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Abstract. A priority-driven scheduling algorithm is said to be start
time (finish time) predictable if the start time (finish time) of jobs in the
schedule where each job executes for its actual execution time is bounded
by the start times (finish times) of jobs in the schedules where each job
executes for its maximum/minimum execution time. In this paper, we
study the predictability of a job-level dynamic priority algorithm, LLF
(Least Laxity First), on multiprocessor real-time systems. We present
a necessary and sufficient condition for a priority-driven algorithm to
be start time (finish time) predictable. Then, in LLF scheduling, we
show that both the start time and the finish time are predictable if the
actual execution times cannot be known. However, solely the finish time
is predictable if the actual execution times can be known.

1 Introduction

As the workload of embedded systems becomes heavier, multiprocessor architec-
ture becomes more common to many embedded systems. For example, Multi-
processor cores (MPcore) and Multiprocessor System-On-Chips (MPSoCs) have
been adopted in various embedded systems such as cellular phones, digital video
entertainment systems, mobile multimedia applications [1,2]. Recently as embed-
ded systems handle complex and dynamic applications, many researchers study
priority-driven real-time scheduling on multiprocessor embedded systems [3,4].

Priority-driven algorithms assign priorities to jobs and execute the highest-
priority jobs on the available processors. Most well-known scheduling algorithms
such as FIFO (First-In-First-Out), LIFO (Last-In-Last-Out), SJF (Shortest-Job-
First) are priority-driven [5]. Priority-driven algorithms are classified into three
categories: static priority, job-level fixed priority (task-level dynamic priority)
and job-level dynamic priority algorithms. Static priority algorithms assign a
unique priority to each task, and each job of a task has the same priority associ-
ated with that task. Examples of such algorithms are RM (Rate Monotonic) and
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DM (Deadline Monotonic) [6,7]. In job-level fixed priority algorithms, each job
is given a unique priority and the priority remains fixed until the job completes
its execution. EDF (Earliest Deadline First), EDF-US[m/(2m− 1)], and fpEDF
are in this class [7,8,9]. In job-level dynamic priority algorithms, the priority of a
job may change at any time. A well known job-level dynamic priority algorithm
is LLF (Least Laxity First) [10,11].

The execution requirement of a hard real-time job is usually specified as the
maximum execution time or an upper bound on the actual execution time. It
is assumed that the maximum execution time is known a priori. But the actual
execution time is known only when the job arrives or is not known until the job
finishes. In this context, Ha and Liu [12] defined predictability as follows. The
execution of a job is start time predictable if the start time of the job in the actual
schedule can be bounded by the start times of the job in the maximum/minimum
schedule (a schedule where each job executes for its maximum/minimum execu-
tion time). Similarly, the execution of a job is finish time predictable if the finish
time of the job in the actual schedule can be bounded by the finish times in the
maximum/minimum schedule. The execution of a job is predictable if it is both
start time predictable and finish time predictable.

In most real systems only predictable scheduling algorithms are useful. In
general, the feasibility of a given set of jobs is determined on the basis of jobs’
maximum execution time during the system design stage. At runtime the actual
execution time may be less than the maximum execution time, and thus the
actual schedule may be different from the maximum schedule. If a scheduling
algorithm is not finish time predictable, the finish time in the actual schedule
might be later than the finish time in the maximum schedule. It might fail to
schedule actual jobs to meet their deadlines even though every job meets its
deadline in the maximum schedule.

Fortunately, Ha and Liu [12] showed that any job-level fixed priority algorithm
is predictable in preemptible and migratable systems, where every job can be
dispatched to execute on any processor, can be preempted at any time, and can
be resumed on any processor. With job-level fixed priority algorithms, validation
methods can confine their attention to the maximum execution time and ignore
the variations in the actual execution time [5].

