
Automatic Extraction of Conversation Protocols

from a Choreography Specification of Ubiquitous
Web Services

Jonghun Park1 and Byung-Hyun Ha2

1 Dept. of Industrial Eng., Seoul National University, Seoul, 151-742, Korea
jonghun@snu.ac.kr

2 Dept. of Industrial Eng., Pusan National University, Pusan, 609-735, Korea
bhha@pusan.ac.kr

Abstract. While web service technology is becoming a de facto stan-
dard for integration of business applications, it is also rapidly emerging
as an effective means for achieving inter-operability among the devices
in network centric ubiquitous systems. When such a web service enabled
device engages in a conversation with a service provider, it becomes nec-
essary to define an interaction logic required between them. For this
purpose, one can use a choreography language to specify the rules of en-
gagement between the device and the web service provider. This paper
presents a framework for automatically synthesizing conversation proto-
cols from a choreography description defined in WS-CDL. The proposed
framework adopts WSCL as a conversation protocol language, and de-
fines a set of rules that can be used to effectively transform a WS-CDL
specification into WSCL documents for collaborating peers. It is expected
that the work presented in this paper can enhance the interoperability
between web service-based processes in ubiquitous systems through au-
tomating the process of extracting conversation protocols from a chore-
ography definition.

1 Introduction

Web services are increasingly embedded in ubiquitous systems not only within a
business network [1]. By embedding the web services into virtually any comput-
ing devices, it becomes possible for a device to discover and interoperate with
other devices and remote services, establishing pervasive network of computers
of all form factors and wireless devices. Currently, several ongoing efforts rec-
ognize the need for embedding web service capability into devices to enhance
interoperability among them as well as with external services. These include Mi-
crosoft’s invisible computing project [2], UPnP 2.0 [3], and OMA’s OWSER [4].
Furthermore, recently proposed web service standards, such as WS-Discovery [5]
and WS-Eventing [6], are also accelerating the wide deployment of web service
technology into ubiquitous computing networks. In this paper, we collectively
refer to the web services embedded in the devices of ubiquitous networks as
ubiquitous web services.

X. Zhou et al. (Eds.): EUC Workshops 2006, LNCS 4097, pp. 122–132, 2006.
c© IFIP International Federation for Information Processing 2006

Automatic Extraction of Conversation Protocols 123

Considering the importance of interoperability in realizing the ultimate vision
of ubiquitous computing, we envision that making devices web service enabled
appears to be a vital approach, and at the same time it necessitates several new
breed of research problems to be addressed. In particular, when a device is web
service enabled and engages in a conversation with a service provider, it becomes
necessary to define an interaction logic required for them in order to coordinate
the interactions during autonomous web services conversations. For this purpose,
one can use a choreography language to specify the rules of engagement between
the device and the web service provider.

There are currently two major approaches to describing web services chore-
ographies, namely the global view approach and the individual view approach,
depending upon whether they describe either (i) the choreography of an en-
tire system consisting of all potential participants, or (ii) the choreographies
expected by each individual participant [7]. WS-CDL (Web Services Choreogra-
phy Description Language) [8] is a language that takes the global view approach
whereas WSCL (Web Services Conversation Language) [9] is one that bases on
the individual view approach. Indeed the individual view represents the expected
conversation behavior of a single collaborating party, and it describes public as-
pects of a web service, leaving private aspects such as business logic to specific
implementations. For this reason, we call it conversation protocol to distinguish
it from the global choreography specification.

We identify two conversion problems associated with the approaches men-
tioned above: The first issue is how to obtain a global choreography specifica-
tion from the conversation protocols of individual participants. The conversation
protocols that specify the interactions among collaborating parties are usually
developed independently with an expectation that they can function together,
and the problem is to develop a method by which the independently defined con-
versation protocols can be composed together into a single global choreography.
This approach requires the use of a global model that describes the desired flow
of messages among the participants, and there have been several research results
reported in the literature for this problem [10].

