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Abstract. While much of the research in the area of recommender sys-
tems has focused on making recommendations to the individual, many
recommendation scenarios involve groups of inter-related users. In this
paper we consider the challenges presented by the latter scenario. We in-
troduce a (case-based) group recommender designed to meet these chal-
lenges through a variety of recommendation features, including the gen-
eration of reactive and proactive suggestions based on user feedback in
the form of critiques, and demonstrate its effectiveness through a live-
user case-study.

1 Introduction

Recently one of the authors of this paper was trying to book a skiing holiday for
a group of 4 friends. This turned out to be far more complex than first imagined,
despite the prevalence of many sophisticated search and recommender systems in
this domain (e.g., TripMatcher, provided by Triplehop Technologies [3], vacation-
coach.com and TripAdvisor.com and also DieToRecs [13]). To begin with it was
difficult to capture the many and varied preferences of the group participants.
For example, most people only revealed a few of their more salient preferences at
the outset and then further requirements were disclosed in the face of certain hol-
iday suggestions later on. In addition, all of the available recommender systems
in this domain really were designed for single-user usage. While they obviously
provided facilities for a user to search for a package that would accommodate
a group of people, it was not possible to introduce the individual sets of pref-
erences of those involved. Instead the responsibility of combining these (often
competing) preferences into a single coherent query, fell to the lead searcher [13].
All of this led to a very unnatural, not to mention extremely inefficient, search
process. For example, early recommendations were passed on to the group to get
individual feedback, and then this feedback needed to be integrated into a new
query by our lead searcher in order to generate another batch of suggestions.
This process continued for many cycles and the lead searcher had to regularly
justify to others why particular options were appropriate, explaining them in the
light of the preferences of others. Eventually a holiday was booked, and everyone
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had a great time, but surely better recommendation support could have been
provided.

In this paper we consider a group recommendation scenario just like the one
outlined above and we describe a conversational recommendation framework
that has been implemented to provide the type of support that we feel is crit-
ical. Briefly, the recommender system implements an asynchronous model of
group recommendation, allowing a group of users to engage in a collaborative
recommendation session via a Web-based interface1. This framework provides
for a variety of recommendation features including the generation of reactive
and proactive suggestions based on user feedback in the form of critiques. One
of the critical challenges of group-based recommendation scenarios involves the
development of a reliable group-preference model. We will describe how such a
model is constructed by analyzing individual user feedback, and how the model
works to complement the individual preference models that are maintained for
each user during the selection of recommendations. In addition, it is also criti-
cally important for a group recommender to help individual users to understand
the evolving preferences of the group such that they can better appreciate the
compromises that may be required if a satisfactory conclusion is to be reached
[6]. To this end we describe a number of innovative interfacing features that are
designed to act as consensus barometers in order to help the group develop a
shared mutual awareness of each others’ preferences.

2 Background

One of the key issues that has guided the development of our group recommender
concerns the type of feedback that can be solicited from individual users. In our
work we are especially interested in critiquing (see, [2,4,8,9,14]) as a form of
feedback as it strikes a useful balance between the information content of the
feedback and the level of user effort or domain expertise that is required. For
example, in a travel vacation recommender, a user might indicate that they are
interested in a vacation that is longer than the one week offered by the currently
recommended option; in this instance, [duration, >, 1wk] is a critique over the
duration feature that can be used to filter out certain cases from consideration
(i.e., those that have shorter durations) in the next recommendation cycle. Thus,
the key advantage of critiquing is that it is a relatively low-cost form of feedback,
in the sense that the user does not need to provide specific feature values.

