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Abstract. Often in practice, a recommender system query may include 
constraints that must be satisfied. Ensuring the retrieval of a product that 
satisfies any hard constraints in a given query, if such a product exists, is one 
benefit of a retrieval criterion we refer to as completeness. Other benefits 
include the ease with which the non-existence of an acceptable product can 
often be recognized from the results for a given query, and the ability to justify 
the exclusion of any product from the retrieval set on the basis that one of the 
retrieved products satisfies at least the same constraints. We show that in 
contrast to most retrieval strategies, compromise driven retrieval (CDR) is 
complete. Another important benefit of CDR is its ability to ensure the retrieval 
of the most similar product, if any, which satisfies all the hard constraints in a 
given query, a criterion we refer to as optimal completeness. 

1   Introduction 

In case-based reasoning (CBR) approaches to product recommendation, descriptions 
of available products are stored in a product case base and retrieved in response to 
user queries. The standard CBR approach to retrieval in recommender systems is k 
nearest neighbor (k-NN) retrieval. In contrast to traditional database retrieval,  
k-NN does not insist on exact matching, thus having the advantage that the retrieval 
set (i.e., the k most similar cases) is never empty [1].  

Regardless of the strategy on which the retrieval of recommended cases is based, a 
query can also be seen as a set of constraints. For example, the preferred attribute 
values in a k-NN query are equality constraints that may or may not be satisfied by a 
given case. One approach to retrieval in CBR that takes account of the constraints 
satisfied by a given case is compromise driven retrieval (CDR) [2-3]. For example, no 
case that is less similar than another case which satisfies the same constraints is 
included in the CDR retrieval set.  

While no account is taken of satisfied constraints in k-NN, cases which satisfy 
more constraints may also tend to be more similar. However, there is often a conflict 
between the goals of retrieval strategies like k-NN which reward cases on the basis of 
overall similarity and those which take account of the constraints satisfied by a given 
case. As we show in Section 2, for example, it is possible for a case that satisfies a 
proper subset of the constraints satisfied by another case to be more similar. Also, an 
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issue that k-NN only partly addresses by offering the user a choice of k alternatives is 
that often in practice a given query may include constraints that must be satisfied.  

In a holiday recommender, for example, a user seeking a skiing holiday for two 
persons in December may be unable to compromise on the number of persons and 
unwilling to compromise on holiday type. If the k most similar cases do not include a 
skiing holiday for two persons then the system has failed to recommend an acceptable 
case. It might be considered that even with k = 3 there is a good chance that an 
acceptable case, if one exists, will be retrieved. However, k-NN is known to be 
limited in its coverage of cases that may be acceptable to the user, or compromises 
that the user may be prepared to consider (e.g., the timing of the holiday) [2-5]. A 
related problem is that the most similar cases also tend to be very similar to each 
other, with the result that the user may be offered a limited choice [6-8].  

Ensuring the retrieval of a case that satisfies any hard constraints, if such a case 
exists, is the weaker of two completeness criteria for retrieval in recommender 
systems that we present in this paper. Of course, it is a simple matter to ensure the 
retrieval of a case that satisfies any known hard constraints in a given query if such a 
case exists. However, requiring users to identify hard constraints in advance may not 
be a realistic solution. Often in practice, a user may not have a clear idea of what she 
is looking for when constructing her query, and may begin to consider hard 
constraints only when faced with the need to compromise. Instead we assume that any 
hard constraints in a given query are unknown to the recommender system and 
therefore that no distinction is made between hard and soft constraints in the retrieval 
process.  

In the formal definition of completeness that we now present, we refer to a case 
that satisfies all the hard constraints in a given query as a feasible case for the query. 
Whether such a case is acceptable to the user may of course depend on the extent to 
which it satisfies any soft constraints in her query. However, the non-existence of a 
feasible case in the case base implies the non-existence of an acceptable case. 
Equally, the non-existence of a feasible case in the retrieval set means that none of the 
recommended cases are acceptable. 

Completeness. We say that a retrieval strategy is complete if the retrieval set for any 
query is guaranteed to include a feasible case if such a case exists. 

Ensuring the retrieval of a case that may be acceptable to the user whenever 
possible is just one advantage of completeness. In Section 3, we show that only in a 
complete retrieval strategy can the exclusion of any case from the retrieval set always 
be justified on the basis that one of the retrieved cases satisfies at least the same 
constraints as the non-retrieved case. As we show in Theorem 1, another benefit of 
completeness is the ease with which the non-existence of an acceptable case can often 
be recognized from the results for a given query ― an issue often neglected in 
recommender systems.  

Theorem 1. In a complete retrieval strategy, the non-existence of a feasible case in 
the retrieval set implies the non-existence of an acceptable case in the case base.  

Proof. Immediate from the definition of completeness. 
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As we show in Section 4, k-NN is incomplete regardless of the size of the retrieval 
set. We also show that it is possible for a retrieval strategy that takes no account of a 
retrieved case’s similarity to be complete. An important question, therefore, is 
whether the benefits of completeness can be combined with those to be gained by 
taking account of similarity knowledge. For example, enabling an otherwise 
competitive case to compensate for its failure to satisfy one or more of the constraints 
satisfied by another case is an important advantage of k-NN. Moreover, a complete 
retrieval strategy that fails to retrieve the most similar case ignores the possibility that 
it may be the best option for the user if none of her requirements are hard constraints.  

The role of similarity in balancing trade-offs between competing products is 
implicit in our definition of optimal completeness, the second of our completeness 
criteria for retrieval in recommender systems. 

Optimal Completeness. We say that a retrieval strategy is optimally complete if the 
retrieval set for any query is guaranteed to include a case that is maximally similar 
among the feasible cases, if any, in the case base.  

Ensuring the retrieval of the most similar feasible case, or one that is maximally 
similar, is likely to be of most benefit when there are many feasible cases for a given 
query — which is not unlikely if most of the constraints in a given query are soft 
constraints. As we show in Theorem 2, optimal completeness also ensures the 
retrieval of the most similar case in the case base. 

Theorem 2. In an optimally complete retrieval strategy, the retrieval set for any 
query must include the most similar case. 

Proof. It suffices to observe that if none of the constraints in a given query are hard 
constraints, then all the available cases are feasible cases. 

As we show in Section 4, CDR [2-3] is optimally complete, thus ensuring the retrieval 
of the most similar case as in k-NN. Enabling an otherwise competitive case to 
compensate for its failure to satisfy one or more of the constraints satisfied by another 
case is another important feature that CDR shares with k-NN.  

In Section 2, we use an example case base to illustrate some of the limitations of k-
NN that are well known and others that have received less attention. We also show 
that some of the problems highlighted can be attributed to the incompleteness of  
k-NN. In Section 3, we present necessary and sufficient conditions for completeness 
and optimal completeness that can be used to determine whether these criteria are 
satisfied by a given retrieval strategy. In Section 4, we show that while most retrieval 
strategies used in CBR recommender systems are incomplete, CDR is optimally 
complete. Related work is discussed in Section 5, and our conclusions are presented 
in Section 6. 

