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Abstract. A framework for the autonomous management of large-scale
ubiquitous sensor networks called SNOWMAN (SeNsOr netWork MAN-
agement) is proposed in this paper. In large-scale ubiquitous sensor net-
works, a huge number of sensor nodes are deployed over a wide area
and long distances and multi-hop communication is required between
nodes. So managing numerous ubiquitous sensor nodes directly is very
complex and is not efficient. The management of large-scale ubiquitous
sensor networks therefore must be autonomic with a minimum of human
interference, and robust to changes in network states. The SNOWMAN
is responsible for monitoring and controlling ubiquitous sensor networks
based on policy-based management paradigm. It allows administrators
to simplify and automate the management of ubiquitous sensor networks.
It can also reduce the costs of managing sensor nodes and of the com-
munication among them using a new hierarchical clustering algorithm.

1 Introduction

A large-scale ubiquitous sensor network (USN) consists of a huge number of
sensor nodes, which are tiny, low-cost, low-power radio devices dedicated to
performing certain functions such as collecting various environmental data and
sending them to sink nodes (or base stations). In this network, a large number
of sensor nodes are deployed over a wide area and long distances and multi-hop
communication is required between nodes and sensor nodes have the physical
restrictions in particular energy and bandwidth restrictions. So managing nu-
merous wireless sensor nodes directly is very complex and is not efficient. To
intelligent autonomous management, sensor nodes should be organized and man-
aged automatically and dynamic adjustments need to be done to handle changes
in the environment. The autonomous management of large-scale USNs must be
able to know the changes in networks and to deal with the changes in a minimum
of human interference.
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We therefore propose an autonomous management framework for large-scale
USNs called SNOWMAN (SeNsOr netWork MANagement), which is based on
policy-based management (PBM) [1] paradigm. It allows administrators to sim-
plify and automate the management of ubiquitous sensor networks. The pro-
posed framework can also reduce the costs of managing sensor nodes and of the
communication among them using a new hierarchical clustering algorithm.

This paper is structured as follows. Section 2 investigates related researches.
Section 3 discusses the architecture, components, and clustering algorithm of the
SNOWMAN. Section 4 presents the implementation of the SNOWMAN and the
testbed of a USN. Finally in section 5 we conclude the paper.

2 Backgrounds

There is few related researches on the management of sensor networks.
Linnyer B. Ruiz designed the MANNA architecture [2] for wireless sensor

network (WSN), which considers three management dimensions: functional ar-
eas, management levels, and WSN functionalities. He also proposed WSN mod-
els to guide the management activities and the use of correlation in the WSN
management. However, he described only conceptual view of the distribution of
management functionalities in the network among manager and agent. He also
suggested both locations of manager and agents and functions they can execute.

Chien-An Lee [3] proposed an intelligent self-organization management mech-
anism for sensor networks. The nodes are classified into three levels according
to their functionality. The nodes in the low level are managed by those in the
higher level and form hierarchical management structures. His work indicates
how high-level nodes form a cluster through a contest with low-level nodes.

However, all of the previous works did not cover the implementation of man-
agement systems. Comparing to the previous works, our SNOWMAN provides
an efficient management mechanism by integrating the functions of PBM and
the hierarchical clustering architecture.

Wireless & ubiquitous sensor networks have need data aggregation to reduce
communication bandwidth and energy consumption. Considering this, it may be
advantageous to organize the sensors into clusters. In the clustered environment,
the data gathered by the sensors is communicated to the data processing center
through a hierarchy of cluster heads. Nowadays, several clustering algorithms
have been proposed. Noted two Schemes are LEACH and LEACH-C.

LEACH (Low Energy Adaptive Clustering Hierarchy) [4] includes distributed
cluster formation, local processing to reduce global communication, and ran-
domized rotation of the cluster heads. These features leads a balanced energy
consumption of all nodes and hence to a longer lifetime of the network.

LEACH-C (LEACH-Centralized) [5] is use a central control algorithm to form
the clusters may produce better clusters by dispersing the cluster head nodes
throughout the network. This is the basis for LEACH-C, a protocol that uses a
centralized clustering algorithm and the same steady-state protocol as LEACH.
Therefore the base station determines cluster heads based on nodes’ location
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Fig. 1. SNOWMAN Framework for autonomous management

information and energy level. This feature leads to organize robust clustering
topology. However, frequent communications between the base station and other
sensor nodes increases communication cost.