Recently there has been renewed interest in critiquing, especially in prod-
uct recommendation scenarios, where users have limited domain knowledge, but
where they can readily provide feedback on some product features. As a re-
sult, the basic approach has been enhanced in a number of ways [1,10,11,12].
In this work we use the incremental critiquing technique [12] as a way to effec-
tively leverage a user’s critiquing history during recommendation. Incremental
1 Our recommendation framework has been designed to operate with different types

of interaction modalities and later we will discuss an alternative interface that is
based on the Mitsubishi DiamondTouch interactive tabletop.
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critiquing uses a preference model for user U that is made up of the set of cri-
tiques {I1, .., In} that have been applied by a user in a given session. As new
critiques are made by the user, their preference model is updated. This may
involve removing past critiques if they conflict with, or are subsumed by the
most recent critique. For example, if a user had previously indicated a Price <
$600 critique and a new Price < $500 critique is later applied then the earlier
critique will be removed to reflect the users refined Price preference. Similarly,
if a user had previously indicated a Price < $600 critique but the new critique
is for Price > $650, then the earlier conflicting critique is deleted. In this way
the user’s preference model remains a consistent reflection of their most recent
preferences.

This model is then used to influence future recommendations so that they
are not only compatible with the current critique (and preference case) but so
that they are also compatible with past critiques so far as is possible. In the
standard approach to critiquing, the most recent critique is used to temporarily
filter out incompatible cases and a new recommendation is selected from the
remaining cases on the basis of its similarity to the critiqued case (i.e., the
preference case). The problem with this approach is that no account is taken
of how compatible the remaining cases are with past critiques that have been
applied; since the critiques only act as temporary filters over the case-base, cases
which are incompatible with past critiques may be reconsidered in the future.
One of the advantages of the incremental critiquing approach is that it allows
candidate recommendations to be ranked not only because they are similar to the
preference case but also on the basis of their compatibility with prior critiques
in the form of the user’s current preference model. To do this, each candidate
recommendation, c′, is scored according to its compatibility to the user’s current
preference model as shown in Equation 1. Essentially, this compatibility score
is equal to the percentage of critiques in the user’s model that are satisfied by
the case; for example, if cr is a $1000 vacation case then it will satisfy a price
critique for less than $1200 (Ii) and so satisfies(Ii, cr) will return 1.

compatibility(cr, U) =
∑

∀i satisfies(Ii, cr)
|U | (1)

The quality of a case cr with respect to a preference case cp, is a weighted
sum of preference similarity and critique compatibility. When a user U critiques
cp the next case recommended will be the one with the highest quality score; see
Equation 2. By default, for incremental critiquing α = 0.5 to give equal weight
to preference similarity and critique compatibility.

quality(cp, cr, U) = α ∗ compatibility(cr, U) + (1 − α) ∗ similarity(cp, cr) (2)

2.1 Group Recommendation Challenges

Perhaps the most critical challenge for a group recommender system is how to
develop of a comprehensive account of the evolving preferences of the group with
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a view to using their combined preferences to influence group recommendations.
In this work we adapt the incremental critiquing approach for group recommen-
dation. We will describe how critique histories can be combined to produce a
group preference model and how future recommendations can be influenced by
their compatibility with this group model. In this way we can bias recommen-
dations towards those cases that are likely to be acceptable to the group as a
whole as well as the individual participants; see Section 3 for further details.

Ultimately, for this type of recommendation to work effectively we must en-
sure that individual users come to appreciate their role within the group. It is
natural for many users to want to maximise their own preferences, and so if left
unchecked, we might expect users to proceed in ignorance of the evolving group
preferences as a whole; this is especially true if users are collaborating remotely,
thorough a Web interface for example. Hence one of the key challenges in this
work has been to look at effective ways for the recommender system to commu-
nicate group preferences to all users, in an effort to help individuals develop a
mutual awareness of their friends’ preferences [5,6], with a view to encouraging
compromises across the group as a whole. If users are not willing to compromise
then it is unlikely that they will be satisfied with the recommendations they
receive, and the only way that we can encourage compromise is by making sure
that users come to appreciate the features that are important to others.