The second issue, which corresponds to the opposite case of the first issue,
is to develop a framework that can generate a conversation protocol for each of
the collaborating parties from a global choreography definition. The generated
conversation protocol can then be used as an end point skeletal behavior de-
scription for building an executable process that will be used by a participant to
seamlessly interact with the other collaborating processes. Yet, presently there
is no concrete computational method available to address this problem.

Motivated by this, this paper considers WS-CDL as a global choreography
specification language, and proposes a new framework that can support auto-
matic synthesis of conversation protocols described in WSCL from a WS-CDL
specification. Our proposed framework for automatic extraction of conversation
protocols is expected to not only enhance the interoperability of the web service
based interactions but also increase the user acceptance of recently emerged pro-
posals for web service choreography in the emerging ubiquitous service networks.

124 J. Park and B.-H. Ha

The rest of the paper is organized as follows: Section 2 reviews the basic con-
cepts of WS-CDL and WSCL, and then introduces an example scenario that
motivates the presented research. In Section 3 we present the proposed frame-
work, and it is demonstrated through the example scenario in Section 4. Finally,
Section 5 gives the conclusion and descriptions on the future work.

2 Languages for Web Service Choreography and
Conversation Specification

WS-CDL is an XML-based language that describes peer-to-peer collaborations
of web service participants through defining, from a global viewpoint, their com-
mon and complementary observable behavior, where ordered message exchanges
result in accomplishing a common goal [8]. It introduces various components
to effectively describe observable behavior of multiple participants within the
context of a global model. In order to define a choreography of interactions, one
must first define data components such as role types, relationship types, infor-
mation types, token types, and channel types, and declare necessary variables.
Subsequently, a choreography definition is completed by specifying interactions
and control flows among them in terms of ordering structures and work units.

On the other hand, WSCL allows the abstract interfaces of web services, i.e.
the conversation protocols, to be defined. It specifies the XML documents being
exchanged as well as the allowed sequencing of these document exchanges. The
conversation proceeds from one interaction to another according to the legally
defined transitions. The purpose of WSCL is to provide and define the minimal
set of concepts necessary to specify conversations. Hence, WSCL describes the
public processes in which the participants of a web service engage, and it focuses
on the conversation behavior based on the individual participant’s view.

Transformation of the data components of a WS-CDL document into the cor-
responding elements of WSCL for the participant in consideration can be carried
out without difficulty if one uses an XML transformation language such as XSLT
[11]. This transformation process can be considered as a projection into an indi-
vidual view out of a global choreography. However, it is not straightforward to
transform the control flows defined in a WS-CDL document into those available
in WSCL. WS-CDL is rooted on pi-calculus and thus able to provide high-level
control flow constructs such as parallel flows and loops whereas WSCL is based
on automata formalism where only the finitely many states and transitions are
allowed. Therefore, the proposed framework focuses on the problem of trans-
forming the control flows of WS-CDL to those of WSCL, leaving out the other
details such as the projection and transformation of XML elements.

As a motivating example, we consider the following scenario: A presenta-
tion room is equipped with an audio system and a video system, each of which
provides a web service for setting up the corresponding equipment. When a
user with a mobile computing device such as PDA and smart phone enters the
room, the device needs to go through several interactions with the software agent

Automatic Extraction of Conversation Protocols 125

<choreography name="PresentationSetup" root="true">
...

<sequence>
<interaction name="Login" ...> ...

<exchange name="sendId"/>
</interaction>
<parallel>

<interaction name="AudioSetup" ...> ...
<exchange name="exchangeAudioInfo"/>

</interaction>
<workunit name="Repeat until video setup completes" repeat="vSetupDone = false">
<choice>

<interaction name="ProjectorSetup" ...> ...
<exchange name="exchangeProjectorInfo"/>

</interaction>
<interaction name="CurvedWallSetup" ...> ...

<exchange name="exchangeCurvedWallInfo"/>
</interaction>

</choice>
</workunit>

</parallel>
</sequence>
</choreography>

Fig. 1. A WS-CDL specification for the example scenario

responsible for coordinating the equipment in the room in order to configure the
audio and video system appropriately.

