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Preface

This volume contains the papers presented at the 8th European Conference on
Case-Based Reasoning (ECCBR 2006).

Case-Based Reasoning (CBR) is an artificial intelligence approach where new
problems are solved by remembering, adapting and reusing solutions to a previ-
ously solved, similar problem. The collection of previously solved problems and
their associated solutions is stored in the case base. New or adapted solutions
are learned and updated in the case base as needed.

ECCBR and its sister conference ICCBR alternate every year. ECCBR 2006
followed a series of seven successful European Workshops previously held in
Kaiserslautern, Germany (1993), Chantilly, France (1994), Lausanne, Switzer-
land (1996), Dublin, Ireland (1998), and Trento, Italy (2000), and two European
Conferences in Aberdeen, UK (2002), and Madrid, Spain (2004). The Inter-
national Conferences on Case-Based Reasoning (ICCBR) were previously held
in Sesimbra, Portugal (1995), Providence, Rhode Island, USA (1997), Seeon,
Germany (1999), Vancouver, Canada (2001), Trondheim, Norway (2003), and
Chicago, USA (2005). These meetings have a history of attracting first-class Eu-
ropean and international researchers and practitioners. Proceedings of ECCBR
and ICCBR conferences are traditionally published by Springer in their LNAI
series.

The ECCBR 2006 conference was held at the conference center of the Lykia-
world Resort hotel in ldeniz/Fethiye, Turkey. The now traditional Industry Day
started the program giving insight into fielded CBR applications. The second
day was devoted to workshops on specific areas of interest to the CBR com-
munity such as Textual CBR: Reasoning with Texts, CBR in Health Sciences,
Uncertainty and Fuzziness in Case-Based Reasoning, and CBR and Context-
Awareness. The remaining two days featured invited talks, presentations and
posters on both theoretical and applied research in CBR.

The accepted papers were chosen based on a thorough and highly selective
review process. Each paper was reviewed and discussed by at least three Program
Committee members and revised according to their comments.

We believe that the papers of this volume are a representative snapshot of
current research and contribute to both theoretical and applied aspects of CBR
research. The papers are organized into three sections: invited talks (two papers
and two abstracts), research papers (31) and application papers (5).

The chairs would like to thank the invited speakers Edwina Rissland, David
McSherry, and Gholamreza Nakhaeizadeh for their contribution to the success
of this conference. With their invited talks on CBR in business, Michel Manago
and Stefan Wess added substantially to Industry Day. Particular thanks go to
the Program Committee and additional reviewers for their efforts and hard work
in the reviewing and selection process.
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We are also grateful for the work of the Industry Day Chairs, Bill Cheetham
and Kareem S. Aggour, the Workshops Coordinator, Mirjam Minor, as well
as the Chairs of the four workshops and their various committee members for
preparations for Industry Day and the Workshops. We thank all the authors
who submitted to the conference to make this program possible and gratefully
acknowledge the generous support of the sponsors of ECCBR 2006 and their,
partly long-time, sponsorship of ECCBR and ICCBR.

This volume has been produced using the EasyChair system1. We would like to
express our gratitude to its author Andrei Voronkov. Finally, we thank Springer
for its continuing support in publishing this series of conference proceedings.

June 2006 Thomas R. Roth-Berghofer
Mehmet H. Gker
H. Altay Gvenir

1 http://www.easychair.org
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José Ramón Méndez Reboredo,
Florentino Fernandez-Riverola, Eva Lorenzo Iglesias,
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The Fun Begins with Retrieval:  
Explanation and CBR 

Edwina L. Rissland 

Department of Computer Science, University of Massachusetts 
Amherst, Massachusetts, U.S.A. 01003 

Abstract. This paper discusses the importance of the post-retrieval steps of 
CBR, that is, the steps that occur after relevant cases have been retrieved. Ex-
planations and arguments, for instance, require much to be done post-retrieval. I 
also discuss both the importance of explanation to CBR and the use of CBR to 
generate explanations. 

1   Introduction 

Some of the most interesting aspects of CBR occur after relevant cases have been 
retrieved. Explanations—and here I include argument—are some of the most impor-
tant, and they play a central role in CBR. They are needed to elucidate the results of 
the case-based reasoning—why a case was interpreted or classified in a particular 
way, how a new design or plan works, why a particular diagnosis is most compelling, 
etc.—and explanations can themselves be created using CBR. For CBR to create 
arguments, designs, plans, etc., much work must be done, and most of it begins after 
relevant cases have been retrieved [18], [23]. That is, a good part of the core of case-
based reasoning occurs post-retrieval. 

Since some systems like Branting’s GREBE [5] and Koton’s CASEY [19] create 
their explanations using adaptive mechanisms, it is not clear how to draw a line be-
tween so-called interpretive and adaptive CBR systems. However, it is abundantly 
clear that in both types the lion’s share of the work is done post-retrieval. While ex-
planation is not the focus of other adaptive CBR systems like Hammond’s CHEF [16] 
or Cheetham’s FORM TOOL [8], they do indeed accomplish their tasks post-
retrieval. That is, retrieval is only an initial step in case-based problem-solving, and 
the fun—and most of the hard work—occurs post-retrieval. 

The ability to explain one’s reasoning is a hallmark of intelligence, and is—or 
should be—one of the keystones of CBR systems. This is so whether CBR is being 
used to interpret or classify a new case, or to adapt an old solution in order to solve a 
new problem. Too often our CBR systems—particularly those used to classify new 
cases—de-emphasize or even forget about the post-retrieval “R’s” in CBR, like “re-
use, revise, retain” [1]. Retrieval is, of course, an absolutely crucial step in CBR, but 
it is only one of several: it is one of the six R’s in Göker & Roth-Berghofer’s formula-
tion [14] and one of the eleven in Derek Bridge’s [7]. 

Explanation is really a kind of teaching, and can be viewed as the other side of the 
coin of learning. Both explanation and learning are inextricably intertwined with 



2 E.L. Rissland 

concepts, conceptual emergence, and concept change. We really thus have a longterm 
cycle in which cases play an integral role. Although I won’t really consider the 
closely related problems of similarity assessment and credit assignment in this presen-
tation, they are indeed very important to both this overarching cycle and to the inner 
workings of CBR, including retrieval. 

Most of us know how critical the choices of similarity metric and case space struc-
ture are in CBR. Both choices are motivated by what we want to bring to the fore in 
the reasoning. They also dictate what will be possible to accomplish in it or explain 
about it. That is, there is another inescapable intertwining in CBR between notions of 
similarity and explanation. One can thus say that the fun also begins before retrieval.  

This is especially true in systems that stop at retrieval or a slight bit beyond—what 
we might call CB-little-r systems—for instance, those that use retrieved examples to 
classify a new case (e.g., with nearest neighbor methods), or that use the results of the 
early steps of CBR to initiate other types of processing, like information retrieval. For 
instance, the SPIRE system stopped short of argument creation, but used retrieval and 
similarity assessment (e.g., HYPO-style claim lattices) to generate queries for a full-
text IR engine [9], [44], [45]. In CB-r systems there is perhaps a more critical depend-
ence on getting the space and metric “right” than in CBR systems that keep on proc-
essing or that can explain themselves.  

In fact, explanations can help lessen the burdens of CBR systems since they make 
their reasoning less opaque, a requirement, I believe, for intelligent systems. Explain-
ing the behavior of CBR systems to users is receiving new attention in recent work, 
with goals such as enabling systems to explain their questions [31] or to explain the 
space of retrieval possibilities [37].  Leake & McSherry’s [24] collection on CBR and 
explanation demonstrates new activity in a number of directions, but current work just 
scratches the surface of possibilities.  Even with regard to similarity and retrieval, we 
don’t, in my opinion, have enough variety in our ideas. So, in addition to pressing for 
more consideration of the post-retrieval R’s, I would also press for more research on 
the first R: retrieval. 

2   Cases as Both Drivers and Aids 

Cases (called exemplars or examples in other contexts) not only are drivers of the in-
ter-looped processes of explanation and concept evolution, but they can also serve as 
central elements in the representation of concepts and the teaching of the art of expla-
nation. For instance, examples can be used by themselves to produce a totally exten-
sional representation; that is, a concept is simply considered to be the set of its positive 
exemplars. They can participate in hybrid representations in concert with other mecha-
nisms like rules or prototypes or statistical models. Examples can serve as extensional 
annotations on rules; these can serve to help resolve ambiguities in rules or terms and 
to keep them up to date with new interpretations and exceptions. Concrete examples 
can be used to capture some of the information that statistics summarize but cannot 
explicitly represent. Cases—like atypical borderline examples, anomalies, penumbral 
cases—are particularly useful in the tails of distributions where data can be sparse. 

Hybrid approaches, both in representation and reasoning, have been used in a variety 
of systems from the earliest days of CBR to the present: CABARET, GREBE, 
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ANAPRON, CAMPER, CARMA, and FORM TOOL, for instance. (For concise over-
views of such hybrids, see [27], [28].) Cases in many of these systems serve to comple-
ment and supplement other forms of reasoning and representation. For example, 
ANAPRON used cases to capture exceptions to rules [15]. An early landmark system in 
AI and Law by Anne Gardner to model the issue-spotting task issue on problems of the 
kind found on law school and bar exams used examples as sanity checks on rule-based 
reasoning and when rule-based reasoning failed, or when as Gardner puts it, “the rules 
run out” [12]. CABARET used cases in these ways as well [46]. In addition CABARET 
used cases to help carry out a repertoire of strategies and tactics for performing statutory 
interpretation, that is, determination of the scope and meaning of legal rules and their 
ingredient predicates [51]. CAMPER used cases and rules to generate plans for nutri-
tional menus [26]. CARMA used cases and rules together with models [17].  

Related to our interests are two paradigms from psychology concerning reasoning 
with and representing concepts and categories: the prototype and exemplar views 
[34]. (Murphy’s The Big Book of Concepts provides an extensive overview.) Pio-
neered by Rosch, Medin and others about thirty years ago, the prototype paradigm 
focuses on the “typicality” of examples [49], [32], [33], [52]. Sometimes a prototype 
is taken to be a maximally typical actual example; other times it is more of a summary 
or a model like a frame in AI. Prototypes have been extensively investigated in psy-
chology. In the exemplar view, a concept is represented by the set of its positive ex-
amples. It has not been as thoroughly considered, and it is nowhere as sophisticated as 
our own work in CBR to which it is obviously closely related. For instance, we have 
many highly elaborated and computationally well-defined mechanisms for case re-
trieval and comparison. Hybrid representations—of prototypes and examples, say—
have not been used much at all in psychology. On the other hand, hybrid approaches 
have been extensively explored in CBR and closely related fields like AI and Law. 
For example, McCarty and Sridharan early on proposed a hybrid “prototype-plus-
deformation” approach [29]. (For an overview of AI & Law, see [43].) 

3   The Centrality of Explanation 

Explanation is central to all types of CBR. In interpreting a new case using past inter-
pretations from the case base, many CBR systems reason with relevant similarities 
and differences. Such interpretive CBR can involve analogically mapping over expla-
nations from existing precedents, for instance by structure mapping, or by construct-
ing a completely new rationale, for instance, by HYPO-style dimensional analysis. 

Many of the earliest CBR systems focused on explanations. For instance, HYPO 
used highly relevant previously interpreted cases—that is, precedents—to interpret 
the case at hand and generate arguments both for and against a particular conclusion 
[4]. HYPO elucidated interpretations with explanatorily-relevant hypotheticals. 
Branting’s GREBE re-used and mapped over past explanations to new situations [5], 
[6]. It employed the structure mapping model of analogical reasoning developed by 
Gentner and others [10], [11], [13]. Koton’s CASEY used a causal model of heart 
disease and a calculus of explanatory differences to adapt a previous explanation to 
diagnose a new patient’s symptoms [19]. Kass, Leake and Owen’s SWALE directly 
addressed the problem of explaining a phenomenon—particularly an unexpected one 
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like the collapse of a racehorse in the prime of its life—by recalling and adapting 
relevant past explanations [50]. Leake’s work also illustrated the centrality of expla-
nations by showing how they can serve many different goals, for system reasoning as 
well as external performance tasks [22].  

More recently, CBR has been used to foster learning of how to perform specialized 
types of explanation like appellate argument. Aleven and Ashley’s CATO tackled the 
task of teaching law students how to make good precedent-based arguments [2], [3]. 
McLaren’s SIROCCO used examples to help explain ethics principles [30]. In his 
research, Aleven demonstrated that CATO-trained law students do as well as those 
trained in the traditional ways involving written and oral exercises [2]. This comports 
well with what has been found experimentally in psychology.  

Psychologists have shown that explicit comparison of past exemplars with a new in-
stance can promote more nuanced and better learning. This is true across a whole range 
of learners from toddlers to business school students. For instance, Gentner showed that 
exploring explicit analogical mappings in a concept categorization task can lead to bet-
ter categorization in the sense that the children focused more on deep properties (like 
functionality) rather than on shallow ones (like appearance) [20], [35]. Business school 
students were better able to choose the appropriate negotiation strategy for a new prob-
lem case when they had already practiced making analogical comparisons [25]. 

The examples and cases so vital to CBR and explanation can themselves be con-
structed using CBR. Example generation is the twin task to example interpretation. In 
it one creates examples that meet specified criteria; these typically serve the needs of 
other processes like explanation, argument, teaching, supervised learning, etc. CEG 
can be viewed as a design task. In my lab, we developed a “retrieval-plus-modify” 
architecture for creating examples satisfying such prescribed constraints, and called it 
Constrained Example Generation or CEG [39], [47]. In CEG, a person or machine 
tries to satisfy as many of the desiderata as possible by retrieval—that is, finding 
examples that possess as many of them as possible, and then trying to satisfy the re-
maining properties through modification. This is essentially “adaptive” CBR. How-
ever, given the nasty way that constraints can interact, this is not easy. A fuller model 
of example generation should integrate techniques from constraint satisfaction prob-
lem (CSP) solving into CEG. There has been important work on CSP and on integrat-
ing CBR and CSP since CEG was developed (See [27], [28]). 

CEG was initially directed at generating counter-examples in mathematics and 
grew into a larger effort to explore the use of examples in other types of explanations 
(e.g., on-line help systems) and arguments (e.g., appellate-style legal argument) [48]. 
Counter-examples are like designs having specified properties. For instance, if one 
wants to show that not all continuous functions are necessarily differentiable, that not 
all quadrilaterals are necessarily convex, that not all primes are odd, one needs exam-
ples that possess precise mathematical properties. Such closely crafted examples are 
pivotal in the dialectic of proofs and refutations—they can annihilate conjectures and 
force concept change, for instance [21], [36], [41]. Examples of various types—start-
up, reference, counter, etc.—play a very important role in developing understanding 
in mathematics [38]. Where such interesting examples come from is an intriguing 
question. One answer is through an adaptive process like CEG. 

Generating hypotheticals can also be viewed as a kind of CEG task, and thus ame-
nable to adaptive methods. For instance, hypos can be created by taking a seed case 
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and making it more extreme, or by combining two hypos to create a conflict hypo 
[42]. Hypos can be used with surgical precision in oral argument and law school dia-
logues to show the limits of a line of reasoning or to uncover fatal flows in its logic 
[40]. The reasoning context provides the desiderata for the hypos and a CBR process 
can be used to produce them. The HYPO system actually grew out of our work on 
examples and hypos using the CEG approach [48].  

The study of legal explanations, including argument, is a rich area for study and it 
can provide us both with interesting data to “explain” and learn from, and with inter-
esting techniques to borrow and apply in other domains. For instance, if we want to 
build CBR systems that can analogize and distinguish cases as a way of explaining 
why a particular outcome should obtain, there is a plethora of examples from law that 
we can examine. There are many kinds of legal argument moves and strategies—
slippery slope, strawman, chicken-turkey-fish, reduction loop—that can profitably be 
used in non-legal domains as well [51].  

While there have indeed been many insightful landmark systems on explanation 
and argument, they have by no means exhausted the topic. It’s time to push the enve-
lope further. 

4   Conclusion 

In summary, in my talk I focus on explanations and CBR, and the larger issue of what 
can be accomplished in the post-retrieval stages of CBR. This is not to diminsh the 
importance of similarity assessment and of retrieval in CBR, but rather to suggest that 
we cannot ignore what happens once relevant cases have been retrieved. Some of the 
most interesting work for CBR—adapting old solutions to solve new problems, using 
existing precedents to interpret new facts—is done post-retrieval. Of late, we have 
shied away from these stages of CBR, some of which I grant can be quite difficult. 
But for us to miss out on all the post-retrieval fun in CBR would indeed be a shame. 
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Abstract. Often in practice, a recommender system query may include 
constraints that must be satisfied. Ensuring the retrieval of a product that 
satisfies any hard constraints in a given query, if such a product exists, is one 
benefit of a retrieval criterion we refer to as completeness. Other benefits 
include the ease with which the non-existence of an acceptable product can 
often be recognized from the results for a given query, and the ability to justify 
the exclusion of any product from the retrieval set on the basis that one of the 
retrieved products satisfies at least the same constraints. We show that in 
contrast to most retrieval strategies, compromise driven retrieval (CDR) is 
complete. Another important benefit of CDR is its ability to ensure the retrieval 
of the most similar product, if any, which satisfies all the hard constraints in a 
given query, a criterion we refer to as optimal completeness. 

1   Introduction 

In case-based reasoning (CBR) approaches to product recommendation, descriptions 
of available products are stored in a product case base and retrieved in response to 
user queries. The standard CBR approach to retrieval in recommender systems is k 
nearest neighbor (k-NN) retrieval. In contrast to traditional database retrieval,  
k-NN does not insist on exact matching, thus having the advantage that the retrieval 
set (i.e., the k most similar cases) is never empty [1].  

Regardless of the strategy on which the retrieval of recommended cases is based, a 
query can also be seen as a set of constraints. For example, the preferred attribute 
values in a k-NN query are equality constraints that may or may not be satisfied by a 
given case. One approach to retrieval in CBR that takes account of the constraints 
satisfied by a given case is compromise driven retrieval (CDR) [2-3]. For example, no 
case that is less similar than another case which satisfies the same constraints is 
included in the CDR retrieval set.  

While no account is taken of satisfied constraints in k-NN, cases which satisfy 
more constraints may also tend to be more similar. However, there is often a conflict 
between the goals of retrieval strategies like k-NN which reward cases on the basis of 
overall similarity and those which take account of the constraints satisfied by a given 
case. As we show in Section 2, for example, it is possible for a case that satisfies a 
proper subset of the constraints satisfied by another case to be more similar. Also, an 
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issue that k-NN only partly addresses by offering the user a choice of k alternatives is 
that often in practice a given query may include constraints that must be satisfied.  

In a holiday recommender, for example, a user seeking a skiing holiday for two 
persons in December may be unable to compromise on the number of persons and 
unwilling to compromise on holiday type. If the k most similar cases do not include a 
skiing holiday for two persons then the system has failed to recommend an acceptable 
case. It might be considered that even with k = 3 there is a good chance that an 
acceptable case, if one exists, will be retrieved. However, k-NN is known to be 
limited in its coverage of cases that may be acceptable to the user, or compromises 
that the user may be prepared to consider (e.g., the timing of the holiday) [2-5]. A 
related problem is that the most similar cases also tend to be very similar to each 
other, with the result that the user may be offered a limited choice [6-8].  

Ensuring the retrieval of a case that satisfies any hard constraints, if such a case 
exists, is the weaker of two completeness criteria for retrieval in recommender 
systems that we present in this paper. Of course, it is a simple matter to ensure the 
retrieval of a case that satisfies any known hard constraints in a given query if such a 
case exists. However, requiring users to identify hard constraints in advance may not 
be a realistic solution. Often in practice, a user may not have a clear idea of what she 
is looking for when constructing her query, and may begin to consider hard 
constraints only when faced with the need to compromise. Instead we assume that any 
hard constraints in a given query are unknown to the recommender system and 
therefore that no distinction is made between hard and soft constraints in the retrieval 
process.  

In the formal definition of completeness that we now present, we refer to a case 
that satisfies all the hard constraints in a given query as a feasible case for the query. 
Whether such a case is acceptable to the user may of course depend on the extent to 
which it satisfies any soft constraints in her query. However, the non-existence of a 
feasible case in the case base implies the non-existence of an acceptable case. 
Equally, the non-existence of a feasible case in the retrieval set means that none of the 
recommended cases are acceptable. 

Completeness. We say that a retrieval strategy is complete if the retrieval set for any 
query is guaranteed to include a feasible case if such a case exists. 

Ensuring the retrieval of a case that may be acceptable to the user whenever 
possible is just one advantage of completeness. In Section 3, we show that only in a 
complete retrieval strategy can the exclusion of any case from the retrieval set always 
be justified on the basis that one of the retrieved cases satisfies at least the same 
constraints as the non-retrieved case. As we show in Theorem 1, another benefit of 
completeness is the ease with which the non-existence of an acceptable case can often 
be recognized from the results for a given query  an issue often neglected in 
recommender systems.  

Theorem 1. In a complete retrieval strategy, the non-existence of a feasible case in 
the retrieval set implies the non-existence of an acceptable case in the case base.  

Proof. Immediate from the definition of completeness. 
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As we show in Section 4, k-NN is incomplete regardless of the size of the retrieval 
set. We also show that it is possible for a retrieval strategy that takes no account of a 
retrieved case’s similarity to be complete. An important question, therefore, is 
whether the benefits of completeness can be combined with those to be gained by 
taking account of similarity knowledge. For example, enabling an otherwise 
competitive case to compensate for its failure to satisfy one or more of the constraints 
satisfied by another case is an important advantage of k-NN. Moreover, a complete 
retrieval strategy that fails to retrieve the most similar case ignores the possibility that 
it may be the best option for the user if none of her requirements are hard constraints.  

The role of similarity in balancing trade-offs between competing products is 
implicit in our definition of optimal completeness, the second of our completeness 
criteria for retrieval in recommender systems. 

Optimal Completeness. We say that a retrieval strategy is optimally complete if the 
retrieval set for any query is guaranteed to include a case that is maximally similar 
among the feasible cases, if any, in the case base.  

Ensuring the retrieval of the most similar feasible case, or one that is maximally 
similar, is likely to be of most benefit when there are many feasible cases for a given 
query — which is not unlikely if most of the constraints in a given query are soft 
constraints. As we show in Theorem 2, optimal completeness also ensures the 
retrieval of the most similar case in the case base. 

Theorem 2. In an optimally complete retrieval strategy, the retrieval set for any 
query must include the most similar case. 

Proof. It suffices to observe that if none of the constraints in a given query are hard 
constraints, then all the available cases are feasible cases. 

As we show in Section 4, CDR [2-3] is optimally complete, thus ensuring the retrieval 
of the most similar case as in k-NN. Enabling an otherwise competitive case to 
compensate for its failure to satisfy one or more of the constraints satisfied by another 
case is another important feature that CDR shares with k-NN.  

In Section 2, we use an example case base to illustrate some of the limitations of k-
NN that are well known and others that have received less attention. We also show 
that some of the problems highlighted can be attributed to the incompleteness of  
k-NN. In Section 3, we present necessary and sufficient conditions for completeness 
and optimal completeness that can be used to determine whether these criteria are 
satisfied by a given retrieval strategy. In Section 4, we show that while most retrieval 
strategies used in CBR recommender systems are incomplete, CDR is optimally 
complete. Related work is discussed in Section 5, and our conclusions are presented 
in Section 6. 

2   Limitations of k-NN  

Increasing awareness of the limitations of k-NN in CBR recommender systems has 
prompted significant research interest in alternative retrieval strategies (e.g., [2-16]). 
A detailed account of the issues addressed by this important body of research is 
beyond the scope of the present discussion. Instead we use an example case base in 
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the property domain to illustrate some of the limitations of k-NN that are well known 
and others that have received less attention. We also show that some of problems 
highlighted can be attributed to the incompleteness of k-NN.  

For example, an issue often neglected in recommender systems is that none of the 
available cases (i.e., products) may be acceptable to the user. If none of the available 
cases satisfies all the hard constraints in a given query, it is reasonable to expect that 
the non-existence of an acceptable case should be clear to the user from the system’s 
response to her query. As shown in Section 1, an important benefit of completeness is 
that the non-existence of an acceptable case can always be inferred from the non-
existence of a feasible case in the retrieval set for a given query.  

Although k-NN is incomplete, it may be possible for a user with a good 
understanding of similarity to infer the non-existence of an acceptable case from the 
non-existence of a feasible case in the k-NN retrieval set. For example, it may be clear 
to such a user that a feasible case, if one existed, would be more similar than any of 
the recommended cases and would thus be included in the k-NN retrieval set. In 
general, however, the non-existence of an acceptable case cannot be inferred from the 
non-existence of a feasible case in the k-NN retrieval set. Before presenting the 
example that we use to clarify this important point, we outline a typical approach to 
similarity assessment in CBR recommender systems.  

Global Similarity Measure. The similarity of a case C to a given query Q is typically 
defined as:  

Sim(C, Q) = 

∈

∈
×
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a

Aa
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w

QCsimw ),(

                              (1) 

where A is the set of attributes for which preferred values are specified in Q. For each 
a ∈ A, wa is an importance weight assigned to a and sima(C, Q) is a local measure of 
the similarity between the attribute’s values in C and Q.  

Local Similarity Measures. Local similarity measures are often defined in terms of 
an attribute’s values without reference to a specific query or case. For example, the 
similarity of two values x and y of a numeric attribute is typically defined as: 

sim(x, y) = 
minmax

1
−
−

−
yx

                                     (2) 

where max and min are the attribute’s maximum and minimum values in the case 
base.  

2.1   Example Case Base 

Fig. 1 shows an example case base and query in the property domain that we use to 
illustrate some of the limitations of k-NN. The equally weighted attributes in the case 
base are location (A, B, or C), bedrooms (2, 3, or 4), type (detached, semi-detached, 
or terraced), and reception rooms (1, 2, or 3). The user is looking for a 4 bedroom 
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detached property in location A with 3 reception rooms (RRs). The similarity of each 
case to the target query is shown in the rightmost column. Similarity assessment with 
respect to location and type is based on the similarity scores: sim(A, A) = 1, sim(B, A) 
= 0.5, sim(C, A) = 0, sim(det, det) = 1, sim(sem, det) = 0.5, sim(ter, det) = 0. The 
standard similarity measure for numeric attributes (2) is used for bedrooms and 
reception rooms.   

Loc Beds Type RRs

Query A 4 det 3 Constraints Similarity

Case 1 B 4 det 3 N Y Y Y 0.88

Case 2 C 4 det 3 N Y Y Y 0.75

Case 3 A 3 sem 2 Y N N N 0.63

Case 4 A 3 ter 2 Y N N N 0.50
Case 5 A 2 det 1 Y N Y N 0.50

 

Fig. 1. Example case base and query in the property domain 

Constraints in the example query that each case satisfies, or fails to satisfy, are 
indicated by the entries (Y or N) in the four columns to the right of each case in  
Fig. 1. No case satisfies all the constraints, a situation that would result in a query 
failure in traditional database retrieval. In the following sections, we briefly examine 
some of the issues highlighted by the 3-NN retrieval set for the example query (i.e., 
the three cases that are not shaded in Fig. 1). 

2.2   Recognizing the Non-existence of an Acceptable Case  

If loc = A and beds = 4 are hard constraints in the example query, then none of the 
available cases are acceptable to the user. But the user is unable to tell from the 
system’s response to her query that there is no acceptable case. For example, she 
might be prepared to consider a 4 bedroom terraced property in location A with one 
reception room. But if such a case existed, it would not appear in the 3-NN retrieval 
set as its similarity to the user’s query (0.50) would be less than the similarities of 
Cases 1, 2, and 3.  

2.3   Coverage of Available Cases   

As mentioned in the introduction, k-NN is known to be limited in its coverage of 
cases that may be acceptable to the user [2-5]. For example, if loc = A and type = det 
are hard constraints in the example query, then 3-NN has failed to retrieve the only 
case that might be acceptable to the user (i.e., Case 5). However, it can be seen from 
our definition of completeness (Section 1) that no complete retrieval strategy can fail 
to retrieve Case 5, the only feasible case in this situation. Thus k-NN’s limited 
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coverage of cases that may be acceptable to the user can be attributed to its 
incompleteness. 

2.4   Explaining Why a Case is Not Recommended 

If asked to explain why Case 5 is not recommended in 3-NN, the system could point 
to three recommended cases that are more similar than Case 5, including two that 
match the given query exactly on bedrooms, type and reception rooms and one that 
matches it exactly on location. However, such an explanation is unlikely to satisfy a 
user who is unwilling to compromise on location or type. Of course, one reason why 
current recommender systems are seldom required to explain their failure to 
recommend a case which  in the user’s opinion — should have been recommended 
is that the only cases that most users see are those recommended by the system. 
Nevertheless, explaining why a given case is not recommended is an important test of 
a system’s ability to justify its recommendations [10, 12].  

As we show in Section 3, it is only in a complete retrieval strategy that the 
exclusion of a given case from the retrieval set can always be justified on the basis 
that one of the retrieved cases satisfies at least the same constraints. As the above 
example shows, k-NN’s failure to retrieve a given case cannot always be justified in 
this way — another limitation of k-NN that can be attributed to its incompleteness. 

2.5   Recommendation Diversity 

The first two cases in the 3-NN retrieval set are very similar to each other, and both 
satisfy the same constraints. One might argue, of course, that this makes good sense in a 
domain in which the recommended cases (i.e., properties) are sought in competition 
with other users. However, the recommendation engineering technique of providing the 
user with a link from each retrieved case to non-retrieved cases which satisfy the same 
constraints provides a simple solution to this problem in any retrieval strategy [14].  

Retrieval strategies that aim to increase recommendation diversity by combining 
measures of similarity and diversity in the retrieval process [7-8] are discussed in 
Section 4. Instead of relying on a measure of diversity to guide the retrieval process, 
CDR [2-3] addresses the issue of recommendation diversity by ensuring that no two 
cases in the retrieval set satisfy the same constraints. Thus for the example query in 
Fig. 1, the CDR retrieval set would include Case 1 (N Y Y Y) and Case 3 (Y N N N) 
but not Case 2  (N Y Y Y) or Case 4 (Y N N N).   

3   Completeness and Optimal Completeness 

In this section, we formally define the concepts on which our completeness criteria 
are based. We also establish necessary and sufficient conditions for completeness and 
optimal completeness that can be used to determine whether or not these criteria are 
satisfied by a given retrieval strategy.   

Retrieval Set.  Given a retrieval strategy S, we denote by r(S, Q) the set of cases that 
are retrieved in response to a given query Q.  
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For example, r(k-NN, Q) is the set of k cases that are most similar to Q. To 
distinguish k-NN from the unrealistic strategy of retrieving all the available cases, we 
assume that 1 ≤ k < n, where n is the number of cases.  

Query Constraints. For any query Q, we denote by constraints(Q) the set of all 
constraints in Q.  

In addition to the equality constraints supported by any retrieval strategy, the 
constraints in a recommender system query might include upper and/or lower limits 
for numeric attributes and sets of preferred values for nominal attributes [2, 10, 13].    

Hard Constraints. For any query Q, we denote by hard-constraints(Q) the set of 
hard constraints in Q.  

As mentioned in the introduction, we assume that any hard constraints in a given 
query are unknown to the recommender system. 

Satisfied Constraints. For any case C and query Q, we denote by satisfied-
constraints(C, Q) the set of constraints in Q that are satisfied by C. 

Feasible Case. For any case C and query Q, we say that C is a feasible case for Q if 
hard-constraints(Q) ⊆ satisfied-constraints(C, Q). 

Exactly Matching Case.  We say that a case C exactly matches a given query Q if 
satisfied-constraints(C, Q) = constraints(Q). 

As well as providing a necessary and sufficient condition for completeness, 
Theorem 3 confirms our claim that only in a complete retrieval strategy can the 
exclusion of any case from the retrieval set always be justified on the basis that one of 
the retrieved cases satisfies at least the same constraints as the non-retrieved case.  

Theorem 3. A retrieval strategy S is complete if and only if for any query Q and C1 ∉ 
r(S, Q), there exists C2 ∈ r(S, Q) such that satisfied-constraints(C1, Q) ⊆  satisfied-
constraints(C2, Q). 

Proof. If the latter condition holds, and C1 is a feasible case for a given query Q, then 
hard-constraints(Q) ⊆ satisfied-constraints(C1, Q) and there exists C2 ∈ r(S, Q) such 
that satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). We have established 
as required the existence of C2 ∈ r(S, Q) such that hard-constraints(Q) ⊆ satisfied-
constraints(C2, Q). Conversely, if S is a complete retrieval strategy then for any query 
Q and C1 ∉ r(S, Q) we can construct another query Q′ that differs from Q, if at all, 
only in that hard-constraints(Q′) = satisfied-constraints(C1, Q). As satisfied-
constraints(C1, Q′) = satisfied-constraints(C1, Q), C1 is a feasible case for Q′, so it 
follows by the completeness of S that there exists C2 ∈ r(S, Q′) such that hard-
constraints(Q′) ⊆ satisfied-constraints(C2, Q′). As we assume that no distinction is 
made between hard and soft constraints in the retrieval process, r(S, Q′) = r(S, Q), and 
so we have established the existence of C2 ∈ r(S, Q) such that satisfied-
constraints(C1, Q) = hard-constraints(Q′) ⊆ satisfied-constraints(C2, Q′) = satisfied-
constraints(C2, Q). 
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As we show in Theorem 4, a necessary and sufficient condition for optimal 
completeness is that the exclusion of any case from the retrieval set can always be 
justified on the basis that one of the retrieved cases is at least as similar as the non-
retrieved case, and satisfies at least the same constraints. 

Theorem 4. A retrieval strategy S is optimally complete if and only if for any query Q 
and C1 ∉ r(S, Q), there exists C2 ∈ r(S, Q) such that similarity(C1, Q)  similarity(C2, 
Q) and satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). 

Proof. Assuming that the latter condition holds, let Q be any query for which a feasible 
case exists, and let C1 be a feasible case of maximal similarity to Q. If C1 ∈ r(S, Q) there 
is nothing more to prove, while if C1 ∉ r(S, Q) then there exists C2 ∈ r(S, Q) such that 
similarity(C1, Q)  similarity(C2, Q) and satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q). Since hard-constraints(Q) ⊆ satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q), C2 is a feasible case and so similarity(C2, Q)  similarity(C1, Q). It 
follows that similarity(C2, Q) = similarity(C1, Q), so we have established as required the 
existence of a feasible case of maximal similarity C2 ∈ r(S, Q). 

Conversely, if S is optimally complete then for any query Q and C1 ∉ r(S, Q) we 
can construct another query Q′ that differs from Q, if at all, only in that hard-
constraints(Q′) = satisfied-constraints(C1, Q). As C1 is a feasible case for Q′, it 
follows by the optimal completeness of S that there exists C2 ∈ r(S, Q′) of maximal 
similarity among all cases C such that hard-constraints(Q′) ⊆ satisfied-constraints(C, 
Q′). In particular, hard-constraints(Q′) = satisfied-constraints(C1, Q) = satisfied-
constraints(C1, Q′) and so similarity(C1, Q) = similarity(C1, Q′) ≤ similarity(C2, Q′) = 
similarity(C2, Q). As we assume that no distinction is made between hard and soft 
constraints in the retrieval process, r(S, Q′) = r(S, Q), and so we have established the 
existence of C2 ∈ r(S, Q) such that similarity(C1, Q)  ≤ similarity(C2, Q) and satisfied-
constraints(C1, Q) = hard-constraints(Q′) ⊆ satisfied-constraints(C2, Q′) = satisfied-
constraints(C2, Q). 

When the number of constraints in a given query is small, is not unusual for one or 
more exactly matching cases to be available. In this situation, a single recommended 
case (i.e., any exactly matching case) is enough to satisfy the condition for 
completeness in Theorem 3. Equally, a single recommended case (i.e., the most 
similar of the exactly matching cases) is enough to satisfy the condition for optimal 
completeness in Theorem 4.  

4   Comparison of Retrieval Strategies 

In this section we compare six possible approaches to retrieval in recommender 
systems with respect to the following criteria:  

1. Is the most similar case always retrieved? 
2. Is a feasible case always retrieved if such a case exists?  
3. Is the most similar feasible case always retrieved if there is more than one 

feasible case? 
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Ensuring the retrieval of the most similar case, the first of the above criteria, is of 
course a feature of most retrieval strategies in CBR recommender systems. Criteria 2 
and 3 are the criteria for completeness and optimal completeness that we use to assess 
the effectiveness of retrieval when, as often in practice, a given query may include 
constraints that must be satisfied.  

4.1   k-NN Retrieval 

As discussed in Section 1, the standard approach to the retrieval of recommended 
cases in CBR has some important advantages, such as ensuring the retrieval of the 
most similar case for a given query. As we show in Theorem 5, however, k-NN is 
incomplete regardless of the size of the retrieval set; that is, the existence of a feasible 
case does not guarantee that such a case will be retrieved.    

Theorem 5. k-NN is incomplete regardless of the size of the retrieval set. 

Proof. For any k ≥ 3, we can construct a case base with k + 1 cases C1, C2, ..., Ck+1 
and k + 1 equally weighted attributes a1, a2, ..., ak+1 such that for 1 ≤ i ≤ k + 1, ai = 1 in 
all cases with the following exceptions: (1) for 1 ≤ i ≤ k, ai = 0 in Ck+1, (2) for 1 ≤ i ≤ 
k, ai = 0  in Ci, and (3) for 1 ≤ i ≤ k, ak+1 = 0 in Ci. For k = 3, the cases in the resulting 
case base are:  

C1 = (0, 1, 1, 0), C2 = (1, 0, 1, 0), C3 = (1, 1, 0, 0), C4 = (0, 0, 0, 1) 

Now consider the query Q = {ai = 1: 1 ≤ i ≤ k + 1}. It can be seen that for 1 ≤ i ≤ k, 

Sim(Ci, Q) =
1

1

+
−

k

k
 while Sim(Ck+1, Q) =

1

1

+k
. The k-NN retrieval set therefore 

includes all cases in the case base except Ck+1. It can also be seen that while satisfied-
constraints(Ck+1, Q) = {ak+1 = 1},  there is no case in the k-NN retrieval set which 
satisfies the constraint ak+1 = 1. There is therefore no case C in the k-NN retrieval set 
such that satisfied-constraints(C, Q) ⊆ satisfied-constraints(Ck+1, Q). It follows from 
Theorem 3 that for k ≥ 3, k-NN is incomplete. It remains only to observe that as k-NN 
is incomplete for k = 3 it must also be incomplete for k = 2 and k = 1. 

An important corollary of Theorem 5 is that any retrieval strategy in which the 
cases retrieved for a given query are selected from the k-NN retrieval set is 
incomplete.   

Theorem 6. Any retrieval strategy S in which the retrieved cases are selected from 
the k-NN retrieval set is incomplete. 

Proof. As k-NN is incomplete by Theorem 5, there exists for any k ≥ 1 a case base,   a 
query Q, and a case C1 ∉ r(k-NN, Q) for which there is no case C2 ∈ r(k-NN, Q) such 
that satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). As r(S, Q) ⊆  
r(k-NN, Q) it follows that C1 ∉ r(S, Q) and there can be no case C2 ∈ r(S, Q) such 
that satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). Thus S is incomplete 
as required.  
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4.2   Database Retrieval 

Often referred to as filter based retrieval, traditional database retrieval (DBR) insists 
on exact matching:   

r(DBR, Q) = {C: satisfied-constraints(C, Q) = constraints(Q)} 

If there is no case (or database object) that satisfies all the constraints in a given 
query, then the DBR retrieval set is empty and the user has no alternative but to start 
again with a modified query [1, 17]. 

Theorem 7.  DBR is incomplete. 

Proof.   It suffices to observe that if none of the constraints in a given query are hard 
constraints then any case is a feasible case but the DBR retrieval set may still be 
empty. 

DBR is not guaranteed to retrieve the most similar case for a given query, or indeed any 
case. Another drawback is that for queries with only a few constraints, the user may be 
swamped by a large number of exactly matching cases (or database objects) [17]. 

4.3   Retrieval of Non-dominated Cases 

In database research, there is increasing interest in the retrieval of database objects 
that are Pareto optimal with respect to the preferences expressed in a given query (i.e., 
not dominated by another object) as an approach to addressing the limitations of 
retrieval based on exact matching [17-18]. Elimination of dominated alternatives is 
also a strategy sometimes used to reduce the number of candidates to be compared by 
other methods in multiple criteria decision making [19-20]. With respect to each 
constraint in a recommender system query, it is reasonable to assume that any case 
that satisfies the constraint is preferred to one that does not satisfy the constraint. A 
possible approach to retrieval of recommended cases is therefore one in which the 
retrieval set consists of all cases that are not dominated with respect to the constraints 
they satisfy. We will refer to this strategy as retrieval of non-dominated cases (RNC).    

Constraints Similarity RNC 3-NN CDR

Case 1 N Y Y Y 0.88

Case 2 N Y Y Y 0.75

Case 3 Y N N N 0.63

Case 4 Y N N N 0.50

Case 5 Y N Y N 0.50
 

Fig. 2. Cases retrieved ( ) by RNC, 3-NN, and CDR for the example case base and query in the 
property domain  
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Dominance Criterion. We say that a given case C1 is dominated by another case C2 
with respect to a given query if C2 satisfies every constraint that C1 satisfies and at 
least one constraint that C1 does not satisfy.    

It is worth noting that RNC is equivalent to retrieving the maxima with respect to a 
partial order induced by a given query Q on the case base: 

C1 Q C2 if and only if satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q) 

It is therefore also related to order based retrieval, a general framework for 
retrieval in CBR recommender systems in which a partial order constructed from user 
preferences is applied to the case base to retrieve the maxima [6, 10].  

Fig. 2 shows the cases retrieved by RNC for the example case base and query used 
to highlight limitations of k-NN in Section 2. The retrieval sets for 3-NN and CDR [2-
3] are also shown. Case 3 (Y N N N) and Case 4 (Y N N N) are dominated by Case 5 
(Y N Y N), but none of the other cases are dominated. The RNC retrieval set for the 
example query is therefore {Case 1, Case 2, Case 5}.  

As we show in Theorem 8, RNC is complete. However, it is not optimally 
complete; that is, it is not guaranteed to retrieve the most similar feasible case if there 
is more than one feasible case. If the only hard constraint in the example query is the 
first constraint, then Cases 3, 4, and 5 are all feasible cases. But Case 5, the one 
retrieved by RNC, is not the most similar.    

RNC is also not guaranteed to retrieve the most similar case. For example, if Case 1 
and Case 2 were removed from the case base, then Case 3 would be the most similar of 
the remaining cases. However, it would still be dominated by Case 5 and therefore not 
retrieved by RNC. On the other hand, the RNC retrieval set may include more cases 
than are needed for completeness. For each C1 ∈ r(RNC, Q), the retrieval set must also 
include all cases C2 such that satisfied-constraints(C1, Q) = satisfied-constraints(C2, 
Q). In the RNC retrieval set for the example query, only Case 1 and Case 5 are needed 
to satisfy the condition for completeness in Theorem 3. 

Theorem 8. RNC is complete. 

Proof. It suffices by Theorem 3 to show that for any query Q and C1 ∉ r(RNC, Q), 
there exists C2 ∈ r(RNC, Q) such that satisfied-constraints(C1, Q) ⊆ satisfied-
constraints(C2, Q). If C1 ∉ r(RNC, Q) there must be at least one case C such that 
satisfied-constraints(C1, Q) ⊂  satisfied-constraints(C, Q). Among such cases, let C2 
be one for which |satisfied-constraints(C2, Q)| is maximal. As there can be no case  
that dominates C2, we have established the existence of C2 ∈ r(RNC, Q) such that  
satisfied-constraints(C1, Q) ⊂ satisfied-constraints(C2, Q). 

4.4   Compromise-Driven Retrieval 

In CDR, the constraints satisfied by a given case and its similarity to the target query 
play complementary roles in the retrieval process [2-3]. The first step in the construction 
of the retrieval set is to rank all cases in the case base in order of decreasing similarity. 
Among cases that are equally similar to the target query, any case that satisfies a 
superset of the constraints satisfied by another equally similar case is given priority in 
the ranking process. The algorithm used to select cases to be included in the CDR 
retrieval set from the ranked list of candidate cases is shown in Fig. 3.  
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_______________________________________________________________________________

algorithm CDR(Q, Candidates)
begin
  RetrievalSet

while |Candidates| > 0 do
   begin

C1 first(Candidates)
RetrievalSet RetrievalSet  {C1}
Candidates Candidates - {C1}
for all C2 rest(Candidates) do
begin

  if satisfied-constraints(C2, Q) satisfied-constraints(C1, Q)
then Candidates Candidates - {C2}

   end
   end
   return RetrievalSet
end

_______________________________________________________________________________  

Fig. 3.  Constructing the retrieval set in compromise driven retrieval 

First, the most similar case is placed in the retrieval set and any cases that satisfy a 
subset of the constraints satisfied by this case are eliminated from the list of candidate 
cases. The most similar of the remaining cases is now added to the retrieval set and 
any cases that satisfy a subset of the constraints satisfied by that case are eliminated. 
This process continues until no further cases remain.  

A detail not shown in Fig. 3 is that for each case added to the CDR retrieval set, 
any cases that satisfy the same constraints are placed in a separate reference set. A 
link from the retrieved case to the reference set is also created, thus ensuring that 
cases which satisfy the same constraints are available for immediate inspection at the 
user’s request. In this way, a retrieved case acts as a representative for all cases that 
satisfy the same constraints. This recommendation engineering technique [14] helps 
to keep the size of the CDR retrieval set within reasonable limits while also 
addressing the needs of users who are not just seeking a single recommended item, 
but would like to be informed of all items (e.g., jobs, rental apartments) that are likely 
to be of interest [2-3].  

Theorem 9. CDR is optimally complete. 

Proof. For any query Q, a given case C1 can fail to be included in the CDR retrieval 
set only if there exists C2 ∈ r(CDR, Q) such that similarity(C1, Q)  similarity(C2, Q) 
and satisfied-constraints(C1, Q) ⊆ satisfied-constraints(C2, Q). The optimal 
completeness of CDR immediately follows from Theorem 4. 

It follows from Theorem 2 (and is clear from Fig. 3) that in common with k-NN, the 
most similar case is always retrieved in CDR. Another important feature that CDR 
shares with k-NN is that an otherwise competitive case can often compensate for its 
failure to satisfy one or more of the constraints satisfied by another case. As shown in 
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Fig. 2, the CDR retrieval set for our example case base and query in the property 
domain is {Case 1, Case 3, Case 5}. Although Case 3 (Y N N N) fails to satisfy one 
of the constraints satisfied by Case 5 (Y N Y N), the greater similarity of Case 3 
ensures that it is not excluded from the CDR retrieval set.   

That the CDR retrieval set may include more cases than are needed for 
completeness can be seen from the fact that only Case 1 and Case 5 are needed to 
satisfy the condition for completeness in Theorem 3. However, Case 3 must also be 
included in the retrieval set for optimal completeness. If the first constraint is the only 
hard constraint in the example query, then Case 3 is the most similar of the feasible 
cases Case 3, Case 4, and Case 5.   

4.5   Bounded Greedy 

Bounded Greedy (BG) combines measures of similarity and diversity in the retrieval 
process to achieve a better balance between these often conflicting characteristics of 
the retrieved cases [8]. It selects r cases from the b × r cases that are most similar to 
the target query, where r is the required size of the retrieval set and b is an integer 
parameter which is usually assigned a small value such as 2 or 3.  

BG has been shown to provide significant gains in diversity at the expense of 
relatively small reductions in similarity [8]. As we show Theorem 10, however, BG is 
incomplete regardless of the size of the retrieval set or number of candidate cases 
from which the retrieved cases are selected.  

Theorem 10. BG is incomplete regardless of the size of the retrieval set or number of 
candidate cases from which the retrieved cases are selected.  

Proof. For any values of the parameters b and r, BG selects r cases from the k-NN 
retrieval set for k = b × r. Its incompleteness immediately follows from Theorem 6. 

A feature that BG shares with k-NN is that the most similar case for a given query is 
always retrieved. 

4.6   Diversity Conscious Retrieval 

Usually diversity can be increased only at the expense of some loss of average 
similarity relative to the k-NN retrieval set. Diversity conscious retrieval (DCR) aims 
to increase recommendation diversity while ensuring that any loss of similarity is 
strictly controlled [7]. The approach is based on the idea that for any integer r ≥ 2, a 
given query partitions the set of cases with non-zero similarities according to the 
similarity intervals in which their similarities lie:   
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The retrieval process also depends on k, the required size of the retrieval set, and 
case selection is guided by the measure of relative diversity used in BG [8]. However, 
the DCR retrieval set is allowed to differ from the k-NN retrieval set only in cases 
whose similarities lie in the leftmost similarity interval that contributes to the k-NN 
retrieval set. This ensures that loss of average similarity relative to the k-NN retrieval 
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set can never be more than
r

1
, the width of the similarity intervals on which retrieval 

is based. For r = 20, the loss of average similarity cannot be more than 0.05. With this 
level of protection against loss of similarity, DCR has been shown to be capable of 
delivering worthwhile gains in diversity [7]. As we show in Theorem 11, however, 
DCR is incomplete. 

In common with k-NN and BG, the most similar case for a given query is always 
retrieved in DCR.   

Theorem 11. DCR is incomplete regardless of the size of the retrieval set or width of 
the similarity intervals on which retrieval is based. 

Proof. For r ≥ 2 and k ≤ 6, we can construct a case base with k + 1 cases C1, C2, ..., 
Ck+1 and equally weighted attributes a1, a2, ..., a7 such that for 1 ≤ i ≤ 7, ai = 1 in all 
cases with the following exceptions: (1) for 1 ≤ i ≤ 6, ai = 0 in Ck+1, (2) for 1 ≤ i ≤ k, ai 
= 0  in Ci, and (3) for 1 ≤ i ≤ k, a7 = 0 in Ci. For k = 1, the cases in the resulting case 
base are:  

C1 = (0, 1, 1, 1, 1, 1, 0), C2 = (0, 0, 0, 0, 0, 0, 1) 

Now consider the query Q = {ai = 1: 1 ≤ i ≤ 7}. As Sim(Ci, Q) = 
7

5
 for 1 ≤ i ≤ k, 

and Sim(Ck+1, Q) =
7

1
, the k-NN retrieval set includes all cases in the case base except 

Ck+1. It is also clear that the similarities of all cases in the k-NN retrieval set must lie 
in same similarity interval. For Ck+1 to be eligible for retrieval in DCR, Sim(Ck+1, Q) 
must therefore be in the only similarity interval that contributes to the k-NN retrieval 
set. However, this cannot be the case as the difference in similarity between Ck and 
Ck+1 exceeds the width of the similarity intervals on which retrieval is based:   

Sim(Ck, Q) - Sim(Ck+1, Q) =
7

5
-

7

1
 =

7

4
 >

2

1
 ≥ 

r

1
   

The DCR retrieval set for Q is therefore the same as the k-NN retrieval set. As there is 
no case C in the DCR retrieval set such that satisfied-constraints(C, Q) ⊆ satisfied-
constraints(Ck+1, Q) it follows by Theorem 3 that DCR is incomplete for r ≥ 2 and k ≤ 6. 

For r ≥ 2 and k > 6, we can construct as in the proof of Theorem 5 a case base with 
k + 1 cases C1, C2, ..., Ck+1 and k + 1 equally weighted attributes a1, a2, ..., ak+1, and a 

query Q such that for 1 ≤ i ≤ k, Sim(Ci, Q) = 
1

1

+
−

k

k
 while Sim(Ck+1, Q) =

1

1

+k
. Once 

again, the k-NN retrieval set includes all cases in the case base except Ck+1, and the 
latter case is not eligible for inclusion in the DCR retrieval set because: 

Sim(Ck, Q) - Sim(Ck+1, Q) = 
)1(7
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There is therefore no case C in the DCR retrieval set such that satisfied-constraints(C, 
Q) ⊆ satisfied-constraints(Ck+1, Q). Thus DCR is also incomplete for r ≥ 2 and k > 6. 
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4.7   Discussion 

The results of our comparison of retrieval strategies are summarized in Table 1. Of 
the six retrieval strategies included in our analysis, only RNC and CDR are complete 
(i.e., guaranteed to retrieve a feasible case if one exists), and only CDR is optimally 
complete (i.e., guaranteed to retrieve the most similar feasible case if there are two or 
more feasible cases). All except DBR and RNC are guaranteed to retrieve the most 
similar case for a given query. 

As shown by our analysis, the effectiveness of some retrieval strategies may be 
open to question when, as often in practice, a given query may include constraints that 
must be satisfied. In terms of assumptions about the nature of the constraints in a 
given query, DBR and k-NN can be seen to represent two extreme positions. In DBR, 
all the constraints in a given query are treated as hard constraints, whereas in k-NN 
they are essentially treated as soft constraints. However, recognizing that any 
combination of hard and soft constraints is possible in practice — as in a complete 
retrieval strategy  seems a more realistic basis for the retrieval of recommended 
cases. While the completeness of RNC ensures the retrieval of a feasible case if such 
a case exists, no account is taken of a retrieved case’s similarity in the retrieval 
process. In contrast, the optimal completeness of CDR ensures the retrieval of the 
most similar feasible case, if any, for a given query. 

Table 1. Comparison of retrieval strategies with respect to completeness, optimal comple-
teness, and retrieval of the most similar case  

Retrieval Strategy 
Feasible  
Case? 

Most  
Similar  
Feasible  
Case? 

Most  
Similar  
Case? 

Database Retrieval (DBR) N N N 

k-NN N N Y 

Bounded Greedy (BG) N N Y 

Diversity Conscious Retrieval (DCR) N N Y 

Retrieval of Non-Dominated Cases (RNC) Y N N 

Compromise Driven Retrieval (CDR) Y Y Y 

5   Related Work 

5.1   Recommendation Dialogues 

We have focused in this paper on approaches to the retrieval of recommended cases in 
response to a query provided by the user in advance. In approaches related to 
conversational CBR [21], a query is incrementally elicited in an interactive dialogue 
with the user, often with the aim of minimizing the number of questions the user is 
asked before a recommended product is retrieved (e.g., [22-30]).  
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Incremental nearest neighbor (iNN) is one such strategy that uniquely combines a 
goal-driven approach to selecting the most useful question at each stage of the 
recommendation dialogue with a mechanism for ensuring that the dialogue is 
terminated only when it is certain that the most similar case (or cases) will be the 
same regardless of the user’s preferences with respect to any remaining attributes  
[25-28]. One important benefit is that recommendations based on incomplete queries 
can be justified on the basis that any user preferences that remain unknown cannot 
affect the recommendation. However, like any retrieval strategy in which only a 
single case (or set of equally similar cases) is recommended, and no attempt is made 
to identify constraints that must be satisfied, iNN is incomplete. 

In any recommender system, of course, more than a single recommendation cycle 
may be needed to retrieve a case that is acceptable to the user. As we have seen, a 
complete retrieval strategy ensures the retrieval of a feasible case whenever possible, 
but whether such a case is acceptable to the user may depend on the extent to which it 
satisfies any soft constraints in her query — or additional constraints not mentioned in 
her query. Approaches to extending recommendation dialogues beyond an initially 
unsuccessful recommendation include critiquing approaches to elicitation of user 
feedback (e.g., [2, 10, 20, 31-32, 41]), referral of the user’s query to other 
recommender agents [26], and the recommendation engineering technique of 
providing the user with a link from each recommended case to other cases that satisfy 
the same constraints [2-3, 14].   

5.2   Retrieval Failure and Recovery 

By ensuring the retrieval of a case that satisfies any hard constraints in a given query 
whenever possible, a complete retrieval strategy avoids the need to identify 
constraints in a given query that must be satisfied. In some retrieval strategies, the 
non-existence of an exactly matching case (i.e., one that satisfies all the constraints in 
a given query) is treated as a query failure (or retrieval failure) that triggers a recovery 
process based on query relaxation (e.g., [30, 32-37]). Usually the aim of the relaxation 
process is to identify constraints in the user’s query that need not be satisfied and can 
thus be treated as soft constraints.  

For example, the Adaptive Place Advisor [30] is an in-car recommender system for 
restaurants that converses with the user through a spoken dialogue interface. If there 
is no restaurant that exactly matches the user’s requirements, the system suggests a 
constraint to be relaxed (e.g., price range or cuisine) based on its current 
understanding of the user’s preferences. If the suggested constraint is one that must be 
satisfied, the system may suggest another constraint to be relaxed (i.e., treated as a 
soft constraint). In the Intelligent Travel Recommender [37], the choice of constraint 
to be relaxed is left to the user.    

However, recovery may not be possible by relaxing a single constraint, or at least 
not one that the user is willing to relax [33-36]. To address this issue, McSherry [34] 
proposes an incremental relaxation process that aims to minimize the number of 
constraint relaxations required for recovery. An explanation of the query failure is 
followed by a mixed-initiative dialogue in which the user is guided in the selection of 
one or more constraints to be relaxed. If the constraint suggested for relaxation at any 
stage is one that must be satisfied, the user can select another constraint to be relaxed. 
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Expressed in terms of minimally failing sub-queries, the explanations of query failure 
provided in the approach are adapted from research on co-operative responses to 
failing database queries (e.g., [38-40]).   

5.3   Compromise Driven Retrieval in First Case 

First Case is a CDR recommender system that supports queries involving attributes 
and constraints of different types [2-3]. A nominal attribute is one whose values do 
not have a natural ordering that determines their similarity (e.g., the type or make of a 
personal computer). A more-is-better (MIB) attribute is one that most users would 
prefer to maximize (e.g., memory). A less-is-better (LIB) attribute is one that most 
users would prefer to minimize (e.g., price). A nearer-is-better (NIB) attribute is one 
for which most users have in mind an ideal value and prefer values that are closer to 
their ideal value (e.g., screen size). A query in First Case may include upper limits for 
LIB attributes (e.g., price ≤ 500), lower limits for MIB attributes (e.g., memory ≥ 
256), and ideal values for NIB or nominal attributes (e.g., screen = 15, type = laptop).  

An ideal value for a NIB or nominal attribute, if any, is treated as an equality 
constraint and also provides the basis for assessment of a given case’s similarity with 
respect to the attribute. Assessment of similarity with respect to LIB/MIB attributes 
for which upper/lower limits are provided in a given query is based on assumed 
preferences [3, 28]. That is, the preferred value of a LIB attribute is assumed to be the 
lowest value in the case base, while the preferred value of a MIB attribute is assumed 
to be the highest value in the case base.  

McSherry [3] investigates the potential benefits of also taking account of assumed 
preferences with respect to non-query attributes in CDR. One such benefit is that 
competitive cases that might otherwise be overlooked can more easily compensate for 
their failure to satisfy one or more of the constraints in a given query. Assumed 
preferences also play an important role in a CDR recommender system’s ability to 
explain the benefits of a recommended case relative to another case that is less 
strongly recommended [2-3].  

5.4   Balancing User Satisfaction and Cognitive Load 

Balancing the trade-off between user satisfaction (or solution quality) and cognitive 
load is an important issue in recommender systems (e.g., [3, 5, 9]). A simple measure 
of cognitive load is the number of cases, on average, recommended in response to 
user queries, while possible measures of solution quality include precision and recall 
[13, 25]. The aspect of user satisfaction on which we have focused in this paper is the 
ability to ensure the retrieval of a case that may be acceptable to the user if such a 
case exists. As we have shown in Section 4, the optimal completeness of CDR 
ensures the retrieval of the most similar feasible case, if any, for a given query. In 
contrast, the existence of a feasible case does not guarantee that such a case will be 
retrieved regardless of the size of the k-NN retrieval set. 

While the size of the k-NN retrieval set is the same for all queries, the size of the 
CDR retrieval set depends on the query and cannot be predicted in advance. That 
retrieval set size increases in CDR as query length increases is confirmed by our 
empirical results on the digital camera case base [41], with average retrieval set sizes 
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of 1.5 for short queries (3 attributes), 3.0 for longer queries (6 attributes), and 5.6 for 
queries of maximum length (9 attributes) [3]. Taking account of assumed preferences 
with respect to non-query (LIB/MIB) attributes had only a minor effect on cognitive 
load, with average retrieval set sizes increasing to 1.9 for short queries (3 attributes) 
and 3.3 for longer queries (6 attributes).  

For queries of maximum length (8 attributes) on the well-known Travel case base, 
the average size of the CDR retrieval set was 7.7 [2]. Even for k = 30 in this 
experiment, k-NN was unable to match CDR’s ability to ensure the retrieval of a case 
that satisfies any hard constraints in a given query if such a case exists. This provides 
empirical confirmation of our analysis in Section 4 showing that k-NN is incomplete 
regardless of the size of the retrieval set. 

6   Conclusions 

Completeness is a term used in search and planning, and other areas of artificial 
intelligence, to describe an algorithm’s ability to guarantee that a solution will be 
found if one exists [42-44]. In this paper we have extended the notion of completeness 
to retrieval in recommender systems. We say that a retrieval strategy is complete if it 
ensures the retrieval of a product that satisfies any hard constraints in a given query if 
such a case exists. 

We have shown that incompleteness is a limitation that k-NN shares with most 
retrieval strategies, and highlighted other limitations of k-NN which can be attributed 
to its incompleteness. One such limitation that appears not to be widely recognized is 
that the non-existence of an acceptable case cannot always be inferred from the non-
existence of a feasible case (i.e., one that satisfies any hard constraints in a given 
query) in the k-NN retrieval set. Also in contrast to a complete retrieval strategy,  
k-NN’s failure to retrieve a given case cannot always be justified on the basis that one 
of the retrieved cases satisfies at least the same constraints.   

On the other hand, k-NN has important advantages that are not necessarily shared 
by a complete retrieval strategy, such as enabling an otherwise competitive case to 
compensate for its failure to satisfy one or more of the constraints satisfied by another 
case. However, the role of similarity in balancing trade-offs between competing cases 
is implicit in our definition of optimal completeness. A retrieval strategy is optimally 
complete if it ensures the retrieval of the most similar case, if any, which satisfies all 
the hard constraints in a given query. Optimal completeness also has the advantage of 
ensuring the retrieval of the most similar case as in k-NN.  

Finally, we have shown that the ability to justify the exclusion of any case from the 
retrieval set on the basis that one of the retrieved cases is at least as similar, and 
satisfies at least the same constraints, is one of several benefits of CDR [2-3] that can 
be attributed to its optimal completeness.   
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Abstract. In Data Driven Solutions using CBR or Data Mining ap-
proaches the optimal results can be achieved if one can consider and use,
besides available data and texts, all other available information sources
like general and background knowledge. Formalization and integration of
such kind of knowledge in the knowledge extracted from data and texts is
not, however, a simple task. For this reason, a lot of approaches, among
them Bayesian Networks and Inductive Logic Programming, have been
suggested in the literature to solve this problem.

In the talk, this topic is discussed pragmatically by reviewing the
personal experiences of the speaker in the last 20 years using concrete
examples from the automotive industry.
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Back in the late 1980ies in Kaiserslautern we became serious in doing CBR
research. The focus of our work was on understanding and algorithms for CBR
as well as its application. Both topics had an academic perspective rather than
an eye on actual business benefits for users. Later at Inference and empolis this
focus shifted, i.e., from research to reality.

In reality most users do not care whether a solution deploys CBR or not as
long as it solves the problem and has a clear business benefit. Actually, most do
not know that it is CBR. This coincided with the insight that the CBR engine
forms only a fraction of the solution. Our early tools, e.g. PATDEX and even
CBRWorks, were appropriate to understand the principles, but insufficient for
real world deployment. Hence, we took our experience and built a new tool from
scratch, i.e. orenge or e:IAS, as it is called today.

Since then, we had to add a multitude of ingredients to make it a success, for
example:

– textual and structured CBR, rules and decision trees (the obvious)
– lingustics for information extraction and full text search
– associative search and classification
– text summarisation and keyword extraction
– language detection
– distributed processing and load balancing for scalability
– interfaces for all sorts of data sources
– interfaces for building applications
– APIs for all sorts of front ends
– a component architecture to plug it all together
– services to fit it into the SOA world

The above list is in no way complete. However, it illustrates how much rather
boring stuff must be added when reality hits research. What are the lessons
learned? Or, more precise: What can 15 years of reality feed back into research?
Here are some issues:

– It must scale: Millions of cases are the rule, not the exception
– Adaptation still is not a killer feature.
– Distributed collaborative modeling is not yet state of practice, i.e. a research

issue.
– And last but not least, if the Semantic Web will play a role in the future,

then what is the role of CBR in the Semantic Web?

The latter, sounding academic again, is an issue for the CBR research community,
since it asks the question for future directions. From realities perspective this
could become an important one.

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, p. 31, 2006.
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Abstract. In both research fields, Case-Based Reasoning and Reinforce-
ment Learning, the system under consideration gains its expertise from
experience. Utilizing this fundamental common ground as well as further
characteristics and results of these two disciplines, in this paper we de-
velop an approach that facilitates the distributed learning of behaviour
policies in cooperative multi-agent domains without communication be-
tween the learning agents. We evaluate our algorithms in a case study in
reactive production scheduling.

1 Introduction

A reinforcement learning (RL) agent must acquire its behavior policy by re-
peatedly collecting experience within its environment. Usually, that experience
is then processed into a state or state-action value function, from which an
appropriate behaviour policy can be induced easily [21]. When applying RL ap-
proaches to complex and/or real-world domains, typically some kind of function
approximation mechanism to represent the value function has to be used. While
in previous work [5], we have explored the use of case-based methods for that
specific task, the CBR component will play a similar, yet more prominent role
in this paper.

Just like a reinforcement learner, a CBR system’s competence is based upon
the experience it comprises. One main difference is, however, that this experience
is not processed mathematically into some kind of value function, but explicitly
stored in the system’s case base. Furthermore, it is rather unusual to speak
of autonomous agents in CBR settings. This difference, however, is of minor
importance, since it represents a question of notion and reflects only two different
views of describing how the system acquires its experience.

Multi-agent domains in which autonomous agents act entirely independently
are faced with the problem that the agents behave without any form of central
control in a shared environment, having the goal to learn a behaviour policy
that is optimal for the respective environment. This heavily increases the de-
gree of difficulty of learning compared to single-agent scenarios. In earlier work
[9], we presented an experience- and Q learning-based reinforcement learning

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 32–46, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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algorithm for multi-agent learning of independent learners in general stochas-
tic environments. In a data-efficient version, this algorithm has been proven to
feature convergence to the optimal joint policy. In that version, however, it is
applicable to problems with finite and small state spaces and has been shown to
perform well for a small “climbing game” [4], only.

In this paper, we will extend that algorithm and embed it into a CBR frame-
work. Despite losing guarantees of theoretical convergence to the optimum, we
will show that our approach can be applied successfully to larger-scale, real-world
tasks. For the purpose of evaluation, we focus on complex application scenarios
of reactive production scheduling, in particular on job-shop scheduling tasks [16].

The remainder of this paper is structured as follows. In Section 2 we clarify
the problem statement for this paper by focusing on multi-agent reinforcement
learning, highlighting its difficulties and reviewing in short the experience-based
multi-agent learning algorithm mentioned. Furthermore, relevant related work is
highlighted. Section 3 introduces our multi-agent CBR approach and discusses is-
sues of case modelling and distributed case-based value function approximation.
In Section 4 we introduce and explain in detail our case-based reinforcement
learning algorithm for independent learners. Section 5 depicts the application
field of reactive production scheduling and summarises the results of a set of ex-
perimental evaluations, applying our approach to job-shop scheduling problems.
Finally, Section 6 concludes and points to ongoing and future work.

2 Distributed Reinforcement Learning

Promising a way to program agents without explicitly encoding problem-solving
routines, reinforcement learning approaches have been attracting much interest
in the machine learning and artificial intelligence communities during the past
decades. Traditional reinforcement learning approaches are concerned with single
agents that act autonomously in their environment and seek for an optimal
behaviour. In many applications, however, interaction and/or coordination with
other agents is of crucial importance to achieve some goal.

2.1 From One to m Agents

The standard approach to modelling reinforcement learning problems is to use
Markov Decision Processes (MDP). An MDP is a 4-tuple (A, S, r, p) where S
and A denote the state and action spaces, respectively, p : S ×A×S → [0, 1] is a
probabilistic state transition function with p(s, a, s′) describing the probability
to end up in s′ when taking action a in state s. Moreover, r : S × A → R is
a reward function that denotes the immediate reward that is obtained when
taking a specific action in some state. In search of an optimal behaviour, the
learning agent must differentiate between the value of possible successor states
or the value of taking a specific action in a certain state. Typically, this kind of
ranking is made by computing a state or state-action value function, V : S → R

or Q : S × A → R. For more basics and a thorough review of state-of-the-art
reinforcement learning methods we refer to [21].
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If there is no explicit model of the environment and of the reward structure
available, Q learning is one of the reinforcement learning methods of choice to
learn a state-action value function for the problem at hand [26]. It updates
directly the estimates for the values of state-action pairs according to

Q(s, a) := (1 − α)Q(s, a) + α(r(s, a) + maxb∈A(s′)Q(s′, b)) (1)

where the successor state s′ and the immediate reward r(s, a) are generated
by simulation or by interaction with a real process. For the case of finite state
and action spaces where the Q function can be represented using a look-up
table, there are convergence guarantees that say that Q learning converges to
the optimal value function Q�, assumed that all state-action pairs are visited
infinitely often and that α diminishes appropriately. Given convergence to Q�,
the optimal policy π� can be induced by greedy exploitation of Q according to
π�(s) = argmaxa∈A(s) Q�(s, a).

If there are multiple agents acting concurrently, actions are vectors of individ-
ual actions. Each agent i contributes its own action component ai – to be termed
elementary action subsequently – to the joint action vector a. Given the current
state and the joint action vector the environment transitions to a successor state
s′, while at the same time all agents receive the (global) reward signal r. The
agents’ overall goal is to find an optimal joint behaviour policy, i.e. a mapping
from states to actions, that maximises the sum of expected rewards [1].

In [4] the distinction between joint-action learners and independent learners is
introduced. While the former know about the actions taken by the other agents,
the latter only know about their own contribution ai to the joint action. As
a consequence of their lack of action information, the attempt to estimate an
elementary action’s value in a specific state would most likely fail: The reward
signals for different joint action vectors (differing in the action contributions of
the other agents) would mix for any state s and any elementary action ai. In
this paper, we focus on independent learners: As argued before, the key problem
of independent reinforcement learners is that they must somehow be enabled to
distinguish between different joint actions to which they contributed the same
elementary action. We shall explore that issue more thoroughly in the following.

2.2 Core Ideas of a Learning Algorithm for Independent Learners

In [9] we presented an algorithm that realises the idea of implicit agent co-
ordination: Each agent is endowed with the capability to differ between joint
action vectors without knowing what the joint actions are, i.e. without knowing
which elementary actions are taken by the other agents. As follows, we briefly
summarise the core ideas of that algorithm, while in Sections 3 and 4 we further-
develop and fully integrate it into a CBR framework.

Implicit Coordination: Each agent i manages for each state s ∈ S an experi-
ence list Ei(s), which on the one hand contains exactly one entry e for every
joint action vector and on the other hand for reasons of efficiency is sorted
with respect to the estimated value of that piece of experience. The list entry
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e is a 3-tuple e = (Q, ai, n). Here, Q denotes the actual value of e and thus
the value of taking the corresponding, not explicitly known action vector in
state s (the sorting is done w.r.t. Q), ai is the elementary action taken by
agent i and n stands for the number of times the estimated value Q of this
experience has already been updated.

If it can be assured, that at every point of time each agent choosing
an action uses the same index x to access its experience list, i.e. selecting
e := Ei(s)[x], and moreover, selects the action e.ai given by that experi-
ence, then the reward signal generated by the environment can be related
correctly to the (implicitly) referenced joint action vector. Accordingly, the
corresponding Q value e.Q = Ei(s)[x].Q may be updated appropriately.

Index Selection Harmonisation: The procedure to select index x within an
experience list Ei(s) must be implemented in exactly the same manner in
every agent. It has to guarantee that at each instant of time each agent
selects the same index, which implies that all agents must be aware of the
same time.

Efficient Exploration: Due to the sorting of all experience lists, the best ac-
tions are to be found at their beginnings. Therefore, an index selection mech-
anism that aims at greedily exploiting the knowledge contained in its lists,
would always select the first index. However, to trade off exploration and
exploitation it is suitable to select the top entries more frequently, but also
to choose the last entries with a non-zero probability. The implementation
of a corresponding procedure is straightforward.

For further details of the algorithm as well as for a proof of its theoretical
convergence properties we refer to [9]. An obvious limitation of this algorithm
is its usability for discrete state-action spaces, only. However, the application of
generalisation techniques, to deal with large state/action spaces, is of great im-
portance, in particular in multi-agent domains where the size of the joint action
spaces can grow exponentially with the number of agents [4]. Therefore, taking
the learning algorithm sketched so far as a starting point, in the next section
we will present an extended, case-based version of it that may be employed for
larger-scale problems.

2.3 Related Work

Different authors have investigated the use of case-based technology in RL-
related and multi-agent settings. Powell et. al [17] introduce automatic case
elicitation (ACE), a learning technique where the CBR system initially starts
without domain knowledge and incrementally gains competence through real-
time exploration and interaction within the environment. Their system is suc-
cessfully applied in the domain of checkers. Macedo [13] focuses in depth on the
issue of efficient CBR-based exploration of an autonomous agent in an eventually
non-stationary environment an evaluates his approach in the context of robot-
ics. The aspect of agent-cooperation is highlighted, for example, in the work of
Ontanon and Plaza on ensemble CBR [14]. The focus there is on case reten-
tion of collaborative agents trying to solve some analytical classification task
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while having different degrees of competence. In a later work, Plaza spots the
issue of distributed case-based reuse, assuming cooperation of multiple agents in
problem-solving and tackling configuration tasks [15]. There has also been much
work into the direction of multi-case-based reasoning (MCBR [10]), where case
bases contain knowledge collected in different contexts and for different tasks or
where each case base may specialise on certain regions of the problem space.

A comprehensive article reviewing and comparing a number of memory-based
approaches to value function approximation in reinforcement learning is the one
by Santamaria and Sutton [20]. With our case-based Q function representation
we are in line with these authors as well as with the work of Bridge [3], since we
will consider the actions as a part of the cases’ solutions.

Multi-agent learning has been an important topic in the RL literature for
years. Foundational issues and algorithms as well as a number of approaches to
extend the Q learning algorithm into the area of multi-agent domains can be
found, e.g., in [7,11,23]. While most of these works focus on discrete problems
with finite state spaces, there have also been attempts to tackle larger multi-
agent problem domains in conjunction with function approximation. Focusing
not on cooperative MA learning, but on adversarial settings with one agent and
one opponent, Uther [25] uses a piecewise linear function approximator similar to
decision trees in an abstracted soccer game. For the domain of Robotic Soccer
Simulation we have learnt a number of strategic behaviors in which multiple
agents are involved using neural networks for value function representation [18].
Bowling and Veloso [2] use the CMAC for function approximation in adversarial
multi-robot learning in conjunction with policy gradient RL. Cooperative multi-
agent learning of independent learners (as we do) and the aspect of inter-agent
communication is investigated in the work of Szer and Charpillet [22] where,
however, mutual communication between the agents is allowed.

In the evaluation part of this paper we will focus on the application field of
reactive production scheduling. For a deeper understanding of that domain we
refer to [16] and to our own previous work in that area [19,6] using RL with neural
net-based function approximation. Moreover, there have been also attempts to
solve scheduling problems with case-based methods (e.g. [8,24,12]).

3 A CBR Approach to Multi-agent Reinforcement
Learning

The CBR paradigm tells that similar problems have similar solutions. We may
transfer that statement to a terminology that is more closely related to rein-
forcement learning tasks and say it is likely that in similar situations similar
or identical actions are of similar utility. Based on that assumption, case-based
techniques have been employed at times to generalise and approximate value
functions for RL problems in large/continuous state-action spaces. The same
principle also holds when multiple agents are involved: In similar situations a
collective of agents will obtain similar rewards when taking similar joint actions.
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3.1 Distributed Case-Based Value Function Approximation

For large and/or continuous state spaces S it is impossible to store the expected
value of all state-action pairs explicitly (e.g., in a Q table). So, we suggest to
utilize the capability to generalise that can be achieved via CBR: We intend to
cover S by a finite number of cases, where the expected values (Q values) of
different actions are stored in a special form in the cases’ solution parts.

Each agent manages its own case base to cover the state space. When a
new state is entered, the best-matching representative (nearest neighbour) from
the case base is retrieved and the action which promises to yield the highest
reward is selected for execution. For single-agent scenarios the implementation
of appropriate algorithms seems intuitive, but when multiple agents are involved
in decision-making, a number of substantial problem arise:

– Since we consider independent learners that have no idea of the actions taken
by their colleagues, we must find a way to enable each agent to differenti-
ate between different joint action vectors in the light of case-based Q value
function approximation.

– Efficient and effective exploration of the joint action space are indispensable
to learn good policy behaviours. Accordingly, some synchronisation mecha-
nism is required.

– Lack of adequate (state) information in some agents might imply that learn-
ing proceeds differently than in other agents. Consequently, retrieval and
reuse of experience could not be made in a harmonised way.

The issues raised above manifest necessary conditions for a distributed case-
based value function approximation to work successfully. Regarding the last
problem we emphasise that we always assume all agents to have the same in-
formation on the current global state. We stress that the state information may
very well be incomplete, i.e. the environment may be partially observable only
(as in our experiments in Section 5), which adds further difficulty to the learn-
ing problem. However, then for each agent the same parts of the global state
are hidden. As a consequence of the identical global view each agent has and
assuming identical case-base management and retrieval algorithms to be used
by all agents, it can easily be guaranteed that all agents have case bases with
identical contents and that retrieval produces the same results across all agents.

3.2 Case Representation and Retrieval

Pursuing the traditional way to model the case representation, we consider cases
that are made up of a problem and a solution part, in the following. Note, that
each agent present in our multi-agent settings has its own case base and has no
access to any other agent’s case base and that no inter-agent communication is
allowed. The overall case structure is sketched in Figure 1.

3.2.1 The Problem Part
The cases problem parts are meant to represent the instances s of the state
space S. Our algorithms do not pose any requirements on the modelling of the
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case problem parts as long as adequate similarity measures can be defined, which
reflect similarities between states. So, we assume the existence of some similarity
measure sim : S × S → [0, 1] that assesses the degree of similarity between two
states. Consequently, given a case base CB, the nearest neighbour ν ∈ CB
of any query q ∈ S can be determined easily, and1 it holds NN(q) := ν.p =
argmaxc∈CB sim(c.p, q). In Figure 1 the cases’ problem parts are exemplarily
realised by a number of features (attribute-value based representation).

3.2.2 The Solution Part
For the cases’ solution parts we need to define some specific data structures that
are aligned with the distributed learning algorithm sketched in Section 2.2. A
solution c.sol of a case c consists of two parts, c.sol = (E, v). Whereas v ∈ R

represents an evaluation value of the solution quality, E is a list into which the
experience is compressed the agent has made within its environment. Specifically,
E = (E[1], . . . , E[lm]) contains exactly lm entries (with m the number of agents
and l the number of elementary actions selectable by each agent2). Hence, an
experience list reserves one entry to implicitly reference each possible joint action
vector. Each list entry e = E[x] of E can be accessed by its index x (for ease
of notation we will also allow the shortcut e = c.sol[x] instead of c.sol.E[x])
and is a 3-tuple, e = (ai, n, Q) as indicated in Section 2.2. The key point of
this representation is that, no matter which case is considered and no matter
which list entry of the case’s solution is regarded, the agent only knows its
own elementary action ai. Despite that, it is enabled to implicitly differentiate
between all lm joint action vectors by means of the mechanism that shall be
explained subsequently.

4 Multi-agent CBR for Independent Learners

In this section we present our case-based multi-agent RL algorithm in a threefold
way. First, in Figure 2 we provide a coarse overview over its components involved.
Second, Algorithm 1 gives a possible realisation of its main functionality in
1 We use the notation c.p and c.sol to access the problem and solution part of case c,

respectively.
2 We assume the number of elementary actions to be finite or, in the case of continuous

actions, that an appropriate action discretisation has been introduced.
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pseudo-code. And finally, the text describes all elements and their interplay in a
much more detailed way.

Since our focus is on multi-agent learning, in the following we must clearly dis-
tinguish between the agents’ learning and application phases. During the former,
the agents interact with their environment, collect experience and extend and
refine the contents of their case bases. During the latter (the reuse or application
phase), the results of learning are exploited, which means that for each state the
best action possible is considered by all agents and collectively executed.

Many practical problems are of episodic nature, characterised by some set G
of goal states (an episode ends, when an s ∈ G has been reached). In order to not
complicate Algorithm 1 it has been given in a non-episodic realisation, though
it may easily be adapted to handle episodic tasks.

4.1 Solution Index Addressing and Exploration

Each time an agent is provided with a new observation, i.e. a new state s, it
takes this state as query and searches its case base for the nearest neighbour
ν. Most of our considerations to be made in the rest of this and the following
sections will refer to the appending solution ν.sol.

For the moment we ignore the question if the agent ought to add a new case
for state s to the case base (cf. Section 4.3). The method selectIndex(i,t)
(step 3 in Figure 2 and 2b-iii in Algorithm 1), as already indicated in Section
2.2, selects an index x to access the solution’s experience list ν.sol and must be
implemented in such a way that it returns the same list index in each agent.
For this to happen each agent needs the same implementation and moreover, if
random accessing is required, for instance, identical random number generator
seedings in each agent. Let xi := selectIndex(i,t)with t as current time, then
the agent will choose ν.sol[xi].a as its next elementary action3.

Using a clever implementation of selectIndex, this way an efficient explo-
ration mechanism can be realised. For example, ε-greedy exploration can be
implemented by returning index 1 with probability 1 − ε (greedy action choice)
and a random index from [1, . . . , lm] with probability ε.

After all agents have decided for their elementary action the composite action
vector is executed and the successor state s′ and reward r are observed by all
agents (steps 2c and 2d in Algorithm 1 and steps 5 and 6 in Figure 2).

4.2 Distributed Q Learning Updates

Standard Q learning, as briefly introduced in Section 2.1, converges for MDPs
with finite state and action spaces to the expected true rewards, when the learn-
ing rate αi = αn(s,a) in the update rule (Equation 1) is sensitive to the number
of updates n(s, a) that have already been made to the state-action pair (s, a)
and it holds:

3 Note, that xi = xj for all i, j ∈ {1, . . . , lm}, but in general it holds ai �= aj for many
i, j ∈ {1, . . . , lm}.
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Fig. 2. Procedural View on CBR-Based Multi-Agent Reinforcement Learning

a) the sequence (αi)∞i=1 fulfills αi ∈ [0, 1],
∑∞

i=1 αi = ∞,
∑∞

i=1 α2
i < ∞, and

b) each state-action pair is visited an infinite number of times.

Although our implementation of the procedure getLearningRate (cf. Algorithm
1, step 2e-ii) fulfills the first requirement, convergence to the theoretical optimum
could even under fulfillment of b) not be expected, since we do use a case-based
function approximator (with a finite number of instances in memory) to cover
the state space. Nevertheless, good policies can be learnt even in presence of this
kind of generalisation (cf. our empirical result in Section 5).

For an independent learner with a case-based and experience list-based rep-
resentation of its Q function, the update rule, originally provided in Section 2.1,
can now be rewritten with respect to the data structures and case representation
we have introduced. Let T = (s, ai, s

′, r) be a transition perceived by agent i con-
sisting of state s, (elementary) action ai of agent i (where ai corresponds to the
previously selected index xi, i.e. ν.sol[xi] = ai), the successor state and the re-
ward, let ν and ν′ denote the nearest neighbours of s and s′ with respect to CBi,
respectively, and let αi denote the learning rate calculated by getLearningRate
(e.g. αi := 1

1+ν.sol[xi].n
), then the agent performs the following updates:

ν.sol[xi].Q := (1 − αi) · ν.sol[xi].Q + αi(r + γ · ν′.sol[1].Q)
ν.sol[xi].n := ν.sol[xi].n + 1 (2)

After having performed this kind of update, the experience list in ν.sol is resorted
with respect to increasing Q values (see steps 9 and 10 in Figure 2). It is easy to
prove by induction that at each instant of time the contents of all agents’ case
bases and hence, their Q functions, are identical. Due to limited space we omit
the proof here.

4.3 Case Base Management

Of course, when the case base is empty the agent has to insert a new, blank
case for the state s provided. Otherwise, predicate addCaseCriterion(s) must
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1. let t be the global time, m be the number of agents, l the number of elementary
actions, CBi = ∅ an empty case base for each agent, γ the discount factor,
and set s = s′ ∈ S to the initial state of the system

2. repeat
(a) set s := s′

(b) for all agents i ∈ {1, . . . , m} do
i. if CBi = ∅ or addCaseCriterion(s) is true

then CB := CB ∪ c
with c.p = s and c.sol = emptySolution(i)

ii. retrieve nearest neighbour νi := arg maxc∈CBi
sim(s, c.p) of state s

iii. set index xi := selectIndex(i,t)
iv. select elementary action ai := νi.sol[xi].ai

(c) apply joint action a = (a1, . . . , am)
(d) observe successor state s′ ∈ S and reward r ∈ R

(e) for all agents i ∈ {1, . . . , m} do
i. retrieve nearest neighbour ν′

i := arg maxc∈CBi
sim(s, c.p) of state s′

ii. set learn rate αi := getLearningRate(νi .sol[xi].n)
iii. set νi.sol[xi].Q := (1 − αi)νi.sol[xi].Q + αi(r + γν′

i.sol[1].Q)
iv. increment νi.sol[xi].n by one
v. resort the experience list in νi.sol

until stopCriterion() becomes true

Algorithm 1. Case-Based Multi-Agent Reinforcement Learning in a Non-Episodic
Realisation

make the decision whether to add a new case for s. Here, it must be deliberated
whether the experience already contained in CB can be considered reusable for
the current situation. In particular, the similarity between s and the problem part
of its nearest neighbour in the case base may be a meaningful indicator, provided
that appropriate, knowledge-intensive similarity measures have been defined for
the task at hand. In our current implementation, addCaseCriterion(s) returns
true, if the case base size limit has not been exceeded and the similarity between
s and its nearest neighbour in CB is less than some threshold ς. Note, that the
addition of a new case incurs some necessary follow-up operations:

– Let Cnew be a case added at time tnew. Assume that the transition (s, a, snew,
r) has to be processed at t = tnew +δ (with some small δ) where c := NN(s)
has been added at time ts < tnew . Then, the update according to Equation
2 should take into account that the solution of the nearest neighbour case of
snew is most likely rather “uninformed”. Therefore, we omit making updates
when NN(snew).sol[1].n = 0, i.e. when no update for the greedy action in
the case responsible for snew has been made, yet. This clearly reduces the
speed of learning as long as new cases are added repeatedly.

– After having added a new case cnew, the solution parts of all cases in C :=
{c ∈ C|cnew = NN(c)} have to be reinitialised: Let Scnew := {s ∈ S|cnew =
arg maxc∈CB sim(c.p, s)} ⊂ S be the subset of the state space, for queries
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from which cnew is the nearest neighbour in CB. Then, before cnew was
added to CB, the nearest neighbours of all s ∈ Scnew were elements of C.
Hence, the solution parts of all c ∈ C are no more valid and must be reset.

When resetting as well as initialising a case’s solution c.sol, i.e. when creating
empty solutions (procedure emptySolution in Algorithm 1), of course all Q value
entries and entries telling the number of updates are set to zero: c.sol[x].Q =
c.sol[x].n = 0 for all x ∈ {1, . . . , lm} in all agents. The field for the elementary
action c.sol[x].a, however, must be set with some care: The implementation
of emptySolution(i) must guarantee that – when combining the elementary
actions of all agents i over all list entries – there is exactly one entry for each
possible joint action, which can be easily achieved by a careful design of the
corresponding programming. Given this kind of initialisation and the solution
index selection mechanism described, the preconditions for the proof shown in
Section 4.2 are satisfied.

Case Base Quality Evaluation: After each learning update step the changed
solution c.sol is evaluated with respect to its usability for new problems and the
corresponding evaluation is stored in c.sol.v. A possible indicator of its quality
may be the sum

∑lm

j=1 c.sol[j].n of Q learning updates that have already been
made for this solution. Currently, however, we employ a simpler, boolean solution
evaluation: We consider a solution of a case valid and usable if and only if each
of the entries in the belonging experience list has been updated at least once.
In other words, each joint action vector possible must have been tried once for
each c ∈ CB, until the corresponding case solution is unlocked for use.

5 Experimental Evaluation

To evaluate our case-based and experience list-based approach to multi-agent
reinforcement learning we chose the application domain of reactive production
scheduling. The learners’ task is to autonomously find a cooperative dispatching
policy to assign jobs to a limited number of resources, where each job consists
of a number of operations that must be performed on specific resources in a
pre-defined order. Most classical approaches to solve scheduling problems per-
form search in the space of possible schedules (e.g. tabu search [16], but also
GA-based solutions [12]). By contrast, we take an alternative, reactive approach
to job-shop scheduling: We model the environment (the plant) as an MDP and
have a learning agent at each resource that decides which job to process next
based on its current view on the entire plant (see [19] for more details). A fun-
damental advantage of this reactive approach is that the agents will also be able
to react quickly and appropriately in new, unforeseen situations (e.g. in case of
a machine breakdown), whereas most classical scheduling algorithms will have
to discard their calculated schedule and start recomputing it. Since, job-shop
scheduling problems are well-known to be NP-hard, this can become a time-
critical problem.



Multi-agent Case-Based Reasoning 43

5.1 Experiment Setup

In our modelling of the scheduling environment a state s must describe the
situation of all resources at that point of time – so, s characterises the sets of
waiting jobs at all resources. In our current implementation we use an attribute-
value based state representation where the state description is made up of 4m
features, i.e. the sets of waiting jobs at each resource are characterised by four
properties. This way, of course, not all of the properties of the currently waiting
jobs can be captured, why the environment is perceived as partially observable
by each agent. To calculate the similarity between two states we have made use
of the local-global principle, defined appropriate local similarity measures for
the features and amalgamated them to the global similarity sim(s1, s2) using
suitable feature weights.

The overall goal of learning is to minimise production costs. Costs arise each
time a job is tardy, that means when it has not been finished until its due date.
So, the overall learning goal is to minimise summed tardiness over all jobs in the
system,

∑
t

∑
j jobTardy(t, j). Accordingly, each time one or more tardy jobs

are in the system, a negative reward is incurred; if there are no jobs that have
violated their due date, the immediate reward is zero.

The actions our agents are allowed to take are decisions to act according to
one out of l rather simple, established dispatching priority rules (DPR). A DPR
chooses a job j out of a set of waiting jobs J subject to some specific criterion.
There is a variety, of more or less complex DPRs: For example, the EDD rule
chooses the job j ∈ J which has the earliest due date. The MS rule picks the
job with minimal processing slack and the SPT rule, for instance, chooses a
job whose next operation has the shortest processing time. In the scope of our
evaluation we will focus on the mentioned three DPRs, i.e. the set of available
elementary actions for each agent is A = {aEDD, aMS , aSPT }. Furthermore, in
all our experiments we consider two cooperative scheduling resources/agents that
work according to the algorithms discussed in the previous sections.

5.2 Results

Each experiment is divided into a training and a testing phase: A random set Sa

of training scheduling scenarios and an independent set Sb of testing scenarios
are generated (all of them differing in the properties and numbers of jobs to be
processed, |Sa|=10, |Sb|=50). During training, the scenarios in Sa are processed
repeatedly4 where the agent picks random actions with p = 0.5 (explores) and
that way gathers experience. During testing, the scenarios in Sb are processed
once, where now all agents behave greedily w.r.t. their current Q functions,
stored distributedly in their case bases. The performance is measured in terms
of the average summed tardiness on the scheduling scenarios from Sa/b.

Comparison to DPR-based Agents: We compared the final scheduling capabilities
of our learning agents to nine different agent-constellations in which both agents

4 We call the processing of one scenario an episode.
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Fig. 3. Performance of the CBR-based Scheduler vs. the Top 4 Heuristic Ones

worked according to some fixed DPR. To be exact, we evaluated each combina-
tion of each agent working with one of the rules from {EDD, MS, SPT } (see
Figure 3). Obviously, the setting when the first as well as the second agent worked
with the EDD rule, was the best-performing one (on set Sa as well as on Sb).
When both agents were learning, however, the resulting scheduling quality could
be increased (data row CBRELB in Figure 3). The resulting scheduling system
(using a case base of 500 instances) outperformed the best of all DPR-based
systems by 4.2% on the training scenarios (average tardiness of 59.7 instead of
62.2). Even on the independent test set, i.e. on 50 entirely different scheduling
scenarios the best combination of heuristically acting agents is beaten (average
tardiness of 69.88 instead of 70.4). So, one may conclude that the learning agents
have discovered and learnt regions of the problem space in which certain joint
actions are of extremely high usefulness. We allowed the CBRELB agents to
learn for 20000 episodes to reach those results.

Case Solution Utilisation: Working within an 8-dimensional problem space, it
may happen that for some (query) state q the similarity σ to its nearest neighbour
in CB is rather low. Therefore, we allowed each agent to use a fallback action
in case that no well-matching case in CB could be found. To be exact, during
evaluation an agent used the EDD rule as fallback action in situations when
σ < 0.8 or when the nearest neighbour’s solution part had an evaluation value
v that marked this solution as not usable (cf. Section 4.3). Of course, the more
comprehensive the case base and the longer the learning process has been going
on, the less often these situations occur. It is clear that the amount of stored
experience must not be too sparse. When experimenting with case bases of sizes
100 and 200 only, the CBRELB -setting still outperformed EDD + EDD on the
training instances (tardiness of 60.1 and 60.6, respectively), but on the test set
an average tardiness of 75.68 and 70.36, respectively, could be achieved only.

6 Conclusions

We have developed and evaluated a CBR-approach that allows for the distrib-
uted learning of behaviour policies of independent reinforcement learners. To
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tackle the complexity and high-dimensionality inherent in multi-agent settings
we employed case-based reasoning as the core technology to facilitate gener-
alisation. Moreover, we combined CBR with a mechanism to achieve implicit
coordination of the agents involved which is a necessary prerequisite to make
a correct processing of rewards obtained from the environment possible. Our
results of a series of experiments in the application domain of reactive job-shop
scheduling are very promising, since our approach was able to outperform all
schedules generated by a larger number of scheduling systems that worked with
fixed dispatching priority rules.

Our research has raised a number of interesting issues to be investigated in
on-going and future work. In a next step, we want to evaluate our approach
in even larger application scenarios, involving more cooperative learning agents
and a larger number of elementary actions. Another interesting issue concerns
efficient and effective routines for case base management, case addition and case
relocalisation, which need to be developed and further-developed, respectively.
Finally, we also seek to design an offline variant of the Q learning update em-
ployed which makes more efficient use of gathered experience and, hence, is likely
to bring about faster and presumably better learning results.
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Abstract. The problem of defining robot behaviors to completely ad-
dress a large and complex set of situations is very challenging. We present
an approach for robot’s action selection in the robot soccer domain using
Case-Based Reasoning techniques. A case represents a snapshot of the
game at time t and the actions the robot should perform in that situation.
We basically focus our work on the retrieval and reuse steps of the sys-
tem, presenting the similarity functions and a planning process to adapt
the current problem to a case. We present first results of the performance
of the system under simulation and the analysis of the parameters used
in the approach.

1 Introduction

The problem of defining robot behaviors in environments represented as a large
state space is very challenging. The behavior of a robot results from the execution
of actions for different states, if we define acting as the execution of a policy
π : s → a (where s is the current state and a, the action to execute in the given
state). Defining each possible state and the actions to perform at each state, i.e.
defining the policy, is challenging, tedious and impossible to be done completely
manually. Furthermore, we have to deal with a second issue: the nature of the
environment. We are working with real robots that interact with non controllable
elements of the environment, which are constantly moving.

We illustrate our work in the robot soccer domain (Robocup)[2]. In this do-
main, we do not deal with an independent action (e.g. turn 30 degrees, kick,
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walk forward 100cm), but with a sequence of actions that the robots execute to
accomplish their goals (e.g. dribble and shoot). We call this sequence a game
play. Hence, the problem we address is to find out which game plays the robots
should execute during a match. We focus our work on the application of Case-
Based Reasoning techniques to define the actions the robots should perform in
this environment, i.e. we use the CBR approach to generate the π function. We
believe that reproducing game plays from similar past situations (similar envi-
ronment’s description) solves the robot behavior definition problem in an easy
and fast way. The approach followed in this work is to define action cases for
robots to provide them with a set of cases and then have them autonomously
select which case to replay.

The work we present in this paper is centered on modelling the main steps
of a Case-Based Reasoning system [1]: the retrieval step and the reuse step. For
this purpose, we first analyze the environment to choose the main features that
better describe it and then we define an appropriate similarity function. We use
different functions to model the similarity for each feature domain and then an
aggregation function to compute the overall similarity. We also introduce some
initial experiments to test the current implementation based on a single player
with no teammates.

The organization of the paper is as follows. Section 2 presents related work.
Section 3 describes the robot soccer domain. Section 4 introduces the features of
the environment and the formal representation of a case. Section 5 and 6 detail
the retrieval and reuse steps respectively. Section 7 shows the analysis and first
results of the performance of the system. Section 8 discusses the extension of the
current case representation in order to model the dynamics of the game plays.
Finally, Section 9 concludes the work and describes future work.

2 Related Work

Some researchers have already focused their work on using Case-Based Reason-
ing techniques for deciding the best actions a player should execute during a
game. Karol et al. [5] present a model to build high level planning strategies
for AIBO robots. For any game situation, game plays are chosen based on the
similarity between the current state of the play and the cases in the case base.
The paper only presents the general model without any experiment and does not
describe the different steps of the CBR approach. Wendler et al. [15] describe an
approach to select soccer players’ actions based on previously collected experi-
ences encoded as cases. The work is restricted to the Simulation League. Thus,
many parameters they take into account are not considered in our domain, and
also they do not have to deal with the major problems involved when working
with real robots. Regarding the retrieval step, they apply a Case Retrieval Net
model to improve the retrieval of cases in terms of efficiency. Marling et al. [9] in-
troduce three CBR prototypes in their robots team (RoboCats, in the Small Size
League): the first prototype focused on positioning the goalie; the second one,
on selecting team formations; and the third one, on recognizing game states. All
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three systems are mainly based on taking snapshots of the game and extracting
features from the positions of the robots during the game.

We can also find some bibliography dedicated to solve the action selection
problem, but applying other learning techniques. Riedmiller et al. [11] focus
their work on Reinforcement Learning techniques applied to two different levels:
moving level and tactical level. The former refers to learning a specific move, for
example, learning to kick. While the latter refers to which move should be applied
at a certain point, as pass the ball. The work is restricted to the Simulation
League, and they only used the moving level during a competition. With respect
to the tactical level, they experimented with two attackers against one or two
defenders. The attackers used the approach presented, while the defenders used
a fixed policy. Similarly, Sarge et al. [13] present a RL approach to learn low-level
skills. These skills can later be put together and used to emulate the expertise of
experienced players. More precisely, they work on the intercepting the ball skill.
They performed experiments with hand-coded players vs. learning players. They
obtained positive results after one hour of learning. Finally, Lattner et al. [7]
present an approach that creates patterns based on the qualitative information
of the environment. The result of learning is a set of prediction rules that give
information about what (future) actions or situations might occur with some
probability if certain preconditions satisfy. Patterns can be generalized, as well
as specialized. As in the previous papers, this is used in the Simulation League.

Finally, CBR techniques have been also used for purposes other than action
selection. Wendler et al. [14] present a case-based approach for self-localization
of robots based on local visual information of landmarks. The approach is used in
robot soccer, and once again, they use the Case Retrieval Net model. Gabel and
Veloso [3] model an online coach in the Simulation League to determine the team
line-up. Based on previous soccer matches the coach reasons about the current
state of the match and decides which player of his team line-up is assigned to
which of the available players type. Haigh and Veloso [4] solve a path planning
problem with a system that plans a route using a city map. The global path is
created using different cases from the case base. Kruusmaa [6] develops a system
to choose routes in a grid-based map that are less risky to follow and lead faster
to the goal based on previous experience. Ros et al. [12] present an approach
for robot navigation in semistructured unknown environments. Cases represent
landmarks configurations that the robot should avoid in order to reach its target.
Ram and Santamaŕıa [10] and Likhachev and Arkin [8] focus their work on a
CBR approach to dynamically select and modify the robot’s behaviors as the
environment changes during navigation.

3 Robot Soccer Description

The Robocup Soccer competition involves several leagues. One of them is the
one we focus our work on: the Four-Legged League. Teams consist of four Sony
AIBO robots. The robots operate fully autonomously, i.e. there is no external
control, neither by humans nor by computers. The field dimensions are 6m long
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Fig. 1. Snapshot of the Four-Legged League (image extracted from [2])

and 4m wide. There are two goals (cyan and yellow) and four colored markers
the robots use to localize themselves in the field. There are two teams in a game:
a red team and a blue team. Figure 1 shows a snapshot of the field. The robots
can communicate with each other by wireless or even using the speakers and
microphones (although this is not common).

A game consists of three parts, i. e. the first half, a half-time break, and the
second half. Each half is 10 minutes. The teams change the goal defended and
color of the team markers during the half-time break. At any point of the game,
if the score difference is greater than 10 points the game ends. For more details
on the official rules of the game refer to [2].

4 Case Definition

In order to define a case, we first must choose the main features of the envi-
ronment (from a single robot’s point of view) that better describe the different
situations the robot can encounter through a game. Given the domain, we dif-
ferentiate between two features’ types, common in most games:

Environment-based features. They represent the spatial features of a game.
In robot soccer we consider the positions of the robots and the ball as the
basic features to compare different situations, which represent the dynamics
of the environment. These positions are in global coordinates with respect
to the field (the origin corresponds to the center of the field). Regarding
the robots, we consider the heading as a third parameter to describe their
positions. It corresponds to the angle of the robot with respect to the x axis
of the field, i.e. which direction the robot is facing to.

Game-based features. They represent the strategy applied in the game. We
use the time and the score as the main features. As time passes and de-
pending on the current score, the strategy should be more offensive if we
are losing, or a more defensive if we are winning. These features are beyond
robot soccer and are applicable to other games.
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In the work we present in this paper we always refer to a main robot (we
could think of it as the team’s captain; hereafter we will refer to it either as the
captain) who is responsible for retrieving a case and informing the rest of the
players (teammates) the actions each of them should perform (including himself).
We divide the description of a case in two parts: the problem description and
the solution description. The former refers to the description of the environment
and the game features at time t from the captain’s point of view (we can talk
about a snapshot of the game), while the latter refers to the solution to solve
that problem. Thus, within the soccer domain a case is a 2-tuple:

case = ((R, B, G, Tm, Opp, t, S), A)

where:

1. R: robot’s position (xR, yR) and heading θ (captain’s information).

xR ∈ [−2700..2700]mm. yR ∈ [−1800..1800]mm θ ∈ [0..360)degrees

2. B : ball’s position (xB , yB).

xB ∈ [−2700..2700]mm. yB ∈ [−1800..1800]mm

3. G: defending goal
G ∈ {cyan, yellow}

4. Tm: teammates’ positions.

Tm = {(id1, R1), (id2, R2), (id3, R3)}

where idi corresponds to the teammate identification for teams of 4 robots.
5. Opp: opponents’ positions.

Opp = {opp1, opp2, ..., oppn}

where oppi is a point (x, y) and n ∈ {1, 2, 3, 4} for teams of 4 robots.
6. t : timing of the match. Two halves parts of 10 min.

t ∈ [0..20]min, t ∈ IN

7. S : difference between the goals scored by our team and the opponent’s team.
The maximum difference allowed is 10. The sign indicates if the team is losing
or winning.

S ∈ [−10..10]

8. A: sequence of actions (also seen as behaviors) to perform. Some examples of
individual actions are Turn(φ), Kick(right), Dribble, etc. The combination
of these actions result in different sequences.



52 R. Ros et al.

Fig. 2. (a) Situation 1 corresponds to the original description of the case. While situ-
ation 2, 3 and 4 correspond to the symmetric descriptions. (b) Example of a case.

4.1 Case Properties

We can observe two symmetric properties of the ball’s and robot’s positions
and the defending goal: one with respect to the x axis, and the other one, with
respect to the y axis and the defending goal. That is, a robot at point (x, y) and
defending the yellow goal describes situation 1, which is symmetric to situation
2 ((x, −y), defending the yellow goal), situation 3 ((−x, y), defending the cyan
goal) and situation 4 ((−x, −y), defending the cyan goal) (Figure 2(a)).

Similarly, the solution of a problem has the same symmetric properties. For
instance, in a situation where the solution is kick to the left, its symmetric solu-
tion with respect to the x axis would be kick to the right. Thus, for every case
in the case base, we compute its symmetric descriptions, obtaining three more
cases. Figure 2(b) shows an example of the case previously described.

Because of the inevitable spatial nature of robots domains, interestingly a
particular case can be mapped into multiple ones through different spatial trans-
formations. Thus, from a small set of cases, we easily generate a larger set.

5 Retrieval Step

To retrieve a case we must define a similarity function that computes the sim-
ilarity degree between the current problem Pc = ((Rc, Bc, Gc, Oppc, tc, Sc), 〈〉)
and the cases in the case base Ci = ((Ri, Bi, Gi, Oppi, ti, Si), Ai) in the interval
[0..1] (with 0 meaning no similarity at all, and 1 meaning maximum similarity).
Next we introduce the different similarity functions used to compare the features
of a case. We first compute the similarities along each feature (assuming feature
independence). Then we use a filtering mechanism based on these values to dis-
card non-similar cases and finally, we use an aggregation function to compute
the overall similarity obtaining a set of similar cases (if any).

5.1 Similarity Functions

We next define two types of similarity functions based on the features’ types
described in Section 4:
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Fig. 3. 2D Gaussian function with τx = 300 and τy = 250

Environment-based features. We use a 2D Gaussian function to compute
the degree of similarity between two points, p1 = (x1, y1) and p2 = (x2, y2) in
a 2D space. Unidimensional Gaussian functions are defined by two parameters:
one represents the reference value xr with respect to which we compare any
other value x, and the other, the maximum distance τ allowed between two
values to consider to be similar. Hence, low values for τ model very restrictive
similarities, and high values, very tolerant similarities. As we work on a 2D plane,
to define the Gaussian function we have to consider four parameters instead of
two: xr, yr, τx and τy :

G(x, y) = Ae
−( (x−xr)2

2τ2
x

+ (y−yr )2

2τ2
y

)

where xr, yr are the reference values, τx, τy , the maximum distance for each
axis and A is the maximum value of G(x, y). In our case, since we model the
similarities in the interval [0..1], A = 1. Figure 3 shows a 2D Gaussian.

We define the similarity function for two points as:

sim(x1, y1, x2, y2) = e
−( (x1−x2)2

2τ2
x

+ (y1−y2)2

2τ2
y

)

where the point (x1, y1) refers to either the robots’ or the ball’s position in
the problem and (x2, y2) refers to the positions in the case. We do not use the
heading of the robots to compute the similarity value, but for the reuse step.

Regarding the defending goal feature we define a simple binary function:

sim(G1, G2) =
{

1 if G1 = G2
0 if G1 �= G2

where G1 is the defending goal in the problem and G2, the one described in the
case.

Game-based features. We are interested in defining a function that combines
time and score since they are extremely related. As time t passes, depending
on the score of the game, we expect a more offensive or defensive behavior. We
consider as critical situations those where the scoring difference S is minimum,
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Fig. 4. (a) Strategy function for time t = 5. (b) Strategy function over time.

i.e. when the chances for any of the two teams of winning or losing the game are
still high, and thus the strategy (or behavior) of the team might be decisive. We
model the strategy for a 20 minutes game as:

strat(t, S) =

⎧⎨
⎩

t
20(S−1) if S < 0
t
20 if S = 0

t
20(S+1) if S > 0

where strat(t, S) ∈ [−1..1], with -1 meaning a very offensive strategy and 1
meaning a very defensive strategy.

Figure 4(a) depicts the behavior of the team at time t. Positive and negative
scoring differences mean that the team is winning or losing respectively. The
higher the absolute value of S is, the lower the opportunity of changing the cur-
rent score and the behavior of the team. For extreme values of S (in the interval
[−10..10]) the outcome of the function approaches zero. Otherwise, the function
value indicates the degree of intensity, either for a defensive or an offensive be-
havior. As time passes, the intensity increases until reaching maximum values of
1 and -1, (defensive and offensive, respectively). Figure 4(b) shows the behavior
of the function combining both variables.

We define the similarity function for time and score as:

simtS(t1, S1, t2, S2) = 1 − |strat(t1, S1) − strat(t2, S2)|

where t1 and S1 corresponds to the time and scoring features in the problem
and t2 and S1, the features in the case.

5.2 Retrieving a Case

Case retrieval is in general driven by the similarity metric between the new
problem and the saved cases. We introduce a novel method to base the selection
of the case to retrieve. We evaluate similarity along two important metrics:
the similarity between the problem and the case, and the cost of adapting the
problem to the case. Before explaining in more detail these metrics we first
define two types of features: controllable indices and non-controllable indices.
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cB iB( , ) > sim B thrB no no match

oppc oppi
( , ) > throppsim opp no

no match

tc Sc ti Si
( , , , ) > sim tS thr tS no no match

case c case i( , )sim

sim G iGcG( , ) ==1

yes

yes

yes

yes

no no match

Fig. 5. Filtering mechanism to compute the similarity between cases. The subindex c
refers to the current problem, and i, to a case in the case base.

The former ones refer to the captain’s and teammates’ positions (since they
can move to more appropriate positions), while the latter refers to the ball’s
and opponents’ position, the defending goal, time and score (which we cannot
directly modify).

The idea of separating the features into controllable and non-controllable is
that a case can be retrieved if we can modify part of the current problem de-
scription in order to adapt it to the description of the case. Given the domain we
are working on, the modification of the controllable features leads to a planning
process where the system has to define how to reach the positions (or adapted
positions as detailed in Section 6) of the captain and the teammates indicated
in the retrieved case in order to reuse its solution.

Similarity Value. We compute the similarity between the current problem Pc

and a case Ci using the non-controllable features. For this purpose, we filter
the case based on the individual features similarities (Figure 5). If the similar-
ities are all above the given thresholds, we then compute the overall similar-
ity value between the case and the problem. Otherwise, we consider that the
problem does not match the case. We discuss the values of these thresholds in
Section 7.

In order to compute the opponents’ similarity value we first must determine
the correspondence between the opponents of the problem and the case, i.e.
which opponent oppi from the problem description corresponds to which oppo-
nent oppj in the case description. For this purpose, we use a Branch&Bound
search algorithm in a binary tree. Each node of the tree represents either the
fact of considering a match between the pair (oppi, oppj), or the fact of not con-
sidering the match between this pair. As soon as the algorithm finds the optimal
correspondence, we obtain the similarity value for each pair of opponents using
the Gaussian function.

Finally, we compute the overall similarity sim between the current problem
and the case:

sim = f(simB, simtS , simOpp1 , . . . , simOppn)
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where n is the number of opponents in the case, and each argument of f corre-
sponds to the similarity value obtained for each feature. In Section 7 we discuss
the most appropriate aggregation function f .

Cost Value. This measure defines the cost of modifying the controllable fea-
tures of the problem Pc to match the case Ci. We represent the cost of adapting
the problem to a case as the maximum Euclidean distance dist between the
players’ positions in the current problem and the adapted positions in the case
(after obtaining the correspondence between the players using the same method
as for the opponents):

cost(Pc, Ci) = max
j∈{R}∪Tm

{dist(posj, pos′j)}

where R corresponds to the captain, Tm = {tm1, tm2, tm3}, to the teammates,
posj represents the position of j in the problem description and pos′j , the position
of j in the case description.

After computing the similarities between the problem and the cases, we obtain
a list of potential cases from where we must select one for the reuse step. We
consider a compromise between the similarity degree between the problem and
the case and the cost of adapting the problem to the case. The properties for the
best choice are to have a very similar case and to apply little adaptations to the
problem to reuse the solution of the case, while the worst choice would be low
similarity and high cost (the opposite situation). But we also have to avoid those
situations where even though the similarity is high, the problem also needs a big
adaptation (high cost) before reusing the selected case.

We then select the most similar case from the list of cases with cost lower
than a threshold thrcost:

Cr = arg max{sim(Pc, Ci) | cost(P, Ci) < thrcost}, ∀Ci ∈ LS

where LS is a list of cases with similarity over 0.4 and Cr is the case retrieved.

6 Case Reuse

After selecting the best case, the next step is to reuse its solution. Before execut-
ing the actions indicated in the case, we first adapt the current problem to the
description of the case. To this end we modify the controllable features (captain
and teammates) to those positions where the relation between the features is
the same as the one described in the case. We take the ball as the reference
point in the field. From the case retrieved we obtain the relative positions of
the players with respect to the ball. Hence, the adapted positions of the players
for the current problem are the transformations of these relative coordinates to
global coordinates, having the current position of the ball as the new reference
point.

Figure 6 shows an example. The relative position of the robot with respect
to the ball (Bi = (750, 300)) in the case retrieved is Rr

i = (−300, 0). Thus, the
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Fig. 6. The case description depicted in solid lines (Ri, Bi), and the problem descrip-
tion, in dashed lines (Rc, Bc). Adapting the position of the robot with respect to the
ball’s position described in the problem.

robot’s adapted global position in the current problem is Rc = (350, 100) since
the ball’s position is Bc = (650, 100). Briefly, the adaptation of the problem
description is based on positioning the controllable features with respect to the
ball’s position, instead of maintaining the original positions indicated in the case.
Once we compute these new locations, the robot retrieving the case (captain)
informs the rest of the teammates about the positions they should take.

7 Empirical Evaluation

We discuss the different values for the thresholds, the aggregation function we
have introduced in Section 5.2 and the first results of the system.

Environment-based features. We have used a Gaussian to model the simi-
larity function for this type of features. As we already mentioned, the function
has two parameters, τx, τy, which are used to model the maximum distance be-
tween two points that we consider to be similar. These parameters define an
ellipse (the projection of the Gaussian in the plane XY) with radius τx and τy .
All points contained in this ellipse have a G(x, y) > 0.6. Thus, we use this value
as the threshold for the ball, thrB, and opponents similarity, thropp. To set the
τ values for the ball, we empirically observed that the maximum distance we
consider the ball’s position is similar to a reference point is 30cm. for the x axis,
and 25cm. for the y axis (since the field has a rectangular shape). Thus, τx = 300
and τy = 250. Regarding the opponents’ we consider a more flatter function be-
cause the imprecision of their positions is higher than the one for the ball. We
then fix both τx and τy to 350.

Game-based features. We are specially interested in distinguishing between
those situations that take place at the end of the game with score difference close
to 0 from those that happen at the beginning of the game, since the strategy can
be very different in each of these situations. After analyzing the values obtained
by the strategy function described in Section 5.1, we observed that comparing
two situations, fixing one to t1 = 0 and S1 = 0 and varying the other one through
all the possible values, the following situations occur:

– first half of the game and no matter which score:

t2 ∈ [0..10) ∧ S2 ∈ [−10..10], simtS(t1, S2, t2, S2) > 0.7
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– first part of the second half and equal scoring:

t2 ∈ [10..14] ∧ S2 = 0, simtS(t1, S2, t2, S2) < 0.7

– second part of the second half and 1 goal difference:

t2 ∈ [15..18] ∧ S2 ∈ [−1..1], simtS(t1, S2, t2, S2) < 0.7

– ending game and 2 goals difference:

t2 ∈ [19..20] ∧ S2 ∈ [−2..2], simtS(t1, S2, t2, S2) < 0.7

As we can see, fixing the threshold thrtS to 0.7 allows us to separate the situations
previously mentioned.

Aggregation function. We tested four different functions: the mean, the
weighted mean, the minimum and the harmonic mean. The minimum function
results in a very restrictive aggregation function since the overall outcome is
only based on the lowest value. Hence, lower values penalize high values rapidly.
Regarding the harmonic mean, for similar values, its behavior is closer to the
mean function. While for disparate values, the lower values are highly considered
and the outcome decreases (although not as much as with the minimum func-
tion) as more lower values are taken into account. On the contrary, the mean
function rapidly increases the outcome for high values, and does not give enough
importance to low values. Finally, the weighted mean does not make difference
between low and high values either, since the importance of each value is given
by their weights. If a low value has a low weight and the rest of the values are
all high, the outcome is slightly affected and results high anyway.

We are interested in obtaining an aggregation function that considers all val-
ues as much as possible but highlighting the lower ones. This is an important
property as the values we are considering are similarity values. Hence, if one of
the features has a low similarity, the overall similarity has to reflect this fact
decreasing its value. Therefore, we use the harmonic mean as the aggregation
function f :

f(x1, ..., xn) =
n∑n

i=1
1
xi

where xi corresponds to the individual similarity values of the features.

Cost threshold. We consider worth adapting a problem to a case if the dis-
tances the robots have to travel from their original positions to the adapted
ones are short enough so the environment changes as little as possible during
this time. After observing the robots movements, we fixed the maximum distance
to translate them to 1m. Their current average velocity is 350 mm per second.
Hence, walking for 1m. takes around 2.8 seconds. Even though for now we are
fixing this value to test the current system, we have to take into account that
the threshold also depends on the opponents we are playing with. The faster
they are, the lower the threshold should be.
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Fig. 7. (a) shows simple cases which allow the robot (depicted with filled head) to
kick the ball towards the goal at every point of the field, (b) and (c) correspond to
more complex situations where we have included one or two opponents (depicted with
non-filled heads) and our robot attacking either from the front or the corners, and (d)
shows some of the problems we used to test the system so far

Experiments. We manually defined 90 cases with one player, i.e. no teammates
so far, varying the number of opponents (from 0 to 2), the time and the score
difference. We also tested 50 problems created randomly and then manually
labeled them to verify if the correct cases were retrieved using the system. We
indeed obtained always the right ones, i.e. the system retrieved the case indicated
in the labeled problem. It also computed the adapted position the robot should
take and the actions to perform from that point on. Figure 7 depicts a set of the
cases and problems created.

8 Extending the Case Definition

As previously mentioned, the solution of a case is a sequence of actions. So far
we have been comparing snapshots of the current game with cases that describe
the initial state of a game play. We believe that it would be also interesting
to consider parts of a game play (the solution of a case) as part of the problem
description of a case. The solution represents the (discrete) trajectory performed
by the robots with their related actions. Thus, instead of comparing the current
problem with the initial state of the case, we could compare it with the execution
of the solution and reuse the solution from the closest point. This way, we can
also avoid useless movements (e.g. going backwards to reach the initial position
and then going forward again executing the solution’s actions).
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Fig. 8. Case description (solid lines) and problem description (dashed lines)

To this end, cases should have a more complex structure. We should define
them by means of a graph structure or a sequence of nodes, where each node
represents a situation Si (description of the environment at time t) and arcs
represent the associated actions to go from one node to the other. Then the
retrieval step would have to consider each node Si as a potential similar case to
solve the new problem.

Given the problem and the case depicted in Figure 8, instead of position-
ing the robot in the initial state of the case (S1), we could move it to the
adapted position indicated in S2 and then continue reusing the solution from
this point.

9 Conclusion and Future Work

We have presented the initial steps towards a Case-Based Reasoning system
for deciding which actions a robot should execute in the robot soccer domain.
More precisely, we have focused our work on the retrieval and reusing steps
of the system. While we contribute concretely to robot soccer, several of the
features of the approach are applicable to general game-based adversarial envi-
ronments.

We have defined the concept of case as well as the features that describe
the state of a game, dividing them in two types: the environment-based features
and the game-based features. We have discussed the similarity functions for the
different features and we have tested different aggregation functions to compute
the overall similarity. We have introduced a separation between the controllable
and the non-controllable case indices to compute two metrics: the similarity
and the cost. We select the retrieved case based on a compromise between the
similarity and the cost of adapting the current problem to a case. Regarding the
case reuse, we have detailed the adaptation of the description of the problem to
the case retrieved and the reusing process of the solution. To test these first steps,
we have designed a simulation interface to easily modify the different functions
and parameters described.

As future work, we will continue on finishing the extension of the case descrip-
tion we have proposed in Section 8. After further testing the proposed approach
in simulation, we will move our case-based approach to real robots.
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Abstract. This paper describes the implementation of a distributed case-agent 
system where a case-base is comprised of a set of agents, where each 
computational agent is a case, rather than the standard case-base reasoning 
model where a single computational agent accesses a single case-base. This 
paper demonstrates a set of features that can be modelled in a case-agent system 
focusing on distributed self-organising hierarchical retrieval. The performance 
of the system is evaluated and compared to that of a well recognised 
hierarchical retrieval method (i.e., footprint-based retrieval). The emergent 
properties of the case-agent architecture are discussed. 

1   Introduction 

The majority of case-based reasoning (CBR) systems have taken what Plaza and 
McGinty (2006) call a: “single agent, single case base problem solving approach 
where one, usually well-maintained, case base functions as the central knowledge 
resource” (Plaza & McGinty, 2006). They cite classic examples of this approach such 
as: “Entree” (Hammond et al., 1997) and “FAQ Finder” (Burke et al.,1997). Research 
in the area of distributed CBR they categorised with two key criteria (Figure 1): 

1. how knowledge is organized or managed within the system (i.e., single vs. 
multiple case bases), and 

2. how knowledge is processed by the system (i.e., single vs multiple processing 
agents). 

The case-agents architecture, first proposed by Watson (2004), takes the most 
extreme position possible in this categorisation. Namely, the number of case bases is 
exactly equal to the number of agents, or in other words, each case is an individual 
computational agent. We will introduce the idea of the case-agent approach and 
discuss features of our implementation. The performance of the resulting system is 
compared to a k-nearest neighbour (k-NN) algorithm, compressed nearest neighbour 
(CNN) and the footprint-based retrieval algorithm (Smyth & McKenna, 1999). 

Typically, a CBR system has a single case-base  accessed by a single retrieval 
algorithm (most commonly k-NN) and an adaptation system (Aamodt & Plaza, 1994). 
In the case-agent architecture each case is itself an agent. Each agent can act  
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Fig. 1. The distributed CBR landscape (after Plaza & McGinty, 2006) 

independently with its own similarity metrics and adaptation methods. 
Communication and co-operation between agents; for example, deciding which case 
is the most similar to a query-case, is managed by broker-agents. 

2   Implementation Decisions 

The implementation of case-agents would naturally benefit from an object-oriented 
design since individual case-agents would be instances of a general class of case-
agent. Instances could inherit general functionality but show heterogeneity (Jaczynski 
& Trousse, 1998).  Microsoft .NET and C# were used. The application consists of 
three major parts modelling the case-agent approach: 

1. the case-agent representing a case from the case-base; 
2. the similarity metrics, providing information on similarity to other case-agents 

and the query-case; and 
3. the broker-agent, who creates case-agents using a case-reader, maintains 

communication between the agents, provides methods to determine the best case 
for a given query, and is central in hierarchically organising the case-agents. 

In addition, two classes providing input and output methods to the user: 

1. the case-reader which reads the cases from a given data file and creates agents;a 
2. a case drawing class that visualises the agents based on their values, thresholds, 

status and similarity towards other case-agents in the case-base. 

Our initial implementation was on a single computer and meant that we didn’t have to 
deal with distribution of agents across multiple machines. Once we had proven that 
the basic case-agent architecture worked, we distributed the case-agents across a 
network of machines. For simplicity we use TCP/IP as the communications protocol 
with all the case-agents listening on the same open port. We realise that for a fully 
robust and secure implementation this approach may not be sufficient, but it was 
sufficient for us to evaluate the self organising properties of the system. 
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3   Case-Agents 

A case-agent is modelled as an instance of the case-agent class. Each case-agent holds 
a set of value-attribute pairs taken from a case in the case-base. These values are used 
to measure the similarity of a case-agent to other case-agents. Given the fact that a 
case-agent has its own similarity metrics and adaptation methods, there is no global 
object that computes similarity or performs adaptation. In the distributed environment 
individual cases can exist on different machines with communication occurring across 
the network. However, it is not necessary for an individual case-agent to 
communicate with all other case-agents and so case-agents can be members of 
domains (effectively partitions of the case-base). Case-agents are prevented from 
comparing themselves against agents that are not from the same domain. A broker-
agent is responsible for each domain  The following sections describe the 
implementation of the main features and methods of a case-agent. 

Creation – Case-agents are created by the case-reader that reads information about a 
case from file and determines the set of value-attribute pairs that form the attributes of 
the case. The case-agent keeps a list of the attributes as well as their values. All case-
agents are active by default, meaning that they are all potential candidates to satisfy a 
query in their domain. 
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Fig. 2. The case-agent object structure 

Upon creation of a new case-agent instance new similarity metrics are created for 
the case-agent. Default similarity metrics are inherited from the case-agent class but 
these can be exchanged or modified as a result of interaction with other case-agents, 
queries or adaptations. The case-agent is identified as part of a domain by its attribute 
set. Different domains have different attribute sets that are not comparable. 

Similarity metrics – A similarity metric is an object that is created for each case-
agent. It determines how values stored in the agent can be compared against other 
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values from the same domain. We provide seven different default similarity metrics of 
two types (Amato, et al., 2003): 

1. Numeric similarities that can be calculated by comparing two numbers. This is 
implemented in six ways defining a linear drop in similarity in three ways or an 
exponential decline in similarity in three ways. Symmetry and asymmetry are 
supported. 

2. Symbolic similarity is implemented in two ways: (1)  by a similarity matrix, 
where each cell contains a similarity value, or (2) by a similarity function 
sim(v1,v2) where a similarity value is computed by some (possible knowledge 
intensive) method. Symbolic symmetry can be symmetric or asymmetric. 

Activation and deactivation – Case-agents can be activated and deactivated during 
runtime. This feature can be used in various situations to increase performance or to 
decrease the density of case-agents at certain regions of the case base or to archive 
cases. Deactivation is a useful tool with inter-case-agent communication and is 
essential to create hierarchies of case-agents to improve retrieval efficiency. 

4   Inter-agent Communication 

To provide communication between agents across a network TCP/IP is used. Broker-
agents maintain a directory of connected agents within their domain and of other 
brokers.  

Similarity metric/Distance measure – Agents use a distance measure to determine 
their similarity towards another case-agent or towards a query-agent. Distance 
measures are an important feature that allows case-agents to locate themselves in the 
problem space (Amato, et al., 2003). The distance measure: 

 determines the similarity between a case-agent and query-agent; 
 determines the distance between each case-agent within a domain; and 
 is used to hierarchical organise case-agents. 

Because similarity can be asymmetric it is important to recognise that the distance 
between case-agents can depend on the direction of comparison. Comparing agent 1 
with agent 2 might return a different similarity than comparing agent 2 with agent 1 
and hence a different distance measure. 

Parent-child relationships – In order to decrease the number of active case-agents 
performing similarity comparisons building hierarchies is efficient. Figure 3 
illustrates a common problem that one might face with all case-agents being active; 
the left set of agents is not close to the query agent, whereas the right set of agents is a 
possible solution to the query-agent. In this example however, every single agent is 
active and needs to compare themselves against the query-agent. 

A more efficient approach would be to have parent-agents measure similarity first 
and if their distance to the query falls below some threshold their children would not 
measure their similarity.  
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Case Query  

Fig. 3. All case-agents measure similarity 

 

Fig. 4. A hierarchical organisation of case-agents 

In Figure 4 only the parent-agents initially  measure their similarity to the query. 
Then since the parent-agent of the right group sees the query within its neighbourhood it 
directs its children to measure their similarity to the query. This is directly analogous to 
the hierarchical organisation of cases in Smyth & McKenna’s footprint-based retrieval 
(Smyth & McKenna, 1999), with parent-agents being equivalent to  footprint cases. 

Parent-agents – Parent-agents have special access to the active status of their children. 
Certain methods can be called from the parent-agents to modify the behaviour of the 
children. The parents themselves are identified as parent-agents by the domain’s 
broker-agent. The broker-agent makes sure that the correct case-agents are invited to 
compare themselves against a query-agent. A flat hierarchy with no parent-child 
relationships could be characterised as the broker-agent being the only parent in the 
domain.  

5   The Broker-Agent 

The broker-agent is responsible for hierarchically organising the agents within its 
domain. The algorithm used for identifying the parent-agents is a modification of the 
CNN/IB2 algorithms [Hart, 1967; Aha et al., 1991; Dasarathy, 1991; Brown, 1994) 
described in Smyth & McKenna (1999). During retrieval case-agents return a 
similarity value to their broker-agent who ranks the case-agents accordingly. The 
broker-agent would usually choose the highest ranking case-agent. However, other 
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behaviours are possible, for example the broker-agent could select a set of case-agents 
and request that the set calculate their similarity each to the other. In this way a 
maximally diverse retrieval set could be obtained. The broker-agent: 

 keeps basic information about the domain and assures that agents hosted by the 
broker comply with the domain specification through the given attribute set; 

 keeps information about the parent-agents and family (competence) groups; 
 stores similarity values from case-agents and typically selects the highest ranking 

(i.e., most similar) case-agent; 
 gives feedback to case-agents about their overall ranking; and 
 facilitates communication between the case-agents on their performance. 

User feedback – Interaction with the user can give feedback to the case-agents. As 
the case-base is a multi-dimensional space of possible solutions it is sometimes useful 
to give directional feedback rather than binary feedback in terms of yes or no. A user 
interface to the broker-agent allows more detailed feedback (Ciaccia & Patella, 2002). 
A user can select a case as the most appropriate one even though it doesn’t score the 
highest similarity value and may give additional reasons for the choice. This feedback 
gives the agents in the case-base a means of adjusting attribute weightings. 

6   Case-Agent Visualisation 

Visualising case-agents is a complex task of displaying multi-dimensional 
information. Case-agents created in our implementation have ten dimensions (taken 
from the travel case-base). To show parts of the problem space agents are drawn in 
two dimensions only (i.e., focusing on just two of the ten dimensions). Our initial 
implementation only visualises numeric dimensions. Case-agents are drawn in 
different colours depending on their status. A case-agent consists of the actual body, 
indicated by a circle that represents the set of attributes of the case-agent. The 
diameter of the circle represents the similarity threshold of that particular case-agent 
within which the case-agent considers another case-agent or a query-agent as being 
close by and therefore similar. 

