
The CL-Atse Protocol Analyser

Mathieu Turuani

Loria-INRIA, Vandoeuvre-lès-Nancy, France
turuani@loria.fr

Abstract. This paper presents an overview of the CL-Atse tool, an efficient and
versatile automatic analyser for the security of cryptographic protocols. CL-Atse
takes as input a protocol specified as a set of rewriting rules (IF format, produced
by the AVISPA compiler), and uses rewriting and constraint solving techniques
to model all reachable states of the participants and decide if an attack exists w.r.t.
the Dolev-Yao intruder. Any state-based security property can be modelled (like
secrecy, authentication, fairness, etc...), and the algebraic properties of operators
like xor or exponentiation are taken into account with much less limitations than
other tools, thanks to a complete modular unification algorithm. Also, useful con-
straints like typing, inequalities, or shared sets of knowledge (with set operations
like removes, negative tests, etc...) can also be analysed.

1 Introduction

Designing secure communication systems in open environments such as the Internet
is a challenging task, which heavily relies on cryptographic protocols. However, se-
vere attacks have been discovered on protocols even assuming perfect cryptographic
primitives. Also, a complete manual analysis of a security protocol is usually a very
difficult work. Therefore, many decision procedures have been proposed to decide se-
curity properties of protocols w.r.t. a bounded number of sessions [1,7,16,15] in the so
called Dolev-Yao model of intruder [13], the dominating formal security model in this
line of research (see [14] for an overview of the early history of protocol analysis). In
particular, among the different approaches the symbolic ones [15,10,12] have proved
to be very effective on standard benchmarks [11] and discovered new flaws on several
protocols.

The main design goals of CL-Atse1 are modularity and performance. These two fea-
tures proved crucial for i) easily extending the class of protocols that can be analysed
(modularity) and ii) obtaining results for a large number of protocol sessions (perfor-
mance). This appeared to be very useful for analysing protocols from the AVISPA [2]
project in which CL-Atse is involved since a few years (with OFMC [5], SATMC [3]
and TA4SP [6]), as well as for the RNTL Prouvé project that CL-Atse joined recently.
The CL-Atse tool can be freely used, either by binary download on the CL-Atse web
page2, or through on-line execution on the AVISPA web page3.

The protocol analysis methods of CL-Atse have their roots in the generic knowledge
deduction rules from casrul [10] and AVISPA. However, a lot of optimisations and

1 CL-Atse stands for Constraint-Logic-based ATtack SEarcher.
2 http://www.loria.fr/equipes/cassis/softwares/AtSe/
3 http://www.avispa-project.org/web-interface/

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 277–286, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://www.loria.fr/equipes/cassis/softwares/AtSe/
http://www.avispa-project.org/web-interface/

278 M. Turuani

major extensions have been integrated in the tool, like preprocessing of the protocol
specifications of extensions to manage the algebraic properties of operators like xor4 or
exponentiation. In practice, the main characteristics of CL-Atse are:

– A general protocol language: CL-Atse can analyse any protocol specified as a set of
IF rewriting rules (no restriction). The following figure shows the standard process
of protocol analysis using the AVISPA tools, from a specification in HLPSL (role-
based, same idea as strands) to any of the four tools available at the moment.

Spec. in IF format
 (rewriting rules) TA4SPSATMCOFMCCL−Atse

Spec. in HLPSL HLPSL2IF

– Flexibility and modularity: CL-Atse structure allows easy integration of new de-
duction rules and operator properties. In particular, CL-Atse integrates an optimised
version of the well-known Baader & Schulz unification algorithm [4], with mod-
ules for xor, exponentiation, and associative pairing. To our knowledge, CL-Atse
is the only protocol analysis tool that includes complete unification algorithms for
xor and exponentiation, with no limitation on terms or intruder operations.

– Efficiency: CL-Atse takes advantage of many optimisations, like simplification and
re-writing of the input specification, or optimisations of the analysis method.

– Expressive language for security goals: CL-Atse can analyse any user-defined state-
based property specified in AVISPA IF format.

