
T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 9 – 29, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Completeness Criteria for Retrieval
in Recommender Systems

David McSherry

School of Computing and Information Engineering
University of Ulster, Coleraine BT52 1SA, Northern Ireland

dmg.mcsherry@ulster.ac.uk

Abstract. Often in practice, a recommender system query may include
constraints that must be satisfied. Ensuring the retrieval of a product that
satisfies any hard constraints in a given query, if such a product exists, is one
benefit of a retrieval criterion we refer to as completeness. Other benefits
include the ease with which the non-existence of an acceptable product can
often be recognized from the results for a given query, and the ability to justify
the exclusion of any product from the retrieval set on the basis that one of the
retrieved products satisfies at least the same constraints. We show that in
contrast to most retrieval strategies, compromise driven retrieval (CDR) is
complete. Another important benefit of CDR is its ability to ensure the retrieval
of the most similar product, if any, which satisfies all the hard constraints in a
given query, a criterion we refer to as optimal completeness.

1 Introduction

In case-based reasoning (CBR) approaches to product recommendation, descriptions
of available products are stored in a product case base and retrieved in response to
user queries. The standard CBR approach to retrieval in recommender systems is k
nearest neighbor (k-NN) retrieval. In contrast to traditional database retrieval,
k-NN does not insist on exact matching, thus having the advantage that the retrieval
set (i.e., the k most similar cases) is never empty [1].

Regardless of the strategy on which the retrieval of recommended cases is based, a
query can also be seen as a set of constraints. For example, the preferred attribute
values in a k-NN query are equality constraints that may or may not be satisfied by a
given case. One approach to retrieval in CBR that takes account of the constraints
satisfied by a given case is compromise driven retrieval (CDR) [2-3]. For example, no
case that is less similar than another case which satisfies the same constraints is
included in the CDR retrieval set.

While no account is taken of satisfied constraints in k-NN, cases which satisfy
more constraints may also tend to be more similar. However, there is often a conflict
between the goals of retrieval strategies like k-NN which reward cases on the basis of
overall similarity and those which take account of the constraints satisfied by a given
case. As we show in Section 2, for example, it is possible for a case that satisfies a
proper subset of the constraints satisfied by another case to be more similar. Also, an

10 D. McSherry

issue that k-NN only partly addresses by offering the user a choice of k alternatives is
that often in practice a given query may include constraints that must be satisfied.

In a holiday recommender, for example, a user seeking a skiing holiday for two
persons in December may be unable to compromise on the number of persons and
unwilling to compromise on holiday type. If the k most similar cases do not include a
skiing holiday for two persons then the system has failed to recommend an acceptable
case. It might be considered that even with k = 3 there is a good chance that an
acceptable case, if one exists, will be retrieved. However, k-NN is known to be
limited in its coverage of cases that may be acceptable to the user, or compromises
that the user may be prepared to consider (e.g., the timing of the holiday) [2-5]. A
related problem is that the most similar cases also tend to be very similar to each
other, with the result that the user may be offered a limited choice [6-8].

Ensuring the retrieval of a case that satisfies any hard constraints, if such a case
exists, is the weaker of two completeness criteria for retrieval in recommender
systems that we present in this paper. Of course, it is a simple matter to ensure the
retrieval of a case that satisfies any known hard constraints in a given query if such a
case exists. However, requiring users to identify hard constraints in advance may not
be a realistic solution. Often in practice, a user may not have a clear idea of what she
is looking for when constructing her query, and may begin to consider hard
constraints only when faced with the need to compromise. Instead we assume that any
hard constraints in a given query are unknown to the recommender system and
therefore that no distinction is made between hard and soft constraints in the retrieval
process.

In the formal definition of completeness that we now present, we refer to a case
that satisfies all the hard constraints in a given query as a feasible case for the query.
Whether such a case is acceptable to the user may of course depend on the extent to
which it satisfies any soft constraints in her query. However, the non-existence of a
feasible case in the case base implies the non-existence of an acceptable case.
Equally, the non-existence of a feasible case in the retrieval set means that none of the
recommended cases are acceptable.

Completeness. We say that a retrieval strategy is complete if the retrieval set for any
query is guaranteed to include a feasible case if such a case exists.

Ensuring the retrieval of a case that may be acceptable to the user whenever
possible is just one advantage of completeness. In Section 3, we show that only in a
complete retrieval strategy can the exclusion of any case from the retrieval set always
be justified on the basis that one of the retrieved cases satisfies at least the same
constraints as the non-retrieved case. As we show in Theorem 1, another benefit of
completeness is the ease with which the non-existence of an acceptable case can often
be recognized from the results for a given query ― an issue often neglected in
recommender systems.

Theorem 1. In a complete retrieval strategy, the non-existence of a feasible case in
the retrieval set implies the non-existence of an acceptable case in the case base.

Proof. Immediate from the definition of completeness.

 Completeness Criteria for Retrieval in Recommender Systems 11

As we show in Section 4, k-NN is incomplete regardless of the size of the retrieval
set. We also show that it is possible for a retrieval strategy that takes no account of a
retrieved case’s similarity to be complete. An important question, therefore, is
whether the benefits of completeness can be combined with those to be gained by
taking account of similarity knowledge. For example, enabling an otherwise
competitive case to compensate for its failure to satisfy one or more of the constraints
satisfied by another case is an important advantage of k-NN. Moreover, a complete
retrieval strategy that fails to retrieve the most similar case ignores the possibility that
it may be the best option for the user if none of her requirements are hard constraints.

The role of similarity in balancing trade-offs between competing products is
implicit in our definition of optimal completeness, the second of our completeness
criteria for retrieval in recommender systems.

Optimal Completeness. We say that a retrieval strategy is optimally complete if the
retrieval set for any query is guaranteed to include a case that is maximally similar
among the feasible cases, if any, in the case base.

Ensuring the retrieval of the most similar feasible case, or one that is maximally
similar, is likely to be of most benefit when there are many feasible cases for a given
query — which is not unlikely if most of the constraints in a given query are soft
constraints. As we show in Theorem 2, optimal completeness also ensures the
retrieval of the most similar case in the case base.

Theorem 2. In an optimally complete retrieval strategy, the retrieval set for any
query must include the most similar case.

Proof. It suffices to observe that if none of the constraints in a given query are hard
constraints, then all the available cases are feasible cases.

As we show in Section 4, CDR [2-3] is optimally complete, thus ensuring the retrieval
of the most similar case as in k-NN. Enabling an otherwise competitive case to
compensate for its failure to satisfy one or more of the constraints satisfied by another
case is another important feature that CDR shares with k-NN.

In Section 2, we use an example case base to illustrate some of the limitations of k-
NN that are well known and others that have received less attention. We also show
that some of the problems highlighted can be attributed to the incompleteness of
k-NN. In Section 3, we present necessary and sufficient conditions for completeness
and optimal completeness that can be used to determine whether these criteria are
satisfied by a given retrieval strategy. In Section 4, we show that while most retrieval
strategies used in CBR recommender systems are incomplete, CDR is optimally
complete. Related work is discussed in Section 5, and our conclusions are presented
in Section 6.

