
Automated Termination Analysis for Haskell:
From Term Rewriting to Programming

Languages�

Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René Thiemann
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Abstract. There are many powerful techniques for automated termi-
nation analysis of term rewriting. However, up to now they have hardly
been used for real programming languages. We present a new approach
which permits the application of existing techniques from term rewriting
in order to prove termination of programs in the functional language Has-
kell. In particular, we show how termination techniques for ordinary re-
writing can be used to handle those features of Haskell which are missing
in term rewriting (e.g., lazy evaluation, polymorphic types, and higher-
order functions). We implemented our results in the termination prover
AProVE and successfully evaluated them on existing Haskell-libraries.

1 Introduction

We show that termination techniques for term rewrite systems (TRSs) are also
useful for termination analysis of programming languages like Haskell. Of course,
any program can be translated into a TRS, but in general, it is not obvious how
to obtain TRSs suitable for existing automated termination techniques. Adapting
TRS-techniques for termination of Haskell is challenging for the following reasons:

• Haskell has a lazy evaluation strategy. However, most TRS-techniques ignore
such evaluation strategies and try to prove that all reductions terminate.

• Defining equations in Haskell are handled from top to bottom. In contrast
for TRSs, any rule may be used for rewriting.

• Haskell has polymorphic types, whereas TRSs are untyped.
• In Haskell-programs with infinite data objects, only certain functions are

terminating. But most TRS-methods try to prove termination of all terms.
• Haskell is a higher-order language, whereas most automatic termination tech-

niques for TRSs only handle first-order rewriting.

There are only few techniques for automated termination analysis of func-
tional programs. Methods for first-order languages with strict evaluation strat-
egy were developed in [5,10,16]. For higher-order languages, [1,3,17] study how
to ensure termination by typing and [15] defines a restricted language where all
evaluations terminate. A successful approach for automated termination proofs
for a small Haskell-like language was developed in [11]. (A related technique is
[4], which handles outermost evaluation of untyped first-order rewriting.) How-
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ever, these are all “stand-alone” methods which do not allow the use of modern
termination techniques from term rewriting. In our approach we build upon the
method of [11], but we adapt it in order to make TRS-techniques applicable.1

We recapitulate Haskell in Sect. 2 and introduce our notion of “termination”.
To analyze termination, our method first generates a corresponding termination
graph (similar to the “termination tableaux” in [11]), cf. Sect. 3. But in contrast
to [11], then our method transforms the termination graph into dependency
pair problems which can be handled by existing techniques from term rewriting
(Sect. 4). Our approach in Sect. 4 can deal with any termination graph, whereas
[11] can only handle termination graphs of a special form (“without crossings”).
We implemented our technique in the termination prover AProVE [9], cf. Sect. 5.

2 Haskell

We now give the syntax and semantics for a subset of Haskell which only uses cer-
tain easy patterns and terms (without “λ”), and function definitions without con-
ditions. Any Haskell-program (without type classes and built-in data structures)2

can automatically be transformed into a program from this subset [14].3 For ex-
ample, in our implementation lambda abstractions are removed by replacing every
Haskell-term “\ t1...tn → t” with the free variables x1, . . . xm by “f x1 . . . xm”.
Here, f is a new function symbol with the defining equation f x1...xm t1...tn = t.

2.1 Syntax of Haskell

In our subset of Haskell, we only permit user-defined data structures such as

data Nats = Z | S Nats data List a = Nil | Cons a (List a)

These data-declarations introduce two type constructors Nats and List of arity
0 and 1, respectively. So Nats is a type and for every type τ , “List τ” is also a
type representing lists with elements of type τ . Moreover, there is a pre-defined
binary type constructor → for function types. Since Haskell’s type system is
polymorphic, it also has type variables like a which stand for any type.

For each type constructor like Nats, a data-declaration also introduces its data
constructors (e.g., Z and S) and the types of their arguments. Thus, Z has arity
0 and is of type Nats and S has arity 1 and is of type Nats → Nats.

Apart from data-declarations, a program has function declarations. Here,
“from x” generates the infinite list of numbers starting with x and “take n xs”
returns the first n elements of xs. The type of from is “List Nats” and take has
type “Nats → (Lista) → (Lista)” where τ1 → τ2 → τ3 stands for τ1 → (τ2 → τ3).
1 Alternatively, one could simulate Haskell’s evaluation strategy by context-sensitive

rewriting (CSR), cf. [6]. But termination of CSR is hard to analyze automatically.
2 See Sect. 5 for an extension to type classes and pre-defined data structures.
3 Of course, it would be possible to restrict ourselves to programs from an even smaller

“core”-Haskell subset. However, this would not simplify the subsequent termination
analysis any further. In contrast, the resulting programs would usually be less read-
able, which would make interactive termination proofs harder.



Automated Termination Analysis for Haskell 299

from x = Consx (from (S x)) takeZ xs = Nil
taken Nil = Nil
take (S n) (Cons x xs) = Consx (take n xs)

In general, function declarations have the form “f �1 . . . �n = r”. The function
symbols f on the “outermost” position of left-hand sides are called defined. So the
set of function symbols is the disjoint union of the (data) constructors and the
defined function symbols. All defining equations for f must have the same num-
ber of arguments n (called f ’s arity). The right-hand side r is an arbitrary term,
whereas �1, . . . , �n are special terms, so-called patterns. Moreover, the left-hand
side must be linear, i.e., no variable may occur more than once in “f �1 . . . �n”.