 Our system draws the case-agents with a simple circle only. This does not handle 
asymmetry (i.e., that the similarity threshold might vary depending on the direction of 
comparison between case-agents) the true picture could be more complex. Moreover, 
this would be even more complex for symbolic attributes that may be highly non-
linear in nature. Figure 5 shows a screenshot of the application displaying a query-
agent and case-agents from the travel case-base. The application provides a set of 
tools to modify the similarity metrics as well as create query-agents and provides 
methods to display regions of the case base. For better understanding parent-child 
links can be displayed as well as the IP address of individual case-agents. 

7   Evaluation 

To allow comparisons with other CBR approaches the travel case-base (available 
from www.ai-cbr.org) was chosen to evaluate our prototype. The travel case-base 
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consists of approximately 1,400 holidays with information on geographical regions, 
holiday type, price, accommodation class, duration, commencement date, etc. 
Attributes range from simple numeric attributes, like price, where similarity can be 
modelled by a simple asymmetric linear function to complex symbolic attributes, like 
geographic regions with complex similarity. As a consequence the travel case-base is 
a good evaluator for CBR systems. 

 The travel case-base was modified to meet the requirements of our evaluation. 
Case-agents are created based on the data of each case but the travel case-base doesn’t 
include any domain information. This information needs to be defined as different 
agents can belong to different domains. Our implementation adds domain information 
to the case description, grouping case-agents into twelve geographic region domains. 

 Tests were performed by creating query-agents and analysing the behaviour of 
the system. The query-agent is marked as such and can be identified by broker-agents, 
that initiate retrieval. Any case-agent can be transformed into a query-agent as well, 
enabling leave-one-out testing. 

 

Fig. 5. Screenshot of the implementation 

Our evaluation aims to  demonstrate that the case-agent architecture works and that 
a similar architecture could be used in future to create CBR systems for highly 
distributed cases without having to aggregate cases into a single case-base with a 
single physical locality. Note that this differs from the virtual-case base model 
proposed by Brown et al. (1995) where data from disparate heterogeneous databases 
could be temporarily aggregated into a central virtual case repository.  

7.1   Experimental Methodology 

Our hierarchical case-agent architecture (HCA) was compared to three other retrieval 
algorithms. The first, k-NN, is the standard brute force nearest-neighbour algorithm 
where the target (query) case is compared to every case in the case-base and the most 
similar case is retrieved. k-NN therefore provides a benchmark against which to 
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compare performance. The second algorithm, CNN, is a standard way to reduce 
retrieval time by generating  an edited subset of cases. The third algorithm, FPBR, 
was an implementation of Smyth & McKenna’s (1999) footprint based retrieval 
algorithm. This algorithm has been shown to more efficient than k-NN without 
sacrificing retrieval quality like CNN. We would expect our case-agent architecture to 
show similar retrieval results to FPBR. The travel case-base was randomly divided 
into 10 different case-base sizes, ranging from 100 cases to 1000 cases, with 
accompanying sets of 400 target problems. 

7.2   Efficiency 

The first experiment evaluated the efficiency of the retrieval algorithms over the 
range of case-base sizes. Efficiency is measured as the inverse of the number of cases 
examined during retrieval. The fewer the number of cases examined the greater the 
efficiency. k-NN will provide a benchmark for inefficiency as it examines every case. 

Method: Case-bases of size n were tested with respect to their target problem sets and 
the average retrieval cost for the targets was computed. This produces an average 
retrieval cost per target problem for each case-base of size n. 
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Fig. 6a. Efficiency vs. Case-Base Size 
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Fig. 6b. Efficiency vs. Case-Base Size (detail) 
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Discussion: Figure 6 shows that FPBR, CNN, and hierarchical case-agents (HCA) are 
all clearly much more efficient than standard k-NN. Figure 6b shows the detail for 
CNN, FPBR and HCA and indicates some slight variation between the three with 
FPBR being perhaps slightly more efficient. This may be due to the random selection 
of cases  in the test case-bases or to differences in the selection of footprint cases and 
parent agents. 

7.3   Competence 

Since CNN discards cases from the case-base we would expect the competence of 
CNN to suffer. However, since FPBR and HCA do not discard any cases we would 
not expect their competence to suffer in a similar way. 

Method: Each case-base of size n is tested with respect to its set of target problems, 
and the percentage of target problems that can be correctly solved using each retrieval 
method is measured. This cost is averaged for each of the case-bases of size n to 
compute a mean competence for each case-base size and retrieval method. 
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Fig. 7. % Competence vs. Case-Base Size 

Discussion: As expected CNN performs poorly, particularly at smaller case-base 
sizes. k-NN, FPBR and HCA seem to perform similarly as shown in Figure 7. 

7.4   Quality 

In CBR solution quality is most usually thought of as a function of the distance 
between the target and the retrieved case. As the distance increases (i.e., similarity 
decreases), the amount of adaptation needed also increases  and solution quality tends 
to decrease (Leake, 1996). This experiment shows how close CNN, FPBR, and HCA 
methods get to the benchmark quality level of standard k-NN. 

Method: Each case-base of size n is tested with respect to its target problem set. The 
average similarity between target and retrieved case is computed. This similarity is 
then averaged over the case-bases of size n to produce a mean similarity per target 
problem for each case-base size. A similarity of 1.0 is an exact match and therefore of 
the highest quality. 
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Fig. 8. Quality vs. Case-Base Size 

Discussion: Once again CNN as expected performs worse with the quality of its 
retrieved cases suffering because of important cases being edited out of its case-base. 
k-NN, FPBR and HCA once the case-base size is around 500 perform at around 0.99 
(i.e., very similar). From this size upwards the case-bases are sufficiently densely 
populated for a very close match to be retrieved. HCA does seem to perform slightly 
worse around the 400 cases size but again this is probably due to the random way the 
case-bases were selected or to differences in the selection of footprint cases and 
parent-agents. 

7.5   Optimality 

Here we  are seeking to measure  the ability of a retrieval algorithm to select the 
closest case to a target problem. Standard k-NN is used as a benchmark and we 
assume it retrieves the optimal case. This will not be so for CNN since it may have 
discarded the optimal case and therefore not have  access to it.  
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Fig. 9. Percentage of Optimal Retrievals vs. Case-Base Size 
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Method: As before each case-base of size n is tested with respect to its target problem 
set. This time we measure the percentage of times each of CNN, FPBR and HCA 
select the same optimal case for a target problem as the standard k-NN algorithm. 

Discussion: As expected CNN is very poor with respect to optimality, particularly as 
the case-base size increases and more and more cases are discarded. FPBR and HCA 
both perform well with minor differences probably being due to small differences in 
the selection of footprint cases and parent agents. 

7.6   Case Distribution 

With the case-agent architecture there are numerous ways agents could be distributed 
across a network. At one extreme all the agents could reside on a single computer; at 
the other extreme each agent could be on a separate computer. We would envisage a 
commodity or product supplier probably keeping all their cases on a single server. 
The purpose of this experiment was to see if the distribution of cases influenced 
performance. A network of 10 computers was used. In random the case-agents were 
assigned to a machine randomly. In logical all the cases from a domain were assigned 
to the same computer, thus agents were distributed by domain simulating a product 
supplier offering numerous similar products. The efficiency of the retrieval (i.e., the 
number of cases examined) was compared for each approach. 

Method: As before, case-bases of size n were tested with respect to their target 
problem sets and the average retrieval cost for the targets was computed. This 
produces an average retrieval cost per target problem for each case-base of size n. 
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Fig. 10. Efficiency vs. Case-Base Size for randomly and logically distributed case-agents 

Discussion: There was no discernable difference in efficiency between random and 
logical as shown in Figure 10. The very minor variations are probably due to 
differences between the randomly generated case-bases. Thus, we can conclude that 
the physical location of the case-agents is irrelevant with respect to retrieval 
efficiency. 
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7.7   General Performance 

The general performance of the system relies on the number of cases and especially 
the number of individual similarity comparisons (Gennaro, et al., 2001). The 
comparisons of agents has a runtime of at least polynomial time with a power of two 
or higher depending on the complexity of the similarity metric definitions. With such 
poor performance for large case-bases using a two stage hierarchical retrieval process 
will significantly improve performance. Moreover, we do not need to limit ourselves 
to just two stages, hierarchies could be much deeper, improving performance more. 

8   Conclusion 

We have shown that case-agents can self organise into retrieval hierarchies with 
performance characteristics similar to a two stage retrieval method like footprint-
based retrieval. Treating cases as agents is a novel approach with emergent potential 
enabling distributed systems to model real world problems closer than normal CBR 
systems do. Cases can reside as agents on the servers of disparate commodity 
providers, yet can still act as a cohesive case-base with regard to retrieval. In 
competitive environments case-agents would permit a commodity provider to 
individualise their case-agents configurations. Another interesting possibility is the 
fact that cases from different domains can be hosted on the same system. For 
example, in a travel agency, separate domains for flights, hotels, car hire and activity 
bookings could all co-exist on the same system and respond independently to 
different aspects of a single query. 

Similarity metrics can be copied, exchanged and modified easily with potentially 
interesting applications. A variety of dynamic behaviour can be envisaged; for 
example, in the travel case-base case-agents could behave as commodities (i.e., 
holidays) and once sold or consumed, they would be deleted since they are no longer 
available. Moreover, as the commencement date of a holiday approached a case-agent 
can lower its similarity threshold and adapt its price (by lowering it) to make it more 
likely to be retrieved. This mimics the practice of discounting holidays booked at the 
last minute. 

Visualising the similarity relationships of symbolic values is a significant challenge 
but even visualising numerical values is not simple. In our implementation similarity 
thresholds have been illustrated by circles with a certain radius. However, this doesn’t 
give much insight into the behaviour of the threshold nor does it give any idea of 
whether the threshold is the same for each agent, since each agent could have a 
different similarity metric and therefore a different threshold. To find a more suitable 
solution to illustrate the similarity thresholds of cases would be of interest. This 
includes the shape of the threshold which is not necessarily symmetrical. 

This paper has described the first implementation of a case-agent system. Further 
work will investigate the emergent properties of this novel architecture and in 
particular will investigate more complex agent topologies and the use of different 
similarity metrics and adaptation methods within an agent community. 
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Abstract. In this paper, we describe a cooperative P2P bibliographi-
cal data management and recommendation system (COBRAS). In CO-
BRAS, each user is assisted by a personal software agent that helps
her/him to manage bibliographical data and to recommend new biblio-
graphical references that are known by peer agents. Key problems are:
– how to obtain relevant references?
– how to choose a set of peer agents that can provide the most relevant

recommendations?
Two inter-related case-based reasoning (CBR) components are proposed
to handle both of the above mentioned problems. The first CBR is used
to search, for a given user’s interest, a set of appropriate peers to collab-
orate with. The second one is used to search for relevant references from
the selected agents. Thus, each recommender agent proposes not only
relevant references but also some agents which it judges to be similar to
the initiator agent. Our experiments show that using a CBR approach for
committee and reference recommendation allows to enhance the system
overall performances by reducing network load (i.e. number of contacted
peers, avoiding redundancy) and enhancing the relevance of computed
recommendations by reducing the number of noisy recommendations.

1 Introduction

Maintaining an up-to-date annotated bibliographical database is a central ac-
tivity of research teams. However the multiplication of document sources (e.g.
workshops, conferences, journals, etc.) as well as the on-line availability of most
documents have contributed in making the task more complex and more time-
consuming. Actually, in addition to the classical information overload problem,
researchers have now direct access to papers text that are seldom coupled with
the complete bibliographical data. It is frequent now to start a new search ses-
sion in order to find the exact reference of an interesting paper that we have
found earlier. Fortunately, researchers usually work in like-minded teams. It is
highly possible that information we are looking for is already obtained or known
to one or more colleagues. In addition, colleagues may have useful hints about
the quality of papers and what to read if interested in a given topic. It is obvi-
ous that sharing the team bibliographical knowledge could not only enrich each

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 76–90, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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member knowledge but also reduce time and efforts required to manage personal
databases. Two key issues to handle are: which colleague (peer) to collaborate
with? and what to recommend to others? In this work, we propose a COoperative
Bibliographic Recommendation Agent System (COBRAS).

Fig. 1. COBRAS system architecture

COBRAS has a peer-to-peer architecture (depicted in figure 1) and aims at:
providing help for users to manage their local bibliographical databases and to
exchange bibliographical data among like-minded users’ groups in an implicit
and intelligent way. We consider a context of small groups (e.g. members of
laboratory, members of a research team...). Each user is associated with a per-
sonal software agent that provides different types of help such as: filling biblio-
graphical records, verifying the correctness of the information entered and more
importantly, recommending the user with relevant bibliographical references. To
perform these tasks, the personal agent collaborates with a set of peers in order
to get relevant recommendations. The CBR [1] problem solving methodology
has been successfully used by a number of recommender systems [4], [7], [9].
COBRAS is based on two CBR approaches: the first one searches for a given
user’s interest, a set of appropriate peers to collaborate with, and the second
one searches for relevant references from the selected agents. Thus, each recom-
mender agent proposes not only relevant references but also some agents which
it judges to be similar to the initiator agent. The agents are supposed to be will-
ing to cooperate for simple reasons, e.g.: they can improve their performances,
their results and their knowledge about their colleagues. Since each agent has
its own base, having various references from other peers and an idea about their
relevance for a given interest will be of great benefit.
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The paper is organised as follows. First, we give an overview of our global
system in section 2. Then, we focus on both COBRAS CBR components: the
reference recommendation system and the committee recommendation system
in section 3. Some experimental results for system validation are presented in
section 4 and related work is discussed in section 5. Finally, in section 6, we
conclude and give some directions for future work.

2 COBRAS: System Overview

COBRAS is a cooperative bibliographical reference recommendation system.
It aims at sharing references between a group of like-minded users and allows
to take advantage of past experiences of a single user or even a group of users.
In COBRAS, each agent disposes of a reference base which is an XML base
containing references related to different topics. Each bibliographical reference
is described by a record containing the principal following information:

– Bibliographical data: classical data composing a reference such as the type
(e.g. Article, In Proceedings, etc), authors, title, etc.

– Keywords: list of keywords describing the reference and introduced by the
user.

– Topics: a list of topics the reference is related to, according to the user’s
point of view. The user chooses the corresponding reference topics from a
shared topic hierarchy. This hierarchy has a tree structure and is based on the
ACM1 hierarchy related to the Computer Science domain (for more details,
see [11]). However, we stress that the same hierarchy will be used differently
by different users, i.e. the same reference can be related to different topics
by different users. For example one may index all CBR-related papers with
the same topic, e.g. CBR, while another user may index the same papers
differently: some related to memory organisation in CBR systems and others
for CBR case maintenance. A third may index the same references as all
related to lazy learning.

The recommendation process includes the following steps:

– The initiator agent observes its user’s actions on his own local database and
determines its interests. The agent applies a simple algorithm (described in
[10]) in order to compute the hottest topics of its user’s interest.

– For each hot topic, the initiator agent sends a recommendation request to
a “committee” of peers. A committee is a set of agents that are likely to
have references related to the current hot topic. We use a CBR approach to
compute the committee at which we add new agents from a Recommended
Agent List (RAL) (see section 3.2). The CBR technique is used in a coop-
erative way in order to allow reuse and sharing of past knowledge between
users.

1 http://www.acm.org/class/1998.
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– Each contacted agent (recommender agent) searches for references related to
the received request and sends result to the initiator agent. Reference search
is done using an other CBR approach in order to reuse the solution for future
similar problems and to accelerate the reference search process (see section
3.1).

– The initiator agent handles the results received from the recommender agents.
The results contain not only recommended reference lists, but also recom-
mended agents. The initiator agent applies a voting scheme in order to rank
recommended references. The k highly ranked recommended references will
be proposed to the user. Then, it reevaluates them according to its user’s be-
havior with respect to the recommended references. The agent’s committee
and the Recommended Agent List are updated according to this reevaluated
results. Finally, it sends a feedback about the evaluated references to the rec-
ommender agents.

– Each recommender agent learns from the received feedback and updates its
reference case base.

3 CBR for Reference and Committee Recommendation
in COBRAS

A recommendation request message is a triple: R =< A, T, KL > where:

– A is the sender agent identifier (initiator agent),
– T is the hot topic detected by the initiator agent,
– KL is a list of keywords that is computed from the set of keywords lists

describing references related, directly or indirectly to the topic T in the
local reference database.

A reference is indirectly related to a topic T if it is related to a topic T ′ more
specific than T .

3.1 Reference Recommendation System

When the initiator agent finds the appropriate committee, it asks all agents
belonging to this committee for references. Each contacted agent applies a CBR
cycle in order to find relevant references. A case has the following structure:

– The problem part is composed by the hot topic and the list of keywords of
the recommendation request. Problem = (T, KL).

– The solution part (Solution = (TLs, KLs, A, E)) is composed by four ele-
ments: a topic list TLs indicating where to search for references in the data-
base, a keyword list KLs describing the references found related to TLs, an
identifier of the previous initiator agent A and the evaluation of the case by
the initiator agent E. The A attributes of the different similar cases form
the list of agents to recommend by each recommender agent. This informa-
tion is used by the second CBR system for committee recommendation and
presents an example of collaboration between the two CBR components.
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The cycle is described as follows: informally the topic and the keyword list con-
tained in the request form the target problem (T, KL). The search phase is based
on a case similarity function (see equation 1) between the target case (TC) and
each source case (SC) in the reference case base. If this similarity is above a
given specified threshold σc, then the case will be recalled.

SimCase(TC, SC) = α SimTopics(TC.T, SC.T ) +
β SimKeywords(TC.KL, SC.KL) (1)

We face two cases: the first case happens when the recommender agent does
not find similar cases in its reference case base, so it searches directly in the
bibliographical base for references that match the received query by applying
a specific search algorithm (see 3.1) and sends only a list of recommended ref-
erences to the initiator agent. The second one is when the recommender agent
finds similar cases in its reference case base, then it goes to the reuse phase.
Having all similar cases, we apply a simple heuristic retaining only cases hav-
ing their case similarity greater than the average one. The solution of the reuse
phase is a set of signs facilitating the search in the bibliographical base. Sign
set includes topics and keywords lists used to search for reference in the biblio-
graphical database. The solution of the target problem is composed by the topic
and keyword lists of the different selected source cases. In the next step, the new
case is evaluated by the initiator agent according to the user behavior faced with
the proposed references. This evaluation indicates the relevance of the applica-
tion of that case solution on the bibliographical base and also its importance
according to the other solutions. E = (LP, AP ) where LP is the local precision
(defined in Heuristics 2 in section 3.2) of the solution of the agent and AP is
the average precision of all the solutions suggested by the other recommender
agents. Each agent will learn by adding in its case base new well evaluated cases
or by updating existing cases. If there is no solution found in the search phase,
the new formed case will be added to the reference case base. Else, if the case
exists already in the case base for the same agent (A), then the case, specifically,
the evaluation part will be updated with the new values (i.e. LP , AP ). If A is
not the same, then if the case is well evaluated (i.e. LP is close to AP ), then it
will be added to the case base.

The new case elaboration is done as follows: the problem part is the target
problem, the solution part corresponds to the topic list where the proposed
references are found, the keyword list describing these references, the identifier
of the initiator agent and its evaluation.

Note that the final request’s solution (reference list) presents the application
of each agent CBR solution on the bibliographical database and not the brute
solution returned by the CBR cycle.

Search Algorithm. When receiving a request, an agent starts to search its lo-
cal database for references that match the pair (T, KL). Informally, the keyword
list is treated as a query, the designated target topic T indicates the start point
of the document research in the local database. The agent will retrieve from the
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local database references that match the received query. Reference/query match-
ing is evaluated by a simple similarity function simRef (R, r) that measures the
similarity between a request R and a reference r. A reference r matches a request
R if their similarity is above a given specified threshold σr. The similarity func-
tion is a weighted aggregation of two basic similarity functions: topic similarity
(Simtopic) and keywords similarity (Simkeywords). Formally we have:

SimRef (R, r) = αSimtopic(R.T, r.topics) +
βSimkeywords(R.KL, r.keywords) (2)

where α and β are the basic similarity weights. We have α+β = 1. The used key-
word similarity function is a simple function measuring the number of common
words between two lists. Formally:

SimKeywords(A, B) =
|A ∩ B|
|A ∪ B| (3)

The topic similarity measure uses the topics hierarchical structure. The ap-
plied heuristics is the following: the similarity between two topics depends on
the length of the path that links the two topics and on the depth of the topics in
the hierarchy [7]. Recall that in a tree, there exists only one path between any
two nodes. The deeper the nodes are, the more they represent specific topics,
hence the more similar they are. Formally we have:

SimTopics(T1, T2) = 1 − path(T1, MSCA(T1, T2)) + path(T2, MSCA(T1, T2))
path(T1, root) + path(T2, root)

(4)
where path(a, b) is the path length between nodes a and b, root is the topic’s tree
root and MSCA(a, b) returns the most specific common ancestor of nodes a and
b in the topic tree. Using these similarity functions, the local agent returns the m
most relevant references that match the received request. Starting from the target
topic R.T , the agent will search for related references which similarity is above
the threshold σr. If no sufficient references are found, it examines references
related to more specific topics, then it moves to more general topics. The retrieval
process ends when m relevant references are found or when no more topic is left.

3.2 Committee Recommendation System

A case has the following structure: Case = (T , C) where:

– Problem = T is a detected hot topic,
– Solution = C is a committee composed of interesting peer agents according

to the topic T .

Search Phase. For each topic T of the computed hot topic list, the assistant
agent applies a CBR cycle. The committee search is based on a topic similarity
(equation 4) which compares the target topic with the one of the case in the
agent’s case base. If this similarity value is above a given threshold σt, then the
case will be recalled. At the beginning, since the committee case base is empty,
the initiator agent sends the recommendation request to all available agents.
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Reuse Phase. This phase aims at finding a solution to the target problem
from a set of source cases found in the previous phase. The solution presents
an interesting peer agents committee, to which the recommendation request will
be forwarded. Based on the idea that the more the case is similar to the target
case, the more the associated agents are relevant because they were evaluated
according to that topic, we make a selection of the similar cases found at the
previous phase by retaining only cases having their similarity to the target prob-
lem greater than the average similarity of all the source cases. The solution takes
the union of the different committees of the selected source cases C at which we
add the list of recommended agents for this topic (RAL(T )). The target case =
(T , C), is such that: T is the initial topic, C = ∪Ci + RAL(T ), where Ci is the
solution of the source case i. Then, the recommendation request is broadcasted
to all peer agents composing the committee C. The Recommended Agent List
(RAL) is a list of agents recommended by the recommender agents and which
are not evaluated by the initiator agent yet. This list contains new agents to
be discovered by the related agent. It aims at ensuring some dynamicity to the
committee in order to try to track the user’s interest changing over time and to
avoid always having the same committee to solicit.

Revision Phase. The solution computed in the previous phase is then evalu-
ated by the initiator agent according the its user’s behavior with respect to the
recommended references. If the user is interested in a set of recommended refer-
ences (e.g. the user adds some references to its local base), then their associated
cases and agents will be well evaluated.

Learning Phase. This step consists of adding new committee cases to the
local agent committee case base and the selected recommended agents to the
Recommended Agent List. It is the most important step in the CBR cycle.
In fact, the selection of retained agents for future similar problems is done at
this stage. As we have explained before, the peer selection is achieved so as to
reduce committee size while preserving the result quality (result in the case of
solliciting all peers). The elaboration of the new case must be accurate in order
to store the relevant information. This phase is based on the agent addition
strategy, i.e. the criteria used in order to decide if a given responding agent will
be added to the newly formed committee or not. A natural idea is to choose all
agents which propose some relevant references. Although this simple strategy
gives encouraging preliminary results, it does not optimise the committee size.
In order to reduce the number of contacted agents, we define criteria which
evaluate each agent contribution within the selected committee. We define two
criteria-based strategies: heuristics 1 and heuristics 2.

1. Heuristics 1: consists of retaining only agents with a local recall value
greater than or equal to the average recall value of the references recommend-
ing agents. The recall represents the rate of good recommended references
among the good existing references (Recall = Good recommended references

Good references ).
2. Heuristics 2: consists of retaining only agents with a local precision value

greater than or equal to the average precision value of the recommended
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references. The precision represents the rate of good recommended references
among all the recommended ones (Precision = Good recommended references

All recommended references ).

Preliminary experimental results show that Heuristics 2 and Heuristics 1 give
very similar results, so we choose Heuristics 2 to retain agents from all recom-
mender agents. Concerning the second adding in the Recommended Agent List,
we retain only new agents, i.e. agents not yet contacted or not already evaluated
by the initiator agent for that topic. This allows for discovering new agents and
updating the committee.

4 System Validation

This section describes the evaluation of the committee formation strategy pro-
posed in section 3.2. We suppose that our Multi-Agent System (MAS) is com-
posed by n agents. All agents have the same references but they are distributed
differently and randomly among the topics of the topic tree. We fix a hot topic,
which is considered as a query and we apply our strategy in order to find appro-
priate agents. We vary each time the number of interesting agents in the MAS
and we compute the recall and the precision. By interesting agent, we mean an
agent having at least x% of the references associated with the hot topic. To eval-
uate the whole system, we considered three evaluation criteria. These criteria
are of two types :

– Quality criteria: presented by the recall and the precision measures (already
described in Heuristics 1 and Heuristics 2).

– Performance criteria: presented here by the reduction rate. It is the quotient
of the committee size over the number of all available agents (Reduction rate
= Contacted agents

Available agents ).

The simulation is performed with three different settings:

– All : we use a naive approach where the recommendation request is broad-
casted to all available agents (in our case the n agents).

– Random: we apply a simple peer selection algorithm, which randomly selects
m agents knowing that m always corresponds to the number of interesting
agents (m varies from 1 to n).

– Committee: the set of agents returned by the previous described committee
CBR approach.

In our experiments, we fixed the MAS size to 10 agents, the used topic similarity
threshold σt has the value of 0.7 in order to return the most similar references.
We suppose that an interesting agent is an agent having at least 70% of the
reference set associated with the hot topic. A single simulation consists of fixing
the minimum number of good references for the interesting agents. Interesting
agents do not necessarily have the same set of good references. The set is chosen
randomly. The other references are dispersed among the other topics in a random
manner.
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Fig. 2. Recall variation Fig. 3. Precision variation

Figure 2 shows the recall variation according to the number of interesting
agents. We notice that the recall for the committee strategy is very close to the
all strategy and clearly better than the random strategy. The recall is often
improved by the increase of the number of interesting agents when we randomly
choose the agents.

The precision variation is described in figure 3 for the three settings. The all
and committee strategies present more or less similar results, which are better
than the naive approach based on random peer selection. However, the precision
value is fairly weak with an average of 0.403. This is due to the same content of
the agent’s bases: we considered that all agents have the same references which
are distributed differently and randomly among the topics. The precision value
will be considerably improved when each agent has its own different base.

Then, in order to evaluate the performance of the system using the proposed
committee formation strategy, figure 4 shows the number of contacted agents
among ten available agents. We notice that the number of contacted agents is
reduced. For example in the case of 1 interesting agent, we solicit only 1 agent
instead of 10, for 6 and 7 interesting agents, we solicit 5 agents. The committee
is more useful when the interesting agent number is important, we contact only
6 agents while there is 9 interesting agents in the MAS and only 4 agents in
the case of 10 interesting agents while preserving similar system’s performances
(even an increase of the precision value in the case of 9 interesting agents). This
shows that our approach allows not only to contact interesting agents but also to
determine the best agents from the interesting ones. This allows to reduce noisy
recommendations and decreases the redundancy between agent’s references.
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Fig. 4. Committee Size

Finally, we can say that our committee formation strategy improves the system
performance by reducing the number of contacted agents, while it gives similar
quality results (i.e. recall and precision) as when all available agents are contacted.

Because of the dynamicity of the P2P networks, the committee found by
COBRAS contains some agents unavailable at that time. So, in the follow-
ing experimentation, we suppose that when we solicit the computed committee,
some random agents (designed by off in the figures) are off-line. We vary each
time the rate of the unavailable agents in the MAS and we compute the recall
and the precision. Committee presents the committee obtained without taking
into account the recommended agents while Committee (off = 0%) presents the
committee returned by the CBR system with the recommended agents. Com-
mittee (off = x%) means that x% of the MAS agents are off-line when the
request is sent. All the curves have nearly the same trend for the recall and
the precision values according to the increasing number of interesting agents in
the MAS (see figures 5, 6). We note that the recall value decreases as the rate of
disconnected agents increases (off). For example, in the case of 10 interesting
agents, the recall falls from 0.9 to 0.766 when off = 50%, and from 0.766 to
0.00 in the case of one interesting agent. Conversely, precision values are increas-
ing according to the decreasing of the contacted agents. Obviously, the increase
and decrease amounts of the criteria values depend on the type of the off-line
agent: if the given agent is interesting, this will often descrease the recall of the
system (e.g. the case of one interesting agent with off = 50%, the case of 4
interesting agents with off = 50%, off = 30%, off = 20%), else, this will on
the contrary improve the system precision (e.g. the case of 2 interesting agents
with off = 30%, off = 50%).
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Fig. 5. Recall variation Fig. 6. Precision variation

Fig. 7. Committee Size

Figure 7 shows that the number of contacted agents decreases according to
the increase of the off-line agents. The effect is very clear when the off rate is
very important (greater than 40% for this example).
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Experimental results show that using an appropriate CBR approach for ref-
erence and committee recommendation enhances the system performances while
preserving similar result quality (e.g. recall and precision).

5 Related Work

One interesting work directly related to our proposed system COBRAS is the
Bibster system (standing for Semantic-Based Bibliographic Peer-to-Peer System,
[3]). The main goal of Bibster is to allow a group of people to search for biblio-
graphical references in each other personal database. A peer-to-peer architecture
is used. However, only exact searching is supported. Our system represents, in a
way, an extension of Bibster where similarity-based searching is used. In addition
the search is made by software agents instead of being initiated by the users them-
selves. Collaborative bookmarking systems address a similar problem [8]. However
in the peer-to-peer collaborative bookmarking system [9], we lack a unified hierar-
chy of topics making the matching evaluation harder to compute. Another similar
work is the I-SPY information searching engine [2]. The goal of the I-SPY system
is to allow a group of like-minded people to share their searching results in an im-
plicit way. The system is built in a centralised way where a hit matrix records for
each submitted query the documents selected by the user. When a new query is
submitted, results that have been selected by other users in response to similar
past queries are provided by the system. In our system, the set of topics can be
viewed as a set of pre-specified queries. The overlap between the users queries is
more likely to happen than in the case of open vocabulary queries.

In [12], McGinty and Smyth describe a collaborative case base reasoning
(CCBR) architecture, which allows problem solving experiences to be shared
among multiple agents by trading cases. This approach was applied in person-
alised route planning and it promises a solution by allowing a given user agent
to borrow cases from similar agents that are familiar with the target territory.
Plaza et al. investigate in [14] possible modes of cooperation among homogeneous
agents with learning capabilities. They present two modes of cooperation among
agents: Distributed Case-Based Reasoning (DistCBR) and Collective Case-Based
Reasoning (ColCBR). In the DistCBR cooperation, an originating agent dele-
gates authority to another peer agent to solve the problem. In contrast, ColCBR
maintains the authority of the originating agent, since it decides which CBR
method to apply and merely uses the experience accumulated by other peer
agents. They prove that the result of cooperation is always better than no coop-
eration at all. However, these protocols are domain dependent and are the result
of a knowledge modeling process.

One fundamental issue is our system concerns the choice of appropriate peers
to collaborate with. Different approaches are proposed in the literature. Some
are based on the notion of agent reputation [5] or agent expertise [3]. Others
propose to apply automatic learning techniques in order to enable each agent
to determine if it needs to increase the committee of peers and, if it is the case,
which peer agent to invite [13]. For our purposes, the idea consists of providing
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each peer agent with the capacity of selecting a subset of peer agents having
good results according to a given recommendation request type (in our case, the
recommendation of bibliographical references). The goal is to improve the perfor-
mance of the whole system by reducing the network and the agents load. Bibster
system [3] has a peer-to-peer architecture and aims at sharing bibliographic data
between researchers. The peer selection is based on the expertise notion [6]. The
expertise is a set of ACM topics. All system peers share a common ontology
for publishing semantic descriptions of their expertise in a peer-to-peer network.
This knowledge about the other peers expertise forms the semantic topology,
which is independent of the underlying network topology. When a peer receives
a request, it decides to forward the query to peers whose expertise is similar to
the subject of the query. Peers decide autonomously to whom advertisements
should be sent and which advertisements to accept. This decision is based on
the semantic similarity between expertise descriptions. This strategy gives good
results compared with broadcasting the query to all or to a random set of peers
but does not exploit past experience to learn and improve the formed semantic
topology. Ammar et. al. [5] propose a reputation system for decentralised un-
structured P2P networks like Gnutella 2 for searching and information sharing.
The peer selection strategy is based on the agent reputation notion. A reputation
score is intended to give a general idea of the peer’s level of participation in the
system. Reputation scores are based on two essential factors: the peer capability
and its behavior. The capability of a peer depends on its processing capacity,
memory, storage capacity, and bandwidth. The behavior of a peer is determined
by the level of contribution offered by it for the common good of the P2P net-
work. Having reliable reputation information about peers can form the basis of
an incentive system and can guide peers in taking decisions. Ontañón and Plaza
[13] propose another strategy of selection of the agents that join a committee
for solving a problem in the classification tasks. The committee organization im-
proves (in general) the classification accuracy with respect to individual agents.
It is a learning framework that unifies both the when and the who issues. In
fact, the agent learns to assess the likelihood that the current committee will
provide a correct solution. If the likelihood is not high, the agent has to invite a
new agent and has to decide which agent to invite. The agent learns to form a
committee in a dynamic way and to take decisions such as whether it is better to
invite a new member to join a committee, when to individually solve a problem,
when it is better to convene a committee.

We have chosen to propose a new strategy of committee formation which will
be dynamic, extensible and adaptable. The proposed strategy exploits as much
as possible past experiences and will be adaptable with the new real constraints.
To ensure this, our strategy relies on a case-based reasoning system. It aims
at computing committee’s recommendations. In fact, when an agent detects
a hot topic, it applies a CBR cycle to find some committee recommendation
associated with the request type. The reference recommendation request will
then be forwarded to peer agents composing the recommended committee.

2 http://gnutella.wego.com/.
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6 Conclusion

We have presented a cooperative P2P bibliographical recommendation system
COBRAS. It aims at finding the most relevant references from the appropriate
agents. The system is based on two CBR components collaborating each other
in order to provide good recommendations. The first CBR reasoner aims at find-
ing an appropriate committee to ask for a given recommendation request. The
second CBR reasoners aims at finding the most relevant references from the pre-
vious computed committee. The experiments show that the combination of the
two collaborative reasoner enhance COBRAS’ performances while preserving
similar result quality as when contacting everybody. The obtained results are
encouraging. Different tracks however should be explored in order to improve all
the working process system. We will propose a strategy to maintain the agent
committee and reference case bases, and to learn forming an optimal committee
for each recommendation request type.
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Abstract. Most CBR systems in operation today are ‘retrieval-only’ in that they 
do not adapt the solutions of retrieved cases.  Adaptation is, in general, a diffi-
cult problem that often requires the acquisition and maintenance of a large body 
of explicit domain knowledge.  For certain machine-learning tasks, however, 
adaptation can be performed successfully using only knowledge contained 
within the case base itself.  One such task is regression (i.e. predicting the value 
of a numeric variable).  This paper presents a knowledge-light regression algo-
rithm in which the knowledge required to solve a query is generated from the 
differences between pairs of stored cases.  Experiments show that this technique 
performs well relative to standard algorithms on a range of datasets. 

1   Introduction 

Case-based reasoning (CBR) systems solve new problems by re-using solutions from 
similar, previously solved cases.  Solutions may be directly copied from old to new 
cases, or may be adapted to match the requirements of new problems more precisely 
[1].  The adaptation of old solutions is a difficult process that generally requires de-
tailed knowledge of both the problem domain and the task at hand.  For that reason, 
most deployed CBR systems do not attempt adaptation, but instead limit themselves 
to the retrieval of past cases. 

In general, the complexity of the adaptation task increases with the complexity of 
the problem domain.  Highly complex domains require the addition of explicit adapta-
tion knowledge, often in the form of rule-sets [2].  CBR systems that rely on this 
knowledge have been described as ‘knowledge-intensive’; those that seek to minimize 
the use of domain-specific knowledge have been called ‘knowledge-light’ [3]. 

One application amenable to a knowledge-light approach is regression, where the 
goal is to predict the value of a numeric variable.  The knowledge required to solve a 
problem case may be garnered locally from neighbouring cases at run-time, e.g. using 
the k-NN algorithm.  Alternatively, adaptation knowledge may be compiled into a 
global domain model, e.g. a neural network or linear model.  This paper describes a 
knowledge-light approach to regression that utilizes both global and local adaptation 
knowledge.  Global adaptation knowledge is automatically generated from the differ-
ences between stored cases in the case base (CB).  When a new problem case is re-
ceived, global and local knowledge are combined to predict its solution. 
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In a previous paper [4], we introduced the idea of mining adaptation knowledge 
from case differences.  This paper details how case differences can be used to con-
struct a robust, effective regression system.  It also describes how regression can be 
performed on datasets with nominal attributes, and presents new experimental results. 

Section 2 introduces case differences and shows how they can be used in a simple 
regression system.  It identifies some limitations that impair this system’s perform-
ance in many real-world domains.  Section 3 addresses these and describes how case 
differences can form the basis for a practical regression algorithm.  Finally, section 4 
presents an experimental evaluation of the technique by comparing its performance 
with standard algorithms on a range of datasets. 

2   Case Differences 

This section describes what we mean by case differences, and shows how they can be 
applied to solve regression problems in a simple domain.  This ‘first attempt’ at using 
case differences is subject to a number of limitations that must be overcome before 
the technique can be applied in real-world domains.  These limitations are discussed, 
and solutions proposed in Section 3. 

2.1   Introduction to Case Differences 

Let us assume for the moment that each case is stored as a vector of numeric attrib-
utes.  The difference between any two cases can then be calculated simply by sub-
tracting one from the other. 

Suppose we have a simple artificial housing domain where the value of a house is a 
function of its number of bedrooms and location: 

housePrice = f(numBedrooms, location) 

where problem attributes numBedrooms and location have range 1 to 6.  Given two 
sample cases of form (numBedrooms, location, housePrice), 

C1:  (4, 1, 320000),   C2:  (3, 2, 300000), 

the differences between them can be calculated and stored in a difference case: 

(C1, C2) = C1 – C2 = (1, -1, 20000). 

This difference case states that an increase of 1 in numBedrooms and a decrease of 1 
in location results in an increase of 20000 in housePrice.  It encapsulates specific 
adaptation knowledge that may be applied to solve new problems.  A difference case 
can be generated from each pair of cases in the CB, Ci – Cj.  All difference cases can 
then be stored together in their own Difference CB. 

2.2   Naïve Application of Case Differences for Regression 

Case differences can be used to solve a new query problem as follows: calculate the 
differences between the query and a neighbouring case, then account for these differ-
ences using a stored difference case. 
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Let us take an example from the housing domain: suppose we receive a query case  
Q = (4, 2, ?), so that our task is to predict the value of a house with 4 bedrooms in 
location 2.  The problem-solving process then proceeds as follows (see Fig. 1): 

1. Retrieve the nearest neighbour to Q:  NN = (5, 1, 350000) 
2. Find the difference between their problem descriptions:  (NN, Q) = (1, -1) 
3. Retrieve a difference case from the Difference CB to account for these dif-

ferences:  (C1, C2) = (1, -1, 20000) for some C1, C2 in the original CB 
4. Predict the target value for Q:  350000 – 20000 = €330,000 
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Fig. 1. Solving a query using case differences 

The problem-solving process involves calculating the differences between Q and NN, 
then using a difference case to predict the effect that these differences will have on the 
solution.  We will refer to the three cases used for each prediction, (NN, C1, C2), as an 
adaptation triple.  (These cases are referred to as an ‘estimation triple’ in [5].) 

The knowledge within a CBR system can be conveniently divided into four 
‘knowledge containers’ [6].  Generating adaptation knowledge from case differences 
involves transferring knowledge between two of them, the CB and the solution trans-
formation.  Re-using knowledge in this way eases construction and maintenance of 
the overall CBR system. 

The idea of mining adaptation knowledge from case differences has been consid-
ered in previous research.  Hanney & Keane [7] generated adaptation rules from case 
differences and applied these rules to regression problems.  McSherry [5] used case 
differences for regression in linear domains where all cases in the CB strictly domi-
nate one another.  Jarmulak et al. [8] and Craw [9] consider the application of case 
differences for a synthesis task in the medical domain.  They also proposed storing 
case differences together in their own CB. 

2.3   Problems Associated with Naïve Application of Case Differences 

The process demonstrated above has many positive aspects: it utilizes adaptation 
knowledge easily generated from the original CB; it is intuitive and easily understood.  
Unfortunately, it suffers from one major drawback: it will only work correctly in 
linear domains, i.e. domains that can be accurately represented by a linear model.  
Many real-world domains do not exhibit global linearity, including the real-world 
housing domain.  For example, increasing the number of bedrooms from 1 to 2 in one 
location will very probably have a different impact on house price than an increase 
from 5 to 6 in another location.  Non-linearity has two root causes: 
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1. The influence from each attribute on the target value may not be linear 
throughout its range.  E.g. increasing numBedrooms from 5 to 6 may gener-
ally lead to a greater increase in housePrice than an increase from 1 to 2. 

2. There may be interaction between problem attributes.  E.g. the effect of 
changing numBedrooms may vary depending on location. 

Summing up, the simple application of case differences to solve regression prob-
lems makes the assumption that the target domain is linear – it assumes that the dif-
ferences between any pair of stored cases can be used to account for the differences 
between the query and a neighbouring case. 

Previous research has recognized the problem caused by non-linearity within the 
problem domain, and some partial solutions have been proposed to address it.  Jarmu-
lak et al. [8] made the assumption of local linearity around the query, and limited the 
search for difference cases to this region of domain space.  McSherry [5] proposed 
holding all but one of a set of interacting attributes constant during problem-solving. 

The difficulty with such attempts to avoid non-linearity is that they greatly reduce 
the search space for difference cases.  Furthermore, the restrictions imposed are in-
flexible in that they do not take into account the individual characteristics of different 
domains and queries.  What is needed is some way to deal with non-linearity that 
maximizes the number of difference cases that can be considered when searching for 
solutions, and that adapts automatically to the topology of the problem domain and 
the specific characteristics of the query.  Such a method is proposed in Section 3.  As 
we shall see, it requires a greater degree of care when choosing difference cases to 
bridge the gap between a query and its neighbour. 

3   Using Case Differences for Regression 

We have shown that difference cases provide a simple method for performing regres-
sion using CBR.  Unfortunately, their naïve application may not perform well in non-
linear domains, because differences between cases in one part of domain space may 
not have the same effect on the target value as differences in another. 

Having calculated the differences between the query and a neighbour, then, our 
aim is to find a difference case that correctly accounts for these differences while also 
taking non-linearity in the problem domain into account.  Local linear regression 
(LLR) can help us achieve this goal (see [10] for an introduction to local linear mod-
eling).  In particular, LLR can act as a useful heuristic in two ways: 

1. LLR can identify those difference cases most likely to be useful in solving 
any particular query; 

2. LLR can reduce prediction error by helping to avoid noisy cases. 

Sections 3.1 and 3.2 discuss each of these aspects in turn.  Section 3.3 describes 
how overall prediction error can be reduced by combining several predictions.  Sec-
tion 3.4 looks at how nominal attributes can be accommodated in the problem-solving 
process. 
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3.1   Using Local Linear Regression to Help Choose Difference Cases 

Let us begin by re-examining the example used in Section 2.2.  The differences be-
tween query Q and neighbouring case NN were calculated as: 

(NN, Q) = (1, -1). 

A difference case was found to predict the effect of these differences on housePrice: 

(C1, C2) = (1, -1, 20000). 

The question is: can this difference case actually be applied here?  Logically, the 
answer is that it applies if the impact that changes in numBedrooms and location have 
on housePrice is the same in the area of domain space around Q as in the area around 
C1 and C2.  More generally, difference cases can be applied to solve a query if the 
cases used in their construction come from an area of domain space similar to that 
around the query, where similar areas of domain space are those where changes in 
problem attributes have the same impact on target value.  That is, similar areas of 
domain space have similar rates of change of target value with respect to each prob-
lem attribute. 

Suppose our problem domain has problem attributes a1, a2,…, an and solution y, i.e. 
y = f(a1, a2, …, an).  This represents a scalar field in which target function f maps Rn 
to R.  At any point, the rate of change of f with respect to each problem attribute ai is 
defined as the gradient of f:  
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This vector cannot be calculated precisely because the actual form of the target 
function is unknown.  However, since the gradient is defined as the best linear ap-
proximation to f at any particular point in Rn, it can be approximated at any point by 
constructing a local linear model and taking the slope for each problem attribute.  So 
local linear modeling allows us to calculate the gradient at any point, and gradients 
help us to choose difference cases that are likely to be applicable to the query.  The 
updated problem-solving process can be summarized as follows: 

To solve a query case, use a difference case from an area of domain space with 
similar gradient to that around the query, where gradients are approximated using 
local linear modeling. 

The gradient in those regions of domain space containing (NN, Q) and (C1, C2) 
can be approximated by taking the gradient at points Q and C2 respectively. 

Using gradients to guide the search for difference cases allows the case-differences 
algorithm to be used in non-linear as well as linear domains.  Given (NN, Q), we are 
looking for a closely matching difference case (C1, C2), where gradients around the 
query and difference case also match.  These twin objectives can be handled in four 
different ways during the search process, reflecting different levels at which they can 
be combined. 
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3.1.1   Approach 1: Don’t Consider Gradients at All 
In Section 2.3 it was stated that many real-world domains are non-linear.  Many do-
mains are roughly linear, however, and can be tackled using the basic case-
differences algorithm described in Section 2. 

Let us present this algorithm a little more formally.  Given query Q, the problem-
solving process involves two search steps and an adaptation step: 

1. A neighbouring case to the query, NN,  is found in the original CB; 
2. A difference case (C1, C2) matching (NN, Q) is found in the Difference 

CB for some C1, C2  in the original CB; 
3. Target values from NN, C1 and C2 are used to predict a target value for Q. 

Steps 1 and 2 involve searches in the original and Difference CBs, whereby a 
search case is compared with each stored case to find the most similar.  Both CBs 
have the same set of problem attributes, A.  The similarity between any two cases  
and  in either CB is calculated as follows: 

∈
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Steps 1 and 2 constitute a twin-objective search where the optimal adaptation triple 
(NN, C1, C2) to solve a particular query Q simultaneously maximizes the similarity 
between NN and Q, and between (NN, Q) and (C1, C2).  These objectives can be 
incorporated into a score for each potential triple: 

),(),(0 )C,(CQ)(NN,QNN 21SimSimScore +=  (3) 

In Step 3, the triple with the highest score is used to predict the target value for the 

query, Q
py : 

)( 21 CCNNQ yyyy p −−=  (4) 

3.1.2   Approach 2: Consider Difference Cases and Gradients Separately 
In arbitrary non-linear domains, performance is likely to be improved if difference 
cases are chosen from areas of domain space with similar gradients to that around 
the query.  This requirement can be supported by adding an additional term to  
Eq. (3): 

),(01 2CQ ∇∇+= SimScoreScore  (5) 

Each prediction now involves a multi-objective search with three objectives: 
maximize the similarity between NN and Q, (NN, Q) and (C1, C2), and 

Q∇ and 2C∇ .  Note that in linear domains where all gradients are very similar, Eq. 

(5) defaults to Eq. (3).  As non-linearity increases in the problem domain, the area of 
domain space where applicable difference cases may be found gradually reduces in 
size.  This is the flexibility that we were looking for in Section 2.3; it is also shared by 
the two search strategies described below. 
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3.1.3   Approach 3: Combine Difference Cases and Gradients in a Vector 
It can be noted that difference cases and gradients are intimately related to one an-
other.  Given query Q and neighbouring case NN, suppose we achieve a perfect 
match between (NN, Q) and DC = (C1, C2).  If the gradient at C2 is higher than 
that at Q for each attribute, then DC is likely to overestimate the effect of attribute 
differences at Q on the target value.  If it is lower, DC is likely to underestimate their 
impact.  From this we can see that difference cases and gradients may offset one an-
other, so that even if DC has smaller attribute differences than those in (NN, Q), it 
may still yield a correct prediction if the gradient at C2 is higher than that at Q.  It 
therefore makes sense to consider difference cases and gradients together when 
searching for the optimal adaptation triple. 

The differences between any two cases  and  can be stored in a difference case: 

)...,,,()...,,,( ,,
2

,
12211)( , nnn aaa ΔΔΔ=−−−= ρτρτρτ   

The predicted increase in target value y resulting from each attribute difference is 

)...,,,( ,,
2

,
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 is the slope of attribute ia  at point . 

In looking for the optimal adaptation triple (NN, C1, C2), the search process again 
has two objectives.  We want to maximize the similarity between NN and Q, as well 
as the similarity between predicted changes in target value resulting from differences 
in each problem attribute: 

),(),(2
21 C,CQNN, yyQNN ppSimSimScore +=  (6) 

This strategy can be summed up as follows: a difference case is applicable if each 
of its attribute differences has the same impact on target value as each of the attribute 
differences in (NN, Q). 

3.1.4   Approach 4: Combine Difference Cases and Gradients in a Scalar 
Let us restate the objective of our search: we are looking for a difference case that 
correctly predicts the impact of (NN, Q) on the target value.  If (NN, Q) and  

(C1, C2) have a similar predicted impact, then the actual difference in target value 

given by 21 CC yy − can be used to predict the target value for Q (using Eq. (4)). 

For any two cases  and , the overall impact of their differences on the target 
value can be predicted by taking the scalar product of ( , ) and the gradient at : 
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Difference case/gradient pairs can therefore be reduced to simple scalar values be-
fore being compared: 

),(),( ,,
3

21 CCQNNQNN pp yySimSimScore ΔΔ+=  (7) 
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3.1.5   Discussion 
The preceding subsections describe four different ways to consider gradients when 
searching for the optimal adaptation triple to solve query Q; which one works best 
will depend on the nature of the problem domain.  Approach 1 is simplest and is ade-
quate in linear domains.  Constructing a traditional linear model is even simpler, how-
ever, and is to be preferred when working with domains known to be globally linear.  
Approach 2 is likely to perform best in highly non-linear or noisy domains, where 
gradients may offer only limited assistance in choosing difference cases.  These are 
domains where k-NN has also been shown to perform well.  Approach 4 is designed 
to perform well in domains that exhibit strong local linearity, i.e. domains where local 
linear regression performs well as a prediction algorithm.  Approach 3 takes a middle 
path between 2 and 4, and is probably the best general-purpose approach for most 
problem domains. 

Note that when gradients are used to help find adaptation triples, the similarity 
function used to compare cases does not need to use global attribute weights or scal-
ing factors (see Eq. (2)).  Attributes’ influence on the target value may vary through-
out domain space, and the algorithm correctly accounts for this. 

Note also that in the best-scoring adaptation triple (NN, C1, C2), case NN may not 
be the nearest neighbour to the query.  Instead, NN, C1 and C2 are chosen together so 
as to maximize their likely usefulness in solving a particular query Q.  This is an 
example of adaptation-guided retrieval [11] – the adaptability of neighbouring cases is 
considered in addition to their proximity to the query. 

3.2   Using Local Linear Regression to Reduce Prediction Error 

Let us assume that in the original CB, errors in target values are distributed normally 
about their true values with variance v2.  Let us also assume that errors are independ-
ent of problem attribute values (i.e. the error function is homoschedastic).  Each pre-
diction uses target values from three stored cases (see Eq. (4)).  Since each has error 

variance v2, the prediction error has variance 23 v× .  If we can reduce the error 

among these three cases, variance in prediction error will be reduced threefold. 
Eq. (4) shows that the case-differences algorithm is highly local in that each pre-

diction is based on only three cases.  But in using LLR to help choose difference 
cases, the algorithm also assumes some degree of local linearity in the problem do-
main.  This local linearity can act as a useful guide when choosing cases  
(NN, C1, C2).  Recall from Section 3.1 that estimating the gradient at each case in-
volves constructing a local linear model at that point in domain space.  This local 
model can be thought of as an approximation of the target function’s mean throughout 
that area of domain space.  Cases lying further from the linear model are more likely 
to be noisy than those close to it.  This provides a simple heuristic: when choosing 
(NN, C1, C2), prefer cases that lie closer to the local linear model constructed around 
them.  Variance is reduced by biasing the choice of cases towards the local mean. 

For any case , the normalized residual )(/)( minmax yyyyr p −−=  is the dif-

ference between actual and predicted target values, normalized to lie in the range –1 
to 1.  For NN, we simply want a low residual rNN.  For C1 and C2, we want to mini-

mize the difference of their residuals, )( 21 CC rr −  – if both cases are offset from their 
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local linear model by the same distance, their predictive quality will not be affected.  
Each of the score formulas in Eq.s (3), (5), (6) and (7) can be altered to take case 
quality into account: 

)))()((3( 21 CCNN rrabsrabsScoreScore ii −+−×=  (8) 

As before, the triple with the highest score is used to predict the target value for Q. 

3.3   Combining Multiple Predictions to Reduce Prediction Error 

Each prediction is made following a search for the highest-scoring adaptation triple.  
A list of triples ordered by score can easily be maintained during this search.  The best 
n triples can each be used to make a prediction, and these predictions averaged to 
reduce the variance in overall prediction error. 

If all triples were of equally high quality, averaging the first n predictions would 

reduce the variance of the prediction error from v2 to 
n

v2

.  This gain is not in fact 

achieved because the first prediction uses the highest scoring adaptation triple; predic-
tions based on subsequent triples will, in general, have higher error.  Nevertheless, a 
suitable n can be found using cross validation so that overall prediction error is mini-
mized.  Eq. (4) is modified to take an average of n predictions, where each is 
weighted by its score: 
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3.4   Adding Support for Nominal Attributes 

So far, we have assumed that cases are represented as vectors of numeric attributes.  
The case-differences algorithm can be extended to support nominal problem attrib-
utes, provided at least one remains numeric.  Some minor changes are required to the 
algorithm described above, starting with the construction of the Difference CB.  Dif-
ferences between numeric values are found by subtracting one from the other.  Differ-
ences between any two nominal values v1 and v2 are calculated as follows: 

→≠
=

=Δ
2121

21
21 ''

''
),(

vv

u

vv

vv
vv  

(10) 

I.e. the values of v1 and v2 are concatenated with the symbol ‘→’ between them.  E.g. 
if C1 = (‘a’, 3, ‘no’) and C2 = (‘a’, 5, ‘yes’), then (C1, C2) = (‘u’, –2, ‘no→yes’). 

The operation of the basic case-differences algorithm (as presented in Section 
3.1.1) is largely unchanged in the presence of nominal problem attributes: 
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1. Given query Q, a neighbouring case NN is found using Eq. (2).  Nominal at-
tributes may have their own custom comparators, or may be treated more 
simply, e.g. sim=1 for equal values, sim=0 for unequal values. 

2. (NN, Q) is calculated using Eq. (10), and matching difference case  
(C1, C2) is found using Eq. (2).  For any two nominal values, sim=1 for 

equal values, sim=0 for unequal values. 
3. A prediction is made using target values from NN, C1 and C2 as before. 

Sections 3.1 – 3.3 describe improvements to the basic algorithm to accommodate 
non-linearity in the problem domain and to improve the robustness of predictions.  
Sections 3.1 and 3.2 require construction of local linear models around each case in 
the original CB.  These are then used as a heuristic to help choose difference cases 
likely to apply to the query, and to help avoid noisy cases.  LLR only works with 
numeric values, so how can this heuristic be used in the presence of non-numeric 
attributes?  The answer is that nominal attributes can simply be ignored, and local 
linear models constructed using only those attributes that are numeric.  This approach 
is reasonable because local linear models are not used directly to make predictions.  
They simply guide the search for cases (NN, C1, C2), and continue to perform a useful 
role even when they are constructed using only a subset of problem attributes.  This is 
borne out in the experimental results shown below. 

4   Experimental Evaluation 

Experiments were carried out using five standard regression datasets that vary in size, 
and in number and type of problem attributes.  None has any missing values.  All nu-
meric attributes (including target values) were normalized to the range 0–1.  Leave-one-
out cross validation was used for all testing, with the exception of the Abalone dataset 
where a 90%/10% training/test split was made.  The datasets are summarized in Table 1. 

Two sets of experiments were conducted.  The first set comprised an ablation study 
in which different variants of the case-differences algorithm were compared1. This  
 

Table 1. Datasets used for experimental evaluation 

Dataset Name Problem Att. Types – 
Numeric + Nominal 

Number of Instances   
(Train + Test) 

Source 

Boston Housing 13 + 0 506 UCI [12] 
Tecator 10 + 0 195 StatLib [13] 
Abalone 7 + 1 4177 (3759 + 418) UCI 
CPU 7 + 1 209 UCI 
Servo 2 + 2 167 UCI 

                                                           
1 The implementation of the case-differences algorithm differed from the description above in 

one respect: when constructing the Difference CB, each case in the original CB was compared 
with its 10 nearest neighbours instead of with all other cases.  For a CB of size n, this limits 
the size of the Difference CB to )10( n× . 
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showed how improvements in performance were related to different parts of the algo-
rithm.  The second set of experiments compared the case-differences approach with a 
number of standard regression techniques. 

Experiment 1 – comparing different variants of the case-differences algorithm 
Different variants of the case-differences algorithm were compared for each dataset in 
turn.  These results were then aggregated to show the overall performance of each 
variant relative to the basic algorithm (variant 1).  Results are shown in Fig. 2. 

The following variants of the algorithm were compared (left to right in each chart 
in Fig. 2): 

1. Basic case-differences algorithm (see Section 3.1.1).  A single adaptation tri-
ple was used for each prediction.  Difference case (C1, C2) was chosen 
from any part of domain space to provide the closest match to (NN, Q). 

 

Fig. 2. Experiment 1 – Results 
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2. Basic case-differences algorithm with a nearest-neighbour heuristic.  A sin-
gle triple was used for each prediction, but difference cases (C1, C2) from 
close to the query were preferred.  This heuristic has been suggested in prior 
research, and serves as a useful baseline for comparison (see Section 2.3). 

3. Several adaptation triples were averaged for each prediction (see Section 3.3) 
– the actual number used is indicated for each dataset.  In a second variation 
of this experiment, LLR was used to avoid noisy cases (see Section 3.2).  

4. As 3, but with a preference for difference cases from areas of domain space 
with a gradient similar to that around the query.  The use of gradients was 
based on Eq. (5) (see Section 3.1.2). 

5. As 4, but with treatment of gradients based on Eq. (6) (see Section 3.1.3). 
6. As 4, but with treatment of gradients based on Eq. (7) (see Section 3.1.4). 

The following conclusions may be drawn from Experiment 1: 

1. The nearest-neighbour heuristic did not improve results over the basic case-
differences algorithm.  As discussed in Section 2.3, the benefit of choosing 
difference cases from close to the query was more than offset by the reduc-
tion in search space for these cases. 

2. All enhancements to the basic algorithm improved results: using gradients to 
guide the search for difference cases, using LLR to avoid noisy cases, and 
averaging results from several predictions. 

3. The best approach to using gradients depended on the dataset concerned: 
‘grad 1’, ‘grad 2’ and ‘grad 3’ were best twice, twice and once for the five 
datasets.  Overall, the best-performing was ‘grad 2’ (described in Section 
3.1.3). 

Experiment 2 – comparing case-differences with standard regression techniques 
The second set of experiments compared the use of case-differences with the follow-
ing standard regression techniques: k-NN2, Global Linear Regression (GLR), Local 
Linear Regression (LLR)3, and MP5 regression trees4.  Results are shown in Fig. 3.  
Points to note are: 

• For all experiments involving the case-differences algorithm, LLR was used 
to avoid noisy cases and results were averaged from a number of predictions. 

• ‘Diffs – No Gradient’ is the result for the case-differences algorithm where 
gradients were not used to guide the search for adaptation triples (see Section 
3.1.1). 

• ‘Diffs – Mean Gradient’ is the average result from all three approaches to us-
ing gradients to select adaptation triples (see Sections 3.1.2–3.1.4). 

                                                           
2 The optimal k for each dataset was found using cross-validation. 
3 GLR and LLR only work with numeric attributes.  On datasets with nominal attributes, they 

were run twice: once with nominal attributes removed, and once with each nominal attribute 
replaced by an ordered set of synthetic binary attributes [14].  The better of the two results is 
shown in Fig. 3. 

4 The Weka implementation of MP5 was used with default parameter settings [14]. 
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• ‘Diffs – Best Gradient’ is the best performing of the three approaches to us-
ing gradients (see Sections 3.1.2–3.1.4).  The optimal approach for any par-
ticular dataset can be found using a subset of test cases from the original CB. 

The first chart in Fig. 3 shows the performance of all regression algorithms on each 
dataset; the second shows their performance relative to 1-NN. 

Experiment 2 prompts the following conclusions: 

1. On the datasets tested, the case-differences algorithm performed well relative 
to other regression techniques. 

 

Fig. 3. Experiment 2 – Results 
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2. The main issue when using case-differences is deciding how to treat gradi-
ents during the search for adaptation triples.  Fig. 3 shows that significantly 
better results are obtained using gradients than without them (‘Diffs – Mean 
Gradient’ versus ‘Diffs – No Gradient’).  The optimal approach for each 
dataset (‘Diffs – Best Gradient’) significantly outperformed the mean, show-
ing the benefit of setting this parameter correctly prior to problem-solving. 

The case-differences algorithm includes ‘lazy’ and ‘eager’ elements: difference 
cases and gradients are calculated in advance, but most of the problem-solving process 
is delayed until a query is received.  The algorithm also incorporates local and global 
elements: it is highly local in that each prediction is ultimately based on only a few 
cases, but global in that difference cases may come from any part of domain space.  
These characteristics may explain its good performance across contrasting datasets – it 
is best-performing on two of the five datasets, and second best on the remaining three.  
These results suggest that it may be a useful general-purpose regression algorithm. 

5   Conclusions 

Within CBR systems, the knowledge required for successful adaptation is most diffi-
cult to acquire.  Adaptation knowledge tends to be highly domain-dependent – knowl-
edge collected for one problem domain cannot generally be applied in another.  In 
addition, it is often stored in structures that are tightly integrated into application-
specific adaptation processes.  There is no general, re-usable adaptation framework in 
existence today that supports different types of applications and problem domains. 

This paper has focused on the problem of acquiring adaptation knowledge for re-
gression.  It describes a generic framework for predicting numeric values given a set 
of cases with numeric and nominal problem attributes.  For regression problems, 
enough knowledge is contained within the case base to enable successful adaptation.  
Global case knowledge is first converted to adaptation knowledge and stored in the 
form of difference cases and gradients.  This is combined with local knowledge to 
predict a solution for new query cases.  Adaptation knowledge is stored within its own 
CB, with case structure and retrieval mechanisms identical to those of the original 
CB. Adaptation therefore integrates naturally into the overall CBR system.  As a 
working algorithm, the case-differences approach has proved both effective and ro-
bust, performing well relative to standard algorithms on a range of datasets. 
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Abstract. The success of a company more and more depends on its
ability to flexibly and quickly react to changes. Combining process man-
agement techniques and conversational case-based reasoning (CCBR) al-
lows for flexibly aligning the business processes to new requirements by
providing integrated process life cycle support. This includes the adap-
tation of business processes to changing needs by allowing deviations
from the predefined process model, the memorization and the reuse of
these deviations using CCBR, and the derivation of process improve-
ments from cases. However, to effectively support users during the whole
process life cycle, the quality of the data maintained in the case base
(CB) is essential. Low problem solving efficiency of the CCBR system
as well as inconsistent or inaccurate cases can limit user acceptance. In
this paper we describe fundamental requirements for CB maintenance,
which arise when integrating business process management (BPM) and
CCBR and elaborate our approach to meeting these requirements.

1 Introduction

The economic success of an enterprise more and more depends on its ability
to flexibly align its business processes to quickly react to changes, e.g., in the
market or in technology requiring flexible ”process-aware” information systems
(PAIS) [1] to effectively support this alignment [2,3]. Authorized users must be
allowed to deviate from the pre-defined process model to deal with unanticipated
situations. For example, in a specific patient treatment process the patient’s cur-
rent medication may have to be changed due to an allergic reaction, i.e., the
process instance representing this treatment procedure may have to be dynami-
cally adapted (e.g., by deleting, adding or moving process activities). In addition
to such instance-specific changes, PAIS must be able to adapt to changes of the
underlying business processes themselves, e.g., due to reengineering efforts [4] or
the introduction of new laws. For instance, it might become necessary to inform
not only newly admitted patients about the risks of a medical treatment, but
also patients with an ongoing treatment process who have not obtained their
medication yet.

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 106–120, 2006.
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The need for more flexible PAIS has been recognized for several years [2,3].
Existing technology supports ad-hoc changes at the process instance level (i.e.,
run time adaptations of individual process instances) as well as changes at the
process type level (i.e., changes of a process model) [5]. In CBRFlow [6], for
example, we have applied conversational case-based reasoning (CCBR) to assist
users in defining ad-hoc changes and in capturing contextual knowledge about
these changes; furthermore, CBRFlow supports the reuse of information about
ad-hoc changes when defining new ones. CCBR is an extension of the CBR
paradigm, which actively involves users in the inference process [7]. A CCBR
system can be characterized as an interactive system that, via a mixed-initiative
dialogue, guides users through a question-answering sequence in a case retrieval
context (cf. Fig 3). In [8,9] we have extended our approach to a complete frame-
work for integrated process life cycle support as knowledge from the case base
(CB) is applied to continuously derive improved process models.

To provide adequate process life cycle support, the quality of the data main-
tained in the CB is essential. For example, the presence of inconsistent or inac-
curate cases in the CB is likely to reduce problem-solving efficiency and solution
quality and limit user acceptance. The need for CB maintenance arises as cases
covering ad-hoc deviations are added by users and not by experienced process
engineers and the CB incrementally evolves over time. New cases are added in
exceptional situations which have never been dealt with before. To ensure accu-
racy of the cases and to improve the performance of the CB, CB maintenance
becomes crucial when the CB grows. Due to environmental changes and process
evolution updates of the CB itself become necessary. Potential process improve-
ments are suggested by the CCBR system, leading to changes in the process
model. To maintain consistency of the cases in the CB and to avoid redundan-
cies between the updated process model and the CB, cases leading to or affected
by these updates must be revised or possibly removed from the CB version. The
process engineer must be supported by suitable maintenance policies and tools.

In our previous work we focused on the integration of business process man-
agement (BPM) and CCBR. We developed detailed concepts for memorization
and reuse of process instance changes, which allow to derive process (model)
improvements from cases [6,9,10]. So far, CB maintenance issues have not been
considered in detail, but are a logical next step to provide comprehensive support
for process life cycle management. Section 2 introduces basic concepts related
to process life cycle support. Section 3 discusses fundamental requirements for
CB maintenance in the BPM domain. How we meet these requirements in our
approach is described in Section 4. Section 5 discusses related work. We conclude
with a summary and an outlook in Section 6.

2 Integrated Process Life Cycle Support Through CCBR

2.1 Business Process Management Fundamentals

PAIS enable users to model, execute, and monitor a company’s business processes.
In general, orchestration of a business process is based on a predefined process
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model, called a process schema, consisting of the tasks to be executed (i.e., ac-
tivities), their dependencies (e.g., control and data flow), organizational entities
performing these tasks (i.e., actors) and business objects which provide data for
the activities. Each business case is handled by a newly created process instance
and executed as specified in the underlying process schema.

For each business process (e.g., booking a business trip or handling an order)
a process type T has to be defined. One or more process schemes may exist
reflecting different versions of T . In Fig. 1, for example, process schemes S and
S′ correspond to different versions of the same process type. Based on a process
schema new process instances I1, . . . , Im can be created and executed.

completed

activated

Process Type Level

A

C

B
AND-Split

AND-Join

OR-Split

OR-Join

Process Instance I1
(original):

Process Instance Level

A

C

B

d=‘yes’

d=‘no’

Process Schema S: Process Schema S‘:

Process Instance I2
(ad-hoc changed):

completed

activated

Process Instance I3
(ad-hoc changed):

Process Type 

Change

Process Type T

Fig. 1. Different Levels of Process Change

As motivated above PAIS must support process type as well as process in-
stance changes. Changes to a process type T that are necessary to cover the
evolution of real-world business processes are performed by the process engineer
[5,11,12]. As a result we obtain a new schema version S′ of the same type T
(cf. Fig. 1) and the execution of future process instances is then based on S′.
In contrast, ad-hoc changes of individual process instances are performed by
process participants (i.e., end users). Such changes become necessary to react to
exceptional situations [2,6,13]. The effects of such instance-specific changes are
kept local to the respective process instance, i.e., they do not affect other process
instances of the same type. In Fig. 1 instance I2 has been individually modified
by dynamically deleting activity B. Thus the respective execution schema of I2
deviates from the original process schema S this instance was derived from.

2.2 Integrated Process Life Cycle Support - Overview

Fig. 2 shows how integrated process life cycle support can be achieved by com-
bining BPM technology and CCBR. At build time an initial representation of
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a business process is created either by process analysis or by process mining
(i.e., by observing process and task executions) (1). At run time new process
instances can then be created from the predefined process schema (2). In gen-
eral, process instances are executed according to the process schema they were
derived from, and activities are assigned to process participants to perform the
respective tasks (3). However, when exceptional situations occur at the process
instance level, process participants must be able to deviate from the predefined
schema. Users can either define an ad-hoc deviation from scratch and document
the reasons for the changes in the CB, or they can reuse a previously specified
ad-hoc modification from the CB (4). The PAIS monitors how often a particular
schema is instantiated and how often deviations occur. When a particular ad-hoc
modification is frequently reused, the process engineer is notified that a process
type change may have to be performed (5). The process engineer can then evolve
the process schema (6). In addition, existing cases which are still relevant for
the new process schema version are migrated to a new version of the CB (7).
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Fig. 2. Integrated Process Life Cycle Support (adapted from [10])

2.3 Case Representation and Reuse

In this section we describe how CCBR is used to capture the semantics of process
instance changes, how these changes are memorized, and how they can be re-
trieved and reused when similar situations occur (for details see [8]).

Case Representation. In our approach a case c represents a concrete ad-
hoc modification of one or more process instances. It provides the context of
and the reasons for the deviation (cf. Fig. 3). If no similar cases can be found
when introducing a process instance change, the user adds a new case with the
respective change information to the system. A case consists of a textual problem
description pd which briefly describes the exceptional situation that led to the
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ad-hoc deviation. The reasons for the change are described as question-answer
(QA) pairs {q1a1, . . . , qnan} each of which denotes one particular condition; QA
pairs are also used to retrieve cases when similar problems arise in the future. The
solution part sol (i.e., the action list) contains the applied change operations.

Definition 1 (Case). A case c is a tuple (pd, qaSet, sol) where

– pd is a textual problem description
– qaSet = {q1a1, . . . , qnan} denotes a set of question-answer pairs
– sol = { opj | opj = (opTypej, sj, paramListj), j = 1, ..., k} is the solution

part of the case denoting a list of change operations (i.e., the changes that
have been applied to one or more process instances)1.

The question of a QA pair is usually free text, however, to reduce duplicates it
can also be selected from a list of already existing questions in that CB. The
answer can either be free text or a structured answer expression (cf. Fig 3).
Answer expressions allow using contextual information already kept in the PAIS
(e.g., due to legal requirements), thus avoiding redundant data entry. Questions
with answer expressions can be evaluated automatically by retrieving values for
their context attributes from existing data in the system, i.e., they do not have to
be answered by users, thus preventing errors and saving time. Free text answers
are used when no suitable context attributes are defined within the system or the
user is not trained to write answer expressions. For instance, the second QA pair
in Fig. 3 contains an answer expression using the context attribute Patient.age
and can be evaluated automatically. In contrast, the answer in the first QA pair
is free text provided by the user.

All information on process instance changes related to a process schema ver-
sion S is stored as cases in the associated CB of S.

Additional lab test requiredTitle

Description An additonal lab test has to be performed as 
the patient has diabetes and is older than 40 

Question-Answer Pairs

Question Answer

Patient has diabetes? Yes

Is the patient’s age greater than 40? Patient.age > 40

Actions

Insert LabTest

Operation Type Subject Parameters

Select Operation Type Insert

Select Activity/Edge Lab Test

Please Answer the Questions

Question Answer

Patient has diabetes? Yes

Is the patient’s age greater than 40? Yes

Lab Test required

Title

125

Case ID

100%

Similarity

25

Reputation Score

Display List of Cases

Into S Between Preparation and Examination

Fig. 3. Sample CCBR Dialogs - Adding a New Case and Retrieving Similar Cases

Definition 2 (Case Base). A case base CBS is a tuple (S, {c1, . . . , cm}, freqS)
where

– S denotes the schema version the case base is related to
1 An operation opj := (opTypej, sj , paramListj) (j = 1, ..., m) consists of operation

type opTypej , subject sj of the change, and parameter list paramListj .



Case-Base Maintenance for CCBR-Based Process Evolution 111

– {c1, . . . , cm} denotes a set of cases (cf. Def. 1)
– freqS(ci) ∈ N denotes the frequency with which case ci has been (re–)used

in connection with schema version S, formally: freqS: {c1, . . . , cm} → N

Case Retrieval. When deviations from the predefined process schema become
necessary the user initiates a case retrieval dialogue in the CCBR component (cf.
Fig 3). The system then assists her in finding already stored similar cases (i.e.,
change scenarios in our context) by presenting a set of questions. Questions with
an answer expression are evaluated by automatically retrieving the values of the
context attributes. Based on this the system then searches for similar cases by
calculating the similarity for each case in the CB and it displays the top n ranked
cases (ordered by decreasing similarity) with their reputation score (for details
see Section 4.1). Similarity is calculated by dividing the number of correctly
answered questions minus the number of incorrectly answered questions by the
total number of questions in the case. The user then has different options:

1. The user can directly answer any of the remaining unanswered questions (in
arbitrary order), similarity is then recalculated and the n most similar cases
are displayed to the user.

2. The user can apply a filter to the case-base (e.g., by only considering cases
whose solution part contains a particular change operation). Then all cases
not matching the filter criteria are removed from the displayed list of cases.

3. The user can decide to review one of the displayed cases. The case description
is then shown to the user.

4. The user can select one of the displayed cases for reuse. The actions specified
in the solution part of the case are then forwarded to and carried out by the
PAIS. The reuse counter of the case is incremented.

3 Requirements for CB Maintenance

In this section we derive fundamental requirements for CB maintenance in the
described scenario. The requirements are aligned with the three top-level per-
formance objectives for CBR systems (cf. [14]): problem-solving efficiency (i.e.,
average problem solving time), competence (i.e., range of target problems solved)
and solution quality (i.e., average quality of a proposed solution).

Req. 1 (Accuracy of the Cases): When using CCBR for memorization
and reuse of ad-hoc modifications the CB incrementally evolves over time as
new cases are added by end users when exceptions occur. Our approach already
guarantees syntactical correctness of the solution part, i.e., the application of
change operations to a process schema always results in a syntactically correct
process schema [2]. However, semantical correctness of cases must be ensured as
well. When cases are added to the CB by inexperienced users it can not always
be prevented that inaccurate or low quality cases are added to the CB; however,
it must at least be ensured that incorrect cases will not be reused.
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Req. 2 (Refactoring QA Pairs): Whenever possible, answer expressions
which can be automatically evaluated should be used instead of free text to
ease the retrieval process and to increase problem solving efficiency. However,
in practice free text QA pairs are entered for good reasons, e.g., the user is
unaware of relevant context attributes, she is not trained to formulate answer
expressions, or there are no suitable context attributes available in the system
when entering the case. The process engineer should be supported in all of the
scenarios described above to refactor free text to answer expressions later on.

Req. 3 (Detecting and Handling Inter-Case Dependencies): Occasion-
ally, more than one case may have been applied to a particular process instance.
Such dependencies between cases can be observed by analyzing log data (e.g.,
whenever case c1 has been applied to a process instance, case c2 has been applied
to this instance as well, i.e., inter-case dependencies exist). When two cases are
only used in combination they should be merged to increase problem solving
efficiency. When two cases are not always used in combination, but their co-
occurrence is frequent, the system should remind users to consider applying the
dependent case(s) as well (e.g., by displaying dependent cases).

Req. 4 (Support for CB Migration): Even if cases have been accurate
when they were added to the CB, they can become outdated over time. For
instance, the evolution of a process schema S (i.e., continuous adaptation schema
S to organizational and environmental changes) may reduce the accuracy of parts
of the schema-specific CB. After a process type change a subset of the knowledge
encoded in the cases may now be captured in the new process schema version
S′. The challenge is to migrate only those cases to the new CB version which
are still relevant. Cases affected by the process change must be revised by the
process engineer or removed from the CB if they are no longer needed.

Additional Requirements. When a CB evolves iteratively, the risk of in-
consistencies due to duplicate cases increases and should be mitigated. Duplicate
cases are either identical, or have the same semantics but are expressed differ-
ently. In addition, QA pairs with the same semantics, but different wording,
should be avoided, e.g., when entering a new case the user should be supported
to reuse already existing QA pairs.

4 Approach to CB Maintenance

In this section we present our approach to CB maintenance and describe how
we address the requirements from Section 3.

4.1 Accuracy of the Cases

The accuracy of the cases maintained within a CB is crucial for the overall perfor-
mance of the CBR system and consequently for the trust users have in it. Particu-
larly, if cases are added by end users adequate evaluation mechanisms for ensuring
quality become essential. Like Cheetham and Price [15] we propose to augment
the CBR cycle with the ability to determine the confidence users have in the ac-
curacy of individual solutions. In [8], we use the concept of reputation to indicate
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Fig. 4. Feedback forms

how successfully an ad-hoc modification – represented by a case – was reused in
the past, i.e., to which degree that case has contributed to the performance of the
CB, thus indicating the confidence in the accuracy of this case.

Whenever a user adds or reuses a case she is encouraged to provide feedback
on the performed process instance change. She can rate the performance of
the respective ad-hoc modification with feedback scores 2 (highly positive), 1
(positive), 0 (neutral), -1 (negative), or -2 (highly negative); additional comments
can be entered optionally (cf. Fig. 4); the reputation score of a case is then
calculated as the sum of feedback scores. While a high reputation score of a case
is an indicator of its semantic correctness, negative feedback probably results
from problems after performing a process instance change. Negative feedback
therefore results in an immediate notification of the process engineer, who may
deactivate the case to prevent its further reuse. The case itself, however, remains
in the system to allow for learning from failures as well as to maintain traceability.

During case retrieval the CCBR system displays the overall reputation score
(cf. Fig. 3) and the ratings for the past 7 days, the past month, and the past 6
months are also available to the user (cf. Fig. 4). Upon request the user can read
all comments provided in the past and decide whether the reputation of the case
is high enough for her to have confidence in its accuracy.

4.2 Refactoring QA Pairs

As mentioned cases are used to support memorization and reuse of ad-hoc de-
viations, whereas QA pairs describe the reasons for the deviation. A question is
always free text, an answer can be free text or a structured answer expression
(cf. Section 2.3). Whenever possible, answer expressions should be used instead
of free text to increase problem solving efficiency. While answer expressions can
be automatically evaluated by the system (i.e., answer values are automatically
inferred from existing data), free text answers have to be provided by the user.
However, in practice it is not always feasible to use answer expressions instead of
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free text. In the following we describe three scenarios where free text QA pairs
are entered into the system, and we sketch maintenance policies for refactoring
free text answers to formal answer expressions.

Scenario 1: The end user applies CCBR to handle an exception, but is not
knowledgeable enough to specify formal answer expressions. As the exceptional
situation has to be resolved quickly, the user enters free text QA pairs to cap-
ture the reasons for the deviation and applies the case immediately. In order to
increase problem solving efficiency the respective QA pair should be refactored
to a formal answer expression later on, if feasible. Thus, whenever the frequency
of answering a particular QA pair exceeds a predefined threshold a notification
is sent to the process engineer to accomplish this refactoring.

Scenario 2: The end user is unaware of the application context and cannot
find suitable context attributes for specifying answer expressions even though
they are available in the system. Therefore, the user enters free text to capture
the reasons for the deviation. The process engineer is not informed immediately,
but only when the respective QA pair has been answered frequently enough,
exceeding a threshold value. He can then refactor the free text to an equivalent
answer expression to be used during case retrieval instead.

Scenario 3: No suitable context attributes are available within the system
to describe the concrete ad-hoc modification. In this scenario, the user must
specify the QA pair using free text. As in Scenarios 1 and 2 the process engineer
is informed when the QA pair has been answered frequently enough. He can then
decide whether to extend the application context and to add the required context
attribute. When a new context attribute is inserted into the system, suitable
software components (adapters) for retrieving the context attribute values during
run time must be provided.

4.3 Detecting and Handling Inter-case Dependencies

Generally, several ad-hoc changes may be applied to a particular process instance
over time, and consequently several cases may exist which affect this instance.
In Figure 5, case c1 and c2 were both applied to process instance I1. Case c1 led
to the insertion of an additional activity Z between activities B and C, while the
application of case c2 resulted in the deletion of activity D.

Cases applied to the same instance may be independent of each other, or
inter-case dependencies may exist. In a medical treatment process, for example,
magnet resonance therapy (MRT) must not be performed if the patient has a
cardiac pacemaker. However, a different imaging technique like X-ray may be
applied instead. As the deletion of the MRT activity triggers the insertion of
the X-ray activity, a semantic dependency between these two ad-hoc changes
exists. Discovering such inter-case dependencies is crucial to better assist users
in defining changes for other instances later on. In order to discover inter-case
dependencies we apply process mining techniques and analyze change logs. In
our example the change log reveals that cases c1 and c2 were not coincidentally
applied together to I1 only, but always appear in combination.
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Case Base
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…

Change Log

Fig. 5. Discovery of Inter-Case Dependencies

Definition 3 (Strong Inter-Case Dependency). Let S be a process schema
with associated case base CBS and process instance set InstanceSetS. Further,
for case c ∈ CBS let InstanceSetc ⊆ InstanceSetS denote the set of all process
instances to which case c was applied. Then:

A strong inter-case dependency between c1 ∈ CBS and c2 ∈ CBS exists if
InstanceSetc1 = InstanceSetc2, i.e., case c2 has been applied to all process
instances to which c1 has been applied and vice versa.

If a strong inter-case dependency between c1 and c2 exists and the total number
of co-occurrences of these two dependent cases exceeds a given threshold n, the
process engineer is notified about the option to merge c1 and c2. In this situation
a new case c′ will be created and the original cases c1 and c2 be deactivated.2 The
problem description and the QA pairs of c1 and c2 are manually merged by the
process engineer; the solution parts sol1 and sol2, in turn, can be automatically
merged by combining the change operations of the original cases in the correct
order.

Very often cases co-occur frequently, but do not always co-occur; i.e., there is
no strong inter–case dependency between them (cf. Def. 3). In such a scenario
the cases cannot be merged. Nevertheless advanced user support can be provided
when reusing a case. Assume, for example, that case c2 has been frequently
reused for process instances on the condition that case c1 has been applied to
these instances as well (but not vice versa). When a user applies case c1 to a
process instance and the (conditional) co-occurrence rate CO(c2|c1) (see below)
exceeds a predefined threshold m <= 1, our system will suggest to also consider
applying case c2 to this instance as well.

Definition 4 (Conditional Co-Occurrence Rate). Let S be a process schema
with case base CBS and let c1, c2 ∈ CBS be two cases. The conditional co-occurence
rate CO(c2|c1) denotes the relative frequency of case c2 on the condition that case
c1 has been applied as well. Formally:

2 For traceability reasons respective cases are not deleted, but only deactivated.
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CO(c2|c1) ≡ |instanceSetc1 ∩ instanceSetc2 |
|instanceSetc1 |

Generally, when reusing a case c ∈ CBS at the instance level we present the
user all cases ck ∈ CBS \ {c} with a conditional co-occurence rate CO(ck|c)
exceeding threshold m. The qualified user can then select one or more of the
displayed cases and apply them in addition to the previously applied one.

4.4 Support for CB Migration

As discussed in Section 2.1 a PAIS must not only support ad-hoc changes of
individual process instances, but also cope with changes at the process type level.
An adaptation of process type T may become necessary to react to environmental
changes (e.g., the introduction of a new law) or to cover the evolution of business
processes. It may also be triggered by the monitoring component of the PAIS,
if a particular ad-hoc instance modification has been frequently reused and the
process engineer decides to pull this change up to the type level.

Formally, a process type change ΔT = op1 . . . opn comprises a sequence of
parameterized change operations which are applied to the original type schema
S. As a result we obtain a new schema version S′ = S + ΔT for this type. The
challenging questions are how to treat already running process instances of this
type and how to evolve case base CBS .

The execution of future process instances is based on S′ whereas already
running instances are either continued according to the old schema S or migrated
to the new one. Among other constraints the ability to migrate a particular
process instance from S to S′ depends on its current state; i.e., process instances
which have not progressed too far may be migrated to S′ and then be executed
according to the new schema, whereas instances whose state is not compliant
with S′ are still executed according to S [5]. On the one hand this enables
flexibility when dealing with environmental changes, on the other hand it ensures
consistency and correct execution behavior after the change [16,2].

When changing process schema S to S′ = S + ΔT and migrating selected
process instances to S′ we must evolve the case base CBS too. A naive solution
would be to ignore all ”old” cases for S′ (i.e., CBS′ := ∅); another extreme is
to associate all existing cases with S′ as well (i.e., CBS′ = CBS). While the
former approach discards all experiences gathered in the past, the latter leads
to an inaccurate (i.e., outdated) case base. Note that when applying change ΔT

= op1 . . . opn to process schema S a subset of the knowledge encoded in the
cases from CBS may then be captured by S′. This particularly holds true if the
type change has been triggered by the PAIS itself when the reuse counter of a
particular ad-hoc modification (i.e., case) has exceeded a given threshold.

The challenge is to migrate only those cases to CBS′ (i.e., to add them to
CBS′) which remain relevant for future reuse scenarios. This necessitates ad-
vanced mechanisms that allow to decide which cases from CBS can be retained
unchanged for CBS′ , which cases have to be adapted before adding them to
CBS′ , and which cases shall be left out of CBS′ . In order to answer these ques-
tions we have to differentiate whether the process type change triggered by one
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or more cases is relevant for all process instances based on S′ or only for a
particular subset of instances (e.g., an additional activity is only conditionally
inserted) [9]. In the following we focus on the former scenario where the solution
parts of the triggering cases are directly reflected in the new process schema S′

and take a closer look at the relationship between the solution part of a case
and the type change ΔT . Let ΔT = op1 . . . opn be a process type change applied
to schema S with associated case base CBS , resulting in the new type schema
S′. We consider an arbitrary case c = (pdc, qaSetc, solc) ∈ CBS (with solution
part solc = a1, . . . , ak) and compare it with ΔT . As the changes are relevant
for all instances we can factor out qaSetc and focus on solc only. comparison of
parameterized change operations.

– solc and ΔT are equivalent (i.e., k = n ∧ aν ≡ opν , ν = 1 . . . n): Cases
whose solution part equals ΔT are not added to CBS′ . Their ”effects” are
the same as those of the type change (e.g., case c1 in Fig 6).

– solc is a subset of ΔT (i.e., ∃ μ1 . . . μk : 1 ≤ μ1 < . . . < μk ≤ n : aν ≡
opμν , ν = 1 . . . k): Cases whose solution part is a subset of ΔT are not added
to CBS′ as their effects are completely covered by the type change (e.g., case
c3 in Fig 6).

– solc and ΔT are disjoint (i.e., aν �= opμ, ν = 1 . . . k, μ = 1 . . . n): Since
the effects of case c are not covered by S′ c should be added to CBS′ . Later
reusability requires that actions a1, . . . , ak remain correctly applicable to
S′. Note that this might not always be possible due to conflicting change
operations. Change ΔT , for example, might delete an activity from S (e.g.,
(delete, B)) to which another operation a from solc refers (e.g., a = (insert,
X, Between A and B)). We use advanced conflict tests to detect such situa-
tions. If no conflicts between solc and ΔT exist, case c can be added to CBS′

without further adaptation. Otherwise, the process engineer has to adapt the
case in a way that it becomes applicable to S′ as well (e.g., by changing the
parameterization of actions from solc) (e.g., case c2 in Fig 6).

– solc is a superset of ΔT (i.e., ∃ ν1 . . . νn : 1 ≤ ν1 < . . . < νn ≤ k :
opμ ≡ aνμ , μ = 1 . . . n): Cases whose solution part is a proper superset of the
type change are not directly migrated to CBS′ . Instead, the process engineer
decides whether to add c to CBS′ and, if so, how to adapt it. The default
adaptation in our system suggests (logically) removing those actions from
the solution part of the case whose effects are already captured by S′ (i.e.,
sol′c:= solc¬{aν1 . . . aνn}) (e.g., case c4 in Fig 6).

– solc and ΔT are partially overlapping: Cases in this category are not
automatically migrated to CBS′ . The system supports the process engineer
by determining those actions of solc whose effects are not reflected by S′

(i.e., by calculating the difference set solc¬ΔT ). The process engineer might
then decide to migrate case c, after adapting its solution part from solc to
solc¬ΔT .

Generally, it is not sufficient to only compare the solution parts of the cases
and the process type change. When a process type change triggered by a case is
only relevant for a particular subset of process instances (e.g., a lab test should
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only be performed for patients older than 40 years suffering from diabetes), we
must also look at the corresponding QA pairs and their semantics. Reusing a
case at the instance level applies the change operations in its solution part only;
the context for this ad-hoc modification is reflected in the case’s QA pairs and
must be considered by the process engineer when pulling the solution part of
the case up to the process type level. Currently we only provide CB migra-
tion policies when a process type change is relevant for all process instances.
However, we are also investigating migration policies for the scenario just de-
scribed.
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E F A B X EC F

X Process Type 

Change

T: Insert(S,X,C,E), 

delete(S,D)
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….
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Insert(S‘,Y,E,F) })

….

Case-Base CBS‘

Process
Engineer

CB Migration

Fig. 6. CB Migration

5 Related Work

Previous research has addressed many aspects of CB maintenance. In general,
research on CB maintenance is driven by performance concerns [17] (i.e., problem
solving efficiency, CB competence and solution quality of problems solved [18]).

To improve problem solving efficiency while preserving CB competence, strate-
gies for controlling the growth of the CB [19] as well as for selective case reten-
tion have been proposed (e.g., [20,21]). In our approach, cases are used for the
memorization and the reuse of ad-hoc changes due to exceptions in the business
process. In this scenario cases cannot be deleted or only selectively added as
traceability of ad-hoc changes must be guaranteed. However, case base migra-
tion as proposed by our approach tries to tackle the same problems, aiming to
keep the size of the CB compact while preserving competence. When performing
CB migration the size of the CB is compressed without reducing the competence
of the overall system. Only cases that are still relevant are migrated to the new
version of the CB, the removed cases are covered by the new version of the
process schema (cf. Section 4.4).
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Although a significant body of research exists on CB maintenance none of
these approaches deals with inter-case dependencies (i.e., the application of one
case triggers the application of another case). In our approach CCBR is not used
as a standalone application, but in the broader context of a process management
system. This allows us to provide additional context information (e.g., two cases
have been applied to the same process instance, i.e., business transaction) facil-
itating the detection of inter-case dependencies (cf. Section 4.3).

The accuracy of the cases in the case base is crucial for the overall performance
of the CB. Therefore Cheetham and Price [15] proposed to augment the CBR
cycle with the ability to determine the confidence in the accuracy of individual
solutions. However, in our approach accuracy cannot be determined automati-
cally as the semantics of the QA pairs are unknown to the system. Instead, we
use the concept of reputation to indicate how successfully a case has been reused
in the past, thus indicating the degree of confidence in the accuracy of this case
(cf. Section 4.1).

To our knowledge refactoring of free text to answer expressions in a CCBR
system has not yet been addressed by existing approaches. They either support
structured or unstructured QA pairs, but not both at the same time.

While systematic approaches to CB maintenance like SIAM [22] provide a
general framework for building better maintainable CBR systems, this paper
focuses on the specifics of the BPM domain.

6 Summary and Outlook

We have derived basic requirements for CB maintenance in the BPM domain
(accuracy of cases, refactoring of QA pairs, detecting and handling of inter-
case dependencies, and support for CB migration), and we have presented our
approach to meeting these requirements. To maintain case quality we apply
the concept of reputation score indicating how successfully a case has been
applied in the past. Refactoring QA pairs from free text to answer expres-
sions and our approach to dealing with inter-case dependencies contribute to
increased problem solving efficiency. Finally, in the context of process evolu-
tion we suggest CB migration to deal with outdated cases, keeping the CB
compact, while preserving its competence. Ongoing work includes the evalua-
tion of our prototype in a real world scenario. Future work will address the
problem of inconsistencies due to redundant cases as we currently only support
the reuse of QA pairs by displaying existing ones to the user when adding a
new case. We further plan the extension of our CB maintenance approach to
also provide policies for CB migration when process type changes are not rele-
vant for all process instances, but only for a particular subset. In this situation
the semantics encoded in the QA pairs must be considered when performing a
process type change. In summary, CCBR techniques contribute significantly to
enriching BPM systems with more semantics and to improving process life cycle
support.
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Abstract. The complexity and high construction cost of case bases
make it very difficult, if not impossible, to evaluate a CBR system, es-
pecially a knowledge-intensive CBR system, using statistical evaluation
methods on many case bases. In this paper, we propose an evaluation
strategy, which uses both many simple case bases and a few complex
case bases to evaluate a CBR system, and show how this strategy may
satisfy different evaluation goals. The identified evaluation goals are clas-
sified into two categories: domain-independent and domain-dependent.
For the evaluation goals in the first category, we apply the statistical
evaluation method using many simple case bases (for example, UCI data
sets); for evaluation goals in the second category, we apply different,
relatively weak, evaluation methods on a few complex domain-specific
case bases. We apply this combined evaluation strategy to evaluate our
knowledge-intensive conversational CBR method as a case study.

1 Introduction

As summarized in [1], AI research is an empirical process: selecting a task incor-
porating intelligence features, building a system exhibiting these features, and
evaluating the system in different task environments. After an intelligent system
is constructed, it is necessary to evaluate whether it does what we expect it to do
and how good its performances is. Cohen and Howe [2] extend the importance of
evaluation from assessing the performance to guiding the different AI research
phases.

Evaluation methods for intelligent systems include statistical evaluation (in-
ductive evaluation), theoretical analysis, ablation evaluation, tuning evaluation,
limitation evaluation, direct expert evaluation and characteristic analysis [3,4,5].
The ideal evaluation method among them is statistical evaluation; that is, to
execute the constructed system in different task environments in order to inves-
tigate its performance in different application contexts. This method is difficult
to apply, in general, to case-based reasoning (CBR) [6,7] because of the typ-
ical complexity of CBR applications. The complexity comes from two aspects
[8]: the CBR system itself is complex, and the task domain where it operates
is also typically complex and ill-structured. The complexity of the application
domain makes it difficult and expensive to construct a case base, especially for
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knowledge-intensive CBR systems [9] that demand a significant knowledge en-
gineering effort. Because of the complexity and heterogeneity of CBR systems,
transplanting a case base from one CBR system to another also needs consid-
erable adaptation work. Therefore, it is very hard to construct or transplant a
number of complex case bases to use in a statistical evaluation. For these rea-
sons, the evaluation of a CBR system is, to a large extent, based on one or a few
case bases, which can only provide limited evidence.

Aha [10] provides a method to generalize the evaluation result of an AI system,
which is based on one (or a few) data sets. In this method, a set of dimensions are
identified to describe the original data set, and a data set generator is created
to produce many artificial data sets with predefined values on the identified
dimensions. The target system is executed on the artificial data sets, and its
performances are recorded. The relations between differences of the system per-
formance and changes of the dimension values are studied, and a set of rules
are generated to describe the conditions under which the performance differ-
ences hold. Applying this method into CBR researches needs substantial efforts
since it is difficult to artificially construct a set of complex case bases with the
predefined dimension values.

When we look into the details of the evaluation process for CBR research, we
find that there are usually multiple evaluation goals. For instance, this includes
the efficiency of the similarity calculation method, the validity of the adapta-
tion method, the problem solving efficiency on the target application domain,
the usability or human friendliness, and the individual contributions of various
system components. Further, different evaluation goals are related to different
application scopes. Some goals are domain-dependent; that is, they need to be
evaluated on the target specific application domain, for example to determine
whether the general domain knowledge can improve, for instance, the similar-
ity matching using a knowledge-intensive method [11], or make an explanation
to the user more understandable [12]. Other goals are domain-independent, for
instance whether the sustained learning process in CBR can improve problem
solving capability. For the domain-independent goals, we can evaluate them on
either complex case bases or simple case bases. There are plenty of such simple
case bases, for instance, the data sets available at the UCI repository [13], and
there are many examples of research contributions evaluated by this data sets
within CBR community [14,15,16,17].

We propose an evaluation strategy for CBR research aiming to assess these two
types of evaluation goals (domain-dependent and domain-independent) based on
different data sources and using different evaluation methods. For the domain-
independent evaluation goals, we use the statistical evaluation over many simple
data sets, while domain-dependent goals are evaluated on one or a limited num-
ber of complex case bases using multiple weak evaluation methods. That is, this
strategy combines a statistical evaluation method with many simple case bases,
and alternatively combines limited number of complex case bases with multiple
weak evaluation methods. This evaluation strategy can provide solid evidence
for both the domain-independent goals and the domain-dependent goals. For
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the domain-independent goals, the evaluation power comes from the statistical
justification. For the domain-dependent goals, the solidity comes from whether
all the multiple weak evaluation methods can output positive outcomes.

As part of our current research, we have designed and implemented a knowled-
ge-intensive conversational case-based reasoning (KI-CCBR) system which can
capture and utilize general domain knowledge to support an efficient and natural
conversation process to complete the case retrieval task. In this paper, we use
our proposed evaluation strategy to evaluate this KI-CCBR method as a case
study.

In the next section, we give a short introduction to the evaluation methods we
have used. In Section 3, we briefly introduce our KI-CCBR method and identify
the relevant evaluation goals. In Section 4, we report how we use 36 UCI data sets
to show that the two domain-independent evaluation goals, lazy dialog learning
and query-biased similarity calculation, can improve conversation efficiency of
CCBR in general. We also evaluate the KI-CCBR method on a case base of
image processing software components, within a system designed to support
component reuse in software design. Three different evaluation methods are used:
a characteristic analysis is used to see whether the system meets the requirements
of a conversational diagnosis system; a direct domain expert assessment is used
in order to see whether the KI-CCBR method can provide a natural conversation
process; and a simulated ablation study is adopted to evaluate whether KI-CCBR
can improve the conversation efficiency and how much each knowledge-intensive
module contributes to the total improvement. We conclude in Section 6.

2 Introduction to the Evaluation Methods

The purpose of an evaluation process is to assess a system, with reference to
some selected baseline, to see whether the performance of the system is accepted
or improved. In this section, we introduce the evaluation methods used in our
study.

2.1 Statistical Evaluation (Inductive Evaluation)

The basic statistical evaluation process is one in which we define one or more
performance measures, execute both the new system and the baseline system
on many different data sets, and calculate the percentage of the data sets on
which the new system gives better performance, or test statistical significance
in relation to predefined hypotheses. Statistical evaluation is a proper method
to support the claim of generality of a system’s benefits or advantages. This
method is a strong evaluation method and is frequently used in many scientific
disciplines such as psychology or biology. Cohen [4] gives detailed information
about how to apply this evaluation method for AI research.

2.2 Characteristic Analysis

For a certain type of intelligent system, what characterizes it are usually dis-
cussed and gradually agreed upon by researchers in that field. Analyzing whether
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and to what degree a system can support the relevant characteristics is one ap-
proach to evaluate the system with respect to its possible performance. For
example, if a CBR system support all the four ’RE-’ phases [6], we may claim
that this system is a full-cycle CBR system.

2.3 Direct Expert Evaluation

When a test system can produce more acceptable solutions than we can possibly
generate beforehand as a baseline [3], or the evaluation measures involve human
common sense or psychology aspects, one method is to invite domain experts
to use the system and report back their subjective assessments. This is a weak
evaluation method because of experts’ overly generosity and their unrepresenta-
tiveness of typical users. One way to balance this shortcoming is to select experts
using different criteria, or experts from different related domains.

2.4 Ablation (Lesion, Substitution) Evaluation

Ablation evaluation [2,8] is a method for analyzing the contributions of different
modules of a system to the total performance improvement. In this type of
evaluation, one or more modules are de-activated, removed or replaced by other
comparable modules to observe changes on system performance. This method
was used to evaluate the PROTOS system [18] and the SIROCCO system [19].
One difficulty in applying this evaluation method is that it is not always feasible
to remove or de-active particular modules in a system because of the inter-
dependence among modules.

3 Knowledge-Intensive Conversational Case-Based
Reasoning

3.1 Research Overview

Conversational case-based reasoning (CCBR) [20] is a special type of CBR, which
emphasizes the difficulty to appropriately describe a new problem, i.e. to define
a new case. CCBR alleviates it through providing a mixed-initiative interactive
process to guide users to incrementally construct a new case description that is
sufficient to complete the case retrieval task.

In CCBR, an initial new case (only one or few features) is specified and
used to retrieve a set of most similar cases from the case base. A group of dis-
criminative questions are identified based on the returned cases (transformed
by the features that have values in the returned cases but not in the current
new case), and ranked according to their capabilities to discriminate the stored
cases. Both the returned cases, sorted according to their similarity values, and
the ranked questions are displayed to the user. The user either finds a satis-
factory stored case, which then terminates the case retrieval phase, or chooses
a question to answer. The newly gained answer and the current new case are
combined together to construct an updated new case. A new round of retrieval
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and question-answering is started, and this continues until the user finds a sat-
isfactory stored case or there are no discriminative questions left for the user to
choose.

A major research concern in CCBR is how to select the most discriminative
questions [14,21] and ask them in a natural way [20,22,5] to alleviate users’ cog-
nitive load demanded in the conversation process. Most of the methods used
to select questions now are knowledge-poor (KP); that is, only statistical met-
rics are used. In our research, we study the possibility of using general domain
knowledge in the conversation process [23]. We identify the following four tasks
for which general domain knowledge can be used to improve the conversation
process:

– Feature Inferencing: The features that can be inferred from the current
new case description should be added into the new case description, instead
of posting users questions.

– Knowledge-Intensive Question Ranking: The semantic relations among
discriminative questions should be taken into account during question rank-
ing. For instance, if one answer of question A, Aa, can be inferred out by one
answer of question B, Ba, question B should be asked before question A.

– Consistent Question Clustering: The questions that are connected by
some semantic relations, for example, a causal relation or subclass relation,
should be grouped and displayed together, so that users can inspect them
together and select which one to answer first.

– Coherent Question Sequencing: If a question from a higher level node
in a taxonomic structure is asked in the current question answering cycle,
the question one level lower should be asked in the next cycle, instead of
inserting other unrelated questions between them.

We classify similarity calculation methods in CBR into three categories, ac-
cording to the scope of the features that are taken into account during similarity
calculation:

– Query-Biased Similarity Methods: Only the features appearing in the
current new case (query) are taken into account during similarity calculation.

– Case-Biased Similarity Methods: Only the features appearing in the
current stored case are considered during similarity calculation.

– Equally-Biased Similarity Methods: All the features appearing in both
the current new case and the current stored case are taken into account
during similarity calculation.

We emphasize the special characteristic of the new case, partially specified,
in CCBR. If the features which have not yet been assigned values in the new
case, are considered in the similarity calculation, the similarity method will be
biased to those cases with fewer such features, instead of to those that most
satisfy the current new case (users’ attention focus). So in order to avoid the
negative influence of these features, we argue that the query-biased similarity
calculation method is more suitable for CCBR than the case-biased or equally-
biased similarity calculation methods [24].
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In addition, we introduce a lazy dialog learner into CCBR [25], which is ca-
pable of capturing and storing previous successful conversational case retrieval
processes and reusing them in the later conversational case retrieval tasks.

The implemented KI-CCBR method has been recently tested in an image
processing software component retrieval application [26].

3.2 Identified Evaluation Goals

As discussed in Section 1, the evaluation goals of this KI-CCBR method are clas-
sified into two categories. The first category contains the evaluation goals that
are valid for CCBR research in general; that is, domain-independent: whether
the query-biased similarity calculation method and the lazy dialog learner can
improve the efficiency of CCBR. The second category includes the evaluation
goals that rely on a specific application domain, the image processing compo-
nent retrieval application. This includes whether the KI-CCBR method meets
the requirements of a conversational diagnosis system, whether the KI-CCBR
method can provide users with a natural question answering process, whether the
KI-CCBR method can achieve higher efficiency compared to the knowledge-poor
CCBR method, and how the different knowledge-intensive modules contribute
to the total achievement.

In Section 4 and Section 5, we will report how we choose different evaluation
methods and test case bases for the identified evaluation goals.

4 Statistical Evaluation on UCI Data Sets

In an attempt to evaluate whether the query-biased similarity calculation method
and the lazy dialog learner can improve the efficiency of CCBR in general,
we choose the statistical evaluation method to see whether these methods can
achieve higher efficiency than their competitors on multiple simple case bases.

In order to evaluate which similarity calculation method (query-biased, case-
biased, or equally-biased) is more suitable for CCBR, we implement three variants
of CCBR within Weka [27], each of which uses a particular similarity calculation
method. In order to evaluate whether the dialog learning mechanism can improve
the conversation efficiency, we implement two more variants of CCBR also within
Weka, one of them using our dialog learning mechanism and the other not. We
summarize the statistical evaluation to these two topics in this paper, and more
detailed information can be found in our earlier studies [24,25].

The simple case bases we test are 36 classification data sets1 provided by
Weka, originally from the UCI repository [13]. Some of these case bases have
been used to test conversational CBR methods in [14,16,17]. Aha, McSherry
and Yang [28] argued that the typical case bases in CCBR applications are ir-
reducible and heterogeneous. From our perspective, it is not necessary for case
bases in CCBR to have these characteristics. For instance, in one typical CCBR
1 For the evaluation of the lazy dialog learner, we drop off the 4 biggest case bases

simply because they need too much execution time.
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application domain, fault diagnosis, it is natural for two types of faults to share
the same solution, which means the case base is reducible. Heterogeneity is only
the characteristic of one type of case bases in CCBR, which is the necessary
condition to apply the occurrence-frequency metric [20] in discriminative ques-
tion selection. However, the entropy based question selection methods, which are
adopted by more CCBR researches [29,21,30], require all the cases having the
same structure (homogeneous).

The human-computer conversation process is simulated using leave-one-out
cross validation (LOOCV). LOOCV is an extreme variant of K-fold cross val-
idation, which splits the entire n cases in one case base into n subsets, each
containing only one case. In each evaluation cycle of LOOCV, the test case, q,
is taken as a description of a new problem, referred to as the target case. Be-
fore the retrieval starts, a part of the problem description of q, a subset of the
< feature, value > pairs (10%), is taken out to construct an initial new case.
This initial new case is used for retrieval from the test case base containing the
remaining cases in the original case base. If the base case, with respect to the
target case, is returned as the most similar case, or is in the returned most similar
case group, the retrieval process is terminated successfully. Otherwise, the ques-
tion generating and ranking module will output a set of sorted discriminative
questions. A predefined question selection strategy is used to select a question
from the discriminative question list, for example selecting the first question.
The < feature, value > pair corresponding to the selected question is chosen
from the target case q and added into the current new case to form an updated
new case. Based on the updated new case, a new round of retrieval is started.
The retrieval, question selection and answering process will continue until the
successful condition or failed condition (there are no < feature, value > pairs
left to choose) is met.

The average session number of the conversations simulated by the total set of
cases in one case base is taken as the main criterion to assess the performance
of a CCBR method on that case base [20,14].

The successful termination condition of LOOCV is that the base case appears
in the first returned case group (k cases). If the query biased similarity method
is used, especially in the beginning phase of the retrieval process, the number,
m, of the cases that exactly match the partially-specified new case (and are thus
equally similar) may be larger than k. In this situation, the simulated process
randomly returns k out of them. This setting may be arbitrary. Ferguson and
Bridge [31] suggest a method to abandon exact similarities in favor of prefer-
ence relations between cases. In our case, the successful termination condition is
acceptable since the final statistical result is computed from multiple cases and
case bases using the same successful condition.

For the evaluation of the similarity calculation methods, in 31 out of total
36 case bases, the CCBR using query-biased similarity method gets better per-
formance than the other two methods (case-biased and equally-biased similarity
methods). For the assessment of the lazy dialog learner, in 29 out of total 32
case bases, the CCBR process with the lazy learner gets better performance
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than that without the learner. In this experiment, we execute the LOOCV two
rounds with the aim to evaluate the ability of the lazy learner to learn in a
long term. The results show that the lazy dialog learner is sustainable and the
dialog case base is maintainable; that is, with the dialog learning going on, the
dialog learner achieves better performance and the lazy learner requires fewer
dialog cases to be stored in the dialog case base. For all the above comparisons,
we have carried out the significance tests on the tested case bases (t-test with
the significance level 0.01), and the results give us supportive evidence (all the
observed differences in performance are significant).

5 Evaluating the KI-CCBR Method on an Image
Processing Software Component Retrieval Application

We have implemented our KI-CCBR within the CREEK system [26]2. We choose
image processing software component retrieval, exemplified by retrieving compo-
nents from the DynamicImager system [32], as the evaluation domain to assess
the domain-dependent evaluation goals. DynamicImager is an image processing
development and visualization environment, in which different image process-
ing components can be combined in various ways. Currently, the components in
the system are categorized according to their functions, and users select each
component by exploring the category structure manually. A knowledge base has
been constructed through combining image processing domain knowledge with
118 image processing components extracted from DynamicImager. In this knowl-
edge base, there are 1170 concepts, 104 features and 913 semantic relationships,
using approximately 20 relation types (e.g. has subclass, has part, causes).

As illustrated in Fig. 1, a conversational retrieval process contains one or sev-
eral conversation sessions, and for each session, there are three window panes to
move between in the computer interface. The ExtendedQuery pane is used to show
how a new case is extended through feature inferencing, and to display a detailed
explanation of why a new feature is added into the case. Based on the extended
new case, a set of stored cases are retrieved and displayed in the RetrieveResult
pane. In this pane the user can inspect the explanations about how the similar-
ity values are computed. If a user is not satisfied with the retrieved cases, she
can go to the Dialogue pane, where the discriminative questions are ranked us-
ing both the knowledge-intensive question ranking method and statistical met-
rics, and adjusted by the consistent question clustering and coherent question
sequencing processes. After the user selects a discriminative question and submits
her answer, a new conversation session is started based on the updated new case
by combining the newly gained answer with the previous new case.

5.1 Characteristic Analysis as a Sequential Diagnosis System

The CCBR process is basically a sequential diagnosis process: as more and more
problem features (evidence) are identified and added into the new case, the sys-
tem can identify the correct diagnosis (the base case) with more confidence.
2 The dialog learning mechanism is not implemented in our KI-CCBR.
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Fig. 1. The conversational case retrieval process in our KI-CCBR

McSherry [5] identifies seven desirable features (or characteristics) of an intelli-
gent sequential diagnosis system. Our implemented system supports all of these
characteristics.

– Mixed-Initiative Dialogue: Users, particularly professional users, are un-
likely to accept a conversation partner (or intelligent system) who keeps
asking a lot of questions. Instead, users prefer playing a positive role in the
conversation, i.e. to control the conversation or to volunteer data at any
stage of the conversation. Permitting users to select a question to answer
from a list is a form of mixed-initiative dialogue which is supported by most
CCBR applications. In addition, our method allows users to cancel or mod-
ify their answered questions (go to the specific session window and remove
or reselect the answered entities). Furthermore, our method clusters related
questions together, so that users can inspect the questions with different
difficulty levels, and select one to answer according to their expertise levels.
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– Feedback on the Impact of Reported Evidence: It is unacceptable
if users get no feedback from an expert (or intelligent system) after they
provide more evidence. In our method, after the user answers a question,
or modifies the initial new case or previous answered questions, the case
retrieval process and the question ranking, sequencing, clustering processes
will run immediately. The returned cases and discriminative questions will
be based on the updated evidence.

– Relevant Dialogue: The questions asked by an intelligent partner should
be relevant to the context of the problem provided by the user. We assume
that only the features appearing in the most similar cases are relevant. There-
fore, our method generates discriminative questions based only on the most
similar cases, instead of all the cases in the case base.

– Consistent Dialogue: The questions that can be answered implicitly by
the current partially specified new case should not be prompted again. Oth-
erwise, the conversation efficiency is reduced, and users are unlikely to trust
a conversation partner that repeats previously implicitly answered questions.
Furthermore, if a user provides an answer to a question that is not consistent
with that inferred from the current new case, the content of the new case
is not consistent any more. The feature inferencing process in our method
guarantees that this type of dialog inconsistency will not occur, by ensuring
that these types of questions will not be asked.

– Explanation of Reasoning: In order to improve users’ confidence in the
results of an intelligent system, it is important to provide an explanation
of how results are derived [33,34,5,12]. Our KI-CCBR method provides the
following explanations: why a new feature is added into the current new case
description through feature inferencing, why two different feature values are
partially matched through knowledge-intensive case matching [11], why a
question is ranked with highest priority in the coherent question sequencing,
and why two questions are grouped and displayed together through consis-
tent question clustering.

– Tolerance of Missing Data: Missing data stem from two aspects. First,
the cases in the case base may contain missing features. Our system’s par-
tial matching process can tolerate this type of missing data. We adopt the
occurrence-frequency metric [20] as the knowledge-poor question ranking
method, which basically takes the advantage of the presence of missing fea-
tures. In addition, our explanation-driven reasoning process [23] exploits
general domain knowledge, which may itself be incomplete. Another source
of missing data is the user’s incapability to answer every question due to the
unavailability of some observations, the user’s lack of expertise, or need for
an expensive test to obtain the answer. Our method tolerates this type of
missing data through permitting the user to choose candidate questions to
answer, instead of forcing her to answer them in a fixed sequence.

– Sensitivity Analysis: The uncertainty that is inherent in the dialogue
process, as well as the possible uncertainty in the user’s answers to questions,
means that support for sensitivity analysis is essential. Our method sup-
ports sensitivity analysis through allowing users to modify previously speci-
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fied features (answered questions) and re-execute the retrieval and question-
answering process in order to inspect the possible influences of the updated
information.

5.2 Domain Expert Evaluation of the Psychological Goals

Evaluation Goals of KI-CCBR related to psychology include the user’s cognitive
load, the ’natural’ question-answering process, and the user’s confidence in the
final results. We adopt a relatively simple or weak evaluation method, a so-called
direct expert evaluation [2], for these evaluation goals.

We invited two experts from the software engineering domain, and two experts
from the image processing domain, to test our system. Given a set of image
processing tasks, these domain experts were asked to retrieve image processing
components using both a one-shot CBR-based retrieval method and the multiple
shots KI-CCBR method. After doing so, they were required to fill in a form to
describe their subjective evaluation of the implemented system3. The resulting
analysis of the collected feedback forms suggests that:

– Based on the same initial new case, the KI-CCBR method can achieve more
useful results;

– The reasoning transparency provided by the explanation mechanisms in KI-
CCBR improves user confidence in the retrieved results;

– The feature inferencing, consistent question clustering and coherent ques-
tion sequencing mechanisms provide users with a natural question-answering
process, which helps to alleviate their cognitive loads in retrieving compo-
nents interactively;

– The straightforward question-answering query construction process helps to
reduce users’ cognitive load in constructing queries, thus enabling users with
limited domain knowledge to retrieve suitable components.

5.3 Ablation Evaluation Using Leave-One-In Cross Validation

In order to show that the KI-CCBR method does improve the conversation effi-
ciency by reducing the length of conversation sessions compared to knowledge-
poor CCBR, we execute another cross validation on the image processing com-
ponent retrieval application. Unlike the LOOCV we introduced in Session 4, we
adopt leave-one-in cross validation (LOICV) to simulate the human-computer
conversation. The difference between them is that, in LOOCV, the test case
(target case) is taken away from the case base during the case retrieval process,
while in LOICV, the test case is kept in the case base, and acted as the base
case for the simulated retrieval process4. The LOICV has been successfully used
in the CCBR community [20,22].
3 The hypotheses list and the feedback form can be found at

http://www.idi.ntnu.no/∼mingyang/research/CCRM Evaluation.pdf
4 The query-biased similarity method ensures that the test case is always included in

the case group with highest similarity value, so the successful termination condition
in LOICV, unlike that in LOOCV, is that the case group with the highest similarity
value only contains the test case itself.
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The reason why we switch from LOOCV to LOICV lies in that:

– In the UCI case bases we use in LOOCV, many of the cases in a case base
have the same solutions, so we can evaluate variant CCBR applications in a
classification context. In this context, we can choose a case, which shares the
same solution as the target case, as the base case of the target case. That
is, it is possible to execute a simulated CCBR retrieval with the target case
out of the case base.

– In the image processing software component case base, each software com-
ponent has a unique solution (i.e., the software component itself). McSherry
[21] refers to a case base with this property as an irreducible case base. The
component retrieval problem is basically an identification problem rather
than a classification problem. It is impossible to carry out a simulated CCBR
retrieval with the target case being removed from an irreducible case base,
as its unique solution is no longer represented in the case base.

Fig. 2. Relative contribution of each KI-CCBR module to overall improvement in con-
versation efficiency

In our KI-CCBR method, if we disable the four knowledge-intensive mod-
ules, Feature Inferencing, Knowledge-Intensive Question Ranking, Consistent
Question Clustering, and Coherent Question Sequencing, the system becomes a
knowledge-poor CCBR system (use only the statistical metric (occurrence fre-
quency) to rank questions). Instead of enabling all these four modules at the
same time, we enable them in a sequence of Feature Inferencing, Knowledge-
Intensive Question Ranking, and Coherent Question Sequencing5, respectively.
With the above module enabling sequence, the average conversation session num-
bers needed to find the base case are 3.70, 3.64, 3.56, and 3.12, respectively, the
latter with all modules enabled. That is, our knowledge-intensive CCBR method
improves the efficiency by using 16% fewer conversation sessions (questions) to
find the base case compared with the knowledge-poor CCBR method. Fig. 2
shows us that the relative improvements from Feature Inferencing, Knowledge-
Intensive Question Ranking, and Coherent Question Sequencing are 10%, 14%,
5 In the simulated question-answering process, only the question with the highest

priority is selected to be answered, so the enabling status of the consistent question
clustering module has no influence on the evaluation results.
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and 76%, respectively. The underlying reason why the coherent question se-
quencing module has such a major impact is that it guides users to answer the
discriminative questions using a sequence ranging from general to specific and
insisting on one description aspect instead of allowing a jump from one aspect
to another which may be unrelated. However, the degree to which each mod-
ule contributes to overall performance may depend on the different application
domains and the contents of the knowledge bases.

6 Conclusion

In this paper, we note the difficulty of evaluating CBR systems using multiple
case bases, and propose an evaluation strategy to use different data sources
to assess different evaluation goals of a CBR system. First, all the evaluation
goals are divided into two categories: domain-independent goals and domain-
dependent goals. For domain-independent goals, we can choose many simple
case bases and a statistical evaluation method for testing. For domain-dependent
goals, we can choose one or a few target domain case bases and use multiple
weak evaluation methods for testing. This evaluation strategy is applied to a
knowledge-intensive conversational CBR method as a case study. The results of
our case study indicate that such a combination of evaluation methods and test
data sources can provide more solid evaluation results than is possible with a
single evaluation method.
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Abstract. We show how case bases can be compiled into Decision Di-
agrams, which represent the cases with reduced redundancy. Numerous
computations can be performed efficiently on the Decision Diagrams. The
ones we illustrate are: counting characteristics of the case base; comput-
ing the distance between a user query and all cases in the case base;
and retrieving the k best cases from the case base. Through empirical
investigation on four case bases, we confirm that Decision Diagrams are
more efficient than a conventional algorithm. Finally, we argue that De-
cision Diagrams are also flexible in that they support a wide range of
computations, additional to the retrieval of the k nearest neighbours.

1 Introduction

Speed of response is important in Case-Based Reasoning (CBR). It is important
in embedded case-based systems: in a rapidly changing environment, actions
must be timely. It is important in interactive case-based systems: users will only
wait so long for an answer. The challenges of providing timely responses to users
of interactive case-based systems are increasing because the systems must now
support a wider range of computations. In conversational recommender systems,
for example, systems must increasingly support question selection [4] and the
computation of explanations [6].

Compilation has a long history in Computer Science as a way of improving
performance. But it is rarer in CBR. One example is Case Retrieval Nets, where
we can think of the case base as having been compiled into a graph of information
entities [3]. Another example is any system that automatically constructs an
index structure into the case base (e.g. the k-d trees described in [8]).

In this paper, we compile the case base into a Decision Diagram. Decision
Diagrams are described by Wilson [9], extending the approach of [1]. They, along
with [1,2], represent a strand of research into compiling Constraint Satisfaction
Problems (CSPs). Our contribution is to apply them to CBR, especially case-
based retrieval and to current conversational recommender systems.
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Location Bathrooms Furnished Bedrooms
Chelsea 1 Yes 2
Chelsea 1 No 2
Chelsea 2 Yes 4
Chelsea 2 Yes 3
Clapham 2 Yes 2
Clapham 1 Yes 2
Clapham 1 No 2

Fig. 1. Example case base

In Section 2.1, we explain how to compile a case base into a Decision Dia-
gram; in Section 2.2 we use the Decision Diagram to efficiently count properties
of the case base; in Section 2.3 we show how to use the Diagram to efficiently
compute the distance between a user’s query and every case in the case base;
and in Section 2.4 we explain how to efficiently retrieve the best k cases from the
Diagram. Section 3 reports empirical results on four case bases, comparing oper-
ation counts and timings, and showing much improved performance when using
Decision Diagrams. Finally, in Section 4, we argue that Decision Diagrams are
also extremely flexible in that they support a wide range of useful computations.

2 Decision Diagrams

A Decision Diagram is a directed graph, having distinguished Source and Sink
nodes. Each complete path, i.e. from Source to Sink, represents a solution to the
Constraint Satisfaction Problem (CSP), or a case in the case base, from which
the Decision Diagram was compiled. Values representing the degree to which
constraints are satisfied, or the degree to which cases match a user’s query, are
propagated and aggregated across the graph to efficiently implement key CSP
and CBR operations.

In our work, we assume that cases are ‘flat’ vectors of attribute-value pairs.
The case base we use as a running example is shown in Figure 1. The exam-
ple case base contains seven case descriptions of the kind used in case-based
recommender systems. Here, each is a London property rental.

Figure 2 shows one possible Decision Diagram for the example case base. For
m attributes, there are m + 1 layers (columns) of nodes, which we will refer to as
layers 0 to m. In the example, four attributes gives five layers of nodes. There is
only one node in layer 0, referred to as Source, and one node in layer m, referred to
as Sink. In our specialisation of the Decision Diagram formalism [9], each of layers
0 to m − 1 is associated with a case attribute, and the edges that connect to the
next layer are labelled with values for that attribute. In the example, Source is
associated with the Location attribute and so edges that connect to the next layer
are labelled with values Chelsea or Clapham ; the next layer is associated with the
Bathrooms attribute and so edges that connect to the next layer are labelled with
values 1 or 2; and so on. Sink is not associated with any attribute. Each complete
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Fig. 2. DD(7): One possible Decision Diagram for Figure 1’s case base

Location Bathrooms Furnished Bedrooms

2

SinkSource

Chelsea

Yes

No

3

4

2

Yes

Yes

1

2

1

Clapham

Fig. 3. DD(3): Another possible Decision Diagram for Figure 1’s case base

path through the graph, from Source to Sink, corresponds to a case in the case
base. In Figure 1 there are seven cases; in Figure 2 there are seven complete paths.

Now consider Figure 3, which is another Decision Diagram for the same case
base. Nodes which were separate in Figure 2 have, in effect, been merged in
Figure 3. The number of layers is the same and, crucially, there are still seven
paths through the Decision Diagram, corresponding to the seven cases.

We define the width of a Decision Diagram at any point to be the number
of edges connecting layer i to layer i + 1. For example, in Figure 3, the width
between layers 0 and 1 is two. We define the width of the Decision Diagram as a
whole to be the average of the widths between each layer, rounded to the nearest
integer. The width of Figure 2 is therefore seven: it is this wide at all points. The
width of Figure 3 is three: (2+4+4+3)/4. In this paper, we use the width as a
concise way of referring to a Diagram: the Diagram in Figure 2, we call DD(7);
and the one in Figure 3, we call DD(3). Obviously, DD(3) is more compact than
DD(7): it is narrower at all points. It is this reduction in redundancy that will
give us performance improvements over traditional case retrieval algorithms.
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Algorithm 1. Building a Decision Diagram from case base CB , whose set of
attributes is A = {a0, . . . , am−1}

insert a new node, Source, at layer 0
for all c ∈ CB do

current := Source
R := { }
P := A
for i := 0 upto m − 1 do

insert attribute-value pair 〈ai, v〉 from case c into set R
remove attribute ai from set P
if there is already an edge, labelled by value v, from current to some node next
then

current := next {i.e. traverse the edge}
else {i.e. need a new edge}

slice := πP (σR(CB))
if there already exists a node next at layer i + 1 for which slice(next) = slice
then

insert an edge current v−→ next
else {i.e. need a new node as well}

insert a new node next at layer i + 1
slice(next) := slice
insert an edge current v−→ next

end if
end if

end for
end for

2.1 Compiling a Decision Diagram from a Case Base

Our algorithm for creating a Decision Diagram from a case base, Algorithm 1, is
a novel specialisation of the one described in [9] for compiling a Decision Diagram
from a CSP. We will explain this algorithm with reference to the first two cases
in the case base shown in Figure 1.

Figure 4 depicts the Decision Diagram after we have processed the first case
in the case base. The Decision Diagram initially contained only the Source node.
Hence, edges were created for each attribute-value pair in the first case. Alongside
the nodes, we show case base ‘slices’. These are explained in the next paragraph.

Now consider processing the second case in the case base. If possible, we follow
an existing path through the Decision Diagram; we only insert new edges and
nodes if necessary. We start at Source. The case’s first attribute-value pair is
〈Location ,Chelsea〉 and there is an edge in Figure 4 labelled Chelsea emanating
from Source; so we follow this edge. The next attribute-value pair in the case is
〈Bathrooms , 1〉. There is an edge in Figure 4 labelled 1, and so we are able to
follow this edge. We are now at the third node from the left in Figure 4.

The next attribute-value pair is 〈Furnished ,No〉. There is no edge in Figure 4
labelled No emanating from our current node. One thing is certain: we will need
to insert a new edge into the Diagram. The question is: will we also insert a new
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Location Bathrooms Furnished Bedrooms

1, Yes, 2
1, No,  2
2, Yes, 4
2, Yes, 3

Yes, 2
No,  2 2

SinkSource

Chelsea

Yes

2

1

Fig. 4. Building the Decision Diagram: the result of processing the first case

node as the destination of this edge, or will we be able to use an existing node?
This is where the case base slices are used.

In our specialisation of the Decision Diagrams in [9], slices are computed using
σ and π, which are the standard select and project operators of relational algebra
[5]. In the select operator, σR(S), R is a Boolean condition. The operator returns
all tuples (cases) in S that satisfy R: a kind of horizontal subset. In the project
operator, πP (S), P is a set of attributes. The operator returns all tuples (cases)
in S but confined to the attributes in P : a kind of vertical subset.

In our algorithm, R contains the attribute-value pairs that we have looked at
so far from the case that we are processing. In the example, we have looked at
{〈Location ,Chelsea〉, 〈Bathrooms , 1〉, 〈Furnished ,No〉}. So, in forming our new
slice, we select cases that agree with these attribute-value pairs. In our algorithm,
P is the set of attributes that we have not looked at so far in the case that we
are processing. In the example, there is just one attribute that we have not yet
looked at: Bedrooms . So, in forming our new slice, we project the result of the
selection operator on this attribute. Hence, in this example, we are computing:

π{Bedrooms}(σ{〈Location,Chelsea〉,〈Bathrooms,1〉,〈Furnished,No〉}(CB))

The resulting slice contains just one tuple, having one attribute, and the value
of this attribute in that tuple is 2. Figure 5 shows that, because this new slice
equals a slice already associated with a node in the destination layer, we do not
need to insert a new node. Instead, we insert an edge to the node whose slice
equals the new slice.

This concludes processing of the second case in the case base. The other cases
are each processed in a similar fashion, giving rise to the Decision Diagram that
we showed in Figure 3.

Of course, as can be seen in Figure 5, each slice can be computed incrementally
from the previous one; it does not need to be computed ‘from scratch’.

When we run our algorithm, we employ a heuristic that generally increases
the opportunities for merging of nodes, thereby reducing the size of the Diagram.
Specifically, we sort the attributes by ascending domain size. We have already
done this in Figure 1: the Bedrooms attribute, whose domain size is three, comes
after the other attributes, all of which have domain sizes of two. The order of
the cases in the case base, however, is not significant: irrespective of their order,
the algorithm produces the same Decision Diagram.
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Location Bathrooms Furnished Bedrooms

1, Yes, 2
1, No,  2
2, Yes, 4
2, Yes, 3

Yes, 2
No,  2 2

2 SinkSource

Chelsea

Yes

2

1

No

The slice associated with the destination of this edge is:
Since this slice is the same as an existing slice, a new
node is not inserted. Instead, this edge is routed to the
existing node.

Fig. 5. Building the Decision Diagram: the result of processing the second case

A newly-retained case can easily be incorporated incrementally into the De-
cision Diagram. In essence, this involves running just the inner for-loop in Algo-
rithm 1. However, computing and comparing slices means inserting a case into
a Decision Diagram will be slower than inserting a case into a flat case base.

2.2 Counting Cases

We have shown how we compile a case base into a Decision Diagram, which is
usually more compact than the original case base. What remains to be shown
is how we can efficiently compute with the Decision Diagram. This involves the
propagation and aggregation of values across the graph. We begin with some-
thing simple: counting properties of the case base from its Decision Diagram.
We look at this first because doing so aids the exposition: it has the virtue of
being readily understandable and it generalises to more useful operations.

