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Abstract. Currently the Java programming language is popularly used
in Internet-based systems, mobile and ubiquitous devices because of its
portability and programability. However, inherently its performance is
sometimes very limited due to interpretation overhead of class files by
Java Virtual Machines (JVMs). In this paper, as one of the solutions to
resolve the performance limitation, we present code generation and opti-
mization techniques for a Java-to-C translator. Our compiler framework
translates Java bytecode into C codes with preserving Java’s program-
ming semantics, such as inheritance, method overloading, virtual method
invocation, garbage collection, and so on. Moreover, our compiler trans-
lates for in Java into for in C instead of test and jump for better per-
formance. Our runtime library fully supports Connected Limited Device
Configuration (CLDC) 1.0 APT’s.

1 Introduction

Java’s platform independent architecture gives excellent portability. The appli-
cations written in Java can be compiled into location-independent codes moving
on the Internet and running on every platform. In addition to the portability,
its enhanced programability for more advanced development is one of the most
important merits. However, despite of the distinguished advantages over other
programming languages, there are two shortcomings to use Java, i.e, the size of
Java virtual machines and performance limitation due to interpretation. The size
of a full-featured JVM is too big to be used on small devices like mobile phones
and PDAs. Due to the limited computing power resources on small embedded
devices, a few different versions of JVMs have been proposed [1I2], and therefore,
the class files cannot be executed on all kinds of client machines. Examples of
the full-featured JVMs are JVM from Sun Microsystems [3], Jikes RVM [4], and
an example of the partially-featured JVM due to the resource constraint is Java
2 Platform, Micro Edition (J2ME) [2].

The software interpretation incurs much higher runtime overhead than di-
rect execution to use native codes. To alleviate the performance problem, many
methods have been proposed such as just-in-time (JIT) and ahead-of-time (AOT)
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compilers. The just-in-time compiler [5I6] converts a sequence of bytecode (a
method) into native codes at runtime, dynamically links, and executes them.
This approach has been widely used for the last years. The alternative method
is to translate class files into C codes on offline [7I89)].

In this paper we present code generation and optimization techniques for a
Java-to-C compiler. Also our compiler fully supports Connected Limited Device
Configuration (CLDC) 1.0 API’s. Moreover, our Java-to-C compiler translates
for in Java into for in C in order to get better performance because gcc compiler
cannot optimize goto statement generated for for in Java by our earlier Java-
to-C compiler, but it can apply various optimization techniques to for in C.

Toba [§] is a system to generate standalone Java applications which were
targeted for JDK 1.1. It has a bytecode-to-C translator and additional run-
time libraries to support garbage collection, thread management and Java API.
In [9], the Java-through-C compilation system for embedded systems has been
developed. There is a definite difference between our Java-to-C compiler and the
others. Our compiler only generates good quality of codes, to which a backend
compiler (ex. gcc compiler) can effectively apply code optimization for improving
performance.

The paper is organized as follows: we briefly present the structure of our Java-
to-C compiler in Section [2, and the framework for C code emission from Java
bytecode in Section Bl Also, In Section [, we present the implementation of one
optimization technique which generates for in C for for in Java instead of test
and jump. Section [l discusses issues about code generation and optimization
with performance analysis, and finally Section [0l makes the conclusion.

2 Structure of Java-to-C Compiler

Our Java-to-C compiler is organized into three components: a Java decoder,
a bytecode-to-C translator, and runtime libraries. The Java decoder analyzes
the class files, and generates class blocks to maintain class information. The
translator converts Java bytecode sequences into a sequence of C codes. Finally,
the generated C codes are linked with runtime libraries to include routines for
garbage collection, thread management, and Java CLDC 1.0 API in order to
build executable codes. A thorough description of the structure is provided by
our technical report [10].

3 Code Generation

There are a few issues in code generation, such as bytecode translation, exception
handling, garbage collection, and thread management.

During translation, the preprocessor splits the whole bytecode sequence into
several basic blocks to construct a control flow graph(CFG) for a method. The
control flow graph is used to compute the stack state. The liveness of temporary
variables are properly maintained through computing the stack state. Because
bytecode translation is performed in compilation time, the information of the



Code Generation and Optimization for Java-to-C Compilers 787

simulated operand stack is useful for code generation. After the preprocessor
finds out basic blocks, bytecode-to-C translation is preformed for each basic
block. The generated C codes for all basic blocks in a Java method are wrapped
up in a switch statement like Toba [§].