The set of terms is the smallest set containing all variables, function symbols,
and well-typed applications (t1 t2) for terms t1 and t2. As usual, “t1 t2 t3” stands
for “((t1 t2) t3)”. The set of patterns is the smallest set with all variables and
terms “c t1 . . . tn” where c is a constructor of arity n and t1, . . . , tn are patterns.

The positions of t are Pos(t) = {ε} if t is a variable or function symbol. Other-
wise, Pos(t1 t2) = {ε}∪{1 π | π∈Pos(t1)}∪{2 π | π∈Pos(t2)}. As usual, we de-
fine t|ε = t and (t1 t2)|i π = ti|π. The head of t is t|1n where n is the maximal num-
ber with 1n ∈Pos(t). So the head of t= taken xs (i.e., “(taken) xs”) is t|11 = take.

2.2 Operational Semantics of Haskell

Given an underlying program, for any term t we define the position e(t) where the
next evaluation step has to take place due to Haskell’s outermost strategy. So in
most cases, e(t) is the top position ε. An exception are terms “f t1... tn tn+1... tm”
where arity(f) = n and m > n. Here, f is applied to too many arguments. Thus,
one considers the subterm “f t1 . . . tn” at position 1m−n to find the evaluation
position. The other exception is when one has to evaluate a subterm of f t1 . . . tn
in order to check whether a defining f -equation � = r will then become applicable
on top position. We say that an equation � = r from the program is feasible for
a term t and define the corresponding evaluation position e�(t) w.r.t. � if either

(a) � matches t (then we define e�(t) = ε), or
(b) for the leftmost outermost position π where head(�|π) is a constructor and where

head(�|π) �=head(t|π), the symbol head(t|π) is defined or a variable. Then e�(t)=π.

Since Haskell considers the order of the program’s equations, t is evaluated below
the top (on position e�(t)) whenever (b) holds for the first feasible equation � = r
(even if an evaluation with a subsequent defining equation would be possible at
top position). Thus, this is no ordinary leftmost outermost evaluation strategy.

Definition 1 (Evaluation Position e(t)). For any term t, we define

e(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1m−n π, if t = f t1 . . . tn tn+1 . . . tm, f is defined, m > n = arity(f),
and π = e( f t1 . . . tn )

e�(t) π, if t = f t1 . . . tn, f is defined, n = arity(f), there are feasible
equations for t (the first is “�=r”), e�(t) �=ε, and π=e(t|e�(t))

ε, otherwise

If t= takeu (from m) and s= take (Sn) (from m), then t|e(t) =u and s|e(s) = from m.
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We now present Haskell’s operational semantics by defining the evaluation re-
lation →H. For any term t, it performs a rewrite step on position e(t) using the
first applicable defining equation of the program. So terms like “xZ” or “takeZ”
are normal forms: If the head of t is a variable or if a symbol is applied to too
few arguments, then e(t) = ε and no rule rewrites t at top position. Moreover,
a term s = f s1 . . . sm with a defined symbol f and m ≥ arity(f) is a normal
form if no equation in the program is feasible for s. If head(s|e(s)) is a defined
symbol g, then we call s an error term (i.e., then g is not “completely” defined).

For terms t = c t1 . . . tn with a constructor c of arity n, we also have e(t) = ε
and no rule rewrites t at top position. However, here we permit rewrite steps
below the top, i.e., t1, . . . , tn may be evaluated with →H. This corresponds to the
behavior of Haskell-interpreters like Hugs which evaluate terms until they can be
displayed as a string. To transform data objects into strings, Hugs uses a function
“show”. This function can be generated automatically for user-defined types by
adding “deriving Show” behind the data-declarations. This show-function would
transform every data object “c t1 . . . tn” into the string consisting of “c” and of
show t1, . . . , show tn. Thus, show would require that all arguments of a term
with a constructor head have to be evaluated.

Definition 2 (Evaluation Relation →H). We have t →H s iff either
(1) t rewrites to s on the position e(t) using the first equation of the program

whose left-hand side matches t|e(t), or
(2) t = c t1 . . . tn for a constructor c of arity n, ti →H si for some 1 ≤ i ≤ n,

and s = c t1 . . . ti−1 si ti+1 . . . tn

For example, we have the infinite evaluation from m →H Consm (from (S m))
→H Consm (Cons (S m) (from (S m))) →H . . . On the other hand, the following
evaluation is finite: take (S Z) (from m) →H take (S Z) (Cons m (from (S m))) →H

Consm(takeZ (from (S m))) →H Consm Nil.
The reason for permitting non-ground terms in Def. 1 and 2 is that our ter-

mination method in Sect. 3 evaluates Haskell symbolically. Here, variables stand
for arbitrary terminating terms. Def. 3 introduces our notion of termination.

Definition 3 (H-Termination). A ground term t is H-terminating iff
(a) t does not start an infinite evaluation t →H . . . ,
(b) if t →∗

H (f t1 . . . tn) for a defined function symbol f , n < arity(f), and the
term t′ is H-terminating, then (f t1 . . . tn t′) is also H-terminating, and

(c) if t→∗
H (c t1 . . . tn) for a constructor c, then t1, . . . , tn are also H-terminating.

A term t is H-terminating iff tσ is H-terminating for all substitutions σ with
H-terminating ground terms (of the correct types). These substitutions σ may
also introduce new defined function symbols with arbitrary defining equations.