Each node n in a Decision Diagram is associated with two values, which we
refer to as its f -value and its g-value. We define f(n) inductively as follows:

f(n) =def

{
1 if n = Source∑

n′−→n

f(n′) otherwise (1)

where n′ −→ n signifies an edge from n′ to n. In other words, the f -value of n
is the sum of the f -values of its ‘parents’ over all edges entering n.

We define g-values analogously, this time summing g-values of ‘child’ nodes
over all edges leaving n:

g(n) =def

{
1 if n = Sink∑

n−→n′
g(n′) otherwise (2)

We can use a breadth-first ‘search’ from Source to Sink to compute f -values. A
breadth-first ‘search’ from Sink to Source will compute g-values. The complexity
of these procedures is linear in the size of the Decision Diagram.

Figure 6 shows f - and g-values computed in this way. For example, the node
labelled by an asterisk has three edges entering it. We obtain its f -value by
summing, for each edge entering the node, the f -values of the parent: 2+2+1 = 5
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Location Bathrooms Furnished Bedrooms
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Fig. 6. Decision Diagram with f - and g-values for counting solutions. (The asterisk is
referred to in the text.)

(by Equation (1)). We obtain its g-value by summing, for each edge leaving the
node, the g-values of the child: 1 (by Equation (2)).

We see that f(Sink) and g(Source) both denote the number of paths (cases)
in the graph, in this case seven.

The f -value at a node n summarises information about paths from Source
to n; the g-value at n summarises information about paths from n to Sink. For
example, the node labelled with an asterisk in Figure 6 is reached by five paths
from Source and by one path to Sink.

Why would we want to compute both f - and g-values? Together, they allow
us to compute how many complete paths pass through a node n. We do this
by multiplying f(n) × g(n). For example, the number of complete paths passing
through the node labelled with an asterisk is 5 × 1 = 5. In a similar vein, we
can find out how many complete paths include a particular edge n −→ n′ by
multiplying f(n)×g(n′). For example, the number of complete paths that include
the edge between the node with an asterisk and Sink is 5 × 1 = 5.

This can be used to compute how many complete paths (cases) contain a
particular attribute-value pair. For example, we can determine in how many of
the rental properties Furnished = Yes. We sum the number of complete paths
that pass through each edge labelled Yes . There are three such edges, and the
value we compute is 2 × 1 + 1 × 2 + 1 × 1 = 5. Assuming f - and g-values have
already been computed, the complexity of this computation is proportional to
the width of the Diagram at this point. While this may, in the worst-case, be
equal to the number of cases, it will often, as in the example, be much lower.

In the next section, we will generalise these ideas to similarity-based retrieval.

2.3 Similarity-Based Retrieval

A user’s query or probe q is a set of attribute-value pairs. We may wish to
compute, for each case c in the case base, its degree of similarity to the query.
In fact, our presentation will be in terms of distance, rather than similarity. We
assume a set of local distance measures dista, one for each attribute a ∈ A. We
take global distance dist to be a weighted sum of the local distances:

dist(q, c) =def
∑
a∈A

wa × dista(q.a, c.a) (3)
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Location Bathrooms Furnished Bedrooms
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Fig. 7. Decision Diagram with f - and g-values for computing distances. The user query
is Bathrooms = 2, Location = Pimlico. Where α-values are not shown, they are 0. (The
asterisk is referred to in the text.)

where wa are the weights and q.a and c.a are q’s and c’s values for attribute a.
We will constrain weights and local distances to be in [0, 1], hence global distance
will be in [0, m], where m is the number of attributes, with 0 being the ‘best’
value and m being the ‘worst’.

We use f - and g-values to propagate and aggregate the measures of distance.
But, additionally, we associate with every edge n −→ n′ a value, which, following
[9], we denote by α(n −→ n′). It is important to appreciate that the α-value of
an edge is distinct from the attribute-value of that edge. The attribute-values are
the values that label the edges in Figures 2–5, e.g. that the Location is Chelsea .
α-values, by contrast, denote local distances.

Initially, all α-values are set to 0. For each attribute-value pair a = v in the
user’s query, we update the α-values of all edges that emanate from nodes that
are in the layer of the Decision Diagram pertaining to attribute a. Specifically, if
node n is in the layer that pertains to attribute a and there is an edge n −→ n′

labelled with attribute-value v′, then

α(n −→ n′) := wa × dista(v, v′) (4)

Now, f - and g-values are defined inductively as follows:

f(n) =def

{
0 if n = Source

min
n′−→n

(f(n′) + α(n′ −→ n)) otherwise (5)

g(n) =def

{
0 if n = Sink

min
n−→n′

(α(n −→ n′) + g(n′)) otherwise (6)

As before, a breadth-first search from Source to Sink will compute f -values.
But, in fact, we reduce effort by starting, not from Source, but from leftmost
nodes entered by an edge with an altered α-value. We compute g-values in the
opposite direction and starting from rightmost nodes exited by an edge with an
altered α-value. The cost of computing these f - and g-values is, as before, linear
in the number of edges in the Decision Diagram.

We show an example in Figure 7. In the example, the user prefers two bath-
rooms. We take distBathrooms(2, 1) = 0.5 and distBathrooms(2, 2) = 0. She would
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also like to live in Pimlico, and we will assume that distLocation(Pimlico, Chelsea)
= 0.1 and distLocation(Pimlico,Clapham) = 0.7. We take all weights to be one.
As shown in Figure 7, the local distances are used to update the α-values of all
edges emanating from layers 0 and 1. The α-values of all other edges remain at
0, and are not shown in the figure in order to reduce clutter.

The node labelled by an asterisk has two edges entering it. We obtain its f -
value by taking the minimum, over each edge entering the node, of the f -values
of the parent added to the α-value of the edge: min(0.1 + 0.5, 0.7 + 0.5) = 0.6
(by Equation (5)).

We see that f(Sink) and g(Source) both denote the distance between the best
case in the case base and the user’s query: the two properties in Chelsea with 2
bathrooms are 0.1 distant from the query.

We can use these f - and g-values in ways that are analogous to the uses we
found in Section 2.2. We can compute the distance from the query of the best
complete path that passes through a node n by adding f(n)+g(n). For example,
the best complete path passing through the node labelled with an asterisk has
a distance of 0.6 + 0 = 0.6 from the query. And, we can compute the distance
from the query of complete paths that include a particular edge n −→ n′, again
by adding f(n)+α(n −→ n′)+ g(n′). For example, the best complete path that
includes the edge labelled Yes that emanates from the node with an asterisk is
0.6+0+0 = 0.6 distant from the query. And, we can compute the least distance
from the query of complete paths that contain a particular attribute-value pair.
For example, suppose we ask this question of furnished properties. For each edge
n −→ n′ labelled Yes, we compute f(n) + α(n −→ n′) + g(n′), and we take the
minimum of these values. There are three such edges, and the value we compute
is min(0.6 + 0 + 0, 0.1 + 0 + 0, 0.7 + 0 + 0) = 0.1.

2.4 k Nearest Neighbours

Of course, in CBR rarely would we just want to know how distant the best case
is from the user’s query. Rather, we wish to retrieve the best case, or the best k
cases, or the cases whose distances are less than some threshold θ.

Algorithm 2 is a new algorithm that efficiently retrieves the best k cases from
the Decision Diagram. An analogous algorithm can extract those cases whose
distances are less than θ.

The algorithm maintains a priority-ordered queue of paths and repeatedly
extends the best of these paths until it has found k paths that reach Sink or it
has run out of paths to extend. It is like an A∗ search inasmuch as the items on
the queue are ordered by a combination of their path cost so far and an estimate
of the cost of the cheapest path from the current node to Sink (cost(p′) + g(n′)
in the algorithm). However, there is a crucial difference. Typically in A∗ the
estimated part of the cost is truly an estimate, computed by some heuristic. In
our algorithm, by contrast, it is not an estimate at all: it is the g-value, which
is the actual cost of the cheapest path from the current node to Sink.

When a path p′ is inserted onto the queue, it should be placed ahead of any-
thing already on the queue of the same or lower priority. Then the algorithm will
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Algorithm 2. Retrieving the k best cases from a Decision Diagram
bestK := { }
create agenda , an empty priority-ordered queue
create a path p containing just Source
cost(p) := 0
insert p into agenda
while |bestK | < k ∧ agenda is not empty do

remove path p from front of agenda
n := the last node in path p
if n = Sink then

insert p into bestK
else

for all edges n −→ n′ do
p′ := p extended by n −→ n′

cost(p′) := cost(p) + α(n −→ n′)
insert p′ into agenda where the priority of p′ is cost(p′) + g(n′)

end for
end if

end while
return bestK

unerringly enumerate the best k cases from the Diagram in increasing order of
cost. And, assuming f - and g-values have already been computed, its complexity
will be approximately linear in k and m (the number of attributes): it will not
depend on the size of the Diagram or the number of cases.

3 Efficiency Experiments

We compiled Decision Diagrams from four case bases: Travel, Laptops, Cameras
and Lettings. Prior to compiling, we ordered the attributes by ascending domain
size. Characteristics of the case bases and the corresponding Decision Diagrams
are given in Table 1. We see from the table (row F) that between 83% and
94% of these case bases are repetitions of the same attribute-value pairs. In
the Decision Diagrams, this redundancy is reduced to between 68% and 80%
(row G). In terms of the representation of attribute-value pairs, the Decision
Diagrams save between 23% and 53% of the representation of the case base (row
H). However, because Decision Diagrams are more complex data structures, with
greater space overheads, their memory footprint is larger than that of a case base
in a text file. In two of the case bases, the footprint doubles in size; in one it is a
little less than double; in another it is considerably more (row I). However, none
of the footprints is unreasonable: all are less than 302kb (row E).

In fact, for each case base, we built two Decision Diagrams. In one we dis-
allowed ‘merging’ of nodes, hence these Diagrams are like the one depicted in
Figure 2. In the other, we allowed ‘merging’, as explained in Algorithm 1, hence
these Diagrams are more like the one depicted in Figure 3. It is the latter Dia-
grams that are characterised in Table 1. (The characteristics of the former are
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Table 1. Characteristics of case bases and corresponding Decision Diagrams

Travel Laptops Cameras Lettings
Case Bases
# of cases 1470 693 210 794
# of attributes 8 14 9 6
Domain sizes — smallest 4 2 5 2

— largest 839 438 165 175
— average 119 37 35 46

# of attribute-value pairs 11760 9702 1890 4764 (A)
# of distinct attribute-value pairs 954 520 317 273 (B)
Size as text file (kb.) 132 105 15.8 43.1 (C)

Decision Diagrams
# of edges 3771 2598 1006 1100 (D)
Width — at narrowest point 4 2 5 4

— at widest point 1387 438 195 601
— average 471 186 112 183

Size as serialised Java object (kb.) 301.5 230.5 99.6 62.7 (E)
Build time (ms.) averaged over 10 runs 1156 718 156 266

Comparison
Redundancy in case base (A − B as % of A) 92% 90% 83% 94% (F )
Redundancy in DD (D − B as % of D) 75% 80% 68% 75% (G)
Size saving (D as % of A) 32% 28% 53% 23% (H)
Size cost (E as % of C) 228% 220% 630% 145% (I)

basically the same as the characteristics of the case bases themselves, e.g. they
have uniform width which is, at every point, the same as the number of cases.)

Recall that we refer to Diagrams using their average width. So the two Travel
Decision Diagrams (one without and one with ‘merging’) are referred to as
DD(1470) and DD(471); the two Laptops Decision Diagrams are DD(693) and
DD(186); the two Cameras Decision Diagrams are DD(210) and DD(112); and
the two Lettings Decision Diagrams are DD(794) and DD(183).

To evaluate efficiency, we ran experiments to compare the number of oper-
ations and the times needed to compute twenty nearest neighbours. We used
the leave-one-in methodology: each case in the case base is taken in turn and
used to form queries. From a given case, we form all queries that comprise
just one attribute-value pair taken from the case; then we form all queries
that include two attribute-value pairs from the case; and so on until we form
a query that involves using all the attribute-value pairs from the case. Hence,
the number of queries is mC1 + mC2 + · · · + mCm, where m is the number of
attributes. In the histograms (Figures 8 and 9), we have columns for each query
size and also columns (the rightmost) for all queries taken together, irrespective
of size.

The queries are evaluated by three different systems. The first, denoted kNN ,
is an implementation of the nearest neighbours algorithm applied to the
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Fig. 8. Average operation counts by query size and for all queries

original case base: it does a linear search through all the cases of the case
base, but it includes a degree of caching to give it a fairer chance against Deci-
sion Diagrams. The second system uses the Decision Diagram in which merging
is disallowed, and the third system uses the Diagram in which merging is al-
lowed.

Operation counts and timings both have well-recognised weaknesses as ways
of comparing the efficiency of different algorithms. We hope by including both
counts and times that the weaknesses of using one are compensated for by using
the other. In any case, both sets of results tell much the same story.

In Figure 8 we show, for each system on each case base, the number of oper-
ations needed to compute the global distance between the query and every case
in the case base. Hence, we are counting the number of local distances that the
systems compute and the number of addition operations needed to aggregate the
local distances into global distances. In these operation counts, we exclude any
consideration of retrieving the best k cases. We did this because the different
systems (kNN on the one hand and Decision Diagrams on the other hand) use
such different ways of retrieving the winning cases that we could not find a fair
basis for comparison in terms of operation counts. However, retrieval is included
in the timing results reported in Figure 9 below.

We see in Figure 8, as we would expect, that the narrower Diagrams always
perform fewer operations than the other two systems. Taken over all queries,
irrespective of size, the narrower Decision Diagrams perform 67%, 68%, 30%
and 85% fewer operations than kNN on Travel, Laptops, Cameras and Lettings
respectively. Interestingly, Decision Diagram performance is much less variable
over different query sizes than is kNN performance.
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Fig. 9. Average time (ms.) by query size and for all queries

In Figure 9 we show, for each system on each case base, the time in milliseconds
needed to retrieve the twenty nearest neighbours of the query. Hence, we are
measuring how long it takes to compute distances and to retrieve the twenty
winning cases. The figures used are averages over ten runs.

The Figure shows that the narrower Decision Diagrams are never outper-
formed, but there is a handful of query sizes where kNN is competitive on some
of the case bases. Taken over all queries, irrespective of size, the narrower De-
cision Diagrams take 46%, 64%, 25% and 79% less time than kNN on Travel,
Laptops, Cameras and Lettings respectively.

4 Concluding Discussion

We have shown two uses of the f - and g-values in Decision Diagrams: efficiently
propagating and aggregating counts and distances. But the values can be gen-
eralised further for even greater flexibility; this is the way Decision Diagrams
are presented in [9]. There it is shown that the f - and g-values can be drawn
from any semiring. In [9], a semiring is defined as a set of values S containing
different elements 0 and 1, and two operations on S, ⊕ and ⊗, that satisfy
the following properties: ⊕ is associative and commutative with identity 0 (i.e.
a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c, a ⊕ b = b ⊕ a and a ⊕ 0 = a); ⊗ is associative and
commutative with identity 1 (i.e. a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c, a ⊗ b = b ⊗ a and
a ⊗ 1 = a); 0 is a null element (i.e. a ⊗ 0 = 0); and ⊗ distributes over ⊕ (i.e.
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)). It is important to note that 0 and 1 are special
elements of set S; they are not necessarily the integers 0 and 1.
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Then, in general, f - and g-values are defined as follows

f(n) =def

{
1 if n = Source⊕

n′−→n

(f(n′) ⊗ α(n′ −→ n)) otherwise (7)

g(n) =def

{
1 if n = Sink⊕

n−→n′
(α(n −→ n′) ⊗ g(n′)) otherwise (8)

Initially, prior, e.g., to the imposition of user preferences, α-values are 1.
In Section 2.2, where we were counting properties of the case base, we were

using the following: S = N, the natural numbers (including zero); 0 = 0; 1 = 1;
⊕ = +; and ⊗ = ×. Equations (1) and (2) are instantiations of Equations (7)
and (8) where ⊗ = × and the α-value of every edge is 1.

One way of viewing what we were doing in Section 2.3, where we were using
distance measures, is: S = [0, m], the real numbers between 0 and m, where m
is number of attributes; 0 = m; 1 = 0; ⊕ = min; and ⊗ = +.1 You can see
that Equations (5) and (6) are special cases of Equations (7) and (8). What this
also means is that Algorithm 2, our new algorithm for efficiently extracting best
paths from a Decision Diagram, can be used for many semirings. The changes
required are that path costs be initialised to the semiring’s 1 element and, where
addition occurs in Algorithm 2, it be replaced by the semiring’s ⊗ operator.
However, the semiring must additionally satisfy the addition-is-max property
[9]: for all a, b ∈ S either a⊕ b = a or a⊕ b = b. This property ensures that there
is a total order on S, which is necessary for ordering elements on the queue.

The great advantage of this generalisation is that the same framework (and,
indeed, the same software) can be used in multiple ways, requiring only a change
of semiring. For example, suppose we wished to do exact-matching, instead of
using distance measures. In other words, we want to find cases that exactly match
the attribute-values in the user’s query. We need only switch to the following
semiring: S = {true, false}; 0 = false ; 1 = true; ⊕ = ∨; and ⊗ = ∧.

In our software, we allow the nodes of the Decision Diagram to have multiple
f - and g-values, based on possibly different semirings, so that we can simulta-
neously compute and store different consequences of the user’s query.

In ongoing work, we are using Decision Diagrams to build recommender sys-
tems. We believe that the efficiency and flexibility of the Diagrams give an ideal
foundation. For example, a number of recommender systems now use a two-stage
approach, in which an exact-matching stage precedes an inexact-matching stage
(e.g. [7]); as we have explained, both forms of matching are supported by Deci-
sion Diagrams. Entropy-based approaches to question selection (e.g. [4]) rely on

1 In fact, strictly, in order to satisfy the requirement that the 0 element (in this
case, m) be a null element (i.e. a ⊗ 0 = 0), we cannot let ⊗ = +. Instead, we let

⊗ =
m
+, where

z
+ is simply addition in which the result is not allowed to exceed z:

x
z
+ y =def min(x + y, z).

m
+ does have m as its null element. However, this nicety

plays no part in our software because, the way we are computing with local distances,
they will never sum to more than m.
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dynamically counting cases, in the light of incrementally-supplied user prefer-
ences; as we have shown, counting is efficient in Decision Diagrams; incremental
processing is also easy. Explanations of retrieval failure are also important, es-
pecially in systems that use exact matching (e.g. [6]). Although not described
here, we have generalised the ideas in [1] to allow us to efficiently support com-
putations related to retrieval failure.
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Abstract. The present paper describes a case-based reasoning solution
for solving the task of selecting adequate templates for realizing messages
describing actions in a given domain. This solution involves the construc-
tion of a case base from a corpus of example texts, using information from
WordNet to group related verbs together. A case retrieval net is used as
a memory model. A taxonomy of the concepts involved in the texts is
used to compute similarity between concepts. The set of data to be con-
verted into text acts as a query to the system. The process of solving a
given query may involve several retrieval processes - to obtain a set of
cases that together constitute a good solution for transcribing the data
in the query as text messages - and a process of knowledge-intensive
adaptation which resorts to a knowledge base to identify appropriate
substitutions and completions for the concepts that appear in the cases,
using the query as a source. We describe this case-based solution, and
we present examples of how it solves the task of selecting an appropriate
set of templates to render a given set of data as text.

1 Introduction

Template-based solutions for natural language generation rely on reusing frag-
ments of text extracted from typical texts in a given domain, having applied to
them a process which identifies the part of them which is common to all uses,
and leaving certain gaps to be filled with details corresponding to a new use.
For instance, when conveying the information that John moved to Atlanta, a
template such as moved to may be used, filling in the gap with appropriate
strings for John and Atlanta. Whereas more complex natural language gener-
ation systems based on the use of grammars can have rich stages devoted to
selecting fresh combinations of words to convey the same meaning, template-
based systems are faced with an additional difficulty. The fact that templates
are made up of words that are not accessible to the system makes the system
blind to their appropriateness as means of conveying a given idea for a spe-
cific set of arguments. Annotating the templates with tags that indicate the
circumstances under which it is appropriate to use the template would solve the
problem, but it eliminates some of the advantages of the template solution over
more knowledge-rich approaches.
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Applying a case-based solution presents the advantage that the information
needed to solve the problem can be obtained from the original examples of appro-
priate use that gave rise to the templates. By associating a case with each tem-
plate, with case attributes consisting of conceptual descriptions of the arguments
that were used for the template in the original instance, a case-based reasoning
solution can be employed to select the best template for realizing a particular mes-
sage. This approach has a certain psychological plausibility. People do not always
create new linguistic constructions each time they need to express an idea not used
before, but rather they appeal to their memory of expressions they have used or
heard in the past looking for the best way to express the new idea. They remember
other situations where they have expressed similar ideas, and the phrasing they
used in each situation. In this process they take into account existing relations
between the elements of the lexicon they already know.

The present paper describes a case-based solution for the task of selecting
adequate templates for realizing messages describing actions in a given domain.
The goal is to achieve coverage of a broad range of messages by combining
instances of a restricted set of templates, providing automated means for dealing
with overlaps between the information conveyed by the templates found, and to
ensure coherent use of context information - in the shape of a knowledge base
for the domain accepted as input - whenever the resulting templates need to
mention information that was not explicit in the given query.

Section 2 presents a review of previous work in the relevant fields. Section
3 describes a case-based solution to template selection, outlining the inputs to
consider, the construction of the case base, and the main CBR processes involved.
Section 4 describes in detail an example of system operation, and section 5
presents conclusions and further work.

2 Lexicalisation and Knowledge Intensive CBR

The general process of text generation takes place in several stages, during which
the conceptual input is progressively refined by adding information that will
shape the final text [1]. During the initial stages the concepts and messages
that will appear in the final content are decided (content determination), these
messages are organised into a specific order and structure (discourse planning),
and particular ways of describing each concept where it appears in the discourse
plan are selected (referring expresion generation). This results in a version of
the discourse plan where the contents, the structure of the discourse, and the
level of detail of each concept are already fixed. The lexicalization stage that
follows decides which specific words and phrases should be chosen to express
the domain concepts and relations which appear in the messages. A final stage
of surface realization assembles all the relevant pieces into linguistically and
typographically correct text.

The most common model of lexicalisation is one where the lexicalisation mod-
ule converts an input built from domain concepts and relations organised as a
graph into an output built from words and syntactic relations also organised as a
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graph. Cahill [2] differentiates between “lexicalization” and “lexical choice”. The
first term is taken to indicate a broader meaning of the conversion of something
to lexical items, while the second is used in a narrower sense to mean deciding
between lexical alternatives representing the same propositional content. Stede
[3] proposes a more flexible way of attaching lexical items to configurations of
concepts and roles, using a lexical option finder that determines the set of con-
tent words that cover pieces of the message to be expressed. These items may
vary in semantic specificity and in connotation, also including synonyms and
nearsynonyms. From this set, the subsequent steps of the generation process can
select the most preferred subset for expressing the message.

In template-based generation, the selection of templates is part lexicalization
and part surface realization, in the sense that it determines some of the words
that appear in the final text, but it also defines how they are put together into
a (hopefully) correct linguistic statement. For this reason, template selection
inherits a distinction equivalent to that pointed out by Cahill: one can talk about
rigid template assignment - where a given type of message is always realised by
the same template -, and template choice - where a given type of message can
be realised by several templates and mechanisms must be provided for deciding
when to use each possible template. A solution similar to that proposed by Stede
for pure lexicalization would be a good way of implementing template choice.

Case based approaches have been applied to natural language processing
(NLP) problems in the past. These natural language solutions process a text
by retrieving stored examples that describe how similar texts were handled in
the past. Examples of particular applications are stress acquisition [4], word sense
disambiguation [5] and concept extraction [6]. A good review of applications of
machine learning techniques in general to NLP tasks can be found in [7].

Knowledge Intensive Case-Based Reasoning (KI-CBR) relies on taxonomical
information about the concepts handled by a CBR system in order to improve
the results of the processes involved. This taxonomical information usually takes
the form of specific ontologies of domain information, sometimes coupled with
generic ontologies about CBR concepts [8]. A typical use involves resorting to
the taxonomy for computing similarity between cases.

When building knowledge resources for supporting this type of CBR, accepted
practice recommends the reuse of previous existing ones. The WordNet lexical
database [9] has been widely used for knowledge-based systems, including app-
plications to CBR in domains such as design support [10].

Case Retrieval Nets (CRNs) [11] are a memory model developed to improve
the efficiency of the retrieval tasks of the CBR cycle. They are based on the
idea that humans are able to solve problems without performing an intensive
search process, but they often start from the given description, consider the
neighbourhood, and extend the scope of considered objects if required.

The basic item in the context of the CRNs are so-called Information Entities
(IEs). These represent any basic knowledge item in the form of an attribute-
value pair. A case then consist of a set of such IEs, and the case base is a net
with nodes for the entities observed in the domain and additional nodes denoting
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the particular cases. IE nodes may be connected by similarity arcs, and a case
node is reachable from its constituting IE nodes via relevance arcs. Different
degrees of similarity and relevance are expressed by varying arc weights. Given
this structure, case retrieval is carried out by activating the IEs given in the
query case, propagating this activation according to similarity through the net
of IE nodes, and collecting the achieved activation in the associated case nodes.

Case retrieval nets have been used for lexicalization before. Hervás and Gervás
[12] presented an application of a CRN to heuristic lexicalization in the context
of a NLG application. The case base employed was obtained from the set of
formalised documents used as input to the generator. The experimental results
showed that the use of the case-based reasoning paradigm for the task of lexical-
isation is a good approximation whenever enough information is available in the
case base to express in an acceptable form any new request. If queries beyond
the scope of the input were tried, the system performed poorly. It remained an
open question whether the use of a larger case base with broader coverage would
improve results.

3 Case Based Solutions for Template Selection

Lexicalization based on templates selects words from the vocabulary to describe
the concepts involved in the current draft, using lexical tags for static concepts, as
characters and scenarios, and templates for actions and verbs, providing struc-
ture to the sentences. Templates partly solve the need for having an explicit
grammar, but the knowledge base provides the required information to solve
issues like number and gender agreement. This is an acceptable method when
operating in restricted domains, but results can be poor if complex actions have
to be expressed. Complex actions require the introduction of lexical chains that
are employed exclusively for a specific verb in some context. This introduces
an unwanted rigidity in the system, because it makes the task of extending the
vocabulary an arduous one. This solution also implies that the vocabulary holds
no semantic information about actors or objects involved in an action.

As an alternative, we have implemented a case-based lexicalisation module.
When human beings talk or write, they do not always invent entirely new sen-
tences whenever they need to express a specific idea that they have never before
put into words. Instead, sometimes they search for relations between the new idea
to be expressed and other ideas expressed previously, taking the same vocabulary
and adapting it as required. They reuse previous experience to solve a new case.

This module relies on subsequent processing of its output by an accompanying
surface realization module. This module is in charge of putting together the
selected terms and templates. Additionally, it carries out a basic orthographic
transformation of the resulting sentences. Templates are converted into strings
formatted in accordance to the orthographic rules of English - sentence initial
letters are capitalized, and a period is added at the end.

The specific architecture of the NLG application that uses these modules is im-
plemented using cFROGS [13], a framework-like library of architectural classes
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intended to facilitate the development of NLG applications. It is designed to
provide the necessary infrastructure for developing NLG applications, minimiz-
ing the implementation effort by means of schemas and generic architectural
structures commonly used in these systems.

3.1 Inputs to the NLG Module

Three particular inputs to the NLG module are relevant to the work described
here: the knowledge base, the vocabulary and the discourse plan.

The Knowledge Base. The knowledge base contains the relevant conceptual
information about the domain, in such a way that the generator can consult
it and use it. It is organized as a tree, including individuals, locations, objects,
relations between them and their attributes. The facts in the knowledge base are
domain concepts that are used to instantiate the templates when representing
cases. The concepts appearing in the cases are organized as a taxonomy needed to
compute their similarities. Each type of concept is divided into several subtypes.

The Vocabulary. The vocabulary contains all the lexical information essential
to write the final text. It is structured as a tree as well, very similar to the
knowledge base one, with the difference that each fact or relation has a lexical
tag associated to its eventual realization in the final text.

In the vocabulary that the system uses, a lexical tag made up of one or more
words is assigned to each concept in the domain. This is used for lexicalising
individual concepts, with little choice given. The vocabulary for actions or verbs
becomes more complex: it is stored in the form of cases, where each case stores
not only the corresponding template but also additional information concerning
the type of case, the elements involved in the action, and the role that those
elements play in the action. The types of actions that appear in this module are
shown in Table 1.

It is important to take into account that the structure of each one of these types
is not rigid. They will not always have the same elements, nor in the same order.
A clear example is provided by the verbs ‘leave’ and ‘go’, both of type Move. The

Table 1. Types of actions

Type Characteristics of action
Move a character or an object changes of location
Atrans possession of a character or an object is transferred
Fight physical confrontations between characters
Ingest a character ingests something (either another character or an object)
Propel a physical force is applied to an object
State change of state of a character or an object
Use an element of the domain participates in the action
Feel involve feelings, both positive or negative
Speak a character or an object express an idea out loud
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first one has an attribute From to indicate where the character is coming from,
whereas the second one has an attribute To that indicates his destination.

Verbs are particularly important in the present context because we are consid-
ering narrative tales which have little descriptive depth. This implies that verbs
carry a significant part of the communication effort.

A case is not an abstract instance of a verb or action, but rather a concrete
instance in which specific characters, places and objects appear. These elements
are stored in the module’s knowledge base. This allows the establishment of
relations between them when it comes to retrieving or reusing the cases.

Not all the attributes in a case act later as slot-fillers in the corresponding
template. Some attributes - like the specification of initial and final states in a
state change - are not explicitly mentioned in a template. For example, the case
for kill indicates an initial state alive and a final state dead, but these are not
mentioned in the surface form of the template. Such attributes appear enclosed
in culry brackets in the representation of the case.

Examples of cases for the different types of action are given below. The asso-
ciated templates are shown below for each case:

TYPE: LEX: ACTOR: OBJECT:
FIGHT attack witch Hansel

attacked

TYPE: LEX: ACTOR: OBJECT: {FEELING:}
FEEL envy stepsisters Cinderella bad

envied

TYPE: LEX: ACTOR1: ACTOR2: {INI:} {FINAL:}
STATE marry knight princess single married

married

The Discourse Plan. The discourse plan is the structure of the information
that is to be rendered as text. Each line of this input corresponds to a paragraph
sized portion of the text, containing information about a sequence of actions,
the place where they take place, the characters involved, and the objects used in
them. The solution presented here involves only a particular line of the discourse
plan. The rest of the discourse plan would have to be treated in the same way
one line at a time. For some complex decisions involved in case adaptation -
discussed in section 3.5 - the context as featured in the discourse plan may need
to be consulted.

3.2 Building the Case Base

To ensure a broad coverage of possible inputs, the case base has been built
by combining two sources: WordNet and a corpus of texts selected as typical
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examples of the type of text desired as output. In order to provide a broad
enough choice of templates - in the sense described above - a set of possible
templates must be assigned to each type of action. WordNet is used as a basic
source to obtain a set of possible verbs for conveying a given type of action. This
set of verbs must be filtered to ensure that the final selection of verbs conforms
with typical usage in the desired genre. A corpus of texts is used to filter out
the WordNet senses that are inappropriate for the genre of the desired outputs.
For the selected senses, the corpus provides examples of use, which are used to
generate the cases.

The corpus employed consists of 109 classic fairy tales, which included a total
of 9852 sentences. These have been obtained from Internet web sites presenting
collections of fairy tales in English, and they include a collection of Aesop’s
fables, a selection of Afanasiev’s collection of Russian fairy tales, and tales from
the selections by Andersen, the Grim brothers, and Perrault.

For each case, the concepts appearing in the example found in the corpus
- which become information entities in the case retrieval net used to store the
cases - must also be inserted into the knowledge base. To ensure appropriate
performance, they must be inserted at the correct place in the taxonomy that
organises the knowledge base. This is important because the system uses the
relative positions in this taxonomy to calculate similarity between the query
and the cases during retrieval.

The general process of constructing a particular case is better illustrated by
means of an example.

The MOVE type of action is associated with the concept ‘move’ found in
WordNet. Sixteen senses are provided for it. Of those, the first three are relevant
in this situation: sense 1 (travel, go, move, locomote), sense 2 (move, displace)
and sense 3 (move so as to change position, perform a nontranslational motion).
For each one a number of possible words for that sense are listed (132 for sense
1, 90 for sense 2 and 99 for sense 3). These must be filtered with respect to the
corpus. For instance, 51 of the possible words for sense 1 do not appear at all in
the corpus.

One of the possible words suggested by WordNet as a sense of ‘move’ is:

travel -- (undergo transportation as in a vehicle; "We travelled
North on Rte. 508")

The corpus provides the following examples of use of that word:

One day the king went travelling to distant lands
Then we [Simbad (and the merchants)] traveled many days across high
mountains until we came to the sea, where we set sail.

These examples give rise to the corresponding cases:

TYPE: LEX: ACTOR: TO:
MOVE travel-to king distant-lands
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TYPE: LEX: ACTOR: ACROSS:
MOVE travel-across Simbad mountains

The nature of the documents used to build the corpus - children’s fairy tales
- presents the advantage that the range of concepts involved, both in terms of
verbs and nouns, is limited. This results in a certain degree of lexical redun-
dancy which simplifies the knowledge acquisition process. This process is carried
out semi-automatically. A dependency analysis is carried out for the sentences
in the corpus using MINIPAR [14]. Verbs and the nouns that depend on them
are identified. For each verb, and action must be built and a template must
be generated. A type is assigned to each action. This type constitutes a strong
restriction during retrieval, so it should be used with caution. As discusses in sec-
tion 4, maximal flexibility in the use of the system is obtained by ommiting this
attribute during retrieval. The concepts corresponding to the nouns identified in
the corpus must be inserted into the knowledge base. Both action construction
and noun concept insertion require human supervision. However, the fact that
nouns and verbs are treated asymmetrically reduces the actual effort involved in
processing a large corpus: no composite structure is built for representing nouns,
and the insertion of verbs into the knowledge base is not subject to positional
restrictions.

3.3 The Case Base

Cases are stored in a Case Retrieval Net. This model is appropriate for the
problem under consideration, because on one hand our cases consist of attribute-
value pairs that are related with one another, and on the other hand the queries
posed to the module will not always be complete. To find a lexical tag for a given
action, the CRN is queried with the class of elements involved in the action.

The vocabulary of the module is built from the case base. For each attribute-
value pair in the cases an information entity is created. For each case, a node
is created which holds references to the information entities that are contained.
When introducing an IE, if that entity has already appeared in another case it
is not duplicated. Instead, another association is created between the new case
and the existing information entity.

As IEs are inserted to form the net, it is necessary to establish a measure of
similarity between them. This is done by reference to the module’s knowledge
base, in which the different concepts of the domain are organised into a taxon-
omy. The similarity between two entities is calculated by taking into account
the distance between them in the knowledge base and using Formula 1. H is the
maximum height of the taxonomy tree in the knowledge base.

sim(c1, c2) = 1 − (1 + distance(c1, c2))/(H ∗ 2) (1)

The distance between two concepts is calculated by finding their first shared
ancestor, and adding up the distance between this ancestor and each of the
concepts. It can be seen as the number of nodes we have to pass when going
from one of the concepts to the other. It is also necessary to have a similarity
value for each entity with itself. This value is always 1, the maximum possible.
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Each of the IEs is related to the cases to which it belongs with a certain value
of relevance. In the implemented module, the maximum relevance within a case
corresponds to the attribute Type with value 1, and the rest of the elements have
relevance 0.5. This is because when retrieving cases we are mainly interested
in the type of action that we are looking for, rather than which elements are
involved in it. However, it can occur that the module retrieves a case of a different
type, if the similarity weights of the attributes of the case are high enough.

3.4 Case Retrieval

The retrieval task starts with a partial or complete problem description, and
ends when a matching previous case has been found. In our module, the re-
trieval of cases is directly handled by the Case Retrieval Net and its method of
similarity propagation. Starting from a partial description of the action we need
to lexicalise, the retrieval of the more similar cases is done by calculating an
activation value for each case in the case base. The ones with higher activation
are the more similar ones to the given query. This calculation is performed in
three steps:

1. The IE nodes that correspond to the query are activated. If they are not
in the net because they did not belong to any case in the case base, the
corresponding nodes are inserted at the time of querying, calculating the
similarity and relevance weights using the knowledge base. The nodes corre-
sponding to the query are assigned an activation value of 1, and the rest a
value of 0.

2. The activation is propagated according to the similarity values of the arcs.
This is performed by looking over all the entity nodes of the net and by
calculating for each one its activation value using its own activation and its
similarity with the rest of IE nodes. This is achieved by using Formula 2
(where N is the total number of IE nodes).

activation(e) =
N∑

i=1

(sim(ei, e) ∗ activation(ei)) (2)

3. The achieved activations in the previous step are collected in the associated
case nodes, calculating the final activations of the cases also considering the
relevance weights of the arcs that connect the cases with their entities. This
final activation value of the cases is calculated with Formula 3.

activation(c) =
N∑

i=1

(rel(ei, c) ∗ activation(ei)) (3)

Once we have the final activation in the cases, the one with the higher value
is returned by the net. It would be possible to take not only the most similar
one, but a set with the most similar cases to the query.
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3.5 Case Reuse

Each retrieved case has an associated template from the vocabulary for the verb
or action it represents. In the process of reusing the case we have obtained from
the net, we have to substitute the attribute values of the past case with the query
values. Here we have three different possibilities: (1) the retrieved case and the
query have the same set of attributes, (2) the query has more attributes than
the retrieved case, or (3) there are more attributes in the retrieved case than in
the query.

For situation 1, the values of the retrieved case are simply replaced with the
values in the query. The template corresponding to the retrieved case is filled
with the new values. At the end of the reuse process the query has been assigned
a correct template to realize as text the message it conveys.

For situation 2, the attributes of the retrieved case are filled with the cor-
responding query values. The resulting adaptation is a partial solution to the
problem posed by the query. A secondary retrieval process is set in motion, using
as a query simply the set of attributes in the query that could not be accommo-
dated in the partial solution provided by the first case retrieved by the system.
This query includes no specific type of action, and it relies on the ability of the
case retrieval net for case completion to provide a case with a type of action that
matches the given arguments.

For situation 3, there will be vacant attributes in the corresponding solution.
The easiest solution is to keep the values of the past case in the slots for which the
query does not specify any value. Better results can be obtained by consulting the
system knowledge base for concepts that the knowledge base shows as related to
those appearing in the query. In order to be appropriate as fillers for the vacant
slots, these concepts must be within a given threshold of similarity - in terms of
relative distance within the taxonomy - with respect to the original values given
in the retrieved case for those attributes. In situations where lexicalization of a
particular message forms part of a larger context - such as a larger text - better
results are obtained by searching the neighbouring messages in the discourse.

3.6 Case Revision and Retainment

A very complex set of linguistic, cognitive and pragmatic constraints must be
taken into account when validating any natural language solutions generated in
this manner. The contribution of an expert in the domain is required to revise
the results achieved by the module, and no automated solution to this stage of
the CBR cycle is contemplated so far.

4 An Example of System Operation

To show how the system operates, an example is presented. Suppose the system
is presented with a query such as:
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ACTOR: prince, OBJECT: dragon, WITH: sword, INI: alive, FINAL: dead

The text that would correspond to this query would presumably be “The
prince killed the dragon with a sword”.

The retrieval process results in the following case:

TYPE: LEX: ACTOR: OBJECT: WHERE: {INI:} {FINAL:}
STATE kill peasant snake forest {alive} {dead}

This case is chosen because the values for the attributes INI and FINAL are
equal, and the similarities between the other concepts, computed using the tax-
onomy, is high (‘prince’ and ‘peasant’ are immediate siblings in the taxonomy
- descendants of ‘person’ - and ‘dragon’ and ‘snake’ are descendants of nodes
that are immediate siblings - ‘flying-creature’ and ‘non-flying-creature’).

The case obtained during the retrieval process contains attributes (TYPE and
WHERE) for which no values are given in the query. The TYPE attribute is spe-
cial and it will be simply inherited by the contribution obtained from this case
for the final solution. The absence of TYPE in the query is intentional. The
final result provided by the system may have to be built up from several cases
of different types in order to account for all the attributes given explicitly in
the query. To include an explicit type in the query would restrict the set of
possible actions that can be included in the final result to those matching the
explicit type. This would defeat the purpose of the technology we are using. The
presence of unfulfilled attributes of other kinds - such as the WHERE attribute
in this example - triggers a secondary process of searching the knowledge base
for possible values for those attributes. Elements in the knowledge base related
with those elements appearing in the query are considered as possible candi-
dates to fill the additional attribute slots in the second retrieved case. The most
similar ones - according to relative proximity within the taxonomy - are con-
sidered. In this instance, the knowledge base is queried for elements related to
prince, dragon or sword which are similar to forest. The relations for these
three concepts are shown in the paraphrase of the knowledge base1 given in
Table 2.

The system returns cave because the knowledge base contains information
about the dragon living in a cave, and cave is similar to forest in the taxonomy.
Other choices would have been palace or princess, related in the knowledge
base to the prince, but their calculated similarities to forest are lower.

Since there are attributes present in the query for which no slot is available
in the retrieved case (WITH), a second retrieval process is triggered with the fol-
lowing query, resulting from a selective restriction of the original query to those
attributes not provided in the case retrieved in the first instance (the subject
and object of the action are retained, to ensure soundness of the result):

ACTOR: prince, OBJECT: dragon, WITH: sword

1 Relations in the actual knowledge base are represented in terms of instance identi-
fiers, which would be meaningless for readers in this context.
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Table 2. Relations in the knowledge base

relations:
relation(prince,palace,live)
relation(prince,sword,have)
relation(prince,princess,love)
[...]
relation(dragon,cave,live)
[...]

This second retrieval process returns the following case:

TYPE: LEX: ACTOR: OBJECT: WITH:
FIGHT attack hunter lion spear

The final result of the complete process is an adaptation of the set of retrieved
cases in all the required retrieval process, together with an assignment of values
to their attributes, either from the original attributes in the query or from values
related to them obtained from the knowledge base. The fact that the query had
no explicit TYPE attribute has permitted that the solution be composed of
several instances with different types.

The associated templates are shown below for each case.

TYPE: LEX: ACTOR: OBJECT: WHERE: {INI:} {FINAL:}
STATE kill prince dragon cave {alive} {dead}

killed in

TYPE: LEX: ACTOR: OBJECT: WITH:
FIGHT attack prince dragon sword

attacked with

To improve readability, any attribute slots whose values have already been
mentioned in preceding cases within the same response are marked, to indicate
that subsequent stages of the generation process should render them as pronouns.

After surface realization, the result provided by the system for the original
query would be:

The prince killed the dragon in the cave. He attacked it with a sword.

This result is not exactly what we were looking for, but it conveys all the
desired information. The vocabulary does not have the exact template needed in
this case, but the system combines the templates and knowledge base resources
it possesses to compose an alternative phrasing for the requested message.

5 Conclusions and Future Work

The case-based solution described in this paper presents the advantage of achiev-
ing coverage of a broad range of messages by combining instances of a restricted
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set of templates, providing automated means for dealing with overlaps between
the information conveyed by the templates found, and ensuring coherent use of
context information - in the shape of a knowledge base for the domain accepted
as input - whenever the resulting templates need to mention information that
was not explicit in the given query. By resorting recursively to processes of case
retrieval with progressively reduced versions of the query till all the data in the
query have been covered by at least one case, the system automatically obtains
the best set of cases that cover the data with minimal overlap. Whenever the
selected cases involve information that was not explicitly available in the query,
the use of the input knowledge base guarantees that any additional information
drafted into the final result is coherent with the particular set of data under
consideration.

The main advantage of this method with respect to other template selection
approaches is that the system does not need an exhaustive set of templates,
as CRNs work by approximation and can retrieve similar cases for unknown
queries due to the automatic semantic relations attained in the net. A classic
problem in natural language generation is the “generation gap” described by
Meteer [15], a discrepancy between what can be expressed in the text plan and
what the particular realization solution can actually convert into text. In terms
of templates, the “generation gap” occurs when the input calls for messages not
explicitly contemplated in the set of templates in use. The present system ensures
that such messages can be conveyed by a combination of simpler templates,
adequately linked together by occurrences of coreferring elements. CRNs can
handle partially specified queries without loss of efficiency, in contrast to most
case retrieval techniques that have problems with partial descriptions. Given only
a part of a case, the net can complete the rest of its content. This behaviour is
similar to that suggested by Stede [3] for the lexicalization task.

Insertion of new cases (even with new attributes) can be performed incremen-
tally by injecting new nodes and arcs. This is a particular advantage since any
extension of the corpus may lead to the addition of new cases.

The difficulties presented by the knowledge acquisition have been partially
addressed by the semi-automatization of the analysis of the corpus. We are cur-
rently working on improving this aspect of the system. Although it will probably
be impossible to fully automate the process of acquisition, the method presented
here represents a significant improvement on manual approaches to the develop-
ment of template-based generators. Both approaches require the construction of
the templates and the representation of the concepts. However, whereas an alto-
gether manual approaches requires the additional elaboration of explicit criteria
to guide the correct use of templates, the approach presented here provides an
automatic case-based decision process for template selection.

The approach employed in this paper for actions may be extended to other el-
ements in a story, such as characters, objects, locations,... This would require a
specific notation in which these elements are described as a collection of attribute-
value pairs. We have chosen to focus on actions until we have explored the poten-
tial of the technique. The exploration of such extensions to other elements will be
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contemplated as further work. However, the possible effect upon the complexity
of knowledge acquisition must be considered.

The representation of actions in the current version of the system is very
simple. The resulting texts would improve significantly if a more complex set
of actions where considered. Template-based generators have obtained results
comparable to more elaborate solutions by resorting to recursive use of templates
[16]. In our approach, this would correspond to allowing actions to be represented
as nested cases, where a case would be constructed not only of attribute-value
pairs, but also attribute-case pairs, where the value for some attribute may itself
be a complete case - with an associated template. Recursive nesting of cases
would allow recursive use of templates. The retrieval and adaptation stages would
have to be adapted to deal with this recursive nature.

In order to tackle the complexity arising from this enhancement, we contem-
plate two possible sources of inspiration. One is to consider the use of primitives
to build complex actions from simple ingredients, along the lines of Schank’s
Conceptual Dependency theory [17]. Schank proposed an open set of primi-
tives to express the meaning of any sentence in terms of primitives, using a
complex system for representing states and relationships. Another is to define
a complex conceptual taxonomy of actions, relying for their manipulation on
the same techniques employed for handling individual concepts in the current
system. This would allow a homogeneous treatment of knowledge through the
system, and may lead to easier interactions between the different types of knowl-
edge. To organise such a taxonomy of actions, WordNet would be a valuable
source.

Efficiency issues have not been contemplated so far, but as the size of the
case base rises, they are becoming relevant. A possible way of reducing this
risk would be to implement lazy spreading activation [18] in the Case Retrieval
Net. Instead of propagating activation to all entity nodes, and then to all case
nodes, propagation takes place progressively from most similar nodes to not so
similar nodes. Once enough case nodes have been activated to reply to the query,
propagation stops.
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Abstract. Feature selection algorithms can reduce the high dimensionality of 
textual cases and increase case-based task performance. However, conventional 
algorithms (e.g., information gain) are computationally expensive. We 
previously showed that, on one dataset, a rough set feature selection algorithm 
can reduce computational complexity without sacrificing task performance. 
Here we test the generality of our findings on additional feature selection 
algorithms, add one data set, and improve our empirical methodology. We 
observed that features of textual cases vary in their contribution to task 
performance based on their part-of-speech, and adapted the algorithms to 
include a part-of-speech bias as background knowledge. Our evaluation shows 
that injecting this bias significantly increases task performance for rough set 
algorithms, and that one of these attained significantly higher classification 
accuracies than information gain. We also confirmed that, under some 
conditions, randomized training partitions can dramatically reduce training 
times for rough set algorithms without compromising task performance. 

1   Introduction 

Textual case-based reasoning (TCBR) is a case-based reasoning (CBR) subfield 
concerned with the use of textual knowledge sources (Weber et al., 2005). TCBR 
systems differ in the degree to which their text content is used; some are weakly 
textual CBR while others are strongly textual CBR, meaning that textual information 
is the focus of reasoning (Wilson & Bradshaw, 2000). Applications such as email 
categorization, news categorization, and spam filtering require the use of strongly 
textual CBR methodologies. Most of these systems use a bag-of-words or term-based 
representation for cases (e.g., Wiratunga et al., 2004; Delany et al., 2005), which  can 
be problematic for textual case bases that have thousands of features. For example, 
this huge dimensionality could reduce accuracies on classification tasks and/or result 
in large computational costs.  

A variety of feature selection algorithms can be used to address this issue. For 
example, these include conventional algorithms such as document frequency, 
information gain, and mutual information (Yang & Pederson, 1997). Wiratunga et al. 
(2004) extended these algorithms to include boosting and feature generalization with 
considerable success. However, some of these conventional algorithms have high 
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computational complexity, which can be a problem when a TCBR system is applied 
to dynamic decision environments that require frequent case base maintenance.  

Feature selection algorithms based on rough set theory (RST) rather than 
conventional algorithms can potentially alleviate this high computational complexity 
and also increase the task performance of TCBR systems. RST (Pawlak, 1991) is an 
approach for decision making with incomplete information. Feature selection 
algorithms motivated by RST have been applied with much success in non-textual 
CBR systems (e.g., Pal & Shiu, 2004). Recently, these algorithms have been applied 
to textual data sets. For example, Chouchoulas and Shen (2001) applied a rough set 
algorithm called QuickReduct to select features for an email categorization task. Also, 
we examined a rough set feature selection algorithm, called Johnson’s reduct, to a 
multi-class classification problem (Gupta et al., 2005). We empirically demonstrated 
that this algorithm, for one data set, was an order of magnitude faster than information 
gain and yet provided comparable classification performance. We also introduced a 
methodology that randomly partitions a training set, and selects and merges features 
from each partition. This randomized training partitions procedure can dramatically 
reduce feature selection time. We showed that its combination with Johnson’s reduct 
was effective.  

In this paper, we extend our earlier work on feature selection for TCBR 
classification tasks by exploring additional rough set algorithms. In particular, we 
introduce a variant of Li et al.’s (2006) relative dependency metric, called the 
marginal relative dependency metric, and explore its effectiveness with randomized 
training partitions. In addition, we introduce the notion of part-of-speech bias in 
textual case bases. This is based on our observation that textual features with different 
parts of speech may inherently differ in their ability to contribute to reasoning. For 
example, noun features may contribute more than verb features, as described in 
Section 3.4. Adapting rough set and conventional feature selection algorithms to 
incorporate this bias could improve their performance. We empirically investigate 
these issues on two data sets.  

The rest of this paper is organized as follows. Section 2 introduces RST and two of 
its derivative feature selection algorithms. We also include a description of 
randomized training partitions and introduce the notion of part-of-speech bias. We 
present an empirical evaluation of the feature selection algorithms and their 
interaction with randomized training partitions and part-of-speech bias in Section 3. 
We review related work on feature selection in Section 4 and conclude with a 
discussion of our plans for future research in Section 5. 

2   Rough Set Theoretic Feature Selection  

2.1   Building Blocks of Rough Set Theory 

For the sake of clarity for this audience, we use established CBR terminology, such as 
cases and features, to present the elements of RST. RST is based on a formal 
description of an information system (Pawlak, 1991). An information system S is a 
tuple S = C, F, V   where: 
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C = {c1, c2, …, cn} denotes a non-empty, finite set of cases, 
F = {f1, f2, …, fm} denotes a non-empty, finite set of features (or attributes), and  
V = {V1, V2, …, Vm} is the set of value domains for the features in F. 

A decision table is a special case of an information system where we distinguish 
two kinds of features: (1) a class (or decision) feature fd, and (2) the standard 
conditional features Fp, which are used to predict the class of a case. Therefore,  
F = Fp ∪ { fd}.   

Table 1. A case base fragment for hiring decisions 

Cases f1 = age f2 = experience f3= grades fd =hired 
c1 = Anna 21-30 none good yes 
c2 = Bill 21-30 none good no 
c3= Cathy 21-30 4-6 average no 
c4 = Dave 31-40 1-3 excellent yes 
c5 = Emma 31-40 4-6 good yes 
c6 = Frank 31-40 4-6 good yes 

We will explain RST concepts using the trivial case base in Table 1, which 
pertains to making hiring decisions based on three features. Central to RST is the 
notion of indiscernibility. Examining the cases in Table 1, we see that cases 
c1=Anna and c2=Bill have identical values for all the features, and thus are 
indiscernible with respect to the three conditional features f1, f2, and f3. More 
broadly, a set of cases C' is indiscernible with respect to a set of features F' ⊆ F if 
the following is true: 

IND(F',C)= { C'⊆ C  | ∀f∈F', ∀ci,cj (i≠j)∈C'  f(ci) = f(cj)} (1) 

Thus, two cases are indiscernible with respect to features in F' if they have identical 
values for all the features in F'.  

An indiscernibility relation is an equivalence relation that partitions the set of cases 
into equivalence classes. Each equivalence class contains a set of indiscernible cases 
for the given set of features F'. For example, given the hiring decision table:  

IND(F', C) = {{ c1 , c2}, { c3 },{ c4 },{ c5 , c6}} 

where F'={age, experience, grades} and C={c1,c2,c3,c4,c5,c6}. The equivalence class 
of a case ci with respect to selected features F' is denoted by [ci]F'. Based on the 
equivalence classes, RST develops two kinds of set approximations. First, given sets 
C'⊆ C and F'⊆ F, the lower approximation of C' with respect to F' is defined as: 

lower(C, F', C') = {c∈C | [c]F' ⊆ C'} (2) 

or the collection of cases whose equivalence classes are subsets of C'. Second, the 
upper approximation of C' with respect to F' is instead defined as: 

upper(C, F', C') = {c ∈ C | [c]F' ∩ C' ≠  ∅} (3) 
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or the collection of cases whose equivalence classes have a non-empty intersection set 
with C'. A set of cases C' is crisp (or definable) if lower(C, F',C') = upper(C, F',C'), 
and is otherwise rough.   

For example, in the hiring decision table, consider C'{hired=yes}= {c1, c4, c5, c6}, then 
the lower and upper approximations of C'{hired=yes} with respect to F'={age, 
experience, grades} are: 

lower(C, F',C'{hired=yes})={c4, c5, c6} and upper(C, F',C'{hired=yes}) ={c1, c2, c4, c5, c6} 

Case c1 is not included in the lower approximation because its equivalence class 
{c1,c2} is not a subset of C'{hired=yes}. However, it is included in the upper 
approximation because its equivalence class has a non-empty intersection with 
C'{hired=yes}.  

Another important RST element is the notion of a set called the positive region. 
The positive region of a decision feature fd with respect to F'⊂ F is defined as:  

POSF'(fd,C) = ∪ { lower(C, F',C') | C' ∈ IND({fd},C)} (4) 

or the collection of the F'-lower approximations corresponding to all the equivalence 
classes of fd. For example, the positive region of fd {hiring} with respect to F'={age, 
experience, grades}, where lower(C, F',C'{hired=no})={c3}, is as follows: 

POSF'(fd,C) = lower(C, F',C'{hired=yes})  ∪ lower(C, F',C'{hired=no})={c3, c4, c5, c6} 

The positive region can be used to develop a measure of a feature’s ability to 
contribute information for decision making. A feature f ∈ F' makes no contribution or 
is dispensable if POSF'(fd,C) = POSF'-{fd}(fd,C)  and is indispensable otherwise. That is, 
removing the feature fd from F' does not change the positive region of the decision 
feature. Therefore, features can be selected by checking whether they are 
indispensable with respect to a decision variable. The minimal set of features F', F' ⊂ 
F, is called a reduct if POSF'(fd,C) = POSF(fd,C).  

Often, an information system has more than one possible reduct. Generating a 
reduct of minimal length is a NP-hard problem. Therefore, in practice, algorithms 
have been developed to generate one “good” reduct. Next, we present our adaptations 
of two such algorithms: (1) Johnson’s heuristic algorithm and (2) the marginal 
relative dependency algorithm.  

2.2   Feature Selection with Johnson’s Heuristic Algorithm 

We adapted Johnson’s (1974) heuristic to compute reducts as follows. It sequentially 
selects features by finding those that are most discernible for a given decision feature 
(see Figure 1). It computes a discernibility matrix M, where each cell mi,j of the 
matrix corresponding to cases ci and cj includes the conditional features in which the 
two cases’ values differ. Formally, we define strict discernibility as: 

mi,j = {{ f ∈ Fp: f(ci ) ≠ f(cj)} for fd(ci)  fd(cj), and ∅ otherwise } (5) 
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JOHNSONSREDUCT(Fp, fd, C) 
Input    Fp: conditional features, fd: decision feature, C: cases 
Output  R: Reduct R ⊆ Fp 

1 R←∅, F'←Fp 
2 M← computeDiscernibilityMatrix(C, F', fd) 
3 do 
4 fh← selectHighestScoringFeature(M) 
5 R ←R ∪ {fh} 
6 for (i=0 to |C|, j=i to |C|) 
7 mi,j ← ∅ if fh ∈ mi,j 
8 F'← F' – {fh} 
9 until mi,j = ∅ ∀i, j 
10 return R 

Fig. 1. Pseudocode for Johnson’s heuristic algorithm 

Given such a matrix M, for each feature, the algorithm counts the number of cells in 
which it appears. The feature fh with the highest number of entries is selected for 
addition to the reduct R. Then all the entries mi,j that contain fh are removed and the 
next best feature is selected. This procedure is repeated until M is empty.   

The computational complexity of JOHNSONSREDUCT is O(VC2), where V is the 
(typically large) vocabulary size and bounds the number of times the do loop is 
executed. However, this is a loose upper bound that is better approximated by 
O(RC2), where is R<<V. Comparing this complexity with the computational 
complexity of information gain, which is O(MVC), where M is the number of classes, 
the complexity of JOHNSONSREDUCT is lower because, typically, RC<MV. However, 
the worst case space complexity of JOHNSONSREDUCT is O(VC2), which is 
significantly greater than Information Gain’s space complexity of O(VC).  

In TCBR applications, each case may have only a small subset of features. Strict 
discernibility could be implemented as follows: f(ci) ≠ f(cj) if only one of the cases ci 

or cj contains the term denoted by the feature f. However, such an approach ignores 
the information contained in the variation of term frequencies (i.e., value) across 
cases. Hence, a graded or fuzzy notion of indiscernibility, instead of a strict notion, 
may be more effective (e.g., Skowron, 1995). We extend strict discernibility to 
graded or fuzzy discernibility using a similarity computation as follows.  In Equation 
5, we consider: 

f(ci) ≠ f(cj), when sim(f(ci), f(cj)) < τf  (6) 

where (0<τf <1) is a user defined similarity threshold whose value is determined 
empirically. We adapt a similarity measure for ordinal scales (Montazemi & Gupta, 
1997) to compute the similarity between two non-zero frequency valued features as 
follows: 

sim(f(ci), f(cj)) =  1−abs((f(ci)− f(cj))/ψ.σ f, when abs((f(ci)−f(cj)) ≤ ψ.σ f   

0, otherwise 

(7) 
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where σ f is the standard deviation of non-zero frequency values for feature f, and ψ > 0 
is a user-defined parameter for adjusting similarity sensitivity. For example, for a 
feature f  with σ f =1.87 and ψ=1, 

sim(4, 5) = 1 − abs(4−5)/1.87*1 = 0.465 

Similarly, the issue of class feature discernibility arises in TCBR for multiclass 
classification tasks in which more than one class can be assigned to a case. For example, 
topic assignment is a multi-class classification task. In Equation 5, we consider: 

fd(ci)  fd(cj), when sim(fd(ci), fd(cj)) < τd (8) 

where fd(ci) can be a set of values, sim(fd(ci), fd(cj)) yields the ratio of the intersection 
of its values to their union, and 0 < τ d < 1 is a user defined similarity threshold. 

2.3   Feature Selection Using Marginal Relative Dependency  

In Section 2.1, we described how an indiscernibility (or equivalence) relation 
partitions a case base C into equivalence classes with respect to a set of features F'. 
Intuitively, with an increase in the number of features in F', we expect the number of 
equivalence classes to increase and each equivalence class to contain fewer cases. The 
degree of relative dependency of a set of features F' builds on this intuition. For a 
decision feature fd and a set of features F', it is defined as (Li et al., 2006): 
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where )(CF 'Π   is the set of equivalence classes generated over C with respect to 

features F' and )(C
dfF ∪Π '  is the set of equivalence classes generated over C with 

respect to features F' ∪ {fd}. Clearly, the maximum value of  df
F 'δ  is 1. Based on this 

measure, we compute the marginal contribution of a feature f (i.e., marginal relative 
dependency), denoted by μf, as follows: 

dd f
F

f
fFf '' δδμ −= ∪ }{  (10) 

In addition to using μf as a metric for selecting features, it can also be used as a 

feature weight because 1=
∈Rf

fμ , where R is a reduct.  

Our variation on this reduct computation algorithm, called the Marginal Relative 
Dependency algorithm (MRD), is as follows (see Figure 2). At each iteration, it 
computes the marginal relative dependency of all the candidate features T, selects the 
feature fm with the maximum marginal relative dependency, and adds it to the reduct 
R. The algorithm terminates when the relative dependency δR  = β , where β  is a user 
defined parameter in the range (0 < β <1).  In a TCBR application, it is possible that 

beyond a certain point both μf  and df
F 'δ  may behave asymptotically. Therefore, β can 

be specified to terminate the feature selection process early.     
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MRD(Fp, fd, C) 

Input    Fp: Conditional features, fd: Decision feature, C: Cases, β: Threshold 
Output  R: Reduct R ⊆ Fp 

1 R←∅, F'←Fp, δR←0 
3 do  
4 <fm, μm> ← selectMaximallyContributingFeatureAndValue(F',C) 

5 R ←R ∪ {fm} 
6 F' ← F' − {fm} 
7 δR ← δR  + μm 
8 until δR = β 
9 return R 

Fig. 2. Pseudocode for the Marginal Relative Dependency algorithm (MRD) 

Like JOHNSONSREDUCT, the determination of equivalence classes in MRD can be 
based on a strict or graded notion of discernibility. For the graded notion of 
discernibility we apply Equations 6, 7, and 8. 

The worst case computational complexity of MRD is O(RVC2). For large textual 
case bases, this is an order of magnitude more complex than JOHNSONSREDUCT  and 
information gain. However, its worst case space complexity is only O(VC). 

2.4   Feature Selection with Random Training Set Partitions 

The computational complexities of the feature selection algorithms discussed above 
depend on C, the number of training cases. The complexities of both RST approaches, 
JOHNSONSREDUCT and MRD, are a function of the square of the number of training 
cases. Therefore, reducing the number of training cases that need to be considered at 
one time can dramatically reduce feature selection and training time. We can 
accomplish this by using randomized training partitions (RTP) (Gupta et al., 2005), 
which is a procedure with the following steps: 

1. Randomly create m equal-sized partitions of the training set. 
2. From each partition, select features using a feature selection algorithm (e.g., 

JOHNSONSREDUCT or MRD). 
3. Define the final feature set as the union of features selected from each partition. 

This approach could reduce the training time by a factor of m for the RST feature 
selection algorithms. 

2.5   POS-Biaser: A Part-of-Speech Bias Adjustment Method 

In TCBR, words or terms are typically used as features. The linguistic attributes 
associated with such features (e.g., part-of-speech (POS), syntactic roles) could 
impact feature selection and TCBR task performance. For example, it is likely that 
noun features are generally more informative than verb features possibly because 
nouns are an open class of words, whereas verbs, adjectives, adverbs, prepositions, 
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and pronouns are closed classes of words (Quirk et al., 1985). Open word classes are 
frequently extended to include new words, whereas closed classes are rarely extended. 
Thus, a large percentage of terms in a typical vocabulary are nouns. However, each 
noun feature may occur in relatively fewer cases and thus may contribute more to a 
decision. In contrast, verbs tend to occur more frequently across many cases. Also, 
there is considerable flexibility in the choice of verbs used to express the case content. 
This causes variability in verb expressions that could be inappropriately construed as 
informative (e.g., by information-theoretic measures) and as a result may be favored 
by feature selection algorithms. For example, this would adversely affect 
JOHNSONSREDUCT, which relies on pair-wise case comparisons to construct a 
discernibility matrix. It is likely to select spurious verbs, as could MRD and 
information gain (IG) (Yang & Pederson, 1997). 

One general-purpose way to counter the effect of this inherent potential bias of 
textual case bases is to bias the feature selection algorithms accordingly. Thus, we 
introduce a methodology, called POS-Biaser, to use in combination with any feature 
selection algorithm. POS-Biaser assumes that part-of-speech tagging is performed 
during the case indexing process. This is feasible because part of speech taggers are 
publicly available (e.g., Brill, 1993). POS-Biaser uses a POS biasing factor ρpos for 
each POS along with a feature selection metric to select features. For example, when 
ρnoun = 1.8, ρverb = 0.6, ρadjective = 1, and ρadverb = 0.3, the feature selection algorithm’s 
values for nouns are inflated to 1.8 times their original value, the values for verbs are 
deflated to 0.6 times their original value, and so on. 

The POS-Biased JOHNSONSREDUCT includes a modification to the step that 
executes selectHighestScoringFeature(M) (Figure 1, line 4), which computes the 
number of cell entries as the score of each feature (i.e., the feature selection metric). 
In particular, feature scores are now multiplied by their respective ρpos values. This 
would bias JohnsonsReduct to select more noun features than its unbiased version. 
Likewise, we accommodate a POS bias in MRD by similarly modifying the statement 
that executes selectMaximallyContributingFeatureAndValue(F',C).  

3   Evaluation 

3.1   Claims and Empirical Methodology  

We evaluated the feature selection algorithms described in Section 2 to explore the 
following hypotheses, where we focus on the quality of the selected features when all 
three algorithms select the same number: 

1. Rough set methods perform as well as or outperform information gain on our 
case-based classification tasks. 

2. The performances of rough set feature selection algorithms are affected by the 
POS bias in textual case bases. 

3. RTP is an effective way to dramatically reduce feature selection time without 
compromising case-based task performance.   

We selected both a single and a multi-classification task to evaluate the utility of 
the feature selection and POS-biasing algorithms for a case-based classifier. Single 
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classification involves assigning exactly one class label to a new text case, while 
multi-classification involves assigning one or more class labels. For example, sorting 
emails into a known set of folders is a single classification task and assigning one or 
more topic to news articles is a multi-classification task. 

We selected tasks from two data sets, one for each type of classification task. The 
first data set is Reuters-21578 (Reuters, 2006); it contains news items and its multi-
classification task concerns assigning topics to these items. The second data set is a 
subset of 20-News Groups (Lang, 2006); it contains news group emails and its single 
classification task concerns assigning a news group label to each of these emails. Due 
to the relatively high computational and space complexities of the algorithms being 
tested, we selected only the first ten news groups for evaluation in this data set; we 
call this 10-News Groups. Table 2 summarizes the characteristics of both data sets. 

Table 2. A summary of the characteristics of the data sets used in the experiments 

Characteristic Reuters-21578 10-News Groups 
Number of Cases 11,330 (with more than 0 topics) 10,013 
Number of Classes 110 10 
Num. Cases per class 103 (Avg.) 1001.3 (Avg.) 
Num. Classes per Case 1.26 (Avg.), 1 (min.), 16 (max.) 1 
Num. Words per case 137 (Avg.) 200.35 (Avg.) 

We used two rough set feature selection algorithms (JohnsonsReduct (JR) and 
MRD) and one conventional feature selection algorithm, namely IG (Yang & 
Pederson, 1997). In the experiments, for a fair comparison, we ensured that all the 
algorithms selected the same number of features, and used JR to determine how many 
features to select. They were all applied using the same bag-of-words representation 
for features. Finally, we also incorporated the POS bias in each feature selection 
algorithm, and refer to them as JRB, MRDB, and IGB, respectively. 

Our feature generation algorithm performs tokenization, POS tagging, and 
morphotactic parsing to create POS-tagged terms as features. Morphotactic parsing is 
a more involved method than simple stemming; it reduces terms to their baseforms 
even across different POS (Gupta & Aha, 2004). For example, it reduces the noun 
“computer” to the verb “compute”. Features with document frequency greater than 
two were considered for feature selection. 

We applied a k-nearest neighbor classifier with the fuzzy feature similarity 
function described in Equation 7 to evaluate classification performance using the 
selected features. (We set k=5 based on feedback from our initial empirical studies.) 
All features were weighted equally to isolate the selection behaviors of the feature 
selection algorithms in our experiments. Multi-classification task performance was 
measured using 11-point average precision, which is the average precision obtained 
at recall thresholds of (0%, 20%, …100%). The classifier assigns as many topics as 
needed until a given recall is achieved (Yang & Pederson, 1997). Performance on the 
single classification task was measured as classification accuracy. We also measured 
feature selection time (in seconds) for each algorithm. 

We used a two-fold cross validation strategy to evaluate the algorithms. Two sets 
of two folds were randomly created. For RTP, all the algorithms were run with the 
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same set of 10, 20, 30, and 40 randomized training partitions in each fold. We did not 
experiment without partitions due to the RTS algorithms’ high computational and 
memory requirements.   

3.2   Empirical Results  

Results with the Reuters-
21578 Data Set. The key 
results for the six algorithms 
(i.e., JR, IG, MRD, JRB, 
IGB, and MRDB) on this data 
set are shown in Figures 3-5. 
JR selected an average of 
95.5, 118, 135, and 139.5 
features for partitions of size 
10, 20, 30, and 40, 
respectively. Increasing the 
number of RTP partitions 
increases the chance of 
selecting different features in 
different partitions, which 
increases the total number of 
unique features selected.  

We compared the algorithms’ 
precisions using one-tailed paired 
student t-tests. Comparisons of the 
feature selection algorithms’ unbiased 
versions show that JR significantly 
outperformed IG for every number of 
partitions tested (e.g., 76.72% vs. 
70.17% at 10 partitions [p=.0006]), as 
did MRD (e.g., 79.21% vs. 75.86% at 
40 partitions [p=.0018]). Therefore, 
both the rough set feature selection 
methods significantly outperformed  
a conventional feature selection 
method. In addition, MRD signi-
ficantly outperformed JR at partitions 
of 30 and 40 (e.g., 79.20% vs. 77.83% 
at 40 partitions [p=.0003]), but the 
reverse was true for 10 partitions.   

Comparing the POS-biased versions of the feature selection algorithms with their 
respective unbiased versions shows that JRB and IGB outperform JR and IG 
respectively at all RTP sizes. For example, at 30 partitions, JRB significantly 
outperforms JR (82.61% vs. 77.26% [p=.0007]) and IGB significantly outperforms IG 
(76.84% vs.74.79% [p=.0019]). However, MRDB significantly outperforms MRD 
only at 10 and 20 partitions; for 30 and 40 partitions there was no significant 

Fig. 3. Precision performance (Reuters-21578) 
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difference. Overall, POS bias 
had a positive effect on all the 
feature selection algorithms, 
including IG. It was most 
effective with JR, whose 
classification accuracy improved 
by 6.1% on average versus its 
unbiased version. Finally, when 
adjusted for POS bias, JR 
recorded significantly higher 
precision results than the other 
feature selection algorithms we 
tested.   

Figure 4 shows the effect of 
POS bias on the three feature 
selection algorithms for Reuters-21578 at 10 partitions. The proportion of noun 
features without bias were at comparable levels for JR and IG (each at 71%) and 
slightly lower for MRD (64%). With this bias, the proportion of noun features 
increased to 93% for JR and IG and 94% for MRD. The increase in the proportion of 
noun features was comparable and consistent across the three algorithms, yet its effect 
on JR’s precision performance was most substantial. Thus, we conclude that JR is 
most sensitive to POS bias.  

Figure 5 shows the feature selection times for IG, JR, IGB, and JRB. JR has the 
lowest feature selection time, as predicted by our analyses in Section 2.2. It decreased 
by 81.92% from 510 seconds at 10 partitions to 92 seconds at 40 partitions, without 
decreasing average precision, demonstrating that RTP is highly effective. Its biased 
version (JRB) has higher feature selection times (10,382 sec. at 10 to 738 sec. at 40 
partitions) but achieves a similar decrease in feature selection time as the number of 
partitions increases. JRB’s times are higher than JR’s because POS bias significantly 
increases the reduct sizes. In contrast, IG and IGB have the same feature selection 
times. It reduces by 54% (3780 seconds to 1725 seconds) as the number of partitions 
is increased from 10 to 40. As expected, MRD has extremely long feature selection 
times (99,843 sec. at 10 partitions to 22,276 sec. at 40 partitions; not shown in Figure 
5), and MRDB times are even longer. However, both had a substantial drop in feature 
selection time as the number of partitions was increased. Therefore, RTP effectively 
reduces feature selection time on Reuters-21578 for the three algorithms tested. 

Results with the 10-News Groups Data Set. As with the Reuters-21578 data set, we 
again used the number of features selected by JR as a baseline for the other 
algorithms. It selected an average of 123, 134.75, 141.25, & 153.5 features at 10, 20, 
30, and 40 partitions, respectively.  

Comparison of the unbiased versions of the algorithms shows that IG attains 
significantly higher accuracies than the others at all RTP levels data (see Figure 6). 
For example, at 30 partitions, IG outperformed JR (70.31% vs. 51.74%, [p=.0005]) 
and MR (70.31% vs. 57.82%,  p=.0005]).  This contrasts with its comparatively poor 
precision performance on the Reuters-21578 data set.  

Comparing the two rough set methodologies with each other reveals that MRD 
significantly outperformed JR at 30 and 40 partitions (e.g., 57.82 % vs. 51.74% at 30 

Fig. 5. Feature selection times (Reuters-21578) 
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partitions, [p=.022]). This 
finding is consistent with those 
on the Reuters data set. 
However, MRD’s performance 
could not be objectively 
compared with JR at 10 and 20 
partitions because it selected 
fewer features than JR at those 
partitions.  

Comparing the algorithms’ 
biased and unbiased versions 
show that JRB and MRDB 
attain significantly higher 
classification accuracies than 
JR and MRD, respectively. For 

example, JRB’s average accuracy is significantly higher than JR’s at 30 partitions 
(74.68% vs. 51.74%,  [p=.0006]) and MRDB outperforms MRD (61.47% vs. 57.82%, 
[p=.022]). In contrast, IG was 
adversely affected by bias. That is, 
IG performed slightly better than 
IGB (e.g., 70.31% vs. 69.36% at 30 
partitions), although this difference 
was small and statistically
insignificant. Overall, JRB signi-
ficantly outperformed the other 
algorithms at 20, 30, and 40 
partitions. For example, it attained 
significantly higher average 
classification accuracies than IG 
(74.7% vs. 70.3% at 30 partitions 
[p=.0018]). 

One possible reason could be 
that we used the same POS bias 
parameter settings for all the 
algorithms, but IG may require 
different settings. We gained addi-
tional insight into this by examining the effect of POS bias on the algorithms (see 
Figure 7). The unbiased versions of the algorithms selected different proportions of 
noun features; JR selected 51%, IG selected 55%, and MRD selected 61% at 30 
partitions. Examining the biased versions shows that JRB selects 96%, while IGB and 
MRDB select 100%, indicating that the bias factors may be too strong for IG and 
MRD.        

Analyses of the feature selection times shows that JR’s times steadily decrease 
from 325 seconds at 10 partitions to 60 seconds at 40 partitions and is the lowest 
among all algorithms at 20-40 partitions (see Figure 8). Feature selection times for IG 
and IGB remain relatively constant (268 seconds, on average) across different 
partition sizes. In contrast, JRB’s feature selection times decreased dramatically from 

Fig. 6. Classification accuracies (10-News Groups) 
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10 to 20 partitions, but increased 
from 30 to 40. This occurred 
because the decrease in the 
number of cases per partition is 
offset by larger increases in the 
reduct sizes, thereby leading to an 
overall increase in feature 
selection times. For the same 
reason MRD and MRDB’s times 
steadily increase from 6291 
seconds at 10 partitions to 10,134 
seconds at 40 partitions (not 
shown in Figure 8).  In general, 
MRD selects more features than 
JR and this is further amplified for higher numbers of partitions. Thus, RTP 
significantly reduces feature selection times for only JR and JRB on the 10-News 
Group data set. 

Results Summary and Discussion. Given that one of the rough set methods, JR with 
suitable POS bias, outperformed IG on both the data sets, we partially accept our first 
hypothesis, which claims that rough set methods significantly outperform IG. We also 
confirmed our second hypothesis, which states that POS-bias has a positive effect on 
RST feature selection algorithms. In particular, its effect on JR was substantial (6.1% 
increase in precision in Reuters-21578, and 41.78% increase in accuracy in 10-News 
Groups). Interestingly, the effect of POS-bias on IG was mixed: positive on Reuters-
21578 and negative on 10-News Groups. We conjecture that the reasons for this 
mixed result are that the bias parameters for IG were too strong for the 10-News 
Groups set and that IG effectively counters the inherent POS bias when the number of 
cases per class is large (e.g., 1000 as opposed to 100).   

We showed that the RTP was effective in dramatically reducing feature selection 
time for JR. However, the effect of RTP on MRD was mixed. It was positive on 
Reuters-21578 and negative on 10-News Groups. Therefore, we cannot fully confirm 
our third hypothesis that RTP is always effective in reducing training time for rough 
set methods. However, without RTP it would have been practically infeasible to run 
MRD and JR. We also observed that RTP has a positive effect on IG, although small 
compared to RST methods. This is because increasing the number of partitions 
reduces the effective vocabulary that IG must deal with and IG’s computational 
complexity is linearly dependent on the vocabulary size.  

4   Related Work 

TCBR systems have been designed to support a variety of applications such as those 
involving legal reasoning (Brüninghaus & Ashley, 2003), spam filtering (Delany et 
al., 2005), and news group classification (Wiratunga et al., 2004). Typically, TCBR 
systems that use knowledge poor approaches (e.g., for email classification) tend to 
automatically generate features and operate on large data sets. For example, Delany et 
al. (2005) used IG to select features in a spam filtering task and Wiratunga et al., 

Fig. 8. Feature selection times (10-News Groups) 
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(2004) used IG to select features with boosted decision stumps. However, unlike us, 
they did not focus on reducing the computational complexity of their feature selection 
algorithms. Furthermore, high computational complexity was not a limiting factor 
because their binary classification task is not particularly demanding of information 
gain, especially given that their case bases were relatively small, containing only 
about 1000 cases. We instead investigate multi-classification and n-ary classification 
tasks involving thousands of cases, which require more attention to computational 
complexity. Despite these differences, our feature selection algorithms, randomized 
training partitions, and POS biasing can be effectively integrated with their approach. 

Given a set of manually selected features, Brüninghaus & Ashley’s (2003) TCBR 
system induces a set of classifiers that can automatically assign features to text 
documents. They used ID3 to induce these classifiers. If the number of features is 
large, its performance would degrade significantly. In such situations, our feature 
selection algorithms could significantly improve ID3’s performance.    

While RST-motivated feature selection algorithms have recently been applied to 
textual case bases on classification tasks, we are the first group to  highlight 
complexity issues (Gupta et al., 2005). For example, Chouchoulas & Shen (2001) 
applied their QuickReduct method for email classification. While QuickReduct’s 
complexity (Gupta et al., 2005) is high (i.e., the same as MRD), they did not address 
complexity because their data included only 1500 cases. Furthermore, they did not 
compare QuickReduct with any conventional feature selection algorithms, such as IG.    

Li et al. (2006) developed a Fast Rough Set Feature Reduction algorithm. Unlike 
the RST algorithms we evaluated, it is not feasible to isolate the contributions of RST 
in their hybrid conventional/RST algorithm. In particular, they used IG to rank-order 
the features for selection and the relative dependency metric only to terminate feature 
selection. Finally, they did not compare the performance of their algorithm with 
conventional algorithms.   

An et al. (2004) developed a rough set feature selection method called ELEM2 and 
applied it to web page classification. As with the other research groups, they did not 
address complexity issues and evaluated their algorithm on a relatively small set of 
327 web pages. Moreover, they tested their algorithm only with the most frequently 
occurring 20, 30, and 40 keywords per category. Although this drastically reduces 
their data set’s number of features, frequency-based keyword selection is not always 
competitive with other feature selection algorithms (Yang & Pederson, 1997). 

In our previous research (Gupta et al., 2005), we introduced RST motivated feature 
selection algorithms for a multi-class classification task. We also noted that the high 
computational complexity of feature selection algorithms are a limiting factor and 
introduced randomized training partitions to reduce training time. Finally, we showed 
that JohnsonsReduct performed comparably to IG on a single data set. In this paper, 
we extended JohnsonsReduct to work with multi-valued features and introduced the 
topic of fuzzy discernibility. In addition, we introduced MRD, a pure rough set 
version of Li et al.’s (2006) Fast Rough Set Reduction Approach. While this increases 
computational complexity, it is offset through the use of RTP. We also improved our 
evaluation methodology. For example, we eliminated variances due to differences in 
feature weighting by weighting all features equally, added a single classification task 
to improve the reliability of our conclusions, and used a two-fold cross validation 
methodology rather than random sampling. This has led us to qualitatively new 
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results. For example, we found randomized training partitions to be effective for both 
rough set and conventional feature selection algorithms (for the Reuters-21758 data 
set), rather than only for the former.   

Finally, we introduced the use of a POS-bias in textual case bases and described 
why it can impact feature selection. This explicit manipulation of bias appears to be 
novel; we are not aware of any prior research on using background knowledge of this 
type to assist TCBR systems on classification tasks. We showed that biasing feature 
selection algorithms can significantly increase classification accuracy of both 
conventional and RST-motivated feature selection algorithms, and that these increases 
are more substantial for the rough set algorithms. 

5   Conclusion 

Until recently, only conventional feature selection algorithms (e.g., IG and its 
extensions) had been applied to textual CBR with little concern for their 
computational complexity. In this paper, we rigorously investigated the potential of 
RST approaches to improve task performance and reduce feature selection times. We 
considered two RST algorithms: (1) JR with lower computational complexity than IG 
and (2) MRD with much higher computational complexity than IG. We evaluated the 
effect of RTP on these algorithms, a method we introduced in our previous research, 
to dramatically reduce feature selection time. In addition, we introduced a novel idea 
of part-of-speech bias in textual CBR that could affect both RST and conventional 
approaches. Evaluation of these methodologies with large multi-class and n-ary 
classification tasks showed that JR, suitably biased, significantly outperforms IG and 
significantly benefits from RTP. Furthermore, POS bias significantly improved RST 
feature selection algorithms. 

JR significantly outperformed IG on our data. Thus, we suspect that Wiratunga et 
al.’s (2004) boosted algorithm, which is based on IG, could significantly benefit from 
our methodologies. We also conjectured that using an appropriate POS bias could 
consistently improve IG, and that IG effectively counters bias when the number of 
cases per class is large. In our future work, we will investigate these conjectures.        

Acknowledgements 

This research was supported by the Naval Research Laboratory. Thanks to the 
reviewers for their useful suggestions.  

References  

An, A., Huang, Y., Huang, X., & Cercone, N. (2004). An effective rough set-based method for 
text classification. Transactions on Rough Sets, 2,  1-13. 

Brill, E. (1993). A corpus-based approach to language learning. Doctoral dissertation:  
Department of Computer Science, University of Pennsylvania, Philadelphia, PA. 



 Rough Set Feature Selection Algorithms for Textual Case-Based Classification 181 

Bruninghaus, S. & Ashley, K.D. (2003). Combining case-based and model-based reasoning for 
predicting the outcome of legal cases. Proceedings of the Fifth International Conference on 
Case-Based Reasoning (pp. 65-79). Trondheim, Norway: Springer. 

Chouchoulas, A., & Shen, Q. (2001). Rough-set aided keyword reduction for text 
categorization. Applied Artificial Intelligence, 15, 843-873. 

Delany, S.J., Cunningham, P., Doyle D., & Zamolokskikh, A. (2005). Generating estimates of 
classification confidence for a case-based spam filter. Proceedings of the Sixth International 
Conference on Case-Based Reasoning (pp. 177-190), Chicago, IL: Springer. 

Gupta, K.M, & Aha, D.W.(2004). RuMop: A rule-based morphotactic parser. Proceedings of 
the International Conference on Natural Language Processing (pp. 280-284). Hyderabad, 
India: Allied Publishers. 

Gupta, K.M., Moore, P.G., Aha, D.W., & Pal, S.K. (2005). Rough set feature selection methods 
for case-based categorization of text documents. Proceedings of the First International 
Conference on Pattern Recognition and Machine Intelligence (pp. 792-798). Kolkata, India: 
Springer. 

Johnson, D.S. (1974). Approximation algorithms for combinatorial problems, Journal of 
Computer and System Sciences, 9, 256-278. 

Lang, K. (2006). 20 News group dataset. [http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/news20.html] 

Li, Y., Shiu, S.C.K., & Pal, S. (2006). Combining Feature Reduction and Case Selection in 
Building CBR Classifiers. In D.W. Aha, K.M. Gupta, & S.K. Pal (Eds.) Case-Based 
Reasoning and Data Mining. Hoboken, NJ: John Wiley & Sons. 

Montazemi, A.R. & Gupta, K.M. (1997). A framework for retrieval in case-based reasoning 
systems. Annals of operations research, 72, 51-73. 

Pal, S.K., & Shiu, S.C.K. (2004). Foundations of soft case-based reasoning. Hoboken, NJ: 
Wiley. 

Pawlak, Z. (1991). Rough sets. Norwell, MA: Kluwer Academic Publishers. 
Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A comprehensive grammar of the 

English language. New York, NY: Longman. 
Reuters (2006). Reuters-21578 Evaluation Data. Retrieved on April, 12, 2005 from 

[http://www.daviddlewis.com/resources/testcollections/reuters21578/] 
Skowron, A., (1995). Extracting laws from decision tables. Computational Intelligence, 11(2), 

371-388. 
Weber, R.O., Ashley, K.D., & Brüninghaus, S. (2005). Textual case-based reasoning. To 

appear in Knowledge Engineering Review, 20(3).  
Wilson, D.C., & Bradshaw, S. (2000). CBR textuality. Expert Update, 3(1), 28-37. 
Wiratunga, N., Koychev, I., & Massie, S. (2004). Feature selection and generalization for 

retrieval of textual cases. Proceedings of the Seventh European Conference on Case-Based 
Reasoning (pp. 806-820). Madrid, Spain: Springer. 

Yang, Y., & Pederson, J. (1997). A comparative study of feature selection in text 
categorization. Proceedings of the Fourteenth International Conference on Machine 
Learning (pp. 412-420). Nashville, TN: Morgan Kaufmann. 



Experience Management with Case-Based
Assistant Systems

Mirjam Minor

University of Trier,
Department of Business Information Systems II,

54286 Trier, Germany
minor@uni-trier.de

Abstract. In this paper, we present a framework for Experience Man-
agement (EM) which is populated with case-based assistant systems for
EM. The framework follows the building block model of Probst et al
[28] which has been developed as a guidance for knowledge management
activities. We taylor the building blocks for the special needs of EM and
discuss for each building block the support and automation opportunities
by case-based assistant systems based on sample systems from the litera-
ture. We take up a holistic point of view, i.e. we regard the psycho-social
aspect in an own building block as well as the organizational aspect. The
impacts of these efforts are investigated in a case study that has shown
significantly increasing access ratios when following some psycho-social
findings in the design and organization of a case-based EM system.

1 Introduction

Gilbert Probst demands that knowledge management ’is clearly embedded into
an organizational and social context’ [27, own translation]. In recent literature
[3,4,25,24] case-based reasoning (CBR) has been employed for experience man-
agement (EM) to provide technical support by means of assistant systems. Those
case-based approaches lack the explicit integration of the social aspect. We follow
Probst in our framework for developing, integrating, and maintaining case-based
EM systems. We show in an experimental evaluation that it is worth while to
consider the socio-psychological aspect of EM systems.

This paper is organized as follows: Section 2 gives a brief intoduction to EM
and the holistic point of view. Section 3 reports the building block model for
knowledge management from Probst et al. In Section 4, we taylor this model for
the special needs of EM, refer to case-based sample systems for the particular
building blocks, and discuss the potential for automation. Section 5 contains a
case study on the building block use of knowledge which deals with the psycho-
social aspect of a case-based EM system. In Section 6, we discuss related work
and draw a conclusion.

2 Holistic Experience Management

EM is a special kind of knowledge management that is restricted to experience
knowledge [4]. Experience knowledge (also called experiential knowledge) origins

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 182–195, 2006.
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from the experience of an agent in a previous problem solving situation. It is
valid for a certain scope of duties like the configuration of mobile phones or like
the guidance of project teams. This understanding of experiential knowledge
is in opposite to the idea of general knowledge which has a broad coverage of
domains or is even universally valid.

Fig. 1. The three pillars of holistic knowledge management [36]

We will deal with EM in a holistic way, i.e. it takes into account not only the
technical support of EM but also the organizational and psycho-social aspect.
The holistic view is supported by Wolf et al’s model of knowledge management
[36] in Figure 1. Wolf et al place knowledge management on three pillars: The
organization and the human carry the roof together with the technology. If one
of the pillars is missing the building is instable. The entire model is embedded
into the cultural context of the humans. We transfer the holistic model of Wolf
et al. to EM systems. The psycho-social aspect (the human and the culture
in Figure 1) is especially important for experiential knowledge as experience is
rather personal and revealing it makes the contributor vulnerable.

3 The Building Block Model for Knowledge Management

Gilbert Probst et al [28] have developed a process model for managers who
perform knowledge management activities. It has been derived from several case
studies by an action research approach that combines theoretical and practical
issues. The process model provides a hands-on raster that has become a standard
work in the German-speaking part.

Figure 2 shows the six basic building blocks of knowledge management. They
build a cycle and are affiliated with each other.

– The identification of knowledge aims to make it transparent which know-
ledge is available. The main task of this building block is to localize useful
knowledge within and outside the own organization.
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Fig. 2. The building blocks for knowledge management by Probst et al.

– The acquisition of knowledge deals with getting access to external know-
ledge either by recruiting knowledge carriers, or by acquiring the knowledge
of other organizations like customer organizations, or by buying knowledge
products.

– The development of knowledge focuses on creating new knowledge. This is
supported, for instance, by a family-friendly atmosphere, by fault tolerance,
and by honoring long-term success. In this way, knowledge may emerge dur-
ing activities that are normally not supposed to be productive. Probst et
al’s description of the development building block is in accordance with the
well-known knowledge creating approach of Nonaka and Takeuchi[26].

– The transfer of knowledge concerns the process of spreading knowledge over
the organization. It includes very often the face-to-face contact of individuals.

– The use of knowledge is the main purpose of knowledge management. How-
ever, it may be restricted by a series of barriers, e.g. the commercial barrier
of a missing patent.

– The preservation of knowledge results in an organizational memory. It con-
sists of three sub-processes, namely to select the valuable knowledge, to store
it appropriately, and to ensure that the knowledge is updated.

Two strategic building blocks close the cycle: To determine the knowledge
targets should mark the beginning of any knowledge management activities.
The evaluation of knowledge provides a measure for the success of the learn-
ing processes and helps to adjust the course of knowledge management activities
by means of feedback. Probst et al’s process model gives useful guidance for
knowledge management activities in practice.



Experience Management with Case-Based Assistant Systems 185

4 The Building Block Model for EM Systems

We have adapted the original model of Probst et al to the special requirements of
EM. Figure 3 provides a framework for the development, psycho-social integra-
tion, and maintenance of case-based EM systems. It includes the organizational
and psycho-social aspect explicitly in the two building blocks organize and main-
tain. Furthermore, we discuss for the particular building blocks to what extend
they can be supported or even automated by CBR systems.

Fig. 3. The building blocks adapted to the special needs of EM

4.1 Identification of Knowledge

The identification of knowledge for case-based EM systems is mainly the iden-
tification of knowledge sources for the contents of the knowledge containers
case base, vocabulary, similarity measure, and adaptation knowledge [29]. Know-
ledge sources may be human beings with a rich treasury of experiences, electronic
databases, or even non-electronic material and observed objects or systems as
far as there is a mechanism to transform the gained knowledge for the case-based
assistant system. We developed the following criteria for the manual selection of
appropriate knowledge sources:

– the quality,
– the suitable focus, and
– the topicality of the source
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as the three main criteria, and secondarily

– the easy accessibility of the source and
– the networking idea.

The networking idea means - as far as possible – to link the assistant systems
with the knowledge sources rather than to copy the contents to the system.

Potential for automation: We have not found any case-based system in the
literature that automatically identifies knowledge sources. But there are other as-
sistant systems in the literature that support the knowledge identification process
and automate parts of it, e.g. the ontology-based system ProPer [33]. ProPer
supports the human resource management by means of an ontology on the staff
of an organization. The effort to identify knowledge sources automatically is
quite high, and it is only possible in case there is a complete and structured
directory of potential knowledge sources available.

4.2 Acquisition of Knowledge: Gain Experiential Knowledge

The acquisition of knowledge for EM systems is the process of accessing know-
ledge sources and integrating them with the system. The borderlines be-
tween the building blocks ’acquisition of knowledge’ and ’development of know-
ledge’ are variable. As a rule of thumb, to put something down on paper or to
transform it syntactically belongs rather to the acquisition process, while some-
thing like machine learning of knowledge or enhancing it in some other way
belongs rather to the developing process.

Sample applications in [20,23] gain vocabulary and components of the similar-
ity measure from electronic sources like WordNet[8] and the on-line dictionary
Leo[15]. [19] describes the SimLex approach that generates cases automatically
from emails and continuous texts and cross-links similar cases based on the sys-
tems similarity measure.

Potential for automation: The acquisition of knowledge for retrieval purposes
can be automated under certain conditions. The required knowledge has to be
electronically available, for instance, and the system needs to know which parts
of the knowledge should be transformed in what way.

4.3 Development of Knowledge: Enhance Experiential Knowledge

The development of knowledge concerning assistant systems may happen in two
ways: either for the assistant system or by means of the assistant system.

The INRECA methodology [5,4] provides guidance for developing knowledge
for case-based systems (see Section 6). Ontology learning [22] and other machine
learning techniques [32,6,11] have been employed to support the development of
knowledge for case-based systems. [21] describes a life-cycle model for cases and
the according case-based authoring support to enhance experiential knowledge.
In this way, the humans develop experiential knowledge by means of the case-
based system.
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Potential for automation: The lion’s share of developing knowledge for case-
based EM systems is still a human task as it includes the externalization of
human experience.

4.4 Transfer of Knowledge: Exchange Experiential Knowledge

The transfer of knowledge is supported by all case-based systems that let the
users share a common case base. More interesting is the interoperability of
case-based systems that exchange experiential knowledge that is stored in
their knowledge containers.

The personal assistant agents in [17] exchange services, i.e. cases, and the
according vocabulary and similarity measures to retrieve those services. They
perform a shallow kind of ontology mapping to integrate the received knowledge.
Agile software development [2] is a prominent – yet non-case-based – example
for paying attention on the exchangeability.

Potential for automation: A case-based system can be regarded an agent if it
proactively queries another system for knowledge. There is plenty of work on the
communication of agents [13] that shows the high potential for the automation
of knowledge exchange. There is still much work to be done in CBR research on
such agile methods.

4.5 Use of Knowledge: Organize an EM System

To boost the use of knowledge means for case-based EM systems to design and
organize the system in a way that it is accepted by the users. The barriers
against the use of a case-based EM system are mainly organizational and
psycho-social barriers.

The work on CBR and business processes [10,5] deals with the organizational
aspect. Section 5 describes a new approach to take care on the psycho-social
aspect.

Potential for automation: Only small parts of a promotional policy can be
automated at the moment.

4.6 Preservation of Knowledge: Maintain Experiential Knowledge

To select and to store valuable knowledge within a case-based EM system are
the first steps to preserve this knowledge. To keep the experiential knowledge
valuable, it has to be maintained carefully.

Wilson [35] gives a useful review of the CBR literature on maintenance until
2001. The SIAM methodology [30] is a useful hands-on guidance for maintenance
(see Section 6). Ferrario and Smyth [9] automate the organization of maintenance
processes for structural cases by means of a scoring system. [12] transfer this work
to textual CBR. Competence measures [31,7] may support the humans who have
to judge experiential knowledge.

Potential for automation: Parts of the organization of maintenance can be
automated. However, the execution requires the effort of humans. It may be
supported by automatic quality measures.
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5 Case Study with Empirical Evaluation

We have performed a case study for our framework that focuses on the building
block use of knowledge, i.e. on the organizational and socio-technical actions to
boost the use of the case-based EM system. An organizational action for an EM
system means an action that concerns the integration of the system with the
organization. A socio-technical action is a technical modification of the system
to realize some psycho-social findings.

5.1 The Application Scenario

We took the ExperienceBook II [18] as an application scenario for our case
study. The ExperienceBook II is a case-based assistant system that supports
students of computer science in their daily problems. This includes computer
science related problems like how to use a certain software but also issues of
student life like the best pubs on the campus. Meanwhile, the case base contains
about 60 textual cases on the following topics:

– UNIX problems,
– Linux problems,
– Prolog problems,
– problems with the network dial-in at the university’s,
– questions concerning the exercise and examination management system Goya,
– the lecture ’Practical computer science I’, and
– general problems and questions.

The representation and retrieval of cases follows Lenz et al’s approach of tex-
tual case-based reasoning [14]. The students may ask questions to retrieve their
commillitones’ experience. The case-based part of the system is integrated with
a discussion forum for the same community of users. The navigation between
the two parts is per mouse-click. The ExperienceBook II has been employed at
Humboldt University, Berlin, for more than two years. It is on-line accessible for
the members of Humboldt’s computer science department1.

5.2 The Psycho-social Findings

We have developed a catalog of organizational and socio-technical actions to
boost the use of our sample application. It relies on a psychological study on the
main reasons for the failure of knowledge management by Meyer and Scholl[16]
which results in three recommendations:

1. Requirements analysis: Make a requirements analysis to identify the kind
of assistance and the contents that the users really need.

2. Attitude: Exert influence on the users attitude towards the system.
3. Organizational barriers: Avoid organizational barriers that may prevent

the users from using the system.
1 Feel free to send an email to the author for a guest account.
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We followed the first recommendation by the early and continuing partici-
pation of the users. This included discussions with students before, during, and
after the launch of the system as well as interviews to gain written feedback. Ad-
ditionally, we got hints for the knowledge demand of the students by analyzing
the queries that have been posed to the system.

The second recommendation is especially crucial for EM systems as people
circulate their personal experience only when they trust the receiver, i.e. the
receiving system and the other users of the system. For instance, the fear of being
controlled via a system leads to a negative attitude. We exerted influence on the
users’ attitude towards the system by informing and motivating them on several
promotional channels. Our results show that promotion has a measurable impact
on the access ratio (see below). This indicates a reduction of the organizational
barriers ’fear of control’ and ’lack of motivation’.

We identified ’unsatisfying contents’, ’defensive attitude’, and ’system not
tightly integrated with the working environment’ as further organizational barri-
ers. Paying regard to these barriers resulted in an improvement of the system
measured by the access statistics (see below). Meyer and Scholl mention ’to small
resources for knowledge management’ and ’restrictive conventions’ as further or-
ganizational barriers; they do not apply in our case study.

5.3 The Results of the Activities

Table 1 contains the organizational and socio-technical activities that we have
taken to follow the above recommendations. We used the following catalog of
methods for it:

– discussions,
– oral and written interviews,
– talks,
– links to the system from other Web pages,
– written group work,
– email communication, and
– Web logfile analysis.

A written group work in a seminary provided us with an initial case base and
some further topics of interest for which the cases had still to be written. We
created some more cases from teaching material and from the Web pages of the
system administration group. The whole initial case base contained two dozen
cases what has been a first step against the organizational barrier ’unsatisfying
contents’.

The advertising activities informed the students on several channels: per email,
per links from the Web page of the lecture ’Practical computer science I’, and via
face-to-face communication by discussing in meetings of the students’ self-admi-
nistration and by giving a talk in the lecture. The access statistics (see below)
showed that the face-to-face advertisement has been the most successful promo-
tion as each discussion and talk was followed by a peak of accesses. We used



190 M. Minor

Table 1. The organizational and socio-technical activites in chronological order

Requirements Organizational
analysis Attitude barriers
written group work initial case base to
to determine topics avoid ’unsatisfying
of interest for cases contents’

advertising
activities
(emails, links,
discussions,
talks),
communication- avoid

before the friendly design ’lack of motivation’
start of only intrinsic
the system motivation, avoid
(Sep 2003) privacy policy ’defensive attitude’

Web log analysis
some weeks and oral interviews Web page with a list
after the for getting feedback, of open cases, new cases
start of discussion of from the discussion
the system authoring support forum to avoid
(Oct 2003) requirements ’unsatisfying contents’
some months
after the
start of Web log analysis
the system and questionnaire
(Jan 2004) for getting feedback

advertising avoid
activities ’fear of control’

link from ’GOYA’ to
before the avoid that the system
second turn is ’not tightly
of the system integrated with the
(Sep 2004) working environment’
some months new cases from
after the lecturers to avoid
second start Web log analysis ’unsatisfying
(Mar 2004) for getting feedback contents’

all meetings also for the requirements analysis. We developed a communication-
friendly design of the system to motivate the students to contribute their ex-
perience. The design includes text fields for the author and an email contact
address in the cases, a commentary field to extend a case, the right to edit cases
for every user, and the integration of the case-based part of the system with the
discussion forum.

We decided to abstain from extrinsic motivation like giving the students extra
scores for writing a case, for instance. The usage of the system and the authoring
of new cases is voluntary, the motivation is intrinsic and has to be done by
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convincement only. Together with our privacy policy, the intrinsic motivation
aims to avoid a ’defensive attitude’. The privacy is preserved as the system
is only accessible for members of the department: There is free access from
inside the department’s network and password protected access from outside
the network. Furthermore, the retrieval is anonymous and the query data is
stored not individual-relatedly.

The analysis of the Web log files some weeks after the introduction of the sys-
tem showed 1,453 accesses (see the value for October 2003 in Figure 4). However,
only two authors had written new cases while the discussion forum got many new
entries during the same time period. Oral feedback and a discussion of author-
ing support requirements confirmed that the students felt it difficult to write new
cases due to a lack of ideas for topics. They asked for an extra Web page with open
cases. Since, we have filled this page regularly with topics from the query log files.
Additionally, the discussion forum contributed material for some new cases.

Some months after the introduction of the system, the number of accesses
was rapidely decreasing (see the values for December 2003 and January 2004
in Figure 4). We sent a questionnaire to the students of the lecture ’Practical
computer science 1’. The return rate was low (15 of 298 students, i.e. about 5%),
but the results were rather informative: The target community had installed an
own discussion forum meanwhile that was stored outside the university. The
students did not mention the reasons for this relocation. They assessed the us-
ability of the system as good. They asked for more cases from the lecturers. The
most students knew the system from the lecture. This confirms our above ob-
servation that the face-to-face communication is the most effective promotional
channel.

For the second turn of the system in October 2004, we repeated our advertising
activities with a new generation of students. We put special emphasize on the

Fig. 4. The access statistics of the ExperienceBook II
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organizational barrier ’fear of control’ and recurred to say that the lecturers are
not reading the students’ queries nor the comments and new cases.

We linked the ExperienceBook II from the Web page of the GOYA system
to integrate it further with the students’ working environment. Since, about a
third of all accesses come from the GOYA page.

The analysis of the Web log file had again the result that the users performed
little authoring activities. As a countermeasure, we asked lecturers for help. They
wrote cases on open topics at the special Web page.

Meanwhile, we have a case base with 59 cases: 8 of them have been written by
5 named students, 5 anonymously, and 46 by 3 different lecturers. 10 comments
have been written and 11 cases have been edited. Over 60 authors contributed
to the case base and the discussion forum. The contents of the case base are
still a bit unsatisfying as such an amount of cases is manageable without any
retrieval, e.g. within a catalog structure.

Figure 4 shows a peak of accesses in April 2004 after the new contributions
from the lecturers and minor peaks around the examination in July 2005 and
at the beginning of the new academic year with the third generation of users in
October 2005. In 2005, only mouth-to-mouth communication made promotion
for the system.

6 Discussion of Related Work and Conclusion

The INRECA methodology [5] is for the development of industrial applications
of CBR. It describes process models on three levels: on the common general
level that covers many applications, on the cookbook level for certain kinds of
applications, e.g. the class of help desk systems, and on the specific project
level. A process is decribed by input values, output values and a set of different
methods that can be used to implement it. INRECA is compliant with the ISO
900x standard. It is a powerful framework for huge projects that requires some
effort for integrating a case-based EM system with the business processes of
the target company. For non-commercial projects, this effort is not achievable
sometimes even for lack of specified business processes. However, taking care
on the organizational and the psycho-social aspect following our building block
model can be done with little effort. We learned from the INRECA methodology
that it is important not to be restricted on the technical aspect of a case-based
EM system only.

The SIAM (Setup, Initialization, Application, Maintenance) methodology [30]
is a framework for case-based systems. SIAM extends the originally four processes
of Aamodt and Plaza’s CBR cycle [1] by two processes for the application and
maintenance of the system. SIAM has been integrated with INRECA and oper-
ationalizes a maintenance policy on the general, cookbook, and specific project
level. Like SIAM, our framework aims on a systematical approach for the orga-
nizational aspect. In addition to SIAM, we allow also light-weight maintenance
policies as in [9] and [12].
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Weber at al [34] give a survey of knowledge management systems that deal
with experiential working knowledge. As one of the first authors they state that
such systems, although well-intentioned, are rarely used. They give a categorizing
schema that aims to guide the development of improved systems. The scope of
this work is still limited to technological and organizational issues.

In this paper, we proposed a framework of EM that is applicable for the
development, integration, and maintenance of case-based EM systems in the
following way: The designers and managers may select the most important (or
all) building blocks for a particular application and take guidance from the
referred sample systems how to realize it.

As our results of a case study show, it is measurably worth while to take care
on the psycho-social aspect.
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Abstract. While much of the research in the area of recommender sys-
tems has focused on making recommendations to the individual, many
recommendation scenarios involve groups of inter-related users. In this
paper we consider the challenges presented by the latter scenario. We in-
troduce a (case-based) group recommender designed to meet these chal-
lenges through a variety of recommendation features, including the gen-
eration of reactive and proactive suggestions based on user feedback in
the form of critiques, and demonstrate its effectiveness through a live-
user case-study.

1 Introduction

Recently one of the authors of this paper was trying to book a skiing holiday for
a group of 4 friends. This turned out to be far more complex than first imagined,
despite the prevalence of many sophisticated search and recommender systems in
this domain (e.g., TripMatcher, provided by Triplehop Technologies [3], vacation-
coach.com and TripAdvisor.com and also DieToRecs [13]). To begin with it was
difficult to capture the many and varied preferences of the group participants.
For example, most people only revealed a few of their more salient preferences at
the outset and then further requirements were disclosed in the face of certain hol-
iday suggestions later on. In addition, all of the available recommender systems
in this domain really were designed for single-user usage. While they obviously
provided facilities for a user to search for a package that would accommodate
a group of people, it was not possible to introduce the individual sets of pref-
erences of those involved. Instead the responsibility of combining these (often
competing) preferences into a single coherent query, fell to the lead searcher [13].
All of this led to a very unnatural, not to mention extremely inefficient, search
process. For example, early recommendations were passed on to the group to get
individual feedback, and then this feedback needed to be integrated into a new
query by our lead searcher in order to generate another batch of suggestions.
This process continued for many cycles and the lead searcher had to regularly
justify to others why particular options were appropriate, explaining them in the
light of the preferences of others. Eventually a holiday was booked, and everyone
� This material is based on works supported by Science Foundation Ireland under
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had a great time, but surely better recommendation support could have been
provided.

In this paper we consider a group recommendation scenario just like the one
outlined above and we describe a conversational recommendation framework
that has been implemented to provide the type of support that we feel is crit-
ical. Briefly, the recommender system implements an asynchronous model of
group recommendation, allowing a group of users to engage in a collaborative
recommendation session via a Web-based interface1. This framework provides
for a variety of recommendation features including the generation of reactive
and proactive suggestions based on user feedback in the form of critiques. One
of the critical challenges of group-based recommendation scenarios involves the
development of a reliable group-preference model. We will describe how such a
model is constructed by analyzing individual user feedback, and how the model
works to complement the individual preference models that are maintained for
each user during the selection of recommendations. In addition, it is also criti-
cally important for a group recommender to help individual users to understand
the evolving preferences of the group such that they can better appreciate the
compromises that may be required if a satisfactory conclusion is to be reached
[6]. To this end we describe a number of innovative interfacing features that are
designed to act as consensus barometers in order to help the group develop a
shared mutual awareness of each others’ preferences.

2 Background

One of the key issues that has guided the development of our group recommender
concerns the type of feedback that can be solicited from individual users. In our
work we are especially interested in critiquing (see, [2,4,8,9,14]) as a form of
feedback as it strikes a useful balance between the information content of the
feedback and the level of user effort or domain expertise that is required. For
example, in a travel vacation recommender, a user might indicate that they are
interested in a vacation that is longer than the one week offered by the currently
recommended option; in this instance, [duration, >, 1wk] is a critique over the
duration feature that can be used to filter out certain cases from consideration
(i.e., those that have shorter durations) in the next recommendation cycle. Thus,
the key advantage of critiquing is that it is a relatively low-cost form of feedback,
in the sense that the user does not need to provide specific feature values.

Recently there has been renewed interest in critiquing, especially in prod-
uct recommendation scenarios, where users have limited domain knowledge, but
where they can readily provide feedback on some product features. As a re-
sult, the basic approach has been enhanced in a number of ways [1,10,11,12].
In this work we use the incremental critiquing technique [12] as a way to effec-
tively leverage a user’s critiquing history during recommendation. Incremental
1 Our recommendation framework has been designed to operate with different types

of interaction modalities and later we will discuss an alternative interface that is
based on the Mitsubishi DiamondTouch interactive tabletop.
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critiquing uses a preference model for user U that is made up of the set of cri-
tiques {I1, .., In} that have been applied by a user in a given session. As new
critiques are made by the user, their preference model is updated. This may
involve removing past critiques if they conflict with, or are subsumed by the
most recent critique. For example, if a user had previously indicated a Price <
$600 critique and a new Price < $500 critique is later applied then the earlier
critique will be removed to reflect the users refined Price preference. Similarly,
if a user had previously indicated a Price < $600 critique but the new critique
is for Price > $650, then the earlier conflicting critique is deleted. In this way
the user’s preference model remains a consistent reflection of their most recent
preferences.

This model is then used to influence future recommendations so that they
are not only compatible with the current critique (and preference case) but so
that they are also compatible with past critiques so far as is possible. In the
standard approach to critiquing, the most recent critique is used to temporarily
filter out incompatible cases and a new recommendation is selected from the
remaining cases on the basis of its similarity to the critiqued case (i.e., the
preference case). The problem with this approach is that no account is taken
of how compatible the remaining cases are with past critiques that have been
applied; since the critiques only act as temporary filters over the case-base, cases
which are incompatible with past critiques may be reconsidered in the future.
One of the advantages of the incremental critiquing approach is that it allows
candidate recommendations to be ranked not only because they are similar to the
preference case but also on the basis of their compatibility with prior critiques
in the form of the user’s current preference model. To do this, each candidate
recommendation, c′, is scored according to its compatibility to the user’s current
preference model as shown in Equation 1. Essentially, this compatibility score
is equal to the percentage of critiques in the user’s model that are satisfied by
the case; for example, if cr is a $1000 vacation case then it will satisfy a price
critique for less than $1200 (Ii) and so satisfies(Ii, cr) will return 1.

compatibility(cr, U) =
∑

∀i satisfies(Ii, cr)
|U | (1)

The quality of a case cr with respect to a preference case cp, is a weighted
sum of preference similarity and critique compatibility. When a user U critiques
cp the next case recommended will be the one with the highest quality score; see
Equation 2. By default, for incremental critiquing α = 0.5 to give equal weight
to preference similarity and critique compatibility.

quality(cp, cr, U) = α ∗ compatibility(cr, U) + (1 − α) ∗ similarity(cp, cr) (2)

2.1 Group Recommendation Challenges

Perhaps the most critical challenge for a group recommender system is how to
develop of a comprehensive account of the evolving preferences of the group with
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a view to using their combined preferences to influence group recommendations.
In this work we adapt the incremental critiquing approach for group recommen-
dation. We will describe how critique histories can be combined to produce a
group preference model and how future recommendations can be influenced by
their compatibility with this group model. In this way we can bias recommen-
dations towards those cases that are likely to be acceptable to the group as a
whole as well as the individual participants; see Section 3 for further details.

Ultimately, for this type of recommendation to work effectively we must en-
sure that individual users come to appreciate their role within the group. It is
natural for many users to want to maximise their own preferences, and so if left
unchecked, we might expect users to proceed in ignorance of the evolving group
preferences as a whole; this is especially true if users are collaborating remotely,
thorough a Web interface for example. Hence one of the key challenges in this
work has been to look at effective ways for the recommender system to commu-
nicate group preferences to all users, in an effort to help individuals develop a
mutual awareness of their friends’ preferences [5,6], with a view to encouraging
compromises across the group as a whole. If users are not willing to compromise
then it is unlikely that they will be satisfied with the recommendations they
receive, and the only way that we can encourage compromise is by making sure
that users come to appreciate the features that are important to others.

In our work this “mutual awareness” goal [6] has translated into a number of
interactivity and interface features that are designed to highlight the opinions of
other users and the preferences of the group as a whole. These include interactive
features such as: (1) the proactive recommendation of cases (separate from the
reactive recommendation in response to user critiques) that exceed a certain
threshold of acceptability for the group; and (2) a facility that allows users to
set aside certain cases that they feel strongly positive about so that these cases
may be promoted to other group members. In addition, there are a range of
visual interface elements that help each user to see the opinions and preferences
of the others so that preferred cases are annotated accordingly.

3 The Collaborative Advisory Travel System (CATS)

In this section we describe how the CATS group recommender, helps a group of
users to plan a skiing vacation. The CATS system described here is implemented
as a Web-based client-server system with each user interacting with the system
through a standard Web browser interface. In Section 5 we will briefly touch on
another implementation of the system that uses a very different type of interac-
tion technology with a view to facilitating a more natural form of collaboration
between group of up to four members. In both cases, however, the core interface
components remain broadly similar. To begin with we will summarize the key
components of the CATS interface before describing its core user modeling and
recommendation generation techniques.

Before proceeding it is worth highlighting one important point: we are not
proposing the CATS system as the optimal way to offer group recommendations
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per se, but rather as a framework for experimenting with, and evaluating, differ-
ent types of feedback, preference communication and recommendation strategies.
It is important to bear this in mind when reading the following sections because
many design decisions have been made in order to evaluate particular design
features and recommendation strategies, rather than on the basis of a strong
commitment to one particular design or strategy.

Fig. 1. The main CATS interface

3.1 The CATS Interface

Ultimately a recommender system is a way to translate the preferences of a user
(or, in this case, a group of users) into a set of product suggestions. With this
in mind, the CATS interface is the primary tool for capturing the preferences of
individual users, communicating these preferences to the group as a whole, and
then presenting the recommendations that are derived from these preferences to
group members. It does this through a combination of interface elements (see
Fig. 1) and recommendation techniques. In the remainder of this section we de-
scribe each of these elements in detail.

The Case Window. The most familiar element of the CATS interface, the case
window, presents the user with a case description and some possible critiques. In
CATS, each case relates to a ski package, and consists of more than 40 features
(attribute-value pairs) describing various aspects of the resort and accommo-
dation. For example, Fig. 2 shows resort information for case 834, describing
features about the its location, ski runs/lift system, and its appropriateness for
different levels of skier. The hotel features can be viewed from the hotel tab and
resort photographs are also available. From this window the user has three basic
options—she can discard the case; she can add it to the stack area, or she can
critique one of its features to initiate a new recommendation—as follows:
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1. Critiquing allows the user to request cases that are like the one displayed
but different in terms of at least one feature. For example, our user might
request a new recommendation that is “like the one shown but with more
green runs”. The user can perform such a critique, by clicking on the relevant
critique icon beside the feature, see Fig. 2. We will describe how the next
recommendation is generated in more detail later.

2. Alternatively our user can decide to add the case to the stack area to indicate
that she is interested in this vacation and wants to draw it to the attention of
the other group members. The stack area is visible to all group members and
is an important way to communicate emerging group preferences to users.
We will return to this feature below.

3. Finally, the user can chose to discard the case if she is confident that she
would not be at all satisfied with this vacation. Discarding the case means
that this particular case will not be used as a suggestion to any of the users
for the remainder of the recommendation session.

Fig. 2. The case window presents the user with a complete description of a case and
is used as the starting point for collecting critiquing-based feedback from each user

The Map Window: The map window displays a graphical representation of
the resorts covered by the cases in the case-base and is the initial screen users
see when they begin a session. This window provides a way for users to browse
through the various resort cases. Each resort is marked by a mountain range
icon and by selecting a resort icon the user will receive a summary of the resort
and a list of its cases. The user can view any case and interact with it in the
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normal way as described above. The map window also displays important in-
formation about the activity of group members and how well particular resorts
match evolving group preferences. For instance, if a user is currently accessing
a case from a particular resort, then the resort is annotated with a colour-coded
snowflake icon; in Fig. 1 we see that a user in our group is currently accessing
one of the Bulgarian resorts, for example. In addition, the size of the resort icon
reflects the compatibility rating of its most group-compatible case; that is, the
resort case that satisfies the most critiques contained in the group model ap-
pears larger. Thus, the map window is a vital tool for communicating the focus
of group activity and preferences.

The Stack Area: Every so often a user will come across a case that they really
like or that they imagine may be of interest to other group members. The user
can communicate this to the group by adding the case to the stack area where it
can be evaluated by other users. In a sense, this allows an individual user to play
the role of recommender and the stack area serves as a user-based recommen-
dation list. When a case is added to the stack it becomes a stack member and
is displayed in summary form as shown in Fig. 1. In addition, each stack mem-
ber is annotated on its left-hand side with a set of colour-coded compatibility
barometers, each reflecting how compatible the case in question is with respect
to the critiques contained in each user’s individual model. For example, the stack
member highlighted in Fig. 1 for 3-star accommodation in Andorra is annotated
to indicate that it is very compatible with the preferences of the blue and green
users, but not so compatible with the yellow user, and only marginally compati-
ble with the red user; note that we also indicate which user added the case to the
stack with the thumbs-up icon overlayed on their compatibility barometer. An
overall group-level compatibility barometer is displayed to the right of the stack
member to indicate overall compatibility with the group preference model; in
this case we see that the stack member is about 50% compatible with the overall
group model. These compatibility barometers are dynamically updated during
the session to reflect current compatibility levels and provide another important
source of preference feedback for the users. At any time any user can view and
critique a stack member that has been added by someone else, but currently only
the user who originally added the case can remove it from the stack. Finally, the
stack area is important when it comes to delivering the final recommendation
to the group at the end of the session since this recommendation will be drawn
from the current stack members.

Proactive Suggestions: So far we have described two types of recommenda-
tions: those that are generated in response to user critiques and, those that are
generated by the users themselves as they add cases to the stack for others to
evaluate. There is a third type of recommendation: proactive recommendation.
The CATS system is constantly comparing the group preference model to the
remaining cases available for consideration; that is, cases that have not been
previously viewed or discarded by any of the group members. Occasionally, one
or more of these cases exceeds a certain critical compatibility threshold with re-
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spect to the group preference model and when this happens the most compatible
case is proactively recommended by CATS to all users. For example, one such
case (for a 4-star hotel in Austria) has been proactively recommended in Fig. 1
and will appear on the map window for all users where they can interact with
it in the usual way. Once again this provides users with direct feedback on the
evolving group preference model in an attempt to draw their collective attention
towards cases that appear to maximally satisfy their preferences; we will revisit
this form of recommendation in the following sections.

Completing the Session: At any time a user can request CATS to recommend
another case by selecting the Suggestion button; we will discuss the precise mech-
anism for this form of recommendation below. Also, a user can terminate their
session at any time by selecting the Session Complete button and once all users
have completed their sessions the system reverts with final ranking of the stack
cases according to their compatibility with the group preference model and re-
turns the most compatible case.

3.2 Modeling Group and User Preferences

The maintenance of preference models is critical to the operation of the CATS
recommender system. As discussed earlier these models are critique-based: a
preference model is made up of a set of unit critiques provided by a user. CATS
maintains two types of preference model. An individual model is maintained for
each user and is equivalent to the preference models maintained in the standard
form of incremental critiquing as proposed by [12]. Thus each user U is associated
with an individual preference model, IMU , that is made up of the critiques that
they have submitted (see Equation 3) with conflicting and redundant critiques
removed as summarized in Section 2.

IMU = {I1, ..., In} (3)

In addition, a group preference model, GM(U1, ..., Uk), is also maintained by
combining the individual user models and associating each unit critique with the
user who contributed it as shown in Equation 4 such that GU

i refers to the ith

critique in the preference model for user U .

GMU1,...,Uk = {IU1
1 , ..., IU1

n , ..., IUk
1 , ..., IUk

m } (4)

During recommendation it will sometimes be necessary (as we will see in the
next section) to leverage part of the group preference model, usually the model
less some individual user’s critiques. Thus we will often refer to the partial group
model or the members model, MMU , to be the group model without the critiques
of user U as shown in Equation 5.

MMU = GMU1,...,Uk − IMU (5)

This means that the group preference model is based on the preference mod-
els for individual users after they have been processed to remove inconsistent or
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redundant critiques. We have chosen not to repeat this processing over the group
preference model and therefore it is possible, indeed likely, that the group pref-
erence model will contain conflicting preferences, for example. Of course, during
recommendation these inconsistencies will have to be minimised by preferring
cases that are maximally compatible with the overall group model.

3.3 Recommendation Generation

In Section 3.1 we highlighted how CATS is capable of making a number of
different types of recommendations:

1. Critiquing-based recommendations are generated when a user critiques a case
through the case window.

2. User-requested suggestions are generated when the user selects the suggestion
button.

3. Proactive recommendations are generated when CATS locates a case that
exceeds a preset compatibility threshold with the group preference model.

4. A final recommendation is drawn from the stack when all of the users com-
plete their session.

Each of these recommendations is generated differently by combining individ-
ual and group preference models in different ways. This was largely an attempt
to experiment with a variety of combination strategies as opposed to making
a strong commitment to these specialized strategies. They may work well in
practice but we are not proposing them as best practice.

Critiquing-Based Recommendations. This is arguably the most important
source of recommendations in CATS and involves a two-step procedure. As in
the standard model of critiquing [2], the first step is to temporarily filter-out
cases that are not compatible with the current critique. This leads to a set of
recommendation candidates. The standard approach to critiquing ranks these
candidates according to their similarity to the critiqued case (cp), whereas incre-
mental critiquing uses a quality metric that combines similarity to the critiqued
case and compatibility with past critiques (IMU ). Our group recommender is
based on the latter but adapted to include the preferences of the other group
members (MMU ) in the quality metric, as well as the preferences of the user
applying the critique, to select a recommendation according to Equation 6.

crec = argmaxcr (quality(cp, cr, IMU , MMU )) (6)

Thus, we compute a new compatibility score, for a recommendation candidate cr,
as shown in Equation 7 and combine this with similarity to the preference case
(cp) as in Equation 8. The β parameter controls how much emphasis is placed
on individual versus group compatibility while α controls the emphasis that
is placed on compatibility versus preference similarity; by default we set both
parameters to 0.5. In this way, the case that is recommended after critiquing
cp will be chosen because it is compatible with the critique, similar to cp, and
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compatible with both the user’s own past critiques and the critiques of other
users. Thus we are implicitly treating past critiques as soft constraints for future
recommendation cycles [15]. It is not essential for recommendation candidates
to satisfy all of the previous critiques (individual or group), but the more they
satisfy, the better they are regarded as recommendation candidates. As an aside,
the binary features of a case are only considered during the similarity calculation
when a user has shown a preference for that feature.

GCompatibility(cr, IMU , MMU ) = β ∗ compatibility(cr, IMU ) +
(1 − β) ∗ compatibility(cr, MMU ) (7)

quality(cp, cr, IMU , MMU ) = α ∗ GCompatibility(cr, IMU , MMU ) +
(1 − α) ∗ similarity(cp, cr)

(8)

User-Requested Suggestions. This type of recommendation is generated in
the same way as critiquing-based recommendation in the sense that the next
highest quality case is chosen. Thus the suggestion button allows the user to
move down through the list of ranked cases after a critique has been chosen.

Proactive Recommendations. The idea behind this type of recommendation
is as a mechanism to bring certain cases to the attention of all users if they satisfy
an unusually high proportion of the group preferences. As mentioned earlier,
these cases are drawn from the set of cases that have not yet been critiqued by
any user or discarded and a given case is selected according to the following rule:

argmaxc(compatibility(c, GMU)) iff compatibility(c, GMU) > 0.65 (9)

The use of the compatibility threshold is important. It limits the frequency
of proactive recommendations; after all it is unwise to interrupt users too often
during the course of their session. More importantly perhaps is that the threshold
also ensures that, when cases are proactively suggested, they are likely to be
acceptable to all users.

Final Recommendation. Once all of the users have completed their session
the CATS system recommends the case in the stack area that has the highest
compatibility with the group preference model; see Equation 10. The stack area
is provided for users to share their favourite cases during the session and at the
end of the session the final recommendation is the one that satisfies the greatest
proportion of group preferences.

cfinal = argmaxcstack
(compatibility(cstack, GMU1,...,Un)) (10)

4 Experimental Analysis

With CATS as very much a “work in progress” our core evaluation objective
was to understand how users would respond in a group recommendation setting
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to the particular combination of feedback, communication, and recommendation
that CATS provided. Given this objective it was clear that there would be little
value in performing an off-line or artificial user study. Instead we carried out a
small-scale live-user trial, the results of which are summarized in this section.

4.1 Trial Setup

As mentioned in the previous section the CATS system operates over a com-
prehensive case base of European skiing holidays consisting of 5700 cases, each
made up of 43 different features related to the resort (25 features such as coun-
try, transfer time, lift system, etc.) and the accommodation (18 features such as
accommodation rating, price, ski room facilities, restaurant facilities, etc.). The
trialists were 3 groups of 4 computer science graduate students with varying
degrees of interest and experience when it came to skiing.2 Prior to the start
of the trial we gathered some preliminary information about the preferences of
each user, in order to judge the quality of the cases ultimately recommended
by the group recommender. By comparing the cases selected by the members of
a given group we were also able to understand the extent to which each group
agreed/disagreed on various case features.

Each group of users was provided with a short demonstration of the operation
of the system paying particular attention to the core features such as critiquing,
the stack area and its compatibility indicators, the map and its activity icons,
and proactive recommendations. They were instructed to behave as if they were
really trying to plan and book a skiing holiday to go on together. As such, they
were reminded that some compromises would likely be required from each user.
In each trial user interactions and recommender activity was recorded. At the
end of each session the users were asked to complete an extensive questionnaire
covering issues such as: their satisfaction with the final case; their evaluation of
the recommendations provided; the ease-of-use of the interface etc.

4.2 Behaviour Results

Overall the average session length, measured in terms of the total number of
cases each user interacted with, across all three trials was just under 18. Almost
two thirds (63%) of case accesses were the result of users critiquing cases (see
Fig. 3(a)) with the remainder of accesses arising out of the users interacting di-
rectly with the map (14%), accessing a stack member (12%), and opening one of
the occasional proactive suggestions that are made by CATS (8%). These results
are encouraging in that they demonstrate that users at least made regular use
of CATS’ secondary case access mechanisms, although the ‘suggest’ button was
rarely used (2% of accesses). In particular, we see that users are frequently at-
tracted to the stack area which plays a vital role in communicating strong group
preferences and also provides the source of cases for the final group recommen-
dation. The trial data indicates that the average user places between 3 and 4
2 All trials were conducted in the computer laboratories at the School of Computer

Science & Informatics at University College Dublin, Ireland.
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Fig. 3. (a) Source of case accesses; (b) Proactive recommendations selected

cases on the stack which corresponds to about 18% of the cases that they view.
In other words, users are presented with cases that satisfy their needs about 18%
of the time with other users accessing these cases about 14% of the time; thus
there is a strong correlation between stack additions and selections.

It is also worth commenting on the quality of the proactive recommendations.
These recommendations contributed only 8% of the cases to the average user
session, but this is more a reflection of the rarity of these suggestions than their
quality. Remember that by definition these suggestions are only made once a case
has been found that satisfies 65% of the group’s current preferences. However,
when this condition is met and a proactive suggestion is made, we see that users
respond to these suggestions approximately 26% of the time on average; see Fig.
3(b). Groups B and C respond positively to these suggestions 30% and 38% of the
time respectively, with group A users responding only 4% of the time; in fact 3 of
the 4 group A users completely ignored the proactive suggestions and on the basis
of the post-trial questionnaire this seems to have been due a lack of awareness
of the feature, as opposed to any negative comment on recommendation quality.
Finally, it is worth supporting the above statistics with information from the
post-trial questionnaire regarding the perceived quality of the recommendation
received during group sessions. In particular, only 2 of the 12 users indicated
they were not happy with the general quality of recommendations.

4.3 Group Compromise and User Satisfaction

Ultimately the success of any group recommender system will depend critically
on its ability to identify cases that achieve reasonable compromise between the
potentially competing requirements of different users. At the start of the trial we
asked users to pick an example case that they would be interested in booking.
They were also asked to highlight up to 5 features from this case that viewed as
especially attractive. We refer to these features as the user’s initial preferences;
remember these features were not explicitly used during the trial, although it
seems reasonable to assume that users may have started by looking for cases that
satisfied these. During the course of the trial each user’s critiques contributed to
another set of preferences, which we will call their trial preferences.
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Fig. 4. The level of critique compatibility and user satisfaction with the case that is
ultimately recommended to the group

We can use these preferences to evaluate the quality of the final case recom-
mended to each group of users by measuring how many of these preferences are
satisfied or contradicted by the the final case. The results (see Fig. 4) show that
the final case satisfied just over 66% of the initial preferences across the 3 groups
and almost 79% of the trial preferences. During the post-trial questionnaire users
we asked how happy they were with the final case by rating it on a scale of 1
(“not happy at all”) to 5 (“really happy”). On average the 12 users rated the
final case as a 4 (“fairly happy”) with 10 out of the 12 users providing a rating
of at least 3 (“happy”); we have expressed these results as a percentage value in
Fig. 4. These results suggest that the CATS system effectively translates the of-
ten competing preferences of a group of individual users into a recommendation
that broadly satisfies the whole group.