Until now, however, little research has addressed this problem for job-level
dynamic priority algorithms. Job-level dynamic priority algorithms such as LLF
and EDZL (Earliest Deadline Zero Laxity) [13,14] may or may not be pre-
dictable.1 In order to use a job-level dynamic priority algorithm in real sys-
tems, validation methods should include a test for the predictability of the
algorithm.

In this paper, we study the predictability of a job-level dynamic priority
algorithm, LLF, for multiprocessor real-time systems. We present a necessary
and sufficient condition for a priority-driven algorithm to be predictable. We
show that LLF satisfies this condition if the actual execution times cannot be
known until jobs finish. However, if the actual execution times can be known,

1 Recently Xuefeng Piao et al. [15] proved the predictability of EDZL algorithm.
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LLF is finish time predictable but is not start time predictable, which may be
counterintuitive.

This paper is organized as follows. Section 2 briefly explains the system model
and notations. Section 3 discusses the predictability of priority-driven algorithms
and Section 4 presents the predictability of LLF algorithm. Then, we conclude
in Section 5.

2 System Model and Notations

We consider preemptive and migratable scheduling of independent real-time jobs
on m identical multiprocessors. A job set J = {j1, j2, . . . , jn} is a set of jobs
ji = (ri, ei, di). ji is released at time ri, requires execution of ei time units, and
must complete its execution by deadline di. The start time of ji, denoted by
s(ji), is a time instance at which the execution of ji begins. The finish time
of ji is denoted by f(ji), and ji is said to meet its deadline if f(ji) ≤ di. The
remaining execution time of ji at time t is denoted by rc(ji, t). The laxity of ji

at time t is defined as l(ji, t) = di − t − rc(ji, t).
A job is said to be active if it is released and has not completed its exe-

cution, i.e., ji is active at time t if t ≥ ri and rc(ji, t) > 0. The schedule of
J produced by an algorithm Q is Q(J) = {(t, σQ(J, t))| t = 0, 1, 2, · · ·} where
σQ(J, t) is the set of indexes of at most m active jobs such that their priorities are
higher than other jobs’ at time t. In the rest of this paper, we mean σLLF (J, t)
by σ(J, t).

Observation 1. For any priority-driven algorithm Q, l(ji, t + 1) = l(ji, t) for
i ∈ σQ(J, t) and l(ji, t + 1) = l(ji, t) − 1 for i /∈ σQ(J, t).

A job ji is chosen to execute during [t, t+1) if it is active and the number of jobs
with higher priorities than ji’s is smaller than m at time t. During that interval
the laxity of ji does not change. In case that ji is not active or the number of
jobs with higher priorities than ji’s is larger than or equal to m, ji is not chosen
to execute and its laxity decreases by one. Note that the laxity of a job decreases
by definition even when the job is not released yet or has finished.

The actual execution time ei can be any value in the range [e−i , e+
i ]. e−i is the

minimum execution time and e+
i is the maximum execution time of actual job ji.

In general e−i and e+
i are known a priori. But ei may not be known in advance

because the actual execution time is affected by input data, branches, cache
misses, etc. Hence, it is usually assumed that either (A1) the actual execution
time can be known when the job arrives, or (A2) the actual execution time
cannot be known until the job finishes.

We define j+
i = (ri, e

+
i , di) as the maximum job of ji and j−i = (ri, e

−
i , di)

as the minimum job. J+ is the set of the maximum jobs {j+
1 , j+

2 , · · · , j+
n } and

J− is the set of the minimum jobs {j−1 , j−2 , · · · , j−n }. Similarly, the maximum
schedule of J produced by algorithm Q is Q(J+) and the minimum schedule
is Q(J−).
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3 Predictability of Priority-Driven Algorithms

Ha and Liu [12] defined the predictability as follows. An actual job ji is start
time predictable if s(j−i ) ≤ s(ji) ≤ s(j+

i ). Similarly, ji is finish time predictable
if f(j−i ) ≤ f(ji) ≤ f(j+

i ). And ji is predictable if it is both start time predictable
and finish time predictable. A set of actual jobs J is predictable if every job in
J is predictable. A scheduling algorithm Q is said to be predictable if any job
set J is predictable as long as it is scheduled by Q.

