
Section 3. The proposed approach is demonstrated by a case study in Section 4. We
introduce some related work in Section 5 and conclude with a summary in Section 6.

2 Structure of Framework

To reflect the architectural changes incurred by using middleware, as well as the
impact on the overall system performance, this paper propose a framework to
integrate middleware information to application UML models, as shown in Fig.1.

Fig. 1. Structure of framework integrating middleware performance information

The foundation of framework is a sub-model template library, which includes core
middleware elements impacting performance. This helps designer to rapidly model
middleware without knowing its internal details. Template library is built through
architectural pattern-based refinement.

In the model of component application, the information including communication
patterns, component container, configuration setting, and middleware service details, is
missing. Involved middleware components, their interaction relations, and relative
performance properties need to be complemented, which will be important factor affecting
performance. We will use UML Activity diagram to model interaction behavior of
middleware components, and use UML Profile for Schedulability, Performance and Time
(SPT Profile) as annotation to capture performance requirements [11].

The performance impact of middleware is application-specific, which relates with
concrete usage of middleware. In our work, a XML-based middleware usage
description file is used to provide necessary middleware usage information, including
aspects of functionality and performance. With middleware usage information, the
sub-model template can be instantiated.

Here gives an approach to compositing the sub-models instances of middleware
and application UML models. The resulting UML models include architecture and

74 Y. Zhang et al.

performance impact of middleware, from which performance model can be derived
by using existing methods. The performance model used in this work is Layered
Queueing Network (LQN) model [12], just one of several possible target formalisms.

3 Model Integration Techniques

The conceptual architecture model of container middleware can be described as in
Fig.2. The processing of interaction between distributed components can be divided
into two phases: components communication happening outside of the container, and
the processing happening inside the container.

Fig. 2. Conceptual architecture model of Container middleware

3.1 Behavior Specifications and Its Performance Annotation

Refinement of Communication. Distributed component communication generally
bases on client-proxy-server pattern, which addresses the distribution and location
transparency. During communication, client-side and server-side components (like
stub, remote reference, skeleton in Fig.2) will perform some additional operations on
the request and the response, such as marshaling and unmarshaling, to transform the
data (e.g., parameter values) from the native format to a language independent wire
format and back. These operations will incur performance overhead.

Communication process can be modeled at different abstract level with different
internal details. More detailed models which can reflect the exact software
architecture of the middleware, more accurate performance estimates can be got from
it. At the same time, the system model will be more complex. Considering our
performance modeling goals, we will refine it to functionality level, in particular, the
virtual connection layer, showing how it interacts with the application system.

To enable users to capture time and performance requirements, SPT profile extends
UML by providing stereotypes and tagged values to represent performance
requirements, the resources used by the system and some behavior parameters [11].
Here, middleware components can be stereotyped as <<PAresource>>, and key
actions impacting performance can be stereotyped as <<PAstep>>, the demand of
which can be tagged with PAdemand.

 Completing UML Model of Component-Based System with Middleware 75

Interaction details of component communication are illustrated in Fig.3. (Here only
synchronous call is illustrated with an example SPT profile annotation). At the same
time, UML Collaboration representing high level view is also illustrated.

In addition, before sending the first invocation, client component needs to get the
reference and local stub of remote server component (e.g., by Naming Service). Here,
a stub_init action of stub models this operation.

Fig. 3. Sub-model Template for Communication

Refinement of Container. Container must be flexible enough to integrate, manage,
reuse, and extend middleware services. So, pattern similar to chains of interceptor (or
responsibilities of chain) is generally employed, which enables dynamically adding
middleware services to component system [13].

When the request arrives at server side container, container will create invocation
context for request, providing operation information for accessing resource, security,
the current transaction, or server component instance-specific information. Invocation
context will be passed through chains of interceptor, triggering related interceptors
(middleware service) in turn. Different middleware services serve the request
concurrently under the control of different processes/threads. Triggered various
middleware services all will affect the performance. At last, request will be sent to
component business method. After processing, response result will be sent back to
container entry, which continues sending back to client.