5 Concluding Remarks

While traditional research has focused on making recommendations to the in-
dividual, many recommendation scenarios involve groups of inter-related users.
Here the most critical challenge for a group recommender system is how to de-
velop of a comprehensive account of the evolving preferences of the group with
a view to using their combined preferences to influence group recommendations.

In this paper we have described an approach to asynchronous, cooperative
group recommendation that: (1) uses a variety of interface cues to communicate
group, as well as individual, preferences and activity, and (2) constructs a reliable
group-preference model by combing critique histories in order to generate rec-
ommendations on a proactive and reactive basis. Preliminary evaluation results
suggest that our approach to group recommendation effectively generates rec-
ommendations that satisfy group needs. Furthermore users responded positively
to the various interface elements and recommendation strategies implemented
by the CATS prototype group recommendation system.
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Fig. 5. Illustrating the CATS interaction with the DiamondTouch

Our future work will focus on exploring a range of different strategies for
combining individual preferences with a view to generating improved recom-
mendations. This will of course include extended live-user evaluations. In addi-
tion is it worth highlighting recent work [7] that we have carried out that looks
at alternative interfacing modalities for this group recommendation approach.
While in this paper we have concentrated on our Web-base interface, CATS
has also been implemented Mitsubishi DiamondTouch interactive tabletop. The
DiamondTouch (see Fig. 5) consists of a touch sensitive tabletop display and
supports the interaction of multiple simultaneous users. Its ‘coffee table’ form
factor is ideal for supporting collaborative tasks. The CATS system interface
has been adapted to offer users personal interaction spaces and a shared group
space as shown in Fig. 5.
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Abstract. Ambient Intelligence is a research area that has gained a lot
of attention in recent years. One of the most important issues for ambient
intelligent systems is to perceive the environment and assess occurring
situations, thus allowing systems to behave intelligently. As the ambient
intelligence area has been largely technology driven, the abilities of sys-
tems to understand their surroundings have largely been ignored. This
work demonstrates the first steps towards an ambient intelligent system,
which is able to appreciate the environment and reason about occur-
ring situations. This situation awareness is achieved through knowledge
intensive case-based reasoning.

1 Background and Motivation

Mark Weiser coined the term ubiquitous computing to describe the way com-
puters would “. . . weave themselves into the fabric of everyday life until they are
indistinguishable from it“ [1, p. 1]. Since then this area of research has gained
considerable impetus, as well as many names. Although there are subtle differ-
ences, the term pervasive computing is also frequently used to refer to these
kind systems. Methods that aim to give this type of highly distributed systems
intelligent properties, are often referred to by the label ambient intelligence.

The visions and scenarios described within the wide area of pervasive com-
puting have grown from the original and simple, describing augmented artefacts
assisting users in their day to day living, into full grown systems that assume
responsibility from the user, and display a large degree of common sense reason-
ing as well as elaborate problem-solving. Examples of these ambient intelligent
systems can be seen in the way Fred receives help from the omnipresent system
Aura [2, p. 3], or in the way Maria is helped through her business trip [3, p. 4].

To display these kinds of complicated behaviours, an entity must be able to
interpret the environment in which it is situated, i.e. possess a sufficient level of
context-awareness. So far, most of the work on context-aware computing have
been largely technology driven, leading to, for example, a large number of ways
to identify the location of individuals or artefacts using various kinds of posi-
tion detectors. Hence, many of the pervasive computing systems around today
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are rarely more than stimuli-response systems, which regard context merely as
location, as earlier pointed out in [4]. Over the last few years, however, there
has been a growing interest, within pervasive computing in general and ambient
intelligence in particular, in issues surrounding the modelling and representation
of context in a wider sense [5,6].

A broader view on context, and an active role for context in situation as-
sessment, calls for an explicit model of context that is an integral part of the
overall knowledge model. Our hypothesis is that case-based reasoning (CBR),
supported by a rich model of general domain knowledge, is a promising way to
achieve ambient intelligent systems. The very nature of CBR lends itself easily
to reasoning about context and situation assessment. The use of context to guide
the case-based reasoning process has been demonstrated in [7], where relevance
and focus are regarded as the essential properties of context. The goal of an
agent becomes part of the context used to focus the attention, and thereby to
identify the knowledge needed to execute the actions associated with the goal.

Zimmermann demonstrates the feasibility of CBR for identifying the cor-
rect combination of parameters required to display situation understanding [8].
He proposes to initially cluster similar cases, and consecutively generalise cases
prior to the reasoning process. The work presents an instance-based approach to
the underlying problem of all context aware pervasive computing applications;
namely to identify similarities between contextual parameters, using a general
reasoning mechanism.

In the work by Ma et al. [9] case-based reasoning is used to adapt the behaviour
of smart homes to users’ preferences. A multi-user smart home can, even with
a very limited number of connected devices, present itself with a large number
of interdependent processes. CBR is used to identify these interdependencies,
due to its ability to reason in ill-defined and poorly structured domains. Cases
are represented as frames, where the findings are: the user, the environment,
the time, and the values from active devices. When new cases are instantiated,
the similarities between the new and existing cases are calculated using 1- or
k-nearest neighbour.

Kwon and Sadeh [10] applies CBR to a multi-agent environment in order
to estimate a best purchase in comparative shopping. In comparative shopping
consumers who wish to purchase a product can compare prices, warranties, and
other aspects between suppliers of a product. Correspondingly, suppliers can
tailor their products to specific customers or customer groups. Since it is difficult
to estimate the buyers’ exact utility function, a negotiation agent employs case-
based reasoning to match a current state to possible outcomes. The findings of
a case are the product in question, the price, the level of quality, together with
contextual information consisting of location, weather and calendar info.

The above methods have clearly shown the potential of CBR for ambient in-
telligence. However, they are all characterised by a k-NN, or knowledge-poor,
approach to similarity assessment, and no explicit or elaborated model of con-
text exists. Hence, reasoning about context and the role of context in situation
assessment, at different levels of abstraction, is problematic.
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We are studying how knowledge intensive CBR can be a suitable method
for achieving situation awareness. To obtain this, careful considerations must
be made when defining the knowledge. We argue that our particular approach
to CBR, in which cases are submerged within a general knowledge model, al-
lows for elaborate reasoning about context beyond what is obtainable in other
approaches. In our work we lean on results from within the pervasive comput-
ing community, combined with insight from Activity Theory [11]. Our approach
also draws on results from work on cooperative CBR [12] as well as ontology
modelling of CBR processes [13].

The work described here started within the EU project called AmbieSense,
aimed at providing focused guidance and targeted information pushing for peo-
ple on travel [14,15]. Rather than travelers, our current example application is for
support of health workers cooperating in patient diagnosis and treatment. Indi-
vidual PDA-based assistants will provide information based on their assessment
of the current situation, which also includes being able to agree on a common
interpretation of the current situation. Our results so far do not demonstrate a
final solution for achieving ambient intelligence; rather they show how the com-
bination of our particular knowledge model, the description of cases, and the
system architecture, is a promising approach to achieving ambient intelligence.

The paper is structured as follows: First, a short overview of the system
architecture is given. Secondly, the knowledge model used to describe the envi-
ronment, situations and cases is explained. Thirdly, the case model is described.
This is followed by an example in our domain of situation assessment within a
hospital ward. A conclusion and pointers to future work ends the paper.

2 System Architecture

The system is designed as a three layered architecture (see Figure 1). Each of
the three layers has its own specific responsibility. This three layered division is
comparable to the three levels required to achieve situation awareness proposed

Context Middleware

Context Agent

Creek Agent

Decomposer Agent

Application Agent Application AgentApplication Agent

Agency
Perception

Awareness

Sensitivity

Fig. 1. Structured System Architecture
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by Endsley et al. [16, p. 14], where there is a perception layer, corresponding
to our Perception layer; a comprehension layer, comparable to our Awareness
layer; and a projection layer, which roughly corresponds to our Sensitivity layer.

The Context Middleware layer in Figure 1 provides a generic context man-
agement infrastructure that collects and maintains data from the environment,
in a coherent and structured way [15]. This layer communicates with the agency
through the Context Agent, which receives notifications of changes in the con-
text. This notification is translated into the ontology used inside the agency, and
relayed to the CREEK Agent.

The CREEK agent is the agent responsible for assessing the context and
classifying the situation. This agent uses and extends the CREEK CBR system
[17]. Once a classification of the situation has been achieved, the goal associated
with the specific type of situation, and the context describing the part of the
world available for satisfying the goal are transmitted to the Decomposer Agent.

The decomposer agent is responsible for selecting the correct sequence of tasks
for execution, as well as drafting the correct Application Agents necessary. The
latter is done by querying a matchmaker agent for agents having the correct
post- and pre-conditions for execution of the sub-tasks. UPML [18] is used to
describe the components of plans, corresponding to task sequences. Once a suit-
able collection of agents has been gathered, the sequence of actions is executed
and the result is returned to the CREEK agent.

Application agents are autonomous agents that are capable of executing one
or more actions. An action may range from the mundane to services requiring
complicated reasoning. Each application agent corresponds to an artefact in the
specific domain, which offers one or more services.

A more thorough description of the overall architecture can be found in [14,19],
the overall agency is described in detail in [20], and the decomposition of tasks
and execution of actions are described in [21].

3 Context as Lenses

Context is used in two distinct ways, as illustrated in Figure 2. It is initially
used as a focus lens on the part of the world that can be perceived. In this
sense, context is the part of the world that is available to the awareness part
for identifying the situation. The part of the world depicted as Perceived in
the Perception part of Figure 2, and as Situations Context in the Awareness
part, are the parameters CREEK uses in the retrieval part of the CBR cycle.
These parameters can be the location where the situation is occurring, the people
present, and the time of day. A more elaborate example is given in Section 7.

The other use of context is for solving the particular problem associated with
a situation. Once CREEK has identified the situation, the corresponding goal is
also identified. For example, when a pre-ward round situation has been identified,
it is also known that the goal of the situation is to evaluate treatment of the
patient. Along with the goal, is a sequence of tasks that will achieve the goal. The
different artefacts or persons that can contribute by executing the actions that
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correspond to the tasks in the sequence, may differ depending on the context.
Thus, the context, as depicted in the Sensitivity part of Figure 2, is viewed
as a focus lens on the world given by the goal in question. This represent a
further constraint on the information available. If, for instance, the initial task
in a sequence is to acquire the name of the patient, and this information can be
obtained from several sources, it is important to know what information sources
are available in the given situation. In this example the name of the patient
might be obtained from the patient chart, the nurse, or the electronic patient
record; however, if context contains only the patient chart and the nurse, then
the electronic patient record can’t appear in the sequence of actions.

4 Knowledge Model

The CREEK system follows a knowledge intensive approach to Case-based Rea-
soning. There is a strong coupling between the case specific knowledge and the
general domain knowledge, as the cases share the same multi-relational semantic
network as the domain knowledge [22]. This integration of specific and general
knowledge requires a strong focus on knowledge acquisition and modelling [23].

Our knowledge model has been constructed partly top-down and partly
bottom-up. As Figure 3 illustrates, all knowledge types are integrated into a
single semantic network. Each node is a concept described in a frame structure.
The three parts generic to any CREEK application are the top-level ontology
(called ISOPOD), the domain-specific model of general and factual knowledge,
and the case base. The two subparts developed for the ambient intelligence sys-
tem are the Basic Context Model and the Activity Theory model.

As one of the most important aspects of situations are the activities occurring,
Activity Theory was used to capture these aspects of the world and integrate
them into the knowledge model. This part is concerned with notions such as roles,
artefacts, and communities, and their relationships. For a thorough discussion
on the use of Activity Theory for context modelling see [24,25].
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This Basic Context Model is structured around a taxonomy inherited from
the context-aware pervasive computing tradition [26]. The model is divided into
five main aspects describing a situation: i) Personal Context, describing infor-
mation about the user of the system; ii) Task Context, which is concerned with
describing the task performed by the user, and other entities to achieve the goal;
iii) Social Context, detailing the roles of the user; iv) Spatio-Temporal Context,
which holds information on location, time and the community shared by the
user; v) Environmental Context, describing the entities present, such as other
persons and artefacts.

The model was populated through observations done at the St. Olav Hospital
in Trondheim through the summer of 2005. Some of the data gathered were used
in a bottom-up approach to enrich the model. The enrichment included: the
different locations at the wards; the roles that employees, patients, and visitors
assumes; the classes of persons encountered in the wards; artefacts and services
they offer and consume.

5 Case Model

A case has two main parts: the findings of the situation, which consists of the
perceived context; and the solution, which consists of the goal to be achieved
and the corresponding task to be accomplished. Note that, in this application,
to interpret a situation involves identifying its goal, i.e. to determine what is to
be done in the situation. A situation is a meeting between health personnel, and
these meetings always have a purpose, or a goal, which may be to agree on a
diagnosis for a patient, to decide whether a particular examination should be
made, or evaluate what treatment to give. An example of a situation instantiated,
but not yet classified, in CREEK, is shown in Figure 4.
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(UnsolvedCase001 (
has-case-status: Unsolved
has-context: Context:UserContextSituation001 (
context-of: Person:User:AL7
has-part: SpatioTemporalContext:SpatioTemporalContextSituation001 (

has-part: Location:DoctorsOffice:LK4
has-part: Time:0915
has-part: Community:Situation001Community (

has-part: Role:PatientResponsibleRole
has-part: Role:GroupLeaderRole))

has-part: SocialContext:SocialContextSituation001 (
has-part: Role:PatientResponsibleRole)

has-part: EnvironmentalContext:EnvironmetalContextSituation001 (
has-part: Person:HealthWorker:Nurse:SPL8
is-present: Artefact:PatientList
is-present: Artefact:PatientChart
is-present: Artefact:PAS)

has-goal:
has-task: ))

Fig. 4. Unknown situation

This case describes a situation where several things are known. All of the
findings of the case are described as the has-context part. It describes a context
for AL7, who is the user of this system. It is known that the situation is occurring
in LK4. If we look at the knowledge model, we will discover that LK4 is a specific
Doctor’s office, which again is a type of location. The situation is occurring
at 09:10, and the community consists of two roles, the PatientResponsibleRole
and the GroupLeaderRole, which are played by AL7 (the user) and SLP8 (a
nurse).

The example above is taken from our data set (see Section 6), thus all possible
parameters are not included. A case is a specific view on the knowledge contained
in the system. This is a key feature of the system. The Awareness layer (see
Figure 1) constrains the part of the knowledge base that the Sensitivity layer
should rely on to solve the problem in particular situations.

Once a situation has been classified, or in other words, a matching case
has been retrieved, the solution is acquired from the matching case. This so-
lution contains the goal of the situation and the main task which achieves this
goal.

The exact sequences of tasks used to accomplish the goals are not stored
directly in the cases. They are stored and maintained in the decomposer agent.
Since the nature of a goal does not vary significantly within situations of the
same type, it was not deemed necessary to adapt the task sequence itself as part
of the reasoning cycle. Rather, we assume that instead of the tasks varying, the
artefacts and communities required to execute the actions vary across situations
of the same type. Thus, as a rule, the task sequence does not need to be redefined
for each situation, rather a generic sequence can be populated with willing and
able agents for each situation (for more on the execution of plans see: [21]).
Along with the goal and the main task, the artefacts and communities available
can now be transmitted as context to the decomposer agent, i.e. the second use
of context, as described in Section 3.
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6 Data Set

The applicability of the overall architecture has been demonstrated in [15], where
a test of a stimuli-response type behaviour was conducted. For various reasons
this test did not include the full case-based reasoning cycle. One of the most
important reasons was a lack of suitable situation data. The lack of data has
now been remedied, as a large amount of data on situations has been gathered.

Table 1. Context parameter describing situations

Location The room where the situation occurred
User The user of the system
Role The role of the user
Present Other persons present
Role The role of each of the persons present
Patient ID The ID of the patient in question
Time The time of day

The data was collected through a period of one month at the St. Olav Hos-
pital in Trondheim. A medical student followed several employees and recorded
the situations that occurred throughout the days. Two wards were studied: the
cardiology and gastroenterology ward. The data set contains 197 situations for
cardiology and 163 for gastroenterology. Approximately two-thirds of the situa-
tions from cardiology concerning the consultant physician (OL9) were transferred
into the system, and classified, manually. This set of situations gives the system
a set of initial cases to reason about. The last third are used to test if the system
can classify the situations, identify the sequence of actions, and execute them.

The data gathered was structured into two main types: the type that is pri-
marily related to comprehending the situation (Table 1), and the type primarily
related to achieving the goal and constructing the task structure (Table 2).

Table 2. Context parameters for problem-solving

Source Information sources and targets
I/O The direction of the information flow
Information Type of information

The data describing the context of situations (Table 1) include some infor-
mation which could easily be sensed though available hardware. These are the
location where the situation is occurring; the user whose perspective we are
adopting; other persons present; and the time of the situation occurring. It is
debatable if the role of the persons present, and the ID of the patient in question
(whom is not necessarily present), are readily available for automatic sensing.
However, we have regarded this issue as problems of engineering, and not critical
for testing the applicability of our method.
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The context parameters describing the situation are modelled as part of the
case-base, as exemplified in Figure 4. These data are primarily used during the
retrieve phase of the cycle. However, being part of the general knowledge model,
they are also available to the decomposer agent for problem-solving.

The problem-solving data (Table 2) is used for two purposes. They are first
used to populate the knowledge model with information on the artefacts (sources)
present and the services (information) they offer and consumes. Secondly, they are
used in the decomposer agent for constructing action sequences. Initially they are
constructed and generalised manually.

Currently, the data for the consultant physician OL9 at the cardiology ward
has been incorporated into the system. The 197 situations, including all the
physicians, are distributed as described in Table 3

Table 3. Distribution of observed data for cardiology

Situation AL7 AL9 AL14 OL9 Sum
Pre-pre-ward-round 5 5
Pre-ward-round 7 22 11 26 66
Ward-round 7 21 11 26 65
Examination 8 2 9 19
Post-work 8 9 13 30
Pre-discharge 2 4 6
Heart meeting 1 1 2
Discharge meeting 4 4

Eight different types of situations have been identified in the data set. Four
different physicians were observed, where three were assistant physicians (AL7,
AL9, AL14) and one was a consultant physician (OL9). Beside these, several
nurses, patients, and relatives are present in different situations.

7 Example

To clarify how this system is used to identify situations and solve the problem
associated with a situation, this example will demonstrate the chain of events
occurring when an unknown situation is presented to the system. First, we ex-
emplify a stored case, then we show how the case is utilized after having been
retrieved by CREEK’s two-step similarity assessment method [22].

As described in Section 6, a sub-set of the observed situations are used to pop-
ulate the knowledge model with initial cases. In this example a case describing
a pre-ward round situation is used. Figure 5 describes its findings and solution.

A pre-ward round is a type of meeting that occurs every morning between
the physician on duty and the nurse in charge. In this meeting the patients
on the ward are discussed and the treatment is evaluated to define the further
treatment for the day in question. These types of meetings typically include
all the patients in the ward. However, we have chosen to divide the meeting
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(ASSolvedCase01 (
has-case-status: Solved
has-context: Context:UserContextAL7Previsit001 (
context-of: Person:User:AL7
has-part: SpatioTemporalContext:SpatioTemporalContextAL7Previsit001 (

has-part: Location:DoctorsOffice:LK4
has-part: Time:0910
has-part: Community:PrevisitCommunityAL7001 (

has-part: Role:PatientResponsibleRole
has-part: Role:GroupLeaderRole))

has-part: SocialContext:SocialContextAL7Previsit001 (
has-part: Role:PatientResponsibleRole)

has-part: EnvironmentalContext:EnvironmentalContextPrevisit001 (
has-part: Person:HealthWorker:Nurse:SPL8
is-present:Artefact:PatientList
is-present:Artefact:PatientChart
is-present:Artefact:ElectronicPatientRecord)

has-goal: EvaluateTreatment
has-task: EvaluateTreatmentTask))

Fig. 5. Pre-ward-round initial case

into distinct situations, each containing the evaluation of one patient. In other
words, the system perceives the evaluation of each patient as one situation, so
each meeting may consist of several situations.

Along with these findings, the goal of the situation is stored in the case. In the
example of the pre-ward round, the goal of evaluate treatment has been manually
identified in the observed data. From the examination of the observed data, we
have also identified the typical sequence of tasks corresponding to the evaluation
of the patient’s treatment:

1. Acquire name of patient
2. Acquire changes in patient’s conditions since yesterday
3. Examine, and possible change, medication scheme
4. Acquire any new results from tests
5. Note changes in treatment

Initially, the identification of the patient in question is acquired. Based on this
identification, any changes in the patient’s condition is mapped out. Now, the
medication scheme and any new test results are examined. Finally, any changes
in the treatment, such as changes in medication or scheduling of new tests, are
noted. Once the case based has been populated with a set of cases, a new and
unknown situation – shown in Figure 4 – is presented. The case in Figure 5 is
returned as the best match.

Comparing these two situations, it is evident that they have a strong resem-
blance. The only significant difference is the time when the situations occur.
Hence, it is no big surprise that CREEK infers that these two situations are
highly similar; actually it concludes that the matching strength is 88% (see Fig-
ure 6, in which the explanation structure supporting the match is also shown).

CREEK has now determined that the most likely candidate for identifying
the situation is a pre-ward round. Knowing this, CREEK can also tell the sensi-
tivity part of the system that the goal of this situation is to evaluate treatment.
However, as noted earlier, even though the sequence of tasks are the same, the
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Fig. 6. Matching Cases

exact actions required can differ from the original situation. So to achieve the
best possible execution of the sequence of actions, the context in which the tasks
occur is transmitted along with the goal. In this case, this context is the ob-
served parameters, as well as the artefacts present in this situation. In the case
of this newly classified pre-ward round situation, these artefacts are: the list of
patients, able to supply the name of the patient; the patient chart, able to supply
the medication plan, the PAS system (a patient administration system), and of
course the nurse.

This context guides the task decomposition process in the sensitivity part. In
this example there is no reason to enquire the electronic patient record for any
results of a blood sample, as only the patient chart and the nurse are present.
The decomposer can now select the plan for evaluating the patient’s treatment,
and draft the application agents that are able and willing to execute the actions
corresponding to the tasks in the plan.

In this example the task was to initially acquire the name of the patient
in question. Looking at the artefacts present, as described in the knowledge
model, the only one capable of supplying this information is the patient list, so
the corresponding agent is drafted. Following the identification of the patient,
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any changes in the patient’s condition must be identified. Only two entities are
capable of supplying this type of information, namely the nurse or the patient
chart. The next step is to examine the medication plan. Here, only the patient
chart is capable of supplying the necessary information. Once the medication has
been examined, the next step is to acquire any new test results. Looking at the
context there are two artefacts capable of delivering this information: the patient
chart and the PAS system. Finally, any changes to the patient’s treatment plan
must be noted, and both the nurse and the PAS system are capable of this.

The left side of Figure 7 depicts the observed chain of actions in the original
known situation. The right side depicts the possible artefacts that can supply
the information required in this context. When we compare the two different
instances of a pre-ward round situation, the main difference is that we do not
know who will actually supply any changes in the patient’s condition (point 2 in
Fig. 7), and the fact that any new results can only be acquired from the patient
chart, and not the electronic patient record (point 4 in Fig. 7).

1. Acquire name of patient
Patient list

2. Acquire changes in patient’s condi-
tions since yesterday
Nurse

3. Examine, and possibly change,
medication scheme
Patient chart

4. Acquire any new results from tests
Patient chart, electronic patient
record

5. Note changes in treatment
Nurse

1. Acquire name of patient
Patient list

2. Acquire changes in patient’s condi-
tions since yesterday
Nurse, Patient chart,

3. Examine, and possibly change,
medication scheme
Patient chart

4. Acquire any new results from tests
Patient chart, PAS

5. Note changes in treatment
Nurse, PAS

Fig. 7. Two sequences of actions

This combination of the goal received from the CREEK agent, along with
the context, allows the decomposer agent to generate the sequence of actions
depicted on the right side of Figure 7, as well as executing it using the agents
drafted. To verify that the identification of the situations, as well as the generated
tasks, are sensible we can look at the observed data, to figure out what really
happened. In the observed data the situation that we just classified had the
following sequence of actions:

1. The patient list supplied the patient’s name
2. The nurse informs about the changes to the patient’s condition
3. The patient chart supplied the medication scheme, which was changed
4. The nurse informs about the result of a blood sample
5. The PAS system was informed about result of this pre-ward round

When we compare this real world sequence with the possible sequence pro-
posed by the decomposer, we can observe that it easily encompasses the one that
actually happened.
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8 Conclusion and Future Work

This paper outlines how a knowledge intensive Case-Based Reasoning system
can be constructed to facilitate ambient intelligence. It has been shown how a
combination of generic concepts for reasoning and modelling, a context taxon-
omy, and elements from Activity Theory, can influence the way a knowledge
model for situation awareness can be implemented. A case model has exempli-
fied how cases should be structured with context as the problem defining part,
and the general goal and task as the solution to the implicit problem in situa-
tions.

There are clear indications that ambient intelligent systems can benefit from
the socio-technical analysis made by applying Activity Theory. This is beneficial
when defining the knowledge model, as well as when constructing guidelines for
observations.

It has been demonstrated how all the above parts can be combined into a
coherent architecture, which allows for the perception of the environment, rea-
soning about context to identify situations, and problem-solving based on this
understanding.

Based on the data we collected for the cardiology ward, we are currently pop-
ulating the case based with more cases; as well as constructing the generic task
sequences corresponding to the eight different situations discovered. The next
step is to do an initial verification of the system’s integrity, and test CREEK’s
ability to correctly identify new cases; before executing a full fledge simulation
of the system.

Some issues have intentionally been left out of this description. Most impor-
tantly the question of how CREEK may learn when it is run on-line. Several
approaches have been discussed, such as simply asking the user, or trying to
perceive the user’s behaviour based on the recommendations given by the sys-
tem. Each has its benefits and drawbacks. Asking the user directly is likely to be
the technical easiest approach, however, this can very easily be quite intrusive
for the user. Attempting to perceive the behaviour by looking at the situations
perceived is most likely the most complicated, but also the least intrusive. How-
ever, recent studies on conversational CBR in our group show promising results
for optimising user querying strategies [27] by combining observation and con-
versation.
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13. Dı́az-Agudo, B., González-Calero, P.A.: An architecture for knowledge intensive
cbr systems. In Blanzieri, E., Portinale, L., eds.: Advances in Case-Based Rea-
soning: 5th European Workshop, EWCBR 2000. Volume 1898 of Lecture Notes in
Computer Science., Springer Verlag (2000) 37–48
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Abstract. This paper describes our work in textual Case-Based Rea-
soning within the context of Semantic Web. Semantic Annotation of
plain texts is one of the core challenges for building the Semantic Web.
We have used different techniques to annotate web pages with domain
ontologies to facilitate semantic retrieval over the web. Typical similar-
ity matching techniques borrowed from CBR can be applied to retrieve
these annotated pages as cases. We compare different approaches to do
such annotation process: manually, automatically based on Information
Extraction (IE) rules, and completing the IE rules within the rules that
result from the application of Formal Concept Analysis over a set of man-
ually annotated cases. We have made our experiments using the textual
CBR extension of the jCOLIBRI framework.

1 Introduction

Textual CBR is an increasingly important CBR sub-discipline. Textual CBR
techniques can facilitate rapid construction of CBR systems by reducing or elim-
inating the task of feature-design in domains in which raw cases consist of free
or semi-structured text [2]. There are approaches where retaining a textual case
representation may be more effective than engineering an intermediate feature
representation. However, reasoning with text cases either requires considerable
efforts to elicit meaningful features –beyond single words– or remains restricted
to weak text retrieval based on information retrieval (IR) methods [14].

Ideally, we would like to find an inexpensive way to automatically, efficiently,
and accurately represent textual documents as structured feature-based case rep-
resentations. One of the challenges, however, is that current automated methods
that manipulate text are not always useful because they are either expensive
(based on natural language processing, NLP) or they do not take into account
word order and negation (based on statistics) when interpreting textual sources.
Information Extraction (IE) methods have been typically used for automatically
extracting relevant factual information for the process of transforming texts into
structured cases [3]. Other approaches have also been proposed aiming to take
� Supported by the Spanish Committee of Education & Science (TIN2005-09382-C02-
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the domain knowledge into consideration, as the use of Generative Ontologies
proposed in [10] or the use of graphs that conserve and convey the order and
structure of the source text [5].

“The Semantic Web is an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation” [1]. The Semantic Web aims at machine agents that search and
filter the knowledge in the web pages based on explicitly specified semantics of
contents. A core technology for making the Semantic Web happen is the field
of Semantic Annotation, which turns human-understandable content into a ma-
chine understandable form [11]. There has been many literature about ontology-
based semantic annotation of web pages [7], and there are different tools to help
in this purpose [17].

In our ongoing work, we are considering the problem of semantic annotation
of web pages (Section 2), and relating this problem to the feature elicitation
problem in textual CBR (Section 3). The semantic web provides with such a set
of plain Web Pages and Ontologies but is looking for automatic techniques to
do such a labeling process. We begin with an initial set of web pages that have
been manually annotated according to a certain ontology. Manual annotation
is a tedious process that lacks from thoroughness and can not guarantee the
uniformity of the tagged texts. So, we propose a semi-automatic process based
on manually defined IE rules that results in an uniform labeling process but
misses the inherent relationships between the labels that are not explicitly in
the texts but exist in the domain and are available in the domain ontology. To
solve the problem of connecting sparse information (e.g. a telephone number and
an address in the contact information) we use Formal Concept Analysis, a data
analysis technique that helps to find dependencies between the tags. Section 4
details the whole process. To show the goodness of our method, we have done
an experiment annotating a set of web pages representing restaurants. Section
5 describes the experiment in detail while Section 6 compare the set of labels
obtained by the different methods. The annotation process is used in a restaurant
recommender system that improves the one presented in [16].

2 Annotation for the Semantic Web

Tim Berners-Lee’s great dream of the Semantic Web may be visualized as com-
puters that are able to understand what data is available on the Web. However,
in a foreseeable future, machines will still be too dumb to understand what
people have put on the Web. Therefore, to make this dream come true peo-
ple must provide computer-understandable data. The building blocks have been
elaborated in recent writings [8]: we need standardized languages to describe se-
mantic self describing data and programs to exchange and understand semantic
data. However, we are missing the key point here: where and how can we obtain
semantic data?

The process of providing semantic data is often referred to as semantic an-
notation [11] because it typically involves the annotation of existing plain text,
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that is only understandable by people, with semantic metadata available in on-
tologies.

The process of semantic annotation of these texts is a hard process. There
have been different approaches, tools and annotation frameworks to help in this
annotation process. Most of the current technology is based on human centered
annotation. Typically they comprise methods for completely manual annotation
and authoring of documents, where documents and contents are described at
the same time. The large majority of annotation tools address the problem of
single document annotation. This approach presents visualization and scalability
problems, because the tagging knowledge in the ontologies can be huge and
distributed and cannot be managed as a whole. The manual approach makes
using very large ontologies very difficult. This is the main problem in tools like
SMORE, OntoMat Annotizer, COHSE, Ontomat and MnM [17].

There are also semi-automatic annotation approaches based on IE that are
trained to handle structurally and/or linguistically similar documents. Exam-
ples are KIM, Semantic World and Melita. A problem with this approach is
that the process requires writing a large number of wrappers for information
sources, and that extraction is limited to highly regular and structured pages.
Besides, maintenance becomes a complex problem because when pages change
their format, it is necessary to re-program the wrapper [12]. The approach is
not applicable to irregular pages or free text documents. Also there is a problem
of completeness because there is sparse information that is difficult to connect
and there is also subjective information that is impossible to capture within IE
rules. In the restaurants example, the atmosphere of a restaurant is a tag that
reflects the general flavor of the place. Although sometimes we find words in the
texts reflecting this feature, this is not the typical case, and the tag depends on
the general and knowledge intensive impression of the skilled reader.

3 Textual CBR and Annotation

Textual CBR methods described in the CBR literature often focus on trans-
forming textual data in semi-structured cases that can be used by the usual
CBR methods. This process is analogous to the annotation of Semantic Web
documents because both processes share the same goals: obtain a structure that
allows indexing, retrieval and manipulation of the web documents/cases. The
Semantic Web applications will use this structured information to let agents to
search and manipulate web pages whereas CBR community will use this data
for the CBR systems that work with structured cases.

We have continued our work in the jCOLIBRI framework and its Textual
CBR extension presented in [16]. As jCOLIBRI is organized as a Task/Method
decomposition system we developed several Problem-Solving Methods (PSMs)
that process plain text files and obtain structured cases. Our framework divides
CBR applications in three main tasks: precycle, cycle and postcycle. The tex-
tual extension implements PSMs that can be used in the precycle to transform
plain text cases into structured ones. This way, these structured cases will be
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Fig. 1. jCOLIBRI Textual Tasks

manipulated by our library of PSMs that implement the CBR cycle (retrieve,
reuse, revise, retain and all their subtasks). Figure 1 shows the task subdivision
of the Textual process in jCOLIBRI. Each of these tasks must be solved by a
method from our PSMs library.

The implementation of the Textual Extension is based in the theoretic Lenz
layers for TCBR [13]. The developed methods described in [16] apply Natural
Language Processing algorithms and Regular Expressions to perform the Infor-
mation Retrieval and Information Extraction processes defined in each layer.
After executing these methods jCOLIBRI obtains several syntactic features of
the text that can be used as attributes in a structured case.

This paper presents one more step (see Figure 2): the use of ontologies to pro-
vide a semantic structure to the extracted features that improve the performance
of the CBR cycle. For example, the retrieval task will use the semantic tags to
recover semantically similar cases and the reuse phase will use this semantic in-
formation to manipulate the cases better. To achieve this goal we have looked
at the Semantic Web community because it gives us the two features that we
need to enhance the representation of our cases: semantic languages (like OWL)
to represent data and repositories of ontologies. This new stage starts with the
final structure returned by the set of subtasks shown in Figure 1. This struc-
ture contains description features that have been elicited through IE rules. We
have slightly adapted the original IE rules to commit a certain domain ontology.
With this transformation, the IE process returns pieces of data that correspond
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Fig. 2. Case Base refinement process

to concepts of an ontology. But the IE rules by themselves are unable to extract
the whole structure of concepts imposed by the ontologies. For example, in the
description of a restaurant there are contact details with phone numbers and an
address ; this address will be composed by the description of an street that has
its type, name and door number. All these names in italics are concepts of the
ontology but only some of them (usually the leaves of the grouping structure)
can be obtained by the IE rules. In this example, the composite concepts: restau-
rant, contact details, address and street could not be extracted using simple IE
rules.

To solve this problem of connecting sparse information we have applied Formal
Concept Analysis (FCA) for completing the representation of the cases. With
this new process we can accurately accomplish the transformation of plain text
documents into semantically structured cases. These new cases will be based in
an ontology that allows us to improve their manipulation in the CBR cycle. Our
feature completion method begins with a set of manually tagged texts. We apply
FCA as it is describe in Section 4 to extract dependencies between tags. Finally,
we use these dependencies to complete the tags inferred by the IE process.

This method is used by our restaurant recommender presented in [16]. This
CBR system developed using jCOLIBRI utilizes a case base composed by several
texts describing restaurants. Then the IR and IE methods extract the attributes
of the cases. The FCA annotation method described in this paper enhances the
representation of the cases adding the semantics of the restaurant ontology. This
added information improves the indexing, retrieval, and adaptation of the cases
obtaining better qualitative results.

4 Annotation Enhancement Based on FCA

Previous sections make clear that both Semantic Web and Textual CBR lack
automatic techniques to content annotation (web pages and plain texts).
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Fig. 3. Case Structure

In this section, we describe our semiautomatic annotation method, useful for
both type of contents, and Section 5 and 6 show an experiment and its results.

Our annotation method combines an automatic annotator using Information
Extraction rules and Formal Concept Analysis as a mean of obtaining depen-
dencies (association rules) between tags, to provide hints to an expert human in
order to facilitate his task of annotating contents.

Formal Concept Analysis is a mathematical approach to data analysis. It was
first introduced in [18], and has been extensively used in many areas. See [19]
for a gentle introduction.

FCA distinguishes between formal objects (or entities) and formal attributes
(or features). We consider every text (or case) manually tagged as an object, and
every possible tag as an attribute. The input of FCA is a binary relation called
formal context that relates formal objects and formal attributes. The context
is usually represented as an incidence table, with rows representing objects and
columns representing attributes. Cells contain a cross when the object of that
row has the attribute of that column.

In our case, we consider texts (or web pages) as formal objets, and tags as
formal attributes. The formal context created has as many objects as texts, and
as many attributes as distinct tags on them. A text (formal objet) is related
with those tags (formal attributes) that appear in the manually annotated text.
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Alegria
3510 Sunset Blvd.
Silver Lake
(323) 913-1422
The best food here re-
volves around ...

...
<restaurant:contact>
<contact:ContactDetails>
<contact:phoneNumber

rdf:datatype="string">
(323) 913-1442
</contact:phoneNumber>
<contact:address>
<address:Address>
<address:areaName

rdf:datatype="string">
Silver Lake
</address:areaName>
<address:addressPublicPlace>
<address:Boulevard

rdf:ID="Sunset_Blvd."/>
</address:addressPublicPlace>
<address:cityName

rdf:datatype="string">
Silver Lake
</address:cityName>
<address:doorNumber

rdf:datatype="string">
3510
</address:doorNumber>
</address:Address>
</contact:address>
</contact:ContactDetails>
</restaurant:contact>
...

(a) Plain restaurant
description

(b) Tagged restaurant
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(c) Formal context(tags’ prefixes have been omitted for clarity)

Fig. 4. FCA example in restaurant context

Figure 4 shows an excerpt of the plain description of a restaurant, its annotated
version and a section of the formal context where that restaurant appears.

With the formal context, FCA is able to build a set of formal concepts (or
briefly concepts). Formally speaking, a concept is a pair (A, B), where A is a set
of objects (known as extent) and B the set of the common attributes of these
objects (intent). Formal concepts represent maximal groups of texts (or cases)
with shared properties. The concepts of a given context can be ordered using
the subconcept–superconcept relation and can be represented as a lattice, like
the one showed in Figure 6a.

Though the formal concepts and lattice structure could be useful on their own
[6], we use the capacity of mining association rules from it. An association rule
is an expression A → B where both A and B are sets of attributes. They means
that objects having all the attributes in A will probably have those attributes
in B.

Association rules are characterized by two parameters: confidence and sup-
port. Confidence express the probability of that rule to hold, or in other words,
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the percentage of objects that, having all the attributes in A also have those in
B. On the other hand, support indicates the number of objects where the rule
is applicable, formally speaking, the number of objects with attributes in A and
B divided by the total number of objects.

Rule extraction algorithms based on FCA are able to efficiently extract all
the association rules that have a confidence above a threshold. There are several
algorithms, though we have used Duquenne–Guigues [9] to extract exact associ-
ation rules (100% of confidence) and Luxenburguer [15] for non-exact ones.

Our annotation method starts with a set of texts or cases (C1) that we an-
notate manually. Now ahead, we call the set of tags (labels) created manually
for every text from C1 as LM (C1) (that stands for labels manually extracted)
and it is composed of every text and its set of tags. With them, we then con-
struct the formal context as described above (see Figure 4). Next, we apply FCA
to extract the association rules between attributes (or tags). The set of rules,
R = fca(LM (C1)), will be used later on the annotation process.

As an example, R can include a rule like

address:Address -> restaurant:contact

because all texts in C1 that have address:Address tag also have the annotation
restaurant:contact.

When our method receives a new text T to be annotated, it first uses Infor-
mation Extraction rules to obtain a first version of its tags, LIE(T ). IE is not
expected to extract all the tags because of the limitations stated in Section 3.
To enhance the results, we apply the rules R to the tags. Association rules will
discover those tags that have not been discovered by the IE process, and we get
our final set of tags, LFCA = Apply(R, LIE(T )).

Following the previous example, if LIE(T ) has address:Address but lacks
restaurant:contact, the application of R to the set of tags will discover that
this tags has to be added.

To probe the enhancement of our annotation method, we have run it through a
set of restaurant texts. We have compared the set of tags of the manual version
(LM ) with the tags extracted by the information extraction rules (LIE) and
the final set of tags after the application of association rules (LFCA). Section 5
details the experiment, and Section 6 shows the results.

5 Experiment Description

To run an experiment, we need an ontology and a set of web pages (or texts) to
be annotated with it. Section 5.1 describes the ontology and Section 5.2 describes
the set of texts we have used.

5.1 Ontology

Text annotation is made using a domain ontology. We have reused external on-
tologies created by the Agentcities Project1. These resources where originally
1 http://www.agentcities.org



234 J.A. Recio-Garćıa et al.

Fig. 5. Restaurant ontology

written in DAML+OIL [4]. We firstly translated them to OWL and then com-
posed them properly.

Our final restaurant ontology combines several sub-ontologies (address, price,
calendar and food), and it has more than 1000 concepts, though only a few
of them are used in the tagging process. Figure 5 shows a partial view of it.
The complete version is available at http://gaia.fdi.ucm.es/ontologies/
restaurants.owl.

5.2 Test Case Bases

We originally started from a case base of 268 textual cases with information
about restaurants extracted from http://www.laweekly.com/eat-drink. To man-
age these textual cases we removed all the html tags of the original web pages
obtaining only the plain text descriptions about restaurants.

Our goal was to compare our annotation method with the completely manual
one. This way we had to manually annotate the texts describing restaurants
with the ontology tags. But, this manual method is really complex and time
consuming, so finally we did our experiment with a subset of 30 restaurants. On
the other hand, the development of the IE rules adapted to the ontology cost
about 4 times less that the manual process. So, we realized that if our annotation
method had similar results to the manual one it would improve greatly the
annotation process. Now ahead we will refer this set of 30 texts as C and its
manually tagged version as LM (C).

We have duplicated the experiment, performing the annotation method and
studying its accuracy twice in experiments A and B. In both of them, we split
the set of restaurants C in two different sets, C1{A,B} and C2{A,B}, having 20
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Confidence Set A Set B
100% 137 117
95% 138 121
90% 168 166
85% 183 176
80% 192 180

(a) Lattice of training set A (b) Number of association rules

Fig. 6. FCA results

and 10 restaurants respectively. We have applied FCA to C1 and applied the
association rules extracted together with Information Extraction to C2. Finally
we compare the resulting tags (LFCA(C2)) with the manually annotated versions
of C2 (LM (C2)).

Both training sets A and B have been selected on purpose to reflect the best
and the worst scenario. Set C contains several irregular descriptions that don’t
contain the same information that the other ones because some data and there-
fore tags like the address, price or type of food has been skipped. We have chosen
sets A and B to contain these descriptions in C1 or C2. This way, experiment A
contains the irregular descriptions in the set where we apply FCA: C1A. On the
other side, experiment B has these irregularities in the set of manually annotated
restaurants that are extended with the FCA rules: C2B . With this split we have
intended to check how the noisy training examples can affect the accuracy of
our method.

We have performed each experiment in four steps:

– The first one consists on the analysis of both training sets, C1A and C1B using
FCA. As we have explained previously, association rules extraction has the
minimum confidence as a parameter. Instead of just fixing it at 100% (exact
association rules) we have used different levels of it to be able to infer how
this parameter affects to the final results. Concretely, we extract the set of
association rules from 100% (RA100 and RB100) to 80% (RA80 and RB80) of
confidence using a decrement of 5%. Just to show the complexity of the case
base, Figure 6 shows the lattice associated with training set A (C1A) that
has 135 formal concepts and the number of association rules we got.

– The second step takes the other 10 restaurants in their plain version (without
manual annotation) and uses the IE rules to annotate them. These rules are
a slight adaptation of the original rules to commit the restaurant ontology
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used in [16]. Thereby, most of this task has been done reusing previous work
in the jCOLIBRI textual methods.
Using the same notation as in Section 4, we call LIE(C2A) the set of tags
we get in this step for experiment A and LIE(C2B) for B. We will write
LIE(C2) meaning the tags extracted applying IE to the plain texts. As we
will see in Section 6, the number of tags in LIE(C2) was about 40% of the
number tags in the manual version, LM (C2).

– In the third step, we apply the FCA rules of the first step in the restaurant
annotated with IE. Obviously, we use RAx to enhance LIE(C2A) and RBx

against LIE(C2B).
– The last step of our experiment compares the number of suggested annota-

tions using FCA rules against the number of tags contained in M1. Section
6.2 details this comparison.

Though it has only a theoretical value, we have perform an extra experiment,
just to compare it with the other ones. It is what we will call in the next section
“Complete Set”. We have applied the association rules extractor to the complete
set of manually annotated restaurants (C). Then we have applied IE to the same
set of restaurants and enhance the results with the rules. Briefly speaking, we
have applied our annotation method to the same set of cases that we used to
train it. This experiment has no meaning in practice but in theory tells us the
upper limit of the recall of the method. If our process was perfect this experiment
should give us a perfect recall and precision because it checks the results with
the same set used to train the system.

6 Experimental Results

We have performed several experiments to compare the accuracy of the Infor-
mation Extraction and its improvement with the FCA rules. To measure the
experiment we have used the two typical quality values:

– Precision = Correctly extracted tags / total extracted tags
Tells if the extracted tags are correct (belong to the training set).

– Recall = Correctly extracted tags / total correct tags
Represents the amount of correct tags that have been extracted.

6.1 Comparison Between LM and LIE

We have compared the tag set obtained using Information Extraction and the
manual annotated set. The IE rules can only extract the tags corresponding with
the leaves or final attributes of each restaurant annotation. The reason is that
the upper concepts of the annotation tree are abstract concepts that cannot be
extracted directly from the text. This problem of connecting sparse information
was explained in Section 3.

Thereby, if the representation of a restaurant utilizes about 40 concepts and
properties we have created IE rules for 20 of them. With these rules our IE



Improving Annotation in the Semantic Web and Case Authoring 237

Fig. 7. Recall

process could obtain at most 50% of the total tags used in a restaurant annota-
tion. The experimental results show that we extract 40% (in average) of the total
tags. This value is represented in the first group of columns (IE only) of Figure 7
that shows the recall values obtained in our experiment. This value could be
interpreted as a low value because other IE systems have a better performance,
but in our approach we have not focused on the generation of high-quality IE
rules. Our idea consists on developing the IE rules quickly and complete them
with the FCA rules, saving time and effort in the whole annotation process. The
precision of this comparison (tags extracted by the IE process that are also in
the manual annotation) remained above the 98% of the total tags (see first group
of columns of Figure 8). The rest of the tags (less than 2%) are the so called
“false positives” returned by our IE module.

6.2 Comparison Between LM and LF CA Rules

Our experiments show that the FCA rules that complete the tags obtained by
the IE module increase the recall from 40% to 90%. These results are shown in
Figure 7 where recall increases as we decrease the confidence of the rules. Each
group of columns in this figure represents the same experiment with different
levels of confidence (IE+FCA100%, IE+FCA90%, ...).

On the other hand, as we increase the confidence we obtain a lower precision.
Obviously, this is a direct effect of the confidence because it means more general
rules that are more prone to generate “false positives”. As Figure 8 shows, a
confidence below 90% decreases too much the precision so the best configuration
for our method in this experiment should use a value above 90%.
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Fig. 8. Precision

In both Figures 7 and 8 the “Complete Set” column shows the value with
the complete training set. The “Training Set A” and “Training Set B” columns
represent the values when using the C1A and C1B training sets.

As we explained in Section 5.2 the “Complete Set” is a theoretic indication of
the accuracy of our method and the results show that it is always higher than
the practical experiments. It is important to note that the recall values are really
close although the precision has significant differences. This result means that
the main advantage of our method is that it retrieves nearly all the tags in the
training set. Contrary, the main drawback of our method consists on retrieving
too many incorrect tags besides the correct ones. This is specially meaningful in
the experiments using confidence below 90%.

Using the division of the training examples in A and B we can obtain one
more conclusion. Experiment A contains the noisy examples in the set used to
extract the FCA rules C1A whereas experiment B has these examples in the set
enhanced with the FCA rules C2B . As the results in A are better than in B we
can conclude that the generation of FCA rules hides the errors produced by the
irregular descriptions. Experiment B has worse results because its FCA rules are
similar to A and C2B has the noisy descriptions that, even enhanced with the
rules, return a worse accuracy.

The global conclusion of the experiment is that FCA rules improve greatly
the accuracy of the IE process. In theory, our scenario restricts the Information
Extraction performance to obtain only 50% of the tags. In practique we obtain
a value of 40% using simple and quickly developed IE rules. Completing the
tagging with the FCA rules we increase automatically this value to 90% (loosing
only 15% of the precision).
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The recall increase indicates that our system extracts most of the concepts
in the ontology that can not be obtained using Information Extraction. This
way the system could automatically propose the concepts of the ontolgy inferred
from the text that might be used during the semantical tagging process.

7 Conclusions

The aim of the research conducted is to investigate the relation between the
problem of semantic annotation of web pages and the feature elicitation problem
in textual CBR. Both processes share the same goals: obtain a structure that
allows indexing, retrieval and manipulation of the web documents/cases.

The semantic web provides the CBR community with a very good field of ex-
perimentation. It provides with a lot of Web Pages (texts) that can be annotated
with the knowledge on Ontologies. The underlying goal is to let machine agents
to search and filter the knowledge in the web pages based on explicitly specified
semantics of contents. From our point of view, this process can be understood
and solved using CBR techniques where the cases are the annotated Web Pages.

We propose an annotation method that is based on three components: a set
of IE rules, a domain ontology and a set of rules automatically extracted by the
application of FCA to an initial set of manually annotated pages.

In this paper we have compared the accuracy of the annotation process. We
have concluded that FCA allows finding dependency rules to solve the problem
of connecting sparse information in the texts, and to find additional tags that
depends on previously assigned tags. We have shown the results of comparing the
set of labels obtained by the different methods. The annotation process is used
in a restaurant recommender system that improves the one presented in [16].
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16. J. A. Recio, B. Dı́az-Agudo, M. A. Gómez-Mart́ın, and N. Wiratunga. Extending
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Abstract. There are problems that present a huge volume of informa-
tion or/and complex data as imprecision and approximated knowledge.
Consequently, a Case-Based Reasoning system requires two main char-
acteristics. The first one consists of offering a good computational time
without reducing the accuracy rate of the system, specially when the re-
sponse time is critical. On the other hand, the system needs soft comput-
ing capabilities in order to construct CBR systems more tractable, robust
and tolerant to noise. The goal of this paper is centred on achieving a
compromise between computational time and complex data management
by focusing on the case memory organization (or clustering) through un-
supervised techniques. In this sense, we have adapted two approaches: 1)
neural networks (Kohonen Maps); and 2) inductive learning (X-means).
The results presented in this work are based on datasets acquired from
medical and telematics domains, and also from UCI repository.

Keywords: Data Intensive, Maintenance and management for CBR,
Case Memory, Soft Case-Based Reasoning, Clustering, Kohonen Maps.

1 Introduction

There are different problems that present a huge volume of information or very
complex data. Therefore, they may present imprecision, uncertainty, partial
truth, and approximated knowledge. Case-Based Reasoning (CBR) [1] tries to
solve new problems using others previously solved. Nevertheless, CBR systems
often have to face two main problems when they have to manage a huge dataset.
The first problem is a reduction of system accuracy when the cases are com-
posed by a large set of features. In this case, the system may not be able to
detect the most relevant features. The second problem is an increase in CPU
time because the retrieval phase depends of the number of features and cases. In
this sense, the organization of the case memory may be crucial in order to reduce
the computational cost of the retrieval phase (i.e. minimize the CPU time), and,
if it is possible, improve system accuracy. On the other hand, soft computing
techniques (e.g. neural networks) can be used for building CBR systems that
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can exploit a tolerance for imprecision, uncertainty, approximate reasoning, and
partial truth in order to achieving more tractable, robustness, low solution cost
and closer to the human making process [7].

Nowadays, there are lots of real domains with these characteristics. Our work
in some of these areas has been the motivation of this paper. The first domain is
related to applications on medical field. In fact, we mainly work on breast cancer
diagnosis using mammographic images. A mammographic image is processed in
order to identify the microcalcifications (μCa) that appear. After characteriz-
ing the μCa through a set of features, we diagnose each image using machine
learning techniques. Previous studies applying machine learning techniques have
found that these techniques improve the accuracy rate (in terms of correct clas-
sifications) but decrease the reliability rate (in terms of robustness and stability)
compared to human experts [17]. The second domain, in which we are working, is
related to security applications on computer networks. Comprehensive network
security analysis must coordinate diverse sources of information to support large
scale visualization and intelligent response [10]. Security applications require of
some intelligence to recognize malicious data, unauthorized traffic, identify in-
trusion data patterns, learn from previous decisions and also provide a proactive
security policy implementation [8,32].

We propose a data intensive approach based on a soft computing technique
such as neural networks [4], Kohonen Maps [28], in order to organise the CBR
case memory. The main goals of this approach are to manage complex data
such as the explained domains, and improve the computational time spent on
retrieving the information. Furthermore, these goals have to be defined to avoid
decreasing the accuracy rate. We previously organized the CBR case memory
using an inductive approach based on the adaptation of the X-means algorithm
[38] in order to reduce the computational time [45]. For this reason, we compare
both approaches to measure the benefit of our new proposal. The experiments
presented in this work are based on datasets acquired from medical and telem-
atics domains, and also from UCI repository [5].

The paper is organized as follows. Section 2 surveys related work using clus-
tering techniques to organize the CBR case memory. Section 3 resumes the main
ideas of Kohonen Maps and the adaptation of the X-means algorithm in order
to explain later their roles in the case memory. Section 4 explains the approaches
proposed to organize the case memory based on inductive learning and neural
networks. Section 5 summarizes the experiments and a comparative study of the
two approaches. Finally, we present the conclusions and further work.

2 Related Work

This section summarises related work found in the literature on the subject of
clustering methods and regarding different approaches used to organise the case
memory in Case-Based Reasoning systems.

First of all, most of the clustering methods are described in Hartigan’s book
[22]. There exist a large number of clustering algorithms. Thus, the choice of a
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clustering algorithm depends on the type of available data and on the particular
purpose and application [19]. In general, clustering methods can be classified in
the following approaches.

The first approach is the partitioning method. It consists of clustering training
data into K clusters where K < M and M is the number of objects in the
data set. One of the most representative examples of this approach is the K-
means algorithm [21]. There are special variations to improve some aspects of
the algorithm. One variation is the K-medoids algorithm or PAM (Partition
Around Medoids) [26], whose objective is to reduce the sensibility of the K-
means algorithm when some extremely large values that distort data distribution
are found. A variation of the K-medoids algorithm is the CLARA algorithm
(Clustering LARge Applications) [27]. In this case, the algorithm extends the
capabilities of the last algorithm in order to perform results when large data sets
are explored. The automatic definition of the number of clusters was proposed
in the X-means [38] algorithm. Finally, another widely used algorithm is the
Self Organizing Maps (SOM) or Kohonen Maps [28], which is based on neural
network theory [4].

The second approach is called hierarchical method, which works by grouping
data objects into a tree of clusters. The hierarchical decomposition can be formed
as a bottom-up or top-down procedure.

Another considered approach is based on the density-based method. The main
objective of this method is to discover clusters with an arbitrary shape. This
typically regards clusters as dense regions of objects in the data space that
are separated by regions of low density (representing noise). The most popular
algorithms in this category are the following: DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [14], OPTICS (Ordering Points to Identify
Clustering Structure) [3] and DENCLUE (DENsity-based CLUstEring) [24].

Grid-based method uses a multiresolution grid data structure that divides
the space into a finite number of cells that form a grid structure on which
all clustering operations are performed. This method has a constant processing
time as an advantage, independently of the number of data objects. In this
group we can identify algorithms such as CLIQUE (Clustering High-Dimensional
Space) [2], STING (STatistical INformation Grid) [47], and WaveCluster [42] (an
algorithm that clusters using the wavelet transformation).

Finally, model-based method uses mathematical and probability models. This
method can be focused on two ways: firstly, as a statistical approach, and sec-
ondly, as a neural network approach. Some examples of these methods are AU-
TOCLASS [6] and COBWEB [15].

Hanson and Bauer stated that clustering of objects or events without a con-
text, goal or information concerning the function of the derived clusters (as in
[33]) is not likely to be useful for real-world problems [20]. Therefore, they pro-
posed a different point of view and approach real-world problems by means of
the WITT algorithm [20].

Regarding to the case memory organization in CBR systems, the most im-
portant approaches are the following: RISE [13] treats each instance as a rule
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that can be generalised. EACH [40] introduced the Nested Generalized Exem-
plars (NGE) theory, in which hyperrectangles are used to replace one or more
instances, thus reducing the original training set. And finally, a method that
avoids building sophisticated structures around a case memory or complex op-
erations is presented by Yang and Wu [49]. Their method partitions cases into
clusters where the cases in the same cluster are more similar than cases in other
clusters. Clusters can be converted to new smaller case-bases. However, not all
the approaches are focused on the organisation of the case memory in order to
improve the case memory and, at the same time, the computational time.

3 Clustering Methods

Case-Based Reasoning (CBR) systems solve problems by reusing the solutions to
similar problems stored as cases in a case memory [39] (also known as case-base).
However, these systems are sensitive to the cases present in the case memory and
often their good accuracy rate depends on the stored significant cases. Also, CBR
systems have problems when a huge number of cases exist in the case memory,
specially when the response time is critical (e.g. real time systems). Therefore,
a compromise between computational time and soft computing capabilities will
be pursued. Clustering the case memory tries to obtain different clusters of
cases. Each cluster represents a generic case which corresponds to a region of
the domain. Thus, the retrieval phase [1] only has to find a similar cluster to the
new case. Consequently, the system improves its computational time. The key
is: Which is the better way to cluster the case memory?

Previously to explain the integration of our new approach based on Kohonen
[28], and the other approach based on the adaptation of X-Means [38] used to
make the evaluation, we will make a short review of both algorithms. Although
CBR [1,29,31] is used in a wide variety of fields and applications (e.g. diagnosis,
planning, language understanding), we focus on CBR as an automatic classifier.

3.1 Kohonen Maps Algorithm

Kohonen Maps or Self-Organizing Maps (SOM) [28] are one of the major unsu-
pervised learning paradigms in the family of artificial neural networks. The most
important features of a SOM neural network are the following: (1) It preserves
the original topology; (2) It works well even though the original space has a
high number of dimensions; (3) It incorporates the selection feature approach;
(4) Although one class has few examples they are not lost; (5) It provides an
easy way to show data; (6) It is organized in an autonomous way to be adjusted
better to data. On the other hand, the drawbacks of this technique are that it
is influenced by the order of the training samples, and it is not trivial to define
how many clusters are needed. They have successfully been used in a variety
of clustering applications such as systems for Content-Based Image Retrieval
(CBIR) [30] or documents retrieval [25]. Also, they have been used in a large
variety of domains such as medical [46], chemical [44] or financial [11] data.
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The SOM network is composed by two layers. First, there is the input layer,
which is represented by a set of n-dimensional inputs that define the example
to evaluate. The other is the output layer, which is a m-dimensional (although
it is usually bidimensional) grid where neurons are placed. Each one of these
neurons represents a cluster or model with certain properties. Also, each neuron
is connected with all the n-inputs.

Figure 1 details the SOM training process algorithm. The models, which are
represented by a set of properties using a n-dimensional vector, are iteratively
fitted in order to create clusters with different properties. This process is achieved
by means of updating the models using the training samples. For each training
sample, a model is selected using a similarity measure shown in the Equation 1.
Then, the model vector selected and the neighbours models are updated to
better fit to this example by means of the Equation 2. This updating process
is performed in two steps: (1) First, it affects the great majority of the models
with a high influence value; (2) Second, it only affects the selected model and its
immediately neighbours with a low influence. The training ends when the lowest
error value is achieved, or the configured iteration ends.

input : CM is the case memory; Is is the new example; Total is the number
of iterations; T1 is the number of iterations of the first phase; Emin is
the lower error accepted; Map is the Kohonen map of size K×K ; α(0)
- α(F ) and ν(0) - ν(F ) are the initial and final values of the learning
and neighbour factors respectively

output : Map is the built Kohonen Map
Function trainingSOM is1

The Ni,j models of Map are randomly initialized between [0..1]2

for (t=0; ((t < Total)&(Emin < error)); t++) do3

error=04

forall Is ∈ CM do5

Let Nbest be the most similar model to Is using the Eq. 16

All the neighbour models of Nbest are updated using the Eq. 27

error=error+ ‖Is − Nbest‖8

error=error/ K × K9

α(t) and ν(t) are updated by the Eq. 3, if t < T110

return Map11

Fig. 1. Cluster creation through the SOM algorithm

∀i, j : 1 ≤ i, j ≤ K : ‖Is − Nbest‖ ≤ ‖Is − Ni,j‖ (1)

Ni,j(t + 1) = Ni,j(t) + α(t) · (Is − Ni,j(t)) (2)

X(t + 1) = X(0) + (X(F ) − X(0)) · t

T1
(3)
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3.2 SX-Means Algorithm

The adaptation of the X-means algorithm [38] in order to cluster the CBR case
memory was proposed in [45]. This variation finds spherical data groups through
moving the location of the centre of these spheres, called centroids. The centroid
is the mean value for all the objects in the cluster. It also uses splitting to deter-
mine the right number of centroids and, consequently, the number of clusters.
It restricts the search of the best cluster distribution by setting a lower and an
upper threshold of the number of clusters. The algorithm starts allocating the
centroids with K-means [21] using the lower value of K. It continues adding cen-
troids until the upper threshold of K is reached. At each step only one centroid
is inserted by splitting the original in two; then, a sub-cluster from the original
cluster is detected. Thus, centroids relocation is achieved regarding to the same
elements of the original cluster. The centroid set that achieves the best score is
selected, based on a BIC (Bayesian Information Criterion) function. This is a
recursive process that finishes when K reaches the upper bound and the local
sub-K-means has run for all centroids. Figure 2 resumes the main steps of the
X-means algorithm. We will call this adaptation using spheres as SX-means
(Sphere X-means) algorithm.

K-means and X-means algorithms have been applied in a variety of clus-
tering applications including systems for 3D objects modeling [12], computer
architecture research [18], network security [8] or text summarization [35].

input : CM is the case memory; lowerbound and upperbound are the minimal
and maximum value of K;

output : The K clusters defined
Function X-means is1

Let k[i] be the actual number of clusters by class2

Let kbest[i] be the best number of clusters by class3

Let accuracy be the rate of examples correctly classified4

maxaccuracy=05

for (i=0; (i < NumberOfClasses); i++) do6

k[i]=kbest[i]=lowerbound class i7

initialize k[i] clusters ramdomly in class i8

for (i=0; (i < NumberOfClasses); i++) do9

for (j=k[i]; (j < upperbound class i); j++) do10

cluster class i in j partitions11

verify system accuracy12

if (accuracy >maxaccuracy) then13

maxaccuracy=accuracy14

save configuration in kbest15

return kbest16

Fig. 2. Cluster creation through the SX-means algorithm (X-means adaptation)
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4 Organizing the Case Memory

This section presents our new approach based on Kohonen Maps, and it also
describes the previous approach based on SX-Means.

4.1 Kohonen Maps into CBR: The Neural Network Approach

Kohonen Maps [28] are a soft computing technique that allows the management
of uncertain, approximate, partial truth and complex knowledge.

We propose a case memory organized such as a map of size K×K as we can
see in the left part of the Figure 3, where each neuron is represented by a vector
that models the behaviour and the properties of the samples that it represents. We
propose a Kohonen Map training based on the X-means strategy to automatically
define the number of clusters: execute several map configurations using different
sizes of K, and select the one which has the lowest error. This is a critical deci-
sion because we want to improve the retrieval time through the separation of data
in several clusters, and the lowest error value will be achieved with few clusters.
Thus, a minimal value of clusters needs to be forced. This way of organizing the
case memory affects the retrieval and retain phase as CBR function (see Figure 4)
describes. The difference is that this approach only compares the cases of the most
similar cluster instead of comparing all the elements. Thus, CPU time is reduced.
On the other hand, clusters are built at the beginning of the process. The SOM
network can not be readjusted and it needs to be rebuilt. Therefore, the optimal
environment is the one where the memory is not modified.

This strategy has been implemented over a framework called SOM-CBR (Self-
Organizing Maps inside a Case-Based Reasoning). Other authors have adapted
SOM approach to work as the CBR [34], but they do not integrate SOM inside
the CBR in order to manage complex data and to improve the retrieval time,
that are our main goals. Also, we propose an automatic definition of the map
size in this work.

...

sphere-class 1

...

First level of clustering

sphere-class 2 sphere-class K 

CM based on SX -means

sphere-class 1 sphere-class 2 sphere-class K 

Sphere distribution

Second level of clustering

CM based on Kohonen 

Case Memory
(contains N  cases) 

Clustering topology

Input layer

Output layer

Wijk

K

K

N

Fig. 3. Case memory representation through the Kohonen and SX-Means approaches
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4.2 SX-Means into CBR: The Inductive Approach

This approach proposes a case memory organization based on two levels of clus-
tering as we can see in the right part of the Figure 3 by means of the SX-means
algorithm [45]. Firstly, a construction of the spheres is done based on the class
distribution of the cases present in the case memory. The concept of sphere was
introduced in the CaB-CS and exploited with success in preliminary work such
as [17]. The success of this type of Case Memory representation is based on
two aspects: first of all this representation greatly improves the speed of the
CBR system, and secondly the spheres offer high reliability in the selection of
the candidate cases. Each case from the original case memory is distributed to
one sphere depending on the class associated with the case. All the cases that
belong to the same sphere represent the same class. The union of all spheres
is the whole set of cases in the original case memory. Later, a second level of
clustering is applied using the results of the previous one. Consequently, each
sphere contains a set of clusters obtained using the SX-means algorithm. This
strategy is implemented in ULIC (Unsupervised Learning in CBR)[45].

As in the SOM-CBR approach, the organization of the case memory affects the
retrieval and retain phase as Figure 4 describes. The retrieval phase is only applied
over the cases of the selected cluster, and it allows CBR to reduce the CPU time.
Adding a new example into the casememory implies updating the centroids of clus-
ters. If a lot of examples are added the case memory performance can be drastically
reduced. For this reason, rebuilding the clusters is the only way to assure a good
performance. Anyway, the update process could be done in background mode.

input : CM is the case memory; Is is the example to classify; K − NN is the
number (odd) of cases to retrieve

output : C is the classification predicted
Function CBR is1

//Retrieve phase2

if method configured is Kohonen then3

Let S be the most similar cluster of the Is example4

Select the most K − NN similar samples from S in comparison with Is5

if method configured is SX-means then6

Select the most K − NN similar centroids7

//Reuse phase8

Propose a classification C for Is using the retrieved cases9

//Revise phase10

Evaluate if class C is correct11

//Retain phase12

Add Is in case memory if it is ’useful’ by means of an updating (SX-means)13

or rebuilding (Kohonen) task
return C14

Fig. 4. CBR cycle [1] adapted to apply the Kohonen and the SX-means clustering
strategies
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5 Experiments and Results

In this section we shall describe the data sets for testing the proposed techniques
and the obtained results.

5.1 Testbed

The performance rate is evaluated using the datasets described in Table 1. Breast
Cancer Wisconsin, Glass, Ionosphere, Iris, Sonar and Vehicle come from UCI
repository [5]. The rest of them are from medical and telematics domains. The
medical datasets deal with breast cancer diagnosis. These are mammographic
images digitalized by the Computer Vision and Robotics Group from the Uni-
versity of Girona. The Biopsy [16] and Mammogram [17] datasets contain samples
of mammographies previously diagnosed by surgical biopsy in Trueta Hospital
(in Girona), which can be benign or malign. DDSM [23] and MIAS [43] are pub-
lic mammographic image datasets, which have been studied and preprocessed in
[37,36] respectively. DDSM and MIAS classify mammography densities, which
was found relevant for the automatic diagnosis of breast cancer. Experts classify
them either in four classes (according to BIRADS [41] classifications) or three
classes (classification used in Trueta Hospital).

Regarding to telematics domain, datasets are focused on network security.
There are no standard datasets that contain all the information obtained after
a thorough security test is performed, so there are no class labels for the data
and so no obvious criteria to guide the search. On the other hand, security ex-
perts have noticed that collecting logs, capturing network traffic and identifying
potential threats is becoming difficult to handle when managing large data sets.
A corporate network can handle many devices, thus a thorough test can result
in a great amount of data [8]. Therefore, trying to manually find a behaviour
pattern or certain vulnerabilities becomes a difficult task.

In order to perform our evaluation of Kohonen Maps and SX-means in a
completely unsupervised environment such as data from security tests, we have
applied these clustering algorithms to three datasets obtained from Consensus
system [9]. These datasets differ in the number and detail of the attributes that
describe a case (see Table 1). As explained before, this domain is completely
unsupervised; therefore the number of classes is unknown. This is why techniques
such as Kohonen Maps and SX-means can help discovering ’natural’ grouping
in a set of patterns without knowledge of any class labels.

All the proposed datasets aim to be a representative benchmark of the dif-
ferent characteristics of the type of problems to solve. These datasets have been
tested using CBR, Kohonen and SX-means . All the approaches have been tuned
with 1-Nearest Neighbour algorithm and Euclidean distance without weighting
methods as retrieval strategy. We have chosen this configuration because our
goal is focused on the evaluation of the retrieval time.

5.2 Results and Discussion

This section presents a discussion over the clustering methods explained before.
First, we analyse the accuracy rate and the computational time needed to retrieve
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Table 1. Description of the datasets used in this work

Code Dataset Cases Features Classes Uncertainty

BC Breast-cancer (Wisconsin) 699 9 2 Yes
GL Glass 214 9 6 No
IO Ionosphere 351 34 2 No
IR Iris 150 4 3 No
SO Sonar 208 60 2 No
VE Vehicle 846 18 4 No
BI Biopsy 1027 24 2 Yes
MA Mammogram 216 23 2 Yes
DD DDSM 501 143 4 Yes
M3 Mias-3C 320 153 3 Yes
MB Mias-Birads 320 153 4 Yes
NS1 Network Security (Consensus) 1 45 60 - Yes
NS2 Network Security (Consensus) 2 45 57 - Yes
NS3 Network Security (Consensus) 3 45 165 - Yes

a case using both approaches over the UCI Repository and medical datasets.
Second, we perform a qualitative study of the case memory organization obtained
using the evaluated clustering methods in telematics domain.

Table 2 summarizes the results of SOM-CBR (Kohonen) and ULIC (SX-
means) approaches. In SX-means approach we have clustered cases in several
spheres in order to detect different behaviours of the data contained in them.
On the other hand, in Kohonen approach we have mapped data patterns onto
a n-dimensional grid of neurons or units. For each technique, we present the
average percentage of accuracy resulting of a 10-fold stratified cross-validation,
their corresponding standard deviations, and the average computational time
(i.e. CPU time) in milliseconds of one case resolution. In addition, the results
shown in Table 2 are the mean of ten executions using several random seeds in a
P4-3Ghz computer with 1 GRAM. All the experiments have been done without
retaining any case in the case memory because this paper does not focus on
Retain phase.

As we can observe, results in general improve both the mean accuracy and
the CPU time of classifying one case. Clustering the case memory is the result
of grouping similar data, which possibly have the same classification. When the
Retrieve phase is applied, CBR only compares with potentially ’good’ examples
and not with redundant data. We consider ’good’ examples these examples which
are similar in comparison with the new example to classify.

The accuracy rate has been analysed by means of the t-test student (at 95%
confidence level). In SX-means CM approach the accuracy rate is usually main-
tained or improved (not significantly) in comparison with Linear CM in UCI
problems. However, the accuracy rate is significantly reduced in some problems
(SO, VE, BI, MB and M3) which present more uncertainty. On the other hand,
SOM CM approach is more stable and it provides results like the Linear CM.
Also, it improves the results in MA dataset in comparison with Linear CM, and
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Table 2. Summary of the mean percentage of accuracy rate (%AR), the standard
deviation (std) and the mean retrieval time of one case (in milliseconds) of a CBR
with three case memory organization approaches: linear, SOM and SX-means. The
best accuracy rates are marked in Bold. The ↑ and ↓ indicate if the cluster method
significantly improves or decreases the accuracy rate in comparison with Linear CM
when a t-test student (at 95% of confidence level) is applied . The

√
indicates that

SOM CM significatively improves SX-means CM.

Code Linear CM SOM CM SX-Means CM

BC
GL
IO
IR
SO
VE

BI
MA
DD
M3
MB

%AR (std.) Time
96.14 (2.1) 1.8000
69.16 (7.3) 0.6000
90.32 (4.2) 0.3600
96.32 (3.1) 0.3000
87.02 (6.9) 0.3600
69.05 (6.1) 0.4800
83.15 (3.5) 0.7200
62.50 (13.7) 0.1200
46.51 (5.4) 1.9800
70.81 (6.9) 1.5000
70.31 (5.5) 1.5000

%AR (std.) Time
96.42 (2.6) 0.7000
70.66 (7.8) 0.2100
89.12 (4.8) 0.0800
96.00 (3.2) 0.0150
85.58 (7.2)

√
0.1400

69.15 (5.7)
√

0.2200
82.08 (3.7) 0.4300
68.06 (8.3)

√ ↑ 0.0400
46.41 (4.1) 1.2000
69.57 (6.09)

√
0.7000

70.31 (5.4)
√

0.7000

%AR (std.) Time
96.71 (1.9) 1.0200
70.79 (8.7) 0.5500
90.31 (5.3) 0.0060
97.33 (3.2) 0.0015
82.93 (7.7) ↓ 0.1600
65.60 (3.7) ↓ 0.0080
81.40 (3.7) ↓ 0.3100
63.89 (9.8) 0.0900
46.17 (5.2) 1.1000
65.34 (6.2) ↓ 0.5400
60.16 (9.2) ↓ 0.5400

it significatively improves the results in SO, VE, MA, M3 and MB datasets in
relation with SX-means CM.

Concerning to the the CPU time, the two approaches always drastically re-
duce computational time requirements. This is directly related to the number
of clusters defined by each approach. Table 3 summarizes the clusters defined
for each configuration explained in Table 2. In both approaches, the ideal num-
ber of clusters has been tuned in order to minimize the minimal square error.
SX-means tends to build more clusters than SOM because SX-means defines
several ’patterns’ for each class, whereas SOM defines patterns that work as ’in-
dex’ to compare only with the most potentially similar cases. Thus, SX-means
only compares with the ’patterns’, and SOM compares with the patterns and
its cases. This situation produces that the computational time in SOM is higher
than in SX-means approach because it has to use more information. Eq. 4, 5
and 6 model the cost (time) needed to retrieve one case by Linear, SOM and
SX-means approaches respectively, where Tr represents the number of cases in
the case memory and K the number of clusters used. Depending on the number
of clusters (K), the size of case memory (Tr), and the cases distribution in the
clusters the difference of performance between SOM CM and SX-means CM
could vary.

time(Linear) = O(Tr) (4)

time(SOM) = O(K +
Tr

K
) (5)

time(SX − means) = O(K) (6)
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Table 3. Summary of the number of the case memory clusters for each dataset and
method. Also, SOM approach includes the map size (K × K), and SX-means includes
the number of clusters by class.

Code Classes Clusters in SOM CM Clusters in SX-means CM
BC 2 30 (K=8) 42 (27-15)
GL 7 7 (K=6) 78 (20-15-10-0-20-3-10)
IO 2 44 (K=8) 30 (24-6)
IR 3 10 (K=6) 34 (20-4-10)
SO 2 37 (K=8) 52 (25-27)
VE 4 62 (K=10) 115 (25-20-35-35)
BI 2 4 (K=4) 44 (28-16)
MA 2 8 (K=16) 90 (50-40)
DD 4 3 (K=8) 10 (1-4-2-3)
M3 3 6 (K=10) 8 (2-3-3)
MB 4 6 (K=10) 8 (2-3-3)
NS1 - 3 (K=8) 3 (3)
NS2 - 8 (K=8) 8 (8)
NS3 - 8 (K=8) 8 (8)

Therefore, we can conclude that CPU time is improved and the accuracy rate
is maintained for all the problems when the SOM approach is applied, because
it seems to be more suitable to tackle general or uncertain problems due to its
soft computing capabilities. On the other hand, SX-means improves the CPU
time but the accuracy rate decreases in problems with uncertainty.

Regarding to network security and clustering, not only SX-means [8] but also
Kohonen Maps have revealed very good results when using port scanning and
operative system fingerprinting information as main features. We must high-
light that this domain was completely unsupervised; thus, the number of classes
was unknown. However, both techniques have found 8 different clusters for the
used datasets. They have identified groups of similar computers, but have also
found devices that unexpectedly appear separated from what it seamed like sim-
ilar devices. Therefore, these techniques can help analysts handling information
obtained from security tests in order to detect abnormal groups of devices or
atypical system behaviours.

6 Conclusions and Further Research

This paper has proposed a case memory organization based on Kohonen Maps in
order to manage complex and uncertain problems, and also reduce the retrieval
time. Furthermore, we have analysed this approach in comparison with a Linear
CM organization and a SX-means CM organization previously proposed in [45]
over datasets from UCI Repository and from medical and telematics domains.

The results have shown that the soft computing capabilities of Kohonen Maps
allow CBR to better retrieve the information in comparison with a SX-means
CM organization when the problems present uncertainty, and faster in compar-
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ison with the Linear CM organization. However, the SX-means CM needs less
operations to retrieve one case because only needs to compare with ’pattern’
(centroids) and not with the cases of the ’patterns’. Therefore, the solution with
best accuracy is the Linear CM, the faster is the SX-means CM, and the more
balanced is SOM CM. Anyway, SOM case memory organization is more suitable
for managing uncertain domains.

One weak point of both approaches, and more concretely in SOM-CBR, is
the Retain phase. The case memory is clustered at the beginning of the process
and the clusters are built to promote the groups between similar data. If we
add knowledge in the case memory in form of new cases, these relations can
be altered and the performance is reduced. One issue of further work would be
focused on the Retain phase in order to add new cases without reducing the
system performance (accuracy rate and computational time).

All the studied datasets are composed by numeric attributes because the
metric used in SX-means and Kohonen Maps do not support discrete data with
reliability. Thus, it would be interesting to study the application of other metrics
such as the Heterogeneous distance [48].
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Abstract. Collaborative Web Search (CWS) proposes a case-based ap-
proach to personalizing search results for the needs of a community of
like-minded searchers. The search activities of users are captured as a
case base of search cases, each corresponding to community search be-
haviour (the results selected) for a given query. When responding to a
new query, CWS selects a set of similar cases and promotes their se-
lected results within the final result-list. In this paper we describe how
this case-based view can be broadened to accommodate suggestions from
multiple case bases, reflecting the expertise and preferences of comple-
mentary search communities. In this way it is possible to supplement the
recommendations of the host community with complementary recom-
mendations from related communities. We describe the results of a new
live-user trial that speaks to the performance benefits that are available
by using multiple case bases in this way compared to the use of a single
case base.

1 Introduction

Improving the quality of Web search results is a challenging problem—the sheer
scale and heterogeneity of the Internet is exacerbated by vague and ambiguous
queries [4,8]—but if improvements can be made they will have a significant im-
pact on this very important application area. In our work we have looked at the
application of case-based techniques to Web search by looking for query repeti-
tion and selection regularity amongst user search patterns. Our key insight has
been that, although repetition and regularity is often absent from generic search,
it is present in the search patterns of like-minded communities of users that nat-
urally exist [16]. Our collaborative Web search (CWS) approach is designed to
operate as a form of meta-search. It relies on some underlying search engine(s)
to provide a basic result-list for a user query, but then uses a case base of past
search patterns from the user’s community to identify key results for promotion.

CWS contemplates a society of community-based search engines, each with
their own case base of search cases corresponding to some distinct community of
searchers. Ordinarily the searches of a specific (host) community are answered
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with reference to their local case base: the traditional single case base model of
CBR. Recently a number of researchers have investigated the benefits available
from combining multiple case bases, each providing access to a different set of
problem-solving experiences [9,11,12,13]. We adopt a similar strategy in CWS
by leveraging the search experience of search communities related to the host
(multiple case bases) when responding to queries originating from the host. In
doing so we build on work reported in [3], which considered this multiple case
base approach in the context of a simple notion of community relatedness, and
which provided evaluation results based on an artificial user evaluation. We
propose a more sophisticated model of community relatedness and demonstrate
the value of the new approach in terms of a new extended live-user trial.

The work presented in this paper touches on a number of areas of related
research by combining ideas from Web information retrieval and case-based rea-
soning. Of particular importance is the idea that Web search experience can
be usefully captured as a case base of reusable cases and that this experience
can be distributed across multiple case bases which correspond to the different
needs of different communities of searchers. There is a long history of the use
of case-based methods in a variety of information retrieval tasks. For example,
the work of Rissland [14] looks at the application of CBR to legal information
retrieval (see also [1]), and Burke et al. [2] describe a case-based approach to
question-answering tasks. However these approaches have all tended to focus
on particular application domains rather than the broader area of Web search.
That said there is some CBR work in the broader context of Web search. For
example, the Broadway recommender system [7] is notable for its use of case-
based techniques to recommend search query refinements, based on refinements
that have worked well in the past. Perhaps more related to the core work in
this paper is the PersonalSearcher [5] which combines user profiling and textual
case-based reasoning to dynamically filter Web documents according to a user’s
learned preferences.

The idea that experience can be distributed across multiple case bases is not
new, and in recent years many researchers have considered the use of multiple
case bases during problem solving. For example, Leake et al. [9] consider the
benefits and challenges when reusing the experience of multiple case bases that
reflect different tasks and environments. They consider how a local case base
can usefully determine when to look to external case bases as a source of knowl-
edge, and how external cases might be adapted in line with the local task and
environment; see McGinty & Smyth [11] for similar work in the route planning
domain. Nagendra Prasad & Plaza [13] investigate cooperative problem solving
among agents possessing either the same or different capabilities and incorporate
potentially different knowledge and problem solving behaviors. Nagendra Prasad
et al. [12] present a different situation where no single source of information may
contain sufficient information to give a complete solution. They envisage the
piecing together of mutually related partial responses from several distributed
sources of queries in order to create a complete solution.
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2 A Review of Collaborative Web Search

The CWS technique is conceived of as a form of meta-search; see Figure 1.
Each user query, qT , is submitted to base-level search engines (S1 - Sn) after

adapting qT for each Si using the appropriate adapter, Ai. Similarly, the result
set, Ri, returned by a particular Si is adapted for use by I-SPY to produce
R′

i, which can then be combined and re-ranked by I-SPY, just like a traditional
meta-search engine. The key novelty stems from how a second ranked result-
list, RT , is produced which reflects the learned preferences of a community of
like-minded searchers. This involves reusing selection results from past search
cases for similar queries, promoting those results that were reliably selected in
the past.

Fig. 1. Collaborative Web search as implemented in I-SPY (ispy.ucd.ie)

2.1 The Community Search Case Base

The hit-matrix associated with community C, HC , is a key data structure for
CWS, which relates page selections to past queries for a community of users.
Specifically, HC

ij (the hit value of page pj for query qi in community C) is the
number of times that page pj has been selected for query qi by members of
community C; HC

ij is incremented each time pj is selected for qi. The hit-matrix
forms the basis of a case base. Each row corresponds to a search case (see Equa-
tion 1) or, equivalently, a k + 1-tuple made up of the query component (a set
of query terms) plus k result-pairs, each with a page id, pj , and an associated
percentage relevance value, rj , computed from the hit value for this page and
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query combination; we will explain how this relevance value is computed be-
low in Equation 6. The problem specification part of the case (see Equation 2)
corresponds to the query terms. The solution part of the case (see Equation
3) corresponds to the result-pairs; that is, the set of page selections that have
been accumulated as a result of past uses of the corresponding query. The target
problem is, of course, represented by the target query terms.

ci = (qi, (p1, r1), ..., (pk, rk)) (1)

Spec(ci) = qi (2)

Sol(ci) = ((p1, r1), ..., (pk, rk)) (3)

Rel(pj, ci) = rj if (pj , rj) ∈ Sol(ci); = 0, otherwise. (4)

2.2 Retrieving Similar Search Cases

For each new target query qT we retrieve a set of similar search cases to serve
as a source of relevant results. Case similarity can be measured using a simple
term-overlap metric (Equation 5); evaluating alternative metrics is a matter of
ongoing research. During the retrieval stage, this allows CWS to rank-order past
search cases according to their similarity to the target query so that all, or a
subset of, these similar cases might be reused during result ranking.

Sim(qT , ci) =
|qT ∩ Spec(ci)|
|qT ∪ Spec(ci)|

(5)

2.3 Reusing Result Selections

Consider a page, pj , that is part of the solution of a case, ci, with query, qi.
The relevance of pj to this case is given by the relative number of times that pj

has been selected for qi; see Equation 6. And the relevance of pj to the current
target query qT is the combination of RelevanceC(pj , qi)’s for all pages that are
part of the solutions to cases (c1, ..., cn) deemed to be similar to qT , as shown
in Equation 7. Essentially each RelevanceC(pj , qi) is weighted by Sim(qT , ci) to
discount the relevance of results from less similar queries; Exists(pj , ci) = 1 if
Hij <> 0 and 0 otherwise.

RelevanceC(pj , qi) =
HC

ij∑
∀j HC

ij

(6)

WRelC(pj , qT , c1, ..., cn) =

∑
i=1,...,n RelelevanceC(pj , ci) • Sim(qT , ci))∑

i=1,...,n Exists(pj , ci) • Sim(qT , ci)
(7)

This weighted relevance metric is used to rank-order the promotion candi-
dates. These ranked pages are then recommended ahead of the remaining meta-
search results, which are themselves ranked (according to a standard meta-search
scoring metric), to give RT . Of course, alternative promotion models can also be
envisaged but are omitted here due to space constraints.
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3 Reusing Multiple Case Bases

There are a number of reasons why we might want to look beyond the host
community for a complementary source of search experience. A host community
might be immature and, as such, may not have accumulated sufficient experience
to respond effectively to a target query. However, other similar, more mature,
communities may be available and perhaps they could provide relevant results
for the host query. Even a mature host community may not contain sufficient
information on a target query; perhaps the query relates to a very specialised
information request within the community context. For example, in a commu-
nity of automobile enthusiasts a specialised query related to the specialised task
of restoring a classic s-type Jaguar might be better answered by a related com-
munity that is more focused on car restoration.

The main focus of this paper is to explore the various ways that we might
exploit the complementary search expertise of related communities by allowing
their search cases to contribute to searches by members of the host community
using a community cooperation (CC) model. To do this we need to solve two
core issues: 1) how to evaluate the relatedness of two communities so that re-
lated communities may be identified; 2) how to present the results of a related
community to the searchers.

3.1 Evaluating Community Relatedness

When is one community related to another? For the purposes of helping to
respond to the search results of our host community, Ch, we can consider two
important factors—community similarity and community experience—and we
use these measures to evaluate the relatedness of Ch to some other community
Cr as shown in Equation 8. CommunitySimilarity and CommunityExperience
are defined in the following paragraphs.

RelatedCommunity(Ch, Cr, qT ) =
CommunitySimilarity(Ch, Cr) ∗ CommunityExperience(qT , Cr) (8)

Community Similarity. It makes sense to look to the recommendations of
communities that are demonstrably similar to the host community. But how
might community similarity be measured? There are potentially many ways to
look at the concept of community similarity. For example we might start by
supposing that if two communities have similar query term distributions then
they might reflect the interests of two similar communities of users. However
this is not necessarily the case, and not sufficient for our needs. For instance, a
motoring community might share many queries with a community about wild
cats (e.g., ‘jaguar’, ‘puma’, ‘cougar’ are all common car names) but very different
result selections will have been made by each community’s searchers. Instead
we propose to look at the shared results that have been selected in response to
searches as an estimate of community similarity (see Equation 9 for the similarity
between some host community, Ch, and another community, Cr).
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CommunitySimilarity(Ch, Cr)=
|ResultSelection(Ch) ∩ ResultSelection(Cr)|

|ResultSelection(Ch)|
(9)

Community Experience. As a measure of relatedness, community similarity
only tells part of the story. We wish to exploit communities which are similar to
the host community and also have a rich store of search information pertaining
to a target query. Thus, community experience measures the amount of search
history a hit-matrix has for a query. That is, community C is considered to be
experienced for a target query, qT , if its hit-matrix, HC , contains lots of similar
queries and if these similar queries have been successful (users have selected their
results frequently) in the past. To measure this, we compare qT to each of the
queries stored in HC to look for related queries; that is queries with a non-zero
similarity to qT ; see Equation 5. For each of these related queries, qr, we can
compute a success score. The success score for a query in a hit-matrix is the
relative number of hits (selections) that it has contained within its matrix entry,
compared to the total number of hits in that hit-matrix; see Equation 10. This
metric will deliver high success scores to queries that have resulted in lots of
page selections. The degree to which qT is related to HC can be computed as
the sum of the success scores for each similar query weighted by the degree of
similarity; see Equation 11.

Success(qr, H
C) =

∑
∀i HC

ri∑
∀ij HC

ij

(10)

Related(qT , HC) =
∑

∀qr :Sim(qT ,qr)>0

Sim(qT , qr) ∗ Success(qr, H
C) (11)

CommunityExperience(qT , C) =
Related(qT , HC)∑
∀C Related(qT , HC)

(12)

Community C’s experience score reflects the percentage of total query expe-
rience contained in its hit-matrix for a target query as shown in Equation 12.
This technique allows us to identify a set of communities which all have a rich
information history on a target query.

3.2 Result Ranking

Once a set of related communities has been identified (by their similarity to the
host community) they can each be used to produce a set of results in response to
the target query, qT , from the host. In this case, for each related community we
only seek to retrieve the set of result recommendations coming from their respec-
tive hit-matrix (search case base). Thus, each related community, Ci, produces
a set of recommended results, Ri. These result-lists complement the result-list
RT that is produced for the host community;
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3.3 Result Presentation

In this paper, we propose keeping recommendations in their original result-lists
and presenting the searcher with a selection of recommendation lists, each from a
related community, rather than combining all of the promoted results, into a sin-
gle promoted result-list for presentation. Each list is labeled with its community
name and context and, we argue, that allows the searcher to better understand
the nature of the promoted results. In effect this provides for a unique approach
to result clustering [6,10,17]. Instead of clustering search results by some analy-
sis of their overlapping terms, we are clustering results based on their selection
frequencies in different communities of searchers.

An example of this approach is presented in Figure 2 for a collection of search
communities related to skiing; these examples use the I-SPY system (ispy.ucd.ie)
which is a robust, fully deployed version of CWS. The target query, ‘late deals’,
is provided by a member of the host community, European Skiing, and this
community’s recommendations are shown in the main result page. The section
of the result-list shown presents the recommendations from the host community;
those results that have been selected and ranked from previous similar cases for
this community.

Notice that along the top of the recommended results there is a set of tabs
containing the title of a related community. In this example, there are 3 related
communities shown, in order of their similarity to the host community. Inset
into the figure is the recommendation list from the American Skiing community.
These recommendations offer late deals in American resorts complement those
of the host community. They are however still clearly relevant to the target
query.

Fig. 2. The recommended results from a selection of skiing communities including
the host community (European skiing) and one of the related communities (American
skiing)
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4 Evaluation

In previous work we have demonstrated the benefits of the standard single case
base version of CWS, through a range of live-user trials. For example, in [15,16]
we present the results of two different user trials that show how CWS can signif-
icantly improve the precision and recall of an underlying search engine (Google
in this case) with respect to the needs of a community of like-minded searchers.

In this paper we have speculated about the value of including recommenda-
tions from other search communities when responding to a query submitted in a
specific host community. In particular, we have claimed that similar communities
will recommend results that are related to the target query and the searcher’s
needs. Indeed we believe that, in general, communities that are more related to
the host will be a more reliable source of relevant results. We also suspect that
communities which are less closely aligned to the host may still have a role to
play in suggesting results that are partially relevant and that might not other-
wise be promoted by the host community. In this section we will describe the
results of an experiment designed to test these hypotheses.

4.1 Methodology

The evaluation is carried out in the IT domain with search information collected
from a Dublin based software company. The search data was collected over a
9 week period in 2004 and is made up of 1986 search sessions, each containing
an internet protocol addresses, a query and at least one result selection, (ip, q,
r1-rn). This data was used to populate a set of search communities, each made
up of the employees of a different division within the company. We tested our
hypothesis by querying the resulting case bases with separate sets of real-user
queries and judged the recommendations in terms of coverage and precision.

Community Creation. In order to test our community cooperation theory,
we needed to create a series of separate communities from the collection of data
available. The simplest and most effective way of separating the information was
to split the data into standard company departments, each department having
its own search community. In total, 7 communities were created, varying in de-
partment topic and size, from the Development B community containing 749

Table 1. Pairwise community similarities

Community (sessions) Web Devel Marketing Proj Man. Devel A QA Finance Devel B
Web Devel(58) 0% 15% 19% 22% 3% 33%
Marketing (52) 0% 9% 25% 13% 11% 20%
Proj Man (204) 3% 2% 17% 20% 4% 29%
Devel A (370) 3% 3% 12% 21% 3% 29%

Quality A (486) 3% 1% 11% 17% 3% 28%
Finance (53) 3% 8% 17% 18% 22% 24%
Devel B (749) 2% 1% 10% 15% 18% 2%
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sessions to the Marketing community with 52 sessions; see Table 1. We acknowl-
edge that in a small company one large search community would probably best
serve the employees. However we wish to use the departmental communities cre-
ated to explore the possible benefits gained through the use of our community
cooperation technique.

Hit-Matrix Population. Populating the hit-matrices for this experiment was
a straightforward task. Each community’s search data (i.e. query result pairs)
was arranged in chronological order. The first 80% of the data - the training
data - was used to populate the hit-matrix for that community. The result was
a hit-matrix populated as it would have been had a CWS engine been used by
searchers at the time the searches were conducted.

Relevance Testing. When training was complete we had 7 communities of var-
ious sizes, all in some way related to the business of the company. The remaining
20% of search sessions for each community were combined to form a global test
set containing 403 queries, each tagged with its host community. The queries
contained an average of 2.66 terms and were a mix of general and computing
queries; e.g. “public holidays Ireland”and “profiler 3.0 linux installation”.

Our hypothesis is that more experienced, similar communities are better can-
didates for cooperation than less experienced, less similar communities. Table
1 shows the community similarity figures for all 7 communities. Figure 3 shows
the average experience (see Equation 12) of each related community for the test
queries of a selection of hosts and the relatedness scores (see Equation 8) for
each related community for the same hosts. The performance of each host com-
munity for their own test queries (those that they actually contributed to the
test set) is compared to the performance of the other six communities, their re-
lated communities. Thus for each host community, its test queries are submitted
to I-SPY in the traditional manner, generating a host result-list, Rh from the
host’s hit-matrix. In parallel, each of the six related communities also receive
the test query and produce recommendation lists based on the information in
their hit-matrices, R1,..,Rk. We should point out here that no meta-results were
contained in the result-lists just promoted results from the relevance engine.

Although we have access to the results that the original searchers selected,
it does not follow that we can assume that unselected results are irrelevant.
For our evaluation we needed some way of identifying other results as poten-
tially relevant. Our solution was to use Google’s “similar pages” feature as a
means to generate lists of results that are similar to those selected by the orig-
inal searchers (the seed pages). This allowed us to generate a list (on average
15.15 results) of relevant candidates for each search session from its seed pages.
Finally, to determine if some recommended page was relevant for a given query
we used Lucene’s page similarity function to evaluate the similarity between the
page and each of the seed pages and relevant candidates for the test session in
question. If the page exceeded a given similarity threshold then it was deemed
relevant; a threshold of 0.3 was used for seed pages and 0.5 for the relevant
candidates.
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Fig. 3. (a)-(d) Average experience of related communities for host queries from the
Finance, Development A, Quality Assurance and Web Development communities. (e)-
(h) Relatedness of related communities for host queries from the Finance, Development
A, Quality Assurance and Web Development communities.
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4.2 Query Coverage

In our first test we looked at the number of queries for which recommendations
could be generated by CWS in comparison to the CC approach. It is important
to realise that when we talk about a recommendation being generated, we are
referring to the promotion of a specific search result based on its previous se-
lection history. Table 2 shows that the CC approach enjoys a clear advantage
over the standard CWS approach. Only 82 (20%) of the 403 queries submit-
ted to the standard CWS system resulted in recommendations being generated
compared to 130 queries for the CC approach, representing a relative increase
in recommendation coverage of more than 58% for the CC approach.

Table 2. Technique performance

CWS CC
Recommendations 82 130
Successful Queries 54 69

Table 3. Percentage of queries to receive recommendations

Recommendations Web Devel Marketing Proj Man. Devel A QA Finance Devel B
Host 50% 83% 67% 75% 70% 15% 47%

Related 45% 33% 67% 78% 52% 86% 92%

In Table 3 we break down these figures and examine how each community
performed for its own test queries. The table shows for each community the per-
centage of their queries that received promotions from their own case base and
the percentage that received recommendations from the 6 related communities
combined. It shows, for example, that 15% of the Finance queries received rec-
ommendations from the immature Finance community, but 86% of the Finance
queries received recommendations from a related community. Examination of
the Finance experience graph in Figure 3(c) shows that a number of related
communities have more experience relating to the Finance queries than the Fi-
nance community itself and thus produce more recommendations. However even
the larger, more established Development A & B communities see an increase in
recommendation numbers, when cooperation is in place. Overall a 13% increase
in number of queries to receive recommendations is observed.

4.3 Result Relevance

Of course query coverage is not a revealing measure as it says nothing about
recommendation relevance. Thus, we look at the quality of the recommendations
generated by each approach. Specifically, we look at the number of queries for
which at least one relevant recommendation was generated—successful queries.
The results presented in Table 2 again speak to the benefits of the CC approach,
which delivers 69 successful queries against CWS’s 54; a relative increase of 27%
for the CC approach over standard CWS.
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166 relevant results were generated by the traditional CWS technique across
its 54 successful queries. When we look at the similar-community recommenda-
tions generated for these queries we find 45 relevant results. However crucially,
we see that 38 of these 45 relevant recommendations are unique. In other words,
over 84% of the relevant recommendations that originate from similar communi-
ties are different from the recommendations generated by the host community.
It is worth noting that the community with the greatest similarity to the host
in most cases, the Development B community, did not contribute any unique
results to this set, thus showing that communities that are very similar to a host
often do not contribute as many unique results as less similar communities.

4.4 Result Precision

403 queries were submitted to each of the 7 communities in turn, noting the per-
formance of the host community in comparison to the other related communities.
Figure 4 shows the precision scores for different result-list sizes, k = 5...100 for
each of the communities and compares the host’s result-list precision scores to
the result-lists provided by related communities. It is worth noting that only
33% of the test queries received recommendations, which immediately reduces
the average precision scores across the test queries. Taking this into considera-
tion, we look at the precision scores in order to compare the traditional CWS
technique and the community cooperation model.

As expected, precision values are highest at low values of k and fall as k
increases. An immediate trend appears; in four out of seven graphs (Figure 4
(a - d) the Development B community’s recommendations outperform the host
community’s recommendations in terms of accuracy. In these cases a related
community has returned more relevant results than the host community, a trend
not observed in the previous simulated evaluation [3]. That is, a related commu-
nity exists, that is better equipped to answer queries than the host. It is worth
noting that, even when the Development B community does not outperform the
host community, it is the best performing related community. The next best
performing communities are the Quality Assurance and Development A commu-
nities, which also often equal or outperform host communities.

We proposed that considering a candidate community’s experience for a target
query and its similarity to a host community informs us of its relatedness to a
search scenario. In this evaluation we see the proof of this concept. On average the
three largest and thus most experienced communities for the test queries are the
Development B, Quality Assurance and Development A communities; see Figure
3 (a-d). These three communities also have the highest average similarity to the
other communities; see Table 1. It follows that these community’s suitability to
cooperation be reflected in their precision scores. The encouraging finding is that
the correlation between precision at k=5 and relatedness is 0.82, supporting our
hypothesis that related communities, i.e. those that are similar and posses the
search knowledge required for the task, are the best candidates for community
cooperation where highly similar result-lists are favoured.
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Fig. 4. Precision scores for the (a) Web Development, (b) Finance, (c) Project Manage-
ment, (d) Development A, (e) Quality Assurance, (f) Marketing and (g) Development
B communities
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4.5 Conclusion

In this work we have shown how Web search experience can be captured as
a case base of search cases, and how this experience can be distributed across
multiple case bases. Our community collaboration technique aims to supplement
a host community’s recommendations with complementary recommendations
from the search cases contained within the case bases of related communities.
We have seen its potential to improve query coverage in terms of increasing the
instances where recommendations can be made, increasing the number of queries
to receive relevant recommendations and also increasing the number of relevant
results returned per query. It has also shown us that, when a group of relevant
communities exist the level of accuracy from partner communities can exceed the
level of accuracy from the host recommendations, depending on experience and
similarity. We have shown that the experience of communities of searchers can
be usefully leveraged to help searchers from other communities. These related
communities can serve as a source of recommendations that are both relevant
and distinctive.
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Abstract. While reasoning with cases is usually done in a similarity-
based manner, additional general knowledge is often represented in rules,
constraints, or ontology definitions and is applied in a deductive reason-
ing process. This paper presents a new view on the combination of de-
ductive and similarity-based reasoning, which is embedded in the CBR
context. The basic idea is to view general knowledge and cases as a
logical theory of a domain. Similarity-based reasoning is introduced as
search for the most similar element in the deductive closure of the do-
main theory. We elaborate this approach and introduce several related
search algorithms, which are analyzed in an experimental study. Further,
we show how several previous approaches for using general knowledge in
CBR can be mapped to our new view.

1 Introduction

Although the primary source of knowledge in a case-based reasoning (CBR) sys-
tem is the specific knowledge in the cases, it has always been recognized that
additional general knowledge is often required for problem solving [1,6,9,7,12,2].
This general knowledge complements the knowledge in the cases, for example
for the purpose of describing appropriate ways of adapting cases. While reason-
ing with cases is usually done in a similarity-based manner, general knowledge
is often represented in rules, constraints, or ontology definitions and is usually
applied in a deductive reasoning process. Therefore, the question of combin-
ing specific and general knowledge is strongly connected with the question of
combining logic-oriented (deductive) and approximate reasoning [14].

This paper presents a new way of combining deductive and approximate rea-
soning in a unified manner, which is significantly different from previous ap-
proaches such as the theory proposed by Michalski [10]. Our basic idea is to
view general knowledge and cases as a logical theory of a domain. In this theory,
cases are usually encoded as facts. General knowledge is added to this theory
in form of general logical sentences and possibly additional facts. The theory
must be constructed such that the deductive closure represents the knowledge
we know with certainty to be true in that domain. Similarity-based reasoning is
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then introduced as follows: for a given query (together with a similarity measure)
we search for the k most similar elements in the deductive closure and thus find
the most similar deductive consequences.

This paper explores this new view in detail (Sect. 3) and positions it in the
context of previous CBR research (Sect. 2, 3.4, and 6). Thereby it provides a
generalized view on several earlier approaches, particularly:

– using rules for case completion [6]
– using rules or operators for transformational adaptation [6,5,8]
– using constraints to restrict admissible combinations of components for con-

figuration or design [17,13]
– using constraints to define a generalized case [4,11,19]

It also can be regarded as a general framework for integrating structural CBR
with ontology-based knowledge management as envisioned in [3].

Further the paper presents several new algorithms that integrate the similar-
ity-based search with the search process performed during deduction (see Sect.
4). These algorithms show a different and unified way of performing the case-
based reasoning tasks from the above mentioned original approaches. The devel-
oped algorithms differ in the heuristics used for pruning the huge overall search
space. Hence, an empirical evaluation is presented in Sect. 5. Finally, we discuss
the potential impact of our work.

2 Combining Cases and General Knowledge

We now review selected previous work that combines general knowledge and
cases.

2.1 Completion Rules

The formulation of completion rules is a very straightforward use of general
knowledge [6], which is widely used in practical CBR applications. Rules are
applied for inferring additional properties not explicitly represented in the cases
or the query, but which are necessary for the similarity assessment. They are
usually used to define functionally dependent virtual attributes [15]. Here, de-
ductive and similarity-based reasoning are strictly separated. Completion rules
are applied to the cases when they are inserted into the case base. They are also
applied prior to the retrieval process to compute the completion of the query. The
similarity search is a separate step that is based on results of these deductions.

2.2 Transformational Adaptation with Rules or Operators

When using transformational adaptation, the most similar case is first retrieved
from the case base using some notion of similarity. Then, in a separate adapta-
tion step, appropriate case adaptations are determined by deductively applying
adaptation knowledge, for example in the form of rules or operators. Bergmann
and Wilke [5] propose a formal model of transformational adaptation that views
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adaptation as a search process in the space spawned by adaptation operators.
An adaptation operator is a partial function that transforms a case into a suc-
cessor case. The aim is to find an optimal solution with respect to some quality
function encoding an overall similarity measure.

When applying transformational adaptation, the two steps namely the simi-
larity-based retrieval and the deductive application of adaptation knowledge are
separated in the first place, but additional measures are usually applied in order
to ensure that adaptable cases are retrieved [16]. Despite those measures, it is
usually not assured that the best solution is found, because not every case with
every adaptation sequence is considered. Hence, this approach is a heuristic.

2.3 Case-Based Configuration with Constraints

Case-based approaches for solving configuration or design problems have to take
into consideration the knowledge about relationships among design parameters
as well as relations (for example technical constraints) among design objects.
The difficulties in solving such problems are caused to some extent by the size
and structure of the space of acceptable configurations. CBR is used in this
context either for guiding the search to improve the problem solving speed,
for replacing general knowledge by cases to reduce the knowledge engineering
effort, or to find approximate solutions to problems that cannot be solved exactly
because an exact solution that is inside the design space does not exist [17].
In the context of this paper, approaches of the two last kinds are of interest.
Cases describe components (e.g. available hard disks, mainboards, etc.) as well as
predefined sub-configuration (e.g. available barebone PCs, memory sub-systems,
etc.) and constraints are used to describe technically required relationships (e.g.
bus compatibility of components). Stahl and Bergmann [17] describe a case-based
configuration approach that adapts retrieved components through search in the
space of component replacements that is guided by a similarity measure used as
target function. As with transformational adaptation, the involved search is not
complete and hence it is not guaranteed that the best solution is found.

2.4 Generalized Cases

Generalized cases are cases that cover a subspace rather than a point in the
problem-solution space [4]. A single generalized case immediately provides solu-
tions to a set of closely related problems rather than to a single problem only.
Generalized cases naturally occur in certain CBR applications, such as for the
recommendation of parameterized products within electronic commerce or bro-
kerage services. The selection of reusable electronic designs [19] or the selection
of insurance policies [18] are concrete example applications.

Generalized cases can be represented by a set of constraints over the case
attributes. For such representations, the similarity assessment between a query
and generalized cases is a difficult problem, addressed e.g. in [11,19]. The task
is to find the distance between the point query and the closest point of the
area covered by the generalized cases. This task can either be addressed by con-
verting it into an optimization problem [11,19] or by sampling the generalized



274 R. Bergmann and B. Mougouie

case, which results in a set of point cases. Again the latter approach is based
on a strict separation of deductive reasoning (sampling of the constraints) and
approximate reasoning (finding the most similar sampled point), while the first
approach performs approximate reasoning by considering the constraints defin-
ing the feasible region for optimization. Due to the large search space involved,
both approaches typically don’t guarantee that they find the best solution.

3 Finding Similar Deductive Consequences

The approaches described in the previous section have shown that similarity-
based and deductive reasoning are used in CBR in combined form in various
ways. However, there is no general formal framework that covers these ways
of integrated reasoning. We think that such a framework is quite useful, much
beyond its use for analyzing former research work. Particularly, it can be the
starting point for the development of new ways to integrate both reasoning
forms. This is in particular what we want to propose.

3.1 General Formalization

First, we need as basis a logical system with an inference calculus in which all
knowledge, including cases, are represented. We can think of using predicate
logic, Horn-logic, frame logic, or description logic. The latter appears to be very
promising due to its use in ontology languages. However, for our current in-
vestigation and in order to serve the readability of this paper we now restrict
ourselves to Horn logic. To define similar deductive consequences we assume that
the following is given1:

– a domain theory Σ consisting of formulas of the logic (in Horn logic it consists
of a set of facts and rules).

– a query q ≡ p(t1, ..., tn) where p is an n-ary predicate symbol and ti are
terms (this is also what is called query in Horn logic / Prolog)

– a similarity measure simp : AFp × AFp → [0, 1] where AFp is the set of all
atomic formulas starting with the n-ary predicate symbol p.

In this paper we restrict our consideration of similarity to the comparison of
atomic formulas starting with the same predicate and hence having the same
arity. If one further restricts the use of the terms ti to constants, one ends up
with a traditional similarity measure for a case representation with n attributes.
Please note that the use of an (unbounded) variable is similar to specifying
an unknown value for an attribute. We further formalize similarity measures
following the local-global principle as follows: For q′ = p(t′1, . . . , t

′
n):

simp(q, q′) = Ω(sim1(t1, t′1), . . . , simn(tn, t′n))

1 When possible we will use the Prolog-style notation for formulas, i.e. predicate sym-
bols, function symbols and constants are written in small first letters; variables start
with a capital letter.
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where Ω is an aggregate function that is monotonous in every argument and 0 ≤
simi(ti, t′i) ≤ 1 for i = 1, . . . , n are local similarites. For the sake of simplicity,
we write sim instead of simp.

Definition 1. (MostSimilarDeductiveConsequences,MSDC,k-MSDC)
The most similar deductive consequence is defined as follows:

MSDC(q) = arg max sim(q, q′)
q′ ∈ closurep(Σ)

where closurep(Σ) = {p(t1, . . . , tn) | Σ � p(t1, . . . , tn)} is the deductive closure of
Σ restricted to atomic formulas starting with the n-ary predicate symbol p.

This can be easily extended to k-MSDC(q) which delivers the k-most similar
deductive consequences:

k-MSDC(q) = {q1, . . . , qk} ⊆ closurep(Σ) s.t.
sim(q, q′) ≤ min{sim(q, qi)|i = 1, . . . , k} ∀q′ ∈ closurep(Σ) − {q1, ..., qk}.

3.2 A Simple Example

We now provide a first simple example to clarify this definition. Assume the
following domain theory Σ denoted in traditional notation for Prolog:

q(X,Y) :- c(X,Y).
q(X,Y) :- c(X1,Y1), a(X,Y,X1,Y1).
c(2,5).
c(8,9).
a(X,Y,X1,Y1) :- D is X-X1, D>0, D<3, Y is Y1+X-X1.

In this example we make use of typical built-in predicates (such as is) avail-
able in most Prolog environments. Further assume the following similarity mea-
sure simq((q(X, Y ), q(X1, Y 1)) = 1−(|X−X1|/10), with values for the variables
X and X1 being bounded to [0, 10]. In this example the deductive closure is:

closureq(Σ) = {q(2, 5), q(3, 6), q(4, 7), q(8, 9), q(9, 10), q(10, 11)}

The most similar deductive consequence for various queries are:

MSDC(q(1,Z)) = { q(2,5) } MSDC(q(2,Z)) = { q(2,5) }
MSDC(q(3,Z)) = { q(3,6) } MSDC(q(4,Z)) = { q(4,7) }
MSDC(q(5,Z)) = { q(4,7) } MSDC(q(6,Z)) = { q(4,7), q(8,9)}
MSDC(q(7,Z)) = { q(8,9) } MSDC(q(8,Z)) = { q(8,9) }

3.3 Discussion of the Example

We now give a CBR interpretation for this example. Consider the facts with the
predicate c to be cases with the first argument representing the problem and
the second argument representing the solution. As usual, the similarity measure
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assesses the similarity of the problem attribute. The first clause in the domain
theory represents the fact that a query can be answered directly by a case (with-
out adaptation) while the second clause describes that a case c(X1,Y1) is se-
lected and then an adaptation operator is applied such as in transformational
adaptation. The last clause represents the adaptation operator: if the difference
in the problem is less than 3 then the solution is linearly adapted by the for-
mula mentioned. Given this interpretation, it becomes obvious that the MSDC
represents the result of a CBR system. Of course, a traditional Prolog inter-
preter, does not compute MSDCs but it is able to enumerate elements of the
deductive closure if it is finite and if variables are appropriately instantiated.
Computing the MSDC requires two kinds of searches: the search in the space to
find a resolution-based proof-tree for an element in the deductive closure (which
is naturally done by Prolog) and second, the search for the most similar element
in the closure. Hence a simple but computationally inefficient solution even for
finite deductive closures would do this sequentially: first, let Prolog enumerate
the deductive closure and then, linearly search for the most similar element in
it. More efficient solutions merging both searches will be presented in Sect. 4.

3.4 MSDC View of CBR Approaches

We now review the approaches from Sect. 2 in the light of MSDC.

Completion Rules. We consider completion rules that consist of a precondi-
tion and an action that computes a (new) value for an attribute. As shown in
the previous example, all cases from the case base are encoded as facts (one term
per attribute) in the domain theory. Then each completion rule is transferred
into a Horn clause of the following schema:

c(X1, ..., Xk−1, XNewk, Xk+1, ...Xn) : − c(X1, ..., Xn), pre(X1, ..., Xn),
XNewk is action(X1, ..., Xn).

The head of the clause represents the case that results by the completion; the
variable XNewk gets a new value. pre is a Horn clause representation of the
rule’s precondition defined over the values X1, ..., Xn of the attribute of the
selected case. If the precondition is fulfilled the expression action computes the
new value. Of course in the regular deduction process, several completion rules
can be chained. Completion rules are usually applied to a case-base when it is
loaded into the CBR system. This is equivalent to pre-computing the deductive
closure and storing it.

Transformational Adaptation. The example given in Sect. 3.2 can be gen-
eralized to a scheme for adaptation operators, which extends the representation
of completion rules. It is as follows:

c(X1, ..., Xn) : − c(Y1, ..., Yn), pre(Y1, ..., Yn),
X1 is action1(Y1, ..., Yn), ...,
Xn is actionn(Y1, ..., Yn).
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Again, the head of the clause represents the result of the adaptation and pre is
the operator’s precondition based upon the selected case. Then the value of each
attribute Xi is adapted by a separate actioni. Of course, adaptation rules can be
chained and can be combined with completion rules. Computing MSDCs thus
corresponds in a traditional CBR approach to selecting the best possible case and
adapting it. However, unlike a traditional CBR approach the search covers the
full set of adapted solutions. Here, pre-computing the deductive closure is getting
computationally intractable and sophisticated search approaches are required
(see Sect. 4).

Case-Based Configuration with Constraints. We restrict the discussion
of how to encode case-based configuration in the MSDC view to a simple ap-
proach in which a system should be configured from several components while
configuration constraints must be taken into account. The query represents the
desired properties; the result will be a configuration being as similar as possible
to the query. Cases represent components of the system to be configured. They
are included as facts in the domain the ory; for each component type we use a
different predicate (e.g. mainboard, cpu, ram, harddisk in the example below).

mainboard(asus,soa,ddr,ata,120). mainboard(kt,so478,ddr,sata,140).
cpu(Athlon,soa,2600,180). cpu(Celeron,so478,2800,sata,80). ...
ram(infineon,ddr333,1024,132). ram(kingston,ddr400,256,42). ...
harddisk(samsung,ata100,250,98). harddisk(ibm,sata,320,140). ...

Several components are then combined to form a system or sub-system while
taking the constraints into account. These combinations of components with
related constraints are encoded in a Horn clause and inserted into the domain
theory as well. Here is an example:

computer(CPUSpeed, RamSize, DiskSize, Price,
BoardType, CPUType, RamType, DiskType) :-
mainboard(BoardType,SocketType,RamBusNeeded,DiskBus,Price1),
cpu(CPUType,CPUSocket,CPUSpeed,Price2),
ram(RamType,RamBus,RamSize,Price3),
harddisk(DiskType,DiskBusType,DiskSize,Price4),
constraintCompatibleCpu(SocketType,CPUSocket),
constraintCompatibleRam(RamBusNeeded,RamBus),
constraintCompatibleDisk(DiskBusType,DiskBus),
Price is Price1+Price2+Price3+Price4.

This clause specifies that the computer system is described by 8 attributes
(arguments of the computer predicate); the first four contain the properties of the
computer also specified in the query, the last four contain the configuration ifself.
The last four literals in the body of this clause are examples of compatibility
constraints among the components and compute a system property (price) from
the components properties, respectively. Of course the compatibility constraints
must be specified by additional Horn clauses.
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When computing the MSDCs for a computer query with the first four at-
tributes specified, the most similar overall configuration from the available com-
ponents is determined.

Generalized Cases. Also generalized cases can be easily encoded in a domain
theory used for the MSDC approach. A generalized case can be represented by
a set of constraints that specify the subspace the case consists of. It is converted
into a rule whose body contains those constraints:

c(X1, ..., Xn) : − cons1(X1, ..., Xn, Xn+1, ..., Xn+m), ...,
consk(X1, ..., Xn, Xn+1, ..., Xn+m).

In this schema consi are the constraints which relate the variables in the case
and possibly local variables to one another. Of course the used constraints must
be specified in Horn logic by additional clauses. When computing the MSDC
for a query, the most similar generalized case is determined with respect to the
original definition provided in [4].

4 Formalizing and Solving the Search Problem

We now develop several standard AI search methods and some of their varieties
and combinations to compute k-MSDC(q) or to deliver an approximation of
it. In the following we assume that the query q is of the form q ≡ p(t1, . . . , tn)
for some arbitrary terms ti. We start with a formalization of the state space for
search.

4.1 The State-Space

Our search space to find the elements of closurep(Σ) is a state space in which
each state differs from its successor in one resolution step. The complete state
space T can be constructed as follows:

1. Set (〈q∗〉, q∗) with q∗ = p(X1, . . . , Xn) be the starting state of T
/* Xi are some new variables */

2. Let S = (〈q1, ..., qd〉, q̄) be a state of T ;
For all qi (i = 1, ..., d) do
{

2.1. For each substitution σ such that σ(qi) ∈ Σ
(trim (〈σ(q1), . . . , σ(qi−1), σ(qi+1), . . . , σ(qd)〉), σ(q̄))
is a direct successor state of S; /* Resolution with a fact*/

2.2. For each substitution σ such that σ(qi) = σ(r) for r :- r1, ..., rm ∈ Σ
(trim (〈σ(q1), . . . , σ(qi−1), σ(r1), . . . , σ(rm), σ(qi+1), . . . , σ(qd)〉), σ(q̄))
is a direct successor state of S; /* Resolution with a rule*/

}.
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list trim(list)
{ For all qi ∈ list do

If qi is a true built-in predicate then remove qi from list;
return list;

}.

By iteratively applying step 2 of this procedure, the tree of the state space
T is constructed. Final states of the form (〈 〉, q′) are elements of the deductive
closure closurep(Σ) and it holds ∃σ s.t. σ(q∗) = q′. Final states that are not of
this form are search branches not leading to a logical consequence of Σ.

Although closurep(Σ) might have a finite number of elements, T might have
a huge (or even infinite) number of states. Since there is usually not enough time
or memory available to search the entire state space, it is necessary to carefully
explore a subspace T of the state-space T . This subspace T is the search space
of the heuristic search methods described below. In many cases it cannot be
guaranteed that T includes k-MSDC completely, hence the optimal solution may
get lost. However, as mentioned in Sect. 2, CBR involving adaptation also only
computes heuristic solutions in many cases. Therefore, this cannot be considered
a drawback, but obviously the deviation from the optimum should be considered.

4.2 Depth First Search Methods (dfs, dfs MAS)

For this and the following search methods we assume that the state space is
finite, which ensures the termination of the algorithms. The first complete search
method which delivers the exact solutions of k-MSDC is depth first search
(dfs). We run dfs(q, S, k-MSDC, k) such that S is initiated to (〈q∗〉, q∗) with
q∗ = p(X1, . . . , Xn) and k-MSDC is an empty list:

dfs(query q, state S, list k-MSDC, int k)
{

If S = (〈 〉, q′) then insert(q, q′, k-MSDC, k); (*)
else for all direct successors S′ of S do

{ dfs(q, S′, k-MSDC, k); } }.
insert(query q, object o, list L, int list length)
{

If length(L) = list length then
{

Let ō = arg min sim(q, o′)
o′ ∈L

;

If sim(q, ō) < sim(q, o) then { remove(ō , L); append(o , L) }
}
otherwise append(o , L); }.

The above dfs algorithm is an exhaustive algorithm. It explores the entire T
to deliver the optimal k-MSDC. However, it is possible to reduce the size of
the explored search space by introducing a minimum acceptable similarity and
prune the solutions whose similarities to q are less than this value. We define
dfs MAS(q, S, k-MSDC, k, Min Acc Sim) as follows:
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First, replace line (*) of the dfs algorithm by the following line:

If S = (〈 〉, q′) and sim(q, q′) ≥ Min Acc Sim then insert(q, q′, k-MSDC, k);

And second, terminate search whenever k-MSDC contains k elements.
This algorithm cuts the search space at the cost of not assuring to finding

the optimal solution to the k-MSDC problem. It only finds up to k solutions
with a similarity higher than Min Acc Sim. To use this approach it is of course
required to know in advance a good value for Min Acc Sim. One could use a
fixed value if it is possible to extract one from application requirements (e.g. a
user might never be interested in results less similar than 0.5). Alternatively one
could develop methods that compute good approximations for this value based
on the domain theory and the query. This aspect is further discussed in Sect. 5.

4.3 Breadth First Search (bfs)

Breadth first search (bfs) is also a standard search method that can be applied
to compute a solution to the k-MSDC problem. It maintains a list of open states,
which causes the well-known problem of high memory complexity. However, bfs
is clearly complete and therefore results in an exact solution to the k-MSDC
problem. We run bfs(q, [(〈q∗〉, q∗)], k-MSDC, k) with q∗ = p(X1, . . . , Xn). Ini-
tially k-MSDC is an empty list.

bfs(query q, list open states, list k-MSDC, int k)
{

next open states := ∅;
For all S ∈ open states do
{

For all successors S′ of S do
If S′ = (〈 〉, q′) then

insert(q, q′, k-MSDC, k)
else

append(S′, next open states); (**)
}
If (next open states �= ∅) then bfs(q, next open states, k-MSDC, k); }.

4.4 Beam Search (beam)

Beam search is a middle course between bfs and dfs. It can prune a substantial
fraction of the entire state space. A beam search beam(q, [(〈q∗〉, q∗)], k-MSDC,
k, Max Num Sol) is the same as bfs except for the line (**) which is replaced
by:

insert(q, S′, next open states, Max Num Sol);

where Max Num Sol is the maximum number of solutions, i.e. the beam width2.
Of course, it is wise to choose Max Num Sol significantly greater than k in order
2 For the definition of the insert function see the dfs algorithm.
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to guarantee that the final k-MSDC contains at least k solutions. Beam search
significantly reduces the search space at the cost of not being able to guarantee
that the best k solutions are found. Hence, only an approximation of k-MSDC
is determined.

4.5 Look-Ahead Pruning (lap, lap beam)

In order to improve the pruning approaches described before, we now introduce
a more elaborate branch-and-bound technique. The idea is to determine for each
open state a lower and an upper bound for its similarity to the query. The
lower bound can be the similarity between the query and an arbitrary solution
element in the subtree below that state. In this work, this is determined by a
look-ahead computation by calling a dfs MAS search with k = 1, starting at
the current state. The upper bound is obtained by simply assigning all local
similarities related to variables to their maximum possible value 1. We can then
use this information to prune states whose upper bound similarities are lower
than any lower bound similarity determined by the look-ahead computation for
other states. Pruned states are called renegade states. With this strategy, the
optimal solution is never lost. We formally define this as follows:

Definition 2. Given a similarity measure sim(q, q′), a query q = p(t1, . . . , tn),
and a state S = (〈q′1, ..., q′d〉, q′) such that without loss of generality q′ = p(X ′

1, ...,
X ′

l , t′l+1, ..., t
′
n) and X ′

1, ..., X
′
l are some variables. simmin(q, S) and simmax(q, S)

are now defined as follows:

simmax(q, S) = Ω(1, ..., 1, siml+1(tl+1, t
′
l+1), ..., simn(tn, t′n))

simmin(q, S) =
{

sim(q, q̄) iff dfs MAS(q, S, 〈〉, 1, 0) = {q̄}
0 iff dfs MAS(q, S, 〈〉, 1, 0) = {}

Definition 3. (Renegade State) Let S1 and S2 be two states of T . S1 is
renegade if

simmax(q, S1) < simmin(q, S2).

The resulting algorithm, which we call lap, is the same as bfs except for line
(**) which is replaced by the following:

If S′ is not renegade then append(S′,next open states);

To test the renegade condition, we maintain the value simminmax = max
simmin(q, S) for any known S and update it whenever a new state is added to
open list. Then, S′ is renegade if simmax(q, S′) < simminmax. This algorithm
finds the most similar solution, but does not guarantee to include the second
best solution in the final k-MSDC.

To further cut the search space this method can also be combined with beam
search by changing line (**) of the bfs algorithm as follows:

If S′ is not renegade then insert(q, S′, next open states, Max Num Sol);

We call the resulting algorithm lap beam. Obviously, it does not guarantee any
more that the best solution is delivered.
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5 Experimental Evaluation

To evaluate the performance of the algorithms with respect to their computation
time and similarity error caused by the pruning heuristics, they are implemented
in SWI-Prolog. As test domain we employ the case-based configuration scenario
described in Sect. 2.3 that deals with the configuration of PCs. The formalization
of the domain theory Σ is similar to the one described in Sect. 3.4, except that
it is much more complex and realistic. It contains 93 rules and facts, the closure
closureq(Σ) for a fixed q, contains 287280 elements.
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Fig. 1. The computation times per seconds of the algorithms with K=10 for 400 queries

Experimental Setting and Measured Results. All experiments were ex-
ecuted on the same Intel Pentium 4 computer (1.8 GHz, 480 MB Ram). Each
algorithm was executed with the parameter k = 10 for the same 400 randomly
generated queries, each of which describes a demand for a PC. The plot in Fig. 1
shows the computation time in CPU seconds for various algorithms plotted over
the 400 individual queries. The different algorithms together with the parameter
Max Num Sol (abbreviated with MNS) are shown together with the results of
a detailed evaluation in Table 1.

For each query we measured the computation time for the search (CTime)
as well as the average number of solutions found (NbSol). The set of test algo-
rithms includes the complete dfs algorithm, which computes k-MSDC exactly.
The computation time can be considered as a base line which we aimed to im-
prove with the various algorithms. The dfs algorithm also serves as a base line
for the similarity of the k-best solutions, which allows to determine the error
caused by the heuristic pruning. Therefore, we determined the similarity error,
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Table 1. Comparison of the algorithms

Algorithm MNS CTime NbSol MinEr1 MaxEr1 AveEr1 MinEk MaxEk AveEk

dfs – 50.94 10 0 0 0 0 0 0
dfs MAS 10 1.52 10 0 0.087 0.047 0 0.103 0.050
beam 20 0.29 10 0 0.233 0.044 0 0.240 0.059
beam 30 0.48 10 0 0.208 0.037 0 0.215 0.050
lap beam 20 10.34 7.65 0 0.157 0.014 0 0.166 0.028
lap beam 30 10.42 7.65 0 0.050 0.001 0 0.158 0.021
lap – 13.84 7.65 0 0 0 0 0.120 0.012

i.e. the difference in similarity of the retrieved ith-best solution found with some
algorithm and the similarity of the ith-best solution found by dfs. The following
measures were introduced: MinEr1 is the minimal similarity error for the best so-
lution over all 400 queries. Correspondingly, MaxEr1 is the maximum error and
AveEr1 is the average error for the best solution. Further MinEk, MaxEk, and
AveEk denote the minimum, maximum, and average similarity error averaged
over all k solutions retrieved for each query.

Discussion of Results. Clearly, dfs is the slowest algorithm and beam the
fastest, but at the cost of producing a much higher similarity error. lap beam
clearly produces a lower error, but is significantly slower than beam. However
it is sill about five times faster than dfs. The results of dfs MAS are surprising:
it is fast and produces only a small maximum error. The reason for this is the
particular choice of the parameter Min Acc Sim. For testing the potential of
this algorithm it is set very close to the real similarity for the k-best solution.
For testing purposes it could be easily extracted from the results of the dfs algo-
rithm. For this approach to be useful in general, a good and fast approximation
algorithm for the similarity of the kth-best solution is required, because dfs is
too slow. We are currently making significant progress on this problem and once
it is solved, dfs MAS will probably be the best choice.

6 Conclusion, Related and Future Work

The proposed new view of finding similar deductive consequences unifies pre-
vious approaches for integrating cases with general knowledge. It even allows
to merge these approaches if the domain theory is constructed accordingly and
also provides a perspective for thinking about new ways of integrating cases
with general knowledge. The proposed algorithms demonstrate a unified way of
reasoning, which is radically different than what was performed before in CBR.
Due to its generality one cannot expect that the exact solution of the k-MSDC
problem is as efficient as the specific reasoning processes used traditionally in
CBR. Hence we proposed the idea of approximating the solutions of k-MSDC,
which is again in the tradition of CBR.

Plaza and Arcos proposed constructive adaptation [12] as a search-based frame-
work that integrates cases and general knowledge in the context of adaptation.
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What is different is that their framework is located at a higher level of granularity
and does not integrate per se deductive inference and similarity.

Case Retrieval Nets (CRN) have also been extended to flexibly integrate simi-
larity and rule-based reasoning [9]. Rules are inserted as a special kinds of nodes
in the CRN. However this approach is restricted to propositional logic and re-
quires to explicitly model the derivation tree as part of the CRN.

Michalski’s inferential theory of learning [10] might be considered related to our
approach as it also integrates various forms of reasoning including deduction and
analogy. However, our framework is significantly different and not an instance of
it. Michalski’s approach introduces similarity (with a threshold) as binary infer-
ence step with the consequence that it does not allow to rank different solutions
with respect to their similarity, which is essential in the context of CBR.