More precisely, after the login interaction that certifies the mobile device, the
setup processes for the audio and video systems are executed in parallel. We
consider two available video systems, namely an LCD projector and a curved
wall for setting up a virtual reality environment, from which the user can choose.
As for the video system, the user is allowed to perform repeated trials for the
equipment configuration. We further assume that the choreography requirement
is defined by use of WS-CDL whereas the mobile device is configured to carry
out conversation based on WSCL. Since WS-CDL itself is not an executable
specification, the generation of a WSCL document is necessary for the mobile
device and the software agent to interoperate with each other.

Based on the above choreography descriptions, a WS-CDL specification can
be defined as shown in Figure 1. For the sake of brevity, only the XML elements
pertaining to the control flows are shown in Figure 1. The most outer flow control
construct is sequence that contains one interaction element and one parallel
element which further includes an interaction and workunit. The behavior of
the loop is controlled by use of the variable vSetupDone that is initially set
to ‘false’ and then changed to ‘true’ when the result of ProjectorSetup or
CurvedWallSetup is successful.

3 Proposed Framework

Having introduced the basic notions of WS-CDL and WSCL, we proceed to intro-
duce the proposed approach to automatically synthesizing a WSCL specification
from a given WS-CDL document. For the framework descriptions, we only con-
sider the conversations between two parties out of many possible conversations

126 J. Park and B.-H. Ha

defined for multi-parties in WS-CDL, since WSCL can only support peer to peer
interactions. Such a transformation for the parties in consideration can be easily
carried out by use of projections into specific participants and roles as mentioned
in Section 2.

We first define the notion of conversation module (CM) that represents a com-
ponent to be composed. CM is a valid WSCL specification with the constraints
that it has a single Interaction of type S and a single Interaction of type F
where S and F respectively indicates the start and the finish of the module. The
initial step of the proposed framework is to define the following WSCL elements
for each exchange element of WS-CDL, Ei.

<Interaction StepType="" id="Ii"> ... </Interaction>
<Interaction StepType="" id="Si"> ... </Interaction>
<Interaction StepType="" id="Fi"> ... </Interaction>

<Transition>
<SourceInteraction href="#Si"/> <DestinationInteraction href="#Ii"/> ...

</Transition>
<Transition>

<SourceInteraction href="#Ii"/> <DestinationInteraction href="#Fi"/> ...
</Transition>

The above transformation introduces three WSCL Interactions, Ii, Si, Fi,
which respectively represent the considered WS-CDL exchange element, and the
start and finish of a WSCL Interaction. It also creates two WSCL Transitions
among them. Furthermore, the WS-CDL’s interaction element which the ex-
change belongs to is also recorded as an additional element so that it can be
referred to when traversing the Interaction elements of a WSCL specifica-
tion during the parallel composition defined later in this section. Note that the
transformation of each WS-CDL exchange element yields a valid CM.

Once the transformation is carried out for all the exchange elements defined
in the WS-CDL, the next step is to construct CMs for the interactions de-
fined in the WS-CDL, which may have more than one exchange element. Two
CMs, CMi and CMj , that correspond to the exchange elements contained in
an interaction of WS-CDL, are composed into another CMk by using the
following rule for sequential composition:

1) Remove the type F Interaction and its associated Transitions from CMi

2) Remove the type S Interaction and its associated Transitions from CMj

3) Introduce new Transitions from all the Interactions that are the sources
of the Transitions removed in Step 1) to the Interactions that are the
destinations of the Transitions removed in Step 2)

Subsequently, the following set of rules are defined in order to effectively
transform the WS-CDL control constructs to the corresponding flow logic of
WSCL. First, the sequence composition of two CMs, namely CMi and CMj , is
computed by use of the above sequential composition rule. Second, the following
rules are used to carry out choice composition of two CMs, CMi and CMj .

