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Preface

For 20 years, the IFIP WG 11.3 Working Conference on Data and Applica-
tions Security (DBSEC) has been a major forum for presenting original research
results, practical experiences, and innovative ideas in data and applications se-
curity. Looking back, it is difficult not to appreciate the full extent of the change
that has occurred in our field. Once considered afterthoughts in systems and
application design, data protection, privacy and trust have become the key
problems of our day. This central role of security in the information society
has however brought increased responsibilities to the research community. To-
day practitioners and researchers alike need to find new ways to cope with the
increasing scale and complexity of the security problems that must be solved
on the global information infrastructure. Like the previous conference, the 20th
DBSEC has proved to be up to this challenge.

DBSEC 2006 received 56 submissions, out of which the program committee
selected 22 high-quality papers covering a number of diverse research topics such
as access control, privacy, and identity management. We are glad to see that the
final program contains a well-balanced mix of theoretical results and practical
prototype systems, many of them converging and building off each other. Also,
the DBSEC program includes a number of papers on new, emerging aspects of
security research.

Putting together a top-level conference like DBSEC is always a team effort.
We would like to thank a number of friends and colleagues for their valuable
help and support, including our General Chair Andreas Schaad, our Publicity
Chair Soon Ae Chun, IFIP WG 11.3 Chair Pierangela Samarati, all our program
committee members, and, above all, the researchers who chose DBSEC as the
forum to which to submit their work. In addition, we would like to thank SAP
for sponsoring this conference.

August 2006 Ernesto Damiani, Peng Liu
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Creating Objects in the Flexible Authorization
Framework�

Nicola Zannone1,2, Sushil Jajodia2, and Duminda Wijesekera2

1 Dep. of Information and Communication Technology
University of Trento

zannone@dit.unitn.it
2 Center for Secure Information Systems

George Mason University
{jajodia, dwijesek}@gmu.edu

Abstract. Access control is a crucial concern to build secure IT systems and,
more specifically, to protect the confidentiality of information. However, access
control is necessary, but not sufficient. Actually, IT systems can manipulate data
to provide services to users. The results of a data processing may disclose infor-
mation concerning the objects used in the data processing itself. Therefore, the
control of information flow results fundamental to guarantee data protection. In
the last years many information flow control models have been proposed. How-
ever, these frameworks mainly focus on the detection and prevention of improper
information leaks and do not provide support for the dynamical creation of new
objects.

In this paper we extend our previous work to automatically support the dy-
namical creation of objects by verifying the conditions under which objects can
be created and automatically associating an access control policy to them. More-
over, our proposal includes mechanisms tailored to control the usage of informa-
tion once it has been accessed.

1 Introduction

Access control is one of the main challenges in IT systems and has received significant
attention in the last years. These efforts have matched with the development of many
frameworks dealing with access control issues [1,2,3,4,5,6]. However, many of these
proposals focus on the restriction on the release of information but not its propaga-
tion [7].

Actually, IT systems are developed not only to merely store data, but also to pro-
vide a number of functionalities designed to process data. Thereby, they may release
information as part of their functionalities [8]. Yet, a malicious user can embed in some

� This material is based upon work supported by the National Science Foundation under
grants IIS-0242237 and IIS-0430402. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation. This work was partly supported by
the projects RBNE0195K5 FIRB-ASTRO, 016004 IST-FP6-FET-IP-SENSORIA, 27587 IST-
FP6-IP-SERENITY, 2003-S116-00018 PAT-MOSTRO.

E. Damiani and P. Liu (Eds.): Data and Applications Security 2006, LNCS 4127, pp. 1–14, 2006.
c© IFIP International Federation for Information Processing 2006
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application provided by the IT system, a Trojan horse that, once the application is exe-
cuted, copies sensitive information in a file accessible by the malicious user [9]. In this
setting, information flow control plays a key role in ensuring that derived objects do not
disclose sensitive information to unauthorized users.

This issue has spurred the research and development of frameworks that improve au-
thorization frameworks with some form of flow control. Sammarati et al. [10] proposed
to detect unauthorized information flow by checking if the set of authorizations associ-
ated with a derived object are a subset of the intersection of the sets of authorizations
associated with the objects used to derive it. Similar approaches [11,12] have associated
with each object an access control list that is propagated together with the information
in the object. However, in these approaches the creation of objects is implicit. Essen-
tially, they attempt to identify leaking information, but do not deal with the creation of
new objects.

Moreover, this approach is to rigid to implement real access control policies. Actu-
ally, it is not flexible enough to support information declassification [8]. For instance,
the US Privacy Act allows an agency to disclose information to those officers and em-
ployees of the agency who need it to perform their duties without the consent of the
data subject. Furthermore, the Act does not impose any constraint to data that do not
disclose personal identifying information.

In this paper, we extend our previous work [13] in order to automatically enforce ac-
cess control policies on objects dynamically created in Flexible Authorization Frame-
work (FAF) [14]. This requires to deal with some issues:

– deciding if an object can be created;
– associating authorizations with the new object;
– verifying if the derived object does not disclose sensitive information to unautho-

rized users.

The first issue is addressed by introducing conditions under which a data processing
can be performed and enforcing the system to verify them before creating new objects.
To cope with the second issue, we allow system administrators to define the policies
governing access to derived objects, based on the authorizations associated with the
objects used to derive them.

However, this is not sufficient to fully guarantee data protection. Actually, if a user
is authorized to execute an application in which a Trojan horse is embedded, such a
malicious application is considered as legitimate by the authorization framework. To
this end, we propose an approach based on [10,11,12] to block non safe information
flow. However, it is up to system administrators to decide whether or not an information
flow is safe. Thereby, we only provide support for detecting flows of information that
may be harmful to data subjects.

Other issues come up when the proposed approach is integrated in FAF. Actually, its
current architecture does not support the dynamical creation of objects. To this intent,
we need to improve it together with its underlying logic-based framework.

The remainder of the paper is structured as follows. Next (§2) we provide a brief
overview of FAF. Then, we illustrate our approach for dealing with the dynamical cre-
ation of objects (§3) and for automatically deriving their access control policy (§4).
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Next, we propose a mechanism to control information flow and show how such a mech-
anism copes with the Trojan horse problem (§5). Finally, we discuss related work (§6)
and conclude the paper (§7).

2 Flexible Authorization Framework

Flexible Authorization Framework (FAF) [14] is a logic-based framework developed to
manage access to data by users. It consists of four stages that are applied in sequence.
The first stage takes in input the extensional description of the system, as subject and
object hierarchies and a set of authorizations, and propagates authorizations through the
organizational structure of the system. However, in this stage it is possible to derive con-
tradictory authorizations, that is, a subject could be authorized and denied to execute an
action on an object at the same time. The second stage aims to resolve this problem by
applying conflict resolution policies. Once authorizations are propagated and conflicts
resolved, there is the possibility that some access is neither authorized nor denied. In
the third stage, decision policies are used to ensure the completeness of authorizations.
In the last stage, specific domain properties are verified using integrity constraints, and
all authorizations that violate them are removed.

FAF provides a logic-based language, called authorization specification language
(ASL), tailored for encoding security needs. Before defining the language, we introduce
the logic programming terminology needed to understand the framework. Let p be a
predicate with arity n, and t1, . . . , tn be its appropriate terms. p(t1, . . . , tn) is called
atom. Then, the term literal denotes an atom or its negation. ASL syntax includes the
following predicates:

– A ternary predicate cando. Literal cando(o, s, a) is used to represent authorizations
directly defined by the system administrator where o is an object, s is a subject, and
a is a signed action terms. Depending on the sign, authorizations are permissions
or prohibitions.

– A ternary predicate dercando that has the same arguments of predicate cando and
is used to represent authorizations derived through propagation policies.

– A ternary predicate do that has the same arguments of predicate cando and rep-
resents effective permissions derived by applying conflicts resolution and decision
policies.

– A 5-ary predicate done that is used to describe the actions executed by users. Intu-
itively, done(o, s, r, a, t) holds if subject s playing role r has executed action a on
object o at time t.

– A propositional symbol error. Its occurrence in the model corresponds to a violation
of some integrity constraints.

– A set of hie-predicates. In particular, the ternary predicate in(x, y, H) is used to
denote that x ≤ y in hierarchy H.

– A set of rel-predicates. They are specific domain predicates.

Based on the architecture previously presented, every authorization specification AS
is a locally stratified program where stratification is implemented by assigning levels to
predicates (Table 1 [14]). For any specification AS, ASi denotes the rules belonging to
the i-th level.
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Table 1. Strata in FAF specification

Stratum Predicate Rules defining predicate
AS0 hie-predicates base relations.

rel-predicates base relations.
done base relation.

AS1 cando the body may contain done, hie- and rel-literals.
AS2 dercando the body may contain cando, dercando, done, hie- and rel-literals. Oc-

currences of dercando literals must be positive.
AS3 do the head must be of the form do( , , +a) and the body may contain

cando, dercando, done, hie- and rel-literals.
AS4 do the head must be of the form do(o, s, −a) and the body contains the

literal ¬do(o, s, +a).
AS5 error the body may contain cando, dercando, do, done, hie- and rel-literals.

For optimizing the access control process, Jajodia et al. [14] proposed a materialized
view architecture, where instances of predicates corresponding to views are maintained.
Because predicates belong to strata, the materialization structure results (locally) strati-
fied. This guarantees that the specification has a unique stable model and well-founded
semantics [15,16]. Following [14], we use the notation M(AS) to refer to the unique
stable model of specification AS.

3 Creating Objects

When a user requires to perform a data processing, the IT system should verify whether
or not such a user has all necessary authorizations. In the remainder of this section, we
address this issue.

Let O be the name space of all possible objects that may occur in the specification.
We assume that they are organized into a hierarchical structure. This means that all
possible objects are fully classified with respect to their type. Further, we assume that
objects do not exist until they are created. This means that objects (together with their
classification) may be not in the scope of the specification, although they are defined
in O. Essentially, we assume that a possible object is considered only if some event
demands its existence, that is, it is created.

Following [17], we introduce predicate exists, where exists(o) holds if object o ex-
ists, that is, it is already created. We define the state of the system as the set of exist-
ing objects and their relationships. To deal with the creation of objects, Liskov et al.
[18] introduced two kinds of functions: constructors and creators. Constructors of a
certain type return new objects of the corresponding type and creators initialize them.
Essentially, constructors add object identifiers (i.e., names) to the state of the system
and creators assign a value to such names. However, this approach distinguishes the
identifier of an object from the values the object can assume. We merge this pair of
functions into a single function, called initiator. Essentially, when an object is created,
it exists together with its value. This allows us to be consistent with the semantics of
FAF. Further, we assume that objects are never destroyed. From these assumptions, we
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can deduce that the set of objects belonging to a state of the system is a subset of the
set of objects belonging to the next state.

IT systems process data as part of their functionalities by providing automatic pro-
cedures used to organize and manipulate data. As done in [13], we represent data pro-
cessing through initiators and make explicit the objects used by data processing and the
users who performs them. Thus, we introduce an initiator for each procedure supported
by the IT system. For instance, we write

f(s, o1, . . . , om) = o

to indicate that object o is the result of data processing f when this is performed by
subject s and objects o1, . . . , om are passed as input.1 We assume that when an object
is created (i.e., it enters in the scope of the specification), also its classification belongs
to the specification. Notice that initiators do not belong to the specification language.
We use them only to emphasize the objects used in the procedure and the subject that
executes it.

Subjects may need to access exiting objects in order to create new objects. Moreover,
only users that play a certain role or belong to a certain group may be entitled to perform
a certain data processing. This means that an authorization framework should verify
whether the subject has enough rights to access all objects needed to create the new one
and whether he can execute the procedure.

Our idea is to enforce the system to verify the capabilities of the subject before an
object is created. Based on this intuition, we redefine initiator f as

f(s, o1, . . . , om) =
{

o if C is true
⊥ otherwise

where C represents the condition that must be satisfied and ⊥ means that object o cannot
be created since s does not have sufficient rights to execute the procedure.

Initiators are implemented in our framework through rules, called creating rules.
These rules enforce the system to verify the conditions under which a user can create
the object.

Definition 1. Let f be an initiator, s be the subject executing f , o1, . . . , om be the
objects required by f , and o = f(s, o1, . . . , om) be the derived object. A creating rule
has the form

exists(o) ← L1 & . . . & Ln & exists(o1) & . . . & exists(om).

where L1, . . . , Ln are cando, dercando, do, done, hie-, or rel-literals. cando, dercando,
do literals may refer only to o1, . . . , om.

Essentially, the conjunction of literals L1, . . . , Ln represents the condition that a subject
must satisfy in order to create object o. Last part of the body of the rule ensures that all
objects necessary to create the new object already exist.

1 Notice that initiators are not total functions since if one combines personal data of different
users for creating an account, such account is not a valid object.
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Example 1. A bank needs customer personal information, namely name, shipping ad-
dress, and phone number, for creating an account. The bank IT system provides the
procedure openA for creating new accounts. Suppose a customer discloses his name
(n), shipping address (sa), and phone number (p) to the bank. A bank employee s will
be able to create account (= openA(s, n, sa, p)) only if it is authorized to read cus-
tomer data and he works in the Customer Services Division (CSD). In symbol,

exists(account) ← do(n, s, +read) & do(sa, s,+read) & do(p, s, +read) &
in(s,CSD-employee , ASH) & exists(n) & exists(sa) & exists(p).

The outcome of a data processing may then be used to derive further objects. We repre-
sent the process to create an object as a tree, called creation tree, where the root is the
“final” object and the leaves are primitive objects (i.e., objects that are directly stored in
the system by users). In order to rebuild the creation tree, the system should keep trace
of the process used to create the object. To this end, we introduce the binary predicate
derivedFrom where derivedFrom(o1, o2) is used to indicate that object o2 is used to
derive object o1. As for classification literals, derivedFrom literals referring an object
are added to the model only when the object is created.

Example 2. Back to Example 1, the bank IT system stores the following set of literals:

{derivedFrom(account , n), derivedFrom(account , sa), derivedFrom(account , p)}

4 Associating Authorizations with New Objects

Once an object has been created, authorizations should be associated with it. Since the
object is not independent from the objects used to derive it, the policy associated with
it should take into account the authorizations associated with them. Some proposals
[11,12] associate with each object an access control list (ACL) that is propagated to-
gether with the information in the object. Essentially, the ACL associated with the new
object is given by the intersection of all ACLs associated with the objects used to create
it. However, when a system administrator specifies an access control policy for derived
objects, he should consider that not all data processing disclose individually identifiable
information [8]. For example, the sum of all account balances at a bank branch does not
disclose data that allows to recover information associating a user with his own account
balance.

We propose a flexible framework in order to allow system administrators to deter-
mine how authorizations are propagated to new objects. The idea is that authorizations
associated with the objects used to derive the new one can be used to determine the au-
thorizations associated with it. However, this approach cannot be directly implemented
in FAF since the specification results no more stratified [13]. Next, we propose how
FAF can be modified in order to support access control on derived objects maintaining
the locally stratified structure.

4.1 Redefining Rules

To maintain the locally stratified structure, we need to redefine creating rules, autho-
rization rules [14], derivation rules [14], and positive decision rules [14] by enforcing
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some syntactic constraints to predicates occurring in the body of rules. Before doing
this, we have also to redefine the predicates defined in FAF. Essentially, we introduce a
new parameter representing the depth of the creation tree of the object into predicates
exists, cando, dercando and do. Further, we enforce rules to be applied only to existing
objects.

Definition 2. Let f be an initiator, s be the subject executing f , o1, . . . , om be the
objects required by data processing f , and o = f(s, o1, . . . , om) be the derived object.
A creating rule is a rule of the form

exists(i, o) ← L1 & . . . & Ln & exists(j1, o1) & . . . & exists(jm, om).

where o is an object, i represents the current iteration, and L1, . . . , Ln are cando,
dercando, do, done, hie-, or rel-literals. cando, dercando, do literals refer only to
o1, . . . , om and 0 ≤ j1, . . . , jm < i.

Once an object has been introduced in the scope of the specification, its access control
policy is inferred by the system through authorization rules.

Definition 3. An authorization rule is a rule of the form

cando(i, o, s, a) ← L1 & . . . & Ln & exists(i, o).

where o, s and a are respectively an object, a subject and a signed action, i represents
the current iteration, and L1, . . . , Ln are cando, dercando, do, done, derivedFrom, hie-,
or rel-literals. Every cando, dercando and do literal must be inferred at an iteration j
such that 0 ≤ j < i.

Example 3. A customer may prefer to not receive advertising on new services offered
by the bank. Therefore, he specifies that his information (i.e., name (n), shipping ad-
dress (sa), and phone number (p)) cannot be accessed by the Marketing Division (MD).

cando(0, n, xs,−read) ← in(xs,MD-employee, ASH) & exists(i, n).
cando(0, sa, xs,−read) ← in(xs,MD-employee, ASH) & exists(i, sa).
cando(0, p, xs,−read) ← in(xs,MD-employee, ASH) & exists(i, p).

It is possible that no authorization is explicitly defined for the user with respect to a
request access. Thereby, the framework allows system administrators to specify policies
to propagate authorizations through the organizational structure of the system.

Definition 4. A derivation rule is a rule of the form

dercando(i, o, s, a) ← L1 & . . . & Ln & exists(i, o).

where o, s and a are respectively an object, a subject and a signed action, i represents
the current iteration, and L1, . . . , Ln are cando, dercando, do, done, derivedFrom,
hie-, or rel-literals. Every cando, over and positive dercando literal must be inferred at
an iteration j such that 0 ≤ j ≤ i, and every do and negative dercando literal at an
iteration k such that 0 ≤ k < i.
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Example 4. Employees of the Customer Services Division are authorized to manage
bank accounts. However, the actions that they can perform depend on the actions that
they are authorized to perform on the customer information used to create such an
account.

dercando(i, xo1 , xs, xa) ← in(xo1 ,Account , AOH) & derivedFrom(xo1 , xo2) &
do(j, xo2 , xs, xa) & in(xs,CSD-employee, ASH) &
exists(i, xo1) & j < i.

Using derivation rules, a system administrator can specify very flexible policies for
propagating authorizations. However, such a propagation may lead conflicting autho-
rizations. Decision rules are introduced to cope with this issue.

Definition 5. A positive decision rule is a rule of the form

do(i, o, s,+a) ← L1 & . . . & Ln & exists(i, o).

where o, s and a are respectively an object, a subject and an action, i represents the
current iteration, and L1, . . . , Ln are cando, dercando, do, done, derivedFrom, hie-,
or rel-literals. Every cando and dercando literal must be inferred at an iteration j such
that 0 ≤ j ≤ i, and every do literal at an iteration k such that 0 ≤ k < i.

Example 5. Information on accounts is also required by employees of other divisions of
the bank in order to perform their duties. Thus, bank employees are entitled to access an
account only if they are not explicitly denied to access the account and the information
of its owner.

do(i, xo1 , xs, +read) ← ¬ dercando(i, xo1 , xs,−read) & in(xo1 ,Account , AOH) &
derivedFrom(xo1 , xo2) & ¬ do(j, xo2 , xs,−read) &
in(xs, employee, ASH) & exists(i, xo1) & j < i.

4.2 Materialized Views

The architecture proposed in [14] works properly when authorizations refer to primitive
objects, but it is not able to completely enforce access control policies when objects are
dynamically created. The main problem is when objects are “introduced” in the state
of the system. If derived objects are introduced before applying propagation policies,
they could not be created since required authorizations might be not yet computed.
Otherwise, if they are introduced after applying propagation policies, authorizations on
derived objects are not propagated.

Authorizations on new objects could depend on the authorizations associated with
those objects used to create them. To maintain the flexibility provided by FAF, we per-
mit any authorization predicate to occur in the body of rules. However, this affects the
process for enforcing access control policies. In particular, the locally stratified struc-
ture of specifications is not preserved. Next, we present the process to enforce access
control policies when objects are dynamically created.

The idea is to iterate the access control process proposed in [14] for n+1 times where
n is the greatest depth of creation trees. At each step i, we compute the stable model of
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ASi ∪M(ASi−1), where ASi is the set of authorization specifications applied at the
i-th iteration and M(ASi−1) is the unique stable model of specification ASi−1. Next,
we describe the process for computing this materialization.

The first step corresponds to the “standard” FAF process where only primitive ob-
jects are considered. Essentially, creating rules add to the state of the system objects
that occur as leaves in some creation tree. Then, authorizations on these objects are
propagated, possible conflicts are resolved, and decision policies are applied. If autho-
rizations comply with integrity constraints, the output of the first iteration, M(AS0), is
used as input for the second iteration where objects derived by one derivation step are
considered. Repeatedly, the process proceeds until all derived objects are considered
where the i-th iteration takes in input the output of the previous iteration, M(ASi−1),
and creating rules add to the state of the system objects whose creation tree has depth
equal to i.

We now analyze the computation of the unique stable model of an authorization
specification AS during one step of the previous process. This process is, in turn, an
iterative process that, at each step i, computes the model of ASi

j ∪M(ASi
j−1), where

M(ASi
j−1) is the unique stable model of stratum ASi

j−1. Next, we describe the dif-
ferent steps of this materialization computation process at the i-th iteration.

Step (0): ASi
0 represents the lowest stratum. This stratum contains facts derived at the

i − 1-th iteration, M(ASi−1), and creation rules used to derive objects that are
the root of a creation tree having depth equal to i. Creating rules are recursive, but,
in agreement with Definition 2, exists literals occurring in the body of such rules
must be derived in one of previous iterations so that they belong to M(ASi−1).
Moreover, Definition 2 allows only cando, dercando and do derived in previous
iterations to occur in the body of creating rules. This guarantees that such literals
belong to M(ASi−1).

Step (1): ASi
1 contains facts derived at the previous stratum, M(ASi

0), and authoriza-
tion rules. Differently from [14], here authorization rules are recursive. However,
according to Definition 3, cando literals occurring in the body of such rules must be
derived in previous iterations so that they belong to M(ASi−1). This holds also for
dercando and do literals. Moreover, Definition 3 allows only exists literals derived
in the previous step to occur in the body of authorizations rules. Therefore, we can
conclude that if a cando literal is added to the model, every literal that can occur in
the body of the authorization rule belongs to M(ASi

0).
Step (2): ASi

2 contains facts derived at the previous stratum, M(ASi
1), and derivation

rules. As in [14], derivation rules permit a “real” (positive) recursion. In particular,
positive dercando literals having iteration parameter equal to i can occur in the
body of the rule. It is possible to prove, along the same lines as done in [14], the
correctness of the materialized view. Essentially, the body of derivation rules is split
into two parts: positive dercando literals having iteration parameter equal to i and
the rest. By Definition 4, we can easily verify that the literals belonging to the last
set either are in M(ASi−1) or are derived in one of previous steps. Thereby, they
belong to M(ASi

1). On the other side, we refer to [14] for the fixpoint evaluation
procedure that proves the correctness of M(ASi

2).
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Step (3): ASi
3 contains facts derived at the previous stratum, M(ASi

2), and positive
decision rules. By Definition 5, we can easily verify that literals occurring in the
body either are in M(ASi−1) or are derived in one of previous steps. Thus, do
literals are added to the specification only if every literal that can occur in the body
of positive decision rules belongs to M(ASi

2).
Step (4) and Step (5) are analogous to the ones presented in [14].

The above process ensures that the stable model computed during one iteration is a
superset of the stable model computed in previous iterations. Further, it guarantees that
every literal derived during an iteration refers to objects created in that iteration.

Theorem 1. Let ASi−1 and ASi be authorization specifications at i − 1-th and i-th
iterations, respectively. The following statements hold.

1. M(ASi−1) ⊆ M(ASi)
2. Every literal in M(ASi)\M(ASi−1) refers to objects created at the i-th iteration.

In [14], authors have proved the locally stratified structure by assigning a level to each
type of predicates. In our setting, this is not sufficient since the level of the head pred-
icate could be strictly lower than that of predicates occurring in its body. However, the
locally stratified structure is maintained by distinguishing the iteration in which facts
are deduced and limiting the application of rules to existing objects. Essentially, strata
are ordered with respect to a lexicographic order: the first component is the iteration,
and the second corresponds to the level as defined in [14].

Theorem 2. Every authorization specification is a locally stratified logic program.

This result ensures that the specification has a unique stable model [16]. Baral et al. [15]
proved that well-founded semantics coincide with stable model for locally stratified
logic programs. This guarantees that the stable model of authorization specifications
can be computed in quadratic time on data complexity [19].

5 Information Flow Control

Data subjects want that their information is not misused once it has been accessed.
However, FAF does not provide any form of control on the usage of information. This
lack makes this authorization framework vulnerable to Trojan horses embedded in ap-
plications. If a user executing a tampered application has the required authorizations,
the Trojan horse will copy sensible information into a file accessible by a malicious
and unauthorized user. Therefore, it is necessary to characterize the flow of information
within the system.

FAF supports an integrity constraints phase in order to verify the consistency of the
system with respect to specific domain properties. Our idea is to use integrity constraints
also to verify the presence of leaks in the information flow. Similarly to [10,11,12,20],
we propose to verify that the set of authorizations associated with a derived object is
a subset of the intersection of the authorizations associated with the objects used to
create it. Essentially, we want to ensure that a derived object does not disclose more
information that the objects used to derive it does.
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To this end, we define the 4-ary predicate warning. The intuition is that literal
warning(o1, o2, s, a) holds if subject s can perform action a on object o1, but he cannot
perform a on object o2 where o2 is used to derive o1. Notice that warnings are different
from errors: they are failure of integrity constraints, like errors, but the system adminis-
trator may be perfectly happy with a system that does not satisfy them since information
should be disclosed for complying with availability requirements. Thus, if the system
reports a warning, the system administrator has to establish whether a leak complies
with system requirements or corresponds to a system vulnerability.

Definition 6. An information flow constraint is a rule of the form

warning(o1, o2, s, a) ← do(i, o1, s, a)& derivedFrom(o1, o2)& ¬do(j, o2, s, a).

where s and a are respectively a subject and an action, i and j are iterations such that
0 ≤ j < i, and object o2 is used to derive object o1.

Essentially, the presence of warning literals in the model corresponds to the presence of
covert channels [21] in the system. Therefore, we can detect possible illegal information
flow by checking the occurrence of warning in the model.

Theorem 3. If warning does not occur in the model, all information flows are safe.

We remark that it is up to the system administration decides if an “unauthorized” flow
is permitted or not. Every time a warning literal occurs in the model, he has to decide if
it corresponds to an unauthorized leakage and, in this case, fix it.

Example 6. Suppose a malicious user, Mallory, has tampered the procedure openA pro-
vided by the bank IT system for creating new accounts. In this setting, the modified
procedure copies customer information in a file (foo) accessible by the malicious user
himself along with its legal functionalities. Such information will then sell to bank com-
petitors by Mallory.

Accordingly, the malicious user defines the following rules

exists(i, foo) ← do(j, n, s, +read) & do(j, sa, s, +read) &
do(j, p, s, +read) & in(s,CSD-employee , ASH) &
exists(j, n) & exists(j, sa) & exists(j, p).

cando(i, foo,Mallory , +read) ← exists(i, foo).
dercando(i, foo,Mallory , +read) ← cando(i, foo, Mallory, +read) & exists(i, foo).

do(i, foo,Mallory , +read) ← dercando(i, foo, Mallory, +read) & exists(i, foo).

The first rule sets the permissions necessary to create file foo . The other rules are
needed by Mallory to access such a file.

Once an employee of Customer Services Division has run the procedure openA, the
bank account is created together with file foo . The authorization framework then infers
that Mallory is entitled to read foo. However, the bank IT system keeps trace that foo is
derived by customer information by storing the following literals:

{derivedFrom(foo, n), derivedFrom(foo, sa), derivedFrom(foo, p)}

Applying the information flow constraint to this scenario, the system spots a harmful
situation for the data subject since his information can be accessed by unauthorized
users.
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Notice that we have proposed to verify only step-by-step flow, that is, we compare
authorizations associated with an object only with those associated with the objects
directly used to derive it. We adopt this solution since we claim that, if a system ad-
ministrator has already allowed an “unauthorized” flow, an additional warning on the
same flow is unnecessary. However, we can easily verify information flow with respect
to primitive information by making relation derivedFrom transitive.

6 Related Work

Proposals for enforcing access control policies can be classified under three main
classes: discretionary access control (DAC) [4,5], mandatory access control (MAC)
[1,2,3], and role based access control (RBAC) [6]. DAC allows users to specify which
subjects can access their objects by directly defining an access control policy for each
of their own objects. In MAC approaches, users cannot fully control the access to their
objects, but it is the system that entirely determine the access that is to be granted.
RBAC improves DAC and MAC proposals by integrating access control policies into
the organizational structure of the system.

DAC models restrict access to objects on the basis of the identity of the invoking user
and authorizations defining the actions he can execute on such objects. However, DAC
models do not provide any form of support to control the usage of information once
it is has been accessed [9]. Thereby, they are vulnerable to Trojan horse attacks [22].
This awareness has been matched by a number of research proposals on incorporating
information flow control into access control models. Some proposals [11,12] associate
with each object an ACL and propagate it together with the information in the object.
In particular, the access control list associated with a new object is given by the inter-
section of all ACLs associated with the objects used to create it. Similarly, in [20,10]
an information flow is defined to be safe if the ACL associated with the new object
is a subset of the intersection of the sets of authorizations associated with the objects
used to derive it. However, contrarily to our work, these proposals do not deal with the
dynamic creation of objects.

Among MAC models, the model proposed by Bell and LaPadula [1] is a milestone
for later work. Essentially, the model categorizes the security levels of objects and sub-
jects, and enforces information flow to comply with “no read up” and “no write down”
rules. Then, this model was generalized into the lattice model [2,3]. The above rules
are very robust but have some disadvantages. The main drawback is covert channels
[21]. A covert channel represents an implicit information flow that cannot be controlled
by the security policy. Several proposals have been presented to cope with this prob-
lem [23,24,25]. However, their focus is on the detection of improper information leaks
rather than on the the dynamic creation of objects.

Osborn [26] proposed to verify information flow in the RBAC model through a MAC
approach. Essentially, they propose to map a role graph [27] (i.e., a graphical notation
for representing RBAC hierarchies) into an information flow graphs which shows the
information flow among roles. However, in this work information flow refers to the
propagation of primitive information with respect to hierarchies of roles, rather than to
derived information.
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Yusuda et al. [28] propose a purpose-oriented access control model. Essentially,
purpose-oriented access rules identify which operations associated with an object can
invoke operations associated with other objects modifying the objects themselves.
These operations are classified with respect to the type of information flow. Based on
this classification, they build an invocation graph that, together with a MAC model, is
used to detect information leakages. Izaki et al. [29] integrate the RBAC model into
the purpose-oriented model. Essentially, the purpose-oriented model is enhanced by in-
troducing the concept of role. The idea underlying this approach is to classify object
methods and derive a flow graph from method invocations. From such a graph, non-
secure information flows can be identified.

7 Conclusion

The main contribution of this paper is a procedure for dynamically creating objects and
automatically deriving access control policies to be associated with them. First, we have
introduced creating rules in order to verify the conditions under which objects can be
created and add “legal” objects to the state of the system. Then, we have defined a flex-
ible framework for associating with a new object an access control policy based on the
authorizations associated with the objects used to create it. However, the architecture
of FAF does not support the dynamical creation of objects. Thus, we have improved
it together with its underlying logic-based framework in order to preserve the locally
stratified structure. This ensures the validity of advantage gained by FAF over its prede-
cessors in specifying and enforcing access control policies. Finally, we have provided a
mechanism in order to detect information leakages in the specification.
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Abstract. A firewall is a system acting as an interface of a network to
one or more external networks. It implements the security policy of the
network by deciding which packets to let through based on rules defined
by the network administrator. Any error in defining the rules may com-
promise the system security by letting unwanted traffic pass or blocking
desired traffic. Manual definition of rules often results in a set that con-
tains conflicting, redundant or overshadowed rules, resulting in anomalies
in the policy. Manually detecting and resolving these anomalies is a crit-
ical but tedious and error prone task. Existing research on this problem
have been focused on the analysis and detection of the anomalies in fire-
wall policy. Previous works define the possible relations between rules
and also define anomalies in terms of the relations and present algo-
rithms to detect the anomalies by analyzing the rules. In this paper, we
discuss some necessary modifications to the existing definitions of the re-
lations. We present a new algorithm that will simultaneously detect and
resolve any anomaly present in the policy rules by necessary reorder and
split operations to generate a new anomaly free rule set. We also present
proof of correctness of the algorithm. Then we present an algorithm to
merge rules where possible in order to reduce the number of rules and
hence increase efficiency of the firewall.

Keywords: Packet Filters, Network Security, Firewalls, Anomalies,
Security Policy.

1 Introduction

A firewall is a system that acts as an interface of a network to one or more
external networks and regulates the network traffic passing through it. The fire-
wall decides which packets to allow to go through or to drop based on a set of
“rules” defined by the administrator. These rules have to be defined and main-
tained with utmost care, as any slight mistake in defining the rules may allow
unwanted traffic to be able to enter or leave the network, or deny passage to
quite legitimate traffic. Unfortunately, the process of manual definition of the
rules and trying to detect mistakes in the rule set by inspection is very prone to
errors and consumes a lot of time. Thus, research in the direction of detecting
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anomalies in firewall rules have gained momentum of recent. Our work focuses on
automating the process of detecting and resolving the anomalies in the rule set.

Firewall rules are usually in the form of a criteria and an action to take if
any packet matches the criteria. Actions are usually accept and reject. A packet
arriving at a firewall is tested with each rule sequentially. Whenever it matches
with the criteria of a rule, the action specified in the rule is executed, and the
rest of the rules are skipped. For this reason, firewall rules are order sensitive.
When a packet matches with more than one rules, the first such rule is executed.
Thus, if the set of packets matched by two rules are not disjoint, they will create
anomalies. For instance, the set of packets matching a rule may be a superset of
those matched by a subsequent rule. In this case, all the packets that the second
rule could have matched will be matched and handled by the first one and the
second rule will never be executed. More complicated anomalies may arise when
the sets of packets matched by two rules are overlapped.

If no rule matches the packet, then the default action of the firewall is taken.
Usually such packets are dropped silently so that nothing unwanted can enter or
exit the network. In this paper, we assume that the default action of the firewall
system is to reject and develop our algorithms accordingly.

Of recent, research work on detecting and resolving anomalies in firewall policy
rules have gained momentum. Mayer et al. present tools for analyzing firewalls
in [13]. In [8], Eronen et al. propose the approach of representing the rules as
a knowledge base, and present a tool based on Constraint Logic Programming
to allow the user to write higher level operations and queries. Works focusing
on automating the process of detecting anomalies in policy include [12] where
Hazelhurst describes an algorithm to represent the rules as a Binary Decision
Diagram and presents a set of algorithms to analyze the rules. Eppstein et al.
give an efficient algorithm for determining whether a rule set contains conflicts
in [7]. Al-Shaer et al. define the possible relations between firewall rules in [1,
2, 4], and then define anomalies that can occur in a rule set in terms of these
definitions. They also give an algorithm to detect these anomalies, and present
policy advisor tools using these definitions and algorithm. They extend their
work to distributed firewall systems in [3, 5]. A work that focuses on detecting
and resolving anomalies in firewall policy rules is [11], where they propose a
scheme for resolving conflicts by adding resolve filters. However, this algorithm
requires the support of prioritized rules, which is not always available in firewalls.
Also their treatment of the criterion values only as prefixes makes their work
specific. In [9], Fu et al. define high level security requirements, and develop
mechanisms to detect and resolve conflicts among IPSec policies. Golnabi et al.
describe a Data Mining approach to the anomaly resolution in [10].

Majority of current research focus on the analysis and detection of anomalies
in rules. Those that do address the resolution of anomalies require special fea-
tures or provisions from the firewall, or focus on specific areas. In this paper,
we base our work on the research of Al-Shaer et. al. in [1, 2, 3] whose analysis
is applicable to all rule based firewalls in general. However, their work is lim-
ited to the detection of anomalies. We also show that one of their definitions is
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redundant, and the set of definitions do not cover all possibilities. In our work,
we remove the redundant definition, and modify one definition to cover all the
possible relations between rules. We also describe the anomalies in terms of the
modified definitions. Then we present a set of algorithms to simultaneously de-
tect and resolve these anomalies to produce an anomaly-free rule set. We also
present an algorithm to merge rules whenever possible. Reports are also pro-
duced by the algorithms describing the anomalies that were found, how they
were resolved and which rules were merged.

The organization of the paper is as follows. In Sect. 2, we discuss the basic
concepts of firewall systems, representation of rules in firewalls, possible rela-
tions between rules, and possible anomalies between rules in a firewall policy
definition. In Sect. 3, we first present our algorithm for detecting and resolving
anomalies and its proof of correctness. Then we provide an illustrative example
showing how the algorithm works. After that we present our algorithm to merge
rules and provide an example of its application. Finally, in Sect. 4, we present
the conclusions drawn from our work and propose some directions for future
work.

2 Firewall Concepts

In this section, we first discuss the basic concepts of firewall systems and their
policy definition. We present our modified definitions of the relationships between
the rules in a firewall policy, and then present the anomalies as described in [1].

2.1 Representation of Rules

A rule is defined as a set of criteria and an action to perform when a packet
matches the criteria. The criteria of a rule consist of the elements direction,
protocol, source IP, source port, destination IP and destination port. Therefore
a complete rule may be defined by the ordered tuple 〈direction, protocol, source
IP, source port, destination IP, destination port, action〉. Each attribute can be
defined as a range of values, which can be represented and analyzed as sets.

2.2 Relation Between Two Rules

The relation between two rules essentially mean the relation between the set
of packets they match. Thus the action field does not come into play when
considering the relation between two rules. As the values of the other attributes
of firewall rules can be represented as sets, we can consider a rule to be a set of
sets, and we can compare two rules using the set relations described in Fig. 1.
Two rules can be exactly equal if every criteria in the rules match exactly, one
rule can be the subset of the other if each criterion of one rule is a subset of
or equal to the other rule’s criteria, or they can be overlapped if the rules are
not disjoint and at least one of the criteria are overlapped. In the last case, a
rule would match a portion of the packets matched by the other but not every
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Fig. 1. (a) Sets A and B are disjoint, A ∩ B = φ; (b) Sets A and B are equal, A = B;
(c) Set B is a subset of set A, B ⊂ A; (d) Sets A and B are overlapped, A ∩ B �= φ,
but A �⊂ B and B �⊂ A

packet, and the other rule would also match a portion of the packets matched
by the first rule, but not all.

Al-Shaer et al. discuss these possible relations in [1] and they define the rela-
tions completely disjoint, exactly matched, inclusively matched, partially disjoint
and correlated. We propose some modifications to the relations defined in [1].
First we note that it is not needed to distinguish between completely disjoint
and partially disjoint rules as two rules will match entirely different set of pack-
ets if they differ in even only in one field. Further, we observe that the formal
definition of correlated rules does not include the possibility of overlapped field
in which the fields are neither disjoint nor subset of one or the other. We propose
the following modified set of relations between the rules.

