Efficient Enforcement of Security Policies
Based on Tracking of Mobile Users*

Vijayalakshmi Atluri and Heechang Shin

MSIS Department and CIMIC, Rutgers University, USA

{atluri, hshin}@cimic.rutgers.edu

Abstract. Recent advances to mobile communication, Global Position-
ing System (GPS) and Radio Frequency Identification (RFID) technolo-
gies have propelled the growth of a number of mobile services. These
require maintaining mobile object’s location information and efficiently
serving access requests on the past, present and future status of the mov-
ing objects. Moreover, these services raise a number of security and pri-
vacy challenges. To address this, security policies are specified to ensure
controlled access to the mobile user’s location and movement trajectories,
their profile information, and stationary resources based on the mobile
user’s spatiotemporal information. Considering the basic authorization
specification (subject, object, privilege), in a mobile environment, a mov-
ing object can be a subject, an object, or both. Serving an access request
requires to search for the desired moving objects that satisfy the query,
as well as enforce the security policies.

Often, enforcing security incurs overhead, and as a result may degrade
the performance of a system. To alleviate this problem, recently Atluri
and Guo have proposed an unified index structure, “TPR-tree, to or-
ganize both the moving objects and authorizations specified over them.
However, the STPR-tree is not capable supporting security policies based
on tracking of mobile users. In this paper, we present an index structure,
called STPF _tree, which maintains past, present and future positions of
the moving objects along with authorizations by employing partial per-
sistent storage. We demonstrate how the SEF¥-tree can be constructed
and maintained, and provide algorithms to process two types of access
requests, including moving object requests by stationary subjects such
as locate and track, and stationary object requests by moving subjects.

1 Introduction

Recent advances to mobile communication, Global Positioning System (GPS)
and Radio Frequency Identification (RFID) technologies have propelled the
growth of a number of mobile services. Location-based service is one such exam-
ple, which aims at delivering personalized services to mobile customers. These
include: providing nearby points of interest based on the real-time location of
the mobile customer, advising of current conditions such as traffic and weather,

* This work is supported in part by the National Science Foundation under grant
11S-0242415.

E. Damiani and P. Liu (Eds.): Data and Applications Security 2006, LNCS 4127, pp. 237-251] 2006.
© IFIP International Federation for Information Processing 2006

238 V. Atluri and H. Shin

deliver personalized, location-aware, and context-sensitive advertising based on
mobile customer profiles and preferences, or provide routing and tracking infor-
mation. Delivery of these services requires maintaining mobile object’s location
information as well as the preference profiles of the customers carrying these
mobile objects. In addition, it requires efficient processing of access requests to
find the past, present and future status of the moving objects.

Since effective delivery of a mobile service may need to locate and track a
mobile customer, and gain access to his/her profile, it raises a number of secu-
rity and privacy challenges. Location information has the potential to allow an
adversary to physically locate a person. As such, wireless subscribers carrying
mobile devices have legitimate concerns about their personal safety, if such in-
formation should fall into the wrong hands. Moreover, services such as targeted
advertising may deliver the service based on the mobile customers’ profile and
preferences. As such, privacy of mobile users can be compromised if the sensitive
profile information of the mobile users is revealed to unintended users. There-
fore, it is important that the sensitive profile information is revealed only on the
need-to-know basis. In addition to the privacy concerns mentioned above, there
are a number of applications that call for securing resources based on the crite-
ria of mobile objects. These include context (location)-sensitive access control,
and ubiquitous computing environment, where access is permitted based on the
location of the subjects/objects during a specific time.

In summary, in a mobile environment, there are a number of applications
that require enforcing security policies to provide controlled access to the mobile
user profiles, to their current location and movement trajectories, to mobile
resources, stationary resources based on the user’s spatiotemporal information.
Thus, an appropriate access control mechanism must be in place to enforce the
authorization specifications reflecting the above security and privacy needs.

Traditionally, access policies are specified as a set of authorizations, where
each authorization states if a given subject possesses privileges to access an ob-
ject. Considering the basic authorization specification (subject, object, privilege),
in a mobile environment, a moving object can be a subject, an object, or both.
Access requests in such an environment can typically be on past, present and
future status of the moving objects [12]. Serving an access request requires to
search for the desired moving objects that satisfy the query, as well as enforce
the security policies.

Often, enforcing security incurs overhead, and as a result may degrade the
performance of a system. One way to alleviate this problem and to effectively
serve access requests, is to efficiently organize the mobile objects as well as autho-
rizations. Towards this end, recently Atluri and Guo [3] have proposed a unified
index structure called STPR-tree in which authorizations are carefully overlaid
on a moving object index structure (TPR-tree), based on their spatiotemporal
parameters. One main limitation of the STPR-tree is that it is not capable of
maintaining past information. As a result, it cannot support queries based on
past location and security policies based on tracking of mobile users.