2   Limitations of k-NN  

Increasing awareness of the limitations of k-NN in CBR recommender systems has 
prompted significant research interest in alternative retrieval strategies (e.g., [2-16]). 
A detailed account of the issues addressed by this important body of research is 
beyond the scope of the present discussion. Instead we use an example case base in 



12 D. McSherry 

the property domain to illustrate some of the limitations of k-NN that are well known 
and others that have received less attention. We also show that some of problems 
highlighted can be attributed to the incompleteness of k-NN.  

For example, an issue often neglected in recommender systems is that none of the 
available cases (i.e., products) may be acceptable to the user. If none of the available 
cases satisfies all the hard constraints in a given query, it is reasonable to expect that 
the non-existence of an acceptable case should be clear to the user from the system’s 
response to her query. As shown in Section 1, an important benefit of completeness is 
that the non-existence of an acceptable case can always be inferred from the non-
existence of a feasible case in the retrieval set for a given query.  

Although k-NN is incomplete, it may be possible for a user with a good 
understanding of similarity to infer the non-existence of an acceptable case from the 
non-existence of a feasible case in the k-NN retrieval set. For example, it may be clear 
to such a user that a feasible case, if one existed, would be more similar than any of 
the recommended cases and would thus be included in the k-NN retrieval set. In 
general, however, the non-existence of an acceptable case cannot be inferred from the 
non-existence of a feasible case in the k-NN retrieval set. Before presenting the 
example that we use to clarify this important point, we outline a typical approach to 
similarity assessment in CBR recommender systems.  

Global Similarity Measure. The similarity of a case C to a given query Q is typically 
defined as:  

Sim(C, Q) = 
∑

∑

∈

∈
×
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                              (1) 

where A is the set of attributes for which preferred values are specified in Q. For each 
a ∈ A, wa is an importance weight assigned to a and sima(C, Q) is a local measure of 
the similarity between the attribute’s values in C and Q.  

Local Similarity Measures. Local similarity measures are often defined in terms of 
an attribute’s values without reference to a specific query or case. For example, the 
similarity of two values x and y of a numeric attribute is typically defined as: 

sim(x, y) = 
minmax

1
−
−

−
yx

                                     (2) 

where max and min are the attribute’s maximum and minimum values in the case 
base.  

2.1   Example Case Base 

Fig. 1 shows an example case base and query in the property domain that we use to 
illustrate some of the limitations of k-NN. The equally weighted attributes in the case 
base are location (A, B, or C), bedrooms (2, 3, or 4), type (detached, semi-detached, 
or terraced), and reception rooms (1, 2, or 3). The user is looking for a 4 bedroom 
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detached property in location A with 3 reception rooms (RRs). The similarity of each 
case to the target query is shown in the rightmost column. Similarity assessment with 
respect to location and type is based on the similarity scores: sim(A, A) = 1, sim(B, A) 
= 0.5, sim(C, A) = 0, sim(det, det) = 1, sim(sem, det) = 0.5, sim(ter, det) = 0. The 
standard similarity measure for numeric attributes (2) is used for bedrooms and 
reception rooms.   

Loc Beds Type RRs

Query A 4 det 3 Constraints Similarity

Case 1 B 4 det 3 N Y Y Y 0.88

Case 2 C 4 det 3 N Y Y Y 0.75

Case 3 A 3 sem 2 Y N N N 0.63

Case 4 A 3 ter 2 Y N N N 0.50
Case 5 A 2 det 1 Y N Y N 0.50

 

Fig. 1. Example case base and query in the property domain 

Constraints in the example query that each case satisfies, or fails to satisfy, are 
indicated by the entries (Y or N) in the four columns to the right of each case in  
Fig. 1. No case satisfies all the constraints, a situation that would result in a query 
failure in traditional database retrieval. In the following sections, we briefly examine 
some of the issues highlighted by the 3-NN retrieval set for the example query (i.e., 
the three cases that are not shaded in Fig. 1). 

2.2   Recognizing the Non-existence of an Acceptable Case  

If loc = A and beds = 4 are hard constraints in the example query, then none of the 
available cases are acceptable to the user. But the user is unable to tell from the 
system’s response to her query that there is no acceptable case. For example, she 
might be prepared to consider a 4 bedroom terraced property in location A with one 
reception room. But if such a case existed, it would not appear in the 3-NN retrieval 
set as its similarity to the user’s query (0.50) would be less than the similarities of 
Cases 1, 2, and 3.  

2.3   Coverage of Available Cases   

As mentioned in the introduction, k-NN is known to be limited in its coverage of 
cases that may be acceptable to the user [2-5]. For example, if loc = A and type = det 
are hard constraints in the example query, then 3-NN has failed to retrieve the only 
case that might be acceptable to the user (i.e., Case 5). However, it can be seen from 
our definition of completeness (Section 1) that no complete retrieval strategy can fail 
to retrieve Case 5, the only feasible case in this situation. Thus k-NN’s limited 
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coverage of cases that may be acceptable to the user can be attributed to its 
incompleteness. 

2.4   Explaining Why a Case is Not Recommended 

If asked to explain why Case 5 is not recommended in 3-NN, the system could point 
to three recommended cases that are more similar than Case 5, including two that 
match the given query exactly on bedrooms, type and reception rooms and one that 
matches it exactly on location. However, such an explanation is unlikely to satisfy a 
user who is unwilling to compromise on location or type. Of course, one reason why 
current recommender systems are seldom required to explain their failure to 
recommend a case which ― in the user’s opinion — should have been recommended 
is that the only cases that most users see are those recommended by the system. 
Nevertheless, explaining why a given case is not recommended is an important test of 
a system’s ability to justify its recommendations [10, 12].  

As we show in Section 3, it is only in a complete retrieval strategy that the 
exclusion of a given case from the retrieval set can always be justified on the basis 
that one of the retrieved cases satisfies at least the same constraints. As the above 
example shows, k-NN’s failure to retrieve a given case cannot always be justified in 
this way — another limitation of k-NN that can be attributed to its incompleteness. 

2.5   Recommendation Diversity 

The first two cases in the 3-NN retrieval set are very similar to each other, and both 
satisfy the same constraints. One might argue, of course, that this makes good sense in a 
domain in which the recommended cases (i.e., properties) are sought in competition 
with other users. However, the recommendation engineering technique of providing the 
user with a link from each retrieved case to non-retrieved cases which satisfy the same 
constraints provides a simple solution to this problem in any retrieval strategy [14].  

Retrieval strategies that aim to increase recommendation diversity by combining 
measures of similarity and diversity in the retrieval process [7-8] are discussed in 
Section 4. Instead of relying on a measure of diversity to guide the retrieval process, 
CDR [2-3] addresses the issue of recommendation diversity by ensuring that no two 
cases in the retrieval set satisfy the same constraints. Thus for the example query in 
Fig. 1, the CDR retrieval set would include Case 1 (N Y Y Y) and Case 3 (Y N N N) 
but not Case 2  (N Y Y Y) or Case 4 (Y N N N).   

3   Completeness and Optimal Completeness 

In this section, we formally define the concepts on which our completeness criteria 
are based. We also establish necessary and sufficient conditions for completeness and 
optimal completeness that can be used to determine whether or not these criteria are 
satisfied by a given retrieval strategy.   