The switch statement is used to handle Java exceptions. Some exceptions are
specified to be thrown in Java virtual machine specification [II] when certain
conditions are satisfied. These exceptions can be ignored according to the exe-
cution environment. The runtime program counter of the JVM is used to find
a corresponding exception handler. A local variable pc is employed to mimic
the program counter in the JVM. The variable is set at the beginning of every
basic blocks. Additionally, C’s setjmp and longjmp routines are used to handle
exceptions.

An automatic garbage collection is supplied in Java. If certain objects are
no longer referenced in a Java program, the objects will be de-allocated without
any effort by a programmer. We use Boehm-Demers-Weiser conservative garbage
collector [12].

Our system has been targeted to support the Connected Limited Device Con-
figuration (CLDC) 1.0 [13]. Because the only java.lang.Thread class is specified
in CLDC API, complex runtime libraries for java.lang. ThreadGroup are not im-
plemented. The Java runtime package for thread management is implemented
using Linux PThread libraries. A thread can hold only a lock associated with
a monitor which all objects have competed. Synchronization between threads is
guaranteed via monitors.

4 Optimization

4.1 Motivation

Figure [ shows one of major Java methods in LU benchmark, and Figure
shows C output generated by our Java-to-C compiler and assembly output by
gcc compiler. When the Java-to-C compiler translates Java for loop in forms
of test and jump statements instead of for in C, gcc compiler sometimes does
not assign a loop induction variable to a register. As shown in Figure[2] the loop
induction variable Lwilj is incremented by leal 1(%eax), %eax instruction.
It incurs huge processor stalls. When the Java-to-C compiler generates for in
C for for in Java, we could get about 20% higher speedup than before, since
gcc compiler applies loop optimizations to for in C. Therefore, we designed a
state machine to identify for in Java bytecodes for generating for in C. Using
gathered information, our compiler can translate for in Java in forms of for in
C instead of test and jump.

4.2 Detection of for Loop in Java Bytecode

Our compiler detects Java for loops by using a state machine to recognize the
following code sections in bytecode sequences: an initialization of an induction
variable, a loop bound, a modification of an induction variable, and a backward
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public static int factor(double ad[l[], int aill)

{
for (int i2 =1 + 1; i2 < i; i2++)
ad2[i2] -= d3 * ad3[i2];
}
Fig. 1. Example of Java code in LU
_L229: .L184:
pc = 229; cmpl -204(%ebp) , heax
i0 = Lvii4; movl $229, -188(%ebp)
il = Lvi2; jge .L186
if( 10 >= i1 ) goto _L257; .L187:
_L235: fld %hst (0)
pc = 235; fmull 16 (%esi, %eax,8)
a0 = Lval0; fsubrl 16(%edx,%eax,8)
il = Lviil4; fstpl 16 (%hedx, heax,8)
a2 = a0; leal 1(%eax), eax
i3 = i1; movl $235, -188(%ebp)
d2 = ((struct darrayx*)a2)->datali3]; jmp .L184
d3 = Lvdi2; .L186:
a4 = Lvall;
i5 = Lviil4;
d4 = ((struct darray*)ad)->datali5];
d3 = d3 * d4;
d2 = d2 - d3;
((struct darrayx)a0)->datalil] = d2;
Lvild += 1;
goto _L229;
_L257:

Fig. 2. C and assembly outputs from the example Java code in Figure I

jump instruction which is the end of for loop. The state diagram is shown in
Figure Bl This state machine can recognize several for loop patterns in Java
bytecodes, and the recognizable patterns are shown in Table [Tl

Initialization of an induction variable: In the state machine of Figure [3]
state qO is an initial state and state accept is a final state. In Java bytecode
sequences, an induction variable can be either 1) a local variable or 2) a member
field or a method of an object. In Case 1, bytecodes such as iconst, bipush,
sipush, load, invokestatic, getstatic and so on, are used to initialize an
induction variable. In Case 2, aload appears first, and then arraylength,
getfield, invokespecial, invokeinterface, or invokeivirtual follows. If
a compiler detects either case, the state machine goes to state q1. When the state
machine is in state q1 and the following instruction is istore, the state machine
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Fig. 3. State diagram to search for in Java bytecode

moves into state q3. This istore instruction stores the initialized induction
variable into a memory. Thus, when the state machine reaches state g3, it de-
cides that a code section of an induction variable initialization is found.

Loop bounds: In Java bytecode, after initialization of an induction variable, a
code section of a comparison part should appear according to a syntax of for in
Java. If each condition for the syntax is not satisfied, the state machine is moved
into the initial state q0. To compare an induction variable with a loop bound,
iload instruction is performed to read an induction variable from a memory.
At this time, the state machine moves from state g3 into state q4. After the
induction variable is loaded from a memory, a loop bound variable is loaded. If
the loop bound variable is a local variable, the state is moved to g5 from g4,
and if the loop bound variable is a member field or a method of an object, the
state is moved to g6 and g5 from q4.