Future research should focus on a detailed comparison k-MSDC and tradi-
tional approaches. It should also investigate methods for further speeding-up
the search, e.g. by new heuristics, knowledge compilation techniques, or by inte-
grating search control knowledge. The investigation of techniques that allow an
a-priori estimation of the similarity error would also be quite useful.
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Abstract. We present a CBR approach to musical playlist recommenda-
tion. A good playlist is not merely a bunch of songs, but a selected collec-
tion of songs, arranged in a meaningful sequence, e.g. a good DJ creates
good playlists. Our CBR approach focuses on recommending new and
meaningful playlists, i.e. selecting a collection of songs that are arranged
in a meaningful sequence. In the proposed approach, the Case Base is
formed by a large collection of playlists, previously compiled by human
listeners. The CBR system first retrieves from the Case Base the most
relevant playlists, then combines them to generate a new playlist, both
relevant to the input song and meaningfully ordered. Some experiments
with different trade-offs between the diversity and the popularity of songs
in playlists are analysed and discussed.

1 Introduction

A typical music recommender considers songs the user likes, has listened to,
or has bought, and proposes similar songs that the user will probably like, be
interested in listening, or buying. Only a few recommenders are addressed to
suggest playlists of similar songs with an inherent sequential structure.

Creating a playlist is a common manual operation in audio user experience.
Imagine a user wants to assemble a playlist, on the basis of a specific song he
likes, has listened to or has bought. He could either choose each song manually,
or follow the advice of a recommender, adding one proposed song after the other.
In both cases, the process would be slow; besides, the user would also have to
order the songs, for a playlist is expected to contain songs in a specific sequence.

In this paper, we describe a case-based approach to playlist recommendation.
Given a song chosen by the user, we don’t focus on finding isolated similar
songs ; instead we put the emphasis on recommending good playlists. A playlist
is a sequence—not a set—of songs; thus its quality is given both by the songs it
contains, and by their ordering (their relative positions).
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This paper presents a CBR system that takes a song as the input and re-
turns a recommended playlist as the output. The possible applications include:
personalised radio programs, playlist generators, digital music organisers, and in
general any scenario where the user desires a good sequence of songs, related to
a chosen one, without the burden of compiling it manually.

In this paper, after reviewing related works (Sect. 2), we present the problem
of recommending a playlist from a song (Sect. 3). Then we describe the CBR
process: in Sect. 4, we illustrate the structure of the Case Base; in Sect. 5, we
explain the Retrieve process, and introduce the basic concepts of pattern and
relevance; in Sect. 6, we describe how the retrieved playlists are combined in the
Reuse process. In Sect. 7 we report about the tests with an actual Case Base of
playlists. Section 8 ends the paper with a brief conclusion and future works.

2 Related Work

Several approaches have been investigated to develop an Automatic Playlist Gen-
erator [2,7,17,3,20,16]. Some of them require a large pre-existent music-related
knowledge, either in form of music metadata [18] or acoustic-based measures
[12]. In this paper we introduce a ‘knowledge-light’ approach to recommenda-
tion, based only on user-related knowledge. In this sense, our approach is com-
parable with SmartRadio and CoCoA Radio, two systems with which we share the
vision that the work involved in compiling a playlist of music can be distributed
to other listeners [10]. SmartRadio [8] is an Automatic Collaborative Filtering
recommender that generates personalised playlists on the basis of playlists of
users whose profiles are similar. Similarly, CoCoA Radio [4] recommends new
playlists, but it also assumes that the knowledge of a playlist is encoded in the
order of its songs. Our system is, in a sense, lighter than SmartRadio and CoCoA
Radio. We also do assume that, in any well chosen collection of music, there is
some great implicit value in the order of its songs, but we use this and only
this knowledge to generate new playlists, without, for instance, collecting users’
profiles or managing explicit ratings.

Some common points can be found between our system and the approach
presented by Ragno et Al. [21]. In their work, similarity is inferred analysing
the occurrences of songs in broadcasted streams of music, and new playlists are
generated using a graph-search process (where the songs are the nodes of the
graph and the similarities between them represent the weights of the arcs).

In our approach, the recommender is implemented as a Case-Based Reasoning
(CBR) process [1,14]. Every playlist is seen as a case whose relevance is inferred
measuring the co-occurrences of its songs in a large collection of past playlists.
Co-occurrences analysis [11] has been proved effective in many domains where
information is available as large sets of sequential data. Applications range from
semantical similarity recognition [13] to weather forecast [22]. Pachet et al. [15]
have originally proposed co-occurrences analysis as a method to evaluate sim-
ilarity between songs. In this paper, we combine this method with an explicit
notion of sequentiality, in order to infer similarity between songs and playlists.
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3 Playlist Recommendation

In our approach, the user chooses an input song s and a desired length λ; the
goal of the recommender is to return a playlist p (with λ songs) such that:
(G1) p contains s; (G2) p is varied; (G3) p is coherently ordered. A playlist is
varied if it does not repeat the same track or artist in the sequence, or at least
if repetitions are not close. We say a playlist is coherently ordered if its songs
make sense in the proposed sequence. The problem we have to solve is then to
determine which sequences of songs are coherently ordered.

In order to answer this issue, we analyse a large repository of playlists, previ-
ously compiled by human listeners. In this analysis, we seek for those sequences
(of two or more songs) that occur more often, with the same order, in these
playlists. The idea is that the higher the number of playlists where a sequence
occurs, the stronger the evidence that sequence is coherently ordered. This idea
takes inspiration from studies of co-occurrences analysis. Basically, these studies
argue that when two items appear frequently in the same context, this proves
the existence of some similarity between them. For instance, linguists regularly
use co-occurrences analysis to extract clusters of semantically related words from
large collections of texts. We adapt this approach to a musical context: if some
songs occur frequently, in the same order, in a collection of past playlists, then
we assume that the order in which they appear is meaningful. We call such
sequences of songs relevant patterns.

Relevant patterns are the starting point for the recommender we present; to
fulfil the aforementioned goals we employ a Case-Based Reasoning approach that
comprises four subsequent steps:

1. Assemble a Case Base from a repository of playlists (Case Base Setup).
2. Prompt the user for an input song s and the desired length λ of the recom-

mendation (Problem Description).
3. Retrieve from the Case Base a subset of playlists that satisfy most of the

goals. Specifically, the retrieved playlists are varied (G2) and include rele-
vant patterns that contain s (G1) (Retrieve Process).

4. Combine the songs of the retrieved playlists to generate a coherently ordered
playlist (G3) with length λ (Reuse Process).

Notice that the knowledge that guides the CBR process comes from the same
content of the Case Base, in the form of relevant patterns. Hence the quality of
the recommendation depends mostly on the quality of past playlists: the more
accurately they have been compiled by the users with a meaningful order, the
more this order will be reflected in the output. Clearly, different repositories may
lead to different recommendations.

4 The Case Base

Let P be the repository of past playlists. P may include, for example, track-
lists from radio programs, web streams, music compilations, DJ sessions, and
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Fig. 1. General view of the CBR process

in general lists of songs that have been compiled with a meaningful order. By
the way, the repository could include some noisy playlists, that is, playlists that
have not been compiled with a great accuracy, and that would lower the quality
of the Case Base if used. Examples of noisy playlists are: very long sequences
of songs (that are probably only large sets of songs, with no meaningful order),
very short sequences (from which we cannot extract any relevant pattern), and
sequences in alphabetical order (that is hardly a meaningful order). Before using
the repository, we filter P to remove such playlists; the result C is the Case Base.

Every playlist of C is a sequence of songs: p = (s1, s2, .., sn). Let Λ(p) = n be
the length of p. A song s is contained in a playlist p if the following condition
holds: In(s, p) = ∃i, 1 � i � n : s = si

Every song is characterised by a set A of attributes (e.g.: an identifier of
the track, an identifier of the album it belongs to, the artist that performs
it, etc.). We assume that the user will disapprove of recommendations where
close songs repeat the same attributes: for example playlists where many songs
belong to the same album or artist. Such playlists lack necessary variety, and
our approach intends to avoid these cases, in order to boost diversity. For every
attribute a ∈ A, we introduce a parameter γa, called safe distance for a, as the
minimum number of songs that must occur before we allow a value of a to be
repeated. For instance, if γa = 10, the same value of a can be repeated without
restriction only after 10 songs. To quantify how many, and how close, are the
potential repetitions of an attribute in a playlist, we introduce a function called
attribute variety:

Definition 1. (Attribute variety) Let p ∈ C be a playlist, p = (s1, s2, .., sn),
and a ∈ A be a song attribute; the variety of a in p is a function Va : C → (0, 1]
such that:

Va(p) =
n∏

i=1

⎧⎨
⎩

j−i
γa

if ∃j, i < j � min(n, i + γa) : a(si) = a(sj)
∧∀k, i < k < j, a(si) �= a(sk)

1 otherwise

In other words, a playlist has an attribute variety Va(p) = 1 only if no value of
a is repeated within the safe distance γa; otherwise the more and the closer the
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repeated values, the smaller Va(p). Combining the values of Va(p) for all the song
attributes with a t -norm (e.g. product), we obtain a global measure of variety
of a playlist p ∈ C:

V ar(p) =
∏
a∈A

Va(p)

The variety of a playlist p equals 1 only if no attribute is repeated in p within
its safe distance. According to (G2), we are interested in recommending this
kind of playlists. We will see in Sect. 5 how V ar(p) will be used, inside the
Retrieve process, to prefer varied playlists over repetitive ones.

5 Retrieve

In a classic CBR approach, the goal of the retrieval task is to return a subset
of cases that contain the solutions for problems similar to the proposed one. In
our approach, we do not intend to characterise the cases in terms of problem
and solution parts: our Retrieve process is not focused on finding which songs
in the Case Base are the most similar to the input song. Instead, we look for
useful cases [6], that is, previous users’ playlists that are useful to achieve the
requested goals. The idea is to retrieve a subset of those playlists that include
s (G1), are varied (G2), and contain relevant patterns, or else are coherently
ordered (G3).

Before presenting the Retrieve process, we introduce the Relevance function
and the Rating function. The Relevance function Rel(q, t), defined in Sect. 5.1,
takes as input a sequence of songs q, and a song t contained in q, and returns
the degree in which q is a relevant pattern for t. The Rating function ρ(p, s),
defined in Sect. 5.2, takes in input a playlist p ∈ C and the chosen song s, and
returns a combined measure of the variety of p and the relevant patterns in p
that contain s. At the end of the section, we present the Retrieve process that,
given all the playlists of C, returns only the k playlists that are more useful to
fulfil our goals.

5.1 Patterns and Relevance

Let q be a sequence of songs. We say q a pattern if q is sub-sequence of at least
one playlist of C, where q = (t1, t2, .., tm) is sub-sequence of p = (s1, s2, .., sn)
when the following condition holds: Sub(q, p) = ∃i : ∀j, 1 � j � m, tj = si+j .
The pattern count φ(q) = |{p ∈ C : Sub(q, p)}| is the number of playlists of C
that q is sub-sequence of.

Let t be a song, Q(t) = {q : Λ(q) � θ ∧ In(t, q) ∧ ∃p ∈ C : Sub(q, p)}
be the set of patterns, with at most θ songs, that contain t, and q ∈ Q(t)
be one of these patterns. To assess whether q is a relevant pattern for t, we
can consider how many times t occurs in the playlists of C together with the
other songs of q. According to co-occurrences analysis, in fact, the higher this
number, the higher the evidence that q is a relevant pattern for t. Thus, it
makes sense to use the pattern count φ(q) as a measure of the relevance of q
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for t. Nevertheless, the actual value of φ(q) can be biased by two properties
of q: its length and the popularity of its songs. In general, short patterns or
patterns made of very popular songs have a higher probability of occurring in
many playlists, independently from their relevance for a specific song.

Example 1. To understand why shorter patterns are likely to have a higher pat-
tern count, consider the patterns (S2, S3) and (S2, S3, S4) in Table 1. Notice
that (S2, S3) is shorter than (S2, S3, S4), and φ( (S2, S3) ) > φ( (S2, S3, S4) ).
This is not surprising, for (S2, S3) is contained in (S2, S3, S4), so it occurs at
least every time that (S2, S3, S4) occurs in some playlist. To understand why
patterns made of popular songs are likely to have a higher pattern count, con-
sider the patterns (S2, S3) and (S9, S2), both containing S2. In the first case,
S2 is followed by a “popular” song (S3 occurs 6 times in Table 1); in the second
case, S2 is preceded by a less popular song (S9 occurs only 3 times). Notice that
φ( (S2, S3) ) > φ( (S9, S2) ); this is not surprising, for S3 has a higher probability
than S9 to co-occur with S2, due to its high popularity.

Table 1. A sample repository and the list of patterns with φ > 1

Playlists

A = (S1, S2, S4)
B = (S1, S2, S3, S4, S5, S7, S1, S8)
C = (S4, S6, S9, S2, S2, S3)
D = (S2, S3, S2, S3, S4)
E = (S2, S3, S4, S6, S5)
F = (S9, S2, S3, S5, S9, S1)

Patterns

(S1, S2) (φ = 2)
(S2, S3, S4) (φ = 3)
(S2, S3) (φ = 6)
(S3, S4) (φ = 3)
(S4, S6) (φ = 2)
(S9, S2) (φ = 2)

In a nutshell, short patterns and patterns made of popular songs are likely to
have a high pattern count, independently from being relevant to a particular
song. Therefore, to estimate the relevance of a pattern q to a song t, we combine
φ(q) with two factors that balance the effect of the length of q, and of the
popularity of its songs. We define the Relevance of a pattern q for a song t as
follows:

Rel(q, t) = φ(q) · αθ−Λ(q)

ψβ(q, t)

where αθ−Λ(q) and ψβ(q, s) are the two factors intended to reduce the bias of the
length of q, and of the popularity of its songs, on the relevance value. Hereafter,
we explain in detail these two factors.

Length factor. Let q1 ∈ Q(t) and q2 ∈ Q(t) be two patterns, with same pattern
count and different length (e.g. Λ(q1) > Λ(q2)). In this case, we consider q1
more relevant for t than q2, because q1 occurs the same number of times than
the (more probable) shorter pattern q2. Moreover, since q1 is longer, it contains
more songs co-occurrent with t than q2. For this reason, we introduce a length
factor αθ−Λ(q) that we multiply φ(q) for, in order to substantially decrease the
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relevance of shorter patterns. The shorter q (that is, the more distant is Λ(q) to
the maximum pattern length θ), the smaller this factor, the smaller the relevance
value. The parameter α can be tuned inside (0, 1], to control if the length of q
should affect more (small α) or less (high α) the relevance value.

Popularity factor. Let q1 = (t, u) and q2 = (t, v) be two patterns of two songs
with the same pattern count (e.g. φ(q1) = φ(q2) = 5), and let u be more popular
than v (e.g. u occurs in 600 playlists of C, while v only in 6). Notice that u
occurs relatively few times in C preceded by t (5 out of 600), while v occurs
relatively many times preceded by t (5 out of 6). In the whole, q2 appears in C
more frequently in relation to the popularity of its songs ; in this sense it is more
relevant for t. For this reason, we introduce a popularity factor ψβ(q, t) that we
divide φ(q) by, in order to decrease the relevance of patterns made of popular
songs. This factor acts as a measure of inverse songs’ frequency of q; precisely,
ψ(q, t) is the number of times that the sequence q occurs in C “independently
from t”: ψ(q, t) = |{p ∈ C : ∃i : ∀j, 1 � j � m, qj = pi+j ∨ qj = t}|. The
parameter β can be tuned inside [0, 1] to control if the popularity of the songs
should affect more (high β) or less (small β) the relevance value.

Example 2. To understand the effects of α and β on the relevance value, consider
the patterns in Table 1, ranked according to how relevant they are to a specific
song, S3. Table 2 shows the relevance values, using different values of α and β.

Notice that (S2, S3) has the highest pattern count, and indeed is the most
relevant pattern when α = 1 and β = 0.5. However, if we decrease the relevance
of short patterns (α = 0.5), then the most relevant pattern becomes (S2, S3, S4),
that occurs less times but is longer. Similarly, if we decrease the effect of popular
songs (β = 1), then the most relevant pattern is (S2, S3, S4), for it occurs 3 out
of the 3 times that S2 and S4 occur in some playlist of Table 1 separated by
one song.

Table 2. Relevance to S3 of the patterns from Table 1

Patterns Λ(qi) φ(qi) ψ(qi, S3) Rel(qi, S3) Rel(qi, S3) Rel(qi, S3)
qi ∈ Q(S3) (α = 1 β = 0.5) (α = 0.5 β = 0.5) (α = 1, β = 1)

(S2, S3, S4) 3 3 3 1.73 1.73 1
(S2, S3) 2 6 8 2.12 1.06 0.75
(S3, S4) 2 3 4 1.50 0.75 0.75

5.2 Coherence and Retrieval

We are now able to define the Rating function ρ(p, s), that assigns a high value
to playlists that are varied and coherent with the input song s. This function is a
combination of V ar(p) (the variety of the playlist) and Coh(p, s) (the coherence
of the playlist to the input song), where Coh(p, s) is defined as the sum of the
relevance values of the patterns, present in p, that contain s:
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Coh(p, s) =
∑

q∈Ω(s,p)

Rel(q, s)

where Ω(s, p) = {q : Λ(q) � θ ∧ In(s, q) ∧ Sub(q, p)}. The more the relevant
patterns that contain s in p, and the higher their relevance to s, the higher
Coh(p, s). The Rating function ρ(p, s) is defined as a combination of variety and
coherence:

ρ(p, s) = V ar(p) · Coh(p, s), ∀p ∈ C
As a result, a playlist p ∈ C has a high value of ρ(p, s) if it contains s, is varied,

and is coherently ordered. Actually, this is the kind of playlist that we intend to
retrieve from C. Let k be the number of playlists to retrieve, the Retrieve process
returns the first k playlists of C, every playlist p ∈ C ranked according to ρ(p, s).

6 Reuse

The goal of the Reuse process is to transform the k retrieved playlists into a
single, recommended playlist of a specific length λ. Notice that the retrieved
playlists can have any length, so they cannot be directly returned as recommen-
dations. The approach we take for Reuse is that of Constructive Adaptation
[19]. Following this approach, we use the elements of the retrieved cases (i.e. the
songs from the retrieved playlists) to build a new combination of elements (i.e. a
new playlist), that is a solution for the current problem. Building this playlist is
seen as a search process, guided by the information contained in the Case Base
(in the form of relevant patterns).

Basically, Constructive Adaptation [19] is composed of two processes: Hy-
potheses Generation and Hypotheses Ordering. Hypotheses Generation deter-
mines how partial solutions are extended in the search process (i.e. which songs
from the retrieved playlists can be combined and how). Hypotheses Ordering uses
the knowledge from the Case Base to rank the nodes visited during the search
(i.e. the sequences of songs generated so far) in order for the search process to
follow the best paths to the solution. Thus, the Reuse process is a search process
where:

– the goal is to find a playlist of λ songs, that includes the input song s;
– every node in the search is a sequence made of songs from the retrieved

playlists;
– the singleton sequence (s) is taken as the initial node;
– the successors of every node contain the same sequence of songs of that node,

plus another song, either at the beginning or at the end of the sequence.

The fastest method to reach a sequence of length λ starting from (s) (a se-
quence of length 1) is to always explore the search tree “as deep as possible”,
that is, to always visit first the nodes with the longest sequences of songs found
so far. For this reason, the system uses a Depth-First Search process: at first,
it expands the initial node (s) by generating all its successors; at each subse-
quent step, it considers one of the most recently generated nodes, generates its
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successors, and ranks them according to a heuristic; if at any moment it finds a
node with λ songs, returns it as the solution; if otherwise it finds a node with
no successors, it backtracks to expand another of the most recently generated
nodes.

6.1 Hypotheses Generation

The nodes of the search are sequences made of elements from the retrieved cases,
that is, of songs from the retrieved playlists. Let T = (t1, t2, .., tn) be a node,
and let T ′ be a successor of T . T ′ contains the same songs of T , and another
song u from the retrieved playlists, either at the beginning or at the end of T ′.
We distinguish these two cases with the notations 〈u + T 〉 and 〈T + u〉. Let, for
instance, be T ′ = 〈u+T 〉. Notice that in T ′, u occurs before t1. In order for T ′ to
be coherently ordered, u should occur before t1 at least in one retrieved playlist;
basically we consider T ′ a valid successor of T if ∃p ∈ Ret(s) : Sub((u, t1), p),
where Ret(s) is the set of k retrieved playlists. Similarly, a sequence 〈T + u〉 is
a valid successor of T if ∃p ∈ Ret(s) : Sub((tn, u), p). The set of all the valid
successors of a node T is defined as Succ(T ) = {〈u + T 〉, ∀u ∈ Pre(T ) ∨ 〈T +
u〉, ∀u ∈ Post(T )}, where Pre(T ) = {u : ∃p ∈ Ret(s) : Sub((u, t1), p)} and
Post(T ) = {u : ∃p ∈ Ret(s) : Sub((tn, u), p)}.

In the next subsection, we will describe how such sets of successors are sorted
in the search process in order to finally reach a sequence of λ songs that is varied,
coherently ordered, and relevant to s.

6.2 Hypotheses Ordering

In ordering the successors of a node, we promote those sequences that are varied
and include relevant patterns. In other words, given any successor T ′ of T (where
u is the added song), we determine if T ′ is a good successor of T using the
heuristic function H(T ′) = Rel(T ′, u) · V ar(T ′). Using H , we are able to rank
highly a node T ′ that contains a varied and coherently ordered sequence of songs.
However we cannot determine whether the successors of T ′ will be varied and
coherently ordered sequences as well. To solve this issue, we introduce in the
heuristic a parameter L, called look-ahead factor, such that:

– If L = 0, we evaluate H on T ′, as above;
– If L = 1, we evaluate H on all the successors of T ′; then we return the

maximum value found as the heuristic value for T ′;
– If L = 2, we evaluate H on all the successors at depth 2 of T ′, that is, the

successors of the successors of T ′; then we return the maximum value found
as the heuristic value for T ′; and so on.

The higher is L, the more reliable is the heuristic; on the other hand, the
number of requested evaluations of H grows steeply with L. The value of L is
usually a compromise between a good heuristic and a reasonable performance.
Finally, we define the heuristic function as follows:
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Definition 2. (Look-ahead heuristic) Let T be a node of the search tree; any
successor T ′ of T is ranked using the heuristic function:

H ′(T ′, L) =
{

H(T ′) if L = 0
maxT ′′∈Succ(T ′) H ′(T ′′, L − 1) if L > 0

Summing up, the Reuse process follows a Constructive Adaptation approach in
which a) Hypotheses Generation explores the possible combinations of the songs
of the retrieved playlists and b) Hypothesis Ordering ranks the partial sequences
according to a heuristic based on relevance and variety. At the end, the result
is a playlist of length λ that combines the best sub-sequences in the retrieved
playlists into a varied and coherent recommendation.

Example 3. Let S3 be the input song, and λ = 5 the desired length. Let the
repository of Table 1 be the Case Base, and Ret(S3) = {B, C, E, F} be the
subset of k = 4 playlists retrieved. Consider how, in the Reuse process, these
playlists are combined using a search process (for brevity, the computation of
H ′ is omitted):

1) Generate the successors of (S3) and sort them using H ′: (S3, S4), (S2, S3),
(S3, S5). Next node to visit: (S3, S4).

2) Generate the successors of (S3, S4) and sort them using H ′: (S3, S4, S6),
(S2, S3, S4), (S3, S4, S5). Next node to visit: (S3, S4, S6).

3) Generate the successors of (S3, S4, S6) and sort them using H ′:
(S2, S3, S4, S6), (S3, S4, S6, S9), (S3, S4, S6, S5). Next node to visit: (S2, S3, S4, S6).

4) Generate the successors of (S2, S3, S4, S6) and sort them using H ′:
(S9, S2, S3, S4, S6), (S1, S2, S3, S4, S6), (S2, S3, S4, S6, S9), (S2, S3, S4, S6, S5).
Next node to visit: (S9, S2, S3, S4, S6).

5) The node (S9, S2, S3, S4, S6) has λ = 5 songs, hence is returned as the solution.

Notice that the solution is a varied and coherent combination of sub-sequences
from the retrieved playlists: (S2, S3, S4) from B, (S4, S6) and (S2, S3) from C,
(S2, S3, S4, S6) from E and (S9, S2, S3) from F .

7 Experimental Results

We have tested the described CBR recommending system using a collection of
playlists from MusicStrands1. In the Case Base, we have represented playlists
as pairs (track, artist), being track and artist two integers that allow us to
univocally identify every track and every artist in the MusicStrands database.
We have pre-processed the collection of playlists, discarding those with less than
5 songs, with more than 50 songs, and those alphabetically ordered (backwards
and forwards) along the names of the track and/or of the artist. Eventually, we
have assembled the Case Base using a subset (about 300,000) of playlists from
MusicStrands.
1 For more information visit: http://www.musicstrands.com.
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Table 3. Sample of recommended playlists

Test 1. Input song: Test 2. Input song:
Only Shallow (My Bloody Valentine) American Pie (Don McLean)

Kool Thing Sonic Youth We’re An American Band VV.AA.
Stupid Preoccupations Vic Chesnutt Sweet Home Alabama Lynyrd Skynyrd
Seed Toss Superchunk More Than a Feeling Boston
Flyin’ The Flannel Firehose Bad Moon Rising
Only Shallow My Bloody Valentine Creedence Clearwater Revival
Exhibit A The Features American Pie Don McLean
Lover’s Spit Broken Social Scene Mr. Blue Sky Electric Light Orchestra
Gigantic The Pixies Switch Will Smith
Kamera Wilco This Love Maroon 5
From Blown Speakers Walkie Talkie Man Steriogram

The New Pornographers Walkin’ On The Sun Smash Mouth

Test 3. Input song: Test 4. Input song:
Mrs. Robinson (Simon & Garfunkel) Soldier (Destiny’s Child)

Unchained Melody Let Me Love You Mario
The Righteous Brothers Hush LL Cool J

Kicks Paul Revere & The Raiders Red Carpet (Pause, Flash)
Cherry Hill Park Billy Joe Royal R. Kelly
Windy The Association Hot 2 Nite New Edition
Sunshine Superman Donovan Wonderful Ja Rule
Mrs. Robinson Simon & Garfunkel My Prerogative Britney Spears
Nights In White Satin The Moody Blues Two Step Ciara
Only One Yellowcard Soldier Destiny’s Child
Pain Jimmy Eat World Only U Ashanti
Quiet Ones Tears For Fears Pass Out Ludacris

Test 5. Input song: Test 6. Input song:
Roots Bloody Roots (Sepultura) Strangers In The Night (F. Sinatra)

Satan Spawn, The Caco-Daemon It Had To Be You Steve Tyrell
Deicide Jamaica Farewell Desmond Dekker

Rapture Morbid Angel Just The Way You Are Diana Krall
Serenity In Fire Kataklysm Let’s Fall In Love Diana Krall
Roots Bloody Roots Sepultura Nunca Es Para Siempre
Plague Rages Napalm Death Presuntos Implicados
Blend As Well Coalesce Strangers In The Night F. Sinatra
God Send Death Slayer Candy Man, The Sammy Davis Jr.
Token Damad Unforgettable Nat King Cole
Heaven In Her Arms Converge What A Wonderful World
Fear Of Napalm Louis Armstrong

Terrorizer Falling In Love Again Billie Holiday
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Table 4. Sample of recommended playlists, without dampening popular songs

Test 2b. Input song: Test 4b. Input song:
American Pie (Don McLean) Soldier (Destiny’s Child)

Behind These Hazel Eyes Kelly Clarkson Disco Inferno 50 Cent
Beverly Hills Weezer Mockingbird Eminem
I Just Wanna Live Good Charlotte Obsession Frankie J
American Idiot Green Day I Just Wanna Live Good Charlotte
American Pie Don McLean Boulevard Of Broken Dreams
Hotel California The Eagles Green Day
Cocaine Eric Clapton Since U Been Gone Kelly Clarkson
Emerald Eyes Fleetwood Mac Two Step Ciara
Carry On Wayward Son Kansas Soldier Destiny’s Child
Sweet Home Alabama Drop It Like It’s Hot Snoop Dogg

Lynyrd Skynyrd Get Back Ludacris

Concerning parameters, we were interested in recommending playlists where
tracks were mostly never repeated (γtrack = 200) and artists were hardly repeated
(γartist = 50). We have chosen θ = 5 as the maximum pattern length (longer
patterns very rarely appeared more than once), k = 50 as the number of retrieved
playlists, α = 0.5 and β = 1 as the length factor and popularity factor for the
relevance, and L = 1 as the look-ahead factor.

Table 3 shows six sample recommendations, where the desired length is λ =
10, and the input songs have been chosen from different genres and periods.
Notice that the suggested songs are similar (both acoustically and in terms of
metadata) to the input songs, especially those that appear closely before or after
them in the proposed sequences2. On the whole, the songs in the playlists sound
well in the presented order, and their genres are never too distant from the one
of the input song.

It is also worth noticing that many of the proposed songs are not very popular,
yet they form a coherently ordered playlist with the input songs. This is due
to effect of the popularity factor in the relevance function (β = 1), by which
we dampen playlists made of popular songs. In this way, we enable the user
to discover new music, because we are suggesting songs the user has probably
never listened to, and yet will appreciate, since they are correlated with the
input song. Should users long for recommendations with more popular songs,
they would just have to lower this value. For instance, in Table 4 we present two
recommendations, obtained with the same input songs of Test 2 and Test 4, but
generated with β = 0, that is, without dampening popular songs. Consider, for
instance, the song American Idiot, recommended in Test 2b (β = 0) before the
input song American Pie. These two songs co-occur in sequence 7 times in the
Case Base, which is, in general, a relevant pattern count. However, this pattern
count becomes irrelevant when compared to the popularity of American Idiot,

2 A 30” excerpt of every song, along with detailed metadata, is available on Music-
Strands web-site.
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which is a very popular song (it appears in 8,479 playlists) and only 7 out of
8,479 times it is followed by American Pie. As a result, the system does not
recommend this sequence in Test 2 (β = 1), where pattern counts are dampened
for sequences made of popular songs.

As a matter of fact, by proposing different recommendations from the same
input, the parameter β allows to improve the diversity of the solutions. This
is indeed an important feature for a recommending system, and a key issue for
CBR systems [5].

8 Conclusions and Future Work

We have presented a CBR system for recommending playlists made of mean-
ingful sequences of songs. The Case Base is a collection of playlists of different
quality, provided by different people. While most recommendation systems are
concerned with suggesting an unorganised set of songs, “similar” to those se-
lected by the user, our work focuses on recommending meaningful sequences of
songs (playlists). The proposed recommendations are not deeply “personalised”,
since the model we have of the user requesting a playlist is given only by the
selected (input) song. Future works will explore how to further constrain the
playlist to recommend by acquiring a larger input from the user.

This paper contributes to develop Case-based Reasoning in a variety of ways.
First, we address the important issue of reasoning about sequential cases (here,
in the form of coherently ordered playlists). Both the Case Base and the solution
provided by the CBR system are based on the sequential ordering of songs; the
problem-solving process of the CBR system exploits the informational content
of the Case Base to provide a solution with a coherent order.

A second issue of interest is that our Case Base contains only solutions and
not problems. In the usual CBR approach, the Case Base contains pairs (p, s)
(p is a problem, s is a solution); to find the solution for a new problem p′,
the system retrieves from the Case Base a set of similar problems, takes into
account their solutions, and returns one of them, or a combination of them,
as the solution for p′. In our approach, instead, the Case Base contains only
solutions (playlists), and no explicit problems : we know that the playlists in the
Case Base are meaningful, but we ignore for which input songs they are good
recommendations. In this context, we have designed the simplest CBR approach
that can exploit the information contained in a large Case Base of meaningful
sequences. We have explicitly avoided complex user models, which are a common
feature of Collaborative Filtering systems. User models are not helpful in relation
to our goal: they seek relations between people and preferred songs or playlists,
but disregard any sequential information contained in the playlists.

A third issue of interest is the Reuse process: rather than recommending an ex-
isting playlist, we combine the retrieved playlists using the same criteria (variety
and coherence) that we used in the Retrieve process. In this way we recommend
a playlist that has the desired length λ and higher variety and coherence values
than those of the retrieved playlists.
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Further, we have investigated the issue of applying co-occurrences analysis
in a musical context. In this approach, we have opted for a minimal Problem
Description (only one song and the length of the desired recommendation) in
order to generate meaningful playlists by exploiting the co-occurrences present
in the Case Base. We have avoided more constrained inputs (e.g. two songs,
such that the recommendation starts with the first one and ends with the other,
and is coherently ordered). The problem with over-constrained input is that the
system returns low quality solutions when the constraints are too strong (e.g.
a user requests a playlist to start with a rap song and to end with a requiem).
In the future, however, we plan to enlarge the input capabilities of the user,
to partially constrain the recommended playlist. For instance, the user could
provide a short sequence of songs, and the system could recommend a playlist
with most of them; or else the user could indicate a specific genre, or tag, to
consider or to avoid in the recommended playlist.

We have tested the system using a collection of manually-generated playlists,
but in the future we plan to work with other forms of sequential music data. For
instance, MusicStrands provides MyStrands, an iTunes plug-in that recommends
new songs to the user, on the basis of the last songs effectively played in iTunes.
We plan to improve this tool with the introduction of an explicit notion of
sequentiality, in order to recommend on-line, meaningful, personalised playlists,
on the basis of previous sequences of songs effectively played by the user.

The evaluation of the quality of the recommendation is an open issue for rec-
ommender systems. We agree with Hayes et al. [9] that user satisfaction can
only be measured in an on-line context. Although the proposed system has not
yet been evaluated by a significant number of users, we have deployed it on the
Internet3. Users can select an input song, the desired length, and other para-
meters, and can compare the (meaningfully ordered) recommendation generated
with the presented approach with the playlist proposed by the MusicStrands rec-
ommender. We plan to employ the users’ feedback as an evaluation for our work
and, once recommendations have been positively revised by the users, to retain
in the MusicStrands repository those that have been approved as good playlists,
to use them as new cases for future recommendations.
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Abstract. In this paper we study the performance of a catalogue-based image 
classifier after applying different methods for performance improvement, such 
as feature-subset selection and feature weighting. The performance of the image 
catalogues is assessed by studying the reduction of the prototypes after applying 
Chang`s prototype-selection algorithm. We describe the results that could be 
achieved and give an outlook for further developments on a catalogue-based 
classifier. 

1   Introduction 

Although digital image scanners and cameras are quite common in many applications, 
it is still not standard to have a large enough image database as basis for the 
development of an image-interpretation system. People rather like to store image 
catalogues comprised of one prototypical image for each class instead of constantly 
collecting images into a database. This is especially true for medical and biological 
applications. Therefore it seems to be natural to use case-based reasoning as problem- 
solving method. 

The use of case-based reasoning in applications with prototypical cases has been 
successfully studied for medical applications by Schmidt and Gierl [1] and Nilsson 
and Funk [2] on time-series data. The simple nearest-neighbor approach [4] as well as 
hierarchical indexing and retrieval methods [1] have been applied to the problem. It 
has been shown that an initial reasoning system could be built up based on these 
cases. The systems are useful in practice and can acquire new cases for further 
reasoning [3] during utilization of the system. A deep evaluation was often not 
possible, since the broad variation of the problem could not be captured by the few 
initial prototypes. Due to the sparse data-set problems such topics as case editing and 
condensing have not been studied in these application areas. There are comparative 
studies of case editing for other applications, such as SPAM filtering by Delany and 
Cunnigham [5] and Ontañón and Plaza for symbolic data [6].  

The problem of feature-subset selection [8] and feature weighting [9] are 
empirically studied on standard machine-learning data bases, as well as on real-world 
data.  

We have developed case-based reasoning methods for all the different stages of an 
image-interpretation system [10]. Usually the methods were evaluated by a case-base 
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that has been collected by the domain expert, but the cases were not considered as 
prototypical cases. 

In this paper we are studying the following question: is it possible to build an 
image-interpretation system based on a prototypical image for each class and if so, 
what necessary features should such a system have? The basis for our study were four 
different image catalogues of HEp-2 cell images collected by different manufacturers 
of HEp-2 cell diagnostica and by a diagnostic laboratory. HEp-2 cell stands for 
human epithelial cell line type 2. The catalogues are comprised of one prototypical 
image for each class.  

In Section 2 we shortly describe the image catalogues. The image analysis and the 
features extracted for the objects in the image are described in Section 3. The 
resulting databases are described in Section 4. The nearest-neighbor classifier and the 
feature selection and feature-weighting algorithm are described in Section 5. Likewise 
we describe in Section 5 the prototype-selection method that allows us to find out the 
quality of the image catalogues. Finally, we give results in Section 6 and an outlook 
for further work in Section 7. 

2   Image Catalogues 

Image Catalogues usually show one prototypical image for one class. These 
catalogues represent the visual knowledge of an image inspection domain. They are 
available as hardcopies or as a collection of digital images. They are usually used to 
train novices for the specific image-inspection task. Together with the prototypical 
images a verbal description of the appearance of the pattern is represented. Unlike in 
other tasks such as industrial inspection, these verbal descriptions are not standardized 
visual image descriptions allowing a human to build up conceptual knowledge.  
 

Class 1 Class 2 Class 3

Class 4 Class 5 Class 6  

Fig. 1. Prototypical Images of Six Classes 
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Therefore, as long as no automatic image-interpretation system is available, a lot of 
work is invested in order to build up ontologies to improve the overall quality of 
image-inspection tasks.  

Prototypical images of HEp-2 cell patterns for six classes are shown in Fig. 1. We 
should note that for each class we have only one prototypical image comprised of a 
small number of cells showing the appearance of the pattern. Therefore we do have an 
unknown number of single cells in each image showing the pattern of interest for each 
class.  Each cell could be considered as a prototype itself. That will result in a data 
base of prototypes with an unequal number of samples for each class.  

3   Creation of the Database 

Each image was processed by the image-analysis procedure described in [11]. The 
color image has been transformed into a gray-level image. The image is normalized to 
the mean and standard gray level calculated from all images to avoid invariance 
caused by the inter-slice staining variations. 

Automatic thresholding has been performed by the algorithm of Otsu. The 
algorithm can localize the cells with their cytoplasmatic structure very well, but not the 
nuclear envelope itself. We then applied morphological filters like dilation and erosion 
to the image, in order to get a binary mask for cutting out the cells from the image.  

The gray levels ranging from 0 to 255 are quantized into 16 intervals t. Each 
subimage f(x,y) containing only a cell gets classified according to the gray level into t 
slices, with t={0,1,2,..,15}. For each slice a binary image is calculated, containing the 
value “1” for pixels with a gray level value falling into the gray level interval of slice t 
and value “0” for all other pixels. We call the image f(x,y,t) in the following slice 
image. Object labeling is done in the slice images with the contour-following method. 
Then features from these objects are calculated for classification. 

For the objects in each slice features are calculated for classification. The first one 
is a simple Boolean feature which expresses the occurrence or non-occurrence of 
objects in the slice image. Then the number of objects in the slice image is calculated. 
From the objects the area, a shape factor, and the length of the contour are calculated. 
However, not a single feature of each object is taken for classification, but a mean 
value for each feature is calculated over all the objects in the slice image. This is done 
in order to reduce the dimension of the feature vector. Since the quantization of the 
gray level was done in equal steps and without considering the real nature, we also 
calculated for each class the mean value of the gray level and the variance of the gray 
level. A total of 178 features are calculated that make up a very intelligent structure 
and texture descriptor for cells. It has been shown in [11] that not all features of the 
complex structure and texture descriptor are relevant for a particular texture 
description. The feature selection procedure of the decision tree induction process 
used in the study described in [11] for building the classifier selects only a subset of 
features from the whole set of features. However, using decision-tree induction 
requires a sufficiently large sample set which is not the assumption in this study and 
when producing as many features as possible for an object without being informed 
about the relevance of the features, a good feature-subset selection strategy is 
required, no matter which classifier is used. 
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4   The Databases 

For our investigation we used four different image catalogues that came from four 
different manufacturers of Hep-2 cells. The databases differ in the number of classes 
and the number of samples per class, see Table 1. It cannot be expected that the 
distribution of the samples or the classes, respectively is the same in any database. 
More likely than this any situation can happen. Although most of the databases were 
obtained from the manufacturers, they could not provide samples for all classes. 

Table 1. Name of Database and Number of Classes and Samples per Class 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

DB_1 105 96 63 83 4 347

DB_2 8 2 2 14 7 5 15 9 5 4 14 9 8 10 48 23 17 31 3 3 3 7 5 2 13 5 26 298

DB_3 7 30 29 28 11 7 13 5 13 13 10 156

DB_4 25 12 18 21 5 16 22 24 21 20 5 14 12 203

Class Number Number
of CasesName

Number
of Classes

 

5   The Classification Method 

Our assumption for this study is that we have only a prototypical image for each class 
which is comprised of a number of cells and which represents the general appearance 
of the pattern of each class. Therefore, a prototype-based classification based on the 
nearest-neighbour rule is the appropriate choice for the classification method. 
However, since we have created complex structure and texture features comprised of 
several low-level features for the description of the pattern of each class, we need a 
feature-subset selection and feature weighting procedure to specify the importance of 
each low-level feature.  

Prototypical images are created or selected by humans and thus they show 
variability because of the subjective influence of a human. Besides that they are 
comprised of a number of cells in the images in this kind of applications. In other 
applications a number of different prototypes might be selected. Therefore, we also 
use a prototype- selection strategy to come up with the right number of prototypes 
that reflect the right variance within the class and describe the class borders well. The 
most popular prototype-selection strategy is Chang´s algorithm which seems to be 
appropriate for our first study [11]. 

5.1   Nearest-Neighbour Rule 

This nearest-neighbour rule [4] classifies x  in the category of its nearest neighbour. 

More precisely, we call { }nn xxxx ,...,, 21
` ∈  a nearest-neighbor x to  if 

( ) ( )xxdxxd ni ´,,min =  where ni ,...,2,1= .  

The nearest-neighbor rule chooses to classify x  into category nC , where nx is the 

nearest neighbor to x  and nx belongs to class nC . 



 A Comparative Study of Catalogue-Based Classification 305 

In the case of the k-nearest neighbour we require k-samples of the same class to 
fulfil the decision rule. As distance measure we use the Euclidean distance. 

5.2   Prototype Selection by Chang`s Algorithm  

For the selection of the right number of prototypes we used Chang´s algorithm [11]. 
The outline of the algorithm can be described as follows: Suppose a training set T  is 

given as { }mi tttT ,...,,...,1=  with it  the i-th initial prototype. The idea of the 

algorithm is as follows: We start with every point in T as a prototype. We then 

successively merge any two closest prototypes 1p and 2p of the same class by a new 

prototype p , if the merging will not downgrade the classification of the patterns in 

T . The new prototype p  may be simply the average vector of 1p and 2p . We 

continue the merging process until the number of incorrect classifications of the 
pattern in T starts to increase.  

Roughly, the algorithm can be stated as follows: Given a training set T , the initial 
prototypes are just the points of T . At any stage the prototypes belong to one of two 
sets – set A  or set B . Initially, A  is empty and B is equal to T . We start with an 
arbitrary point in B and initially assign it to A . Find a point p in A  and a point 

q in B , such that the distance between p and q is the shortest among all distances 

between points of A and B . Try to merge p and q . That is, if p and q are of the 

same class, compute a vector ∗p  in terms of p and q . If replacing p and q by 
∗p does not decrease the recognition rate for T , merging is successful. In this case, 

delete p and q from A and B , respectively, and put ∗p  into A , and the procedure 

is repeated once again. In the case that p and q cannot be merged, i.e. if either 

p and q are not of the same class or merging is unsuccessful, move q from B to A , 

and the procedure is repeated. When B becomes empty, recycle the whole procedure 
by letting B be the final A  obtained from the previous cycle, and by resetting A to 
be the empty set. This process stopps when no new merged prototypes are obtained. 
The final prototypes in A are then used in a nearest-neighbour classifier. 

5.3   Feature Subset Selection and Feature Weighting 

The wrapper approach [12] is used for selecting a feature subset from the whole set of 
features. This approach conducts a search for a good feature subset by using the k-NN 
classifier itself as an evaluation function. By doing so it takes into account the specific 
behaviour of the classification methods. The 1-fold crossvalidation method is used for 
estimating the classification accuracy and the best-first search strategy is used for the 
search over the state space of possible feature combination. The algorithm terminates 
if we have not found an improved accuracy over the last k search states.  
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δ

The feature combination that gave the best classification accuracy is the remaining 
feature subset. After we have found the best feature subset for our problem, we try to 
further improve our classifier by applying a feature-weighting technique. 

The weights of each feature iw  are changed by a constant value δ : 

:i iw w δ= ± . If the new weight causes an improvement of the classification 

accuracy, then the weight will be updated accordingly; otherwise, the weight will 
remain as it is. After the last weight has been tested, the constant will be  

divided into half and the procedure repeats. The procedure terminates if the difference 
between the classification accuracy of two iterations is less than a predefined 
threshold.  

6   Results 

We calculated the classification accuracy for the simple nearest-neighbour classifier 
and the k-nearest neighbour with 3=k  based on 1-fold crossvalidation. The results 
for the different databases are shown in Table 2. The experiments differ in the feature- 
weight setting (all weights are one or learnt based on the procedure described in 
Section 5.3) and the setting for the number of neighbours k, see Table 3. For the 
experiment P1K1 (feature weights are for all features one, k=1), the best results could 
be achieved for the database DB_1. This is not surprising, since this data base has 
enough prototypes for each class and a low number of classes. The result for the k-
nearest-neighbour classifier was slightly better for the database DB_1. A poor result 
was achieved for the database DB_2, i.e. the database with the highest number of 
classes and the smallest number of prototypes per class. Contrary to our expectation, 
the result for the database DB_4 was the poorest , although the number of samples in 
each class seems to be moderate.  

It is clear that we cannot achieve a significant improvement of the accuracy for the 
database DB_2 when applying the k-NN classifier, since there are often only two 
prototypes of the same class. 

If we use the feature-weighting procedure described in Section 5.3, we can 
improve the classification accuracy for DB_1 and DB_2 in the case of the simple 
nearest-neighbour classifier and for DB_4 for the k-nearest-neighbour classifier. The 
highest improvement (5%) can be achieved for the database DB_2. In [13] we have 
shown that different feature-subset selection strategies select different feature subsets 
from a set of features and that there is often only a small intersection between the 
selected subsets. Therefore, we were not concerned about the kind of selected 
features, rather we looked for the improvement in accuracy. We could show by our 
results that feature-subset selection is an essential feature of a catalogue-based 
classifier. 

In an early experiment [12] we achieved an accuracy of 75% for six classes and 
based on decision trees. For each of the six classes we had 53 images. If we set our 
actual results into this context, we can conclude that every result that is higher than 
60% accuracy is a good result. 
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Table 2. Classification Accuracy for the different Databases 

P1K1 P1K3 P3k1 P3K3
DB_1 80,12 80,20 80,71 78,04
DB_2 48,31 45,69 50,94 45,32
DB_3 69,44 69,44 69,87 69,78
DB_4 44,22 44,22 45,99 46,28

DataBase
TestID

 

Table 3. Experiment Set-up 

Experiment Feature Weights K-NN
P1K1 1 1
P1K3 1 3
P3K1 learnt 1
P3K3 learnt 3  

If we apply Chang´s prototype-selection strategy to our data base DB_1, we can 
reduce the number of protoypes by 75,5 % for the simple nearest-neighbour approach 
while preserving the accuracy, see Table 4. It is interesting to note that for this data 
base only 15 samples are adopted; whereas 70 samples are generated. There is enough 
redundancy among the samples.  

In the case of the database DB_2, that is the database with the largest number of 
classes, but only a few samples per class, the reduction of samples is only 21.32%. 
The majority of samples are adopted, whereas only a few new prototypes are 
generated. The prototype generation is mostly performed for the classes with more 
than two samples. As a result we have to conclude that the only two samples in some 
of the classes do not cover well the solution space for these classes. 

We observe the same situation for the database DB_4, whereas for the database 
DB_3 we see a reduction by 42.31%. That implies that the database DB_4 has much 
class overlap in the samples and it is not a true gold standard. It is the only database 
that comes from a diagnostic lab and not from a manufacturer. 

Table 4. Reduction of Samples after Application of Chang`s Algorithm 

Name
Number 

of Classes
Number 
of Cases Generated Overtaken

Total
Number

Number 
of Loops

Reduction 
in %

DB_1 4 347 70 15 85 192 75,50
DB_2 26 272 43 171 214 15 21,32
DB_3 10 156 33 57 90 33 42,31
DB_4 12 203 39 110 149 15 26,60  
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7   Conclusions 

We have studied the use of prototypical images for the development of an automatic 
image-interpretation system based on nearest-neighbour classification. The results are 
promising. They show that it is possible to build an image-interpretation system with 
sufficient classification accuracy based on a small number of prototypical images. 
Feature-subset selection and feature weighting are essential functions of such a 
system. These functions can significantly improve the classification accuracy, 
especially in the case of small samples. Prototype generation has been applied in the 
sense that samples are generalized to one prototype. This function can be used in 
order to judge the quality of the prototypical case-base. The higher the reduction rate, 
the higher is the redundancy of the prototypes. The new function that is necessary is 
prototype enrichment for that case where only a small number of prototypes is 
available. A method of Bayesian Case Reconstruction has been developed by 
Hennessy et. al [7] to broaden the coverage of a case library by sampling and 
recombining pieces of existing cases to construct a large set of “plausible” cases. 
However, this method is not applicable in our case. We need to develop a method for 
our problem. This is left to further work. 
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Abstract. Conversational CBR has been used successfully for several
years but building a new system demands a great cognitive effort of
knowledge engineers and using it demands a similar effort of users. In
this paper we use ontologies as the driving force to structure a devel-
opment methodology where previous design efforts may be reused. We
review the main issues of current CCBR models and their specific solu-
tions. We describe afterwards how these solutions may be integrated in a
common methodology to be reused in other similar CCBR systems. We
particularly focus on the authoring issues to represent the knowledge.

1 Introduction

Conversational Case-Based Reasoning (CCBR) has been proposed to bridge the
knowledge gap between the users and the case bases in CBR systems. It means
that if users are not able to give a well-defined problem description (query),
the CBR system will not be able to find a similar and appropriate case. CCBR
approaches are appropriate when users have vague ideas about their problems
at the beginning of the retrieval process. The system guides the user to a better
understanding of his problem and what aspects he should describe. CCBR pro-
vides the means to dialog and guide users to refine their problem descriptions
incrementally through a question-answer sequence.

Conversational CBR has been used successfully for several years but to build
a new system demands a great cognitive effort on knowledge engineers and to
use it demands a similar effort on users. While a lot of effort is being devoted
to identify the problems related to building a new CCBR system from scratch,
work on tool support and development methodologies for CCBR applications
is still in its infancy. Different kinds of CCBR systems have proposed different
approaches, issues and solutions. Our approach proposes defining ontologies that
can be exploited by different CCBR applications.

Many works share our goal:[16] to minimize the cognitive effort demanded on
users to use the system successfully and on the knowledge engineers to build the
system. In [18] it is pointed how the design and development of CCBR systems
would greatly benefit from the existence of generic inference methods. These
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methods can be used to anticipate user needs and to reduce the amount of infor-
mation that the user must provide (e.g., number of answered questions) prior to
successful case retrieval [4,9,17]. There are approaches based on the definition of
special relations among questions, such as causal or taxonomical relations [18].
Other approaches are based on the creation of inferencing rules used to control
the conversation and to infer new answers from answers to other related ques-
tions [9,3]. In the line of defining reusable and generic methods, Gu & Aadmodt
[16] propose to decompose the selection of the most discriminative questions
through several subtasks: feature inferencing, question ranking, consistent ques-
tion clustering, and coherent question sequencing.

Apart from the query formulation process there are works regarding other
more specific aspects. We emphasize the study of user variability: to deal with
user preferences [9]; to adapt to the level of expertise [10]; to consider the user
temperament and current mood [11]; to introduce different conversation styles
[28] and conversation strategies [13]; and to improve the case authoring bottle-
neck, i.e.: building case bases, by new tools and specific techniques [21].

The knowledge representation issue has an important role in most of the pre-
vious solutions. Most of the recent CCBR works tend to use a knowledge rich
approach which includes general knowledge of the domain in ad-hoc represen-
tations [16]. In general, the diversity of applications generates many types of
conversational systems with specific characteristics. Regarding to the domain
task, we distinguish between diagnosis systems [16,22], decision support systems
[10,3,24], recommenders [9] and systems which justify their recommendations
[27], generation systems that are capable of generating expressive musical per-
formances with user interaction [5], design systems [20], interactive teaching of
didactic methods [17], textual CCBR [26], and planning [24].

In order to deal with so different issues, our proposal is based on the idea
that if we can formalize each issue separately and find a solution for each is-
sue, we are able to find partial solutions incrementally until we cover the main
issues. This way we keep very few inter-relations among different issues. To
represent all these different issues and their inter-relations we use an ontology-
driven approach to help designing different types of CCBR systems. Our frame-
work COBBER [11] formalizes different aspects of conversational systems. We
have defined CCBRonto, an ontology which has two layers: a meta-model and
a content-model. The meta-model is where most of the reuse takes place. The
meta-model includes the skeleton where we can define additional characteristics
of CCBR systems, like tasks, methods, domain knowledge issues, representation
formalisms (textual, graphics, multimedia), conversation issues (strategies, con-
ceptualization), and user’s issues. We describe how we solve the user’s issues in
[14] where we describe a model dealing with temperaments and emotions.

In this article we have three goals: to propose the ontology-driven approach as
a common methodology to integrate the diversity of CCBR types (Section 3), to
present the CCBRonto ontology as a knowledge model to support the method-
ology (Section 4). And to show the model at work in a classic CCBR domain:
a diagnosis/help-desk system (Section 5). In the same section we describe the
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conversation reasoning tasks which CCBRonto supports. They belong to COB-
BER [13], which includes other tasks not relevant to this article.

2 The Scenario

To illustrate this article we use a domain example, which is to design and develop
a conversational help-desk system to solve problems about company management
software. We have several sources of knowledge, such as documents and experts.
In Figure 1 we depict the conversation with the ideal characteristics we want in
our scenario.

We want to reduce the Knowledge Engineering and cognitive efforts reusing
other CCBR models, their static domain knowledge, tasks and problem solving
methods. There are many CCBR systems but they are difficult to reuse because
they have ad-hoc solutions for a particular domain. We look for a common knowl-
edge representation model, which supports different CCBR types and domains
with text, images and multimedia materials. This model should support different
levels of abstraction and case sizes. The language we use should be formal and
support the implementation at the same time.

We need an incremental methodology to define CCBR systems and a knowl-
edge model which supports the methodology. We want to design the system in a
structured and incremental way, with no scalability problems for large domains.
The model should have elements which guide us in the development process of
the CCBR system, such as conversation basic structures –or skeletons–, task and
method decompositions in hierarchies –or skeletons–. The system should keep
a conversation which guides the user to formulate the query in an incremental
way. In Figure 1 we see how the system asks questions to complete the query
and to obtain the data to solve it. The user may answer only some questions
and the system does the completion task. The system should decide which are
the relevant questions to ask in the next cycle, e.g.: in the figure the sentence
“deduces what information to show” indicates it. The system should avoid the
repetition of questions and answers. Besides asking questions, the completion
task should include several aspects: deductions, calculations and function execu-
tions. The system should deduce and calculate answers from previous answers,
as depicted in Figure 1: the system deduces that the company type is “AA”
because it corresponds to companies considered small, i.e.: 15 is the maximum
number of employees and 1300 is the maximum benefit per employee in a year.
If the system needs the “benefit by year”, the system should be able to calculate
it, e.g.: in the figure the calculated answer is 12000. The system should be able
to execute actions outside the CCBR system, such as displaying images or the
execution of functions, e.g.: in the figure the IncomeTaxFormulaAA.

The system should adapt the conversation to the user, i.e.: his domain exper-
tise level, his preferences, his temperament and his mood. In Figure 1 there are
two different paths of the conversation: example A for a novice user, where the
indications (suggestions) are very basic and example B for an advanced user,
where the indications are more conceptual, assuming that he knows better the
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--> CONTINUATION:

(User)

No, I don´t understand step-1

I need to see an image of the GUI for option 2

(User): Yes

(

(system)

suggestions

- Try to click on the “Money Menu”

- Click on option 2

- Introduce your personal data

in the IncomeTaxFormulaAA

- You have a small company, AA type

- You need to type in personal data

in the formula for small companies.

Display GUI Image for

incomeTaxCalculation

-Are you satisfied with the solution?

system) This ends your session

-

( )

-Decides (with the USER CHARACTERISTICS )

to adapt the answer to the user expertise Level,

-what information to show:

example a: NOVICE expertise Level (BAsic answer)

example B: advance expertise Level

(More conceptual answer)

COMMON for xamples A & B:

-ACtions:

START A SESSION

(User)

I don´t know how to obtain my income Tax

(User)

The EmployeeNum is 12 and

the BenefitByEmployee is 1000

(System)

Please, describe your problem

(System)

I need several data to help you,

answer some of these questions:

- What CompanyType?

- EmployeeNum?

- BenefitByEmployee

OR BenefitByYear?

(system)

CompanyType

BenefitByYear

suggestions

You may use the IncomeTaxFormulaAA

and the Tax Calculation Steps are,

step-1: click on option 2

step-2: fill the total income

step-3:.............

Do you understand step-1?

executes IncomeTaxFormulaAA

(as an example)

-deduces

-calculates

-decides what information to show:

-decides which questions to ask:

-ACtions:

= AA

= 12000

( )

Fig. 1. The conversation example for our scenario: a help-desk domain

domain concepts. The temperament and mood adaptation consists in treating
the user in different way according to his current mood and temperament (this
is described in [14].)

In next sections we describe our approach which improve the issues described
in the scenario.

3 The Ontology-Driven Development

Ontology Engineering [15] has similar difficulties to the Knowledge Acquisition
and Representation fields of Knowledge Engineering. There are several method-
ologies to build ontologies [8], but we find limitations dealing simultaneously
with diverse sources of knowledge, such as texts and experts, and to have a
structured cycle of the development process. To overcome these limitations we
developed a conceptualization methodology which includes, in a refinement cycle
manner, the main guidelines of the current methodologies, Information Retrieval
techniques and interviews techniques with experts. For details see a complete de-
scription in [12]. We focus this article on the application of the methodology to
Conversational CBR systems.

This is an overview of the proposed ontology-driven approach applied to de-
velop a CCBR system. We perform several tasks:
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1. To describe in a text format the domain and the problem to be solved. To
decompose the description into a set of –prototypical– situations, each of
them has a description of a problem and its solution. We need a vocabulary
which represents each situation: to define relevant concepts (classes) and
relations (properties) among them. See [12] for a description of techniques.

2. To define the questions which are relevant to the situation and all their pos-
sible answers. To build a question hierarchy to help organizing the question
sequence, which is the path to find the solution.

3. To build the cases: each situation may need a set of related cases, which are
defined at different level of abstraction, going from abstract general cases
to their specific versions. Cases are independent, only related semantically
by the questions and answers which describe the situation represented by
each case. They can be represented graphically as a hierarchy or a network,
but they do not have hardwire links among them. This design gives a lot
of flexibility and creates several different possible conversation sequences
driven by the answers of the user. This description is specific for our model
explained in next sections. The designer performs three tasks for each case:
– To assign which set of questions and answers define the specific situation

represented by the case.
– To define the solutions for that case (suggestions and actions.)
– To link the questions to be asked in the next cycle (intentional questions.)

4. To select one of the available case similarity methods from our model library
of reusable problem solving methods (PSMs) or to build your domain specific
method.

5. To build or select from the reusable PSMs library the set of appropriated
tasks and methods for the system type in development. To adapt the chosen
tasks and methods to the domain.

6. To define the queries to test the cases. To refine the cases. Experts supervise
these tasks.

We claim that this approach reduces the cognitive effort in several aspects. We
use a common vocabulary for the domain in a formal representation that sup-
ports the implementation. The ontology presents a global picture of the domain:
concept taxonomies, explicit relationships or properties, tasks and methods. The
ontology building process drives the analysis of the domain and its functional-
ity. Ontologies based on Description Logics (DLs) have inference capabilities [6],
which we describe in section 3.1. This feature simplifies the implementation of
relations among questions, the inference and calculation of new answers. The
definitions of relations and conditions are declarative and independent to the
software (we use a standard reasoner), this simplifies an incremental develop-
ment, re-engineering, prototyping and testing.

Other works use ontologies in CCBR as well: they use in [23] the SERVO
ontology, written in RDF language, as representation of the domain or meta-
data. Other use an ad-hoc representation similar to an ontology, e.g.: in [16], Gu
and Aamodt use an Object-Level Knowledge Representation Model, part of the
model reuse from CREEK [1]. The main differences between these approaches
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and our approach is that a Description Logics based ontology has built-in rea-
soning mechanisms and declarative conditions, which are easily updatable with
a standard ontology editor such as Protégé [19]. Both, the reasoning mechanisms
and the declarative conditions are independent of the CCBR system. In the next
section we introduce Description Logics.

3.1 Description Logics

Description Logics are considered one of the most important knowledge repre-
sentation formalism unifying and giving a logical basis to the well known tradi-
tional approaches: Frame-based systems, Semantic Networks and KL-ONE-like
languages; Object-Oriented representations; Semantic data models; and Type
systems. In a DL, there are three types of formal objects: concepts and relations,
and individuals. The first two types are descriptions with a potentially com-
plex structure. It is formed by composing a limited set of description-forming
operators. Individuals are simple formal constructs intended to directly repre-
sent objects in the domain of interest. Individuals may be recognized as concept
instances, and related to other individuals through relation instances.

DL’s reasoning mechanisms are based on: subsumption, which determines
whether a description –concept or relation– is more general than another; and
instance recognition, which determines if a individual belongs to a concept. This
is performed by checking if the individual satisfies the asserted conditions of
the concept definition. The instance recognition may be applied to check if a
tuple of individuals satisfy some relations as well. Subsumption supports classi-
fication, i.e., the ability of automatically classifying a new description within a
–semi– lattice of previously classified descriptions. We use this in our model for
case description similarity. Instance recognition supports completion, which is
the ability of drawing logical consequences of assertions about individuals. We
use this to infer new answers from previous answers. Contradiction detection is
used for descriptions and assertions about individuals. It completes the basic set
of reasoning mechanisms provided by DL systems. We use these mechanisms in
the retrieve phase as well. In the next section we describe how we use DLs based
ontologies in our model.

4 CCBRonto: An Ontology for CCBR Systems

We define a knowledge representation model, CCBRonto, to support the method-
ology. CCBRonto is a DLs based ontology, which extends CBRonto [7]. CBRonto
is our ontology to develop CBR systems. It has two main aspects: task-method
decomposition and concepts which define the structure of domain knowledge.
In this article we focus on extending the second aspect: the concept structure
which supports the main functionality of the conversation mechanism.

Figure 2 outlines our layered architecture where we integrate different types of
knowledge: CBROnto provides CBR vocabulary for describing terms involved in
the CBR problem-solving processes, while CCBROnto provides a conceptualiza-
tion of the knowledge needed in a conversational CBR system. The use of this
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Fig. 2. The specialization layers in our ontology approach

organizing knowledge allows the CBR processes to have semantic information
about the domain. CCBROnto helps to organize the domain knowledge within
the cases. It has four interrelated models: the domain model, the case model,
the question model, and the extended user model. We define cases using these
models.

In our models we have elements which are concepts and relations. The two bot-
tom layers in Figure 2 are two different levels of our models: a meta-model with
skeleton elements defines domain independent elements –written with squared
thick font in next figures– and a content-model with content elements defines
domain dependent concepts –written with round thin font in next figures– and
extends the skeleton elements. Content elements include the individuals cre-
ated for a domain –a diamond shape in next figures–. The skeleton elements
give a structure to the domain elements. It is important to mention that our
models are domain independent, but we describe them in the next sections us-
ing a the help-desk domain, presented in Section 2, for clarity purposes. For
each model we describe only what seems more relevant to understand the whole
approach.

4.1 The Question Model

In Figure 3 we describe the question model applied to the help-desk domain.
There is a taxonomy of question types defined at different levels of abstraction.
Questions have three roles: questions in the user query describe the problem to be
solved; questions inside cases, as input slots –see hasActivatingQuestions and
their expected answers hasConceptAnswerValuePairs in Figure 4–, describe the
case itself for explanatory purposes in the case authoring phase; and questions
inside cases, as output slots, guide the conversation in the next reasoning cycle.
A question may belong to one or more cases. Once a question has an answer,
all the cases associated to the question see the answer. The system only asks a
question if the system retrieves the case and there is no answer yet. The system
stores the answers in the user model to perform this process.

Each question has semantic relations (properties) with other questions. We can
declare explicitly any kind of relation among questions. Some are predefined, such
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hasRelatedQuestions
hasDirectionRelatedQ
hasTemporalRelatedQ

hasBeforeTempRelatedQ
hasAfterTempRelatedQ
hasSimultaneousTempRelatedQ

hasCausalRelatedQ
hasIsARelatedQ
hasAnswerValue
hasAnswerConcept

IntentionalQuestions
DomainQuestion
GettingInformationQuestion
DirectQuestion

WhatDomainKnowledgeLevel

DiscoveringQuestion
FindingOutUserMoodQuestion

ModifingQuestion
ChangingMoodQuestion
ChangingSubjectQuestion

SupportingQuestion
....

AnswerValue

WhatHelpDeskLevel

CompanyTypeValue

CoTypeValueAA

CoTypeValueAB

EmployeeNumValue

BenefitByEmployeeValue

BenefitByYearValue

AnswerConcept
CompanyType

EmployeeNum

Relations(PROPERTIES)

Concepts(CLASSES)

EmployeeNumValue<15 and

BenefitByEmployee<1300

Asserted Conditions

hasDirectValue

hasCalculatedValue

hasExternalValue

hasBenefitCoDirectValue

hasBenefitCoCalculaValue

hasBenefitByEmployeeValue

hasMultiplyOp

hasEmployeeNum

hasObtainMethod

Relations(PROPERTIES)

Font Meaning:

-

-

Skeleton Elements
Content Elements

Font Meaning:

-

-

Skeleton Elements
Content Elements

Instances(Individuals) DomainQuestion
- What CompanyType?

- EmployeeNum?

- BenefitByEmployee?

- OR BenefitByYear?

Instances(Individuals) AnswerValue

USER

CALCULATED:

EmployeeNum

BenefitByEmployee

CompanyType

BenefitByYear 12000

TYPED:

DEDUCED:

12

1000

AA

Fig. 3. Question model and some of the possible relations among questions

as taxonomical, causal, temporal (before, after, simultaneous, mutually exclusive)
questions. Each question is designed to obtain a set of values hasAnswerValue of
a set of concepts hasAnswerConcept. Normally there is one concept for each ques-
tion. Some questions are standard, e.g.: confirmation questions “are you satisfied
with the solution?”. There are several types of descriptions to formulate the ques-
tion: text in natural language, diagrams, multiple-choice, yes-no.

In Figure 3 we illustrate the answers as individuals of AnswerValue. There
are four ways to get the answer: the user writes the AnswerValue of ques-
tions (DirectValue). The second way, DeducedValue, is to deduce AnswerValue
from the asserted conditions of a concept, such as the CompanyTypeValue (AA)
using the EmployeeNum (12) and BenefitByEmployee (1000). The third way,
CalculatedValue, is calculating AnswerValue by a specific method declared ex-
plicitly, such as hasBenefitCoCalculaValue, which defines the value multi-
plying the BenefitByEmployeeValue by EmployeeNum. The last way is to ob-
tain AnswerValue from an external source, such as a database, by the execu-
tion of a method. We define conditions in a logic-based declarations to deduce
AnswerValue. A DLs oriented reasoning engine, such as Pellet, can infer conclu-
sions using these conditions. An example is the deduced AnswerValue for the
CompanyType(AA) mentioned before.

Other works use the question model as well. A similar one is in [16] which
follows a knowledge-intensive approach. [18] uses taxonomic and causal relations
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ConversationCase
DomainCase
InitialDomCase
ConfirmationDomCase
ClosingDomCase

CaseConcepts

Suggestion
IntentionalQuestion

-->

Action

see question model

ExecuteFormulaAction

DisplayGUIimageAction

ActionDescription
ActionTask
ActionMethod

Concepts(CLASSES)

Font Meaning:

-

-

Skeleton Elements
Content Elements

Font Meaning:

-

-

Skeleton Elements
Content Elements

hasInputSlots
hasCaseName
hasCaseDescription

hasTextualDescription
hasGraphicallDescription

hasActivating Questions
hasConceptAnswerValuePairs

hasOutputSlots
hasSuggestions
hasIntentionalQuestions
hasActions

Relations(PROPERTIES)

----> see question model

Instances(Individuals) DomainCase

--> sEE Figure

“conversation interaction”

HasActionDescription
hasActionTask
hasActionMethod

Relations(PROPERTIES) Instances(Individuals) Suggestion

(a) Please, describe your problem

(b) I need several data to help you

(c) Use IncomeTaxFormulaAA

(d) This ends your session, thank you

ExecuteIncomeTaxFormula

Display GUIimageMoneyMenu

Instances(Individuals)

Fig. 4. Case model: main components and their links with other models

among questions and deduces rules from questions. Our conditions are similar
to rules among questions in other models [4]. The difference with our approach
is the characteristics of DLs mentioned before.

4.2 The Case Model

We define a case skeleton with a set of domain independent concepts to simplify
case authoring. In Figure 4 we show the most relevant elements of the case model.
There are specialized case types for specific moments in the conversation, with fix
values, such as InitialDomCase. It is used to start a conversation session with
a welcome message. And there are other general types to use throughout the
conversation. The input slots represent the description of the case. They include
concepts to retrieve the case: if the system asks the ActivatingQuestions and
obtains similar ConceptAnswerValuePairs of a case, the system retrieves the
case. Cases have a set of output slots:

– IntentionalQuestions: One important difference of our model in respect of
the other systems is that we include references to the questions inside the
cases. This mechanism discriminates which questions to ask in the next cycle
and simplifies case authoring.

– Suggestions are the solution to the problem. If the case is abstract, the
solution is only partial. It needs to continue the conversation to get to the
specific solution. Suggestions may have any kind of format to be displayed:
text, graphics, multimedia.
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DomCaseBase
DomCase

DomQuestion

DomConcept

DomFormula

--> See Case Model

--> See Question Model

IncomeTaxFormula

Concepts(CLASSES)

Font Meaning:

-

-

Skeleton Elements
Content Elements

Font Meaning:

-

-

Skeleton Elements
Content Elements HasDomCBname

hasDomCBdescription
hasDomCBobjectives
hasDomCBallowedTasks
hasDOmCBallowedMethods
hasDomCases
hasDomSimilarityMeasure

Relations(PROPERTIES)

ITF-AA-15-1300

ITF-AB-50-2500

Instances(Individuals)

Fig. 5. Domain model main components and their links with other models

– Actions are operations to execute outside the CCBR system, e.g.: in our
domain we have ExecuteFormula or DisplayGUIImage.

4.3 The Domain Model

The domain model defines all the knowledge about the domain and includes the
question and case models described in sections 4.1 and 4.2. The most relevant
skeleton elements of the domain model are: DomainDescription, DomCaseBase,
DomCase and a generic concept DomConcept – for auxiliary concepts, such as
DomFormula–. The main element is the DomCaseBase concept. Besides its de-
scription and cases, it has the objectives of the case base and the possible tasks
and methods which can be performed with it. The content elements are domain
specific: cases, questions, tasks, methods, and other auxiliary concepts, such as
the IncomeTaxFormula. Our domain model example is the composition of Fig-
ures 3, 4 and 5.

4.4 The Extended User Model

We define an extended user model to support some of the previously described
tasks, those related to question-answer optimization and system adaptation to
the user. The two main concepts for those tasks are UserExpertiseLevel and
the SessionData which are depicted in Figure 6. We use UserExpertiseLevel
for the task to adapt the conversation to the user domain expertise level, e.g.:
level 1 is novice, level 2 is knowledgeable, level 3 is expert. Figure 7 and Section
5 describe the role of this concept, which is to select cases according to the
complexity level. We use SessionData to optimize the question-answer process.
If the user has already answered a question in the current or a previous session,
the system does not ask again the same question. To support this task, the model
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User
UserType

Session Data

Personal Data

Concepts(CLASSES)

Font Meaning:

-

-

Skeleton Elements
Content Elements

Font Meaning:

-

-

Skeleton Elements
Content Elements hasPersonalData

hasPreferences
hasUserExpertiseLevel
hasUserType

hasSessionData

Relations(PROPERTIES)

Smith19022006Session

Instances(Individuals) Session Data

(See Case Model)

hasSessionDate
hasCaseNames
hasConceptAnswerValuePairs

Relations(PROPERTIES)

SmithUser

Instances(Individuals) User

Fig. 6. User model main components

stores the names of the visited domain cases and their questions and obtained
answers –ConceptAnswerValuePairs of the case model in Figure 4–. Another
task of the extended user model is to be able to anticipate user behaviors and
answers. To support this task we use a temperament ontology. We can retrieve
similar users to the current user and their answers from previous sessions. For
more details of this temperament ontology see the article [14].

5 The Model at Work

We extend the standard CBR cycle [2] to include the conversational issues
but keeping all the original tasks. In a CCBR, the query definition and the
retrieval tasks keep a short subcycle until the user agrees with the description
and the retrieved answer. Then, he may need to continue with the next tasks:
reuse, repair and retain. We define a control task to support the interactions
among tasks and ontologies. This control task is in charge of calling the next
task with the right knowledge. This is implemented in our prototype with an
agenda, where each task, at the end of its execution, modifies the agenda ac-
cording to its conclusions. In the prototype we use a blackboard implementa-
tion to transfer the correct knowledge –cases, questions and answers– among
tasks.

To perform the knowledge authoring task of the help-desk domain we have
as domain sources: a set of manuals about the software to be supported with
the help-desk system, and an expert with limited time for us. We follow the
steps of section 3. The first step is to create a domain model with an ontology,
which includes a question model with all kinds of relations and several levels of
abstraction. We reuse the skeleton elements and specialize new content elements
of our domain. In the next step we define the case base where each case is
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Case123
Textual Description
INPUT SLOTS

OUTPUT SLOTS
suggestions

Intentional questions

actions

:“income..AA”

- CompanyType = AA

- EmployeeNum < 15

- BenefitByEmployee <1300

-TaxCalculationSteps

step-1: click on option 2

step-2: fill the total income

step-3:.............

Do you understand step-1?

....

-Execute Formula

-Use IncomeTaxFormulaAA

Case189
Textual Description
INPUT SLOTS

OUTPUT SLOTS
suggestions

Intentional questions

actions

: “tax data .”

- incomeTaxCalculation

....

I need several data to help..

- What CompanyType?

- EmployeeNum?

- BenefitByEmployee?

- OR BenefitByYear?

USER: (answer)

(user’s model)

USER: (I

UserExpertiseLevel = 1

NounderstandStep1 = true

“may I have a image?”

nput Free Text)

USER: (answer)

(user’s model)

NounderstandStep1 = true

UserExpertiseLevel = 2

USER:

DEDUCED:

12

1000

AA

-- CYCLE 2 --

-- CYCLE 1 --

-- CYCLE 3 --

Case865
Textual Description:
NPUT SLOTS

OUTPUT SLOTS
suggestions

Intentional questions

Actions

“bla bla..”

- NounderstandStep1= true

- UserExpertiseLevel = 1

- Image=yes

- CompanyType =AA

- EmployeeNum<15

- BenefitByEmployee<1300

-Try click on

Click on option 2

Do you understand now?

....

-Display GUIimage

I

Money Menu

-

Font Meaning:

-

-

Skeleton Elements
Content Elements

Font Meaning:

-

-

Skeleton Elements
Content Elements

-- CYCLE 3 A--

-- CYCLE 3 B--

Case866
Textual Description:
INPUT SLOTS

OUTPUT SLOTS
suggestions

Intentional questions

Actions

- NounderstandStep1= true

- UserExpertiseLevel = 2

- CompanyType =AA

- EmployeeNum<15

- BenefitByEmployee<1300

-Chose small company (AA)

-Type pers. data in Formula

Do you understand now?

....

“bla bla..”

NEXT

CYCLE

Fig. 7. Conversation interaction: questions, user’s or inferred answers and domain cases

defined by a set of answers to some questions. And the third step is to get the
tasks and methods. We create them or reuse them from a library, if there already
are adequate tasks and methods available. Finally, after several refinements, we
came up with the set of models described in previous sections.

Figure 7 depicts the reasoning process of the system. We show three cy-
cles. Previous to them there is a standard initial case to start the conversa-
tion: “Describe your problem” –not in the figure–. The user answers: “I do not
know how to obtain my income Tax”. The system retrieves case case189 and
shows the suggestion and the questions of the case. The important aspect is
the way this is performed. The user may answer the hasEmployeeNum and the
hasBenefitbyEmployee only, because the company type may be deduced with
the assertions hasEmployeeNum < 15 and hasBenefitbyEmployee < 1300. In
the next cycle, the system retrieves case case123 using as query the user an-
swers and shows the suggestions and intentional questions again.

The system does not ask for those concepts which already have explicit or de-
ductible values. In the cycle 3 A of the figure, when the UserExpertiseLevel=1
the proposed suggestion is very basic: “try to click in the Money menu” –
Case865–. But, in the cycle 3 B of the figure, for the UserExpertiseLevel=2,
the retrieved case is different and the solution is more technical : “option2 is
for small companies(AA)” –Case866–. This is because the system assumes that
the expert has more deep and comprehensive knowledge about the domain. In
the first situation –cycle 3 A–, the user, besides answering the questions, asks
in a free text format for an explanatory image. The system processes this text
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with a NLP module and includes the concepts from the text in the query to
retrieve the case. The retrieved case Case865 has the image=yes condition and
has an action to display a GUI image to help to understand the “step-1” of the
suggestions in Case123 of cycle 2.

6 Conclusions

To reduce the cognitive effort of the CCBR systems development we propose
to find a common methodology and a model where we can include the many
different CCBR types and approaches. The main feature of the methodology is to
use DLs based ontologies as the driving force of the development. The supporting
model reuses interchangeable knowledge, tasks and methods within an intensive
knowledge approach. To support those characteristics we need to include general
domain, user and conversation knowledge. The representation of this knowledge
is a set of DLs based ontologies. We use ontologies for two purposes: to represent
the concepts and to support the decomposition task-method. In this article we
focus on the first purpose.

We claim that this approach reduces the cognitive effort in several aspects
by using: a common domain vocabulary, a domain independent formal represen-
tation which supports the implementation, the standard inference capabilities
and standard engines of the Description Logics based ontologies. The improved
aspects are: to communicate with the same language among experts, users and
knowledge engineers; to have a global picture of the domain: concept taxonomies
with explicit relationships, case bases, tasks and methods; the implementation
of relations among questions, the inference and calculation of new answers.

We tested this approach in two different projects. The first one is the per-
sonalization of the linux environment based on temperaments and other user
variations [14]. The second one is COBBER, a prototype of affective computing
framework for CCBR systems [11]. Both projects reuse ontologies. COBBER
has several tasks, which are CBR systems. All of them reuse the meta-model –
skeleton elements– of CCBRonto and some content-models for common domains.
They reuse too some methods and tasks. We have no numeric measurements of
the benefits. The qualitative benefits were very significative:

– The conceptualization phase is more fluent because the methodology [12]
structures the process in several phases with clear results and uses conceptual
maps, a graphical technique for discussing the representation of the ontology
elements. This obtains a common vocabulary of the domain.

– The analysis phase is simplified because it reuses the meta-model. The
different elements of new tasks are easily included in the content-models
by extensions of the meta-model or content-models of other similar tasks.
The ontologies are enough formal to act as specifications. Ontologies are
self-documented, they have the documentation embedded within the ele-
ments.

– The implementation phase reuses directly the ontologies because they maybe
loaded in a reasoning engine or generate automatically the class structure
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code in a programming language such as java. Projects may reuse tasks
and methods if the domain is similar. If the domain differs in few tasks or
methods, it is simple to exchange one task or method.

– Reuse includes the powerful reasoning method embedded in the ontology
language based on description logics (OWL). There are standard reason-
ing engines (Pellet). We can implement and reuse other reasoning methods
without interfere with the standard one.

– The test phase is easy too because we use content-models with different
regression tests. This allows to repeat and to include new tests.

– These phases are easily repeated in a refinement cycle because is simple to
create the meta-model and content-model in an incremental manner.

As further work we are developing a taxonomy of CCBR system types in
order to determined frequent tasks and methods. They will be included in the
CCBRonto and reuse when building new CCBR systems. We are interested in
implement, using our approach, some of the other approaches to test the viability
and scalability of the proposed integration in our CCBR ontology and COBBER
framework. We are working to include the COBBER model in jCOLIBRI as a
conversational extension.
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P. A. González-Calero, editors, ECCBR, volume 3155 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2004.

2. A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodolog-
ical variations, and system approaches. AI Communications, 7(i), 1994.
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Abstract. The contents of the case knowledge container is critical to the perfor-
mance of case-based classification systems. However the knowledge engineer is
given little support in the selection of suitable techniques to maintain and monitor
the case-base. In this paper we present a novel technique that provides an insight
into the structure of a case-base by means of a complexity profile that can assist
maintenance decision-making and provide a benchmark to assess future changes
to the case-base. We also introduce a complexity-guided redundancy reduction
algorithm which uses a local complexity measure to actively retain cases close to
boundaries. The algorithm offers control over the balance between maintaining
competence and reducing case-base size. The ability of the algorithm to main-
tain accuracy in a compacted case-base is demonstrated on seven public domain
classification datasets.

1 Introduction

Case-Based Reasoning (CBR) is an experience based problem-solving approach that
uses a case-base of previously solved problems as a knowledge source to help solve
new problems. The case-base is a key knowledge container [13] and, as such, the CBR
process draws heavily on case knowledge. This is particularly true in case-based classi-
fication systems for which retrieval is the key stage.

The CBR paradigm typically employs a lazy learning approach, such as k-nearest
neighbour [5], for the retrieval stage of the process which delays generalisation until
problem-solving time. This is attractive because training is not necessary, learning is
fast and incremental, algorithms are simple and intuitive, and advance knowledge of the
problems to be faced is not required. However, with large case-bases, the drawbacks of
lazy learning are high memory requirements since all examples are stored, slow retrieval
times, and the possible inclusion of harmful cases.

At the initial case authoring stage, the case-base can consist of all available examples.
Alternatively, the knowledge engineer can create a hand-crafted case-base by storing
only selected examples in the case-base giving rise to a need for algorithms that control
the size of the case-base. In addition, the case-base gets larger over time, often as a
result of indiscriminate storage of cases during the retain stage of the CBR cycle. The
cases may be redundant and provide no improvement in competence or may even be
harmful, noisy cases that result in a reduction in competence. In either case the inclusion
of additional cases will increase storage requirements and retrieval times. The cost of
retrieval can grow to the extent that it outweighs the benefit of additional cases. This
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is called the utility problem [7,14] and results in an ongoing requirement to control
case-base growth.

Understandably, there has been considerable research on the case-base editing prob-
lem giving the knowledge engineer a choice of potential approaches. However, most
contemporary editing algorithms give no control over the size of the edited case-base
or the impact on competence, and provide no explanation of their decisions. We argue
that the knowledge engineer should have more control over the balance between the
reduction in the size of the case-base and maintaining competence.

It is often assumed that any of the numerous maintenance approaches available will
work well on all domains. However, research has identified that no one algorithm is best
in all situations [4,6]. The knowledge engineer must make a choice between alternative
techniques based on knowledge of the case-base and the system’s competence, retrieval
and storage space requirements. What technique to choose is not obvious because it
requires knowledge about the structure of the case-base that is often hidden. Given a
dataset it is not clear what level of redundancy or noise it contains. Low accuracy may
be the result of a lack of case knowledge due to a sparse case-base, a difficult problem
with long, complex decision boundaries or noisy data. The knowledge engineer does
not know whether to apply a noise reduction algorithm, a case creation algorithm or a
redundancy reduction algorithm. Methods that improve the comprehension of the case-
base structure would aid this decision-making process.

In this paper, we present a novel case-base profiling technique that provides an in-
sight into the structure of the case-base, assisting informed maintenance decisions. In
addition, we introduce a new case-base editing algorithm that gives the knowledge en-
gineer more control of the balance between case-base size and competence and also
provides some explanation of its editing decisions. Both techniques are evaluated ex-
perimentally and shown to have benefit.

The remainder of this paper describes our approach and evaluates it on several pub-
lic domain case-bases. In Section 2 we review existing research on case-based editing
techniques. Section 3 discusses complexity profiling of a case-base and how it can aid
the knowledge engineer make maintenance choices. An evaluation of our profiling tech-
nique is presented in Section 4. Our new case-base editing technique is then introduced
in Section 5 with experimental results being reported on seven datasets in Section 6.
Finally, we provide conclusions and recommendation for future work in Section 7.

2 Related Work on Case-Base Editing in CBR

Considerable research effort has been aimed at case-base maintenance and much of the
research has focused on control of the case-base by case deletion or case selection poli-
cies. Two distinct areas have been investigated: the control of noise; and the reduction
of redundancy.

Noise reduction algorithms aim to improve competence by removing cases that are
thought to have a detrimental effect on accuracy. These may be corrupt cases with in-
correct solutions or, alternately, they may be cases whose inclusion in the case-base
results in other cases being incorrectly solved. These algorithms usually remove only
a few cases. Wilson Editing [20], also called ENN, is the best known algorithm and
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attempts to remove noise by removing cases that are incorrectly classified by their near-
est neighbours. ENN removes noisy cases but also deletes cases lying on boundaries
between classes leaving smoother decision boundaries. Tomek extends ENN with the
Repeated Wilson Editing method (RENN) and the All k-NN method [18]. RENN ex-
tends ENN by repeating the deletion cycle until no more cases are removed. The All
k-NN is similar, except that after each iteration the value of k is increased. The Blame-
Based Noise Reduction (BBNR) algorithm [6] is a noise reduction algorithm that takes
a slightly different approach in attempting to identify cases that cause misclassification
and removing them if they cause more harm than good. Noise reduction can reduce
competence, hence careful consideration should be given to the domain and structure
of the case-base before applying these algorithms to ensure there is a need for noise
reduction. Our work does not advance research on noise reduction but rather identifies
datasets where noise reduction is required.

Redundancy reduction algorithms can be either incremental, starting with an empty
edited set and selecting cases, or decremental where cases are deleted from an initially
complete set. Hart’s [8] Condensed Nearest Neighbour rule (CNN) was an early in-
cremental approach in which only cases not solved by the edited set are added to it.
CNN is sensitive to the case presentation order and numerous extensions or modifica-
tions have suggested improvements [1,19]. McKenna and Smyth’s [11,17] competence-
guided editing techniques use local case information from their competence model [16]
to rank cases prior to case selection, so that redundant cases are presented later in the
editing process. Several ranking measures are proposed based on a case’s coverage
and reachability sets including relative cover ranking (RC), which is shown to give
a large reduction in case-base size while retaining competence. McKenna and Smyth
also developed the CASCADE authoring system [12] in which the case-base devel-
oper, guided by a model of case competence, could interact with an interface to manage
the selection of which cases to add or remove from the case-base.

Several contemporary decremental approaches use similar local case competence
knowledge to guide their editing decisions. Wilson and Martinez’s Reduction Tech-
nique range of algorithms (RT1-3) [21] is guided by a case’s associates. The associates
of a case is the set of cases which have that case as one of their nearest neighbours and
is analogous to Smyth & Keane’s [15] coverage set. The algorithms remove a case if at
least as many of its associates would be correctly classified after deletion. Brighton and
Mellish [3] adopt a similar approach with their Iterative Case Filtering algorithm (ICF).
A case is deleted if its reachable set is larger than its coverage set, i.e., more cases can
solve the case than it can solve itself. The process is repeated until no more cases are re-
moved. This results in boundary cases being retained and central cases being removed.
Delaney and Cunningham [6] employ a similar approach in their Conservative Redun-
dancy Reduction algorithm (CRR) in which a case with smallest coverage set is selected
first and any cases that it solves are deleted from the training set. This algorithm was
tested on email classification where it is shown that conservative redundancy reduction
achieves a higher accuracy than comparable but more aggressive algorithms.

Redundancy reduction algorithms require a trade off between the level of compaction
and competence preservation. The more modern algorithms (RC, RT3, ICF and CRR) all
provide a good but different balance between these conflicting objectives. Our approach
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gives the knowledge engineer control of this balance. The contemporary redundancy
editing approaches all rely on models [10,15,16] of the case-base to supply local infor-
mation about the relationship between cases. These relationships are used to indirectly
retain cases on decision boundaries. In our approach we also calculate local case in-
formation but the information identifies the position of a case in relation to a decision
boundary. We aim to directly identify and retain cases on or near decision boundaries.

3 Case-Base Complexity Profiling

Our objective is to help the knowledge engineer make decisions on maintenance strate-
gies by providing a global case-base measure of accuracy, noise and redundancy plus
local information on the structure of the case-base. Our approach is to provide a profile
of a local case metric. We use a case complexity measure to provide the local measure
and a ranked profile of this measure to provide a view of the overall effect within the
case-base. The complexity profile identifies the mix of local complexities. In the rest of
this section we first define the local case complexity measure used and then look at our
profiling approach to providing a global picture of the case-base.

3.1 Complexity Measure

The foundation of our approach is to measure the local complexity based on the spa-
tial distribution of cases within the case-base. Complexity is calculated using a metric
based on the composition of its neighbours while incrementally increasing the size of
its neighbourhood.

k
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Fig. 1. Calculation of the complexity metric

The complexity measure is calculated for each case by looking at the class distri-
bution of cases within its local neighbourhood. Pk is the proportion of cases within
a case’s k nearest neighbours that belong to the same class as itself. In Figure 1(a) a
case is represented by a symbol on the plot with the class of the case distinguished by
the shape, star or circle. If we consider case c1, then as the value of k increases, the
sequence of Pk starts 1, 0.5, 0.67, 0.5. A nearest neighbour profile can now be plotted
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for c1 using Pk as k increases. The complexity metric is based on the area of the graph
under the profile, the shaded area in Figure 1(b). Case complexity is calculated by

complexity = 1 − 1
K

K∑
k=1

Pk

for some chosen K. With K=4 the complexity of c1 is 0.33. A large value for K has little
impact on the results because the metric is biased towards a case’s nearest neighbours.
We have used K=10 in our calculations for all but the smallest case-base sizes.

Cases with high complexity are close to classification boundaries and identify areas
of uncertainty within the problem space. Cases with complexity greater than 0.5 are
closer to cases of a different class than those of their own class, and are potentially
noisy. Cases with low complexity are surrounded mainly by cases with the same class
as themselves, and are located in areas of the problem space in which the system would
be more confident in making a decision on the class of a new problem. Cases with a
zero complexity value are surrounded by a sizeable group of cases with the same class
as itself, and may be considered redundant because other cases in the group would be
able to solve new problems in this region of the problem space.

3.2 Profile Approach

The complexity measure provides a local indicator of uncertainty within the problem
space and has been shown to be useful in informing a case discovery algorithm [9].
However, it is difficult for the knowledge engineer to use this local information directly
to gain an insight into the structure of a case-base from a global perspective. Our ap-
proach to providing the knowledge engineer with meaningful access to this pool of local
information is to present the data as a ranked profile of case complexities. In this ap-
proach the mix of complexities within the case-base can be viewed as a profile allowing
comparisons to be made between case-bases.

The ranked complexity profile is created by first calculating the case complexity of
each case, as described in Section 3.1. The cases are then ranked in ascending order of
complexity. Then, starting with cases with the lowest complexity, case complexities are
plotted against the proportion of cases used. Thus the x-axis shows the proportion of
the case-base and the y-axis gives the complexity value for a particular case. A typical
profile plot, for a case-base containing redundancy, is shown in Figure 2. An exponen-
tially shaped curve is positioned to the right of the graph after the redundant cases with
zero complexity.

Three key global indicators can be taken from this plot to give a measure of accuracy,
redundancy and noise respectively, as follows:-

– Error Rate: The area under the curve, shown as the shaded area on the plot, gives
the overall complexity of the problem being faced and provides a measure of ex-
pected error rate.

– Redundancy: The position at which the plot breaks away from the x-axis, shown
on the profile as x1, gives a measure of the level of redundancy within the case-base.
This is a measure of the proportion of cases located in single class clusters.
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Fig. 2. Typical graph of local complexity profile

– Noise: A case with a complexity greater than 0.5 has the majority of its neighbours
belonging to a different class. These cases can be considered noisy. The proportion
of noisy cases can now be portrayed as the distance from x2 to 1; i.e., 1-x2.

It is expected that these three indicators will correlate well with typical measures of
error rate, redundancy and noise. This will be investigated in the evaluation that follows.
However, it is the graph itself that provides the best insight into the structure of the case-
base, and allows informed decisions to be made by the knowledge engineer in relation
to whether the number of cases in the case-base is appropriate to the domain and its
level of complexity.

4 Experimental Evaluation of Profiling

We evaluate complexity profiles on two levels in this section. First we examine whether
complexity profiling can provide useful comparisons of case-bases from different do-
mains. Then we investigate our hypothesis that the complexity profile indicators accu-
rately predict global error rates and levels of noise and redundancy.

4.1 Cross Domain Comparisons

In the previous section we looked at a typical complexity profile and claimed that this
profiling provided a good approach at making comparisons across different domains.
To examine this claim we look at example complexity profiles from four domains. Fig-
ure 3(a)-(c) show the complexity profiles for three public domain classification datasets
from the UCI ML repository [2], together with the complexity profile for an artificial
dataset in Figure 3(d).

Wine (Figure 3(a)) is a simple three class problem with 14 numeric attributes and
178 instances. It can be seen from the profile that a high level of classification accuracy
is expected due to the small area under the complexity curve (0.05). The expected level
of noise is very low with an estimate of 4% and a maximum complexity value for an
instance being well below 1. A high level of redundancy is also evident with 75% of the
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Fig. 3. Complexity profiles for sample datasets

instances having a zero complexity value. A case-base created from this dataset, con-
taining less redundancy, could form part of an excellent CBR problem-solver because
the similarity measure forms the instances into clusters with the same solutions - similar
problems have similar solutions.

Hepatitis (Figure 3(b)) is a smaller dataset of 155 instances represented by 20, mostly
nominal, features containing some missing values. This is a more complex problem
with an overall complexity of 20% and a gentler slope to the curve than for Wine,
suggesting more complex decision boundaries. There is a moderate predicted level of
noise (16%) with several instances completely surrounded by instances of an opposing
class resulting in a peak complexity value of 1. Although there is less redundancy than
for wine, the level is still high with 46% of the instances surrounded by at least 10
instances with the same class. Applying noise reduction algorithms would probably
improve the level of accuracy achieved and redundancy reduction algorithms could be
applied to reduce storage requirments without affecting accuracy levels.

Breast Cancer (Figure 3(c)) is a binary classification domain with 9 multi-valued
features containing missing data. This is a complex problem, with the low slope on the
graph indicating most instances lie close to decision boundaries. There is a high esti-
mated level of noise (28%) and little redundancy (8%). This profile would suggest a
dataset that is not suitable for a CBR application as it stands. Applying noise reduction
algorithms may improve accuracy levels. In addition, improvements in the similarity
measure or case representation could be investigated to create a design in which prob-
lems with similar solutions are better recognised as being similar.

The final profile, Figure 3(d), is for an artificial dataset with 100 instances. This is a
binary classification problem with 2 numerical features where the class of an instance
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is randomly selected. This is a problem that has been created so that similar problems
will not form into a cluster of instances with similar solutions. The dataset would not
make a suitable case-base for a case-based problem-solver and this is confirmed by the
complexity profile. As expected, the predicted error rate is 50% and the predicted noise
level is also 50% because instances are as likely to be surrounded by instances of an
opposing class as the same class. There is no redundancy because the instances do not
form into large same class clusters.

4.2 Accuracy and Noise Predictions

The evaluation of complexity profiles from different domains, and the insight the pro-
file provides, assumes that the error rate, noise level and redundancy level indicators
are good predictors of the real values contained within the data. While conceptually
the use of these indicators appears reasonable, we want to investigate the relationships
empirically.

Table 1. Results summary of complexity profile indicators compared to alternative measures

ERROR RATE NOISE REDUNDANCY

Case-Base TEST SET PROFILE ENN PROFILE PROFILE

Wine 0.037 0.050 0.033 0.04 0.75

Iris 0.059 0.058 0.048 0.05 0.79

Hepatitis 0.189 0.203 0.176 0.16 0.46

Lymphography 0.187 0.242 0.155 0.14 0.23

Breast Cancer 0.339 0.344 0.306 0.28 0.08

House Votes 0.079 0.083 0.071 0.07 0.77

Zoo 0.038 0.085 0.061 0.06 0.70

Accuracy or error rate is the easiest indicator to compare. We calculate error rate
experimentally using ten fold cross-validation. Nine folds are retained as the training
set with the remaining fold being the unseen test set. The average error rates for seven
UCI datasets, calculated using 1-NN, are shown in column 2 of Table 1 with the cor-
responding error rate indicator from the complexity profiles shown in column 3. There
is a strong correlation between the results as can be seen by the close fit to the straight
line in Figure 4, which plots the complexity profile prediction against test set error rate.

There is not an obvious measure of noise with which to make a comparison. How-
ever, ENN is the best known noise reduction algorithm. Hence, we use the reduction in
the size of a dataset after applying ENN as a benchmark measure of noise with which
to compare our predicted indicator from the complexity profile. The average edited set
size after applying ENN as a proportion of the original dataset size is shown in column
4 of Table 1. This is compared with the average complexity profile noise indicator, as
shown in column 5. Again there is a strong correlation between the results, as shown by
the fit to a straight line in Figure 5, which plots the complexity profile noise prediction
with the proportional reduction in the size of the dataset from applying ENN.
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These results confirm that the complexity profile is a good predictor of accuracy and
noise. The ability of the complexity profile to predict redundancy is difficult to measure
directly but is investigated in more detail in Section 5.
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Fig. 5. Noise level correlation

5 Complexity Threshold Editing

The case-base complexity profile provides a tool that can be used for informed redun-
dancy editing in which the knowledge engineer has control over the level of redundancy
reduction. As with most redundancy editing algorithms, our approach aims to give a
high classification accuracy and to provide significant storage space reduction. How-
ever, these objectives can be contradictory. Aggressive case editing can achieve large
reductions in case-base size but at the expense of classification accuracy [6]. The com-
plexity profile provides a measure of the proportion of redundant cases compared to
cases near decision boundaries giving an explanation of the effect of different levels of
redundancy reduction on competence.

In classification problems redundant cases are found in clusters with the same clas-
sification preferably far from decision boundaries. Our approach to case-base editing is
to identify and delete redundant cases while at the same time retaining boundary cases.
The complexity measure, described in Section 3.1, is a good identifier of boundary
cases, with a high complexity value, and redundant cases with a low complexity. We
use the local case complexity to guide our editing algorithm.

The benefits of this approach over existing techniques are two-fold. Firstly, the knowl-
edge engineer is in control of the maintenance process and is able to make an informed
decision on a suitable level of case-base compaction dependent on a system’s perfor-
mance requirements. This decision is not made by selecting an arbitrary case-base size.
Rather, through a review of the complexity profile, a judgement can be made on the im-
pact of different complexity thresholds. If storage space or retrieval time requirements
are crucial to the design a higher threshold can be chosen in the understanding that it
will reduce competence. Secondly, the complexity profile provides an explanation of the
editing process by providing a transparency to the process and a justification for deleting
the selected cases.
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The basic approach is to set a complexity threshold and delete cases with a complex-
ity below the threshold. The threshold is set on the y-axis, and the resulting size of the
case-base can be noted on the x-axis. Our expectation is that setting a zero threshold will
remove only cases that are likely to be redundant and not result in a fall in competence.
Competence is expected to decline gradually as the complexity threshold is increased.
The basic approach gave promising results but also highlighted several problems.

– Noisy cases are by their very nature boundary cases and hence will be retained by
this algorithm. Adopting the approach of most other contemporary editing algo-
rithms, we add a pre-processing noise editing algorithm (RENN).

– Clusters of cases all with zero complexity can form. Setting a simple threshold
can delete the complete cluster. It would be better to retain at least one case to
represent the cluster. To overcome this problem an iterative approach is employed
with case complexities being recalculated after each case deletion and the cases
being re-ranked in ascending order of complexity.

– A further problem with clusters of cases with zero complexity is the choice of order
of deletion. If a random selection is made cases nearer decision boundaries may be
selected for deletion first. This would harm the performance of the algorithm so
we introduce a friend to enemy distance ratio as a secondary ranking. The friend
distance is the average distance to the case’s nearest like neighbours whereas the
enemy distance is the average distance to the case’s nearest unlike neighbours. A
high ratio indicates a case closer to a decision boundary and farther from cases
of the same class, whereas a low ratio indicates a case farther from a decision
boundary and in a cluster of cases of same class.

The Complexity Threshold Editing algorithm (CTE), incorporating the changes intro-
duced above, is described in Figure 6.

T, Dataset of n cases (c1 ….cn)
COM(S), Calculate case complexity, distance 

ratio and order cases in set S
RENN(S), Apply noise removal to set S
Count=0

COM(T)
For each c in T    

if ( complexity(c)<threshold) count++
End-For
E-Set       RENN(T)
For 0 to count

COM(E-Set)
c       First case in E-Set 
E-Set       E-Set - c   

End-For
Return  (E-Set) 

Fig. 6. Complexity threshold editing algorithm
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6 Experimental Evaluation of Complexity Threshold Editing

In this evaluation we compare the performance of Complexity Threshold Editing with
several existing redundancy reduction algorithms. The algorithms being compared can
be split into three categories.

– Complexity Threshold Editing (CTE) is our new redundancy reduction algorithm
and directly comparable with existing redundancy reduction algorithms. It is eval-
uated with four different complexity thresholds (0, 0.1, 0.2 and 0.3)

– Existing redundancy reduction algorithms (CRR, ICF and RC). These are modern
redundancy reduction algorithms that aim to reduce the size of the case-base while
maintaining competence. They have been shown to perform well in previous com-
parisons but each provides a different balance between compaction and compe-
tence: CRR provides a conservative approach to redundancy editing, RC is an ag-
gressive algorithm deleting the highest number of cases, whereas, ICF falls in the
middle giving a moderate level of case-base compaction.

– Noise reduction algorithms (ENN and RENN). These algorithm aim to improve com-
petence but remove only a few cases and are not comparable with redundancy re-
duction algorithms. They are included in the evaluation because RENN has been
used as the pre-processing algorithm for all the redundancy reduction algorithms
including CTE. RENN provides a benchmark for accuracy that the redundancy re-
duction algorithms aim to maintain.

6.1 Experimental Setup

A ten times 10-fold cross validation experimental set-up is used giving one hundred
case-base/test set combinations per experiment. The editing algorithms were applied
to each case-base and the resulting edited set size is recorded. Test set accuracy, using
1-NN retrieval, was measured for the original case-base and for each of the edited sets
created by the editing algorithms.

Comparisons have been made on seven UCI datasets and the averaged results are
shown in Tables 2 and 3. Table 2 contains the average test set accuracy for each algo-
rithm on each domain. The highest accuracy result achieved by the redundancy reduc-
tion algorithms in each domain is highlighted in bold. Table 3 gives the unedited dataset
size in column 2 together with the edited dataset size as a proportion of the original in
the other columns. The values in bold are the size reduction achieved by the redundancy
algorithm with the highest accuracy. Both tables include an average row but this should
be used with care as it is calculated across different domains.

6.2 Results of Evaluation

The results of the evaluation can be summarised in each of the categories as follows:

– The CTE algorithm provides the highest accuracy of the redundancy reduction al-
gorithms in six of the seven domains. At zero complexity threshold, CTE has the
highest average accuracy of 87.5% compared to 86.5% for CRR. This is achieved
with smaller case-base sizes, 32.8% of original size on average compared to 39.4%,
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Table 2. Comparison of average test set accuracy for alternative editing algorithms

REDUNDANCY CTE NOISE

Case-Base ORIG CRR ICF RC 0 0.1 0.2 0.3 RENN ENN

Breast Cancer 0.661 0.740 0.736 0.688 0.738 0.734 0.728 0.709 0.753 0.736

Hepatitis 0.808 0.839 0.833 0.821 0.859 0.853 0.847 0.822 0.834 0.862

House Votes 0.922 0.905 0.901 0.904 0.922 0.916 0.898 0.854 0.911 0.920

Iris 0.940 0.947 0.931 0.943 0.949 0.933 0.882 0.878 0.952 0.952

Lymphography 0.812 0.759 0.749 0.757 0.775 0.775 0.776 0.758 0.772 0.781

Wine 0.963 0.957 0.934 0.923 0.959 0.924 0.884 0.822 0.948 0.953

Zoo 0.957 0.906 0.902 0.904 0.921 0.901 0.876 0.778 0.904 0.926

Average 0.866 0.865 0.855 0.850 0.875 0.862 0.842 0.803 0.868 0.876

Table 3. Comparison of edited case-base size for alternative editing algorithms

REDUNDANCY CTE NOISE

Case-Base ORIG CRR ICF RC 0 0.1 0.2 0.3 RENN ENN

Breast Cancer 258 0.248 0.160 0.071 0.604 0.450 0.292 0.163 0.674 0.694

Hepatitis 140 0.403 0.082 0.061 0.355 0.265 0.186 0.102 0.796 0.824

House Votes 392 0.471 0.035 0.038 0.155 0.093 0.061 0.038 0.908 0.928

Iris 135 0.389 0.296 0.065 0.177 0.078 0.038 0.037 0.952 0.952

Lymphography 134 0.415 0.180 0.152 0.625 0.460 0.322 0.189 0.815 0.846

Wine 161 0.439 0.159 0.099 0.208 0.098 0.056 0.033 0.965 0.967

Zoo 91 0.355 0.486 0.110 0.241 0.138 0.096 0.075 0.927 0.938

Average 187 0.394 0.153 0.074 0.328 0.221 0.146 0.087 0.853 0.870

showing that CTE is an excellent algorithm for conservative redundancy reduction.
At moderate levels of redundancy reduction, with a threshold of 0.1, CTE achieves
slightly better accuracies than ICF but retains slightly more cases. Overall the per-
formance is comparable with ICF. With higher complexity thresholds, for agressive
redundancy reduction, CTE does not perform so well and is outperformed by RC.

– The three existing redundancy reduction algorithms all provide a different compro-
mise on the trade-off between case-base compaction and maintaining competence.
CRR, designed to take a conservative approach to redundancy reduction, has the
highest accuracy on each domain and the highest average accuracy of 86.5% com-
pared to 85.5% for ICF and 85.0% for RC. However, CRR obtains the improved
accuracy by retaining, on average, 39% of the cases, more than twice that of ICF

(15%) and five times RC (7%). Very aggressive redundancy reduction is achieved
by RC but the results confirm that this is at the expense of loss of accuracy. The
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performance of ICF lies between the others on both competence retention and case-
base size reduction.

– There is little to choose between the performance of the noise reduction algorithms.
In these datasets ENN gives the highest average accuracy but that is probably be-
cause many of these datasets are not noisy and ENN gives the best results on data
with low levels of noise. RENN removes slightly more cases and generally performs
better on noisy data but worse on low noise datasets. It is worth noting that on four
of the datasets all the noise reduction algorithms harm accuracy but on Breast Can-
cer and Hepatitis substantial accuracy gains are achieved by noise reduction.

CTE provides the best performance for conservative redundancy reduction, provid-
ing superior accuracy on six out of the seven domains. We checked the significance of
these differences using a 2-tailed t-test with 95% confidence level. The superiority of
CTE was found to be significant in 4 domains; Hepatitis, House Votes, Lymphography
and Zoo.

As expected, setting a zero level threshold maintained accuracy at a similar level
to that achieved after RENN noise reduction in all the domains and overall there was
actually a slight increase in accuracy from 86.8% to 87.5%. This confirms that at the
local level the case complexity measure identifies redundant cases and at a global level
the redundancy indicator estimated from the complexity profile is a good predictor of
the level of redundancy within a case-base. When the complexity threshold is increased
above zero, accuracy initially falls away gradually at first, as non-redundant cases start
to be deleted and then more quickly as cases nearer to decision boundaries are deleted.

The performance of CTE for aggressive levels of redundancy reduction with the
higher complexity thresholds was disappointing. This suggests that while case com-
plexity provides a good measure for identifying redundant cases away from boundaries,
it is not so good at selecting between boundary cases.

The expectation that accuracy would fall as the size of the edited case-base falls
is corroborated both for the existing redundancy reduction algorithms and for varying
complexity thresholds with CTE. This confirms previous research results that there is a
trade-off between the conflicting objectives of compaction of the case-base and main-
taining competence.

The inconsistent performance of the noise removal algorithms across the different
datasets highlights the need to apply different maintenance strategies for different do-
mains. Complexity profiling of the case-base can play a role in identifying appropriate
maintenance strategies for a case-base.

7 Conclusions and Future Work

The novel contribution of this work is the use of a local case complexity measure, to-
gether with a case-base profile to guide the case editing process. The complexity mea-
sure identifies redundant cases for deletion and cases on class decision boundaries for
retention. Complexity profiling gives a measure of the level of complexity, redundancy
and noise inherent in the data. This knowledge provides an element of control over the
compromise required between the contradictory objectives of the reduction in case-base
size and the retention of competence.
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Complexity profiling can play a further role in assisting the knowledge engineer to
make choices between alternative maintenance techniques depending on the structure
of the data and a system’s performance requirements. Profiling also provides the op-
portunity to create a benchmark for comparison with future versions of the case-base to
monitor the impact of changes over time.

We have introduced the Complexity Threshold Editing algorithm and demonstrated
its effectiveness on seven public domain datasets. The algorithm was shown to provide
superior performance characteristics when compared to existing techniques for conser-
vative levels of editing and comparable performance at moderate levels of editing. One
limitation of the approach is an average performance for aggressive editing because the
complexity measure does not make a balanced selection between alternative boundary
cases. Enhancements are being investigated to improve this selection on boundaries.

Complexity profiling has also been introduced and evaluated on public domain
datasets. The interpretation of several profiles has been discussed to show how they
can help the knowledge engineer develop a suitable case-base maintenance policy. The
global indicators on accuracy, redundancy and noise, extracted from the profiles, are
shown to correlate well with alternative measures.

In this paper we have concentrated on providing support for the knowledge engineer
in the redundancy editing problem. However we are keen to see how the use of profiling
might be used more generally to provide support in other case-base maintenance areas,
such as noise reduction.
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Abstract. Feature selection for unsupervised tasks is particularly challenging,
especially when dealing with text data. The increase in online documents and
email communication creates a need for tools that can operate without the su-
pervision of the user. In this paper we look at novel feature selection techniques
that address this need. A distributional similarity measure from information the-
ory is applied to measure feature utility. This utility informs the search for both
representative and diverse features in two complementary ways: CLUSTER di-
vides the entire feature space, before then selecting one feature to represent each
cluster; and GREEDY increments the feature subset size by a greedily selected
feature. In particular we found that GREEDY’s local search is suited to learning
smaller feature subset sizes while CLUSTER is able to improve the global qual-
ity of larger feature sets. Experiments with four email data sets show significant
improvement in retrieval accuracy with nearest neighbour based search methods
compared to an existing frequency-based method. Importantly both GREEDY and
CLUSTER make significant progress towards the upper bound performance set by
a standard supervised feature selection method.

1 Introduction

The volume of text content on the Internet and the widespread use of email-based com-
munication have created a need for text classification, clustering and retrieval tools.
There is also growing research interest in email applications, both within the Case-
Based Reasoning (CBR) community [6,12] and more generally in Machine Learn-
ing [15]. Fundamental to this interest is the challenge posed by unstructured content,
large vocabularies and changing concepts. Understandably, much of the research effort
is directed towards mapping text into structured case representations, so as to facilitate
meaningful abstraction, comparison, retrieval and reuse.

Feature selection plays an important role for the indexing vocabulary acquisition
task. Often this initial selection can be either directly or indirectly applied to identify
representative dimensions with which structured cases can be formed from unstructured
text data. Applied directly, each selected feature corresponds to a dimension in the case
representation. When applied indirectly, selected features are first combined to identify
new features in a process referred to as feature extraction before they can be used as
dimensions for case representation [4,25]. Although feature extraction is undoubtedly
more effective than feature selection at capturing context, our experiences with super-
vised tasks suggests that feature selection is an important complementary precursor to

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 340–354, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the extraction phase [24]. In this paper we are interested in feature selection applied
directly to derive case representations for unsupervised tasks involving text data.

Feature selection reduces dimensionality by removing non-discriminatory and some-
times detrimental features, and has been successful in improving accuracy, efficiency
and comprehension of learned models for supervised tasks in both structured [8,10]
and unstructured domains [26]. Feature selection in an unsupervised setting is far more
challenging, especially when dealing with text data. Typical applications (e.g. email,
helpdesk, online reports) involve clustering of text for retrieval and maintenance pur-
poses. The exponential increase in on-line text content creates a need for tools that
can operate without the supervision of the user. However, in spite of this need, current
research in feature selection is mainly concerned with supervised tasks only.

The aim of this paper is to apply unsupervised feature selection to text data. We intro-
duce feature selection methods that are applicable to free text content as in emails and to
texts that are sub-parts of semi-structured problem descriptions. The latter form is typ-
ical of reports such as anomaly detection or medical reports. Analysis of similar words
and their neighbourhoods provide insight into vocabulary usage in the text collection.
This knowledge is then exploited in the search for representative yet diverse features.
In a GREEDY search, the next best feature to select is one that is a good representative
of some unselected words, but also unlike previously selected words. This procedure
maintains representativeness while ensuring diversity by discouraging redundant selec-
tions. Greedy search can of course result in locally optimal, yet globally non-optimal
feature subsets. Therefore, a globally informed search, CLUSTER selects representative
features from word clusters.

Central to feature selection methods introduced in this papers is the notion of simi-
larity between words. Word co-occurrence behaviour is a good indicator of word sim-
ilarity, however co-occurrence data derived from textual sources is typically sparse.
Hence, distance measures must assign a distance to all word pairs, whether or not they
co-occur in the data. Distributional similarity measures (obtained from information the-
ory) achieve this by comparing co-occurrence behaviour on a separate disjoint set of
target events [18]. In this paper events are all other words. Intuitively, if a group of
words are distributed similarly with respect to other words then selecting a single repre-
sentative from a neighbourhood of words will mainly eliminate redundant information.
Consequently, this selection process will not hurt case representation, but will signifi-
cantly reduce dimensionality. A further advantage of exploiting co-occurrence patterns
is that it provides contextual information to resolve ambiguities in text such as similar
meaning words that are used interchangeably (synonyms) and the same word being used
with different meaning (polysemies). In both situations similar cases can be overlooked
during retrieval if these semantic relationships are ignored.

Section 2 presents existing work in unsupervised feature selection and work related
to distributional distance measures and clustering based indexing schemes. Next we
establish our terminology before presenting the baseline method in Section 3. Details
of distributional distance measures and the role of similarity for unsupervised feature
selection is discussed in Section 4. Section 5 introduces the two similarity-based selec-
tion methods, GREEDY and CLUSTER. Experimental results are reported on four email
datasets in Section 6, followed by conclusions in Section 7.
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2 Related Work

Feature selection for structured data can be categorised into filter and wrapper methods.
Filters are seen as data pre-processors and generally, unlike wrapper approaches, do
not require feedback from the final learner. As a result they tend to be faster, scaling
better to large datasets with thousands of dimensions, as typically encountered in text
applications. Comparative studies in supervised feature selection for text have shown
heuristics based on Information Gain (IG) and the Chi-squared statistic to consistently
outperform less informative heuristics that rely only on word frequency counts [26].

Unlike with supervised methods, comparative studies into unsupervised feature se-
lection are very rare. In fact, to our knowledge there has only been one publication
explicitly dealing with unsupervised feature selection for text data [16]. Generally,
existing unsupervised methods tend to rely on heuristics that are informed by word
frequency counts over the text collection. Although frequency can be a fair indicator
of feature utility it does not consider contextual information. Ignoring context can be
detrimental for text processing tasks because ambiguities in text can often result in poor
retrieval performance. A good example is when dealing with polysemous relationships
such as “financial bank” and “river bank”, where the word frequency for “bank” is
clearly insufficient to establish its context and hence its suitability for indexing or case
comparison.

In Textual Case-Based Reasoning (TCBR) research [22] the reasoning process can be
seen to generally incorporate contextual information in two ways: as part of an elaborate
indexing mechanism [2]; or as part of the case representation [24]. The latter requires
simpler retrieval mechanisms, hence is a good choice for generic retrieval frameworks;
while the former, although better at capturing domain-specific information, is more
demanding of the retrieval process. A further distinguishing characteristic of TCBR
systems is the different levels of knowledge sources employed to capture context [14].
These levels vary from deep syntactic parsing tools and manually acquired generative
lexicons in the FACIT framework [7]; to semi-automated acquisition of domain-specific
thesauri with the SMILE system; to automated clause extraction exploiting keyword
co-occurrence patterns in PSI [25]. Of particular interest to this paper is the capture
of co-occurrence based, contextual information within the case representation. Current
research in this area is focused on feature extraction, which unlike feature selection
aims to construct new features from existing features. Interest in this area has resulted
in extraction techniques for both supervised (e.g. [25,27]) and unsupervised settings
(e.g. [4,11]).

In text classification and applied linguistic research the problem of determining
context is commonly handled by employing distributional clustering approaches. In-
troduced in the early nineties for automated thesaurus creation [18], distributional
clustering has since been widely adopted for feature extraction with supervised tasks,
such as text classification [1,20]. Word clusters are particularly useful because con-
textual information is made explicit by grouping together words that are suggestive
of similar context. Additionally, word clusters also provide insight into vocabulary us-
age across the problem domain. Such information is essential if representative features
are to be selected. Of particular importance for word clustering are distributional dis-
tance measures. These measures ascertain distance by comparison of word distributions
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conditioned over a disjoint target set. Typically, class labels are the set of targets and so
cannot be applied to unsupervised tasks.

The textual case retrieval system SOPHIA introduced a novel approach to combining
distributional word clustering with textual case base indexing [17]. Here feature dis-
tance is measured by comparing word distributions conditioned on other co-occurring
words (instead of class labels). Indexing is enabled by identifying seed features that act
as case attractors. They argue that seed features are those that have non-uniform distri-
butions having low entropy, referred to as specific word contexts. However the entropy
based measure cannot distinguish between representative and diverse features even if
they have specific contexts.

In structured CBR, clustering is commonly employed as a means to identify repre-
sentative and diverse cases for casebase indexing. A good example is the footprint-
driven approach [21] where a footprint case is: representative of its neighbourhood
because of its influence; and diverse because its area of competence cannot be matched
by any other case. This notion of identifying diverse yet representative cases has also
been exploited in casebase maintenance [6,23].

In summary, the representativeness and diversity of an entity can be measured by
analysing its neighbourhood. In this paper the entity is the feature and representative-
ness and diversity are also important for feature selection. Central to feature neighbour-
hood analysis is a good distance metric. When features are words, the distance metric
must take context into account. Distributional distance measures do this by exploiting
word co-occurrence behaviour.

3 Frequency Based Unsupervised Feature Selection

We first introduce the notation used in this paper to assist presentation of the different
feature selection techniques. Let D be the set of documents and W the set of features,
which are essentially words. A document d is represented by a feature vector, x =
(x1, . . . , x|W|), of frequencies in d of words from W [19]. In some applications, the
frequency information is suppressed, in which case the xi are binary values indicating
the presence or absence of words in d. The main aim of unsupervised feature selection is
to reduce |W| to a smaller feature subset size m by selecting features ranked according
to some utility criterion. The selected m features then form a reduced word vocabulary
set W ′, where W ′ ⊂ W and |W ′| � |W|. The new representation of document d is the
reduced word vector x′, which has length m.

Frequency counts are often used to gauge feature utility particularly in an unsuper-
vised setting. The Term Contribution (Tc) is one such measure, showing promising
results in [16]:

Tc(w) =
∑
i,j
i=j

F (w, di) ∗ F (w, dj)

F (w, d) = f(w, d) ∗ log2
|D|
n

Here F computes the tf*idf score which is a measure of the discriminatory power of a
word given a document. Term frequency f is the within document frequency count of a
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feature and n is the number of documents containing feature w. Tc’s frequency based
ranking and selection of features is the base line feature selection method used in this
paper and we will refer to it as BASE (Figure 1).

m = feature subset size
BASE

Foreach wi ∈ W
calculate Tc score using D

sort W in decreasing order of Tc scores
W ′ = {w1, . . . , wm}
Return W ′

Fig. 1. Feature selection with Tc based ranking

Tc will typically rank frequent words appearing in fewer documents above those
appearing in a majority of documents. In this way the BASE method will attempt to
ignore overly frequent (or rare) features. Its main drawback is its inability to address
the need for both representative and diverse features. This leads to selection of non-
optimal dimensions that fail to sufficiently capture the underlying document content.

4 Role of Similarity for Unsupervised Feature Selection

A representative feature subset is one that can discriminate between distinct groups
of problem-solving situations. In a classification setting, these groups are identified by
their class labels and are typically exploited by the feature selection process. However
in the absence of class knowledge, we need to identify and incorporate other implicit
sources of knowledge to guide the search for features.

Similar problem situations are typically described by a similar set of features form-
ing an operational vocabulary subset. When these subsets are discovered the search for
features can be guided by similarity in problem descriptions. In particular knowledge
about feature similarity enables the search process to address both the need for repre-
sentative and diverse features. The question then is how do we define similarity between
features. A good starting point is to analyse feature co-occurrence patterns because fea-
tures that are used together to describe problems are more likely to suggest the same
operational vocabulary subset than features that rarely co-occur. In the rest of this sec-
tion we look at how feature utility can be inferred from similarity knowledge extracted
from feature co-occurrence patterns.

4.1 Feature Utility Measures

For a given word w ∈ W , our first metric estimates the average pair-wise distance Dist
between w and its neighbourhood of k nearest word neighbours.

Dist(w, A, k) =
1
k

∑
wN∈Nk(w,A)

Dist(w, wN )
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where Nk returns the k nearest neighbours of w chosen from A ⊆W , and Dist is the
distance of w from its neighbour wN . Lower values for Dist suggests representative
words that are centrally placed within dense neighbourhoods.

An obvious distance measure for words is to consider the number of times they
co-occur in documents [19]. However the problem with such a straight forward co-
occurrence count is that similar words can be mistaken as being dissimilar because they
may not necessarily co-occur in the available document set D. This is typical with text
due to problems with sparseness [4].

4.2 Distributional Distance Measures

Often, related words do not co-occur in any document in a given collection, due to
sparsity and synonymy. This limits the usefulness of similarity measures based purely
on simple co-occurrence. Distributional distance measures circumvent this problem by
carrying out a comparison based on co-occurrence with members of a separate dis-
joint target set [18]. Applied to text, the idea measures distances between word pairs by
comparing their distributions conditioned over the set of other words. Since the condi-
tioning is undertaken over a separate disjoint set, distances between non co-occurring
word pairs need no longer remain unspecified.

Let us first demonstrate the intuition behind distributional distance measures by con-
sidering three words, a, b and c, and their fictitious word distribution profiles (see
Figure 2). The x-axis contains a set of target events wi, while the y-axis plots the con-
ditional probabilities p(wi|w), for w = a, b, c. Comparison of the three conditional
probability distributions suggests a higher similarity between a and b (compared to pro-
files of a and c). When target events on the x-axis are words, then a comparison between
conditional probability distributions provides a similarity estimate based on word co-
occurrence patterns. The next question then is how can we measure distance between
feature distributions.
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Fig. 2. Conditional probability distribution profiles

Let q and r be two features from W whose similarity is to be determined. For nota-
tional simplicity we write q(wi) for p(wi|w = q) and r(wi) for p(wi|w = r), where
wi ∈ W \ {q, r} and p denotes probabilities calculated from the training data D. Re-
search in linguistics has shown that the α-Skew metric is a useful measure of the dis-
tance between word distributions, when applied to the task of identifying similar noun
pairs [13]. It is argued that the asymmetric nature of this distance measure is appro-
priate for word comparisons, since one word (e.g. ‘fruit’) may be a better substitute
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for another (e.g. ‘apple’) than vice-versa. Here we adopt this metric to compare word
distributions and thereby determine the distance from word q ∈ W to word r ∈ W .

Dist(q, r) =
∑

i

r(wi)log
r(wi)
q(wi)

is the Kullback-Leibler (KL) divergence, which is derived from information theory. It
measures the average inefficiency in using r(wi) to code for q(wi) [3].

In our context, a large value of Dist(q, r) would suggest that the word q is a poor rep-
resentative of the word r, but not necessarily vice-versa. However, the Dist is undefined
if there are any words for which q(wi) = 0, but r(wi) �= 0. The α-Skew metric avoids
this problem by replacing q with αq +(1−α)r, where the parameter α is less than one.
In practice, our Dist is the α-Skew metric with α = 0.99, as suggested in [13].

5 Similarity Based Unsupervised Feature Selection Methods

Dist is the simplest measure that can be employed to rank features. However, we wish
to use it so that a diverse yet representative set of features is discovered. This can be
achieved in two alternatively ways: a GREEDY search that is locally informed; or a more
globally informed CLUSTER-based search.

5.1 Greedy Search for Features

What we propose here is a greedy local search for the best feature subset. At each
stage, the next feature is selected to be both representative of unselected features and
distant from previously selected features. The feature utility score FUSk, combines the
average neighbourhood distance Dist from both the selected and unselected feature
neighbourhoods as follows:

FUSk(w) =
Dist(w, S, k)
Dist(w, U , k)

where U ⊆ W contains previously unselected features, and S = W \ U contains
previously selected features. Here the numerator penalises redundant features while the
denominator rewards representative features.

The FUSk based ranking and selection of features is the first unsupervised feature
selection method introduced in this paper and we will refer to it as GREEDY (Fig-
ure 3). Unlike Tc, FUSk’s reliance on distributional distances to capture co-occurrence
behaviour undoubtedly makes it far more computationally demanding. However this
cost is justified by FUSk’s attempt to address the need for both representative and di-
verse features. One problem though is that GREEDY is a hill-climbing search where
the decision to select the next best feature is informed by local information, hence it
can select feature subsets that, although locally optimal, can nevertheless be globally
non-optimal.
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m = feature subset size
S = ∅; U = W
GREEDY

Repeat
Foreach wi ∈ U

calculate FUSk score
sort U in decreasing order of FUSk scores
wj = top ranked feature in U
S = S ∪ {wj}
U = U \ {wj}

Until (|S| = m)
W ′ = S
Return W ′

Fig. 3. GREEDY method using FUSk based ranking

5.2 Clustered Search for Features

Clustering of words provides a global view of word vocabulary usage in the problem
description space. Each cluster contains words that are contextually more similar to
each other than to words outwith their own cluster. Partitioning the feature space in this
way facilitates the discovery of representative features because each cluster can now be
treated as a distinct sub-part of the problem description space.

We use a hierarchical agglomerative (bottom-up) clustering technique, where at the
beginning every feature forms a cluster of its own. The algorithm then unites features
with greatest similarity in small clusters and these clusters are iteratively merged until m
number of clusters are formed. The decision to merge clusters is based on the furthest
neighbour principle, where those two clusters with least distance between their most
dissimilar cluster members are merged. Typically, this form of cluster merging leads to
tightly bound and balanced word clusters.

Merging of clusters requires that a distance metric is in place. For this purpose we
use the Dist metric from Section 4. However, we must first address the question of
how to deal with the asymmetrical nature of this metric when comparing distances
between members of separate clusters. There are essentially three ways in which the
two distances can be consolidated: use the maximum; the minimum or the average. We
advocate the maximum distance, which combines with the furthest neighbour principle
to form clusters in which there are no large distances.

Figures 4 and 5 illustrates how the choice of distances can affect the final cluster
structure. In this example, clusters are formed with keywords extracted from a PC-Mac
hardware FAQs mailing list. A closer look at the five word clusters formed using the
maximum of the assymetrical distance between a feature-pair suggests that the resulting
groups are not only semantically meaningful (e.g. cluster membership of “dos”) but are
also more balanced (e.g. number of words in a cluster).

Once clusters are formed we need a mechanism to uniformly select one representa-
tive feature from each cluster. In Figures 4 and 5 underlined words indicate such repre-
sentatives (often referred to as cluster centroids or seeds). Previously, we stated that a
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m = feature subset size
W ′ = ∅
generate set of word clusters {C1, . . . , Cm}
CLUSTER

Foreach Ci ⊂ W
wj = feature with max FUSC in Ci

W ′ = W ′ ∪ wj

Return W ′

Fig. 6. CLUSTER method using FUSC based ranking

representative feature is identified by its placement within dense neighbourhoods. Us-
ing this same idea and the Dist metric in Section 4 we estimate the representativeness
of feature w within a cluster C as a function of the average pair-wise distance between
itself and its cluster members:

FUSC(w) =
(
1 − Dist(w, C, |C|)

)
The second unsupervised feature selection method introduced in this paper is CLUS-

TER. It uses the FUSC score to rank features in a cluster, choosing w with highest FUSC
from each cluster. The main steps appear in Figure 6. Here the number of clusters
formed is equal to the desired feature subset size, m. This determines the stopping
criterion for clustering. Like GREEDY, CLUSTER also addresses the need for represen-
tativeness and diversity, however, we expect CLUSTER to have an edge over GREEDY

because its selection is influenced more globally.
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6 Evaluation

We wish to determine the effectiveness of the two similarity-based searches for features,
compared to the frequency-based search:

– GREEDY, introduced in this paper with ranking using FUSk
1 (Figure 3);

– CLUSTER, also introduced in this paper, exploits clustering and ranking using FUSC
(Figure 6); and

– BASE, the baseline with ranking on Tc (Figure 1).

The Tc-based ranking used by BASE is the only unsupervised method that has up to
now been shown to perform better than the basic document frequency and the term
strength methods [16]. We would hope to significantly improve upon the performance
of BASE. Now the upper-bound for any unsupervised technique is its supervised coun-
terpart, therefore, we also compare all our unsupervised methods with the standard
IG-based SUPERVISED feature ranking and selection method.

