
X. Zhou et al. (Eds.): EUC Workshops 2006, LNCS 4097, pp. 775 – 784, 2006.
© IFIP International Federation for Information Processing 2006

Run-Time Memory Optimization for DDMB
Architecture Through a CCB Algorithm

Jeonghun Cho1 and Yunheung Paek2

1 School of EECS, Kyungpook National University, 1370 Sangyuk-dong,
Buk-gu, Daegu, Korea
jcho@ee.knu.ac.kr

2 School of EECS, Seoul National University, San 56-1, Sillim-dong,
 Gwanak-gu, Seoul, Korea
ypaek@ee.snu.ac.kr

Abstract. Most vendors of digital signal processors (DSPs) support a Harvard
architecture, which has two or more memory buses, one for program and one or
more for data and allow the processor to access multiple words of data from
memory in a single instruction cycle. We already addressed how to efficiently
assign data to multi-memory banks in our previous work. This paper reports on
our recent attempt to optimize run-time memory. The run-time environment for
dual data memory banks (DDMBs) requires two run-time stacks to control
activation records located in two memory banks corresponding to calling
procedures. However, activation records of two memory banks for a procedure
are able to have different size. As a consequence, dual run-time stacks can be
unbalanced whenever a procedure is called. This unbalance between two
memory banks causes that usage of one memory bank can exceed the extent of
on-chip memory area although there is free area in the other memory bank. We
attempt balancing dual run-time stacks to enhance efficiently utilization of on-
chip memory in this paper. The experimental results have revealed that
although our call chain balancing (CCB) algorithm is relatively quite simple, it
still can utilize run-time memories efficiently; thus enabling our compiler to run
extremely fast, yet minimizing the usage of run-time memory in the target code.

Keywords: Run-time environment, DSP, dual data memory banks, compiler,
and on-chip memory.

1 Introduction

To reduce the speed gap between a processor and memory subsystems, DSP
architectures commonly include on-chip memory. This memory is configured as a
dual-bank for a Harvard architecture that allows simultaneous program and data
memory access [6]. Recently, several DSP products, such as Analog Device
ADSP2100, DSP Group PineDSPCore, Motorola DSP56000 and NEC uPD77016,
have even enhanced the original design of the Harvard architecture by providing one
additional data bank. This enhancement is targeted to effectively support common
DSP functions such as a FIR filter.

776 J. Cho and Y. Paek

∑
−

=

−×=
1

0

))()(()(
N

i

inbianc

Note that this on-chip memory is small and therefore, the efficient use of memory
turns out to be the major challenge in DSP software development process. To partially
address this issue, we developed a compiler strategy that assigns variables to multiple
data memory banks such that overall system performance can be improved; Refer [2]
for a detailed introduction. However, recent compiler validation efforts lead us to
observe that even with our previous compiler techniques; The lack of an efficient
compiler strategy, which can manage the runtime environment for variables in dual
data memory banks, significantly hurts the overall DSP system performance.

For this particular problem, this paper presents a scheme to efficiently manage
local variables stored in each activation record (AR) in the dual data memory banks
(DDMBs) of a commercial DSP. Our experiment reveals that this scheme greatly
helps the compiler to balance the total amount of memory space for ARs stored in the
DDMBs, thus better utilizing the on-chip SRAM of the DSP, which in turn helps us to
maximize the performance on our target DDMB architecture. For this work, we first
apply our dual memory bank assignment technique [2] to assign local variables in a
procedure into two ARs for the procedure, each of which must be stored in either
memory bank X or Y, respectively. Then, as will be shown later, our scheme attempts
to store the ARs such that both the banks are equally utilized and the amount of
wasted memory space is minimized.

In Section 2, we provide a brief overview of previous approaches for the MBA
problem, and discuss their schemes to store ARs in multiple memory banks. To this
end, we also discuss several strategies for runtime memory management. In Sections
3 and 4, we define the problem of optimally storing ARs into the DDMB architecture,
and show our approach to address this problem. In Section 5, we present the
experimental results with a set of DSP benchmarks on a commercial DSP with
DDMB architecture, and compare our performance with others.