Since protocol security is undecidable for unbounded number of sessions, the analysis
is restricted to a fixed but arbitrary large number of sessions (or loops, specified by the
user). Other tools provide different features. The closest to CL-Atse are:

The OFMC tool [5], also part of AVISPA, solves the same problem as CL-Atse except
that loops and sessions are iterated indefinitely. However, OFMC proposes a differ-
ent method to manage algebraic properties of operators: instead of hard-coding these
properties in the tool, a language of operator properties is provided to the user. Equal-
ity modulo theories is solved through modular rewriting instead of direct unification
with state-of-the-art algorithms for CL-Atse. However, since this language covers all
theories, termination is only obtained by specifying bounds on message depths and
number of intruder operations used to create new terms. Hence, completeness cannot
be ensured. CL-Atse does not provide such flexibility on properties, but it also does not
have any limitation for the theories it can handle (xor, exponentiation, etc...). Moreover,
thanks to modularity in the unification algorithm and in knowledge deduction rules, it
is quite easy to include new algebraic (or cryptographic) properties directly in the tool.
Also, CL-Atse seems to be much faster than OFMC (see Section 3.3).

The Corin-Etalle [12] constraint-based system, which improves upon one developed
by Millen & Schmatikov, relies on an expressive syntax based on strands and some
efficient semantics to analyse and validate security protocols. Here, strands are extended
to allow any agent to perform explicit checks (i.e. equality test over terms). This makes
a quite expressive syntax for modelling protocols, that is however subsumed by IF rules.
Moreover, to our knowledge no implementation for xor and exponential is provided.

4 We specially thank Max Tuengal who largely contributed to the integration of xor in CL-Atse.

The CL-Atse Protocol Analyser 279

2 The Internal of CL-Atse

We now describe how CL-Atse models protocols and states, and how these objects
are used in analysis methods. We start with term signature in CL-Atse used to model
messages sent by parties (honest or malicious):

T erm = Atom | Var | T erm.T erm | {T erm}s
T erm | {T erm}a

T erm

| inv(T erm) | T erm ⊕ T erm | Exp(T erm, Product)
Product = (T erm)±1 | (T erm)±1 × Product

Terms can be atoms, variables, concatenations (or pairing), and symmetric or asym-
metric encryption (marked by s or a). Also, inv(k) is the inverse of k for asymmetric
encryption5. The ⊕ and Exp(..) operators are presented in Section 3.1, and model the
xor and exponentiation operators.

The intruder capabilities in CL-Atse match the Dolev-Yao model [13], extended
for xor and exponentiation as in [8,9]. Following the formalism of [16,8,9], we write
Forge(E) for the infinite set of messages that the intruder can generate from a set
of ground terms E. In particular, the intruder can compose pairs, encryption, xor and
exponentiation terms, and decompose pairs, encryption (if possible), etc...

As usual, (ground) substitutions are (ground) term assignments to variables. See [9]
for a discussion about how to rewrite a protocol specification to avoid products as vari-
able values. Moreover, allowing agents to make tests of quadratic residuosity for the
exponential is an easy extension of CL-Atse planned for near future.

2.1 Protocol and System State in CL-Atse

For performance issues, various algorithms are implemented in CL-Atse to simplify
and optimise the input protocol specification, and also to guide the protocol analysis.
However, these methods require working on a protocol specification with some special
features. Listing these would be quite technical, but the most important ones are the
fact that all protocol steps and roles must be local to only one participant, and that CL-
Atse must eliminate all honest agents’ knowledge by converting them into a small set
of equality and inequality constraints over terms with global variables. This allows CL-
Atse to compute closures of the participant’s or intruder knowledge, unforgeable terms,
sets or facts, and to optimise each role instance accordingly (preprocessing). The way
CL-Atse converts an IF file is out of the scope of this paper.

An execution trace in CL-Atse is built over (protocol) steps and states, and represents
the list of state changes when running a list of steps, starting from the initial state. The
basic objects used by CL-Atse are defined as follows.

A system state in CL-Atse is a symbolic representation of an infinite number of “real”
(i.e. ground) states. Since honest agent’s states have been converted into constraints,
only the intruder state is relevant in the definition of states, here. Formally:

state = Subst, Sets, T oDec, Known
ToDec = (T erm, T erm)∗

Known = H(Var) � Known | D(T erm) � Known | ε
5 If k is a (random) term, then inv(k) exists but is unknown to every agent.