Disjoint. Two rules r and s are disjoint, denoted as r	Ds, if they have at least
one criterion for which they have completely disjoint values. Formally,
r	Ds if ∃a ∈ attr[r.a ∩ s.a = φ]

Exactly Matching. Two rules r and s are exactly matched, denoted by r	EMs,
if each criterion of the rules match exactly. Formally,
r	EMs if ∀a ∈ attr[r.a = s.a]

Inclusively Matching. A rule r is a subset, or inclusively matched of another
rule s, denoted by r	IMs, if there exists at least one criterion for which r’s
value is a subset of s’s value and for the rest of the attributes r’s value is
equal to s’s value. Formally,
r	IMs if ∃a⊂attr [a �= φ ∧ ∀x∈a [r.x ⊂ s.x] ∧ ∀y∈ac [r.y = s.y]]

Correlated. Two rules r and s are correlated, denoted by r	Cs, if r and s are
not disjoint, but neither is the subset of the other. Formally,
r	Cs if (r � 	Ds) ∧ (r � 	IMs) ∧ (s � 	IMr)

2.3 Possible Anomalies Between Two Rules

In [1], Al-Shaer et al. give formal definitions of the possible anomalies between
rules in terms of the relations defined in [1]. Of these anomalies, we consider
generalization not to be an anomaly, as it is used in practice to specially handle
a specific group of addresses within a larger group, and as such we omit it from
our consideration. Here, we define the anomalies in terms of the relations in
Sect. 2.2.
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Shadowing Anomaly. A rule r is shadowed by another rule s if s precedes r in
the policy, and s can match all the packets matched by r. The effect is that r
is never activated. Formally, rule r is shadowed by s if s precedes r, r	EMs,
and r.action �= s.action, or s precedes r, r	IMs, and r.action �= s.action.

Correlation Anomaly. Two rules r and s are correlated if they have different
filtering actions and the r matches some packets that match s and the s
matches some packets that r matches. Formally rules r and s have a corre-
lation anomaly if r	Cs, r.action �= s.action

Redundancy Anomaly. A redundant rule r performs the same action on the
same packets as another rule s such that if r is removed the security pol-
icy will not be affected. Formally rule r is redundant of rule s if s pre-
cedes r, r	EMs, and r.action = s.action, or s precedes r, r	IM s, and
r.action = s.action; whereas rule s is redundant to rule r if s precedes
r, s	IMr, r.action = s.action and � ∃t where s precedes t and t precedes r,
s{	IM ,	C}t, r.action �= t.action

3 Anomaly Resolution Algorithms

This section describes the algorithms to detect and resolve the anomalies present
in a set of firewall rules as defined in the previous section. The algorithm is in
two parts. The first part analyzes the rules and generates a set of disjoint firewall
rules that do not contain any anomaly. The second part analyzes the set of rules
and tries to merge the rules in order to reduce the number of rules thus generated
without introducing any new anomaly.

3.1 Algorithms for Finding and Resolving Anomalies

In this section, we present our algorithm to detect and resolve anomalies. In this
algorithm, we resolve the anomalies as follows: in case of shadowing anomaly,
when rules are exactly matched, we keep the one with the reject action. When the
rules are inclusively matched, we reorder the rules to bring the subset rule before
the superset rule. In case of correlation anomaly, we break down the rules into
disjoint parts and insert them into the list. Of the part that is common to the
correlated rules, we keep the one with the reject action. In case of redundancy
anomaly, we remove the redundant rule.

In our algorithm, we maintain two global lists of firewall rules, old rules list
and new rules list. The old rules list will contain the rules as they are in the
original firewall configuration, and the new rules list will contain the output of
the algorithm, a set of firewall rules without any anomaly. The approach taken
here is incremental, we take each rule in the old rules list and insert it into
new rules list in such a way that new rules list remains free from anomalies.

Algorithm Resolve-Anomalies controls the whole process. After initializing
the global lists in lines 1 and 2, it takes each rule from the old rules list and
invokes algorithm Insert on it in lines 3 to 4. Then, it scans the new rules list
to resolve any redundancy anomalies that might remain in the list in lines 5
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to 10 by looking for and removing any rule that is a subset of a subsequent rule
with same action.

Algorithm. Resolve-Anomalies: Resolve anomalies in firewall rules file

1. old rules list ← read rules from config file
2. new rules list ← empty list
3. for all r ∈ old rules list do
4. Insert(r, new rules list)
5. for all r ∈ new rules list do
6. for all s ∈ new rules list after r do
7. if r ⊂ s then
8. if r.action = s.action then
9. Remove r from new rules list

10. break

Algorithm Insert inserts a rule into the new rules list in such a way that the
list remains anomaly free. If the list is empty, the rule is unconditionally inserted
in line 2. Otherwise, Insert tests the rule with all the rules in new rules list
using the Resolve algorithm in the for loop in line 5. If the rule conflicts with
any rule in the list, Resolve will handle it and return true, breaking the loop.
So, at line 10, if insert f lag is true, it means that Resolve has already han-
dled the rule. Otherwise, the rule is disjoint or superset with all the rules in
new rules list and it is inserted at the end of the list in line 11.

Algorithm. Insert(r,new rules list): Insert the rule r into new rules list

1. if new rules list is empty then
2. insert r into new rules list
3. else
4. inserted ← false
5. for all s ∈ new rules list do
6. if r and s are not disjoint then
7. inserted ← Resolve(r, s)
8. if inserted = true then
9. break

10. if inserted = false then
11. Insert r into new rules list

The algorithm Resolve is used to detect and resolve anomalies between two
non-disjoint rules. This algorithm is used by the Insert algorithm. The first
rule passed to Resolve, r, is the rule being inserted, and the second parameter,
s is a rule already in the new rules list. In comparing them, following are the
possibilities:

1. r and s are equal. If they are equal, and their actions are same, then any one
can be discarded. If the actions are different, then the one with the reject
action is retained. This case is handled in lines 1 to 6.
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2. r is a subset of s. In this case, we simply insert r before s regardless of the
action. This case is handled in lines 7 to 9.

3. r is a superset of s. In this case, r may match with rules further down the
list, so it is allowed to be checked further. No operation is performed in this
case. This case is handled in lines 10 to 11.

4. r and s are correlated. In this case, we need to break up the correlated rules
into disjoint rules. This case is handled in lines 12 to 19. First the set of
attributes in which the two rules differ is determined in line 13, and then
Split is invoked for each of the differing attributes in the for loop in line 14.
After Split returns, r and s contain the common part of the rules, which is
then inserted.

Algorithm. Resolve(r, s): Resolve anomalies between two rules r and s

1. if r = s then
2. if r.action �= s.action then
3. set s.action to REJECT and report anomaly
4. else
5. report removal of r
6. return true
7. if r ⊂ s then
8. insert r before s into new rules list and report reordering
9. return true

10. if s ⊂ r then
11. return false
12. Remove s from new rules list
13. Find set of attributes a = {x|r.x �= s.x}
14. for all ai ∈ a do
15. Split(r, s, ai)
16. if r.action �= s.action then
17. s.action ← REJECT
18. Insert(s, new rules list)
19. return true

Algorithm Split, is used to split two non-disjoint rules. It is passed the two
rules and the attribute on which the rules differ. It first extracts the parts of
the rules that are disjoint to the two rules and invokes the Insert algorithm on
them. Then it computes the common part of the two rules. Let r and s be two
rules and let a be the attribute for which Split is invoked. As can be readily
seen from the examples in Fig. 2(a) and 2(b), the common part will always start
with max(r.a.start, s.a.start) and end with min(r.a.end, s.a.end). The disjoint
part before the common part begins with min(r.a.start, s.a.start) and ends with
max(r.a.start, s.a.start)− 1, and the disjoint part after the common part starts
with min(r.a.end, s.a.end)+1 and ends with max(r.a.end, s.a.end). As these two
parts are disjoint with r and s, but we do not know their relation with the other
rules in new rules list, they are inserted into the new rules list by invoking
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Insert procedure. The common part of the two rules is computed in lines 13
and 14. The disjoint part before the common part is computed and inserted in
lines 5 to 8. The disjoint part after the common part is computed and inserted
in lines 9 to 12.

Fig. 2. (a) r.a.start < s.a.start & r.a.end < s.a.end, so the ranges can be broken into
[r.a.start, s.a.start − 1], [s.a.start, r.a.end] and [r.a.end + 1, s.a.end]. (b) r.a.start >
s.a.start & r.a.end > s.a.end, so the ranges can be broken into [s.a.start, r.a.start−1],
[r.a.start, s.a.end] and [s.a.end + 1, r.a.end].

Algorithm. Split(r,s,a): Split overlapping rules r and s based on attribute a

1. left ← min(r.a.start, s.a.start)
2. right ← max(r.a.end, s.a.end)
3. common start ← max(r.a.start, s.a.start)
4. common end ← min(r.a.end, s.a.end)
5. if r.a.start > s.a.start then
6. Insert(〈(left, common start−1), rest of s’s attributes〉, new rules list)
7. else if r.a.start < s.a.start then
8. Insert(〈(left, common start−1), rest of r’s attributes〉, new rules list)
9. if r.a.end > s.a.end then

10. Insert(〈(common end+1, right), rest of r’s attributes〉, new rules list)
11. else if r.a.end < s.a.end then
12. Insert(〈(common end+1, right), rest of s’s attributes〉, new rules list)
13. r ← 〈(common start, common end), rest of r’s attributes〉
14. s ← 〈(common start, common end), rest of s’s attributes〉

After completion of the Resolve-Anomalies algorithm, new rules list will
contain the list of firewall rules that are free from all the anomalies in consider-
ation.

3.2 Proof of Correctness

To prove the correctness of our algorithm, we first present and prove the following
theorem.

Theorem 1. A set of rules R[1 . . . n] is free from shadowing, correlation and
redundancy anomalies if for 1 ≤ i < j ≤ n, exactly one of the following three
conditions hold:
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1. R[i]	DR[j]
2. R[i]	IMR[j] and R[i].action �= R[j].action
3. R[i]	IMR[j] and R[i].action = R[j].action only if there exists some k

such that i < k < j and R[i]	IMR[k] and R[i].action �= R[k].action

Proof. Shadowing anomaly cannot exist in the list as for R[i] cannot be a subset
of R[j] if i > j. Correlation anomaly cannot exist in the list as the only relations
allowed in the list are 	D and 	IM . The absence of redundancy anomaly is
ensured by conditions 2 and 3. ��

We show by using loop invariants [6] that after the completion of Algorithm
Resolve-Anomalies, new rules list will maintain these properties and so it
will be anomaly free. The loop invariant is:

At the start of each iteration of the for loop in line 3 of Algorithm
Resolve-Anomalies, for 1 ≤ i < j ≤ m, exactly one of the following
holds:
1. new rules list[i]	Dnew rules list[j]
2. new rules list[i]	IMnew rules list[j]

where m is the size of new rules list.

Initialization. Before the first iteration, the new rules list is initialized to
empty and the invariant holds trivially.

Maintenance. Let r be the rule being inserted in an iteration. When Insert
is invoked on r, the following cases are possible:
1. new rules list is empty. Then r is inserted into new rules list, and the

iteration is complete, with the invariant holding trivially.
2. r is disjoint with every rule in new rules list. In this case, r is inserted

at the end of the list. The iteration is complete, and the loop invariant
holds.

3. r is not disjoint with rule s ∈ new rules list. Then the procedure Re-
solve is invoked with r and s, which checks the following possibilities:
(a) r	EMs. In this case, if their actions are same, r is redundant and

need not be inserted. If their actions are different, then r and s are
conflicting rules, and we simply change the action of s to reject,
without inserting r. In both cases, the iteration completes without
inserting anything, so the loop invariant holds.

(b) r	IM s. In this case, r is inserted before s in new rules list . The
iteration is complete, and the loop invariant holds.

(c) s	IMr. In this case, Resolve returns false so that the loop in line 5
in Insert can continue until either the end of new rules list has
been reached, or for some subsequent rule t has been found that is
not disjoint with r and call to Resolve(r, t) has returned true. In
the first case, all the rules after s in new rules list are disjoint with
r, so r can be appended to new rules list without violating the loop
invariant. In the second case, the call to Resolve(r, t) has handled
r without violating the loop invariant, so in both cases the invariant
holds.
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(d) r	Cs. In this case, first s is removed from new rules list as r and s
are going to be broken into disjoint rules. Then, algorithm Split is
invoked for each attribute for which r and s differ. Split breaks up
the attribute’s value into the part common to the rules and the parts
unique to the rules. The unique parts are by definition disjoint, so
they are inserted into the list by calling Insert. After breaking up all
the non-matching attributes, r and s are exactly matched. If they are
of different action, then s.action is set to reject, otherwise s already
contains the common action. Then s is inserted into new rules list
by Insert procedure. This completes the iteration, and ensures that
the loop invariant holds.

Termination. The loop terminates when all the rules in old rules list has been
inserted into new rules list, and as the loop invariant holds for each it-
eration, we have that conditions of the loop invariant hold for the entire
new rules list.

Thus, at the end of the for loop in line 3 of Algorithm Resolve-Anomalies,
each element of the new rules list is either disjoint with or subset of the sub-
sequent elements. The for loop at line 5 scans and removes any redundancy
anomalies present in the new rules list. If any rule r in new rules list is subset
of any subsequent rule s in new rules list with the same action, r is removed
as it is redundant. So at the end of this loop, new rules list will maintain the
three properties stated in Theorem 1, and so new rules list will be free from
shadowing, correlation and redundancy anomalies.

3.3 Cost Analysis

The cost of running the algorithm depends on the nature of the rules in the
input. If a rule is disjoint or superset with the other rules of the new rules list
then the rule is inserted into the list without further invoking procedure Insert.
In this case the for loop in line 5 of Algorithm Insert has to traverse the whole
new rules list. If a rule is subset of any rule in the new rules list, then the rule
is inserted just before the superset rule and the loop terminates immediately.
So in the worst case the whole new rules list may have to be traversed. A rule
is discarded if it is equal to any rule in the new rules list, and in the worst
case the whole new rules list may have to be traversed. If a rule is correlated
with a rule in the new rules list then they will be divided into a set of mutually
disjoint rules. In the worst case the number of rules thus generated will be up
to twice the number of attributes plus one, and these rules will be inserted
into the new rules list by invoking Insert recursively. Resolve-Anomalies
invokes Insert once for each rule in new rules list in the for loop in line 3, and
removes the redundancy anomalies in the for loop in line 5. The running time of
Resolve-Anomalies is dominated by the number of times Insert is invoked,
which depends on the number of correlated rules. In the worst case, if all rules
are correlated, the running time may deteriorate to exponential order.
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3.4 Illustrative Example

Let us consider the following set of firewall rules for analysis with the algorithm.

1. 〈IN, TCP, 129.110.96.117, ANY, ANY, 80, REJECT〉
2. 〈IN, TCP, 129.110.96.*, ANY, ANY, 80, ACCEPT〉
3. 〈IN, TCP, ANY, ANY, 129.110.96.80, 80, ACCEPT〉
4. 〈IN, TCP, 129.110.96.*, ANY, 129.110.96.80, 80, REJECT〉
5. 〈OUT, TCP, 129.110.96.80, 22, ANY, ANY, REJECT〉
6. 〈IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 22, REJECT〉
7. 〈IN, UDP, 129.110.96.117, ANY, 129.110.96.*, 22, REJECT〉
8. 〈IN, UDP, 129.110.96.117, ANY, 129.110.96.80, 22, REJECT〉
9. 〈IN, UDP, 129.110.96.117, ANY, 129.110.96.117, 22, ACCEPT〉

10. 〈IN, UDP, 129.110.96.117, ANY, 129.110.96.117, 22, REJECT〉
11. 〈OUT, UDP, ANY, ANY, ANY, ANY, REJECT〉

Step-1. As the new rules list is empty, rule-1 is inserted as it is.
Step-2. When rule-2 is inserted, new rules list contains only one rule, the one

that was inserted in the previous step. We have, r = 〈IN, TCP, 129.110.96.*,
ANY, ANY, 80, ACCEPT〉 and s = 〈IN, TCP, 129.110.96.117, ANY, ANY,
80, REJECT〉. Here, s ⊂ r, so r is inserted into new rules list after s.

Step-3. In this step, r = 〈IN, TCP, ANY, ANY, 129.110.96.80, 80, ACCEPT〉.
In the first iteration, s = 〈IN,TCP,129.110.96.117,ANY,ANY,80,REJECT〉.
Clearly these two rules are correlated, with s.srcip ⊂ r.srcip and r.destip ⊂
s.destip. Therefore these rules must be broken down. After splitting the rules
into disjoint parts, we have the following rules in new rules list:
1. 〈IN, TCP, 129.110.96.1-116, ANY, 129.110.96.80, 80, ACCEPT〉
2. 〈IN, TCP, 129.110.96.118-254, ANY, 129.110.96.80, 80, ACCEPT〉
3. 〈IN, TCP, 129.110.96.117, ANY, 129.110.96.1-79, 80, REJECT〉
4. 〈IN, TCP, 129.110.96.117, ANY, 129.110.96.81-254, 80, REJECT〉
5. 〈IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 80, REJECT〉
6. 〈IN, TCP, 129.110.96.*, ANY, ANY, 80, ACCEPT〉

After completion of the first for loop in line 3 in the algorithm Resolve-
Anomalies, the new rules list will hold the following rules:

1. 〈IN, TCP, 129.110.96.1-116, ANY, 129.110.96.80, 80, ACCEPT〉
2. 〈IN, TCP, 129.110.96.118-254, ANY, 129.110.96.80, 80, ACCEPT〉
3. 〈IN, TCP, 129.110.96.117, ANY, 129.110.96.1-79, 80, REJECT〉
4. 〈IN, TCP, 129.110.96.117, ANY, 129.110.96.81-254, 80, REJECT〉
5. 〈IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 80, REJECT〉
6. 〈IN, TCP, 129.110.96.*, ANY, 129.110.96.80, 80, REJECT〉
7. 〈IN, TCP, 129.110.96.*, ANY, ANY, 80, ACCEPT〉
8. 〈OUT, TCP, 129.110.96.80, 22, ANY, ANY, REJECT〉
9. 〈IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 22, REJECT〉

10. 〈IN, UDP, 129.110.96.117, ANY, 129.110.96.80, 22, REJECT〉
11. 〈IN, UDP, 129.110.96.117, ANY, 129.110.96.117, 22, REJECT〉
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12. 〈IN, UDP, 129.110.96.117, ANY, 129.110.96.*, 22, REJECT〉
13. 〈OUT, UDP, ANY, ANY, ANY, ANY, REJECT〉

The next step is to scan this list to find and resolve the redundancy anomalies.
In this list, rule-1 is a subset of rule-6, but as the rules have different action,
rule-1 is retained. Similarly, rule-2, which is also a subset of rule-6 with differing
action, is also retained. Rules 3 and 4 are subsets of rule-7, but are retained as
they have different action than rule-7. Rule-5 is a subset of rule-6, and as they
have the same action, rule-5 is removed. After removing these rules, the list is
free from all the anomalies.

3.5 Algorithms for Merging Rules

After the completion of the anomaly resolution algorithm, there are no correlated
rules in the list. In this list, we can merge rules having attributes with consecutive
ranges with the same action. To accomplish this, we construct a tree using
Algorithm TreeInsert. Each node of the tree represents an attribute. The
edges leading out of the nodes represent values of the attribute. Each edge in
the tree represents a particular range of value for the attribute of the source
node, and it points to a node for the next attribute in the rule represented
by the path. For example, the root node of the tree represents the attribute
Direction, and there can be two edges out of the root representing IN and OUT.
We consider a firewall rule to be represented by the ordered tuple as mentioned
in Sect. 2.1. So, the edge representing the value IN coming out of the root node
would point to a node for Protocol. The leaf nodes always represent the attribute
Action. A complete path from the root to a leaf corresponds to one firewall rule
in the policy. For example, the leftmost path in the tree in Fig. 3(a) represents
the firewall rule 〈IN, TCP, 202.80.169.29-63, 483, 129.110.96.64-127, 100-110,
ACCEPT〉.

Algorithm TreeInsert, takes as input a rule and a node of the tree. It checks
if the value of the rule for the attribute represented by the node matches any
of the values of the edges out of the node. If it matches any edge of the node,
then it recursively invokes TreeInsert on the node pointed by the edge with
the rule. Otherwise it creates a new edge and adds it to the list of edges of the
node.

Algorithm. TreeInsert(n, r): Inserts rule r into the node n of the rule tree

1. for all edge ei ∈ n.edges do
2. if r.(n.attribute) = ei.range then
3. TreeInsert(ei.vertex, r)
4. return
5. v ← new Vertex(next attribute after n.attribute, NULL)
6. Insert new edge 〈r.(n.attribute), r.(n.attribute), v 〉 in n.edges
7. TreeInsert(v, r)

We use Algorithm Merge on the tree to merge those edges of the tree that
has consecutive values of attributes, and has exactly matching subtrees. It first
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calls itself recursively on each of its children in line 2 to ensure that their sub-
trees are already merged. Then, it takes each edge and matches its range with all
the other edges to see if they can be merged. Whether two edges can be merged
depends on two criteria. First, their ranges must be contiguous i.e. the range of
one starts immediately after the end of the other. Second, the subtrees of the
nodes pointed to by the edges must match exactly. This criterion ensures that
all the attributes after this attribute are same for all the rules below this node. If
these two criteria are met, they are merged into one edge in place of the original
two edges. After merging the possible rules, the number of rules defined in the
firewall policy is reduced and it helps to increase the efficiency of firewall policy
management. The example given in Fig. 3 illustrate how the merge procedure
works.

Algorithm. Merge(n): Merges edges of node n representing a continuous range

1. for all edge e ∈ n.edges do
2. Merge(e.node)
3. for all edge e ∈ n.edges do
4. for all edge e′ �= e ∈ n.edges do
5. if e’s and e′’s ranges are contiguous and Subtree(e)=Subtree(e′) then
6. Merge e.range and e′.range into e.range
7. Remove e′ from n.edges

3.6 Illustrative Example of the Merge Algorithm

To illustrate the merging algorithm, we start with the following set of non-
anomalous rules. We deliberately chose a set of rules with the same action since
rules with different action will never be merged.

1. 〈IN, TCP, 202.80.169.29-63, 483, 129.110.96.64-127, 100-110, ACCEPT〉
2. 〈IN, TCP, 202.80.169.29-63, 483, 129.110.96.64-127, 111-127, ACCEPT〉
3. 〈IN, TCP, 202.80.169.29-63, 483, 129.110.96.128-164, 100-127, ACCEPT〉
4. 〈IN, TCP, 202.80.169.29-63, 484, 129.110.96.64-99, 100-127, ACCEPT〉
5. 〈IN, TCP, 202.80.169.29-63, 484, 129.110.96.100-164, 100-127, ACCEPT〉
6. 〈IN, TCP, 202.80.169.64-110, 483-484, 129.110.96.64-164, 100-127,ACCEPT〉

From this rules list we generate the tree as in Fig 3(a) by the TreeInsert
algorithm. On this tree, the Merge procedure is run. The Merge algorithm tra-
verses the tree in post order. Thus, the first node to be processed is node 14.
As it has only one child, it returns without any operation. The next node in
order is 15, which also has only one child. The next node to be processed is node
9. The attribute represented by node 9 is destination port. The ranges of its
two children, 100-110 and 111-127 are consecutive, and also their subtrees are
the same. Thus, these two edges are merged to obtain one edge with the range
100-127.
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Fig. 3. (a) Tree generated from the example rules list by the TreeInsert algorithm.
(b) Intermediate state of the tree: node 7’s children are going to be merged next.

Of the nodes that are going to be processed now, nodes 16 and 10 are
each of one child only, so they do not require any further processing. How-
ever, node 6, representing destination IP address, has two children, and their IP
address ranges, 129.110.96.64-127 and 129.110.96.128-164, are consecutive. Also,
the subtrees from the nodes 9 and 10 are also the same. Hence, they are merged
to become one edge with range value of 129.110.96.128-164.

So far, we have eliminated three nodes, 15, 16 and 10. Of the next nodes
to be processed, nodes 17, 11, 18 and 12 has only one child, and hence incur
no processing. At node 7, as shown in Fig 3(b), the represented attribute is
destination IP address, and the ranges of its children are 129.110.96.64-99 and
129.110.96.100-164. The ranges being consecutive, they are merged into one edge
of range 129.110.96.64-164, eliminating node 12 and 18.

After the Merge algorithm is complete on the entire tree, we are left with
the single rule 〈IN, TCP, 202.80.169.29-110, 483-484, 129.110.96.64-164, 100-127,
ACCEPT〉 .

4 Conclusion and Future Works

Resolution of anomalies from firewall policy rules is vital to the network’s security
as anomalies can introduce unwarranted and hard to find security holes. Our
work presents an automated process for detecting and resolving such anomalies.
The anomaly resolution algorithm and the merging algorithm should produce
a compact yet anomaly free rule set that would be easier to understand and



Detection and Resolution of Anomalies in Firewall Policy Rules 29

maintain. This algorithms can also be integrated into policy advisor and editing
tools. The paper also establishes the complete definition and analysis of the
relations between rules.

In future, this analysis can be extended to distributed firewalls. Also, we
propose to use data mining techniques to analyze the log files of the firewall and
discover other kinds of anomalies. These techniques should be applied only after
the rules have been made free from anomaly by applying the algorithms in this
paper. That way it would be ensured that not only syntactic but also semantic
mistakes in the rules will be captured. Research in this direction has already
started.
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Abstract. Controlled Query Evaluation (CQE) offers a logical frame-
work to prevent a user of a database from inadvertently gaining knowl-
edge he is not allowed to know. By modeling the user’s a priori knowledge
in an appropriate way, a CQE system can control not only plain access
to database entries but also inferences made by the user. A dynamic
CQE system that enforces inference control at runtime has already been
investigated. In this article, we pursue a static approach that constructs
an inference-proof database in a preprocessing step. The inference-proof
database can respond to any query without enabling the user to in-
fer confidential information. We illustrate the semantics of the system
by a comprehensive example and state the essential requirements for
an inference-proof and highly available database. We present an algo-
rithm that accomplishes the preprocessing by combining SAT solving
and “Branch and Bound”.

Keywords: Controlled Query Evaluation, inference control, lying, con-
fidentiality of data, complete database systems, propositional logic, SAT
solving, Branch and Bound.

1 Introduction and Related Work

Controlled query evaluation (cf. [1,2,3]) aims at preserving the confidentiality of
some secret information in a sequence of queries to a database. Not only plain
access to certain database entries is denied but also information that can be
gained by logical reasoning is taken into consideration. This is what is usually
called inference control. There are a lot of different approaches addressing in-
ference control for example for statistical databases [9], distributed databases
[5], relational databases with fuzzy values [15] and for XML documents [19].
In [11] the authors give a comprehensive overview of existing inference control
techniques and state some of the fundamental problems in this area. Wang et
al. [18] name two typical protection mechanisms (in their case for online analyt-
ical processing (OLAP) systems): restriction (deleting some values in the query
result) and perturbation (changing some values in the query result). In general,
any method for avoiding inferences has an effect on the accuracy of the returned
answers. Hence, there is a trade-off between confidentiality of secret information
and availability of information; in order to protect the secret information, some
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(even non-secret) information may be modified. Reliability may also be reduced
by protection mechanisms; the user may be unsure of whether he got a correct
or a modified answer.

The above mentioned approaches are typically based on specialized data struc-
tures (relational data model, XML documents); Controlled Query Evaluation
(CQE) however offers a flexible framework to execute inference control based on
an arbitrary logic. In this paper, we construct an inference-proof database in the
CQE framework considering the original database, a user’s a priori knowledge
and a set of secrets. In Section 2 we introduce the CQE framework and state
the prerequisites assumed in this paper. In Section 3 we formalize the notion of
an inference-proof and highly available database. Section 4 shows a transforma-
tion of our problem to SAT solving and presents an algorithm that computes an
inference-proof database. A comprehensive example illustrates our approach in
Subsections 2.1 and 4.3.

2 Controlled Query Evaluation

Basically, a system model for Controlled Query Evaluation consists of:

1. a database that contains some freely accessible information and some secret
information

2. a single user (or a group of collaborating users, respectively) having a cer-
tain amount of information as a priori knowledge of the database and the
world in general; the case that several different users independently query
the database is not considered as the database cannot distinguish whether a
group of users collaborates or not

The user sends queries to the database and the database sends corresponding
answers to the user. To prevent the user from inferring confidential information
from the answers and his assumed a priori knowledge, appropriate restriction or
perturbation is done by the CQE system on the database side. In CQE on the
one hand refusal is used as a means of restriction: to a critical query the database
refuses to answer (i.e., just returns mum). On the other hand, lying is employed as
a means of perturbation: the database returns a false value or declares the query
answer as undefined although a value exists in the database. In this way, the
CQE approach automates the enforcement of confidentiality: wanting to restrict
access to some secret information, a database administrator just specifies which
information has to be kept secret; then, the CQE system computes the inference-
proof answers. No human being ever has to consider inferences potentially made
by the user, because the CQE system computes these inferences and employs
the above mentioned protection mechanisms such that only “safe” answers are
returned to the user. However, the database should be as cooperative as possible:
only a minimum of answers should be distorted to ensure the confidentiality of
the secret information. CQE can be varied based on several different parameters:

– complete information systems are considered with a model-theoretic ap-
proach (see [2]) while incomplete information systems are treated with a
proof-theoretic approach (see [4])
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– the secret information can be represented by two distinct types of “confiden-
tiality policies”: either secrecies (no truth value may be known by the user –
be it true or false) or potential secrets (the user may know that a secret is
false or possibly undefined, but the user may not know that a secret is true)

– the user may or may not know what kind of information is to be kept secret;
therefore the “user awareness” can be divided into the known policy and the
unknown policy case

– as the protection mechanism (also called “enforcement method”) either lying
or refusal or a combination of both can be employed (see [3])

In this paper we focus on a complete information system in propositional logic
with a security policy of potential secrets and a known policy. Additionally, we
only use lying as a protection mechanism. Thus, in this paper a CQE system is
based on the following:

– a finite alphabet P of propositional variables; formulas can be built from
the variables with the connectives ¬, ∨ and ∧;1 formulas contain “positive
literals” (variables) and “negative literals” (negations of variables)

– a database db ⊂ P that represents an interpretation I of the propositional
variables: for each A ∈ P , if A ∈ db, then I assigns A the value true (written
as I(A) = 1), else I assigns A the value false (written as I(A) = 0); this
means that we have a complete database: to each query the database returns
either true or false

– the user’s queries to the database as formulas Φ over P
– a security policy pot sec as a set of formulas over P of “potential secrets”;

these potential secrets represent the secret information; the semantics is that
for each formula Ψ ∈ pot sec, if Ψ evaluates to true according to db then the
user may not know this, but the user may believe that the formula evaluates
to false (that is, the negation of Ψ evaluates to true according to db).

– the user’s a priori knowledge as a set of formulas over P called prior ; prior
may contain general knowledge (like implications over P) or knowledge of
db (like semantic constraints)

There are some prerequisites our system has to fulfill. In this paper, we presume
that:

(a) [consistent knowledge] prior is consistent and the user cannot be made
believe inconsistent information at any time

(b) [monotone knowledge] the user cannot be “brainwashed” and forced to
forget some part of his knowledge

(c) [single source of information] the database db is the user’s only source
of information (besides prior)

(d) [unknown secrets] for all Ψ ∈ pot sec: prior �|= Ψ
(e) [implicit closure under disjunction] the user may not know (a priori)

that the disjunction of the potential secrets is true:

prior �|= pot sec disj (where pot sec disj :=
∨

Ψ∈ pot sec
Ψ) (1)

1 Two consecutive negations cancel each other out: ¬¬A ≡ A.
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We require (d) because if the user already knows a potential secret, we obviously
cannot protect the secret anymore. Moreover, in the case of lying as the only
protection mechanism, we even have to be more strict: requirement (e) is nec-
essary, because otherwise the system could run into a situation where even a lie
reveals a secret. To illustrate this, assume pot sec = {α, β} (for formulas α and β
that are both true according to db) and prior = {α∨β}; to the query Φ = α the
CQE system would return the lie ¬α, but this would enable the user to conclude
that β were true (and he is not allowed to know this); thus, we require prior to
fulfill Equation (1). This line of reasoning also demands that the CQE system
lie to every query entailing the disjunction of some potential secrets. See [1,3]
for more information.

2.1 An Example System

The following example shall clarify the system design. Let us imagine that we
have a database with Alice’s medical records. The curious user Mallory wants to
find out whether she is incapable of working or has financial problems. We use
the alphabet

P = {cancer, brokenArm, brokenLeg, highCosts, lowWorkCpcty}.

Poor Alice is badly ill and her medical records (as a set of literals) look like this:

record = {cancer, brokenArm, brokenLeg}.

It is generally known that cancer leads to high medical costs and low work
capacity and that a broken arm leads to low work capacity and a broken leg
to high medical costs. Expressing these implications as formulas, we have the
general knowledge

genknowl = { ¬cancer∨ highCosts,¬cancer∨ lowWorkCpcty,

¬brokenArm∨ lowWorkCpcty,¬brokenLeg∨ highCosts}.

The database db contains the medical record record and is compliant with the
general knowledge genknowl; thus, in this example we have

db = P .

Mallory just knows what is also generally known:

prior = genknowl .

Now we can specify the potential secrets. As a first example we have just one
formula consisting of one literal:

pot sec1 = {lowWorkCpcty}.

To the query Φ = cancer the database should now return the lie false (as
otherwise Mallory would conclude from his a priori knowledge that Alice has low
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work capacity). The same applies to the queries brokenArm and lowWorkCpcty.
However, to the queries brokenLeg and highCosts the database should return
the correct answer true.

A conjunction of two literals means that Mallory may know one of the literals
but may not know both at the same time. As an example, consider the secret

pot sec2 = {highCosts∧ lowWorkCpcty}.

To one of the queries Φ1 = brokenArm and Φ2 = brokenLeg the database can
return the correct answer true; however, to the other query the database has to
return the lie false (otherwise both high medical costs and low work capacity
can be concluded).

The meaning of a disjunction of two literals implies that Mallory may know
neither of the literals. Consider

pot sec3 = {highCosts∨ lowWorkCpcty}.

To every possible atomic query Φ ∈ P the database has to return the lie false
(as otherwise either high medical costs or low work capacity or both can be
concluded).

The intended semantics of pot sec can inductively be extended to non-
singleton sets of arbitrary formulas.

As can be seen from the above examples, confidentiality of secret information
is considered more important than a correct and reliable answer. Secret informa-
tion has to be kept secret even at the risk of returning inaccurate information.

3 Constructing an Inference-Proof Database

Given a database db, a security policy pot sec in the form of potential secrets,
and the user’s a priori knowledge prior as described in the previous section, we
now want to construct a database db′ that is inference-proof with respect to
every possible sequence of queries the user may come up with. We demand the
following for db′ to be fulfilled:

i. [inference-proof] db′ does not satisfy any of the potential secrets: db′ �|= Ψ
for every Ψ ∈ pot sec

ii. [complete] db′ is complete (as is db)
iii. [highly available] db′ contains as few lies as possible; we want to remove,

add or change only a minimum of entries (with respect to the original
database db): db′ shall contain a lie only if otherwise a potential secret would
be endangered

iv. [consistent] db′ is consistent in itself and also consistent with prior as the
user’s a priori knowledge is fixed and we cannot make the user believe in-
consistent information

As for the inference-proofness and completeness features (i. and ii.), we want
db′ to represent an interpretation I ′ that assigns a value to every propositional
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variable in P . Hence the database db′ must return an answer (true or false)
to every query – also to a query containing a potential secret. As we consider
here the known policy case, the user knows that he gets the answer false when
querying a potential secret (because he is not allowed to know that a potential
secret is true). So concluding from completeness and the user’s awareness of the
security policy, as one property of the database db′ we have:

db′ |= ¬Ψ for every Ψ ∈ pot sec (2)

We define the set of formulas Neg(pot sec) := {¬Ψ |Ψ ∈ pot sec} and try to find
an interpretation I ′ that satisfies all formulas in Neg(pot sec) in order for db′ to
fulfill (2).

Now, let us turn to the availability feature (iii.).2 To have a measure for
the availability of db′ we define a distance between an interpretation I and an
interpretation J with respect to a set of propositional variables V as follows:
distV(I, J) := ||{A|A ∈ V , I(A) �= J(A)}||. That is, we count all variables in V
having in one interpretation a value distinct from the value in the other interpre-
tation. As we want to maximize availability, we have to minimize the distance
of the new interpretation I ′ with respect to the original interpretation I and all
variables in P : distP(I, I ′) −→ min.

The consistency feature (iv.) means that we want to find an interpretation I ′

such that all formulas in prior are satisfied.
All in all we conclude that I ′ has to be an interpretation (for the variables in

P) that has minimal distance to the original interpretation I and satisfies the
set of formulas prior ∪ Neg(pot sec).

Under the requirements (a)–(e) given in Section 2, such a satisfying interpre-
tation always exists. To prove this, first of all note that requirement (e) implies
that pot sec disj is not a tautology. Combining requirements (a) and (e), we
conclude that prior is consistent with the set Neg(pot sec). Thus, there exists at
least one interpretation I ′ satisfying prior ∪Neg(pot sec).

4 A “Branch and Bound”-SAT-Solver

In order to find interpretation I ′, we combine SAT-solving (for the completeness
and satisfiability requirements) with “Branch and Bound” (for the minimiza-
tion requirement). The database db′ representing I ′ will be inference-proof by
construction, as we describe in the following.

SAT-solvers try to find a satisfying interpretation for a set of clauses (i.e.
disjunctions of literals). The basis for nearly all non-probabilistic SAT-solvers is
the so-called DLL-algorithm (see [7,6]). It implements:

1. “elimination of one-literal clauses” (also called “boolean constraint propaga-
tion”, BCP): a unit clause (i.e., a clause consisting of just one literal) must
be evaluated to true

2 Availability in this context is defined as “containing as much correct information as
possible”; in contrast, reliability is defined as “the user knows that the answer he got
from db′ is correct”.
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2. “affirmative-negative rule”: if in all clauses only the positive literal or only
the negative literal of a variable occurs (a so-called “pure literal”), then the
literal can be evaluated to true

3. splitting on variables: take one yet uninterpreted variable, set it to false (to
get one subproblem) and to true (to get a second subproblem), and try to
find a solution for at least one of the subproblems

Whenever a value is assigned to a variable, the set of clauses can be simplified
by subsumption (if a clause contains a literal that is evaluated to true, remove
the whole clause) or resolution (if a clause contains a literal that is evaluated to
false, remove this literal from the clause but keep the remaining clause).

“Branch and Bound” (B&B, for short) is a method for finding solutions to
an optimization problem. It offers the features “branching” (dividing the prob-
lem into adequate subproblems), “bounding” (efficiently computing local lower
and upper bounds for subproblems), and “pruning” (discarding a subproblem
due to a bad bound value). For a minimization problem a global upper bound
is maintained stating the currently best value. A B&B-algorithm may have a
superpolynomial running time; however, execution may be stopped with the as-
surance that the optimal solution’s value is in between the global upper bound
and the minimum of the local lower bounds.