Container implements concurrency mechanisms so that multiple instances of
components can be utilized simultaneously. Configuration settings of container (e.g.,
thread level) will impact performance. In this work, we use instanceHandler
component modeling instance processing; and configuration setting can be
represented with PAcapacity tag of SPT profile.

 The collaboration relation and interaction sequence of components in container are
represented in Fig.4. Each kind of middleware service will be abstracted as a service
component (representing as placeholders service_1… service_n in Fig.4), using one
action modeling the service behavior, instead of modeling its internals.

Middleware service placeholders (service_1… service_n) can be instantialized
according to specific middleware usage information. And, the performance
requirements can be annotated with SPT stereotype and tagged value.

76 Y. Zhang et al.

Fig. 4. Sub-model Template for Container

3.2 Middleware Usage Description

The performance impacts of middleware relate with specific application. It is
necessary to provide relative middleware usage information, such as, which
invocations are remote, what middleware services will be used, and their executing

interactionComponents

clientComponent

serverComponent

invocations Invocation+

transitionID

invocationType

isRemote?

stub_Init_Time

stub_req_Time

marshall_Time

ummarshall_Time

stub_reply_Time

services Service+
serviceName

serviceType

host

serviceTime

Configuration

Fig. 5. XML Schema for middleware usage information

 Completing UML Model of Component-Based System with Middleware 77

demands, etc. In this paper, the middleware usage description will be provided in
XML-based file, the Schema of which is shown in Fig.5.

The elements are declared according to interacting components that use
middleware. For each invocation between client component and server component,
there is a <invocation> declaration: element <transitionID> represents the transition
referring to this call in UML activity diagram; element <invocationType> represents
remote or local call; element <isRemote> specifies the service demand of several
processing phases of remote invocation; <services> represents middleware services
to use during invocation, in which the details are specified; Element <configuration>
declares middleware configuration setting, such as thread level.

3.3 Model Composition

The composition process of application UML models and middleware can be
described as follows.

1. Parsing XML-based middleware usage describing file;
2. For each pair of interacting Components {

If invocation between them is remote then
Instantializing communication template with middleware usage description;
Instantializing the container template with middleware usage description;

}
3. Combining Collaboration parts of above instances with client-server relation;
4. Combining Activity diagram parts of above instances;
5. Redirect the call between the interacting components;

Deleting original collaboration relations in application UML Collaboration;
Inserting combined UML Collaboration with client-server relation;
Deleting original invocations in application UML Activity diagram;
Inserting combined UML Activity Diagram of instances;

6. Changing original UML deployment diagram;
Adding stub component to Client node;
Adding middleware service components to Server node;

4 Case Study

As an illustration of proposed process, a case study was conducted, modeling the
performance of an online store based on EJB container middleware. Fig.6 shows the
UML models of this case. The scenario can be described as follows: client component
makes a remote synchronous invocation to CustomerControlBean component to find
the required customer information, in which need use middleware security service;
and then updates email address of customer to database, in which need middleware
transaction service supporting.

The major middleware usage information of this case is given in Table 1. In our
work, we provide an input tool which can assist in formatting XML file according to
schema in Fig.5. With the help of a profiling toolkit OptimizeIt, service demands were
obtained from a prototype implementation of the case based on a J2EE Application
Server called OnceASv2.0 [14].

78 Y. Zhang et al.

Fig. 6. UML diagram for case study

Table 1. Middleware usage description information for case study

Configuration setting: thread level=30
Interacting Components: Client=client; Server=customerControlBean;
Invocation descriptions: transitionID=t01; invocation_Type=remote;
init_Overhead=3.2ms; client_Overhead=2.1ms; server_Overhead=2.3ms;
Used services descriptions: service_Name=secService; service_Type=security;
host=servernode; overhead=3.3ms;
Invocation descriptions: transitionID=t02; invocation_Type=remote; init_Overhead=0;
client_Overhead=2.5ms; server_Overhead=2.8ms;
Used services descriptions:
Service_Name=TXService; service_Type=Transaction; host=servernode; overhead=9.5ms;

According the composition process given in Section 3.3, the resulting UML

models are shown in Fig.7-Fig.9. In this case, we take the response time index as
illustration. The information is annotated by giving the actions the <<PAstep>>
stereotype and specifying a tagged value PAdemand to represent execution time,
which is provided in Table.1. For clarity, the performance information of application
components is omitted in diagram.