2 Limitations of k-NN

Increasing awareness of the limitations of k-NN in CBR recommender systems has
prompted significant research interest in alternative retrieval strategies (e.g., [2-16]).
A detailed account of the issues addressed by this important body of research is
beyond the scope of the present discussion. Instead we use an example case base in

12 D. McSherry

the property domain to illustrate some of the limitations of k-NN that are well known
and others that have received less attention. We also show that some of problems
highlighted can be attributed to the incompleteness of k-NN.

For example, an issue often neglected in recommender systems is that none of the
available cases (i.e., products) may be acceptable to the user. If none of the available
cases satisfies all the hard constraints in a given query, it is reasonable to expect that
the non-existence of an acceptable case should be clear to the user from the system’s
response to her query. As shown in Section 1, an important benefit of completeness is
that the non-existence of an acceptable case can always be inferred from the non-
existence of a feasible case in the retrieval set for a given query.

Although k-NN is incomplete, it may be possible for a user with a good
understanding of similarity to infer the non-existence of an acceptable case from the
non-existence of a feasible case in the k-NN retrieval set. For example, it may be clear
to such a user that a feasible case, if one existed, would be more similar than any of
the recommended cases and would thus be included in the k-NN retrieval set. In
general, however, the non-existence of an acceptable case cannot be inferred from the
non-existence of a feasible case in the k-NN retrieval set. Before presenting the
example that we use to clarify this important point, we outline a typical approach to
similarity assessment in CBR recommender systems.

Global Similarity Measure. The similarity of a case C to a given query Q is typically
defined as:

Sim(C, Q) =
∑

∑

∈

∈
×

Aa
a

Aa
aa

w

QCsimw),(

 (1)

where A is the set of attributes for which preferred values are specified in Q. For each
a ∈ A, wa is an importance weight assigned to a and sima(C, Q) is a local measure of
the similarity between the attribute’s values in C and Q.

Local Similarity Measures. Local similarity measures are often defined in terms of
an attribute’s values without reference to a specific query or case. For example, the
similarity of two values x and y of a numeric attribute is typically defined as:

sim(x, y) =
minmax

1
−
−

−
yx

 (2)

where max and min are the attribute’s maximum and minimum values in the case
base.

2.1 Example Case Base

Fig. 1 shows an example case base and query in the property domain that we use to
illustrate some of the limitations of k-NN. The equally weighted attributes in the case
base are location (A, B, or C), bedrooms (2, 3, or 4), type (detached, semi-detached,
or terraced), and reception rooms (1, 2, or 3). The user is looking for a 4 bedroom

 Completeness Criteria for Retrieval in Recommender Systems 13

detached property in location A with 3 reception rooms (RRs). The similarity of each
case to the target query is shown in the rightmost column. Similarity assessment with
respect to location and type is based on the similarity scores: sim(A, A) = 1, sim(B, A)
= 0.5, sim(C, A) = 0, sim(det, det) = 1, sim(sem, det) = 0.5, sim(ter, det) = 0. The
standard similarity measure for numeric attributes (2) is used for bedrooms and
reception rooms.

Loc Beds Type RRs

Query A 4 det 3 Constraints Similarity

Case 1 B 4 det 3 N Y Y Y 0.88

Case 2 C 4 det 3 N Y Y Y 0.75

Case 3 A 3 sem 2 Y N N N 0.63

Case 4 A 3 ter 2 Y N N N 0.50
Case 5 A 2 det 1 Y N Y N 0.50

Fig. 1. Example case base and query in the property domain

Constraints in the example query that each case satisfies, or fails to satisfy, are
indicated by the entries (Y or N) in the four columns to the right of each case in
Fig. 1. No case satisfies all the constraints, a situation that would result in a query
failure in traditional database retrieval. In the following sections, we briefly examine
some of the issues highlighted by the 3-NN retrieval set for the example query (i.e.,
the three cases that are not shaded in Fig. 1).

2.2 Recognizing the Non-existence of an Acceptable Case

If loc = A and beds = 4 are hard constraints in the example query, then none of the
available cases are acceptable to the user. But the user is unable to tell from the
system’s response to her query that there is no acceptable case. For example, she
might be prepared to consider a 4 bedroom terraced property in location A with one
reception room. But if such a case existed, it would not appear in the 3-NN retrieval
set as its similarity to the user’s query (0.50) would be less than the similarities of
Cases 1, 2, and 3.

2.3 Coverage of Available Cases

As mentioned in the introduction, k-NN is known to be limited in its coverage of
cases that may be acceptable to the user [2-5]. For example, if loc = A and type = det
are hard constraints in the example query, then 3-NN has failed to retrieve the only
case that might be acceptable to the user (i.e., Case 5). However, it can be seen from
our definition of completeness (Section 1) that no complete retrieval strategy can fail
to retrieve Case 5, the only feasible case in this situation. Thus k-NN’s limited

14 D. McSherry

coverage of cases that may be acceptable to the user can be attributed to its
incompleteness.

2.4 Explaining Why a Case is Not Recommended

If asked to explain why Case 5 is not recommended in 3-NN, the system could point
to three recommended cases that are more similar than Case 5, including two that
match the given query exactly on bedrooms, type and reception rooms and one that
matches it exactly on location. However, such an explanation is unlikely to satisfy a
user who is unwilling to compromise on location or type. Of course, one reason why
current recommender systems are seldom required to explain their failure to
recommend a case which ― in the user’s opinion — should have been recommended
is that the only cases that most users see are those recommended by the system.
Nevertheless, explaining why a given case is not recommended is an important test of
a system’s ability to justify its recommendations [10, 12].

As we show in Section 3, it is only in a complete retrieval strategy that the
exclusion of a given case from the retrieval set can always be justified on the basis
that one of the retrieved cases satisfies at least the same constraints. As the above
example shows, k-NN’s failure to retrieve a given case cannot always be justified in
this way — another limitation of k-NN that can be attributed to its incompleteness.

2.5 Recommendation Diversity

The first two cases in the 3-NN retrieval set are very similar to each other, and both
satisfy the same constraints. One might argue, of course, that this makes good sense in a
domain in which the recommended cases (i.e., properties) are sought in competition
with other users. However, the recommendation engineering technique of providing the
user with a link from each retrieved case to non-retrieved cases which satisfy the same
constraints provides a simple solution to this problem in any retrieval strategy [14].

Retrieval strategies that aim to increase recommendation diversity by combining
measures of similarity and diversity in the retrieval process [7-8] are discussed in
Section 4. Instead of relying on a measure of diversity to guide the retrieval process,
CDR [2-3] addresses the issue of recommendation diversity by ensuring that no two
cases in the retrieval set satisfy the same constraints. Thus for the example query in
Fig. 1, the CDR retrieval set would include Case 1 (N Y Y Y) and Case 3 (Y N N N)
but not Case 2 (N Y Y Y) or Case 4 (Y N N N).

3 Completeness and Optimal Completeness

In this section, we formally define the concepts on which our completeness criteria
are based. We also establish necessary and sufficient conditions for completeness and
optimal completeness that can be used to determine whether or not these criteria are
satisfied by a given retrieval strategy.