Efficient Enforcement of Security Policies 239

In this paper, we present an index structure, called SPPF-tree, which
maintains past, present and future positions of the moving objects along with
authorizations by employing the partial persistent storage. In particular, we build
on the concepts of the RFPF-tree [4] and overlay authorizations suitably on
the nodes of the index tree. Essentially, a partial persistent structure keeps all
past states of the data being indexed, but updates only the newest version. We
demonstrate how the SPPF-tree can be constructed and maintained, and pro-
vide algorithms to process access requests. Specifically, we support two types of
access requests: requests for moving objects by stationary subjects and requests
for stationary objects by moving subjects. The first type of requests, in addition
to retrieving the moving objects in a specific spatiotemporal region, allow re-
trieving the location of the moving objects as well as their trajectories. As such
our model would support security policies based on tracking of moving objects.

This paper is organized as follows. In section 2] we present our moving object
authorization model. We present the preliminaries in section [l In section [we
present our proposed novel unified index structure, the STFF-tree and illustrate
our approach and strategy to overlay authorizations on top of the R tree.
In this section, we also describe how access requests are evaluated. Related work
is presented in section Bl In section [l we conclude the paper by providing some
insight into our future research in this area.

2 Moving Object Authorization Model

In this section, we introduce an authorization model for moving object data,
which is an extension of the model proposed in [3]. In a moving object environ-
ment, authorization specifications should be capable of expressing access control
policies based on spatiotemporal attributes of both subjects and objects.

Definition 1 (Authorization). An authorization « is a 4 tuple (ce,ge,p, T),
where ce is a credential expression denoting a set of subjects, ge is a object
expression denoting a set of objects, p is a set of privilege modes, and T is a
temporal term.

The formalism to specify ce,ge and 7 has been developed in [5]. Credential
expression ce can be used to specify a set of subjects such that they are associated
with (i) a set of spatiotemporal and/or other traditional credential attributes,
(ii) a set of subject identifiers, or (iii) a combination of both. In the same way,
object expression ge can be used to specify a set of objects such that they (i)
are associated with a set of spatiotemporal and/or other types of attributes,
(ii) a set of object identifiers, or (iii) a combination of both. Note that the set
of subjects and objects denoted by ce and ge can be moving objects. To avoid
confusion, from now on, we denote the objects specified in the authorization as
auth-objects (stands for authorization objects). 7 can be a time point, a time
interval or a set of time intervals.

Our model supports not only read, write, and execute privileges for tradi-
tional auth-objects but also viewing and compose for moving objects. We sup-
port three viewing privileges: View, Locate, and Track privileges allow subjects

240 V. Atluri and H. Shin

to access a moving object(s), to read the location or trajectory information of
a moving object(s) in the authorized spatiotemporal region, respectively. Com-
pose privileges allow subjects to write information on the auth-objects. In the
following, we present some examples of security policies.

— Policy 1: A mobile customer is willing to reveal his personal profile infor-
mation to a merchant only during the evening hours, and while he is close to
the shopping mall. In this case, only the auth-object (customer) is a moving
object and this policy is based on auth-object’s spatiotemporal attributes.

— Policy 2: An employee is allowed to update certain company data only
during “office hours” and while “in the office.” Note that only the subject
(employee) is a moving object. Also note that the policy is based on the
subject’s spatiotemporal attributes.

— Policy 3: An airport security official can access the trajectory information
of travelers in the airport only while he is on-duty (i.e., during 11pm-7am).
In this case, both the subject and the auth-objects are moving objects, and
the policy is based on the spatiotemporal attributes of both subject and
auth-object.

— Policy 4: A FBI agent can access the current location and trajectory in-
formation of a truck with id 325. Note that although the subject and the
auth-object are moving objects, the subject is allowed to access the informa-
tion regardless of his location and time. In this case, the policy is based on the
identifiers of both subject (FBI agent) and auth-object (truck with id 325).

— Policy 5: A police office in Newark, NJ can access only the dispatched patrol
cars from the Newark area. Note that only auth-objects are moving objects.
Also, the policy is specified on two types of auth-objects: object identifiers
(patrol cars from Newark police station) and spatiotemporal region.

The above policies can be specified as the following authorizations.

— ag=(merchant (i), {profile(i)Arectangle(j)=(5,6,1,2)A[5pm,9pm]},locate)

— ag=({emp(i)A rectangle(j)=(3,5,1,5)A[9am,5pm]},{profile(j)}, update)

— az={{security official(i) A rectangle(j)=(1,4,3,4) A [9am, 5pm)]},
{travelers(i) A rectangle(j)=(100,50,30,30) A [current time]}, track)

— oy=(FBI agent(¢), truckid(j)=325, track)

— as=({dispatch department(i) A office location(j)="Newark’}, {patrol cars
(k)Arectangle(1)=(10,50,30,30) A dispatched from(k) = 'Newark’}, track)

3 Preliminaries

In this section, we present the partial persistence framework and review the
RPPF _tree [4], a moving object index that maintains not only the present and
anticipated future positions of moving objects, but also their past positions.