Retrieval Set.  Given a retrieval strategy S, we denote by r(S, Q) the set of cases that 
are retrieved in response to a given query Q.  
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For example, r(k-NN, Q) is the set of k cases that are most similar to Q. To 
distinguish k-NN from the unrealistic strategy of retrieving all the available cases, we 
assume that 1 ≤ k < n, where n is the number of cases.  

Query Constraints. For any query Q, we denote by constraints(Q) the set of all 
constraints in Q.  

In addition to the equality constraints supported by any retrieval strategy, the 
constraints in a recommender system query might include upper and/or lower limits 
for numeric attributes and sets of preferred values for nominal attributes [2, 10, 13].    

Hard Constraints. For any query Q, we denote by hard-constraints(Q) the set of 
hard constraints in Q.  

As mentioned in the introduction, we assume that any hard constraints in a given 
query are unknown to the recommender system. 

Satisfied Constraints. For any case C and query Q, we denote by satisfied-
constraints(C, Q) the set of constraints in Q that are satisfied by C. 

Feasible Case. For any case C and query Q, we say that C is a feasible case for Q if 
hard-constraints(Q) ⊆ satisfied-constraints(C, Q). 

Exactly Matching Case.  We say that a case C exactly matches a given query Q if 
satisfied-constraints(C, Q) = constraints(Q). 

As well as providing a necessary and sufficient condition for completeness, 
Theorem 3 confirms our claim that only in a complete retrieval strategy can the 
exclusion of any case from the retrieval set always be justified on the basis that one of 
the retrieved cases satisfies at least the same constraints as the non-retrieved case.  

Theorem 3. A retrieval strategy S is complete if and only if for any query Q and C1 ∉ 
r(S, Q), there exists C2 ∈ r(S, Q) such that satisfied-constraints(C1, Q) ⊆  satisfied-
constraints(C2, Q). 

Proof. If the latter condition holds, and C1 is a feasible case for a given query Q, then 
hard-constraints(Q) ⊆ satisfied-constraints(C1, Q) and there exists C2 ∈ r(S, Q) such 
that satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). We have established 
as required the existence of C2 ∈ r(S, Q) such that hard-constraints(Q) ⊆ satisfied-
constraints(C2, Q). Conversely, if S is a complete retrieval strategy then for any query 
Q and C1 ∉ r(S, Q) we can construct another query Q′ that differs from Q, if at all, 
only in that hard-constraints(Q′) = satisfied-constraints(C1, Q). As satisfied-
constraints(C1, Q′) = satisfied-constraints(C1, Q), C1 is a feasible case for Q′, so it 
follows by the completeness of S that there exists C2 ∈ r(S, Q′) such that hard-
constraints(Q′) ⊆ satisfied-constraints(C2, Q′). As we assume that no distinction is 
made between hard and soft constraints in the retrieval process, r(S, Q′) = r(S, Q), and 
so we have established the existence of C2 ∈ r(S, Q) such that satisfied-
constraints(C1, Q) = hard-constraints(Q′) ⊆ satisfied-constraints(C2, Q′) = satisfied-
constraints(C2, Q). 
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As we show in Theorem 4, a necessary and sufficient condition for optimal 
completeness is that the exclusion of any case from the retrieval set can always be 
justified on the basis that one of the retrieved cases is at least as similar as the non-
retrieved case, and satisfies at least the same constraints. 

Theorem 4. A retrieval strategy S is optimally complete if and only if for any query Q 
and C1 ∉ r(S, Q), there exists C2 ∈ r(S, Q) such that similarity(C1, Q) ≤ similarity(C2, 
Q) and satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). 

Proof. Assuming that the latter condition holds, let Q be any query for which a feasible 
case exists, and let C1 be a feasible case of maximal similarity to Q. If C1 ∈ r(S, Q) there 
is nothing more to prove, while if C1 ∉ r(S, Q) then there exists C2 ∈ r(S, Q) such that 
similarity(C1, Q) ≤ similarity(C2, Q) and satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q). Since hard-constraints(Q) ⊆ satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q), C2 is a feasible case and so similarity(C2, Q) ≤ similarity(C1, Q). It 
follows that similarity(C2, Q) = similarity(C1, Q), so we have established as required the 
existence of a feasible case of maximal similarity C2 ∈ r(S, Q). 

Conversely, if S is optimally complete then for any query Q and C1 ∉ r(S, Q) we 
can construct another query Q′ that differs from Q, if at all, only in that hard-
constraints(Q′) = satisfied-constraints(C1, Q). As C1 is a feasible case for Q′, it 
follows by the optimal completeness of S that there exists C2 ∈ r(S, Q′) of maximal 
similarity among all cases C such that hard-constraints(Q′) ⊆ satisfied-constraints(C, 
Q′). In particular, hard-constraints(Q′) = satisfied-constraints(C1, Q) = satisfied-
constraints(C1, Q′) and so similarity(C1, Q) = similarity(C1, Q′) ≤ similarity(C2, Q′) = 
similarity(C2, Q). As we assume that no distinction is made between hard and soft 
constraints in the retrieval process, r(S, Q′) = r(S, Q), and so we have established the 
existence of C2 ∈ r(S, Q) such that similarity(C1, Q)  ≤ similarity(C2, Q) and satisfied-
constraints(C1, Q) = hard-constraints(Q′) ⊆ satisfied-constraints(C2, Q′) = satisfied-
constraints(C2, Q). 

When the number of constraints in a given query is small, is not unusual for one or 
more exactly matching cases to be available. In this situation, a single recommended 
case (i.e., any exactly matching case) is enough to satisfy the condition for 
completeness in Theorem 3. Equally, a single recommended case (i.e., the most 
similar of the exactly matching cases) is enough to satisfy the condition for optimal 
completeness in Theorem 4.  

4   Comparison of Retrieval Strategies 

In this section we compare six possible approaches to retrieval in recommender 
systems with respect to the following criteria:  

1. Is the most similar case always retrieved? 
2. Is a feasible case always retrieved if such a case exists?  
3. Is the most similar feasible case always retrieved if there is more than one 

feasible case? 
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Ensuring the retrieval of the most similar case, the first of the above criteria, is of 
course a feature of most retrieval strategies in CBR recommender systems. Criteria 2 
and 3 are the criteria for completeness and optimal completeness that we use to assess 
the effectiveness of retrieval when, as often in practice, a given query may include 
constraints that must be satisfied.  

4.1   k-NN Retrieval 

As discussed in Section 1, the standard approach to the retrieval of recommended 
cases in CBR has some important advantages, such as ensuring the retrieval of the 
most similar case for a given query. As we show in Theorem 5, however, k-NN is 
incomplete regardless of the size of the retrieval set; that is, the existence of a feasible 
case does not guarantee that such a case will be retrieved.    

Theorem 5. k-NN is incomplete regardless of the size of the retrieval set. 