So a term is only H-terminating if all its applications to H-terminating terms
H-terminate, too. Thus, “from” is not H-terminating, as “fromZ” has an infinite
evaluation. But “take u (from m)” is H-terminating: when instantiating u and m
by H-terminating ground terms, the resulting term has no infinite evaluation.

To illustrate that one may have to add defining equations to examine H-ter-
mination, consider the function nonterm of type Bool → (Bool → Bool) → Bool:
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nonterm True x = True nonterm False x = nonterm (x True) x (1)

The term “nonterm False x” is not H-terminating: one obtains an infinite eval-
uation if one instantiates x by the function mapping all arguments to False. In
full Haskell, such functions can of course be represented by lambda terms and
indeed, “nontermFalse (\y → False)” starts an infinite evaluation.

3 From Haskell to Termination Graphs

Our goal is to prove H-termination of a start term t. By Def. 3, H-termination
of t implies that tσ is H-terminating for all substitutions σ with H-terminating
ground terms. Thus, t represents a (usually infinite) set of terms and we want to
prove that they are all H-terminating. Without loss of generality, we can restrict
ourselves to normal ground substitutions σ, i.e., substitutions where σ(x) is a
ground term in normal form w.r.t. →H for all variables x in t.

Regard the start term t = takeu (from m). A naive approach would be to
consider the defining equations of all needed functions (i.e., take and from) as re-
write rules. However, this disregards Haskell’s lazy evaluation strategy. So due to
the non-terminating rule for “from”, we would fail to prove H-termination of t.

Therefore, our approach starts evaluating the start term a few steps. This
gives rise to a so-called termination graph. Instead of transforming defining
Haskell-equations into rewrite rules, we then transform the termination graph
into rewrite rules. The advantage is that the initial evaluation steps in this graph
take the evaluation strategy and the types of Haskell into account and therefore,
this is also reflected in the resulting rewrite rules.

To construct a termination graph for the start term t, we begin with the graph
containing only one single node, marked with t. Similar to [11], we then apply
expansion rules repeatedly to the leaves of the graph in order to extend it by
new nodes and edges. As usual, a leaf is a node with no outgoing edges. We
have obtained a termination graph for t if no expansion rules is applicable to its
leaves anymore. Afterwards, we try to prove H-termination of all terms occurring
in the termination graph, cf. Sect. 4. We now describe our five expansion rules
intuitively using Fig. 1. Their formal definition is given in Def. 4.

takeu (from m)

takeZ (from m)

Nil

take (S n) (from m)

take (S n) (Cons m (from (S m)))

Consm (taken (from (S m)))

m taken (from (S m))

n S m

m

[u/Z] [u/(S n)]

aCase

b

Eval
c

Eval

d

Eval
e

f

ParSplit

g
h

Ins

i j
ParSplit

k

Fig. 1. Termination graph for “take u (from m)”

When constructing ter-
mination graphs, the goal
is to evaluate terms. How-
ever, t = takeu (fromm)
cannot be evaluated with
→H, since it has a vari-
able u on its evaluation
position e(t). The evalua-
tion can only continue if
we know how u is going
to be instantiated. There-
fore, the first expansion
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rule is called Case Analysis (or “Case”, for short). It adds new child nodes
where u is replaced by all terms of the form (c x1 . . . xn). Here, c is a constructor
of the appropriate type and x1, . . . , xn are fresh variables. The edges to these
children are labelled with the respective substitutions [u/(c x1 . . . xn)]. In our
example, u is a variable of type Nats. Therefore, the Case-rule adds two child
nodes b and c to our initial node a, where u is instantiated by Z and by (S n),
respectively. Since the children of a were generated by the Case-rule, we call
a a “Case-node”. Every node in the graph has the following property: If all
its children are marked with H-terminating terms, then the node itself is also
marked by a H-terminating term. Indeed, if the terms in nodes b and c are
H-terminating, then the term in node a is H-terminating as well.

Now the terms in nodes b and c can indeed be evaluated. Therefore, the
Evaluation-rule (“Eval”) adds the nodes d and e resulting from one evaluation
step with →H. Moreover, e is also an Eval -node, since its term can be evaluated
further to the term in node f. So the Case- and Eval -rule perform a form of
narrowing that respects the evaluation strategy and the types of Haskell.

The term Nil in node d cannot be evaluated and therefore, d is a leaf of the
termination graph. But the term “Consm (taken (from (S m)))” in node f may
be evaluated further. Whenever the head of a term is a constructor like Cons
or a variable,4 then evaluations can only take place on its arguments. We use a
Parameter Split-rule (“ParSplit”) which adds new child nodes with the argu-
ments of such terms. Thus, we obtain the nodes g and h. Again, H-termination
of the terms in g and h obviously implies H-termination of the term in node f.

The node g remains a leaf since its term m cannot be evaluated further for
any normal ground instantiation. For node h, we could continue by applying the
rules Case, Eval , and ParSplit as before. However, in order to obtain finite
graphs (instead of infinite trees), we also have an Instantiation-rule (“Ins”).
Since the term in node h is an instance of the term in node a, one can draw
an instantiation edge from the instantiated term to the more general term (i.e.,
from h to a). We depict instantiation edges by dashed lines. These are the only
edges which may point to already existing nodes (i.e., one obtains a tree if one
removes the instantiation edges from a termination graph).