In our work this “mutual awareness” goal [6] has translated into a number of
interactivity and interface features that are designed to highlight the opinions of
other users and the preferences of the group as a whole. These include interactive
features such as: (1) the proactive recommendation of cases (separate from the
reactive recommendation in response to user critiques) that exceed a certain
threshold of acceptability for the group; and (2) a facility that allows users to
set aside certain cases that they feel strongly positive about so that these cases
may be promoted to other group members. In addition, there are a range of
visual interface elements that help each user to see the opinions and preferences
of the others so that preferred cases are annotated accordingly.

3 The Collaborative Advisory Travel System (CATS)

In this section we describe how the CATS group recommender, helps a group of
users to plan a skiing vacation. The CATS system described here is implemented
as a Web-based client-server system with each user interacting with the system
through a standard Web browser interface. In Section 5 we will briefly touch on
another implementation of the system that uses a very different type of interac-
tion technology with a view to facilitating a more natural form of collaboration
between group of up to four members. In both cases, however, the core interface
components remain broadly similar. To begin with we will summarize the key
components of the CATS interface before describing its core user modeling and
recommendation generation techniques.

Before proceeding it is worth highlighting one important point: we are not
proposing the CATS system as the optimal way to offer group recommendations
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per se, but rather as a framework for experimenting with, and evaluating, differ-
ent types of feedback, preference communication and recommendation strategies.
It is important to bear this in mind when reading the following sections because
many design decisions have been made in order to evaluate particular design
features and recommendation strategies, rather than on the basis of a strong
commitment to one particular design or strategy.

Fig. 1. The main CATS interface

3.1 The CATS Interface

Ultimately a recommender system is a way to translate the preferences of a user
(or, in this case, a group of users) into a set of product suggestions. With this
in mind, the CATS interface is the primary tool for capturing the preferences of
individual users, communicating these preferences to the group as a whole, and
then presenting the recommendations that are derived from these preferences to
group members. It does this through a combination of interface elements (see
Fig. 1) and recommendation techniques. In the remainder of this section we de-
scribe each of these elements in detail.

The Case Window. The most familiar element of the CATS interface, the case
window, presents the user with a case description and some possible critiques. In
CATS, each case relates to a ski package, and consists of more than 40 features
(attribute-value pairs) describing various aspects of the resort and accommo-
dation. For example, Fig. 2 shows resort information for case 834, describing
features about the its location, ski runs/lift system, and its appropriateness for
different levels of skier. The hotel features can be viewed from the hotel tab and
resort photographs are also available. From this window the user has three basic
options—she can discard the case; she can add it to the stack area, or she can
critique one of its features to initiate a new recommendation—as follows:
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1. Critiquing allows the user to request cases that are like the one displayed
but different in terms of at least one feature. For example, our user might
request a new recommendation that is “like the one shown but with more
green runs”. The user can perform such a critique, by clicking on the relevant
critique icon beside the feature, see Fig. 2. We will describe how the next
recommendation is generated in more detail later.

2. Alternatively our user can decide to add the case to the stack area to indicate
that she is interested in this vacation and wants to draw it to the attention of
the other group members. The stack area is visible to all group members and
is an important way to communicate emerging group preferences to users.
We will return to this feature below.

3. Finally, the user can chose to discard the case if she is confident that she
would not be at all satisfied with this vacation. Discarding the case means
that this particular case will not be used as a suggestion to any of the users
for the remainder of the recommendation session.

Fig. 2. The case window presents the user with a complete description of a case and
is used as the starting point for collecting critiquing-based feedback from each user

The Map Window: The map window displays a graphical representation of
the resorts covered by the cases in the case-base and is the initial screen users
see when they begin a session. This window provides a way for users to browse
through the various resort cases. Each resort is marked by a mountain range
icon and by selecting a resort icon the user will receive a summary of the resort
and a list of its cases. The user can view any case and interact with it in the
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normal way as described above. The map window also displays important in-
formation about the activity of group members and how well particular resorts
match evolving group preferences. For instance, if a user is currently accessing
a case from a particular resort, then the resort is annotated with a colour-coded
snowflake icon; in Fig. 1 we see that a user in our group is currently accessing
one of the Bulgarian resorts, for example. In addition, the size of the resort icon
reflects the compatibility rating of its most group-compatible case; that is, the
resort case that satisfies the most critiques contained in the group model ap-
pears larger. Thus, the map window is a vital tool for communicating the focus
of group activity and preferences.