It is generally harder to carry out empirical testing within a truly unsupervised setting
compared to a supervised one. This is because, the absence of supervised labels calls for
alternative sophisticated evaluation criteria, such as comparison of retrieval rankings or
establishing measures of cluster quality. Instead, we applied our unsupervised methods
on labelled data ignoring labels until the testing phase. Essentially we are exploiting
class labels only as a means to evaluate retrieval performance which indirectly measures
the effectiveness of the case representation. Note that we are not interested in producing
a supervised classifier.

Experiments were conducted on 4 datasets; all involving email messages. Each email
message belongs to one mail folder. Here folders are the class labels. As in previous ex-
periments we used the 20Newsgroups corpus of 20 Usenet groups [9], with 1000 post-
ings (of discussions, queries, comments etc.) per group, to create 3 sub-corpuses [24]:
SCIENCE (4 science related groups); REC (4 recreation related groups) and HW (2 hard-
ware problem discussion groups, one on Mac, the other on PC). With each sub-corpus
the groups were equally distributed. A further set of 1000 personal emails, used for
Spam filtering research forms the final dataset, USREMAIL, of which 50% are Spam [5].

We created 15 equal-sized disjoint train-test splits. Each split contains 20% of the
full dataset, selected randomly, but constrained to preserve the original class distribu-
tion. All text was pre-processed by removing stop words (common words) and punctu-
ation and the remaining words were stemmed. In the interest of reducing time taken for
repeated trials, the initial vocabulary size was cut down to a subset composed of the 500
most and 500 least discriminating words (using IG). These 1000 words then form W .
An effective feature selection method should eliminate the non-discriminating words
and assemble a representative and non-redundant combination of the discriminating
ones.

The effectiveness of feature selection is directly reflected by the usefulness of the case
representation obtained. Therefore, case representations derived by GREEDY, CLUS-
TER, BASE and SUPERVISED are compared on test set accuracy from a retrieve-only
system, where the weighted majority vote from the 3 best matching cases are used to

1 In our experiments k=15 is used as FUSk’s neighbourhood size.
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Fig. 7. kNN accuracy results for 4 datasets

classify the test case. For each test corpus and each method the graphs show the test set
accuracy (averaged over 15 trials) computed for representations with 5, 20, 40 and 60
feature subset sizes (Figure 7).

6.1 Results

Analysis of overall performance of SUPERVISED on the 4 datasets indicates that the
classification of emails from USREMAIL as Spam or legitimate presents the easiest task.
Here, SUPERVISED obtained 80% accuracy with just 5 features, compared with only
60% accuracy on the SCIENCE dataset. In all datasets except SCIENCE, we observe
a steep rise in accuracy up to about 20 features, followed by a levelling-off as more
features are added. This indicates that SCIENCE is the most difficult problem. Unlike
USREMAIL, the other binary-classed HW dataset is harder, because similar terminology
(e.g. monitor, hard drive) can be used in reference to both classes (i.e. PC and Apple
Mac). Additionally, the same hardware problem can be relevant to both mailing lists,
resulting in cross-posting of the same message.

We note that BASE performs very poorly on all datasets compared to GREEDY,
CLUSTER and SUPERVISED. With the exception of the easiest problem (USREMAIL), it
barely outperforms random allocation of classes and does not improve its performance
as more features are added. Both GREEDY and CLUSTER clearly outperform BASE

on all four datasets and improve their performance as the number of features increase.
BASE’s poor performance is explained by the fact that it selects features purely on the
basis of term frequency information. Although frequent words will co-occur with many
other words these co-occurrences will not necessarily be with similar words. Since sim-
ilar words are indicative of similar areas in the problem space, BASE is not able to
identify words that are representative of the problem space.
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As expected, the SUPERVISED method achieves highest accuracy. Although both
GREEDY and CLUSTER never match the performance of the supervised method, they
make good progress towards the upper bound which it is expected to provide. Inter-
estingly, CLUSTER improves relative to GREEDY as feature subset size increases and
by 60 features, it is clearly better on the three more difficult datasets and only slightly
worse on USREMAIL.

The fact that GREEDY is competitive with CLUSTER at lower feature subset sizes, but
falls behind at higher subset sizes, suggests that GREEDY is more susceptible to over-
fitting. This effect can be seen in Figure 8, which plots training and test set accuracy
for GREEDY and CLUSTER on the HW dataset. In these plots, data points lying signifi-
cantly above the line x = y are indicative of overfitting. Comparison of the scatter-plots
confirms that GREEDY is more likely to overfit the selected feature subset to the training
set.
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Fig. 8. Comparison of overfitting behaviour with GREEDY and CLUSTER on HW

6.2 Evaluation Summary

We checked the significance of observed differences between GREEDY and CLUSTER,
using a 2-tailed t-test with a 95% confidence level for feature subset size, m equal to
60 (see Table 1). This test indicated that the superiority of CLUSTER over GREEDY

was significant in all three datasets (bold font), but that of GREEDY on USREMAIL

was not shown to be significant at this level. The superior scaling of CLUSTER can be
explained by the fact that small optimal feature subsets need not be subsets of larger
ones. GREEDY can be expected to suffer from overfitting at larger feature subset sizes,
since the greedily chosen early features are locked in and cannot be altered to improve

Table 1. Results summary for feature subset size 60 according to significance

60 features USREMAIL HW REC SCIENCE

GREEDY 89.3 63.7 64.0 51.0
CLUSTER 88.3 69.1 67.7 54.9
BASE 73.5 51.7 26.5 26.2
SUPERVISED 90.8 74.0 72.0 58.7
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the global quality of a larger feature set. CLUSTER avoids this problem by dividing the
entire feature set into as many clusters as required, before then selecting one keyword
to represent each cluster.

7 Conclusions

The methods introduced in this paper are particularly suited to generating case rep-
resentations from free text data for unsupervised tasks. The novelty of these methods
lies in their exploitation of distributional similarity knowledge to assess the utility of
candidate features.

We introduce two unsupervised feature selection methods: GREEDY and CLUSTER.
Key to both these methods is the selection of representative yet diverse features us-
ing similarity knowledge. Distributional distance measures are able to adequately cap-
ture feature similarity by addressing sparseness in co-occurrence data [18]. Evaluation
results show significant retrieval gains with case representations derived by GREEDY

and CLUSTER, over an existing proven method (BASE) from a previous comparative
study [16]. It is also encouraging to report that both GREEDY and CLUSTER make good
progress towards the upper bound which is provided by a standard supervised feature
selection method. Generally GREEDY is able to generate good feature subsets early on
in the search for features while CLUSTER’s global search approach consistently out-
performs the GREEDY search with increasing feature subset sizes. This is due to the
locally informed GREEDY search identifying locally optimal, yet globally sub-optimal,
subsets. Results also indicate that GREEDY is more susceptible to overfitting. We in-
tend studying the influence of representativeness and diversity on overfitting, using a
weighted form of FUSC to control the balance between representativeness and diversity.

Previously we have shown that feature selection is a useful integral part of feature
extraction when applied to text classification [24]. One difficulty that we have encoun-
tered since then, is that a majority of applications involving text are not necessarily
supervised. This work is a first step towards resolving this shortcoming in existing fea-
ture discovery tools. Future work will look at combining feature selection with more
powerful feature extraction methods to create comprehensive tools for text representa-
tion, indexing and retrieval for both supervised and unsupervised tasks.
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Abstract. Product recommender systems are a popular application and
research field of CBR for several years now. However, almost all CBR-
based recommender systems are not case-based in the original view of
CBR, but just perform a similarity-based retrieval of product descrip-
tions. Here, a predefined similarity measure is used as a heuristic for
estimating the customers’ product preferences. In this paper we propose
an extension of these systems, which enables case-based learning of cus-
tomer preferences. Further, we show how this approach can be combined
with existing approaches for learning the similarity measure directly. The
presented results of a first experimental evaluation demonstrate the fea-
sibility of our novel approach in an example test domain.

1 Introduction

With the increasing success of e-Commerce web-sites, the development of intelli-
gent recommender systems has become a popular field of research. Today, many
e-Commerce sites are already deploying recommender systems to support their
customers during the selection of a product that best matches their requirements
and preferences. Depending on the type of offered products, the desire for such
support can be explained by different issues:

– When being confronted with huge product databases, the search for a suit-
able product can become very time consuming.

– When purchasing complex products (e.g. technical products like PCs, travels
[1], insurance products [2]) customers often do not possess the expertise to
select the optimal product with respect to their requirements.

– Some products cannot be described sufficiently by explicit and objective
properties (e.g. books, music [3], videos [4]) but are selected on the basis of
subtle aspects like personal taste. Without a recommendation a customer
cannot estimate the personal value of such a product until purchasing it.

Since the requirements on the actual recommendation process are varying
between different business scenarios, many different recommendation techniques

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 355–369, 2006.
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have been developed during the last few years (for an overview see [5,6]). In prin-
ciple, two major approaches can be distinguished: content-based recommendation
and collaborative filtering (CF).

Content-based recommendation can deal with the first two issues, i.e. find-
ing suitable products in large databases or advising customers when purchasing
complex products. The customer has to define his product requirements, e.g.
by filling out a predefined query form. This information is then compared with
the descriptions of the available products in order to identify a set of potential
product candidates. If the comparison is based on exact match (e.g. by per-
forming a simple SQL query), this is called filter-based recommendation (FBR).
FBR often leads to unsatisfactory results. An alternative is similarity-based rec-
ommendation (SBR). Here, the comparison between the query and the product
descriptions is based on a specific similarity measure which also allows to rank
retrieved products. As Case-Based Reasoning (CBR) provides powerful tech-
niques for realizing similarity-based retrieval it has become a popular technique
for building SBR systems [7].

Collaborative filtering [8], on the other hand, is typically used to deal with
the third issue, i.e. to provide recommendations for products that cannot be
described sufficiently by explicit properties. The basic idea of CF is to collect
user ratings about seen or bought products and to use rating correlations between
different users and products in order to recommend products. Hence, CF relies on
a vast amount of user feedback before producing satisfactory recommendations.

In recent years several hybrid recommendation techniques which incorporate
content-based and collaborative approaches have been developed [6], and some
of them apply also CBR techniques [9,10,1,11].

In principle, a recommender system must possess knowledge about the cus-
tomers’ requirements and preferences and their relationship to the offered prod-
ucts. Generally, the following types of user needs can be distinguished [1]:

– hard requirements vs. preferences
– explicit vs. implicit preferences, i.e. is the preference explicitly expressed in

the query or not
– general vs. individual preferences, i.e. is it a general preference of almost all

customers or is it customer specific
– short-term vs. long-term preferences, i.e. is the preference only valid for the

actual recommendation process or durable

FBR can only treat the hard, explicit, individual and short-term preferences
encoded in the query. SBR allows a much wider consideration of customer pref-
erences. Similarity-measures (which may be customer specific) can be used to
model almost all kind of preferences. Only implicit subtle preferences, that are
difficult to express formally, can be treated exclusively by CF techniques.

The most challenging task when building a recommender system is the acqui-
sition of knowledge about the different kinds of preferences. While CF strictly
relies on user feedback, SBR is applicable without any feedback by using a pre-
defined similarity measure as a heuristic. However, the quality of this heuristic
influences the recommendation quality dramatically.
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In this paper we propose a novel approach for learning customer preferences
in content-based recommender systems. The approach combines SBR with the
original idea of CBR, i.e. the reuse of collected experience knowledge. Therefore,
it incorporates knowledge about successful recommendations of the past into the
similarity-based product retrieval. We show that an additional optimization of
the underlying similarity measure results in further improvements to the recom-
mendation quality.

The advantage of our approach is its easy integration into state-of-the-art SBR
systems. At the beginning the system can be applied with a standard similarity
measure without relying on any user feedback. If feedback becomes available
during usage it will enable the system to learn its users’ preferences automatically
over time leading to improved recommendation results. Moreover, our approach
also provides the possibility to consider more subtle product properties which
are not explicitly described by existing product descriptions.

Section 2 starts with a short review of the functionality of SBR systems and
existing approaches towards learning customer preferences. Section 3 then de-
scribes our novel approach which combines case-based learning with existing
techniques for learning similarity measures. The results of an experimental eval-
uation presented in Section 4 demonstrate the feasibility of our approach. After
discussing related work in Section 5, we conclude with a summary and an outlook
on future work.

2 Similarity-Based Product Recommendation Systems

Similarity-based recommendation systems have become a very popular CBR
research area and numerous successful commercial applications are in use today.
Surprisingly, on a closer look, most of these systems are not at all CBR systems
in the traditional view of CBR since the used “cases” do not represent problem-
solution pairs of the past but are typically just product descriptions.

2.1 Utility-Oriented Matching

The basic functionality of a SBR system is illustrated in Figure 1. Given a
customer query which describes the desired product properties, a CBR system
applies a predefined similarity measure for comparing the query with the de-
scriptions of all available products which are stored in a product database (PB).
Finally, a ranked set of the s most similar products (a typical value of s is 10)
is presented as the result set (RS) to the customer1.

If we look at this scenario, it becomes obvious that the system does not com-
pare two problem descriptions as assumed by the traditional idea of CBR. In-
stead, it compares a problem—the query—directly with potential solutions—the
products. This works well for product recommendation because here problems
and solutions can be described by using the same vocabulary. However, it also

1 In this paper we do not consider adaptation.
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Fig. 1. Product Recommendation by Utility-Oriented Matching

restricts the features that can be used during the recommendation process to
the information contained in existing product descriptions.

Traditional cases consisting of problem-solution pairs are not used at all in
this scenario. Some authors have characterized this approach as utility-oriented
matching because the similarity measure is directly used to approximate the
utility of known solutions—here product descriptions—for a given problem [12].

In principle, the utility of a product description pi with respect to a given
query q can be characterized as the conditional probability that the product will
be accepted by the customer—we denote this event as ωi—given q, i.e. we may
define a utility function u as follows by applying Bayes rule:

u(q, pi) = P (ωi|q) =
P (q|ωi) · P (ωi)

P (q)
(1)

In a SBR system, a predefined similarity measure sim is used to approximate
this unknown utility function u. Since it does not possess any other knowledge
about the customers’ preferences, the recommendation quality of such a system
depends completely on the accuracy of this approximation.

2.2 Dealing with Customer Preferences

However, because of the complexity of customer preferences, in practice standard
similarity measures such as the Euclidean Distance will result in a poor approx-
imation of u. In principle, u will be determined by different kinds of preferences
with different locality in the problem space:

1. the different importance of general product properties, e.g. “the price is
usually much more important than the color”

2. preferences concerning different values of product properties
(a) independent from q and other properties, e.g. “black cars are generally

preferred over white cars”
(b) depending on q but independent from other properties, e.g. “if a black

car is desired, a dark blue car will likely be preferred over a yellow car”
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(c) depending on other properties, e.g. “black BMWs are mostly preferred
over red BMWs”

3. product specific preferences that are independent from q (in the probabilistic
view this is the prior probability P (ωi) of class ωi in formula (1)), e.g. “the
silver BMW 320i is a very popular car and is generally preferred over many
other similar cars”

With similarity measures commonly supported by CBR tools [13], influence 1
can be modeled with global feature weights and influences 2a) and 2b) can be
modeled with local similarity measures. However, in particular the definition of
accurate local similarity measures is a very time consuming task.

The consideration of influences 2c) and 3) would require more sophisticated
measures requiring a modeling effort that is usually not tolerable in practice. But
the more serious problem of defining an accurate similarity measure is the fact
that knowledge about the customers’ preferences is a priori completely missing
or only partially known.

In our previous work we have proposed to apply a machine learning approach
which allows automatically learning of feature weights and local similarity mea-
sures based on user feedback [14,15,13]. We have shown that this approach also
allows the incorporation of partially known background knowledge into the learn-
ing process [16]. However, in particular the learning of local similarity measures
is generally susceptible to overfitting if not enough user feedback is available.
Moreover, the approach does not provide a solution for the consideration of all
above enumerated kinds of preferences.

3 Case-Based Learning of Customer Preferences

In this section we present an alternative approach for learning customer prefer-
ences which avoids some of the problems of the previously described approaches.

The basic idea of this approach is illustrated in Figure 2. At the beginning of
its life cycle, the extended recommender system will behave like a standard SBR
system, i.e. it will perform utility-oriented matching on the given PB. However,
any time a customer has selected a product that is acceptable for him (e.g. if he
orders the product), his query (optionally together with additional information,
see Section 3.2) will be stored in the case base CB together with the product-ID
of the selected product. These records now represent actual cases in the tradi-
tional view of CBR; the combination of a problem description—the query—and
a corresponding solution—the accepted product. Such cases do not necessarily
represent optimal cases, because in general it cannot be guaranteed that the
customer orders the optimal product regarding to his query. Nevertheless, such
cases contain some implicit knowledge about the customers’ preferences, i.e. the
relationship between certain queries and products that are at least acceptable
for the customer.

During subsequent recommendation sessions, this knowledge can be used to
estimate u more accurately than possible with a predefined similarity measure
sim alone. Therefore, the current query q is not only matched against PB,
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but also against CB by using sim. This is possible because both PB and CB
contain product descriptions (QA in Figure 2). This procedure results in the
corresponding retrieval result RR := (r1, . . . , rk) where ri ∈ PB ∪ CB with
sim(q, ri) ≥ sim(q, rj) for all i < j. RR cannot be used directly as result set
because different ri may refer to the same product pi. In order to generate a
unique result set, some post-processing of RR, e.g. by applying a voting strategy,
is required.

3.1 Voting Strategy

Because in the recommendation scenario one is not only interested in the proba-
bly most useful product, but in a set of the s most useful products, the definition
of a fixed size k of RR is not suited for our approach. If RR contains only ri

that correspond to t < s different products, the system will not be able to rec-
ommend s different products. Hence, k has to be determined dynamically after
each retrieval process. It will be set to the smallest possible value k, so that RR
includes exactly s different products.

Now RR can be used to generate the required result set RS consisting of s
different product proposals. The ranking of these products within RS will be
determined by some voting strategy. Different voting strategies are commonly
used in k-NN classification, e.g. simple majority voting, weighted voting [17] or
advanced and adaptive approaches [18,19]. In our experiments (see Section 4)
product px is ranked over product py (written as px � py) according to the
following weighted majority voting rule, where all rpx

i correspond to the same
product px:

px � py ⇔
∑

rpx
i ∈RR

sim(q, rpx

i ) >
∑

r
py
i ∈RR

sim(q, rpy

i ) (2)
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This means, that ri which are very similar to q will have a higher impact
on the majority voting. Such a simple weighted voting strategy may lead to
overfitting problems as long as only a few cases have been collected because the
corresponding products will then have a much higher probability to be recom-
mended compared with still unbought products. More adaptive strategies which
take the cases’ distribution into account might outperform the proposed strategy.

Finally, the actual product descriptions have to be retrieved from the product
database in order to generate the final result set to be presented to the customer.
This is necessary because the retrieval result might contain only cases from CB
which do not contain the product description itself but only the product-ID.

3.2 Learning Additional Case Indexes

Up to now, we have assumed that queries consist of the same attributes that are
used in the original product descriptions (denoted as QA in Figure 2). As already
described, this is a precondition for applying utility-oriented matching. However,
by learning cases of successful recommendation sessions, this is no longer strictly
necessary. One may enable the customer to ask also for additional product prop-
erties that are not contained at all in the original product descriptions (part QB

of the query). Typical examples of such additional query items are more subtle
(e.g. “I want a very sporty car”) or functional requirements (e.g. “I want to use
my PC mainly for gaming”). In principle, a fixed set of such additional features
may be considered explicitly in the query interface or the interface may provide
the option to enter some free text to be processed by textual CBR techniques.
In order to handle this additional information during the retrieval step, the
used similarity measure sim has to be extended appropriately. This extension
will only influence the retrieval of cases in CB but not the retrieval of product
descriptions in PB.

The additional desires of the customer cannot improve the recommendations
if the case base is still empty. However, the more cases that contain such in-
formation are stored in the case base, the higher will be the influence of this
information on the recommendation results. In principle, the queries of the cus-
tomers are then used to implicitly index the products automatically by using
additional features which would be too expensive to be done manually by do-
main experts. At some point, the collected information could also be extracted
automatically from the case base by applying statistical techniques in order to
explicitly extend the product descriptions stored in the product database. An-
other possibility is the incorporation of collaborative features (e.g. user profiles)
[1] in part QB of the query.

3.3 Acquisition of Training Data

As typical for a supervised learning approach, the acquisition of accurate training
data is crucial. In our approach, we assume that the customer states some query
(this query might also be the result of a sales dialog [20]) and in the case that
he accepts one of the proposed products (e.g. because he orders it), this data is
used to create a new training example, i.e. a new case. To control the learning
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process, one may choose one of the CBL algorithms [21]. For example, when
applying the CBL2 algorithm, one would store a new case only if the ordered
product was not recommended as the optimal product.

However, in general it cannot be guaranteed, that the resulting case represents
an optimal query-product pair. Maybe there are other products in PB that the
customer has not seen, for example, because they were not included in the result
set, but that he would definitely prefer. Moreover, changes in PB may also
influence the quality of the collected cases. Maybe a customer would now prefer
a newer product which was not available at the time the case was created.

This means, we will only get relative utility feedback [22] about the utility
of the products included in the original result sets2 of past recommendation
sessions. If the system proposes s different products p1, . . . , ps and the customer
orders p3 we only get evidence that u(q, p3) ≥ u(q, pi) for all i ≤ s, but we do not
obtain reliable information about the absolute value of u(q, p3). However, this
information would be necessary in order to ensure that the learned case alone
represents accurate knowledge about u.

This situation is less problematic if the retrieval set contains the optimal
case with high probability, even if it is not ranked correctly. Hence, the quality
of the predefined similarity measure which determines the initial result sets is
crucial in order to restrict the noise in the training data required for case-based
learning. However, learning of extremely noisy training examples is generally
unlikely because then the customer would not have ordered the product.

To guarantee a minimal quality of the used similarity measure it is possible
to apply machine learning, too. In [14,15,13] we have presented an algorithm
for learning similarity measures which can handle the kind of relative utility
feedback that we obtain in the recommendation scenario. Hence, this feedback
can also be used to optimize the similarity measure in parallel or a priori to
learning new cases in order to reduce the noise in the training data.

4 Experimental Evaluation

In order to evaluate our novel approach we have performed some first experi-
ments in a simulated product recommendation scenario.

4.1 Test Domain

As test scenario we have chosen a used cars domain consisting of 100 descrip-
tions of different used cars which we have extracted from a real world online
used cars market. Each car is described by 4 numeric and 4 symbolic attributes,
such as price, power, color, year of construction, etc. For a more detailed de-
scription of the used test domain see [13]. In the described evaluation we have
not investigated the possibility to learn additional product features during the
recommendation process (cf. Section 3.2), i.e. the 8 mentioned features solely
correspond to part QA of the query illustrated in Figure 2.
2 Here we assume that the customer analyzes each product contained in the result set.
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Since we were not able to perform an experiment with real world customers, we
have simulated imaginable average customer preferences with a manually defined
similarity measure simU consisting of specific feature weights and specific local
similarity measures for each attribute. Of course, such a model is not sufficient
for simulating the actual behaviour of real world customers. On the one hand,
it does not simulate the inconsistencies between the individual preferences of
different customers that would occur in the real world. On the other hand, it
also does not model all the kinds of preferences discussed in Section 2.2 (2c and
3 cannot be modeled with such a kind of similarity measure). However, it is
sufficient for a first proof of concept of our approach.

4.2 Experiments

In order to evaluate the capability to learn the simulated customer preferences
in the described test domain, we have performed several experiments where we
have applied the proposed case-based learning approach and/or our previous al-
gorithm for learning feature weights [14]. In principle, each experiment consisted
of the following steps:

1. create empty case base CB, empty feedback set FB, and initialize standard
similarity measure sim with uniform weights

2. select a set of training queries Qtrain := (q1, . . . , q10000)
3. for each qi ∈ Qtrain do

(a) generate result set RSi := (p1, . . . , p10) consisting of 10 product descrip-
tions pj by following the procedure described in Section 3 and by using
qi, sim, CB and the static product database PB

(b) determine preferred product ppi := arg maxpj∈RSi
simU (qi, pj)

(c) generate feedback FBi := (ppi, (p̄1, . . . , p̄9)) where p̄l ∈ RSi \ ppi

(d) store feedback, i.e FB := FB ∪ FBi

(e) optional: learn feature weights from FB and update sim accordingly
(f) create a new case ci from qi and the product-ID of ppi

(g) optional: insert ci into CB by applying CBL1 or CBL2
(h) if i ∈ {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000} then evaluate

the recommendation accuracy on query test set Qtest using simU

By different combinations of the optional learning steps 3(e) and 3(g) we have
generated the following five experiments:

SIM: Exclusively learning of feature weights by using the relative utility feed-
back FB which only expresses that the ppi are more useful than all other pj

contained in the respective result sets RSi.
CBL1/2: Exclusively applying case-based learning algorithms CBL1 (each ci

is stored) or CBL2 (ci is stored only if ppi �= p1 holds) (cf. [21]).
SIM-CBL1/2: A-priori learning of feature weights using the feedback of the

first 5/10/25/50 queries and activation of CBL1/2 starting from query 51.
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Each experiment was repeated with 5 different, a priori randomly generated
training query sets where each attribute value of the individual queries was
selected randomly. For the evaluation of the achieved recommendation accuracy
a static set of 250 independent randomly generated test queries Qtest was used
to compute 4 different quality measures:

mpp-in-x: The average percentage of recommendation sessions, where the the-
oretically most preferred product mpp = argmaxpi∈PB simU (q, pi) was con-
tained in the first x ∈ {1, 3, 10} recommended products.

avg-mpp: The average position of mpp in the result sets.

4.3 Results

Figure 3 summarizes the results of the experiments SIM and CBL1/2. The left
chart shows the achieved improvements concerning the mpp-in-x measures. For
the exclusive optimization of sim one observes a rapid ascent of all learning
curves where about 10 training queries are sufficient to achieve the maximal
improvements, e.g. for the mpp-in-10 measure an increase from 52% to 81%.
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Fig. 3. Results of Experiments SIM and CBL1/2

In contrast, the learning curves of the CBL experiments show much slower
improvements of the recommendation quality. However, after 1000-2500 training
queries case-based learning starts to outperform similarity measure learning and
achieves significantly better results after 10000 queries, e.g. for the mpp-in-1
measure over 40% (compared to about 29%). This is not surprising since the
case-based learning approach is able to learn the preferences encoded in the
local similarity measures of simU which cannot be modeled with feature weights.
However, surprisingly the differences between the CBL1 and CBL2 are very
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small, even though the average number of stored cases is significantly lower in
the CBL2 experiment (6032 compared to 10000 in CBL1).

In order to be able to evaluate the impact of noisy feedback, we have per-
formed an additional CBL1 experiment with optimal feedback (CBL1+oFB)
by using mpp instead of pp in step 3(b). The CBL1+oFB learning curve shows
continuous recommendation improvements from the beginning. In the more real-
istic experiments CBL1/2 the improvements achieved with less then 50 training
queries are quite small or even negative. This can be explained by overfitting
which will be amplified by the noisy training data in CBL1/2 and becomes more
obvious in the avg-mpp measure (right chart of Figure 3).

Figure 4 shows the results of the experiments SIM-CBL1/2. Here, the first
50 queries3 were used to exclusively optimize the similarity measure in order to
improve the feedback quality for the subsequent case-based learning process.
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Fig. 4. Results of Experiments SIM-CBL1/2

The achieved results clearly show the advantage of the combination of both
learning techniques. On the one hand, a priori optimization of sim ensures much
faster performance gains compared with applying case-based learning alone. Now
only 250 training queries are sufficient to outperform the results of SIM. This also
leads to increased robustness against overfitting, since the negative impact of a
too small case base is compensated by the preliminary improvements achieved by
optimizing sim. However, the avg-mpp curves clearly show that the overfitting
effect is still present (see peak at 100 training queries) as long as the case base
contains less than 50 cases4. Although overfitting is more prominent in SIM-
CBL2, in general the differences between SIM-CBL1 and SIM-CBL2 are almost
not recognizable. This is all the more surprising because the average number of
learned cases is further reduced (4930) compared to experiment CBL2.
3 According to the results of SIM even 25 queries would be sufficient.
4 Note, that the first 50 queries were not used for learning cases.
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On the other hand, the finally achieved recommendation accuracy is signifi-
cantly higher compared with the results that can be achieved with each learning
technique alone. This becomes particularly obvious in the avg-mpp quality mea-
sure. While each learning technique alone was able to decrease the average rank
of mpp from about 16 to 6, the combination of both approaches finally achieves
an average rank smaller than 3. This would allow to decrease the size of the
returned result sets significantly, e.g. if displayed on mobile devices [23].

5 Related Work

The work that is most related to the approach presented in this paper are the
results of the DIETORECS project [1,24]. In this project, an advanced travel
recommendation system which combines case-based and CF-based techniques
has been developed. This system also uses the combination of a raw product
database and a case base containing so-called session-cases. These cases describe
recommendation sessions of the past, containing stated queries, selected travel
components, and also collaborative features.

The major difference compared to our work is the way the two databases are
used. In the DieToRecs system, on the one hand, the product database is used
for an initial filter-based retrieval which requires conversational techniques in
order to obtain useful result sets. On the other hand, the case base is used only
to determine the ranking of the previously selected cases by using collabora-
tive techniques. Moreover, the system does not optimize the similarity measure
required to retrieve session-cases.

An early algorithm which integrates case-based learning with optimization
of the required similarity measure is the CBL4 algorithm [21]. However, this
algorithm is designed for simple classification tasks and requires absolute utility
feedback [22] about the correctness of the solution proposed by the CBR system.
Hence, it is not applicable in the product recommendation scenario.

Other work which deals with learning of user preferences is described in
[25,26,27]. However, none of these approaches applies a combination of case-
based and similarity measure learning as proposed in this paper.

6 Conclusion and Future Work

In this paper we have presented a novel approach for learning customer preferences
in content-based recommender systems. This approach extends the functionality
of existing similarity-based recommender systems by applying case-based learn-
ing in combination with similarity measure learning. On the one hand, optimizing
the similarity measure directly improves the accuracy of the approximation of the
unknown utility function. On the other hand, it also improves the quality of the
absolute utility feedback required by the case-based learner.

The best suited target applications for our approach are product recommenda-
tion systems which deal with relatively static product databases. Very dynamic
product databases will lead to problems because then the risk that stored cases
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become obsolete is very high. In this paper we have only considered learning of
general or average preferences of all or at least a certain class of customers. In
principle, our approach can also be used to support personalized recommenda-
tion. However, in practice this will only be feasible in domains where individual
customers frequently buy the same type of products.

Although in this paper we have focused on product recommendation, the ap-
proach is not restricted to this application scenario. It is also suited to learn other
types of user preferences, e.g. like those occurring in knowledge management do-
mains where users are interested in getting advice about available knowledge
resources (e.g., documents, web sites, pictures) with respect to their individual
information needs [28].

The advantage of our approach is its broad applicability and its compatibility
with already successfully applied SBR systems. Moreover it allows an automatic
extension of the set of features used to characterize products or information
resources. The results of the presented experimental evaluation show the prin-
cipal ability of our approach to learn customer preferences from easy to acquire
customer feedback.

For future work we are planning to perform a more realistic evaluation by
using a more sophisticated model of the customers’ preferences including all
kinds of preferences discussed in Section 2.2 and also nondeterministic behavior.
In such a scenario the learning task is generally more challenging. However, here
the case-based approach should also outperform solely learning of the similarity
measure more clearly due to its less restricted hypotheses space. In such an
extended evaluation it would also be interesting to investigate the impact of
learning additional product features (cf. Section 3.2).

We also plan to further improve our approach. On the one hand, advanced vot-
ing strategies which incorporate statistical information about the learned cases
might allow to model the prior probabilities P (ωi) explicitly in order to improve
the recommendation accuracy. Moreover, this might also help to reduce the risk of
overfitting for small case bases. Generally, we plan to investigate the potential of
the generation and incorporation of statistical models into the recommendation
process with the increasing number of collected cases. On the other hand, smarter
learning policies than CBL2 (e.g. such as CBL3 [21]) can help to reduce the size of
the case base while maintaining or even improving the recommendation accuracy.
This is important in order to minimize retrieval times. Another interesting issue
would be the application of our advanced similarity measure learning algorithm
which allows an optimization of local similarity measures [15,13,16].

Last but not least, we want to investigate whether our approach is also suited
to be used in domains where products can customized [29,30].
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Abstract. Collaborative Web Search (CWS) is a technique used to re-
rank the results of Web search engines to reflect the collective preferences
of a community of online searchers. It applies a case-based reasoning
perspective to Web search. In simple terms, past search sessions (queries
and result selections) are stored as search cases and reused in response to
similar queries; previously selected results, which have been regularly se-
lected for similar queries in the past, are promoted in response to the new
query. One of the limitations of CWS is that it only facilitates the promo-
tion of previously selected results. In this paper we propose a solution by
adopting a different type of case representation in which a search session
is represented by a relevance model (e.g., a decision tree) learned from
the selections made during the session. Each new target query results in
the retrieval of a set of similar search cases and their component decision
trees are dynamically combined to produce an ensemble classifier that is
then used to re-rank the result-list to promote community-relevant re-
sults. We present the results of an evaluation based on live-user searching
histories and show that this ensemble-based approach can outperform a
standard CWS system.

1 Introduction

Collaborative Web Search (CWS) [1] is a form of meta-search which seeks to per-
sonalize the results returned by a traditional search engine(s) according to the
preferences of a community of like-minded searchers. It is a case-based approach
to Web search in the sense that each community is represented by a case-base
of past search experiences or search cases. Each search case is composed of a
query and the result pages that have been selected by community members in
response to the query plus selection frequency information. When faced with
a new target query submitted by a community member, a set of search cases
with similar queries is retrieved and their most frequently selected results are
promoted within the result-list that is returned by the underlying search en-
gine(s). Search communities can be defined in a variety of different ways but
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one example includes the use of general purpose search boxes as part of topic
specific Web sites. For example, consider the query “jordan pictures” submitted
through a Google search box. Ordinarily, there is not enough information here
to tell Google about whether the searcher is looking for pictures of the Arab
state, the Formula One (F1) racing team, the basketball player, or the British
glamour model. With CWS, however, if the query originates from an F1 Web
site, for example, then it is likely that other similar queries will have occurred in
the past and that these queries will have led to F1-related selections. CWS will
respond to this query by retrieving cases for these similar queries and promoting
the most selected F1 results from these cases. Previous work has demonstrated
how CWS can significantly improve the quality of search results in many realistic
search scenarios [2,3].

CWS suffers from certain limitations, which ultimately limit the occasions
where it can contribute relevant promotions to user searches. Perhaps the most
significant limitation is that it can only accommodate the promotion of results
that have been previously selected by community members. Frequently, the un-
derlying search engines used by CWS to provide an initial result-list may return
results that are highly relevant to the community but if they have not been
selected previously then they cannot be promoted. This is a missed opportunity.

In this paper we describe one potential solution to this problem that involves
a key change of case representation to facilitate a more flexible approach to
relevance judgement. Instead of storing the results that have been selected for
some query, we propose to use these selected results as positive examples with
which to train a relevance classifier (in this case a decision tree). We also use
certain unselected results as negative training examples. Instead of using the
document terms contained within these positive and negative examples we look
at the terms contained in their title and snippet texts; each search engine result is
accompanied by a human-generated title and a query-focused summary snippet
that allows for a more efficient analysis of relevance. Our new cases are then
composed of a query and a decision tree and when faced with a new target
query, as before we retrieve a set of similar cases, but this time use their decision
trees to produce an ensemble classifier that can be used to classify the results
in the initial result-list, with a view to promoting the most relevant ones. When
taken individually the decision trees learned for individual queries constitute
very weak classifiers, but when combined as an ensemble we will demonstrate
that they are capable of identifying relevant results in order to improve the
result-list quality offered by the standard approach to CWS.

We would like to highlight two important contributions of this work. First
and foremost, we are helping to address an important limitation of an already
successful approached to case-based Web search; our live-user trial results point
to an overall improvement in result precision above and beyond that offered
by CWS. Secondly, our approach contributes to work in the area of machine
learning and ensemble-based classifiers. We believe that our technique of select-
ing ensemble members at run-time, according to the target problem (query), is
novel in this context. Essentially we are advocating a lazy approach to ensemble



372 M. Coyle and B. Smyth

construction by choosing ensemble members according to their similarity to the
current problem (target query). In the remainder of this paper we first look at
related work on Web search and ensemble learning (Section 2), before describing
our new selective ensemble-based approach to relevance classification in Web
search (Section 3), and then go on to provide some preliminary experimental
evidence in support of this approach (Section 4), before concluding.

2 Related Work

Improving the quality of Web search results is the substantive problem moti-
vating our research, especially when it comes to dealing with the type of vague
queries [4,5] that are commonplace in Web search. Like others, we believe that
the adaptation of search results, so that they better reflect the context of the
search or the preferences of the searcher [6], is an important element of any over-
all solution to this problem. Lawrence [7] provides an excellent summary of early
work in the area of context sensitive search and distinguishes between two dif-
ferent approaches to deriving context; explicit context declaration ([8,9,10]) and
implicit context inference ([11,12]. Attempts to provide searchers with results
that better reflect their current search needs have involved the use of relevance
feedback [13]: feedback provided by the user on an initial set of results (e.g.,
their initial selections) can be used as the basis for a follow-up search. Indeed
[14] provide evidence that implicit relevance feedback in Web search can be just
as effective as the availability of explicit feedback.

More recently, both academic ([15,16]) and commercial1,2 research has begun
to look at leveraging search history information as a way to personalize search
results in line with the observed preferences of users. Our own research on col-
laborative Web search (see Section 1) is similarly focused on personalizing search
results based on historical searches but instead of focusing on the individual we
have chosen to focus at the level of a community of like-minded searchers [2,3].
CWS is conceived of as a post-processing layer that works in tandem with an
underlying (non-personalized) search engine and works to tailor the results re-
turned by this underlying search engine so that they better reflect the preferences
of a target community. As described in [1], CWS is fundamentally a case-based
approach to Web search, with each community’s search experiences represented
as a case-base of search cases, and each case corresponding to a query (the case
specification) and a set of selected results (the case solution). CWS promotes
the results associated with search cases that are similar to the target query on
the basis that since these results have been selected for similar queries in the
past, there is a high chance they will also be relevant to the target query; this
assumption has been largely borne out in practice. It should be noted for com-
pleteness here, that the now-defunct (with some of the core technology possibly
still in some use at Ask.com, via technology acquired from Teoma) DirectHit3

1 http://myweb2.search.yahoo.com
2 http://www.google.com/psearch
3 http://www.searchengines.com/directhit.html
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search engine used search histories to re-rank search results, though a universal
notion of page popularity was leveraged, so that no personalization occurred
whereby a user received results different from those presented to a different user
who submitted the same query.

The primary goal of this work is to propose an alternative approach to re-
sult promotion in CWS based on the use of an ensemble of weak classifiers
trained from search histories. The quest for increased accuracy and stability
in machine learning classifiers has led to the advent of ensemble or committee
based techniques, which seek to create multiple classifiers from training data
and aggregate the predictions of those classifiers to generate more accurate tar-
get classifications ([17,18,19,20]). In many cases ensemble classifiers have been
shown to out-perform their individual members since the instability of individual
classifiers in the presence of noisy data or other changes to the training data is
counteracted by other ensemble members; this is true as long as the ensemble
members are sufficiently diverse ([21]). Normally an ensemble classifier is made
up of a static collection of ensemble members that are then used as the basis for
the final classification. However, recently researchers have begun to investigate
more selective approaches to ensemble construction involving the selection of a
subset of possible members; see for example the work of [22,23]. For instance,
[23] describe an approach for selecting ensemble members using a genetic algo-
rithm. An original training set S is sampled t times and a set of t decision trees
is learned over each sample to generate an ensemble, E; thus E = {e1, ..., et}. A
genetic algorithm is used to evolve a population of ensembles, each represented
by a set of binary weights, {w1, ..., wt}, such that wi indicates the probability of
the ith component learner being a member of the ensemble or not. The fitness of
a population member is the inverse of its classification error over a validation set.
The resulting ensemble will typically contain a subset of the possible members,
E∗ ⊂ E, with E∗ being a function of the training data S (i.e., E∗ = f(S)) and
E∗ has been shown to outperform non-selective ensembles in terms of general-
ization accuracy; see also related work on the generation of selective ensembles
of neural networks [22].

In this work we too propose an approach to ensemble classification in which
the individual ensemble members are decision trees learned from the selection
patterns of a searcher in response to some query. The result is a large collection of
weak classifiers for a given community of searchers. We use these weak classifiers
as an ensemble when it comes to judging the relevance of new search results,
but instead of using the complete set of classifiers we also produce a selective
ensemble. However, our ensemble members are chosen at classification time with
reference to the current target problem, T ; in other words E∗ is a function of
the training data, S, and the target problem, T , that is, E∗ = f(S, T ).

3 Selective Ensembles for Relevance Assessment

As mentioned in Section 1, one of the main drawbacks of Collaborative Web
Search (CWS) is that result promotions are limited to results that have been
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selected in the past. At best this limits the promotion prospects available to
CWS, passing over certain relevant results when it comes to promotion. But at
worst it introduces a tendency for CWS to promote old or even out-of-date
results, which may serve to degrade result-list quality in the long run. Our
ensemble-based solution involves a number of stages that will be discussed in
this section in detail: the generation of ensemble members; the representation of
ensemble members as reusable cases; and, the construction of a suitable ensemble
at search-time for use in classifying a new result-list.

Fig. 1. Each ensemble member is a decision tree generated for the target query qT

from a set of positive and negative examples based on the terms contained in the titles
and snippets of selected results and certain unselected results in the final result-list. A
machine learning algorithm L combines both sets of training examples to generate a
decision tree.

3.1 Generating Ensemble Members

An overview of the ensemble member generation process is shown in Figure 1. In
what follows we will use the phrase search session to refer to a user initiating a
new search (with some target query, qT ) and then reviewing the ordered result-
list, R = r1, ..., rn to make an ordered sequence of selections, S = s1, ..., sm. We
refer to the rank of a selection, denoted by rank(si) to be the position of the
selection in the result list; thus, rank(si) = k iff si = rk and the top result has
a rank of 1.



On the Use of Selective Ensembles for Relevance Classification 375

Identifying Positive Training Examples. In any given search session we
can treat S as a (noisy) set of positive training examples with respect to qT in
the sense that S refers to the set of result pages that the searcher deemed to be
at least partially relevant to their query; see Equation 1.

Pos(qT , R) = S (1)

Identifying Negative Training Examples. By the same token we could view
the set R\S (the complete set of results that were not selected) to be a set of
negative training examples: since our searcher chose to ignore these results we
can assume that she did not find them at all relevant. This reasoning is surely
flawed however. We cannot be sure that the searcher even considered all of these
unselected results; for example, she may have found a suitable result early on in
the result-list, thus obviating the need to look further. For this reason, it seems
to be more sensible to treat a subset of R − S as negative examples, namely
only those unselected results that occurred before the last selected result (the
selected result with the largest rank); see Equation 2. This makes sense because
we can be confident that the searcher at least looked through the result-list up
to and including the selected result with the largest rank.

Neg(qT , R) = {ni : niε(R\Pos(qT , R)) ∧ rank(ni) < rank(s|S|)} (2)

Term-Based Example Representation. Each positive and negative exam-
ple is made up of a title and a snippet but must be converted into a suitable
term-based representation prior to training. We use a standard bag-of-words rep-
resentation after first removing stop words from the example text and applying
Porter’s stemming algorithm [24] to the remaining words. The feature selection
method used is a simple one, with features corresponding to terms, with the
selection criterion that a term must occur in the title or snippet text of at least
2 results to be considered. All such terms in the entire result list are identified,
leading to the generation of a k-dimensional feature vector. Thus, we can create a
term-based representation of the result list in which each example, corresponding
to some search result r, is represented as a k-dimensional vector, er = {v1, ..., vk}
such that vi refers to the number of times that the ith term occurs in result r.

Decision Tree Learning. Once we have a set of positive and negative training
examples we can of course rely on a wide range of instance-based classification
techniques to produce a classifier for a given set of training examples. In this
paper we focus on producing decision trees and rely on the Weka ([25]) machine
learning toolkit to produce two types of decision trees using the J48 algorithm
(a variation of the popular C4.5 algorithm described in [26]) and alternating
decision trees (ADTrees) [27]4. We use DT (qT , R, S) to denote a decision tree
4 ADTrees use a measure of confidence (the classification margin) with different nodes

of the decision tree to generate a final classification (see [27]) and are generated
using a number of boosting iterations [18,20] to the decision tree generation process
in an attempt to strengthen any weak hypotheses by the underlying classification
algorithm by combining them - a type of ensemble generation in itself.
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Fig. 2. Two decision trees generated from two search sessions for the query “cibenix”
(a well-known company in the mobile domain)

constructed by the learner L for the query qT with a result-list R and a set of
result selections S. Two sample decision trees, learned after two search sessions
for the query “cibenix”, are shown in Figure 2. Notice how weak the decision
trees are: the sessions that led to these trees contained only one or two positive
(i.e. result selections) and a similar number of negative training examples. On
their own, these trees would not be expected to perform well when it comes to
classifying new results as relevant or not. However, we will see how even small
ensembles of these classifiers can deliver reasonably accurate predictions.

3.2 Case Representation and Reuse

Now that we can use information contained in each search session (the query
and selection information) as training data for a decision tree, we can convert
each session into a new search case, ci. In the standard approach to CWS each
case is composed of a query and a set of result selections. In our new version
(CWSE), which uses an ensemble of decision trees for result promotion, cases
are composed of a query and a decision tree (DT) learned from the session data.
In turn the specification part of a case refers to the query and the solution part
is the decision tree; see Equations 3-5.

ci = (q, DT (q, R, S) (3)
Spec(ci) = q (4)

Sol(ci) = DT (q, R, S) (5)

When a new target query, qT is submitted by a community member, CWSE

submits the query to the underlying search engine(s) to retrieve an initial result-
list, R. In addition the query is compared to the search cases in the community’s
case-base to identify a set of related cases, c1, ..., cr - cases whose specifications
(queries) share terms with the target query; see Equation 6. These cases provide
the ensemble members needed to reclassify the result-list R. To do this each
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riεR is first converted into a term-based example representation as described
above. Next, we compute a relevance score for each converted result from the
classification decisions of the individual ensemble members; that is, the decision
trees stored as the solutions of each related case. The relevance score is computed
from the average of the weighted sum of the individual classifications from each
ensemble member. Ensemble members that come from more similar queries to
the target are given more weight than those associated with less similar queries,
as shown in Equation 7, where Classify(ri , Sol(ck)) is a binary decision made
about the relevance of result ri by the decision tree represented by Sol(ck).

Sim(qT , ci) =
|qT ∩ Spec(ci)|
|qT ∪ Spec(ci)|

(6)

Relevance(ri, qT , c1, ..., cr) = (7)∑
∀k=1...r Classify(ri, Sol(ck)) ∗ Sim(qT , Spec(ck))

r

4 Evaluation

In this work we set out to solve a limitation of the existing CWS technique
by facilitating the promotion of novel search results that have not been previ-
ously selected by a community member. In this section we assess the precision
performance of our ensemble-based approach against the standard CWS tech-
nique, which has already been shown to offer significant improvements over its
underlying search engines [2,3].

4.1 Test Data

To evaluate our ensemble-based approach we use search data collected during a
live-user trial of the I-SPY CWS system conducted over a period of 45 weeks
among the employees of a Dublin-based software company, which operates in
the mobile domain; this group constitutes a single search community. During
this time employees were asked to use I-SPY as their primary search engine and
the resulting search logs include information about the queries submitted, the
result-lists returned, and the results ultimately selected plus their ranks. The
trial search data covers a total of 6831 search sessions, 4005 (58%) of which in-
clude at least one selected result. Unfortunately not all of this information could
be used in the current evaluation because the original trial logging system did
not guarantee the logging of all result title and snippet information. Neverthe-
less, title and snippet information was available for 1933 search sessions. In our
evaluation we are only interested in sessions that will lead to at least two positive
training examples and 1 negative example during decision tree learning and so
we further eliminated all of those sessions with fewer than 2 selections or those
with no unselected results appearing above a selected result. This left 946 search
sessions for the evaluation. We found an average of 2.43 selections per session,
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which led to 2.43 positive and 5.56 negative training examples on average per
decision tree training session; the resulting decision trees had an average of 5.286
and 1.466 nodes for the ADTree and J48 decision trees, respectively5.

4.2 Methodology

During the trial the test sessions were replayed in sequence through different vari-
ations of the I-SPY CWS system in order to develop different search case-bases6.
Each variation re-ranked each result list according to its own internal measure of
relevance so that different results could be promoted from their original position
by each variation. These variations included:

– I-SPY. The standard version of I-SPY [2,3] which only promotes results that
have been previously selected.

– J48. A version of I-SPY designed to use our ensemble-based approach, build-
ing the decision trees for its search cases using Weka’s J48 algorithm.

– ADTree. A second ensemble-based version of I-SPY that uses Weka’s ADTree
algorithm to learn its search result decision trees.

During the session replay process the different test systems built their own
search case-bases. In addition, each search was responded to by each system
with reference to this case-base. For example, consider what happens at the kth

session in the search logs. At this point each system will have developed a case-
base from the k-1 sessions that have gone before. When responding to the query
contained in this kth session, qk, each system will use its available cases to pro-
duce its own promotion list. In fact, at this stage we actually consider two more
system variations in addition to the above. The I-SPY+J48 variation refers to
a version of CWS that produces a new promotion list that includes the stan-
dard I-SPY promotions first, followed by the J48 ensemble-based promotions,
and similarly for the I-SPY+ADTree variation, which combines standard and
ADTree promotions. In each of the 5 systems the final result-list (returned to the
user) is made up of the appropriate promoted results, followed by the remaining
results from the original result-list of the underlying search engines.

For this evaluation we focused on the top 8 results contained in these final
result-lists; we found that users rarely selected results beyond the top 8. We
measured their quality with reference to the results that were actually selected
during a given session. Thus, to test the quality of a result-list produced by
system variation V for the query of the kth session (call this promotion list PV

k )
we simply calculate the precision of PV

k as relative overlap between PV
k and the

results that were logged as selected for the searcher during this kth session. For
example, consider the J48 variation producing a result-list with 5 promotions
for the kth search session; remember we are focusing on the top 8 results so the
first 5 of these are ensemble promotions followed by 3 original results. If we find
5 the ADTree produces trees with larger numbers of nodes depending on how many

boosting iterations are applied. The default of 10 iterations was found to be superior
to both larger and smaller numbers of iterations.

6 In all experiments, a case similarity threshold of 0.5 was used.
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that 4 of the 8 results were originally selected by the searcher for qk, then the
precision of the list is 0.5. Note that, according to this methodology, the upper
bound for the precision of a result list is governed by the number of selections
the user made from that list, which is generally quite small (2.43 on average
in these tests). That is, if 3 selections were made during the original trial from
within a given result list, measuring the precision of any re-ranking mechanism
over the top 8 results can have a maximum score of 0.375.

4.3 Results

To begin with we computed a mean precision value, for the final result-list (top
8 results) produced by each of the 5 system variations, averaged over all sessions
that contained promotions. Note that because of the relatively high query sim-
ilarity threshold used for retrieving cases (0.5) this limited the total number of
sessions with promotions to just under 150 test sessions.

The initial results were disappointing. They showed an average precision of
29.5% for I-SPY but a lower average precision for all other techniques; for ex-
ample, J48 presented with an average precision of just under 28%; these results
are presented in Figure 3 as the bars for ensembles with ≥ 1 decision trees.

Why do the ensemble based methods perform poorly on average across the
test sessions? Our focus turned to the type of decision trees retrieved, and in
particular the number of decision trees in the ensembles used in each session.
There is no doubt that, taken individually, the decision trees in the J48 or
ADTree case-bases are unlikely to be good classifiers. After all each decision tree
is learned from the minimal set of training examples that can be extracted from a
given search session. Moreover the quality of an ensemble constructed at search-
time will likely depend significantly on the number of decision trees available as
its members (hence the number of related cases that can be retrieved); ensemble
quality will also depend on member diversity, a point we will return to later.

Fig. 3. Final result-list precision for test sessions with ensembles of given sizes
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If ensemble size is likely to have an impact on search performance then it
makes sense to analyse the results by looking at sessions involving increasingly
large ensembles. Hence, Figure 3 presents the average precision results for each
technique calculated over groups of test sessions that involve ensembles of a
minimum size, from ≥ 1 to ≥ 5. The results suggest that the ensemble-based
techniques are capable of outperforming the standard I-SPY CWS approach as
the size of the ensembles grows. For example, for search sessions with ensembles
containing ≥ 3 decision trees, the I-SPY+J48 result-lists have an average pre-
cision of about 33%, a 10% relative improvement over the precision offered by
standard I-SPY. Figure 3 also shows the number of sessions in each group; for
example, there were 70 sessions with ensembles containing ≥ 3 classifiers.

In general we find that, for sessions whose ensembles contain at least two
decision trees, there is a benefit accruing to the ensemble-based methods. Inter-
estingly the J48-based methods (J48 and I-SPY+J48) consistently outperform
the ADTree-based method (ADTree and I-SPY+ADTree) probably because the
ADTrees are over-fitting to the minimal (and possibly noisy) training data avail-
able in each training session. We also see a consistent benefit for the combination
of I-SPY and ensemble-based promotions suggesting that these types of promo-
tions identify complementary results for promotion. Looking at the results in
Figure 3 for the larger ensembles, we see an apparent decline in the relative
benefits associated with the ensemble-based methods. However, we suggest that
this is largely a consequence of the availability of a much smaller number of test
sessions containing ensembles of these sizes. For example, there are only about
30 test sessions with ensembles made up of at least 5 decision trees.

Let us consider the issue of the apparent superiority of the J48 ensembles
compared to the ADTree ensembles. It is well known that an ensemble’s accu-
racy depends critically on the disagreement between ensemble members [28]. In
turn [29] demonstrated how the diversity of ensemble members can be similarly
important in terms of accuracy. As a crude measure of diversity we can calculate
the overlap that exists in the terms used between pairs of decision trees within
the ensemble. For example, a diversity of 0.75 for an ensemble of 5 decision trees

Fig. 4. Average diversity of decision trees produced by J48 and ADTree classifiers
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means that on average pairs of decision trees drawn from the ensemble share
25% of their terms. Figure 4 shows the average diversity of the ensembles used
during the evaluation; again we look at sessions with ensembles of a given mini-
mum size. The results indicate that the J48 ensembles contain a more diverse set
of decision terms than their ADTree counterparts. For example, for ensembles of
3 or more members, the J48 ensembles on average share only about 3% of their
terms compared to the ADTree ensembles that share about 13% of their terms.

5 Discussion

The results provided here present a preliminary evaluation of our ensemble-based
promotion technique. On the positive side they are based on real rather than ar-
tificial user data. However, they are limited in scope: a relatively modest number
of search sessions were suitable for the evaluation and the ensembles generated at
search time were generally small (containing an average of 2.207 decision trees).
Nevertheless, we feel that the positive results that were noted constitute a com-
pelling proof of concept of our ensemble-based technique; even small ensembles
were seen to provide a precision benefit. And although the precision improve-
ments found are relatively modest, these represent an incremental improvement
over the standard version of I-SPY, which was previously shown to be capable
of offering significant improvements over standard Web search engines.

Perhaps it is surprising that this technique has worked at all. After all the
training examples that are available during a typical search session are extremely
limited and thus the individual decision trees are likely to be very weak relevance
classifiers. Of course the use of ensemble techniques is one way to boost clas-
sification accuracy. However, it should also be remembered that the relevance
classification task is constrained by virtue of the results that are retrieved by
the underlying search engine at search-time. In this sense we do not expect a
limited ensemble of weak classifiers to perform well on arbitrary search results.
The ensembles are only ever used to classify search results that have already
been filtered for relevance by the underlying search engine.

Obviously there is a need for a large-scale evaluation, involving an order of
magnitude more search data. Such an evaluation will allow for the develop-
ment of richer search case-bases that are likely to lead to greater query over-
lap and hence the construction of much larger ensembles, made up of tens
of decision trees. Unfortunately, this data is difficult to come by. For exam-
ple, the standard information retrieval (IR) test datasets such as TREC (see
http://es.csiro.au/TRECWeb) do not provide the type of comprehensive search
data that we need (queries, result-lists, snippets, and selection information), and
so we must continue to work to identify alternative evaluation scenarios.

We have also identified a number of opportunities for improving the core
technique as part of our future research programme. For instance, we chose a
very simple feature extraction technique for turning session data into positive and
negative training examples, scoring individual terms based on a simple frequency
count. A wide range of alternative techniques are available and certainly the
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application of standard IR weighting schemes (such as the TF*IDF measure, for
example) seems appropriate so that special attention can be given to terms that
are especially predictive of a positive or negative example.

Finally, it is worth highlighting some ideas for how our search cases might
be used to support search tasks other than result promotion. One such task
concerns the elaboration of vague queries or the recommendation of new queries
to a searcher. We are interested in exploring how a decision tree, or an ensemble
of decision trees, might be converted into an elaborated query or a new query. For
example, in the evaluation search data one of the vague queries noticed was “four
courts dublin” (referring to the landmark on Dublin’s northside - the popular
Four Courts Hostel is also nearby) and the ensemble constructed for this query
suggested that snippet terms such as “hostel” were indicative of non-relevance.
It seems unlikely that search results for accommodation in Dublin would be of
interest to our Dublin-based trialists, and the search cases learned during the
evaluation reflected this. We believe that it may be possible to convert decision
trees into sophisticated queries that can be recommended directly to searchers
as a form of community-based recommendation.

6 Conclusions

Collaborative Web search is a case-based approach to Web search that involves
the reuse of search cases learned from the search patterns of a community of
like-minded searchers. We set out in this work to solve a known limitation in
collaborative Web search regarding its inability to promote results that have not
been previously selected. Our solution involves a new type of case representa-
tion: each search session is represented as a search case that contains the session
query and a decision tree learned from the snippet texts of results that were
selected (positive examples) or ignored (negative examples). Then, at search-
time the decision trees contained in cases that are similar to the target query
are used to produce an ensemble that can be applied to classify the results re-
turned by an underlying search engine to identify relevant results for promotion.
We have presented the results of an evaluation based on real users’ searching
histories to show that this technique is capable of producing result-lists that
contain more relevant promotions than the original CWS result-lists produced
by I-SPY.
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Abstract. Evaluation criteria for conversational CBR (CCBR) systems are im-
portant to guide development and tuning of new methods, and to enable prac-
titioners to make informed decisions about which methods to use. Traditional
criteria for evaluating CCBR performance by precision and efficiency provide
useful information, but are limited by their focus on the single point at which a
case is selected at the end of the system dialogue, and by their dependence on a
model of the user’s case selection criteria. This paper begins by revisiting issues
in the evaluation of CCBR systems, arguing for the value of assessing the quality
of the intermediate dialogue before case selection. It then proposes an evaluation
approach based on rank quality to provide a fuller picture of system performance,
and illustrates with an empirical study the use of rank quality to illuminate char-
acteristics of similarity assessment strategies for partially-specified cases.

1 Introduction

Conversational case-based reasoning (CCBR) is an interactive paradigm in which sit-
uation assessment is done incrementally in a dialogue with the user. Because CCBR is
extensively used in CBR applications (e.g., [1]), having the right criteria for evaluating
the CCBR process is crucial, both scientifically and practically, for guiding developers
and practitioners in system tuning. At each step of the basic CCBR cycle, the system
presents the user with a set of potentially relevant cases and questions; the user may
either select a question to answer or terminate the dialogue by selecting a case. Each
time the user answers a question, the answer adds to the system’s problem description,
and the system generates a new candidate list. Because CCBR can be seen as aiming to
rapidly drill down to a relevant case, influential work by Aha and Breslow [2] proposed
evaluating CCBR systems based on precision, which measures whether the solution of
the selected case adequately resolves the target problem, and efficiency, which measures
the number of questions that are asked before a candidate case is selected.

Precision and efficiency criteria focus on a snapshot at the time of case selection,
and do not reflect properties of the intermediate dialogue such as how consistently the
system’s suggested cases converge towards the final ranking. Such information may
be especially important to assess as CCBR expands beyond traditional diagnostic tasks
into new areas such as product recommendation, in which the initial dialogue may affect
final user preferences. In addition, assessing precision and efficiency requires having a
model of which cases the user will select, which—as results in this paper demonstrate—
may strongly influence evaluation results. To address these issues, this paper proposes

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 385–399, 2006.
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an alternative approach to CCBR system evaluation, rank quality, which assesses how
well the list of system-proposed cases at each step approximates the list of cases that
would be generated if a complete problem description were available. This is meaning-
ful at any point in the dialogue, and can be evaluated independent of the user’s case
selection criteria.

Despite the intuitive appeal of the rank quality approach, formalizing rank quality
involves surprisingly subtle issues. This paper briefly illustrates some of these issues,
presents a rank quality criterion designed to address them, and defines a property of
case bases, distance granularity, which can help determine the suitability of the defined
rank quality metric for a particular case base.

The paper then presents an experimental examination of characteristics of precision
and efficiency compared to rank quality in practice, for CCBR systems using five dif-
ferent similarity assessment strategies for partially-specified cases from Bogaerts and
Leake [3], applied to three datasets from the UCI archive [4]. The experiments demon-
strate the sensitivity of precision–efficiency approaches to the case selection model and
illustrate how the rank quality approach can provide useful information about character-
istics of the overall dialogue, illuminating differences in candidate similarity assessment
strategies. This makes rank quality a promising tool for guiding the choice of similar-
ity assessment strategies during system development. The paper closes by placing the
results in context of other approaches to evaluating CCBR systems.

2 Precision, Efficiency, and Rank Quality Measures

Precision and efficiency are useful because they address two central concerns for CCBR:
to identify a case which solves the current problem (as measured by precision), and to
do so rapidly (as measured by efficiency). These measures are normally calculated by
simulation experiments, based on a model of user behavior. The new approach proposed
here, rank quality, quantifies the degree to which the list of candidate cases provided
by the CCBR system at the current point in the dialogue matches the list that would be
retrieved if all information about the current problem were known.

More precisely, let t be a full description of a target problem (i.e., a description in
which all attribute values that will be revealed in the dialogue are already known). Let
t̂ represent the current incomplete state of that problem description, under development
in a CCBR dialogue. Let L be the set of possible ordered lists of cases presented by
the CCBR system to the user, and let Ld be the ordered list of cases presented by the
CCBR system to the user when the currently-known problem attributes correspond to
description d.1 The rank quality value is c(Lt, Lt̂), for Lt the ideal list, Lt̂ the current
candidate list, and c : L × L → [0, 1] a list order comparison function. We note that
this formulation of the rank quality calculation depends on having access to a fully
known target problem; it is intended to be applied in experimental settings in which such
information is available, e.g., when testing alternative similarity assessment strategies
during system development. A topic for future research is how rank quality might be

1 Here we assume that retrieval will depend only on the attributes in d, not on the order in
which those attributes were revealed to the system. Adjusting the definition to allow for order-
dependent case selection would not affect the substance of the definition of rank quality.
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applied to measure system performance up to the current point in an actual dialogue,
e.g., by assuming the current problem description is ”fully known”.

To capture intuitions concerning rank quality, the value of c should increase monoton-
ically with the “similarity” of the ordering of cases in the lists, with c(l, l) = 1 for any
l ∈ L. However, to actually define an appropriate function is surprisingly subtle. Sec-
tion 3 discusses general motivations for rank quality, while assuming that a function
with intuitive behavior is available, and Section 4 proposes a formal definition.

3 Motivations for a Rank Quality Approach

Compared to precision and efficiency, rank quality approaches bring two primary ben-
efits: (1) Providing a fuller picture of system behavior, because they can be applied at
any point in a CCBR dialogue and because they assess the entire candidate list, and (2)
not requiring assumptions about the user’s criteria for final case selection.

Removing the Need for Selection Criteria Assumptions: Because precision and effi-
ciency can only be determined at case selection time, automated evaluations of these
properties typically gather performance statistics for a simulated user. These statistics
are often gathered in either leave-one-out trials, in which a given case from the case
base provides the target problem and the correct solution, and is removed from the case
base for the duration of the trial, or leave-one-in, in which the target case remains in the
case base [2]. At each step in the dialogue, the simulated user either selects a question
to answer according to the target problem, or terminates the dialogue by selecting a
suggested case. Case selection may be triggered, for example, when the similarity of a
candidate case exceeds a threshold, or when no unasked questions remain. As we show
in Section 5, precision and efficiency results can depend strongly on the specific user
(case selection) model chosen. This dependence is problematic for assessing CCBR
systems, because there are no obvious criteria for settings to use in such tests. McSh-
erry [5] has shown that it is sometimes possible for a system itself to automatically
terminate the dialogue without loss of solution quality, but a user might still choose
to terminate the dialogue early, or might choose a suboptimal case. Consequently, the
user model plays an important role in evaluation. To our knowledge, no human-subjects
studies have systematically evaluated the case selection process for different subject
populations. Even if such studies were done, a developer might lack information on the
likely user population for a specific system. Because rank quality is based on a com-
parison of alternative system outputs, independent of the user, it removes the need for a
case selection model.

Ability to Assess the Dialogue Instead of the Single Selected Case: Another benefit
of the rank quality approach is the ability to provide information about how the system
performed at each point during the CCBR dialogue. We expect the ability of rank quality
to assess the quality of a set of intermediate suggestions to be useful to system designers
because of how case ordering in intermediate steps may affect user confidence, the
user’s ability to make the right decisions about when to terminate a dialogue, and the
user’s ability to internally clarify his or her own needs and to choose between competing
alternatives:
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– Effects on user confidence: A classic issue for expert systems, identified early in
expert systems research, is the decrease in user confidence in a system—regardless
of the quality of its conclusions—if the system appears to “lose focus” during its
interaction with the user [6]. Thus given two systems with equal efficiency and
precision, we expect user confidence to be higher if the system presents cases which
converge consistently towards the final candidate list. As a result, although rank
quality does not directly measure confidence, rank quality considerations may be a
useful supplement to confidence approaches which focus on assessing the quality
of the final result (e.g., [7]).

– Effects on choosing between alternatives: Research on expert systems for medical
diagnosis showed that diagnostic decision-making may consider not only which di-
agnosis appears most likely, but also the competition between alternative diagnoses.
If the top and next diagnoses are similarly ranked, additional differential diagnosis
may be needed [8]. Consequently, it may be valuable not only to find a highly-
ranked case, but to find a set of best cases to be available for comparison—i.e., for
the system to provide a list of top cases early, in order to initiate extra tests to find
the values of distinguishing attributes.

– Effects on the user’s ability to identify needs: Precision and efficiency focus on
the ability to drill down to a single case relevant to a fixed problem description.
This conception is apt for traditional CCBR troubleshooting tasks. However, as
observed in work by McSherry [9] and by McCarthy et al. [10], for newer CCBR
areas such as shopping recommenders, the user may initially provide information
that is inaccurate or needs to be revised in order to retrieve the right case—the
dialogue itself may change the target of the retrieval. Providing the user with a
case list with high rank quality early on gives the user an early idea of alternatives
consistent with early attribute choices, enabling changing parameters for a new
search if those alternatives are not satisfactory.

When comparing rank quality to precision and efficiency, a natural question is whether
variants of precision and efficiency could be measured incrementally, by using sim-
ulated dialogues in which the best case is “selected” at each step, and precision and
efficiency calculated accordingly. However, efficiency calculated in this way would be
uninformative, for the incremental efficiency measure would merely be a count of the
number of questions asked. Incremental precision values could be more meaningful, but
ultimately, a user model is still required to select a case at each step, and we will show
that this user model can have a strong impact on experimental results. Thus considering
rank quality has benefits even compared to incremental precision criteria.

4 Rank Quality Considerations and Formal Definition

Although rank quality is intuitively easy to grasp, to develop a suitable comparison
function is surprisingly subtle. Due to space limitations, we cannot discuss this fully
here, but we illustrate a few issues. Recall that the basic task is to compare the k top-
ranked cases in the candidate and ideal lists. Issues include:

– Handling ties between cases on the lists: When multiple cases are equally similar
to the target (as may be more likely when not all information is available, blurring
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distinctions), the comparison function must break ties to obtain a linear ordering of
candidate cases. This process can have a strong effect on rank quality.

– Handling boundary splits: The set of tied cases may extend past the boundary
of the list of k top cases presented to the user. The placement of some tied cases
outside the boundary could distort results. This requires methods that are not unduly
influenced by sequences of ties extending beyond the boundary.

– Avoiding undue influence from list length: One possible approach to handling
the boundary split problem would be to use a threshold-based retrieval criterion
instead of kNN. However, for the measures we considered, longer lists tended to
be scored better than short ones, suggesting that it is desirable to avoid comparison
of lists with dramatically different lengths.

Our list comparison function calculates the difference in the weighted sum of dis-
tances for both lists, with distances weighted by rank. Ties in the candidate list are
handled by applying, to all cases in the tied sequence, the average of the weights wm

through wn of the cases in that sequence. In this way, the arbitrary ordering of the tied
cases is irrelevant in the weighted sum, as the same weight is applied to all. Thus all
cases in the sequence have the same effect. Splits across the k-boundary in the candidate
list are handled by a slight expansion or contraction of the candidate list from length k
to length k̂, to either include or exclude the entire sequence which was originally split.
The decision of expansion or contraction depends on which would result in the smaller
change in list length. More formally, for weights wj set as explained below, we define:

c(Lt, Lt̂) =

⎧⎨
⎩

0 if k̂ = 0

1 −
k̂−1
i=0 ŵi distance(t,Lt̂[i])− k̂−1

i=0 wi distance(t,Lt[i])
k̂−1
i=0 wi

otherwise

ŵi =

{
wi Lt̂[i] is not involved in a tie

n
j=m wj

(n−m+1) otherwise

k̂ =

⎧⎪⎨
⎪⎩

k startIndex = endIndex ; no splitting

startIndex k − startIndex < (endIndex − startIndex + 1)/2
endIndex + 1 otherwise

where startIndex and endIndex are the 0-based indices marking the start and end
of the sequence of tied cases splitting across the boundary. Note that the contraction
process assures that the denominator of the previous weight formula is always nonzero.

Weight Assignment: Exponentially decreasing weights emphasize higher-ranked cases:

wi = minV + (maxV − minV )
(

i − (k − 1)
k − 1

)2 λ

λ is a positive integer representing the rate of decrease in the weights, and minV and
maxV are the desired minimum and maximum weights, respectively. For the experi-
ments of this paper, minV = 0, maxV = 1, and λ = 2. The weights could also be
set based on characteristics of how the user examines the case list, if that information
were available (e.g., if some user examined all cases in the list equally without regard
for their ranking, equal weights would be more appropriate).
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Contraction to 0 and Distance Granularity: According to the above formula, when
k̂ = 0, c(Lt, Lt̂) = 0 as well. This situation occurs when all cases in the candidate
list, plus a proportionately large number beyond the list, are equally similar to the target
problem. For example, if k = 10 and the top 25 retrieved cases are tied, then this list
is contracted to exclude the tied cases (reflecting that the majority of tied cases were
excluded even before the list contraction). This results in k̂ = 0, for a rank quality of
0. We call this contraction to 0. This process is consistent with the intuition that rank
quality should be low when the system’s ordering of candidate cases is arbitrary, with
no grounds for distinguishing any candidate cases from many non-candidates.

We note, however, that the result may be counterintuitive in a special case. For ex-
ample, if 10 cases are presented and the ideal list has the top 25 cases tied, and the
candidate list presents 10 of these cases, its rank quality would still be 0, even though
intuitively no alternative list would be better. Thus in this case, the function reflects not
only objective case suggestion quality but the system’s ability to select which cases to
present. Although we are exploring alternatives to reflect objective rank quality alone,
fully capturing intuitions in such a function has proven surprisingly difficult, with “nat-
ural” alternatives having more severe problems. From our own observations, contrac-
tion to 0 appears very unlikely to happen in standard domains with non-categorical
attributes, though it may occur in domains with few attributes (proportional to case
base size), if all of them are categorical. To quantify the extent to which this might
cause difficulties for a leave-one-out test, we can determine the likelihood of tests
avoiding contraction to 0 by calculating the distance granularity—the average pro-
portion, over the cases, of unique distances in the case base. For each case cj , define
uniqueDCount(cj) as the number of unique values of distance(cj, ci), for all ci in
case base CB. Then:

caseGranularity(cj, CB) = uniqueDCount(cj)/|CB|

distanceGranularity(CB) =
∑

i caseGranularity(ci, CB)
|CB|

5 Experimental Comparisons of the Measures

We conducted experiments to explore the sensitivity of precision–efficiency approaches
to the case selection strategy (the simulated user), and to examine the information pro-
vided by the different measures. All experiments were conducted using the Indiana Uni-
versity Case-Based Reasoning Framework (IUCBRF), a freely-available open-source
Java framework for rapid and modular CBR system development [11]. All datasets are
from the University of California-Irvine (UCI) repository [4], for classification. These
experiments use the Pima dataset with entirely numerical attributes, and the Spect and
Zoo datasets with entirely categorical attributes.

We apply the measures to evaluating CCBR performance for systems using different
similarity assessment strategies for partially-specified cases [3]. Under a representa-
tiveness assumption, the case base is used to predict information about as-yet-unasked
attributes in a problem. These strategies are selected here not to be evaluated per se, but
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to illustrate the measures of this paper. The strategies behave as follows when compar-
ing corresponding attribute values for which at least one is unknown:2

– DefaultDifference(0) (DD) - Assume a difference of 0 between the attribute values.
– FullAggregate (FA) - Assume the unknown value is the aggregate (e.g. mean for

numeric attributes, majority vote for categorical) value of that attribute in the entire
case base.

– NNAggregate(DefaultDifference(0)) (ND) - Assume the unknown value is the
aggregate attribute value of the nearest cases. “Nearest” is defined by a similarity
measure using DefaultDifference(0) to handle missing attributes.

– NNAggregate(FullAggregate) (NF) - Similar to above, except “nearest” is defined
by a similarity measure using FullAggregate to handle missing attributes.

– RegionAggregate(DefaultDifference(0)) (RA) - Assume the unknown value is the
aggregate attribute value of cases in the corresponding region. The regions are pre-
determined offline by a similarity measure using DefaultDifference(0) to handle
missing attributes.

5.1 Experimental Setup

This experiment generally follows the template laid out in [2]. Five systems were con-
structed, one for each of the five missing attribute strategies above. A case is chosen
and its attributes are gradually “revealed” as answers to system questions. (Note that
we have done leave-one-out rather than leave-one-in; for the datasets used here, which
are not irreducible, we expect comparable conclusions with either approach).

Questions are selected randomly by the system, in order to remove the effects of par-
ticular question selection strategies. Each target is tested multiple times, for different
random question patterns, with the results averaged. Each time a question is answered,
the system calculates the rank quality of the candidate list obtained according to its
missing attribute strategy. This process continues until every question is answered, re-
gardless of when a final case is selected for the purpose of precision and efficiency
calculations.

Simulated user design: To calculate precision and efficiency first requires tracing the
dialogue until it reaches a stopping point — when the user selects a case. We informally
describe a restrictive simulated user as one with criteria for case selection that are more
difficult for a candidate list to meet. Four types of simulated users were examined:

– T5 (top 5) - Select a case when it is among the top 5 candidate cases and is below
a distance threshold h. If multiple cases fall below the threshold at the same time,
the highest ranking one is selected.

– T1 (top 1) - Select a case when it is the top-ranked candidate case and is below a
distance threshold h.

– A5 (average 5) - When the average distance of the top 5 candidate cases is below
a distance threshold h, randomly select a case with a distance less than the average
(that is, one of the better cases of the candidate list).

2 The 2004 paper uses slightly different names, as follows: FullMean instead of FullAggregate;
NNMean instead of NNAggregate; and RegionMean instead of RegionAggregate.
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– DL (dialogue length) - Select a case when it is the top-ranked candidate case and it
contains the target solution. The efficiency for this user is the dialogue length. The
precision will always be 1.0 except for rare circumstances where no case is selected
and the top case at the end of a dialogue does not contain the target solution.

Precision and Efficiency Calculation: Efficiency is 1− revealed
total for revealed the num-

ber of attributes revealed and total the total number of attributes in the domain (thus
efficiency is between 0 and 1). Precision is 1 if the selected case solution is identical
to the target case solution, 0 otherwise. Note that only one precision and efficiency
measurement is taken per dialogue, upon case selection.

Threshold calculation: Each of these users depends on a distance threshold h. We
chose to form a “level playing field” for comparison by calculating thresholds for each
domain as follows. A leave-one-out process is used to calculate a set of thresholds for
a range of restrictiveness, controlled by the choice of a parameter b ∈ (0, 1) reflecting
the proportion of the case base to contain in a given neighborhood. For |CB| the size of
the case base, we set i = round(b · |CB|). For each case, cases are retrieved using the
problem of the selected case as the query. The distance between the target and the ith-
ranked case for each retrieval is averaged across the case base (that is, throughout the
leave-one-out process), and is set as the fixed distance threshold for case selection for
the corresponding domain. In this way, domain-specific influences are accounted for,
and the threshold is chosen based on its effect in relation to the domain properties. Four
thresholds were computed for each domain, from fairly restrictive to very unrestrictive
thresholds, corresponding to b values of 0.05, 0.10, 0.15, and 0.30.

Distance granularities: Distance granularities are computed for the three domains of
this experiment. Pima is an entirely non-categorical domain, and so it is not surprising
that its distance granularity is 0.999. Zoo, with all categorical attributes, has a much
lower distance granularity of 0.116, though no contractions to 0 occurred in our exper-
iments. Spect, also with all categorical attributes, has a distance granularity of 0.064.
This proved low enough for some inappropriate contractions to 0 to occur, but the gen-
eral patterns and conclusions as seen in the other domains remain, showing that even in
this situation, the comparison function provided useful information.

5.2 Results and Discussion

Preliminary Notes: Fig. 1 shows precision and efficiency results for various users, and
Fig. 2 shows selected rank quality results. The Pima rank quality results (not shown due
to space limitations) are similar to the Spect and Zoo results in overall suggestions of
missing attribute strategies, although the strategies were not as distinguished in Pima as
in the other domains, and their order did not change for different numbers of attributes.
Note that the strategies vary in performance across domains, both in magnitude, and
occasionally in overall ranking. This is not interpreted as evidence of problems with
precision and efficiency, and we note that similar domain differences are evident for
rank quality.

We also caution the reader not to expect an exact connection between rank quality
and precision–efficiency. Precision and efficiency are performance snapshots at the end
of the dialogue, which changes depending on when a case is selected. Consequently,
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Domain A5, 0.05 T1, 0.05 T5, 0.05 T5, 0.10 T5, 0.15 T5, 0.30 DL

Zoo

RA 0.401
ND 0.386
DD 0.315
NF 0.277
FA 0.199
rng 0.202

RA 0.394
ND 0.375
DD 0.315
NF 0.305
FA 0.273
rng 0.121

DD 0.415
ND 0.400
RA 0.396
NF 0.370
FA 0.341
rng 0.074

DD 0.431
ND 0.418
RA 0.412
NF 0.386
FA 0.363
rng 0.068

DD 0.425
ND 0.415
RA 0.412
NF 0.380
FA 0.367
rng 0.058

FA 0.456
NF 0.453
DD 0.447
RA 0.440
ND 0.444
rng 0.012

RA 0.413
ND 0.409
DD 0.393
NF 0.339
FA 0.293
rng 0.120

Spect

NF 0.475
FA 0.474
DD 0.459
RA 0.458
ND 0.458
rng 0.017

FA 0.470
NF 0.469
DD 0.467
RA 0.458
ND 0.452
rng 0.018

DD 0.422
ND 0.412
RA 0.411
FA 0.380
NF 0.379
rng 0.043

DD 0.491
ND 0.484
RA 0.483
NF 0.482
FA 0.481
rng 0.010

DD 0.496
ND 0.491
RA 0.490
FA 0.490
NF 0.490
rng 0.006

DD 0.498
ND 0.495
FA 0.493
RA 0.493
NF 0.493
rng 0.005

RA 0.503
ND 0.486
DD 0.446
FA 0.399
NF 0.397
rng 0.106

Pima

RA 0.301
ND 0.274
NF 0.246
FA 0.223
DD 0.201
rng 0.100

RA 0.309
ND 0.286
NF 0.266
DD 0.249
FA 0.243
rng 0.066

FA 0.422
NF 0.421
ND 0.415
DD 0.387
RA 0.358
rng 0.064

DD 0.406
FA 0.358
NF 0.358
RA 0.352
ND 0.344
rng 0.062

DD 0.419
FA 0.389
NF 0.373
RA 0.362
ND 0.360
rng 0.059

DD 0.435
FA 0.423
NF 0.416
ND 0.392
RA 0.378
rng 0.057

DD 0.485
ND 0.485
RA 0.482
NF 0.452
FA 0.441
rng 0.044

(a) Efficiency

Domain A5, 0.05 T1, 0.05 T5, 0.05 T5, 0.10 T5, 0.15 T5, 0.30 DL

Zoo

RA 0.997
ND 0.997
DD 0.996
NF 0.996
FA 0.995
rng 0.002

RA 0.995
ND 0.995
DD 0.991
NF 0.975
FA 0.973
rng 0.022

RA 0.996
DD 0.992
ND 0.991
FA 0.981
NF 0.980
rng 0.016

RA 0.989
ND 0.981
DD 0.971
FA 0.956
NF 0.956
rng 0.033

RA 0.987
ND 0.982
DD 0.968
FA 0.954
NF 0.946
rng 0.041

RA 0.881
ND 0.879
DD 0.852
NF 0.753
FA 0.700
rng 0.181

ND 1.000
FA 0.999
DD 0.999
RA 0.999
NF 0.999
rng 0.001

Spect

RA 0.674
ND 0.665
FA 0.641
NF 0.641
DD 0.633
rng 0.041

ND 0.637
FA 0.632
NF 0.631
RA 0.627
DD 0.596
rng 0.042

DD 0.673
RA 0.660
ND 0.659
NF 0.628
FA 0.617
rng 0.056

RA 0.598
ND 0.597
DD 0.579
FA 0.576
NF 0.560
rng 0.038

RA 0.629
ND 0.601
DD 0.581
FA 0.569
NF 0.559
rng 0.070

RA 0.602
ND 0.595
DD 0.586
NF 0.549
FA 0.544
rng 0.058

RA 0.999
ND 0.999
DD 0.994
FA 0.986
NF 0.986
rng 0.013

Pima

RA 0.666
DD 0.634
ND 0.632
FA 0.629
NF 0.629
rng 0.037

RA 0.660
DD 0.591
ND 0.581
NF 0.576
FA 0.561
rng 0.099

ND 0.706
RA 0.706
DD 0.693
NF 0.650
FA 0.606
rng 0.100

RA 0.648
DD 0.592
ND 0.565
NF 0.554
FA 0.531
rng 0.117

RA 0.648
DD 0.591
ND 0.575
NF 0.553
FA 0.522
rng 0.126

RA 0.644
DD 0.580
ND 0.562
NF 0.551
FA 0.530
rng 0.114

FA 0.998
NF 0.998
DD 0.996
RA 0.995
ND 0.994
rng 0.004

(b) Precision

Fig. 1. a) Efficiency and b) precision results for various users and domains. Each column repre-
sents a case selection strategy, with column heading showing user type and b value with which to
compute the threshold. Columns are organized from most restrictive user on the far left, to least
restrictive on the far right, except for DL, which has varying restrictiveness dependent upon the
number of cases in the case base containing a given target solution. Each cell lists the five miss-
ing attribute strategies in order of decreasing performance. The final number in each cell (“rng”)
indicates the range of values in that cell.
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(b) Spect

Fig. 2. Rank quality results for the a) Zoo, and b) Spect, domains. The lines correspond to the
strategies as follows: RA ◦, ND +, DD �, NF x, and FA 
.

these measures are not easily comparable to any single portion of a rank quality graph,
although to some extent ranges can be compared, as shall be demonstrated below.

Also note that precision measures solution applicability, and efficiency measures
speed of case selection, while rank quality is a measure of similarity. Clearly there is a
connection, in that a similar case is assumed to have an applicable solution, and a can-
didate list with high similarity will likely be selected from sooner. Nevertheless, these
are different measures, with solution applicability depending not only on the similarity
but also on less definable domain properties, and with case selection also depending on
user properties. Thus, efficiency and precision measures are not directly comparable to
rank quality, though there are connections in the general trends shown by both.

Effects of Different User Models on Precision and Efficiency. The first experiment
explores the potential sensitivity of precision–efficiency approaches to the chosen user
model. Fig. 1 presents efficiency and precision results, organized to place more restric-
tive case selection criteria towards the left, with restrictiveness decreasing towards the
right. (The one exception is DL, with varying restrictiveness dependent upon the num-
ber of cases in the case base containing a given target solution.) Each cell orders the
performance of each strategy according to the measure of the table. The bottom number
in each cell represents the range of values in that cell.

In some cases, performance is quite similar across similarity assessment strategies.
When there are clear distinctions between the strategies’ performance, RA, ND, and
DD tend to be the best by both measures, with NF and FA tending to be the worst. This
supports a reasonable regularity of conclusions across user types. This is a good result
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for the utility of precision and efficiency, for if they were totally dependent on user type,
then generally applicable conclusions would be very difficult to make.

However, the regularity of conclusions is far from absolute. For example, consider
the efficiency results for the Zoo and Spect domains in Fig. 1(a). The range of values
decreases given decreasing restrictiveness. With Spect, for T5 with higher thresholds,
the range of values is very low. If only these users were examined, a researcher might
erroneously conclude that there is no significant distinction in missing attribute strategy
performance. Another example is Pima’s precision results, which, surprisingly, were
higher for (T5, b = 0.05) than for more restrictive users. The reasons for this are unclear.
Nevertheless, these examples demonstrate that the user model affects conclusions about
system performance.

Other efficiency examples demonstrate this same point. Considering the efficiency
performance of RA and DD for the Zoo and Pima domains, we note that comparatively,
RA is favored for the most restrictive users, but is closer to the middle or even the
bottom for the less restrictive users. On the other hand, the ranking of DD increases
for less restrictive users. Thus the researcher’s choice of RA and DD may depend on
the type of user examined. This difference in performance for different users is an im-
portant result, but is captured in efficiency measures only by careful and broad user
modeling.

The precison results in Fig. 1(b) reflect this issue as well. It is interesting to note
the relationship between restrictiveness and range of precision values. All three do-
mains demonstrate the opposite relationship to that observed for efficiency: Although
the range of efficiency values for a given strategy decreases given decreasing user re-
strictiveness, range of precision decreases given increasing user restrictiveness.

Another interesting result is that in some domains, results appear to be fairly inde-
pendent of the user model. For the Zoo domain, for almost every user, the precision
results are quite close, and extremely high. It appears that in this domain, the relation-
ship between problem similarity and solution applicability is very strong. Only for a
very unrestrictive user model can clear distinctions be seen.

As discussed previously, if it is possible to select a user model known to capture
specific user characteristics, the sensitivity of precision-efficiency judgments to the user
model is not an issue, and is in fact desirable. However, we are unaware of human-
subjects studies in the literature evaluating such models. For many domains, it may be
unclear which models fit, and developing the right models may be impractical, or even
impossible. In that case, the measures’ sensitivity to possibly arbitrary characteristics
of simulated users is problematic. This supports the appeal of approaches such as rank
quality, which do not depend on case selection criteria in a user model.

Revealing Trends in the Three Measures: As discussed above, there are limits to the
comparability of the measures, but this section shows that the rank quality results are
comparable to precision–efficiency in a broad sense, and the ability to apply rank quality
at any point in the dialogue can reveal performance trends crucial to system analysis.

The most obvious way to compare precision and efficiency to rank quality is to ex-
amine the final conclusions which can be drawn from each. According to the efficiency
and precision results in Fig. 1, the best strategies are typically RA and ND, and often
(but not always) DD. The worst strategies are generally NF and FA. Similar results for
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rank quality are reflected in Fig. 2. In these graphs, RA and ND are generally the best
whenever there is a clear winner, with NF and FA among the worst.

One of the most interesting comparisons comes from the DD results in the Spect do-
main. Here DD efficiency is approximately 0.5 for less-restrictive users (T5, b = 0.30,
0.15, 0.10), corresponding to an average of 11 questions answered in a dialogue. For the
same users, precision for DD is approaching that of ND and RA, with the overall order-
ing being RA, ND, DD, FA/NF (roughly tied). This corresponds to the same ordering
in the rank quality graph, for 11 questions answered: RA, ND, DD, FA/NF.

The efficiency of DD for T5, b = 0.05, a model of a more restrictive user, decreases
to 0.422, corresponding to an average of 12.1 questions answered. The precision mea-
sure for this user for DD is 0.673, slightly better than RA and ND. Although rank quality
results for 12.1 questions answered still show DD lower than RA and ND, DD is in fact
rising at a more rapid pace, and is closer to them than for 11 questions answered.

This trend for DD continues for the T1 and A5 users in the Spect domain. Why
these users’ efficiency results differ from those of more restrictive users is a subject for
future study. The efficiency results for DD are higher than the T5, b = 0.05 efficiency
results, but lower than the other T5 efficiency results. Specifically, the average efficiency
between the two users T1 and A5, 0.463, corresponds to approximately 11.8 questions
answered. Upon examination of the rank quality graph, we would therefore expect the
corresponding DD precision results to be lower than the T5, b = 0.05 results, and higher
than the other T5 results, as observed. Thus again we see a general correspondence
between the rank quality and precision and efficiency measures.

Again, we do not expect an exact correspondence between efficiency and precision
and rank quality, given the clear differences in their design. However, the correspon-
dence among general conclusions is reassuring in that rank quality captures the broad
outlines of the more traditional measures, while providing much more information. Al-
though precision and efficiency provide a single snapshot of performance of a single
case upon selection, rank quality can be used to show the development of the candi-
date list across the entire dialogue. The rank quality graphs illustrate that DD starts out
very poorly, but rises quickly until, when most questions have been asked, it performs
nearly as well as the other strategies. In fact it can be seen in the rank quality graphs
that nearly all strategies perform approximately equally when most questions have been
asked. This is intuitive, for missing attribute strategies have less opportunity to distin-
guish themselves when there are fewer missing attributes. On the other hand, when
very few questions have been asked in the dialogue, rank quality shows that RA and
ND still consistently perform fairly well. FA and NF fare well in the Zoo domain at this
stage, but not in Spect. DD, on the other hand, is consistently bad at this stage. Such
conclusions are readily apparent in viewing rank quality graphs, but would be much
more difficult to make by examining precision and efficiency results, hoping to select
the right set of users to get a useful range of data.

6 Related Work

Many existing CCBR evaluation efforts use forms of efficiency or precision for perfor-
mance evaluation, with some approaches relating to rank quality.
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Variations of Efficiency, Precision, and Rank Quality: Evaluation criteria related to
efficiency are widely used. For example, McCarthy et al. [10] examine the process of
dynamic critiquing, in which the user refines the problem description in reaction to the
presented candidate list. The number of “tweaks” performed by the user is measured,
similar to efficiency. Precision does not apply in the same manner, because presumably
the user does not stop critiquing until a satisfactory result is obtained. McSherry [12]
uses the leave-one-in process in the context of irreducible case bases, in which each case
has a unique solution, and there is at most one applicable case for any given problem.
McSherry suggests a recall and slightly modified precision measure for evaluation of
CCBR systems of this nature. Recall is the percentage of queries in which the single
perfect case is among the retrieved cases. His precision measure captures the probability
that the single applicable case could be selected at random from the candidate list. In
[13], the target case of leave-one-in serves as the single applicable case, the goal to be
ultimately selected. Conversational efficiency is then defined as the number of questions
required to get a 100% similarity rating with this target. This is similar to an efficiency
measure with a case selection threshold of 100%.

The retrieval accuracy measure of Gupta et al. [13] is reminiscent of both precision
and rank quality, although with key differences. Retrieval accuracy measures the aver-
age rank of the applicable case. It is similar to precision in that it considers applicability
of a single case, and to rank quality in that it examines the rank of a case throughout the
dialogue. However, this measure does not consider the ranks of the other cases, which
may be important for the reasons discussed in Section 3.

In [14], the frequency of successful retrievals is measured, where a successful re-
trieval has the top three cases of the ideal list in the top five of the candidate list. Thus,
similar to rank quality, it compares the candidate list to the ideal, though less informa-
tion about the full list is gathered.

Measures for Other CCBR Properties: There are a number of measures used in eval-
uation of CCBR systems that fall outside the scope of the three measures considered
here. For example, McSherry [9] measures the length of explanations of retrieval fail-
ures, and how many compromises to the original query are required for recovery from
these failures. Gupta et al. [13] present three measures related to question ranking: con-
versational accuracy (how suitable the question rankings are), the number of questions
presented to the user at a time, and conversational adaptiveness (the ability of the sys-
tem to adapt the dialogue to the user’s ability level). The same paper also presents two
measurements aimed at knowledge engineering: the effort required to insert a case or a
new attribute type into the case base.

Connections beyond CBR: The broad question of how to evaluate the quality of a
list of provided information resources is also of great importance outside of CBR, for
tasks such as ranking Web search results. Although we are not aware of any directly-
applicable results from that literature, steps taken there have some bearing on rank qual-
ity research for CCBR. It is a common practice in Web search research to use humans as
judges of the relevance of a retrieved site. However, in [15] it is argued that human rele-
vance judgments do not lead to stable measures, and that disagreements about even the
single most relevant result are frequent. If this holds true for CCBR, it would be an addi-
tional impediment to relying on human ranking judgments. If users are presented with
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search results with detailed summaries, and followed links are automatically marked
“relevant,” it is possible to use this information to estimate relevance during search en-
gine use [16], a method which might be usable for CCBR. Various approaches exist for
aggregating relevance ratings to obtain a rating of a list of search results, including the
ranked half life measure, which calculates the degree to which relevant documents are
located at the top of the list [17], and a measure of the expected number of irrelevant
documents to be searched through before relevant documents are found [18].

7 Conclusion

This paper has examined issues in CCBR system evaluation and has proposed rank
quality for CCBR system evaluation. This approach enables evaluation at any point in
the dialogue, and removes the requirement, needed by precision and efficiency methods,
of modeling the user’s case selection decision. The paper has presented experimental
results illustrating the value of decreasing dependence on a case selection model, by
demonstrating that—although the case selection model must often be selected some-
what arbitrarily in practice—it may strongly influence evaluation results. Rank quality
can provide useful information during the CCBR conversation, to help select strategies
which provide the user with useful cases early on. This may be valuable for increasing
user confidence, helping the user to choose between alternatives, and identifying needs
for CCBR tasks such as supporting product recommendation. Due to the surprisingly
subtle issues involved in rank quality calculation, and the fundamental importance of
CCBR to CBR applications, we see further exploration of such criteria and their rela-
tionship to user satisfaction as a promising area for future research.
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Abstract. Case Retrieval Networks (CRNs) facilitate flexible and efficient 
retrieval in Case-Based Reasoning (CBR) systems. While CRNs scale up well 
to handle large numbers of cases in the case-base, the retrieval efficiency is still 
critically determined by the number of feature values (referred to as Information 
Entities) and by the nature of similarity relations defined over the feature space. 
In textual domains it is typical to perform retrieval over large vocabularies with 
many similarity interconnections between words. This can have adverse effects 
on retrieval efficiency for CRNs. This paper proposes an extension to CRN, 
called the Fast Case Retrieval Network (FCRN) that eliminates redundant 
computations at run time. Using artificial and real-world datasets, it is 
demonstrated that FCRNs can achieve significant retrieval speedups over 
CRNs, while maintaining retrieval effectiveness.  

1   Introduction 

A prominent theme in current text mining research is to build tools to facilitate 
retrieval and reuse of knowledge implicit within growing volumes of textual 
documents over the web and corporate repositories. Case-Based Reasoning (CBR), 
with its advantages of supporting lazy learning, incremental and local updates to 
knowledge and availability of rich competence models, has emerged as a viable 
paradigm in this context [15]. When dealing with text, documents are usually mapped 
directly to cases [4]. Thus, a textual case is composed of terms or keywords; the set of 
distinct terms or keywords in the collection is treated as the feature set [15].  In 
practical usage scenarios, the feature set size and the number of cases can both be 
extremely large, posing challenges to retrieval strategies and memory requirements.        

The Case Retrieval Network (CRN) formalism proposed in [1] offers significant 
speedups in retrieval compared to a linear search over a case-base.  Lenz et al. [6, 7] 
have successfully deployed CRNs over large case-bases containing as many as 
200,000 cases. The applicability of CRNs to real world text retrieval problems has 
been demonstrated by the FALLQ project [10].  Balaraman and Chakraborti [5] have 
also employed them to search over large volumes of directory records (upwards of 4 
million). More recently spam filtering has benefited from CRN efficiency gains [9]. 

While CRN scales up well with increasing case-base size, its retrieval efficiency is 
critically determined by the size of the feature set and nature of similarity relations 
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defined on these features. In text retrieval applications, it is not unusual to have 
thousands of terms, each treated as a feature [10]. The aim of this paper is to improve 
the retrieval efficiency of CRNs. We achieve this by introducing a pre-computation 
phase that eliminates redundant similarity computations at run time. This new 
retrieval mechanism is referred to as Fast CRN (FCRN). Our experiments reveal that 
the proposed architecture can result in significant improvement over CRNs in 
retrieval time without compromising retrieval effectiveness.  The architecture also 
reduces memory requirements associated with representing large case-bases.   

Section 2 presents an overview of CRNs in the context of retrieval over texts. We 
introduce FCRNs in Section 3 followed by an analysis of computational complexity 
and memory requirements. Section 4 presents experimental results. Section 5 
discusses additional issues, such as maintenance overheads that need to be considered 
while deploying real world applications using FCRNs. Related work appear in Section 
6, followed by conclusions in Section 7.  

2   Case Retrieval Networks for Text  

The CRN has been proposed as a representation formalism for CBR in [1]. To 
illustrate the basic idea we consider the example case-base in Fig. 1(a) which has nine 
cases comprising keywords, drawn from three domains: CBR, Chemistry and Linear 
Algebra. The keywords are along the columns of the matrix. Each case is represented 
as a row of binary values; a value 1 indicates that a keyword is present and 0 that it is 
absent. Cases 1, 2 and 3 relate to the CBR topic, cases 4, 5 and 6 to Chemistry and 
cases 7, 8 and 9 to Linear Algebra.  

Fig. 1(b) shows this case-base mapped onto a CRN. The keywords are treated as 
feature values, which are referred to as Information Entities (IEs). The rectangles  
 

 
 

Fig. 1. CRN for Text Retrieval  

(a)       (b)
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denote IEs and the ovals represent cases. IE nodes are linked to case nodes by 
relevance arcs which are weighted according to the degree of association between 
terms and cases. In our example, relevance is 1 if the IE occurs in a case, 0 otherwise. 
The relevances are directly obtained from the matrix values in Fig. 1(a). IE nodes are 
related to each other by similarity arcs (circular arrows), which have numeric 
strengths denoting semantic similarity between two terms. For instance, the word 
“indexing” is more similar to “clustering” (similarity: 0.81) than to “extraction” 
(similarity: 0.42). While thesauri like WordNet can be used to estimate similarities 
between domain-independent terms [2], statistical co-occurrence analysis 
supplemented by manual intervention is typically needed to acquire domain-specific 
similarities.  

To perform retrieval, the query is parsed and IEs that appear in the query are 
activated. A similarity propagation is initiated through similarity arcs, to identify 
relevant IEs. The next step is relevance propagation, where the IEs in the query as 
well as those similar to the ones in the query spread activations to the case nodes via 
relevance arcs. These incoming activations are aggregated to form an activation score 
for each case node. Cases are accordingly ranked and the top k cases are retrieved.  

A CRN facilitates efficient retrieval compared with a linear search through a case-
base. While detailed time complexity estimates are available in [3], intuitively the 
speedup is because computation for establishing similarity between any distinct pair 
of IEs happens only once. Moreover, only cases with non-zero similarity to the query 
are taken into account in the retrieval process. 

3   Speeding Up Retrieval in Case Retrieval Networks  

In this section we present the FCRN. To facilitate further analysis, we formalize the 
CRN retrieval mechanism described in Section 2. A CRN is defined over a finite set 
of s IE nodes E, and a finite set of m case nodes C. Following the conventions used by 
Lenz and Burkhard [1], we define a similarity function : 

    :  E × E  ℜ  

and a relevance function  

    :  E × C  ℜ  

We also have a set of propagation functions n: ℜ n ℜ  defined for each node 
in CE∪ . The role of the propagation function is to aggregate the effects of incoming 
activations at any given node. For simplicity, we assume that a summation is used for 
this purpose, although our analysis applies to any choice of propagation function.  

The CRN uses the following steps to retrieve nearest cases:  

Step 1: Given a query, initial IE node activations 
0α  are determined.  

Step 2: Similarity Propagation: The activation is propagated to all similar IE nodes.  

   )(1 eα =
=

s

i
ii eee

1
0 )().,( ασ            (1) 
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Step 3: Relevance Propagation: The resulting IE node activations are propagated to 
all case nodes  

=)(2 cα
=

s

i
ii ece

1
1 )().,( αρ        (2) 

The cases are then ranked in descending order of )(2 cα and the top k cases retrieved.   

We observe that in the face of a large number of IEs, Step 2 accounts for most of 
the retrieval time. The idea of FCRN stems from the need to identify and eliminate 
redundant computations during this similarity propagation step.  

3.1   Fast Case Retrieval Network (FCRN)  

We now present an adaptation to CRN to facilitate more efficient retrieval. We 
substitute the expansion of the term )(1 eα from (1) into the expression for final case 

activation in (2). This yields: 

          =)(2 cα
=

s

j
j ce

1

).,(ρ
=
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i
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1
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Let us consider the influence of a single IE node ei on a single case node c. For this, 
we need to consider all distinct paths through which an activation can reach case node 
c, starting at node ei.  Fig.2 illustrates three different paths through bold dashed 
arrows from ei to c, along with activations propagating through each path.   

 

Fig. 2. Different paths through which an activation can reach case c from an IE ei 
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We observe that the influence of node ei on node c can be computed as the 
aggregation of effects due to all nodes ej  that ei is similar to, and is given by:  

               inf ),( cei
= 

=

s

j
ijij eeece

1
0 ).(),(),( ασρ       (4) 

The last term can be extracted out of the summation as follows: 

               inf ),( cei  = )().,(),( 0
1

i

s

j
jij eeece ασρ

=

      (5) 

We refer to the term within parenthesis as the “effective relevance” of the term ei to 
case c and denote it by  (ei, c).  It can be verified that (3) can be alternatively 
rewritten as:  

     =)(2 cα
=
Λ

s

i
ii ece

1
0 )().,( α        (6) 

The significance of this redefinition stems from the observation that given an effective 
relevance function  : E × C  ℜ, we can do away with Step 2 in the CRN retrieval 
process above. We can now construct a CRN that does not use any similarity arcs in 
the retrieval phase. Instead, a pre-computation phase makes use of similarity as well 
as relevance knowledge to arrive at effective relevances . The resulting CRN is 
called FCRN (for Fast CRN) and its operation is shown in Fig. 3. The equivalence of 
the expressions for final case activations in (2) and (6) above leads us to the following 
result.  

Theorem 1. For any query with initial IE node activations 
0α , such that 

ℜ∈)(0 ieα for all i, the case activations (and hence the rankings) produced by the 

FCRN are identical to those produced by the CRN. Thus the CRN and the FCRN are 
equivalent with respect to retrieved results. 

Precomputation Phase  
The similarity and relevance values are used to pre-compute the effective relevance 
values

s

j
jiji eecece

1
).,(),(),(

Retrieval Phase  
Step 1: Given a query, initial IE node activations 0  are determined.  
Step 2: The resulting IE node activations are propagated directly to all case nodes 

)(2 c
s

i
ii ece

1
0 )().,(

The cases are then ranked according to their activations, and the top k retrieved 
 

Fig. 3. Precomputation and Retrieval in FCRN 
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Fig. 4 shows an example CRN depicting a trivial setup with 4 IEs and 4 cases, and 
the corresponding equivalent FCRN. It is observed that while the relevance values in 
the original CRN were sparse, the effective relevance values in the FCRN are 
relatively dense. This is because in the FCRN an IE is connected to all cases that 
contain similar IEs. In the example shown, the effective relevance between case C1 
and Information Entity IE1 is computed as follows:  

(IE1,C1)= (IE1,C1) (IE1,IE1) + (IE2,C1) (IE1,IE2) + (IE3,C1) (IE1,IE3) + 
(IE4,C1) (IE1,IE4)            

                 = (1×1) + (0×0) + (0×0.5) + (1×0.7) =1.7            

Other elements of the effective relevance table can be similarly computed. It is 
interesting to note that the effective relevance of the ith IE with the jth case is given 
by the dot product of the ith row of the similarity table ( ) with the jth row of the 
relevance table ( ). 

 

Fig. 4. A CRN over 3 cases and 4 IEs, and an operationally equivalent FCRN 
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3.2   Time Complexity Analysis  

In this section we briefly compare the retrieval time complexity of FCRNs with 
CRNs. Fig. 5 illustrates the pseudo-codes for retrieval using the CRN and FCRN.   

The retrieval complexity is a function of loops /* A */ and /* B */ in the pseudo-
codes: 

   complexity(CRNRetrieval) ∝O(A×B) 
and  

   complexity(FCRNRetrieval) ∝  O(B) 

The following two reasons contribute to the speedup in FCRN retrieval: 

(a) Step A in the CRNRetrieval pseudo-code involves spreading activation to IE 
nodes similar to the query IEs based on similarity values. This step is eliminated 
in FCRN retrieval since the similarity knowledge is transferred to the effective 
relevance values during the pre-computation step.  Thus, FCRN retrieval amounts 
to a simple table lookup for all cases “effectively” relevant to the query IEs and 
aggregating the scores received by each case from the individual query IEs. 
Using FCRNs, we can obtain efficiency very similar to inverted files typically 
used in Information Retrieval applications [8]. However unlike inverted files, 
FCRNs also integrate similarity knowledge in the retrieval process. 

(b) Step B in FCRNRetrieval involves a loop over IE nodes activated by the query. 
In contrast, Step B of the CRN retrieval loops over all IEs similar to IE nodes 
activated by the query. In a situation where most IEs are connected to many 
others by non-zero similarities, Step B in FCRN would involve much fewer 
iterations compared to step B of a CRN. 

CRNRetrieval 
FOR each activated query IE (attribute A, value Vq in query)                         /* A */ 

       Determine all related IEs using similarity function 
       FOR each IE that is found relevant                /* B */ 
  Determine all cases relevant to that IE using relevance function 
  Increment  scores of relevant cases 
       END FOR 
 END FOR 
 Rank and display related cases 

FCRNRetrieval 
FOR each activated query IE (attribute A, value Vq in query)                         /* B */ 

        Determine all cases relevant to that IE using effective relevance function 
  Increment scores of relevant cases 
 END FOR 
 Rank and display related cases   

 

Fig. 5. Pseudo-codes for retrieval using CRN and FCRN 
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3.3   Memory Requirements  

Typically CRNs consume more memory when compared to a flat case-base, which 
has a linear listing of cases along with their constituent attribute values. This 
difference can be largely attributed to the following two factors: CRNs explicitly 
record |E| number of values corresponding to IEs, and |E|2 values are required to 
model similarities between IEs.  In addition we have |Casebase| × |E| relevance 
values between the IEs and the cases.  

A flat case-base that models the case memory as a linked list of all cases will need 
to store |Casebase| number of cases and |Casebase| × |E| number of relevance values.  

   
memory (flat case-base)  ∝   |Casebase| × |E| + |Casebase|   

              ∝   |Casebase| × (|E| + 1) 
 

The memory requirement of a CRN is approximately given by:  
 

memory (CRN) ∝  |E| + |CaseBase| + |E|2 + |Casebase| × |E| 
            ∝  |E| + |E|2 + |CaseBase| × (|E|+1) 
            ∝  |E| + |E|2 + memory(flat case-base) 
 

In FCRN we do not need to explicitly record the similarities between IEs, since this 
knowledge is contained within effective relevance values. The memory requirement 
of FCRN is given by:  

 
memory (FCRN) ∝  |E| + |CaseBase| × (|E|+1) 

              ∝  |E| + memory(flat case-base) 
 

In textual applications, the number of IEs could be extremely large, and the saving of 
|E|2 could mean substantial gains in terms of memory requirements.  

It is worth noting that while the in-memory requirement for FCRN retrieval is 
considerably less than in CRN, we would still need to store the |E|2 similarity values 
for off-line maintenance. In a situation where a particular IE is deleted, we would 
need to re-evaluate the effective relevance values to reflect this change. This is 
possible only when the similarity information is available.  

4   Experimental Results  

In this section, we present empirical results to illustrate FCRN efficiency in practical 
applications. The objective of our first set of experiments is to observe how CRNs and 
FCRN scale up with increasing number of IEs, and with varying nature of similarity 
interconnections between these IEs. Towards this end, it is sufficient to simulate a 
large number of IEs and cases with randomly generated similarity and relevance 
values. The synthetic nature of the datasets is not a major concern, since we are not 
really concerned with the actual cases retrieved. Sparseness of similarity values can 
be simulated by forcing a fraction of these values to 0. In any real world application, 
the actual non-zero similarity and relevance values used would be different from the 
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randomly generated values used in our evaluation, but the time complexity of the 
retrieval process is independent of the actual values used, since neither the CRN nor 
FCRN exploit the distributions of values to alter retrieval process.  So our 
experiments are expected to provide fair estimates of efficiency over realistic datasets. 
An experimental strategy similar to ours was also used in [14].  

Table 1 shows the impact of the increase in number of IE nodes on the retrieval 
time. For this experiment, the query was randomly generated and IE nodes activated 
accordingly. The case-base has 1000 cases. The similarity matrix is optimally dense in 
that each IE node is connected to each other by a non-zero similarity value. Thus this 
result may be viewed as a worst-case comparison of the CRN performance against 
FCRN. It may be noted that the CRN retrieval time increases almost linearly as the 
number of IE nodes increases from 1000 to 6000. As the number of IEs goes beyond 
6000, CRN performance degrades steeply. In contrast, the FCRN shows stable 
behaviour with increasing number of IEs. This is attributed to the savings in similarity 
computation, and corresponds closely to our theoretical analysis in Section 3.2.  

Table 1. Retrieval time as a function of number of IE nodes  

No. of IE Nodes 
CRN Retrieval Time 

(secs.) 
FCRN Retrieval Time 

(secs.) 
1000 0.04 <10-3 

2000 0.12 <10-3 
3000 0.22 <10-3 
4000 0.35 <10-3 
5000 0.49 <10-3 
6000 0.66 <10-3 
7000 1.42 0.01 
8000 3.40 0.01 
9000 3.86 0.01 
10000 4.98 0.02 

The objective of our next experiment is to empirically evaluate the impact of the 
nature of similarity interconnections on the relative performance of the CRN and the 
FCRN. We recall that a bulk of the savings in retrieval time with FCRNs can be 
accounted for by the fact that FCRN does away with the similarity propagation step. 
The time consumed in similarity propagation is critically dependent on the density of 
the similarity matrix, which is defined as the proportion of non-zero similarity values 
in the similarity matrix. We conducted an experiment to study the FCRN performance 
against CRN, as a function of the similarity matrix density. Our experimental setup is 
similar to that in the first experiment. We simulate 8000 IEs and 1000 cases with 
randomly generated similarity and relevance values. We now relax the density of 
similarity matrix, by deliberately setting a value of 0 to a fraction of the similarity 
values, and compare FCRN performance against the CRN, for different settings of 
similarity matrix density. The results are shown in Table 2. As the density increases 
from 0 (when no IE node is similar to any other node) to 1 (when all IE nodes  
are related to all others), the CRN retrieval time increases considerably from a  
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sub-millisecond to about 3.38 seconds. Since FCRN does away with the step of 
similarity propagation across IEs, its performance is not critically impeded by growth 
in similarity matrix density.  The very small increment in the FCRN retrieval time 
when the density increases from 0.8 to 1.0 is not surprising, given the fact that the 
effective relevance values are influenced by the density of the similarity matrix. 
Hence an increase in number of similarity interconnections can have an adverse effect 
on the sparseness of the effective relevance values, leading to a consequent slowdown 
in retrieval. It may be noted that retrieval times recorded in all tables in this section 
are rounded to two significant decimal places.  

Table 2. Retrieval time as a function of the density of similarity matrix 

Density of the 
Similarity Matrix 

CRN Retrieval Time 
(secs.) 

FCRN Retrieval Time 
(secs.) 

0 <10-3 <10-3 
0.2 0.92 <10-3 
0.4 1.71 <10-3 
0.6 2.43 <10-3 
0.8 2.81 <10-3 
1.0 3.38 0.01 

In addition to empirical evaluation on synthetic data, we also carried out 
experiments on a real world classification task over a textual dataset comprising 2189 
personal emails organized into 76 folders (classes). Each class corresponds to one of 
the folders (like “sports”, “hobbies” or “meetings”) into which the emails are 
organized. The total number of features in this dataset is 32,699. Since many of these 
features have very poor discriminatory power, the feature set size was pruned to 6000 
using chi-square based feature selection [16]. A CRN was constructed to classify 
incoming emails into one of the 76 classes. Instead of modeling the emails as textual 
cases as is usually done, we treated the classes as cases. Thus the CRN had 6000 IE 
nodes and 76 case nodes.  

In deploying a CRN architecture for a real world domain, we need to address the 
issue of acquiring similarity and relevance knowledge. Several knowledge light 
strategies for acquiring knowledge in CRNs for classification domains have been 
explored in literature [11]. Traditional techniques for modelling relevance do not 
directly apply in our case, since relevance values in our architecture relate IEs to 
classes, instead of relating IEs to cases. In our classifier, we use the chi-square metric 
[16] as a measure of the relevance of an IE to a particular class. The chi-square metric 
measures the lack of independence between an IE and a class. Thus the relevance 
value is 0 when an IE is independent of the class, and high when it is strongly 
dependent.   

The similarity between IEs is computed using Latent Semantic Indexing (LSI), 
using the method described in [11]. While LSI-based metrics recover well from noise 
due to word choice variability, one other significant consequence is that the matrix of 
similarity values between IEs is no longer sparse. As the number of IEs increase, this 
can lead to considerable slowdown in retrieval or classification.  
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In Table 3, we report experimental results comparing the time performances of the 
FCRN against a CRN in this domain. As the number of IEs increase from 1000 to 
6000, the CRN slows down considerably. The slowdown is especially conspicuous 
when the number of IEs exceeds 4000. In contrast, the FCRN scales up well. 

Table 3. Time performance as a function of the number of IEs in the email dataset 

No. of IE Nodes 
CRN Retrieval Time 

(secs.) 
FCRN Retrieval Time 

(secs.) 
1000 0.02 <10-3 
2000 0.22 <10-3 
3000 0.34 <10-3 
4000 1.01 <10-3 
5000 1.87 0.01 
6000 2.82 0.01 

5   Discussion  

In this section we consider some additional issues that need to be taken into account 
when building CBR systems using FCRNs.  

5.1   Computation Node 

One obvious limitation of the CRN mechanism is its inability to handle query values 
(in the textual case, terms) that are not present in the predefined set of IEs used to 
build the CRN. To address this issue, Lenz and Burkhard [3] present the concept of a 
computation node which is created at run time. A computation node represents an IE 
corresponding to the new query value. The similarity of the computation node to 
existing IE nodes is computed at run-time using a similarity function that needs to be 
defined over the attribute space. Once the new similarity arcs are constructed, the 
retrieval can proceed in the usual manner. With FCRNs, a similar computation node 
creation step is involved. However, it only plays a role in activating the IE nodes via 
the newly constructed similarity arcs. If one or more of these IE nodes were already 
activated, the new activations are added to the existing values. Once the IE node 
activations (

0α values) are evaluated, the case nodes are activated directly using the 

effective relevance values.  

5.2   Maintenance Overheads with FCRNs 

The downside of FCRNs is that incremental and batch maintenance of the case-base 
involves extra pre-computations. The effective relevance values need to be 
recomputed each time new cases or IEs are inserted or existing cases/IEs deleted or 
edited. However, the recomputations can be limited to only those effective relevance 
values that could potentially be affected. We consider two specific update scenarios 
below:  
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(a) Insertion of new cases or deletion of existing cases: Deletion of an existing case 
is straightforward and only involves setting all effective relevance values 
connecting IEs to that case, to zero. This does not influence the effective 
relevances of the other cases. However, when a new case is added, the effective 
relevances of IEs present in the case to the case needs to be pre-computed, based 
on the similarity and relevance knowledge. Existing effective relevance values of 
IEs to the remaining cases are not affected, since effective relevance of an IE to a 
case is independent of the relevance of the IE to any other case in the case-base.  

(b) Insertion of new IEs or deletion of existing IEs: When an existing IE is deleted, 
effective relevances of all IEs having non-zero similarity to the deleted IE, need 
to be updated. This can prove to be computationally expensive, especially in the 
face of large numbers of IEs and cases. We present an efficient update strategy 
(we have not empirically evaluated this claim) that is based on two key ideas. 
Firstly, we make incremental changes to existing effective relevance values, 
rather than recomputing these values from scratch. Secondly, we eliminate 
redundant computations by restricting incremental changes to only those effective 
relevance values that can get affected. When an IE node ed is deleted, the 
effective relevance of a node ),( ceiΛ is decremented by an amount ),( ceiΔΛ  to 

yield the revised relevance value ),(* ceiΛ  which is given by:   
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These operations can be speeded up by maintaining an update table, which is 
constructed from the similarity and relevance tables and plays the role of an 
inverted index. A lookup on the table shows the incremental change that must be 
made on each of the affected effective relevance values and saves the overhead of 
computing the values from scratch  

It may be noted that no updates are needed in situations where ),( ceiΔΛ  

evaluates to zero. This happens when either ),( di eeσ is 0 or when ),( cedρ is 0. 

The update table eliminates such redundant computations by restricting 
incremental changes to only those effective relevance values that get affected.  

As in the case of IE deletion, when a new IE is added, the effective relevances 
of all IEs bearing non-zero similarity to the new IE need to be re-evaluated. 
When a new IE node en is added, the revised relevance values are given by: 
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Again, we can restrict incremental updates to only those effective relevance 
values that get affected by the IE insertion.   

We note that it may be restrictive to suppose that the update operations can always be 
localized to those similarity and relevance values that are immediately affected by the 
nodes inserted or deleted. The approaches outlined above for speeding up updates 
work well when the similarity and relevance knowledge are externally obtained (as 
from background knowledge like WordNet [2]) or are derived from local properties of 
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the collection (the relevance of an IE to a case is not dependent on other IEs or cases). 
However they may result in incorrect updates when similarity or relevance knowledge 
is introspectively derived from global properties of the collection. In textual datasets, 
the relevance knowledge is often derived using a combination of local measures like 
term frequency and global measures like inverse document frequency [8]. A single 
case deletion will necessitate the recomputation of inverse document frequencies 
pertaining to all relevance values. As with relevance values, similarity knowledge can 
also be introspectively inferred from the text collection [11] and may need revision 
each time an update is made. In realistic situations, such bulk updates will be 
computationally expensive. A practical approach would be to perform incremental 
local updates as outlined above whenever a node is inserted or deleted, and relegate 
bulk recomputations to a later time, when enough updates would have happened to 
make significant impact on the global measures.  It is important to note that this 
recomputation overhead when using introspective techniques to acquire similarity and 
relevance knowledge is not specific to the FCRN, but is a concern shared by CRN and 
the flat case-base representation as well. 

6   Related Work 

Several techniques have been proposed in literature to speed up retrieval in CBR 
systems. Unlike FCRNs, Discrimination Networks [17] are hierarchical. They are 
limited by their assumption that the underlying domain can be neatly partitioned, and 
their inability to recover from missing values. The Fish and Sink Algorithm [18] also 
aims at speeding up retrieval but needs the triangle inequality to be satisfied by the 
distance metric. Also, unlike Fish and Sink, FCRNs do not need similarities between 
cases in the case-base to be pre-computed. K-d trees [19] are efficient data structures 
that decompose the case-base iteratively into smaller parts, and use a top-down search 
with backtracking for retrieval.  One serious limitation is that the construction of 
memory structures used in k-d trees becomes computationally expensive with 
increasing numbers of features and cases. Also, like Discrimination Networks, k-d 
trees cannot handle missing values. While the applicability of k-d trees is restricted to 
ordered domains, FCRNs can be used over unordered domains as well.  

Spreading-activation techniques have been used for retrieval in domains outside 
CBR. Most Neural Network [20] formalisms operate over distributed subsymbolic 
representations of data, organized as a network of nodes and weighted connections. 
However, while nodes and weights in FCRNs have meaning with respect to the 
domain being modeled, Neural Networks are typically black-boxes and no domain-
specific meaning can be attributed to either the nodes or the inter-connections. Marker 
passing algorithms [21] also operate over a network structure, but have a different 
objective compared to focused query-driven retrieval in FCRNs; hence the search 
over the network is much more undirected compared to FCRNs, with a significant 
number of search paths terminating in a dead end. Other approaches have also been 
reported in the context of analogical retrieval [22], where the objective is to retrieve 
cross-domain analogies. FCRNs differ from these implementations in that FCRNs are 
specifically designed to retrieve cases within a single domain.  
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7   Conclusion 

We have presented a Fast Case Retrieval Network formalism that remodels the 
retrieval mechanism in CRNs to eliminate redundant computations. This has 
significant implications in reducing retrieval time and memory requirements when 
operating over case-bases indexed over large numbers of IEs and cases. A theoretical 
analysis of computational complexity and memory requirements comparing FCRNs 
against CRNs is presented. Experimental results over large case-bases demonstrate 
significant speedup in retrieval with FCRN. While we have used text as the running 
theme for presenting our work, FCRN could, in principle, be applied to any large 
scale CBR application.  As part of future work, we plan to extend the FCRN 
formalism to model widely used similarity measures in textual and non-textual CBR 
domains.   
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Abstract. The design of a CBR system involves the use of similarity metrics.  
For many applications, various functions can be adopted to compare case fea-
tures and to aggregate them into a global similarity measure.  Given the avail-
ability of multiple similarity metrics, the designer is hence left with two options 
in order to come up with a working system: Either select one similarity metric 
or try to combine multiple metrics in a super-metric. In this paper, we study 
how techniques borrowed from multicriteria decision aid can be applied to CBR 
for combining the results of multiple similarity metrics.  The problem of multi-
metrics retrieval is presented as an instance of the problem of ranking alterna-
tives based on multiple attributes.  Discrete methods such as ELECTRE II have 
been proposed by the multicriteria decision aid community to address such 
situations.  We conducted our experiments for ranking cases with ELECTRE II, 
a procedure based on pairwise comparisons.  We used textual cases and multi-
ple metrics.  Our results indicate that the use of a combination of metrics with a 
multicriteria decision aid method can increase retrieval precision and provide an 
advantage over weighted sum combinations especially when similarity is meas-
ured on scales that are different in nature.   

1   Introduction  

When building a CBR system, similarity metrics have to be defined in order to support 
case retrieval functionalities.  This process involves determining a mechanism to com-
pare the different values of each case feature (local similarity) and to aggregate these 
evaluations to measure the closeness of a target problem to the cases in the system's 
case base (global similarity).  Many options at each of these steps are available and, to 
come up with a working CBR system, the designer must make a decision regarding the 
combination of metrics that will be incorporated in the retrieval component.   

The motivation behind this work stems from previous results pertaining to Textual 
CBR [1, 2].  Lamontagne et al. [3] studied and compared three (3) approaches based 
on statistical language processing techniques for estimating the similarity of fully 
textual cases (i.e. cases where both problems and solutions are textual in nature).  It 
was observed that the three metrics had dissimilar behaviour and that their relevance 
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varied as a function of the textual CBR systems properties such as the size of the case 
base, the number of neighbours in the case base, the length of the case descriptions, 
etc.  It is therefore interesting to verify whether these metrics can be combined in 
order to take advantage of their individual strengths.  We deem this issue worthwhile 
investigating for retrieval within a CBR system.   

In this paper, we describe how a multicriteria aggregation approach developed 
within the decision aid community can contribute to combining global similarity re-
sults.  Our main research question is to determine whether using multiple metrics can 
potentially improve performance in the retrieval phase of CBR systems.  We chose 
the ELECTRE II method to conduct our experimentation and to verify whether it 
allows obtaining higher precision for case retrieval.  To highlight the advantages and 
limitations of our multicriteria approach, we compared these experimental results with 
results obtained based on a weighted sum of the same metrics.   

Section 2 of this paper presents information on the textual CBR background per-
taining to this work and introduces the metrics used for our experimentation.  In sec-
tion 3, we propose a short introduction to multicriteria decision aid and present a 
detailed description of the ELECTRE II aggregation procedure.  We explain in sec-
tion 4 how the multicriteria setting is applied to CBR.  We describe and discuss in 
section 5 our experimental results and conclude with perspectives for future work.   

2   Multiple Perspectives on the Similarity of Textual Cases 

The motivation behind this work stems from an investigation of textual case retrieval 
[3] where three (3) similarity metrics based on statistical natural language processing 
(NLP) methods were compared. The metrics were the following:  

Cosine measure: As is frequently the case with information retrieval systems, a 
cosine metric (scalar product) can be applied to measure the relatedness of the 
cases.  Case descriptions are represented as vectors with elements corresponding to 
individual words present in both the case problems and solutions.  Words are as-
signed a tf*idf weight that quantifies their relative importance.  For two given 
cases, this measures the mutual coverage of the two bags of words that define their 
content.  
Case expansion measure: This measure relies on the expansion of case descrip-
tions using lists of word co-occurrences.  Word co-occurrences, denoting some as-
sociations between different words, are usually selected using a mutual information 
estimator.  Case expansion is then applied on the solutions descriptions by adding 
words from these lists.   For instance, a case containing the phrase conference call 
in its problem description could find words such as phone number or dial added to 
its solution.  This measure tries to overcome the lexical shortcomings proper to 
short case descriptions by inserting additional words that might help find implicit 
similarities between cases.   
Translation measure: This measure makes use of a statistical translation model to 
evaluate the probability that an existing solution was likely generated from an ex-
isting problem description.  The translation model, obtained from an alignment al-
gorithm [4, 5], computes the probability that a problem word suggests the use of  
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another word in the solution (this corresponds to a local similarity measure).  The 
resulting global similarity measure is the cumulative probability that a case solu-
tion could be associated to a given target problem.  

As can be seen from the preceding descriptions, these metrics are based on totally 
different principles. Experimental results have revealed that they had different proper-
ties and unequal performances.  A cosine measure performs well for routine cases, i.e. 
problems that are frequently submitted to a system.  These routine cases tend to be 
described using a limited number of words, which facilitates lexical comparisons.  On 
the other hand, the two other metrics make it possible to infer associations between 
different words, a property that may reveal interesting for more complex case formu-
lations.  A case expansion measure is more predictive in nature but less precise for 
handling frequent and longer case descriptions.  The translation approach has a 
greater potential for discriminating among word associations and is more accurate 
when used for providing a small number of recommended similar cases.  However, 
this approach requires a substantial corpus in order to build a model capable of cover-
ing a large variety of problems. 

Considering that the three measures can be more or less appropriate in different 
contexts, it is reasonable to expect an improvement in the retrieval performance of a 
CBR system when these three measures are combined.  However, a problem may 
arise when the metrics are measured on very different scales.  For example, in our test 
case base, cosine similarity values belong to a normalized scale of [0,1] and have a 
mean similarity value of 0.08 with a standard deviation of 0.12; whereas case expan-
sion is measured on a non normalized scale yielding an average similarity value of 
0.26 and a standard deviation of 0.11; finally the biggest challenge is to take into 
account the translation measure, a probability estimate of the words comprised in the 
case description, which very small values range from 10-4 to 10-800. This last measure 
is obviously non commensurable with the cosine and case expansion measures.  Al-
though a logarithmic conversion can somehow help to exploit the translation measure, 
it remains difficult to combine it with the other metrics because of scale disparities.   

A discrete multicriteria aggregation procedure seemed a promising direction for 
tackling this combination problem.  This field of research has been studied for many 
years by the decision aid community and a multitude of techniques exist to address 
the problem of ranking alternatives based on multiple conflicting and non commensu-
rable criteria.  We introduce this approach in the next section.   

3   Discrete Multicriteria Decision Aid 

Discrete multicriteria decision Aid (MCDA) [6] provides a framework for supporting a 
decision maker or a group of decision makers in their decision process where a set of 
discrete options is considered, a set of often conflicting and non commensurable crite-
ria is used to evaluate these options, and where the expected outcome of the process is: 
A recommendation of a set of good options (choice problem); a ranking of the options 
considered (ranking problem); or the assignment of the options considered to prede-
fined categories (classification problem).  The preferences of the decision maker(s)  
are modeled through a set of parameters reflecting the importance of the criteria,  
as well as indifference, preference and veto thresholds. A variety of aggregation  
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procedures exist to aggregate the local preferences (based on each criterion) into a 
global preference (based on all the criteria).  

The decision problem is represented as a set of m options A= (a1, a2, ...am), a set of n 
criteria G= (g1. g2, ...gn), and the m×n evaluations gj(ai) of option i on criterion j ex-
pressed in a decision table E, i=1..m, j=1..n (Fig. 1). An interesting feature of some of 
the multicriteria aggregation procedure is that evaluations do not have to be on similar 
scales.  Moreover they do not even have to be numerical in nature.  For instance, one 
criterion can be measured on a cardinal scale with real numbers while another can be 
evaluated on an ordinal scale of linguistic echelons such as weak, average, strong. 
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Fig. 1. An example of multicriteria decision table  

Each criterion must be assigned a weight that indicates the relative importance of 
the criteria to the decision maker(s).  The set of weights {ωj} does not depend on the 
scales or values used for the corresponding evaluations. However, it is often assumed 
that the sum of weights is equal to 1. 

Outranking methods are a family of multicriteria aggregation procedures based on 
pairwise comparisons of the options.  In the following paragraphs, we describe one 
such popular method for ranking options, ELECTRE II.  