Now consider two job sets G = {g1, g2, · · ·, gn} where gi = (gri, gei, gdi), and
G′ = {g′1, g′2, . . ., g′n} where g′i = gi for i �= k and g′k = (grk, ge′k = gek − 1, gdk),
i.e., g′k has the same release time and deadline as gk and execution requirement
smaller than gk by 1 time unit. A job whose execution requirement is 0 time units
is called null job. The start time and the finish time of a null job are defined as
its release time, that is, s(gi) = f(gi) = gri if gei = 0. In case gek = 1, ge′k = 0
and g′k is a null job.

This section shows that the start/finish time predictability of Q can be deter-
mined by comparing the start/finish time in Q(G) and the start/finish time in
Q(G′) for each job. Lemma 1 and Lemma 2 show that the start time and finish
time in the actual schedule are respectively no later than the start time and the
finish time in the maximum schedule if and only if the start time and finish time
in Q(G′) are respectively no later than the start time and finish time in Q(G).
Then, Theorem 1 and Theorem 2 provide a necessary and sufficient condition
for the start time predictability and the finish time predictability, respectively.

Lemma 1. s(ji) ≤ s(j+
i ) for 1 ≤ i ≤ n if and only if s(g′i) ≤ s(gi) for 1 ≤ i ≤ n.

Proof. Trivially (∀i, s(ji) ≤ s(j+
i )) ⇒ (∀i, s(g′i) ≤ s(gi)). We have to show

(∀i, s(g′i) ≤ s(gi)) ⇒ (∀i, s(ji) ≤ s(j+
i ))

Let J ′′ = {j′′1 , j′′2 , . . . , j′′n} denote a job set such that j′′i = j+
i for i �= k and

j′′k = (rk, ek, dk). In other words, the execution requirement of j′′k is the same as
the actual execution time of jk and the execution requirements of other jobs are
the same as the maximum execution time. We prove this lemma in two steps.
Step 1 shows (∀i, s(g′i) ≤ s(gi)) ⇒ (∀i, s(j′′i ) ≤ s(j+

i )). Then, Step 2 shows
(∀i, s(j′′i ) ≤ s(j+

i )) ⇒ (∀i, s(ji) ≤ s(j+
i )).

Step 1: Consider a job set J (p) = {j(p)
1 , j

(p)
2 , . . . , j

(p)
n } where p = 0, 1, · · · , e+

k −
ek. j

(p)
i = j+

i (i �= k) and j
(p)
k = (rk, e

(p)
k , dk) where e

(p)
k = e+

k −p. Then, J (0) = J+

and J (e+
k −ek) = J ′′. s(j(0)

i ) = s(j+
i ) and s(j(e+

k −ek)
i ) = s(j′′i ). Since (∀i, s(g′i) ≤

s(gi)) implies (∀i, s(j(p+1)
i ) ≤ s(j(p)

i )), ∀i, s(j(e+
k −ek)

i ) ≤ · · · ≤ s(j(0)
i ). Therefore,

∀i, s(j′′i ) ≤ s(j+
i ).

Step 2: Consider a set of jobs J<q> = {j<q>
1 , j<q>

2 , . . . , j<q>
n } where q =

1, 2, · · · , n. j<q>
i = ji for 1 ≤ i ≤ q and j<q>

i = j+
i for q < i ≤ n. Define

J<0> = {j+
i , j+

2 , · · · , j+
n }. Then, J<0> = J+ and J<n> = J . s(j<0>

i ) = s(j+
i )