280 M. Turuani

with Subst a (partial) substitution, Sets a list of facts t ∈ set, with {t, set} ⊂ T erm,
saying that in this state the element t is present in the set named set, and ToDec a list
of opportunities of knowledge deductions: if (m, k) ∈ ToDec, then the intruder will
get m as soon as he will be able to forge k. Typically, a knowledge {m}s

k creates an
entry in ToDec if k in not known at the point {m}s

k is obtained. Finally, Known is a
list of elementary ’D’ecomposed knowledge D(t), and ’H’ypothesis H(v) (i.e. variable
constraints), ordered by creation time in the execution trace. For example:

Known = H(x) � H(y) � D({z}s
k) � H(z) � D(a) � D(b) � ε

means that the intruder knows {z}s
k, a, b but must forge the value of z from {a, b},

and the values of x and y from {{z}s
k, a, b}. We denote E|D the set of terms t such

that D(t) ∈ E. Naturally, a symbolic state as above models the infinite set of ground
states σ(Known|D, Sets) such that σ is a ground instance of Subst and σ(v) ∈
Forge(σ(F|D)), with Known = E � H(v) � F . The analysis methods of CL-Atse
use rewriting of symbolic states in order to filter or update the set of ground states that
it represents.

A protocol step in CL-Atse represents an elementary reaction of an agent: when receiv-
ing the message rcv, and provided that a list CtrList of constraints u = v or u �= v
over terms and a list SetT ests of constraints t ∈ set or t /∈ set over sets are satisfied,
the agent sends a message snd as a response and executes a list SetOperations of add
or remove operations over sets and set elements. That is:

step = iknows(rcv)& CtrList & SetT ests
⇒ iknows(snd)& SetOperations

Note that IF facts are converted into constraints over sets. The semantic of ground step
execution is defined as usual: given some intruder knowledge E, a populated list of
named sets, and a ground substitution σ, if σ(rcv) ∈ Forge(E), if σ(u) = σ(v) or
σ(s) �= σ(t) for any constraint u = v or s �= t in CtrList, and if σ(t) ∈ σ(set) (resp.
σ(t) /∈ σ(set)) for any test t ∈ set (resp. t /∈ set) in SetT ests, then σ(snd) is added
to E and all add or remove operations in SetOperations are performed modulo σ.

A role in CL-Atse is a tree-structured set of roles that captures the non-determinism of
the execution of IF rules. Formally:

role = Step(step, role) | Choice(role list) | EndRole

where Choice describes an agent’s choice point, i.e. from that point only one role in
role list may be run, like in A|B. Thanks to equality and inequality constraints, this
may model pattern matching. Moreover, thread creation is supported through tokens.
For example, A.(B||C) is modeled by 3 roles A, B, C where A send tok1 at its last
step and B and C wait for tok1 in their first steps. Same for confluence ((B||C).D),
with a pool of tokens.

A security property in CL-Atse is modeled as the negation of a list of attack states,
defined as follows:

attack_states = (iknows(rcv)& CtrList & SetT ests)∗

The CL-Atse Protocol Analyser 281

with the same definitions as for step. An attack is found when at least one ground
state of a symbolic system state satisfies the constraints of one of the attack states. This
definition of security failure is quite versatile since it allows the user to use any IF
facts (self-made or not) to define any property based on states adapted to his protocol.
Standard properties like secrecy or authentication are naturally supported and an imple-
mentation of temporal security properties is planned for very near future. For example,
fairness6 in a two-party contract-signing protocol may be coded by:

fairness_atk = (i, Alice, text) ∈ play_together & iknows(ctr(text))
& ctr(text) /∈ ctr_list(Alice)& Alice ∈ finished

with text a contract text, ctr(text) a term representing the valid signed contract, and
play_together, ctr_list(Alice) and finished user-defined facts representing the lists
of initiated sessions, contracts of Alice, and terminated agent’s roles. Similar for Alice
playing with an honest agent.