To guarantee that the term in node h is H-terminating whenever the terms in
its child nodes are H-terminating, the Ins-rule has to ensure that one only uses
instantiations with H-terminating terms. In our example, the variables u and m
of node a are instantiated with the terms n and (S m), respectively. Therefore,
in addition to the child a, the node h gets two more children i and j marked
with n and (S m). Finally, the ParSplit-rule adds j’s child k, marked with m.

Now we consider a different start term, viz. “take”. If a defined function has
“too few” arguments, then by Def. 3 we have to apply it to additional H-ter-
minating arguments in order to examine H-termination. Therefore, we have a
Variable Expansion-rule (“VarExp”) which would add a child marked with
“take x” for a fresh variable x. Another application of VarExp gives “take x xs”.
The remaining termination graph is constructed by the rules discussed before.

4 The reason is that “x t1 . . . tn” H-terminates iff the terms t1, . . . , tn H-terminate.
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Definition 4 (Termination Graph). Let G be a graph with a leaf marked
with the term t. We say that G can be expanded to G′ (denoted “ G ⇒ G′”) if
G′ results from G by adding new child nodes marked with the elements of ch(t)
and by adding edges from t to each element of ch(t). Only in the Ins-rule, we
also permit to add an edge to an already existing node, which may then lead to
cycles. All edges are marked by the identity substitution unless stated otherwise.

Eval: ch(t)={t̃}, if t = (f t1 . . . tn), f is a defined symbol, n≥arity(f), t→H t̃

Case: ch(t) = {tσ1, . . . , tσk}, if t = (f t1 . . . tn), f is a defined function symbol,
n ≥ arity(f), t|e(t) is a variable x of type “d τ1...τm” for a type constructor d,
the type constructor d has the data constructors ci of arity ni (where 1 ≤
i ≤ k), and σi = [x/(ci x1 . . . xni)] for fresh pairwise different variables
x1, . . . , xni . The edge from t to tσi is marked with the substitution σi.

VarExp: ch(t) = {t x}, if t = (f t1 . . . tn), f is a defined function symbol,
n < arity(f), x is a fresh variable

ParSplit: ch(t)={t1, ..., tn} if t=(c t1...tn), c is a constructor or variable, n>0
Ins: ch(t) = {s1, . . . , sm, t̃}, if t = (f t1 . . . tn), t is not an error term, f is a de-

fined symbol, n ≥ arity(f), t = t̃σ for some term t̃, σ = [x1/s1, . . . , xm/sm].
Moreover, either t̃ = (x y) for fresh variables x and y, or t̃ is an Eval-node,
or t̃ is a Case-node and all paths starting in t̃ reach an Eval-node or a leaf
with an error term after traversing only Case-nodes.5 The edge from t to t̃
is called an instantiation edge.

If the graph already contained a node marked with t̃, then we permit to re-
use this node in the Ins-rule. So in this case, instead of adding a new child
marked with t̃, one may add an edge from t to the already existing node t̃.

Let Gt be the graph with a single node marked with t and no edges. G is a
termination graph for t iff Gt ⇒∗ G and G is in normal form w.r.t. ⇒.

If one disregards Ins, then for each leaf there is at most one rule applicable.6

However, the Ins-rule introduces indeterminism. Instead of applying the Case-
rule on node a in Fig. 1, we could also apply Ins and generate an instantiation
edge to a new node with t̃ = (takeu ys). Since the instantiation is [ys/(fromm)],
node a would get an additional child node marked with the non-H-terminating
term (from m). Then our approach in Sect. 4 which tries to prove H-termination
of all terms in the termination graph would fail, whereas it succeeds for the graph
in Fig. 1. Therefore, in our implementation we developed a heuristic for construc-
ting termination graphs which tries to avoid unnecessary applications of Ins
(since applying Ins means that one has to prove H-termination of more terms).

An instantiation edge to t̃ = (x y) is needed to get termination graphs for
functions like tma which are applied to “too many” arguments in recursive
calls.

tma (S m) = tma m m (2)

5 This ensures that every cycle of the graph contains at least one Eval -node.
6 No rule is applicable to leaves with variables, constructors of arity 0, or error terms.
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Here, tma has the type Nats → a. We obtain the termination graph in Fig. 2.
After applying Case and Eval , we result in “tmam m” in node d which is not
an instance of the start term “tman” in node a. Of course, we could continue with

tma n

tmaZ tma (S m)

tma m m

tmam m

m

[n/Z] [n/(S m)]

x y

y

a

Case

b c

Eval

d

Ins

f

Ins
g

i

e

ParSplit

h

Fig. 2. Termination graph for “tma n”

Case and Eval infinitely often, but to
obtain a termination graph, at some
point we need to apply the Ins-rule.
Here, the only possibility is to regard
t = (tma m m) as an instance of the
term t̃ = (x y). Thus, we obtain an ins-
tantiation edge to the new node e. As
the instantiation is [x/(tma m), y/m],
we get additional child nodes f and g

marked with “tmam” and m, respec-
tively. Now we can “close” the graph,
since “tmam” is an instance of the
start term “tman” in node a. So the
instantiation edge to the special term (x y) is used to remove “superfluous” ar-
guments (i.e., it permits to go from “tmam m” in node d to “tmam” in node
f). Thm. 5 shows that by the expansion rules of Def. 4 one can always obtain
normal forms.7

Theorem 5 (Existence of Termination Graphs). The relation ⇒ is nor-
malizing, i.e., for any term t there exists a termination graph.