Representation of Moving Objects: Let the set of moving objects be
O={o01,...,0,}. In the d-dimensional space, objects are specified as points
which move with constant velocity © = {v1,v2,...,v4} and initial location

Efficient Enforcement of Security Policies 241

b t te+tH

Fig.1. The Time Parameterized Fig. 2. The tpbr Hierarchy
Bounding Rectangle (tpbr)

Z = {x1,22,...,24}. The position Z(t) of an object at time t(t > t3) can
be computed through the linear function of time, Z(t) = Z(to) + v(t — to)
where ¢ is the initial time, and Z(#¢) the initial position. Considering a two-
dimensional space, a moving object o; moving in (z, y) space can be represented
as 0; = ((w4,v4,), (Yirvi,))-

Time Parameterized Bounding Rectangle (ipbr): Given a set of mov-
ing objects O = {o1,...,0,} in the time interval [to,to + 6] in (z,y,t) space,
the tpbr of O is a 3-dimensional bounding trapezoid which bounds all the
moving objects in O during the entire time interval [to,to + 6t]: tpbr(O) =
{(=", 279", y™), (U;,v;,vz,v;)} where Vi € {1,2,...,n}, 25 = min;{z;(to)},
2 = mazi{zi(to)}, vy~ = min{yi(to)}, v = mazi{yi(to)}, v, = min{v,},
v = max;{v;, }, 11'?; = mini{v;, }, U; = max;{v;,}.

Time Horizon (H): Given a moving object, it is unrealistic to assume that its
velocity remains constant. Therefore, the predicted future location of a object
specified as a linear function of time becomes less and less accurate as time
elapses [6]. To address this issue, a time horizon H is defined, which represents
the time interval during which the velocities of the moving objects assumed to be
the same. Figure [l shows how tpbr bounds the trajectory of two moving objects

o1 and o2 in [tg, to + H].

The Tree Structure: Given a set of ¢pbrs, they can be organized in a hier-
archical structure. In figure 2 tpbr C encloses tpbrs A and B. These three can
be organized as a hierarchical structure with A and B being the children of C.
Essentially, at the bottom-most level of the hierarchy, a set of moving objects
could be grouped to form tpbrs. Each tpbr of the next higher level is the bound-
ing tpbr of the set of tpbrs of all of its children. The root of the hierarchy is thus
the bounding tpbr covering all its lower level tpbrs in a recursive manner.

The Partial Persistence Framework: Partial persistence is a data structure
that keeps all past states of the data being indexed, but applies updates only to
the newest version. It is based on the following important concepts.

— Evolution of Index Nodes and Data Entry: In order to be transformed
to a partially persistent structure, each index (leaf or index) node and data
entry (moving object) include two additional fields for maintaining the evo-
lution of the index records: insertion time and deletion time. These are de-
noted as N.insertionTime and N.deletionT'ime for node N. If a new moving

242 V. Atluri and H. Shin

object is available and captured at time ¢y, its insertion time is set to ¢y and
deletion time is set to co. When the object is logically deleted from the index
at time tg4, its deletion time is changed from oo to t4. The same rule applies
to index nodes. A node or a data entry is said to be dead if its deletion time
is less than oo, otherwise it is said to be alive.

— Time Split: When an update (insertion or deletion) occurs at a node N, it
may result in structural changes if it becomes underfull or overfull. If this is
the case, a time-split occurs to N. The time-split on N at time ¢ is performed
by copying all alive entries in NV at ¢t to a new leaf node L and timestamp of
both L and those copied entries are set to [t, 00). In addition, the deletion
time of N is set to ¢, and N is considered dead. Then, the new node L is
investigated further in order to incorporate it into the tree. Essentially, three
different cases may arise: (i) split: If L is overfull, split it into two nodes and
then insert these two nodes into the tree. (ii) merge: If L is underfull, merge it
with another alive node. (iii) no change: If L is neither overfull or underfull,
insert it directly into the tree. After the structural change, the tpbr of the
parent node may need to be updated accordingly and the described process
may be repeated up to the root node. If the root node is time-split at time
t, a pointer to the new alive node together with timestamp [t, o) is added
to a special root array that is stored in the main memory [4].

Note that if the tree is constructed at tg and time split for the alive root
element of the root array occurs at {t1,ta,...,t,}, each root element in the
root array is associated with time interval [to,t1), [t1,t2), .- ., [tn—1,%n), and
[tn,00). The associated time interval for each root element represents the
valid structure of the tree during those time intervals. Thus, if we want to
know the status of the tree at time ¢, we simply need to find a root element
r from the root array such that the time interval of r includes .