3.1   ELECTRE II – An Multicriteria Aggregation Procedure 

The multicriteria aggregation procedure we chose for our project is ELECTRE II [7, 
8]. This was the first multicriteria ranking method developed based on the outranking 
relation principle. Given two options A and B, A outranks B means that A is at least as 
good as B. There are two major phases in ELECTRE II: The construction and the 
exploitation of the outranking relation. The construction of the outranking relation 
allows us to aggregate, for each pair of options, the local preferences evaluated on 
each criterion into a global preference structure. This means that we move from a 
pairwise comparison of the options based on individual criteria, to a global compari-
son of the pairs of options based on all the criteria. This translates into the existence 
or non-existence of the two following binary relations:  

•  APsB: A strongly outranks B. 
•  APwB: A weakly outranks B. 

Once we have constructed the outranking relations between all pairs of options, we 
proceed to establish a direct ranking, an inverse ranking, and a final ranking. This  
is the exploitation phase of the outranking relation.  The final ranking reflects the 
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decision maker(s) preferences, subject to the method, the evaluations, the preferences 
model, and the method’s parameters. 

Construction of the outranking relation. From a numerical point of view, we first 
need to compute concordance and discordance indices. The concordance index of a 
pair of options (A,B) denoted by C(A,B) corresponds to the degree to which the crite-
ria support the assertion that A is at least as good as B (majority rule). It is the sum of 
the weights of the criteria where A is evaluated equally or better than B. This is de-
fined below where gj(A) is the evaluation of option A on criterion j and ωj is the 
weight of criterion j. C is therefore a concordance matrix of m×m. 
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We next compute for each criterion and each pair of options, the discordance in-
dex, dj(A,B). This denotes the degree to which criterion j does not agree with the as-
sertion that A is at least as good as B. It can be interpreted as the possibility for crite-
rion j to apply its veto (respect of minority rule) and is defined below. We must com-
pute n discordance matrices of m×m.  
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Once we have computed concordance and discordance indices, we apply concor-
dance and non discordance tests in order to verify, for each pair of options (A, B) 
whether we have APsB, APwB, or no outranking relation. These tests use concordance 
and discordance thresholds, parameters that reflect the decision maker(s) values and 
preferences. There are three (3) global concordance thresholds, 0.5 < c1 < c2 < c3  1 
and two (2) discordance or veto thresholds per criterion 0 < v1(j) < v2(j) < E(j), where 
E(j) is the scale width of criterion j. When the concordance thresholds are large, we 
require that many criteria support the assertion that A outranks B; and for small values 
of the discordance (veto) thresholds, we require that none of the criteria strongly dis-
agrees with the assertion that A outranks B.  Denote by condition 1 the following: 
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Strong outranking test.  For each pair of options (A, B): APsB ⇔ condition 1 is met 
and  

jjBAdBAC j ∀≤≥  v and c 21 )(),(),(   or  

jjBAdBAC j ∀≤≥  v and c 12 )(),(),(    
(4) 

If the pair of options (A, B) does not pass the strong outranking test, we go on to 
apply the weak outranking test. 
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Weak outranking test.  For each pair of options (A, B) that do not pass the strong 
outranking test: APwB ⇔ condition 1 is met and 

jjBAdBAC j ∀≤≥  v and c 23 )(),(),(  
(5) 

As an illustration, consider the situation where C(A,B) is high, implying that A is 
evaluated better than B on a set of criteria that have an important total weight, and 
suppose that dj(A,B) is high, meaning that B is better than A on criterion j by an im-
portant difference, larger than the veto values v1(j) and v2(j) for criterion j. This means 
that the data does not support the assertion that A outranks B, which does not auto-
matically imply that B outranks A.  

Exploitation of the outranking relation and construction of the final ranking. 
Based on the strong and weak outranking relations, we proceed to construct a direct 
ranking and an inverse ranking (total pre-orders). In a total pre-order, each pair of 
options A, B either A is ranked better than B, or B is ranked better than A, or they have 
the same rank. In the direct ranking, the first rank is occupied by the options that are 
not strongly outranked by any other options. The options in the next rank are those 
that are not outranked by any non-ranked options, they may be outranked by options 
from previous ranks, and so on. The weak outranking relation is used to differentiate 
between options occupying the same rank. The inverse ranking is obtained in a simi-
lar fashion. The last rank is obtained by the options that do not strongly outrank any 
other options. The previous rank is obtained by the options that do not outrank any 
non-ranked options; they may outrank options from the rank below, and so on. It is 
possible that some options have different ranks in the direct and inverse ranking while 
others end up with the same ranks. 

A final ranking is obtained by combining the direct and inverse rankings through 
either a computation of a median rank or by intersection. In a final ranking by inter-
section, an option A outranks option B, if it has a higher rank in at least one of the two 
direct or inverse rankings, and if it has a higher or equal rank to it in the other rank-
ing. Two options are equivalent, have the same rank, if and only if they have the same 
rank in both direct and inverse rankings. Two options are incomparable if and only if 
one has a higher rank in one of the direct or inverse rankings and a lower rank in the 
other ranking.  Although more recent algorithms such as ELECTRE III were later 
developed for ranking alternatives (see [6] for specific examples), we chose 
ELECTRE II because it is much simpler and easier to use. Furthermore, it requires 
less parameters and thresholds that are somewhat arbitrary. 

4   Application to CBR Retrieval  

It is possible to envisage various ways to apply a multicriteria approach to CBR re-
trieval.  Multicriteria methods could be used to aggregate local similarity values ob-
tained at the attribute level (as in [9]).  They could also be used to select the most 
appropriate metric as a function of case and problem characteristics.  Furthermore, 
they can be applied, as we have done in this paper, to conduct cases retrieval based on 
multiple global similarity evaluations.    
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Given a target problem t, a case base C and a set of metrics M, we applied the 
ELECTRE II aggregation procedure to CBR retrieval as follows:   

• Each candidate case ci is considered an option.  The decision problem con-
sists of ranking the cases in the case base in a decreasing order of related-
ness to a new problem. This leads to deciding which case(s) from the case 
base will be recommended as potential solutions.   

• Each similarity metric mj is a criterion of the decision process. It is assumed 
that the set of similarity metrics M evaluate different facets of the ability of 
the cases to solve a target problem t.   

• The evaluations contained in the decision table correspond to the similarity 
measures of the target problem t with each candidate case ci according to a 
specific metric mj.  Hence the evaluation gj(ci) = sim mj (t,ci).  

• The decision process consists of establishing the final ranking of the cases 
in the case base and of selecting the first k candidates with the highest 
ranks.   

We present in Fig. 2 a general scheme for a multicriteria combination of the results 
obtained from multiple similarity metrics.  MCDADecide is the ELECTRE II decision 
function described in section 3 of this paper, W is the set of weights assigned to the 
metrics and wm is the relative weight of metric m.  

MCDASelection(t, C, k, M, W) { 
   // Build the decision table   
   for each metric mj of M {  
      for each case ci of C {   
         DecisionTable[ci][mj] = sim mj (t,ci)   
   }} 
   // Conduct the decision process and return the first k actions 
   R = MCDADecideElectreII(DecisionTable, W)        // a ranking of C 
   S = the first k elements of R    
   return S 
}

 

Fig. 2. Algorithm for selecting the k most similar cases using multiple metrics and a MCDA 
aggregation procedure (ELECTRE II) 

This strategy corresponds to a brute force application of ELECTRE II to CBR re-
trieval.  In practice, this approach might reveal impractical for large case bases as its 
complexity is O(|C|2) with a significant constant.  Therefore, for large scale applica-
tions, we considered two variations of this approach for limiting the number of pair-
wise comparisons: The bounded approach and the lexicographical approach.   

In the bounded approach, the ranking results provided by the individual metrics 
are used to filter the cases that will be retained as options in the multicriteria  
aggregation process.  The set of retained candidates is the union of the sets of the 
nearest cases based on individual metrics.  The corresponding algorithm is de-
scribed in Fig 3.   
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BoundedMCDASelection(t, C, k, M, W, b) { 
   // Filter the candidate cases for the multicriteria process 
   for each metric mj of M {  
      Cj = the first b cases ci ranked according to simmj(t,ci)
      C’ = C + Cj
   } 
   S = MCDASelection(t, C’, k, M, W)    
   return S 
}

 

Fig. 3. Algorithm for a bounded selection of the k most similar cases using multiple metrics and 
a MCDA aggregation procedure (ELECTRE II) 

The lexicographical approach is a hierarchical approach:  Cases are first filtered 
based on the lead metric, the one with the highest weight.  Subsequently, the remaining 
candidate cases are ranked based on all the metrics using the multicriteria aggregation 
procedure.  Hence the lead metric determines the candidate cases used as options while 
the other metrics help discriminate among them.  This scheme is illustrated in Fig.  4. 

LexicographicalMCDASelection(t, C, k, M, W, b) { 
   // Filter the candidate cases to be part of the decision process 
   mlead = the metric of M with the largest weight w   
   C’ = the first b cases ranked according to sim mlead (t,ci)
   S = MCDASelection(t, C’, k, M, W)   
   return S 
}

 

Fig. 4. Algorithm using a lead metric to filter candidate cases before selecting the k most simi-
lar ones 

5   Experimental Analysis  

Tests were conducted using 73 cases from an Email Response application, where a 
case consists of a request message (the problem) and its corresponding response (the 
solution).  Since these cases are textual in nature, we used the three metrics described 
in Section 2 of this paper to measure similarity.  The results presented in this section 
were obtained from a leave-one-out evaluation of the retrieval component.  In order to 
evaluate the performance of various combinations of metrics, we assessed the best k 
cases according to the following indicators:  

• Precision: The proportion of relevant cases in the first k nearest-neighbours 
(k=5, for this experiment); Cases are considered relevant when case solutions 
share common themes, which indicates that a response can be reused.  

• Relevant First: The proportion of trials for which the nearest neighbour is 
relevant. 

5.1   Individual vs. Combined Metrics 

The first issue was to determine whether a multicriteria combination of metrics can 
provide a better performance than using one metric at a time.  As presented in Table 1, 
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experimental results indicate that a combination of the three metrics can improve the 
performance of the system by approximately 5 to 7 % (in terms of precision and rele-
vance of the first recommendation).  These results were obtained by assigning a weight 
distribution of W = {0.25, 0.5, 0.25} to the Cosine, Case Expansion and Translation 
measures respectively.  We observed throughout our experimentations that similar 
results could be obtained if higher weights were assigned to the Case Expansion meas-
ure.  However, this improvement in performance was not significant when higher 
weights were assigned to the Cosine and Translation measures, in which case the  
precision obtained was 0.6. 

Table 1. Performance using individual and a combination of similarity metrics with ELECTRE II.   

Similarity metric Precision Relevant First 
Cosine measure 0.57 0.58 
Case Expansion measure 0.61 0.68 
Translation measure 0.56 0.63 
Multicriteria combination 
of the three metrics 

0.64 0.73 

To better understand the influence of each metric on system performance, we used 
combinations of pairs of metrics with equal weights of 50%.  The results, presented in 
Table 2, indicate that all the MCDA pairs outperformed the precision of their con-
stituents when used individually.  One intriguing observation is that the combination 
of Cosine and Case Expansion measures provides the same performance as a MCDA 
combination of the three metrics.   

Table 2. Performance of MCDA combination of pairs of similarity metrics 

Similarity metric Precision Relevant First 
Cosine + Case Expansion 0.64 0.73 
Cosine +  Translation 0.60 0.62 
Case Expansion +  Transla-
tion 

0.63 0.62 

Fig. 5 clearly shows that when the majority of weight is assigned to the Case Ex-
pansion metric, then using the other metric helps increase the global precision of the 
MCDA retrieval combination.  Otherwise, the precision either remains constant or 
degrades.  For instance, in Fig. 5a, we observe some improvement of performance 
when weight values inferior to 0.5 are allocated to the Cosine metric.  An abrupt de-
crease in precision occurs when more weight is assigned to this metric.  Therefore, we 
can draw the conclusion that improvement can be expected from MCDA combina-
tions of metrics when the best performing metric (Case expansion) has a higher 
weight coefficient.  
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Fig. 5. Effect of weight variation on the performance of MCDA pairs of metrics 

5.2   Bounding the Number of Cases Before Applying the MCDA Combination  

The results we obtained are presented in Fig. 6.  The bounded version of MCDA 
combinations (algorithm described in Fig. 3) has a slight degradation of performance 
of approximately 1.5% in precision when the number of cases used in the aggregation 
procedure is between 5 and 10.  However, when more than 13 cases are used as op-
tions, it offers a precision either equal or higher than a brute force MCDA combina-
tion.  Also, the relevance of the first case (not shown on this figure) is on average as 
good as the Brute Force MCDA approach when the case limit is above 5.   

The lexicographical version is less stable and presents a slower performance im-
provement than the preceding approach.  We note that a higher case limit (> 20) is 
required to reach performances equal or superior to the basic MCDA combination.  
On the other hand, our experiments indicate that the relevance of the first case is not 
influenced when using more than 6 cases.   
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Fig. 6. Effect of limiting the number of cases on the performance of MCDA approaches 

5.3   MCDA Combination vs. Weighted Sum Combination  

A question may arise regarding the pertinence of using MCDA combinations as op-
posed to a weighted sum of the metrics. To help answer this question, we present in 
Table 3 comparison results where the same set of weights is used in order to ensure 
comparisons on the same basis.  

Table 3. Comparison of the performance of a MCDA combination of the three metrics and the 
weighted sum (W = {0.2, 0.5, 0.3}) 

Similarity metric Precision Relevant First 
MCDA combination  0.64 0.73 
Weighted Sum 0.57 0.62 

This table seems to indicate that the MCDA combination is a better choice than the 
weighted sum.  However, if we perform an ablation study of the metrics (Fig. 7), we 
observe the following: Fig. 7a) shows that, for Cosine and Case Expansion metrics, 
MCDA and Weighted Sum combinations behaved similarly.   

This is explained by the fact that the scales for both metrics are similar.  The 
Weighted Sum can provide higher precision if a weight assignment for the Cosine 
metric is carefully chosen (weight interval ranging from 0.3 to 0.45); however it per-
formance is degraded when the Cosine weight is in the 0.1-0.3 interval.  Fig. 7b) pre-
sents a different picture.  The weighted sum combination fails to outperform the other 
approach for the large majority of the weight assignments.  Moreover, almost no  
 



426 L. Lamontagne and I. Abi-Zeid 

a) Cosine vs. Case Expansion

0,56

0,57

0,58

0,59

0,6

0,61

0,62

0,63

0,64

0,65

0,66

0 0,2 0,4 0,6 0,8 1

Cosine Weight

P
re

ci
si

o
n

MCDA

Weighted Sum

Case Expansion
only

Cosine only

 

b) Cosine vs. Translation
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Fig. 7. Effect of weight variation on MCDA and Weighted sum combinations  

improvement can be attained except when weight of the Cosine metric in the 0.8-0.9 
interval.  Therefore, the scale difference between the two Cosine and Translation 
metrics seems to affect significantly the performance of the weighted sum approach. 

This behaviour can be explained by the difference in the magnitudes of the metrics 
and the weights.  In the weighted sum approach, the weights are used to establish a 
compromise between the scales of the various metrics, hence making both compo-
nents strongly dependent on each other.  The weighted sum is a completely compen-
satory method where a small evaluation on one metric is cancelled by a high evalua-
tion on another metric. In the MCDA approach, evaluations are used for pairwise 
comparisons of actions with respect to a single metric.  Evaluations from different  
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metrics are not explicitly aggregated. Furthermore, the weights are used for the con-
cordance and discordance computations.  Therefore, the MCDA approach is not de-
pendent on the closeness of the weights magnitudes and the metrics scales.  

6   Conclusion 

In this paper, we have explored how a discrete multicriteria aggregation procedure 
can be used to combine metrics for case ranking in a case retrieval process.  The mo-
tivation behind this work was to investigate whether CBR systems could benefit from 
using multiple metrics simultaneously.   

Our results indicate that multicriteria combinations can improve the performance 
of individual metrics.  This approach revealed particularly advantageous when metrics 
are evaluated on different non commensurable scales.  One interesting finding is that 
the output quality of the multicriteria procedure depends on the relative importance of 
the most performing metrics.   

In order to reduce the computational burden, we proposed filtering strategies that 
allowed reducing the number of cases used as options in the MCDA ranking process, 
without sacrificing performance.  

As future work, the engineering of multi-metrics CBR systems will require tech-
niques, based on machine learning, to assist the designer in the assignment of relative 
weights to criteria in the ranking process.  Sensitivity analysis will also help evaluate 
the impact on the ranking process of the various parameters used by the aggregation 
method.  Experiments with aggregation procedures other than ELECTRE II, will help 
understand if the outranking approach is viable for CBR retrieval. We foresee even 
greater potential for applications where the similarity computations exploit non nu-
merical syntactic and semantics properties of the cases.  Multi-metric combinations 
can then take into account various perspectives for evaluating textual similarity. Fi-
nally, MCDA pairwise comparisons of cases should be investigated to assist other 
phases of the CBR cycle such as maintenance and case authoring.  
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Abstract. In this paper, we outline our vision of a case factory that deals with 
developing (future) knowledge-based systems. The functionality of such a sys-
tem is provided by different kinds of agents. We focus especially on case-
based-reasoning agents, which play an important part within our vision and the 
corresponding architecture. Our method of constructing a case-based reasoning 
system using agents is based on integration with the experience factory ap-
proach. We define a single architecture adopting ideas from the concept of 
software product-lines with a focus on combining technical and organizational 
knowledge. Finally, the paper closes with a brief overview of the current state 
of our work and a conceptual evaluation of its components with respect to re-
lated work. 

1   Introduction 

Our society needs and expects sophisticated services, which are typically “knowl-
edge-intensive” and can only be delivered if necessary organizational and technical 
requirements are fulfilled. In addition, cost-benefit analysis from the service provider 
point of view needs to be positive. Continuous improvement and goal-directed (par-
tial) automation of such services is therefore of crucial importance. As a contribution 
to this we describe our current research vision of case factory and knowledge-line for 
(partially) automated support of knowledge work(ers) using knowledge-based sys-
tems with a specific focus on case-specific knowledge.  

By case factory we mean the adoption of the experience factory approach known 
from software engineering to case-based reasoning. A knowledge-line denotes the use 
of the software product-line method, also known from software engineering, with a 
focus on aspects applicable to knowledge-based systems. As a consequence, we con-
sider a knowledge-based system as a multi-agent system where a general task is  
decomposed into subtasks and distributed to particular software agents1. As a first 
step – and only this is presented, here – we consider these agents to be case-based rea-
soning agents. In subsequent steps we will extend this narrow view and integrate 
other kinds of agents as well.  
                                                           
1 Please note that we use software agents primarily as a means for configuring our software  

architecture. 
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As a specific feature of our case factory approach, we assign roles from the experi-
ence factory concept to software agents. The former human role owners take over the 
task of coaching these agents by providing their experience to these software agents 
and taking over difficult decisions.  

In section 2 we describe our vision in more detail including the integration of case-
based reasoning, experience factory, software product-lines, and multi-agent systems. 
Section 3 focuses on the software architecture from a conceptual perspective. Section 
4 presents the current state of our work, reports on the evaluation of its basic compo-
nents, motivates and compares our approach to related work. Finally we briefly sum-
marize the paper and provide an outlook on future work. 

2   Vision on Knowledge-Based Systems for Knowledge Work(ers) 

The vision presented in this paper reflects experiences from research projects of the 
past ten years. Before going into detail, this section will give a brief motivation ad-
dressing the particular technologies and methodologies in general. 

2.1   Motivation of Our Research Vision 

The shift of relative importance from more traditional product factors to the new, in-
creasingly important product factor “knowledge” characterizes the development of 
new economical structures [11]. The incorporation of external knowledge is becoming 
more and more strategically important for companies for adapting to structural 
changes (decentralization, more flexibility). For instance, up-to-date knowledge is re-
quired not only for intended innovations but also for organization-internal changes, 
production, and sales of products. However, often such knowledge cannot be elicited 
organization-internally. 

Knowledge-intensive services and especially knowledge work [21, 22] represent a 
quickly increasing part of the service sector. “Knowledge-intensive work” includes 
activities that require an intensive education and experience on a specific subject that 
has been accumulated over many years [53, 33]. “Knowledge-intensive services” 
need the resource knowledge as their most important input factor when delivered [26]. 
“Knowledge work” denotes activities where the problem solving process is based not 
only on once acquired but on constantly revised, improved and updated knowledge 
[53, 33]. Experience represents the success-critical knowledge for knowledge-inten-
sive services and knowledge work [24]. 

Within this paper we describe our research vision of how to develop knowledge-
based systems for supporting knowledge work and knowledge-intensive services with 
a specific focus on the use of experience (case-specific knowledge) [27, 7]. Our vision 
especially includes computer-based, fully and/or partially automated knowledge work. 
Besides the known application possibilities within service economics (for a lot of suc-
cess stories see [20]), our research also contributes to ambitious goals being formulated 
by the European Union, for instance the ambient intelligence initiative [28] and scenar-
ios described in the report on “converging technologies” [23, 42]. Fully or partially 
automating knowledge work has the additional advantage of providing knowledge to 
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users and computers as well. This enables automated processing of knowledge and of-
fers a unique additional value if compared with more traditional approaches. 

Many requirements have to be considered during development of such knowledge-
based systems. In addition, the service expectation of our society is increasing and this 
is not going to change in the near future. Then, users expect information systems to 
support them smartly, to behave “intelligently”, and to learn from experience thereby 
improving their behavior. As a consequence, such knowledge-based systems should be 
flexible, modular, and easy to adapt and maintain. These systems should contain a lot 
of valuable knowledge understandable for both the user and the computer. 

Implementing such knowledge-based systems comprises numerous problems. 
Some of them have already been solved in principle or exemplarily for selected tasks. 
However, corresponding solutions are mostly developed by different research com-
munities with very limited exchange/communication in between although past experi-
ence has shown that achieving major progress for fields like the implementation of 
knowledge-based systems requires integrating methods and techniques from different 
(sub-) disciplines. We present a research vision that has been developed while the au-
thors were working in the computer science sub-disciplines software engineering 
(SE), artificial intelligence (AI), and business information systems. As a consequence, 
our vision is based on an integration of approaches from these fields. 

In particular, this includes the SE experience factory, software product-line ap-
proaches as well as case-based reasoning, intelligent agents, and machine learning 
from AI. Furthermore, there are a lot of relationships to knowledge management and 
business processes, which may be considered as part of business information systems. 

2.2   Integration of Case-Based Reasoning, Experience Factory, Software 
Product-Lines, and Agent Technology 

Experience factory (EF) is a logical and/or physical infrastructure for continuous learn-
ing from experience (Fig. 1). It includes an experience base for storage and reuse of 
knowledge. The experience factory concept was introduced in the mid 1980s to sup-
port the central process of SE, the software development process [19, 18]. Basili and 
Rombach consider software development running in projects separate from the learn-
ing organization experience factory because these two sub-organizations have different 
goals. Projects have to achieve their project goals, that is, developing software accord-
ing to the given requirements. Experience factory, however, supports learning across 
projects. From a project perspective this can be viewed as additional effort and might 
lead to a goal conflict. Such a separation of learning and project organization is a char-
acteristic feature of an experience factory [16] and has been validated in practice. 

The experience factory concept follows the quality improvement paradigm, a goal-
oriented learning cycle for the experience based improvement of project planning, 
project execution, and project learning. Goal-oriented measurement and evaluation is 
used as a systematic procedure for evaluation [17]. Fig. 1 shows the separation be-
tween learning and project organization, the main interfaces between projects and  
experience factory as well as various roles within the experience factory. While the 
experience factory manager has the overall responsibility, the experience manager has 
associated the task of deciding about content development and structuring. The expe-
rience engineer is responsible for packaging and analyzing the experience base.  
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Fig. 1. Experience factory 

While the librarian cares about the technical and administrative tasks, the project 
supporter finally is the main contact to the respective projects. 

Basili, Rombach et al. [16] identified important problems in the mid 1990s. In  
particular, how to implement an experience base, how the necessary processes for de-
veloping an experience factory/base should look like in detail, as well as how experi-
ments about implementation issues could be carried out. 

Case-based reasoning caused a focus within AI on knowledge-based systems dedi-
cated to experience management [14, 2, 13, 5] in the late 1980s and the 1990s. Utiliz-
ing the dynamic-memory-idea of Schank [46], the CBR approach makes use of situa-
tion knowledge usually resulting in good user acceptance. Accordingly, a number of 
commercial tools and many real-life applications were developed (e.g. [12, 20, 49]). 
Important problems tackled in the mid 1990s were the systematic development of 
CBR systems, their operation, integration into an industrial environment, and their 
evaluation. 

The following integration of the experience factory and the case-based reasoning 
concepts [48] led to numerous advantages. Because CBR makes use of experiences cap-
tured as cases immediately, it fits very well as technology supporting the experience fac-
tory concept. A lot of detailed knowledge about the case-based reasoning processes was 
already available in the corresponding community and could be used as a very good 
starting point for describing experience factory processes. On the other hand, the experi-
ence factory provided a methodology when applying case-based reasoning systems to 
commercial organizations. In addition, it contributed an approach for evaluating case-
based reasoning systems: goal-oriented measurement and evaluation [6]. 

We denote the integration of experience factory and case-based reasoning as case 
factory. Enhancing this integration also led to the integration of systematic reuse into 
the software development process. Hence, the implementation of the case base was 
based on the software product-line approach [38, 44, 37] and introduced a so-called 
“experience based information system” (EbIS). Thus, a case base was no more real-
ized as a single system but as an entire system family. The underlying system  
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Fig. 2. Product-line architecture for experience based information systems [38] 

architecture is shown in Fig. 2. As several of the presented components have different 
implementations, the architecture describes a family of systems that is defined with 
respect to a number of carefully designed common features [45]. 

2.3   Vision 

The significance of knowledge as production factor was already pointed out in the be-
ginning of this section. We emphasized our vision on developing knowledge-based 
systems supporting knowledge work and knowledge-intensive services, focusing on 
creating added-value through increasingly automated use of available knowledge. 
This resulted in the idea of a “knowledge product-line” (or short knowledge-line). A 
knowledge-line denotes adoption of the software product-line approach to knowledge-
based systems. 

Knowledge-lines enable the necessary “knowledge level modularization” for 
building potential variants in the sense of software product-lines. This could be 
achieved by making use of multi-agent systems [24, 51] as basic approach for 
knowledge-based systems. An intelligent agent is implemented as a case-based rea-
soning system, which, besides case-specific knowledge, can also include other kinds 
of knowledge. Each case-based reasoning system agent is embedded in a case fac-
tory that is responsible for all necessary knowledge processes like knowledge inflow, 
knowledge outflow as well as knowledge analysis. Such a case factory is potentially 
fully automated, because software agents are available for each role known from ex-
perience factory, and perform these roles in an increasingly automated way. For  
example, machine learning techniques are used for analyzing, evaluating, and main-
taining the case base. As part of the vision both, the case-based reasoning system 
agents and the case factory agents, can learn from experience. As a consequence, the 
vision considers distributed learning systems as a model for future (intelligent) soft-
ware systems. 
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Fig. 3. Knowledge-line based on a (partially) agent-operated case factory 

Fig. 3 presents an overview of the case factory approach structured according to 
the knowledge-line. The left part shows the case-based-reasoning-enabled operation 
of a case factory for different subject areas. The right part of Fig. 3 describes the 
knowledge-line part of a case factory responsible for the systematic development of a 
case-based reasoning system. 

 

Fig. 4. Case factory role owner as a coach for the respectively associated software agent 

For each role within a case factory there is at least one software agent. However, 
each software agent has associated a human coach being responsible for the role, which 
is assigned to both in a collaborative sense (see Fig. 4). The human role owner “intro-
duces the agent to his job” by taking over difficult decisions and providing his case-
specific knowledge. Based on case-based reasoning and machine learning techniques, 
the corresponding software agent should learn while interacting with its human coach 
taking over more and more tasks (if accepted by its coach). This enables a gradual tran-
sition from purely human based processes to processes where routine tasks are increas-
ingly carried out by software agents, and humans can spend more time on creative tasks. 

Using the software product-line approach enables a modularization already on the 
knowledge level. The modules have associated the variability and requirements that 
they satisfy. As a consequence, such knowledge-line modules can be selected using a 
catalogue of requirements. By doing so, the development of further case factories is 
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simplified and speeded up. Nick [38] has identified an efficiency improvement by a 
factor greater than 4 for developing the design of an experience based information 
system. Further efficiency improvement for the buildup of case factories will be ex-
pected from increasing automation of a case factory buildup agent. 

3   Software Architecture for Knowledge-Based Systems 

In this section, a software architecture for knowledge-based systems as motivated 
above is described. Thus, it was designed with the aim of building knowledge-based 
systems as knowledge-lines as mentioned before. 

According to our vision, future knowledge-based systems should support reusing 
already captured knowledge as much as possible and provide their services within a 
generic architecture. The idea behind this is (if we have built a similar system before) 
to more or less configure a knowledge-based system instead of developing it from 
scratch. Of course, such issues are not specific to knowledge-based systems but im-
portant research topics in adjacent areas, for instance patterns [29] and frameworks 
(e.g., JADE [34]). However, we believe that adopting the software product-line con-
cept and focusing on knowledge is a promising alternative to already existing meth-
odologies for developing AI systems. 

Beside the aspects of product lines, newer development processes for knowledge-
based systems should be prepared for the following questions: 

– Which kind of knowledge is available? Is it more general knowledge like rules, 
(e.g., best practices), more case-specific knowledge (e.g., lessons learned), or 
only simple documentation of past events (textual documentation of “raw ex-
perience”)? 

– What are the characteristics of the available case-specific and general knowl-
edge? 

– What requirements are given for the solution? 
– Could the provided solution contain (small) errors or must it be correct and 

proven? 
– What are the environmental conditions and the context? 

When introducing a knowledge-based system, such knowledge is typically not avail-
able and must be collected in advance. Therefore, we have to build up a case base with 
the aim of reusing the contained case-specific (and at this time also general) knowledge.  

3.1   Using the Multi-agent Paradigm for Structuring Knowledge-Based Systems 

As shown in [43] or in [1], maintenance is a long-running process during the life-
cycle of such a system, which should be done beneath the usual processes (like re-
trieve in case-based reasoning). This could be done partially or completely offline and 
has, in this case, to capture different versions and states of elements of knowledge as, 
for example, shown in the special domain of textual case-based reasoning [30]. Be-
cause buildup and maintenance are such different tasks compared with usual working 
tasks, we put them into completely separate active software components such as 
agents. Here, we use the agent-oriented programming paradigm to decompose and or-
ganize inherently different tasks. 
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3.2   Four-Tier Architecture 

The general architecture is decomposed into four tiers. On the first system tier called 
system tier is at least one knowledge-based system. The second one, the knowledge 
worker tier contains some knowledge-based agents, each specialized on different prob-
lem solving techniques, for example, case-based reasoning. Whereas the third tier, also 
known as maintenance tier, contains agents maintaining the used knowledge and the 
knowledge itself is stored in the fourth tier. Each tier should not be confused with tiers 
from related SE-multi-tiered models as those are more technically motivated contain-
ing business logic only on the middle tier. In contrast, the first, second and third tier of 
a knowledge-based system performs business logic. Additionally, all of the four tiers 
can be distinguished by the kind of service they provide. Each element of a tier pro-
vides some (knowledge-based-) services and makes use of some underlying ones. 
Fig. 5 gives an overview. In this figure a knowledge-based system KBS1 uses two 
knowledge-worker agents: CBR Agent1 and Search Agent3. The (case-) knowledge 
situated in case-base 1 is maintained by a case factory represented by CF Agent1.  

The term service instead of classes or components was chosen according to the 
idea of web services [50]. Using services achieves independency between a consumer 
of a service (which only knows the URL and description of a service) and the imple-
mentation of a service. Additionally, the architecture allows systems running locally 
or physically dispersed. 

The motivation behind distinguishing four tiers is the following: We describe the 
requirements of each tier on different levels of abstraction. Afterwards we can ex-
change elements of each tier without changing the other ones. In other words: we 
want to enable changing problem solving techniques, maintaining models, and GUI 
independently from one another to separate used knowledge as much as possible. 

3.2.1   System Tier: Knowledge-Based System 
The first is the most general tier and exposes services provided by the entire knowl-
edge-based system. This is the interface as a normal user would recognize and interact 
with it. Different kinds of interfaces like rich clients running on local machines, web-
based interfaces (thin clients), or simply web services are feasible. Inside a knowl-
edge-based system the service is decomposed into several sub-services. In a first step 
only one knowledge-based system is considered. Of course, following the product-
line approach in the next step(s) different knowledge-based systems should be config-
urable from the lower tiers. 

3.2.2   Knowledge Worker Tier: Knowledge-Worker Agents 
The service of an arbitrary knowledge-based system has to be executed by (at least 
one) agent capable to fulfill the sub-services according to the business processes of 
the respective knowledge-based system. Therefore, different kinds of so-called 
knowledge worker agents should be available, according to the categories of problems 
to be solved. The knowledge-worker agents are, in our work, case-based reasoning 
agents but, in principle, deductive problem solving agents, theorem proving agents, 
planning agents, or internet-search agents are also possible. In the best or optimal case 
we have at least one kind of agent for each possible sub-service. In real world scenar-
ios, we can expect only a subset of agents. 
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Fig. 5. Overview of the system architecture with four tiers 

3.2.3   Maintenance Tier: Case-Factory Agents 
This tier contains active maintenance agents responsible for the knowledge or experi-
ence used by the knowledge worker agents on the second tier. Each agent maintains 
(some part of) the knowledge, keeps it up to date, repackages, and extends it. Accord-
ing to different conceivable models, various agents could exist. Although each main-
tenance agent corresponds to a certain kind of knowledge worker agent, we separate 
both from each other. By this we integrate two different aspects of improving knowl-
edge: Firstly each knowledge worker agent learns individually from its own experi-
ence and secondly each knowledge worker agent can also learn from the experience of 
other knowledge worker agent through a relationship between the respective case fac-
tories managed by the respective case factory manager agent. 

For this paper, we describe the introduced case factory as a concept of maintaining 
the case-specific (and general) knowledge used by a case-based reasoning agent. 

3.2.4   Knowledge Access Tier 
On this tier we foster all the knowledge utilized by agents from tiers above. It is out-
sourced from the knowledge worker agents to give the case factory agents access to 
all the knowledge independently from the respective knowledge worker agents. In ad-
dition, also the knowledge of all the case factory agents is outsourced. Thus, these 
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agents also can learn. However, these learning processes are supported via the case 
manager and the case factory manager agents. 

3.2.5   Communication Interfaces Between Tiers 
There exists an interface defining a minimal set of services all knowledge agents 
have to provide. It bases on basic class interfaces that are used for all tiers, hence 
the communication between agents of the same tier and different tiers can achieved 
as well.. 

3.3   A Case-Based Reasoning Agent (as an Example of the Second Tier) 

A case-based reasoning agent provides services that are typical for a case-based rea-
soning system: retrieve cases, reuse and revise solutions, retain new cases. In addition 
more than one cbr-agent implementing different case-based reasoning approaches 
could exist side by side. 

3.3.1   Case Factory 
This section describes case factory as the notion of an experience factory approach for 
building-up and maintaining case-based reasoning systems. Despite the whole case 
factory is represented by one agent, the tasks inside the case factory (closely related to 
the tasks of an experience factory) done are executed by other (subordinated) agents 
as well. This could be (in a first iteration) human (as shown in Fig. 4) but also soft-
ware agents. Following agents are involved: case factory manager, case manager, 
case engineer, case librarian, subject area management agent, knowledge-line re-
packaging agent, and buildup agent. 

Based on the low-effort collaborative maintenance model we described in [30], we 
want to briefly sketch the ideas behind. The case factory manager has the overall re-
sponsibility for the whole case factory and decides about strategic goals using this 
case-based reasoning system. Obviously, it is the most appropriate candidate having a 
human coach because its task is difficult to automate and the final decision should be 
delegated to a human. Although the low-effort model has no official administrator, 
developers and administrators feel responsible for this project and keep it alive. 

The case manager is associated with the task of deciding about development and 
improvement of the case base and the other knowledge containers. An example of 
managing improvement is setting the score levels and maintenance intervals.  

The case engineer has (in cooperation) the task of packaging and structuring exist-
ing experience into a case-based reasoning system, for example, modeling the case 
format. The case librarian is responsible for technical aspects like maintaining the 
case base, storing, and publishing new cases. The subject area management agent  is 
responsible for collecting the domain knowledge that is specific for the current sub-
ject area. The knowledge-line repackaging agent (both not shown Fig. 5) is responsi-
ble for restructuring and repacking the available case-specific and general knowledge. 
The buildup agent is responsible for building up a new case-based reasoning system. 
This could be a human administrator installing the software and/or a database admin-
istrator setting up a new database for storing a case base. 
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4   Evaluation and Related Work 

While the work presented here is mainly on a conceptual level, it covers research be-
ing done from the mid 1990 until now. It deals with the integration of four different 
approaches from AI and SE leading to a promising development methodology for 
knowledge-based systems that has, to our knowledge, not reported yet. The goal of 
this paper is not only to summarize previous work but also to actively predict the sci-
entific future of the fields described. 

For a deeper analysis of case-based reasoning principles used here see [3, 11, 10]. 
With respect to the integration of case-based reasoning and experience factory we in-
corporate the results described in [48, 47, 9]. From a maintenance perspective we ac-
tively use the results described in [38, 39, 31]. Regarding software product-lines we 
start from the software product-line described in [38]. Our work, however, is also in-
fluenced by earlier work on a software product-line on technical diagnosis [52, 10] 
and follow-up work [20, 6]. In spirit our work is also related to integrated learning 
(and problem solving) architectures [40], especially to work done in the groups 
around Agnar Aamodt [4], Enric Plaza [3], and Josep Lluis Arcos [15]. As we already 
mentioned, our research goal has some similarities to goals of work on expert system 
shells or tool boxes, for example, work done in the group around Frank Puppe [41]. 

Though there are many relationships to other work we are convinced that the work 
described and proposed in this paper will lead to some new research directions. One 
reason for this is the – to a high extend – deep integration of SE and AI approaches 
which, to our knowledge, is missing within other work. 

5   Conclusion and Outlook 

In this paper we introduced case factory as the integration of the case-based reasoning 
and experience factory approaches and knowledge-line as the systematic application 
of the software product-line approach to the knowledge in knowledge-based systems. 
The goal of this paper is to have a résumé of previous work and to actively predict the 
scientific future for the development of knowledge-based systems for supporting 
knowledge work and knowledge-intensive services as described above. In a first step 
we focused on case-specific knowledge and case-based reasoning for its processing. 
We presented a four-tier software architecture for developing knowledge-lines using 
different knowledge worker as well as case factory agents.  

We try to integrate research work that started already in the beginning 1990s of both 
ourselves and others with more recent work. Our next goals include the implementa-
tion (of parts) of the described software architecture and its validation for selected ap-
plications. We try to integrate also other interested research groups into this process. 
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Abstract. The aim of the research conducted is to investigate how the
knowledge in Ontologies can be used to acquire and refine the weights
required in Case Retrieval Networks (CRNs). CRNs are designed to per-
form efficient retrieval processes even in large case bases but they lack
from the flexibility and over restrict the circumstances under which the
cases are retrieved. We investigate how ontologies can be used to relax
these restrictions. We propose a retrieval method where the cases are
embedded in a CRN but the weights are dynamically computed using
the knowledge from the domain ontology and from the query description.

1 Introduction

Case Based Reasoning (CBR) is a technique within the field of machine learning
that aims on solving problems using past experience. A case typically contains a
problem description and a solution to the problem and is stored in a case base.
The query describes the current problem that is compared with the cases in the
case base. The most similar case or cases are then retrieved and their solutions
presented to the user.

In the CBR literature there are many different approaches to case retrieval.
We have taken into account what CBR researchers have considered to be re-
quirements for a case retrieval method. The following three conditions should be
met: [12]

Efficiency concerns with the time and resources used to retrieve cases similar
to the query. Resource expensive approaches should be avoided.

Completeness guarantees that all cases with sufficient similarity is considered
in the retrieval.

Flexibility expresses that there are no inherent restrictions concerning the cir-
cumstances under which a particular piece of knowledge can be recalled.

Note that these conditions have contradicting goals. When structuring the mem-
ory to reach efficiency it is most often to the cost of flexibility. This is the case of
Case Retrieval Nets (CRNs), a well-known technique to retrieve cases efficiently
from a large case base that is based on a structured memory model[11].
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CRN technology is designed to perform efficient retrieval but it lacks from
flexibility and restricts very much the circumstances under which the cases are
retrieved. As we described in Section 3 the designer of a CRN provides a set of
weights to adjust the relevance and similarity functions. If weight adjustment
is made manually it becomes a tedious process that lacks of thoroughness, and
can be incomplete or incorrect when the creator is not skilled enough. The prob-
lem with automatic processes is that they typically miss many of the inherent
relationships between the entities. We claim that these relations are available
and can be extracted from domain ontologies that include generic and reusable
knowledge. Note that we use existing ontologies that are not created ad-hoc for
each system.

We investigate how ontologies can be used to relax the restrictions that are
inherent to CRNs. The aim of the research conducted is to integrate the use of
CRNs with the knowledge in domain ontologies. Our previous work on knowledge
intensive CBR [4,5] describes the benefits of building integrated systems that
combine case specific knowledge with models of general domain knowledge. We
have learnt that even though the main source of knowledge is a set of previous
specific experiences, the system reasoning power can be improved through the
use of general knowledge about the domain. For example, retrieval benefits from
the similarity implicitly defined by the distance of two individuals using the
subsumption links in the domain taxonomy. Different approaches to case retrieval
based on instance recognition and concept classification have been proposed in
the literature [9,18,2] but they are not usually applied to real size case bases due
to efficiency problems.

We claim that the use of ontologies together with CRNs improves flexibility
without losing efficiency. We propose a retrieval method where the cases are
embedded in a CRN but weights are dynamically computed using the ontology
knowledge and the query description. We keep the best of both worlds: the
flexibility of ontology driven retrieval and the efficiency of CRNs.

We have performed our experiments within the jCOLIBRI framework. jCOL-
IBRI1 is an object-oriented framework in Java for building different types of
CBR systems [16]. The ontologies we are using for our experiments are mainly
borrowed from the Semantic Web, are formalized in the OWL language [15] and
are available from our web page2.

The rest of the paper is structured as follows. Section 2 briefly introduces
the example domain we are using in the paper. Section 3 and 4 describe, respec-
tively, Case Retrieval Nets and Classification Based Retrieval. Section 5 describes
our approach to enrich the CRN structure within the knowledge in the domain
ontology. We use the ontology to compute the weights of the relevance and sim-
ilarity functions in CRNs. Section 6 compares the three approaches: retrieval
with CRNs, classification based retrieval and CRNs enriched with ontologies.
Section 7 summarizes the results and concludes the paper.

1 http://sourceforge.net/projects/jcolibri-cbr/
2 http://gaia.fdi.ucm.es/ontologies/index.html
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Fig. 1. Travel example case

2 Travel Domain

Imagine an online catalog of a travel agency. Every single travel is represented by
a case in the travel case base. A recommender CBR system retrieves the vacation
that best matches a client request. The values that represent a vacation case are
instances and concepts ordered in a conceptual taxonomy. We use the vacations
ontology that is formalized in the OWL language [15] and is available through
our web page3.

The case base and the ontology are both quite simple, easy to understand
and adequate for our experiment. On the top of the taxonomy we have the node
cbr index and it is the parent node for all the concepts. We have concepts for
each one of the case attributes. The attributes can be of different types; namely
of infinitive nature like price and duration, or of finite nature like holiday type
and destination.

We are using a case base of 1024 cases4 each with 11 attributes describing
different holiday/hotel destinations. A typical case within the case base might

3 http://gaia.fdi.ucm.es/ontologies/index.html
4 www.ai-cbr.org/cases.html
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look like the one in Figure 1. The case describes a vacation to the Spanish island
Tenerife. It offers a two weeks vacation on a three stars hotel for four people.
The season for this vacation is July and you will get there with a plane for 453
Euros.

Consider a customer that wants to go with his family to Gran Canaria for
vacation. He wants to go to a warm and relaxing destination but does not want
to spend more than 500 euros.

Ideally, he would use some kind of form to place his query. The input from the
user would be interpreted by the system as a problem description and a set of
suitable solutions should be presented. The case of Figure 1 is a case that might
be retrieved and presented to the user, although the destination is Tenerife. The
system will realize that Gran Canaria and Tenerife are both two Canary islands
with similar properties.

3 Case Retrieval Nets

Executing a query in a large Case Base is an expensive and time-consuming task.
Several sophisticated techniques to deal with this problem have been presented
by many researchers. Mario Lenz at the Dept. of Computer Science, Humboldt
University Berlin presents a memory model called Case Retrieval Nets [11] that
takes ideas from Artificial Neural Networks (ANN). The key idea of the network
is to apply a spreading activation to find the most similar case to a given query.
While more traditional techniques use a top-down approach, CRN use a bottom-
up process that propagates, in an efficient and flexible manner, the query values
towards the cases.

3.1 Brief Explanation of the Net Structure

The nodes in the CRN are built up by Information Entities (IEs), which are
attribute-value pairs. Each case holds a set of IE nodes that describes its features.
All nodes are placed in the network and they are the most essential part of the
CRN. If two cases have an identical attribute-value-pair they will share the
same IE node. IE nodes that are similar to each other will have a weighted
connection between them describing the similarity. When a query is executed in
the network, the IE nodes similar to the query values will be activated. These
activated IE nodes will propagate the activation to similar IE nodes using the
weighted connection, in a manner similar to ANN. All activated IE nodes will
then propagate their value to the connected cases.

The main idea of CRNs is illustrated with a travel agency example. The
system will return vacations that are similar to a given query. In the example a
user has told the system that he would like to go to Gran Canaria on vacation
and the IE node representing Gran Canaria will be activated (Figure 2). The
IE node is also connected to other destinations like Mallorca and Cyprus since
they share similar features; they are all islands with a warm climate. However,
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Fig. 2. Example of a CRN showing the Destination Attribute with connected IE nodes
and cases

the destinations Sweden and Norway will not be activated since they are rather
different to the query destination. Note that both the vacation cases four and
five have the same destination and therefore share the same IE node.

3.2 A Formal Mathematical Model of Basic Case Retrieval Nets

Here follows a formal mathematical definition of the Basic CRN (BCRN). A set
of different extensions to BCRNs exist, but they are all based on this mathe-
matical model. For more information, see [12,11].

Definition 1. An Information Unit or Entity (IE) is an atomic knowledge item
in the domain, i.e. an IE represents the smallest part of knowledge representa-
tion, such as a particular attribute-value-pair.

Definition 2. A case consists of a unique case descriptor and a set of IEs.

Definition 3. A Basic Case Retrieval Net (BCRN) is defined as a structure
N = [E, C, σ, ρ, Π] where
E is the finite set of IE nodes;
C is the finite set of case nodes;
σ is the similarity function

σ : E × E → R

which describes the similarity σ(e′, e′′) between IEs e′, e′′;

ρ is the relevancefunction
ρ : E × C → R

which describes the relevance ρ(e, c) of the IE e to the case c;
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Π is the set of propagation functions

πn : RE → R.

for each node n ∈ E ∪ C.

The relevance between a case and each IE node is given by the relevance function
ρ(e, c). If there is no arc between the IE node and the case the function will
return zero. The similarity function indicates how similar two IE nodes are to
each other. Likewise, if there is no arc between them the similarity will be zero.
When the relevance and the similarity have been calculated, the propagation
function πn : RE → R calculates the propagation value. These values will be
used to calculate a nodes activation value using the activation function α.

Definition 4. An activation of a BCRN N = [E, C, σ, ρ, Π] is a function
α : E ∪ C → R

Considering the BCRN, the activation at a given time t + 1 is:

αt+1(e) = πe(σ(e1, e) · αt(e1), . . . , σ(es, e) · αt(es))

for IE nodes and

αt+1(c) = πc(ρ(e1, c) · αt(e1), . . . , ρ(es, c) · αt(es))

for cases.
The activation of a case c or an IE node e is determined by the activation

function. The value computed by the function tells the importance of the current
node with respect to the given query. Also, negative values can be used to express
rejections of cases that contain a certain IE node. To place a query in the system,
all IE nodes in the system that are described in the query will be activated at
time zero: α0(e) is 1 for the IE nodes e in the query, and 0 otherwise.

4 Classification Based Retrieval

When rich domain models are available, we can use a representational approach
to solve the case retrieval task. This method assigns similarity meaning to the
path joining two individuals in the domain model. With this approach A is more
similar to B than C to B iff A is closer to B than C. When this approach uses
the subsumption links in the domain taxonomy to define the distance between
two individuals, it is called Knowledge intensive Classification Based Retrieval.
It has been described in the literature [10,20,9,14,18,7,3].

Our specific method [7] is based on a formal representation of the domain
knowledge using Description Logics (DLs)[1], so that we can rely on its reasoning
capabilities to automatically organize the cases according to their descriptors.
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Fig. 3. Classification Based Retrieval

4.1 Brief Explanation of Classification Based Retrieval

Knowledge Intensive Classification Based Retrieval strongly depends on the
knowledge structure where cases are located. We begin with an ontology of
primitive domain concepts representing the basic domain vocabulary (or ter-
minology) and complete the domain model with other defined concepts. Each
explicitly included defined concept represents a meaningful abstraction, and,
therefore, the very existence of that concept should affect the similarity func-
tion. Defined concepts are described by the necessary and sufficient restric-
tions to be satisfied for their instances (see [1] for a detailed introduction to
DLs).

These concept definitions can be included manually or extracted from the
case base using inductive techniques. In [3] we have proposed the use of Formal
Concept Analysis as an inductive technique that elicits knowledge embedded in
a concrete case library and enriches the domain conceptual taxonomy.

All cases in the casebase are classified as instances of defined concepts verifying
if they fulfil their necessary and sufficient conditions [1].

For example, Figure 4 includes the definition of the VACATION RELAX
CASE concept. A travel case ci is recognized as an instance of this concept if the
travel properties of ci agree with the restrictions within the concept definition,
in this case, a relax travel is a travel where the destination country has a beach
and the season of the travel is summer.

Once the case base is classified below a set of concepts –we call them index
concepts– each new query is treated as a case and classified in the hierarchy.
Classification based retrieval filters the case base and selects cases sharing the
same classification than the query.

This retrieval method chooses those cases having more and more specific com-
mon index concepts with the query. For example in Figure 3 we should ob-
tain case TRAVEL143 instead of TRAVEL331. Query and TRAVEL143 shares
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Fig. 4. Defined Concept: Vacation type Relax

the index concepts VACATION SUMMER CASE and VACATION CASE, and
TRAVEL331 and query only shares the root concept VACATION CASE.

Next subsection formalizes the classification based approach.

4.2 A Formal Model of Classification Based Retrieval

We are interested in computing the similarity between a given pair of individ-
uals: one representing the query, and another representing the candidate case
description. An individual is defined in terms of the concepts of which is an
instance and the roles explicitly asserted for it or entailed by the contents of
the Knowledge Base (KB). In DLs, the roles of an individual are represented
as relations connecting the individual to other individuals or primitive values
(fillers).

The concept-based similarity between two individuals will be given by the sim-
ilarity between the two sets of concepts of which those individuals are instances.
We can simplify the problem by selecting only the most specific concepts from
both sets, since a concept carries all the information contained in its supercon-
cepts. A further simplification is to consider, as the most on point concept for
describing an individual, the one obtained as the conjunction of the most specific
concepts of which that individual is an instance, which may or may not exist in
the concept taxonomy. This way we reduce the problem of comparing two sets
of concepts to that of comparing two single concepts.

Evaluating relatedness using network representations is a problem with a long
history in Artificial Intelligence. A natural way to evaluate semantic similarity
in a taxonomy is to evaluate the distance between the nodes corresponding to
the items being compared: the shorter the path from one node to another is, the
more similar they are. A problem with this intensional approach, however, is that
it relies on the notion that links in the taxonomy represent uniform distances.

An alternative extensional approach can be applied when nodes in the taxon-
omy represent classes of individuals, which are also available in the system, as
is the case in DLs with concepts and its instances. In this case, the similarity
between two concepts can be obtained, basically, by the number of its common
instances. This is the approach described in [17], extended with ideas from in-
formation theory. The problem with the extensional approach is that it relies on
a basic assumption, which may or may not apply for a given KB, namely, that
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concepts are evenly populated with instances. A non-homogeneous distribution
of individuals among concepts will bias the similarity measure, since the number
of instances determines the information content.

Notice that both (intensional and extensional) approaches present a non-
monotonic behavior; different results will be obtained for the similarity between
two given concepts as concepts and/or individuals are added or removed from
the KB.

For concept-based similarity we adopt an intensional approach where we have
applied the vector space model used in Information Retrieval [19]. In this model,
every indexable item is represented by an attribute vector, and the similarity
between two items is obtained by some kind of algebraic manipulation of the
vectors associated with them.

We consider as attributes the concepts defined in the KB. Formally, given the
set C = {c1, . . . , cN} of concepts defined in a KB, for each concept ci ∈ C we
define a vector vi such that its component k equals 1 if ck subsumes ci, and 0
otherwise.

Once the vectors have been built, the conceptual similarity between two con-
cepts is computed as the cosine of the angle formed by the vectors representing
them, a similarity function usually applied in the vector space model:

sim(ci, cj) =
vi · vj

‖vi‖ · ‖vj‖

In [6] it is proved that this expression is equivalent to the following one, the
one that we really use to compute the similarity among concepts:

sim(ci, cj) =
|
⋂

super(ci, C)super(cj , C)|√
|super(ci, C)| ·

√
|super(cj , C)|

where super(c, C) computes the set of concepts in C which are superconcepts
of c. So, the similarity between two concepts is given by the number of their
common superconcepts and their total number of superconcepts, which can be
dynamically computed, making unnecessary the explicit representation of at-
tribute vectors.

Although this retrieval method is very powerful and flexible it lacks from good
efficiency behavior. Next section describes our approach to enrich CRNs with
the knowledge of the conceptual taxonomy.

5 CRNs Enriched with Ontologies

CRNs based retrieval is based on the weights of the functions of similarity σ
and relevance ρ. In order to construct these two functions we can decide on two
solutions: let an expert include the weights manually, so that she has to label
each one of the relations between the IE nodes; or use of an automatic method.

Our work belongs the second group. The problem typically associated to these
automatic methods it that they lose the inherent relations that exist between the
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IE nodes [13,8]. To solve this problem, we propose using conceptual taxonomies
to automatically calculate the weights needed for the σ and ρ functions. As we
describe in next section we propose using the classification of the concepts of
the ontology to obtain the values of the similarity function (σ) and to use the
relations that occur between these concepts to obtain the relevance function (ρ).

5.1 Formalization of the Weight Computation Based on
Classification

For the calculation of the weights of the functions of similarity and relevance we
use querying and reasoning capabilities of DLs over the ontology.

We state that two concepts are more similar when they are closer in the
taxonomy. In this way we can use the same expression as we used in clasification
based retrieval to compute σ :

σ (ci, cj) =
|
⋂

super(ci, C)super(cj , C)|√
|super(ci, C)| ·

√
|super(cj , C)|

Besides, the relevance function we are calculating is based on the relations
that are common to the query. Then we estimate that cases that contain more
relations with other instances similar to the query are preferred before cases
where properties have not been specified or are different from the query.

We consider that an instance is defined by its relations given by the set

{R1 (IR1,1, IR1,2) , . . . , RN (IRN ,1, IRN ,2)}

and the query Q by

{R1 (QR1,1, QR1,2) , . . . , RN (QRN ,1, QRN ,2)}

The calculation of the relevance function is:

ρ (I, C) =n
i=1

∑
σ

(
CIi,2 , CQj,2

) ∣∣∣Ii∈C,Ii,2∈CIi,2 ,Ri(Ii,Ii,2)∈I

Ij∈C,Qj,2∈CQj,2 ,Rj(Ij ,Qj,2)∈I,Ri=Rj

Figure 5 allows observing the operation of these functions for the calculation
of similarity for the IE nodes.

σ(Hotel-A, Hotel-B) = 1/4 −→ They have a common parent at level
two (Middle-class-hotel).

σ(Restaurant-R, Restaurant-S) = 1/2 −→ They have a common
parent at level one (Restaurant).

ρ(I,Middle-class-hotel) = σ(Restaurant-R,Restaurant-S) = 1/2 −→
Instance I has a relation with an instance (Hotel-A) of Middle-class-hotel.
Hotel-A has the relation ”has-attribute” in common with the query.
Fillers of these common relations are used to compute ρ function.
In this example, has-attribute(Hotel-A,Restaurant-R) and has-attribute
(Hotel-B,Restaurant-S).
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Fig. 5. Example of CRN enriched with ontologies

Retrieval works like in a CRN system but we use this approach to calculate
the value of the σ and ρ functions in execution time. Note that the key point
here is that the functions are dynamically calculated depending on the specific
query and the inferences and the new knowledge we can obtain from the query
and the ontology.

6 Retrieval Methods Comparison

The retrieval methods described in previous sections have been implemented
and included in the method library of the jCOLIBRI framework. We have tested
these methods with the travel case base. Next subsections summarize the results.

6.1 Advantages and Drawbacks of CRNs

The major advantage of retrieval using CRNs is that it provides efficient re-
trieval even with large case bases. During the spreading activation the similarity
between IE nodes is computed. Several extensions and approaches exist [12].

However, retrieval with CRNs presents limitations as far as flexibility con-
cerns. The reason is that having fixed values for weights does is not flexible in
the sense that the same property could have a different importance (weight)
depending on the specific query. For example, if the query is about a business
travel the proximity of the destination is, generally, much more important than
in a leisure travel. Holiday travels usually require to keep the type of holidays
restrictions (like ”I want to go to the beach”) but not the specific destination.
Thus if we have assigned weights to make the system retrieve leisure travels the
configured CRN will not be able to adapt to different types of queries.

Besides, even if CRNs is a very efficient retrieval method used with simple
cases, CRNs might not be the best choice in domains where structural similarity
plays an important role; and they can not be applied in domains where the
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Fig. 6. Part of defined concept hierarchy

internal structure of cases is crucial [11]. Another drawback of this technique is
that is very retrieval specialized, i.e., it does not allow to cover other processes of
the CBR cycle. For instance, it does not cover aspects such as how the retrieved
cases can be reused, or how learning could be integrated into the system. In this
sense other techniques have to be integrated into the system to make it complete.

6.2 Advantages and Drawbacks of Classification Based Retrieval

We have made queries with different types of travels using classification based
retrieval. Our method works well and it is able to flexibly adapt to different types
of queries and to the knowledge variations in the ontology concepts. Depending
on the hierarchy of defined concepts we can vary the importance of the attributes
(see Figure 6).

The main disadvantage we have pointed out with the experiment is retrieval
efficiency. The problem is due to the query classification into the concept taxon-
omy in runtime.

As an advantage –even if it has not been exemplified in the experiment– case
representation based on DLs is specially well suited in domains where cases are
internally structured. In the simple example used in this paper we have over-
simplified the representation capabilities of DLs, because we have used simple
cases – the one used by CRNs – that ignore the relationships among IEs.

There are other advantages regarding the explicit representation of the domain
knowledge. For example, the same knowledge base can be used during adaptation
to find substitutes for a certain item, and to check dependencies and consistency
of the adapted case. Besides, case learning is extremely easy to implement, as
we only have to write the new case and rely on the automatic classification
capabilities.

6.3 Advantages and Drawbacks of CRN Enriched with Ontologies

Retrieval over CRNs enriched with ontologies keeps the best of both worlds: the
flexibility of ontology driven retrieval and the efficiency of CRNs.

Efficiency: Problems about efficiency in classification based retrieval are due
mainly to classification tasks. Classifying the original ontology provided by ex-
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Fig. 7. Time Comparison

perts could be done as a pre-execution task and its time is not taken into account.
The problem arises if each time we have a new query, we need to re-classify the
ontology to calculate similarity measures.

In this approach classifying the query is not required because we compute
similarity using CRN methods. Calculations needed in similarity and relevance
function do not need to make any classification task. So, this method is nearly
as efficient as conventional CRNs, see figure 7.

Fig. 8. Retrieval example

Flexibility: Flexibility advantages are due to the fact that similarity is dynam-
ically defined using the relations established between the cases and the query.

The calculation of the weights of the similarity and relevance functions us-
ing the ontology causes that these weights can vary according to the relations
between instances of the ontology.

As an additional advantage, system designers can define similarity among
cases using a descriptive approach by creating relations in the ontology rather
than establishing numerical measures. They could also benefit from DLs inferred
knowledge.

Final users also benefit from flexibility. The more details are given about
one specific characteristic, the more information is taken into account and more
accuracy results achieved.

For example, in Figure 8, I1 and Query has the same destination. Although
I2 and Query have different destinations, detailed information about the hotel
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is given in the query and it is taken into account. In this case relevance function
makes that I2 is retrieved as the more similar case.

7 Conclusions

In the CBR literature there are many different approaches to case retrieval mak-
ing a tradeoff between efficiency, completeness and flexibility properties. There
are techniques like Case Retrieval Nets, that prioritize the efficiency at flexibil-
ity expenses because they over restrict the circumstances under which the cases
are retrieved. Other knowledge intensive techniques rely on domain models that
allow different similarity criteria on the same query and case base. However they
lack from good results regarding efficiency.

The aim of the research conducted is to investigate how the knowledge in On-
tologies can be used to acquire and refine the weights required in Case Retrieval
Networks.

We propose a retrieval method where the cases are embedded in a CRN but the
weights are dynamic computed using the knowledge from the domain ontology
and from the query description.

CRNs retrieval is based on the weights of the similarity and relevance func-
tions. If weight adjustment is made manually it becomes a tedious process that
lacks from thoroughness, and can be incomplete or incorrect when the creator is
not skilled enough. The problem with automatic processes is that they typically
miss many of the inherent relationships between the entities. We claim that these
relations are available and can be extracted from previously existing domain on-
tologies. The main idea consists of using the classification of the concepts of the
ontology to obtain the values of the similarity function and to use the relations
that occur between these concepts to obtain the relevance function.

We have shown that our method shares advantages but lacks from the main
disadvantage of CRNs. It is practically as efficient as conventional CRNs but
it is much more flexible, as it is possible to define the similarity between the
concepts dynamically depending on the domain relations existing among them.
We have tested our method using the well known travel example domain We
have developed the prototype using jCOLIBRI: an open source framework to
develop CBR systems.
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Abstract. In this paper we present TransUCP, a general framework for 
transformational analogy. Using our framework we demonstrate that 
transformational analogy does not meet a crucial condition for a well-known 
worst-case complexity scenario, and therefore the results about plan adaptation 
being computationally harder than planning from the scratch does not apply to 
transformational analogy. We prove this by constructing a counter-example that 
does not meet this condition. Furthermore, we perform experiments that 
demonstrate that this counter-example is not an exception. Rather, our 
experiments show that it is unlikely that this condition will be met when 
performing plan adaptation with transformational analogy. 

1   Introduction 

Transformational analogy is a problem-solving technique in which a pre-selected 
plan, defined as a sequence of actions, is modified to solve a new problem (Carbonell, 
1983). Possible modifications to the plan include removing actions, adding new 
actions, and changing the parameters from actions. Interest on transformational 
analogy started from early case-based reasoning systems (Cox et al., 2006). In 
particular, the CHEF system constructs cooking recipes, which are plans because 
recipes are sequences of cooking steps such as boiling a certain amount of water 
(Hammond, 1990). These recipes are modified depending on factors such as the 
ingredients currently available.   

Over the years, derivational analogy, an alternative problem-solving technique that 
advocates reusing the sequence of derivations that led to a solution plan rather than 
the plan itself, gained prominence among the case-based planning community. Part of 
the reason for this prominence is the interest in problem solving by combining first-
principles planners and case-based reasoning. If the first-principles planner is used to 
generate plans, then it is straightforward to annotate the derivations that these 
planners followed to obtain the plans (Veloso, 1994). Thus, derivational analogy is a 
good fit for this line of research. There has been recent work on developing DerUCP, 
a framework using derivational analogy (Au et al., 2002). It enhances the universal 
classical planning (UCP) framework to build a generic, domain-independent plan 
adaptation algorithm. An analysis of DerUCP demonstrates that it does not fall under 
the worst-case complexity scenario by Nebel and Koehler (1995), and therefore, their 
results about plan adaptation been computationally harder than plan adaptation does 
not apply to it.  
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Despite some well-documented applications of derivational analogy, a major 
difficulty of using this technique is the requirement about the availability of the 
derivational trace that led to a solution. Even when a domain theory is available, we 
might not know how a particular plan was created. For example, the rules for playing 
chess are known but we might not know the reasoning behind a player making a 
sequence of moves. This knowledge engineering requirement of derivational analogy 
is well known (Cunningham et al., 1996). Perhaps for this reason, application-
oriented papers in case-based reasoning conferences that use some form of adaptation 
frequently use transformational analogy. Yet, despite this interest no general 
framework for analyzing transformational analogy exists to date. 

In this paper, we present TransUCP, a general framework for transformational 
analogy built on top of UCP. Using our framework we demonstrate that 
transformational analogy does not meet the worst-case complexity results of Nebel 
and Koehler (1995), and therefore, their results about plan adaptation been 
computationally harder than plan adaptation does not apply to it. We prove this by 
constructing a counter-example in which a crucial condition is not met. Furthermore, 
we perform experiments that demonstrate that this counter-example is not en 
exception. Rather, our experiments show that it is very unlikely that transformational 
analogy falls under the scenario described in Nebel and Koehler (1995).  

The paper continues as follows. The next section describes the Universal Classical 
Framework, on which TransUCP is based. Section 3 presents TransUCP. The next 
two sections describe an example of problem-solving with TransUCP and analyze the 
search space followed by TransUCP. Section 6 proves that TransUCP does not fall 
under the scenario of Nebel and Koehler (1995). The next section describes the 
experimental results. We conclude this paper with some final remarks. 

2   Background  

The SPA system (Hanks and Weld, 1995) is a general purpose algorithm for 
transformational analogy. SPA takes advantage of the partial-order plan 
representation of partial-order planners to modify an existing plan. Our general 
framework enhances SPA to other forms of planning by taking advantage of the UCP 
framework, which we describe below.  

2.1   Partial Plan 

The algorithm proposed in this paper uses to a large extent similar representation 
format and data structures as of that used in the UCP algorithm as proposed by 
Kambhampati and Srivastava, (1995).  A partial plan is represented by the 4-tuple <T, 
O, B, L> where: 

• T is the set of all the steps in the partial plan, 
• O is the set of ordering constraints between the steps of T, 
• B is the set of binding (co-designation constraints, which require variables to take 

the same value) and prohibitive bindings (non co-designation constraints, which 
requires variables not to take the same value) in the preconditions and post-
conditions of the operators, and, 
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• L is the set of auxiliary constraints, which are of 3 types: 
o Ordering constraints are of the form (ti  tj) indicating that step ti precedes 

step tj, though not necessarily immediately. 
o Interval Preservation Constraints which are the form (ti 

Q tj) which means 
that the condition Q has to be true between the steps ti and tj of T. This is a 
“causal link” used in partial-order planners such as SNLP. If (ti 

Q tj) holds, 
it implies that (ti  tj) also holds. 

o Contiguity constraints, which are the form (ti * tj) which means that the step 
ti has to be immediately followed by step tj. 

We illustrate these concepts with an example in the logistics transportation domain. 
In this domain, there are different packages located at various locations and some or 
all of these packages have to be re-located to specific locations. There are also means 
of transportation such as trucks located at various cities and these are used to move 
the packages. The instance of the problem used here is the same as that used by Au et 
al. (2002). The problem shown in Figure 1 requires package P1 in location A, and 
package P2 in location D, to be relocated in location C. The figure also shows two 
trucks V1 and V2 at locations A and D respectively.   

Location A Location B Location C Location D 

V1 P1 V2    P2 

 

Fig. 1. Planning problem in the logistics transportation domain 

t0 * t2: L(P1, V1,A) * t3: L(P2, V2, D)       t7: MV(V1, A, B)            t6: L(P2, V1, B)  

 t8: MV (V2, D, B)         t9: UL (P2, V2,B)                        t5: MV(V1, B, C) 

                    
                     t4: UL(P1, V1, C)     t1:UL(P2, V1, C)     

   
         

        t
 

Fig. 2. Partial plan solving the problem in Figure 1 

Figure 2 shows a partial plan solving the problem depicted in Figure 1. Arrows 
denote either ordering or interval preservation constraints. The plan consists of 11 
steps, denoted by tk. Steps t0 and t  are special steps that we will explain momentarily. 
The other steps are labeled according to the following conventions:  
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• The action L (P,V,Lc) indicates that the vehicle V is loading the package P from 
location Lc.  

• UL (P,V,Lc) indicates that P is unloaded from V onto location Lc.  
• MV (V, L1, L2) indicates that V is moved from L1 to L2.  

Under these conventions P1 is loaded in V1 and P2 into V2. P2 is relocated in B 
using V2, where it is picked by V1, which has moved from A to B. V1 continues to C, 
where both packages are unloaded.  Besides these steps, other primary attributes of a 
partial plan are its open conditions and threats.  A condition has the form ( Q tk) 
indicating that the condition Q has to be satisfied for step tj. Each step tj in the plan 
can produce effects (tj 

Q) which can be used to satisfy conditions. A condition Q tk 

is satisfied by adding an interval preservation constraints tm Q tk, such that tm Q 
holds. If a condition has not been satisfied, it is said to be an open condition. A threat 
is a 3-tuple (tk, ti 

Q tj) where tk can be inserted between ti and tj and the post condition 
of tk can negate or add Q.  Threats occur as a result of the partial ordering between 
steps. So for example, the condition Q might use a truck to satisfy a condition in tj, 
but another step tk might use the same truck. Threats are solved by adding constraints 
to the plan such as ordering relations between steps. For instance, one might reorder 
the steps to make sure that the truck is used only once at any point of time. 

Operators have a set of preconditions which must be satisfied before the step can 
be applied and a set of post-conditions which are true after the step has been applied. 
When an operator is applied it is added to a plan as a step. This is how steps t1 to t9 
where added to the plan in Figure 2. When planning starts a so-called initial null plan 
is created. This plan consists of two steps: t0 and t . The step t0, called the initial state, 
has no preconditions and has as effects the conditions that are true in the opening 
state. The step t , called the final state, has no effects and has as the conditions the 
goals to be achieved. The null plan has also an ordering constraint, t0  t , and no 
bindings. The objective of the planning problem is to refine the initial plan into a 
solution plan, a partial plan with no open conditions and no threats. Open conditions 
and threats in a partial plan are referred to as flaws of the plan. 

2.2   Universal Classical Planning 

The Universal Classical Planner (UCP) takes a partial plan and performs refinements 
to it in an iterative manner until a solution plan is generated. During each pass of the 
iteration, the refinement done to the plan can be addition of steps or constraints to the 
existing partial plan. The possible types of refinements that a UCP planner can choose 
to perform on the partial plan on each iterative pass are:  

i. Forward state space plan refinement: A head step of a partial plan is defined as 
a step tj of the plan where t0* t1 * … * tj and there is no step t` such that tj * t`. 
The sequence of steps t0* t1 * … * tj is called the header of the plan. The set of all 
states ti that can immediately follow the head step tj is called the head fringe. 
Forward state space plan refinement involves selecting a new step or a step from 
the head fringe of a plan and appending it to its header. 

ii. Backward state space plan refinement: A tail step of a partial plan is defined as 
the step of tj of the plan where tj * tj-1* … * t  and there is no step t` such that t`* 
tj. The sequence of steps tj * tj-1* … * t  is called the trailer of the plan. The set of 



462 V. Kuchibatla and H. Muñoz-Avila 

all states ti that can immediately precede the tail step tj is called the tail fringe. 
Backward state space plan refinement involves selecting a new step or a step 
from the tail fringe of a plan and putting it immediately before its trailer. 

iii.   Partial plan space refinement: During plan space refinement, a flaw is selected 
at random from the current plan. This flaw could be either an open condition or a 
threat. If it is an open condition, it is resolved by adding or changing ordering 
constraints to the plan or by adding a new step such that it satisfies the required 
open condition. There can be more than one way to reorder the steps and, 
similarly, there can be more than one step that can be added to satisfy the open 
condition. Therefore, resolving the open condition can result in multiple partial 
plans. If the selected flaw is a threat, it is handled by a “Resolve Threat” function. 
Given a threat of the form (tk, ti

Q tj), this function resolves it by either  
• Ordering tk before ti consistently, or, 
• Ordering tk after1 tj consistently, or, 
• Adding the appropriate binding constraints to the plan so as to negate the 

threat  

Figure 3 illustrates the working of a universal classical planner. During each 
iteration, it can choose one of the above three refinements and modify the partial plan 
according to the selected refinement strategy. 

2.3   Definitions 

In this paper, we introduce the TransUCP framework and prove that it does not fall 
under the category of a conservative planner, as per definitions below, taken directly 
from (Nebel & Koehler, 1995). 

1. PLANSAT is the following decision problem: given an instance of the planning 
problem∏, does there exist a plan Δ that solves ∏ ? 

2. A conservative approach to plan modification is one that solves the following 
plan modification problem: given a planning-problem instance ∏1 and a plan Δ 
that solves another instance∏, produce a plan Δ1 that solves ∏1 by minimally 
modifying Δ 

3.  MODSAT is the following decision problem:  Given a planning-problem 
instance ∏1, a plan Δ that solves another instance ∏, and an integer k, does there 
exist a plan Δ1 that solves ∏1 and contains a sub plan of Δ of at least length k? 

3   The TransUCP Planning Algorithm 

The main idea behind the TransUCP algorithm is to solve the planning problem by 
using transformational analogy over UCP. The inputs to the algorithm are: the initial 
state, the goal state and the case library. TransUCP returns the solution plan or a 
failure message if it could not generate one. 

Progressive refinements are defined as those modifications made to the plan which 
increase its possible number of ground linearisations or increase the total number of 
steps in the plan. In terms of searching in a plan space graph, all those refinements 
that take a node to its parent nodes can be looked upon as non-progressive 
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refinements and the ones that take the current node to one of its children would be 
progressive refinements. The three kinds of refinements used in the universal classical 
planning algorithm (Section 2.2) constitute the progressive refinements. All 
refinements made to a plan that are not progressive refinements can be termed as non-
progressive. 

Purpose Tags. The TransUCP algorithm generates and modifies a partial plan in an 
iterative manner doing one refinement (progressive or non-progressive) in each pass. 
During each pass, a step and/or a set of constraints are added/deleted to/from the plan. 
We associate each set modifications done to the plan in each pass is with a data 
structure called the purpose tag which indicates the purpose of these modifications. 
These tags are primarily used when we retract the plan backwards i.e. when we delete 
steps or constraints from a plan. The different types of tags used in TransUCP are: 

i. Purpose (Step Added, tj, forward state): This tag is added to a step which is added 
to the plan during forward state space refinement. 

ii. Purpose (Step Added, tj, backward state): This tag is added to a step which is 
added to the plan during backward state space refinement. 

iii. Purpose (protect ((tk, ti Q tj))): This tag is added to an ordering/binding 
constraint which has been added to the plan to resolve the threat ((tk, ti

Q tj)). 
iv. Purpose (establish link, ti 

Q tj): This tag is added to an ordering constraint 
which has been added to the plan to satisfy the open condition ( Q tj).   

 

Fig. 3. Universal Classical Planning 

3.1   The Algorithm 

TransUCP first retrieves a case from the case library that is the best match for the 
current problem in terms of most similar initial and goal states. Though this suggests a 
probable heuristic for case retrieval from the case library, the actual logic to be used 
for this is not discussed in this paper as it is not the primary focus. 
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The plan returned from the case library, LibraryPlan, is adjusted so as to make its 
initial and goal states the same as Initial and Goal. This process includes adding sub-
goals of Initial and Goal that are not present in the initial and goal states of the 
LibraryPlan and deleting those sub-goals that are not present in Initial and Goal and 
are present in their counterparts of LibraryPlan. During this process of addition and 
deletion, some steps of the partial plan along with their ordering, binding and 
auxiliary constraints might have to be deleted. As a result, there might be open 
conditions and threats in the adjusted plan. The TransUCP algorithm tries to remove 
these open conditions and threats to make the plan a solution plan. 

The plan returned by the AdjustExactly function, AdjustedPlan, is then checked to 
see if it is a solution to the current problem. If it is not, we add the plans, 
<AdjustedPlan, UP> and <AdjustedPlan, DOWN> to the PlanPool. The purpose of 
the direction indicators, UP and DOWN is discussed in detail in later sections. This 
collection of plans PlanPool is passed to the function TransformPlan, which returns 
the solution plan. 

 
 
 
 
 
 
 
 
 
 
 
 

 

The TransformPlan function is called recursively until a solution plan is arrived at 
or a failure is returned, which happens when the PlanPool is extinguished. Given the 
PlanPool, which is passed as an argument to the function, it chooses a plan from it 
non-deterministically and checks if it is a solution, and if so, returns it. If not, it 
checks for the direction pointer of the selected plan P.  

If the direction pointer of the chosen plan is DOWN, it performs progressive 
refinements and if not, it performs non-progressive refinements.   If the direction 
pointer is DOWN, the algorithm chooses non-deterministically which of the three 
possible refinements is to be applied. All the plans returned by the progressive 
refinement chosen are added to the PlanPool and the TransUCP is recursively called 
until a solution plan or a failure is encountered.  

If the direction pointer is UP, one of the decisions made in the current plan is 
retracted back through non-progressive refinements, by the call to RetractRefinement, 
and the resulting plans are added to the PlanPool followed by the recursive call to 
TransUCP. Basically, the RetractRefinement function selects a step from the current 
partial plan and removes it from the plan. The RetractRefinement function takes as 
argument the plan P and selects a purpose tag from it. Having chosen the tag to 

TransUCP (Initial, Goal, Library) Returns: Final Plan P or Failure 
 
LibraryPlan = select the plan from the Library with the most similar initial and 

goal   states 
   AdjustedPlan = AdjustExactly (LibraryPlan, Initial, Goal) 
   IF AdjustedPlan is a solution  

THEN return AdjustedPlan 
   PlanPool = {<AdjustedPlan, UP>, <AdjustedPlan, DOWN>} 
   FinalPlan = TransformPlan (Initial, Goal, PlanPool) 
   IF FinalPlan == failure  

THEN return failure 
   Return FinalPlan 
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retract, it undoes the progressive refinement associated with this tag. The exact 
criteria to be followed in choosing the purpose tag to be retracted are not dealt in this 
paper. A good heuristic to be followed for this selection process can be found in 
Hanks and Weld (1996). The progressive refinement to undo can be any of the three 
kinds of refinements used in the universal classical planning algorithm (Section 
2.2).In all of the three cases, the function removes the steps, constraints or bindings 
which were associated with this tag and added to the plan. If the tag selected was 
associated with forward state space refinement, then the step added is removed, 
through a call to RemoveStep, and all other ways of performing forward state space 
refinement to the plan are returned to be added to the plan pool. Before adding the 
plan P1 to PlanPool, it is made sure that it does not map onto the original retracted 
plan P. This is to ensure that we do not add the same plan back to the pool again. By 
saying that one plans maps onto another plan, we mean that there is a 1:1 mapping 
between their steps, links, binding constraints and purpose tags.  

Similar processing is done for backward and partial plan space refinement tags. 
When the refinement to be retracted is a partial plan space refinement, the step 
associated with the purpose tag selected is retracted and the flaw that originally 
caused this refinement to be made to the plan is also returned to RefinePlanSpace. 
This is done to ensure that only those partial plans formed by resolving this 
particular flaw through RefinePlanSpace are added to the plan pool. In essence, we 
are constricting RefinePlanSpace from selecting a flaw to be resolved at random. 
This completes the explanation of the TransUCP algorithm. In the subsequent 
sections, the working of the algorithm and its properties are elucidated with 
examples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TransformPlan (Initial, Goal, PlanPool) Returns: Final Plan P or Failure 
 
   If PlanPool is empty THEN return failure. 
   <P, D> = select an element from PlanPool. 
   Delete <P, D> from PlanPool 
   If P is a solution THEN return P 
   If D == DOWN THEN //Progressive Refinements 
       Non-deterministically, select any one of 
    1. P' = RefinePlanForwardStateSpace (P)  
          Add <P', DOWN> and <P', UP> to PlanPool 
    2. P' = RefinePlanBackwardStateSpace (P) 
          Add <P', DOWN> and <P', UP> to PlanPool 
    3. RefinePlanSpace (P) 
         For each plan Pi returned by RefinePlan (P, null) do 
           Add <Pi, DOWN> to PlanPool 
   ELSE IF (D == UP) // Non-progressive Refinements 
          Add all elements of RetractRefinement (P) to PlanPool 
   Recursive Invocation: 
            TransUCP (Initial, Goal, PlanPool) 
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4   Example 

In this section, we take a planning problem and the solution plan returned when the 
UCP algorithm (Kambhampati & Srivastava; 1996) solves it. For this example, we 
use the problem and plan described in Figures 1 and 2 respectively as the input case. 
In the new problem to be solved, we have the same goals, to relocate package p1 and 
p2 into location C. The difference is that this time there is no truck in location D as 
illustrated in Figure 4. The AdjustExactly function takes this plan and modifies it so 
as to match the initial and goal states of the new problem and of the case. In our 
example, the goals happen to be the same but the initial states are different. Since the 
truck V2 is not available in the new problem, we remove V2 from the initial state and 
all those steps and constraints that involve V2. In doing so, we get the partial 
incomplete plan as shown in Figure 5. It can be seen that steps t3, t7, t8 and t9 have 
been deleted. The open threats and conditions that result from this modification and 
that need to be resolved are also shown in the figure. 

Let us denote this plan by P1. Since this is not a solution plan, we add the direction 
pointer pairs <P1, UP> and <P1, DOWN> to the PlanPool and this pool is passed to 
TransformPlan. Let us assume that TransformPlan chooses the pair <P1, DOWN> 
from the plan pool to refine. Since the direction pointer is DOWN, it performs 
progressive refinement on the plan P1. Assuming without the loss of generality that 
the refinement strategy chosen is forward state space refinement, the current head step 
is t2 and we can append a new step t8 MV(V1, A, D) to the head step with the 
constraint t2 * t8 as the preconditions of t8 are satisfied at t2. The resulting plan, labeled 
as P2 is shown in Figure 6 and the 2-tuple <P2, DOWN> is added to the PlanPool. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

During the second pass of TransUCP, the PlanPool contains the pairs (<P1, UP>, 
<P2, DOWN>, <P2, UP>). If the pair chosen by TransUCP was <P2, DOWN> and the 
progressive refinement chosen was partial plan space refinement, let us assume that 

RetractRefinement (Plan P):  Returns: List of (Plan, Direction) pairs 
 

Define L: a local list of plans 
R = select a purpose 
(F, P0) = RemoveStep(R, P) 
Add the tuple (P0, UP) to local list L 
IF purpose in R was forward state space refinement THEN 

 For each plan P1 returned by RefinePlanForwardStateSpace (P0) 
 Do      If P1 does not map onto P, add <P1, DOWN> to list L. 

Else IF purpose in R was forward state space refinement THEN 
 For each plan P1 returned by RefinePlanBackwardStateSpace (P0) 
 Do          If P1 does not map onto P, add <P1, DOWN> to list L. 

Else IF purpose in R was partial plan space refinement THEN 
For each plan P1 returned by RefinePlanSpace (P0, F)  
Do          If P1 does not map onto P, add <P1, DOWN> to list L. 

Return all plans, direction pairs collected in list L. 
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the open condition selected to resolve is ( Q t6), where Q = at (B, truck).  This flaw is 
resolved by adding a new step t9 : MV (V1, A, B) and ordering it before t6 with the 
ordering constraint t8 < t9 < t6. This resolves the flaw and results in the plan P3 shown 
in Figure 7.  By adding the step t9, the open condition ( Q t9), where Q = at (A, truck), 
is introduced and is added to the set of flaws of the plan. Continuing in this manner 
TransUCP continuously keeps refining the partial plan and searches for the first 
solution node. Figure 8 shows one of the possible solution plans returned by 
TransUCP.  

5   How TransUCP Traverses the Search Space 

Plan adaptation as done by TransUCP to find a solution plan is carried out in a similar 
fashion as searching through a partial plan space. The entire process is comparable to 
searching for a solution plan node in a graph, in which, each node represents a partial 
plan. Edges between the nodes represent refinements between the plans represented 
by the nodes – progressive or non-progressive. 

The nodes resulting from performing non-progressive refinements on a node are 
referred to, in this paper, as the parents of the node and similarly, the nodes resulting 
from performing progressive refinements are referred as the children of the node. The 
graph being searched is not necessarily a tree because, given a node, non-progressive 
refinements on it can be performed in more than one way, thus producing multiple  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RemoveStep (Purpose R, Plan P): Returns: List of (Flaw, Plan) pair 
 

IF purpose in R was forward or backward state space refinement THEN 
Remove the step tagged with R and all links and constraints associated 
with it to get the resulting plan P0. 

 Return (null, P0). 
ELSE //partial plan space refinement 

IF R is of the form (protect ((tk, ti  tj)) THEN 
  F = (ti Q tj, tk) 
  P0 = a copy of P 
  Delete from P0 all constraints tagged with R 
  Return (F, P0) 

ELSE IF R is of the form (establish link, ti  tj) THEN 
  F = ( Q tj) 
  P0 = a copy of P 
  Delete link (ti  tj) from P0 

  Delete from P0 all constraints tagged with R 
IF P0 contains no link of the form ti  tj for any step tk and 
condition Q THEN 

            Delete ti from P0 along with all constraints tagged with  
                                  (Step Added, ti, plan space)  

  Return (F, P0) 
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parents for a given node. Given a plan from the case library and a planning problem 
(initial and goal states), TransUCP first modifies the case plan so as to match its initial 
and goal states to those of the given problem. Once this has been done, it starts the 
process of searching for the solution plan in the plan space. The modified input plan 
would be the starting point of the search (see Figure 9). This node would be an inner 
node in the graph. In the TransUCP function, when the direction pointer chosen is UP, 
the planner browses upwards into the parents of the current node by performing non-
progressive refinements, i.e. by deleting some steps or constraints from the current plan. 

Location A Location B Location C Location D 

V1 P1    P1 

 

Fig. 4. Planning problem in the transportation domain to be solved 

              
t0 * t2: L(P1, V1,A)            t6: L(P2, V1, B)  

Open conditions:           t4: UL(P1, V1, C)                t5: MV (V1, B, C)
iii. ( Q t6), where Q = at (B, P2)       
iv. ( Q t6), where Q = at (B, V1) 

           t                                              t1:UL(P2, V1, C) 
 

Fig. 5. Partial plan P1 after initial adjusting  

When the direction pointer chosen is DOWN, it scales the graph “downward”, into 
the children nodes of the node by performing progressive refinements, i.e. by adding 
steps or constraints. It performs this process of traversing the graph until it hits the 
first node that satisfies the conditions of being a solution plan for the given problem. 
It is to be noted that the planner takes care never to visit a node more than once during 
its execution. 

t0 * t2: L(P1, V1,A)    * t8 MV (V1, A, D)                             t6: L(P2, V1, B)  

Open conditions:           t4: UL(P1, V1, C)                t5: MV (V1, B, C)
i. ( Q t6), where Q = at (B, P2)       

ii. ( Q t6), where Q = at (B, V1) 
           t                                              t1:UL(P2, V1, C) 

 

Fig. 6. Partial plan P2 
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t0 * t2: L(P1, V1,A)    * t8 MV (V1, A, D)     t9: MV(V1, A, B)             t6: L(P2, V1, B)  

Open conditions:           t4: UL(P1, V1, C)                t5: MV (V1, B, C)
i. ( Q t6), where Q = at (B, P2)       
ii. ( Q t9), where Q = at (A, truck)           

t t1:UL(P2, V1, C)
 

Fig. 7. Partial plan P3 

t0 * t2: L(P1, V1,A) * t8 MV (V1, A, D)  t10: UL (P2, V1, B)    t6: L(P2, V1, B)  

t11: L (P2, V1, D)  t7: MV(V1, A, B)         t5: MV(V1, B, C)    

                                 
             
           t9: MV (V1, D, A) 
            
              t4: UL(P1, V1, C)     t1:UL(P2, V1, C)    

t0 * t2: L(P1, V1,A) * t8 MV (V1, A, D)  t10: UL (P2, V1, B)    t6: L(P2, V1, B)  

t11: L (P2, V1, D)  t9: MV(V1, A, B)         t5: MV(V1, B, C)    

                                 
             
           t12: MV (V1, D, A) 
                  t4: UL(P1, V1, C)    t1:UL(P2, V1, C)    

     t
 

Fig. 8. Solution plan generated by TransUCP 

6   Properties 

In this section, we show that TransUCP does not use a conservative plan modification 
approach, as per the definitions in Section 2.3, to find the solution plan for a given 
planning problem. We also discuss completeness and the issue of non-determinism in 
TransUCP. The three possible ways in which TransUCP traverses the search space 
and finds the solution plan node are: 

i. The planner finds the solution plan node without having to retract beyond the 
starting node (input plan node in Figure 9). That is, it never visits the parents of 
the input plan node. This is the case when Node A in Figure 9 is returned as the 
solution node by the planner. 

ii. The planner, in search of the solution plan node, retracts all the way back to the 
null plan node and starts planning from first principles thereon. 

iii. The planner retracts, but not all the way until the null plan node. This is the case 
when Node B in Figure 9 is returned as the solution node by the planner. 

Theorem. In each of the three cases mentioned above, TransUCP does not necessarily 
produce minimal modifications of the given case plan Δ. 

Proof: The proof is by contradiction. Let us consider the first case above where the 
planner does not retract beyond the starting node (input plan node in Figure 9). Let us 
assume that TransUCP always produces solution plans that are minimal modifications 
of the given case plans. We shall provide a counter example to show that this is not true. 
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Fig. 9. Graph Traversal by TransUCP 

Consider the planning problem instance (Figure 4) and its solution generated by 
TransUCP (Figure 8). The solution plan generated by TransUCP certainly comes 
under the first case because the planner does not retract beyond the input plan node at 
any point during the execution of the algorithm. If TransUCP were to always produce 
solution plans that are minimally modified, then no other plan which solves the same 
instance of the planning problem should contain a sub plan of the original case plan 
which is greater in size (number of steps) than the sub plan of solution produced by 
TransUCP.  

But the plan shown in Figure 10 solves the planning problem in Figure 4 and is 
minimally modified from the case plan shown in Figure 2. The highlighted steps show 
those that have been reused from the original plan. It is to be noted that only those 
steps that have been directly taken from the original plan are taken into account as 
reused steps and those that have been derived from first principles are not. If this plan 
is compared to the solution plan generated by TransUCP (Figure 8), also in which the 
reused steps have been highlighted, it can be seen that it is not minimally modified 
from the original case plan. This is a contradiction to our initial assumption. We can 
similarly produce counter examples for the remaining two cases and show that 
TransUCP does not necessarily always generate solution plans that are minimally 
modified from the original case plans. Hence we can conclude and prove that 
TransUCP is not a conservative planner in the sense of as per the definitions of Nebel 
and Koehler (1995).                                                              

Therefore, TransUCP does not fall under the category of MODSAT as defined in 
Section 2.3. It has been proved by Nebel and Koehler that answering the MODSAT 
decision problem can be computationally harder than PLANSAT. Since TransUCP 
does not satisfy the requirement for being a MODSAT problem, as it does not 
guarantee to generate a minimally modified plan, its complexity would not fall in this 
worst case scenario, i.e. problem solving with TransUCP will be computationally 
harder than problem solving from scratch. 
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Non-determinism of TransUCP. There are “decision points” at various stages of the 
implementation where choices are made non-deterministically, without any heuristic 
being used. The selection of a plan from the plan pool and the choice of progressive 
or non-progressive refinements to be made to the plan constitute some of these 
decision points.  Forward state space and backward state space planning further 
contains points where random choices are made. The TransUCP framework, as 
proposed in this paper, is meant as a generic domain-independent framework for a 
planner. Hence there is non-determinism at various decision points. It is expected that, 
when the planner is used in a particular domain, appropriate domain dependent 
heuristics would be added and used at these decision points to improve the 
performance and efficiency of the planner. One of the most likely places where 
heuristics could help the most are when selecting a plan from the PlanPool, where by 
assigning weights based on heuristics to each plan, the choice of the next plan to be 
chosen for refined can be altered. This would ensure that the search of the plan space 
is carried out in a more guided and efficient fashion. Therefore, it is quite logical that 
non-determinism is replaced by heuristics in the actual implementation of this 
planner.  

Completeness of TransUCP. Completeness of a planner, as defined by Hanks and 
Weld (1995), says that a planner will eventually find the solution plan for a particular 
planning problem, if there exists one. It has been proven (Kuchibatla, 2006) that 
TransUCP is complete, under the assumption that the given planning problem has a 
solution and that the partial plan search space has finite boundaries. 

7   Empirical Results 

In this section, we describe the details of the implementation of TransUCP and 
elucidate its results. The purpose of these experiments was to show that the counter-
example shown in the previous section was not an exception and that that TransUCP 
very rarely behaves like a conservative planner.  

The TransUCP algorithm was implemented to generate solutions in the logistics 
transportation domain. In the experiments performed, the problems were randomly 
generated, meaning each of them contains an arbitrary number of the elements in the 
domain such as trucks and locations. Since the search space can be very large we 
added pruning techniques reducing the chances that plans that clearly contain 
redundant steps (e.g., move form A to B, followed by move from B to A) are further 
refined. The case plan to be reused is the one from Figure 2. After running TransUCP 
giving as input 10 randomly generated problems and the case plan, non-minimal 
solution plans were generated in every run.   Figure 11 shows the average number of 
nodes in the plan space graph that were traversed before the solution node was found 
versus the number of elements (trucks, cities and packages) in the problem. 

For example, 6 elements mean that there were 4 locations and 2 trucks in the 
problem. From the figure we can see that even for a small problem with just 6 
elements, the size of the search space is very large, which is why it is very unlikely 
that a minimal plan modification is generated. 
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t0 * t2: L(P1, V1,A)               t7 :MV (V1, A, B)  t10: UL (P2, V1, B)    t6: L(P2, V1, B)

t11: MV (V1, B, D)  t12: MV(V1, D, B)         t5: MV(V1, B, C)    

                                 
             
           t9: L (P2, V1, D)         t4: UL(P1, V1, C)    t1:UL(P2, V1, C)    

          t

 

Fig. 10. Minimally modified solution plan  

8   Final Remarks 

In this paper we introduced TransUCP, a general framework for transformational 
analogy. Using our framework we demonstrate that transformational analogy does not 
always perform a conservative plan adaptation by carefully constructing an example 
where conservative plan adaptation does not occur. Therefore, transformational 
analogy does not fall under the worse case scenario of Nebel & Koehler (1995). 
Furthermore, we perform experiments that demonstrate that it is unlikely that any plan 
adaptation with transformational analogy will be conservative. 
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Fig. 11. Number of nodes traversed in the graph 
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Abstract. Coping with time series cases is becoming an important issue in case 
based reasoning. This paper develops a knowledge discovery approach to 
discovering significant sequences for depicting symbolic time series cases. The 
input is a case library containing time series cases consisting of consecutive 
discrete patterns. The proposed approach is able to find from the given case 
library all qualified sequences that are non-redundant and indicative. A 
sequence as such is termed as a key sequence. It is shown that the key 
sequences discovered are highly usable in case characterization to capture 
important properties while ignoring random trivialities. The main idea is to 
transform an original (lengthy) time series into a more concise representation in 
terms of the detected occurrences of key sequences. Three alternate ways to 
develop case indexes based on key sequences are suggested. These indexes are 
simply vectors of numbers that are easily usable when matching two time series 
cases for case retrieval. 

1   Introduction 

Coping with time series cases has become increasingly important in applying case 
based reasoning in many domains with dynamic properties. Unlike static case bases 
where objects are described by attributes which are time independent, a time series 
case base contains profiles of time-varying variables wherein pieces of data are 
associated with a timestamp and are meaningful only for a specific segment in the 
case duration. Temporal aspect of time series cases has to be taken into account in the 
tasks of case indexing and case retrieval. Abstraction and representation of temporal 
knowledge in CBR systems were discussed in [4, 7, 16]. 

Signal analysis techniques have been applied to extract relevant features from time 
series signals such as sensor readings. The most common methods used in 
applications are Discrete Fourier Transform and Wavelet Analysis, see [5, 12, 13, 20]. 
Both have the merit of capturing significant characteristics of the original signal with 
a compact representation, and the features extracted are directly usable in building 
similarity measures for case matching and retrieval. However the available signal 
processing techniques are inherently restricted to dealing with numerical values, they 
are not applicable to time series consisting of non-ordered discrete symbols. 

This paper aims to extract useful sequences for depicting symbolic time series 
cases. As behaviors in dynamic processes are usually reflected from transitional 
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patterns over time, occurrences of certain sequences are believed to be significant 
evidences to identify properties existing in historical sequential records. Deciding 
which sequences as characteristic while others as trivial in characterization of time 
series cases is largely domain dependent. Knowledge acquisition and discovery thus 
becomes imperative in circumstances when no prior knowledge is available. 

This study presented would be relevant to many medical applications where 
physicians have to investigate sequences of symptoms of patients before making 
clinical diagnoses, and frequently conditional changes with patients are more 
important than their static states within single time segments. In particular this work is 
motivated by our ongoing AI project in stress medicine in which stress levels have to 
be estimated according to a given series of breathing dysfunctional patterns detected 
for consecutive respiration cycles. Related medical research has revealed that certain 
transitions of breathing patterns over time may have high co-occurrence with stress 
levels of interest [17]. An outline of this application scenario and the problem to be 
addressed will be formulated in the next section. 

We developed a knowledge discovery approach to sequence extraction employing 
a case base as the information source. The utilized case base is assumed to be 
symbolic and contains a collection of time series cases consisting of consecutive 
discrete patterns. The proposed approach is able to find from the given case library all 
those sequences that are non-redundant and indicative in having strong occurrences 
with a certain class. A sequence as such is termed as a key sequence. We show that 
the knowledge about key sequences is highly valuable in case characterization to 
capture important properties while ignoring randomly occurred trivialities in a 
dynamic process. Three ways to index time series cases according to the set of 
discovered key sequences are suggested. The results of case indexing based on key 
sequences can then be used directly in construction of similarity measures for case 
retrieval.  

It is worthy noting that the knowledge discovery treated here distinguishes itself 
from traditional learning included in a CBR cycle. The retain step in CBR typically 
stores a new case in the library or modifies some existing cases and may contain a 
number of sub-steps [1]. Learning therein is therefore case specific with knowledge 
stemming directly from newly solved cases. Contrarily, in our approach, learning is 
treated as a background task separated from the retain step and the whole case library 
is the input to the knowledge discovery process. Some relevant works combining 
knowledge discovery and CBR systems include: genetic-based knowledge acquisition 
for case indexing and matching [8], incremental learning to organize a case base [14], 
exploitation of background knowledge in text classification [21], and analysis of pros 
and cons for explanations in CBR systems [9].  

The remainder of the paper is organized as follows. Section 2 briefly outlines a 
medical scenario motivating our research followed by formulation of the problem to 
be addressed. In section 3 criteria to evaluate sequences are established. Section 4 
presents a sequence search algorithm and the simulation results. Then, in section 5, 
we explain how to index time series cases using key sequences discovered. Related 
works are outlined in section 6 and finally we conclude the paper in section 7. 
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2   A Medical Scenario and Problem Statements 

In this section we first briefly outline a typical medical scenario in which patients’ 
stress levels are to be determined based on a series of respiratory sinus arrhythmia 
(RSA) breathing patterns. Then the problem to be addressed in this context shall be 
formulated. 

2.1   Classification Via Respiratory Sinus Arrhythmia 

In stress medicine, RSA signals obtained from patients are typically employed to 
classify their stress levels. A patient is usually tested through a series of 40-80 
breathing cycles (including inhalation and exhalation). Every respiration cycle lasts 
on average 5-15 seconds and corresponds to either a normal breathing pattern or one 
of the dysfunctional patterns. The patterns of breathing (also called RSA patterns) are 
identified from RSA measurements in the respective respiration periods.  Further 
patterns from consecutive breathing cycles constitute a symbolic time series, which is 
to be investigated to find information reflecting stress levels of patients.  

An overview of the stress medicine project is depicted in Fig. 1. First the RSA 
signal measured during the whole test period is decomposed into a collection of sub-
signals.  By sub-signal  in Fig. 1 we denote the portion of the signal recorded for the 
ith cycle.  Each sub-signal i is delivered to the block ”signal classifier” to decide upon 
pattern i corresponding to it. The identified patterns are then composed into a 
symbolic series in terms of their appearance order in time. So far the part of signal 
classifier has been implemented in the previous work using wavelet analysis and case 
based reasoning [12]. The next step of the project is further to estimate the level of 
stress given a time series of respiration patterns. For applying CBR again in the 
second step we feel it necessary to acquire knowledge about key sequences to 
characterize and index time series cases. 

 

RSA signal Decomposition

Signal
Classifier 

Composition Signal
Classifier 

Signal
Classifier 
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Pattern i

Pattern N
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Fig. 1. An overview of the stress medicine project 
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2.2   Problem Statements  

To clearly present our work fitting into the scenario, we now give descriptions of the 
various terms and concepts that are related. We begin with the definitions about time 
series, sequences, and time series case bases, and then we precisely formulate the 
problem to tackle. 

Definition 1. A time series is a series of elements occurred sequentially over time, 
)(,),.(),2(),1( nxixxxX = , where i indexes the time segment corresponding to a 

recorded element and n can be very large.    

The elements x in time series can be numerical or symbolic values. But in the 
discussions of this paper we restrict our attention to symbolic time series consisting of 
discrete patterns.  

Moreover, every time series has an inherent class. The previous time series data are 
supposed to have been classified and they are stored in a case base together with their 
associated classes. A formal definition of time series case bases for purpose of 
classification is given as follows: 

Definition 2. A time series case base is a set of pairs { }K

iii ZX 1),( =
, where Xi denotes a 

time series and Zi the class assigned to Xi and K is the number of time series cases in 
the case base.  

With a time series case base at hand, the knowledge discovery process involves 
analyzing sequences that are included in the case base. A sequence in a time series  is 
formally described in definition 3. 

Definition 3. A sequence S in a time series )(,),2(),1( nxxxX =  is a list consisting of 

elements taken from contiguous positions of X, i.e., )1(,),1(),( −++= mkxkxkxS  

with nm ≤  and 11 +−≤≤ mnk . 

Usually there is a very large amount of sequences included in the time series case 
base. But only a quite small part of them that carry useful information for estimating 
consequences are in line with our interest. Such sequences are referred to as indicative 
sequences and defined in the following: 

Definition 4. A sequence is regarded as indicative given a time series case base 
provided that  

1) it appears in sufficient amount of time series cases of the case base;  
2) the discriminating power of it, assessed upon the case base, is above a specified  

threshold. 

A measure for discriminating power together with the arguments that lie behind this 
definition will be elaborated in the next section. The intuitive explanation is that an 
indicative sequence is such a one that, on one hand, appears frequently in the case 
base, and on the other hand, exhibits high co-occurrence with a certain class. 

Obviously, should a sequence be indicative, another sequence that contains it as 
subsequence may also be indicative for predicting the outcome. However, if these  
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both are indicative of the same class, the second sequence is considered as redundant 
with respect to the first one because it conveys no more information. Redundant 
sequences can be easily recognized by checking possible inclusion between sequences 
encountered. The goal here is to find sequences that are not only indicative but also 
non-redundant and independent of each other.  

Having given necessary notions and clarifications we can now formally define our 
problem to be addressed as follows: 

Given a time series case base consisting of time series instances and associated 
classes, find a set of indicative sequences {S1, S2, …, Sp} that satisfy the following two 
criteria:   
1) For any i, j∈{1, 2, …p} neither Si⊆Sj nor Sj⊆Si if Si and Sj are indicative of a same 
class; 
2) For any sequence S that is indicative, S∈{S1, S2, …, Sp} if  S is not redundant with 
respect to Sj  for any j∈{1, 2, …p}. 

The first criterion above requests compactness of the set of sequences {S1, S2, …, 
Sp} in the sense that no sequence in it is redundant by having a subsequence indicative 
of the same class as it. A sequence that is both indicative and non-redundant is called 
a key sequence. The second criterion further requires that no single key sequence 
shall be lost, which signifies a demand for completeness of the set of key sequences to 
be discovered. 

3   Evaluation of Single Sequences 

This section aims to evaluate individual sequences to decide whether one sequence 
can be regarded as indicative. The main thread is to assess the discriminating power 
of sequences in terms of their co-occurrence relationship with possible time series 
classes. In addition we also illustrate the importance of sequence appearing 
frequencies in the case base for ensuring reliable assessments of the discriminating 
power. 

Given a sequence S there may be a set of probable consequent classes {C1, C2, …, 
Ck}. The strength of the co-occurrence between sequence S and class Ci (i=1…k) can 
be measured by the probability, )|( SCp i

, of Ci conditioned upon S. Sequence S is 

considered as discriminative in predicting outcomes as long as it has a strong co-
occurrence with either of the possible outcomes. The discriminating power of S is 
defined as the maximum of the strengths of its relations with probable classes. 
Formally this definition of discriminating power PD is expressed as: 

)|(max)(
1

SCPSPD i
ki=

=  (1) 

In addition we say that the class yielding the maximum strength of the co-
occurrences, i.e., )(maxarg

1
SCPC i

ki=
= , is the class that sequence S is indicative of. 
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The conditional probabilities in (1) can be derived according to the Bayes theorem 
as: 

)(

)()|(
)|(

SP

CPCSP
SCP ii

i =  (2) 

 

As the probability P(S) is generally obtainable by 

)()|()()|()( iiii CPCSPCPCSPSP +=  (3) 

equation  (2) for conditional probability assessment can be rewritten as 

)()|()()|(
)()|(

)|(
iiii

ii
i CPCSPCPCSP

CPCSP
SCP

+
=  (4) 

 

Our aim here is to yield the conditional probability )|( SCP i
 in terms of equation 

(4). As P(Ci) is a priori probability of occurrence of Ci which can be acquired from 
domain knowledge or approximated by experiences with randomly selected samples, 
the only things that remain to be resolved are the probabilities of S in (time series) 
cases having class Ci  and in cases not belonging to class Ci respectively. Fortunately 
such probability values can be easily estimated by resorting to the given case base. 
For instance we use the appearance frequency of sequence S in class Ci cases as an 
approximation of )|( iCSP , thus we have: 

)(
),()|(

i

i

CN

SCN
iCSP ≈  (5) 

where N(Ci) denotes the number of cases having class Ci in the case base and N(Ci, S) 
is the number of cases having both class Ci and sequence S. Likewise the probability 

)|( iCSP  is approximated by  

)(

),()|(
i

i

CN

SCN
iCSP ≈  (6) 

with N( iC ) denoting the number of cases not having class Ci and N( iC ,S) being the 

number of cases containing sequence S  but not belonging to class Ci. 
The denominator in (4) has to stay enough above zero to enable reliable probability 

assessment using the estimates in (5) and (6). Hence it is crucial to acquire an 
adequate amount of time series cases containing S in the case base. The more such 
cases available the more reliably the probability assessment could be derived. For this 
reason we refer the quantity ),(),()( SCNSCNSN ii +=  as evaluation base of sequence 

S in this paper. 
At this point we realize that two requirements have to be satisfied for believing a 

sequence to be indicative of a certain class. Firstly the sequence has to possess an 
adequate evaluation base by appearing in a sufficient amount of time series cases. 
Obviously a sequence that occurred randomly in few occasions is not convincing and 
can hardly be deemed significant. Secondly, the conditional probability of that class 
under the sequence must be dominatingly high, signifying a strong discriminating 
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power. These explain why indicative sequence is defined by the demands on its 
appearance frequency and discriminating power in definition 4.  

In real applications two minimum thresholds need to be specified for the evaluation 
base and discriminating power respectively, to judge sequences as indicative or not. 
The values of these thresholds are domain dependent and are to be decided by human 
experts in the related area. The threshold for discriminating power may reflect the 
minimum probability value that suffices to predict a potential outcome in a specific 
scenario. The threshold for the evaluation base indicates the minimum amount of 
samples required to fairly approximate the conditional probabilities of interest. Finally 
only those sequences that pass both thresholds are evaluated as indicative ones.  

4   Discovering a Complete Set of Key Sequences 

With the evaluation of sequences being established, we now turn to exploration of 
qualified sequences in the problem space. The goal is to locate all key sequences that 
are non-redundant and indicate. We first detail a sequence search algorithm for this 
purpose in subsection 4.1 and then we demonstrate simulation results on a synthetic 
case base with the proposed algorithm in subsection 4.2. 

4.1   A Sequence Search Algorithm   

Discovery of key sequences can be considered as a search problem in a state space in 
which each state represents a sequence of patterns. Connection between two states 
signifies an operator between them for transition, i.e. addition or removal of a single 
pattern in time sequences. The state space for a scenario with three patterns a, b, c is 
illustrated in Fig. 2, where an arc connects two states if one can be created by 
extending the sequence of the other with a following pattern. 

   [  ] 

   [ a ]   [ b ]   [ c ] 

 [ ab ]  [ ac ]  [ ba ]  [ bb ]  [ bc ]  [ ca]  [ aa ]  [ cb ]  [ cc ] 

 
Fig. 2. The state space for sequences with three patterns 

A systematic exploration in the state space is entailed for finding a complete set of 
key sequences. We start from a null sequence and generate new sequences by adding 
a single pattern to parent nodes for expansion. The child sequences are evaluated 
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according to evaluation bases and discriminating powers. The results of evaluation 
determine the way to treat each child node in one of the following three situations: 

i) If the evaluation base of the sequence is under a threshold required for 
conveying reliable probability assessment, terminate expansion at this node. The 
reason is that the child nodes will have even smaller evaluation bases by 
appearing in fewer cases than their parent node;  

ii) If the evaluation base and discriminating power are both above their respective 
thresholds, do the redundancy checking for the sequence against the list of key 
sequences already identified. The sequence is redundant if at least one known 
key sequence constitutes its subsequence while both remaining indicative of the 
same class. Otherwise the sequence is considered non-redundant and hence is 
stored into the list of key sequences together with the class it indicates. After that 
this node is further expanded with the hope of finding, among its children, 
qualified sequences that might be indicative of other classes; 

iii)  If the evaluation base is above its threshold whereas the discriminating power 
still not reaching the threshold, continue to expand this node with the hope of 
finding qualified sequences among its children. 

The expansion of non-terminate nodes is proceeded in a level-by-level fashion. A 
level in the search space consists of nodes for sequences of the same length and only 
when all nodes at a current level have been visited does the algorithm move on to the 
next level of sequences having one more pattern. This order of treating nodes is very 
beneficial for redundancy checking because a redundant sequence will always be 
encountered later than its subsequences including the key one(s) during the search 
procedure. 

From a general structure, the proposed sequence search algorithm is a little similar 
to the traditional breadth-first procedure. However, there are still substantial 
differences between both. The features distinguishing our search algorithm are: 1) it 
does not attempt to expand every node encountered and criteria are established to 
decide whether exploration needs to be proceeded at any given state; 2) it presumes 
multiple goals in the search space and thus the search procedure is not terminated 
when a single key sequence is found. Instead the search continues on other 
prospective nodes until none of the nodes in the latest level needs to be expanded. A 
formal description of the proposed search algorithm is given as follows:  

Algorithm for finding a complete set of key sequences 

1. Initialize the Open list with an empty sequence. 

2. Initialize the Key_List to be an empty list. 

3. Remove the most left node t from the Open list. 

4. Generate all child nodes of t  

5. For each child node, C(t), of the parent node t 

a) Evaluate C(t) according to its discriminating power 
and evaluation base; 
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b) If the evaluation base and discriminating power are 
both above their respective thresholds, do the 
redundancy checking for C(t) against the sequences in 
the Key_list. Store C(t) into the Key_list if it is 
judged as not redundant. Finally put C(t) on the right 
of the Open list. 

c)If the evaluation base of C(t) is above its threshold 
but the discriminating power is not satisfying, put 
C(t) on the right of the Open list. 

  6. If the Openlist is not empty go to step 3, otherwise 
return the Key_list and terminate the search.  

4.2   Simulation Results 

To verify the feasibility of the mechanism addressed above we now present the 
simulation results on a synthetic case base. A case in this case base is depicted by a 
time series of 60 patterns and one diagnosis class as the outcome. A pattern in a time 
series belongs to {a, b, c, d, e} and a diagnosis class is either 1, 2, or 3. The four key 
sequences assumed are [a c e b], [d b a c], [b c b e], and [d d a e]. The first two 
sequences were supposed to have strong co-occurrences with class 1 and the third and 
fourth exhibit strong co-occurrences with classes 2 and 3 respectively. Each time 
series in the case base was created in such a way that both sequences [a c e b] and [d b 
a c] had a chance of 75% of being reproduced once in the time series cases of class 1, 
and with the same probability (75%) sequences [b c b e] and [d d a e] were added into 
class 2 and class 3 cases respectively. After stochastic reproduction of these key 
sequences, the remaining patterns in the time series of all cases were generated 
randomly. The whole case base consists of 100 instances for each class. Presuming 
such time series cases to be randomly selected samples from a certain domain, a priori 
probability of each class is believed to be one third. 

The sequence search algorithm was applied to this case base to find key sequences 
and potential co-occurrences hidden in the data. The threshold for the discriminating 
power was set at 70% to ensure an adequate strength of the relationships discovered. 
We also specified 50 as the threshold of the evaluation base for reliable assessment of 
probabilities. The sequences found in our test are shown in table 1 below. 

Table 1. Sequences discovered on a synthetic case base 

Sequence 
Discovered 

Discriminating power Evaluation base Dominating Class 

[a c e b] 83.52% 91 Class 1 
[d b a c] 82.80% 93 Class 1 
[b c b e] 87.13% 101 Class 2 
[d d a e] 80.41% 97 Class 3 

As seen from table 1 we detected all the four key sequences previously assumed. 
They were recognized to potentially cause the respective classes with the probabilities 
ranging from 80.41% to 87.13%. These relationships with a degree of uncertainty are 
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due to the many randomly generated patterns in the case base such that any sequence 
of patterns is more or less probable to appear in time series of any class. But this 
would reflect non-deterministic property prevalent in many real world domains. 

5   Case Indexing Based on Key Sequences 

The discovered key sequences are treated as significant features in capturing dynamic 
system behaviors. Rather than enumerating what happened in every consecutive time 
segment, we can now more concisely represent a time series case in terms of 
occurrences of key sequences in it. Let {S1, S2, …, Sp} be the set of key sequences. We 
have to search for every Si (i=1…P) in a time series X to detect all possible 
appearances. Then case index for X can be established according to the results of key 
sequence detection. In the following three alternate ways to index X based on key 
sequences are suggested. 

5.1   Naive Case Index 

A naive means of indexing a time series case X is to depict it by a vector of binary 
numbers each of which corresponds to a key sequence. A number in the vector is 
unity if the corresponding sequence is detected in X and zero otherwise. This means 
that, by the naive method, the index of X is given by 

[ ]PP bbbSSXId ,,,),( 2111 =  (7) 

 

Where 

=
otherwise

XofesubsequencisSif
b i

i 0

1  (8) 

 

This index has the merit of imposing  low demand in computation. It also enables the 
similarity between two cases to be calculated as the proportion of the positions where 
their indexing vectors have identical values. Suppose two time series cases X1 and X2 
which are indexed by binary vectors [b11,…b1P] and  [b21,…b2P] respectively, the 
similarity between them is simply defined as 

=
−−= P

j jij bb
P

XXSim
1 2211

1
1),(  (9) 

5.2   Case Index Using Sequence Appearance Numbers 

With a binary structure the case index in section 5.1 carries a little limited content and 
would be usable only in relatively simple circumstances. A main reason is that the 
index can not reflect how many times a key sequence has appeared in a series of 
consideration. To incorporate that information, an alternate way is to directly employ 
the numbers of appearances of single key sequences in describing time series cases. 
By doing this we acquire the second method of indexing time series X by an integer 
vector as   
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[ ]PP fffSSXId ,,,),,( 2112 =    (10) 

 

where fi denotes the number of occurrences of sequence Si in series X. 
Further, considering the case index in (10) as a state vector, we use the cosine 

matching function [15] as the similarity measure between two time series cases X1 and 
X2. Thus we have 
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with f1j, f2j denoting the numbers of occurrences of key sequence Sj in X1 and X2 
respectively. 

5.3   Index in Terms of Discriminating Power 

Although the case index in (10) can distinguish two cases having a same key 
sequence but with different numbers of appearances, it still might not be an optimal 
representation to capture the exact nature of the problem. Recall that the value of a 
key sequence is conveying a degree of confidence in the sense of discriminating 
power for predicting a potential class, a time series X would be more precisely 
characterized by the discriminating powers of the appearances of single key 
sequences. Intuitively two times of occurrences of a key sequence would give a 
stronger discriminating power than occurring just once, but not twice in the quantity 
of the strength. From view of this we suggest indexing X as a vector of real numbers, 
representing discriminating powers for the appearances of single key sequences, as 
follows: 

[ ]PP gggSSXId ,,,),,( 2113 =    (12) 

with   
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With )( ii SfDP ∗  we denote the discriminating power by sequence Si  appearing fi  

times in X. 
Let C be the class that the key sequence Si is indicative of. We define the 

discriminating power )( ii SfDP ∗ as the probability for class C given fi appearances of 

sequence Si. Assuming the appearances of Si are independent of each other, this 
probability can be obtained by applying the Bayes theorem in a sequential procedure. 
Considering a two class problem without loss of generality, this procedure is depicted 
here by a series of equations as follows: 
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where the probabilities )( CSP i
 and )( CSP i

 can be estimated according to equations 

(5) and (6) respectively. The probability updated in equation (14) represents the 
probability for class C given one appearance of Si, which is further updated in 
equation (15) by the second appearance of Si producing a higher probability 
considering both occurrences. Generally, the probability )|( iStCP ∗  is yielded by 

updating the prior probability ( )iStCP ∗− )1(| with one more occurrence of Si in 

equation (16). Finally we obtain the ultimate probability assessment incorporating all 

appearances, i. e. the required discriminating power, by equation (17). 
We now give a concrete example to illustrate how a case index can be built in 

terms of occurrences of key sequences. Suppose a two class (C1 and C2) situation in 
which three key sequences S1, S2, and S3 are discovered. Sequence S1 appears twice  
in time series X and S2 appears once while S3 is not detected. S1 and S2 are both 
indicative of a C1. The a priori probability for class C1 is 40% and the probabilities of 
sequences S1, S2 in situations of class C1 and C2 are shown below: 

 

                                      5.0)( 11 =CSP                    2.0)( 21 =CSP  

                                      8.0)( 12 =CSP                   3.0)( 22 =CSP  
 

With all the information assumed above, the discriminating powers for the 
appearances of S1 and S2 are calculated in the following: 

 

1.  Calculate the probability for C1 with the first appearance of S1 by 
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2.  Refine the probability )( 11 SCP  with the second appearance of S1, producing the 

discriminating power for the appearances of S1 
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It is clearly seen here that the power of discrimination is increased from 0.6250 to 
0.8065 due to the key sequence occurring for the second time. 
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3. Derive the discriminating power for the occurrence of S2 by calculating the 
conditional probability for C2 upon S2 as 
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Moreover, because S3 is not detected in X, there is no discriminating power for it. 
Hence we construct the index for this time series case as:  

                                        [ ]0,6400.0,8065.0),,( 3213 =SSSXId  
 

With this case indexing scheme, we first calculate the dissimilarity between two 
time series X1 and X2 as the average of the differences in discriminating powers over 
all key sequences as follows:  
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where g1j and g2j denote the jth elements in the case indexes (12) for X1 and X2 
respectively. Since the dissimilarity measure in (18) is opposite to that of similarity, 
the degree of similarity between X1 and X2 is simply given by 

),(1),( 21213 XXDisXXSim −=    (19) 

6   Related Works 

Representation and retrieval of time series cases has received increasing research 
efforts during the recent years. The primary idea is to convert time-varying profiles 
into somehow simplified and shorter vectors that still preserve the distances between 
time series cases. Fourier transform and Wavelet transform are two commonly used 
methods for such a conversion, and their usages for retrieving similar cases to support 
clinical decisions and industrial diagnoses have been shown in [10,12] and [13] 
respectively.  

A more general framework for tackling cases in time dependent domain was 
proposed by [11], in which temporal knowledge embedded in cases are represented at 
two levels: case level and history level. The case level is tasked to depict single cases 
with features varying within case durations, while consecution of cases occurrences 
have to be captured in the history level to reflect the evolution of the system as a 
whole. It was also recommended by the authors that, at both of the two levels, the 
methodology of temporal abstraction [3, 18] could be exploited to derive series of 
qualitative states or behaviors, which facilitate easy interpretation as well as pattern 
matching for case retrieval. 

This paper would be a valuable supplementary to the framework by Montani and 
Portinale in the sense that our key sequence discovery approach can be beneficially 
applied to the series of symbols abstracted from original time series. The point of 
departure is that, in many practical circumstances, significant transitional patterns in 
history are more worthy of attentions than the states or behaviors themselves 
associated with single episodes. It follows that the key sequences discovered will offer 
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us useful knowledge to focus on what are really important in case characterization. 
Moreover, as the number of key sequences is usually is smaller than the number of 
elements in the series, indexing cases in terms of key sequences exhibits a further 
dimensionality reduction from series obtained via temporal abstraction.  

Finally, finding sequential patterns was widely addressed in the literature of 
sequence mining [2, 6, 19], where the goal was merely to find all legal sequential 
patterns with their frequencies of appearances above a user-specified threshold. 
Identifying key sequences in our context differs from those in sequence mining in that 
we have to consider the cause-outcome effect for classification purpose. Only those 
non-redundant sequences that are not only frequent but also possess strong 
discriminating power will be selected.  

7   Conclusion 

This paper aims to identify significant sequences to interpret and deal with dynamic 
properties of time series cases consisting of discrete, symbolic patterns. A knowledge 
discovery approach is proposed for this purpose. This approach uses the whole case 
library as available resources and is able to find from the problem space all qualified 
sequences that are non-redundant and indicative. An indicative sequence exhibits a 
high co-occurrence with a certain class and is hence valuable in offering 
discriminative strength for prediction. A sequence that is both indicative and non-
redundant is termed as a key sequence. 

It is shown that that the key sequences discovered are highly usable to characterize 
time series cases in case based reasoning. The idea is to transform an original 
(lengthy) time series into a more concise representation in terms of the occurrences of 
key sequences detected. Three alternate ways to develop case indexes based on key 
sequences are suggested. The performance and applicability of these three case 
indexing methods will be tested in practical case studies within our medical project in 
future. 
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Abstract. Self-healing, one of the four key properties characterizing Au-
tonomic Systems, aims to enable large-scale software systems delivering
complex services on a 24/7 basis to meet their goals without any human
intervention. Achieving self-healing requires the elicitation and main-
tenance of domain knowledge in the form of 〈service failure diagnosis,
remediation strategy〉 patterns, a task which can be overwhelming. Case-
Based Reasoning (CBR) is a lazy learning paradigm that largely reduces
this kind of knowledge acquisition bottleneck. Moreover, the application
of CBR for failure diagnosis and remediation in software systems appears
to be very suitable, as in this domain most errors are re-occurrences of
known problems. In this paper, we describe a CBR approach for provid-
ing large-scale, distributed software systems with self-healing capabili-
ties, and demonstrate the practical applicability of our methodology by
means of some experimental results on a real world application.

1 Introduction

The inherent complexity, heterogeneity, and dynamism of today’s large-scale
networked applications and services makes inappropriate, if not impossible, the
traditional human-centered approach to system administration [15]. As a re-
sult, the attention of the industrial and academic communities has been driven
towards novel solutions for the design of computer and software systems that
can manage themselves in accordance with high-level guidance from humans.
A common background for these contributions can be found in the definition
of the Autonomic Computing paradigm [15,21], which introduces the concept of
an Autonomic Computing System (ACS), an environment composed of (one
or more) managed elements, whose behavior is controlled by an autonomic
manager. The autonomic manager operates according to the so-called auto-
nomic cycle [21], schematically depicted in Fig. 1, that encompasses four distinct
steps:

– monitoring the managed element(s), in order to collect information concern-
ing its (their) state and behavior;

– analysing the collected data, to determine possible deviations from the cor-
rect or intended functioning;

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 489–503, 2006.
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Autonomic Manager

Managed element

Knowledge

Monitor

Analyze Plan

Execute

Fig. 1. The architecture of an Autonomic Manager, illustrating the autonomic cycle

– planning proper remediation strategies, to bring the system back into normal
behavior;

– executing the plan by exploiting suitable actuation mechanisms that must
be provided by the managed element(s).

The goal of the approach is to obtain a system that exhibits the so called
Self-* properties, namely:

– Self-Configuration: the ACS is able to (re)configure itself under varying and
unpredictable conditions;

– Self-Optimization: the ACS is able to detect and to optimize suboptimal
behaviors;

– Self-Protection: the ACS is able to protect itself from both external and
internal attacks;

– Self-Healing: the ACS is able to detect problems and/or failures and to re-
cover from them.

The achievement of each one of the Self-* properties requires that all the steps
of the autonomic cycle are carried out.

The Autonomic Computing paradigm is particularly attractive for large-scale
software systems aimed at delivering on-line services on a 24/7 basis, as for
instance those described in [12,27]. The very large size of these systems (that may
typically include from hundreds to thousands of machines), and the adoption of
customized application software and middleware, makes at the same time service
failures relatively frequent and human-centered system administration very hard,
if not impossible. Consequently, self-managing capabilities, and especially self-
healing, represent a very attractive solution.

Providing a software system with self-healing capabilities requires the avail-
ability of specific knowledge about the 〈service failure diagnosis, remediation
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strategy〉 patterns that may apply to the system at hand. Formalizing this kind
of knowledge, e.g. by means of rules or models, is a difficult and time consuming
task, and periodic revision od the knowledge base is required to always keep
it up to date. These requirements are clearly in conflict with the goal of mak-
ing the system as much as possible independent of human intervention. It is
worth pointing out that this observation holds also when the task is the one of
“retrofitting” self-healing behavior into existing legacy applications [20].

The Case Based Reasoning (CBR) methodology [3] is known to be well suited
to those domains where formalized and widely recognized background knowl-
edge is not available. CBR actually allows one to build a knowledge base of
past situations (cases), which represent an “implicit” (i.e. operative) form of
knowledge, that can be reused in present problems, possibly after an adapta-
tion step. Representing a real-world situation as a case is often straighforward:
given a set of meaningful features for the application domain, it is sufficient
to identify the value they assume in the situation at hand; typically, a case
also stores information about the solution applied and the outcome obtained.
Due to the simplicity of this process, in many real world examples the knowl-
edge acquisition bottleneck can be significantly reduced in comparison with the
exploitation of other reasoning methodologies. Moreover, new knowledge is au-
tomatically stored in the case base during the normal working process; as the
case library grows, more and more representative examples are collected, and
it becomes easier to find a proper solution to a new problem by means of this
paradigm.

CBR seems particularly appropriate to failure diagnosis and remediation in
software systems, as in this domain most errors are re-occurrences of known
problems [8,13,26]; the methodology also provides a unique framework in which
failure diagnosis and remediation are performed jointly.

Nevertheless, to the best of our knowledge, the only investigation in this di-
rection has been published in [13], where a case-based retrieval system for dis-
covering software problems without requiring human intervention is presented.
The approach is quite limited, as it consists of a pure retrieval systems, in which
the other steps of the CBR cycle [3] are ignored, and the problem solution is not
provided.

In the present paper, we describe a CBR approach to support self-healing in
(possibly large and distributed) software systems, in which case-based retrieval
supports service failure diagnosis, while the reuse-revise step supports remedia-
tion. This contribution extends the ideas described in [6], and further tests them
through some experiments. Experiments were conducted on a test bed imple-
mented by means of Cavy [7], a tool supporting the deployment and operation
of testbeds tailored to self-healing infrastructures.

The rest of the paper is organized as follows. In Section 2 we present related
work about self-healing achievements in software systems. Section 3 details the
CBR approach to self-healing, while Section 4 provides some experimental re-
sults, obtained on a testbed built using Cavy. Finally, Section 5 concludes the
paper and outlines future research work.
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2 Related Work

Various approaches to fault diagnosis and remediation have been proposed in the
literature. Sterrit [32] proposes an approach to fault diagnosis based on event cor-
relation, where various symptoms of system malfunctions (represented by alarms
triggered by the various system components that are collected during the moni-
toring phase) are correlated in order to determine the (set of) fault(s) that have
occurred. An alternative approach is proposed by Garlan and Schmerl [16], where
fault diagnosis is performed by means of a suitable set of models. Joshi et al.
[18] use Bayesian estimation and Markov decision processes to probabilistically
diagnose faults, and use the results to generate recovery actions. Littman [23]
proposes cost-sensitive fault remediation, a planning-based technique aimed at
determining the most cost-effective system reconfiguration able to bring the sys-
tem back to full functionality. Planning is also the basis for the fault remediation
strategy proposed by Arshad [8].

The main drawback of these approaches is that they require the availability of
formalized and widely recognized background knowledge (henceforth referred to
as structured knowledge) about the structure and/or the behavior of the system.
For instance, planning-based techniques require a description of the domain,
the states, and the correct configurations of the system, while event correlation
requires the availability of a model describing how the various system compo-
nents interact with each other. Unfortunately, as already observed, significant
effort is usually required to build, maintain, and use structured knowledge, with
the consequence that its applicability to large-size systems, exhibiting complex
behaviors and interactions among their components, may be problematic. An-
other drawback of these approaches is their “fault orientation”, that is they are
triggered by individual component faults. Consequently, they attempt to cor-
rect a fault as soon as it is diagnosed (preventive maintenance [2]), even if it
is not (yet) causing any service disruption because it is dormant [2], or it has
been masked by the fault-tolerance techniques embedded into the system. De-
vising a repair plan for a fault that can be masked by the system is a waste
of resources, and the same holds true for a dormant fault that, when it occurs,
can be masked as well. Furthermore, from the perspective of service delivery,
a dormant or masked fault has little or no importance until it causes a service
failure (i.e., it becomes active [2]). However, while pro-active repair of dormant
faults can be important in physical systems, for software systems it is much
less important, as an unnoticed bug or a misconfiguration (which are, by def-
inition, dormant faults) may never turn into an active fault causing a service
failure. For instance, an unnoticed bug may be corrected as a side effect of a
software update performed to fix another problem. Moreover, the correction of
dormant or masked faults requires the availability of a model of the system,
which brings us back to the problem of acquiring structured knowledge men-
tioned before. Finally, the proposals discussed before either address fault diag-
nosis or fault remediation, but none of them addresses both issues at the same
time.
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3 A CBR Approach to Self-healing

As discussed in the Introduction, achieving the self-healing property in a software
system requires that the four steps of the autonomic cycle are carried out.