To improve energy efficiency and consider management viewpoint, we intro-
duce a hierarchical clustering scheme SNOWCLUSTER.

3 SNOWMAN(SeNsOr netWork MANagement)

3.1 Overview of Architecture

To facilitate scalable and localizable management of sensor networks, SNOW-
MAN constructs 3 tier regional hierarchial cluster-based senor network: regions,
clusters, and sensor nodes as shown in Fig. 1.

In the architecture, a sensor network is comprised of a few regions and a region
covers many clusters has several cluster head nodes. Sensor nodes should be
aggregated to form clusters based on their power levels and proximity. In 3 tier
regional hierarchical architecture of SNOWMAN, cluster heads constitute the
routing infrastructure, and aggregate, fuse, and filter data from their neighboring
common sensor nodes. The policy agent (PA) can deploy specific policies into
particular areas (or clusters) to manage just singular regions or phenomena by
more scalable manner. So, SNOWMAN framework is very useful to regionally
manage the sensor networks.

The policy manager (PM) is used by an administrator to input different poli-
cies, and is located in a manager node. A policy in this context is a set of rules
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that assigns management actions to sensor node states. The PA and the policy
enforcer (PE) reside in the base station and in the sensor node, respectively. The
PA is responsible for interpreting the policies and sending them to the PE. The
enforcement of rules on sensor nodes is handled by the PE. In a USN, individual
nodes will not be able to maintain a global view of the network. Such a task
is well suited for a machine not constrained by battery or memory. This is the
reason for having the PA on the base station.

It is the job of the PA to maintain this global view, allowing it to react to
larger scale changes in the network and install new policies to reallocate policies
(rules). If node states are changed or the current state matches any rule, the
PE performs the corresponding local decisions based on local rules rather than
sends information to base station repeatedly. Such policy execution can be done
efficiently with limited computing resources of the sensor node.

3.2 Functional Components

The PA consists of several functional components: policy distribution, policy
monitoring, resource management, energy map management, QoS management,
topology management, role management, and localization service. Localization
service in the context implies the scalability of management to regionally manage
the sensor networks. It is achieved via role management and topology manage-
ment. Global policies are specified by a network administrator in a logically
centralized fashion, and are expected to be static.

Policy distribution is the first essential task in ensuring that nodes are
managed consistently with the defined policies. We design and implement a
TinyCOPS-PR protocol that is similar to COPS-PR [6] protocol to deploy poli-
cies into sensor nodes. COPS-PR protocol is an extension for the COPS protocol
to provide an efficient and reliable means of provisioning policies. The PA com-
municates with the PE using the TinyCOPS-PR protocol to policy distribution.
TinyCOPS-PR allows asynchronous communication between the PA and the
PEs, with notifications (reports, changes in policies, etc.) conveyed only when
required.

However, to provide robust management of the network, it is desirable to have
an independent policy monitoring process to ensure that the deployed policies
behave well as defined in them. Though the policy monitoring is desirable, it is
achieved via passive methods because of the resources of network are scarce. En-
ergy map management continuously updates the residual energy levels of sensor
nodes, especially of cluster heads and region nodes. This energy map manage-
ment is also achieved via topology management process. Topology management
consists of a topology discovery, resource discovery, and role discovery. Resource
management and role management manage the detected resources and roles, re-
spectively. QoS management is a part of policy management using QoS policies
like bandwidth allocation for emergency. Energy map management and/or QoS
management go through an aggregation and fusion phase when energy and/or
QoS information collected are merged and fused into energy and/or QoS contours
by means of cluster heads.
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The PE enforces local policies assigned by the PM to make local decisions
and filter off unessential redundant sensed data. To do this, the PE consists of
policy enforcement function, local decision function, data filtering function, and
local policies. The PE communicates with the PA via TinyCOPS-PR protocol
to be assigned local policies.

3.3 Hierarchical Clustering Algorithm: SNOWCLUSTER

We propose a clustering scheme solely from a self-management viewpoint of
WSN. Each sensor node autonomously elects cluster heads based on a proba-
bility that depends on its residual energy level. The role of a cluster head is
rotated among nodes to achieve load balancing and prolong the lifetime of ev-
ery individual sensor node. To do this, SNOWMAN re-clusters periodically to
re-elect cluster heads that are richer in residual energy level, compared to the
other nodes. We assume all sensor nodes are stationary, and have knowledge of
their locations. Even though nodes are stationary, the topology may be dynamic
because new nodes can be added to the network or existing nodes can become
unavailable with faults and battery exhaustion.