1) Remove all the Interactions of type S and their associated Transitions
from CMi and CMj

Automatic Extraction of Conversation Protocols 127

2) Remove all the Interactions of type F and their associated Transitions
from CMi and CMj

3) Introduce a new Interaction of type S, Sk, and new Transitions which
connect from Sk to all Interactions that are the destinations of the Tran-
sitions removed in Step 1)

4) Introduce a new Interaction of type F , Fk, and new Transitions which
connect from all Interactions that are the sources of the Transitions re-
moved in Step 2) to Fk

Third, the CM of which the looping behavior is controlled by workunit is
transformed into the corresponding WSCL elements by use of the following rules.
We let Ts and Tf respectively be the set of Transitions of which the source is
the Interaction of type S, and the set of Transitions of which the target is
the Interaction of type F .

1) Introduce new Transitions that connect from all the Interactions that are
the sources of Tf to all the Interactions that are the destinations of Ts

2) For each Transition introduced in Step 1), record the corresponding exchange
element from the WS-CDL document from which Interaction is defined

Lastly, for the parallel composition, we construct a shuffle of two CMs,
which generates all the possible interleavings between two finite state machines
represented by CMi and CMj . That is, while the shuffle obeys the interaction
order specified within each CM, it combines two interaction sequences in all
possible combinations. During the parallel composition, each Interaction is
augmented with an execution history defined as follows in order to identify the
next executable Interaction as well as the destinations of its Transitions for
repetition.

Definition 1 (Execution History). An execution history is a set of
Interactions defined in CMs such that if two Interactions in the execution
history, Ik and Il, belong to the same CM, then the following two properties hold:

a) Ik and Il can be connected by using only the Transitions associated with the
Interactions in the execution history

b) There is no Interaction, Im, in the execution history such that both of Ik

and Il are the destinations of outgoing Transitions of Im

From an execution history, we can construct a companion set, named exchange
history, in view of WS-CDL specification, which is defined as follows.

Definition 2 (Exchange History). Given an execution history containing the
set of Interactions that have been executed, the exchange history is defined as
a set of exchanges (originally defined in WS-CDL) to which the Interactions
of the execution history correspond.

Given an execution history, the set of next executable Interactions is charac-
terized by use of the notion of reachability, which is formally defined as follows.

128 J. Park and B.-H. Ha

Definition 3 (Reachability). Let τ be the set of Transitions associated with
an execution history such that i) Transitions in τ are not defined for modeling
repetitions, and ii) they are not associated with the Interactions of type F
in the execution history. An Interaction, Ik, is said to be reachable from the
execution history if the following three conditions are satisfied:

a) Ik is not a member of the execution history
b) Ik is connected from one of the type S Interactions via the Transitions in τ
c) The set defined by adding Ik to the given execution history is also an execution

history

Based on the above definitions, the synthesis procedure for the parallel com-
position is described below in three phases: merging, repetition handling, and
post-processing. The first phase that merges two CMs is formally defined as
follows:

1) Introduce a new Interaction of type S, Sk, and annotate it with an empty
execution history

2) For each I that is newly introduced from the previous step, perform Step 3)
and go to Step 8)

3) For each Interaction, Ir, defined in the given CMs, perform Step 4) through
Step 7), if Ir is reachable from the execution history of I

4) Introduce a new Interaction, In, for each Ir, and record the original ex-
change element corresponding to Ir in In

5) Annotate In with the execution history generated by adding Ir to I’s execu-
tion history

6) If there exists an Interaction, Ie, of which the original exchange element
and the exchange history are identical to those of In, then replace In with Ie

7) Add a new Transition from I to In

8) If there is an Interaction that is newly introduced, go to Step 2)

We remark that, in Step 4) of the above merge procedure, recording of the
original exchange element defined in the WS-CDL document is necessary to
relate an Interaction element of a WSCL specification with the exchange
element it refers to. Next, the Transitions defined for handling the loops are
taken care of by the following procedure.

1) For every Transition in the given CMs, Tr, that is defined for modeling a
loop, carry out Step 2) with Er , the set of exchange elements recorded in Tr

2) For each Interaction, Is, whose original exchange is identical to that of Tr’s
source Interaction, carry out Step 3) and Step 4)

3) Add the Transitions from Is to each Interaction It where It is an Inter-
action such that the result of subtracting It’s original exchange from It’s
exchange history is identical to that of subtracting Er from Is’s exchange
history

4) Record Er for all the Transitions added in Step 3)

Automatic Extraction of Conversation Protocols 129

Fig. 2. An example illustrating the synthesis procedure when the parallel composition
is performed for the Interaction element with a loop

Finally, we define the following post-processing procedure to produce a valid
WSCL document.