4.1 The Algorithm

First of all, we consider the case where prior ∪Neg(pot sec) is a set of formulas in
conjunctive normal form (CNF); the general case will be treated in Section 4.2.
We define the set of clauses Cdecision as

Cdecision :=
⋃

Ψ∈prior∪Neg(pot sec)

clauses(Ψ)

where clauses(Ψ) is a set of clauses representing Ψ ∈ prior ∪ Neg(pot sec).
Cdecision is the input to our SAT-solving algorithm. Let Pdecision ⊂ P be the set
of all variables occurring in Cdecision; these are the“decision variables”. Our SAT-
solver finds an interpretation I ′decision for all decision variables; all other variables
get assigned the same truth value as before: I ′(A) := I(A) if A ∈ P \ Pdecision.
Thus, we have distP\Pdecision

(I, I ′) = 0. We find an interpretation I ′decision for
Pdecision satisfying Cdecision with minimal distance to I by employing a branch
and bound algorithm. Listings 1, 2, 3 and 4 show the four functions “initializa-
tion”,“best-first-search splitting”,“boolean constraint propagation”, and“simpli-
fication of clauses” of our algorithm. In the following we describe each function
in detail.

B&B on the set Pdecision yields a binary tree; its maximal depth is the car-
dinality of Pdecision: depthmax = ||Pdecision||. The binary structure of the tree is
created as follows. In every node v a “splitting variable”A ∈ Pdecision is selected;
we refer to this variable by splitvar(v). Then, a left and a right child node vleft

and vright are constructed; in one of the child nodes A is set to true and in the
other child node A is set to false. This is the splitting step of the DLL-algorithm
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1. Initialization for the root node r
1.1. Ir(A) := undefined for all A ∈ Pdecision

1.2. lbr := 0; ubr := depthmax; ubglobal := ubr

1.3. Cr := Cdecision

1.4. BCP(Ir,Cr,lbr,ubr)

Listing 1. Initialization for root node r

as well as the branching step of B&B. We conduct a “best-first search” with our
B&B algorithm: in the left child node we assign splitvar(v) the same truth value
as in I (this choice yields better local bounds and we process the left child node
first; see Listing 2, line 2.3.), and in the right child node we assign splitvar(v)
the opposite truth value I(splitvar (v)) (which yields worse local bounds; see
line 2.6.). A splitting step is pictured in Figure 1.

root r��
��

� � � ���
clauses Cr

interpretation Ir

local bounds lbr, ubr

node v��
��

�
��

�
��

clauses Cv

interpretation Iv

local bounds lbv, ubv

vleft��
��

� � � ���
Ivleft(splitvar(v))
:= I(splitvar(v))
ubvleft := ubv − 1
lbvleft := lbv

vright��
��

Ivright (splitvar(v))
:= I(splitvar(v))
ubvright := ubv

lbvright := lbv + 1� � � ���

� Splitting on splitvar(v)

Fig. 1. A splitting step

Each node v has its own set of clauses Cv. The child nodes get each a simplified
set of clauses constructed from Cv by subsumption and resolution (see lines 2.5.1.
and 2.8.1. and Listing 4). Initially, for the root node r the set of clauses is
Cr = Cdecision (see Listing 1, line 1.3.).

Before splitting takes place in node v, we carry out BCP: unit clauses are
repeatedly eliminated from Cv until there are none left (see Listing 3, line 3.2.).
Variables in unit clauses are assigned a value without splitting on these variables;
thus, BCP reduces the number of branches in the tree.

Each node v represents an interpretation Iv containing all variable assignments
occurring on the path from the root node r to the node v. Initially, for the root
node r all values are undefined (see Listing 1, line 1.1.).

In each node v also the local lower bound lbv and the local upper bound ubv

are defined. The global upper bound is called ubglobal. We compute the bounds
using the availability distance defined above; this is the bounding step of B&B.
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2. SPLIT(Iv ,Cv,lbv,ubv): Best-First-Search-Splitting on A ∈ Pdecision

2.1. generate two child nodes vleft and vright

2.2. copy Iv into Ivleft and Ivright

2.3. Ivleft(A) := I(A); ubvleft := ubv − 1; lbvleft := lbv

2.4. if (lbvleft > ubglobal) { GOTO line 2.6. }
2.5. else

2.5.1. Cvleft := SIMP(Ivleft ,Cv,ubv)
2.5.2. BCP(Ivleft ,Cvleft ,lbvleft ,ubvleft)

2.6. Ivright (A) := I(A); ubvright := ubv; lbvright := lbv + 1
2.7. if (lbvright > ubglobal) { RETURN }
2.8. else

2.8.1. Cvright := SIMP(Ivright ,Cv ,ubv)
2.8.2. BCP(Ivright ,Cvright ,lbvright ,ubvright)

Listing 2. Best-First-Search Splitting

3. BCP(Iv,Cv,lbv ,ubv): Boolean Constraint Propagation in node v
3.1. Cunit

v := set of unit clauses of Cv

3.2. while (Cunit
v �= ∅)

3.2.1. foreach clause [l] ∈ Cunit
v (with l = A or l = ¬A for an A ∈ Pdecision)

3.2.1.1. remove [l] from Cunit
v ; set Iv(A) such that Iv |= l

3.2.1.2. if (Iv(A) == I(A)) {ubv − −}
3.2.1.3. else {lbv + +}

3.2.2. if (lbv > ubglobal) { RETURN }
3.2.3. else

3.2.3.1. Cv := SIMP(Iv,Cv,ubv); Cunit
v := set of unit clauses of Cv

3.3. if (v == r and ubglobal > ubr) {ubglobal := ubr}
3.4. if (Cv �= ∅) {SPLIT(Iv ,Cv,lbv ,ubv)}

Listing 3. Boolean Constraint Propagation

The lower bound lbv is the number of variables that are assigned in Iv a value
distinct from the value in the original interpretation I; the upper bound ubv

is lbv plus the number of variables that are still undefined in Iv; if the final
interpretation I ′decision can be found in this branch, it has at least distance lbv

and at most distance ubv from I: lbv ≤ distPdecision
(I, I ′decision) ≤ ubv. Initially,

the bounds are lbr = 0 and ubr = depthmax; ubglobal is initialized to depthmax,
too (see line 1.2.).

During BCP the bounds are accordingly adjusted (see lines 3.2.1.2. and
3.2.1.3.). After BCP in the root node r, the global upper bound can already
be decremented (see line 3.3.); every satisfying assignment I ′decision has to sat-
isfy the unit clauses in the root node. Subsequently, ubglobal may only be adjusted
when a complete and satisfying interpretation Iv is found and ubv < ubglobal (see
line 4.3.).

During splitting in an arbitrary node v, in the left child node only the upper
bound has to be decremented, while in the right child node only the lower bound
has to be incremented (see lines 2.3. and 2.6.).
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4. SIMP(Iv,Cv ,ubv): Simplification of a set of clauses Cv given interpretation Iv

4.1. initialize set of clauses Creturn := ∅
4.2. foreach clause c in Cv

4.2.1. foreach literal l in c:
4.2.1.1. if (Iv |= l ) {Subsumption: CONTINUE (ignore c)}
4.2.1.2. else if (Iv �|= l ) {Resolution: remove l from c}

4.2.2. if (c empty clause) { RETURN (Iv not satisfying)}
4.2.3. else {add c to Creturn}

4.3. if (Creturn == ∅ and ubglobal > ubv) {ubglobal := ubv}
4.4. return Creturn

Listing 4. Simplification of clauses

For the pruning of B&B to take place, there are two possible conditions:

1. [bad lower bound] the local lower bound of node v is worse than the
current global upper bound: lbv > ubglobal; we have already found a better
solution and we are not able to expand Iv to an interpretation for all decision
variables with minimal distance

2. [unsatisfiability] while constructing Iv we encountered an inconsistency:
we are not able to expand Iv to an interpretation for all decision variables
that satisfies Cdecision

The lower bound condition is checked in lines 2.4., 2.7. and 3.2.2. after new
lower bounds have been calculated. The unsatisfiability condition is checked in
line 4.2.2. during simplification: if an empty clause is generated, the current
interpretation is not satisfying.

In the subsumption step it may happen that variables “disappear” from the
clauses: there are no clauses left that contain the variables. Thus, it may be
the case that in the final interpretation I ′decision there are still some undefined
variables (they are often referred to as “don’t care variables”). However, these
variables had no influence on the satisfiability of the clauses; these variables are
removed from Pdecision and thus are assigned the same truth value as in the
original interpretation.

Having found I ′decision satisfying Cdecision and having minimal distance to I,
we can construct our inference-proof database db′ as follows:

for all A ∈ Pdecision : A ∈ db′ iff I ′decision(A) = 1
for all A ∈ P \ Pdecision : A ∈ db′ iff A ∈ db (that is I(A) = 1)

If ||Pdecision|| � ||P||, it may be more efficient to just maintain a small separate
database dbdecision, in this special case including possibly negated entries:

for all A ∈ Pdecision

{
A ∈ dbdecision iff I ′decision(A) = 1
¬A ∈ dbdecision iff I ′decision(A) = 0

dbdecision returns the truth values for all variables from Pdecision. The original
database db returns the truth values of variables from P \ Pdecision.
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4.2 Some Remarks on Further Techniques

There exist several adaptations of the basic DLL-algorithm to non-CNF for-
mulas. For example, Ganai et al. [13] introduce hybrid SAT for boolean circuits
where only newly added (“learned”) clauses are in CNF. Propagation in circuits is
supported by a lookup table and “watched literals” (see also [21]). Giunchiglia et
al. [14] apply renaming of subformulas by adding new variables (thus construct-
ing an equisatisfiable formula in CNF for a non-CNF input formula) but propose
to split only on the original (“independent”) variables. Thiffault et al. [17] repre-
sent the non-CNF input formula as a directed acyclic graph and base propagation
on “watch children” and “don’t care watch parents”. With such techniques our
B&B-algorithm can be extended to accept non-CNF formulas. Moreover, a vast
number of optimization techniques and splitting heuristics have been proposed
for the basic DLL-algorithm; for example, subsumption removal [20], reduction
of the number of clauses [10] or elimination of variables [16]. Such techniques
can be employed to speed up the search process.

Our availability distance may not be the only optimization criterion; the
bounding can easily be extended by other measures to guide the search and
determine the quality of a solution. Equally, a preference relation on proposi-
tions can be employed so that lying for a lower-ranked proposition is preferred
to lying for a higher-ranked proposition.

Lastly, let us note that in our algorithm pure literals cannot be removed, that
is, the DLL-“affirmative-negative rule” cannot be applied: setting pure literals to
true may lead to an interpretation that does not have minimal distance. Anyway,
detection of pure literals is expensive (see for example [21]) and often omitted
in SAT-solver implementations.

4.3 An Example Run

Let us come back to our example. We consider db, prior and pot sec1. The set
prior∪Neg(pot sec1) is a set of CNF-formulas and we have as a set of clauses
(clauses are written with square brackets):

Cdecision = {[¬brokenArm, lowWorkCpcty], [¬brokenLeg, highCosts],
[¬cancer, highCosts], [¬cancer, lowWorkCpcty], [¬lowWorkCpcty]}.

Figure 2 shows the tree created by our algorithm. We need just one splitting
step; all other assignments are determined by BCP.

In root r we have two BCP steps: the first one on {[¬lowWorkCpcty]} and
the second one on {[¬cancer], [¬brokenArm]}. This yields the interpretation
Ir(cancer) = Ir(brokenArm) = Ir(lowWorkCpcty) = 0 and from this we com-
pute the bounds lbr = 3 and ubglobal = ubr = 5.

Next we split on splitvar(r) = brokenLeg: we construct the child nodes rleft

and rright and begin with Irleft
(brokenLeg) = 1 (best-first search). We have

lbrleft
= 3 and ubrleft

= 4 and simplification produces the new unit clause
[highCosts]. BCP on this clause results in lbrleft

= 3 and ubrleft
= 3; we
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root r��
��

�
��

�
��

BCP(1): Ir(lowWorkCpcty) = 0
BCP(2): Ir(cancer) = 0

Ir(brokenArm) = 0
lbr = 3, ubglobal = ubr = 5

rleft��
��Irleft(brokenLeg) = 1

BCP: Irleft(highCosts) = 1
lbrleft = 3
ubglobal = ubrleft = 3

rright��
��

Irright (brokenLeg) = 0
lbrright = 4
lbrright > ubglobal: PRUNE

� splitvar(r) = brokenLeg

Fig. 2. An example run

have found a complete and satisfying interpretation in this branch and we set
ubglobal = ubrleft

= 3.
We now treat rright and set Irright

(brokenLeg)=0, lbrright
=4 and ubrright

=5.
We find that lbrright

> ubglobal and this branch is pruned.
Thus, the optimal solution is I ′(brokenLeg) = I ′(highCosts) = 1 on the one

hand and I ′(cancer) = I ′(brokenArm) = I ′(lowWorkCpcty) = 0 on the other
hand; the transformed database is db′ = {brokenLeg, highCosts} with distance
3 to the original database.

5 Conclusion and Future Work

We presented an algorithm to preprocess an inference-proof database based on
a user’s a priori knowledge and a specification of secret information. While the
worst-case runtime is exponential, there is a good chance to find an acceptable (or
even optimal) solution in a smaller amount of time. Even if we stop the algorithm
prematurely and accept a suboptimal solution, it is a solution that is definitely
inference-proof; it might only be suboptimal with respect to availability: there
may be more lies in the database than necessary.

Future work shall investigate how this approach can be adapted to other CQE
parameters, namely, the unknown policy case, refusal as a restriction method
and incomplete databases. Furthermore, this method shall be expanded to other
logics (for example first-order logic). In a wider setting, we want to connect CQE
to other established research areas, for example linear or constraint programming
[12] and theory merging [8]. Moreover, a comparison of the CQE system to
existing approaches for general purpose databases (see e.g. [11]) has already
been initiated.

One of the fundamental problems inherent to every inference control system
still remains: It is difficult – if not impossible – to appropriately model the user’s
knowledge in the system. Apart from that, there are other interesting questions
regarding the user’s knowledge in the approach presented here. For example, if
there is one transformed database db′1 for a fixed prior1, is it possible to reuse
(parts of) db′1 to construct a db′2 for a different prior2? Similarly, if we allow the
user’s knowledge to change at runtime due to input from external sources, is it
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possible to adjust db′ to the new situation? These topics will be covered in the
near future.
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Abstract. The need for enterprise application integration projects leads
to complex composite applications. For the sake of security and efficiency,
consolidated access control policies for composite applications should be
provided. Such a policy is based on the policies of the corresponding
autonomous sub-applications and has the following properties: On the
one hand, it needs to be as restrictive as possible to block requests which
do not comply with the integrated sub-applications’ policies. Thereby,
unsuccessful executions of requests are prevented at an early stage. On
the other hand, the composite policy must grant all necessary privileges
in order to make the intended functionality available to legitimate users.

In this paper, we present our formal model and respective algorithmic
solutions for consolidating the access control of composite applications.
The generated policies conform to the presented requirements of the least
privileges paradigm and, thus, allow to revise and optimize the access
control of composite applications. We demonstrate this by means of Web
service workflows that constitute the state of the art for the realization
of business processes.

1 Introduction

Composite applications are applications that rely on sub-applications (also called
sub-activities) to integrate their functionality. There are numerous examples for
such applications including quite simple Web applications as well as large scale
enterprise resource planning systems (ERP) that rely on database backends.
Also, business processes that are realized as Web service workflows constitute
complex composite applications. In general, sub-applications are self-contained
software components, like Web services that autonomously enforce their own
security policy. When integrating autonomous sub-activities into workflows, se-
curity dependencies must be considered. As an example consider the e-health
workflow illustrated in Figure 1 that will be executed when a patient is trans-
ferred to the cardiology department of a hospital. Depending on the diagnostic
findings, either an in-patient treatment is applied or an electrocardiogram (ECG)
is made in order to acquire further insight. Each of the individual sub-activities
that are depicted in the figure are autonomously enforcing their security policies.
In case, these policies are not consolidated, reliable workflow execution might be
hindered. Administrative employees, for instance, are allowed to query the medi-
cal records of patients, but are not permitted to perform any medical treatment.

E. Damiani and P. Liu (Eds.): Data and Applications Security 2006, LNCS 4127, pp. 44–59, 2006.
c© IFIP International Federation for Information Processing 2006
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Fig. 1. Example of an e-health workflow

Thus, requests might be authorized by some sub-activities but rejected by others,
which results in performance drawbacks due to unsuccessful workflow executions
and can require transaction rollbacks or costly compensating actions.

In order to perform an early-filtering of the requests to avoid unsuccessful exe-
cutions, a consolidated view onto the access control of workflows or general com-
posite applications is needed. Thereby, we can identify two different perspectives
onto the security configuration of a composite application. From the security of-
ficer’s point of view, access control should be defined as tight as possible to avoid
security vulnerabilities. Too restrictive policies on the other hand can hinder le-
gitimate users to execute the application which contradicts the process-centered
viewpoint of the application developer. Therefore, a consolidatedpolicy is required
that is tailored to the functionality of the composite application. The consolida-
tion process derives the following information: (1) what are the least required priv-
ileges for the execution of the composite application and (2) who is granted these
privileges. The first aspect allows to meet the security officer’s requirements by
defining access rules and role profiles that are restricted to the functionality of the
composite application. The second supports the application developer in detect-
ing unintended configurations. For instance, if only highly privileged users (e.g.,
administrators) are authorized to perform the workflow, this might be an indica-
tion for the design of the application itself having to be revised.

In [1] we presented a security engineering approach for optimizing the ac-
cess control of Web service compositions by determining the maximum set of
authorized subjects. As we will show in this paper, in order to treat generic
composite applications, privilege relaxation tests are required in addition. Our
contributions are a formal model and corresponding algorithmic solutions for the
consolidation of the access control of generic composite applications. The consol-
idation is performed from the single-user / single-role-perspective, meaning that
a user can execute the application by the activation of one task specific role.
This complies with most business processes, which are typically representing job
specific functions and are thus designed for specific groups of employees.

The remainder of this contribution is structured as follows: Section 2 intro-
duces the syntax and semantics of our policy algebra, which constitutes the basis
of the policy consolidation approach presented in Section 3. In Section 4 elemen-
tary algorithms of the policy consolidation process are described. Section 5 gives
an overview over related work and Section 6 concludes the paper.
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2 Policy Model

First, we introduce the policy algebra which constitutes the basis for the for-
mal specification of the proposed policy consolidation technique. Policies are
described in an attribute based way and are not restricted to identity based
description. For instance, subjects can be specified through characterizing prop-
erties like role-membership, age, profession skills and so on. The policy model
allows to express discretionary access control (DAC) rules and supports role
based access control (RBAC) models which are suitable security concepts for
almost all commercial applications. The formal syntax and semantics of our pol-
icy model are based on those introduced by Bonatti et al. [2]. We adapted and
extended this model where necessary, e.g., by introducing additional operators.

2.1 Notation

Predicates. A predicate defines an attribute comparison of the form
(attribute-identifier ◦ constant). Depending on the attribute’s domain, the com-
parison operator ◦ is in {<,≤, =,≥, >} for totally ordered sets and in
{�,�, =,�, �} for partially ordered finite sets.

Subjects, objects, actions, and conditions. Let Attr be the set of distinguished at-
tribute identifiers. Attr is subdivided into disjoint sets of subject, object, action,
and environment attribute identifiers (denoted as S-Attr, O-Attr, A-Attr, and
E-Attr respectively). A set of subjects S is represented by a disjunction of predi-
cate conjunctions over S-Attr. That is, S = ((s1,1∧. . .∧s1,l)∨. . .∨(sk,1∧. . .∧sk,l)),
with each si,d being a predicate conjunction that applies to one attribute. The
cardinality of S-Attr is denoted by l. The elements of S-Attr are also called di-
mensions of a subject specification. Representations of objects O and actions A
are defined in a similar way. S, O, and A are inequality-free. A condition c is a
boolean formula defined over attributes of E-Attr that can include user defined
functions with Boolean codomain (e.g., isWeekday(date)).

Rules and policies. A rule R is a quadruple (S, O, A, c), consisting of specifica-
tions of subjects S, objects O, and actions A. A rule assigns a set of permis-
sions specified by (O, A) to a set of subjects. The scope of the assignment is
restricted through c. Individual rules R1, . . . , Rn can be aggregated in a policy
P = {R1, . . . , Rn}.

Evaluation context. An evaluation context e ∈ E is a partial mapping of the
attributes defined in Attr. If D1, . . . , Dm are the domains of the attributes in
Attr, then E is defined as D⊥

1 ×. . .×D⊥
m, with D⊥

j = Dj∪{⊥} and ⊥ representing
an unspecified attribute value.

2.2 Semantics

Evaluation of rules. An evaluation context e is evaluated against the individual
components of rules. A subject specification S applies to e, iff S maps to true
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w.r.t. the attribute values of e. That is, [[S]]e := S(e) = (true|false). The seman-
tics of O, A and c are defined analogously. The applicability of a rule R w.r.t. e
is defined as [[R]]e := [[S]]e ∧ [[O]]e ∧ [[A]]e ∧ [[c]]e.

Evaluation of policies. The semantics of a policy P depend on the employed pol-
icy evaluation algorithm (abbrev. pe-alg). We define the evaluation algorithms
pe-all and pe-any, with [[P ]]pe-alle :=

∧
R∈P [[R]]e and [[P ]]pe-any

e :=
∨

R∈P [[R]]e.
pe-all can be applied to realize a static policy enforcement, in cases when ac-
cess control can be performed once for a composite application and all its sub-
activities before the execution. pe-any is useful for gradually performing access
control, when runtime information needs to be considered. In order to charac-
terize unrestricted specifications (i.e., tautologies) we use the symbol Υ , with
∀e ∈ E : [[Υ ]]pe-alge = true.

Policy Combining Operators
Conjunction. Let S and S′ be two subject specifications. The conjunction of
S and S′ is denoted as S ∧ S′ with [[S ∧ S′]]e = [[S]]e ∧ [[S′]]e. The conjunction
operator is analogously defined on objects, actions, conditions, and rules.

Subtraction. The subtraction of two subject specifications S and S′ is defined as
S−S′ with [[S−S′]]e = [[S]]e ∧¬([[S′]]e). Analogously, subtraction is also defined
on objects, actions, conditions and rules.

Projection. Let R = (S, O, A, c) be a rule. The projection on the subjects part of
R is defined as ΠS(R) = S. Analogously, ΠO(R) = O, ΠA(R) = A, ΠC(R) = c,
and ΠO,A(R) = (O, A).

Let P = {R1, . . . , Rn} be a policy. ΠS(P ) is defined as ΠS(P ) = {ΠS(R1),
. . . , ΠS(Rn)}. Other projection operators on policies are defined in a similar way.
We use the abbreviation S(P ) =

∧
1≤i≤n ΠS(Ri) to denote those subjects that

are granted all privileges defined in P .

Privilege, Rule, and Policy Relaxation. A privilege (O′, A′) relaxes a
privilege (O, A), denoted as (O, A) � (O′, A′), iff it applies to more (or the
same) actions on more (or the same) objects. That is, ([[(O, A)]]e = true) im-
plies ([[(O′, A′)]]e = true) for any evaluation context e. Analogously, a rule
R′ relaxes a rule R, R � R′, iff it grants more or the same privileges to
more or the same users under the same or less restrictive conditions. That is,
∀e ∈ E with ([[R]]e = true) ⇒ ([[R′]]e = true). In the same way, P �pe-alg P ′, iff
∀e ∈ E : ([[P ]]pe-alge = true) ⇒ ([[P ′]]pe-alge = true).

Reduced Policies. In order to efficiently consolidate the policy of composite
applications we are focussing on reduced policies as motivated in Section 3.1:
Let the applied policy evaluation algorithm be pe-all. P is called reduced, iff

(1) ∀R, R′ ∈ P, R �= R′ : �e ∈ E : ([[ΠO,A(R) ∧ ΠO,A(R′)]]e = true) and
(2) ∀R ∈ P : S(P ) = ΠS(R)
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(a) (b)

Fig. 2. Example for limited (a) and general (b) role hierarchies

A policy fulfilling (2) but not (1) can be reduced as follows: Let Ra, Rb ∈ P ,
Ra �= Rb : ∃e ∈ E : ([[ΠO,A(Ra) ∧ ΠO,A(Rb)]]e = true). Substitute the two
rules Ra, Rb through the three combined rules Ra−b, Ra∧b, Rb−a with Ra−b =
(S(P ), ΠO,A(Ra) − ΠO,A(Rb), ΠC(Ra)), Ra∧b = (Ra ∧ Rb), and Rb−a = (S(P ),
ΠO,A(Rb) − ΠO,A(Ra), ΠC(Rb)).

2.3 Role Based Access Control

Policy administration can easily become unmanageable if privileges are indepen-
dently assigned to each user. Scalability is provided through role based access
control (RBAC, see [3] and [4]). Using RBAC, privileges required for perform-
ing a certain task are grouped by roles. Users acquire these privileges via the
indirection of being granted those roles. Roles can be organized in a hierarchy
that defines a partial order. Senior roles, which are at higher levels in the hi-
erarchy, inherit all privileges that are granted to their junior roles. To give an
example, the role Internist in Figure 2(a) is senior to Physician, denoted as
Internist � Physician. Accordingly, Physician is called junior role of Internist.

A role r′ is an immediate descendant of a role r if r′ � r and there is no
r′′ with r �= r′′ and r′′ �= r′ such that r′ � r′′ � r. A role hierarchy is called
limited if each role has at most one immediate descendant. This is the case for
the example hierarchy illustrated in Figure 2(a). In contrast to this, general role
hierarchies like the one shown in Figure 2(b) support the concept of multiple
(access right) inheritance.

3 Policy Consolidation

3.1 Problem Specification

Let App1, . . . ,AppN be N ≥ 1 (autonomous) sub-activities of the composite
application App0 and Pi be the policy that applies to Appi (for 1 ≤ i ≤ N). We
equate the permission to execute the ith sub-activity with the set of privileges
that apply to the accesses performed by Appi (which itself can be a composite
application, too). These are defined by ΠO,A(Pi). In order to enforce all of these
access rights, we use pe-all as evaluation algorithm. We assume Pi to be a reduced
policy. Thus, as defined in Section 2.2, Pi has the following two characteristics:
First, the privileges defined in Pi are disjoint. This property can be assured
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through the preprocessing described in Section 2.2. Second, its rules apply to
the same set of subjects. In some cases it might be required, that the privileges
ΠO,A(Pi) are granted to different groups of users under distinguished conditions.
In order to efficiently process the set of constraints, the policy is decomposed
into policies conforming to Section 2.2 that are evaluated individually.

Let P0 be the reduced policy for App0. In many cases, there might be no
predefined policy for App0, i.e., P0 is equivalent to Υ . Nevertheless, policy pro-
totypes can be pre-defined specifying intended configurations. The objective of
the policy consolidation process is to evaluate P0 against the policies of the
underlying applications. Its result is an optimized policy P opt that fulfills the
following two criteria:

LP. Least privilege criterion: Each privilege defined in P opt must also be defined
in at least one policy Pi with 1 ≤ i ≤ N . The privileges defined in P opt must be
sufficient to perform App0 and its respective sub-activities.

MS. Maximum set of subjects criterion: Each subject that is authorized based
on the original policy configurations (Pi)0≤i≤N must also be authorized by P opt.
Each subject that is defined in P opt must also be defined in at least one policy
Pi with 1 ≤ i ≤ N and in P0.

3.2 Workflow Dependencies

Sub-activities of a composite application can for example be executed in sequence
or in parallel. Also, iterations (i.e., loops) are possible. From an access control
point of view it is of importance that all sub-activities will be performed. We
represent this fact through the Sequence pattern. Furthermore, conditional and
event based executions can be defined. From the access control perspective this
denotes that only one sub-activity will be invoked, which we represent through
the so-called Switch template. Sequence and Switch templates can be nested
to model complex workflows. Apart from these kinds of control flow dependencies
further interdependencies influencing access control can exist:

a) Data-flow dependencies are given, if an output parameter x of a sub-activity
Appi is input to Appj and the value of x determines the result of the evalu-
ation of the policy Pj .

b) External dependencies are dependencies by parameters external to the sys-
tem, like time. For example, Pi and Pj might define time constraints that
restrict the execution of Appi and Appj to disjoint time frames. That is,
the conjunction of conditions defined in Pi and Pj respectively constitute
a contradiction. Nevertheless, the control-flow can be consistent due to the
execution order (e.g., think of delays during long-running transactions).

We first describe the consolidation of access control policies for the two patterns
Sequence and Switch before we return to discuss the influence of interdepen-
dencies a) and b).
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3.3 Analysis of Sequence Patterns

For a Sequence pattern to be consistent from the access control perspective,
the following two conditions must be met: First, the access rights defined in P0
must include those privileges defined in the policies (Pi)1≤i≤N . Second, there
must be at least one subject that is granted these privileges. Otherwise, the
access specifications are conflicting, preventing the execution of App0. Formally:

∀1 ≤ i ≤ N : ∀R ∈ Pi : ∃R′ ∈ P0 : ΠO,A(R) � ΠO,A(R′) (1)

∃e ∈ E : [[Sall]]e = true for Sall =
∧

0≤i≤N
S(Pi) (2)

The consolidated policy P opt
(all) is defined as:

P opt
(all) = {(Sall, ΠO,A(R), (ΠC(R) ∧ ΠC(R′))) | ∀i ∈ {1, . . . , N} :

R ∈ Pi, R
′ ∈ P0 : ΠO,A(R) � ΠO,A(R′)}

(3)

The applied evaluation algorithm is pe-all. If the policies (Pi)1≤i≤N fulfill LP,
then LP can also be inferred for P opt

(all), as the privileges in P opt
(all) are restricted

to those defined in (Pi)1≤i≤N and its rules are constrained through conjunctions
of the respective conditions defined in these policies and P0. Sub-activities can
perform similar accesses on the same objects, like scans of the same tables of a
database. Thus, P opt

(all) – which aggregates the privileges defined in (Pi)1≤i≤N –
might contain redundancies that can be eliminated according to Section 2.2.

3.4 Analysis of Switch Patterns

The access control configurations for Switch patterns can be defined from two
different perspectives. The full-authorization approach enforces each subject de-
fined in the consolidated policy to be authorized for any of the (Appi)1≤i≤N ,
irrespective which sub-activity will actually be executed. As a consequence, the
consolidated policy corresponds to P opt

(all) defined in the previous paragraph.
On the opposite side, partial-authorization distinguishes the different execu-

tion paths. Subjects might be authorized to execute App0 in case a particular
Appi is invoked next, but will be blocked in any other case. Thus, in order to
efficiently evaluate a Switch pattern the distinguished execution branches have
to be analyzed separately. Consequently, up to N security configurations have
to be considered. In order to specify the optimized policy for the ith branch, the
policies P0 and Pi are consolidated and the following must be true:

∀R ∈ Pi : ∃R′ ∈ P0 : ΠO,A(R) � ΠO,A(R′) (4)

∃e ∈ E : [[S(i)]]e = true for S(i) = S(P0) ∧ S(Pi) (5)

The consolidated policy for the ith branch (using pe-all) is defined as:

P opt
(i) = {(S(i), ΠO,A(R), (ΠC(R) ∧ ΠC(R′))) |R ∈ Pi, R

′ ∈ P0 :

ΠO,A(R) � ΠO,A(R′)}
(6)
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3.5 The Benefits of Policy Consolidation

The policy consolidation technique performs a static analysis of the policy of a
composite application App0 by comparing it with the security configuration of its
underlying sub-activities App1, . . . ,AppN . Its result is an optimized policy P opt

for App0 and all sub-activities (P opt = P opt
(all)) or specific branches App0 → Appi

(P opt = P opt
(i) ), respectively. In case no external or dataflow dependencies exist,

the access control costs can be reduced significantly. As each execution which is
granted based on P opt will also be granted by the sub-activities, it is sufficient
to enforce access control solely at App0, thus, saving redundant enforcements
through the sub-activities. In case interdependencies 3.2.a) or 3.2.b) have to
be considered at runtime, no single point of access control can be established.
Nevertheless, the static analysis allows to receive a consolidated view onto the
set of authorized users (MS) and the least required privileges (LP) enabling the
following optimizations:

Evaluation of MS. S(P opt) specifies those subjects that are authorized to execute
the workflow (branch) or general composite application, respectively. It allows
application developers to check more easily whether the policy complies with
the intended security specifications, e.g., detecting over-privileged users or con-
flicts. Furthermore, in case role based access control is employed, least required
roles can be inferred. In this regard, a least required role is a role that grants
process execution without demanding for further intermediary role activations.
This “one role will do”-approach is especially relevant for business processes that
are typically defined for specific job functions. Least required roles are identified
through the predicate reduction introduced in Alg. 1 and are unique for limited
role hierarchies but not necessarily for general role hierarchies. For example, the
infima of the role hierarchy shown in Figure 2(b) are r1 and r2. The respective
least required roles are least common senior roles, i.e., r4 and r5 in the example.

Evaluation of LP. ΠO,A(P opt) represents the aggregated set of privileges tailored
to the access requirements of the composite application. In the meaning of a
reverse security engineering, this information allows to generate task specific
roles which are appropriate for the application. They are called task specific as
they group exactly those rights that are required for the composite application’s
functionality (while least required roles can be more generic).

3.6 Case Study: Web Service Workflows

Sub-activities of the intra-organizational workflow illustrated in Figure 1 on the
one hand represent practical activities that require human interaction like a
medication. On the other hand, they stand for information processing tasks,
like an update of the stock of pharmaceuticals in the database. In the following
we concentrate on the technical aspects of the workflow and assume the sub-
activities to be realized as Web services with the following access rules:



52 M. Wimmer et al.

– Health personnel with permanent employment and administrative personnel
are allowed to access the medical records of patients. The subject specifica-
tion SMR applying to the sub-activity query medical records is defined as

SMR =((role � Health Pers. ∧ employment = permanent)
∨ (role � Admin. Pers.))

– Nurses of the cardiology and internists are allowed to update medical records,
e.g., by inserting ECG results. Users allowed to execute make stress electro-
cardiogram are in
SECG = ((role � Nurse ∧ field-of-activity = cardiology) ∨ (role � Internist))

– Internists are allowed to perform the sub-activity apply monitoring devices :
SApp = (role � Internist).

– The sub-activity apply medication can be performed by nurses and physi-
cians:
SMed = ((role � Nurse) ∨ (role � Physician)).

As motivated in Section 3.2, the workflow can be modeled as a composition of
Sequence and Switch patterns. This allows the authorization dependencies of
the workflow to be represented as a tree as shown in Figure 3. Through a bottom-
up analysis, the consolidated access control configuration for the workflow can be
inferred. Typically, no access control policies are defined for the control structures
– i.e, P0 ≡ Υ for Sequence and Switch nodes. Hence, the privileges defined for
the individual Web services, are iteratively aggregated without demanding for
relaxation tests. We thus focus on determining the set of authorized users which
proceeds as follows: First, SApp and SMed are intersected as both sub-activities
are linked in sequence. It holds SApp ∧ SMed = (role � Internist). Next, the
Switch node is evaluated. The subjects that are granted full-authorization are
defined by S = (role � Internist). In contrast to this, nurses are only granted
partial authorization for the ECG-branch: S′ = (role � Nurse∧field-of-activity =
cardiology). Finally, S and S′ have to be intersected with SMR. We receive:

Sall = (SMR ∧ S) = (role � Internist ∧ employment = permanent)

S(ECG) = (SMR ∧ S′) = (role � Nurse ∧ field-of-activity = cardiology
∧ employment = permanent)

Thus, the workflow is executable for nurses and internists, whereby nurses are
only granted partial authorization. This allows the following optimization of
access control at the workflow layer: Internists that fulfill the specification of Sall
need only be authorized at the workflow layer. For nurses, access control has to
be performed twice: On top of the workflow layer and when entering the Switch
part. All other subjects, like those granted the Administrative Personnel role,
can be blocked right from the beginning, as they will never succeed in reaching
an end state of the workflow. The optimization capabilities can be realized to
the maximum extent possible, if the access control of the sub-activities can be
controlled by the composite application, for instance by building up a security
context between the workflow execution system and the autonomous services,
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Fig. 3. Tree representation of the e-health business process

e.g., employing WS-SecureConversation [5]. In any case, policy enforcement at
the workflow layer helps to reduce unnecessary service executions, transaction
rollbacks and compensating actions.

4 Algorithmic Solutions

For an implementation of the described policy consolidation technique, algorith-
mic solutions for the evaluation of predicate conjunctions and subtractions, and
the validation of privilege relaxation are required.

4.1 Implementing the Conjunction Operator

Equations (2) and (5) introduce Sall and S(i) as conjunctions of subject specifica-
tions. The conjunction operator is semantically equivalent to the set theoretical
intersection operator. That is, Sall and S(i) can be interpreted as the intersection
of subject sets. Let S and S′ be two subject specifications. According to the pol-
icy model, S and S′ are represented via disjunctions of predicate conjunctions
over attributes in S-Attr :

S = s1 ∨ . . . ∨ sk = (s1,1 ∧ . . . ∧ s1,l) ∨ . . . ∨ (sk,1 ∧ . . . ∧ sk,l) and
S′ = s′1 ∨ . . . ∨ s′k′ = (s′1,1 ∧ . . . ∧ s′1,l) ∨ . . . ∨ (s′k′,1 ∧ . . . ∧ s′k′,l)

The attributes in S-Attr are also called the dimensions of subject specifica-
tions. We assume all dimensions in S and S′ to be specified. If a conjunction
si is not constrained in dimension d, then the respective predicate si,d repre-
sents the whole domain of d. According to Section 2.2 the intersection of S and
S′ is: S ∧ S′ =

∨
1≤i≤k,1≤j≤k′ (

∧
1≤d≤l(si,d ∧ s′j,d)). Nevertheless, conjunctions

(si,d ∧ s′j,d) can be contradictory, i.e., unsatisfiable by any evaluation context.
Such terms constitute unnecessary parts of a policy and shall be omitted to
keep policy specifications clear. Alg. 1 illustrates an approach for computing a
condensed representation of S ∧ S′. We illustrate the algorithm by means of an
example. Consider the following two subject descriptions (based on the example
role hierarchy shown in Figure 2(a)):

S = (s1) = (role � Nurse ∧ yop ≥ 1) and
S′ = (s′1 ∨ s′2) = (role � Admin. Pers. ∧ yop ≥ 0) ∨

(role � Health Pers. ∧ yop ≥ 2 ∧ yop ≤ 4)
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Algorithm 1. intersect(S, S′), with S ≡ s1 ∨ . . . ∨ sk, and S′ ≡ s′1 ∨ . . . ∨ s′k′

1: Ψ = false
2: for all conjunctions si of S do
3: for all conjunctions s′

j of S′ do
4: for all dimensions d = 1 . . . l do
5: ψd = reduce(si,d ∧ s′

j,d)
6: end for
7: Ψ = Ψ ∨ (ψ1 ∧ . . . ∧ ψl)
8: end for
9: end for

10: return Ψ

Ψ ≡ S∧S′ =
∨

1≤i≤k,1≤j≤k′

⎛
⎝ ∧

1≤d≤l

(
si,d ∧ s′

j,d

)⎞⎠

S represents all subjects that are granted the Nurse role and that have at least
one year of practice (abbrev. yop). S′ represents administrative employees and
all subjects that are granted senior roles of the Health Personnel role with at
least two and at most four years of practice. Thus, the dimensions are role and
yop. While the domain of role is a finite lattice (defined by the role hierarchy
shown in Figure 2(a)), the domain of yop is [0, +∞[.