Retrieval Set. Given a retrieval strategy S, we denote by r(S, Q) the set of cases that
are retrieved in response to a given query Q.

 Completeness Criteria for Retrieval in Recommender Systems 15

For example, r(k-NN, Q) is the set of k cases that are most similar to Q. To
distinguish k-NN from the unrealistic strategy of retrieving all the available cases, we
assume that 1 ≤ k < n, where n is the number of cases.

Query Constraints. For any query Q, we denote by constraints(Q) the set of all
constraints in Q.

In addition to the equality constraints supported by any retrieval strategy, the
constraints in a recommender system query might include upper and/or lower limits
for numeric attributes and sets of preferred values for nominal attributes [2, 10, 13].

Hard Constraints. For any query Q, we denote by hard-constraints(Q) the set of
hard constraints in Q.

As mentioned in the introduction, we assume that any hard constraints in a given
query are unknown to the recommender system.

Satisfied Constraints. For any case C and query Q, we denote by satisfied-
constraints(C, Q) the set of constraints in Q that are satisfied by C.

Feasible Case. For any case C and query Q, we say that C is a feasible case for Q if
hard-constraints(Q) ⊆ satisfied-constraints(C, Q).

Exactly Matching Case. We say that a case C exactly matches a given query Q if
satisfied-constraints(C, Q) = constraints(Q).

As well as providing a necessary and sufficient condition for completeness,
Theorem 3 confirms our claim that only in a complete retrieval strategy can the
exclusion of any case from the retrieval set always be justified on the basis that one of
the retrieved cases satisfies at least the same constraints as the non-retrieved case.

Theorem 3. A retrieval strategy S is complete if and only if for any query Q and C1 ∉
r(S, Q), there exists C2 ∈ r(S, Q) such that satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q).

Proof. If the latter condition holds, and C1 is a feasible case for a given query Q, then
hard-constraints(Q) ⊆ satisfied-constraints(C1, Q) and there exists C2 ∈ r(S, Q) such
that satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). We have established
as required the existence of C2 ∈ r(S, Q) such that hard-constraints(Q) ⊆ satisfied-
constraints(C2, Q). Conversely, if S is a complete retrieval strategy then for any query
Q and C1 ∉ r(S, Q) we can construct another query Q′ that differs from Q, if at all,
only in that hard-constraints(Q′) = satisfied-constraints(C1, Q). As satisfied-
constraints(C1, Q′) = satisfied-constraints(C1, Q), C1 is a feasible case for Q′, so it
follows by the completeness of S that there exists C2 ∈ r(S, Q′) such that hard-
constraints(Q′) ⊆ satisfied-constraints(C2, Q′). As we assume that no distinction is
made between hard and soft constraints in the retrieval process, r(S, Q′) = r(S, Q), and
so we have established the existence of C2 ∈ r(S, Q) such that satisfied-
constraints(C1, Q) = hard-constraints(Q′) ⊆ satisfied-constraints(C2, Q′) = satisfied-
constraints(C2, Q).

16 D. McSherry

As we show in Theorem 4, a necessary and sufficient condition for optimal
completeness is that the exclusion of any case from the retrieval set can always be
justified on the basis that one of the retrieved cases is at least as similar as the non-
retrieved case, and satisfies at least the same constraints.

Theorem 4. A retrieval strategy S is optimally complete if and only if for any query Q
and C1 ∉ r(S, Q), there exists C2 ∈ r(S, Q) such that similarity(C1, Q) ≤ similarity(C2,
Q) and satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q).

Proof. Assuming that the latter condition holds, let Q be any query for which a feasible
case exists, and let C1 be a feasible case of maximal similarity to Q. If C1 ∈ r(S, Q) there
is nothing more to prove, while if C1 ∉ r(S, Q) then there exists C2 ∈ r(S, Q) such that
similarity(C1, Q) ≤ similarity(C2, Q) and satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q). Since hard-constraints(Q) ⊆ satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q), C2 is a feasible case and so similarity(C2, Q) ≤ similarity(C1, Q). It
follows that similarity(C2, Q) = similarity(C1, Q), so we have established as required the
existence of a feasible case of maximal similarity C2 ∈ r(S, Q).

Conversely, if S is optimally complete then for any query Q and C1 ∉ r(S, Q) we
can construct another query Q′ that differs from Q, if at all, only in that hard-
constraints(Q′) = satisfied-constraints(C1, Q). As C1 is a feasible case for Q′, it
follows by the optimal completeness of S that there exists C2 ∈ r(S, Q′) of maximal
similarity among all cases C such that hard-constraints(Q′) ⊆ satisfied-constraints(C,
Q′). In particular, hard-constraints(Q′) = satisfied-constraints(C1, Q) = satisfied-
constraints(C1, Q′) and so similarity(C1, Q) = similarity(C1, Q′) ≤ similarity(C2, Q′) =
similarity(C2, Q). As we assume that no distinction is made between hard and soft
constraints in the retrieval process, r(S, Q′) = r(S, Q), and so we have established the
existence of C2 ∈ r(S, Q) such that similarity(C1, Q) ≤ similarity(C2, Q) and satisfied-
constraints(C1, Q) = hard-constraints(Q′) ⊆ satisfied-constraints(C2, Q′) = satisfied-
constraints(C2, Q).

When the number of constraints in a given query is small, is not unusual for one or
more exactly matching cases to be available. In this situation, a single recommended
case (i.e., any exactly matching case) is enough to satisfy the condition for
completeness in Theorem 3. Equally, a single recommended case (i.e., the most
similar of the exactly matching cases) is enough to satisfy the condition for optimal
completeness in Theorem 4.

4 Comparison of Retrieval Strategies

In this section we compare six possible approaches to retrieval in recommender
systems with respect to the following criteria:

1. Is the most similar case always retrieved?
2. Is a feasible case always retrieved if such a case exists?
3. Is the most similar feasible case always retrieved if there is more than one

feasible case?

 Completeness Criteria for Retrieval in Recommender Systems 17

Ensuring the retrieval of the most similar case, the first of the above criteria, is of
course a feature of most retrieval strategies in CBR recommender systems. Criteria 2
and 3 are the criteria for completeness and optimal completeness that we use to assess
the effectiveness of retrieval when, as often in practice, a given query may include
constraints that must be satisfied.

4.1 k-NN Retrieval

As discussed in Section 1, the standard approach to the retrieval of recommended
cases in CBR has some important advantages, such as ensuring the retrieval of the
most similar case for a given query. As we show in Theorem 5, however, k-NN is
incomplete regardless of the size of the retrieval set; that is, the existence of a feasible
case does not guarantee that such a case will be retrieved.

Theorem 5. k-NN is incomplete regardless of the size of the retrieval set.