and s(j<n>
i ) = s(ji). Now consider J<q> and J<q+1>. Since J<q> = {j1, j2,

· · · , jq, j
+
q+1, j

+
q+2, · · · , j+

n } and J<q+1> = {j1, j2, · · · , jq, jq+1, j
+
q+2, · · · , j+

n },
∀i, s(j<q+1>

i ) ≤ s(j<q>
i ) by the result of Step 1. Hence, ∀i, s(j<n>

i ) ≤ · · · ≤
s(j<0>

i ). Therefore, ∀i, s(ji) ≤ s(j+
i ). �	



Predictability of Least Laxity First Scheduling Algorithm 759

Lemma 2. f(ji) ≤ f(j+
i ) for 1 ≤ i ≤ n if and only if f(g′i) ≤ f(gi) for 1≤ i≤n.

Proof. Similar to the proof of Lemma 1. �	
Theorem 1. (start time predictability) Suppose G and G′ are scheduled by a
priority-driven algorithm Q respectively. Then, Q is start time predictable on the
domain of integers if and only if (∀i, s(g′i) ≤ s(gi)).

Proof. (∀i, s(j−i ) ≤ s(ji)) straightforwardly follows from Lemma 1 and the fact
that (∀i, e−i ≤ ei). Hence s(j−i ) ≤ s(ji) ≤ s(j+

i ). �	
Theorem 2. (finish time predictability) Suppose G and G′ are scheduled by a
priority-driven algorithm Q respectively. Then, Q is finish time predictable on
the domain of integers if and only if (∀i, f(g′i) ≤ f(gi)).

Proof. (∀i, f(j−i ) ≤ f(ji)) follows from Lemma 2 and the fact that (∀i, e−i ≤ ei).
Hence f(j−i ) ≤ f(ji) ≤ f(j+

i ). �	

4 Predictability of Least Laxity First Algorithm

Job-level fixed priority algorithms, such as EDF, do not refer to the remain-
ing execution time in assigning priorities. They refer to only fixed values and
thus assign job-level fixed priorities. Ha and Liu [12] showed that any job-level
fixed priority algorithm is predictable. However, little research has addressed the
predictability of job-level dynamic priority algorithms.

In this section, we discuss the predictability of LLF [10,11]. LLF is a well-
known job-level dynamic priority algorithm. In LLF scheduling, an active job
with less laxity is given higher priority. Jobs with the same laxity are executed
in a static order determined by tie-breaking rules. Without loss of generality, we
assume that ji is preferred to ji+1 if l(ji, t) = l(ji+1, t).

LLF is optimal on uniprocessor, and it outperforms many job-level fixed prior-
ity algorithms on multiprocessors [16]. However, LLF may cause a huge number
of context switches when laxities of two or more jobs tie. To reduce the number
of context switches, Oh and Yang [17] proposed a modified LLF algorithm that
allows laxity inversions. Hilderbrandt et al. [18] developed a coprocessor dedi-
cated for LLF scheduling. Livani and Kaiser [19] presented a CAN bus scheduling
scheme that implemented LLF algorithm.

4.1 Start Time Predictability

In this section we deal with the start time predictability depending on the knowl-
edge of the actual execution time. If the actual execution times can be known
when jobs arrive, LLF can refer to the actual execution time in computing the
laxity in the actual schedule. Otherwise, LLF has to use the maximum execution
time instead of the actual execution time.2

2 This version of LLF can be called Least Estimated Laxity First.
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(a) LLF(J) (b) LLF(J’)
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Fig. 1. LLF is not start time predictable if the actual execution time is known