4 From Termination Graphs to DP Problems

Now we present a method to prove H-termination of all terms in a termination
graph. To this end, we want to use existing techniques for termination analysis of
term rewriting. One of the most popular techniques for TRSs is the depen-
dency pair (DP) method [2]. In particular, the DP method can be formulated
as a general framework which permits the integration and combination of any
termination technique for TRSs [7]. This DP framework operates on so-called DP
problems (P , R). Here, P and R are TRSs that may also have rules � → r where r
contains extra variables not occurring in �. P ’s rules are called dependency pairs.
The goal of the DP framework is to show that there is no infinite chain, i.e., no
infinite reduction s1σ1 →P t1σ1 →∗

R s2σ2 →P t2σ2 →∗
R . . . where si → ti ∈ P

and σi are substitutions. In this case, the DP problem (P , R) is called finite. See
[7] for an overview on techniques to prove finiteness of DP problems.8

Instead of transforming termination graphs into TRSs, the information avail-
able in the termination graph can be better exploited if one transforms these

7 All proofs can be found at http://aprove.informatik.rwth-aachen.de/eval/Haskell/.
8 In the DP literature, one usually does not regard rules with extra variables on right-

hand sides, but almost all existing termination techniques for DPs can also be used
for such rules. (For example, finiteness of such DP problems can often be proved by
eliminating the extra variables by suitable argument filterings [2].)
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graphs into DP problems, cf. the end of this section. In this way, we also do
not have to impose any restrictions on the form of the termination graph (as
in [11] where one can only analyze certain start terms which lead to termina-
tion graphs “without crossings”). Then finiteness of the resulting DP problems
implies H-termination of all terms in the termination graph.

Note that termination graphs still contain higher-order terms (e.g., applica-
tions of variables to other terms like “x y” and partial applications like “takeu”).
Since most methods and tools for automated termination analysis only operate
on first-order TRSs, we translate higher-order terms into applicative first-order
terms containing just variables, constants, and a binary symbol ap for function
application. So terms like “x y”, “take u”, and “take u xs” are transformed into
the first-order terms ap(x, y), ap(take, u), and ap(ap(take, u), xs), respectively. As
shown in [8], the DP framework is well suited to prove termination of applicative
TRSs automatically. To ease readability, in the remainder we will not distinguish
anymore between higher-order and corresponding applicative first-order terms,
since the conversion between these two representations is obvious.

Recall that if a node in the termination graph is marked with a non-H-
terminating term, then one of its children is also marked with a non-H-termina-
ting term. Hence, every non-H-terminating term corresponds to an infinite path
in the termination graph. Since a termination graph only has finitely many nodes,
infinite paths have to end in a cycle. Thus, it suffices to prove H-termination for
all terms occurring in cycles resp. in strongly connected components (SCCs) of
the termination graph. Moreover, one can analyze H-termination separately for
each SCC. Here, an SCC is a maximal subgraph G′ of the termination graph
such that for all nodes n1 and n2 in G′ there is a non-empty path from n1 to n2
traversing only nodes of G′. (In particular, there must also be a non-empty path
from every node to itself in G′.) The termination graph for “takeu (fromm)” in
Fig. 1 has just one SCC with the nodes a, c, e, f, h. The following definition is
needed to extract dependency pairs from SCCs of the termination graph.

Definition 6 (DP Path). Let G′ be an SCC of a termination graph containing
a path from a node marked with s to a node marked with t. We say that this path
is a DP path if it does not traverse instantiation edges, if s has an incoming
instantiation edge in G′, and if t has an outgoing instantiation edge in G′.

So in Fig. 1, the only DP path is a, c, e, f, h. Since every infinite path has
to traverse instantiation edges infinitely often, it also has to traverse DP paths
infinitely often. Therefore, we generate a dependency pair for each DP path. If
there is no infinite chain with these dependency pairs, then no term corresponds
to an infinite path, i.e., then all terms in the graph are H-terminating.

More precisely, whenever there is a DP path from a node marked with s to a
node marked with t and the edges of the path are marked with σ1, . . . , σm, then
we generate the dependency pair sσ1 . . . σm → t. In Fig. 1, the first edge of the
DP path is labelled with the substitution [u/(S n)] and all remaining edges are
labelled with the identity. Thus, we generate the dependency pair

take (S n) (from m) → taken (from (S m)). (3)
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The resulting DP problem is (P , R) where P = {(3)} and R = ∅.9 Automated
termination tools can easily show that this DP problem is finite. Hence, the start
term “takeu (from m)” is H-terminating in the original Haskell-program.

Similarly, finiteness of the DP problem ({tma (S m) → tma m}, ∅) for the start
term “tma n” from Fig. 2 is also easy to prove automatically.

A slightly more challenging example is obtained by replacing the last take-rule
by the following two rules, where p computes the predecesor function.

take (S n) (Consx xs) = Consx (take (p (S n)) xs) p (S x) = x (4)

Consm (take (p (S n)) (from (S m))) to a

m take (p (S n)) (from (S m))

p (S n) S m

n m

f

ParSplit

g h

Ins

i

Eval
j

ParSplit

k l

Fig. 3. Subtree at node f of Fig. 1

Now the resulting termination graph can
be obtained from the graph in Fig. 1 by
replacing the subgraph starting with node
f by the subgraph in Fig. 3.