A protocol specification in CL-Atse is simply a set of instantiated roles (one for each
participant) plus an initial state and a set of attack states:

protocol = RoleList, InitState, attack_state

2.2 Protocol Simplifications and Optimisations

During the AVISPA project, it became increasingly clearer that two important ingredi-
ents that may contribute to the efficiency of the CL-Atse tool would be protocol simpli-
fication strategies and optimisation operations on the protocol specification. Therefore,
without neglecting the importance of efficiency for the analysis algorithm, some impor-
tant efforts were devoted to the two axes of protocol simplification and optimisation.

Protocol simplifications reduce the overall size of the protocol, and specifically the
number of steps, by merging as many steps together as possible, or at least marking
them to be executed as soon, or as late, as possible. A step marked to be run as soon as
possible will be run in any trace immediately after its parent step. Since these marks or
merges put very restrictive constraints on the step interleaving, they greatly reduce CL-
Atse computing time (the analysis is necessarily exponential in the number of unmarked
steps). However, CL-Atse can only take such decisions when it can automatically build
a proof that it would not void the insecurity of the protocol, i.e., that if the protocol was
flawed then necessarily at least one attack remains. To do so, CL-Atse builds various
protocol-dependant objects like a set of unforgeable terms (atoms, keys, etc.. that the
intruder cannot create in any execution). Then, given a protocol step, CL-Atse tests its
elements for possibilities of merging (or marking).

To do so, set tests and operations are checked for possibilities of being executed
as soon, or as late, as possible. For example, if set is a set name unforgeable by the
intruder, then an operation that removes the term t from set can be performed as soon
as possible when either there exists no set operation that add t′ to set′ or tests t′ ∈ set′ in
any step of other roles that may be run before this operation; or the operation is useless

6 It intuitively requires that whenever a participant obtains a valid contract, there is a way for
it’s partner to also obtain one.

282 M. Turuani

or impossible (similar tests). Similar criteria are evaluated for each set operation or test,
and for both as soon, or as late, as possible executions.

Also, all other step elements are tested in similar ways, as well as attack states: for
example, marking a step to be run as soon as possible requires that if any attack state
is validated, then it is also validated either before the previous step, or after the current
step if no constraints could prevent running this step. When all tests are successful, the
step is marked and another one is analysed.

Optimisations: Protocol optimisations aim at rewriting some parts of the protocol in
order to accelerate the search for attacks. The acceleration can be significant, but the
protocol structure can be changed. The idea is to track all possible origins of ciphertexts
that the intruder must send but cannot create himself (i.e. necessarily obtained from an
agent). By building an exhaustive list of origins for such terms, CL-Atse can reduce
the future work of the analysis algorithm by unifying these terms with each of their
possible origins and generate choice points accordingly. Analysis acceleration comes
from a reduction of possible redundancy in step execution. Moreover, this strategy also
fixes the moment when steps holding such cipher terms must be run in the analysis.
The same must also be done on the awaited sets that the intruder cannot create himself
(same idea). For example, if we have some protocol steps

step1 = iknows({m}k) ⇒
step2 = ... ⇒ iknows({m′}k′) ...
step3 = ... ⇒ iknows({m′′}k′′) ...

where CL-Atse computes that k is unforgeable by the intruder, and that step2 and step3
are the only origins of {m}k, then these steps may be replaced by:

step4 = Choice(step5, step6)
step5 = iknows(token1)& equal({m}k , {m′}k′) ⇒
step6 = iknows(token2)& equal({m}k , {m′′}k′′) ⇒
step7 = ... ⇒ iknows({m′}k′ , token1) ...
step8 = ... ⇒ iknows({m′′}k′′ , token2) ...

The big difference is that only atoms are now awaited in step5 and step6. This gives
us the chance to optimise their execution (when possible) by running these steps imme-
diately as soon as token1 or token2 is added to the intruder knowledge. This strategy
allows CL-Atse to analyse rapidly some protocols that it could not analyse otherwise.

3 The Analysis Method

As said before, the analysis algorithm implemented in CL-Atse follows the general
ideas developed in the AVISPA Project, that is, to symbolically execute the protocol
in any possible step ordering. We saw in the previous section some of the important
optimisations of CL-Atse for step interleaving above this generic method. Moreover, in
order to perform this exploration of all possible execution traces, the analysis algorithm
relies on two major components: a (generic) unification algorithm modulo the properties
of the operators, like xor or exponentiation, that provide all term-specific computations;

The CL-Atse Protocol Analyser 283

and the management of states and constraints when running a protocol step. This mod-
ular structure allowed us to code the tool extensions required by the AVISPA project
(like sets, properties, typing, etc..) in a direct and natural way. We now present the two
major components of CL-Atse and the analysis method.