Proof. For any k ≥ 3, we can construct a case base with k + 1 cases C1, C2, ..., Ck+1 
and k + 1 equally weighted attributes a1, a2, ..., ak+1 such that for 1 ≤ i ≤ k + 1, ai = 1 in 
all cases with the following exceptions: (1) for 1 ≤ i ≤ k, ai = 0 in Ck+1, (2) for 1 ≤ i ≤ 
k, ai = 0  in Ci, and (3) for 1 ≤ i ≤ k, ak+1 = 0 in Ci. For k = 3, the cases in the resulting 
case base are:  

C1 = (0, 1, 1, 0), C2 = (1, 0, 1, 0), C3 = (1, 1, 0, 0), C4 = (0, 0, 0, 1) 

Now consider the query Q = {ai = 1: 1 ≤ i ≤ k + 1}. It can be seen that for 1 ≤ i ≤ k, 

Sim(Ci, Q) =
1

1

+
−

k

k
 while Sim(Ck+1, Q) =

1

1

+k
. The k-NN retrieval set therefore 

includes all cases in the case base except Ck+1. It can also be seen that while satisfied-
constraints(Ck+1, Q) = {ak+1 = 1},  there is no case in the k-NN retrieval set which 
satisfies the constraint ak+1 = 1. There is therefore no case C in the k-NN retrieval set 
such that satisfied-constraints(C, Q) ⊆ satisfied-constraints(Ck+1, Q). It follows from 
Theorem 3 that for k ≥ 3, k-NN is incomplete. It remains only to observe that as k-NN 
is incomplete for k = 3 it must also be incomplete for k = 2 and k = 1. 

An important corollary of Theorem 5 is that any retrieval strategy in which the 
cases retrieved for a given query are selected from the k-NN retrieval set is 
incomplete.   

Theorem 6. Any retrieval strategy S in which the retrieved cases are selected from 
the k-NN retrieval set is incomplete. 

Proof. As k-NN is incomplete by Theorem 5, there exists for any k ≥ 1 a case base,   a 
query Q, and a case C1 ∉ r(k-NN, Q) for which there is no case C2 ∈ r(k-NN, Q) such 
that satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). As r(S, Q) ⊆  
r(k-NN, Q) it follows that C1 ∉ r(S, Q) and there can be no case C2 ∈ r(S, Q) such 
that satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). Thus S is incomplete 
as required.  
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4.2   Database Retrieval 

Often referred to as filter based retrieval, traditional database retrieval (DBR) insists 
on exact matching:   

r(DBR, Q) = {C: satisfied-constraints(C, Q) = constraints(Q)} 

If there is no case (or database object) that satisfies all the constraints in a given 
query, then the DBR retrieval set is empty and the user has no alternative but to start 
again with a modified query [1, 17]. 

Theorem 7.  DBR is incomplete. 

Proof.   It suffices to observe that if none of the constraints in a given query are hard 
constraints then any case is a feasible case but the DBR retrieval set may still be 
empty. 

DBR is not guaranteed to retrieve the most similar case for a given query, or indeed any 
case. Another drawback is that for queries with only a few constraints, the user may be 
swamped by a large number of exactly matching cases (or database objects) [17]. 

4.3   Retrieval of Non-dominated Cases 

In database research, there is increasing interest in the retrieval of database objects 
that are Pareto optimal with respect to the preferences expressed in a given query (i.e., 
not dominated by another object) as an approach to addressing the limitations of 
retrieval based on exact matching [17-18]. Elimination of dominated alternatives is 
also a strategy sometimes used to reduce the number of candidates to be compared by 
other methods in multiple criteria decision making [19-20]. With respect to each 
constraint in a recommender system query, it is reasonable to assume that any case 
that satisfies the constraint is preferred to one that does not satisfy the constraint. A 
possible approach to retrieval of recommended cases is therefore one in which the 
retrieval set consists of all cases that are not dominated with respect to the constraints 
they satisfy. We will refer to this strategy as retrieval of non-dominated cases (RNC).    

Constraints Similarity RNC 3-NN CDR

Case 1 N Y Y Y 0.88

Case 2 N Y Y Y 0.75

Case 3 Y N N N 0.63

Case 4 Y N N N 0.50

Case 5 Y N Y N 0.50
 

Fig. 2. Cases retrieved (●) by RNC, 3-NN, and CDR for the example case base and query in the 
property domain  
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Dominance Criterion. We say that a given case C1 is dominated by another case C2 
with respect to a given query if C2 satisfies every constraint that C1 satisfies and at 
least one constraint that C1 does not satisfy.    

It is worth noting that RNC is equivalent to retrieving the maxima with respect to a 
partial order induced by a given query Q on the case base: 

C1 ≤Q C2 if and only if satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q) 

It is therefore also related to order based retrieval, a general framework for 
retrieval in CBR recommender systems in which a partial order constructed from user 
preferences is applied to the case base to retrieve the maxima [6, 10].  

Fig. 2 shows the cases retrieved by RNC for the example case base and query used 
to highlight limitations of k-NN in Section 2. The retrieval sets for 3-NN and CDR [2-
3] are also shown. Case 3 (Y N N N) and Case 4 (Y N N N) are dominated by Case 5 
(Y N Y N), but none of the other cases are dominated. The RNC retrieval set for the 
example query is therefore {Case 1, Case 2, Case 5}.  

As we show in Theorem 8, RNC is complete. However, it is not optimally 
complete; that is, it is not guaranteed to retrieve the most similar feasible case if there 
is more than one feasible case. If the only hard constraint in the example query is the 
first constraint, then Cases 3, 4, and 5 are all feasible cases. But Case 5, the one 
retrieved by RNC, is not the most similar.    

RNC is also not guaranteed to retrieve the most similar case. For example, if Case 1 
and Case 2 were removed from the case base, then Case 3 would be the most similar of 
the remaining cases. However, it would still be dominated by Case 5 and therefore not 
retrieved by RNC. On the other hand, the RNC retrieval set may include more cases 
than are needed for completeness. For each C1 ∈ r(RNC, Q), the retrieval set must also 
include all cases C2 such that satisfied-constraints(C1, Q) = satisfied-constraints(C2, 
Q). In the RNC retrieval set for the example query, only Case 1 and Case 5 are needed 
to satisfy the condition for completeness in Theorem 3. 

Theorem 8. RNC is complete. 

Proof. It suffices by Theorem 3 to show that for any query Q and C1 ∉ r(RNC, Q), 
there exists C2 ∈ r(RNC, Q) such that satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q). If C1 ∉ r(RNC, Q) there must be at least one case C such that 
satisfied-constraints(C1, Q) ⊂  satisfied-constraints(C, Q). Among such cases, let C2 
be one for which |satisfied-constraints(C2, Q)| is maximal. As there can be no case  
that dominates C2, we have established the existence of C2 ∈ r(RNC, Q) such that  
satisfied-constraints(C1, Q) ⊂ satisfied-constraints(C2, Q). 