We want to construct an infinite chain
whenever the termination graph contains
a non-H-terminating term. In this case,
there also exists a DP path with first
node s such that s is not H-terminating.
So there is a normal ground substitu-
tion σ where sσ is not H-terminating either. There must be a DP path
from s to a term t labelled with the substitutions σ1, . . . , σm such that σ
is an instance of σ1 . . . σm and such that tσ is also not H-terminating.10

So the first step of the desired corresponding infinite chain is sσ →P tσ.
The node t has an outgoing instantiation edge to a node t̃ which starts an-
other DP path. So to continue the construction of the infinite chain in the
same way, we now need a non-H-terminating instantiation of t̃ with a nor-
mal ground substitution. Obviously, t̃ matches t by some matcher τ . But while
t̃τσ is not H-terminating, the substitution τσ is not necessarily a normal ground
substitution. The reason is that t and hence τ may contain defined symbols.

This is also the case in our example. The only DP path is a, c, e, f, h

which would result in the dependency pair take (S n) (from m) → t with t =
take (p (S n)) (from (S m)). Now t has an instantiation edge to node a with t̃ =
takeu (fromm). The matcher is τ = [u/(p (S n)), m/(S m)]. So τ(u) is not normal.

In this example, the problem can be avoided by already evaluating the right-
hand sides of dependency pairs as much as possible. So instead of a dependency
pair sσ1 . . . σm → t we now generate the dependency pair sσ1 . . . σm → ev(t). For
a node marked with t, ev(t) is the term reachable from t by traversing only Eval -
nodes. So in our example ev(p (S n)) = n, since node i is an Eval -node with an
9 Def. 11 will explain how to generate R in general.

10 To ease the presentation, we require that user-defined data structures (base types)
may not be “empty”. (But our approach can easily be extended to “empty” struc-
tures as well.) Then we may restrict ourselves to substitutions σ where all subterms
of σ(x) with base type have a constructor as head, for all variables x in s. This ensures
that for every Case-node in the DP path, one child corresponds to the instantiation
σ. To obtain a ground term tσ, we extend the substitution σ appropriately to the
variables in t that do not occur in s. These variables were introduced by VarExp.
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edge to node k. Moreover, ev(t) can also evaluate subterms of t if t is an Ins-
node or a ParSplit-node with a constructor as head. We obtain ev(S m) = S m
for node j and ev(take (p (S n)) (from (S m))) = taken (from (S m)) for node h.
Thus, the resulting DP problem is again (P , R) with P = {(3)} and R = ∅.

To see how ev(t) must be defined for ParSplit-nodes where head(t) is a vari-
able, we regard the function nonterm again, cf. (1). In the termination graph
for the start term “nonterm b x”, we obtain a DP path from the node with
the start term to a node with “nonterm (xTrue)x” labelled with the substi-
tution [b/False]. So the resulting DP problem only contains the dependency pair
“nontermFalsex → ev(nonterm (xTrue)x)”. If we would define ev(xTrue) =
xTrue, then ev would not modify the term “nonterm (xTrue)x”. But then the
resulting DP problem would be finite and one could falsely prove H-termination.
(The reason is that the DP problem contains no rule to transform any instance
of “xTrue” to False.) But as discussed in Sect. 3, x can be instantiated by ar-
bitrary H-terminating functions and then, “xTrue” can evaluate to any term.
Therefore, ev must replace terms like “xTrue” by fresh variables.

Definition 7 (ev). Let G be a termination graph with a node t.11 Then

ev(t)=

��������
�������

t, if t is a leaf, a Case-node, or a VarExp-node
x, if t is ParSplit-node, head(t) is a variable, and x is a fresh variable
ev(t̃), if t is an Eval-node with child t̃
t̃[x1/ev(t1), . . . , xn/ev(tn)], if t = t̃[x1/t1, . . . , xn/tn] and either

t is an Ins-node with the children t1, . . . , tn, t̃ or
t is a ParSplit-node, and t̃ = (c x1 . . . xn) for a constructor c

Our goal was to construct an infinite chain whenever s is the first node in a
DP path and sσ is not H-terminating for a normal ground substitution σ. As
discussed before, there is a DP path from s to t such that the chain starts with
sσ →P ev(t)σ and such that tσ and hence ev(t)σ is also not H-terminating. The
node t has an instantiation edge to some node t̃. Thus t = t̃[x1/t1, . . . , xn/tn]
and ev(t) = t̃[x1/ev(t1), . . . , xn/ev(tn)]. In order to continue the construc-
tion of the infinite chain, we need a non-H-terminating instantiation of t̃ with
a normal ground substitution. Clearly, if t̃ is instantiated by the substitution
[x1/ev(t1)σ, . . . , xn/ev(tn)σ], then it is again not H-terminating. However, the
substitution [x1/ev(t1)σ, . . . , xn/ev(tn)σ] is not necessarily normal. The prob-
lem is that ev does not perform those evaluations that correspond to instan-
tiation edges and to edges from Case-nodes. Therefore, we now generate DP
problems which do not just contain dependency pairs P , but they also contain
all rules R which might be needed to evaluate ev(ti)σ further. Then we obtain
sσ →P ev(t)σ →∗

R t̃σ′ for a normal ground substitution σ′. Since t̃ is again the
first node in a DP path, now this construction of the chain can be continued in
the same way infinitely many times. Hence, we obtain an infinite chain.