3.1 Modular Unification (with Xor and Exponentiation)

The unification module provides a (generic) complete unification algorithm modulo the
algebraic or cryptographic properties of the CL-Atse operators (encryption, xor, exp,
pair, etc..), as well as related algorithms like term purification or normalisation. From
a general point of view, the problem that must be decided here is: given a (partial)
substitution σ and two terms u and v, generate a list of most general unifiers Mguσ

u,v ={
σ′

1, .., σ
′
p

}
of u and v that validate σ, i.e.:

∀σ′ ∈ Mguσ
u,v, σ′(u) = σ′(v) and σ′(Var) = σ′(σ(Var))

Since mgu(s) are used to generate new system states, a great care must be taken to
generate a list of mgu as small as possible. The latest implementation of CL-Atse man-
ages the properties of the xor operator, the exponentiation, and the associative concate-
nation. To manage these properties, the tool unifies terms thanks to an implementation
of an optimised version of the well-known Baader & Schulz unification algorithm [4],
which splits the unification problem into smaller unification problems, one for each the-
ory. Therefore, the unification algorithm is very modular, and we consider that it would
be reasonably difficult to add new operator properties to the previous ones. Currently,
we have:

The xor operator: Denoted ⊕, this is an associative (a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c) and
commutative (a ⊕ b = b ⊕ a) operator equipped with a unit element (a ⊕ 0 = a) and
nilpotent (a ⊕ a = 0);
The exponentiation: Denoted Exp(g, a), it represents ga in some fixed group of prime
order. Also, the product × on exponents models the multiplication in the corresponding
(abelian) multiplicative group. Properties include inverse (a×a−1 = 1), commutativity
(a × b = b × a), normalisation (Exp(Exp(g, M), N) = Exp(g, M × N)), ...
The associative concatenation: it represents the basic bit string concatenation, without
any header giving the splitting position: in this case, associativity models the chance (or
a risk) that an agent will not cut the concatenation correctly when parsing it. Naturally,
a non-associative pairing operator is also provided.

3.2 The Kernel: Running a Protocol Step

The second foundational element of the protocol analysis is the kernel module, which
aims at running a protocol step on a symbolic system state by adding new constraints,
reducing them to elementary constraints, testing their validity, etc... All these operations
are described as rewriting rules and follow carefully the IF semantics. For performance
issues all these rules are directly implemented in the tool as operations on constraints.
Therefore, adding new intruder deduction rules requires to implement them in the tool.
However, the recent extensions to algebraic properties proved that the tool is sufficiently

284 M. Turuani

modular to make such integration quite easy. In particular, the rewriting rules described
below correspond to matching in the tool very precisely.

Hypothesis reductions: We call non-reduced a hypothesis H(t) where t is not a vari-
able. This is the received message of a protocol step. Assume that s = (E � H(t) � F �
ε, td, set, σ) is a system state where t /∈ Var and F reduced already. Then, we reduce
H(t) depending on t with rewriting rules on E � H(t) � F � ε (and σ). For example:

– E � H(u, v) � F −→ E � H(u) � H(v) � F ;
– E � H(t) � F � D(t′) � G −→ σ′ (E � F � D(t′) � G) with σ′ ∈ Mguσ

t,t′;
– E � H({t}s or a

k) � F −→ E � H(t) � H(k) � F if k in not unforgeable;

These rules model respectively the creation of a pair, the redirection of a known mes-
sage, and the creation of a cipher. Also, similar but more complex rules allow us to
construct xor or exponentiation terms, by enumerating the possibilities available to an
adversary for constructing such terms, like building an xor by combining xor and non-
xor terms. If defined, σ′ is the new state’s substitution. These rules are naturally non-
deterministic (create a set of states), and are iterated until all variables are reduced.