In the following, we explain the concept of time-split, root array, dead and
alive nodes by taking a concrete example. Consider a tree with a node that can
hold 5 data entries. Obviously, the node is considered underfull if the number
of data entries is less than 2, and overfull if the number of data entries is more
than 5. Observe that the dead nodes are shaded in figures.

— Time interval ¢ = [0, 4]: Moving objects 01, 02, and o3 are inserted into
the root node at t=0: the insertion time and deletion time of all these objects
are set to [0,00). Then at t = 2 and 3, 04 and o5 are inserted, and, thus, their
insertion time and deletion times are [2,00) and [3,00), respectively. At ¢t =
4, 0g is inserted to the root node N, which becomes overfull. So, time split
occurs. A new leaf node L with insertion and deletion time [4, 00) is created
and all the alive data entries (o1, ...,06) in the root node are copied there
with insertion and deletion times as [4, 00). Because L is also overfull, it is
split into two nodes, which are inserted into the tree. A new root entry is
added, forming a root array. The previous root’s deletion time is set to 4,
representing it as a dead node, and the time interval of the newly created
root is set to [4,00), as shown in Figure [3

Efficient Enforcement of Security Policies 243

Root Array

[0.4)| 4.2 Root Array
il]
COt node

0, a, Oy .O‘ 05 (8 | & ‘
04 | [04) [04) | 124 | [3.4) O | 02| 05 | 04| O |46 |4 ‘ ‘
Sl Nodes of L | 0.4) | (04) | 04) | 2.4) | 134)
i Node L,
H merged with
| i Node L, | |- the new node
o | o o@.\ ‘ 0 o | o ‘ ; o o] o ‘ oo oo o
= B) ety e | (0 | 45 | 19) i) L) | 18:0)| 156) | 6.)
Fig. 3. The Index Structure at time 4 Fig. 4. The Index Structure at time 6

— Time interval t = [5, 6]: At t = 5, 09 is deleted and o7 is inserted. Thus,
the deletion time of oy is set to 5, and o7 is inserted in the tree with the
insertion and deletion times [5, 00). Then, at t = 6, o3 and oy are deleted. So,
deletion time of these objects are set to 6. Because the deletion of o3 results
in the underfull of the node L; that stores o3, a time split occurs: another
new node K is created and alive entry o; is copied there. Since newly created
node K is underfull, it is merged with its neighboring alive node Ls. The
deletion time of the node L; is set to 6, representing that Lq is dead. The
resultant data structure is shown in figure [l

When update occurs, the resulting trajectory of a moving object may consist
of disconnected and slightly incorrect segments because at the insertion of the
object, the predicted future positions can be different from the actual positions.
Therefore, during update, the last-recorded trajectory segment of an object needs
to be updated. It may be stored in more than one leaf node because the leaf
node in question may have been time split a number of times since the previous
updates [4]. RPP¥-tree corrects the last-recorded trajectory segment by visiting
all leaf nodes that contain copies of the segment and also tightens the tpbr
accordingly. For example, in figure[d] suppose the actual location of o3 turns out
to be different from the predicted location during update (deletion). Then, after
setting the deletion time of o3 as 6, all the nodes that include the trajectory of
o3 since the last update (insertion of o3 at ¢ = 3) are updated to point the actual
location of o3 correctly. The first root element and the node L is such a case.

4 The SPPF_Tree

In this section, we present our proposed unified index, the SPP¥ -tree that indexes
authorizations as well as the moving objects by capturing their past, present,
and future locations. As a result, we can support authorizations based on locate
and track privileges.

4.1 Authorization Overlaying

Our approach is to first construct a RFPF-tree index for moving objects,
and then overlay authorizations on top of each node of the index by carefully

244 V. Atluri and H. Shin

examining the spatiotemporal extents of both the node and the authorizations.
The resulting tree is the STPF-tree. We denote the spatiotemporal extent of an
authorization a by a". In other words, z-axis interval = [a.zp, a.x¢], y-axis in-
terval = [a.yp, a.y.], and t-axis interval = [a.7p, a.7.] where a.zp, @2, a.yp and
a.y. denote the spatiotemporal extent specified by ce or ge represented by the
lower and upper bounds in the z and y axes, respectively, and [a.73, @.7.] denote
the time interval during which « is valid. Also, we denote the spatiotemporal
extent (tpbr) of a node N by N©.

An authorization « is said to be subject-based authorization, if o is computed
from a.ce. Similarly, if o is from a.ge, it is said to be an object-based autho-
rization. In other words, in the former case, subjects are the moving objects and
in the latter case, objects are the moving objects. In our tree, we are capable
of overlaying only if the authorization is specified based on the spatiotemporal
extent of ce or ge, but not both. In addition, we assume that a” is a contiguous
spatiotemporal region without losing any generality because each non-continuous
spatiotemporal region can be sliced to form a single contiguous region.