Assume that the actual execution time is known. LLF is not start time pre-
dictable. For example, let J = {j1 = (0, 2, 3), j2 = (0, 2, 5), j3 = (0, 4, 6),
j4 = (0, 4, 7)} be the set of the maximum jobs and let J ′ = {j′1 = (0, 2, 3),
j′2 = (0, 2, 5), j′3 = (0, 3, 6), j′4 = (0, 4, 7)} be the set of the actual jobs. Suppose
they are scheduled by LLF algorithm on two processors. The resulting schedules
are shown in Fig. 1. Consider the start times of j3 and j′3, that is, s(j3) and
s(j′3), respectively. In LLF (J), l(j1, 0) = 1, l(j2, 0) = 3, l(j3, 0) = 2, l(j4, 0) = 3.
j1 and j3 is chosen to execute during [0, 1). In LLF (J ′), however, l(j′1, 0) = 1,
l(j′2, 0) = 3, l(j′3, 0) = 3, l(j′4, 0) = 3, and j′2 is given a higher priority than
j′3 according to the tie-breaking rule. j′3 cannot execute during [0, 1). Hence,
s(j3) = 0 < s(j′3) = 1.

Above example shows that LLF is not start time predictable if the actual
execution times are known, that is, it is not guaranteed that the actual start
time of each job is no later than the start time in the maximum schedule.

Counterintuitively, however, LLF is start time predictable if the actual execu-
tion times are not known. Consider two job sets G and G′. G = {g1, g2, . . . , gn}
where gi = (ri, ei, di), and G′ = {g′1, g′2, . . . , g′n} where g′i = gi(i �= k) and
g′k = (rk, ek − 1, dk). Without loss of generality, we can assume G is the maxi-
mum job set and G′ is the actual one. LLF has no choice but to use the maximum
execution time ek in computing the laxity of g′k in the actual schedule LLF (G′).
Each job in LLF (G′) is given the same priority as it is in LLF (G) until g′k com-
pletes its execution. At that time, we come to know that the remaining execution
time of g′k is zero.

To begin with, Lemma 3 shows that the laxity of each actual job in LLF (G′) is
bounded from below by the laxity of the corresponding maximum job in LLF (G)
if the actual execution times are known. Based on this, Theorem 3 shows that
LLF is start time predictable if the actual execution time cannot be known.

Lemma 3. Suppose that G and G′ are scheduled by LLF, respectively. At each
time t there exists an integer kt(1 ≤ kt ≤ n) such that l(g′kt

, t) = l(gkt , t)+1 and
l(g′i, t) = l(gi, t) for i �= kt.

Proof. By induction on time t. When t = 0, l(g′i, 0) = l(gi, 0) for i �= k and
l(g′k, 0) = l(gk, 0) + 1. Hence k0 = k. Assume that at time t there exists an
integer kt such that l(g′i, t) = l(gi, t) for i �= kt and l(g′kt

, t) = l(gkt , t) + 1.
Then, we will show that at time t + 1 there exists an integer kt+1 such that
l(g′kt+1

, t + 1) = l(gkt+1 , t + 1) + 1 and l(g′i, t + 1) = l(gi, t + 1) for i �= kt+1.
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Case 1: kt ∈ σ(G, t) and kt ∈ σ(G′, t). In this case, σ(G, t) = σ(G′, t). For
i /∈ σ(G, t), l(gi, t + 1) = l(gi, t) − 1 = l(g′i, t) − 1 = l(g′i, t + 1). For i ∈ σ(G, t)
and i �= kt, l(gi, t + 1) = l(gi, t) = l(g′i, t) = l(g′i, t + 1). For i = kt, l(gi, t + 1) =
l(gi, t) = l(g′i, t) − 1 = l(g′i, t + 1) − 1. Hence, kt+1 = kt. See Fig. 2 (a).

Case 2 : kt /∈ σ(G, t) and kt /∈ σ(G′, t). Similarly, σ(G, t) = σ(G′, t) and
kt+1 = kt. See Fig. 2 (b).