The Stack Area: Every so often a user will come across a case that they really
like or that they imagine may be of interest to other group members. The user
can communicate this to the group by adding the case to the stack area where it
can be evaluated by other users. In a sense, this allows an individual user to play
the role of recommender and the stack area serves as a user-based recommen-
dation list. When a case is added to the stack it becomes a stack member and
is displayed in summary form as shown in Fig. 1. In addition, each stack mem-
ber is annotated on its left-hand side with a set of colour-coded compatibility
barometers, each reflecting how compatible the case in question is with respect
to the critiques contained in each user’s individual model. For example, the stack
member highlighted in Fig. 1 for 3-star accommodation in Andorra is annotated
to indicate that it is very compatible with the preferences of the blue and green
users, but not so compatible with the yellow user, and only marginally compati-
ble with the red user; note that we also indicate which user added the case to the
stack with the thumbs-up icon overlayed on their compatibility barometer. An
overall group-level compatibility barometer is displayed to the right of the stack
member to indicate overall compatibility with the group preference model; in
this case we see that the stack member is about 50% compatible with the overall
group model. These compatibility barometers are dynamically updated during
the session to reflect current compatibility levels and provide another important
source of preference feedback for the users. At any time any user can view and
critique a stack member that has been added by someone else, but currently only
the user who originally added the case can remove it from the stack. Finally, the
stack area is important when it comes to delivering the final recommendation
to the group at the end of the session since this recommendation will be drawn
from the current stack members.

Proactive Suggestions: So far we have described two types of recommenda-
tions: those that are generated in response to user critiques and, those that are
generated by the users themselves as they add cases to the stack for others to
evaluate. There is a third type of recommendation: proactive recommendation.
The CATS system is constantly comparing the group preference model to the
remaining cases available for consideration; that is, cases that have not been
previously viewed or discarded by any of the group members. Occasionally, one
or more of these cases exceeds a certain critical compatibility threshold with re-
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spect to the group preference model and when this happens the most compatible
case is proactively recommended by CATS to all users. For example, one such
case (for a 4-star hotel in Austria) has been proactively recommended in Fig. 1
and will appear on the map window for all users where they can interact with
it in the usual way. Once again this provides users with direct feedback on the
evolving group preference model in an attempt to draw their collective attention
towards cases that appear to maximally satisfy their preferences; we will revisit
this form of recommendation in the following sections.

Completing the Session: At any time a user can request CATS to recommend
another case by selecting the Suggestion button; we will discuss the precise mech-
anism for this form of recommendation below. Also, a user can terminate their
session at any time by selecting the Session Complete button and once all users
have completed their sessions the system reverts with final ranking of the stack
cases according to their compatibility with the group preference model and re-
turns the most compatible case.

3.2 Modeling Group and User Preferences

The maintenance of preference models is critical to the operation of the CATS
recommender system. As discussed earlier these models are critique-based: a
preference model is made up of a set of unit critiques provided by a user. CATS
maintains two types of preference model. An individual model is maintained for
each user and is equivalent to the preference models maintained in the standard
form of incremental critiquing as proposed by [12]. Thus each user U is associated
with an individual preference model, IMU , that is made up of the critiques that
they have submitted (see Equation 3) with conflicting and redundant critiques
removed as summarized in Section 2.

IMU = {I1, ..., In} (3)

In addition, a group preference model, GM(U1, ..., Uk), is also maintained by
combining the individual user models and associating each unit critique with the
user who contributed it as shown in Equation 4 such that GU

i refers to the ith

critique in the preference model for user U .