Proof. For any k ≥ 3, we can construct a case base with k + 1 cases C1, C2, ..., Ck+1
and k + 1 equally weighted attributes a1, a2, ..., ak+1 such that for 1 ≤ i ≤ k + 1, ai = 1 in
all cases with the following exceptions: (1) for 1 ≤ i ≤ k, ai = 0 in Ck+1, (2) for 1 ≤ i ≤
k, ai = 0 in Ci, and (3) for 1 ≤ i ≤ k, ak+1 = 0 in Ci. For k = 3, the cases in the resulting
case base are:

C1 = (0, 1, 1, 0), C2 = (1, 0, 1, 0), C3 = (1, 1, 0, 0), C4 = (0, 0, 0, 1)

Now consider the query Q = {ai = 1: 1 ≤ i ≤ k + 1}. It can be seen that for 1 ≤ i ≤ k,

Sim(Ci, Q) =
1

1

+
−

k

k
 while Sim(Ck+1, Q) =

1

1

+k
. The k-NN retrieval set therefore

includes all cases in the case base except Ck+1. It can also be seen that while satisfied-
constraints(Ck+1, Q) = {ak+1 = 1}, there is no case in the k-NN retrieval set which
satisfies the constraint ak+1 = 1. There is therefore no case C in the k-NN retrieval set
such that satisfied-constraints(C, Q) ⊆ satisfied-constraints(Ck+1, Q). It follows from
Theorem 3 that for k ≥ 3, k-NN is incomplete. It remains only to observe that as k-NN
is incomplete for k = 3 it must also be incomplete for k = 2 and k = 1.

An important corollary of Theorem 5 is that any retrieval strategy in which the
cases retrieved for a given query are selected from the k-NN retrieval set is
incomplete.

Theorem 6. Any retrieval strategy S in which the retrieved cases are selected from
the k-NN retrieval set is incomplete.

Proof. As k-NN is incomplete by Theorem 5, there exists for any k ≥ 1 a case base, a
query Q, and a case C1 ∉ r(k-NN, Q) for which there is no case C2 ∈ r(k-NN, Q) such
that satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). As r(S, Q) ⊆
r(k-NN, Q) it follows that C1 ∉ r(S, Q) and there can be no case C2 ∈ r(S, Q) such
that satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). Thus S is incomplete
as required.

18 D. McSherry

4.2 Database Retrieval

Often referred to as filter based retrieval, traditional database retrieval (DBR) insists
on exact matching:

r(DBR, Q) = {C: satisfied-constraints(C, Q) = constraints(Q)}

If there is no case (or database object) that satisfies all the constraints in a given
query, then the DBR retrieval set is empty and the user has no alternative but to start
again with a modified query [1, 17].

Theorem 7. DBR is incomplete.

Proof. It suffices to observe that if none of the constraints in a given query are hard
constraints then any case is a feasible case but the DBR retrieval set may still be
empty.

DBR is not guaranteed to retrieve the most similar case for a given query, or indeed any
case. Another drawback is that for queries with only a few constraints, the user may be
swamped by a large number of exactly matching cases (or database objects) [17].

4.3 Retrieval of Non-dominated Cases

In database research, there is increasing interest in the retrieval of database objects
that are Pareto optimal with respect to the preferences expressed in a given query (i.e.,
not dominated by another object) as an approach to addressing the limitations of
retrieval based on exact matching [17-18]. Elimination of dominated alternatives is
also a strategy sometimes used to reduce the number of candidates to be compared by
other methods in multiple criteria decision making [19-20]. With respect to each
constraint in a recommender system query, it is reasonable to assume that any case
that satisfies the constraint is preferred to one that does not satisfy the constraint. A
possible approach to retrieval of recommended cases is therefore one in which the
retrieval set consists of all cases that are not dominated with respect to the constraints
they satisfy. We will refer to this strategy as retrieval of non-dominated cases (RNC).

Constraints Similarity RNC 3-NN CDR

Case 1 N Y Y Y 0.88

Case 2 N Y Y Y 0.75

Case 3 Y N N N 0.63

Case 4 Y N N N 0.50

Case 5 Y N Y N 0.50

Fig. 2. Cases retrieved (●) by RNC, 3-NN, and CDR for the example case base and query in the
property domain

 Completeness Criteria for Retrieval in Recommender Systems 19

Dominance Criterion. We say that a given case C1 is dominated by another case C2
with respect to a given query if C2 satisfies every constraint that C1 satisfies and at
least one constraint that C1 does not satisfy.

It is worth noting that RNC is equivalent to retrieving the maxima with respect to a
partial order induced by a given query Q on the case base:

C1 ≤Q C2 if and only if satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q)

It is therefore also related to order based retrieval, a general framework for
retrieval in CBR recommender systems in which a partial order constructed from user
preferences is applied to the case base to retrieve the maxima [6, 10].

Fig. 2 shows the cases retrieved by RNC for the example case base and query used
to highlight limitations of k-NN in Section 2. The retrieval sets for 3-NN and CDR [2-
3] are also shown. Case 3 (Y N N N) and Case 4 (Y N N N) are dominated by Case 5
(Y N Y N), but none of the other cases are dominated. The RNC retrieval set for the
example query is therefore {Case 1, Case 2, Case 5}.

As we show in Theorem 8, RNC is complete. However, it is not optimally
complete; that is, it is not guaranteed to retrieve the most similar feasible case if there
is more than one feasible case. If the only hard constraint in the example query is the
first constraint, then Cases 3, 4, and 5 are all feasible cases. But Case 5, the one
retrieved by RNC, is not the most similar.

RNC is also not guaranteed to retrieve the most similar case. For example, if Case 1
and Case 2 were removed from the case base, then Case 3 would be the most similar of
the remaining cases. However, it would still be dominated by Case 5 and therefore not
retrieved by RNC. On the other hand, the RNC retrieval set may include more cases
than are needed for completeness. For each C1 ∈ r(RNC, Q), the retrieval set must also
include all cases C2 such that satisfied-constraints(C1, Q) = satisfied-constraints(C2,
Q). In the RNC retrieval set for the example query, only Case 1 and Case 5 are needed
to satisfy the condition for completeness in Theorem 3.

Theorem 8. RNC is complete.

Proof. It suffices by Theorem 3 to show that for any query Q and C1 ∉ r(RNC, Q),
there exists C2 ∈ r(RNC, Q) such that satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q). If C1 ∉ r(RNC, Q) there must be at least one case C such that
satisfied-constraints(C1, Q) ⊂ satisfied-constraints(C, Q). Among such cases, let C2
be one for which |satisfied-constraints(C2, Q)| is maximal. As there can be no case
that dominates C2, we have established the existence of C2 ∈ r(RNC, Q) such that
satisfied-constraints(C1, Q) ⊂ satisfied-constraints(C2, Q).

4.4 Compromise-Driven Retrieval

In CDR, the constraints satisfied by a given case and its similarity to the target query
play complementary roles in the retrieval process [2-3]. The first step in the construction
of the retrieval set is to rank all cases in the case base in order of decreasing similarity.
Among cases that are equally similar to the target query, any case that satisfies a
superset of the constraints satisfied by another equally similar case is given priority in
the ranking process. The algorithm used to select cases to be included in the CDR
retrieval set from the ranked list of candidate cases is shown in Fig. 3.