2 Previous Work

In the MBA problem, we are required to divide all local and arguments variables
referenced in each procedure into two groups, and to allocate each group to either one
of the data memory banks. One approach to address the MBA problem was done by
[5]. In their approach, a data dependency graph (DDG) is first constructed for each
assembly code function. For a given DDG, the interference graph is constructed in
such a way that potential parallelism is reflected by graph edges. After a step for
reducing the interference graph size, they applied an Integer Linear Programming
(ILP) to partitioning for the interference graph. The SPAM project was also
conducted to solve this assignment problem by researchers at Princeton and MIT [8].
In their work, they presented experimental results showing that the SPAM compiler
can generate highly optimized code for a commercial DSP in most cases. However,
their approach as well as the above ILP-based one has a drawback that the
compilation time may increase substantially for large applications. To reduce
compilation time, we proposed in [2] a fast approach based on a maximum spanning
tree algorithm to solve multiple memory bank assignment in polynomial time.

 Run-Time Memory Optimization for DDMB Architecture 777

To utilize efficiently assigned memory banks, well-designed run-time environment
is indispensable. The representative run-time environment for the C programming
language is the stack-based environment, whose essential structure does not depend
on the specific details of the target machine. However, if the target machine such as
Motorola DSP56300 has two data memory banks, it would be more desirable to
assume two run-time stacks in the environment. Unfortunately, simultaneously
managing multiple run-time stacks along with multiple frame pointers and stack
pointers give rise to various complex optimization issues, as compared to
conventional single run-time stacks. To simplify these issues, the SPAM compiler [8]
uses a fully static run-time environment (see Fig. 1 (a)), instead of the stack-based
environment. In the static environment, all ARs must be stored at some fixed position
in the memory before the program actually runs. Therefore, it can be easily
implemented and there is no need to maintain multiple pointers to keep track of
execution path at run time. However, one critical disadvantage is that a large waste of
memory can occur because all ARs must be always allocated at run time.

Fig. 1. Run-time Environments for DDMB

In our earlier work [2], we attempted to overcome these disadvantages by
maintaining dual run-time stacks, as illustrated in see Fig. 1 (b). One clear advantage
of this stack implementation is that we only require only one stack pointer as well as
one frame pointer just like in the case of a single stack implementation. Also, the
scheme to maintain dual stacks is almost as simple as that to maintain a single stack.
However, as shown in Fig. 1 (b), there is still some unnecessary waste in memory in
order to synchronize both the stacks. To alleviate this drawback, we in this work
propose a scheme where the two stacks are managed independently as shown in Fig. 1
(c). To strike the difference between these stack implementations, we call the earlier
one as the dependent stack implementation while we call the later one as the
independent stack implementation. Although the AR assignment to independent
stacks normally results in better memory utilization, a sophisticated scheme to
balance the sizes of the two stacks is mandatory to enjoy the advantage. Otherwise,
we may suffer a degradation of performance since the larger stack in either side of the
banks grows out of the boundary of on-chip SRAM, thereby causing frequent
accesses to off-chip memory. Fortunately, the size of an AR can be determined at
compile time since the compiler decides its fields and their sizes. Using this

778 J. Cho and Y. Paek

formation, we were able to pre-compute the overall requirement for memory use at
compile time, enabling us to carefully balance the dual stacks.

3 Motivation and Approach

In this section, we discuss how run-time memory can be optimized in DDMB and
what the benefits are, especially for run-time memory. First, we describe our
motivation to optimize usage of run-time memory, and then we provide our approach
briefly to enhance a performance.

3.1 Our Motivation

Our run-time environment for DDMB uses three memory banks: program memory, X
memory, and Y memory. Generated code from a compiler is located in the program
memory, and all static and dynamic data are located in X or Y memory. Global and
static variables are assigned in the global/static area in X and Y memory, and local
variables and information to manage activations of procedures are assigned in the
stack area. Because our compiler does not support variable allocated dynamically (ex.
malloc function in C programming language), the heap area are excluded in our run-
time environment. We start with the definition of balancing for dual run-time stacks.