GMU1,...,Uk = {IU1
1 , ..., IU1

n , ..., IUk
1 , ..., IUk

m } (4)

During recommendation it will sometimes be necessary (as we will see in the
next section) to leverage part of the group preference model, usually the model
less some individual user’s critiques. Thus we will often refer to the partial group
model or the members model, MMU , to be the group model without the critiques
of user U as shown in Equation 5.

MMU = GMU1,...,Uk − IMU (5)

This means that the group preference model is based on the preference mod-
els for individual users after they have been processed to remove inconsistent or
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redundant critiques. We have chosen not to repeat this processing over the group
preference model and therefore it is possible, indeed likely, that the group pref-
erence model will contain conflicting preferences, for example. Of course, during
recommendation these inconsistencies will have to be minimised by preferring
cases that are maximally compatible with the overall group model.

3.3 Recommendation Generation

In Section 3.1 we highlighted how CATS is capable of making a number of
different types of recommendations:

1. Critiquing-based recommendations are generated when a user critiques a case
through the case window.

2. User-requested suggestions are generated when the user selects the suggestion
button.

3. Proactive recommendations are generated when CATS locates a case that
exceeds a preset compatibility threshold with the group preference model.

4. A final recommendation is drawn from the stack when all of the users com-
plete their session.

Each of these recommendations is generated differently by combining individ-
ual and group preference models in different ways. This was largely an attempt
to experiment with a variety of combination strategies as opposed to making
a strong commitment to these specialized strategies. They may work well in
practice but we are not proposing them as best practice.

Critiquing-Based Recommendations. This is arguably the most important
source of recommendations in CATS and involves a two-step procedure. As in
the standard model of critiquing [2], the first step is to temporarily filter-out
cases that are not compatible with the current critique. This leads to a set of
recommendation candidates. The standard approach to critiquing ranks these
candidates according to their similarity to the critiqued case (cp), whereas incre-
mental critiquing uses a quality metric that combines similarity to the critiqued
case and compatibility with past critiques (IMU ). Our group recommender is
based on the latter but adapted to include the preferences of the other group
members (MMU ) in the quality metric, as well as the preferences of the user
applying the critique, to select a recommendation according to Equation 6.

crec = argmaxcr (quality(cp, cr, IMU , MMU )) (6)

Thus, we compute a new compatibility score, for a recommendation candidate cr,
as shown in Equation 7 and combine this with similarity to the preference case
(cp) as in Equation 8. The β parameter controls how much emphasis is placed
on individual versus group compatibility while α controls the emphasis that
is placed on compatibility versus preference similarity; by default we set both
parameters to 0.5. In this way, the case that is recommended after critiquing
cp will be chosen because it is compatible with the critique, similar to cp, and
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compatible with both the user’s own past critiques and the critiques of other
users. Thus we are implicitly treating past critiques as soft constraints for future
recommendation cycles [15]. It is not essential for recommendation candidates
to satisfy all of the previous critiques (individual or group), but the more they
satisfy, the better they are regarded as recommendation candidates. As an aside,
the binary features of a case are only considered during the similarity calculation
when a user has shown a preference for that feature.

GCompatibility(cr, IMU , MMU ) = β ∗ compatibility(cr, IMU ) +
(1 − β) ∗ compatibility(cr, MMU ) (7)

quality(cp, cr, IMU , MMU ) = α ∗ GCompatibility(cr, IMU , MMU ) +
(1 − α) ∗ similarity(cp, cr)

(8)

User-Requested Suggestions. This type of recommendation is generated in
the same way as critiquing-based recommendation in the sense that the next
highest quality case is chosen. Thus the suggestion button allows the user to
move down through the list of ranked cases after a critique has been chosen.