Modification of an induction variable: We define two patterns as modifi-
cation of an induction variable in Table [l for simple experiment. In the first
pattern, we should find a pair of iload and istore instructions that access the
same memory location before goto statement for a backward jump (q7 — g8
— q9). The kinds of integer arithmetic and logic operations between these two
instructions are not important. All we need are the start and the end of a code
section of modification of an induction variable. In the second pattern, the start
and the end of a code section of modification of an induction variable are the
same. When iinc instruction appears, the state machine moves from state q7
into state 9. The only condition that iinc is an instruction for a code section
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Table 1. for loop patterns which our compiler can recognize

for(A=B; A<C,A=A+Dor A++) {---}

Part of for loop Code in C  Description Structure of Java bytecode

Initialization of A = B Value initializing iconst, fconst, lconst, dconst, bi-
an induction an induction vari- push, sipush, iload, fload, lload,
variable able dload, getstatic, invokestatic, aload-

arraylength, aload-getfield, aload-
invokevirtual, aload-invokespecial,
aload-invokeinterface

store istore, fstore, Istore, dstore
Comparison part A < C Load an induction Iload, fload, lload, dload

variable

Variable com- iconst, fconst, lconst, dconst, bi-

pared with an push, sipush, iload, fload, lload,

induction variable dload, getstatic, invokestatic, aload-
arraylength, aload-getfield, aload-
invokevirtual, aload-invokespecial,
aload-invokeinterface

Conditional If icmpeq, if icmpne, if icmpge,
jump(compare) if icmpgt, if icmple, if icmplt
Body {} Body of for loop Various instructions can occur
Modification of an A = A + D Load an induction iload, fload, lload, dload
induction variable variable
Modification add or other various kinds of arith-

metic and logic operations.
Store the updated istore, fstore, Istore, dstore
induction variable
A++ Autoincrement  iinc

of modification of an induction variable is that the iinc instruction should be
followed by goto instruction for a backward jump.

backward jump: When the state machine is in state q9, it can be said that all
needed information about for loop is found. Therefore, if the next instruction is
goto that makes a backward jump to the start of a code section of a comparison
part, the state machine goes into a final state. In order to justify a correct
backward jump, it is checked whether a target address of the conditional jump
is the next instruction of the backward jump.

Nested loops: In order to detect nested loops efficiently, we used a loop stack as
a data structure. Whenever the state machine reaches to state q7 (after detecting
an induction variable and a loop bound), all collected information is pushed into
the loop stack and the state machine returns to state q0. In this way, our state
machine can find all the front parts of loop patterns we define while scanning
the whole code once. When reaching to the end of a whole code, the stack has
the information about front parts of all the loops we found. The state machine
pops from the stack one by one and returns to state q7. The pc also goes back
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to the address of the conditional jump given by the popped information and the
state machine starts checking whether those front parts of the loops have proper
instructions for modification of an induction variables and backward jump.

4.3 Code Emission

Figure [ (a) shows the Java source code and Java bytecode of an example of
for loop patterns accepted by our state machine. And Figure [ (b) shows our
compiler’s code generation without recognizing Java for loops.

(a) Java source code and  (b) Code generation using (c) for in C generated
bytecode test and jump. from for

for(11 = 8; 11<i; 11++) i0o = 8; i0 = 8:

k+= 11; Lvil0 = i0; Lvil0 = i0;

_L56: _L56:

52:‘t'>1push 8 i0 = Lviil0; for( ;
54:istore 10 i1 = Lvi3; Lvil0 < Lvi3 ;
656:iload 10 if( i0 >= il ) goto _L75; Lvilo += 1 ) {
58: }load_S _L62: _L62:
59:icmpge 75 i0 = Lvié4; i0 = Lvi4;
62:iload 4 i1 = Lvil0; i1 = Lvil0;
64:iload 10 i0 = i0 + i1; i0 = i0 + i1;
66:iadd Lvid = i0; Lvid = i0;
67:istore 4 Lvil0o += 1; }
69:iinc 10 1 goto _L56;
72:goto 56

Fig. 4. An example of for loop

Our compiler is able to recognize a for loop in Java bytecodes and translates
it into for in C. Figure [ (c) presents the result obtained by applying this
optimization technique to Java bytecode in Figure[d (a).