1) Introduce a new Interaction of type F , Fk

2) Introduce Transitions from every Interactionwhich has no outgoing Tran-
sition to Fk

3) Remove the CMs that are given as an input and clear the annotations from
all Interactions

The process of parallel composition becomes complex particularly when it is
applied to the Interaction element that has a loop. In order to more clearly
explain the procedures for the loop transformation in conjunction with parallel
composition, we consider the example shown in Figure 2.

Given a WS-CDL specification shown in Figure 2 (a), we obtain the partial
result shown in Figure 2 (b) after applying the transformation procedure defined
for workunit. In Figures 2 (b) and (c), each CM is depicted as a state transition
diagram with two circles that respectively represent the Interactions of types S
and F and with rectangles that represent the other Interactions. A Transition
is depicted as an arrow while it is shown as a dotted arrow if it is defined for
modeling a loop. Furthermore, an Interaction other than those of the types S
and F is also associated with a label that denotes the name of the Interaction
as well as the name of the original exchange element it corresponds to. We name
the Interactions as I1, I2, and I3, and their original corresponding exchanges
in the WS-CDL document as E1, E2, and E3, respectively.

As shown in Figure 2 (b), the procedure for workunit transformation results
in the Transition introduced to model the loop and the associated exchange
elements recorded for it (i.e., {E1, E2}). We then apply the first phase of the
parallel composition, and obtain the intermediate result that can be constructed
by removing the dotted arrows and the Interaction of type F and its incoming
transitions from Figure 2 (c). The execution histories computed during the first

130 J. Park and B.-H. Ha

phase are recorded as an annotation in the Interaction. For instance, I7 in
Figure 2 (c) has the execution history of {I1, I3} associated with it.

As an example to discuss Steps 3) through Step 7) defined in the first phase
of the parallel composition, consider I10 created from I7 (with the execution
history {I1, I3}) for the first time, due to the fact that I2 of Figure 2 (b) is
reachable from the execution history {I1, I3}. The original exchange element of
I10 becomes E2 since the I2’s original exchange is E2 and the execution history
of I10 is computed by adding I2 to the execution history of I7. Hence, the ex-
change history of I10 then becomes {E1, E2, E3}. Continuing with I8, we find
that a newly introduced Interaction has the same set of original exchange
elements and the exchange history as I10. Consequently, this new interaction is
removed, and the transition between I8 and I10 is added instead. That is, this
example signifies the fact that, when the exchange histories and the correspond-
ing exchange elements are same for two Interactions in WSCL, they can be
modeled as a single Interaction.

Step 3) of the second phase of the parallel composition is essentially to invali-
date the exchange elements that have already been executed, through identifying
the exchange elements that can be re-executed when a repetition occurs. For
instance, I10 is a state in which each of exchanges, E1, E2, and E3 have been
carried out at least once, and the Transition from I10 to I8 represents that, the
E1 and E2 are required to be performed again once the repetition occurs. Note
also that, the execution of E3 is prohibited after E3 has been executed once.
The resulting WSCL after applying all three phases of the parallel composition
is shown in Figure 2 (c).

Given a WS-CDL document that is tree-structured, the proposed synthesis
procedure starts from the leaf elements of the document, and then recursively
applies the procedures mentioned above to each parent node in the document
according to the type of the composition in consideration. We remark that the
traversal order by which the procedures are applied does not change the final
result.

4 An Example Application

In this section, we demonstrate the effectiveness of the proposed approach through
an example. We apply the proposed synthesis procedure to the example WS-CDL
shown in Figure 1, and obtain the WSCL specification with 10 Interactions
(two being the Interactions of type S and F) and 17 Transitions after re-
moving the interactions of type S and F from the resulting CM.