Definition 1. Let A = {{Ai0, Aj0}, {Ai1, Aj1}, ..., {Ain−1 , Ajn−1}} be a set of n activation
records in the run-time stack at any instant where Aik and Ajk mean the activation
records for two memories of the function k (0≤k≤n − 1). And let AX = {AX0, AX1 ,
...,AXn−1} and AY = {AY0,AY1 , ...,AYn−1} be a set of n activation records in the run-time
stack located in X memory and Y memory respectively where, in Aik and Ajk for
function k (0≤k≤n−1), AXk is one and AYk is the other. When the activation records
are assigned in the run-time stacks for X and Y memory to minimize the difference
between size of AX and size of AY, we say that the two run-time stacks are balanced at
given instant.

If we have large enough on-chip memory to execute a whole program, value of
balanced dual run-time stacks is disappeared. However, on-chip memory is limited,
(Motorola DS56301 has 3k words for program memory, and 2k words for X and Y
memory, respectively [3]), and in case that on-chip memory is fully utilized, we cannot
avoid using off-chip memory. If we use off-chip memory, it is impossible to access
simultaneously to each memory bank, and because extra clock cycle is required, an
instruction cannot be executed in one machine cycle. Therefore, use of off-chip
memory by unbalancing lead to performance degradation. The next figure shows an
example to describe a difference of unbalanced and balanced dual run-time stacks.

Fig. 2 shows two kinds of dual run-time stacks. The left one is the worst case of
dual run-time stacks and the right one is balanced dual run-time stacks. From this
figure, we can estimate that run-time stack of X memory can exceed the extent of on-
chip X memory, and new activation record 4 has to be located on the external
memory although there is free area in on-chip Y memory. However, in the balanced
dual run-time stacks generated by reassignment of activation records, new activation
record 4 can be located on the on-chip memory, and there is no performance

 Run-Time Memory Optimization for DDMB Architecture 779

degradation as shown in Fig. 2. Therefore we can convince that balancing activation
records between X memory and Y memory leads to enhance utilization of on-chip
memory and increase performance of execution speed.

Fig. 2. Balanced dual run-time environment

3.2 Our Approach

Before we start to present our approach to balance dual runtime stacks, we have to
restrict the area of our consideration to enhance utilization of on-chip memory. We
will explain with the example presented in Fig. 3. There are four functions, main,
fun1, fun2, and fun3, and there are two paths to call function fun2; one is main → fun1
→ fun3 → fun2, and the other is main → fun2, as shown in Fig. 3 (a). All activation
records have to be assigned in X and Y memory like this: AX = {Aimain, Ajfun1, Aifun3, Aifun2}
and AY = {Ajmain, Aifun1, Ajfun3, Ajfun2} for the first path as shown in Fig. 3 (c), and AX =
{Aimain, Ajfun2} and AY = {Ajmain, Aifun2} for the second path as shown in Fig. 3 (d),
respectively.

main()
{

fun1();
fun2();

}

fun2()
{

}

fun1()
{

fun3();
}

fun3()
{

fun2();
}

(a) C source code (b) Each activation record size

95fun3

57fun2

68fun1

48main

AjAi

95fun3

57fun2

68fun1

48main

AjAi

(c) Balanced Dual Run-time stacks
(main -> fun1 -> fun3-> fun2)

(d) Balanced Dual Run-time stacks
(main -> fun2)

X

Aimain

Ajfun1

Aifun3n

Ajfun2

Y

Aimain

Aifun1

Ajfun3n

Aifun2

X

Aimain

Ajfun2

Y

Aimain

Aifun2

Fig. 3. Example of balanced dual run-time stacks

From the result, we can know that function fun2 has to be assigned in different
memory in order to be balanced the run-time stacks according to calling sequence.
This problem can be resolved by function cloning, but it causes code size to increase.
Therefore, we have to decide which one to be balanced in numerous calling

780 J. Cho and Y. Paek

sequences. We call this problem inter call chain balancing (Inter-CCB) which
means relation of two calling sequences; main → fun1 → fun3 → fun2 and main →
fun2 from Fig. 3. And we define intra call chain balancing (Intra-CCB) in similar
manner which means relation of activation records in the calling sequence from root
to leaf activation node. Thus we divide balancing problem for DDMB into Intra-CCB
and Inter-CCB problem to approach effectively. In next section, we describe in more
detail how Intra-CCB and Inter-CCB algorithms work.