A node of SPPF_tree is similar to that of RPFF-tree except that it includes
two pointers that point to a set of subject-based authorizations (ag) and a set
of object-based authorizations («p) overlaid on the node.

The overlaying strategy first selects the root nodes from the root array such
that the root node’s alive time interval is overlapped with the authorization’s
time interval. Then, for each selected root node r, it traverses the tree recursively
starting from the root node r to the leaf level in a way that for each node N in
the traversal path, a” is compared with N7. All the possible scenarios for this
comparison are as follows:

— Case 1: If the spatiotemporal extent of « fully encloses that of the node N,
we will stop traversing and overlay o on N. This is because, if a subject is al-
lowed to access objects within a certain spatiotemporal region, it is allowed to
access objects in the subregion of that [3]. (If alphag.ce (alphao.ge) points to
a combination of spatiotemporal region and a set of subjects (auth-objects),
we can exclude unauthorized subjects (auth-objects) by post-processing the
query result when we evaluate the query.) After overlaying an authorization
on a node, it is not necessary to overlay the same authorization on any of
its descendents.

— Case 2: If the spatiotemporal extent of o overlaps with that of the node N,
the level of the node decides where it is overlaid.

e If NV is a non-leaf node, each of N’s children is traversed and the al-
gorithm repeats the comparison between o™ and each child”. The goal
here is to check if there exist a child of N whose spatiotemporal extent
is enclosed by that of a.

e If the node N is a leaf node, we overlay « on the leaf node N. This is
because, when the spatiotemporal extent of the authorization o does
not enclose, but overlaps with that of the leaf node N, we need to ensure
that no relevant authorizations are discarded. Also, note that only part
of the spatiotemporal extent of N is in the authorized region. The

Efficient Enforcement of Security Policies 245

auth-begin auth-end
event e\lent
a,i-- il]
a,|
ayl] ayl] ayf
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww t
ty ts tio tis ty tos

Fig. 5. Authorization Time Line

moving objects from the remaining unauthorized spatiotemporal region
NP — o™ must be removed from the user’s output, if the user request
includes this region.

— Case 3: Else, which implies the spatiotemporal extent of the authorization,
a" is disjoint with that of the node N7, we stop the overlaying process. This
is because, if a.ce does not have privilege to the region covered by N7, then
« is not applicable to that region. Also, since N includes spatiotemporal
extent of all of its children nodes, o is disjoint with the spatiotemporal
extent of each child. Thus, there is no need to traverse further to the leaf
level.

4.2 Maintenance of the SPPF_Tree

One main challenge of the STPF-tree is to maintain the overlaid authorizations

as the tree evolves. Changes to the STPF-tree are needed due to the following
two reasons:

— Updates to the moving object: It is important to note that, while the
spatiotemporal region of an overlaid authorization is static in nature, the
tpbr of each node in the tree changes over time. Therefore, it is possible that
certain overlaid authorizations may no longer satisfy the conditions. As a
result, it may be necessary to reposition the existing overlaid authorization.

— Change of applicable authorizations: If the overlaid authorizations are
valid only during a certain time interval, as time elapses, they are no longer
applicable. Therefore, these need to be removed from the overlaid set. Also,
certain new authorizations may become applicable, which need to be overlaid
appropriately.

Because the SPPF_tree is an unified index that maintains not only moving

objects but also authorizations, we need to pay attention to how updates of one
type can be performed without hampering the properties of the STFF -tree.

4.2.1 Handling Updates due to Change of Applicable Authorizations
To handle this issue, we introduce the notion of Authorization Log, described
below.

246 V. Atluri and H. Shin

SPPF-Tree Authorization Log

argument (tg, ;)

find-auth
method

relevant

D authorizations

method

overlays
newly applicable
authorizations

lauth_begin|
event

Authorizations

removes and
re-overlay

authorizations auth_end

event

Fig. 6. Relationship of Authorization Log and STFF-Tree

Authorization Log: An authorization log is nothing but a data structure con-
structed by spreading all the authorizations on the time line. For each autho-
rization, we consider the following two events: (1) auth-begin event and (2)
auth-end event. These two are nothing but [r.ty, T.t.| specified in the autho-
rization specification. (Note that each authorization will have only two such
events since we are not considering periodic authorizations. However, our pro-
posed solution can be easily extended to handle periodic authorizations.) For
example, in figure 5, the auth-begin event of the authorization alpha; occurs at
time ¢13, and the auth-end event will occur at time 58.