Knowledge deductions: We increase Known with K(t), t ∈ T erm, for new non-
decomposed ’K’nowledge (sent message in a protocol step), and T (t) for a knowledge
being processed (i.e. ’T’emporary). Reducing an Known containing some K(t) is done
in two steps, similar to those for hypothesis. That is, the processing of a new knowledge
follows this scheme:

... � K(t) � ...
decompose K(t)−−−−−−−−−→ ... � T (t) � ...

analyse ToDec with t−−−−−−−−−−−−→ ... � D(t) � ...

The first set of rules decompose any K(t). For example:

– E � K(u, v) � F −→ E � K(u) � K(v) � F ; E � K(t) � F −→ E � T (t) � F ;
– E �K({m}s or a

k)�F −→ E �K(m)�T ({m}s or a
k)�H(k′)�F with k′ = inv(k)

(for asymmetric encryption) or k′ = k (for symmetric encryption);

These rules model respectively the decomposition of a pair, the fact that a term may
not be decomposable, and the decryption of a cipher. Rules in CL-Atse include vari-
ous optimisations and variations of the techniques described above (like state filtering
depending on key availability, ...). Moreover, rules for ⊕ or Exp are also included (to
get a from a ⊕ t, or g from Exp(g, M)). The second set of rules can analyse ToDec
to add or remove deduction opportunities depending on T (..). That is, assuming that
Known = E � T (t) � F , we:

– Add (m, k) to ToDec when t = {m}k;
– Remove {(m′

i, k
′
i)}i∈1..n from ToDec when we can reduce the hypothesis H(k′

1)�
.. � H(k′

n) � E � D(t) � F to some G such that D(t) is used at least once for each
k′

i, and create a new state with K(m′) � G. This is again non-deterministic. Also,
create a new state with E � D(t) � F , in case no k′

i may be computed.

These rules, too, are significantly optimised in CL-Atse. Moreover, the last rule guar-
antee that we won’t ever build k′ is a way that has already been tried before, which is
critical for tool performance.

The CL-Atse Protocol Analyser 285

Other operations: To run a protocol step, we need to perform other operations on states
than the two above, like adding (and validating) new equality or inequality constraints,
managing sets, etc.. Since they are quite straightforward and coded in a similar way as
the two above, they are not detailed here.

3.3 Search for Attacks

Using the previously described kernel module, we are now able to run a protocol step on
a system state and get the resulting set of new states. Therefore, we can easily explore
all possible runs of a protocol by iteratively running steps in any possible ordering,
starting from the initial state. Moreover, we reduce step interleaving by using the step
marking described in the simplification and optimisation Section 2.2. Finally, each time
a protocol step is run, we test the non-satisfiability of each attack state.

Performances: The analysis algorithm of CL-Atse gives very good performances in
practice, as shown in the small benchmark table that follows. Times are computing
times of the latest versions (feb. 20, 2006) of OFMC and CL-Atse, and protocol speci-
fications are taken from AVISPA. Note also that (2) is CL-Atse without some optimisa-
tions. The “Timeout” for QoS in that case is due to an explosion of the number of states.
Both binaries and on-line tool execution are available (see introduction for URLs).

Protocol Name Alg. theory Result OFMC CL-Atse CL-Atse(2)

ASW - Abort part Secrecy failure 3.94s 0.03s 0.16s
EAP with Archie method Safe 0.70s 0.07s 5.94s
EAP TTLS with CHAP Safe 1.27s 0.18s 0.19s
Fair Zhou-Gollmann Auth. failure Timeout 0.13s 0.13s
Fair Zhou-Gollmann (fixed) Safe 7.65s 4.57s 5.34
IKEv2 with MAC auth. - Exp. Safe 20.29s 7.62s 7.62s
Kerberos, cross-realm ver. - Exp. Safe 5.83s 0.42s 0.42s
Kerberos, forwardable tickets - Exp. Safe 15.40s 0.14s 0.15s
Purpose Built Keys protocol Auth. failure 0.35s 0.00s 0.00s
PEAP with MS-CHAP auth. Safe 14.25s 0.18s 0.18s
Next Steps In Signaling, QoS Safe 15.53s 0.86s Timeout
SET - Purchase Request Secrecy failure 1.17s 0.14s 0.15s
Diameter Session Init. Prot. Safe 1.80s 0.01s 0.02s
SPEKE, with strong pwd. - Exp. Safe 2.75s 0.04s 0.04s
SSH Transport Layer Prot. - Exp. Safe 33.96s 2.12s 2.16s