20 D. McSherry

algorithm CDR(Q, Candidates)
begin
 RetrievalSet

while |Candidates| > 0 do
 begin

C1 first(Candidates)
RetrievalSet RetrievalSet {C1}
Candidates Candidates - {C1}
for all C2 rest(Candidates) do
begin

 if satisfied-constraints(C2, Q) satisfied-constraints(C1, Q)
then Candidates Candidates - {C2}

 end
 end
 return RetrievalSet
end

Fig. 3. Constructing the retrieval set in compromise driven retrieval

First, the most similar case is placed in the retrieval set and any cases that satisfy a
subset of the constraints satisfied by this case are eliminated from the list of candidate
cases. The most similar of the remaining cases is now added to the retrieval set and
any cases that satisfy a subset of the constraints satisfied by that case are eliminated.
This process continues until no further cases remain.

A detail not shown in Fig. 3 is that for each case added to the CDR retrieval set,
any cases that satisfy the same constraints are placed in a separate reference set. A
link from the retrieved case to the reference set is also created, thus ensuring that
cases which satisfy the same constraints are available for immediate inspection at the
user’s request. In this way, a retrieved case acts as a representative for all cases that
satisfy the same constraints. This recommendation engineering technique [14] helps
to keep the size of the CDR retrieval set within reasonable limits while also
addressing the needs of users who are not just seeking a single recommended item,
but would like to be informed of all items (e.g., jobs, rental apartments) that are likely
to be of interest [2-3].

Theorem 9. CDR is optimally complete.

Proof. For any query Q, a given case C1 can fail to be included in the CDR retrieval
set only if there exists C2 ∈ r(CDR, Q) such that similarity(C1, Q) ≤ similarity(C2, Q)
and satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). The optimal
completeness of CDR immediately follows from Theorem 4.

It follows from Theorem 2 (and is clear from Fig. 3) that in common with k-NN, the
most similar case is always retrieved in CDR. Another important feature that CDR
shares with k-NN is that an otherwise competitive case can often compensate for its
failure to satisfy one or more of the constraints satisfied by another case. As shown in

 Completeness Criteria for Retrieval in Recommender Systems 21

Fig. 2, the CDR retrieval set for our example case base and query in the property
domain is {Case 1, Case 3, Case 5}. Although Case 3 (Y N N N) fails to satisfy one
of the constraints satisfied by Case 5 (Y N Y N), the greater similarity of Case 3
ensures that it is not excluded from the CDR retrieval set.

That the CDR retrieval set may include more cases than are needed for
completeness can be seen from the fact that only Case 1 and Case 5 are needed to
satisfy the condition for completeness in Theorem 3. However, Case 3 must also be
included in the retrieval set for optimal completeness. If the first constraint is the only
hard constraint in the example query, then Case 3 is the most similar of the feasible
cases Case 3, Case 4, and Case 5.

4.5 Bounded Greedy

Bounded Greedy (BG) combines measures of similarity and diversity in the retrieval
process to achieve a better balance between these often conflicting characteristics of
the retrieved cases [8]. It selects r cases from the b × r cases that are most similar to
the target query, where r is the required size of the retrieval set and b is an integer
parameter which is usually assigned a small value such as 2 or 3.

BG has been shown to provide significant gains in diversity at the expense of
relatively small reductions in similarity [8]. As we show Theorem 10, however, BG is
incomplete regardless of the size of the retrieval set or number of candidate cases
from which the retrieved cases are selected.

Theorem 10. BG is incomplete regardless of the size of the retrieval set or number of
candidate cases from which the retrieved cases are selected.

Proof. For any values of the parameters b and r, BG selects r cases from the k-NN
retrieval set for k = b × r. Its incompleteness immediately follows from Theorem 6.

A feature that BG shares with k-NN is that the most similar case for a given query is
always retrieved.

4.6 Diversity Conscious Retrieval

Usually diversity can be increased only at the expense of some loss of average
similarity relative to the k-NN retrieval set. Diversity conscious retrieval (DCR) aims
to increase recommendation diversity while ensuring that any loss of similarity is
strictly controlled [7]. The approach is based on the idea that for any integer r ≥ 2, a
given query partitions the set of cases with non-zero similarities according to the
similarity intervals in which their similarities lie:

(0,
r

r 1
1

−−], (
r

r 1
1

−− ,
r

r 2
1

−−], . . . , (
r

1
1− , 1]

The retrieval process also depends on k, the required size of the retrieval set, and
case selection is guided by the measure of relative diversity used in BG [8]. However,
the DCR retrieval set is allowed to differ from the k-NN retrieval set only in cases
whose similarities lie in the leftmost similarity interval that contributes to the k-NN
retrieval set. This ensures that loss of average similarity relative to the k-NN retrieval

22 D. McSherry

set can never be more than
r

1
, the width of the similarity intervals on which retrieval

is based. For r = 20, the loss of average similarity cannot be more than 0.05. With this
level of protection against loss of similarity, DCR has been shown to be capable of
delivering worthwhile gains in diversity [7]. As we show in Theorem 11, however,
DCR is incomplete.

In common with k-NN and BG, the most similar case for a given query is always
retrieved in DCR.

Theorem 11. DCR is incomplete regardless of the size of the retrieval set or width of
the similarity intervals on which retrieval is based.

Proof. For r ≥ 2 and k ≤ 6, we can construct a case base with k + 1 cases C1, C2, ...,
Ck+1 and equally weighted attributes a1, a2, ..., a7 such that for 1 ≤ i ≤ 7, ai = 1 in all
cases with the following exceptions: (1) for 1 ≤ i ≤ 6, ai = 0 in Ck+1, (2) for 1 ≤ i ≤ k, ai
= 0 in Ci, and (3) for 1 ≤ i ≤ k, a7 = 0 in Ci. For k = 1, the cases in the resulting case
base are:

C1 = (0, 1, 1, 1, 1, 1, 0), C2 = (0, 0, 0, 0, 0, 0, 1)

Now consider the query Q = {ai = 1: 1 ≤ i ≤ 7}. As Sim(Ci, Q) =
7

5
 for 1 ≤ i ≤ k,

and Sim(Ck+1, Q) =
7

1
, the k-NN retrieval set includes all cases in the case base except

Ck+1. It is also clear that the similarities of all cases in the k-NN retrieval set must lie
in same similarity interval. For Ck+1 to be eligible for retrieval in DCR, Sim(Ck+1, Q)
must therefore be in the only similarity interval that contributes to the k-NN retrieval
set. However, this cannot be the case as the difference in similarity between Ck and
Ck+1 exceeds the width of the similarity intervals on which retrieval is based:

Sim(Ck, Q) - Sim(Ck+1, Q) =
7

5
-

7

1
 =

7

4
 >

2

1
 ≥

r

1

The DCR retrieval set for Q is therefore the same as the k-NN retrieval set. As there is
no case C in the DCR retrieval set such that satisfied-constraints(C, Q) ⊆ satisfied-
constraints(Ck+1, Q) it follows by Theorem 3 that DCR is incomplete for r ≥ 2 and k ≤ 6.