The CBR cycle fits very well into the autonomic cycle, since it naturally covers
the analysis and planning phases by means of the retrieval and reuse-revise
steps, respectively; moreover, the knowledge used by the autonomic manager
is contained in the case base, properly maintained by applying the retain step
policies.

The other two phases of the autonomic cycle (i.e., monitoring and execution)
have to be covered by additional specific modules (see Fig. 2), giving birth to an
architecture in which the running system (i.e. the managed element) is treated
as a “black box”, surrounded by a set of external modules that form a closed-
loop controlling the “health” of the system itself, and performing proper repair
actions in case of service failures (an approach known as externalization [16]).

Reuse-revise

Running System
(managed element)

Repair
Module

symptoms

query
case

problem
solution

repair
plan

Case Preparation
Module

Monitoring
Module

Application-specific
part

CBR

Case
Base

Autonomic Manager

RetrieveRetain

Application-agnostic
part

Service Restoration
Module

Fig. 2. CBR approach to Self-Healing

In our implementation of externalization, this closed loop includes:

– the monitoring module, which detects a service failure by means of specific
tests (the list of which tests to execute has to be provided by a human expert
in a bootstrap phase - see section 3.3);

– the case preparation module, which collects the set of symptoms identified
by the monitoring module, and maps them to an application-specific case
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structure. In this way, it properly defines a new case, which can be used as
a query case by the three modules listed below, which implement the CBR
cycle:

• the retrieve module, which retrieves past cases similar to the query one,
thus implicitly providing a set of possible diagnoses for the current prob-
lem (see section 3.1);

• the reuse-revise module, which establishes what is (are) the candidate(s)
solution(s) to the input problem, given the list of retrieved ones (see
section 3.2);

• the retain module, which defines some policies about the opportunity
of maintaining the current problem-solution pattern in the case base,
possibly after a proper summarization strategy has been applied (see
section 3.3);

– the service restoration module, that converts the above solution(s) into a (set
of) repair plan(s);

– the repair module, which finally executes the repair plan corresponding to
the selected solution, by using suitable application-specific mechanisms.

As shown in Fig. 2, the externalmodules can be classified either into application-
specific, i.e. that must be tailored to the specific characteristics of the running sys-
tem, or application-agnostic. While the monitoring and repair activities require the
availability and usage either of knowledge and mechanisms provided by the run-
ning system or of adapted third-party components [19] (hence their classification
as application-specific), the problem resolution activity (performed by the CBR
modules) does not rely upon any particular system feature (although an adapta-
tion strategy would require specific domain knowledge). The case definition and
the service restoration modules do not fall in just one of the two cathegories, since
they act as an interface between the two layers. Further details about the CBR
modules can be found in the following subsections.

3.1 Retrieve

As already observed, case-based retrieval will cover the diagnostic task of the
self-healing procedure. In a large and distributed software system, different kinds
of failures, that need to be solved by applying completely unrelated solutions,
might take place. The service failure observed in the query case could therefore
be used as a means for identifying relevant subparts of the case base to work
with.

We therefore propose to structure retrieval as a multi-step procedure, in which
two steps have to be accomplished (see e.g. [25]):

1. a classification/grouping step, which selects from the case base the subset of
past cases in which the same (or a similar - see Section 4) service failure as
the one in the query case took place;

2. a proper retrieval step, which extracts the most similar (i.e. less distant)
cases from the reduced search space identified at step 1.
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As described by Kolodner [22], classification/grouping may be seen as a par-
ticular kind of the so-called situation assessment, which allows one to provide
the context under which the input situation can be better interpreted.

The above classes/groups can be either implicit or explicit. In the first situ-
ation, there is no need to explicitly identify a set of predefined classes - a task
that might be hard to be achieved without sufficient background knowledge, e.g.
when an exhaustive list of possible service failures is not available. In this case, a
k-NN step is used, in order to restrict the case library (through k-NN retrieval).
Case features are used to obtain the set of most similar service failures: only
cases related to such failures constitute the group which is then used in Step
2. In the second situation, a set of predefined explicit classes is required to be
available. Cases belonging to the same class as the input case are identified this
time through k-NN classification and they will be used as the search space for
the subsequent retrieval step. The distance d(ci, cj) between cases ci and cj is
typically computed as a weighted average of the normalized distances among
their various features.

3.2 Reuse and Revise

After past similar cases have been retrieved, their solutions have to be analysed,
in order to verify if they can be reused in the present situation.

In the software failures domain, it can happen that the query situation is a
combination of two or more past ones (i.e. two different service failures have
taken place contemporaneously, or the same service failure has been caused by
two faults, whose symptoms are described as feature values). If this condition
holds, all the pertinent past solutions (i.e. remediation strategies) can be ex-
ploited, by applying all of them in sequence, until the service is restored (and all
the remaining unapplied solutions are then discarded). The order in which solu-
tions should be applied, and the possible need to undo the effect of an already
tested remediation strategy before applying another, are application-dependent
aspects, that should be provided as initial guidelines by the human experts.
As a matter of fact, the details of even a simple adaptation strategy cannot
be provided in a general fashion, but need to be tailored to the system under
consideration.

3.3 Bootstrap and Retain

In order to behave as a really self-healing system, our infrastructure must be
able to work as much as possible in an autonomous way, i.e. without human
intervention. However, this can happen only if a case base containing enough
instances of solved cases is available, but in general this does not hold true when
the system is initially put into operation.

We therefore envision a bootstrap phase, enabling the collection of the initial
cases, during which problem solution is performed by humans.

Background knowledge is needed also when the case base does not contain ex-
amples similar to the query case (due to the presence of competence gaps within
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the case base itself). In this situation, human intervention could be required on
the fly.

However, it is worth noting that:

1. Competence gaps tend to be reduced while the system is being used, since
CBR is a lazy learning paradigm which automatically collects new knowledge
in an implicit form. A retain strategy could be applied to control case base
growth, for example by resorting to techniques already published in the
literature, like for instance the definition of suitable “prototypes” (see e.g.
[31]), able to summarize the information carried by the ground cases they
represent, that are stored in place of the cases themselves. These aspects
may become more critical if a memory organization has been imposed on
the case base, and has to be maintained while introducing new examples;
proper startegies have to be devised to this hand;

2. If a reasonable amount of explicit knowledge is available in the beginning,
it might be somehow integrated with the CBR system (especially in the
revision phase), in order to improve the remediation strategies definition
(see also Section 5).

4 Experimental results

We tested the CBR-based self-healing infrastructure by means of a testbed
built using Cavy [7], a tool specically conceived to deploy and operate hard-
ware/software testbeds aimed at testing self-healing infrastructures. Cavy pro-
vides failure injection and repair mechanisms, as well as monitoring and repair
functionalities. In our experiments the testbed was used to inject a set of failures
into Moodle [1], a Web-based widely adopted system supporting distance learn-
ing. Moodle’s architecture encompasses a PHP-enabled Web server, that acts as
a portal to access various kinds of services (typically Apache), and a Database
Management System (typically MySQL), that stores all the relevant information
about users and courses handled by Moodle.

Like any software system delivering complex services, Moodle exhibits a rather
large set of service failures, that may be due to a variety of reasons including
misconfiguration errors due to human operations, software bugs, and faulty hard-
ware components and/or crashes of the operating system used on the various
resources. These problems are well documented on the Moodle’s web site, where
a list of known problems and possible solutions is posted and constantly kept
up-to-date. For our example, we analyzed this list of failures and mapped each
failure to a set of individual faults, that were subsequently injected into the
hardware/software components of the testbed. Details have been omitted in this
paper because of space constraints (the interested reader may refer to [7] for
a fuller explanation). This analysis resulted in the identification of the three
service failure classes described below, each one containing several failures:

1. Page display failures: under this category fall all the cases in which the
contents of a Moodle section are not displayed correctly on the web browser.
Examples taken from the installation FAQ are:
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– All the pages are blank
– Rather than its correct contents, the pages show errors such as “call to

undefined function”, the error string “headers already sent”, or the error
message “Failed open required /web/moodle/lib/setup.php”

2. Resource access failures: this category contains all the cases in which various
objects contained in a Moodle section cannot be accessed correctly, such as
the ones listed below (taken again from the installation FAQ):
– When trying to access an uploaded file, Moodle replies with a “File not

Found” error message
– When trying to add a resource, Moodle replies with an error message

3. User services failures: under this category fall all the failures in delivering
user-oriented services, such as:
– When the user tries to log in, nothing happens and the login screen seems

to be stuck
– After logging in to the system, the user page is not shown and a “ses-

sion start” error is displayed
– The messages posted on a forum managed by Moodle are not sent to the

registered users

We structured the case base in different classes, each one corresponding to one
of the three service failure classes described above. We were thus able to structure
retrieval as a two-step procedure (see Section 3.1), in which a first classification
step selects the subpart of the case library that will be then exploited for retrieval
itself (second step).

As a first example, for the sake of brevity we will concentrate on the third class
of service failures (namely User services failures), assuming that the classifica-
tion step has already been completed. The class at hand includes five cases, listed
in Fig. 3. In particular, the Failure feature describes the observed service failure
(either session fail, or login fail, or forum email not sent). The Error(msg) fea-
ture contains a string corresponding to the error message shown on the screen
(if any), or briefly describing the kind of error that can be observed (i.e. the
screen seems to be stuck, or a timeout has been registered in the webserver
log). The Cron features specifies whether the cron process is active or not at
the time of the failure observation, while the DBMS feature indicates if the
DBMS is responsive or not. Finally, the Solution feature has a self-explanatory
meaning.

The case describing the input problem is shown in Fig. 4, and corresponds
to a non trivial situation, that has been emulated through Cavy, in which both
the DBMS process is not responsive because of an accidental kill, and network
connectivity on the webserver machine is unavailable because of an operating
system problem. Nevertheless, we suppose that the DBMS reachability has not
been explicitly tested (therefore the DBMS feature value is NULL). Note that
no case in the case base represents the co-existence of two problems at the same
time.
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Case Failure Error(msg) Cron DBMS Solution
1 session fail “session start” NULL yes update session.save.path

“...no such file” in php.inifile
2 login fail stuck NULL yes set secureform to NO

in config.php
3 forum email not sent NULL no yes setup Cron process

4 login fail timeout in NULL no restart DBMS
webserver log

5 login fail timeout in NULL yes restart webserver machine
webserver log

Fig. 3. Contents of the case base in the user services failures class. NULL means “not
tested”.

Failure Error(msg) Cron DBMS
login fail timeout in webserver log NULL NULL

Fig. 4. The case corresponding to the new service failure in the user services failures
example

The new case cn is then passed to the retrieve module (see Fig. 2) that com-
putes its distance from each case ci in the case base as:

d(cn, ci) =

N∑
k=1

wk · d(cn(k), ci(k))

N
(1)

where d(cn(k), ci(k)) and wk denote the normalized distance between feature k
of cases cn and ci, and the weight associated with this feature, respectively. Dif-
ferent types of features obviously require the use of different distance functions.
For the features describing cases in this example (all of which are of type either
’string’ or ’boolean’) we use the overlap distance [34], defined as:

d(ci(k), cj(k)) =
{

0 if ci(k) = cj(k)
1 otherwise

and we assume that all the features have weights equal to 1. We also define as 1
the distance between the NULL value and any other value.

The distances between the new case and all the cases in the case base are
shown in Fig. 5, from which we can observe that the closest matches to the new
case are Case 4 and Case 5.

In the event of a tie, as regards the Moodle application, we have implemented
a policy in which the solutions from the two most similar cases are applied in
sequence (this is a very simple form of adaptation; obviously, more complex
adaptation procedures could be devised, depending on the application).
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distance w.r.t. Failure Error(msg) Cron DBMS Overall Distance
Case 1 1 1 1 1 1
Case 2 0 1 1 1 3/4
Case 3 1 1 1 1 1
Case 4 0 0 1 1 2/4
Case 5 0 0 1 1 2/4

Fig. 5. Distances between the new service failure and the cases in the case base in the
user services failures example

In the example the reuse-revise module (see Fig. 2) first tries to restart the
DBMS (technically, it sends to the service restoration module the solution of
Case 4, which is mapped to the corresponding fault repair plan).

But just restarting the DBMS cannot solve the problem, as we know. The
DBMS is now correctly responsive, therefore the input case becomes identical
to Case 5. The further implementation of the Case 5 solution, foreseen by the
adaptation policy, is obviously successful.

Note that, since both the DBMS and the webserver problems are represented
in the query case at the same time, and they are technically independent, it
would be equally possible to apply the two best match solutions in the opposite
order, obtaining the desired result. In other words, in this situation the order of
implementation of the solutions is not critical.

As a second example, let us refer to the Page display failures class. For this
class, the Failure feature describes the observed service failure (either the dis-
played page is blank, or it is non-blank but contains error messages of various
types). The DirRoot Pathname feature indicates the presence of an error in the
PHP configuration file config.php, consisting of setting its DirRoot variable to
a relative path name rather than to an absolute one. The Missing Delimiter
feature indicates the presence of syntax errors (missing semicolon or quotes) at
the end of some lines in the configuration file, while Blank Line After End in-
dicates the presence of blank lines after the final delimiter of the configuration
file, which is considered a syntax error by the PHP interpreter.

For this example, we assume that the case base containes the three cases
reported in Fig. 6. As can be observed from the contents of the case base, all
the failures are due to syntax errors unintentionally introduced in the config.php

Case Failure DirRoot Missing Blank Line Solution
pathname delimiter after end

1 page blank relative No No use absolute path name
for DirRoot in config.php

2 Page shows absolute Yes No insert missing semicolon or
errors ending quote in config.php line

3 Page shows absolute No Yes Remove blank lines after
errors final ’? >’ in config.php

Fig. 6. Contents of the case base in the page display failures class
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Failure DirRoot Missing Blank Line
Pathname Delimiter After End

Page shows errors relative No No

Fig. 7. The case corresponding to the new service failure in the page display failures
example

distance w.r.t. Failure DirRoot Missing. Blank Line Overall
Pathname Delimiter After End Distance

Case 1 1 0 0 0 1/4
Case 2 0 1 1 0 2/4
Case 3 0 1 0 1 2/4

Fig. 8. Distances between the new service failure and the cases in the case base in the
page display failures example

file used by the Apache web server. The case describing the input problem is
shown in Fig. 7.

The distances between the new case and all the cases in the Page display class
are shown in Fig. 8, from which we can observe that the closest match to the new
case is Case 1. Therefore, the reuse-revise module sends to the service restoration
module the solution of Case 1, which is mapped to the corresponding fault repair
plan. Observe that the retrieved past solution can be correctly reused, even if
the past failure is different from the current one.

5 Conclusions and Future Work

In this paper we have presented a CBR approach for the achievement of self-
healing in software systems that, unlike alternative solutions, avoids unnecessary
repair actions. The repair procedure is indeed triggered by service failures rather
than by individual component failures. Moreover, it does not require the avail-
ability of structured knowledge, such as models of the system behavior, thus
easing its applicability to large-scale, complex software systems.

The suitability of this approach has been demonstrated in this paper by some
tests conducted on the Moodle application, running on a distributed architecture.
For this purpose, we built an ad hoc test bed using Cavy, a tool supporting the
deployment and operation of testbeds tailored to self-healing infrastructures.
Cavy allows to easily define testbeds with various characteristics. In the future
we plan to exploit it for verifying our CBR approach to self-healing on additional
real world applications.

Moreover, we also plan to test the advantages of our approach in applications
in which some formalized background knowledge is available. Actually, CBR can
be easily combined with other knowledge sources and with other reasoning par-
adigms, and is particularly well suited for integration with Rule Based or Model
Based systems [17]. The interest in multi modal approaches involving CBR is
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recently increasing through different application areas [5,14], from planning [10]
to classification [33] and to diagnosis [24], and from legal [11,29] to medical de-
cision support [9,31,35]. Our goal will be to demonstrate the further advantages
of relying on two different methodologies, by tightly coupling them, or alterna-
tively by just switching between one and the other, when the aim is to provide
a software system with autonomic diagnosis and remediation capabilities.
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Abstract. In this paper we propose a novel feature selection method able to 
handle concept drift problems in spam filtering domain. The proposed tech-
nique is applied to a previous successful instance-based reasoning e-mail filter-
ing system called SpamHunting. Our achieved information criterion is based on 
several ideas extracted from the well-known information measure introduced by 
Shannon. We show how results obtained by our previous system in combination 
with the improved feature selection method outperforms classical machine 
learning techniques and other well-known lazy learning approaches. In order to 
evaluate the performance of all the analysed models, we employ two different 
corpus and six well-known metrics in various scenarios. 

1   Introduction and Motivation 

Internet has introduced a revolutionary way for communication issues. Some daily 
activities such as news reading or message sending has been innovated and facilitated. 
Now, an Internet user can send an e-mail through thousands of kilometres with no 
cost. Unfortunately, some people and companies with doubtful reputation had quickly 
discovered how to take advantage of this new technology for advertising purposes. 
Since then, they are constantly sending a lot of advertisement messages known as 
spam e-mails. These messages are damaging the rights of Internet users because they 
are paying the transfer costs of the spam messages. Moreover, spam collapses net-
works, routers and information servers belonging to the Internet Service Providers 
(ISPs) generating high costs and damages. 

Although some legal actions have been introduced for combating the delivery of 
spam messages, at the moment anti-spam filtering software seems to be the most viable 
solution to the spam problem. Spam filtering software is often classified as collabora-
tive or content-based [1]. In the context of collaborative systems, the message filtering 
is carried out by using judgements made by other users [2]. Although there is no doubt 
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that collaborative techniques can be useful to spam filtering, systems able to analyse in 
detail the intrinsic properties of the message (subject, body contents, structure, etc.) 
have a better chance of detecting new spam messages [3]. These approaches are in-
cluded within the content-based approach and are studied in this work. 

The main types of content-based techniques are machine learning (ML) algorithms 
and memory and case-based reasoning approaches. In ML techniques an algorithm is 
used to ‘learn’ how to classify new messages from a set of training e-mails. On the 
other hand, memory and case-based reasoning techniques store all training instances in 
a memory structure and try to classify new messages by finding similar e-mails to it. 
Hence, the decision of how to solve a problem is deferred until the last moment. Al-
though ML algorithms have been successfully applied in the text classification field, 
recent research work has shown that case-based reasoning (CBR) and instance-based 
reasoning (IBR) systems are more suitable for the spam filtering domain [4, 5, 6]. 

In this paper we propose and analyse an enhancement over a previous successful 
anti-spam IBR-based system called SpamHunting [6]. The main objective is to dis-
cuss and test a new improvement over knowledge representation in SpamHunting to 
show the importance of instance representation in CBR/IBR approaches. Results 
obtained by different well-known spam filtering models and those obtained by our 
new approach are shown for benchmarking purposes. The models selected to carry 
out the evaluation are Naïve Bayes [7], boosting trees [8], Support Vector Machines 
[9], and two case-based systems for spam filtering that can learn dynamically: a Cun-
ningham et al. system which we call Odds-Ratio CBR [4] and its improved version 
named ECUE [5]. Experiments have been carried out using two different well-known 
public corpora of e-mails and taking into account several measures in order to repre-
sent different points of view. 

We are also interested in achieving new findings about the role of feature selection 
process when using CBR/IBR approaches on the spam filtering domain. Specially, 
our aim is centred in handling the concept drift problem [4] (inherent in the spam 
filtering domain) at this early stage. In this work we are showing the dynamical adap-
tation capacities of SpamHunting when the environment changes. We also describe in 
detail the role of the feature selection preprocessing step in this kind of situations. 

The rest of the paper is structured as follows: section 2 we outline machine learning 
and case-based e-mail filters mentioned above. In section 3 the SpamHunting IBR ar-
chitecture is described in detail while in section 4 we present our improved feature se-
lection method for our previous SpamHunting system. Section 5 contains a description 
of some relevant issues belonging to the experimental setup while section 6 is focused 
in showing the empirical results obtained by the different models. Finally, in section 7 
we expose the main conclusions reached as well as the future lines of our research work.  

2   Spam Filtering Techniques 

This section contains a brief description of the popular Spam filtering techniques. The 
following subsections are structured as follows: Subsection 2.1 contains a short intro-
duction to classical ML models that has been successfully applied to the spam filter-
ing domain. Subsection 2.2 is focused in summarizing newest models proposed in the 
most recent research work. 
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2.1   ML Classical Approaches 

There is no doubt regarding the similarities of text categorization and the spam filter-
ing domain. In fact, both research fields are included into the document automatic 
classification domain belonging to the Natural Language Processing (NLP) area. Both 
are based on distributing a collection of documents (or corpus) into several classes or 
categories. However, we should note that spam and legitimate classes are generally 
more imprecise, internally disjointed and user-dependant than text categories [1]. 
Moreover, there are some additional problems in the spam filtering domain such as 
noise level and concept drift [5, 10]. 

Due to the related similarity between text categorization and spam filtering do-
mains, several commonly used models and techniques from the former have been 
successfully applied on the later. The traditional Bayesian method is a clear example 
of this issue. This kind of spam filters are based on computing the probability of a 
target message being spam taking into account the probability of finding its terms in 
Spam e-mails. If some words of the target message are often included in Spam mes-
sages but not in legitimate ones. Then it would be reasonable to assume that target e-
mail is more likely to be Spam. Although there are several Bayesian approaches, it is 
Naïve Bayes that is widely used for Spam filtering [7].  

Besides Bayesian models, Support Vector Machines (SVM) and boosting tech-
niques are also well-known ML algorithms used in this domain [11]. SVMs [9] have 
become very popular in the machine learning and data mining communities due to its 
good generalization performance and its ability to handle high-dimensional data 
through the use of kernels. They are based on representing e-mails as points in an n-
dimensional space and finding a hyperplane that generates the largest margin between 
the data points in the positive class and those in the negative class. Some implementa-
tions of SVM can be found in ML environments such as Waikato Environment for 
Knowledge Analysis1 (WEKA) or Yet Another Learning Environment2 (YALE). Par-
ticularly, WEKA includes the Sequential Minimal Optimization (SMO) algorithm that 
has demonstrated a good trade-off between accuracy and speed (see [12] for details). 

Boosting techniques [8] classify a target e-mail by combining and weighting the 
outputs of several weak learners when they are applied over a new message. Weak 
learners are simple classification algorithms that can learn with an error rate slightly 
lower than 50%. Several boosting algorithms have been introduced for classification. 
Of these the AdaBoost algorithm [13] is commonly used. 

2.2   Recent Trends in the Spam Filtering Domain 

Recently, several new ML models have been introduced for e-mail classification such 
as Chung-Kwei [14], which is based on pattern-discovery. In this sense, recent re-
search work are focused on improving or adapting current classification models used 
in spam filtering domain. In this sense, two improvements over Bayesian filtering are 
proposed in [15, 16] while in [17] Hovold presents an enhancement over SVM model 
enabling misclassification costs. Keeping in mind the continuous update of the 
knowledge and the concept drift problem, an incremental adaptive Bayesian learner is  
                                                           
1 WEKA is available from http://www.cs.waikato.ac.nz/ml/weka/  
2 YALE is available from http://yale.sourceforge.net 
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presented in [18] while in [19, 20] an ensemble classifier able to track concept drift 
and a SVM enhancement for support this problem are proposed respectively. How-
ever, we highlight advances achieved by using CBR systems as they have started a 
revolution in Spam filtering applications.  

Case-based approaches outperform classical machine learning techniques in anti-
spam filtering because they work well for disjoint sub-concepts of the spam concept 
(spam about porn has little in common with spam offering rolex) whereas classical 
ML techniques try to learn an unified concept description [5]. Another important 
advantage of this approach is its ease of updating to tackle the concept drift problem 
in the anti-spam domain [21]. 

Cunningham et al. have proposed in [5] a successful case-based system for anti-
spam filtering that can learn dynamically. The system (which we call Odds-Ratio 
CBR) uses a similarity retrieval algorithm based on Case Retrieval Nets (CRN) [22]. 
CRN networks are equivalent to the k-nearest neighbourhood algorithm but are com-
putationally more efficient in domains where there is feature-value redundancy and 
missing features in cases, as spam. This classifier uses a unanimous voting technique 
to determine whether a new e-mail is spam or not. All the returned neighbours need to 
be classified as spam e-mails in order to classify the new e-mail as Spam.  

In the work of Delany et al. [4], it is presented the ECUE system (E-mail Classifi-
cation Using Examples) as an evolution from Odds-Ratio CBR preceding model. 
While the previous system uses an odds ratio method for feature selection, the ECUE 
model uses Information Gain (IG) [23].  

Recently, a successful spam filtering IBR model called SpamHunting has been 
proposed [6]. The main characteristics and the model operation of this system are 
briefly outlined in the next section. 

3   SpamHunting IBR System 

The SpamHunting system is a lazy learning hybrid model based on an instance-based 
reasoning approach able to solve the problem of spam labelling and filtering [6]. This 
system incorporates an Enhanced Instance Retrieval Network (EIRN) model, which is 
able to index e-mails in an effective way for efficient retrieval. 

Figure 1 presents the SpamHunting model architecture. As it shows, an instance 
representation stage is needed in order to correctly classify an incoming e-mail. In this 
step a message descriptor should be generated. This message descriptor consists of a 
sequence of N features that better summarize the information contained in the e-mail. 
For this purpose, we use data from two main sources: (i) information obtained from 
the header of the e-mail (see Table 1) and (ii) those terms that are more representative 
of the subject, body and attachments of the message. 

In order to gather additional information, the pdf files, images and HTML docu-
ments attached to the e-mail are processed and converted to text. This text and the e-
mail body are tokenised together by using space, carriage return and tabulator chars as 
token separators. Finally a stopword removal process is performed over identified 
tokens by using the stopword list given in [24]. 
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Fig. 1. SpamHunting model architecture 

The selection of the best representative terms is carried out in an independent way 
for each training and testing e-mail. Therefore, each message has its own relevant 
features. The term selection process is done by computing the set of the most frequent 
terms which frequency amount is over a given threshold [6]. We have empirically 
found that best results are obtained by using a threshold of approximately 30% of the 
frequency amount. 

Table 1. Representation of header features stored in the instance-descriptor of SpamHunting 
system 

Variable Type Description 

From String Source mailbox 
Return Path String Indicates the address used for reply purposes 
Date Date Delivery date 
Language String Tongue of the language 
Attached Files Integer Number of attached files 
Content Type String MIME type 

As Figure 1 shows, the relevant terms selected from the messages are represented in 
the EIRN network as term-nodes, while the instances are interpreted as a collection of 
weighted associations with term-nodes. The instance retrieval is carried out by project-
ing the selected terms from the target problem over the network nodes [6]. The set of 
messages sharing the maximum number of features with the actual target e-mail is 
selected as the closest e-mails. Finally, these messages are sorted keeping in mind the 
frequencies of each shared term between the retrieved e-mails and the target message.  

The EIRN network is able to store some useful information about how words are af-
fected by concept drift. In order to support this feature, a confidence measurement for 
each term-node is computed and saved. Expression (1) defines the confidence of a term 
wi using the current knowledge K where P(wi | S, K) and P(wi | L, K) stands for the prob-
ability of finding the term wi in spam and legitimate messages from K respectively.  
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In the reuse stage, using a unanimous voting strategy taking into account all the re-
trieved e-mails in the previous phase generates a preliminary solution. This approach 
has been previously used in other successful spam filtering CBR systems [4, 5]. 

The revise stage is only carried out when the assigned class is spam and it entails 
the utilisation of meta-rules extracted from e-mail headers. This re-evaluation is per-
formed with the goal of guaranteeing the accuracy of the proposed solution.  

Finally, when the classification process has been completed, a new instance mes-
sage containing the instance-descriptor and the solution (assigned class) is constructed 
and stored in the instance base for future reuse. During this stage, confidence level of 
term-nodes affected by the message indexing should be recalculated in order to ade-
quately track concept drift effects. A detailed description of the model operation can 
be found in [6]. 

4   SpamHunting Feature Selection Improvement 

In this section, an improvement for the SpamHunting relevant terms selection algo-
rithm can be found. A detailed explanation about the underground ideas behind our 
proposal and its main abilities are contained below.  

A relevant issue related to the context of Artificial Intelligence is the need for ade-
quately knowledge representation. Problem solving gets easier when a suitable 
knowledge representation is chosen. We think that modern and classical classifier 
models are not sufficient to achieve accurate classification results in spam-filtering 
domain. In other words, if the knowledge is not perfectly represented, the classifier 
will not achieve accurate results [25]. 

Our successful SpamHunting IBR system is based on an EIRN network which has 
been combined with: (i) an original method for selecting the most relevant features in 
order to improve the representation of the instances and (ii) some mechanisms de-
signed to adequately handle concept drift during the instance representation stage. 
Using SpamHunting architecture, we had achieved better results than other current 
classifier models and other non-improved k-nearest neighbourhood approaches [6].  

Shannon has introduced the use of probabilities for measuring the information 
amount provided by knowing a concrete feature [26]. Keeping in mind this approach, 
if we are trying to identify somebody, knowing the name is more useful than having 
knowledge about sex. This happens because the probability of finding somebody 
knowing the sex is lower than the probability of finding someone when name has 
been provided. In this context, Expression (2) is used to compute the amount of in-
formation achieved by knowing a feature X, where P(xi) stands for the probability of 
each event xi between the n possible values. 

( ) ( )
1

( ) log
n

i i
i

H X P x P x
=

= −  (2) 
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From the above discussion, we can deduce the following ideas: (i) the word (term) 
length is a relevant issue for categorization and filtering because largest words are 
unusual in documents (the probability of finding a document knowing that it contains 
a long word is higher) and (ii) we should introduce a measurement able to estimate 
the usefulness of knowing whether or not a keyword w is present.  

Afore mentioned ideas are important and should be applied to improve the selec-
tion of relevant features and consequently the instance representation. The main target 
goal is to maximise the information contained in an instance.  

In this sense, Expression (3) defines the Achieved Information (AI) measure when 
a term w is found in a message e having the current knowledge K. P(w | e) represents 
the frequency of appearance of a word w in the considered message e, P(w | S, K) and 
P(w | L, K) are the frequencies of finding the word w in the current spam and legiti-
mate stored instances (K) respectively, and finally, length(w) measures the number of 
characters of the word w. 

( ) ( ) ( )
( ) ( )

| , | ,1
( , | ) | 1

( ) | , | ,

P w S P w L
AI w e P w e

length w P w S P w L

−
= ⋅ − ⋅

+
K K

K
K K

 (3) 

We highlight the importance of including variable K designed for addressing con-
cept drift. In the presence of concept drift, some terms affected by the passage of time 
can loose its capacity of correctly classifying messages. Therefore, the measurement 
of this capacity for each word should not be previously calculated using only the 
training corpus. It must be computed when the target message arrives using all avail-
able knowledge at this time. 

When a word w is not present in any instance stored in the SpamHunting instance 
base (K), the second part in square brackets belonging to Expression (3) will be re-
placed with 1. Therefore, when no information has been compiled about a term, we 
assume that it will be fully predictive. This decision prevents to stop discovering new 
predictive words and represents an important advance included in our SpamHunting 
system to handle concept drift.  

The underlying idea is that the concept drift problem must be addressed at the in-
stance representation stage. Using techniques designed for handling concept drift at 
this early stage can boost the accuracy of the models. As static feature selection meth-
ods (calculated before the training stage) are not able to handle concept drift in this 
way, we use a dynamical feature selection process.  

The method proposed for selecting the most relevant terms is made by following 
two steps: (i) computing the AI measure for all words included in the target message 
and (ii) select the most helpful terms from the message having an AI amount greater 
than a percentage of the total AI of all terms belonging to the target e-mail.  

In our forthcoming experimentation we have tested different percentage configura-
tions varying between 20% and 65% with the aim of finding the best threshold. Fi-
nally, we have chosen 60% as it produced the best results on the related preliminary 
experimentation. 
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5   Experimental Setup 

In this section we discuss several relevant decision related to the configuration of the 
experiments. Firstly, Subsection 5.1 contains a description of the available spam cor-
pora for benchmarking purposes. Then, Subsection 5.2 is focused in message tokenis-
ing, preprocessing and representation issues.  

Evaluation has been done by a comparative performance study of several classical 
ML models (Naïve Bayes, AdaBoost and SVM), two case-based reasoning ap-
proaches proposed by Cunningham (ECUE and Odds-Ratio CBR) and our previous 
successful SpamHunting IBR system (with and without applying our proposed feature 
selection improvement). 

5.1   Available Corpus 

A significant issue about experimental configuration is choosing a corpora of e-mails 
for benchmarking purposes. Despite privacy issues, a large number of corpus like 
SpamAssassin3, Ling-Spam4, DivMod5, SpamBase6 or JunkEmail7 can be downloaded 
from Internet. Table 2 shows a short description of the related corpus focussing on the 
spam and legitimate ratio and the distribution form. 

Table 2. Comparative study of the most well known corpus 

Corpus Legitimate% Spam% Format Preprocessing steps applied 

Ling-Spam 83.3 16.6 Tokens Tokenised 

PU1 
56.2 43.8 

Token Ids 
Tokenised 
ID representation for each token 

PU2 
80 20 

Token Ids 
Tokenised  
ID representation for each token 

PU3 
51 49 

Token Ids 
Tokenised 
ID representation for each token 

PUA 
50 50 

Token Ids 
Tokenised  
ID representation for each token 

SpamAssassin 84.9 15.1 RFC 822 Not preprocessed 

Spambase 
39.4 60.6 Feature  

Vectors 
Tokenised 
Feature selection 

Junk-Email 0 100 XML Not preprocessed 
Bruce Guenter 0 100 RFC 822 Not preprocessed 
DivMod 0 100 RFC 822 Not preprocessed 

In this work, we are using the SpamAssassin and Ling-Spam corpus. The former 
comprises 9332 messages from January 2002 up to and including December 2003. The 
later contains 2412 previously tokenised messages without any date information. Al-
though these corpuses seem old, the Spam problem remains the same. We have used 
them since they are the most widely used public corpora in spam filtering domain. 

                                                           
3 Available at http://www.spamassassin.org/publiccorpus/ 
4 Available at http://www.iit.demokritos.gr/ 
5 Available at http://www.divmod.org/cvs/corpus/spam/ 
6 Available at http://www.ics.uci.edu/~mlearn/MLRepository.html 
7 Available at http://clg.wlv.ac.uk/projects/junk-e-mail/ 
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5.2   Message Representation Issues 

A relevant question in models applied to spam filtering is the internal structure of the 
messages used during the training and the classification stages. The knowledge repre-
sentation is different in classical ML techniques and CBR/IBR models.  

In the context of the classical spam filtering ML models, messages are usually rep-

resented as a vector 1 2, ,..., pt t t t=  containing numerical values that represent cer-

tain message features. When we use this form of model, messages must be repre-
sented with the same features. The selected features are often representing the  
presence or absence of a term in the message. This idea has been inherited from the 
vector space model in information retrieval [24, 27].  

CBR/IBR systems use a memory structure able to store all messages in the form of 
cases or instances. This structure is optimised to quickly carry out the retrieval stage 
(given a target problem, recover cases from memory that are relevant to solving it). 
As with SpamHunting, this kind of systems is able to work when messages are repre-
sented with distinct feature measurements. 

A significant topic for message representation is feature extraction (identifying all 
possible features contained in a message). Feature identification can be performed by 
using a variety of generic lexical tools, generally by tokenising the text extracted from 
e-mails into words. At first glance, it seems to be a simple tokenising task guided by 
several characters as word separators. However, at least the following particular cases 
have to be considered with care: hyphens, punctuation marks and the case of the let-
ters (lower and upper case) [25]. In the spam domain, punctuation marks and hyphen-
ated words are among the best discriminating attributes in a corpus, because they are 
more common in spam messages than legitimate ones.  

In our experimentation, text for tokenising was extracted from e-mail body and at-
tachments. In order to process diverse formats of the attached files, we use different 
techniques in each case taking into account the “content-type” header information. So, 
HTML code was translated into text/plain using the HTMLParser8 tool, images were 
processed using the Asprise OCR9 software and the text inside pdf documents was 
extracted using the PDFBox10 package. We tokenised the text extracted from e-mails 
using only blank spaces in order to preserve the original aspect of the words belong-
ing to each message and finally, all identified words were converted to lower case. 

When the tokenising step has been completed, stopword removal (which drop arti-
cles, connectives and other words without semantic content) and/or a stemming 
(which reduces distinct words to their common grammatical root) can be applied to 
identified tokens [24]. In our experiments we have used only stopword removal as it 
has shown to be the best choice for the majority of systems [25]. 

Once carried out the lexical analysis over the training corpus, a large number of 
features would probably have been identified. In our experimentation we use a feature 
selection method to select the most predictive ones. Information Gain (IG), Mutual 
Information (MI) and the χ2 statistic are well-known methods used for aggressive 
feature removal in text categorization domain [23]. From them, we had chosen the IG 

                                                           
 8 HTMLParser is available for download at http://htmlparser.sourceforge.net/  
 9 Asprise OCR can be downloaded at http://asprise.com/product/ocr/  
10 PDFBox is available for download at http://www.pdfbox.org/  
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method to select the most predictive features as it has been successfully used for fea-
ture removal in several spam filtering research works [3, 4]. This method is based on 
computing the IG measure for each identified feature by using the equation given in 
Expression (4) and selecting those terms having the highest computed value. 

,

( )
( ) ( ) log

( ) ( )c l s

P t c
IG t P t c

P t P c∈

∧= ∧ ⋅
⋅

 (4) 

We have kept the original feature selection method used by the Odds-Ratio CBR 
model based on computing an odds ratio measurement. Moreover, the number of 
selected features for each message needs to be decided. For our comparisons, we have 
selected the best performance configuration of each classical ML technique varying 
between 100 and 2000 features. In order to test the Odds-Ratio CBR, and ECUE mod-
els we have maintained their original feature selection configurations. The first one 
uses 30 words for representing spam class and 30 words describing legitimate cate-
gory while an IG selection of 700 features has been recommended by the authors for 
using ECUE CBR system. 

Finally, for testing classical ML models the weight of terms in each message e, 
need to be calculated. The measure of the weight can be (i) binary (1 if the term oc-
curs in the message, 0 otherwise), (ii) the term frequency (TF) representing the num-
ber of times the term occurs in the message calculated by Expression (5) or (iii) the 
inverse document frequency (IDF) given by Expression (6) denoting those terms that 
are common across the messages of the training collection. 
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In Equations (5) and (6), ni(e) stands for the number of occurrences of term Ti in e, 
N(e) represents the recount of terms in e, m is the number of training messages and 
df(Ti) stands for the number of training messages where the term Ti occurs. 

A binary representation has been used for testing ML classical models. ECUE and 
Odds-Ratio CBR are also using a binary feature representation for organizing the case 
base by using Information Entity Nodes in a CRN Structure [4]. 

6   System Evaluation 

Information about selected metrics and several minor details concerning the use of the 
different corpus for evaluation purposes are described in this section. Experimental 
results are also contained in Subsection 6.1. 

Six well-known metrics [3] have been used in order to evaluate the performance of 
all the analysed models: total cost ratio (TCR) with three different scenarios, spam 
recall, spam precision, percentage of correct classifications (%OK), percentage of 
False Positives (%FP) and percentage of False Negatives (%FN). 
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Firstly, we had used the SpamAssassin corpus for analysing the improved version 
of the SpamHunting IBR system in action. Then, we have used the Ling-Spam corpus 
to demonstrate the significance of the achieved results. All experiments have been 
carried out using a 10-fold stratified cross-validation [28] in order to increase the 
confidence level of results obtained. 

Finally, some details about classical ML models configuration is described. Deci-
sion Stumps [29] have been used as weak learners for AdaBoost classifier with 150 
boost iterations and SVM has been tested by using a polynomial kernel.  

6.1   Experimental Results 

Initially, the performance of the analysed models was measured from a cost-sensitive 
point of view. For this purpose we compute the TCR metric in the above mentioned 
different situations. TCR assumes that FP errors are λ times more costly than FN 
errors, where λ depends on the usage scenario (see [3] for more details). 1, 9 and 999 
values for the λ parameter have been used over the experiments.  

Table 3 shows a TCR comparative of the analysed models when using the 
SpamAssassin corpus. The number of selected features used for each model is placed 
in square brackets. Results show that the classifications obtained by using the im-
proved version of the SpamHunting IBR system is extremely safe and good (TCR 
λ=999). Moreover, the original version of SpamHunting, ECUE and Odds-Ratio CBR 
are also safer than classical ML approaches. From a different point of view, Table 3 
also shows that only SVM model is able to go beyond the improved SpamHunting 
system in amount of correctly classified messages (TCR λ=1). 

Table 3. TCR scores over 10 stratified fold-cross validation using SpamAssassin 

 Model 
 
 

Metric 

Naïve 
Bayes 
[1000] 

AdaBoost 
[700] 

SVM 
[2000] 

Odds-Ratio 
CBR [60] 

ECUE 
[700] 

Spam 
Hunting [-] 

Improved 
Spam 

Hunting [-] 
TCR λ=1 2.647 5.011 22.852 1.382 6.792 7.498 12.255 
TCR λ=9 0.416 1.688 5.225 1.345 2.658 5.331 9.293 
TCR λ=999 0.004 0.020 0.057 0.990 0.036 0.874 6.573 

Table 4. TCR scores over 10 stratified fold-cross validation using Ling-Spam 

 Model 
 
 

Metric 

Naïve 
Bayes 
[1000] 

AdaBoost 
[700] 

SVM 
[2000] 

Odds-Ratio 
CBR [60] 

ECUE 
[700] 

Spam 
Hunting [-] 

Improved 
Spam 

Hunting [-] 
TCR λ=1 7.769 22.871 27.385 2.152 13.070 1.211 6.014 
TCR λ=9 3.798 9.016 8.672 2.152 1.811 1.122 5.250 
TCR λ=999 1.524 6.471 5.788 2.152 0.017 0.757 4.415 

In order to contrast and validate the obtained results with a different corpus, Table 4 
shows analysed models in action when using the Ling-Spam corpus. SVM, AdaBoost 
and the improved version of SpamHunting get the highest score for the relation  
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between security (lower FP amount) and hits (correctly classified messages)  
(TCR λ=999). From this fact, we can realize that the improved SpamHunting system 
gets a higher security level independently of the selected corpus.  

From a different point of view, Table 5 shows the recall and precision scores ob-
tained for each considered experimental corpus. Analysing recall scores and keeping 
in mind the idea of maximizing the highest correctly classified amount, we can realize 
that sometimes classical models can slightly get better than the improved version of 
SpamHunting. However, precision scores clearly show that the improved SpamHunt-
ing IBR system always gets the best balance between correctly classified amount and 
security scores. The precision score achieved by using ECUE system and Odds-Ratio 
CBR model should be highlighted, as they are extremely good. 

Table 5. Recall and precision scores using Ling-Spam and SpamAssassin 

  SpamAssassin Ling-Spam 
Measure Recall Precision Recall Precision 

Naïve Bayes [1000] 0.876 0.774 0.884 0.975 
AdaBoost [700] 0.850 0.943 0.954 0.977 
SVM [2000] 0.974 0.976 0.971 0.973 
Odds-Ratio CBR [60] 0.276 0.992 0.526 1 
ECUE [700] 0.883 0.964 0.985 0.928 
Spam Hunting [-] 0.862 0.992 0.177 0.942 
Improved Spam Hunting [-] 0.921 0.994 0.831 0.993 

Taking into consideration other measures, Table 6 shows the percentage of correct 
classifications, false positives and false negatives belonging to the experimental work 
with the seven analysed models over the defined experimental configuration and cor-
pus. Analysing Table 6 we can see that SVM and AdaBoost algorithms usually 
achieve the greatest percentage of correct classifications. 

Table 6. Percentage of correct classifications, FPs and FNs 

 SpamAssassin LingSpam 
Measure %OK %FP %FN %OK %FP %FN 

Naïve Bayes [1000] 90.3 6.5 3.2 97.7 0.4 1.9 
AdaBoost [700] 94.9 1.3 3.8 98.9 0.4 0.7 
SVM [2000] 98.7 0.6 0.7 99.1 0.4 0.5 
Odds-Ratio CBR [60] 81.5 0.1 18.4 92.1 0 7.9 
ECUE [700] 96.2 0.8 3.0 98.5 1.3 0.2 
Spam Hunting [-] 96.3 0.2 3.5 86.1 0.2 13.7 
Improved Spam Hunting [-] 97.9 0.1 2.0 97.1 0.1 2.8 

From a different point of view, Table 6 shows that Odds-Ratio CBR and all ver-
sions of SpamHunting model achieve the lowest FP error. Other models (like SVM or 
AdaBoost) are able to slightly increment the correctly classified messages amount but 
they achieve a greater number of FP errors. Finally, It is needed to highlight the FP 
ratio obtained using the Odds-Ratio CBR model over the LingSpam corpus. This fact 
supports the suitability of the CBR/IBR approaches to spam filtering.   
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7   Conclusions and Future Work 

In this paper we have introduced an improvement to our previous successful Spam-
Hunting IBR system. We have carried out a deep analysis by choosing a representa-
tive set of spam filtering models (including Naïve Bayes, AdaBoost, SVM, and two 
case-based systems) in order to benchmark their performance while corpus is 
changed. 

The original and improved versions of the SpamHunting IBR system had shown to 
be the safest spam filtering models by obtaining a convenient ratio between the FP 
error and correctly classified rates. Moreover, the improved version of SpamHunting 
is the first model able to adequately handle concept drift at the early instance repre-
sentation stage. 

We highlight results obtained in both versions of SpamHunting IBR system. Im-
provements in the relevant term selection stage have allowed a significant enhance-
ment over the obtained results. Moreover, concept drift should be kept in mind while 
the most relevant terms are being selected because some features can indicate its pres-
ence (and consequently they should not be removed). 

The application of the Achieved Information (AI) measure has been suitable for se-
lecting representative features in an e-mail. It has been designed for handling concept 
drift problem when the instance representation is computed. If instances are repre-
sented without taking care of concept drift, following stages of the CBR/IBR system 
will not be able to adequately support it. 

Finally, as experimental results from this paper have shown, SVM and AdaBoost 
models get a great amount of correctly classified messages. We should note that these 
models are heavily focused in the feature selection issues. SVM model supports a 
second feature selection stage while the feature space is transformed into a new line-
arly separable space. In this process irrelevant features are discarded. In the other 
hand, AdaBoost constructs some weak classifiers by using subsets from all features 
and weights them according to its classification ability. When a weak classifier is 
assembled from inappropriate features it gets irrelevant because its weight will be 
very low.  

Keeping in mind the previous related issues, future work should be focused in the 
relevant term selection process. Newer and original methods should be studied and 
probed with different e-mail corpus and preprocessing scenarios. 

CBR/IBR systems have greatly contributed to the Spam filtering domain. As ex-
perimental results have shown, SpamHunting, ECUE, and Odds-Ratio CBR models 
are the most reliable choice for spam filtering. Therefore, we are aware of its probed 
capabilities for handling concept drift and manage disjoint concepts. 
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Abstract. This paper describes the development of the generic collaboration
support architecture CAKE incorporating case-based reasoning (CBR). CAKE
provides unified access to knowledge available within an organization, and CBR
technology is used throughout the system to distribute this knowledge to agents
as required. Adaptive workflows and collaboration patterns selected by a CBR
process are introduced for explicitly describing collaboration among agents. In
order to guide the technical design of the architecture, a systematic analysis of
the requirements for collaboration support has been performed in various appli-
cation domains.

1 Introduction

While the first case-based reasoning systems have been designed and implemented as
stand-alone applications addressing an isolated problem solving task, a current trend
can be observed towards the integration of CBR techniques as one component into
more complex environments. Within such environments CBR can play different roles
in situations in which decisions are to be made based on previous experience. One
such complex environment under investigation at the Business Information Systems II
research group at the University of Trier is the support of collaborative business.

Since the 1980s CSCW (Computer supported cooperative work) [1,2] is the research
field that deals with the analysis and the design of information technology to improve
the way human beings are working together in a certain working environment. In such a
collaborative working environment, support for communication, coordination, and co-
operation must be integrated systematically with the business processes of the organiza-
tion. Recently, it has been recognized that collaboration support must not be limited to
humans but must also cover automated decision support systems and automated know-
ledge sources in a seamless fashion. This demands for a much stronger link between
CSCW and research on decision support technologies like for example CBR.

One main goal of research was to develop a new generic collaboration support ar-
chitecture that integrates access to automated knowledge sources and whose overall
behaviour is guided by previous experience. Previous experience can be useful when

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 519–533, 2006.
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knowledge sources are selected or whenever successful ways of collaboration among
human and automated collaboration partners must be determined. In order to guide the
technical design of such an architecture, a systematic analysis of the requirements for
collaboration support and particularly for the support by previous experience is neces-
sary. In various R&D projects such analyses have been performed. It turned out that
similar problems occur in quite different application domains: geographical informa-
tion management, fire services, and software engineering. In all these domains there
is a need to coordinate collaborative activities jointly together with the knowledge re-
quired for enacting these activities. Furthermore, the flow of these activities is very
often quite dynamic and subject of change depending on the current context. Thus there
is a strong need for a highly flexible CSCW solution incorporating CBR. The authors
have identified the most important requirements in each application domain in detail,
generalized them to a more abstract level, and addressed them during the development
of a domain-independent system called Collaborative Agent-based Knowledge Engine
(CAKE) [3,4,5,6]. CAKE provides unified access to knowledge available within an or-
ganization, and CBR technology is used throughout the system to distribute this know-
ledge to agents as required. Adaptive workflows and collaboration patterns selected by
a CBR process are introduced for explicitly describing collaboration among agents.

This paper summarizes the experiences made during the development of the first
prototype of CAKE and its application in three application domains, namely geograph-
ical information management, fire services, and software engineering. It starts with a
presentation of the three application scenarios and a summary of the most important
requirements for CAKE in Section 2. Section 3 shortly presents the CAKE architecture
and lays a special focus on the role of CBR. How these technologies have been utilized
to build up support systems for the three regarded application scenarios is sketched in
Section 4. The paper closes with the presentation of related work in Section 5 and with
a short conclusion in Section 6.

2 Requirements Derived from the Application Scenarios

In the following, three applications scenarios are described, with a special focus on
the problems that the people face. After that, requirements for a software solution that
can be used as a basis to develop support systems for all the application scenarios are
summarized.

2.1 Workflow Support for Geographical Information Management

The company rjm business solutions GmbH has been assigned by the Monument Pro-
tection Agency of Hessen to conduct the long-term eGovernment project DenkXweb.
DenkXweb provides a freely accessible Internet service to publicly access the monu-
ment register1, that lists each building and site of historic interest together with its exact
location and a rationale why it is subject to protection. That is advantageous for land-
lords, planners and architects, who have to ensure themselves that they comply with all

1 A demonstration is available under http://www.denkmalpflege-hessen.de/denkxweb.
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regulations that apply to the corresponding land parcels, including monument protec-
tion. During the development of DenkXWeb, rjm business solutions GmbH is facing
several problems and the two most engraving ones are shortly sketched below. A more
detailed description of that problems can be found in [6].

Inconsistency of data. Geospatial data is maintained by 41 regional authorities, that
provide their data on CD once a year using separated files to describe map data in
ALK2 format and meta information in ALB3 format. After having combined map data
and meta information, the location and dimensions of monuments and protected sites
have to be transferred from a printed map, often collected manually by specialists in
the fields. Thus, data inconsistencies are quite common, e.g. map and meta information
often cannot be merged because of missing or contradicting descriptions or different
granularity of the data, or transferring monument related data can fail because of differ-
ences between digital and printed map editions. In all cases, inquiries to the authorities
are required, and while waiting for answer– that may take up to half a year –, the area
in question cannot be processed further.

Determination of the current processing status and open issues. Several programs
and databases are currently used to document flaws and to store the duration needed for
each piece of work: a time recording tool, a Wiki system, and Excel spreadsheets. This
heterogeneous data storage makes it difficult to determine the exact status of progress,
and it is hard to derive documentation for the project stakeholders. But especially such
documentation is required to estimate efforts for future pieces of work.

A flexible support system should tackle these problems: the staff could be supported
during data acquisition and publishing by coordinating and documenting inquiries to
the authorities and by automatic flaw detection, and the project stakeholders could be
supported by automatic documentation and open issue collection.

2.2 Support for Time-Critical Processes for Fire Services

In recent years, the demand for support systems for emergency services has increased
significantly in order to optimize methods for all types of protection. Focus is put on
training, qualifying, and supporting members of emergency services that can be char-
acterized by time-critical processes on incident locations. In that scope, the AMIRA
(Advanced Multi-modal Intelligence for Remote Assistance) project4 was initiated to
address innovative technologies and their combinations leveraged in high safety of time-
critical application domains. Particular to fire services, a lot of knowledge is captured in
several data sources in different forms, e.g. structured databases and unstructured text.

The overall goal of the AMIRA project is to provide a multi-modal solution that
will significantly improve the accessibility of resources available to support urgent
and critical decisions that must be taken by mobile workers. The envisaged AMIRA
system makes knowledge available by integrating best practices for improving search

2 ALK = “automatisierte Liegenschaftskarte”, graphical representation of real estates.
3 ALB = “automatisiertes Liegenschaftsbuch”, textual information on real estates.
4 AMIRA is funded by the EU. Project partners are Kaidara Software, Fast DataSearch, Daim-

lerChrysler RIC, University of Trier, Fire Service College, West Midlands Fire Service, and
Avon Fire & Rescue.
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processes. This project aims at developing a solution that provides a hands-free access
(e.g. headset) for operatives whose hands and eyes are otherwise occupied. For achiev-
ing this goal the solution is developed basing on two mobile working domains, roadside
assistance and fire services.

An envisaged scenario within fire services can be as follows: the incident commander
(IC) is the only person who is in charge and responsible for the decisions made on
location. Therefore, all fire fighters involved provide him/her precise known details
of the incident. Consequently, there is a demand for supporting the IC when he/she
lacks information necessary for decision-making and in estimating current resources.
For example, a fire fighter comes to the IC talking about a burning van loaded with
explosives and found on the incident ground. Therefore, the IC uses the mobile AMIRA
system in order to receive information about what has been found on the location and
how to deal with it, while staying close to the incident and close to the fire fighters. For
supporting the information flow between IC and fire control, the incident control centre,
and for improving collaboration on the incident the AMIRA systems pro-actively routes
the IC’s requests and corresponding answers to fire control.

2.3 Workflow Support for Agile Software Engineering

In the software engineering domain, workflow systems are an established technology
for team coordination and cooperation. That is, workflow support covers overall struc-
turing of activities (e.g. by providing project plans or to-do lists), reuse of task de-
scriptions to efficiently handle situations encountered before, or effective scheduling to
ensure that team members always work on the most important tasks. However, software
development processes tend to be unknown, unrepeatable, and knowledge intensive,
with changes occurring frequently and the team members can be supported by collabo-
rating with other team members (human agents) and by usage of computerized agents
like bug-tracking systems or automated test tools. Nevertheless, in many organizations
there are norms [7] shaping the way of working within the organization. Hence, ef-
fective collaboration strategies following such norms are necessary to ensure that the
efforts of individual team members are all aiming in the same direction.

During the course of defining and enacting business processes, finding appropriate
agents is crucial. First, modellers have to make sure that tasks are performed by the most
experienced team members. Second, there may be activities that are known to succeed
only when an appropriate collaboration strategy is taken. Finally, an agent trying to
enact a task might seek assistance from another agent.

An envisaged scenario within an agile development [8] is a follows: the team has
proceeded to the first iteration, and an intermediate system has been deployed at the
customer site. Negotiations with the customers throughout the first iteration have re-
sulted in the customer preference that an e-commerce system should be added to
the system. Now, the team members playing management roles have to settle on the
most basic workflow, which will control the very next steps. The team starts to in-
stantiate the very first business process and suitable team members playing the roles
of a domain expert and a software developer are assigned. Thereby, organization-
specific constraints have to be taken into account (by querying a human resources
management information agent providing availability data and a Wiki system con-
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taining tentatively planned leaves). These team members can now autonomously de-
cide how to proceed for fulfilling the tasks. E.g., the software developer starts work
on the assigned task by adapting the actual business process. Because of not be-
ing familiar to the actual project the software developer is searching comprehen-
sive information about this project with respect to similar tasks, to relevant Java
references, and to relevant design rationales. That is, relevant information is pre-
sented to the developer that he/she can be familiarized to the work at issue. Addi-
tionally, the developer gets a link for searching a Java expert for booking systems if
more explicit information is necessary. Primarily the idea is to support the developer
through computerized agents but if this is not enough there is an option to ask hu-
man experts. Therefore, a search facility organizes retrieval on human Java experts,
returning information about how to get in contact to such an expert. Surely, the de-
veloper can proceed further in adapting the assigned task. Either he/she uses best
practices in terms of collaboration which already includes useful domain knowledge
or he/she carries out own adaptations on the task for achieving the envisaged task
artefact.

2.4 Requirements

The authors have identified the most important requirements in each application do-
main and generalized them to a more abstract level. These requirements have than been
tackled during the development of a domain-independent software solution, in the fol-
lowing denoted as envisaged system.

Requirements for Integration. In all application scenarios the necessary knowledge is
scattered over a rich set of heterogeneous information sources within the organization.
Thus the envisaged system should provide functional features and services that are able
to access different information sources and can be tailored to integrate the particular
sources in a given application domain. The achievement of interoperability between ex-
isting tools, features, and services and the envisaged system is a general requirement in
organizations in order to avoid restricting previous business processes.

In all application scenarios, people are collaboratively working together and a seam-
less integration of humans and machines is needed. This can be reached by implement-
ing an agent architecture that is able to administrate human as well as machine agents.
Such an agent architecture could also allow organizations to efficiently distribute busi-
ness tasks among organization members with reference to their competencies.

Requirements for Business Process Support. All application scenarios are character-
ized by complex knowledge-intense business processes that are executed over and over
again, but always with (slight) variations depending on the actual context and on user
interaction. Even worse, in some cases the tasks of a business process cannot be spec-
ified at the time of business process modelling, so that late-modelling of processes is
required as well. An appropriate workflow technology, allowing representing and ex-
ecuting such highly flexible business processes, must be developed for the envisaged
system. It should allow using past experiences done within organizations that may help
novices and inexperienced organization members in carrying out their jobs. For alle-
viating collaboration among humans and machines the envisaged system should also
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provide means for reusing best practices in terms of agent collaboration. This would
allow the improvement of business processes within organizations with regards to time-
saving and cost-optimizing purposes.

Requirements for Search Facilities. Regarding the two kinds of requirements de-
scribed above a need for search facilities on business processes and agents becomes
obvious. More precisely, search facilities can support the modelling of new business
processes through reuse of business process or business task representations and the ex-
ecution of business processes through reuse of old business processes, a key feature for
adaptive workflows and late-modelling. Search facilities for agents, meaning humans
and machines, are also needed to enable the execution of flexible, situation-dependent
business processes, allowing assigning competent and currently available agents to a
business task during runtime.

3 The CAKE Approach

The fundamental idea of the CAKE approach [3,4,5,6] is to realize CSCW technology
through the combination of workflow, agent, and CBR technologies. According to the
requirements summarized in Section 2.4, different key features were considered dur-
ing the development of CAKE. It makes use of agent technology in order to integrate
IT systems as well as humans as agents. It uses workflow technology for representing
business processes and for specifying collaboration among agents which are following
a common goal. Instead of supporting static and pre-defined processes, CAKE aims at
supporting flexible and changing processes through adaptive workflow management. In
order to realize the high flexibility, sophisticated search facilities for business processes,
single tasks, and agents are required. A Structural CBR (SCBR)[9] approach, working
on top of a domain-specific data model and considering the semantics and structural
aspects, meets all requirements. An overview of CAKE’s architecture, showing the in-
teractions of the three key technologies is shown in Figure 1. These key technologies,
set up on the underlying common data model, are explained in the following sections.

3.1 Workflow Technology

The goal of the workflow system is to model and execute processes to support busi-
ness processes within organizations. CAKE conceptually distinguishes between the
representations of such business processes (“real-world processes”) and the “internal
processes” collaboration pattern and administrative process. Business processes aim
at producing an end-product and collaboration patterns produce a by-product of a final
business process product. Furthermore, collaboration patterns focus on agent collabo-
ration based on best practices. Administrative processes are CAKE-specific processes
used for internal procedures. For example, sometimes a top-level workflow is needed
that waits for initial user interactions. All of these processes are formally represented
as workflow definitions that can be instantiated and executed in concrete situations at
runtime. These workflow instances are in the following shortly denoted as workflows
and the situations are represented in the so called context of the workflow.

Each workflow definition consists of initial context values, a workflow characteri-
zation, a set of task descriptions, and the control flow relationships between the task
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Fig. 1. CAKE System Architecture

descriptions. The latter allows arranging the tasks in sequence, in parallel, or in loops,
but does not cover data flow at all; data exchange is realized by using the context.
Workflow characterizations and task descriptions are structural CAKE data objects de-
scribing the workflow definitions or tasks. They are stored in a central repository called
WD Characterization CB. One of the capabilities of a task is to trigger further workflow
definitions, so hierarchical decomposition of complex processes is enabled.

Due to the domain requirements a further distinction of the workflows is done. Short
term workflows are representations of short-lived (time-critical) business processes. The
usage of such workflows aims at achieving dynamic changes and flexibility during en-
actment. Long term workflows represent processes without time limitations. As opposed
to short term workflows, the support of these workflows requires maintaining the state
of workflow executions.

3.2 Agent Technology

The CAKE agent framework provides a unified interface to couple external knowledge
sources as well as user interfaces with the core system. Technically, the framework
distinguishes between information agents and user agents. Information agents provide
and may also change knowledge like search engines, databases, groupware calendars,
human experts, data mining tools, classifiers, or dialogue strategy tools. User agents
request knowledge and are in general interfaces to human system users, e.g. graphical
user interfaces or natural language interfaces, but can also be other computer systems.
Each agent is composed of a technology component, a wrapper, and an agent charac-
terization. The technology component is the external knowledge system that is made
accessible via CAKE. To enable the communication between CAKE and different tech-
nology components, wrappers are used as mediators that fulfill two tasks: firstly, to
map between the technology components’ ontologies and the CAKE domain specific
ontology and secondly, to realize the technical interface. The agent characterization is
a structural CAKE data object, characterizing the agent’s competencies.
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The flexibility of the workflows is carried forward to the agent framework by provid-
ing a dynamic set of agents whereas agents are able to enter and leave the CAKE agent
society. Therefore, the agent framework is able to manage heterogeneous agents that
have completely different purposes, knowledge, and capabilities [10]. This information
can be captured by agent characterizations. When intending to enter the agent society
an agent has to register its characterization that is stored into a central repository called
Agent Characterization CB.

3.3 Structural CBR Technology

Within CAKE, CBR technology is applied for two different purposes. First, it is used for
the selection of suitable workflows whenever a new workflow must be started. Second,
it is used for the selection of appropriate agents, whenever an agent communication is
initiated. CAKE uses CBR for these tasks to overcome the inflexibility of static assign-
ments of workflows and agents. Therefore, workflows and agents are treated as cases,
whose characterizations are stored in the WD and Agent Characterization Case Base
(see Figure 1). A characterization of a particular workflow describes the situation in
which this workflow can be (or has been) applied successfully. When a new similar sit-
uation occurs, the workflow is proposed again. A characterization of a particular agent
describes the situations for which the agent is competent to answer a query. When a
new similar situation occurs, the agent is used again as information source. Hence, two
different similarity-based case retrieval tasks occur.

CAKE incorporates a single generic CBR component to implement both retrieval
tasks. The requirements analysis strongly supported the need for a structured descrip-
tion of the respective application domains and for the need to construct an overall do-
main ontology. Its purpose is to add structure to the various information sources, items,
and tasks that must be considered. Therefore we decided to implement the CBR compo-
nent as a standard structural CBR approach [9]. The idea underlying the structural CBR
approach is to represent cases according to a common structure called domain model.
The domain model specifies a set of typed attributes (also called features) that are used
to represent a case. In CAKE the domain model for the case bases are subsets of the
overall Cake Data Model (see Figure 1). This data model supports full object-oriented
data modelling including the modelling of class hierarchies as well as relational and
multi-valued attributes [11]. For a particular application the overall domain ontology is
encoded in this data model. Characterizations of workflows and agents are then con-
structed as instances of this data model. This data model is also used to represent the
current working context in which workflows and agents must be selected.

The case retrieval step of the CBR component makes use of an explicitly modelled
similarity measure. This similarity measure is a function that compares two instances
of the data model (i.e. the current context and a characterization of a case) and assesses
their similarity. We do not provide a single standard similarity, but enable the system
developer to model the notion of similarity according to the requirements of the domain
[11]. Similarity modelling is guided by the traditional local-global principle. For each
attribute in the domain model the developer can chose a local similarity measure and
for each class in the domain model the developer must assign a global measure that
describes the aggregation of the similarity values obtain from the local measures.
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3.4 Combination of the Three Key Technologies

The three key technologies can be combined to realize adaptive workflows and dynamic
agent societies.

Adaptive Workflow Support. According to the requirements different kinds of work-
flow adaptations are required depending on changing contexts. Regarding time-critical
situations a quick reaction on user actions is demanded, which is supported by short
term workflows. As opposed to this, long term workflows are often subject to change
when adaptations to ongoing business processes become necessary. From a more tech-
nical point of view, adaptations to workflows can be realized through both, instanti-
ations of new workflows and insertion/deletion/modification of tasks during runtime.
Therefore, CAKE integrates the following features:

1. Ability to search workflow definitions
2. Sub workflow instantiation during enactment
3. Ability to search task descriptions
4. Inserting tasks during workflow enactment

Those features have different impact on short or long term workflows. Due to short-
lived constraints, short term workflows require automated adaptations based on the first
two features. Automated adaptations can be viewed as situational workflow instanti-
ation for a concrete context that may be changed after user interaction. Based on the
current context information, CAKE starts a search for an appropriate business work-
flow or collaboration pattern. Then the most suitable workflow definition is instantiated
as sub workflow. Different context constellations during enactment influence the selec-
tion of the next sub workflow to be enacted as depicted in Figure 2. Both features lead to
an automated form of late modelling [12] of workflows which is a key feature for adap-
tive workflow management and it is well-known for long term workflows. Changes to
such workflows are intended to be done manually, which means that the decision what
kind of adaptation has to be done is left to users.

Dynamic Agent Societies. The second application field of CBR technology in CAKE is
the retrieval on agent characterizations. Agent characterizations consist of attributes like
the agent’s role, the quality of data the agent provides, the area of expertise, the type
of service it offers, and the data format. In order to support a dynamic agent society
where agents can be registered and deregistered, CAKE allows dynamically agent al-
location during workflow enactment. For exploiting these potentials, task descriptions
only contain agent roles in order to specify what kind of agent should carry out the
corresponding task. Based on these roles an appropriate agent characterization can be
retrieved and the corresponding agent can be allocated to the task in an ad-hoc man-
ner. Thus, user agents can be integrated in workflows for carrying out a particular job
according to their competencies and information agents can be selected according to
their knowledge and quality. In time-critical situations only registered agents, which
are definitively available, are retrieved.

A difference to other agent-based approaches is that CAKE agents do not negotiate
with each other. Instead, collaboration patterns are especially developed for organiza-
tions acting as loose contract among agents and capturing best practices about efficient
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cooperation. Best practices often occur as organizational norms or past experiences, e.g.
about what agents are working together efficiently.

4 Solutions for the Application Scenarios

In the following a description of how CAKE was put into practice in the three ap-
plication scenarios presented in Section 2 is given. Due to space limitations, only the
geographical information management scenario is described in detail. For the other sce-
narios, the solutions are only sketched in brief.

4.1 Workflow Support for Geographical Information Management

A group of five students from the University of Trier have used CAKE to develop a sup-
port system called GIS-DOKU [13,6] that improves the data acquisition and publishing
processes and provides automated documentation and flaw detection. The first step dur-
ing the development of GIS-DOKU was modelling the workflow definitions to describe
the data acquisition and publishing processes for the closed area of a commune. As such
a business process takes a while, long-term workflows are used. Because CAKE sup-
ports sub workflow modelling and execution, the students started with the very general
top-level workflow definition shown in Figure 3, and refined each of the three process
steps by further workflow definitions of its own.

Additionally, workflow definitions for open issue resp. flaw handling have been mod-
elled. They are not part of each workflow, but the corresponding process steps are dy-
namically inserted in case of occurring failures, e.g., an inconsistency of ALK and ALB

Fig. 3. Top-Level workflow definition represented as an EPC
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data. As the next step, 426 workflows have been instantiated, representing how each
municipality in Hessen is processed. Thereby, each workflow indicates whether for a
commune data acquisition could have been completed, data acquisition has not been
started yet or the data acquisition is already running.

When preparing data for the DenkXweb Internet service, each commune requires
an individual strategy in order to overcome ALK and ALB handling problems and is-
sues arising from preprocessing and transferring monument related data. In addition,
external events have to be handled, like communal authorities voting against publishing
data for certain areas. Using CAKE, handling these deviations is supported well, since
workflows can be altered using late modelling. Using CBR retrieval, CAKE helps to
find appropriate workflow definitions which can be incorporated as exception handlers.
That is, employees can tailor workflows easily as CAKE suggests appropriate workflow
definitions for a given situation. Furthermore, the CBR engine helps to find appropriate
agents to put these workflows into practice. That is, the numerous information agents
can be leveraged best, and human team members can be selected based on their charac-
terization profile as well.

Example. The sub workflow of the first process step “Import ALK and ALK data” of
the Top-Level workflow definition includes a task called “Assure granularity of ALK
and ALB data” that can be started after ALK and ALB data are available in electronical
form. During the execution of this task, several problems may occur. They are arranged
in a taxonomy, together with other problems that can occur during the whole data ac-
quisition and publishing process. Figure 4 shows an excerpt of the whole taxonomy.

� Problem
� ALK

• ALK-CD Reading Error
• Wrong granularity of ALK
• . . .

� ALB
• ALB-CD Reading Error
• Wrong granularity of ALB
• . . .

• . . .

Fig. 4. Problem Taxonomy

Assume that an employee has prob-
lems in assuring the granularity. Then
CAKE can find appropriate workflow
definitions by the help of their char-
acterizations. For the sake of brevity,
the following example limits the lat-
ter to contain only two attributes: (1)
problem description (an element of
the Problem Taxonomy) and (2) an In-
teger type attribute describing how of-
ten the task has been executed for the
same commune. In table 1, three char-
acterizations for such workflow defin-
itions (i.e. three cases) are given. The

corresponding “solutions” are texts displayed to the employee. The words in brackets
are representatives for real data: when applying the case, information agents retrieve the
corresponding data from data bases already deployed at rjm business solutions GmbH
and replace the representatives with the correct values.

Assume that the employee wants to start the acquisition of a new commune but
finds that ALB does not match the corresponding ALK. His/her query would have the
values Problem = “Wrong granularity of ALB” and NumberOfTries=0. By usage of
a taxonomy similarity measure, Case 1 is retrieved with a similarity of 100% and the
employee inserts it as a sub workflow within the workflow of the commune. Finally,
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Table 1. Three Cases

ID Characterization Solution

1 Problem=ALB
NumberOfTries=[0,1]

Contact <responsiblePerson> of commune <commune>. His
telephone number is <telephoneNumber>. Ask him to re-send
ALB data with correct granularity.

2 Problem=ALB
NumberOfTries=[3,8]

Escalate problem to <superiorContact>, phone number is
<telephoneNumber>. Explain what <responsiblePerson> has
already tried in order to solve the problem and ask for assis-
tance.

3 Problem=ALB-CD
Reading Error

NumberOfTries=[0,∞]

Contact <responsiblePerson> of commune <commune>. His
telephone number is <telephoneNumber>. Ask him to re-send
the CD because of CD reading errors.

he/she would call the responsible person as suggested. Two weeks later, a new CD is
delivered, but ALK and ALB still won’t match. Again, Case 1 is found, inserted and
executed. However, the problem persists, and his/her next query would have the values
Problem = “Wrong granularity of ALB” and NumberOfTries=2. As there is no perfect
matching case in the case base, CAKE would propose Case 1 and Case 2, both with a
similarity of 90%. Depending on the current situation (e.g. the deadline for publishing
the commune is coming soon), the employee would insert Case 1 or Case 2.

4.2 Support for Time-Critical Processes for Fire Services

In order to tackle the envisaged scenario sketched in Section 2.2, CAKE supports the user
agent in requesting information. First, CAKE assigns an initial workflow to the IC. This
workflow captures the IC’s incoming query about “explosives in a van” in the context
and starts a retrieval for an appropriate collaboration pattern that describes collabora-
tion among information agents in order to answer this particular query. In this case, this
pattern proposes to ask two different information agents that work on high quality struc-
tured data in terms of explosives in vehicles. If no relevant results can be found, one other
information source is requested capturing more general and unstructured data about ex-
plosives. When the query cannot be satisfied again, an information agent is requested
searching contact information of an appropriate human expert. This collaboration pattern
is instantiated as sub workflow. Before the sub workflow is completed it passes the re-
sponse as context information to the corresponding superior workflow. This response is
sent back to the user agent, which transforms the result into natural language for reading
it to the IC. Furthermore, the initial workflow starts a context analysis. E.g., if hazardous
materials like explosives are found there is a demand to inform the fire control. Another
sub workflow is started that pro-actively notifies fire control about explosives that have
been found. Additionally, the response is also added to the control’s notification.

4.3 Workflow Support for Agile Software Engineering

Software development using a Scrum-like agile method is supported by CAKE in the
following way: The development team starts by instantiating a baseline workflow defini-
tion (long-term workflow) for the first iteration. The team adds “pre-game”, “sprint” and
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“post-game” sub workflow definitions to it, with each triggering a CAKE sub workflow
of their own in sequence. The pre-game workflow definition covers the negotiations
with the customer like “meetings on site” or “writing recommendation reports”. Using
SCBR, workflows outlining best practice learned from previous projects or iterations
can be identified to ease workflow modelling. The “sprint” workflow definition acts as
the Scrum backlog: While executing the tasks included within pre-game, the team will
add tasks to the sprint workflow required to actually produce the system. For instance,
after having executed pre-game, the sprint workflow would include tasks like “design
database schema” or “create input forms”. For each task, risk is estimated, and by plac-
ing control flow relationships between the tasks, the most risky tasks will be executed
first. The risk estimation itself is knowledge-intense, thus CAKE supports this as well:
By using an information agent which connects to a bug database, information about the
reliability of a specific component may be retrieved.

5 Related Work

Although the CAKE combines agent, workflow, and CBR technology in an innovative
manner some parallels in state-of-the-art approaches can be found. Workflow technol-
ogy is mostly assigned to CSCW technology because of being the core technology
of systems, which manage activities to be done by different persons within organiza-
tions. Jennings et al. [14] propose an approach to use autonomous agents for business
process management, which is similar to agent-based workflow management. Here, re-
sponsibilities are split for enacting various components of business processes to agents
leading to more flexibility, agility, and adaptability. Instead of supporting agent-based
workflow management CAKE enables agent enhanced workflows [15] where an agent
can be assigned to a task for carrying out this task. Thereby, CAKE is able to provide
agents that are conform to the established agent definition [14]. Beyond that, in CAKE
non-autonomous services can be integrated as agents as well.

A further parallel to CAKE is the CBRFlow approach [16], which combines work-
flow technology with conversational CBR (CCBR) in order to cope with changing
and unpredictable processes. The CBR technology is used for acquiring new know-
ledge when exceptions within processes are encountered. Combining CBR and mod-
elling/planning is not new: the workbrain approach [17] uses CBR for workflow
modelling prior enactment whereas the HICAP approach [18] make use of CCBR for
acquiring information from users and for adapting plans based on alternative proposals.
As parallel for CAKE’s agent retrieval, a process-based knowledge management ap-
proach [19] incorporates a search for appropriate information sources backed by CBR
retrieval and a CCBR approach [20] is available where agents are characterized by ques-
tions, which they are able to answer. This could lead to a cumbersome task when many
questions express one agent’s suitability.

6 Conclusion

In this paper, the CAKE system has been presented and how CBR techniques are used
by it to create a generic collaboration support architecture. This architecture has been
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already proven useful within three different application domains, namely geographical
information management, fire services, and software engineering, where there is a need
to coordinate collaborative activities and to automatically provide the knowledge re-
quired to enact them. By using the concepts of information and user agents, the CAKE
architecture provides unified access to knowledge available within the organization, in-
tegrating already established information systems seamlessly. Collaboration and coor-
dination between agents are described explicitly by using adaptive workflows, allowing
tailoring whenever required.

As of this writing, a first prototype of CAKE was already implemented and suc-
cessfully applied in the three presented application scenarios. The next steps in these
scenarios will be extensive evaluations to assess the benefit that can be achieved by
the usage of the newly developed supporting systems. First impressions revealed weak-
nesses in the usability of these systems. Thus, focus will be put on UI enhancements
and on improvements regarding long-term workflow support. Two additional applica-
tion domains are currently evaluated: CAKE will be used to support the design of nano-
electronic chips, aiming to improve design efficiency and to reduce design errors, and
it will be used in a medical context, where it will optimize the diagnosis and therapy
processes for stroke patients.

Further research interests include aspects of workflow and collaboration pattern evo-
lution. For instance, by capturing information on real-world workflow enactment, work-
flow definitions may be tailored automatically without obliging a user. The latter may be
considered a workflow definition itself, and CAKE could make use of CBR to retrieve
a well-working tailoring strategy.
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Abstract. This paper describes a case-based approach for supporting consulting 
agencies in accompanying an organisation’s Knowledge Management (KM) 
implementation. Best Practice Cases (BPCs) of successfully conducted consult-
ing services are captured by the system’s ontology-based case base and reused 
for further KM introduction services. The system synergetically combines tech-
nologies of the Semantic Web with those of Case-based Reasoning. Seen from 
the KM point of view, the system follows the holistic approach of a KM intro-
duction by considering technological, organizational and human aspects of KM 
in equal measure. 

1   Introduction 

A KM introduction has to overcome manifold barriers of an organizational, techni-
cal, or cultural nature [9]. For supporting such a complex endeavour, a KM consult-
ing agency has to collect and capture as much as possible experiences from accom-
plished KM implementation projects in order to flexibly react on a new customer’s 
knowledge problems. This can be done by, e.g., continuously performing project 
debriefings after the end of KM Introduction projects and finally trying to exter-
nalize, structure and somehow capture personally made experiences of senior ex-
perts in the form of so called best practice cases (BPCs). Based on that important 
knowledge, consultants have a chance to avoid mistakes that were made in the past. 
The practical problem is that existing BPC descriptions in the scientific literature 
(normally available as final project reports in the form of text documents) are usu-
ally not well-structured, and due to that not directly comparable, and not easily 
applicable to new customers’ needs. Further, a “knowledge base” for KM introduc-
tion – which can easily be queried for typical KM implementation problems – does 
not exist. Our KMIR Framework (KM Implementation and Recommendation) tack-
les these problems by providing an ontology-based, electronic repository of KM 
introduction BPCs. Its internal representation as well as its search and retrieval 
functionalities are implemented by  combining approved methods from the CBR 
and the Semantic Web areas. 

The motivation for bringing together CBR and Semantic Web is the assumption 
that the two different technologies have complementary strengths [7]. In addition 
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to the benefits of approved methods like CBR, an ontology-based case base (CB) 
can provide (1) the integration of a traditional CB with a background knowledge 
model, (2) an ontology-based querying and navigation interface for manual case 
browsing, as well as (3) a more flexible, refinable, and maintainable CB – due to 
an easy to understand and extend case structure which can easily be modified. Our 
framework has been realized by a web-based system providing organizational and 
technological recommendations, based on BPCs representing successful KM im-
plementations. 

This paper is structured as follows: In the remainder of this chapter, we sketch the 
KMIR framework. The software components of KMIR are described with some more 
detail along the processes of the adapted CBR-cycle in section 2. The paper concludes 
with related work (section 3) and some ideas for future research (section 4). 

KMIR is methodologically based on the CBR Cycle by Aamodt & Plaza [1]. The 
four processes of the CBR Cycle comprise Retrieval of the most similar case(s) to a 
new problem, Reuse of information and knowledge from hat retrieved case in order to 
solve the new problem, Revision of the proposed solution, and finally Retainment of 
a newly originated case for solving new problems in the future. For technically sup-
porting all these processes, we have designed and implemented the KMIR architec-
ture, which consists of the following components: 

1. A case base containing KM BPCs: BPCs are represented as interrelated bun-
dles of instances of concepts described in an overall KM BPC ontology.  

2. A Case Editing Component: supports a consulting agency (a) on one hand 
in the structured description of BPCs, or just single problem-solution pairs 
based on accompanied KM introduction projects, and facilitates (b) an organ-
izational audit at the customer organisation in order to identify the organisa-
tion’s general structure, technical infrastructure, knowledge problems and 
knowledge goals (cf. [19]). 

3. An ontology-based Matching Component: returns most similar cases by 
matching a customer request with existing BPCs in the case base. 

4. A Solution Generator: associates a customer’s profile, knowledge prob-
lems and goals with existing solutions, methods and experiences of the 
most similar BPC in order to offer KM recommendations to a customer 
(i.e., about how to introduce KM, based on retrieved and adapted most 
similar cases). 

5. A Learning Component: stores adapted, reused and revised best practices 
cases as a new case into the case base. 

6. Administration Functions: support the configuration of similarity measures 
and filters, and provide further means for maintaining the CB. 

More details about the KMIR framework components are given in section 3. KMIR is 
fully integrated with “KAON Portal”, a framework for generating ontology-based 
web portals which is a stand-alone framework for the visualization of (multi-lingual) 
ontologies by supplying easy ontology navigation and searching [16]. 
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2   Methodological Approach 

The major contribution of our work is certainly not a breakthrough innovation in new 
CBR techniques, but mainly – besides some technical achievements through the com-
bination with Semantic Web methods and tools – the application of a case-based ap-
proach in a more than difficult real-world consulting area. Hence we think it is valu-
able to describe our overall methodological approach and give an idea of the respec-
tive weights of BPC attributes as estimated by practitioners (Table 1). In order to 
develop the KMIR framework, we have performed the following steps: 

1. Identification of indicators for the description / portability of KM BPCs. 
2. Verification of identified indicators in form of an open survey. 
3. Development of a “reference model” and ontology-based case base 

implementing the evaluation results. 
4. Collection of (unstructured) episodic cases from different information 

sources which are describing “real” events. 
5. Definition of “prototypical” cases in order to capture innovative technical 

solutions, new methods and practices into the CB that are not widely used 
in organizations (these hypothetical cases complement the “real” ones in 
order to sufficiently cover the space of possible organizational problem 
situations). 

6. Development and implementation of the KMIR Framework Architecture. 
7. Structuring and storing cases from 4.) and 5.) into the case base. 

2.1   Identification and Verification of Relevant Indicators 

At the beginning, we have analyzed KM methodologies and BPCs from literature and 
web pages (e.g. [19], [9], [12]). Based on that, we have created a preliminary list of 
indicators for the description and portability of BPCs. In order to verify the signifi-
cance of the selected indicators and to endue significant ones with a specific rele-
vance, we have performed an internationally accomplished open survey (n=103, cf. 
http://www.knowledge-management.de.tc), where we interviewed people who were in 
progress of implementing KM, had already implemented KM, or were just sensitized 
with that topic. As a result of both activities, we achieved the following list of indica-
tors, which are sorted by relevance (cf. Table 1)1: 

                                                           
1 Please note that we adhere with our terminology more to the KM community and consulting 

practice than to the CBR community. In terms of a typical CBR approach, “indicator” would 
become a feature or attribute of a case, and “relevance” of indicators goes, of course, directly 
into the weights of these attributes in a composite similarity function. Moreover, if we are 
talking about a “classification” of indicators, this means a (typically multivalued) attribute 
with a taxonomically structured co-domain.  
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Table 1. Indicators for the description and portability of BPCs and their relevance2 

Indicator Classification Examples/ Range Relevance 
Knowledge prob-
lems; addressed 
core processes 

organizational, 
technical, cultural 

e.g., knowledge identification, 
acquisition 

High 

(Technical) solu-
tions, methods, 
knowledge  
instruments 

- e.g., yellow pages, think tanks, 
lessons learned, knowledge mar-
ketplace, storytelling, knowledge 
mapping, … 

High 

Knowledge goals normative, stra-
tegic, operative 

e.g., systematization of service 
knowledge, knowledge transfer 
among employee generations, 
creation of a knowledge balance, 
… 

High 

Sustainability - - High 
Qualitative benefit - e.g., increased turnover or profit High 
Increased  
competitiveness 

- e.g., faster knowledge distribution High 

Implementation 
time 

- nonnegative integer High 

Involved  
department 

- e.g., R&D, IT, PR, HRM, …  High 

Maturity level - depends on underlying maturity 
model 

High 

Organization 
sector 

primary, secon-
dary and tertiary 
sector 

e.g., IT, Finance & Insurance, 
Automotive 

High 

Amortization time - nonnegative integer Medium-
High 

Quantitative  
benefit 

- - Medium-
High 

Implementation 
costs 

technical, organ-
izational, person-
related 

nonnegative integer Medium 

Company size  nonnegative integer Medium 
Organizational 
structure, involved 
processes 

- e.g. matrix organisation Medium 

Type of k.nowl.  
transformation 

- implicit, explicit Medium 

Affected organiza-
tional level  

- e.g., team, department Medium 

                                                           
2 Please note that the ordering according to the perceived relevance of indicators confuses a bit 

the inherent logics of indicators which can be grouped into characteristics of the company and 
affected department in general, the knowledge problems addressed, and the respective KM 
project undertaken. Of course, one should also note that some of the attributes are asymmetric 
in the sense that they would be used differently in a stored BPC and in a query. For instance, 
the “implementation costs” can be clearly specified as a feature of a stored BPC, but for a 
query, this attribute will be empty, or specify an upper bound, or an expected value.   
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Table 1. (continued) 

Used software/ 
technologies and 
KM instruments 

- e.g., Lotus Notes, Sem. Web 
Techn. 

Medium 

number of in-
volved KM work-
ers 

- nonnegative integer Low 

Considered quality 
standards 

- e.g., EFQM Low 

Turnover and 
profit 

 integer Low 

External support - e.g., public funding Low 
Implementation 
status  

- completed, in progress Low 

Legal form - e.g. ltd. Low 

Based on the verification and relevance weighting of indicators, we developed a 
reference model for the description of KM BPCs. We distinguished between entities 
describing an organization profile in general (e.g., company size and sector, legal 
form, turnover, profit, software infrastructure, technologies, etc.) and KM-specific 
ones (e.g., KM goals and problems, solutions and methods, departments involved in 
the KM process, considered business processes, the number of employees that are 
actually involved in the KM process, planned / used implementation time, costs and 
status, regarded quality standards, and the current KM maturity level of an organi-
zation). We classified attribute values (e.g., company sectors are classified as “pri-
mary sector”, “secondary sector” and “tertiary sector”; processes are classified by 
the Process Classification Framework of the American Productivity & Quality Cen-
ter; KM problems are classified into organisational, technological and cultural prob-
lems; KM goals are divided into strategic, normative and operative ones). In a next 
step, we defined a measurable and above all comparable range for all entities (a 
stringent precondition for the later described case retrieval process). In addition, all 
entities are classified regarding their ability to describe the situation before, during, 
and after the introduction. Several entities can even change the value during the KM 
introduction process (e.g., turnover, number of employees, etc.). Finally, we mo-
deled an ontology-based CB which serves as a data model for structuring and stor-
ing the BPCs. 

3   The KMIR Framework Architecture 

The KMIR framework architecture basically distinguishes the following core compo-
nents: An ontology-based case base, a case editing component, an ontology-based 
matching component, a solution generator, a recommendations component, a learn-
ing component and several administration functions (cf. Fig. 1), which are described 
in detail in the following subsections. 
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Fig. 1. KMIR Framework Architecture 
 

3.1   Ontology-Based Case Base 

Each BPC is stored as a set of interlinked “profile instances” in the ontology. There-
fore, it comprises all above-named entities, as well as relations between them. The 
conceptual level of the CB ontology consists of the main concepts “Company”, “Pro-
file”, “Problem”, “Goal”, “Solution” and “Method”. The concepts “Company” and 
“Profile” are linked together by the property “Company_has_Profile”. Knowledge 
Problems which the companies had to solve are sub-divided into organisational, tech-
nical and cultural ones. A “Knowledge Goal” can either be normative, strategic or 
operative. Each profile is linked to one or more problem(s) or goal(s) by the proper-
ties “Profile_has_Problem” and “Profile_has_Goal”. A problem is linked to one or 
more achieved solution(s) with the property “Problem_has_Solution” and an inverse 
property “Solution_solves_Problem”. Problems can address a specific core process of 
the Probst KM Model (i.e., knowledge acquisition, sharing, etc.) [19]. Problems are 
divided into sub-problems by the property “Problem_consists_of / 
is_part_of_problem”. 

 

Fig. 2. Excerpt of the KMIR Ontology 

In order to reflect the holistic KM approach, the concept “Problem” has the sub-
concepts “Organisational Problem”, Technical Problem” and “Cultural Problem”., 
because the implementation of a KM system could depend, for instance, on a specific 
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technology and, furthermore, require to solve a specific organisational problem, as 
well as a cultural change in the organization. The concept “goal” disposes of the more 
special sub-concepts “Normative Goal”, Strategic Goal” and “Operative Goal”. Every 
solution can be combined with a method (property: “uses_method”), a knowledge in-
strument (property “uses_knowledge_instrument”), a specific technology or software-
tool, which again may depend on a technology (properties: “uses_Software_tool / 
Technology” and “depends_on_Technology”). Moreover, a solution, software, or 
technology can consist or be a part of other solutions (just as software tools and tech-
nologies). Several other concepts of the ontology are structured by a taxonomy in or-
der to have the possibility for more precisely specifying the top concepts. The CB on-
tology has been realized with the KAON OI-Modeler  (http://kaon.semanticweb.org), 
a tool for visually creating and maintaining ontologies. Figure 2 depicts an excerpt of 
the KMIR ontology's top concept level. 

3.2   Description of KM Best Practice Cases 

Selected and created episodic and prototypical BPCs are described by the use of a 
Case Editing Component (CEC), a web-based user interface, which is part of the 
KMIR framework architecture and allows for a template-oriented filling of all known 
attributes of a BPC. Attribute values are filled in as texts are numbers, or can be cho-
sen from pulldown menus. The interface is automatically generated from the ontology 
defining the case structure. Finally, a described best practice case is directly stored as 
a set of instances, attributes and relations into the ontology store. 

3.3   The Organisational Audit 

The Case Editing Component is also used to later support a consulting agency in 
capturing a new customer’s organisation profile, thus its organisational structure, 
technical infrastructure and economic aspects, as well as normative, strategic, and 
operational knowledge goals. Additionally, the organisation may define target costs 
for the implementation of a KM solution, may describe or select organisational, tech-
nical or cultural knowledge problems and requirements, and finally assign them with 
typical knowledge processes. Finally, KMIR supports the association of weights to all 
described aspects, in order to attach more or less importance to them. The received 
profile from the organisational audit is directly stored as a set of instances, attributes 
and relations into the ontology which structures the CB. In order to disencumber con-
sultants from filling in all characteristic values of the customer profile that have to be 
used later for the case retrieval, several characteristic values are automatically created 
or transformed by the use of derivation rules and transformation rules before storing 
a new case into the case base. Derivation rules infer the organisation type (e.g., 
“Small and Medium Enterprise”) from the characteristic values “turnover” and “com-
pany size”, transformation rules are used to transform values between different scale 
units (e.g., time and currency). 

Further, it is possible to only define one or more problems or problem-solution-
pairs,  because in practice, customers often have already accomplished several KM 
activities and now search for a solution to solve one or more new particular problem(s). 
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3.4   Case Retrieval Process 

In order to retrieve BPCs that are most similar to a newly created customer profile 
achieved from the organisational audit, or just solutions for one or more requested 
problems, a matching component matches the profile or a given problem (set) against 
already existing BPCs or problems from the CB. This is done by combining syntax-
based with semantical similarity measures [11]. Syntax-based similarity measures in 
our system are distance-based similarity, syntactical similarity (edit distance combi-
ned with a StopWordFilter and Stemming) and equality for comparison of values of 
numeric data types from the organization profile with those of existing BPCs. Addi-
tionally, the profile from the self-description process is matched against profiles of the 
CB using semantic similarity measures.3 That is to compute the similarity between 
(sets of) instances on the basis of their corresponding concepts and relations to other 
objects (relation similarity) as well as taxonomic similarity. Relation similarity is 
used on one hand for comparing attribute values of instances that are no direct instan-
tiations of the concept “profile”, but of further concepts instantiations (e.g., of concept 
“problem” or “software”) that are linked to the concept “profile” (using the relations 
“profile_has_problem” and “profile_uses_software”). On the other hand, the similar-
ity type is used for, e.g., comparing instantiations of the concept “problem” that are 
linked to further instantiations of the concept “Core process” using the relation 
“(problem) addresses core process”. Taxonomic similarity identifies similar software 
tools or technologies for the requesting organization, which base upon problem-solu-
tion pairs of BPCs similar to the defined problem(s) from the organization profile. For 
example, an organization is searching for an extension of its existing groupware sys-
tem using an ontology-based tool solution. The matching component identifies a simi-
lar groupware system in the case base, which also served as a basis for such an exten-
sion. This finding is made by checking all instances of the corresponding software 
sub-concept “groupware” and recommending the assigned solution to the requesting 
organization. Furthermore, taxonomic similarity is used to additionally compare parti-
cular attribute instances based on the conceptual level in order to improve results of 
the syntactic similarity computation (e.g., matching the attribute “sector” of a profile 
based on the concept taxonomy “primary”, “secondary” and “tertiary sector”). Final-
ly, a weighted average determines the global similarity of all local similarities. Figure 
3 depicts all regarded ontology concepts, attributes and relations of a profile that are 
applied in KMIR during Case Retrieval. 

For the technical realization of the matching component, we have integrated an al-
ready existing Java-based framework for instance similarities in ontologies into the 
KMIR architecture. An additionally implemented user interface allows parameterizing 
                                                           
3 A comprehensive discussion of the concept of “semantic similarity” goes beyond the scope of 

this paper. Since the advent of Semantic Web research, there is a growing confusion wrt. a 
reasonable usage of the word “semantic”. We comprise here – in our current implementation 
– taxonomic and relational similarity – and in general – all similarity measures taking into 
account some kind of inference or background knowledge in the form of rules, a complex 
domain model, etc. – as opposed to simple datatype-value similarity which can be derived 
completely context-free with simple string or arithmetic operations or table look-up’s. For 
further information, please refer to [11].  
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the user-defined selection and composition of (atomic) similarity measures, and their 
assignment with weights directly in KMIR. Settings are stored in an XML-File and 
processed by the underlying similarity framework. Depending on the selected similar-
ity measure(s), attributes like maxdiff (distance-based similarity) or recursion depth 
(instanceRelationSimilarity) can be defined. Due to the complexity of computing on-
tology-specific similarity measures, the similarity framework provides two different 
types of filters, pre-filters and post-filters in order to constrain the number of instan-
ces to be considered for similarity computation. They can be individually combined 
from (atomic) filters. All filters are configurable either by a KMIR user interface or 
directly in the XML-File.  

 

Fig. 3. Concepts, Attributes and Relations Regarded during Case Retrieval 

Pre-filters are used before similarity computation. They allow the inclusion of one or 
more particular concept(s), as well as the exclusion of particular concepts that are 
later regarded during the similarity computation of corresponding instantiations. Fur-
ther, it is possible to define KAON Queries4 in order to reduce the amount of profiles 
in the CB that is used for computing the similarity. The KAON query language allows 
easy and efficient locating of elements in KAON OI-models.  

Post-filters determine the number of instances that are returned after the similarity 
computation. There exist two filter types, minSimilarityFilter and maxCountofInstan-
cesFilter. The first filter type defines the similarity threshold (between 0 and 1)  
                                                           
4 Cf. “Developer’s Guide for KAON”, http://kaon.semanticweb.org/documentation 
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required for inclusion in the result list, the second one retains information about the 
maximum number of presented similar results.  

In case of a negative case retrieval (no existing profile of the CB directly matches 
to a selected organization profile), the matching process can be constrained to only 
matching (all) single problems of the given organization profile with existing prob-
lems (independent of a particular profile) in order to at least identify solutions for 
given problems. 

As an alternative for identifying similar profiles/ problems to a given one based on 
the integrated similarity framework, it is also possible to let the user of the system 
directly define KAON queries or construct with a query wizard. For instance, the 
query 

[#Solution] AND SOME(<#usesKnowledgeInstrument>,!#Yellow-Pages!) 

returns all solutions which are using the knowledge instrument “Yellow pages”. 

3.5   Recommendations and Solution Generation 

The Recommendations Component provides recommendations based on identified 
most similar case(s). This is done by presenting one or more profile(s) retrieved 
within the matching process that correspond to the profile from the organisational 
audit – including similar problems, as well as interlinked solutions and methods to 
solve these problems. In addition, the system user can identify for each profile’s prob-
lem-solution pair further relations to other KM aspects by browsing the structure of 
the ontology. The identified most similar case(s) also comprise information about 
implementation costs and time, qualitative and quantitative benefits, savings, sustain-
ability, application to other fields, external support/ funding and others. 

An example for a so called “holistic recommendation” would be the recommendation 
of using a specific tool, technology or knowledge instrument combined with a specific 
organizational method, as well as with a required organizational culture program.  

Moreover, the system provides a Solution Generation Component which supports 
the automatic generation of solutions by merging problems with solutions of similar 
problems from the CB. This can be done for either single problems or all problems of 
a selected profile based on a predetermined minimal similarity value. When generat-
ing solutions for profiles, the solution generator only creates solutions for one or more 
problem(s), if a profile can be identified where the global similarity of all profile attri-
butes has at least a predetermined value. 

Moreover, we are currently developing modification rules, in order to realize auto-
matic case adaptation in “easy situations”. For instance, it is planned to implement a 
verification component which allows KMIR to check if a specific “software applica-
tion” makes sense for a recommendation or solution generation, based on background 
information defined by further specific attributes (e.g., compatibility, interoperability, 
scalability and extensibility of the software tool to be recommended), and on this 
basis also adapt technical solutions from a BPC to specific needs of a new customer. 

3.6   Feedback Loop and Learning 

Successfully accomplished KM implementations are added as a new BPC into the 
CB. This is done by technically supporting the revision of the new constructed KM 
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introduction solution (e.g., editing/ correcting existing information to the generated 
solution or providing additional information like for instance new experiences or 
benefits, etc.). After that, the adapted, reused and revised BPC is stored as a new 
learned case into the CB. The learning component collects lessons learned regarding 
successful or inappropriate given recommendations in order to refine or extend the 
BPCs as well as the general structure of the CB. This is done by providing an evalua-
tion function to the requesting organization The consulting agency has the opportu-
nity to describe experiences made with the given recommendations to the customer 
regarding their correctness and capability to solve a specific customer problem. The 
evaluation results directly flow into the learning component and are considered in the 
next case retrieval by using them for an internal ranking of the best practice cases in 
the CB. Based on that, the recommendations component is able to provide better rec-
ommendations to new requesting organisations in the future. Worse evaluated rec-
ommendations with a low ranking can be either optimized or thrown out of the CB. 

3.7   Administration Functions 

KMIR disposes of several administrative functions for maintaining and analyzing the 
case base which are shortly described as follows: 

• Importing Instance Lists 
An Import Interface supports an easy import of instance lists from text files in 
order to instantiate concepts, where the concent changes over time, like e.g. 
“Technology”, “Software” or “Knowledge Instrument” and thus avoids to model 
them laboriously with an ontology editor. 

• Case Completion 
Case completion is used for automatically enriching cases with existing back-
ground knowledge. In KMIR, case completion is used to learn new relation  
instances by analyzing existing solution descriptions for the appearance of  
instances or synonyms of the concepts “software tool”, “technology” or “know-
ledge instrument”. Based on that, instances are interlinked with the concerning 
solution (e.g. “Solution S uses technology T”). The functionality is particularly 
suitable for updating existing cases after the enhancement of instance lists (e.g., 
the lists of existing tools, technologies or knowledge instruments). However, the 
case completion component is freely configurable for using it with any concept 
or relation in the ontology. 

• Case Disjunction Tester 
The function identifies BPCs, problems or goals, that are very similar to each 
other in order to check on the one hand the relevance of specific attributes re-
garding case retrieval and on the other hand to identify redundant profiles, prob-
lems or goals (cp. [34]) 

• Statistical Analysis 
That function provides a “real-time analysis” of the existing case base by pre-
senting frequencies, averages and standard deviations for all interesting concepts 
in order to support to examine the BPC’s statistic distribution. 
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4   Related Work 

We combined approaches from CBR and Semantic Web for structuring problem-solu-
tion pairs (cases) by the use of an ontology, thus being able to identify a solution for a 
new problem by retrieving the most similar case using syntactical and semantical 
similarity measures. All this is applied in the Knowledge Management area. Hence 
related work in these three areas is interesting. 

Knowledge Management research: Typically, KM introduction is guided by “cook-
book-like methods” (e.g., [17];[20];[14];[18]) or inspired by collections of anecdoti-
cally narrated – in the best case semi-structured – best practice cases (e.g., [9];[12]). 
Another systematic development of a big, homogeneously annotated, case base with an 
intelligent search facility is not known to us. Of course, the idea of applying CBR 
methods to lessons learned systems – which can be seen similar to best practice sys-
tems – is not new in the KM area [21]. However, typical applications in this spirit fo-
cus on a relatively narrow application domain and usually employ a textual CBR ap-
proach or feature-based CBR with a small attribute set, describing few metadata for 
each case. Tackling such a complex problem as KM introduction is a much more chal-
lenging task. Hence, the design of the appropriate attributes and their respective value 
domains – i.e., the design of the KMIR ontology – is a main contribution of our work.  

CBR research: The observation that CBR and Semantic Web are closely related, with 
complementary strengths and characteristics, and should be combined synergistically, 
has already been made a few times ([14];[22]). However, this did not yet lead to a 
widespread take-up of the idea in the CBR community. The use of taxonomies as the 
basis for local similarities has, e.g., has been discussed by [24], and taxonomic simi-
larities are widely used in many applications, like comparing chip designs [25], work-
ing contexts [26] or employee skill profiles [27]. However, such approaches often do 
not settle upon and exploit the possibilities of logic-based Semantic Web languages, 
and they do rarely exploit other domain knowledge structures than taxonomic ones, 
i.e. they do not offer relational similarity for comparing ontology instance bundles. As 
already mentioned above, it might be subject to future research to clearly define the 
boundaries as well as the interfaces of typical CBR approaches and more reasoning-
oriented Semantic Web technologies. Some work might be worth to be rediscovered, 
such as Kamp’s approach to knowledge-intensive CBR based upon Description Lo-
gics [33]. Generally, the use of extensive background knowledge models within CBR 
systems is not unusual, cp. [35];[36]. It seems interesting to identify efficient operat-
ing points with a good balance between upfront knowledge engineering, knowledge 
acquisition costs, system powerfulness, and system retrieval efficiency. 

Semantic Web research: Case and similarity mark-up languages have been proposed 
by [8];[23]. Widespread use of ontologies as background knowledge in similarity as-
sessment, has recently been proposed for several applications such as plan retrieval 
[28], buyer-seller matchmaking in eCommerce [29], or question answering [30]. [3] 
and [4] investigate ontology-based similarity of queries for ranking query results in 
information retrieval. They suggest several semantic similarity measures exploiting 
the structure of ontologies. [2] describes a CBR system implemented in LOOM  
exploiting Description-Logic reasoning to determine case similarities based on  
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background knowledge. Settling upon the logic-based semantics of OWL and / or on 
information-theoretical approaches for analyzing concept expressions instead of trav-
ersing taxonomies, is also proposed by [31] and [32]. Very interesting recent work has 
been published in [5] and [6]. The authors discuss a large-scale experimental study 
showing the positive effects of similarity-based IR approaches on precision and recall. 
In particular, they evaluated the retrieval quality and the user-oriented adequacy of 
several semantic similarity measures. Similarly, [15] demonstrated the positive effects 
already of very simple semantic similarity measures on retrieval quality in bioinfor-
matics. Altogether, these citations show that semantic similarity is often useful in 
complex retrieval situations, but that there is no “gold standard” for it. Hence our 
work does not implement one specific way of semantic similarity, but offers a generic 
framework which allows to declaratively specify arbitrary measures, combine them, 
extend, and rearrange them. This provides an ideal playground for experimental work 
and further integration with Semantic Web technology. 

5   Future Work 

We have described the KMIR framework which supports consulting agencies in suc-
cessfully accompanying a customer’s Introduction of Knowledge Management by 
providing recommendations based on CBR and Semantic Web Technologies. For the 
development of KMIR, an extensive collection, analysis and structuring of BPCs from 
different information sources was done. The analysis as well as the ontology for struc-
turing the BPCs directly focus on human, technical and organizational aspects (holis-
tic KM approach).  

For the future, we intend to validate KMIR under real-life conditions which might 
be realized in the context of a concrete project with a consulting agency. Moreover, 
we will integrate KMIR with ONTOKNOM, an ontology-based software infrastruc-
ture for retaining and maintaining KM Maturity Models in order to better focus on the 
organization's needs with regard to a successful introduction of KM [13]. This will be 
done on one hand by associating BPCs in KMIR with a specific KM Maturity Level, 
and on the other hand by proposing BPCs in ONTOKNOM, depending on a calcula-
ted maturity level. A further research interest is to extract a reference maturity model 
based on all captured KMIR cases and, the opposite way around, to extract a refer-
ence BPC out of several KM maturity models in ONTOKNOM.  
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Abstract. The Connection Machine helps PricewaterhouseCoopers LLP (PwC) 
partners and staff to solve problems by connecting people to people. It allows 
information seekers to enter their question in free text, finds knowledgeable 
colleagues, forwards the question to them, obtains the answer and sends it back 
to the seeker. In the course of this interaction, the application unobtrusively 
learns and updates user profiles and thereby increases its routing accuracy. The 
Connection Machine combines features of expertise locators, adaptive case-
based recommender systems and question answering applications. This 
document describes the core technology that supports the workflow, the user 
modeling and the retrieval technology of the Connection Machine.  

1   The Power of Connected People 

Information, knowledge and experience are key success factors and the most 
important competitive advantage for any business. However, most of this core 
corporate asset is in the heads of the employees and cannot be easily accessed, shared 
or distributed. Capturing and protecting it in documents (electronic or otherwise) is 
not only cumbersome, but the documents become rapidly outdated and the 
maintenance effort required to keep document collections up-to-date is formidable. 

Furthermore, in the complex business scenarios of today’s world, problem solving 
requires an increasingly large amount of specialized knowledge. It is nearly 
impossible for one individual to be an expert in every aspect of a company’s business 
and deliver comprehensive solutions. Problem solving requires co-operation and the 
sharing of ideas and information. The size of a corporation and the collective 
knowledge of its employees are only valuable if these employees can share their 
information and cooperate. We believe that the best way to provide the most up-to-
date and accurate information to those who seek it is by putting them directly in touch 
with the experts.  

The PricewaterhouseCoopers Connection Machine is an application that enables 
employees to solve business problems by helping them obtain answers to their 
questions from knowledgeable colleagues. Rather than trying to extract information 
from experts and pointing information seekers to stale document directories, the 
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Connection Machine matches incoming questions to the expertise profiles of users, 
routes questions to the experts with highest similarity, collects their answers and 
relays the answer back to the seekers. The application extends the personal network of 
employees to the entire firm and makes otherwise difficult to reach experts accessible. 

2   Existing Approaches to Locating and Contacting Experts 

2.1   Directory Systems 

Most firms allow their employees to search for other colleagues by means of 
directories. Typically, these directories list the business unit, office phone numbers 
and addresses of employees, as well as some limited information about their 
background. Searches are usually performed by entering the (partial) name of the 
employee or by browsing to through the business unit structure of the firm. In terms 
of their functionality, these systems resemble phone books with a job categorization, 
similar to “yellow pages”. 

If we know which employee we are looking for, directory systems are very useful 
for finding their contact information. However, most of these applications do not help 
to determine which employee might be knowledgeable on a specific topic [c.f. 1] and 
able or willing to answer our question. They also do not help to relay the question to 
the right person, to obtain an answer in a given timeframe, or to create a network of 
employees. Additionally, the data that goes beyond office location, department, phone 
numbers etc. is typically not centrally maintained and requires manual updates by the 
employees themselves. As such, the information is mostly outdated and its reliability 
rather limited.  

Also, in personal interactions, if experts are not able to give an answer to a 
question, they typically refer the inquirer to another specialist from their personal 
network. A user looking for an expert in a directory system has only access to one 
level of experts and is at the mercy of the expert he/she contacts. People who have no 
representative profile in the directory system are beyond the reach of the seeker 
entirely.  

Since standard directory applications do not provide the functionality to find an 
expert and ask a question easily, employees typically revert to the rather inefficient 
practice of sending emails to broad audiences in the hope of finding someone who is 
able and willing to help them.  

2.2   Expertise Locator Systems 

To answer the need for being able to access experts and ask questions, companies 
have developed so called Expertise Locator Systems (ELS). These systems try to find 
experts that are potentially able to answer a user’s question by matching the query to 
the expertise profiles of the employees [2, 3, 4, 5]. Some systems enhance the 
matching process by using the social connections between employees or collaborative 
filtering (e.g. [1, 6]). Depending on the application, they return a combination of 
potentially knowledgeable experts and related documents. It is up to the user looking 
for information to contact the experts and to get an answer to their question.  
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Employees are normally represented by an expertise profile which, depending on 
the application, contains a limited number of structured attributes coming from an 
enterprise directory, a list of documents published by the employee, and general 
background information in free text or in a list of terms/noun phrases. The experts can 
update their profiles manually by adding new documents, modifying their background 
information and, potentially, the structured data. Responses to queries can be 
published and added to the profile as new documents as well. Some systems generate 
profiles automatically by analyzing emails and authored documents and extracting a 
set of terms. Users have to go through the terms to specify which ones represent areas 
that they would feel comfortable answering questions in.  

Current expertise locator systems are designed to search for people. They match 
the user’s question with documents and expert’s profiles and display the list of 
matching experts to the users. The users, in turn, have to pick an expert from this list 
and contact them with the question. However, the goal of users who submit questions 
to an expertise locator system is not to find the name of colleagues but to find answers 
to their questions! The fact that a user has found the name of a potentially 
knowledgeable person does not mean that his/her question has been answered. 

An additional weakness in current expertise locator systems is the lack of division 
between interest and expertise. Existing expertise locators analyze documents that 
have been authored by users and their emails to generate a profile to represent each 
user’s expertise. If a user subscribes to an electronic newsletter out of interest in the 
specific topic, or writes a "Request for Proposals" (RFP) for vendors to respond to, 
he/she will be presumed an expert in that field.  

3   Overview of the PwC Connection Machine 

The Connection Machine extends the concepts of directory systems and expertise 
locators beyond the pure search for people and helps PwC partners and staff to get 
answers to their questions and to solve problems together. It leverages the personal 
networks and intelligence of PwC employees, facilitates collaborative problem 
solving, and fosters a work environment in which people are truly connected.  

By answering questions rather than just locating people, the Connection Machine 
acts as a virtual, adaptive expertise provider. It combines features of expertise locators 
with adaptive case-based recommender systems and question answering applications.  

Figure 1 provides a general overview of the interaction between the information 
Seeker, potential Providers and the Connection Machine.  

An interaction with the Connection Machine starts with an Information Seeker 
entering a question in free text format, as if he/she were asking a colleague a question 
via email. The Seeker is also able to specify the urgency of the question, the name of 
a client the question relates to as well as additional, optional, structured information 
(e.g. knowledge domain, line of service, industry) to be used to locate appropriate 
potential Providers (Figure 2). 

The Connection Machine processes the query, finds a set of suitable potential 
Providers and contacts them. The system only contacts potential Providers whose 
expertise levels for the given question are higher than the Seeker’s and whose 
maximum number of questions per week has not been reached.  
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Fig. 1. Overview of the application workflow in the PwC Connection Machine 

The number of potential Providers who will be contacted regarding a question is 
configurable. If the first set of potential Providers is not able to respond within the 
allocated time (a fraction of the time the Seeker needs the answer by), the system 
sends the question to a second batch of potential Providers. If no potential Providers 
can be identified or the Providers do not react, the question is sent to the Knowledge 
Administrator of the Domain for further processing. 

Once the system identifies potential Providers, they are notified via email (Figure 3) 
and a visual indicator in the “Summary” page of the web interface, informing them that 
their expertise is needed. In addition to the question, the potential Providers are 
informed of the Seeker’s contact information (e.g. name, line of service) and of the 
timeframe in which the question needs to be answered.  

After receiving a question, the potential Providers may choose to respond either via 
web interface or via email. Potential Providers may offer an answer to the question; 
request additional information from the Seeker; refer the question to other potential 
Providers; or decline to answer. Once one of the potential Providers offers an answer 
or requests additional information, he/she becomes the “Provider” for the interaction. 
From this point on, the Connection Machine facilitates communicates between the  
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Fig. 2. Web interface of the PwC Connection Machine 

information Seeker and the Provider and removes other potential Providers from the 
problem solving conversation by sending them email and removing the indicator in 
their “Summary” web page.  

If a Provider chooses to answer the question, the Seeker is notified of the answer 
via email and a visual indicator in the web application (Figure 4). Upon receiving an 
answer, a Seeker can choose to accept it and close the request, ask a clarification 
question about the answer, or reject the answer and request a second opinion unless 
they have already done so.  

The Provider can also ask for additional information that may be needed to answer 
the question. Once the Seeker provides additional information the Provider will be 
presented with the same options as when initially contacted by the Connection 
Machine (i.e. provide an answer, request question clarification, refer the question and 
decline to answer). 

If a (potential) Provider decides that someone else from his/her personal network is 
better suited to answer the question, he/she may choose to refer the question.  In this 
way the Connection Machine can learn about potential Providers who may have been 
missing from its initial set of profiles.  The Seeker will not be made aware that the 
question was referred to another potential Provider as long as the initial Provider had 
not contacted the Seeker prior to referring the question (i.e. the provider did not 
request question clarification prior to referring the question).  
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Fig. 3. Sample email from the PwC Connection Machine 

 

Fig. 4. Open question summary page 
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The Provider can also indicate that he/she is not able to provide an answer to the 
question and specify the reason for declining to answer (e.g. “Too busy”, “Don’t 
know the answer”, “Independence conflict”). 

If the question was declined by all contacted Providers, it will be sent to the 
Knowledge Administrator of the domain for further processing.  The use of a 
Knowledge Administrator as a “backup” for answering or referring questions ensures 
that all questions entered in the Connection Machine are answered in a timely 
manner. 

4   Retrieval of Potential Providers in the Connection Machine 

To execute the workflow described above the application needs to be able to 
determine who is potentially capable of answering the question by matching a user’s 
query against information it has about other users. To achieve consistently high 
accuracy over a long period of time, the information of the users has to be updated 
with appropriate sections of the interaction on an ongoing basis. (Fig. 5)  

The technology we used to implement these functions in the Connection Machine 
is similar to User Adaptive, Case-Based Recommender Systems [7, 8, 9]. However, 
most recommender systems are geared towards selecting the best match out of a set of 
(mostly static) items and presenting it to the user. In the case of the Connection 
Machine, the items in the case-base are continuously evolving user models where 
each model contains multiple profiles. Rather than being the final goal, the retrieval 
process is an intermediate step and users, whose expertise profile matched the query, 
are utilized in the workflow to route questions. The resulting interaction between the 
Seeker and Provider is the desired outcome for the application.  
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Fig. 5. Profile maintenance and usage in the Connection Machine 

The user modeling in the Connection Machine is not geared towards influencing 
the similarity metrics, the user interaction or the user interface of the application. 
Neither can it influence the solutions a Provider may offer to a Seeker. The case-base 
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of the Connection Machine is a collection of user models which are constantly 
maintained and updated by unobtrusively observing the user’s interaction with the 
system [cf. 10] and, which are then used to select the users that will participate in the 
workflow as potential Providers.  

5   The User Model of the Connection Machine 

5.1   Interest, Expertise and Referral Profiles 

A user model (i.e. case) in the Connection Machine contains three types of user 
profiles, each of which captures one aspect of a user’s preferences or capabilities:  

• The interest profile denotes the topics a user is interested in. It is updated 
from the questions a user asks and the associated clarifications.  

• The expertise profile represents the topics that the user is knowledgeable 
in. This profile can be initialized from documents the user authored, a 
resume, prior engagement histories or similar. It is updated with the 
questions a user could answer, the answers he/she provided, and all 
associated clarification conversations.  

• The referral profiles represent the topics in which the user is able to refer 
questions. It is updated with the questions, any clarification conversation 
associated with them, and any referral comments.  

We also make a distinction between positive and negative profiles.  Negative 
profiles contain information that the user does not want to be associated with.  Users 
of the Connection Machine can choose to “Opt out” from a question by stating that 
they no longer wish to receive questions similar to the current one. This information is 
used to update the negative profiles. The use of negative profiles thus brings the total 
number of profile types available to six.  In the following, we focus on “positive” 
profiles but all techniques apply to negative profiles as well. 

Having six different profile types in a user model allows us to route questions with 
higher accuracy. It also enables us to generate reports on the distribution of interest, 
expertise and referral capabilities within the firm, to generate communities of interest 
or expertise and to route relevant documentation to inform group members or for 
review.  

5.2   Data Sources for User Models 

User profiles of directory systems and expertise locators are typically generated from 
structured data from sources such as enterprise databases, or from unstructured 
sources such as documents authored or read by the user. The resulting user profiles 
can be structured (e.g., a list of attributes and their associated values), unstructured 
(e.g., a list of terms, a collection of documents), or a mix of these representations.  

While structured representations provide benefits in terms of retrieval accuracy and 
standardized vocabulary, they are very difficult to create and to maintain (both for the 
company and the individual). Since the Connection Machine operates in an 
environment where structured information is already generated and maintained for 
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directory systems, we can utilize this information where available and concentrate our 
research on the generation of profile information from unstructured data sources and 
on the best way to represent it.  

The information source we consider for the generation of user profiles is the set of 
documents (e.g., resumes, whitepapers, emails) that the user has authored, read or 
received. As such, the problem we are targeting is how to use unstructured data to 
generate and represent an expressive, flexible, and easy to create and maintain user 
profile.  

5.3   Representation of Document or Term Based User Profiles 

The representation that is used to store the content of the user models has a significant 
impact on the capabilities, flexibility, maintainability and learning abilities of the 
system. 

In today's expertise locator systems, information from unstructured source 
documents is typically captured in profiles that are either based on term statistics 
extracted from discrete documents, or from term statistics based on the union of all 
documents associated with a user. In the first approach, the profiles are collections of 
term statistics per document and experts are ranked based on their respective total 
number of documents that are similar to the user’s query. In the second approach, the 
profile is a set of term weights extracted from the union of documents for an expert 
and the similarity is computed between the query and the term weights for this 
collection.  

We observed that the focus on discrete documents and their terms neglects the fact 
that the documents associated with a person can represent different facets of a bigger 
picture. A person who discusses the topic of “Hybrid Engine Performance” in one 
document and “Engine Emissions” in another is highly likely to be knowledgeable on 
“Hybrid Engine Emissions” or potentially “Engine Performance and Emissions” as 
well. 

We also found that basing the profiles purely on terms (from discrete documents or 
the collection of documents) and neglecting the impact of phrases and relationships 
between terms can reduce accuracy and results in routing errors. For example, a 
person mentioning “Captive” at the beginning of a document, “Insurance” in the 
middle and “Bermuda” at the end may not be knowledgeable on the topic of “Captive 
Insurance arrangements in Bermuda”. On the other hand, a person who wrote a 
document with exactly this title and who did not frequently mention “Bermuda”, 
“Captive” and “Insurance” in the body of the document might be better able to help 
the Seeker than the travel agent who wants to sell an additional “insurance policy for 
a captivating trip to Bermuda”.  

5.4   Lattice Based User Profiles 

To address the problems described above, we devised a profile representation in 
which interest, expertise and referral profiles of users can each be incrementally 
learned and that captures a unified summary of the individual’s knowledge, crossing 
document boundaries. Using the documents associated with an individual we generate 
a profile for them that contains each term in these documents as well as the distance 
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based co-occurrence weight between terms. Graphically, this represents a lattice1 in 
which the nodes are the terms with their associated term weights and the links 
between the nodes are the co-occurrence weights between two terms.  Below, we call 
any such group of linked terms a phrase.  

Table 1. Notation used in the Lattice Representation 

For Terms For Phrases Description 

N N Number of profiles of a particular type 

fp(i) fp(i,j) Frequency (occurrence count) of term i or phrase i-j in profile p 

fmax p fmax p Maximum term (or phrase) frequency in profile p 

pf(i) pf(i,j) Profile frequency: number of profiles containing term i or phrase i-j 

ipf(i) ipf(i,j) Inverse profile frequency of i th term or phrase i-j 

wp(i) wp(i,j) weight of term i or phrase i-j in profile p 

One lattice is built for each of the six profile types to represent a given user.  We 
generate a lattice by starting with the available documents, appropriate for the profile 
type being built, that are associated with each user.  Each document is divided into 
tokens, synonyms are processed, terms are stemmed, and stop words are removed. 
Once the documents have been pre-processed, we compute term weights, phrase 
distances, and other relevant statistics needed to create the profiles. Note that any 
document can be processed in this manner, including questions, answers, and other 
conversations between users.  

Table 1 shows the notation used here to describe the process of computing the 
weights for each term and phrase.  We begin with the terms.  Each term in each user’s 
profile is associated with a term weight.  Our process for computing individual term 
weights is the same as standard TF-IDF (term frequency / inverse document 
frequency) approaches used in information retrieval (IR) [11], but is applied to 
profiles containing multiple documents rather than individual documents as in IR. 
Thus, the weight of term i in profile p is calculated as: 

)()()( iipfitfiw pp ×=  (1) 

In this equation, the normalized term (or phrase) frequency tfp(i) and the inverse 
profile frequency ipfi are calculated as follows:  

p

p
p f

if
itf

max

)(
)( =  

(2) 

ipf(i) = log(1+N/pf(i)) (3) 

To generate links between the terms (the “phrase” weights) we gather all pairs2 of 
terms that occur together in a sentence, usually using a window size to restrict the 

                                                           
1 This is not a lattice in the mathematical sense. 
2 This idea can be extended to phrases containing more than two words. 
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number of pairs considered.  Each link is then connected by a weight proportional 
both to the number of times the terms occur together in the profile and the number of 
intervening words between the terms. Thus, in the formulas above tfp(i) becomes 
tfp(i,j) and ipf(i) becomes ipf(i,j) with all formulas being adapted according to Table 1. 
For the case of phrases, we compute the frequency fp(i,j) by using a distance-based 
frequency count: 

=

=
N

k k
p jid

jif
1 ),(

1
),(  

(4) 

where n is the number of occurrences of the phrase containing the terms i and j in the 
same sentence and within a window of w terms in the profile p, and dk(i,j) is the 
distance for a given occurrence of the two terms, i.e. one plus the number of terms 
intervening between i and j.  Thus, adjacent terms would have dk(i,j)=1, and so on. 
While the formula above assumes a linear weight decrease over distance, we could 
consider other ways for the distance between terms to impact the weight computation 
(e.g. exponential). 

As an example of the computations above, let us assume we have a single 
document for a given user, containing only a single sentence: “The Connection 
Machine models the interest, expertise and referral capabilities of each user.”  Then 
the term and phrase frequencies computed would be as in Table 2. Note that this 
shows only normalized frequency, not overall term weight, which would depend on 
the inverse document frequency factor, and is not illustrated here for simplicity.  

Capturing link strength between terms allows the detection of associations between 
terms in a sentence, no matter their syntactic relationship; allows term association 
detection to cross document boundaries by following paths in the lattice; and allows 
precise calculation of term association strength.  Instead of using the number of times 
terms occur together, we use the totaled inverse distance between them.  Thus both 
frequency and closeness of association are captured.  

Table 2. Sample lattice built from one sentence 
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connec 1 1 1/2 1/3 1/4 1/5 1/6 1/7 

machin 0 1 1 1/2 1/3 1/4 1/5 1/6 

model 0 0 1 1 1/2 1/3 1/4 1/5 

interest 0 0 0 1 1 1/2 1/3 1/4 

expert 0 0 0 0 1 1 1/2 1/3 

referr 0 0 0 0 0 1 1 1/2 

capabl 0 0 0 0 0 0 1 1 

user 0 0 0 0 0 0 0 1 
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Similar ideas have been reported in information retrieval (IR) where co-occurrence 
statistics have been used for thesaurus construction [12] and for relevance feedback 
[13]. Distance-based collection and use of co-occurrence statistics have also been 
used at the character level for Japanese word segmentation [14]. We believe the 
utilization of link strength for enhancing user profiles is a new approach, integrates 
easily with the framework of the Connection Machine, and provides benefits over 
approaches that extract noun-phrases and require parsing. 

5.5   Profile Updates in the Connection Machine Workflow 

The initial user profiles in the system will be created based on the information 
provided in corporate and business databases, resumes and direct input from the users. 
While these initial profiles are not necessary for the system’s operation, they will 
reduce the number of referrals needed until a suitable Provider is found during the 
initial phases of the application.  

Once the system starts being used, the interest, expertise and referral profiles will 
be updated directly from the interactions as outlined in Table 3.  

The user will also be able to manually update and manage his/her profiles by 
adding relevant documents or keywords. The profile changes caused by a user’s 
interactions with the Connection Machine are visible in the profile section of the 
application as well and can be removed by users if they should choose the do so. 

These updates all affect the term and link weights in one or more user’s lattice-
based profile. For example, the TF-IDF weights of the terms in an added document 
are adjusted.  This could cause changes in the IDF values of terms that appear across 
multiple profiles. Also, if a deletion removes all information from a profile, then N, 
the number of profiles changes, and N also changes when a new profile is added.  
Adjustments such as these are not needed in typical stable document repositories. 

5.6   Profile Retrieval and Ranking 

As mentioned above, our approach to finding the best expert that matches a user's 
query is to match queries to user’s profiles.  We thus need to retrieve people whose 
expertise profiles are in some way similar to the query, and rank the profiles from 
most to least similar. We can also incorporate into this process the exclusion or 
reduction in ranking of users whose negative profiles match the query. 

We base the process on the terms and phrases in the query and in the profiles. First, 
all profiles with terms that intersect the query terms are retrieved. This is done for 
computational efficiency, since profiles that do not contain any of the terms in the 
query are obviously irrelevant.  Computation can be further optimized by sorting the 
returned set of profiles according to the number of terms and phrases that overlap 
with the query and cutting off the profiles which fall below a threshold.  Then, we 
calculate similarity between the query and each retained profile.  Recall that each term 
and phrase in the query carries a weight, as does each term and phrase in a profile.  
Based on these, we compute the similarity between a query and a profile by 
determining the cosine of the angle between the profile’s weight vector and the 
query’s weight vector [11]. Other similarity metrics could be used as well.  
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Table 3. Profile update specifications 

Situation Interest Profile Changes 
(Seeker) 

Expertise or Referral Profile 
Changes (Provider) 

Seeker submits a 
question 

Add question to interest profile 
regardless of the outcome (i.e. 
whether it’s answered, 
withdrawn, not answered). 

No update 

Provider refers a 
question 

No update No update until new provider (aka. 
referee) provides an answer.  If 
referee answers question, add to 
referral profile the conversation up to 
the point of referral. If referee refers 
to someone else, no update. 

Provider requests 
question clarification 

No update No update 

Seeker provides question 
clarification 

Clarification question and 
clarification answer are both 
added to interest profile. 

No update 

Provider supplies an 
answer 

No update No update until answer is accepted by 
Seeker  

Seeker accepts the 
answer 

No update Add entire conversation including 
any clarification or (other provider’s) 
referral comments to expertise 
profile. 

Provider declines to 
answer with “Don’t 
know the answer”  

No update Remove question from expertise 
profile. 

Provider declines to 
answer with “Too busy” 
or “Independence 
conflict” 

No update No update 

Provider or referrer 
checks “don’t send 
similar” box after 
receiving a question 

No update Add question to negative expertise 
profile. 

6   Future Work and Summary 

As next steps, we are planning to utilize the user models of the Connection Machine 
for tasks such as targeted content distribution to interested parties, routing content to 
experts for verification, personalization of portals, as well as the creation of 
communities of interest and expertise. By analyzing interest, expertise and referral 
profiles for the entire organization, gap analyses could be performed and areas of 
concentrated expertise or interest highlighted. The continuously changing weight and 
link distribution of the lattice allows capturing trends in interest and expertise.  

We are also interested in experimenting with different similarity metrics that take 
multiple profiles and feedback ratings into account and to evaluate the applicability of 
Case Retrieval Nets [15] for our purposes. We are also planning to look at the limited 
feedback mechanisms of the Connection Machine within the broader framework of a 
reputation system and as a means to motivate users to participate and share their 
knowledge [16, 17]. Other topics we consider worth pursuing are the link between 
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social networks and expertise location [7,18] and how the information in the lattice 
can be interpreted with Social Network Analysis techniques [19] to determine 
synonyms, antonyms and value ranges.  

In summary, the PricewaterhouseCoopers Connection Machine allows information 
seekers to enter their question in free text, finds knowledgeable colleagues, forwards 
the question to them, obtains the answer and sends it back to the seeker. In the course 
of this interaction, the Connection Machine unobtrusively updates and refines the 
interest, expertise and referral profiles of each user. Rather than just locating people, 
it extends the concepts of directory systems and expertise locators and acts as a virtual 
(adaptive) expertise provider and answers questions.  
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