4 Conclusion

As mentioned before, the analysis algorithm implemented in CL-Atse proposes a solu-
tion to the NP-Complete protocol insecurity problem w.r.t. a bounded number of ses-
sions, and with (or without) the algebraic or cryptographic properties of operators, like
xor, exponentiation, or associative pairing. The methods of CL-Atse include many im-
portant optimisations for step interleaving, either by preprocessing or by optimised data
structures and deduction rules. This allows CL-Atse to reduce redundancies and limit

286 M. Turuani

the overall number of elementary actions needed at each step (performance). Moreover,
the tool proved to be sufficiently flexible to support major improvements and extensions
of the past few years (modularity). For example, extensions to inequalities, set opera-
tions, state-based properties, or typing required only little recoding of previous works.
Also, while the recent implementation of the Baader & Schulz unification required a
significant amount of work, the extension of CL-Atse with new operator properties,
like Cipher block chaining, is now largely facilitated, as well as planned extensions to
temporal security properties of heuristics for unbounded analysis.

References

1. R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes with
cryptographic functions. Theor. Comput. Sci., 290(1):695–740, 2003.

2. The AVISPA Team. The Avispa Tool for the automated validation of internet security pro-
tocols and applications. In Proceedings of CAV 2005, Computer Aided Verification, LNCS
3576, Springer Verlag.

3. A. Armando, L. Compagna. An Optimized Intruder Model for SAT-based Model-Checking
of Security Protocols. In Proceedings of the Workshop on Automated Reasoning for Security
Protocol Analysis (ARSPA 2004), ENTCS 125(1):91-108, 2005.

4. F. Baader and K.U. Schulz. Unification in the Union of Disjoint Equational Theories: Com-
bining Decision Procedures. In Journal of Symbolic Computing. 21(2): 211-243 (1996).

5. D. Basin, S. Mödersheim, L. Viganò. OFMC: A symbolic model checker for security proto-
cols. In International Journal of Information Security 4(3):181–208, 2005.

6. Y. Boichut, P.-C. Héam, O. Kouchnarenko. Automatic Verification of Security Protocols
Using Approximations. INRIA Research Report, October 2005.

7. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proceedings of the 28th
ICALP’01, LNCS 2076, pages 667–681. Springer-Verlag, Berlin, 2001.

8. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure for
protocol insecurity with xor. In Proceedings of LICS 2003, 2003.

9. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the Security of Pro-
tocols with Diffie-Hellman Exponentiation and Products in Exponents. In Proceedings of
the Foundations of Software Technology and Theoretical Computer Science (FSTTCS’03),
LNCS 2914, Springer-Verlag, December 2003.

10. Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security Protocols. In Pro-
ceedings of the Automated Software Engineering Conference (ASE’01). IEEE CSP, 2001.

11. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0,
17. Nov. 1997. URL: www.cs.york.ac.uk/~jac/papers/drareview.ps.gz.

12. R. Corin and S. Etalle. An improved constraint-based system for the verification of security
protocols. In SAS, LNCS 2477:326–341, Springer-Verlag, 2002.

13. D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

14. C. Meadows. Open issues in formal methods for cryptographic protocol analysis. In Pro-
ceedings of DISCEX 2000, pages 237–250. IEEE Computer Society Press, 2000.

15. J. Millen and V. Shmatikov. Symbolic protocol analysis with products and Diffie-Hellman
exponentiation. In Proceedings of the 16th IEEE Computer Security Foundations Workshop
(CSFW’03), pages 47–61, 2003.

16. M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Sessions is
NP-complete. In 14th IEEE Computer Security Foundations Workshop (CSFW-14), pages
174–190, 2001.

www.cs.york.ac.uk/~jac/papers/drareview.ps.gz

	Introduction
	The Internal of CL-Atse
	Protocol and System State in CL-Atse
	Protocol Simplifications and Optimisations

	The Analysis Method
	Modular Unification (with Xor and Exponentiation)
	The Kernel: Running a Protocol Step
	Search for Attacks

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