For r ≥ 2 and k > 6, we can construct as in the proof of Theorem 5 a case base with
k + 1 cases C1, C2, ..., Ck+1 and k + 1 equally weighted attributes a1, a2, ..., ak+1, and a

query Q such that for 1 ≤ i ≤ k, Sim(Ci, Q) =
1

1

+
−

k

k
 while Sim(Ck+1, Q) =

1

1

+k
. Once

again, the k-NN retrieval set includes all cases in the case base except Ck+1, and the
latter case is not eligible for inclusion in the DCR retrieval set because:

Sim(Ck, Q) - Sim(Ck+1, Q) =
)1(7

)1(4

)1(7

14418

)1(7

1443

)1(7

147

1

2

+
+=

+
−+>

+
−+=

+
−=

+
−

k

k

k

k

k

kk

k

k

k

k
 =

7

4

There is therefore no case C in the DCR retrieval set such that satisfied-constraints(C,
Q) ⊆ satisfied-constraints(Ck+1, Q). Thus DCR is also incomplete for r ≥ 2 and k > 6.

 Completeness Criteria for Retrieval in Recommender Systems 23

4.7 Discussion

The results of our comparison of retrieval strategies are summarized in Table 1. Of
the six retrieval strategies included in our analysis, only RNC and CDR are complete
(i.e., guaranteed to retrieve a feasible case if one exists), and only CDR is optimally
complete (i.e., guaranteed to retrieve the most similar feasible case if there are two or
more feasible cases). All except DBR and RNC are guaranteed to retrieve the most
similar case for a given query.

As shown by our analysis, the effectiveness of some retrieval strategies may be
open to question when, as often in practice, a given query may include constraints that
must be satisfied. In terms of assumptions about the nature of the constraints in a
given query, DBR and k-NN can be seen to represent two extreme positions. In DBR,
all the constraints in a given query are treated as hard constraints, whereas in k-NN
they are essentially treated as soft constraints. However, recognizing that any
combination of hard and soft constraints is possible in practice — as in a complete
retrieval strategy ― seems a more realistic basis for the retrieval of recommended
cases. While the completeness of RNC ensures the retrieval of a feasible case if such
a case exists, no account is taken of a retrieved case’s similarity in the retrieval
process. In contrast, the optimal completeness of CDR ensures the retrieval of the
most similar feasible case, if any, for a given query.

Table 1. Comparison of retrieval strategies with respect to completeness, optimal comple-
teness, and retrieval of the most similar case

Retrieval Strategy
Feasible
Case?

Most
Similar
Feasible
Case?

Most
Similar
Case?

Database Retrieval (DBR) N N N

k-NN N N Y

Bounded Greedy (BG) N N Y

Diversity Conscious Retrieval (DCR) N N Y

Retrieval of Non-Dominated Cases (RNC) Y N N

Compromise Driven Retrieval (CDR) Y Y Y

5 Related Work

5.1 Recommendation Dialogues

We have focused in this paper on approaches to the retrieval of recommended cases in
response to a query provided by the user in advance. In approaches related to
conversational CBR [21], a query is incrementally elicited in an interactive dialogue
with the user, often with the aim of minimizing the number of questions the user is
asked before a recommended product is retrieved (e.g., [22-30]).

24 D. McSherry

Incremental nearest neighbor (iNN) is one such strategy that uniquely combines a
goal-driven approach to selecting the most useful question at each stage of the
recommendation dialogue with a mechanism for ensuring that the dialogue is
terminated only when it is certain that the most similar case (or cases) will be the
same regardless of the user’s preferences with respect to any remaining attributes
[25-28]. One important benefit is that recommendations based on incomplete queries
can be justified on the basis that any user preferences that remain unknown cannot
affect the recommendation. However, like any retrieval strategy in which only a
single case (or set of equally similar cases) is recommended, and no attempt is made
to identify constraints that must be satisfied, iNN is incomplete.

In any recommender system, of course, more than a single recommendation cycle
may be needed to retrieve a case that is acceptable to the user. As we have seen, a
complete retrieval strategy ensures the retrieval of a feasible case whenever possible,
but whether such a case is acceptable to the user may depend on the extent to which it
satisfies any soft constraints in her query — or additional constraints not mentioned in
her query. Approaches to extending recommendation dialogues beyond an initially
unsuccessful recommendation include critiquing approaches to elicitation of user
feedback (e.g., [2, 10, 20, 31-32, 41]), referral of the user’s query to other
recommender agents [26], and the recommendation engineering technique of
providing the user with a link from each recommended case to other cases that satisfy
the same constraints [2-3, 14].

5.2 Retrieval Failure and Recovery

By ensuring the retrieval of a case that satisfies any hard constraints in a given query
whenever possible, a complete retrieval strategy avoids the need to identify
constraints in a given query that must be satisfied. In some retrieval strategies, the
non-existence of an exactly matching case (i.e., one that satisfies all the constraints in
a given query) is treated as a query failure (or retrieval failure) that triggers a recovery
process based on query relaxation (e.g., [30, 32-37]). Usually the aim of the relaxation
process is to identify constraints in the user’s query that need not be satisfied and can
thus be treated as soft constraints.

For example, the Adaptive Place Advisor [30] is an in-car recommender system for
restaurants that converses with the user through a spoken dialogue interface. If there
is no restaurant that exactly matches the user’s requirements, the system suggests a
constraint to be relaxed (e.g., price range or cuisine) based on its current
understanding of the user’s preferences. If the suggested constraint is one that must be
satisfied, the system may suggest another constraint to be relaxed (i.e., treated as a
soft constraint). In the Intelligent Travel Recommender [37], the choice of constraint
to be relaxed is left to the user.

However, recovery may not be possible by relaxing a single constraint, or at least
not one that the user is willing to relax [33-36]. To address this issue, McSherry [34]
proposes an incremental relaxation process that aims to minimize the number of
constraint relaxations required for recovery. An explanation of the query failure is
followed by a mixed-initiative dialogue in which the user is guided in the selection of
one or more constraints to be relaxed. If the constraint suggested for relaxation at any
stage is one that must be satisfied, the user can select another constraint to be relaxed.

 Completeness Criteria for Retrieval in Recommender Systems 25

Expressed in terms of minimally failing sub-queries, the explanations of query failure
provided in the approach are adapted from research on co-operative responses to
failing database queries (e.g., [38-40]).

5.3 Compromise Driven Retrieval in First Case

First Case is a CDR recommender system that supports queries involving attributes
and constraints of different types [2-3]. A nominal attribute is one whose values do
not have a natural ordering that determines their similarity (e.g., the type or make of a
personal computer). A more-is-better (MIB) attribute is one that most users would
prefer to maximize (e.g., memory). A less-is-better (LIB) attribute is one that most
users would prefer to minimize (e.g., price). A nearer-is-better (NIB) attribute is one
for which most users have in mind an ideal value and prefer values that are closer to
their ideal value (e.g., screen size). A query in First Case may include upper limits for
LIB attributes (e.g., price ≤ 500), lower limits for MIB attributes (e.g., memory ≥
256), and ideal values for NIB or nominal attributes (e.g., screen = 15, type = laptop).