The terms s1 and s′1 are disjoint, because they do not overlap in the role-
dimension, i.e., (s1,role∧s′1,role) is a contradiction and needs not be considered in
line 1. In contrast to this, s1 and s′2 overlap in each dimension. The conjunction
(yop ≥ 1) ∧ (yop ≥ 2 ∧ yop ≤ 4) is reduced to (yop ≥ 2 ∧ yop ≤ 4). The predi-
cates s1,role and s′2,role define the two finite sets Φ1 = {Nurse,Head Nurse} and
Φ′

2 = {Nurse,Head Nurse,Physician, Internist,Surgeon}. Thus, (s1,role ∧ s′2,role)
is equivalent to Φ1 ∩ Φ′

2 = {Nurse,Head Nurse}. The intersection can be repre-
sented through the predicate (role � Nurse), as Nurse is the infimum of Φ1 ∩Φ′

2
according to the example role hierachy. Thus, S1 ∧ S2 = (role � Nurse ∧ yop ≥
2∧ yop ≤ 4). That is, the intersection consists of those subjects that are granted
the Nurse role and that have at least two and at most four years of practice.

4.2 Checking Privilege Relaxation

Let (O, A) and (O′, A′) be two privileges. As objects and actions are defined
on disjoint sets of attribute identifiers (O-Attr and A-Attr, see Section 2.1) and
according to the definition of privilege relaxation (Section 2.2), (O′, A′) relaxes
(O, A), if the following holds: ∀e ∈ E : ([[O]]e = true ∧ [[A]]e = true) ⇒ ([[O′]]e =
true∧ [[A′]]e = true). Therefore, the privilege relaxation problem can be reduced
to the implication problem: Let T = (t1 ∨ . . . ∨ tk) and T ′ = (t′1 ∨ . . . ∨ t′k′)
be disjunctions of predicate conjunctions. T implies T ′, denoted as T ⇒ T ′,
if and only if every evaluation context which is satisfying T is also satisfying
T ′ [6]. Informally, T ⇒ T ′ means that T ′ is more generic than T . To evaluate
whether T ⇒ T ′ holds, each predicate conjunction ti of T is evaluated against
the predicate conjunctions t′j of T ′. The following three cases can arrive:

1. ti implies t′j , i.e., ti ⇒ t′j . Then a match for ti has been found.
2. ti and t′j are incomparable, i.e., (ti ∧ ¬t′j) = ti. Then ti has to be compared

with the remaining predicate conjunctions of T ′ to find possible matches.
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Algorithm 2. implies(T, T ′), with T = t1 ∨ . . . ∨ tk and T ′ = t′1 ∨ . . . ∨ t′k′

1: if k′ = 0 then
2: return T // i.e., T ′ = false
3: end if
4: Δ = false
5: for all conjunctive terms ti of T = (t1 ∨ . . . ∨ tk) do
6: δ = subtract(ti, t

′
1)

7: if δ �= false then
8: Δ = Δ ∨ implies(δ, t′

2 ∨ . . . ∨ t′
k′)

9: end if
10: end for
11: return Δ

(
T ⇒ T ′) ⇔ (Δ = false)

3. ti and t′j overlap partially. Then, the remainder (ti ∧ ¬t′j) is separately com-
pared with the predicate conjunctions of T ′.

Alg. 2 shows a pseudo-code implementation of implies for evaluating predicate
implications. T implies T ′, if all predicate conjunctions ti of T are subsumed by
T ′. In this case the remainder Δ is equal to false. In line 2 the sub-procedure sub-
tract is invoked which calculates the remainder of ti w.r.t. t′1, i.e., δ = (ti ∧¬t′1),
given in disjunctive normal form (DNF). The individual predicate conjunctions
of δ are separately compared to the remaining conjunctions of T ′ through a
recursive invocation of implies in line 2 of Alg. 2.

A pseudo-code implementation of subtract is depicted in Alg. 3. Computing
the predicate subtraction is done in a way similar to Alg. 1 by iteratively com-
paring the conjunctive terms ti and t′j in each dimension d (line 3–3). If ti and t′j
do not overlap in any dimension d, ti and t′j represent disjoint data sets and the
remainder is ti. Otherwise, the overall overlap of ti and t′j is iteratively computed
and stored in the variable work. The non-matching parts are described by δ.

As an example assume a relational database with the table Employees with the
attributes Name, Gender, Salary, and Job (abbrev. na, ge, sa, and jo). Parameter
values of jo are health, administrative, and technical personnel (for short HP,

Algorithm 3. subtract(ti, t′j), with ti = ti,1 ∧ . . . ∧ ti,l and t′j = tj,1 ∧ . . . ∧ tj,l

1: δ = false, work = ti // work = w1 ∧ . . . ∧ wl

2: for d = 1 . . . l do
3: w′

d = (ti,d ∧ t′
j,d) // the overlap of ti,d and t′

j,d

4: work = (w′
1 ∧ . . . ∧ w′

d−1 ∧ w′
d ∧ wd+1 . . . ∧ wl)

5: if w′
d ≡ false then

6: return ti // ti and t′
j represent disjoint data sets

7: else if w′
d �= ti,d then

8: ω = ti,d ∧ ¬t′
j,d // the remainder of ti,d minus t′

j,d

9: δ = δ ∨ (w′
1 ∧ . . . ∧ w′

d−1 ∧ ω ∧ wd+1 . . . ∧ wl)
10: end if
11: end for
12: return DNF of δ // ω in line 3 is a predicate disjunction
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AP, and TP). Two privileges are defined on this relation. The first privilege
states that the complete table can be accessed via select. The second restricts
the select -access to the data of female health care employees that earn more
than 50′ $ and less than 100′ $. We use the symbol ⊥ to represent unrestricted
attribute values. The object specifications of both privileges are represented by
the following two predicate conjunctions:

t = (na =⊥ ∧ ge =⊥ ∧ sa =⊥ ∧ jo =⊥)
t′ = (na =⊥ ∧ ge = female ∧ sa > 50′ ∧ sa < 100′ ∧ jo = HP)

It can easily be verified that t relaxes t′. Let’s assume that on the other way
round it shall be examined whether t′ relaxes t, which is obviously not the case.
The following table shows the evaluation steps of subtract, in case the attributes
are processed in the order Name, Gender, Salary, and Job.

Variable work Remainders
1. (na =⊥ ∧ ge =⊥ ∧ sa =⊥ ∧ jo =⊥) —–
2. (na =⊥ ∧ ge = female ∧ sa =⊥ ∧ jo =⊥) δ1 = (na =⊥ ∧ ge = male ∧ sa =⊥ ∧ jo =⊥)

(na =⊥ ∧ ge = female ∧ δ2 = (na =⊥ ∧ ge = female ∧ sa ≤ 50′ ∧ jo =⊥)3.
sa > 50′ ∧ sa < 100′ ∧ jo =⊥) δ3 = (na =⊥ ∧ ge = female ∧ sa ≥ 100′ ∧ jo =⊥)
(na =⊥ ∧ ge = female ∧ δ4 = (na =⊥ ∧ ge = female ∧ sa > 50′∧4.
sa > 50′ ∧ sa < 100′ ∧ jo = HP) sa < 100′ ∧ jo ∈ {TP, AP})

When comparing the terms in the Salary-dimension t divides work into three
components, the overlapping part and two remainder predicates δ2 and δ3. This
is the maximum number of remainder predicates that can be generated in one
step if the attribute’s domain is a totally ordered uncountable set (the domain
of Salary is [0, +∞[). Things are different if the attribute’s domain is a partially
ordered finite set, as is the case for the dimension Job. Instead of enumerating all
attribute values (AP and TP) in distinct predicates, the internal representation
is an aggregate of the form (jo ∈ {AP,TP}) as illustrated in the table.

As a consequence, a comparison of two predicate conjunctions results in up
to 2l remainder predicate conjunctions in the worst case. As each of these are
individually compared with T ′ (line 2 of Alg. 2) this leads to an exponential
worst case complexity of implies w.r.t. the input parameter k′. Thus, the de-
scribed privilege implication problem is closely related to other well known com-
putationally hard issues like query subsumption or the satisfiability problem [6].
Nevertheless, the worst case is supposed to arrive rarely. This is due to the fact
that, for the worst case to occur, privileges have to be described through dis-
tinguished, partially overlapping predicate conjunctions – which would be the
case if policies are written in a complex (unstructured and almost unmanage-
able) way. Instead, average complexity is assumed to be close to the best case
complexity, which is in polynomial time.

4.3 Implementing the Subtraction Operator

The semantics of the subtraction of two terms T and T ′ are defined as [[T−T ′]]e =
[[T ]]e ∧ ¬([[T ′]]e). Thus, the subtraction operator can be realized through the
already presented algorithm implies (Alg. 2), as the remainder Δ of implies(T, T ′)
is equivalent to T − T ′.
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5 Related Literature

In Section 2 we defined the policy model that constitutes the basis for the spec-
ification of our proposed policy consolidation technique. Syntax and semantics
of this policy model are closely related to those proposed by Bonatti et al. [2]
and Wijesekera and Jajodia [7]. We extended them through additional operators
and relaxation rules for defining policy consolidation. The access control policy
of a composite application is composed of rules that codify the individual access
rights that relate to the underlying sub-activities. The enforcement of such a
policy depends on the applied evaluation algorithm. If negative or mixed au-
thorization should be employed, which could be expressed in our model as well
by means of the subtraction operator, conflict resolution techniques like those
proposed by Jajodia et al. [8] have to be employed. In this work we focussed on
positive authorization which is suitable for almost all enterprise applications.

Our work is also related to research on models for the specification and anal-
ysis of workflow processes. Adam et al. [9] use Petri-nets to model and evaluate
control flow dependencies. Bettini et al. [10] identify temporal constraints that
might cause inconsistencies which restrict the executability of workflows. Tempo-
ral constraints must also be considered when interpreting the result of the static
policy analysis (see 3.2.b)). Nevertheless, even if dynamic dependencies have to
be evaluated at runtime, policy consolidation still offers optimization potential.
The composed policy allows to perform access control at the workflow layer, fil-
tering unsuccessful execution attempts as early as possible. The enforcement of
access rules at the workflow layer is also proposed by Gudes et al. [11]. Access con-
trol models and architectures for workflow systems are for example proposed by
[12,13] and [14]. Atluri et al. [13] present an approach for analyzing dependencies
between sub-activities that operate on the same data but are assigned to different
security levels. A framework supporting static and dynamic separation of duties
is provided by Bertino et al. [14]. In contrast to this, we concentrate on single-
user /single-role execution schemes which we assume to be prevalent for most
enterprise applications. Identifying the set of authorized users of composite appli-
cations was also addressed in previous work [15]. There, a practical approach was
shown, how task-specific user profiles and roles can be determined by analyzing
the source code. In this paper we presented a generic, implementation indepen-
dent policy consolidation framework which also supports the reverse engineering
of appropriate user / role profiles by determining the least required privileges.
Compliance with LP can be inferred if the policies of the underlying sub-activities
have been preprocessed and minimized. How this can be achieved for Web ser-
vices that rely on database interaction has been shown in foregoing work [16].

6 Conclusions and Ongoing Work

As motivated in the beginning of this paper, introducing access control on the
layer of composite applications that depend on autonomous sub-applications can
be employed to filter unsuccessful execution attempts as early as possible, thus,
avoiding unnecessary work. Additionally, a consolidated view onto the access
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control of a composite application allows to revise the security configuration by
restricting it to the applications’ functionality. Further optimization potential is
given, in case the access control of the underlying sub-activities can be regulated
through the composite application.

Based on the formal specification of policy consolidation, a prototype has been
implemented to show its feasibility regarding the consolidation of the access con-
trol of Web service workflows. We employ XACML as policy language which due
to the attribute based description of access rules is well suited to map our policy
model. Workflows are specified using BPEL4WS. Currently, we are working on
the integration of the consolidation functionality in a business process model-
ing tool [17] and the extension of the prototype to support all kinds of policy
consolidations as described in Section 3 of this paper.
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Abstract. In data publishing, the owner delegates the role of satisfy-
ing user queries to a third-party publisher. As the publisher may be un-
trusted or susceptible to attacks, it could produce incorrect query results.
This paper introduces a mechanism for users to verify that their query
answers on a multi-dimensional dataset are correct, in the sense of being
complete (i.e., no qualifying data points are omitted) and authentic (i.e.,
all the result values originated from the owner). Our approach is to add
authentication information into a spatial data structure, by constructing
certified chains on the points within each partition, as well as on all the
partitions in the data space. Given a query, we generate proof that every
data point within those intervals of the certified chains that overlap the
query window either is returned as a result value, or fails to meet some
query condition. We study two instantiations of the approach: Verifiable
KD-tree (VKDtree) that is based on space partitioning, and Verifiable
R-tree (VRtree) that is based on data partitioning. The schemes are eval-
uated on window queries, and results show that VRtree is highly precise,
meaning that few data points outside of a query result are disclosed in
the course of proving its correctness.

1 Introduction

In data publishing, a data owner delegates the role of satisfying user queries
to a third-party publisher [6,10]. This model is applicable to a wide range of
computing platforms, including database caching [8], content delivery network
[23], edge computing [9], P2P databases [7], etc.

The data publishing model offers a number of advantages over conventional
client-server architecture where the owner also undertakes the processing of user
queries. By pushing application logic and data processing from the owner’s data
center out to multiple publisher servers situated near user clusters, network la-
tency can be reduced. Adding publisher servers is also likely to be a cheaper
way to achieve scalability than fortifying the owner’s data center and provision-
ing more network bandwidth for every user. Finally, the data publishing model
removes the single point of failure in the owner’s data center, hence reducing
the database’s susceptibility to denial of service attacks and improving service
availability.

However, since the publishers are outside of the administrative domain of the
data owner, and in fact may reside on poorly secured platforms, the query results
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that they generate cannot be accepted at face value, especially where they are
used as basis for critical decisions. Instead, there must be provisions for the user
to check the “correctness” of a query answer.
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ymax

Schema:
[ id, x-coord, y-coord, user-name, account#, … ]

Data:

Fig. 1. Running Example

Consider a dataset containing 20 data points in two-dimensional space as shown
in Figure 1. The figure also includes a window query Q, for which {r13, r14} is
the correct result. A rogue publisher may return a wrong result {r13, r14, r100},
which includes a spurious point r100, or {r13∗, r14} in which some attribute values
of r13 have been tampered with. To detect such incorrect values, the user should
be able to verify the authenticity of query result. A different threat is that the
publisher may omit some result points, for example by returning only {r13} for
query Q. This threat relates to the completeness of query result.

Most of the existing works provide for checking the authenticity [11,16] and
completeness [6,15] of query results on one-dimensional datasets. The exception
is Devanbu’s scheme [6] which handles multiple key attributes by essentially con-
catenating them in some preferred order key1|key2|..|keyd. However, the scheme
is expected to be very inefficient for symmetric queries, such as window and
nearest neighbor queries, that are typical in multi-dimensional context.

In this paper, we propose a mechanism for users to verify that their query re-
sults on a multi-dimensional dataset are authentic and complete. Our approach is
to build authentication information into a spatial data structure, by construct-
ing certified chains on the points within each partition, as well as on all the
partitions in the data space. We introduce two schemes based on this approach.
The first, the Verifiable KD-tree (VKDtree), is based on the space partitioning
k-d tree. The second, the Verifiable R-tree (VRtree), employs data partitioning
and is based on the R-tree. The schemes are evaluated on window queries, and
results show that VRtree is highly precise, meaning that few data points outside
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of a query result are disclosed in the course of proving its correctness. Moreover,
both schemes are computationally secure, and incur low processing and update
overheads. To the best of our knowledge, the authentication mechanism intro-
duced in this paper is the first that enables a user to verify the completeness of
a multi-dimensional query result generated by an untrusted server.

The remainder of this paper is organized as follows. Section 2 provides the
background on data publishing model and the associated threats, and describes
some cryptographic primitives. Our authentication schemes are introduced in
Sections 3 and 4, while Section 5 presents results from a performance study.
Finally, Section 6 concludes the paper.

2 Background

In this section, we first present the target system deployment model and the
associated security threats. Next, we define some cryptographic primitives that
are used in our solution.

2.1 System and Threat Models

Figure 2 depicts the data publishing model, which supports three distinct roles:

– The data owner maintains a master database, and distributes it with one or
more associated signatures that prove the authenticity of the database. Any
data that has a matching signature is accepted by the user to be trustworthy.

– The publisher hosts the database, and executes queries on behalf of the
owner. There could be several publisher servers that are situated at the edge
of the network, near the user applications. The publisher is not required to
be trusted, so the query results that it generates must be accompanied by
some “correctness proof”, derived from the database and signatures issued
by the owner.

– The user issues queries to the publisher explicitly, or else gets redirected to
the publisher, e.g. by the owner or a directory service. To verify the signatures
in the query results, the user obtains the public key of the owner through an
authenticated channel, such as a public key certificate issued by a certificate
authority.

User

Owner Publisher

query

result +
correctness
proof

data +
signatures

public
key

Fig. 2. Data Publishing Model
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Our primary concern addressed in this paper is the threat that a dishonest
publisher may return incorrect query results to the users, whether intentionally
or under the influence of an adversary. An adversary who is cognizant of the data
organization in the publisher server may make logical alterations to the data,
thus inducing incorrect query results. Even if the data organization is hidden,
for example through data encryption or steganographic schemes (e.g., [17]), the
adversary may still sabotage the database by overwriting physical pages within
the storage volume. In addition, a compromised publisher server could be made
to return incomplete query results by withholding data intentionally. Therefore
mechanisms for users to verify the completeness as well as authenticity of their
query results are essential for the data publishing model. While there are several
other security considerations in the data publishing model (such as privacy, user
authentication and access control), these have been studied extensively (e.g. [1],
[17], [12], [22]), and are orthogonal to our work here.

2.2 Cryptographic Primitives

Our proposed solution and many of the related work are based on the following
cryptographic primitives:

One-way hash function: A one-way hash function, denoted as h(.), is a hash
function that works in one direction: it is easy to compute a fixed-length digest
h(m) from a variable-length pre-image m; however, it is hard to find a pre-image
that hashes to a given hash value. Examples include MD5 [18] and SHA [3]. We
will use the terms hash, hash value and digest interchangeably.

Digital signature: A digital signature algorithm is a cryptographic tool for
authenticating the integrity and origin of a signed message. In the algorithm,
the signer uses a private key to generate digital signatures on messages, while
a corresponding public key is used by anyone to verify the signatures. RSA [19]
and DSA [2] are two commonly-used signature algorithms.

Signature aggregation: As introduced in [5], this is a multi-signer scheme
that aggregates signatures generated by distinct signers on different messages
into one signature. Signing a message m involves computing the message hash
h(m) and then the signature on the hash value. To aggregate t signatures, one
simply multiplies the individual signatures, so the aggregated signature has the
same size as each individual signature. Verification of an aggregated signature
involves computing the product of all message hashes and then matching with
the aggregated signature.

Signature chain: In [15], a signature chain scheme is proposed that enables
clients to verify the completeness of answers of range queries. A very nice prop-
erty of the scheme is that only result values are returned, thus ensuring that
there is no violation of access control. The scheme is based on two concepts:
(a) The signature of a record is derived from its own digest as well as its left and
right neighbors’. In this way, an attempt to drop any value from the answer of
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a range query will be detected since it would no longer be possible to derive the
correct signature for the record that depends on the dropped value. (b) For the
boundaries of the answer, a collaborative scheme that involves both the pub-
lisher and the client is proposed – the publisher performs partial computation
based on but not revealing the two records bounding the answer and the query
range, while the client completes the computation based on the two end points
of the query range.

3 Signature Chain in Multi-dimensional Space

The goal of our work is to devise a solution for checking the correctness of query
answers on multi-dimensional datasets. The design objectives include:

– Completeness: The user can verify that all the data points that satisfy a
window query are included in the answer.

– Authenticity: The user can check that all the values in a query answer orig-
inated from the data owner. They have not been tampered with, nor have
spurious data points been introduced.

– Precision: Proving the correctness of a query answer entails minimal disclo-
sure of data points that lie beyond the query window. We define precision
as the ratio of the number of data points within the query window, to the
number of data points returned to the user.

– Security: It is computationally infeasible for the publisher to cheat by gen-
erating a valid proof for an incorrect query answer.

– Efficiency: The procedure for the publisher to generate the proof for a query
answer has polynomial complexity. Likewise the procedure for the user to
check the proof has polynomial complexity.

Without loss of generality, we assume that the data in the multi-dimensional
space are split into partitions – this can be done using a spatial data structure.
To ensure that the answer for a window query is complete, two issues must be
addressed. First, we need to prove that the answer covers all the partitions that
overlap the query window. We refer to these partitions as candidate partitions.
Second, we need to prove that all qualifying values within each candidate par-
tition are returned. The first issue is dependent on the partitioning strategy
adopted, and is deferred to Section 4. In the rest of this section, we shall focus
on the second issue.

Assuming we have proven that the query answer covers all the candidate
partitions, we now need to ensure that all the qualifying values in those partitions
have not been dropped. Consider a candidate partition P for the window query
Q = [(ql1, ql2, . . . , qld), (qu1, qu2, . . . , qud)]. There are three possible cases: (a) Q
contains P . Since the window query bounds the partition, we need to ensure that
all the points in P are returned. (b) P contains Q. The query window is within
the space covered by the partition. A naive solution is to return all the points
in P . A better solution, which we advocate, is to return only those points that
are necessary for users to check for completeness. In both cases, our concern is
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to ensure the secrecy of points that are outside Q. (c) P overlaps Q. This case
can be handled by splitting P into two parts: the part of P that contains Q, and
the part of P that does not overlap Q. The former is handled in case (b), while
nothing needs to be done for the latter. Thus, we shall focus on cases (a) and
(b), and not discuss case (c) any further.

Our solution extends the signature chain concept in [15] to multi-dimensional
space. This is done by ordering the points within the partition, and then con-
structing the signature chain. In this paper, we adopt a simple scheme of order-
ing the points based on increasing (x1, x2, . . . , xd) value. In 2-d space, (x1, y1)
is ordered before (x2, y2) if x1 < x2, or x1 = x2 and y1 < y2. Based on this
ordering, we need to return all the points whose first dimension is within the
range [ql1, qu1], as well as the bounding points. Of course, some of these points
may fall beyond the query window along the second dimension. For such points
that should not be part of the answer, we return only their digests rather than
the actual values, in order to protect their secrecy and achieve high precision.

We choose this simple ordering scheme over more sophisticated space filling
curves [20] because: (a) A partition (corresponding to a 4K or 8K block/page)
typically consists of a small number of points (100-200). Moreover, the actual
number of points within a partition would be smaller than the maximum capacity
(since the page is typically not full). As such, it may not be worthwhile to employ
a complicated scheme. (b) None of the existing space filling curves perform well
in all cases. Thus, they really offer no significant advantage over the simple
scheme (especially given the small number of points).

For the example in figure 1, assuming that the entire space corresponds to
one partition, the points would be ordered from r1 to r20. For case (a) where the
query bounds the partition, r1 to r20 would be returned; for case (b) where the
query (i.e., the box that bounds r13 and r14) is within the partition, we return
the values of r13 and r14 and the digest of the various dimensions for r11, r12,
r15, r16 and r17. We now present the details of our solution that extends the
signature chain scheme to multi-dimensional setting.

Construction: Let L = (L1, L2, . . . , Ld) and U = (U1, U2, . . . , Ud) be two points
that bound the entire data space, where Lr ≤ Ur for all r. L and U are known to
all users. Consider a partition P bounded by two points p0 = (x01, x02, . . . , x0d)
and pk+1 = (x(k+1),1, x(k+1),2, . . . , x(k+1),d) where x0r ≤ x(k+1),r for all r. Sup-
pose P contains k data points p1 =(x11, x12, . . . , x1d), . . . pk =(xk1, xk2, . . . , xkd).
Without loss of generality, we assume that pi is ordered before pj for 1 ≤ i <
j ≤ k. Clearly, p0 is ordered before p1 and pk+1 is ordered after pk.

Our multi-dimensional signature chain constructs for each point within P an
associated signature (based on [15]):

sig(pi) = s(h(g(pi−1)|g(pi)|g(pi+1))) (1)

where s is a signature function using the owner’s private key, h is a one-way hash
function, and | denotes concatenation. g(pi) is a function to produce a digest for
point pi:
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g(pi) =
d∑

r=1

hUr−xir−1(xir)|hxir−Lr−1(xir) (2)

where hj(xir) = hj−1(h(xir)) and h0(xir) applies a one-way hash function
on x.1

Moreover, for the two delimiters,

sig(p0) = s(h(h(L1| . . . |Ld)|g(p0)|g(p1))) (3)

sig(pk+1) = s(h(g(pk)|g(pk+1)|h(U1| . . . |Ud))) (4)

In addition, each partition P has an associated signature:

sig(P ) = s(h(g(p0)|g(pk+1)|h(k))) (5)

Query Processing: Assuming that a partition P is returned. We have to prove
that all the data points within P that fall within the query window Q are re-
turned.

Case (a): Q contains P . The verification process for this case is straightfor-
ward. The publisher server returns p0 to pk+1, and k, together with the respective
signatures sig(p0) to sig(pk+1) and sig(P ). (To reduce traffic overhead, we could
send just one combined signature instead of the individual signatures, using the
signature aggregation technique in [5].) The user first verifies that

s−1(sig(P )) = h(g(p0)|g(pk+1)|h(k))

Then, for each pi, 1 ≤ i ≤ k, the user verifies that pi is indeed in P (by checking
that P bounds pi). Finally, for each pi, 1 ≤ i ≤ k, the user computes its digest
and checks whether

s−1(sig(pi)) = h(g(pi−1)|g(pi)|g(pi+1))

If all the above checks are successful, the answer contains all the data points
in P .

Case (b): P contains Q. Let pi = (xi1, xi2, . . . , xid). The data points in P
can be separated into: (a) pα, pα+1, . . . , pβ−1, pβ such that xi1 ∈ [ql1, qu1] for
α ≤ i ≤ β. These points can be further categorized into answer points (A) and
false positives (F). For each answer point pi ∈ A, ∀r xir ∈ [qlr, qur], whereas
for each false positive pi ∈ F , ∃r xir /∈ [qlr, qur]. (b) p1, . . . , pα−1, pβ+1, . . . , pk,
which are clearly not answer points.

1 To achieve tighter security, h0(xir) can be redefined as h0(xir|rand(pi)) where
rand(pi) is a random number associated with pi; in which case we will need to supply
the corresponding rand(pi) with each returned record. For ease of presentation, we
shall adopt the simpler definition of h0(xir).
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(i) For each point pi ∈ A, the server returns pi and sig(pi).
(ii) For each point pi ∈ F ∪ {pα−1, pβ+1}, the server returns several pieces of

information: (i) if xir ∈ [qlr, qur], hUr−xir−1(xir)|hxir−Lr−1(xir) is returned;
(ii) if xir < qlr , hqur−xir−1(xir) and hxir−Lr−1(xir) are returned; (iii) if
xir > qur, hUr−xir−1(xir) and hxir−qlr−1(xir) are returned.

(iii) The server also returns p0, pk+1, k, sig(p0), sig(pk+1) and sig(P ).

With information from step (ii), the user can compute g(pi) without knowing
the actual value of pi:

– If xir < qlr, the user applies h on (hqur−xir−1(xir)) (Ur − qur) times to get
(hUr−xir−1(xir)).

– If xir > qur, the user applies h on (hxir−qlr−1(xir)) (qlr − Lr) times to get
(hxir−Lr−1(xir)).

– The user computes g(pi) using Equation (2).

The above procedure is secure against cheating by the publisher provided hi(p)
for i < 0 is either undefined or computationally infeasible to derive. We use an
iterative hash function for hi(p), because there is no known algebraic function
that satisfies the requirement. To ensure that h−1(p) �= p, a hash function is
chosen that outputs a different digest length from the length of p.

Similar to case (a), the user verifies the completeness of the query answer as
follows:

– Verify that the bounding box is correct using information from step (iii),
and determine whether s−1(sig(P )) = h(g(p0)|g(pk+1)|h(k)).

– Verify that each point p in A is in P by checking that p is bounded by P .
– Verify that each point pi ∈ A is authentic using information in step (ii) and

the derived information to check s−1(sig(pi)) = h(g(pi−1)|g(pi)|g(pi+1)).

Again, any attempt by the publisher server to cheat would lead to an unsuccessful
match in at least one of the above cases.

Finally, we emphasize that extra data points that are returned for proving
completeness are in the form of digests. Thus only the existence of the data
points are revealed, but not their actual content. 2

4 Verifying the Data Partitions

Having shown how to prove that all qualifying data points in a candidate parti-
tion (that overlaps the query window) are returned correctly, we now look at the
first issue of verifying that the query answer covers all the candidate partitions.

A naive solution is to treat the entire data space as a single large partition,
so that the mechanism described in Section 3 alone suffices. However, we expect
this solution to have poor precision.
2 If a non-answer pi ∈ F has the same coordinate as an answer point pj ∈ A along

some dimension, both points will have the same digest for that dimension and pi’s co-
ordinate will be revealed. This can be overcome by simply adopting h0(xir|rand(pi))
as explained in footnote 1.
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Fig. 3. Partitioning Strategies

To achieve high precision, we adopt partition-based strategies so that only
those partitions that contain some qualifying data points need to be considered
for a query. In this way, any potential information leakage is limited to only
those partitions that contribute to the query answer, rather than across the
entire data space. We present our solution based on two partitioning techniques
(see Figure 3): space partitioning and data partitioning.

4.1 Space Partitioning

With space partitioning schemes, the partitions are disjoint but their union cov-
ers the entire data space. As such, all we need to do is to verify that the bounding
boxes of the returned partitions are correct, and that the union of these parti-
tions covers the query scope. The former has already been addressed in Section 3,
while the latter is just a simple check on the partition boundaries.

To illustrate, Figure 3(a) shows the data space being partitioned through a
k-d tree [4]. In the figure, the window of the query Q overlaps three partitions,
so only data from these three partitions are returned in the answer.

Besides the k-d tree, other spatial indexing techniques like the grid file [13]
and quadtree [21] can also be employed to help the publisher to locate the
candidate partitions quickly. Our authentication mechanism entails no changes
to the spatial data structures. (As we shall see shortly, this is not the case for
data partitioning schemes.)

4.2 Data Partitioning

With data partitioning approach (e.g., R-tree), the union of all the partitions
may not cover the entire data space. Thus, space that contains no data points
may not be covered by any partition, as illustrated in Figure 3(b). The existence
of empty space poses a challenge to verifying the completeness of query answers:
How does the user know that portions of a query window that are not covered by
any returned partitions indeed are empty spaces, without physically examining
all the partitions? Referring to Figure 3(b), how can the user be sure that Q
only intersects boxes B4 and B6 and not the other partitions?
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Our solution is to extend the signature chain concept to the partitions. Specifi-
cally, we order the partitions by their starting boundaries along a selected dimen-
sion (as is done for point data), then chain the partitions so that the signature
of a partition is dependent on the neighboring partitions to its left and right.

Let the bounding box of the ith partition be demarcated by [l, u] where l =
(li1, li2, . . . , lid), and u = (ui1, ui2, . . . , uid). Each partition Pi has an associated
signature (based on signature chaining):

sig(Pi) = s(h(g(Pi−1)|g(Pi)|g(Pi+1))) (6)

where Pi−1 and Pi+1 are the left and right sibling partitions of Pi, and g(Pi) is
defined as follows:

g(Pi) = h(h(li1| . . . |lid)|h(ui1| . . . |uid)|h(ki)) (7)

where ki is the number of points within Pi.
In addition, we define two fictitious partitions as delimiters. This is similar to

what we did in building the signature chain for data points in Section 3, so we
shall not elaborate further.

During query processing, all the partition information along with their signa-
tures are returned as part of the query answer. The user can be certain that no
partition is omitted, otherwise some signatures will not match. For those parti-
tions that overlap the query window, the user then proceeds to check their data
points using the mechanism in Section 3. The remaining partitions that do not
intersect the query window are dropped from further consideration.

To minimize the extra partitions that are disclosed to the user, and to re-
duce performance overheads, we apply a hierarchical data partitioning indexing
structure like the R-tree on the data. The partitions within each internal node of
the R-tree are chained as described above. Given a window query, the publisher
server iteratively expands the child nodes corresponding to those candidate par-
titions in the current node, starting from the root down to the leaf nodes. All
the partition information and signatures along the path of traversal are added
to the query answer for user verification.

5 A Performance Study

In this section, we report results of an experimental study conducted to evaluate
the effectiveness of our authentication mechanisms, which we have implemented
in Java. We study three schemes: Verifiable KDtree (VKDtree) scheme that is
based on space partitioning using the k-d tree; Verifiable Rtree (VRtree) scheme
that is based on data partitioning using the R-tree; and Z-ordering scheme which
employs Z-ordering [14] on the entire data space (as a single partition). The
performance metric is the precision of query answers. Again, a low precision
reveals the existence of extra data points and incurs traffic overhead, but not
the actual content of those data points.

Unless stated otherwise, the following default parameter settings are used:
the number of dimensions is 4, the data distribution is Gaussian, the number
of data points is 1, 000, 000. The domain of each dimension is [1, 10M]. The
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node capacity is 50 (i.e., each node holds up to 50 data points). Queries are
generated by picking a point randomly from the dataset, then marking out the
query window with the chosen point as center. The length of the query window
along each dimension is l × domain size; by default, l is set to 0.1. For each
experiment, we run 500 queries, and take the average precision.

5.1 Effect of Number of Dimensions

We first vary the number of dimensions from 2 to 5. The results are summarized
in Figure 4(a). As expected, as the number of dimensions increases, all the
schemes lose precision, because more non-answer points must be provided to
verify the completeness of the query answers.

We also observe that the VKDtree scheme performs well for two-dimensional
space, but its precision drops dramatically at higher dimensions. This is because
more partitions are returned as a result of their overlapping the query window.
The result for Z-ordering is, surprisingly, similar to the VKDtree scheme. In fact,
it even performs better than VKDtree in some cases. Investigation shows that
this is because the coverage of the partitions returned under VKDtree may be
larger than the region covered by the Z-ordering scheme. Finally, the VRtree
scheme achieves precisions of at least 60%, is least affected by dimensionality,
and appears to perform the best overall. This is because the data partitioning
scheme is able to effectively limit the number of candidate partitions returned
in the query answers.

5.2 Effect of Different Data Distributions

In the second experiment, we study the effect of different data distributions. Fig-
ure 4(b) shows the precisions of the various schemes under three different distri-
butions: Exponential, Uniform and Gaussian. The precisions of all the schemes
are better with the exponential dataset, because the data generated under the
exponential distribution are clustered toward one corner (the origin) of the data
space, whereas they are more spread out under the other two distributions.

The relative performance of the three schemes remain largely the same as
before: with VRtree performing the best, while VKDtree and Z-ordering exhibit
similar performance. We also note that VRtree is much more effective than
VKDtree and Z-ordering under uniform data distribution.

5.3 Effect of Dataset Sizes

With a fixed data space, the size of the dataset will have an effect on the perfor-
mance of the schemes. In particular, for large datasets, the data space becomes
more densely populated. For a fixed-size query, this means that the precision
will, with high probability, be higher (compared to one with small dataset size).
This intuition is confirmed in our study, as shown in Figure 4(c) which presents
the results for dataset sizes of 1,000,000, 100,000, and 10,000. The relative per-
formance of the various schemes remain largely the same as in the earlier exper-
iments, though VRtree is less affected by the size of the datasets compared to
VKDtree and Z-ordering.
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Fig. 4. Comparative Study

5.4 Effect of Node Capacity

In this study, we examine the effect of node capacity, which determines the max-
imum number of points allowed per partition. Obviously, a larger node capacity
means that it is more likely that more non-answer points are returned (compared
to a smaller node capacity), thus yielding lower precisions. Figure 4(d) shows
the results for node capacities of 30, 50 and 80. From the figure, we notice that
the precision of all the schemes improve as the node capacity reduces from 80
to 50 and then to 30.

5.5 Client Computation Cost

In this section, we evaluate the overhead of computation cost at the client side in
authenticating the query results. For both VKDtree and VRtree, the client com-
putation cost includes result entry verification cost (CRV ), boundary verification
cost(CBV ) and signature verification cost (CSV ). Figure 5 shows the authenti-
cation overhead of VKD-tree and VR-tree conducted in our experiment, where
the overhead is measured as

client computation cost − processing cost

processing cost

where the processing cost refers to the cost for verifying only answer tuples.
It turns out that there is no significant differences between the two schemes -
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while VRtree incurs lower cost to verify the answers (lower false drops), it incurs
additional cost to verify the chaining of partitions; whereas VKDtree does not
need to deal with partition chaining but it returns more false drops and hence
incur larger cost to verify the answers.

6 Conclusion

In this paper, we introduce a mechanism for users to verify that their query
answers on a multi-dimensional dataset are correct. The mechanism follows a
partition-based strategy, and comprises two steps: (a) verify that all partitions
relevant to the query are returned, and (b) verify that all qualifying data points
within each relevant partition are returned. The signature chain technique from
[15] is used to chain up points and partitions so that any malicious omissions can
be detected by the user. We study two schemes: Verifiable KD-tree (VKDtree)
that is based on space partitioning, and Verifiable R-tree (VRtree) that is based
on data partitioning. The schemes are evaluated on window queries, and results
show that the VRtree is highly precise, meaning that few data points outside of
a query answer are disclosed in the course of proving its correctness.
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Abstract. Xml streams are valuable, continuous, high-throughput
sources of information whose owners must be protected against illegal
redistributions. Watermarking is a known technique for hiding copy-
rights marks within documents, thus preventing redistributions. Here,
we introduce a watermarking algorithm for Xml streams so that (i) the
watermark embedding and detection processes are done online and use
only a constant memory, (ii) the stream distortion is controlled, (iii) the
type of the stream is preserved and finally (iv) the detection procedure
does not require the original stream. We also evaluate, analytically and
experimentally, the robustness of the algorithm against watermark re-
moval attempts.