As an example, we replace the equation for p in (4) by the following two
defining equations:

p (S Z) = Z p (S x) = S (p x) (5)
11 To simplify the presentation, we identify nodes with the terms they are labelled with.
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In the termination graph for “takeu (fromm)” from Fig. 1 and 3, the node i

would now be replaced by the subtree in Fig. 4. So i is now a Case-node. Thus,
instead of (3) we obtain the dependency pair

take (S n) (from m) → take (p (S n)) (from (S m)), (6)

since now ev does not modify its right-hand side anymore (i.e., ev(p (S n)) =
p (S n)). Hence, now the resulting DP problem must contain all rules R that
might be used to evaluate p (S n) when instantiated by σ.

p (S n)

p (S Z) p (S (S x))

Z S (p (S x))

p (S x)

x

[n/Z] [n/(S x)]

iCase

m

Eval

n

Eval

o
p

ParSplit

q

Ins

r

Fig. 4. Subtree at node i of Fig. 3

So for any term t, we want to detect rules
that might be needed to evaluate ev(t)σ fur-
ther for normal ground substitutions σ. To
this end, we first compute the set con(t)
of those terms that are reachable from t,
but where the computation of ev stopped.
So con(t) contains all terms which might
give rise to further continuing evaluations
that are not captured by ev. To compute
con(t), we traverse all paths starting in t. If
we reach a Case-node s, we stop traversing
this path and insert s into con(t). Moreover, if we traverse an instantia-
tion edge to some node t̃, we also stop and insert t̃ into con(t). So in
the example of Fig. 4, we obtain con(p (S n)) = {p (S n)}, since i is now a Case-
node. If we started with the term t = take (S n) (from m) in node c, then we would
reach the Case-node i and the node a which is reachable via an instantiation
edge. So con(t) = {p (S n), takeu (from m)}. Finally, con also stops at VarExp-
nodes (they are in normal form w.r.t. →H) and at ParSplit-nodes whose head
is a variable (since ev already “approximates” their result by fresh variables).

Definition 8 (con). Let G be a termination graph with a node t. Then

con(t) =

������
�����

∅, if t is a leaf, a VarExp-, or a ParSplit-node with variable head
{t}, if t is a Case-node
{t̃} ∪ con(t1) ∪ . . . ∪ con(tn), if t is an Ins-node with the

children t1, . . . , tn, t̃ and an instantiation edge from t to t̃�
t′child of t con(t′), otherwise

Now we can define how to extract a DP problem dpG′ from every SCC G′ of the
termination graph. As mentioned, we generate a dependency pair sσ1 . . . σm →
ev(t) for every DP path from s to t labelled with σ1, . . . , σm in G′. If t =
t̃[x1/t1, . . . , xn/tn] has an instantiation edge to t̃, then the resulting DP problem
must contain all rules that can be used reduce the terms in con(t1)∪. . .∪con(tn).
For any term s, let rl(s) be the rules that can be used to reduce sσ for normal
ground substitutions σ. We will give the definition of rl afterwards.

Definition 9 (dp). For a termination graph containing an SCC G′, we define
dpG′ = (P , R). Here, P and R are the smallest sets such that
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• “sσ1 . . . σm → ev(t)” ∈ P and
• rl(q) ⊆ R,

whenever G′ contains a DP path from s to t labelled with σ1, . . . , σm, t = t̃[x1/t1,
. . . , xn/tn] has an instantiation edge to t̃, and q ∈ con(t1) ∪ . . . ∪ con(tn).

In our example with the start term “takeu (from m)” and the p-equations from
(5), the termination graph in Fig. 1, 3, and 4 has two SCCs G1 (consisting of the
nodes a, c, e, f, h) and G2 (consisting of i, n, p, q). Finiteness of the two DP
problems dpG1

and dpG2
can be proved independently. The SCC G1 only has the

DP path from a to h leading to the dependency pair (6). So we obtain dpG1
=

({(6)}, R1) where R1 contains rl(q) for all q ∈ con(p (S n)) = {p (S n)}. Thus,
R1 = rl(p (S n)). The SCC G2 only has the DP path from i to q. Hence, dpG2

=
(P2, R2) where P2 consists of the dependency pair “p (S (S x)) → p (S x)” (since
ev(p (S x)) = p (S x)) and R2 contains rl(q) for all q ∈ con(x) = ∅, i.e., R2 = ∅.
Thus, finiteness of dpG2

can easily be proved automatically.
For every term s, we now show how to extract a set of rules rl(s) such that

every evaluation of sσ for a normal ground substitution σ corresponds to a
reduction with rl(s).12 The only expansion rules which transform terms into
“equal” ones are Eval and Case. This leads to the following definition.

Definition 10 (Rule Path). A path from a node marked with s to a node
marked with t is a rule path if s and all other nodes on the path except t are
Eval - or Case-nodes and t is no Eval - or Case-node. So t may also be a leaf.

In Fig. 4, there are two rule paths starting in node i. The first one is i, m, o

(since o is a leaf) and the other is i, n, p (since p is a ParSplit-node).
While DP paths give rise to dependency pairs, rule paths give rise to rules.

Therefore, if there is a rule path from s to t labelled with σ1, . . . , σm, then rl(s)
contains the rule sσ1 . . . σm → ev(t). In addition, rl(s) must also contain all
rules required to evaluate ev(t) further, i.e., all rules in rl(q) for q ∈ con(t).13

Definition 11 (rl). For a node labelled with s, rl(s) is the smallest set with

• “sσ1 . . . σm → ev(t)” ∈ rl(s) and
• rl(q) ⊆ rl(s),

whenever there is rule path from s to t labelled with σ1, . . . , σm, and q ∈ con(t).