4.4   Compromise-Driven Retrieval 

In CDR, the constraints satisfied by a given case and its similarity to the target query 
play complementary roles in the retrieval process [2-3]. The first step in the construction 
of the retrieval set is to rank all cases in the case base in order of decreasing similarity. 
Among cases that are equally similar to the target query, any case that satisfies a 
superset of the constraints satisfied by another equally similar case is given priority in 
the ranking process. The algorithm used to select cases to be included in the CDR 
retrieval set from the ranked list of candidate cases is shown in Fig. 3.  
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_______________________________________________________________________________

algorithm CDR(Q, Candidates)
begin
  RetrievalSet

while |Candidates| > 0 do
   begin

C1 first(Candidates)
RetrievalSet RetrievalSet  {C1}
Candidates Candidates - {C1}
for all C2 rest(Candidates) do
begin

  if satisfied-constraints(C2, Q) satisfied-constraints(C1, Q)
then Candidates Candidates - {C2}

   end
   end
   return RetrievalSet
end

_______________________________________________________________________________  

Fig. 3.  Constructing the retrieval set in compromise driven retrieval 

First, the most similar case is placed in the retrieval set and any cases that satisfy a 
subset of the constraints satisfied by this case are eliminated from the list of candidate 
cases. The most similar of the remaining cases is now added to the retrieval set and 
any cases that satisfy a subset of the constraints satisfied by that case are eliminated. 
This process continues until no further cases remain.  

A detail not shown in Fig. 3 is that for each case added to the CDR retrieval set, 
any cases that satisfy the same constraints are placed in a separate reference set. A 
link from the retrieved case to the reference set is also created, thus ensuring that 
cases which satisfy the same constraints are available for immediate inspection at the 
user’s request. In this way, a retrieved case acts as a representative for all cases that 
satisfy the same constraints. This recommendation engineering technique [14] helps 
to keep the size of the CDR retrieval set within reasonable limits while also 
addressing the needs of users who are not just seeking a single recommended item, 
but would like to be informed of all items (e.g., jobs, rental apartments) that are likely 
to be of interest [2-3].  

Theorem 9. CDR is optimally complete. 

Proof. For any query Q, a given case C1 can fail to be included in the CDR retrieval 
set only if there exists C2 ∈ r(CDR, Q) such that similarity(C1, Q) ≤ similarity(C2, Q) 
and satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). The optimal 
completeness of CDR immediately follows from Theorem 4. 

It follows from Theorem 2 (and is clear from Fig. 3) that in common with k-NN, the 
most similar case is always retrieved in CDR. Another important feature that CDR 
shares with k-NN is that an otherwise competitive case can often compensate for its 
failure to satisfy one or more of the constraints satisfied by another case. As shown in 
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Fig. 2, the CDR retrieval set for our example case base and query in the property 
domain is {Case 1, Case 3, Case 5}. Although Case 3 (Y N N N) fails to satisfy one 
of the constraints satisfied by Case 5 (Y N Y N), the greater similarity of Case 3 
ensures that it is not excluded from the CDR retrieval set.   

That the CDR retrieval set may include more cases than are needed for 
completeness can be seen from the fact that only Case 1 and Case 5 are needed to 
satisfy the condition for completeness in Theorem 3. However, Case 3 must also be 
included in the retrieval set for optimal completeness. If the first constraint is the only 
hard constraint in the example query, then Case 3 is the most similar of the feasible 
cases Case 3, Case 4, and Case 5.   

4.5   Bounded Greedy 

Bounded Greedy (BG) combines measures of similarity and diversity in the retrieval 
process to achieve a better balance between these often conflicting characteristics of 
the retrieved cases [8]. It selects r cases from the b × r cases that are most similar to 
the target query, where r is the required size of the retrieval set and b is an integer 
parameter which is usually assigned a small value such as 2 or 3.  

BG has been shown to provide significant gains in diversity at the expense of 
relatively small reductions in similarity [8]. As we show Theorem 10, however, BG is 
incomplete regardless of the size of the retrieval set or number of candidate cases 
from which the retrieved cases are selected.  

Theorem 10. BG is incomplete regardless of the size of the retrieval set or number of 
candidate cases from which the retrieved cases are selected.  

Proof. For any values of the parameters b and r, BG selects r cases from the k-NN 
retrieval set for k = b × r. Its incompleteness immediately follows from Theorem 6. 

A feature that BG shares with k-NN is that the most similar case for a given query is 
always retrieved. 

4.6   Diversity Conscious Retrieval 

Usually diversity can be increased only at the expense of some loss of average 
similarity relative to the k-NN retrieval set. Diversity conscious retrieval (DCR) aims 
to increase recommendation diversity while ensuring that any loss of similarity is 
strictly controlled [7]. The approach is based on the idea that for any integer r ≥ 2, a 
given query partitions the set of cases with non-zero similarities according to the 
similarity intervals in which their similarities lie:   
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The retrieval process also depends on k, the required size of the retrieval set, and 
case selection is guided by the measure of relative diversity used in BG [8]. However, 
the DCR retrieval set is allowed to differ from the k-NN retrieval set only in cases 
whose similarities lie in the leftmost similarity interval that contributes to the k-NN 
retrieval set. This ensures that loss of average similarity relative to the k-NN retrieval 
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set can never be more than
r

1
, the width of the similarity intervals on which retrieval 

is based. For r = 20, the loss of average similarity cannot be more than 0.05. With this 
level of protection against loss of similarity, DCR has been shown to be capable of 
delivering worthwhile gains in diversity [7]. As we show in Theorem 11, however, 
DCR is incomplete. 

In common with k-NN and BG, the most similar case for a given query is always 
retrieved in DCR.   

Theorem 11. DCR is incomplete regardless of the size of the retrieval set or width of 
the similarity intervals on which retrieval is based. 

Proof. For r ≥ 2 and k ≤ 6, we can construct a case base with k + 1 cases C1, C2, ..., 
Ck+1 and equally weighted attributes a1, a2, ..., a7 such that for 1 ≤ i ≤ 7, ai = 1 in all 
cases with the following exceptions: (1) for 1 ≤ i ≤ 6, ai = 0 in Ck+1, (2) for 1 ≤ i ≤ k, ai 
= 0  in Ci, and (3) for 1 ≤ i ≤ k, a7 = 0 in Ci. For k = 1, the cases in the resulting case 
base are:  

C1 = (0, 1, 1, 1, 1, 1, 0), C2 = (0, 0, 0, 0, 0, 0, 1) 

Now consider the query Q = {ai = 1: 1 ≤ i ≤ 7}. As Sim(Ci, Q) = 
7

5
 for 1 ≤ i ≤ k, 

and Sim(Ck+1, Q) =
7

1
, the k-NN retrieval set includes all cases in the case base except 

Ck+1. It is also clear that the similarities of all cases in the k-NN retrieval set must lie 
in same similarity interval. For Ck+1 to be eligible for retrieval in DCR, Sim(Ck+1, Q) 
must therefore be in the only similarity interval that contributes to the k-NN retrieval 
set. However, this cannot be the case as the difference in similarity between Ck and 
Ck+1 exceeds the width of the similarity intervals on which retrieval is based:   

Sim(Ck, Q) - Sim(Ck+1, Q) =
7

5
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The DCR retrieval set for Q is therefore the same as the k-NN retrieval set. As there is 
no case C in the DCR retrieval set such that satisfied-constraints(C, Q) ⊆ satisfied-
constraints(Ck+1, Q) it follows by Theorem 3 that DCR is incomplete for r ≥ 2 and k ≤ 6. 