1 Introduction

Streams. Data streams are high throughput sequences of tokens, potentially in-
finite. They are used in a growing number of applications (see e.g. [3]) and their
specificities make them a challenging application [12]. Since Xml has become
the standard for specifying exchange formats between applications, the focus in
this paper is on Xml streams. Xml streams can be purchased online and pro-
cessed by distant peers. Data producers, e.g. news providers distributing news
item in RSS (an Xml dialect) format, generate the tokens of the stream which
is later on processed by consumers. We focus on automatic consumers, i.e. con-
sumers defined by means of a program (or a Web Service). Hence, consumers,
as any program, do not accept arbitrary streams, but place restrictions on their
input types. Streams with invalid types can not be sold to consumers. For Xml
based systems, types are usually specified through a Document Type Definition
(DTD) or an Xml Schema. High throughput requirement puts severe constraints
on consumers: they must be able to process each token of the stream quickly
and cannot buffer an arbitrary number of tokens (bounded memory). For any
arbitrary DTD, typechecking Xml streams can not be done while respecting
these constraints. Hence, we focus on acyclic DTDs , where no element is a sub-
element of itself (for example, Rss is an acyclic DTD). Under this hypothesis,
typechecking can be done using deterministic finite automata (DFA) and types
can be specified using regular expressions [15].
� Work supported by the ACI Sécurité & Informatique TADORNE grant (2004-2007).
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Example 1. The Xml news feed of Fig. 1 may be regarded as a stream on an al-
phabet of closing and ending tags (< news >, < /date >..), letters (S,o,d,e,1,...)
and predefined sequences of letters (Cinema, Politics, ...). It can be typechecked
using the regular language <news><priority>[123]</priority>

<title>(.*)</title>..<date>D</date>...</news>, where the expression
D=(19|20)[0-9][0-9]-(0[1-9]|1[0-2])-(3[0-1]|0[1-9]|[1-2][0-9]) captures
valid dates (for simplicity we do not try to check dates like 2005-02-31). Ob-
serve that the DTD standard does not allow the definition of a precise date
format, since the contents of elements are mostly of type PCDATA (i.e. almost
any sequence of letters). A more sophisticated model like Xml Schema allows
for such precise definitions. Our model applies to both formalisms.

...</news><news>
<priority>1</priority>
<title>Soderbergh won the Golden Palm</title>
<url>http://www.imdb.com/title/tt0098724/</url>
<date>1989-05-23</date>
<text>Soderbergh’s movie, Sex, lies and videotapes, won the ...</text>
<category>Cinema</category>

</news><news>...

Fig. 1. An Xml stream snapshot

Watermarking. High-quality streams carry a great intellectual and/or industrial
value. Malicious users may be tempted to make quick profit by stealing and re-
distributing streams illegally. Therefore, data producers are interested in having
a way to prove their ownership over these illicit copies. Watermarking is known
to bring a solution to that issue by hiding copyright marks within documents,
in an imperceptible and robust manner. It consists of a voluntary alteration of
the content of the document. This alteration is parameterized by a key, kept
secret by the owner. Accordingly, the secret key is needed to detect the mark
and thus, to prove ownership. The robustness of the method relies on the key in
the sense that removing the mark without its knowledge is very difficult. A first
challenge of streams watermarking is to control and minimize the alteration of
the stream, i.e. to preserve its quality. We measure the alteration by means of a
relative edit-distance and propose a watermarking algorithm that introduces a
bounded distortion according to this measure. A second challenge is to preserve
the type of the stream so that it remains usable by its intended consumers. Ex-
isting Xml watermarking schemes embed watermarks by modifications of the
content of text nodes. We believe that other embedding areas may be used, e.g.
within the tree-like structure itself. Obviously, altering the structure can not be
done näıvely. For instance, in some pure text watermarking schemes, bits are
embedded by switching words of the document with their synonyms. This can
not be directly applied to our context: if the name of an opening tag is switched,
the corresponding closing tag has to be switched to ensure well-formedness. Even
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if tag names are switched consistently, the resulting document may become in-
valid with respect to its original type. In that case, watermarked documents
are unusable by their target consumers. Remark also that a good watermarking
method must be robust, i.e. still detects marks within streams altered (random
noise, statistical analysis, ..) by an attacker (up to a reasonable limit).

Our Contribution. In this paper, we introduce the �-détour algorithm, a ro-
bust watermarking scheme for Xml streams, which respects the quality of the
stream as well as its type, specified by means of an acyclic DTD. The idea of
�-détour is the following. We identify two relevant parts of the stream, based
on its semantics. The first unalterable part can not be altered by any attack
without destroying the semantics of the stream. The second alterable part is still
useful for the application, but can be altered within reasonable limits. For the
automaton of Figure 1, the unalterable part will be e.g. the path name in the
url element (but not the host name, since it can easily be replaced by an IP
number). The alterable part will be e.g. the two digits of the day in the date
element. Alterable parts can capture purely textual information as well as struc-
turing one. A finite portion of the unalterable part, combined with a secret key
known only by the data owner, is used to form a synchronization key. A non-
invertible (cryptographic) pseudo-random number generator, seeded with this
synchronization key, determines how the alterable part of the stream is modified
to embed the watermark. This process, repeated along the stream, introduces
local dependencies between parts of the data stream. These dependencies, invisi-
ble to anybody who does not possess the key used for watermarking, are checked
at detection time by the owner. Only the private key and the suspect stream
are needed. It can be viewed as an extension of Agrawal and Kiernan’s method
[2] which considered relational databases watermarking (primary keys played
the role of our synchronization keys). In order to respect the type constraint,
we simulate the DFA that typechecks the stream. Each time the insertion of a
dependency is required, we change a sequence of tokens of the stream so the
walk on the automaton follows a detour, leading to the same state. If the al-
tered sequence lead to state q, the chosen detour still leads to q. The length
� of the detours and the frequency of the alteration control the quality of the
stream. The DFA is also used to define the alterable and unalterable parts of
the stream.

Organization. In Section 2, we present our main contribution: the �-détour
algorithm, which allows for watermarking Xml streams so that (i) the watermark
embedding and detection processes are done online and use only a constant
memory, (ii) the stream distortion is controlled, (iii) the type of the stream is
preserved and finally (iv) the detection procedure does not require the original
stream. In Section 3, we discuss on the robustness of �-détour against attempts
to remove the watermark and show that attackers have to alter more the streams
than the watermarking process did to remove the mark. Comparison with related
work is presented in Section 4. Section 5 concludes.
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2 The �-détour Algorithm

2.1 Preliminaries

In this paper, we use ω-rational languages on words, i.e. a simple, yet expressive,
extension of regular languages suited to infinite words.

– Streams: Let Σ be a finite alphabet. Letters from Σ are called tokens. A
Σ-stream σ is an infinite sequence of tokens from Σ.

– Stream Automaton: A stream automaton is a deterministic finite state
automaton such that all states are accepting, except one which has no out-
coming edge to an accepting state. This state is called the blocking state.

– Stream Acceptance: Let G be a stream automaton. A stream σ is accepted
by G if the walk on G due to σ never enters the blocking state.

– Stream Types: A set of streams L is a stream type if there exists a stream
automaton G such that L is the set of all streams accepted by G.

URL YEAR MONTH DAY

q9 q15 q20

q7 q10 q11 q12 q13 q16 q17 q19 q21

q8 q14 q18
1

2

9

0

0-9 0-9 -
0

1

1-9

0-2

-
3

1-2

0
0-1

1-9

0-9

Fig. 2. A partial specification of the stream type for news items (date element)

Example 2. Figure 2 shows a partial specification of a stream automaton for
the input type of a news items consumer. It checks that the syntax of the date
is correct. The part checking that the stream is well-formed and conforms to
the complete DTD is not depicted here. All unspecified transitions lead to the
blocking state.

As a means to measure the distortion introduced by watermarking algorithms,
we introduce the relative edit-distance. It is based on the edit-distance for strings
[10]. In our context, the edit-distance de(x, y) between words x and y is defined as
the minimum number of operations (substitution/deletion/insertion of a token)
that are needed to transform x into y. For instance, if y has been obtained by
substituting one symbol of x, de(x, y) = 1. The relative edit-distance between x
and y is defined as the average number of operations per symbol that are needed
to transform x into y. We measure the relative edit-distance from finite prefixes
of streams:
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Definition 1 (Distance). Given σN (resp. σ′M ) a finite initial segment of a
stream of length N (resp. M), the relative edit distance d(σN , σ′M ) is defined by:

d(σN , σ′M ) =
de(σN , σ′M )√

N
√

M
.

Example 3. d(babba, dabba) = 1/5. Letter b has been substituted for d (edit-
distance 1), and both words have length 5.

2.2 Informal Introduction to �-détour

Suppose that we want to watermark a data stream σ flowing from a producer P
to a consumer C whose input type is specified by a stream automaton G. Since P
produces a usable stream for C, its outputs correspond to non blocking walks on
G. Assume that there exist in G two different edges (paths of length 1), labelled
by different tokens, and having same start and same end (for example, paths
from q17 to q20 in Fig. 2). These edges can be loops on a single node. The idea
of our algorithm is to change the value of some tokens of the stream so that
the walk on G follows one of these edges rather than the other (for instance,
q17

1→ q20 instead of q17
2→ q20). These tokens are chosen as a function of (1) the

secret key Kp of the owner and (2) a finite portion, carefully chosen, of the path
previously covered. The original walk on the automaton is diverted, and becomes
specific to the data owner. This process is repeated along the stream. Notice
that following an edge once does not imply that it will always be chosen because
the path previously covered varies. Then, a watermarked stream is composed
of alternated sequences of unaltered segments (synchronization segments) and
altered segments of length 1. The value of an altered segment cryptographically
depends on the value of its preceding synchronization segment. This method
ensures that the type of the stream is respected. Furthermore, the modified
stream is close to the original: each choice between two different paths adds at
most 1 to the edit-distance between the original and the watermarked stream
(and less to the relative edit-distance).

2.3 Finding Detours

The previous paragraph gave the idea of the 1-détour algorithm because paths
of length 1 were altered in order to embed the watermark. The extension of
this algorithm to path of length exactly � is given the name of �-détour. In
�-détour, not all paths of length � may be changed but only those called
detours :

Definition 2 (Detours). Let G be a stream automaton. The path p = qi →
... → qj is a detour of length � in G if its length is � and if there is no path p′

in G, distinct from p, of length at most �, having the same end points qi and qj,
and an internal node in common.
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Example 4. In any stream automaton, all edges are detours of length 1 since
they do not contain any internal node. Remark also that as soon as � > 1, cycles
are not allowed in detours of length �. On the automaton of Fig. 2, there are
detours of length 2: q7

1→ q8
9→ q10 and q7

2→ q9
0→ q10. Conversely, paths from

q13 to q16 going through q14 are not detours because q14 is an internal node
common to 9 paths of length 2 between q13 and q16. There are 9 paths from q14
to q16 labeled by 1 to 9.

The proof of proposition 1 provides a constructive way to compute detours. Due
to space reasons, it is not detailed. Remark that space complexity of the method
is O(n2|Σ|�) whereas it is usually O(n2|Σ|�) to compute paths (and not detours)
of length �.

Proposition 1. Let Σ be the alphabet, n the number of states of the automaton
and � ∈ N, � > 0. Detours of length � can be computed in space complexity
O(n2|Σ|�) and time complexity O(n3�).

Proof. (sketch) Since detours are paths, i.e. finite sequences of labelled edges,
a first näıve strategy is to compute the set of paths of length � and remove
paths which are not detours. If Sk(i, j) is the set of paths of length k between
states i and j, the formula Sk+1(i, j) =

⋃
q∈states(G)

Sk(i, q) × S1(q, j) permits to

define an iterative algorithm to compute Sk(i, j) for any k > 0 (if R, S are two
sets, R × S is defined as the set containing the concatenation of every item of
R with every item of S). Unfortunately, this leads to an exponential blowup
because the number of paths of length � is n|Σ|� in the worst case. This blowup
can be avoided by getting rid of paths which will not become detours, at each
iteration. Indeed, if p, p′ are two detours having the same end points and e is
an edge in G, p.e and p′.e are not detours because they share an internal node:
end(p) = end(p′). This fact remains true for any two paths which have p and p′

as prefixes. Similarly, if p is a detour of length k between i and q and e, e′ are two
edges between q and j, p.e and p.e′ are not detours. Hence, we can reduce the
number of paths which are detours in the sets computed by the näıve algorithm
by modifying the definition of the × operator: if R and S are not singletons,
R×S = ∅. This can be checked in constant time. Another condition is necessary
to strictly compute sets of detours: if p1 (resp. p2) is the only detour of length
k > 1 between states i and q1 (resp. q2) and e1 (resp. e2) is the only edge between
states q1 (resp. q2) and j, p1.e1 and p2.e2 are detours of length k + 1, unless p1
and p2 share their first edges. To check this when computing R × S, buffering
only the first edge of each path in R is needed. There are at most |Σ| such edges.

This leads to a time complexity O(n3�) and a space complexity O(n2|Σ|�).
At each of the � iterations, there are n2 sets of detours to compute, each step
requiring at most n operations. Space complexity is O(n2|Σ|�) because the num-
ber of detours is at most |Σ| between any two states (two detours can not begin
with the same edge). There are n2 pairs of states and the maximum length of a
detour is �.
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Interesting detours are likely to be found in real applications. For example, there
are 9 detours of length 2 in the Rss specification, 39 detours of length 1 in a
valid email addresses recognizer, and 48 detours of length 1 in a checker of
valid IP numbers. In the sequel, only detours of length exactly � are used. A
straightforward extension not shown here allows for using all detours of length
at most �.

2.4 Watermark Embedding

The �-détour algorithm can be divided into three successive steps. Steps (1)
and (2) are performed once for all, while step (3) is used online and requires
constant memory.

(1) Choice of the automaton and Precomputation of the detours given a target
detour length �.

(2) Annotation of the automaton. The set of detours is split up into the set of
alterable ones and the set of unalterable ones. Among the set of remaining
edges (i.e. edges not part of a detour or part of an unalterable detour), a
subset of synchronization edges is selected.

(3) On-the-fly watermarking. The stream is continuously rewritten by substitut-
ing some sequences of � tokens.

STEP 1: Precomputation. For a given input type, a canonical choice for the
stream automaton is the minimal deterministic recognizer of the DTD, but any
equivalent deterministic recognizer may be used. A strategy is to start with the
minimal one and to compute the detours using Prop. 1. If their number is too
small or if they do not fit the owner’s needs, the automaton can be unfolded
into an equivalent one by splitting nodes and duplicating edges, and detours
recomputed.

STEP 2: Annotation of the automaton. Not all detours are suitable for water-
marking. For instance, on Fig. 2, there are two detours of length 2 between states
q7 and q10: q7

1→ q8
9→ q10 and q7

2→ q9
0→ q10. Using these detours for watermark

embedding would imply changing the millennium of a news item, resulting in an
important loss of semantics. A solution is to divide the previously computed set
of detours into two subsets: the subset of alterable detours and the subset of un-
alterable ones. This partition is done by the owner based on semantical criteria.
All the remaining edges can not be used as synchronization edges. Indeed, some
of them may be changed by an attacker without too much altering the semantics
of the data which would result in the impossibility to resynchronize during the
detection process and makes the watermark ineffective. For instance, we should
not use the title as synchronization key because it can be altered, e.g. by adding
spaces or changing the case of some characters, without changing its semantics.
Conversely, the path in the url is not likely to be changed in an uninvertible
manner (e.g. replacing letter ’a’ by code %61). The corresponding edges in the
automaton can be chosen as synchronization ones.
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Example 5. A natural choice for watermarking news items is to modify the least
significant part of the date. This can be achieved by using only detours from
states q17 to q20, detours from states q18 to q21 and detours from states q19 to
q21 as alterable ones.

STEP 3: On-the-fly Watermarking. In this last step, the core of �-détour,
some portions of the stream are changed to insert the watermark. It is called
streamWatermark and sketched on Fig. 3. Its execution is basically a walk on
the automaton used to typecheck the stream. At each move, the last covered
edges are changed if they match an alterable detour of length �. Inputs of
streamWatermark are a stream σ, the private key Kp of its owner and an extra
parameter γ used to change the alteration rate (on average, one alterable detour
out of γ is altered).

The streamWatermark procedure uses two variables: p and Ks. The path p
is a finite queue having size at most � containing the last covered edges, used
as a finite FIFO: before adding a new edge at the end of a full p, its first
edge is discarded. When p is full, it contains a candidate detour, likely to be
changed if it matches an alterable detour. The second variable Ks stands for the
synchronization key. It is used as a bounded-size queue of tokens. It will contain
any symbol that corresponds to a synchronization edge.

The streamWatermark algorithm starts in A and regularly loops back to this
cell. In A, we read a token from the input stream which generates a move on
the automaton. The covered edge is added to p. Then, we move to cell B. If
length(p)< �, we move back to A. When length(p)= �, we move to C. In cell C,
we test whether p is going to be changed i.e. whether p is an alterable detour
(from states i to j) and whether there is at least one another other detour from
i to j. When these two conditions are met, we move to the watermark cell E. In
E, the path p is converted into an integer: its rank in an arbitrary ordering of all
detours from i to j. This integer, together with the synchronization key Ks, the
private key of the owner Kp and γ, is passed to the procedure intWatermark
(Alg. 1). Its output is the number of a new detour whose labelling symbols will
be added to the output stream. This procedure, derived from [2], uses a pseudo-
random generator R seeded with Ks.Kp to choose (1) whether the passed integer
is going to be altered or not (2) which bit of the passed integer is going to be
modified and (3) what will the new value of this bit. The synchronization key
Ks is reseted to the empty queue. Remark that this modification only depends
on the private key of the owner and tokens of the stream which are not altered.
If the conditions to move to cell E are not met, we move to cell D. Path p not
being an alterable detour does not mean that its suffix of length �− 1 is not the
prefix of another detour. So, in D, the first edge of p is discarded and, if it is
a synchronization edge, its labelling token c added to Ks. Simultaneously, c is
added to the output stream. The process loops back to the initial cell A.

Hence, the �-détour algorithm outputs 0,1 or � tokens every time it reads a
token from the input stream. If N tokens have been read from the input stream,
at least N − � and at most N tokens have been outputted which makes the
process a real-time one. The output of streamWatermark is a stream of the form
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c1e1c2e2... where each ci comes from the input stream and ei is the result of a
pseudo-random choice seeded with the synchronization part of ci concatenated
with the private key of the owner. Each segment ei has length �.

READ next token of σ

move;
add edge to p.

A length(p)=� ?B

several alterable detours
from i to j ?

C

c=first token of p;
If c labels a sync. edge

append c to Ks;
remove first edge of p.

D let r be the rank of p;
r̃=intWatermark(r,Ks ,Kp, γ);

reset Ks.

E

OUTPUT token la-
belling the removed
edge

OUTPUT tokens la-
belling the r̃-th de-
tour.

No
Yes

No

Yes

Fig. 3. streamWatermark(σ,Kp , γ)

Example 6. Suppose that we are in the middle of the watermarking process of
the Xml segment of Fig. 1. Detours of length � = 1 have been chosen and the
partition of detours has been done in Example 5. Suppose also that the algorithm
has just reached cell A, that the current position on the automaton is state q13
(last read token is -), that Ks = K0

s =<url>http://www.imdb...</url> and
p = q12

-→ q13. The path q12
-→ q13 has length 1 but is not a detour, so we move

to cell D through cell C. In cell D, the first token of p, - is removed, appended
to Ks and added to the output stream. Then, p = [] and we move to cell A.
The token 0 is read from the input stream and the edge q13

0→ q14 appended
to p. Still, p is not an alterable detour and the same sequence of steps through
cells B,C,D is performed. Then, the algorithm moves through edges q14

5→ q16,
q16

-→ q17 and q17
2→ q20; the tokens 5,-,2 are processed the same way the token

0 was. The token 3 coding for the lowest significant digit of the day in the month
is read in cell A. The path p =q20

3→ q21 is a detour of length 1 from states q20 to
q21. Since there are 10 detours between these states, we move to watermarking
cell E. The intWatermark procedure is called with Ks = K0

s .05-2 and r = 4
(p is the fourth detour from q20 to q21). A one-way cryptographic choice of a
new detour is done by Alg. 1, depending only on Ks and Kp. For instance, if
intWatermark outputs 7, the seventh detour is chosen and the token 6 added to
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Algorithm 1. intWatermark(i,Ks,Kp, γ)
Output: 1 ≤ j ≤ n
R.seed(Ks.Kp); /* seed the random generator */1

// (1) decide whether i is going to be changed
if R.nextInt() % γ = 0 then2

p = R.nextInt() % �log2(n)�; /* (2) choose which bit of i to change */3

b = R.nextInt() % 2; /* (3) new value of bit p of i */4

j := i where bit p is forced to b;5

return j;6

the output stream. The watermarked date is 1989-05-26. Then, Ks and p are
reseted and we loop back to A.

2.5 Quality Preservation: Setting Alteration Frequency γ

The following theorem quantifies to what extent the quality of a watermarked
stream is preserved. Let G be a stream automaton. Let S (resp. E) be the set of
starting (resp. ending) nodes of the alterable detours. We define the inter-detours
distance c as the length of the shortest path between a node in E ∪ q0 and a
node in S. For the automaton of Fig. 2, {q17, q18, q19} ⊆ S and {q20, q21} ⊆ E
so c is at most the minimum of the distances between q0 and q17 and between
q21 and q17 (the actual inter-detours distance can not be given because of the
partial specification).

Theorem 1. Let σN a finite prefix of a stream and σ̃N its watermarked ver-
sion using �-détour. Then, at most d(σN , σ̃N ) ≤ (1 + c

� )
−1 and on average

d(σN , σ̃N ) ≤ 1
γ (1 + c

� )
−1.

Proof. A finite segment σN of a stream σ can be written as σN = c1e1..cnenr
where c1, .., cn are token sequences used as synchronization keys, e1, .., en are
token sequences labelling detours and r is the remaining. �-détour introduces
a distortion of at most n�. Since the length of each ci is at least c, the relative
distortion ε = n�∑ |ci|

1,n
+n�+|r] is such that ε ≤ (1+ c/l)−1. On average, 1

γ pairs ciei

are altered.

Hence, for a maximum error rate e = 0.1%, a detour length � = 2 and an inter-
detour distance c = 10, the value of γ is chosen so that 1

γ (1 + c
� )

−1 ≤ e i.e.
γ ≈ 6000. So, on average, one over 6000 tokens labelling alterable detours should
be altered to comply with this error rate.

2.6 Watermark Detection

Since the alterations performed by the watermarking process depend only on
the value of the private key Kp of the owner, exhibiting a key and making the
dependencies appear is a strong proof of ownership. The detection process locates
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the synchronization keys and checks whether the detours taken by the suspect
stream match what would be their watermarked value. It is very close from the
watermarking algorithm except that the content f the stream is not changed. We
use two counters, tc and mc, tc standing for total count and mc for match count.
We increment tc every time we meet a detour that would be watermarked (this
corresponds to line 2 of Alg. 1). We increment mc every time a detour matches
what would be its watermarked value. Therefore, tc ≥ mc. When tc = mc, we
can conclude of the presence of a watermark. When tc > 0, mc = 0, we are
probably in front of an attacker who successfully inverted every bit of the mark.
This inversion is considered as suspicious as the full presence of the mark (think
of it as a negative image of a black and white picture). For a non-watermarked
stream, we can assume that there is no correlation between the distribution
of the data and the pseudo-random watermark embedding process (assumption
verified in our experiments). In this case, the probability that each bit of a detour
matches what would be its watermarked value is 1/2 . Then, we can await for tc
to be twice the value of mc when there is no mark. To sum up, the watermark is
found when |mc/tc− 1/2| > α, where α is a predefined threshold. The choice of
α is very important: if α is too large, the detection raises false alarms; if α is too
small, slightly altered marks become undetectable, raising false negatives. The
choice of α is discussed in the next section. Remark also that only the suspect
stream and the private key of the owner are needed to check for a watermark.

3 Robustness: Analysis and Experiments

A watermarking algorithm is said to be robust when an attacker, unaware of
the secret key used for watermark embedding, has to alter more the data than
the watermarking process did, in order to remove the mark. In that case, the
attacked stream suffers a huge loss of semantics, which is very likely to destroy
their quality.

3.1 Synchronization Attacks

A watermarked stream can be attacked by modifying synchronization parts.
Indeed, �-détour requires these parts to remain identical for detection. Such
attacks are limited by the constant requirement to keep streams valid with respect
to the input type of their consumers. A non-valid stream cannot be resold by a
malicious user. As explained in STEP 2 of �-détour, synchronization parts are
chosen to be semantically relevant which means that they cannot be changed
without widely affecting its semantics. Therefore, a type breaking attack requires
to alter data semantics more than the watermarking process did.

3.2 Detours Attacks

Since the attacker is unaware of which detours were actually altered, two strate-
gies are available to him. First, he can try to remove the mark by randomly
modifying the altered detours. We model this attack as a random attack.
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Random Attack. For 0 < p < 1, a random attack of parameter p is an attack
inverting each bit of the watermark with a probability at most p. The false nega-
tive occurrence probability pfn(p) is the probability that an attacker performing
a random attack of parameter p cheats the detector. Theorem 2 (see [7] for a
complete proof) shows how to choose α (detection threshold) and tc (number of
altered detours to poll) to get this probability maximally bounded by an owner-
defined probability δ (e.g. δ = 10−6). These parameters also allows for a false
positive occurrence probability pfp bounded by δ.

Theorem 2. Let 0 < δ, p < 1, tc ∈ N, p �= 1/2, tc0 = − log(δ/2)
2(1−2p)2 ,

α1(tc) = − log(δ/2)
2tc and α2(tc) = 1

2 − p −
√

− log(δ/2)
2tc . Then,

(tc ≥ tc0 and α1(tc) ≤ α ≤ α2(tc)) ⇒ (pfp ≤ δ and pfn(p) ≤ δ).

Proof. (sketch) The fact that a detour matches its watermarked value is seen as
the outcome of a Bernoulli’s law of parameter 1/2. Suppose that we are able to
retrieve n possibly watermarked positions in the stream. The probability that
a false positive occurs is exactly the probability that the number of positive
outcomes in n outcomes of Bernoulli’s experiments deviates from the standard
value n/2 by a distance α.n. The higher n is, the smaller this probability. It can
be bounded using a Hoeffding inequality [8] to obtain a maximal bound for the
occurrence of a false positive. Similarly, one can bound the probability that a false
negative occurs. By combining these two results, we find the minimum number
of potentially watermarked detours one must consider to test the presence of a
watermark and simultaneously stay under the target probability δ.

Listen & Learn Attack. When a synchronization key is met twice, the two cor-
responding watermarked bits will have the same position and the same value.
If c.e1 and c.e2 are two sequences synchronization key.detour, the watermarked
bit is among the set of bits which have the same value in the binary represen-
tations of the rank of e1 and the rank of e2. An attacker may try to learn such
dependencies in order to perform a Listen & learn attack. This attack consists
of the following two steps. First, learning associations between synchronization
keys values and watermarked bits. Second, attacking the watermark using this
knowledge. Notice that this can not be done in constant memory and requires
an external and efficient storage. This does not comply with computational con-
straints on streams, that also apply to the attacker.

3.3 Experiments

Test Sample. We used Rss news feeds provided by CNN [1] from September
8th 2005 to September 14th 2005 for a total of 1694 news items (or 523041
tokens). Alterable detours were chosen to be the edges associated to the highest
significant digit of the minutes field and the lowest significant digit of the seconds
field. Hence, dates of news item are changed by at most 50 minutes and 9 seconds.
Synchronization keys include the content of the link element and edges not part
of an alterable detour in the pubDate element.
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Detour-witching Attack. A detour-switching attack consists of randomly switch-
ing all alterable detours. It is parameterized by the alteration frequency q: with
probability 1/q each detour is replaced by another one, having same start and
same end, randomly chosen. We performed experiments for various values of
q and γ. A summary of the results is displayed in Table 1(a). For each com-
bination of q and γ, the set of news items was watermarked and attacked
100 times. We count the number of positive detections PD of the watermark
and the relative extra alteration QL introduced by the attack, compared to
the watermarking process. If the watermarking process alters WL tokens of
the stream, then the attack has an overall distortion of WL+QL. For in-
stance, when q = 1 and γ = 3, the attack successfully erases the watermark
(PD= 0%) but at the price of a significant quality loss QL= 0.39% com-
pared to the alterations introduced by the watermarking process WL= 0.22%.
On the contrary, for q = 1 and γ = 1, the attack is a success (PD= 0%,
QL= 0%). This shows that choosing γ = 1 is a bad idea for the data owner, as
it means watermarking every possible position, hence giving a severe hint to the
attacker. As soon as γ > 1, the mark is not removed if the attack does not alter
more the stream than the watermarking process did.

Table 1. Attack Experiments: WL (quality loss due to watermarking), QL (extra
quality loss due to attacks), PD (ratio of positive detections)

�
�q
γ 1 (high rate) 2 3 (low rate)

1
WL:0.65% WL:0.32% WL:0.22%

QL:0% QL:0.38% QL:0.39%
PD:0% PD:0% PD:0%

2
WL:0.65% WL:0.32% WL:0.22%

QL:0% QL:0.19% QL:0.19%
PD:100% PD:100% PD:100%

3
WL:0.65% WL:0.32% WL:0.22%

QL:0% QL:0.13% QL:0.13%
PD:100% PD:100% PD:100%

�������strategy
ltime 100 500 1500

surge QL:0.27% QL:0.39% QL:0.24%
PD:100% PD:100% PD:100%

destructive QL:0.57% QL:0.49% QL:0.27%
PD:52% PD:100% PD:100%

(a) Random Attack (b) Listen & Learn Attack
Failure probability δ = 0.01 δ = 0.01,γ = 3 and WL= 0.22%

Listen & Learn Attack. We performed experiments of this attack using two
strategies. In the destructive strategy we change every alterable detour unless
we know it is a watermarked one. In the surge strategy, a detour is altered only
if we are sure it is a watermarked one. We performed experiments for different
learning times, ltime ranging from 100 detours to 1500. The detection process
begins after the end of the learning period to maximize the effect of the learning
attack. For each strategy and learning time combination, 100 experiments were
performed. Results are presented in Table 1(b). In only one case, the watermark
is removed. This is not surprising because when ltime = 100, the destructive
strategy is a random attack with p = 1. Indeed, not enough knowledge has been
acquired. Even for longer learning times, the attack does not affect the detection.
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4 Related Work

Our work is an extension of [2] which considered relational database watermark-
ing. In [2] and its further extension [11], the watermarked information is located
in the least significant bits of numerical values whereas ours is located at any posi-
tion, provided this position can be localized by an automaton. Type-preservation
is implicit since the structure of the databases (relation name, attribute names,
key constraints) is not altered. In the Xml context, structure is far more flexible
and can be used to embed watermarking bits. This motivates structural modifi-
cations in the purpose of watermarking, but while keeping the data usable, i.e.
respecting its original type. Such structural modifications are not discussed in [2].
It is noteworthy that our automata-based model can mimic their algorithm for
numerical values with a fixed size (which is a usual hypothesis in practice).

In [16], a watermarking scheme for sensor streams is proposed. Streams are
defined as continuous sequences of numerical values. Watermarking is based on
a continuity hypothesis and is performed by altering salient points of the stream.
This method does not consider typing problems. Keys and alterations are to be
found in numerical values, whereas this can change in our approach according
to the form of the stream.

Other works [6,4,13,17,9,14] address watermarking Xml information in vari-
ous contexts. In all these works Xml documents are viewed as a whole, and not as
streaming information. In [4,17,9,13], watermark embedding values are located
through the use of specific XPath queries. It is not discussed whether these
techniques can be applied in a streaming context but it must be observed that
XPath can not be efficiently evaluated over streaming data [5]. Only one work [9]
considers structural modification as bandwidth for watermarking which are often
viewed as attacks [17,14] watermarkers must deal with. A theoretical work [6]
explores the watermarking of Xml databases while preserving constraints which
are specified trough parametric queries. Type and stream constraints does not
fit this framework.

5 Conclusion and Future Work

In this work, we have presented the �-détour algorithm which permits the em-
bedding and the detection of copyright marks into Xml streams. Thus, it en-
ables detections of illegal redistributions of such objects. Future work is to study
whether it is possible to detect watermarks after one or several transformations
by consumers. Obviously, this is impossible in the most general setting but pre-
liminary results [7] show that this question can be answered for a restricted class
of transformations, expressing deterministically invertible stream rewritings.
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Abstract. In the Database-As-a-Service (DAS) model, clients store their
database contents at servers belonging to potentially untrusted service
providers. To maintain data confidentiality, clients need to outsource their
data to servers in encrypted form. At the same time, clients must still
be able to execute queries over encrypted data. One prominent and fairly
effective technique for executing SQL-style range queries over encrypted
data involves partitioning (or bucketization) of encrypted attributes.

However, executing aggregation-type queries over encrypted data is a
notoriously difficult problem. One well-known cryptographic tool often
utilized to support encrypted aggregation is homomorphic encryption; it
enables arithmetic operations over encrypted data. One technique based
on a specific homomorphic encryption function was recently proposed in
the context of the DAS model. Unfortunately, as shown in this paper,
this technique is insecure against ciphertext-only attacks. We propose
a simple alternative for handling encrypted aggregation queries and de-
scribe its implementation. We also consider a different flavor of the DAS
model which involves mixed databases, where some attributes are en-
crypted and some are left in the clear. We show how range queries can
be executed in this model.

1 Introduction

The Database-As-a-Service (DAS) model was introduced by Haĉigümus, et al. in
[1] and, since then, has received a lot of attention from the research community.
DAS involves clients outsourcing their private databases to database service
providers (servers) who offer storage facilities and necessary expertise. Clients,
in general, do not trust service providers with the contents of their databases
and, therefore, store the databases in encrypted format. The central challenge
is how to enable an untrusted service provider to run SQL-style queries over
encrypted data.

In [1], Haĉigümus, et al. suggested a method for supporting range queries
in the DAS model. Since encryption by itself does not facilitate range queries,
[2] involves bucketizing (partitioning) attributes upon which range queries will
� This work was supported by in part by NSF Awards 0331707 (ITR-DAS) and
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be based. This involves dividing the range of values in the specific domains of
the attribute into buckets and providing explicit labels for each partition. These
bucket labels are then stored along with the encrypted tuples at the server.
Based on the same bucketization strategy, the follow-on work in [3] addresses
aggregation queries in DAS by proposing the use of a particular homomorphic
encryption function. In general, homomorphic encryption is a technique that
allows entities who only possess encrypted values (but no decryption keys) to
perform certain arithmetic operations directly over these values. For example,
given two values E(A) and E(B) encrypted under some homomorphic encryption
function E(), one can efficiently compute E(A + B). It is easy to see that such
functions can easily support SUM operations over a desired range of values.

Fig. 1. Database-As-a-Service Overview

In this paper we show that the homomorphic encryption scheme in [3] is inse-
cure by demonstrating its suspectability to a ciphertext-only attack. This makes
it possible for the server (or any other party with access to the encrypted data)
to obtain the corresponding cleartext. We propose a very simple alternative for
handling aggregation queries at the server, which does not involve homomorphic
encryption functions. We further describe the protocols for formulating and exe-
cuting queries as well as updating encrypted tuples. We then focus on a variant
of DAS which has not been explored thus far: the so-called mixed DAS model,
where some attributes are sensitive (and thus stored encrypted) while others are
not (and are thus left in the clear).

Organization: This paper is organized as follows: Section 2 describes the salient
features of the DAS model and the bucketization technique. Section 3 introduces
homomorphic encryption functions and describes our attack on the scheme in [3].
Section 4 describes our simple solution for supporting aggregation-style queries
in the DAS model. and Section 5 addresses query processing in the mixed-DAS
model. Section 6 overviews related work and Section 7 concludes the paper.

2 The DAS Model

The Database-As-a-Service (DAS) model is a specific instance of the well-known
Application-As-a-Service model. DAS was first introduced by Haĉigümus, et al.
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[1] in 2002. It involves clients storing (outsourcing) their data at servers ad-
ministered by potentially untrusted service providers. Although servers are re-
lied upon for the management/administration and availability of clients’ data,
they are generally not trusted with the actual data contents. In this setting,
the main security goal is to limit the amount of information about the data
that the server can derive, while still allowing the latter to execute queries over
encrypted databases. (A related issue is how to maintain authenticity and in-
tegrity of clients’ outsourced data; this has been addressed by the related work
in [4,5,6].)

Before outsourcing, a DAS client is assumed to encrypt its data under a set of
secret keys. These keys are, of course, never revealed to the servers. The client
also creates, for each queri-able attribute, a bucketization index and accompa-
nying metadata to help in formulating queries. For every encrypted tuple, each
attribute index is reflected in a separate label (bucket id) which is given to the
server. Table 1 shows an example of partitioning for a salary attribute. Clients
maintain the metadata describing the partitions.

Table 1. Bucketization

employee.salary
Partition ID

[0,25K] 41
(25K, 50K] 64
(50K, 75K] 9
(75K, 100K] 22

Although the term “DAS client” generally refers to an organizational entity,
the actual client who queries the outsourced data may be a weak device, such as
a cell-phone or a PDA. Thus, it is important to minimize both bandwidth and
computation overhead for such clients.

2.1 Bucketization

There are two basic strategies for selecting bucket boundaries: equi-width and
equi-depth. With the former, each bucket has the same range. Table 1 is an exam-
ple of equi-width bucketization where each partition covers 25K. However, if the
attribute is distributed non-uniformly, this bucketization technique essentially
reveals (to the server) the accurate bucket-width histogram of the encrypted
attribute. In contrast, equi-depth bucketization attempts to avoid this problem
by having each bucket contain the same number of items, thereby hiding the
actual distribution of values. The downside of this approach is that, in the pres-
ence of frequent database updates, the equi-depth partition needs to be adjusted
periodically. This requires additional (and non-trivial) interaction between the
server and the client (database owner).

Although useful and practical, bucketization has an unavoidable side-effect
of privacy loss since labels (bucket id-s) disclose some information about the
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cleartext. Unless there are as many buckets as there are distinct values in the
domain of an attribute, some statistical information about the underlying data
is disclosed through bucket id-s. Some recent results [7,8] analyze and estimate
the loss of privacy due to bucketization. These results show that, although some
degree of privacy is invariably lost (since statistical information is revealed), only
very limited information can be deduced from encrypted tuples and associated
labels [8].

eid age salary
12 40 58K
18 32 65K
51 25 40K
68 27 76K

(a)

etuple(encrypted) eidid ageid salaryid ageh salaryh

%j#9*&JbB@... 72 51 9 52 73
P 5g4*H$j0aO... 72 3 9 29 65

X!f(63¡gl0̈3... 26 33 64 90 43
,f3+Wb5P@r-Cs... 85 33 22 81 38

(b)

Fig. 2. Relation employee in (a) plaintext form and (b) encrypted and bucketized form

Figure 2 (a) shows a subset of a table employee with the attributes: employee
id, age, and salary. The encrypted version of the table, stored at the server, is
shown in Figure 2 (b). It contains the fields: etuple, bucket identifiers each of
the original attributes, and additional ciphertext values denoted by fieldnameh

that will be utilized when the server computes aggregation queries (see Sec-
tion 3). If the server aggregates data during range queries, it will be unable to
include values from encrypted tuples. It should therefore be possible for the ser-
vice provider to execute certain commands upon the sets selected during range
queries, and the next section describes the use of homomorphic encryption which
allows arithmetic operations directly over ciphertexts.