SNOWMAN constructs hierarchical cluster-based senor network using SNOW
CLUSTER clustering algorithm as seen in Table 1. SNOWCLUSTER takes a couple
of steps to accomplish the hierarchical clustering: 1) cluster head selection and
2) region node selection. In order to elect cluster heads, each node periodically
broadcasts a discovery message that contains its node ID, its cluster ID, and its
remaining energy level.

A node declares itself as a cluster head if it has the biggest residual energy level
of all its neighbor nodes, breaking ties by node ID. Each node can independently
make this decision based on exchanged discovery messages. Each node sets its
cluster ID (c id) to be the node ID (n id) of its cluster head (c head). If a node
i hears a discovery message from a node j with a bigger residual energy level
(e level) than itself, node i sends a message to node j requesting to join the
cluster of node j. If node j has already resigned as a cluster head itself, node
j returns a rejection, otherwise node j returns a confirmation. When node i
receives the confirmation, node i resigns as a cluster head and sets its cluster ID
to node j ’s node ID. After forming clusters, region nodes are elected from the
cluster heads.

When the cluster head selection is completed, the entire network is divided
into a number of clusters. A cluster is defined as a subset of nodes that are
mutually reachable in at most 2 hops. A cluster can be viewed as a circle around
the cluster head with the radius equal to the radio transmission range of the
cluster head. Each cluster is identified by one cluster head, a node that can
reach all nodes in the cluster in 1 hop.

After the cluster heads are selected, the policy agent (PA) should select the
region nodes in the cluster heads. The PA receives cluster information messages
(c info msgs) that contain cluster ID, the list of nodes in the cluster, residual
energy level, and location data from all cluster heads. The PA suitably selects
region nodes according to residual energy level and location data of cluster heads.
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Table 1. SNOWCLUSTER Algorithm

// CLUSTER HEAD SELECTION
1. ∀x[node(x).role← c head]
2. ∀x[node(x).c id← node(x).n id]
3. ∀x[node(x).bcast(dis msg)]
4. if nodei.hears from(nodej)
5. if nodei.e level < nodej .e level
6. nodei.req join(nodej)
7. if nodej .role �= c head
8. nodej .rej join(nodej)
9. else
10. nodej .conf join(nodej)
11. if nodei.rec conf(nodej)
12. nodei.role← c member,nodei.c id← nodej .n id

// REGION NODE SELECTION
1. ∀x[ if node(x).role = c head]
2. ∃x[node(x).bcast(c info msg)]
3. if PA.rec(c info msg)
4. PA.assign(r node), PA.bcast(r dec msg)
5. if nodek.rec(r dec msg)
6. if nodek.role = c head
7. if nodek.n id = r dec msg.r id
8. nodek.role← r node, nodek.r id← nodek.n id
9. else if nodek.n id ∈ r dec msg.r list
10. nodek.r id← r dec msg.r id
11. nodek.bcast(r conf msg)

If a cluster head k receives region decision messages (r dec msgs) from the PA,
the node k compares its node ID with the region ID (r id) from the messages. If
the previous comparison is true, node k declares itself as a region node (r node)
and sets its region ID to its node ID. Otherwise, if node k ’s node ID is included
in a special region list (r list) from the message, node k sets its region ID to a
corresponding region ID of the message. The region node selection is completed
with region confirmation messages (r conf msgs) broadcasted from all of cluster
heads.

3.4 Evaluation of SNOWCLUSTER Algorithm

Simulation Environments. In the experiment, ns-2 [7] network simulator was
utilized and defined elements for establishing virtual experimental environment
are as follows.

– Sensor network topology formed with each of 50, 100, 150, 200 nodes
– Sensor field with dimension of 100 ∗ 100
– Transmission speed of 1Mbps, Wireless transmission delay of 1ps
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– Radio speed of 3 ∗ 108 m/s, Omni Antenna
– Lucent WaveLAN DSSS(Direct-Sequence Spread-Spectrum) wireless net-

work interface of 914MHz
– Use of DSDV(Destination Sequenced Distance Vector) for routing protocol

Each experiment conducted on LEACH, LEACH-C, and SNOWCLUSTER. In
addition, management messages were applied for all cases and the processing
power of sensor nodes were eliminated because it was insignificant compared to
the amount of energy consumed in communications.