4 Balanced Run-Time Environment

In this section, we discuss how run-time memory can be optimized in DDMB and
what the benefits are, especially for run-time memory. First, we describe our intra
call chain balancing (Intra-CCB) algorithm to optimize usage of run-time memory in
a single call chain, and then we provide inter call chain balancing (Inter-CCB)
algorithm to decide order of Intra-CCB. To describe easily our balancing algorithm,
we divided a program into two cases; with and without recursive calls. And in this
paper, we just deal with the program without recursive calls. Before describing our
algorithm, we provide first a few basic concepts in next subsection.

4.1 Basic Concepts

To find a call chain to apply our Intra-CCB algorithm, we define extended activation
tree first. We extend activation tree defined in [1] to support DDMB architecture.

Definition 2. Let T = (V, E, W) be a weighted tree where V is a set of activations of
procedures, E is a set of edges which mean procedure call relations, and W is a set of
weights which mean increased size of X and Y activation records when child procedure
is called. An edge (Vi, Vj) means procedure Vi calls Vj, and Wk = (Wxk,Wyk) means X
memory increase Wxk size and Y memory increase Wyk size when the procedure is
called. We call the weighted tree T to extended activation tree (EAT). Above defined
EAT has pre-defined node, root node, which represents global/static area.

Start address of two stacks are different depends on global and static variables in X
and Y memory banks. To consider these different start addresses, we use a default
root node. We imagine that this root node calls main function with weight pair which
means memory usage used in X and Y memory banks for global and static variables.
To explain our balancing algorithm for DDMB, we define Balancing Factor.

Definition 3. The Balancing Factor (BF) is defined as ux - uy, where ux and uy are
the amount used of the X and Y memory, respectively.

We find that our definition allows us to more easily explain our algorithm. From
Definition 3, if BF has a positive value, it indicates that the amount of used X
memory is more than the amount used of Y memory. If BF is zero, because it
indicates that the amount used of two memories are same, dual run-time stacks is
balanced at the instant. If BF has a negative value, it indicates that the amount used of
Y memory is more than the amount used of X memory. The larger BF, the less two
stacks are unbalanced. Therefore, our algorithm finds the path first which has the

 Run-Time Memory Optimization for DDMB Architecture 781

largest BF, and then the path is tried to balance through swap of activation records in
X and Y memory.

4.2 Intra Call Chain Balancing

The swap of the activation record in X and Y memory means that swappable fields in
X and Y memory exchange each other. From an activation record, arguments,
temporary variables, local variables, caller-save registers, and callee-save registers are
swappable fields, and return address in X memory is an unswappable field. In our
previous work [2], we first identify a maximum spanning tree (MST) of a
simultaneous reference graph (SRG), and then X memory is assigned in even depth
and Y memory in odd depth in this tree. Swap of an activation record means that X
memory is assigned in odd depth and Y memory in even depth in that tree. Therefore
swap of an activation record does not affect correctness of program. However,
because return address has to be saved in a caller and restored in a callee, we fix the
field in X memory. Although the status register is saved and restored in a caller, we
fix the register in Y memory to consider a return address in X memory. Thus, when
activation records are swapped, return address and status register are excluded.

The core of our balancing algorithm is described at from Line 7 to Line 27 of Fig. 4.
Basic concept of our algorithm is a greedy algorithm to assign small activation to

Input: a call chain p
Output: a node // root node of subgraph which has swapped activations
algorithm: IntraCCB
1 q = sort (p); // descending sort for each activation record of
2 // the found call chain
3 // Balancing the found path with descending order
4 A {}; // Set of assigned nodes
5 recal_node NULL; // The node to recalculate BF
6 current_bf = 0; // Current BF
7 for all activation records qi in q do
8 if (qi is not an element of A)
9 if ((current_bf > 0) and (size(Xqi) > size(Yqi)))
10 swap(Xqi, Yqi);
11 if ((recal_node equals to NULL)
12 or (qi is not descendent of recal_node))
13 recal_node qi;
14 end if
15 end if
16 if ((current_bf < 0) and (size(Xqi) < size(Yqi)))
17 swap(Xqi, Yqi);
18 if ((recal_node equals to NULL)
19 or (qi is not descendent of recal_node))
20 recal_node qi;
21 end if
22 end if
23 A A U qi; // To fix assignment
24 end if
26 current_bf = current_bf + bf_op(Xqi, Yqi);
27 end do
28 return S;
end algorithm