2.2 Query Processing

A client’s SQL query is transformed, based upon metadata, into server-side and
client-side queries (Qs and Qc). The first is executed by the server over encrypted
data. The results are returned to the client where they are decrypted and serve as
input to the second query. When Qc is run at the client, it produces the correct
results. As described below, the results from executing Qs form a superset of
those produced by Qc. In other words, after the decryption of the tuples returned
by Qs, Qc filters out extraneous tuples.

The use of bucketization limits the granularity of range limits in server-side
queries. This is because the server cannot differentiate between tuples within
the same bucket (i.e., tuples with identical labels). Therefore, server-side queries
are further decomposed into certain and maybe queries, denoted by Qs

c and Qs
m,

respectively. The former will select tuples that certainly fall within the range
specified in the query and its results can be aggregated at the server. Qs

m selects
etuples corresponding to records that may qualify the conditions of the range
query, but which cannot be determined without decryption and further selection
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by the client. This query’s result set consists of the etuples from the border
buckets in the range query. Upon receiving the two result sets the client runs
query Qc to produce the final results.

Figure 3 illustrates the procedure whereby a client query Q is decomposed
into Qc, Qs

c, Q
s
m. Using Table data as an example, if a query specified the range

of salaries between $30-75K, then Qs
c would identify bucket 9 and Qs

m bucket
64. This query-splitting necessitates post-processing by the client – running Qc

against the results returned by the server after running Qs. We refer to [2] for
details about the query-splitting.

Client Server

Q → Qc, Qs
c, Q

s
m

Qs
c, Q

s
m

−−−−−−−−−−−−−−−−−−−→
Execute
queries

Query results for Qs
c

←−−−−−−−−−−−−−−−−−−−
Query results for Qs

m

←−−−−−−−−−−−−−−−−−−−
Run Qc over Qs

c & Qs
m

Fig. 3. Transformation of Client Query

3 Querying over Encrypted Data

The bucketization technique described above enables a server to run range
queries over encrypted tuples. However, we have yet to describe any useful func-
tions that can be computed in conjunction with such range queries. This section
focuses on aggregation queries over encrypted data. More specifically, we are
interested in mechanisms for computing the most rudimentary (and popular)
aggregation function: SUM over a set of tuples selected as a result of a range
query.

3.1 Homomorphic Encryption

A homomorphic encryption function allows manipulation of two (or more) ci-
phertexts to produce a new ciphertext corresponding to some arithmetic func-
tion of the two respective plaintexts, without having any information about the
plaintext or the encryption/decryption keys. For example, if E() is multiplica-
tively homomorphic, given two ciphertext E(A) and E(B), it is easy to compute
E(A ∗ B). Whereas, if E() is additively homomorphic, then computing E(A +
B) is also easy. One well-known example of a multiplicatively homomorphic
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encryption function is textbook RSA.1 An example of an additively homomor-
phic encryption function is Paillier [10].

In more detail (as described in [3]) a homomorphic encryption function can
be defined as follows:

Assume A is the domain of unencrypted values, Ek an encryption func-
tion using key k, and Dk the corresponding decryption function, i.e.,
∀a ∈ A,Dk(Ek(a)) = a. Let α and β be two (related) functions. The
function α is defined on the domain A and the function β is defined on
the domain of encrypted values of A. Then (Ek,Dk, α, β) is defined as a
homomorphic encryption function if Dk(β(Ek(a1), Ek(a2), ..., Ek(am))) =
α(a1, a2, ..., am). Informally, (Ek,Dk, α, β) is homomorphic over domain
A if the result of the application of function α on values may be obtained
by decrypting the result of β applied to the encrypted form of the same
values.

Homomorphic encryption functions were originally proposed as a method for per-
forming arithmetic computations over private databanks [11]. Since then, they
have become part of various secure computation schemes and more recently, ho-
momorphic properties have been utilized by numerous digital signature schemes
[12,4]. As mentioned above, some encryption functions are either additively or
multiplicatively homomorphic. An open problem in the research community is
whether there are any cryptographically secure encryption functions that are
both additively and multiplicatively homomorphic. (It is widely believed that
none exist.)

3.2 Homomorphic Function in [3]

The homomorphic encryption function proposed in [3] is based upon the so-
called Privacy Homomorphism (PH) scheme [11]. PH is a symmetric encryption
function with claimed security based on the difficulty of factoring large composite
integers (similar to RSA). PH encryption works as follows:

– Key Setup:
k = (p, q), where p and q are large secret primes. Their product: n = pq is
made public.

– Encryption: Given plaintext (an integer) a,
Ek(a) = C = (c1, c2) = (a (mod p)+R(a)×p, a (mod q)+R(a)× q), where
a ∈ Zn and R(x) is a pseudorandom number generator (PRNG) seeded by x.

– Decryption: Given ciphertext (c1, c2),
Dk(c1, c2) = (c1 mod p)qq−1 + (c2 mod q)pp−1 (mod n)

This encryption function exhibits both additive and multiplicative properties
(component-wise). The addition of “noise” – through the use of R(x) – is done

1 In practice, RSA encryption is not homomorphic since plaintext is usually padded
and encryption is made to be plaintext-aware, according to the OAEP specifications
[9].
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in multiples of p and q, respectively, which is meant to make encryption non-
deterministic and make it more difficult for an attacker to guess the secret key k.
However, as we show below, this actually makes it easier to attack this encryption
scheme through their extensions to the original homomorphic scheme.

There are several types of textbook-style attacks against encryption functions
[13]. At the very least, an encryption function is required to withstand the most
rudimentary attack type – ciphertext-only attack. Such an attack occurs when
the adversary is able to discover the plaintext (or worse, the encryption key)
while only having access to ciphertexts (encrypted values). We now show that
the above PH-based encryption is subject to a trivial ciphertext-only attack,
which results not only in the leakage of plaintext, but also in recovery of the
secret keys. The attack is based on the use of a well-known Greatest Common
Divisor (GCD) algorithm.

To make the attack work we make one simple assumption: that there are
repeated (duplicate) plaintext values. This assumption is clearly realistic since
it holds for most typical integer attributes, e.g., salary, age, date-of-birth, height,
weight, etc. Of course, PH encryption ensures that identical plaintext values are
encrypted into different ciphertexts, owing to the addition of noise.

We denote a repeated plaintext value by M and two corresponding encryptions
of that value as C′ = (c′1, c

′
2) and C” = (c1”, c2”). Let R′ and R” represent the

respective random noise values for the first half of each ciphertext. Recall that:
c′1 = M (mod p) + R′ × p and c1” = M (mod p) + R” × p. Then, we have:
c′1 − c1” = R′ × p − R” × p = (R′ − R”) × p.

Since R′ and R” are relatively small2 factoring (c′1 − c1”) is trivial. Hence,
obtaining p (and, likewise, q) is relatively easy. Moreover, we observe that, even
if factoring (c′1 − c1”) were to be hard (which it is not), it is equally trivial
to compute the greatest common divisor of (c′1 − c1”) and n. Note that p =
GCD(n, c′1 − c1”) = GCD(pq, (R′ − R”)p).

This attack can be performed by the server by simply iterating through pairs of
ciphertexts corresponding to a single database attribute, until a pair of duplicate-
plaintext ciphertexts are found. In general, given t ciphertexts (for a given at-
tribute), the server would have to perform at most O(t2) GCD computations
before computing p and q. Once p and q are obtained, decrypting all ciphertexts
is an easy task.

There are other weaknesses associated with the homomorphic scheme pro-
posed in [3]. An extension is for accommodating encryption of negative numbers
stipulates how values should be transformed prior to encryption. However, when
such ciphertexts are multiplied, decryption simply fails! A separate issue arises
due to the use of noise introduced through the use of R(x). This function pro-
duces a pseudo-random number used as a multiplicative coefficient of p and q,
both of which are already large integers. Therefore, the resulting ciphertexts
increase in size, taking significant storage at the server.

2 If Ri values were large, then the resulting ciphertexts would become even larger than
their current size, especially since encryption does not include the noise component
in its modular reductions.
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3.3 Other Homomorphic Encryption Functions

Since the encryption function proposed in [3] is insecure, it is worthwhile to in-
vestigate whether there are other homomorphic encryption functions that can
replace it. Recent cryptographic literature contains several encryption schemes
that exhibit the additively homomorphic property. (Note that we are not as in-
terested in multiplicatively homomorphic property because multiplication is not
as frequent as addition in aggregation queries). Candidates include cryptosys-
tems proposed by Paillier [10], Benaloh [14], the elliptic-curve variant of ElGamal
[15] and Okamoto/Uchiyama [16]. One common feature of these schemes is that,
unlike PH encryption, they are all provably secure public-key cryptosystems
based upon solid number-theoretic assumptions. An unfortunate consequence is
that ciphertexts tend to get rather large, and the operation of combining cipher-
texts can be computationally intensive. This is problematic when dealing with
computationally weak clients, such as cellphones or PDAs.

One very different alternative is a symmetric encryption function recently
proposed by Castelluccia, et al. [17] in the context of secure aggregation in
sensor networks. This function requires no number-theoretic assumptions, is very
efficient and incurs only a minor ciphertext expansion [17]. It is based on a
variant of a well-known counter (CTR) mode [13] of encryption and can be used
in conjunction with any block cipher, such as Triple-DES or AES [18,19]. (The
only notable difference is that it uses an arithmetic addition operation, instead
of exclusive-OR to perform the actual encryption. The keystream is generated
according to the normal counter mode.)

All of the above homomorphic encryption functions are secure, when used
correctly. However, we show – in Section 4 – that there are simpler mechanisms
for achieving aggregation over encrypted data.

4 Proposed Approach

With the exception of total summation queries, most aggregation queries are
typically predicated upon a range selection over one or more attributes. However,
if all tuple attributes are encrypted, aggregation is impossible without some form
of bucketization or partitioning. Assuming a bucketization scheme (as described
in Section 2.1), we now describe a trivial alternative for supporting aggregation-
style queries. This technique does not require any homomorphic encryption and
demands negligible extra storage as well as negligible amount of computation.

Our approach involves the data owner pre-computing aggregate values, such
as SUM and COUNT, for each bucket, and storing them in encrypted form at the
server. This allows the server, in response to a bucket-level aggregation query, to
directly reply with such encrypted aggregate values, instead of computing them
on-the-fly at query processing time. The encrypted bucket-level aggregate values
can be stored separately. Table 2 shows sample table with SUM and COUNT
values per salary attribute bucket, based on the data in Table 1.

The number of rows in this table is the same as the number of buckets for
the bucketized attribute. During execution of a range query, the server simply
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Table 2. Aggregate values stored per bucket

employee.salary.aggregates
Bucket ID SUM COUNT

41 Enc(930) Enc(15)
64 Enc(1020) Enc(13)
9 Enc(774) Enc(9)
22 Enc(568) Enc(6)

looks up the appropriate values from the aggregate table and returns them to
the client. This frees the server from expensive computation with homomorphic
encryption functions and also obviates any security risks.

We recognize two drawbacks in the proposed technique: (1) extra storage
for encrypted aggregates, and (2) additional computation following database
update operations. The first is not an actual concern since extra space is truly
negligible in comparison to that stemming from ciphertext expansion in either
PH-based or public key homomorphic encryption functions. The second does
present a slight complication which we address below. The main benefit is that
the server is relieved from adding ciphertexts during query execution, removing
this computational overhead.

4.1 Aggregation Query Processing

We now describe the processing of aggregation-style range queries using the pro-
posed technique. As before, each query is partitioned into client- and server-side
sub-queries Qc and Qs, respectively. Qc is basically the original query and Qs

is its bucket-level “translation” and split into Qs
c and Qs

m (certain and maybe
queries). However, unlike bucket-level range queries, aggregation queries result
in the server returning one or more bucket-level encrypted aggregate values as
the query response to Qs

c. Qs
m executes as in [1] (described in Section 2.2) and

returns the etuples belonging to bordering buckets which may be part of the
final query response. For example, consider the following query:

SELECT SUM, COUNT from employee WHERE
(employee.salary ≥ 30K) and (employee.salary ≤ 75K)

The corresponding server-side query Qs would be: SELECT SUM, COUNT from
employee.salary.agg WHERE (id=64) or (id=9)

The corresponding query reply would consist of:

1. Enc(1020) and Enc(13) for bucket id 64
– as well as:

2. etuples for all tuples with bucket id 9

As a final step, the client needs (1) decrypt, filter and aggregate the etuples, (2)
to decrypt and sum up the respective bucket aggregates, and (3) combine results
from the two steps to compute correct aggregates.
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4.2 Handling Updates

Whenever a data owner updates its outsourced database to modify, delete or
insert tuples involving bucketized attributes, the aggregate values need to be
updated as well. An update query may therefore require two communication
rounds with the server: the stored aggregate values need to be returned by the
server in the first round, and then updated and returned by the data owner in
the second round. In between the two rounds, the owner modifies the aggregate
values accordingly (i.e., computes new SUM and/or new COUNT). This proce-
dure is shown in figure 4, where a client inserts a new tuple and updates the
salary aggregate table simultaneously.

We use the term data owner as opposed to client to capture the fact that
there may be many clients who are authorized to query the outsourced data
(and who have appropriate decryption keys). Whereas, the there might be only
one owner, i.e., the entity authorized to modify the database. Thus, while an
owner is always a client, the opposite is not always true.

We also note that the two-round interaction shown in figure 4 is not nec-
essary if there is only one owner (but many clients). Recall that, for
each database, its owner as well all other clients are required to store cer-
tain metadata (bucketization scheme) for each bucketized attribute. The size
of the bucketization metadata is proportional to the number of buckets. Con-
sequently, it is reasonable to require the (single) owner to store up-to-date
bucket-level aggregate values for each bucketized attribute. (In other words,
the additional storage is insignificant as it at most doubles the amount of meta-
data.) Consequently, the first round of communication (as part of update) is
unnecessary.

Client Server

SELECT SUM, COUNT
from employee.salary.agg WHERE id == 9

−−−−−−−−−−−−−−−−−−−−−−−−→
E(774), E(9)

←−−−−−−−−−−−−−−−−−−−−−−−−
D(SUM)

D(COUNT )
SUM+=66K
COUNT++

E(SUM), E(COUNT ), new tuple
−−−−−−−−−−−−−−−−−−−−−−−−→

ACK
←−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 4. Owner/Client inserts new tuple
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5 Mixed Databases

Up until this point we have discussed a DAS model in which all the client’s data
is encrypted. We now look at execution of aggregation queries in a novel DAS
flavor, where some attributes are encrypted and some are left in the clear. We
label this as a mixed database. Such databases provide de facto access control
since individuals not in possession of decryption keys cannot access sensitive
data. Differentiating between confidential and non-confidential attributes also
reduces the computational load related to encryption at both the server and
client.

An interesting aggregation query in a mixed database specifies a range over
a plaintext value while aggregating an encrypted attribute. Table 3 illustrates a
mixed database where the emp id and age attributes are kept in the clear while
salary is encrypted. A potential query asks for the total salary of all employees
within a certain age group. Such queries cannot be executed with the proposed
solution in Section 4, because the attribute over which the range is defined is
not bucketized (since it is not encrypted). Instead, this plaintext attribute either
has an index built over it or not. In the former case the index is utilized to
select the matching tuples, while in the latter, a complete table scan is necessary
during query execution. It still remains necessary for the server to aggregate over
encrypted data, and we therefore return our focus to homomorphic encryptions
functions. Next we compare and analyze the homomorphic functions introduced
in Section 3.3 to determine the most appropriate candidate function for the
mixed DAS model.

5.1 Additive Homomorphic Encryption Scheme Candidates

We are interested in comparing provably secure additive homomorphic encryp-
tion schemes. Criteria used to evaluate schemes included the size of their cipher-
texts, the cost of adding ciphertexts, and that of decryption. Cost of encryption
is of less importance since it is a one-time offline computation performed by the
data owner, and has no effect on query response time.

The four homomorphic encryption schemes that we consider are Paillier [10],
Benaloh [14], Okamoto-Uchiyama (OU) [16] and the elliptic-curve variant of
ElGamal (EC-EG) [15]. [20] describes each of these schemes in greater detail.
The privacy homomorphism in [3] does not qualify as a viable candidate because
of its weak security, which is pointed out in Section 3.2. Castelluccia et al.’s
secret key homomorphic scheme [17] requires that additional data be returned
to the client for decryption. This data consists of unique identifiers for each
aggregated ciphertext and is proportionate in length to the number of aggregated
values. Such bandwidth overhead diminishes the value of data aggregation, and
we therefore omit this scheme from our pool of candidates3.

3 It is possible to remove the additional bandwidth overhead by storing additional
encrypted data at the server, but a description of this technique is outside the scope
of this paper.
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Table 3. Mixed Database

faculty.salary
emp id age salaryh

31 52 87
32 45 12
33 38 41

5.2 Analysis and Comparison of Cryptoschemes

When comparing cryptosystems built upon different mathematical structures
(EC-EG operates over elliptic curves while the OU and Benaloh work over mul-
tiplicative fields), it is important to devise a common computational unit of
measurement for purposes of fair comparison. We choose that unit to be 1024-
bit modular multiplications and follow the same methodology for comparison as
in [21]. The fundamental operation in EC-EG is elliptic curve point addition.
[20] describes how to derive the equivalent number of modular multiplications
to that of an elliptic curve point addition. The number of 1024-bit modular
multiplications will define the computational cost of summing ciphertexts at the
server and decryption of aggregate values at the client.

Table 4. Performance Comparison of Additive Homomorphic Cryptosystems

Scheme Addition Decryption Bandwidth
Paillier 4 1536 2048
EC-EG 1 16384 328

OU 1 512 1024
Benaloh 1 131072 1024

Table 4 shows the comparison of the three homomorphic cryptosystems. The
size of ciphertexts reflects both the overhead of storage at the server and trans-
mission of aggregate values. It is measured in bits. The cost of homomorphic
addition (summing two ciphertexts) and decryption is measured by the number
of 1024-bit modular multiplications required by the operations.

The parameters for each of the four cryptosystems have been selected such
as to obtain an equal 1024-bit level of security. For Paillier, Benaloh and OU,
primes p and q are selected such that |n| = 1024, while EC − EG uses one of
the standard (IEEE) ECC curves over F163 defined in [22]. Random nonces are
assumed to be 80-bits4.

The decryption cost for Benaloh and EC-EG depend on the size of the aggre-
gated values to be decrypted. These values in turn are a result of the size of the
attribute aggregated and the number of values aggregated. Both cryptosystems
employ a baby-giant step algorithm during decryption. These algorithms work
4 Random nonces are used in cryptosystems to make them non-deterministic, in that

encryption of identical plaintexts will yield different ciphertexts.
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by searching for the plaintext in its possible value range, while using tables of
pre-computed values (at regular intervals) to speed up the search. The size of
these tables directly affect the efficiency of the search in that the larger the tables
the faster the search. When deriving the results in Table 4, we assumed aggre-
gation of 10,000 20-bit bit values (e.g. up to million dollar salaries). Let max
denote the number of bits required to represent the largest possible aggregate
value. In our case, max = 34. As is common with baby-giant step algorithms,√

max pre-computed values are stored in a table, and
√

max
2 computations are

required for the search (on average). This means that 217 computations will
be required during Benaloh and EC-EG decryption, along with pre-computed
tables of 2.6MB and 16.7MB, respectively.

5.3 Recommendations

OU and Paillier clearly stand out amongst the four candidate schemes, mainly
due to their lower decryption costs. This is of importance since decryption will
be performed by clients, which may be computationally limited devices (e.g. cell
phone). Between the two, OU is the preferred choice in each of the measured
performance categories. This is a result of Paillier’s cryptosystem requirement
of a larger group structure (2048 versus 1024 bits), resulting in greater storage
and bandwidth overhead, as well as more expensive computations. The large
cost difference in summation of ciphertexts (4 to 1 ratio) also plays a significant
role, since this operation will be executed very frequently by the server. We
therefore declare OU to be the algorithm of choice for aggregation queries in
mixed-databases.

EC-EG and Benaloh are poor candidate choices because of their extremely
high decryption costs and the large storage requirements (at clients) associ-
ated with their baby-giant step algorithms. This poor performance reflects the
database environment in which they are evaluated, where tables may contain
several thousand tuples, creating a large value space to search through (dur-
ing decryption). The two algorithms are seemingly good choices in alternative
settings that only require a few number of small values to be aggregated (e.g.
certain sensor networks) [20].

6 Related Work

The Database-As-a-Service (DAS) model was introduced by Haĉigümus, et al.
in [1] and, since then, has received a lot of attention from the research commu-
nity. The specific technique of bucketizing data to support range queries over
encrypted tuples was described in [2]. Bucketization involves dividing the range
of values in the specific domains of the attribute into buckets and providing ex-
plicit labels for each partition. Recent work [7,8] analyze and estimate the loss
of privacy due to bucketization. Since statistical information is revealed, some
degree of privacy is invariably lost, but these results show that only very limited
information can be deduced from the encrypted tuples and their corresponding
bucket identifiers [8].
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[11] is the first work describing homomorphic encryption functions (referred to
as a Privacy Homomorphisms (PHs) by the respective authors). Such functions
were originally proposed as a method for performing arithmetic computations
over private databanks. [3] suggests a specific homomorphic encryption function
to use within a DAS model that utilizes bucketization. The additional function-
ality provided by this function expands upon the range of queries that can be
executed by the DAS server, specifically supporting a set of aggregation opera-
tions (SUM, COUNT and AVG).

An alternative DAS flavor involves the use of a Secure Coprocessor (SC) to aid
with processing of server-side queries. A SC is a computer that can be trusted
with executing its computations correctly and unmolested, even when attackers
gain physical access to the device. It also provides tamper resistance, allowing for
secure storage of sensitive data such as cryptographic keys. [23] describes a high-
level framework for incorporating a SC in a DAS setting, including the query
splitting between the client, server and SC, and suggest [24] as a SC candidate.

7 Conclusion

In conclusion, we proposed an alternative technique to homomorphic encryption
functions to support aggregation queries over encrypted tuples in the Database-
as-a-Server Model. The previously suggested solution in [3] was shown to be
insecure. Our technique if simple and reduces the computational overhead asso-
ciated with aggregation queries on both the server and client. Next we explored
mixed databases, where certain attributes are encrypted while others are left in
the clear. Additively homomorphic encryption functions are needed to support
basic aggregation queries for such databases. We analyzed and compared a set
of homomorphic encryption candidates and selected our preferred algorithm.
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Abstract. Most state-of-the-art approaches of securing XML documents
are based on a partial annotation of an XML tree with security labels
which are later propagated to unlabeled nodes of the XML so that the
resulting labeling is full (i.e. defined for every XML node). The first
contribution of this paper is an investigation of possible alternatives for
policy definition that lead to a fully annotated XML. We provide a clas-
sification of policies using different options of security label propagation
and conflict resolution. Our second contribution is a generalized algo-
rithm that constructs a full DTD annotation (from the the partial one)
w.r.t. the policy classification. Finally, we discuss the query rewriting
approach for our model of XML security views.

1 Introduction

In [1], we presented a generalized notion of XML security views. The intuition
behind XML security views is similar to that of multi-level security views for
a relational database [2]: views are virtual tables that are defined by multilevel
relational expressions over the multilevel relations and are evaluated each time
the view is used; view evaluation yields a derived multilevel relation.

In a hierarchical structure like XML, it is hardly possible to define accessibility
via a single query. Thus, for XML, we define a partial assignment of security
labels to XML nodes; then, a security policy is applied to these security labels so
that the partially annotated XML becomes fully annotated; finally, the latter is
“sanitized”, i.e. (some) nodes with negative authorizations are hidden (deleted
or encrypted), but their permitted children are revealed (e.g., moved up to a
permitted ancestor if a forbidden parent is deleted). This approach is used, for
example, in [3], [4], [5], [6]. The resulting XML tree is called authorized (TA).
Another approach to XML view calculation enforces security annotations on the
schema level. The result is a DTD schema of the permitted data (or in other
words, a DTD view Dv) as in [1], [7], [8]. Then, the materialized version of
XML document (TM ) is constructed from the initial XML document by deleting
forbidden nodes w.r.t. Dv so that TA is isomorphic to TM .
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Fig. 1. Schema of accessible data materialization

A diagram of the methodology to construct a schema for the accessible data
is shown in Fig. 1 (see [1] for details).

The construction of the fully annotated document, in which every node is
labeled, depends on the overall security policy [9] that is used. The first con-
tribution of this paper is an investigation of different alternatives for policy
definition and enforcement at the level of an XML tree. Our analysis shows
that not all combinations of policy options satisfy the properties of complete-
ness and consistency, i.e., result in a single fully annotated tree. We provide
a classification of policies using different options of security label propagation
and conflict resolution. The second contribution is a generic algorithm that con-
structs a fully annotated DTD DF (from the the partial one) according to the
policy classification so that DF reflects a full annotation of a corresponding XML
document.

The final phase of XML view construction is a computation of the document
TM which conforms to Dv, i.e. materialization of accessible data. However, the
user often wants to know only a small part of the materialized view, e.g., an
answer on some XPath query expressed in terms of Dv. In this case, the materi-
alization of the security view can be avoided by rewriting user queries over TM

conforming to Dv into queries over the original data, and then evaluating this
query. The third contribution of this paper is the description of an algorithm for
such a query rewriting.

The paper is organized as follows. First, in Sec. 2, we provide a classifica-
tion of XML security policies that can be used in construction of a fully anno-
tated XML from a partial one. Second, a general algorithm for calculation of
a fully annotated DTD is presented in Sec. 3. Next, we discuss query rewrit-
ing algorithm in Sec. 4. Finally, Sec. 5 presents related work and concludes the
paper.
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2 Classification of Policies

We can classify security policies by completeness and consistency [9]. The former
handles unassigned values, and the latter is to handle conflicting assignments.

Definition 1. A policy is complete and consistent if every partially annotated
tree can be extend to a single fully annotated tree.

We list here several possible policies. These are variations of classical security
policies [9]:

Local Propagation (LP): “open”, “closed”, or “none”;
Hierarchy Propagation (HP): “topDown” (td), “bottomUp” (bu), or

“none”;
Structural Conflict Resolution (SC): “localFirst” (lf), “hierarchyFirst”

(hf), or “none”;
Value Conflict Resolution (VC): “denialTakesPrecedence” (dtp), “permis-

sionTakesPrecedence” (ptp), or “none”.

The LP option is similar to traditional policies for access control: in the case
of “open” (“closed”), if a node is not labelled then it is labelled by Y (N); with
the “none” option, an unlabeled node is not assigned any label.

The HP option specifies annotation inheritance in the tree. In the case of “td”
(“bu”), an unlabelled node with a labelled parent (children) inherits the label
of the latter; “none” means that no hierarchy propagation is applied. Note that
the “bu” case can result in conflicts, and they should be addressed by the VC
option.

The SC option specifies whether the local or hierarchy rule takes precedence
(“lf” or “hf” respectively); in the case of “none”, both kinds of inheritance are
applied (if they are not “none”) resulting in more than one possible annotations
and the “winning” label is defined based on the VC option. The latter specifies
how to resolve conflicts for unlabelled nodes that are assigned different labels
by the preceding rules: N always has precedence over Y (“dtp”); Y always has
precedence over N (“ptp”), and no choice (“none”).

Finally, we also use most-specific-takes-precedence (MSTP) policy [9] that
prohibits propagation of labels on already labeled nodes.

We represent all the possible policy options in Table 1, where symbol “∗”
means “any”, i.e. any possible value from the appropriate set 1.

Definition 2. The policy is called a top-down/bottom-up/local/multilabel pol-
icy if it satisfies conditions in lines 1-2/3-4/5-6/7 of Table 1.

Proposition 1. The top-down, bottom-up, local, and multilabel policies are
complete and consistent.
1 Note that Table 1 indeed shows all 81 possible combination of security options, since

symbols ∗ and �= mean, respectively, three and two possible values for a corresponding
policy option.
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Table 1. Policy alternatives

HP LP SC VC additional condition
1 td �=none hf ∗ none
2 td none ∗ ∗ root is annotated
3 bu �=none hf �=none none
4 bu none ∗ �=none all leaves are annotated
5 ∗ �=none lf ∗ none
6 none �=none ∗ ∗ none
7 �=none �=none none �=none none
8 none none ∗ ∗ none
9 �=none �=none none none none
10 bu ∗ hf none none
11 bu none �=hf none none

All the other policies are classified as unresolvable since they do not result in
a unique fully annotated tree.

In the next section, we will show how to construct a full DTD annotation
(from the the partial one) for every specified policy class.

3 Construction of Security View

We start with the definition of a DTD.

Definition 3. A DTD D is a triple (Ele , P, root), where Ele is a finite set of
element types; root is the distinguished type in Ele called “root”; P is a function
defining element types such that for each A in Ele, P (A) = α, where α is a
regular expression, defined as follows:

α := str | Ele | ε | α + α | α, α | α∗

where str is a special type denoting PCDATA, ε is the empty word, and “+”,
“,”, and “∗” denote disjunction, concatenation, and Kleene star, respectively.
We refer to A → P (A) as the DTD production rule of A. For all element types
B occurring in P (A), we refer to B as a subelement type (or a child type) of
A and to A as a superelement type (or a parent type) of B.

We assume that DTD is finite and non-recursive, i.e., without cycles.

Definition 4. An authorization specification is a pair (D, ann), where D is a
DTD, ann is a partial mapping between adjacent DTD element types A and B:

ann(A, B) ::= Q[q] | Y | N

where [q] is a qualifier in some fragment of XPath. A special case is the root of
D, for which we define ann(root) = Y by default.

Every ann(A, B) defines a source element type A denoted as s, a destination
element type B denoted as d, and a generator of security label for B (or simply
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generator) (A, B) denoted as g. A mapping from a source type A to a set of
destination types B is called an annotation production and is denoted Pann(A).
An annotation production rule is a mapping between A and Pann(A) denoted
A → Pann(A).

We consider that A and B are adjacent element types, i.e., form a DTD edge 2.
Since we put annotations on DTD edges, the idea behind our algorithm is to
“push” security labels from generators to destination types.

Definition 5. If ann(s, d) = a �= ∅, we say that s transmits (or propagates)
annotation a to d via g.

After obtaining an annotation, a destination type d becomes a source type and
may retransmit its annotation to generators where d is a source.

Remark 1. In the local policy, we suppose that ann(A, B) is an annotation be-
tween parent A and its child B, i.e., pushing security labels is performed in a
top-down manner that assures that there are not any conflicts at tree level since
every node B has only one parent A, i.e., only one generator. Hence, we consider
the local policy as a subset of the top-down policy.

Definition 6. The DTD document is called fully annotated if for every DTD
node A, there is a function anndata(A) ::= Y | N called full annotation of the
document DTD.

The notion of a full annotation was defined for XML documents which have a
unique full annotation provided a complete and consistent policy is given. At
the schema level, however, there may be several “paths” transmitting differ-
ent annotations to the same element type. Below we show how to resolve this
problem.

Definition 7. We denote the set of all generators of d as G(d). An element
type d with a generator g ∈ G(d) such that ann(g) = ∅ is called expecting.

Definition 8. We say that a subset G(d) of G(d) has a simultaneous impact
on anndata(d) if there exists an XML instance T conforming to a DTD schema
D such that every instance of type d has a set of either outgoing or incoming
edges that can be mapped to the set G(d). We call G(d) a set of simultaneous
impact (SSI).

Example 1. Consider a DTD:

A → (B, C); B → (D, E); C → (D|E); D → (str); E → (str).

Generators (B, D) and (C, D) belong to different SSIs on anndata(D) since a node
D has either B or C parent in any XML instance. Generators (D, B) and (E, B)
2 Note that an annotation production rule in this case A → Pann(A) may be either of

a top-down nature (i.e. every B ∈ Pann(A) is a child of A in the DTD schema) or of
a bottom-up nature (i.e. every B ∈ Pann(A) is a parent of A in the DTD schema).
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belong to the same SSI on anndata(B) because any node B has both D and E
children in any XML instance. Generators (D, C) and (E, C) belong to different
SSIs on anndata(C) as long as node C has either a D or an E child node in any
XML instance.

Definition 9. We say that d may obtain a preliminary full annotation (PFA)
from SSI G(d) denoted as anndata(d)G(d), if for every g ∈ G(d), ann(g) is the
same, non empty, and ann(g) is not a qualifier.

If ann(g) is the same for all g ∈ G(d) then anndata(d)G(d) = ann(g). Otherwise,
we use the VC resolution option if it is not “none” 3. From the analysis of policy
options follows that value conflict may arise only in the case of the bottom-up
policy class, because every XML instance usually has a node with more than
one child.

In Def. 9, we required that ann(g) �= Q[q]. Before explaining the case when
ann(g) = Q[q], we recall the meaning of ann(s, d) = Q[q]: “a node of type d is
visible from node of type s via generator (s, d) if child(s, d)[q] holds”, where
child(s, d) is a function that for generator (s, d) returns a child element type ch
(either s or d) w.r.t. a DTD structure 4. At the XML instance T conforming to
D, it means that condition q may evaluate to true for some node instances of
type child(s, d) = ch, while for the other ch instances, it may evaluate to false.
In the latter case, a node instance of type d is not visible. Thus, at the schema
level, we perform a splitting operation for element type d into dY (i.e. visible d)
and dN (i.e. hidden d). Basically, dY is the initial element d, while dN is its clone.
After that, we substitute d in P (s) with dY + dN.

The connection of dY and dN with other (not equal to s) sources/destinations
and parents/children of d as follows. (1) dY (dN) transmits Y (N) to destinations
d′ of d if ann(d, d′) = ∅; otherwise, it transmits ann(d, d′). This rule connects
dY and dN with all DTD parents (children) of d in the case of bottom-up (top-
down) propagation. (2) dY (dN) has the same set of children as an element type
d had. This rule connects dY and dN with all children in the case of any kind
of propagation. (3) After application of steps (1) and (2), the only connection
with parents p �= s in the case of top-down propagation is not defined. Here, dY

(dN) which is the initial d (the clone of d) should be connected with sources of
generators transmitting Y or nothing (N and nothing more).

An algorithmic description of the procedure of removing qualifiers is depicted
in Fig. 2. Lines 5, 6, 7 represents the rules for connecting dY and dN with non-
equal to s sources/destinations and parents/children of d.

Having removed qualifiers, we can define SSIs. Obviously, for the top-down
propagation, SSI contains only one generator (parent-child DTD edge), and the
number of SSIs is equal to the number of parents in DTD graph. However, the
situation is more complicated for the bottom-up policy. First of all, every des-
tination element type d may have several children transmitting their security
3 Otherwise, the policy is inconsistent.
4 In the same way we may introduce function parent(s, d) that returns parent element

type w.r.t. DTD structure for a pair (s, d).



110 N. Rassadko

Algorithm: Qualifier Removing
Input: Partially annotated DTD with qualifiers
Output: Partially annotated DTD without qualifiers
1: for every generator (s, d) such that ann(s, d) = Q[q] do
2: Create element types dY and dN;
3: In s → P (s), substitute d for dY + dN;
4: Set

σ(parent(s, dY), child(s, dY)) = child(s, d)[q]; σ(parent(s, dN), child(s, dN)) = child(s, d)[¬q];
ann(s, dY) = Y; ann(s, dN) = N;

5: Connect dY and dN with all destinations d′ of d:
σ(parent(d′, dY), child(d′, dY)) = σ(parent(d′, d), child(d′, d)) = σ(parent(d′, dN), child(d′, dN))
ann(dY, d′) = ann(d, d′) = ann(d, d′), if ann(d, d′) �= ∅;
ann(dY, d′) = Y; ann(dN, d′) = N, if ann(d, d′) = ∅;
// After step 5, the next step has the meaning only for bottom-up policy class

6: Connect dY and dN with all DTD children ch �= s of d setting:
σ(dY, ch) = σ(d, ch) = σ(dN, ch);
ann(ch, dY) = ann(ch, d) = ann(ch, dN);

// After step 5, the next step has the meaning only for top-down policy class
7: Connect dY (dN) with other parents p �= s of d such that ann(p, d) = Y|∅ (ann(p, d) = N)

setting: σ(p, dY) = σ(p, d) (σ(p, dN) = σ(p, d));
ann(p, dY) = ann(p, d) (ann(p, dN) = ann(p, d));

Fig. 2. Algorithm Qualifier Removing

labels to d. Secondly, the number of SSIs and their components depend on the
presence of choices (α + α) in P (A) (see Def. 3). The intuition is the following:
we present every sequence (α, α) of P (A) as a conjunction (α ∧ α), and every
choice (α + α) of P (A) as disjunction (α ∨ α) in parenthesis. From the intro-
duced logical expression, we construct formula Δ by removing parenthesis. The
number of SSIs and their configuration is, respectively, the number of disjuncts
and configuration of conjuncts in every disjunct in Δ. For example, logical rep-
resentation of production rule A → ((B|C), D) is A = (B ∨ C) ∧ D which has
the following view after parenthesis removing: B ∧D ∨C ∧D. Therefore, in the
case of bottom-up propagation, A has two SSIs: {B, D} and {C, D}.

Next, for every SSI, we calculate the PFA using VC option if necessary.

Definition 10. We say that anndata(d) is steady if for every G(d), anndata(d)G(d)
are the same and not empty. Otherwise, anndata(d) is alternating.

An alternating annotation means that d may obtain different annotations de-
pending on the SSI at the XML level, while a steady annotation for d means that
d always has the same label wherever d occurs in XML document. To deal with
alternating annotations, we split node as in Qualifier Removing connecting
dY (dN) with SSI of generators transmitting Y (N).

Definition 11. We say that destination type d, such that anndata(d) �= ∅, is
closed if for every destination type d′ ∈ Pann(d), ann(d, d′) �= ∅. Otherwise, d is
open and for ∀d′ ∈ Pann(d) such that ann(d, d′) = ∅, d retransmits annotation
anndata(d) to d′ via generator (d, d′). Thus, we rename d as s and d′ as d.

We assume that every initially annotated DTD element type e (e.g., root or all
leaves for bottom-up propagation) automatically retransmits its annotation to
all generators g = (e, d′) such that ann(g) = ∅.