Energy Consumption during 10 Rounds based on the Number of Clus-
ters Generated. Fig. 2 is a graph that shows the generation of 1 to 10 clusters
in a network topology formed with 100 sensor nodes for each clustering algorithm
and one that shows the results of energy consumption measurement during 10
rounds based on the number of each cluster generated.

Fig. 2. Energy Consumption during 10 Rounds based on the Number of Clusters
Generated

In case of LEACH, until the number of clusters generated is 2, it shows signif-
icantly higher energy consumption compared to the other clustering algorithms,
but after generation of more than 3, it stabilized showing gradual increase.
LEACH-C shows the progressive increase in energy consumption from round
1 to round 10. Similar to LEACH-C, SNOWCLUSTER also shows the results of
gradual increase, but its consumption rate is slightly less than that of LEACH-
C. However, in the case of LEACH-C and SNOWCLUSTER, due to the fact an
unexpected increase in the number of cluster formation shows the increase in
energy consumption, the most efficient number of clustering formation must be
1 from the perspective of energy consumption.

Energy Consumption during Transmission of Management Messages.
Fig. 3 is the result showing the amount of energy that is consumed during trans-
mission of management message from base station to sensor nodes after forma-
tion of three clusters in the network topology of 200 nodes.

In case of LEACH, because it does not have the position information of
the nodes, inefficient routing is being resulted, and as a result, significantly
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Fig. 3. Energy Consumption during Transmission of Management Messages from Base
Station to Sensor Nodes

greater amount of energy is consumed in transmitting management messages.
SNOWCLUSTER clustering algorithm showed a result of decrease in the amount
of energy consumed in the transmission of message compared to LEACH-C, and
this is because with the addition of region node selection process, it has a single
region node that plays the role of primary message transmission compared to the
three cluster heads for LEACH-C, and because it transmits messages using the
remaining two cluster heads, total number of communication is reduced which
results in reduction in communication expense.

4 Implementation

4.1 Testbed Network

Our current work has focused on validating some of our basic ideas by imple-
menting components of our framework on Nano-24 [8] platform using the TinyOS
programming suite.

The Nano-24 uses Chipcon CC4220 RF for transmission and support 2.4 Ghz,
Zigbee. The sensor node uses atmega 128L CPU with 32KBytes main memory
and 512 Kbytes flash memory. The Nano-24 also supports Qplus-N sensor net-
work development environment that ETRI (Electronics and Telecommunications
Research Institute) developed. We organized a testbed network was composed 10
Nano-24 nodes. Each node contains SNOWMAN’s PE to support policy-based
management as shown in Fig. 4. In this testbed, all sensor nodes are configured to
hierarchical clustering architecture according to the SNOWCLUSTER clustering
mechanism.

4.2 SNOWMAN

The PM and PA of SNOWMAN framework are implemented on Windows XP
systems using pure JAVA. The PE is implemented on TinyOS in the Nano-24
nodes using gcc.
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Fig. 4. Testbed Network for SNOWMAN

Fig. 5. Snapshot of SNOWMAN Policy Manager (PM)

Fig. 5 shows the input forms for policy information on the PM. We use the
XML technologies to define and handle global policies. There are several advan-
tages of using XML in representing global policies [9]. Because XML offers many
useful parsers and validators, the efforts needed for developing a policy-based
management system can be reduced. To define XML policies, we customized and
used the Scott’s XML Editor [10]. The defined policies are stored locally in the
policy storage of the PM and are stored remotely in the policy storage of the
PA. PM communicates with PA via simple ftp for policy transmissions. To policy
distribution to sensor nodes, we also design and implement TinyCOPS-PR that
is simplified suitably for ubiquitous sensor networks.
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5 Conclusion

In this paper, we proposed and implemented a autonomous management frame-
work for large-scale ubiquitous sensor networks, called SNOWMAN. The SNOW-
MAN can reduce the costs of managing sensor nodes and of the communication
among them using hierarchical clustering architecture. SNOWMAN can also
provide administrators with a solution to simplify and automate the manage-
ment of USNs using PBM paradigm. This paper also presented and evaluated
the clustering algorithm, SNOWCLUSTER. In performance evaluation of clus-
tering and managing ubiquitous sensor networks, SNOWCLUSTER showed more
improvement than LEACH and LEACH-C.

We are currently at the stage of implementation of the business logic of
SNOWMAN. We plan to experiment with and demonstrate the system on lab-
oratory testbeds using Nano-24 sensor nodes.
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