Fig. 4. Intra call chain balancing algorithm

782 J. Cho and Y. Paek

the larger size memory bank one after the other. In the initial state, because there is no
assigned activation of X and Y memory banks, the first activations of the found call
chain are assigned with the pre-assigned activations from our MST algorithm in the
previous stage. From the second activations of the call chain, if the assigned words of
X memory bank are more than them of Y memory bank, the more activation of the
two is assigned to Y memory bank. Above sequence is performed iteratively for all
activation nodes of the path.

We use a greedy approach including descending sort in order to balance the calling
sequence. At Line 1 of Fig. 4, descending sort is performed to handle some larger
activation first. If sorting is excluded from our algorithm, we might not be able to
assign a memory bank optimally in order to use a minimum amount of run-time
memory when the flow of control in a program corresponds to this call chain.

4.3 Inter Call Chain Balancing

From the example of Fig. 3, we can know that requirement of balancing is conflict. If
there is a function having two callers, balancing of the activation record in one call
chain can make effect the activation record in the other call chain.

Definition 4. Let A is an activation record. If the number of caller of A is more than
one, we call A overlapped activation record. The root node of Definition 3 and main
of C language are default overlapped activation record. We also say a call chain not
including even an overlapped record independent call chain, otherwise dependent
call chain.

From Definition 4, we can know that all call chains are dependent because they
include at least root and main activation records. Therefore finding an optimal
balancing from all call chains of the EAT is NP-complete problem. As described
previously, because our main aim is to enhance utilization of on-chip memory, we
attempt the balancing for dual run-time stacks at instant when it is maximized to
difference of the sum of activation records between X memory and Y memory, that is,
most unbalanced instant. Therefore we apply our balancing algorithm to the call chain
which has the largest difference usage of X and Y run-time memory, and if we
already assigned activation records to X or Y memory, we skip assignment of the

Input: EAT
Output: Balanced EAT
algorithm: InterCCB
1 E = {}; // A set of assigned edges in EAT
2 L = findLeafNodes(EAT); // A set of leaf nodes in EAT
3 calculate_BF(EAT);
4 while (L != 0)
5 l = find a node with maximum BF in L;
6 p path from root node to l;
7 S = IntraCCB(p);
8 recalc_BF_of_subtree(S);
9 L L – {l}
10 end while
end algorithm

Fig. 5. Inter call chain balancing algorithm

 Run-Time Memory Optimization for DDMB Architecture 783

activation records. Our balancing algorithm is repeated iteratively until there is no
change or all activation records are fixed. Figure 5 shows our balancing algorithm in
more detail.

5 Experimental Result

To evaluate the performance of my algorithm for run-time memory optimization, we
implemented the algorithm in our compiler and conducted experiments with IDCT,
G721 encoder, and G721 decoder of MediaBench benchmark suites [4] on a
commercial DSP, the Motorola DSP56300 [3]. The performance is measured in usage
of run-time memory corresponding to procedure calls. In this section, we report the
performance obtained in our experiments, and compare our results with other work.

5.1 Measurements of Memory Usages

We compared our run-time environment with fully static dual run-time environment
used in SPAM compiler [7][8] to demonstrate the effectiveness of our CCB
algorithm. Besides, by comparing with SPAM, we can analyze the pros and cons of
our CCB approach as opposed to their fully static dual approach. To resolve an effect
of memory bank assignment, we just extract fully static run-time environment from
SPAM compiler, that is, we calculate static size of X and Y run-time stacks from
result of our memory bank assignment. We convince that this experimental approach
is fair to compare only usage of run-time memory.

Table 1. Benchmark results

 IDCT G721 encoder G721 decoder
Fully static dual approach 1165 421 500
CCB approach 1125 257 272

Table 1 shows result about benchmark programs. The value means total usage of
run-time memory, that is, sum of X and Y run-time memory. In case of IDCT, stack
area was saved 27.1% and total memory was saved 3.3% because this benchmark
used 1025 words as global/static area. In g721 encoder benchmark program, stack
area was saved 48% and total memory was saved 39% because this benchmark used
80 words as global/static area. And in g721 decoder benchmark program, stack area
was saved 54% and total memory was saved 45.6% because this benchmark used 80
words as global/static area.