For the start term “takeu (fromm)” and the p-equations from (5), we obtained
the DP problem dpG1

= ({6}, rl(p (S n))). Here, rl(p (S n)) consists of

p (S Z) → Z (due to the rule path from i to o) (7)
p (S (S x)) → S (p (S x)) (due to the rule path from i to p), (8)

12 More precisely, sσ →∗
H q implies sσ →∗

rl(s) q′ for a term q′ which is “at least as
evaluated” as q (i.e., one can evaluate q further to q′ if one also permits evaluation
steps below or beside the evaluation position).

13 So if t = t̃[x1/t1, . . . , xn/tn] has an instantiation edge to t̃, then here we also include
all rules of rl(t̃), since con(t) = {t̃} ∪ con(t1) ∪ . . . ∪ con(tn). In contrast, for the
definition of dp in Def. 9 we only regard the rules rl(q) for q ∈ con(t1)∪. . .∪con(tn),
whereas the evaluations of t̃ are captured by the dependency pairs.
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as ev does not modify the right-hand sides of (7) and (8). Moreover, the require-
ment “rl(q) ⊆ rl(p (S n)) for all q ∈ con(Z) and all q ∈ con(S (p (S x)))” does not
add further rules. The reason is that con(Z)=∅ and con(S (p (S x)))={p (S n)}.
Now finiteness of dpG1

= ({6}, {(7), (8)}) is also easy to show automatically.
Finally, consider the following program which leads to the graph in Fig. 5.

f x = applyToZero f applyToZerox = xZ

This example shows that one also has to traverse edges resulting from VarExp
when constructing dependency pairs. Otherwise one would falsely prove H-termi-
nation. Since the only DP path goes from node a to f, we obtain the DP problem
({f x → f y}, R) with R = rl(y) = ∅. This problem is not finite (and indeed, “f x”
is not H-terminating). In contrast, the definition of rl stops at VarExp-nodes.

f x

applyToZero f applyToZerox

f xZ

f y Z

y

a

Eval

b

Ins

c

Eval

d

VarExp
e

ParSplit

Ins
f g

h

Fig. 5. Termination graph for “f x”

The example also illustrates that rl and dp
handle instantiation edges differently, cf. Foot-
note 13. Since there is a rule path from a to b, we
would obtain rl(f x) = {f x → applyToZero f} ∪
rl(applyToZerox), since con(applyToZero f) =
applyToZerox. So for the construction of rl we
also have to include the rules resulting from
nodes like c which are only reachable by instan-
tiation edges.14 We obtain rl(applyToZerox) =
{applyToZerox → z}, since ev(xZ) = z for a
fresh variable z. The following theorem states
the soundness of our approach.

Theorem 12 (Soundness). Let G be termination graph. If the DP problem
dpG′ is finite for all SCCs G′ of G, then all nodes t in G are H-terminating.15

While we transform termination graphs into DP problems, it would also be pos-
sible to transform termination graphs into TRSs instead and then prove termi-
nation of the resulting TRSs. However, this approach has several disadvantages.
For example, if the termination graph contains a VarExp-node or a ParSplit-
node with a variable as head, then we would result in rules with extra variables
on right-hand sides and thus, the resulting TRSs would never be terminating.
In contrast, a DP problem (P , R) with extra variables in P and R can still be
finite, since dependency pairs from P are only be applied on top positions in
chains and since R need not be terminating for finite DP problems (P , R).

5 Extensions, Implementation, and Experiments

We presented a technique for automated termination analysis of Haskell which
works in three steps: First, it generates a termination graph for the given start
14 This is different in the definition of dp. Otherwise, we would have R = rl(y)∪rl(f x).
15 Instead of dpG′ = (P , R), for H-termination it suffices to prove finiteness of (P�, R).

Here, P� results from P by replacing each rule f(t1, ..., tn) → g(s1, ..., sm) in P by
f �(t1, ..., tn)→g�(s1, ..., sm), where f � and g� are fresh “tuple” function symbols [2].
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term. Then it extracts DP problems from the termination graph. Finally, one uses
existing methods from term rewriting to prove finiteness of these DP problems.

To ease readability, we did not regard Haskell’s type classes and built-in data
structures in the preceding sections. However, our approach easily extends to
these concepts [14]. To deal with type classes, we use an additional Case-rule in
the construction of termination graphs, which instantiates type variables by all
instances of the corresponding type class. Built-in data structures like Haskell’s
lists and tuples simply correspond to user-defined types with a different syntax.
To deal with integers, we transform them into a notation with the constructors
Pos and Neg (which take arguments of type Nats) and provide pre-defined rewrite
rules for integer operations like addition, subtraction, etc. Floating-point num-
bers can be handled in a similar way (e.g., by representing them as fractions).

We implemented our approach in the termination prover AProVE [9]. It ac-
cepts the full Haskell 98 language defined in [12] and we successfully evaluated
our implementation with standard Haskell-libraries from the Hugs-distribution
such as Prelude, Monad, List, FiniteMap, etc. To access the implementation via a
web interface, for details on our experiments, and for the proofs of all theorems,
see http://aprove.informatik.rwth-aachen.de/eval/Haskell/.

We conjecture that term rewriting techniques are also suitable for termination
analysis of other kinds of programming languages. In [13], we recently adapted
the dependency pair method in order to prove termination of logic programming
languages like Prolog. In future work, we intend to examine the use of TRS-
techniques for imperative programming languages as well.
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