For r ≥ 2 and k > 6, we can construct as in the proof of Theorem 5 a case base with 
k + 1 cases C1, C2, ..., Ck+1 and k + 1 equally weighted attributes a1, a2, ..., ak+1, and a 

query Q such that for 1 ≤ i ≤ k, Sim(Ci, Q) = 
1

1

+
−

k

k
 while Sim(Ck+1, Q) =

1

1

+k
. Once 

again, the k-NN retrieval set includes all cases in the case base except Ck+1, and the 
latter case is not eligible for inclusion in the DCR retrieval set because: 

Sim(Ck, Q) - Sim(Ck+1, Q) = 
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There is therefore no case C in the DCR retrieval set such that satisfied-constraints(C, 
Q) ⊆ satisfied-constraints(Ck+1, Q). Thus DCR is also incomplete for r ≥ 2 and k > 6. 
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4.7   Discussion 

The results of our comparison of retrieval strategies are summarized in Table 1. Of 
the six retrieval strategies included in our analysis, only RNC and CDR are complete 
(i.e., guaranteed to retrieve a feasible case if one exists), and only CDR is optimally 
complete (i.e., guaranteed to retrieve the most similar feasible case if there are two or 
more feasible cases). All except DBR and RNC are guaranteed to retrieve the most 
similar case for a given query. 

As shown by our analysis, the effectiveness of some retrieval strategies may be 
open to question when, as often in practice, a given query may include constraints that 
must be satisfied. In terms of assumptions about the nature of the constraints in a 
given query, DBR and k-NN can be seen to represent two extreme positions. In DBR, 
all the constraints in a given query are treated as hard constraints, whereas in k-NN 
they are essentially treated as soft constraints. However, recognizing that any 
combination of hard and soft constraints is possible in practice — as in a complete 
retrieval strategy ― seems a more realistic basis for the retrieval of recommended 
cases. While the completeness of RNC ensures the retrieval of a feasible case if such 
a case exists, no account is taken of a retrieved case’s similarity in the retrieval 
process. In contrast, the optimal completeness of CDR ensures the retrieval of the 
most similar feasible case, if any, for a given query. 

Table 1. Comparison of retrieval strategies with respect to completeness, optimal comple-
teness, and retrieval of the most similar case  

Retrieval Strategy 
Feasible  
Case? 

Most  
Similar  
Feasible  
Case? 

Most  
Similar  
Case? 

Database Retrieval (DBR) N N N 

k-NN N N Y 

Bounded Greedy (BG) N N Y 

Diversity Conscious Retrieval (DCR) N N Y 

Retrieval of Non-Dominated Cases (RNC) Y N N 

Compromise Driven Retrieval (CDR) Y Y Y 

5   Related Work 

5.1   Recommendation Dialogues 

We have focused in this paper on approaches to the retrieval of recommended cases in 
response to a query provided by the user in advance. In approaches related to 
conversational CBR [21], a query is incrementally elicited in an interactive dialogue 
with the user, often with the aim of minimizing the number of questions the user is 
asked before a recommended product is retrieved (e.g., [22-30]).  
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Incremental nearest neighbor (iNN) is one such strategy that uniquely combines a 
goal-driven approach to selecting the most useful question at each stage of the 
recommendation dialogue with a mechanism for ensuring that the dialogue is 
terminated only when it is certain that the most similar case (or cases) will be the 
same regardless of the user’s preferences with respect to any remaining attributes  
[25-28]. One important benefit is that recommendations based on incomplete queries 
can be justified on the basis that any user preferences that remain unknown cannot 
affect the recommendation. However, like any retrieval strategy in which only a 
single case (or set of equally similar cases) is recommended, and no attempt is made 
to identify constraints that must be satisfied, iNN is incomplete. 

In any recommender system, of course, more than a single recommendation cycle 
may be needed to retrieve a case that is acceptable to the user. As we have seen, a 
complete retrieval strategy ensures the retrieval of a feasible case whenever possible, 
but whether such a case is acceptable to the user may depend on the extent to which it 
satisfies any soft constraints in her query — or additional constraints not mentioned in 
her query. Approaches to extending recommendation dialogues beyond an initially 
unsuccessful recommendation include critiquing approaches to elicitation of user 
feedback (e.g., [2, 10, 20, 31-32, 41]), referral of the user’s query to other 
recommender agents [26], and the recommendation engineering technique of 
providing the user with a link from each recommended case to other cases that satisfy 
the same constraints [2-3, 14].   

5.2   Retrieval Failure and Recovery 

By ensuring the retrieval of a case that satisfies any hard constraints in a given query 
whenever possible, a complete retrieval strategy avoids the need to identify 
constraints in a given query that must be satisfied. In some retrieval strategies, the 
non-existence of an exactly matching case (i.e., one that satisfies all the constraints in 
a given query) is treated as a query failure (or retrieval failure) that triggers a recovery 
process based on query relaxation (e.g., [30, 32-37]). Usually the aim of the relaxation 
process is to identify constraints in the user’s query that need not be satisfied and can 
thus be treated as soft constraints.  

For example, the Adaptive Place Advisor [30] is an in-car recommender system for 
restaurants that converses with the user through a spoken dialogue interface. If there 
is no restaurant that exactly matches the user’s requirements, the system suggests a 
constraint to be relaxed (e.g., price range or cuisine) based on its current 
understanding of the user’s preferences. If the suggested constraint is one that must be 
satisfied, the system may suggest another constraint to be relaxed (i.e., treated as a 
soft constraint). In the Intelligent Travel Recommender [37], the choice of constraint 
to be relaxed is left to the user.    

However, recovery may not be possible by relaxing a single constraint, or at least 
not one that the user is willing to relax [33-36]. To address this issue, McSherry [34] 
proposes an incremental relaxation process that aims to minimize the number of 
constraint relaxations required for recovery. An explanation of the query failure is 
followed by a mixed-initiative dialogue in which the user is guided in the selection of 
one or more constraints to be relaxed. If the constraint suggested for relaxation at any 
stage is one that must be satisfied, the user can select another constraint to be relaxed. 
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Expressed in terms of minimally failing sub-queries, the explanations of query failure 
provided in the approach are adapted from research on co-operative responses to 
failing database queries (e.g., [38-40]).   

5.3   Compromise Driven Retrieval in First Case 

First Case is a CDR recommender system that supports queries involving attributes 
and constraints of different types [2-3]. A nominal attribute is one whose values do 
not have a natural ordering that determines their similarity (e.g., the type or make of a 
personal computer). A more-is-better (MIB) attribute is one that most users would 
prefer to maximize (e.g., memory). A less-is-better (LIB) attribute is one that most 
users would prefer to minimize (e.g., price). A nearer-is-better (NIB) attribute is one 
for which most users have in mind an ideal value and prefer values that are closer to 
their ideal value (e.g., screen size). A query in First Case may include upper limits for 
LIB attributes (e.g., price ≤ 500), lower limits for MIB attributes (e.g., memory ≥ 
256), and ideal values for NIB or nominal attributes (e.g., screen = 15, type = laptop).  

An ideal value for a NIB or nominal attribute, if any, is treated as an equality 
constraint and also provides the basis for assessment of a given case’s similarity with 
respect to the attribute. Assessment of similarity with respect to LIB/MIB attributes 
for which upper/lower limits are provided in a given query is based on assumed 
preferences [3, 28]. That is, the preferred value of a LIB attribute is assumed to be the 
lowest value in the case base, while the preferred value of a MIB attribute is assumed 
to be the highest value in the case base.  