Case 3 : kt ∈ σ(G, t) and kt /∈ σ(G′, t). There must be a job gs(s �= kt) such
that s /∈ σ(G, t) but s ∈ σ(G′, t). In this case, σ(G, t) − {kt} = σ(G′, t) − {s}.
For i ∈ σ(G, t) and i �= kt, l(gi, t + 1) = l(gi, t) = l(g′i, t) = l(g′i, t + 1). For
i /∈ σ(G, t) and i �= s, l(gi, t + 1) = l(gi, t) − 1 = l(g′i, t) − 1 = l(g′i, t + 1). For
i = kt, l(gi, t + 1) = l(gi, t) = l(g′i, t) − 1 = l(g′i, t + 1). For i = s, l(gi, t + 1) =
l(gi, t) − 1 = l(g′i, t) − 1 = l(g′i, t + 1) − 1. Hence, kt+1 = s. See Fig. 2 (c).

Case 4 : kt /∈ σ(G, t) and kt ∈ σ(G′, t). Since l(gi, t) = l(g′i, t) for i �= kt

and l(gkt , t) < l(g′kt
, t), at time t the number of jobs with less laxity than gkt

in LLF (G) is not greater than the number of jobs with less laxity than g′kt
in

LLF (G′). This contradicts the assumption that kt /∈ σ(G, t) and kt ∈ σ(G′, t).
Hence, this case cannot happen. See Fig. 2 (d). �	
Theorem 3. LLF is start time predictable if the actual execution time is not
known.

Proof. Suppose that G and G′ are scheduled by LLF respectively. Since the
actual execution times cannot be known, LLF assigns priorities to g′k based on
ek (not on e′k) in LLF (G′). The actual schedule is the same as the maximum
schedule until g′k finishes, i.e., σ(G, t) = σ(G′, t) for 0 ≤ t < f(g′k). Hence, for
each job g′i such that s(g′i) < f(g′k), s(g′i) = s(gi).

Now we will shown that s(g′i) ≤ s(gi) for each job g′i such that s(g′i) ≥
f(g′k). At time f(g′k), g′k finishes in LLF (G′) but gk does not in LLF (G), i.e.,
rc(gk, f(g′k)) = 1 and rc(g′k, f(g′k)) = 0. At time f(g′k), G can be thought as a
job set H = {h1, h2, · · · , hn} where hi = gi for i such that ri ≥ f(g′k) and hi =
(f(g′k), rc(gi, f(g′k)), di) for i such that ri < f(g′k). Similarly, G′ can be thought
as a job set H ′ = {h′

1, h
′
2, · · · , h′

n} where h′
i = g′i for i such that ri ≥ f(g′k) and

h′
i = (f(g′k), rc(g′i, f(g′k)), di) for i such that ri < f(g′k). Then hk = (f(g′k), 1, dk),

h′
k = (f(g′k), 0, dk), and hi = h′

i(i �= k).
It is true that s(g′i) ≤ s(gi) for i such that s(g′i) ≥ f(g′k), provided s(h′

i) ≤
s(hi) for all i. Thus, we will show that h′

i has already started by t in LLF (H ′)
if hi starts execution at t ≥ f(g′k) in LLF (H).

Suppose hi starts execution at t. By Lemma 3, there exists an integer kt such
that l(h′

j, t) = l(hj , t) for j �= kt and l(g′j, t) = l(gj, t) + 1 for j = kt.
Case i = kt: l(hi, t) �= l(h′

i, t). This implies that h′
i already started before t

or i = k. In both cases, h′
i already started before t since h′

k already finished (h′
k

is a null job).
Case i �= kt: l(hi, t) = l(h′

i, t). This implies h′
i does not start execution yet.

Assume that h′
i does not start execution at t, that is, i /∈ σ(H ′, t). There must

exist a job hs such that s /∈ σ(H, t) and s ∈ σ(H ′, t). Then, l(hs, t) = l(h′
s, t)

because s �= kt by Case 4 in Lemma 3. This contradicts the fact that l(hi, t) =
l(h′

i, t) because hs is given a lower priority than hi at t in LLF (H) but h′
s is



762 S. Han and M. Park

kt
(G,t)σ σ(G’,t)

s

s

kt

kt
(G,t)σ σ(G’,t)

kt

(G,t)σ σ(G’,t)

kt
kt

(G,t)σ σ(G’,t)

q
kt

kt
q

(a) (b)