Proactive Recommendations. The idea behind this type of recommendation
is as a mechanism to bring certain cases to the attention of all users if they satisfy
an unusually high proportion of the group preferences. As mentioned earlier,
these cases are drawn from the set of cases that have not yet been critiqued by
any user or discarded and a given case is selected according to the following rule:

argmaxc(compatibility(c, GMU)) iff compatibility(c, GMU) > 0.65 (9)

The use of the compatibility threshold is important. It limits the frequency
of proactive recommendations; after all it is unwise to interrupt users too often
during the course of their session. More importantly perhaps is that the threshold
also ensures that, when cases are proactively suggested, they are likely to be
acceptable to all users.

Final Recommendation. Once all of the users have completed their session
the CATS system recommends the case in the stack area that has the highest
compatibility with the group preference model; see Equation 10. The stack area
is provided for users to share their favourite cases during the session and at the
end of the session the final recommendation is the one that satisfies the greatest
proportion of group preferences.

cfinal = argmaxcstack
(compatibility(cstack, GMU1,...,Un)) (10)

4 Experimental Analysis

With CATS as very much a “work in progress” our core evaluation objective
was to understand how users would respond in a group recommendation setting
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to the particular combination of feedback, communication, and recommendation
that CATS provided. Given this objective it was clear that there would be little
value in performing an off-line or artificial user study. Instead we carried out a
small-scale live-user trial, the results of which are summarized in this section.

4.1 Trial Setup

As mentioned in the previous section the CATS system operates over a com-
prehensive case base of European skiing holidays consisting of 5700 cases, each
made up of 43 different features related to the resort (25 features such as coun-
try, transfer time, lift system, etc.) and the accommodation (18 features such as
accommodation rating, price, ski room facilities, restaurant facilities, etc.). The
trialists were 3 groups of 4 computer science graduate students with varying
degrees of interest and experience when it came to skiing.2 Prior to the start
of the trial we gathered some preliminary information about the preferences of
each user, in order to judge the quality of the cases ultimately recommended
by the group recommender. By comparing the cases selected by the members of
a given group we were also able to understand the extent to which each group
agreed/disagreed on various case features.

Each group of users was provided with a short demonstration of the operation
of the system paying particular attention to the core features such as critiquing,
the stack area and its compatibility indicators, the map and its activity icons,
and proactive recommendations. They were instructed to behave as if they were
really trying to plan and book a skiing holiday to go on together. As such, they
were reminded that some compromises would likely be required from each user.
In each trial user interactions and recommender activity was recorded. At the
end of each session the users were asked to complete an extensive questionnaire
covering issues such as: their satisfaction with the final case; their evaluation of
the recommendations provided; the ease-of-use of the interface etc.

4.2 Behaviour Results

Overall the average session length, measured in terms of the total number of
cases each user interacted with, across all three trials was just under 18. Almost
two thirds (63%) of case accesses were the result of users critiquing cases (see
Fig. 3(a)) with the remainder of accesses arising out of the users interacting di-
rectly with the map (14%), accessing a stack member (12%), and opening one of
the occasional proactive suggestions that are made by CATS (8%). These results
are encouraging in that they demonstrate that users at least made regular use
of CATS’ secondary case access mechanisms, although the ‘suggest’ button was
rarely used (2% of accesses). In particular, we see that users are frequently at-
tracted to the stack area which plays a vital role in communicating strong group
preferences and also provides the source of cases for the final group recommen-
dation. The trial data indicates that the average user places between 3 and 4
2 All trials were conducted in the computer laboratories at the School of Computer

Science & Informatics at University College Dublin, Ireland.
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Fig. 3. (a) Source of case accesses; (b) Proactive recommendations selected

cases on the stack which corresponds to about 18% of the cases that they view.
In other words, users are presented with cases that satisfy their needs about 18%
of the time with other users accessing these cases about 14% of the time; thus
there is a strong correlation between stack additions and selections.