Essentially, as time elapses, new authorizations may become applicable and
we do not want to miss overlaying these authorizations on the SPF¥-tree. An
authorization « is said to be applicable to the tree constructed at ¢, if the two
time intervals [a.7,, a.7] and [t, ¢+ H] overlap. For example, suppose the SPF¥-
tree is constructed at ¢ = t109, which is valid until ¢19 + 2 (assuming H = 2).
Referring to figure Bl only as, as, and a4 are overlaid on the tree. Since valid
intervals of a; and as are outside [t19,t10 + 2], they are applicable now and
therefore are not overlaid on the tree. On the other hand, at tog, both a; and
as must have been overlaid on the tree. However, the tree has no capability to
keep track of newly applicable authorizations that need to be overlaid on the
appropriate nodes of the tree. An auth-begin event triggers the overlay procedure
to take care of this issue. For example, o in figure Bl will be overlaid on the tree
at t13 because the tree is valid up to the current time + time horizon.

Also, after some time later, certain overlaid authorizations become invalid and
therefore must be removed from the tree. This is taken care by the auth-end event
to trigger such removals. The removed authorization needs to be re-overlaid on
the SPPF_tree because it may satisfy the overlaying conditions of another node
in the tree.

In addition to triggering the overlaying and deletion of authorizations, update
must take care of the cases when the time-split occurs. In this case, an entirely
new node will be created for which there exist no overlaid authorizations. The
find-auth method computes all the authorizations overlapping with the inter-
val of the newly created nodes. Figure [0l depicts the relationship between the

Efficient Enforcement of Security Policies 247

it

™

(a} Upgraded Authorization (b) Degraded Authorization (c} No changes

Fig. 7. Re-overlaying of authorizations due to updates to moving objects

authorization log and the S”PF-tree along with the auth-begin and auth-end
events, and the find-auth method.

4.2.2 Handling Updates due to Changes to Moving Objects

Updates to moving objects may cause a structural change to the SPFF-tree.
When update (insertion/deletion) occurs on the SEPF-tree, all the access nodes,
which are ancestors of the leaf node which the update is applied to, need to be
checked because the overlaid authorizations in the nodes may either be degraded
authorizations (authorizations which were originally overlaid on the access nodes,
but no longer fit in their original positions due to the spatiotemporal enlargement
of the nodes by updates) or upgraded authorizations (authorizations which were
originally overlaid on the access nodes, but able to fit in an ancestor of their
original positions due to spatiotemporal shrinkage of the nodes by updates).
This procedure is even more complicated if the update process results in the
structural changes due to time-split. The details are summarized below.

1. Update authorizations on the adjusted nodes: Based on the periodic
updates on the position of the moving objects, the tpbr of each node in the
SPPF_tree will be adjusted; they may either shrink or expand. Moreover,
adjustments to the tpbr of a node may trigger adjustments to the ¢pbrs of its
ancestor nodes. For each adjusted node N, every overlaid authorization «
on it can fall into one of the three categories: (i) degraded authorization, (ii)
upgraded authorization, (iii) no changes. The algorithm checks first if it is
an upgraded authorization and attempts to overlay it as high in the tree as
possible. Else, the same overlaying strategy is used to find the appropriate
position for a. Figure [l shows these three different cases. Suppose Nj is the
adjusted leaf node. Figure[l] (a) shows the shrinkage of the tpbr for Ny and its
parents. The authorization initially overlaid on N7 is now repositioned to Ny:
it can enclose N as well as NJ spatiotemporally and therefore becomes an
upgraded authorization. On the other hand, the ¢tpbr of No may be expanded
due to the adjustment. Figure [(b) shows this expanded case, and that the
overlaid authorization does not enclose N’ spatiotemporally any more. It
becomes a downgraded authorization. Therefore, it is repositioned to the

248 V. Atluri and H. Shin

child of Ny, i.e., Ns. In addition, it may be possible that the shrinkage or
expansion of the corrected node does not affect the overlaid authorizations
if the overlaid authorization still encloses N7 but does not enclose its parent
Ny spatiotemporally. Figure[7 (c) presents this case.

2. Overlay authorizations on the newly created node: The newly created

node due to a time-split does not have any authorizations overlaid on it.
Therefore, all the authorizations whose valid time intervals are overlapped
with the interval of this node are overlaid on the alive root node from the
root array.

4.3 Access Request Evaluation

In this section, we present the different types of access requests and how these
are evaluated against the specified authorizations to retrieve the information
that satisfies the user request. Two types of user requests are possible under our
framework.

— Moving Object Request (MOR): A subject who is stationary may wish to
access moving objects that fall within a spatiotemporal region. This can be
a locate, a track or a view request on a moving object.

— Stationary Object Request (SOR): A subject who is within a spatiotemporal
region may wish to access objects that are stationary.

Definition 2 (Moving Object Request). A moving object request (MOR),
denoted as a triple U = (s,Q,m), where s is the subject of the user request, Q
s a spatiotemporal region, and m is a track, a locate, or a view access mode.