Using transforming method, like proposed in [15], a LQN performance model can
be derived from the UML models of Fig.7-Fig.9, which can be read directly by
existing LQN solvers [16]. Then, performance estimates can be extracted for varying
system parameters by using the LQN model.

 Completing UML Model of Component-Based System with Middleware 79

Container SecService TXService Instance
Handler

CustomerC
ontrolBean

chains of Interceptor

chains of Interceptor

Client

stub

Client Server

Client
Server

database

Client Server

Client
Server

skeleton

Client Server

Client
Server

Former interceptor
Latter interceptor

Former interceptor
Latter interceptor

chains of Interceptor
Former interceptor
Latter interceptor

Client Server

Client
Server

chains of Interceptor
Former interceptor
Latter interceptor

Fig. 7. Integrated high level view of the case

Fig. 8. Integrated activity diagram annotated with performance information

80 Y. Zhang et al.

Fig. 9. Integrated deployment diagram of the case

To validate the presented performance model, we conducted measurements with
our benchmark implementation. Fig.10 shows the response time of updating customer
email information as a function of the total number of clients, including model
prediction and experiment measurement result. We let the number of concurrent
clients vary between 10 and 200 with the increment of 10 clients. Fig.10 indicates that
the model is able to predict the response time of system reasonably well-the greatest
difference between the measurement and the prediction is only 10%.

Fig. 10. Comparison of LQN prediction with measurement results

5 Related Work

To reflect the effect of middleware to system performance, one straightforward
method is that inclusion performance overhead of middleware components into
application components, for example, directly adding the overhead of stub creation
and marshaling to business method execution demand. This coarse-grained dealing
approach is simple and does not increase the complexity of performance model;
however, the precision of model is not enough. Moreover, the resulting model cannot
efficiently identify performance bottlenecks occurred in middleware layer.

Another method is directly modeling entire system including middleware
and application. As in [10], author describes a framework for constructing
LQN performance model based on the modular structure of Application Server and
the application components. In [6] [7] [8], author model the performance for

 Completing UML Model of Component-Based System with Middleware 81

CORBA-based distributed object system using QN/LQN formalism. Compared with
the first method explained above, the method helps to improve the accuracy of
performance model. However, it requires performance analyst to be familiar with
internal details of middleware, which decreases the ease of use.

To predict the performance for component-based system hosted by middleware
infrastructure, in [9] authors propose a solution based on empirical testing and
mathematical modeling. The models describe generic behaviors of application server
components running on COTS middleware technologies, the parameters value in
model are discovered through empirical testing. In this solution, incorporating
application-specific behavior into the equation is difficult, and the results from the
empirical testing cannot be generalized across different hardware and software
platforms, so different platforms need different test cases, which is economically
impractical.

In order to derive performance model from UML, a first approach based on
architectural patterns for client/server systems is presented in [17]. The authors, rather
than proposing a transformational methodology, describe the pattern through Class
and Collaboration diagrams and directly show their corresponding EQN models. The
aim of our work mainly obtains integrated UML descriptions based on architectural
patterns, then derives performance model from existing method automatically.

In [18], the authors propose automatic inclusion of middleware performance
attributes into architectural UML software models, and a method based on Model
Driven Architecture that transform a middleware-independent UML model into a
middleware-aware UML model. Their idea is like ours. However, the transformation
method is different. Our proposed method bases on composition of sub-model, and
architecture pattern-based refinement can be extended to deal with different style
middleware. In addition, in [18] mainly address the impact of remote communication,
considering middleware services very simply; whereas ours emphasize the effect of
middleware services and give the solution, besides remote invocation communication.