It is also worth commenting on the quality of the proactive recommendations.
These recommendations contributed only 8% of the cases to the average user
session, but this is more a reflection of the rarity of these suggestions than their
quality. Remember that by definition these suggestions are only made once a case
has been found that satisfies 65% of the group’s current preferences. However,
when this condition is met and a proactive suggestion is made, we see that users
respond to these suggestions approximately 26% of the time on average; see Fig.
3(b). Groups B and C respond positively to these suggestions 30% and 38% of the
time respectively, with group A users responding only 4% of the time; in fact 3 of
the 4 group A users completely ignored the proactive suggestions and on the basis
of the post-trial questionnaire this seems to have been due a lack of awareness
of the feature, as opposed to any negative comment on recommendation quality.
Finally, it is worth supporting the above statistics with information from the
post-trial questionnaire regarding the perceived quality of the recommendation
received during group sessions. In particular, only 2 of the 12 users indicated
they were not happy with the general quality of recommendations.

4.3 Group Compromise and User Satisfaction

Ultimately the success of any group recommender system will depend critically
on its ability to identify cases that achieve reasonable compromise between the
potentially competing requirements of different users. At the start of the trial we
asked users to pick an example case that they would be interested in booking.
They were also asked to highlight up to 5 features from this case that viewed as
especially attractive. We refer to these features as the user’s initial preferences;
remember these features were not explicitly used during the trial, although it
seems reasonable to assume that users may have started by looking for cases that
satisfied these. During the course of the trial each user’s critiques contributed to
another set of preferences, which we will call their trial preferences.
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Fig. 4. The level of critique compatibility and user satisfaction with the case that is
ultimately recommended to the group

We can use these preferences to evaluate the quality of the final case recom-
mended to each group of users by measuring how many of these preferences are
satisfied or contradicted by the the final case. The results (see Fig. 4) show that
the final case satisfied just over 66% of the initial preferences across the 3 groups
and almost 79% of the trial preferences. During the post-trial questionnaire users
we asked how happy they were with the final case by rating it on a scale of 1
(“not happy at all”) to 5 (“really happy”). On average the 12 users rated the
final case as a 4 (“fairly happy”) with 10 out of the 12 users providing a rating
of at least 3 (“happy”); we have expressed these results as a percentage value in
Fig. 4. These results suggest that the CATS system effectively translates the of-
ten competing preferences of a group of individual users into a recommendation
that broadly satisfies the whole group.

5 Concluding Remarks

While traditional research has focused on making recommendations to the in-
dividual, many recommendation scenarios involve groups of inter-related users.
Here the most critical challenge for a group recommender system is how to de-
velop of a comprehensive account of the evolving preferences of the group with
a view to using their combined preferences to influence group recommendations.

In this paper we have described an approach to asynchronous, cooperative
group recommendation that: (1) uses a variety of interface cues to communicate
group, as well as individual, preferences and activity, and (2) constructs a reliable
group-preference model by combing critique histories in order to generate rec-
ommendations on a proactive and reactive basis. Preliminary evaluation results
suggest that our approach to group recommendation effectively generates rec-
ommendations that satisfy group needs. Furthermore users responded positively
to the various interface elements and recommendation strategies implemented
by the CATS prototype group recommendation system.
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Fig. 5. Illustrating the CATS interaction with the DiamondTouch

Our future work will focus on exploring a range of different strategies for
combining individual preferences with a view to generating improved recom-
mendations. This will of course include extended live-user evaluations. In addi-
tion is it worth highlighting recent work [7] that we have carried out that looks
at alternative interfacing modalities for this group recommendation approach.
While in this paper we have concentrated on our Web-base interface, CATS
has also been implemented Mitsubishi DiamondTouch interactive tabletop. The
DiamondTouch (see Fig. 5) consists of a touch sensitive tabletop display and
supports the interaction of multiple simultaneous users. Its ‘coffee table’ form
factor is ideal for supporting collaborative tasks. The CATS system interface
has been adapted to offer users personal interaction spaces and a shared group
space as shown in Fig. 5.
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