(d) (c) 

Fig. 2. Four possible cases depending on the execution of gk and g′
k at time t. The

number of processors is 6, and the number of active jobs is 12.

given a higher priority than h′
i at t in LLF (H). Therefore, i ∈ σ(H ′, t), that is

to say, h′
i starts execution at t. �	

4.2 Finish Time Predictability

The finish time predictability is more important than the start time predictabil-
ity. The purpose of validation is to determine whether all jobs in a system indeed
meet their timing constraints, one of which is deadline. In hard real-time sys-
tems, especially, the usefulness of a job is measured by whether it completes by
its deadline or not.

In the first place, Lemma 4 shows that for any scheduling algorithm Q the
finish time of each job in Q(G′) is no later than the finish time of the corre-
sponding job in Q(G) if the laxity of each job in Q(G′) is always no less than
that of the corresponding job in Q(G). Then, Theorem 4 and Theorem 5 show
that LLF is finish time predictable regardless of the knowledge of the actual
execution times.
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Lemma 4. Suppose G and G′ are scheduled by a priority-driven algorithm Q
respectively. Then, for any job gi, if l(g′i, t) ≥ l(gi, t) for all t, then f(g′i) ≤ f(gi).

Proof. By contradiction. Suppose that for some job gj l(g′j , t) ≥ l(gj , t) for all t
but f(g′j) > f(gj). Then, rc(g′j , f(gj)) > 0 and rc(gj , f(gj)) = 0. l(g′j, f(gj)) =
dj − f(gj)− rc(g′j , t) and l(gj, fj)) = dj − f(gj). Thus, l(g′j, f(gj)) < l(gj , f(gj)),
which is a contradiction. �	

Theorem 4. LLF is finish time predictable if the actual execution time is known.

Proof. Suppose that G and G′ are scheduled by LLF respectively. By Lemma
3, we have (∀i, l(g′i, t) ≥ l(gi, t)) at each time t. Then, by Lemma 4, ∀i, f(g′i) ≤
f(gi). �	

Theorem 5. LLF is finish time predictable even if the actual execution time is
not known.

Proof. Suppose that G and G′ are scheduled by LLF respectively. Since the
actual execution times cannot be known, LLF assigns priorities to g′k based on
ek (not on e′k) in LLF (G′). The actual schedule is the same as the maximum
schedule until g′k finishes, i.e., σ(G, t) = σ(G′, t) for 0 ≤ t < f(g′k). Hence, for
each job g′i such that f(g′i) < f(g′k), f(g′i) = f(gi).

Now we will shown that f(g′i) ≤ f(gi) for each job g′i such that f(g′i) ≥ f(g′k).
Similar to the proof of Theorem 3, G and G′ can be thought as H and H ′,
respectively. At f(g′k) the execution requirement of every job hi is known. By
Theorem 4, (∀i, f(h′

i) ≤ f(hi)). Hence, for each job g′i such that f(g′i) > f(g′k),
f(g′i) ≤ f(gi). �	

5 Conclusion

Validation methods for dynamic systems can concentrate on the feasibility of
jobs based on the maximum execution time, ignoring the variation in the actual
execution time only if the scheduling algorithm is predictable. It was shown by
previous works that any job-level fixed priority algorithm is predictable. How-
ever, the predictability of job-level dynamic priority algorithms has not been
focused on.

In this paper, we presented a necessary and sufficient condition for priority-
driven algorithms to be start time (or finish time) predictable on the domain
of integers. Then, we showed that LLF is start time predictable if the actual
execution times cannot be known. This may be counterintuitive because LLF is
not start time predictable if the actual execution times are known. Besides, we
showed that LLF is finish time predictable regardless of the knowledge of the
actual execution time. Since a major concern in validating hard real-time jobs
is whether all jobs meet their deadlines, the finish time predictability of LLF is
a useful property.
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