The result of a MOR would be one of the trajectory of an object(s), the posi-
tion of an object(s), or the identifier of an object(s). A trajectory is of the form
(0, {locy,locs . .., loc,}), where o is the object, and loc; is the i*" location infor-
mation of o in the z,y, ¢ dimensional space. In case of locate, the result would be
of the form (o, loc). The result of a view access mode would be a set of object ids.
We use U", U.s, U.mode, U.my, and U.7, to denote the spatiotemporal extent, the
subject, the access mode, effective time interval [U.y,, U.7,] of the access request
U respectively.

Definition 3 (Stationary Object Request). A stationary object request
(SOR), denoted as a triple V. = (s,loc,0), where s is the subject of the user
request, loc is the current locations of the subject in the x,y,t dimensional space,
and o is an auth-object that the subject s tries to gain access to.

The spatiotemporal query evaluation is based on the overlaying procedure that
is introduced in the section A1l For a given user request U, the procedure first
locates a set of roots from the root array of STFF such that the alive time
interval of the root is overlapped with [U.my,,U.7]. Then, for each located root
r, the procedure traverses the subtree under this root r until it reaches the leaf
level During this traversal, it compares the spatiotemporal extent of user request
with that of each node in the search path. One would encounter three different
cases:

Efficient Enforcement of Security Policies 249

— enclosing: If there exists any « such that the set of subjects evaluated by
ce contains U.s, then return all the moving objects that are overlapped with
(N naP). In the case of the locate access mode, return the location in-
formation of those objects at time = U.7,. U.7 is ignored if it is different
from U.7, because, if we allow time interval, the trajectory information be-
tween the time interval [U.7y, U.7¢] is rather revealed to the user instead of
the location information. If it is a track access mode, return the trajectory
information of those objects. The trajectory of each object o in the result
set is traced back by using the pointer N.ptr where N is the leaf node that
stores 0. Whenever a node L is time split, ptr of newly created node is set to
point back to the original node L. Thus, all the past location information of
o can be reached by following the ptr created each time a node is split. This
tracking is processed within the spatiotemporal region U™ N a™ where o is
the spatiotemporal region of all the authorizations with track privilege that
are applicable to U.s.

— overlapping: If there exists any « such that the set of subjects evaluated
by ce contains U.s, return the objects overlapping with U™ only. However,
we still need to check authorizations overlaid for the descendents of the node
N because authorizations overlaid for the descendents may include another
spatiotemporal region that o™ does not cover. In the case of the leaf node,
return all the moving objects that are overlapped with (N® N o™ N U").
Again, if it is a track access mode, return the trajectory information of
those objects. If it is a locate access mode return the location information.

— disjoint: Stop the evaluation process because no relevant authorizations can
be found in the descendents of the node IV to satisfy the request.

In SOR, we use V.s, V.o, and VP°" to denote the subject, the requested
auth-object and the spatiotemporal position of V', respectively. Only the alive
root node among the root array is traversed because the access control request
is evaluated only by the V.s’s location at t.. The algorithm traverses the alive
tree from the alive root node until it reaches the leaf level. During the traversal,
it checks if the spatiotemporal extent of each node in the search path includes
the VPt TIf so, the procedure collects all the auth-objects contained in the
set of ge such that V.s is in the set of subjects evaluated by ce. If o is among
this auth-objects set, stop traversing and return true, which means that the
user s is allowed to get access to o. Otherwise, continue traversing. In case N
is a leaf node, for each authorization N in «g, include the auth-objects of « if
NP N a" encloses VP°™ gsince we do not want to get the false positive result
for the area N - o”.

5 Related Work

Recently, there has been some endeavors to support effectively evaluating queries
of past, present and future locations of moving objects. Patel et al. [7] index the
positions that result from the dual data transformation. Lin et al. [8] propose

250 V. Atluri and H. Shin

the BB*-index structure that inherits the ability to index present and future po-
sitions from the B*-tree [9], and it extends this ability with support for also past
positions. However, BB*-index does not correct trajectory segments and there-
fore, the index may include disconnected trajectories. Pelanis et al. [4] address
this problem by applying partial persistence to the TPR-tree [6] and correcting
the last-recorded prediction of moving object.

An index scheme for moving object data and user profiles has been proposed
by Atluri et al. [I0], but this does not consider authorizations. Beresford et al.
[11], [12] have proposed techniques that let users benefit from location-based
applications, while preserving their location privacy. Mobile users, in general,
do not permit the information shared among different location based services.
Primarily, the approach relies on hiding the true identity of a customer from the
applications receiving the user’s location, by frequently changing pseudonyms so
that users avoid being identified by the locations they visit. A system for deliv-
ering permission-based location-aware mobile advertisements to mobile phones
using Bluetooth positioning and Wireless WAP Push has been developed [13].
An index structure has been proposed to index authorizations ensuring that the
customer profile information be disclosed to the merchants based on the choice
of the customers [14]. However, this provides separate index structures for data
and authorizations, and therefore is not a unified index.