5.2 Memory Optimization

In this subsection, we compare maximum usage of run-time memory between the
worst case and the case applied our CCB algorithm. Because IDCT benchmark
program has large size of global variables, effect of CCB algorithm is relatively small.
Therefore we experimented with two benchmark program; g721 encoder and decoder.
In this experiment, we evaluated maximum memory usage in X and Y run-time
memory whenever run-time stack was changed, that is, procedure is called and exited.

784 J. Cho and Y. Paek

From our results, our CCB algorithm decrease 9% (G721 encoder) and 10% (G721
decoder) of run-time memory at instant of maximum memory usage.

6 Conclusions

Many DSP vendors provide a dual data memory bank system that allows applications
to access two memory banks simultaneously. In previous work, we addressed a
decoupled approach to exploit multiple memory bank architecture. In this paper, we
proposed a call chain balancing algorithm to utilize on-chip memory efficiently,
where Inter-CCB and Intra-CCB algorithms are performed. Inter-CCB algorithm
selects a call chain to balance in EAT, and Intra-CCB algorithm performs balancing
of activation records for the found call chain. Because balancing between X and Y
memory usage means that maximum memory usage of X or Y memory bank is
diminished, it will give more chance to utilize on-chip memory. The comparative
analysis of the experiments revealed that our CCB algorithm achieves better results in
usage of run-time memory than a previously described fully static run-time
environment.

Acknowledgments. This research was supported by the MIC(Ministry of Information
and Communication), Korea, under the ITRC(Inofrmation Technology Research
Center) support program supervised by the IITA(Institute of Information Technology
Assessment) (IITA-2005-C1090-0502-0031), KRF contract D00191, the Korea
Ministry of Information and Communication under Grant A1100-0501-0004, the
Korea Ministry of Science and Technology(MoST) under Grant M103BY010004-
05B2501-00411, IT R&D Project funded by Korean Ministry of Information and
Communications, and nano IP/SoC promotion group of Seoul R&BD Program.

References

1. Aho, A. V., Sethi, R., AND Ullman, J. D.: Compilers -Principles, Techniques, and Tools.
Addison-Wesley Publishing Company (1986)

2. Cho, J., Paek, Y., AND Whalley, D.: Fast Memory Bank Assignment for Fixed-Point
Digital Processors. ACM Transactions on Design Automation of Electronic Systems, Vol. 9,
Issue 1, (2004) 52–74

3. Motorola Inc. http://www.motorola-dsp.com. DSP56301 User’s Manual (1999)
4. Lee, C., Potkonjak, M., AND Mangione-Smith, W.: MediaBench: A Tool for Evaluating

and Synthesizing Multimedia and Communications Systems. In Proceedings of the 30th
Annaul IEEE/ACM Internation Symposium on Microarchitecture, (1997) pages 330–335

5. LEUPERS, R. AND KOTTE, D.: Variable partitioning for dual memory bank DSPs. In
Proceedings of the IEEE International Conference on Acoustics Speech and Signal
Processing. (2001) 1121–1124.

6. Liem, C.: Retargetable Compilers for Embedded Core Processors. Kluwer Academic
Publishers (1997)

7. Saghir, M. A. R., Chow, P., AND Lee, C. G.: Exploiting Dual Data-Memory Banks in
Digital Signal Processors. ACM SIGOPS Operating Systems, (1996) 234–243.

8. Sudarsanam, A. AND Malik, S.: Simultaneous Reference Allocation in Code Generation
for Dual Data Memory Bank ASIPs. ACM Transactions on Design Automation of
Electronic Systems, Vol. 5, Issue 2 (2000) 242–264

	Introduction
	Previous Work
	Motivation and Approach
	Our Motivation
	Our Approach

	Balanced Run-Time Environment
	Basic Concepts
	Intra Call Chain Balancing
	Inter Call Chain Balancing

	Experimental Result
	Measurements of Memory Usages
	Memory Optimization

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