For our experiment we implemented a simple case in Table[Il Especially, when
a member field or a method of an object is used in code sections of initialization
of an induction variable and a comparison part, translating for in Java into for
in C is complicated due to an exception handling. Thus, we selected simple for
loop patterns to be translated into for in C. Moreover, these patterns are the
most frequently used patterns in codes. So, before generating for in C for all
the for in Java, we checked the performance improvement of translating these
patterns into for in C.

5 Performance Evaluation

5.1 Methodology

The performance of our Java-to-C compiler has been tested using Java Sci-
Mark 2.0 benchmarks [14] on Zeon 2.0 GHz processor and 256 MB of memory
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with Redhat Linux 8.0, and compared with gcj. The generated C codes were
compiled by gcec 3.2 C compiler. The SciMark [I4] is a composite Java bench-
mark measuring the performance of numerical codes occurring in scientific and
engineering applications. The benchmark consists of the following five applica-
tions: Fast Fourier Transform, Gauss-Seidel relaxation, Sparse matrix-multiply,
Monte Carlo integration, and dense LU factorization. Table [2 summarizes the
applications.

Table 2. Java SciMark 2.0 Benchmark

Application Description

FFT Fast Fourier Transform exercises complex arithmetic, shuffling, non-
constant memory references and trigonometric functions.
SOR Jacobi Successive Over-relaxation exercises typical accesses patterns in

finite difference applications, for example, solving Laplace’s equation in
2D with Drichlet boundary conditions.

Monte Carlo Monte Carlo integration exercises random-number generators, synchro-
nized function calls, and function inlining.

SparseMM  Sparse matrix multiply exercises indirection addressing and non-regular
memory references.

LU dense LU matrix factorization exercises linear algebra kernels (BLAS)
and dense matrix operations.

5.2 Performance Comparison

The relative speedup to gcj is shown in Figure[ll Our Java-to-C compiler shows
lower performance than gcj for all applications except SOR. Especially, in the
case of Monte Carlo Integration, the overhead for synchronization in a single-
threaded application makes that our system has worse performance than gcj.
In our compiler, even if an application is single-threaded, a monitor locking
is enabled. Toba [§] can reduce the synchronization overhead, since the actual
monitor locking is delayed until more than one thread are created. However
the execution time is greatly improved by turning-off system-defined exception
handling. The gcj compiler optimizes an exception handling by using aggressive
optimizations. Moreover, by translating for in Java into for in C, we can get
faster execution time and see the possibility of further improvement in speedup.
We could achieve 6% in SparseMM and 4% in Monte Carlo more speedup in
loop code generation than test and jump. Such a little improvement is due to
the limitation of loop patterns to be translated into for in C in our experiment.
Our Java-to-C compiler generates for in C when modification of an induction
variable is performed only by iinc statement. However for loop recognized by
our compiler and translated into for in C is not the critical loop for performance
in FFT, SOR and LU applications.

In the case of FFT, we could get much better performance when all major
for loops are changed into for in C. For the experiment we found out major
loops of each benchmark program, and then translated all the Java for loops
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Fig. 5. Java SciMark 2.0 speedup

in for C by hand if our compiler did not translate them. The most critical
method of FFT is transform internal and it has four for loops. Our Java-to-
C compiler translates one of them into for in C. When all the for loops are
translated properly, the performance gets better up to 24% than test and jump
code generation, and 5% faster than that gcj.

In the case of LU, the result is somewhat different. Although all the for loops
in the most critical method of LU, factor were changed into for in C by hand,
the performance was not improved. Therefore, we conclude that for loops in
factor of LU are not an important factor in performance and loop optimization
provided by gcc compiler is not very helpful in improving the performance. In
the case of SOR, we found out that all the loops in the most critical method,
execute, are translated in for in C already by our compiler. Therefore, we
can conclude that in SOR, for loops are not the determining factor in overall
performance.

6 Conclusion

In this paper, we presented the structure of the Java-to-C compiler to preserve
the Java semantics, and discuss code generation and optimization issues. we
presented the implementation of translating for in Java into for in C in order
to make performance better. Because of limitation of loop patterns that can be
translated for in C, we could not get as high performance as expected. However,
by changing the rest for loops into for in C, we can discover the possibility of
further improvement.

The generated C codes include many pointer and complex expressions, which
prevent AOT compilers from applying advanced compiler optimization tech-
niques like constant propagation, sub-expression elimination, inlining, and so
on. In ongoing research, we have developed an IR framework between bytecode
and C codes for helping AOT compilers generate better quality of codes and
also have made our compiler generate for in C for more broad range of for loop
patterns in Java source code.
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