The detailed steps as well as the intermediate results for generating a WSCL
specification out of a WS-CDL document are illustrated in Figure 3. First, Fig-
ure 3 (a) shows the given WS-CDL from which the initial CMs are derived as
illustrated in Figure 3 (b). For the sake of simplicity, we rename the original
exchange elements of the WS-CDL as follows: E1 for the ‘sendId’ exchange el-
ement of ‘Login’ Interaction of Figure 1, and E2 for the ‘exchangeAudioInfo’
exchange element of ‘Audio Setup’ Interaction of Figure 1, and so on.

Automatic Extraction of Conversation Protocols 131

Fig. 3. Illustration of steps for automatically generating a WSCL specification

For each CM, the Interactions of type S and F are represented as circles
while the other Interactions are represented as rectangles with a label de-
noting the name of the Interaction and the name of the original exchange
element it corresponds to. For instance, I9(E4) of the step (e) indicates that
the name of Interaction is I9 and the original exchange element in WS-CDL
it refers to is E4 (i.e., ‘exchangeCurvedWallInfo’ element in Figure 1). Further-
more, Transition elements of WSCL are represented as arrows except those
Transitions introduced to model the loop, which are represented as dotted
arrows.

Figure 3 (c) shows the intermediate result after applying the rules defined for
the choice composition, and Figure 3 (d) shows the result of transforming the
workunit control structure. Finally, Figures 3 (e) and (f) respectively show the
results obtained after the parallel and sequence compositions are performed.

5 Conclusion

The recently emerged web services choreography languages such as WS-CDL
and WSCL represent significant steps towards building platform-independent,
distributed, flexible web service applications. In this paper, we addressed the
problem of automatically generating a conversation protocol that represents the

132 J. Park and B.-H. Ha

individual participant’s view on a given global choreography definition. The con-
versation protocol specification obtained by the proposed framework describes
the public behavior of the considered endpoint, and therefore can serve as a
skeleton for building executable process, supporting seamless interoperability
between the participants of interacting web services in ubiquitous networks. Fu-
ture work will aim at implementing the proposed framework by use of XSLT
patterns that effectively model the synthesis rules presented in the paper. An-
other future work will be to apply the proposed approach to other classes of
conversation protocol languages.

Acknowledgments. This work was supported by the Korea Research Foundation
Grant funded by the Korean Government(MOEHRD) (KRF-2005-041-D00917).

References

1. Sashima, A., Izumi, N., Kurumatani, K.: Location-mediated coordination of web
services in ubiquitous computing. In: Proceedings of the IEEE Intl Conf. Web
Services (ICWS04). (2004)

2. Microsoft: The microsoft invisible computing project. Web site, Microsoft (2006)
http://research.microsoft.com/invisible/.

3. UPnP: The UPnP forum. Web site, UPnP (2006) http://www.upnp.org.
4. OMA: OMA web services enabler (owser): Overview. Document, OMA (2004)

http://www.openmobilealliance.org/.
5. Beatty, J., et al.: Web services dynamic discovery (ws-discovery). Specification,

Microsoft (2005) http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-
Discovery.pdf.

6. Bank, D., et al.: Web services eventing (ws-eventing). Specification, BEA (2004)
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf.

7. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web service chore-
ographies. In: Proceedings of the First International Workshop on Web Services
and Formal Methods. (2004)

8. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Bar-
reto, C.: Web Services Choreography Description Language Version 1.0.
W3C candidate recommendation, World Wide Web Consortium (2005)
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/.

9. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., Govindarajan, K., Karp, A.,
Kuno, H., Lemon, M., Pogossiants, G., Sharma, S., Williams, S.: Web Services
Conversation Language (WSCL) 1.0. W3C note, World Wide Web Consortium
(2002) http://www.w3.org/TR/2002/NOTE-wscl10-20020314/.

10. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Computing 8(6) (2004) 51–59

11. Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C recommendation, World
Wide Web Consortium (1999) http://www.w3.org/TR/xslt.

	Introduction
	Languages for Web Service Choreography and Conversation Specification
	Proposed Framework
	An Example Application
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