McSherry [3] investigates the potential benefits of also taking account of assumed 
preferences with respect to non-query attributes in CDR. One such benefit is that 
competitive cases that might otherwise be overlooked can more easily compensate for 
their failure to satisfy one or more of the constraints in a given query. Assumed 
preferences also play an important role in a CDR recommender system’s ability to 
explain the benefits of a recommended case relative to another case that is less 
strongly recommended [2-3].  

5.4   Balancing User Satisfaction and Cognitive Load 

Balancing the trade-off between user satisfaction (or solution quality) and cognitive 
load is an important issue in recommender systems (e.g., [3, 5, 9]). A simple measure 
of cognitive load is the number of cases, on average, recommended in response to 
user queries, while possible measures of solution quality include precision and recall 
[13, 25]. The aspect of user satisfaction on which we have focused in this paper is the 
ability to ensure the retrieval of a case that may be acceptable to the user if such a 
case exists. As we have shown in Section 4, the optimal completeness of CDR 
ensures the retrieval of the most similar feasible case, if any, for a given query. In 
contrast, the existence of a feasible case does not guarantee that such a case will be 
retrieved regardless of the size of the k-NN retrieval set. 

While the size of the k-NN retrieval set is the same for all queries, the size of the 
CDR retrieval set depends on the query and cannot be predicted in advance. That 
retrieval set size increases in CDR as query length increases is confirmed by our 
empirical results on the digital camera case base [41], with average retrieval set sizes 
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of 1.5 for short queries (3 attributes), 3.0 for longer queries (6 attributes), and 5.6 for 
queries of maximum length (9 attributes) [3]. Taking account of assumed preferences 
with respect to non-query (LIB/MIB) attributes had only a minor effect on cognitive 
load, with average retrieval set sizes increasing to 1.9 for short queries (3 attributes) 
and 3.3 for longer queries (6 attributes).  

For queries of maximum length (8 attributes) on the well-known Travel case base, 
the average size of the CDR retrieval set was 7.7 [2]. Even for k = 30 in this 
experiment, k-NN was unable to match CDR’s ability to ensure the retrieval of a case 
that satisfies any hard constraints in a given query if such a case exists. This provides 
empirical confirmation of our analysis in Section 4 showing that k-NN is incomplete 
regardless of the size of the retrieval set. 

6   Conclusions 

Completeness is a term used in search and planning, and other areas of artificial 
intelligence, to describe an algorithm’s ability to guarantee that a solution will be 
found if one exists [42-44]. In this paper we have extended the notion of completeness 
to retrieval in recommender systems. We say that a retrieval strategy is complete if it 
ensures the retrieval of a product that satisfies any hard constraints in a given query if 
such a case exists. 

We have shown that incompleteness is a limitation that k-NN shares with most 
retrieval strategies, and highlighted other limitations of k-NN which can be attributed 
to its incompleteness. One such limitation that appears not to be widely recognized is 
that the non-existence of an acceptable case cannot always be inferred from the non-
existence of a feasible case (i.e., one that satisfies any hard constraints in a given 
query) in the k-NN retrieval set. Also in contrast to a complete retrieval strategy,  
k-NN’s failure to retrieve a given case cannot always be justified on the basis that one 
of the retrieved cases satisfies at least the same constraints.   

On the other hand, k-NN has important advantages that are not necessarily shared 
by a complete retrieval strategy, such as enabling an otherwise competitive case to 
compensate for its failure to satisfy one or more of the constraints satisfied by another 
case. However, the role of similarity in balancing trade-offs between competing cases 
is implicit in our definition of optimal completeness. A retrieval strategy is optimally 
complete if it ensures the retrieval of the most similar case, if any, which satisfies all 
the hard constraints in a given query. Optimal completeness also has the advantage of 
ensuring the retrieval of the most similar case as in k-NN.  

Finally, we have shown that the ability to justify the exclusion of any case from the 
retrieval set on the basis that one of the retrieved cases is at least as similar, and 
satisfies at least the same constraints, is one of several benefits of CDR [2-3] that can 
be attributed to its optimal completeness.   

Acknowledgements 

The author would like to thank Chris Stretch for his insightful comments on an earlier 
version of this paper.  



 Completeness Criteria for Retrieval in Recommender Systems 27 

References 

1. Wilke, W., Lenz, M., Wess, S.: Intelligent Sales Support with CBR. In: Lenz, M., Bartsch-
Spörl, B., Burkhard, H.-D., Wess, S. (eds.): Case-Based Reasoning Technology. Springer-
Verlag, Berlin Heidelberg New York (1998) 91-113  

2. McSherry, D.: Similarity and Compromise. In: Ashley, K.D., Bridge, D.G. (eds.): Case-
Based Reasoning Research and Development. LNAI, Vol. 2689. Springer-Verlag, Berlin 
Heidelberg New York (2003) 291-305 

3. McSherry, D.: On the Role of Default Preferences in Compromise-Driven Retrieval. 
Proceedings of the 10th UK Workshop on Case-Based Reasoning (2005) 11-19 

4. McSherry, D.: Coverage-Optimized Retrieval. Proceedings of the 18th International Joint 
Conference on Artificial Intelligence (2003) 1349-1350 

5. McSherry, D.: Balancing User Satisfaction and Cognitive Load in Coverage-Optimised 
Retrieval. Knowledge-Based Systems 17 (2004) 113-119 

6. Bridge, D., Ferguson, A.: Diverse Product Recommendations using an Expressive 
Language for Case Retrieval. In: Craw, S., Preece, A. (eds.): Advances in Case-Based 
Reasoning. LNAI, Vol. 2416. Springer-Verlag, Berlin Heidelberg New York (2002) 43-57 

7. McSherry, D.: Diversity-Conscious Retrieval. In: Craw, S., Preece, A. (eds.): Advances in 
Case-Based Reasoning. LNAI, Vol. 2416. Springer-Verlag, Berlin Heidelberg New York 
(2002) 219-233 

8. Smyth, B., McClave, P.: Similarity vs. Diversity. In: Aha, D.W., Watson, I. (eds.): Case-
Based Reasoning Research and Development. LNAI, Vol. 2080. Springer-Verlag, Berlin 
Heidelberg New York (2001) 347-361 

9. Branting, L.K.: Acquiring Customer Preferences from Return-Set Selections. In: Aha, 
D.W., Watson, I. (eds.): Case-Based Reasoning Research and Development. LNAI, Vol. 
2080. Springer-Verlag, Berlin Heidelberg New York (2001) 59-73 

10. Bridge, D., Ferguson, A.: An Expressive Query Language for Product Recommender 
Systems. Artificial Intelligence Review 18 (2002) 269-307 

11. Burkhard, H.-D.: Extending Some Concepts of CBR - Foundations of Case Retrieval Nets. 
In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.): Case-Based Reasoning 
Technology. Springer-Verlag, Berlin Heidelberg New York (1998) 17-50 

12. Ferguson, A., Bridge, D.: Partial Orders and Indifference Relations: Being Purposefully 
Vague in Case-Based Retrieval.  In: Blanzieri, E., Portinale, L. (eds.): Advances in Case-
Based Reasoning. LNAI, Vol. 1898. Springer-Verlag, Berlin Heidelberg New York (2000) 
74-85  