Atluri and Guo have proposed a unified indexing scheme for moving objects
and authorizations, called STPR-tree. However, because STPR-tree does not
maintain historical information on moving objects, it does not support security
policies based on tracking of mobile users. The focus of this paper is to provide
persistence for unified indexing scheme for mobile objects and authorizations.

6 Conclusions

A number of services in the area of mobile commerce environment require main-
taining mobile object’s location information and efficiently serving access re-
quests on past, present and future status of the moving objects. Proper access
control policies must be enforced to address the security and privacy concerns
in this environment. Recently, Atluri and Guo have proposed an unified index
structure, STPR-tree, to organize both the moving objects and authorizations
specified over them. However, the “TPR-tree is not capable of answering queries
based on the past information, and therefore cannot support security policies
based on tracking of mobile users. In this paper, we have proposed an index
structure, called the S tree, which maintains past, present and future posi-
tions of the moving objects along with authorizations by employing the partial
persistent storage, and therefore can support authorizations based on tracking
of mobile objects. Currently, we are conducting a performance evaluation to
demonstrate that our uniform indexing scheme indeed has significant impact on
the response time.

In our proposal, an authorization is based on the spatial and temporal at-
tributes of either subjects or objects. Thus, we are not capable of overlaying
authorizations that cannot be represented with spatiotemporal region. Also, our

Efficient Enforcement of Security Policies 251

overlaying strategy cannot accommodate authorizations whose subjects and ob-
jects are both moving at the same time. As a result, supporting such autho-
rizations overlaying may require splitting the subject and object components.
We will enhance our SPPF-tree to address these issues. Support for negative
authorizations require significant changes to the overlaying of authorizations as
well as evaluating access requests. In this paper, we do not consider negative
authorizations; we will extend our work to support negative authorizations.

References

1. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects databases: Issues
and solutions. In Rafanelli, M., Jarke, M., eds.: 10th International Conference on
Scientic and Statistical Database Management, Proceedings, Capri, Italy, July 1-3,
1998, IEEE Computer Society (1998) 111-122

2. Moreira, J., Ribeiro, C., Abdessalem, T.: Query operations for moving objects
database systems. In: Proceedings of the eighth ACM international symposium on
Advances in geographic information systems, ACM Press (2000) 108-114

3. Atluri, V., Guo, Q.: Unied index for mobile object data and authorizations. In:
ESORICS. (2005) 80-97

4. Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present and anticipated
future positions of moving objects. a TIMECENTER Technical Report TR-78
(2004)

5. Atluri, V., Chun, S.A.: An authorization model for geospatial data. IEEE Trans.
Dependable Sec. Comput. 1(4) (2004) 238-254

6. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions
of continuously moving objects. In: SIGMOD Conference. (2000) 331-342

7. Patel, J.M., Chen, Y., Chakka, V.P.: Stripes: an efficient index for predicted tra-
jectories. In: Proceedings of the 2004 ACM SIGMOD International conference on
Management of data, New York, NY, USA, ACM Press (2004) 635-646

8. Lin, D., Jensen, C.S., Ooi, B.C., Saltenis, S.: Efficient indexing of the historical,
present, and future positions of moving objects. In: Mobile Data Management.
(2005) 59-66

9. Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based In-
dexing of Moving Objects. In: VLDB. (2004) 768-779

10. Atluri, V., Adam, N.R., Youssef, M.: Towards a unied index scheme for mobile
data and customer proles in a location-based service environment. In: Workshop
on Next Generation Geospatial Information (NG2I'03). (2003)

11. Beresford, A., Stajano, F.: Mix zones: User privacy in location-aware services. In:
PerCom Workshops. (2004) 127-131

12. Scott, D., Beresford, A., Mycroft, A.: Spatial security policies for mobile agents in
a sentient computing environment. In: FASE. (2003) 102-117

13. Aalto, L., Gthlin, N., Korhonen, J., Ojala, T.: Bluetooth and wap push based
location-aware mobile advertising system. In: MobiSYS ’04: Proceedings of the
2nd international conference on Mobile systems, applications, and services, New
York, NY, USA, ACM Press (2004) 49-58

14. Youssef, M., Adam, N.R., Atluri, V., eds.: Preserving Mobile Customer Privacy:
An Access Control System for Moving Objects and Customer Information. In 6th
International Conference on Mobile Data Management. Lecture Notes in Computer
Science, Springer (2005)

	Introduction
	Moving Object Authorization Model
	Preliminaries
	The SPPF-Tree
	Authorization Overlaying
	Maintenance of the SPPF-Tree
	Access Request Evaluation

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