The generic algorithm Annotate View is shown in Fig 4. It starts with a
preprocessing procedure which is needed only for the local policy to define and
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Algorithm: Split
Input: DTD element type d having generators with different annotations
Output: dN
1: Create element types dY and dN;
2: for every SSI Gk(d)(k = 1, n) having sources

{
s1, . . . , smk

}
and resulting in a PFA Y (N) of d

do
3: Connect source si of every generator gi ∈ Gk(d), i = 1, mk with dY (dN) setting:

σ(parent(si, dY), child(si, dY)) = child(si, d) = σ(parent(si, dN), child(si, dN))
ann(si, dY) = ann(si, d)(= Y); ann(si, dN) = ann(si, d)(= N);

4: for every generator g′ = (d, d′) where d is a source do
5: Connect dY and dN with d′ setting:

σ(parent(d′, dY), child(d′, dY)) = child(d′, d) = σ(parent(d′, dN), child(d′, dN))
ann(dY, d′) = ann(d, d′) = ann(dN, d′);

6: return dN;

Fig. 3. Algorithm Split

Algorithm: Annotate View
Input: Partially annotated annotated DTD D
Output: Fully annotated DTD
1: Preprocessing;
2: Qualifier Removing;
3: Create empty queue, initialize it with all DTD element types;
4: while queue is not empty do
5: d :=Dequeue(queue);
6: if anndata(d) = ∅ then
7: if d is not expecting then
8: Calculate SSIs

{
G1(d), G2(d), . . . , Gn(d)

}
;

9: for every Gi(d) do
10: Calculate anndata(d)Gi(d) (applying value conflict resolution policy option if

not for all g ∈ Gi(d) ann(g) is the same);
11: if anndata(d) is steady then
12: Assign any anndata(d)Gi(d) to anndata(d);
13: else if ann(d) is alternating then
14: dclone :=Split(d);
15: Enqueue(queue, dclone);
16: if d is not splitted and d is open then
17: For every d′ ∈ Pann(d) such that ann(d, d′) = ∅, set ann(d, d′) = anndata(d);
18: else
19: Enqueue(queue, d);

Fig. 4. Algorithm Annotate View

apply a default labeling for non-annotated generators. After the preprocessing
and qualifier removing steps, we invoke labeling iterations via queue [10]: if the
next considered element type d has a full annotation anndata(d), there is no need
to process it; otherwise, the if clause at line 2. If all generators of d have a defined
annotation, then anndata(d) is defined. If not, place d back to queue (step 19),
thus delaying definition of a full annotation of d (i.e. d is expecting).

Finally, we remove the N-labeled nodes from the fully annotated DTD. This
algorithm is identical to that in [1].

Example 2. The left part of Fig. 5 represents an initial annotation of a DTD
schema. We use top-down propagation to obtain a full annotation which is shown
on the central part of Fig. 5. In particular, solid and dashed lines are generators
transmitting Y and N respectively; labels on (B, CY) and (B, CN) generators
are corresponding σ-functions; for the other generators, σ(x, y) = y. Finally, the
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Fig. 5. View construction example

right part of Fig. 5 is the DTD after deletion of N-labeled nodes. Labels on edges
represent corresponding σ-functions.

4 Query Rewriting Algorithm Description

In this section we show the algorithm for query rewriting. The query language is
that of the CoreXPath of Gottlob et al. [11] augmented with the union operator
and atomic tests and which is denoted by Benedict et al. [12] as X .

Definition 12. An XPath expression in X is defined by the following grammar:

〈path〉 ::= 〈step〉 (‘/‘ 〈remaining path〉)?
〈remaining path〉 ::= 〈path〉

〈step〉 ::= θ(‘[‘ 〈qual〉 ‘]‘)∗ | 〈path〉 ‘ ∪ ‘ 〈path〉
〈qual〉 ::= A | ‘ ∗ ‘ | op c |

〈qual〉 and 〈qual〉 | 〈qual〉 or 〈qual〉 |
not 〈qual〉 | ‘(‘ 〈qual〉 ‘)‘ | 〈path〉

where θ stands for an XPath step specification (axis :: label, where label is either
label A or symbol ∗), c is a str constant, op stands for one of =, �=, <, >, ≤,
≥; qual is called qualifier (or filter) and is denoted by q.

The algorithm for query rewriting has two phases: query parsing and further
translation of the parsed query into σ-functions. Query parsing phase implies
that user query is represented as a tree of subqueries (parse tree) according to
the grammar that we have shown in Def. 12.

The translation of the parsed query starts from the leaves of the parse tree and
moves up to the root 〈path〉. In particular, for each subquery p and an element
A, the algorithm calculates QR(p,A) using Query Rewrite(pi, Bj), where pi is
a direct subquery (child in a parse tree) of p and Bj is a node reachable from A
via pi in Dv. At the same time, the algorithm calculates reach(p, A) representing
the set of nodes reachable from node A via the path p. To obtain a rewriting of
the initial user query q, we invoke Query Rewrite(q, root).
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Algorithm: Query Rewrite
Input: a subquery q (as a parsed XPath expression), a node A for which query rewriting is carried
Output: rewritten subquery q w.r.t. A node
1: if q is 〈path〉 then

// q = q1/q2 where q1 = firstStep, q2 = remainingSteps
2: QR(q,A) :=Query Rewrite(q1, A)/

⋃
v∈reach(q1 ,A)Query Rewrite(q2, v);

3: reach(q1/q2, A) := reach(q1/q2, A) ∪ ⋃
v∈reach(q1 ,A) reach(q2, v);

4: else if q is a union of paths 〈path〉 then
// q = p1 ∪ p2 ∪ . . . ∪ pn

5: QR(q,A) :=
⋃

pi
Query Rewrite(pi, A);

6: reach(q, A) = reach(q, A) ∪ reach(pi, A);
7: else if q is θ[〈qual〉] then

// q = q0[filter1] . . . [filtern] where q0 is nodeTest
8: QR(q,A) :=Query Rewrite(q0, A)

⋃
filteri

[
⋃

v∈reach(q0 ,A)Query Rewrite(filteri, v)];

9: reach(q, A) := reach(q0, A);
10: else if q is 〈qual〉 then

// q = 〈qual〉 from Def. 12
11: if q has no operands then
12: QR(q,A) :=Query Rewrite(q, A); // q is 〈path〉
13: else if q has one (not) operand then
14: QR(q,A) = not Query Rewrite(q0, A); // where q0 is the operand;
15: else if q has two operands then

// q1 is the first operand, q2 is the second operand; op2 is one of and, or, =, �=, ≥, ≤;
16: QR(q,A) :=Query Rewrite(q1, A) op2 Query Rewrite(q2, A);
17: else if q is θ then

// θ=axis :: label
18: if axis is ‘child’ or ‘parent’ then
19: QR(q,A) :=processChildParent(label,axis,A);// (Fig. 8)
20: else if axis is ‘descendant-or-self ’ or ‘ancestor-or-self ’ then
21: QR(q,A) :=processDescendAncest(label,axis,A);//(Fig. 7)
22: else if axis is ‘attribute’ then
23: if A has attribute label then
24: QR(q,A) := q;
25: else if (q is literal) or (q is number) then
26: QR(q,A) = q;
27: return QR(q,A);

Fig. 6. Algorithm Query Rewrite

The algorithm presented in Fig. 6 shows the translation procedure. Lines 1,
4, 7, 10, 17 distinguish whether the subexpression is 〈path〉, union of steps, node
with qualifiers θ[〈qual〉], qualifier 〈qual〉, and node test θ respectively.

The translation of 〈path〉, union of steps, θ[〈qual〉], and 〈qual〉 is quite straight-
forward, and we concentrate on a processing of node test θ. Since θ has a gen-
eral form axis :: label[filter1] . . . [filtern], we have the following possibilities for
rewriting:

1. label is a child of A in Dv: rewrite(q1, A) = σ(A, label);
2. label is a parent of A: rewrite(q1, A) = σ−1(label, A) (the definition of

σ−1(B, A) goes below);
3. label is a descendant (ancestor) of A: all the paths from A to label (from

label to A) in Dv should be rewritten w.r.t. σ (σ−1)-function.

We introduce two auxiliary functions: processChildParent (that captures
possibilities 1 and 2) in Fig. 8 and processDescendAncest (handling possi-
bility 3) in Fig. 7. The symbol ↓∗ (↑∗) is used to denote the subquery q =
descendant-or-self (ancestor-or-self ).
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Algorithm: processDescendAncest
Input: node label ∈ {str, ∗}, node axis ∈ {descendant-or-self, ancestor-or-self}, element node A of Dv

// p = axis::label; reach(↓∗, A) (reach(↑∗, A)) contain all descendants (ancestors) of A;
1: if axis = descendant-or-self then
2: q :=‘↓∗’;
3: else if axis = ancestor-or-self then
4: q :=‘↑∗’;
5: res :=

⋃
label∈reach(q,A) preRewrite(q, A, label);

6: reach(p, A) := reach(p, A) ∪ {label ∈ reach(q, A)}
7: return res;

Fig. 7. Algorithm processDescendAncest

Algorithm: processChildParent
Input: node label ∈ {str, ∗}, node axis ∈ {child, parent}, node A of Dv

// q = axis::label
1: reach(q, A) is a set of nodes that are in relation axis with A;
2: res :=

⋃
label∈reach(q,A) max

{
σ(A, label), σ−1(A, label)

}
;

3: return res;

Fig. 8. Algorithm processChildParent

For rewriting of descendant/ancestor relations, we use the data of the stati-
cally precomputed table preRewrite which contains all the rewritten paths from
A to all B descendants/ancestors. We use a simple deep-first-search algorithm
to find the union u of all paths pi from A to any B. After that, every pi of u is
rewritten by a call of Query Rewrite(pi, A). Thus, preRewrite(↓∗(↑∗), A, B)
is a union of rewritten paths pi.

Now, consider the meaning of σ−1(B, A). σ(B, A) is a collection of paths from
B to A in the initial DTD D such that B is a parent of A in Dv: σ(B, A) := ∪k

i=1pi

where each
pi = ci1 [fi1 ]/ci2 [fi2 ]/ . . . /cini−1 [fini−1 ]/cini

[fini
]

with ci1 as the child of B (since pi is applied to B), cini
is A, each cij is a child

of cij−1 , fij is a filter expression for the node cij . Then σ−1(B, A) is defined as
follows:

Definition 13. The reversed representation σ−1(B, A) of non empty σ(B, A) is
σ−1(B, A) := ∪k

i=1pi
−1 where each

pi
−1 = self :: cini

[fini
]/parent :: cini−1 [fini−1 ]/ . . .

/parent :: ci1 [fi1 ]/parent :: B[preRewrite(↑∗, B, root)]

is applied to the node A.

An expression self::cini
[fini

] ensures that σ−1(B, A) is applied to a permitted A
node. Analogously, parent::B is filtered by [preRewrite(↑∗, B, root)] to guaran-
tee that the user cannot reveal any additional information like in the following
example:

Example 3. Suppose, Dv contains a fragment B → (C, A), C → (D, A); the user
has an access to B and A, but C and D are visible only under some condition
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QC . The query //A/parent::C/D may leak sensitive information if we do not
restrict C with an expression [QC ].

The algorithm of σ−1(B, A) calculation directly follows from Def. 13. We do not
show it here for the lack of the space.

The algorithm processChildParent is presented in Fig. 8. The expression
max

{
σ(A, B), σ−1(B, A)

}
in line 2 selects the non-empty element from σ(A, B)

and σ−1(B, A) (one of them is always empty, while the other is not).

Example 4. We use the security view of Example 2 to demonstrate our query
rewriting algorithm.

Path rewriting :A/B/K → A/σ(A, B)/σ(B, K) → A/B/C[¬q]/K;
Descendant rewriting : A//C → A/preRewrite(↓∗, A, C) → A/(B/C ∪ D/C) →

→ A/(σ(A, B)/σ(B, C) ∪ σ(A, D)/σ(D, C)) → A/(B/C[q] ∪ D/C);

Filter rewriting : A[B]/K → A[σ(A, B)]/σ(A, K) → A[B]/E/C/K;

Usage of σ−1 : A/B//K/parent::C → A/σ(A, B)/prerewrite(↓∗, B, K)/σ−1(C, K) →
→ A/B/(C[q]/K ∪ C[¬q]/K)/self::K/parent::C[preRewrite(↑∗, C, A)] →
the latter filter is rewritten as follows
preRewrite(↑∗, C, A) →Query Rewrite(parent::B/parent::A ∪ parent::D/parent::A, C) →
→ σ−1(B, C)/σ−1(A, B) ∪ σ−1(D, C)/σ−1(A, D)

The last expression is calculated according to Def. 13.

The closest approach to query rewriting is presented by Fan et al. in [8]. The
main differences are: the algorithm derives a security view without any dummy
element types which may be a source of sensitive information leakage. Therefore,
the σ-function used in our query rewriting has different semantics. An extended
XPath fragment has parent and descendant-or-self axes. Finally, Fan et al. use
dynamic programming so that QR(q,A) is calculated for every DTD element type
A; while we perform a rewriting of q w.r.t. to a subset of relevant element types
A of DTD in a recursive manner.

5 Related Work and Conclusion

The mapping between existing policy frameworks and our proposal is summa-
rized in Table 2. Note that our Y(N) label corresponds to “grant” (“deny”), +
(−) of other models. The comparison of some other access control parameters is
shown in Table 3.

The provisional access control model for XML documents [6] considers both
top-down and bottom-up propagation. Since the rule most specific takes prece-
dence (MSTP) is not used, arising conflicts are resolved by the VC option. In
the case of the presence of unresolved conflicts or unlabeled nodes, a special
default option (Y or N) is applied. The policy is evaluated at the stage of query
answering (we marked it in Table 3 as “policy evaluation” (PE)). If access to
the requested node is permitted, the user receives “weak” XML view, where
N-labeled nodes having Y-children are revealed without their attributes.
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Table 2. Existing policy frameworks

Method HP LP SC VC MSTP default
Kudo et al. [6] ∗ none hf ∗ No Yes ( �=none)

Murata et al. [13] td ind. ∗ ind. none dtp No Yes (closed)
Gabillon et al. [5] td ind. ∗ ind. none priority, order No Yes ( �=none)
Damiani et al. [3] td ind. ∗ ind. none dtp Yes Yes (closed)
Bertino et al. [4] td ind. ∗ ind. none dtp Yes Yes (closed)
Cho et al. [14] td ind. ∗ ind. none dtp No Yes (open)
Fan et al. [8] td none �=lf none Yes No
Our method ∗ ∗ ∗ ∗ Yes No

Table 3. Existing XML access control frameworks

Method XML view DTD view Query asking over Query answering by
[6] Yes (weak) No initial XML policy evaluation (PE)
[13] No No initial XML/DTD rewriting, PE
[5] Yes (weak) No XML view XPath evaluation
[3] Yes (weak) Yes (loosened) XML/DTD view XPath evaluation
[4] Yes No XML view XPath evaluation
[14] No No initial XML/DTD rewriting, PE

Stoica et al. [7] No Yes - -
[8] No Yes DTD view safe rewriting

Our method Yes Yes DTD/XML view safe rewriting

The proposal of Murata et al. [13] defines for every XML node an individual
label which is propagated either in hierarchical (td) or in local manner (in the
Table 2, it is marked as “ind.”). An additional denial downward consistency
(DDC) policy is introduced: a subtree rooted at N-labeled node has only N-
labeled descendants. The method rewrites (using DTD if exists) the query q
posed over the initial XML/DTD so that to minimize the need in PE during
query answering.

Gabilon et al. [5] differs from [13] in that the VC resolution is based on a
priority associated with every access control rule. In the case of multiple rules
with the same priority, the last rule in XML Authorization Sheet (i.e., the list of
access rules) is elected. In this method, PE is used to construct an XML view.
Thus, the query evaluation is simply an XPath evaluation over the XML view.

Damiani’s et al. [3] proposal partially annotates the DTD schema or an XML
instance by Y|N labels which are, then, propagated. The notions of soft and
hard authorizations define the precedence of DTD label over XML label and
viceversa. However, this subtlety can be captured by qualifiers of our proposal.
Next, the fully annotated schema/instance is pruned. The method considers the
XML view in “weak” form and the DTD view in “loosened” form, i.e., every
forbidden element has cardinality “optional”.

A similar policy enforcement mechanism is used in Author-X system [4]. The
differences with the previous approach are (i) the absolute precedence of DTD
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labels over XML labels, (ii) the presence of an additional option ONE LEVEL
of the HP (td), and (iii) the construction of an XML view without any N-labeled
nodes. However, the DTD view is not available for user.

In [14], the DTD/XML is annotated by mandatory (i.e., all instances of the
element in XML tree must specify their security level, DTD may specify a de-
fault value), optional (instances may specify their security level) and forbidden
(instance labeling is inherited or Y) labels. We treat this framework in the fol-
lowing way: mandatory (optional) specification is Y|N (∗, respectively) label
with local propagation, forbidden specification is a label defined via HP (td)
propagation, and the default policy is “open”. Like in [13], the approach mini-
mizes the need in policy evaluation during query answering by a special query
rewriting.

The method of Stoica et al. [7] takes as an input a fully annotated DTD from
which the DTD view is derived. There is no discussion of policy propagation and
conflict resolution in [7], thus we do not introduce this method in Table 2. In
addition, neither XML view nor query evaluation is considered.

The proposal of Fan et al. [8] has the similar notion of the initial DTD an-
notation as in this paper. However, the range of policies is restricted to the
top-down policy. Moreover, the paper does not consider XML view construction,
but discusses a safe query rewriting when the query over the DTD view is trans-
lated into the equivalent query over the initial DTD and the rewritten query is
evaluated over the initial XML data. Hence, policy evaluation is used for DTD
view construction instead of query answering. Furthermore, the safe rewriting
of queries excludes system answers “access denied” which are presented, for ex-
ample, in [6], [13], [14]. Thus, the information leakage is diminished.

As it may be seen from Table 3, our proposal comprises both the XML view
(not “weak”) and the DTD view (not “loosened”). Moreover, we use safe query
rewriting to eliminate denial of service. In addition, we provide an extended
range of policy classes (see Table 2). However, there are directions for future
work. First of all, we plan to investigate the compatibility of our proposal with
others. For example, one of the closest policy framework is that of Kudo et al. [6].
Hence, we plan to investigate whether XML security views can be integrated into
Provisional Authorization Architecture. Secondly, XML access control models
of [13], [5], [3], [4] showed a possibility of an individual policy configuration,
i.e. for every node. Next, in this paper, we have introduced a notion of gener-
ator, i.e., a DTD edge which, in essence, may by generalized to a path in an
undirected graph isomorphic to a given DTD graph. However, we leave this gen-
eralization for future work as well. Finally, an extended experimental evaluation
is required.
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Abstract. Attack graph is important in defending against well-orchestrated net-
work intrusions. However, the current analysis of attack graphs requires an al-
gorithm to be developed and implemented, causing a delay in the availability of
analysis. Such a delay is usually unacceptable because the needs for analyzing
attack graphs may change rapidly in defending against network intrusions. An
administrator may want to revise an analysis upon observing its outcome. Such
an interactive analysis, similar to that in decision support systems, is difficult if at
all possible with current approaches based on proprietary algorithms. This paper
removes the above limitation and enables interactive analysis of attack graphs.
We devise a relational model for representing necessary inputs including net-
work configuration and domain knowledge. We generate the attack graph from
those inputs as relational views. We then show that typical analyses of the attack
graph can be realized as relational queries against the views. Our approach elimi-
nates the needs for developing a proprietary algorithm for each different analysis,
because an analysis is now simply a relational query. The interactive analysis of
attack graphs is now possible, because relational queries can be dynamically con-
structed and revised at run time. Moreover, the mature optimization techniques in
relational databases can also improve the performance of the analysis.

1 Introduction

As the result of topological vulnerability analysis, an attack graph describes all possible
sequences of exploits an attacker can follow to advance an intrusion [16,18,1]. Attack
graphs have been explored for different purposes in defending against network intru-
sions. First, an attack graph can more clearly reveal the weakness of a network than
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individual vulnerability does by providing the context of attacks. Second, attack graphs
can indicate available options in removing identified weaknesses and help administra-
tors to choose an optimal solution. Third, the knowledge encoded in attack graphs can
also be used to correlate isolated alerts into probable attack scenarios.

However, many current approaches to the analysis of attack graphs share a com-
mon limitation. That is, a proprietary algorithm must be developed and implemented
before the corresponding analysis becomes possible. Standard graph-related algorithms
usually do not apply here due to unique characteristics of attack graphs. However, the
delay in the analysis of attack graphs is usually unacceptable for defending against net-
work intrusions. The needs for analyzing an attack graph usually change rapidly due to
constantly changing threats and network configurations. An administrator may need to
modify an analysis after the results of that analysis are observed. Such an interactive
analysis, similar to that in decision support systems, is difficult if at all possible with
current approaches based on proprietary algorithms.

In this paper, we provide a solution to the interactive analysis of attack graphs. First,
we represent in the relational model the necessary inputs including network configura-
tion and domain knowledge. We then generate the attack graph using relational queries,
which can either be materialized as relations or simply left as the definition of relational
views. The latter case is especially suitable for large networks where materializing the
complete attack graph can be prohibitive. Second, we show how typical analyses of
attack graphs can be realized as relational queries. The interactive analysis of attack
graphs is now possible, because administrators can immediately pose new queries based
on the outcome of previous analyses. Finally, as a side-benefit, the performance of an
analysis can usually be transparently improved by the mature optimization techniques
available in most relational databases.

The rest of this paper is organized as follows. The next section reviews related work.
Section 3 proposes a relational model for representing the attack graph. Section 4 then
discusses how typical analyses can be written as relational queries. Section 5 describes
our implementation of the proposed methods. Finally, Section 6 concludes the paper
and gives future direction.

2 Related Work

Attack graphs represent the knowledge about the inter-dependency between vulnerabil-
ities [6,21,14,4,13,16,19,17,1,18,8]. Model checking was first used to decide whether
a goal state is reachable from the initial state [16,15] and later used to enumerate all
possible sequences of attacks connecting the two states [18,9]. However, the number of
attack sequences is potentially exponential, leading to high complexity. A more com-
pact representation was thus proposed based on the monotonicity assumption (that is,
an attacker never relinquishes an obtained capability) [1]. The new representation keeps
exactly one vertex for each exploit or condition, leading to attack graphs of polynomial
size.

Analyses of attack graphs have been used for different purposes in defending against
network intrusions [18,9,12,11,20]. The minimal critical attack set analysis finds a
minimal subset of attacks whose removal prevents attackers from reaching the goal
state [18,9]. However, the attacks in a minimal critical attack set are not necessarily
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independent, and a consequence cannot be removed without removing its causes. This
observation leads to the minimum-cost hardening solution, which is a minimal set of
independent security conditions [12]. Finding the minimum set of attacks leading to
given goals is computationally infeasible, whereas a minimal set can be found in poly-
nomial time [18,9,1]. All attacks involved in at least one of such minimal sets of attacks
can also be enumerated [1]. Finally, in exploit-centric alert correlation [11,20], attack
graphs assist the correlation of isolated intrusion alerts.

The afore-mentioned analysis of attack graphs is largely based on proprietary algo-
rithms. However, as mentioned earlier, this may delay a new analysis and make inter-
active analysis impossible. To our best knowledge, our study is the first to remove this
limitation and to enable interactive analysis of attack graphs. On the other hand, deci-
sion support systems, such as on-line analytical processing (OLAP) [7], have been used
for interactive analysis of data for a long time. However, an analyst there is usually in-
terested in generalized data and statistical patterns, which is different from the analysis
of attack graphs.

3 A Relational Model for Representing Attack Graphs

Section 3.1 reviews the basic concept of attack graph. Section 3.2 then proposes a rela-
tional model for representing attack graphs as relational views.

3.1 Attack Graph

The attack graph is usually visualized as a directed graph having two type of vertices,
exploits and security conditions (or simply conditions). An exploit is a triple (hs, hd, v),
where hs and hd are two connected hosts and v is a vulnerability on the destination
host hd. A security condition is a pair (h, c) indicating the host h satisfies a condition
c relevant to security (both exploits and conditions may involve more hosts, for which
our model can be easily extended).

An attack graph has two types of edges denoting the inter-dependency between ex-
ploits and conditions. First, the require relation is a directed edge pointing from a con-
dition to an exploit. The edge means the exploit cannot be executed unless the condition
is satisfied. Second, the imply relation points from an exploit to a condition. This means
executing the exploit will satisfy the condition. Notice that there is no edge between
exploits (or conditions). Example 1 illustrates the concept of attack graph.

Example 1. The left-hand side of Figure 1 depicts our running example of attack graph.
The right-hand side shows a simplified version where x denotes the existence of a vul-
nerability SADMIND BUFFER OVERFLOW (Nessus ID 11841), y the user privilege,
and A the exploitation of that vulnerability. The attack graph shows an attacker having
user privilege on host 3 can exploit the vulnerability on hosts 1 and 2 and obtain user
privilege on the hosts.

Two important aspects of attack graphs are as follows. First, the require relation is
always conjunctive whereas the imply relation is always disjunctive. More specifically,
an exploit cannot be realized until all of its required conditions have been satisfied,
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Attack Graph (Exploits As Ovals) Simplified Version (Exploits As Triplets)
(h1,sadmind_service)

(h2,h1,sadmind_bof) (h3,h1,sadmind_bof)

(h3,user_priviledge)

(h3,h2,sadmind_bof)

(h2,sadmind_service)

(h1,h2,sadmind_bof)

(h1,user_priviledge)

(h2,user_priviledge)

 
(1, x) (3, y) (2, x) 

(3, 1, A) (3, 2, A) 

(1, y) (2, y) 

(2, 1, A) (1, 2, A) 

Fig. 1. An Example of Attack Graph

whereas a condition can be satisfied by any one of the realized exploits. Second, the
conditions are further classified as initial conditions (the conditions not implied by any
exploit) and intermediate conditions. An initial condition can be independently disabled
to harden a network, whereas an intermediate condition usually cannot be [12].

3.2 A Relational Model for Attack Graphs

The complete attack graph is not explicitly represented in our model, but left as the
result of a relational query. The result to the query may be materialized, or the query
can simply be left as a view. Such flexibility is important to large networks where ma-
terializing the complete attack graph may be prohibitive. We model two inputs, the
network configuration (vulnerabilities and connectivity of the network) and the domain
knowledge (the interdependency between exploits and conditions), as illustrated in Ex-
ample 2. The domain knowledge is available in tools like the Topological Vulnerability
Analysis (TVA) system, which covers more than 37,000 vulnerabilities taken from 24
information sources including X-Force, Bugtraq, CVE, CERT, Nessus, and Snort [8].
On the other hand, the configuration information including vulnerabilities and connec-
tivity can be easily obtained with tools such as the Nessus scanner [5].

Example 2. Figure 2 depicts the network configuration and domain knowledge required
for generating the attack graph in Example 1. The left-hand side shows the connectivity
between the three hosts, and initially hosts 1 and 2 satisfy the condition x and host 3
satisfies y. The right-hand side says that an attacker can exploit the vulnerability A on
the destination (denoted by the symbol D) host, if it satisfies x and the source host
satisfies y at the same time. This exploitation will then satisfy y on the destination host.

Definition 1 defines the schema of our model. The connectivity relation represents the
connectivity from each the source host Hs to the destination host Hd. The condition
relation indicates a host H having an initial condition C. The condition-vulnerability
dependency relation indicates a condition C is required for exploiting a vulnerability
V on the destination host. The attribute F indicates whether the condition C belongs
to the source (S) or the destination (D) host. The vulnerability-condition dependency
relation indicates a condition C is satisfied by exploiting a vulnerability V .
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1 2

3

x x 

y 
(x, D) (y, S) 

A 

y 

Network Configuration Domain Knowledge 

Fig. 2. An Example of Network Configuration and Domain Knowledge

The last three relations together with the condition relation are required for represent-
ing the complete attack graph (those relations may or may not need to be materialized).
The vertices are conditions (the relation HC) and exploits (the relation EX), and the
edges interconnect them are represented by relations CE and EC. Each relation has
a composite key composed of all the attributes in that relation. Example 3 shows the
relational model of Example 2.

Definition 1. Define the following relational schemata:

Connectivity HH = (Hs, Hd)
Condition HC = (H, C)
Condition-Vulnerability Dependency CV = (C, F, V )
Vulnerability-Condition Dependency V C = (V, C)
Exploit EX = (Hs, Hd, V )
Condition-Exploit CE = (H, C, Hs, Hd, V )
Exploit-Condition EC = (Hs, Hd, V, H, C)

Example 3. Table 1 describes a relational model composed of four relations, which
precisely represents Example 2.

Table 1. Representing Network Configuration and Domain Knowledge in Relational Model

hh(HH) hc(HC) cv(CV) vc(VC)
Hs Hd

1 2
2 1
3 1
3 2

H C

3 y
1 x
2 x

C F V

x D A
y S A

V C

A y

4 Analyzing Attack Graphs with Relational Queries

We first show how the complete attack graph can be generated using relational queries
based on our model in Section 4.1. We then realize typical analyses of attack graphs as
relational queries in Section 4.2.
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4.1 Generating Attack Graphs Using Relational Queries

We regard the generation of the complete attack graph from given network configuration
and domain knowledge as a special analysis, and we show how to conduct this analysis
using relational queries. First, Example 4 illustrates a generation procedure similar to
that in [1].

Example 4. Given the network configuration and domain knowledge in Example 2,
the attack graph in Figure 1 can be generated by an iterative procedure as follows.
Initially, the attack graph only includes the three initial conditions (1, x), (3, y), (2, x)
as vertices. First, domain knowledge implies that the conditions (1, x) and (3, y) jointly
imply the exploit (3, 1, A), and (2, x) and (3, y) jointly imply (3, 2, A). Second, the
two conditions (1, y) and (2, y) are satisfied. Next, we repeat the above two steps with
the two new conditions and insert four more edges between (1, y), (2, y) and the two
exploits. The process then terminates because no new conditions are inserted in the
second iteration.

The key challenge in realizing the above procedure using relational queries lies in the
conjunctive nature of the require relation. More specifically, an exploit cannot be real-
ized unless all the required conditions are satisfied. In contrast, the imply relation can
be easily realized using a join operation, since a condition can be satisfied by any one of
the realized exploits. We deal with this issue with two set-difference operations as fol-
lows (similar to the division operation in relational algebra). Intuitively, we first subtract
(that is, set difference) the satisfied conditions from the conditions required by all possi-
ble exploits. The result includes all the unsatisfied but required conditions, from which
we can derive the exploits that cannot be realized. Then we subtract the unrealizable
exploits from all possible exploits to derive those that can indeed be realized.

Definition 2 states the relational queries corresponding to each iteration of the pro-
cedure illustrated in Example 4. In the definition, Q1 and Q2 are intermediate results
(we shall use subscripts in numbers to denote intermediate results) of satisfied and un-
satisfied conditions up to this iteration, respectively. The vertices of the attack graph
are Qe and Qc, which are realized exploits and satisfied conditions, respectively. The
fourth and fifth relation jointly compose the edge set. The set union operations do not
keep duplicates, and hence this process always terminates. Example 5 illustrates those
queries.

Definition 2. Given hh(HH), hc(HC), cv(CV ), and vc(V C), let Qc = hc, and let
Qe(EX), Qce(CE), Qec(EC) be empty relations, define queries

– Q1 = σHs=H∨Hd=H(hh × ΠV (vc) × hc)
– Q2 = ΠHs,Hd,V,Hd,C(hh × σF=D(cv)) ∪ ΠHs,Hd,V,Hs,C(hh × σF=S(cv)) − Q1

– Qe = (ΠHs,Hd,V (hh × cv) − ΠHs,Hd,V (Q2)) ∪ Qe

– Qce = ΠHd,C,Hs,Hd,V (Qe × σF=D(cv)) ∪ ΠHs,C,Hs,Hd,V (Qe × σF=S(cv)) ∪ Qce

– Qec = ΠHs,Hd,V,Hd,C(σQe.V =vc.V (Qe × vc)) ∪ Qec

– Qc = ΠH,C(Qec) ∪ Qc

Example 5. Table 2 shows the result to each query in the first iteration in generating
the attack graph of Example 1. The relation Q1 are the satisfied conditions and their
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Table 2. An Example of One Iteration in Deriving the Complete Attack Graph

Q1 Q2 Qe

Hs Hd V H C

1 2 A 1 x
1 2 A 2 x
2 1 A 1 x
2 1 A 2 x
3 1 A 1 x
3 1 A 3 y
3 2 A 2 x
3 2 A 3 y

Hs Hd V H C

1 2 A 1 y
2 1 A 2 y

Hs Hd V

3 1 A
3 2 A

Qce Qec Qc

H C Hs Hd V

1 x 3 1 A
2 x 3 2 A
3 y 3 1 A
3 y 3 2 A

Hs Hd V H C

3 1 A 1 y
3 2 A 2 y

H C

1 y
2 y

related (but not necessarily realizable) vulnerabilities. Subtracting those from the con-
ditions required by all possible exploits yields the two unsatisfied conditions and the
unrealizable exploits in Q2. Then, subtracting the unrealizable exploits from all pos-
sible exploits gives the two realizable exploits in Qe. The exploits then imply the two
conditions in Qc. The edges in Qce and Qec interconnect the conditions and exploits.

4.2 Typical Analyses of Attack Graphs in Relational Queries

We now turn to typical analyses of attack graphs previously studied in the literature. We
show how to rewrite those analyses as relational queries based on our model. In the fol-
lowing discussion, our queries are against the relations (or views) given by Definition 2.

Vulnerability-Centric Alert Correlation and Prediction. The alert correlation method
first maps a currently received intrusion alert to the corresponding exploit. Then, it
reasons about previous exploits (alerts) that prepare for the current one and possible
exploits in the future [20]. The key difference between this analysis and the one used to
generate the attack graph is that the conjunctive nature of the require relation should be
ignored here. The relationship between alerts is usually regarded as casual instead of
logical [10,3]. Such a conservative approach is more appropriate in this context because
alerts may have been missed by intrusion detection systems.

Example 6. In Figure 1, suppose the current alert maps to the exploit (2, 1, A). The
backward search will first reach conditions (1, x) and (2, y) and then follows (2, y) to
(3, 2, A) and (1, 2, A) to find a previous correlated alert if there is any, or to make a
hypothesis for a missing alert, otherwise. The search continues from (1, 2, A) to (1, y)
and (2, x), then from (1, y) to (3, 1, A) (the branch to (2, 1, A) is a loop and hence
ignored) and consequently to (1, x) and (3, y). The search stops when it reaches only
initial conditions or if a loop is encountered.
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Definition 3 states the relational queries corresponding to the backward search in Exam-
ple 6. The forward search can be realized in a similar way and hence is omitted. First,
the relation Q3 includes the conditions reachable from the current exploits while ig-
noring the conjunctive relationship between those conditions. Second, subtracting from
Q3 the initial conditions in hc and the previously visited conditions in Q5 (to avoid
loops) yields the reachable conditions and consequently the exploits in Q4. The above
two steps are repeated until no more conditions are left (that is, all the conditions are in
hc or in Q5). The exploits encountered in this process are collected in QA as the final
result. Loops are avoided in this process because the set union operation does not keep
duplicates and the relation Q5 ensures each condition to be visited at most once.

Definition 3. Given hh(HH), hc(HC), cv(CV ), vc(V C), and (hs, hd, V ), let
Q3(HC), Q5, and QA be empty relations and Q4(EX) = {(hs, hd, V )}. Define

– Q3 = Πhd,C(Q4 � σF=D(cv)) ∪ Πhs,C(Q4 � σF=S(cv))
– Q4 = ΠHs,Hd,V (σHd=H∧Q3.C=vc.C(hh × (Q3 − hc − Q5) × vc))
– Q5 = Q5 ∪ Q3

– QA = QA ∪ Q4

Example 7. Table 3 shows the three iterations corresponding to the backward search
in Example 6. The first iteration starts from the given exploit (2, 1, A) and reaches
two exploits (1, 2, A) and (3, 2, A) through the condition (2, y). The second iteration
reaches (3, 1, A) and (2, 1, A) through (1, y). The exploit (2, 1, A) leads to two pre-
viously visited conditions (that is, a loop) and the other exploit (3, 1, A) reaches only
initial conditions. Consequently, no new exploit appears in Q4 in this iteration and the
search terminates.

Enumerating Relevant Attacks and Network Hardening. Enumerating the relevant ex-
ploits (those appears in at least one sequence of attacks leading to the goal condi-
tions [1]) and finding a network hardening solution (given goal conditions represented
as a logic formula of initial conditions [12]) share a similar backward search in the
attack graph, as illustrated in Example 8 and Example 9, respectively.

Example 8. In Figure 1, we start from a given goal condition (1, y) and search back-
wards in the attack graph. First, the two exploits (3, 1, A) and (2, 1, A) are reached.
The former branch ends at initial conditions, and the latter leads to one initial condition
(1, x) and an intermediate condition (2, y). The condition (2, y) then leads to (3, 2, A)
and (1, 2, A). The former ends at initial conditions, and the latter leads to a loop back to
(1, y). The relevant exploits with respect to the goal condition (1, y) are thus (2, 1, A),
(3, 1, A), and (3, 2, A) (the exploit (1, 2, A) is not relevant because it can never be re-
alized before satisfying the goal (1, y) itself).

Example 9. With a similar search, we can transform the goal condition (1, y) into a
logic formula of initial conditions as follows (by regarding the exploits and conditions
as Boolean variables). In the fourth line, the value FALSE replaces the second appear-
ance of the goal condition (1, y), because it is a predecessor of (1, 2, A), indicating a
loop. The final result says that if any of the two conditions (1, x) and (3, y) is disabled,
then the goal can no longer be satisfied.
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Table 3. An Example of Analyzing Attack Graphs for Alert Correlation and Prediction

First Iteration Q3 Q4 Q5 QA

H C

1 x
2 y

Hs Hd V

1 2 A
3 2 A

H C

1 x
2 y

Hs Hd V

1 2 A
3 2 A

Second Iteration Q3 Q4 Q5 QA

H C

1 y
2 x
3 y

Hs Hd V

3 1 A
2 1 A

H C

1 x
2 y
1 y
2 x
3 y

Hs Hd V

1 2 A
3 2 A
3 1 A
2 1 A

Third Iteration Q3 Q4 = φ Q5 QA

H C

1 x
3 y
2 y

H C

1 x
2 y
1 y
2 x
3 y

Hs Hd V

1 2 A
3 2 A
3 1 A
2 1 A

(1, y) ≡ (3, 1, A) ∨ (2, 1, A)
≡ (1, x) ∧ (3, y) ∨ (1, x) ∧ (2, y)
≡ (1, x) ∧ (3, y) ∨ (1, x) ∧ ((3, 2, A) ∨ (1, 2, A))
≡ (1, x) ∧ (3, y) ∨ (1, x) ∧ ((3, y) ∧ (2, x) ∨ (2, x) ∧ FALSE)
≡ (1, x) ∧ (3, y)

The key differences between the above backward search and that used for correlat-
ing alerts are as follows. First, the conjunctive nature of the require relation must be
considered. In Example 8, the exploit (1, 2, A) is not relevant, because one of its re-
quired conditions (1, y) is not satisfiable, even though the other required condition (that
is, (2, x)) is already satisfied. Second, duplicate appearances of exploits and conditions
must be kept. This is required for obtaining sequences of relevant exploits leading to
the goal, as well as for generating the logic formula in network hardening. In the former
case, different sequences may share common exploits or conditions, whereas the logic
formula in the second case clearly contains duplicates. In order for the search to traverse
an exploit or condition for multiple times, the set union operation needs to keep dupli-
cates. Hence, loops must be avoided by maintaining a predecessor list for each vertex
as in standard breadth-first search (BFS) [2] (although the search discussed above is
different from a BFS).