6 Conclusion

To reflect the performance effect of middleware to component-based system, this
paper proposes an approach integrating middleware component interactions and
performance attributes into application UML model. Thus, derived performance
model from resulting UML models can efficiently represent the impact of
middleware. In the future work, we will deal with bottleneck identifying,
configuration setting choosing, and automatic tools supporting.

References

1. Williams, L.G., Smith, C.U.: Performance Evaluation of Software Architecture. In:
Proceedings of the First International Workshop on Software and Performance WOSP98.
ACM, New York, NY (1998)164-177

2. Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, Marta Simeoni: Model-Based
Performance Prediction in Software Development: A Survey. IEEE Transactions on
Software Engineering. Vol.30, No.5, May (2004) 295 – 310

82 Y. Zhang et al.

3. Ward-Dutton, N: Containers: A Sign Components are Growing Up. Application
Development Trends. January (2000) 41-46

4. Wolfgang Emmerich: Software engineering and middleware: a roadmap. In: Proceedings
of the 22nd International Conference on Software Engineering, on the Future of Software
Engineering. ACM, New York, NY(2000) 117-129

5. M. Woodside, Petriu, D., Khalid Siddiqui: Performance-related Completions for Software
Specifications. In: Proceedings of the 24th International Conference on Software
Engineering. ACM, New York, NY (2002)22-32

6. Kahkipuro,P.: Performance Modeling Framework for CORBA Based Distributed Systems,
PhD thesis, Department of Computer Science, University of Helsinki (2000)

7. Petriu, D., Amer, H., Majumdar, S., Abdull-Fatah, I.: Using analytic models for predicting
middleware performance. In: Proceedings of the Second International Workshop on
Software and Performance WOSP2000.ACM, New York, NY (2000) 189-194.

8. Williams, L.G., Smith, C.U.: Performance Engineering Models of CORBA-Based
Distributed-Object Systems. In: Proceedings of International CMG Conference, Computer
Measurement Group (1998) 886-898

9. S. Chen, Y. Liu, I. Gorton, and A. Liu: Performance Prediction of Component-Based
Applications. J. Systems and Software. Vol. 74, No. 1, January (2005) 35-43

10. Jing Xu, A. Oufimtsev, M. Woodside, L. Murphy: Performance Modeling and Prediction
of Enterprise JavaBeans with Layered Queuing Network Templates. In: Proceedings of
Workshop on Specification and Verification of Component-Based Systems, ACM, New
York, NY (2005)

11. Object Management Group: UML Profile for Schedulability, Performance, and Time.
2003.

12. M. Woodside, Tutorial Introduction to Layered Modeling of Software Performance,
Edition 3.0, Carleton University, http://sce.carlton.ca/rads ,2005.

13. Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann, Pattern-Oriented
Software Architecture, Volume 2, Patterns for Concurrent and Networked Objects. John
Wiley & Sons, New York, NY (2000).

14. http://www.once.com.cn
15. D.C. Petriu and H. Shen: Applying the UML Performance Profile: Graph Grammar-Based

Derivation of LQN Models from UML Specifications. In: Proceedings of 12th International
Conference Computer Performance Evaluation, Modeling Techniques and Tools, LNCS
2324, Springer-Verlag, Berlin (2002)159-177.

16. Franks,G.,Hubbard,A.,Majumdar,S.,Petriu,D.C.,Rolia,J.,Woodside,C.M: A toolset for
Performance Engineering and Software Design of Client-Server Systems. Performance
Evaluation, Vol.24, No.1-2, February (1995)117-135

17. H.Gomaa and D. Menasce: Performance Engineering of Component-Based Distributed
Software Systems. Performance Engineering. LNCS2047, Singer, (2001) 40-55

18. Tom Verdickt, Bart Dhoedt, Frank Gielen,and Piet Demeester, Automatic Inclusion of
Middleware Performance Attributes into Architectural UML Software Models. IEEE
Transactions on Software Engineering. Vol. 31, No.8, August (2005) 695-711.

	Introduction
	Structure of Framework
	Model Integration Techniques
	Behavior Specifications and Its Performance Annotation
	Middleware Usage Description
	Model Composition

	Case Study
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