An ideal value for a NIB or nominal attribute, if any, is treated as an equality
constraint and also provides the basis for assessment of a given case’s similarity with
respect to the attribute. Assessment of similarity with respect to LIB/MIB attributes
for which upper/lower limits are provided in a given query is based on assumed
preferences [3, 28]. That is, the preferred value of a LIB attribute is assumed to be the
lowest value in the case base, while the preferred value of a MIB attribute is assumed
to be the highest value in the case base.

McSherry [3] investigates the potential benefits of also taking account of assumed
preferences with respect to non-query attributes in CDR. One such benefit is that
competitive cases that might otherwise be overlooked can more easily compensate for
their failure to satisfy one or more of the constraints in a given query. Assumed
preferences also play an important role in a CDR recommender system’s ability to
explain the benefits of a recommended case relative to another case that is less
strongly recommended [2-3].

5.4 Balancing User Satisfaction and Cognitive Load

Balancing the trade-off between user satisfaction (or solution quality) and cognitive
load is an important issue in recommender systems (e.g., [3, 5, 9]). A simple measure
of cognitive load is the number of cases, on average, recommended in response to
user queries, while possible measures of solution quality include precision and recall
[13, 25]. The aspect of user satisfaction on which we have focused in this paper is the
ability to ensure the retrieval of a case that may be acceptable to the user if such a
case exists. As we have shown in Section 4, the optimal completeness of CDR
ensures the retrieval of the most similar feasible case, if any, for a given query. In
contrast, the existence of a feasible case does not guarantee that such a case will be
retrieved regardless of the size of the k-NN retrieval set.

While the size of the k-NN retrieval set is the same for all queries, the size of the
CDR retrieval set depends on the query and cannot be predicted in advance. That
retrieval set size increases in CDR as query length increases is confirmed by our
empirical results on the digital camera case base [41], with average retrieval set sizes

26 D. McSherry

of 1.5 for short queries (3 attributes), 3.0 for longer queries (6 attributes), and 5.6 for
queries of maximum length (9 attributes) [3]. Taking account of assumed preferences
with respect to non-query (LIB/MIB) attributes had only a minor effect on cognitive
load, with average retrieval set sizes increasing to 1.9 for short queries (3 attributes)
and 3.3 for longer queries (6 attributes).

For queries of maximum length (8 attributes) on the well-known Travel case base,
the average size of the CDR retrieval set was 7.7 [2]. Even for k = 30 in this
experiment, k-NN was unable to match CDR’s ability to ensure the retrieval of a case
that satisfies any hard constraints in a given query if such a case exists. This provides
empirical confirmation of our analysis in Section 4 showing that k-NN is incomplete
regardless of the size of the retrieval set.

6 Conclusions

Completeness is a term used in search and planning, and other areas of artificial
intelligence, to describe an algorithm’s ability to guarantee that a solution will be
found if one exists [42-44]. In this paper we have extended the notion of completeness
to retrieval in recommender systems. We say that a retrieval strategy is complete if it
ensures the retrieval of a product that satisfies any hard constraints in a given query if
such a case exists.

We have shown that incompleteness is a limitation that k-NN shares with most
retrieval strategies, and highlighted other limitations of k-NN which can be attributed
to its incompleteness. One such limitation that appears not to be widely recognized is
that the non-existence of an acceptable case cannot always be inferred from the non-
existence of a feasible case (i.e., one that satisfies any hard constraints in a given
query) in the k-NN retrieval set. Also in contrast to a complete retrieval strategy,
k-NN’s failure to retrieve a given case cannot always be justified on the basis that one
of the retrieved cases satisfies at least the same constraints.

On the other hand, k-NN has important advantages that are not necessarily shared
by a complete retrieval strategy, such as enabling an otherwise competitive case to
compensate for its failure to satisfy one or more of the constraints satisfied by another
case. However, the role of similarity in balancing trade-offs between competing cases
is implicit in our definition of optimal completeness. A retrieval strategy is optimally
complete if it ensures the retrieval of the most similar case, if any, which satisfies all
the hard constraints in a given query. Optimal completeness also has the advantage of
ensuring the retrieval of the most similar case as in k-NN.

Finally, we have shown that the ability to justify the exclusion of any case from the
retrieval set on the basis that one of the retrieved cases is at least as similar, and
satisfies at least the same constraints, is one of several benefits of CDR [2-3] that can
be attributed to its optimal completeness.

Acknowledgements

The author would like to thank Chris Stretch for his insightful comments on an earlier
version of this paper.

 Completeness Criteria for Retrieval in Recommender Systems 27

References

1. Wilke, W., Lenz, M., Wess, S.: Intelligent Sales Support with CBR. In: Lenz, M., Bartsch-
Spörl, B., Burkhard, H.-D., Wess, S. (eds.): Case-Based Reasoning Technology. Springer-
Verlag, Berlin Heidelberg New York (1998) 91-113

2. McSherry, D.: Similarity and Compromise. In: Ashley, K.D., Bridge, D.G. (eds.): Case-
Based Reasoning Research and Development. LNAI, Vol. 2689. Springer-Verlag, Berlin
Heidelberg New York (2003) 291-305

3. McSherry, D.: On the Role of Default Preferences in Compromise-Driven Retrieval.
Proceedings of the 10th UK Workshop on Case-Based Reasoning (2005) 11-19

4. McSherry, D.: Coverage-Optimized Retrieval. Proceedings of the 18th International Joint
Conference on Artificial Intelligence (2003) 1349-1350

5. McSherry, D.: Balancing User Satisfaction and Cognitive Load in Coverage-Optimised
Retrieval. Knowledge-Based Systems 17 (2004) 113-119

6. Bridge, D., Ferguson, A.: Diverse Product Recommendations using an Expressive
Language for Case Retrieval. In: Craw, S., Preece, A. (eds.): Advances in Case-Based
Reasoning. LNAI, Vol. 2416. Springer-Verlag, Berlin Heidelberg New York (2002) 43-57

7. McSherry, D.: Diversity-Conscious Retrieval. In: Craw, S., Preece, A. (eds.): Advances in
Case-Based Reasoning. LNAI, Vol. 2416. Springer-Verlag, Berlin Heidelberg New York
(2002) 219-233

8. Smyth, B., McClave, P.: Similarity vs. Diversity. In: Aha, D.W., Watson, I. (eds.): Case-
Based Reasoning Research and Development. LNAI, Vol. 2080. Springer-Verlag, Berlin
Heidelberg New York (2001) 347-361

9. Branting, L.K.: Acquiring Customer Preferences from Return-Set Selections. In: Aha,
D.W., Watson, I. (eds.): Case-Based Reasoning Research and Development. LNAI, Vol.
2080. Springer-Verlag, Berlin Heidelberg New York (2001) 59-73

10. Bridge, D., Ferguson, A.: An Expressive Query Language for Product Recommender
Systems. Artificial Intelligence Review 18 (2002) 269-307

11. Burkhard, H.-D.: Extending Some Concepts of CBR - Foundations of Case Retrieval Nets.
In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.): Case-Based Reasoning
Technology. Springer-Verlag, Berlin Heidelberg New York (1998) 17-50