13. McSherry, D.: A Generalised Approach to Similarity-Based Retrieval in Recommender 
Systems. Artificial Intelligence Review 18 (2002) 309-341 

14. McSherry, D.: Recommendation Engineering. Proceedings of the 15th European 
Conference on Artificial Intelligence. IOS Press, Amsterdam  (2002) 86-90 

15. McSherry, D.: The Inseparability Problem in Interactive Case-Based Reasoning. 
Knowledge-Based Systems 15 (2002) 293-300 

16. McSherry, D., Stretch, C.: Automating the Discovery of Recommendation Knowledge. 
Proceedings of the 19th International Joint Conference on Artificial Intelligence (2005) 9-14 

17. Kießling, W.: Foundations of Preferences in Database Systems. Proceedings of the 28th 
International Conference on Very Large Databases (2002) 311-322 



28 D. McSherry 

18. Balke, W.-T., Günzer, U.: Efficient Skyline Queries under Weak Pareto Dominance.  
IJCAI-05 Workshop on Advances in Preference Handling (2005) 1-6 

19. Hong, I., Vogel, D.: Data and Model Management in a Generalised MCDM-DSS. 
Decision Sciences 22 (1991) 1-25 

20. Linden, G., Hanks, S., Lesh, N.: Interactive Assessment of User Preference Models: The 
Automated Travel Assistant. Proceedings of the 6th International Conference on User 
Modeling (1997) 67-78 

21. Aha, D.W., Breslow, L.A., Muñoz-Avila, H.: Conversational Case-Based Reasoning. 
Applied Intelligence 14 (2001) 9-32 

22. Doyle, M., Cunningham, P.: A Dynamic Approach to Reducing Dialog in On-Line 
Decision Guides. In: Blanzieri, E., Portinale, L. (eds.): Advances in Case-Based 
Reasoning. LNAI, Vol. 1898. Springer-Verlag, Berlin Heidelberg New York (2000) 49-60 

23. Kohlmaier, A., Schmitt, S., Bergmann, R.: A Similarity-Based Approach to Attribute 
Selection in User-Adaptive Sales Dialogues. In: Aha, D.W., Watson, I. (eds.): Case-Based 
Reasoning Research and Development. LNAI, Vol. 2080. Springer-Verlag, Berlin 
Heidelberg New York (2001) 306-320 

24. McSherry, D.: Minimizing Dialog Length in Interactive Case-Based Reasoning. 
Proceedings of the 17th International Joint Conference on Artificial Intelligence (2001) 
993-998 

25. McSherry, D.: Increasing Dialogue Efficiency in Case-Based Reasoning without Loss of 
Solution Quality. Proceedings of the 18th International Joint Conference on Artificial 
Intelligence (2003) 121-126 

26. McSherry, D.: Conversational CBR in Multi-Agent Recommendation. IJCAI-05 Workshop 
on Multi-Agent Information Retrieval and Recommender Systems (2005) 331-345 

27. McSherry, D.: Explanation in Recommender Systems. Artificial Intelligence Review 24 
(2005) 179-197 

28. McSherry, D.: Incremental Nearest Neighbour with Default Preferences. Proceedings of 
the 16th Irish Conference on Artificial Intelligence and Cognitive Science (2005) 9-18 

29. Shimazu, H.: ExpertClerk: A Conversational Case-Based Reasoning Tool for Developing 
Salesclerk Agents in E-Commerce Webshops. Artificial Intelligence Review 18 (2002) 
223-244  

30. Thompson, C.A., Göker, M.H., Langley, P.: A Personalized System for Conversational  
Recommendations. Journal of Artificial Intelligence Research 21 (2004) 393-428 

31. Burke, R., Hammond, K.J., Young, B.: The FindMe Approach to Assisted Browsing. 
IEEE Expert 12 (1997) 32-40 

32. Hammond, K.J., Burke, R., Schmitt, K.: A Case-Based Approach to Knowledge 
Navigation. In: Leake, D.B. (ed.): Case-Based Reasoning: Experiences, Lessons & Future 
Directions. AAAI Press/MIT Press, Menlo Park, CA (1996) 125-136  

33. McSherry, D.: Explanation of Retrieval Mismatches in Recommender System Dialogues. 
ICCBR-03 Workshop on Mixed-Initiative Case-Based Reasoning (2003) 191-199 

34. McSherry, D.: Incremental Relaxation of Unsuccessful Queries. In: González-Calero, P., 
Funk, P. (eds.): Advances in Case-Based Reasoning. LNAI, Vol. 3155. Springer-Verlag, 
Berlin Heidelberg New York (2004) 331-345 

35. McSherry, D.:  Maximally Successful Relaxations of Unsuccessful Queries. Proceedings 
of the 15th  Conference on Artificial Intelligence and Cognitive Science  (2004) 127-136 



 Completeness Criteria for Retrieval in Recommender Systems 29 

36. McSherry, D.: Retrieval Failure and Recovery in Recommender Systems. Artificial 
Intelligence Review 24 (2005) 319-338 

37. Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: A Case-Based Travel Advisory 
System. In: Craw, S., Preece, A. (eds.): Advances in Case-Based Reasoning. LNAI, Vol. 
2416. Springer-Verlag, Berlin Heidelberg New York (2002) 613-627 

38. Gaasterland, T., Godfrey, P., Minker, J.: An Overview of Cooperative Answering. Journal 
of Intelligent Information Systems 1 (1992) 123-157 

39. Godfrey, P.: Minimisation in Cooperative Response to Failing Database Queries. 
International Journal of Cooperative Information Systems 6 (1997) 95-149 

40. Kaplan, S.J.: Cooperative Responses from a Portable Natural Language Query System. 
Artificial Intelligence 19 (1982) 165-187  

41. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Experiments in Dynamic Critiquing. 
Proceedings of the 10th International Conference on Intelligent User Interfaces (2005) 
175-182 

42. Lieber, J., Napoli, A.: Correct and Complete Retrieval for Case-Based Problem Solving. 
Proceedings of the 13th European Conference on Artificial Intelligence. Wiley, Chichester 
(1998) 68-72    

43. Muñoz-Avila, H.: Case-base Maintenance by Integrating Case-Index Revision and Case-
Retention Policies in a Derivational Replay Framework.  Computational Intelligence 17 
(2001) 280-294 

44. Russell, S., Norvig, S.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper 
Saddle River, New Jersey (1995) 


	Introduction
	Limitations of $k$-NN
	Example Case Base
	Recognizing the Non-existence of an Acceptable Case
	Coverage of Available Cases
	Explaining Why a Case is Not Recommended
	Recommendation Diversity

	Completeness and Optimal Completeness
	Comparison of Retrieval Strategies
	$k$-NN Retrieval
	Database Retrieval
	Retrieval of Non-dominated Cases
	Compromise-Driven Retrieval
	Bounded Greedy
	Diversity Conscious Retrieval
	Discussion

	Related Work
	Recommendation Dialogues
	Retrieval Failure and Recovery
	Compromise Driven Retrieval in First Case
	Balancing User Satisfaction and Cognitive Load

	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