12. Ferguson, A., Bridge, D.: Partial Orders and Indifference Relations: Being Purposefully
Vague in Case-Based Retrieval. In: Blanzieri, E., Portinale, L. (eds.): Advances in Case-
Based Reasoning. LNAI, Vol. 1898. Springer-Verlag, Berlin Heidelberg New York (2000)
74-85

13. McSherry, D.: A Generalised Approach to Similarity-Based Retrieval in Recommender
Systems. Artificial Intelligence Review 18 (2002) 309-341

14. McSherry, D.: Recommendation Engineering. Proceedings of the 15th European
Conference on Artificial Intelligence. IOS Press, Amsterdam (2002) 86-90

15. McSherry, D.: The Inseparability Problem in Interactive Case-Based Reasoning.
Knowledge-Based Systems 15 (2002) 293-300

16. McSherry, D., Stretch, C.: Automating the Discovery of Recommendation Knowledge.
Proceedings of the 19th International Joint Conference on Artificial Intelligence (2005) 9-14

17. Kießling, W.: Foundations of Preferences in Database Systems. Proceedings of the 28th
International Conference on Very Large Databases (2002) 311-322

28 D. McSherry

18. Balke, W.-T., Günzer, U.: Efficient Skyline Queries under Weak Pareto Dominance.
IJCAI-05 Workshop on Advances in Preference Handling (2005) 1-6

19. Hong, I., Vogel, D.: Data and Model Management in a Generalised MCDM-DSS.
Decision Sciences 22 (1991) 1-25

20. Linden, G., Hanks, S., Lesh, N.: Interactive Assessment of User Preference Models: The
Automated Travel Assistant. Proceedings of the 6th International Conference on User
Modeling (1997) 67-78

21. Aha, D.W., Breslow, L.A., Muñoz-Avila, H.: Conversational Case-Based Reasoning.
Applied Intelligence 14 (2001) 9-32

22. Doyle, M., Cunningham, P.: A Dynamic Approach to Reducing Dialog in On-Line
Decision Guides. In: Blanzieri, E., Portinale, L. (eds.): Advances in Case-Based
Reasoning. LNAI, Vol. 1898. Springer-Verlag, Berlin Heidelberg New York (2000) 49-60

23. Kohlmaier, A., Schmitt, S., Bergmann, R.: A Similarity-Based Approach to Attribute
Selection in User-Adaptive Sales Dialogues. In: Aha, D.W., Watson, I. (eds.): Case-Based
Reasoning Research and Development. LNAI, Vol. 2080. Springer-Verlag, Berlin
Heidelberg New York (2001) 306-320

24. McSherry, D.: Minimizing Dialog Length in Interactive Case-Based Reasoning.
Proceedings of the 17th International Joint Conference on Artificial Intelligence (2001)
993-998

25. McSherry, D.: Increasing Dialogue Efficiency in Case-Based Reasoning without Loss of
Solution Quality. Proceedings of the 18th International Joint Conference on Artificial
Intelligence (2003) 121-126

26. McSherry, D.: Conversational CBR in Multi-Agent Recommendation. IJCAI-05 Workshop
on Multi-Agent Information Retrieval and Recommender Systems (2005) 331-345

27. McSherry, D.: Explanation in Recommender Systems. Artificial Intelligence Review 24
(2005) 179-197

28. McSherry, D.: Incremental Nearest Neighbour with Default Preferences. Proceedings of
the 16th Irish Conference on Artificial Intelligence and Cognitive Science (2005) 9-18

29. Shimazu, H.: ExpertClerk: A Conversational Case-Based Reasoning Tool for Developing
Salesclerk Agents in E-Commerce Webshops. Artificial Intelligence Review 18 (2002)
223-244

30. Thompson, C.A., Göker, M.H., Langley, P.: A Personalized System for Conversational
Recommendations. Journal of Artificial Intelligence Research 21 (2004) 393-428

31. Burke, R., Hammond, K.J., Young, B.: The FindMe Approach to Assisted Browsing.
IEEE Expert 12 (1997) 32-40

32. Hammond, K.J., Burke, R., Schmitt, K.: A Case-Based Approach to Knowledge
Navigation. In: Leake, D.B. (ed.): Case-Based Reasoning: Experiences, Lessons & Future
Directions. AAAI Press/MIT Press, Menlo Park, CA (1996) 125-136

33. McSherry, D.: Explanation of Retrieval Mismatches in Recommender System Dialogues.
ICCBR-03 Workshop on Mixed-Initiative Case-Based Reasoning (2003) 191-199

34. McSherry, D.: Incremental Relaxation of Unsuccessful Queries. In: González-Calero, P.,
Funk, P. (eds.): Advances in Case-Based Reasoning. LNAI, Vol. 3155. Springer-Verlag,
Berlin Heidelberg New York (2004) 331-345

35. McSherry, D.: Maximally Successful Relaxations of Unsuccessful Queries. Proceedings
of the 15th Conference on Artificial Intelligence and Cognitive Science (2004) 127-136

 Completeness Criteria for Retrieval in Recommender Systems 29

36. McSherry, D.: Retrieval Failure and Recovery in Recommender Systems. Artificial
Intelligence Review 24 (2005) 319-338

37. Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: A Case-Based Travel Advisory
System. In: Craw, S., Preece, A. (eds.): Advances in Case-Based Reasoning. LNAI, Vol.
2416. Springer-Verlag, Berlin Heidelberg New York (2002) 613-627

38. Gaasterland, T., Godfrey, P., Minker, J.: An Overview of Cooperative Answering. Journal
of Intelligent Information Systems 1 (1992) 123-157

39. Godfrey, P.: Minimisation in Cooperative Response to Failing Database Queries.
International Journal of Cooperative Information Systems 6 (1997) 95-149

40. Kaplan, S.J.: Cooperative Responses from a Portable Natural Language Query System.
Artificial Intelligence 19 (1982) 165-187

41. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Experiments in Dynamic Critiquing.
Proceedings of the 10th International Conference on Intelligent User Interfaces (2005)
175-182

42. Lieber, J., Napoli, A.: Correct and Complete Retrieval for Case-Based Problem Solving.
Proceedings of the 13th European Conference on Artificial Intelligence. Wiley, Chichester
(1998) 68-72

43. Muñoz-Avila, H.: Case-base Maintenance by Integrating Case-Index Revision and Case-
Retention Policies in a Derivational Replay Framework. Computational Intelligence 17
(2001) 280-294

44. Russell, S., Norvig, S.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper
Saddle River, New Jersey (1995)

	Introduction
	Limitations of k-NN
	Example Case Base
	Recognizing the Non-existence of an Acceptable Case
	Coverage of Available Cases
	Explaining Why a Case is Not Recommended
	Recommendation Diversity

	Completeness and Optimal Completeness
	Comparison of Retrieval Strategies
	k-NN Retrieval
	Database Retrieval
	Retrieval of Non-dominated Cases
	Compromise-Driven Retrieval
	Bounded Greedy
	Diversity Conscious Retrieval
	Discussion

	Related Work
	Recommendation Dialogues
	Retrieval Failure and Recovery
	Compromise Driven Retrieval in First Case
	Balancing User Satisfaction and Cognitive Load

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