Definition 4 states the relational queries used to enumerate relevant exploits or to
generate the logic formula in network hardening. The two queries simply traverse the
attack graph given by Definition 2. The two relations in the definition keep dupli-
cates in set union operations. Notice that the actual construction of the logic formula
(adding the and and or connectives) is external to the relational queries and can easily
be incorporated.
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Definition 4. Given relations hh(HH), hc(HC), cv(CV ), vc(V C) and a non-empty
relation Q7(HC), let Q6(EX) be an empty relation. Define

– Q6 = ΠHs,Hd,V ((Q7 − hc) � Qec)
– Q7 = ΠH,C(Q6 � Qce)

Example 10. Table 4 shows the iterations corresponding to the procedure in Example 8
and Example 9. Originally, Q7 = {(1, y)}.

Table 4. An Example of Enumerating Relevant Exploits and Network Hardenning

First Iteration Q6 Q7

Hs Hd V

3 1 A
2 1 A

H C

1 x
2 y
1 x
3 y

Second Iteration Q6 Q7

Hs Hd V

3 2 A

H C

3 y
2 x

Reachability From Subsets of Initial Conditions and Incremental Updates of Attack
Graphs. Many analyses ask a similar question, that is whether the goal condition is
still satisfiable, if a given subset of initial conditions are disabled. The question may
arise when we need to determine the potential effect of enforcing a security measure (so
some initial conditions will be disabled), or when we want to decide whether the goal
condition is reachable with only stealthy attacks [18]. The question may also be asked
simply because the network configuration has changed and some initial conditions are
no longer satisfied (on the other hand, new initial conditions can be easily handled with
more iterations of the queries in Definition 2.) In each case, we can certainly recompute
the attack graph from scratches, with the given conditions removed from the relation
hc. However, this is not desired especially when the attack graph is much larger than
the set of conditions to be disabled. Instead, we should incrementally update the attack
graph by computing the effect of disabling the given conditions. The conjunctive nature
of the require relation must be taken into accounts, but in a different way, as illustrated
in Example 11.

Example 11. In Figure 1, suppose the condition (2, x) is disabled. Then the exploits
(1, 2, A) and (3, 2, A) can no longer be realized. Then the condition (2, y) becomes
unsatisfiable, because it can only be implied by the above two exploits. Finally, the
exploit (2, 1, A) cannot not longer be realized. However, the condition (1, y) is still
satisfiable, due to another exploit (3, 1, A).

Example 11 shows that such a negative analysis is quite different from the previous
ones. The previous searches are all unidirectional in the sense that the edges are only
followed in one direction (either forwards or backwards). However, the above analysis
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follows edges in both directions. For example, after the forward search reaches the con-
dition (1, y) from the exploit (2, 1, A), it must go back to see whether other exploits
also imply the condition (1, y) (in this case, the exploit (3, 1, A) does so). Definition 5
states the relational queries for this purpose. The first query simply derives unrealizable
exploits from unsatisfied conditions. The next three queries use two set difference op-
erations to derive the unsatisfied conditions while taking into accounts the conjunctive
nature of the require relation. Finally, the results are collected.

Definition 5. Given relations hh(HH), hc(HC), cv(CV ), vc(V C) and a non-empty
relation Q11(HC) as a subset of hc, let Q8(EX), Q9(EC), Q10(EC), Qe, and Qc be
empty relations. Define

– Q8 = ΠHs,Hd,V (Q11 � Qce))
– Q9 = Q8 � Qec

– Q10 = Qec � ΠH,C(Q9) − Q9

– Q11 = ΠH,C(Q9) − ΠH,C(Q10)
– Qe = Qe ∪ Q8

– Qc = Qc ∪ Q11

Example 12. Table 5 shows the iterations corresponding to the procedure in Exam-
ple 11. Originally, Q11 = {(2, x)}.

Table 5. An Example of Incremental Updates

First Iteration Q8 Q9 Q10 = φ Q11

Hs Hd V

3 2 A
1 2 A

Hs Hd V H C

3 2 A 2 y
1 2 A 2 y

H C

2 y

Second Iteration Q8 Q9 Q10 Q11 = φ

Hs Hd V

2 1 A

Hs Hd V H C

2 1 A 1 y

Hs Hd V H C

3 1 A 1 y

5 Empirical Results

As proof of concept, we have implemented the analyses discussed in the previous sec-
tion. The queries are written in PL/SQL. The queries are tested in Oracle 9i in its default
settings on a Pentium IV 2GHz PC with 512MB RAM. In our preliminary experiments,
we test the queries against the attack scenario originally studied in [18,1] 1. The results
of the analyses match those in the previous work, which justifies the correctness of our
techniques. Next we test the performance of our techniques. We have two main objec-
tives. First, we want to determine whether the running time of the queries is practical
for interactive analysis. For most decision support systems, the typical delay to a query

1 Our ongoing work will compare the performance of our approach with that of the proprietary
algorithms proposed before.
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that is considered as tolerable in interactive analyses is usually in a matter of seconds.
Such a short delay is also critical to the analysis of attack graphs, especially when the
analysis is used for real-time detection and prevention of intrusions.

Second, we want to determine whether the techniques scale well in the size of attack
graphs. Although the attack graph may be very large for a large network, an analysis
and its result usually only involves a small part of the attack graph. The running time
of an analysis thus depend on how efficiently an analysis searches the attack graph.
We expect the mature optimization techniques available in most databases can transpar-
ently improve the performance and make the analyses more scalable. To test the queries
against large attack graphs in a manageable way, we increase the number of vertices
in the original attack graph by randomly inserting new hosts with random connectivity
and vulnerabilities. We then execute the same set of analyses in the new network and
measure the running time of each analysis. The main results are shown in Figure 3. All
the results have 95% confidence intervals within about 5% of the reported values.

The left-hand side shows the running time of generating the attack graph in the size
of that attack graph. The attack graph with about 20,000 vertices can be generated in
less than seven minutes. The result also shows that our methods scale well in the size of
attack graphs. The right-hand side shows the running time of each analysis in the size of
the attack graph. The result shows that all the analyses require less than a second, which
clearly meets the requirement of an interactive analysis. The analyses all scale well with
the size of the attack graph. This proves our conjecture that the optimization techniques
in databases such as indexing can transparently help to keep analyses efficient. A closer
look at the result reveals that the increase in running time is mainly caused by larger
results. This also explains the fact that the incremental update analysis scales differently
from the other two (the effect of disabled initial conditions does not change much when
the size of the attack graph increases).
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Fig. 3. The Performance of Analyzing Attack Graphs Using Relational Queries

6 Conclusion

We have proposed a relational model to enable interactive analysis of attack graphs for
intrusion detection and prevention. We have shown that the complete attack graph can
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be generated as relational views. Any analysis of the attack graph are thus relational
queries against such views. We have shown how to write relational queries for typical
analyses previously studied in the literature. This approach made the analysis of attack
graphs an interactive process similar to that in the decision support systems. As a side
effect, the mature optimization techniques existing in most relational databases also
improved the performance of the analysis.

Acknowledgements. The authors are grateful to the anonymous reviewers for their
valuable comments.
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Abstract. We propose a notarized federated identity management
model that supports efficient user authentication when providers are un-
known to each other. Our model introduces a notary service, owned by
a trusted third-party, to dynamically notarize assertions generated by
identity providers. An additional feature of our model is the avoidance of
direct communications between identity providers and service providers,
which provides improved privacy protection for users. We present an ef-
ficient implementation of our notarized federated identity management
model based on the Secure Transaction Management System (STMS).
We also give a practical solution for mitigating aspects of the identity
theft problem and discuss its use in our notarized federated identity
management model. The unique feature of our cryptographic solution is
that it enables one to proactively prevent the leaking of secret identity
information.

1 Introduction

Digital identity management is becoming an integral part of our lives, as con-
sumers and businesses rely more and more on online transactions for daily tasks,
such as banking, shopping, and bill payment. These transactions crucially de-
pend on networked computer systems to communicate sensitive identity data
across personal, company, and enterprise boundaries.

Unfortunately, the overuse of personal information in online transactions
opens the door to identity theft, which poses a serious threat to personal finances
and credit ratings of users and creates liabilities for corporations. Moreover, the
increasing dangers of identity theft are negatively affecting people’s collective
confidence on the digital world for online financial transactions [10]. Thus, effec-
tive solutions for managing digital identity on both the individual and enterprise
levels are urgently needed.
� This work was supported in part by the National Science Foundation under grants

IIS–0324846, CCF–0311510 and CNS–0303577, and by IAM Technology, Inc. The
work of the first author was done primarily as a consultant to Brown University.

E. Damiani and P. Liu (Eds.): Data and Applications Security 2006, LNCS 4127, pp. 133–147, 2006.
c© IFIP International Federation for Information Processing 2006



134 M.T. Goodrich, R. Tamassia, and D. Yao

Additionally, end users are challenged with increasing numbers of websites
that require access control and authentication. Studies show that users resort to
using weak passwords or writing them down to alleviate the burden of memoriz-
ing multiple passwords. One well-known identity management solution that deals
with this issue is the single sign-on (SSO) technique, which requires the user to
authenticate only once to a website, and then automatically authenticates the
user to other websites from then on, within a session.

The approach based on cryptographic-enabled assertions is embodied by the
Security Assertion Markup Language (SAML) [7]. SAML 2.0 is generally believed
to support general cross-domain authentication and SAML is quickly becoming
the de-facto means for exchanging user credentials between trusted environ-
ments. The identity federation architecture of Liberty Alliance is compliant with
the SAML 2.0 standard [14]. Indeed, SAML is specifically designed to support
cross domain single sign-on, which is illustrated in the following example.

A user has a secure logon session to a website, (e.g., Airline.com), and is
accessing resources on that site. Airline.com serves as the identity provider site.
At some point in the session, the user is directed to another web site in a different
DNS domain for a related service, and this outside domain is called the service
provider site (e.g., CarRental.com). The identity provider (Airline.com) asserts
to the service provider (CarRental.com) that the user is known to the identity
provider and gives to the service provide the user’s name and session attributes
(e.g., Gold member). Since the service provider trusts the assertions generated by
the identity provider, it creates a session for the user based on the information
received. The user is not required to authenticate again when directed to the
service provider site. Hence, single sign-on is achieved.

The identity provider (IdP) in SAML [7] is defined as the system, or admin-
istrative domain, that asserts information about a subject. An identity provider
asserts that a user has been authenticated and has certain attributes. The ser-
vice provider (SP) is defined as the system, or administrative domain, that relies
on the information supplied to it by the identity provider.

1.1 Motivation for Notarized ID Federation

In existing federated identity management systems that support SAML, such
as the Liberty Identity Federation Framework (ID-FF ) [8] and WS-Federation
[24], it is up to the service provider to decide whether it trusts the assertions
provided to it. Service providers in SAML are also known as relying parties due
to the fact that they rely on the information provided by an identity provider.
This reliance implies that websites of different administrative domains need to
trust each other’s access control verdicts on end users. In fact, SAML single
sign-on relies on the concept of identity federation in order for it to work at all.
An identity federation is said to exist between an identity provider and a service
provider, when the service provider accepts assertions regarding a user from the
identity provider [7].

In fact, most existing SSO solutions assume preexisting trust relationship
among providers and do not provide concrete mechanisms for the trust establish-
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ment between providers. The WS-Federation specification [24] discusses several
trust relationships between identity providers and service providers, including
directed trust, indirected brokered trust, and chained trust. However, details
on how the trust relationships and identity brokers can be instantiated are not
given. This limitation hinders the wide deployment of SSO in web-service envi-
ronments, because providers may be unknown to each other. Therefore, flexible,
reliable, and secure trust establishment mechanisms need to be provided for
federated identity management.

1.2 Our Contributions

1. We propose a notarized federated identity management model that sup-
ports automatic user authentications when the providers are unknown to
each other. Our model introduces a notary server, which is owned by a
trusted third-party to dynamically notarize assertions generated by identity
providers. As an extra feature provided by the notary server, our feder-
ated identity management model reduces possible collusions between iden-
tity providers and service providers, and gives improved privacy protections
for users.

2. We describe an efficient implementation of the federated identity manage-
ment protocol with the existing Secure Transaction Management System
(STMS ) [1,11]. The notary server caches the assertions at a collection of re-
sponders deployed in the network. Even when the responders are located in
insecure, untrusted locations, a service provider can easily identify a forged
or tampered assertion so that the integrity of an assertions is maintained.
Our protocol is a concrete solution for a trust broker model proposed
by existing federated identity management systems [24]. Besides broker-
ing trust, our solution offers additional features. Accountability is sup-
ported by archiving signatures on requests and assertions. User privacy is
achieved by encrypting assertions stored by the notary server. Verification
efficiency is achieved by using the authenticated-dictionary technique (see,
e.g., [1,11,18,21]) implemented in STMS.

3. We also give a practical solution for mitigating aspects of the identity theft
problem, and discuss how it is used in our federated identity management
protocol. Our cryptographic solution is based on the Identity-Based Encryp-
tion (IBE) scheme [4]. The main feature of our cryptographic solution is
that it enables one to proactively prevent the leaking of secret identity in-
formation.

Organization of the paper. Our model for notarized federated identity man-
agement is described in Section 2. The STMS implementation of the notarized
federated identity management protocol is presented in Section 3. In Section 4,
we give an IBE-based authentication protocol. The security of the federated
identity management protocol and the IBE-based authentication protocol is an-
alyzed in Section 5. Related work is given in Section 6.
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2 Notarized Federated Identity Management

Our notarized federated identity management model introduces a notary server,
a trusted third-party that dynamically maintains assertions generated by iden-
tity providers. Assertions are generated by identity providers and stored by the
notary server. When a service provider needs to verify an assertion, it queries
the notary server for a notarized assertion that shows the trustworthiness of the
identity provider generating the assertion.

2.1 Notary Server and Notarized Assertion

In a notarized ID federation, a notary server is trusted by both identity providers
and service providers. Identity providers that have good internet behavior and
reputation are allowed to register with the notary server, and thus are trusted.
The notary server stores the assertions generated by registered identity providers.
A notary server supports two operations, Submit and Query.

– Submit(id, Sid, sig): a registered identity provider IdP authenticates itself to
the notary server, and submits via a secure channel the tuple (id, assertion,
signature), denoted by (id, Sid, sig), to the notary server. The assertion Sid
states the attributes of an identity id, and the signature sig is signed by IdP
on the assertion Sid. The notary server stores the tuple.

– Query(id): a service provider SP queries in a public (insecure) channel the
notary server for assertions associated with identity id, and the notary server
returns the notarized assertion(s).

A notarized assertion has a proof showing that the assertion is indeed stored
by the notary server, which implies that the identity provider that generates the
assertion is trustworthy. The reason for not using a secure channel in Query is
for higher efficiency and scalability in a distributed environment. The challenge,
thus, becomes how to efficiently generate and verify the notarized assertion,
even when it is transmitted in a insecure channel. Our solution is based on
the authenticated dictionary technique [1,11,18,21], which is more scalable than
using a signature scheme.

The notary server provides the assurance of the trustworthiness of assertions
when identity providers are unknown to the service providers. The notary server
is a bridge of trust between providers in web-service transactions. Another ad-
vantage of storing assertions on the notary server is the prevention of direct
contact between identity providers and service providers. A notarized assertion
does not contain the name of the identity provider. This further increases the
difficulty of collusions among providers to discover private user information.

We assume that the notary server is trustworthy, and is trusted by all entities
(users, identity providers, service providers). The security properties of our no-
tarized federated identity management protocol are summarized below and are
analyzed in Section 5.

– Security is defined as that no polynomial-time adversary can forge a nota-
rized assertion that can be accepted by a service provider.
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– Secrecy is defined intuitively as that the protocol does not leak any infor-
mation about a notarized assertion to a (polynomial-time) adversary. This
property provides privacy protection to the users.

– Accountability is defined as that identity providers should be held account-
able for the assertions generated, and for any unauthorized information dis-
closure about the users.

Note that the notary server only certifies that the source of an assertion is
trustworthy; it is not required to examine and certify the content of an assertion.
In fact, our protocol, which is described next, deliberately avoids disclosing as-
sertion contents to the notary server by encrypting the assertions. This feature
is for the purpose of user privacy, and prevents the notary server from gaining
knowledge of private user information.

2.2 Protocol

In this section, we present the protocol for our notarized federated identity man-
agement model. The following entities participate in the protocol: a user, an
identity provider, a service provider, and a notary server. The protocol gives an
instantiation of operations Submit and Query. Note that the roles of identity
provider and service provider are interchangeable. For example, a bank can be
the identity provider in one scenario and the service provider in another scenario.

User

Identity
Provider

Service
Provider Notary

Server

3. Authenticates
4. Submits signed

Session_ID , required
attr. names

1. Requests for service

5. Submits signed
blinded assertion ,

and its index

6. Queries for
the index

7. Returns notarized
blinded assertion

9. Unblinds
and verifies

2. Session_ID ,
required attr. names

8. Notarized  blinded assertion

Fig. 1. Overview of the notarized federated identity management protocol

We assumes that the notary server knows the public keys of registered identity
providers. In addition, the public key of the notary server is known by all of the
providers. A schematic drawing of the protocol is shown in Figure 1.

In the protocol, the user only needs to authenticate once to an identity
provider. Subsequent requests for service from multiple service providers do not
require the user for authentication. Nevertheless, for protecting personal privacy,
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the user is given the ability to examine the contents of assertions to be given
to the service providers in our protocol. If the assertions are generated by the
identity provider according to the user’s request, then they are passed on to the
service providers. We argue that having the user involved in the identity man-
agement protocol for privacy purpose is a feasible solution. This concept was
also proposed by other federated identity management solution [2]. The process
can be automated to minimize the user’s manual participation.

Public parameters include a collision-resistant one-way hash function, H , that
takes a binary string of arbitrary length and hashes to a binary string of fixed
length k: H : {0, 1}∗ → {0, 1}k. For the blinding purpose, the public parameters
also include two public strings P1 and P2. Providers also agree on a symmetric-
key encryption scheme for blinding and unblinding assertions. The encryption
and decryption of a message x with a secret key K are denoted as EK(x) and
DK(x), respectively. Our protocol is described as follows.

1. The user requests services from a service provider SP. SP requires attribute
information of the user needed to complete the service.

2. SP opens a secure communication channel with the user. The user and SP
each generate a random integer of the same length. They first exchange
the cryptographic hashes of these integers as commitments using the secure
channel, and then they exchange the integers using the secure channel. The
session ID N is finally computed as the XOR of the two integers. SP also
informs the user of the attribute names that are needed for the service (e.g.,
billing address and age).

3. The user authenticates to her identity provider IdP. If the authentication is
successful, the user opens a secure channel with IdP, and transmits a signed
request that contains the session ID and the required attribute names.

4. IdP verifies and stores the signed request by the user. The signature is for
the accountability purpose in case of dispute (see Section 5).

5. IdP then computes the index of the assertion as the hash of session ID con-
catenated with the public parameter P1: h = H (N, P1). It then generates an
assertion Sh about the user using index h. For example, Sh states that h is
a university student.

6. To prevent information leaking, IdP blinds the assertion as follows.
(a) IdP computes the blinding factor K as the hash of the session ID con-

catenated with the public parameter P2: K = H (N, P2).
(b) IdP encrypts Sh with the symmetric encryption scheme, using K as the

secret key. This gives the blinded assertion S′
h = EK(Sh).

The blinded assertion S′
h is signed by IdP with its private key, which gives

a signature sigh.
7. IdP runs Submit(h, S′

h, sigh) with the notary server to submit tuple
(h, S′

h, sigh) through a secure channel as follows.
(a) IdP first authenticates to the notary server to establish a secure commu-

nication channel.
(b) IdP then transmits tuple (h, S′

h, sigh) to the notary server.
(c) The notary server verifies signature sigh, and stores (S′

h, sigh) indexed
by h. The signature is stored for accountability purposes.
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8. The user computes the index h = H (N, P1) from N and P1, and runs
Query(h) to obtain the assertion for h. The notary server processes the
query as follows.
(a) The blinded assertion S′

h associated with index h is retrieved.
(b) The notary server notarizes the assertion S′

h, and returns the notarized
assertion. We describe two approaches for the realization of notarized as-
sertion in the following sections. Note that the Query operation between
the user and the notary server does not require a secure channel.

9. Once the user obtains the returned notarized blinded assertion, she unblinds
it with the blinding factor K = H (N, P2). This is done by decrypting S′

h

with K, which gives Sh = DK(S′
h). The user verifies that the assertion does

not release any unauthorized personal information about her.
10. The notarized blinded assertion is then relayed from the user to the service

provider, who verifies that it is notarized by the notary server. This implies
that the identity provider IdP is trusted by the notary server. If the verifi-
cation succeeds, the assertion S′

h is unblinded in the same way as in Step 9.
The attribute information is obtained from the assertion, and index h is
compared with the hash H (N, P1) of session ID N and P1. The user is then
granted the service if the verification passes. The service provider also stores
the notarized assertion for accountability purposes.

The computation of blinding factor K and index h is equivalent to using two
different hash functions on the session ID N , i.e., h = H 1(N) and K = H 2(N),
where H 1 and H 2 are collision-resistant one-way hash functions.

3 Realization of Notarized Assertions

Notarized assertions can be realized using simple time-stamped signatures. The
notary server individually signs every assertion and the current time-stamp with
its private key. The notarized assertion consists of this signature along with the
assertion and time-stamp. To verify a notarized assertion, the service provider
verifies the signature against the public key of the notary server, which can be
obtained through usual means such as a public key certificate.

In the above approach, notarizing assertions can be a performance bottleneck
because the notary server needs to sign every individual assertion. To improve
the efficiency of the notary server, we give an improved realization of notarized
assertions using the secure transaction management system (STMS).

The main advantage of implementing notary assertions with STMS in com-
parison to the simple time-stamped signature approach is its high efficiency of
computation. The notary server only needs to generate one signature as opposed
to a signature for each assertion. In addition, STMS also provides a distributed
architecture for fast real-time dissemination of assertion updates. STMS has
been previously used to build an accredited domainkeys framework for secure
e-mail systems [12]. Next, we first introduce the components and algorithms of
STMS, then we describe how to use STMS to scale up the notary service.
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3.1 Secure Transaction Management System (STMS)

The computational abstraction underlying STMS is a data structure called an
authenticated dictionary (see, e.g., [1,11,17,18,21,22]), which is a system for pub-
lishing data and supporting authenticated responses to queries about the data.
In an authenticated dictionary, the data originates at a secure central site, called
STMS source and is distributed to servers scattered across the network, called
STMS responders. The responders answer queries on behalf of the source about
the data made by clients. It is desirable to delegate query answering to the
responders for two reasons: (1) the source is subject to risks such as denial-
of-service attacks if it provides services directly on the network, and (2) the
large volume and diverse geographic origination of the queries require distributed
servers to provide responses efficiently.

The STMS source sends real-time updates to the responders together with
a special signed time-stamped fingerprint of the database called the basis. A
user’s query to the responder asks whether an element is contained in the au-
thenticated dictionary maintained by STMS source. A responder replies to the
query with an authenticated response. This consists of the answer to the query,
the proof of the answer, the basis and its signature signed by the STMS source.
Informally speaking, the proof is a partial fingerprint of the database that, com-
bined with the subject of the query, should yield the fingerprint of the entire
database. A proof consists of a very small amount of data (less than 300 bytes
for most applications) and can be validated quickly against the signed basis by a
client. We refer readers to the authenticated dictionary literature [1,11] for more
information.

3.2 Realization of Notarized Assertions with STMS

Using STMS, the notary server consists of a notary source and several notary
responders. The notary source needs to be a trusted server that stores assertion
inputs from identity providers. Notary responders can be strategically placed
in geographically dispersed locations to accommodate fast queries. They obtain
real-time updates from the notary source, and answer queries from users. Notary
responders do not need to be trusted servers. The notarized assertions returned
by them can be authenticated by verifying against the public key of the notary
source by anyone.

With STMS, a notarized assertion returned by Query operation consists
of two parts: assertion itself and a STMS proof. As described in the previous
section, the proof is a sequence of hash values of elements in the notary server
for proving the existence of the assertion. The size of the proof is quite compact,
even for large number of items in the notary server. Therefore, transmitting the
proof can be quite fast. The service provider then obtains the signed STMS basis
of the current time quantum from the notary responder, if it does not yet have
it. The proof of the assertion is verified against the basis, and the signature of
the basis is verified against the public key of the notary source. If the verification
is successful, the request is granted. The signed basis remains the same for the
duration of a time quantum, therefore it only needs to be obtained once for each
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time quantum. The rest of the notarized federated identity management protocol
with STMS follows the protocol in Section 2.2.

Due to page limit, the protocol and security of STMS implemented notarized
federated identity management are not presented. The security is based on the
security of STMS, which has been previously proved [1].

4 Reducing the Risks of Identity Theft

Recently, several practical solutions against on-line identity theft have been pro-
posed [2,16]. In this section, we first analyze causes of a successful identity theft.
Then, we give a practical solution, and describe how to use our scheme in our
notarized federated identity management protocol.

4.1 Identity Theft and Its Causes

Identity theft is a type of crime in which an imposter obtains key pieces of
personal information, such as Social Security or driver’s license numbers, in
order to impersonate someone else. Although an identity thief might crack into
a database to obtain personal information, it is believed that a thief is more
likely to obtain information using Trojans or even old-fashion methods such as
dumpster diving and shoulder surfing.

We observe that the current authentication protocols, both physical and dig-
ital ones, are fundamentally susceptible to identity theft, even if an individual
is careful in protecting her sensitive information. Physical authentication proto-
cols include the procedures for obtaining a driver’s license at a government office,
opening a bank account, and applying for mortgage. Digital authentication pro-
tocols include the corresponding on-line transactions. In current solutions, key
pieces of personal information are usually communicated in the clear or stored
in the clear. This makes stealing of information easier for identity thieves. Al-
though the SSL protocol encrypts communications between a user and a server,
this does not prevent Trojan keyloggers, or shoulder surfing, because the user
still needs to disclose and type over and over sensitive information such as her
social security number.

We argue that this fundamental characteristic of the existing authentication
protocols is one of the main causes of identity theft, namely using sensitive
information in clear form for authentication. We propose a simple and practical
cryptographic protocol for authentication. Our solution ties personal information
to random secrets, which are used to prove interactively the ownership of the
personal information but are never disclosed.

Motivation for using IBE. In public key encryption schemes, the private key
information is never disclosed. Yet, a challenge-response process can be used by
a user to prove the possession of the private key to an identity provider. The
private key is usually protected by encrypting it with a passphrase, and storing
it in a portable device, such as a smart card or a USB flash drive. Observe that
the private key is never disclosed in clear during transactions, hence it never
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appears in any printed form or display. Therefore, it is difficult for attackers to
retrieve someone’s private key using standard identity theft techniques. To steal
the private key, an attacker would need to obtain the physical device and know
the passphrase. In order to associate identity information with public keys, the
only known encryption scheme is the Identity-Based Encryption (IBE) scheme
[4,20,25]. A public key in IBE will be the personal information (e.g., the social
security number of an individual). For authentication, an individual not only
needs to know her personal information (e.g., social security number), but also
needs to prove the possession of the corresponding private key for authentication.

4.2 A Cryptographic Authentication Protocol

We propose to use ID-based encryption scheme for implementing an authenti-
cation protocol for sensitive personal information. Our protocol minimizes the
exposure of secret personal information and thus is more robust against identity
theft than existing authentication methods. Entities in our protocol include a
user, an ID authority, an identity provider, and a revocation server controlled
by the ID authority. Our authentication protocol has the following operations:
Setup, Register, Authenticate, and Refresh. It requires an on-line revo-
cation server maintained by the ID authority.

Fig. 2. A diagram of the IBE-based authentication protocol

Refreshing the secret key of identity information can be tricky, because the
identity information typically does not change, e.g. social security number. We
show later how to use multiple pieces of identity information and on-line revo-
cation checking to leverage this. A diagram of the protocol is shown in Figure 2.
Here, we describe the realization of the above operations with IBE scheme.

1. Setup: The ID authority runs the PKG Setup operation of IBE.
2. Register: A user requests for an ID-based private key from an ID authority.

The user needs to be physically present in the ID office, for example the
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passport office, with paper identifications such as passport, birth certificate.
The ID authority authenticates the user’s identity.
If the user’s identity is verified, the ID authority generates the ID-based
private key for the user. The ID authority runs the Extract operation of
IBE with the user’s ID-based public key, which is the user’s identity informa-
tion concatenated with a unique serial number l. For example, l can be the
driver’s license number. l is used for revocation purpose. Because the identity
information such as social security number cannot be easily revoked, we need
an additional replaceable field l. Note that l cannot be any random number,
because using a random value as public key requires public-key certification,
which defies the purpose of identity-based encryption. In what follows, we
use the driver’s license number as l. The ID-based private key generated by
Extract is given to the user. The user’s driver’s license can be equipped
with a smart card chip and store the private key.

3. Authenticate: The user and the identity provider engage in a challenge-
response protocol as follows.
(a) The user gives his ID-based public key to the identity provider, which is

the identity information concatenated with the driver’s license number l
to the identity provider.

(b) The identity provider picks a random nonce m. It runs Encrypt of IBE
to encrypt m using the user’s ID-based public key.

(c) The ciphertext is given to the user, who runs Decrypt of IBE with
his ID-based private key. If the user is unable to correctly decrypt the
ciphertext, the authentication fails and returns false.

(d) The identity provider queries the revocation server maintained by the
ID authority for the number l in the public key of the user. If l has been
revoked, then the authentication fails. Otherwise, the authentication is
successful and returns true.

4. Refresh: The ID authority refreshes the ID-based private key of the user
as follows.
(a) The user authenticates his current ID-based public key to the ID author-

ity.
(b) The ID authority puts the the driver’s license number l on the revocation

server to indicate that l has been revoked.
(c) The ID authority generates a new driver’s license number l′ for the user.

The new ID-based public key of the user associated with his identity
information is that identity information concatenated with l′. For ex-
ample, the public key is 999-99-9999 ◦ 1234567890, where 999-99-9999
is the social security number and 1234567890 is the new driver’s license
number l′.

(d) The ID authority runs Extract of IBE to compute a new private key,
which is transmitted to the user via a secure channel or in person. The
user stores the new ID-based private key in his smart card.

The main advantage of our authentication protocol is that the secret personal
information is not released during the transaction, which minimizes identity



144 M.T. Goodrich, R. Tamassia, and D. Yao

theft attacks such as dumpster diving and shoulder surfing. Our protocol can be
used in any user authentication applications. In particular, it can be used in any
federated identity management system when a user authenticates his personal
information with an identity provider. For example, a user is required to run the
Authenticate algorithm with the identity provider when his social security
number is needed. Without the corresponding private key, it is impossible for an
identity thief to accomplish this.

5 Security Analysis

In this section, we first analyze the security of the notarized federated identity
management protocol, and then analyze the IBE-based authentication protocol.

The security of our notarized federated identity management protocol is
analyzed from the perspectives of the user, the identity provider, the service
provider, and the notary server, as each of them has different requirements on
the security provided by the system. In what follows, we assume the existence of
a signature scheme that is secure against existential forgery by polynomial-time
adversaries in the security parameter of the signature scheme. Existential forgery
means that an adversary forges a signature that the notary server has not signed
in the past. An adversary in our protocol can monitor traffics in unsecured chan-
nels, request for services, request the identity provider to blind assertions of her
choice, and request the notary server to notarize assertions of her choice.

We assume that the notary server is trustworthy, and is trusted by all entities
(users, identity providers, service providers). All entities are assumed to follow
the federated identity management protocol presented in Section 2. The following
theorem states the nonforgeability of a notarized assertion.

Theorem 1. In the notarized federated identity management protocol, no
polynomial-time adversary can successfully forge a valid notarized assertion that
is not generated by the notary server.

For the privacy protection of a user, an important privacy requirement is the
secrecy of assertions. This is summarized in the following theorem.

Theorem 2. Assume the existence of a collision-resistant one-way hash func-
tion, and a secure symmetric key encryption scheme. In the notarized federated
identity management protocol, a polynomial-time adversary and untrusted notary
responders cannot obtain any information from a blinded assertion.

For decentralized authorization systems such as the federated identity manage-
ment, an important security requirement is accountability. To prevent possible
disputes, identity providers should be held accountable for the assertions that
they have generated. In addition, to prevent unauthorized information exchange
among providers, users should be able to dispute any fraudulent assertion re-
quests. These properties are achieved in our protocol.

Theorem 3. In the notarized federated identity management protocol, the iden-
tity provider is held accountable for the assertions that it generates.
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Theorem 4. In the notarized federated identity management protocol, providers
are held accountable for any unauthorized information exchange among them.

Theorem 5. The notarized federated identity management protocol is secure
against replay attacks.

The security of the IBE-based authentication protocol is defined as the adver-
sary’s inability of impersonating a user, and is based on the security of the
identity-based encryption scheme as stated in Theorem 6.

Theorem 6. Given an identity-based encryption scheme that is semantic-secure
against an adaptive polynomial-time adversary, the IBE-based authentication
protocol is secure.

The proofs of the above theorems are in the full version of the paper [13].

6 Related Work

Our approach of using privacy protection as a means to avoid identity theft
is related to anonymous credential systems [5,6,9,15,26]. Anonymous credential
systems (a.k.a. pseudonym systems) allow anonymous yet authenticated and
accountable transactions between users and service providers. Existing anony-
mous credential systems are different from our single sign-on system, in that
they do not consider a federated identity infrastructure behind the providers.
In comparison, our system focuses on how to manage user authentication in the
more realistic setting of a federation of providers. Our system achieves simple
pseudonym solutions and efficient single sign-on by taking advantages of the fed-
erated structure. In particular, we do not need a credential system, because the
assertions can be short-lived and generated on-line by identity providers.

The federated identity management solution proposed by Bhargav-Spantzel,
Squicciarini, and Bertino [2] emphasizes the need for proving the knowledge
of personal information without actually revealing it, in order to help prevent
identity theft. In their solution, personal data such as a social security number is
never transmitted in the clear. Commitment schemes and zero-knowledge proofs
are used to commit data and prove the knowledge of the data. Our identity-based
solution has a similar goal to this approach, but there is one important difference.
We allow personal data such as social security numbers and credit card numbers
to be transmitted in the clear. Yet, every time this information is used, the
user needs to prove the possession of corresponding private keys. This requires
minimal changes to the existing financial and administrative infrastructure, as
personal information in our scheme is stored the same way as it is currently.
IBE [4] conveniently makes this possible, and, interestingly, this approach is also
more efficient than zero-knowledge proof-of-knowledge protocols.

BBAE is the federated identity-management protocol proposed by Pfitzmann
and Waidner [19]. They give a concrete browser-based single sign-on protocol
that aims at the security of communications and the privacy of user’s attributes.
Their protocol is based on a standard browser, and therefore does not require the
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user to install any program. The main difference with this and our approach is
that we provide a notary mechanism for authenticating assertions when IdP and
SP are not previous known to each other.

In the access control area, the closest work to ours is the framework for regu-
lating service access and release of private information in web-services by Bonatti
and Samarati [3]. They study the information disclosure using a language and
policy approach. We designed cryptographic solutions to control and manage in-
formation exchange. Their framework mainly focuses on the client-server model,
whereas our architecture include two different types of providers.

A counter measure for identity theft through location cross-checking and in-
formation filtering was recently proposed [23]. This paper addresses the identity
cloning problem, and proposes to use personal location devices such as GPS and
central monitoring systems to ensure the uniqueness of identities. However, the
central monitoring system in their solution is likely to be a performance bottle-
neck. Moreover, because identity thieves are geographically dispersed, distribut-
ing the monitoring task into several locations is not feasible. In comparison, our
solution is simple and efficient to adopt. Because we tie the secret identification
information to a tamper-resistant smart card (e.g., driver’s license), card theft
can be easily noticed and reported by the card owner.

Acknowledgements. The authors would like to thank David Croston for useful
comments.
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Abstract. Recently, Role Based Access Control (RBAC) model has
taken place as a promising alternative to the conventional access con-
trol models, MAC and DAC. RBAC is more general than those tradi-
tional models as was shown by Osborn et al. [17], however, mapping
a role based system to a valid MAC configuration is not always possi-
ble because certain combinations of permissions that are included in a
role’s effective privileges may cause information flow. Given a role-based
graph where role’s permissions refer to labeled data objects, Osborn et
al. showed how to find conflicts that are resulted from information flow,
but they have not suggested a solution for these conflicts and they have
not handled user-role assignments, for the solved scheme. In this paper,
we assume a more general model of permissions conflicts than MAC. We
introduce an algorithm that handles information flow conflicts in a given
role-based graph, corrects the Role-based graph if needed, and proposes
a consistent users-roles assignment. As RBAC and information flow are
becoming extremely important in Web based information systems, this
algorithm becomes very relevant.

Keywords: Role based access control, role graph consistency, canon-
ical groups.

1 Introduction

The RBAC (Role Based Access Control) model [21] has taken place, for several
years now, as an alternative to the MAC (Mandatory Access Control) and DAC
(Discretionary Access Control) models, as RBAC simplifies the access control
management of complex systems, which contain large number of users, objects
and applications [10], [17], [19].

According to MAC method, which is more relevant for our discussion – system
elements such as data objects, users and sessions are labeled with security labels.
The MAC (or LBAC) model can be represented by a lattice of security labels
in which information flow is permitted in one direction only – from a low level
to a high level [19]. RBAC is more general than the traditional access methods
since it can be configured to enforce both MAC and DAC [17], [19]. Recently
RBAC has become an important component of many Web systems and various
standards specifying it have appeared [8].
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An RBAC system can be illustrated as a hierarchial role-based graph, which
is composed of a vertex set and an edge set. A vertex indicates a role, which
contains certain privileges. An edge connects a role with its direct ancestor.
Privileges of a role are of two kinds: direct privileges – privileges which are
explicitly assigned to this role, and effective privileges – which include the role’s
direct privileges and the inherited effective privileges of all its juniors [15], see
Fig. 1.

R4 ru

R3  ru, wu

R2  ru, 

wts
R1  ru, rs, ws,

rs, ws

Fig. 1. A role-based graph including roles privileges. Direct privileges are marked by
italics.

Conflict of interest must be considered while dealing with security. Several
kinds of conflicts have been defined and discussed for the role-based graph model
[15], of those, role-role conflict and privilege-privilege conflict, are the most rel-
evant here. However, existing algorithms, which support role graph adminis-
tration, do not try to solve such conflicts. For example, the PrivilegeAddition
algorithm execution in [15], [10] aborts when such conflict is detected.

The problem of mapping a given role based system to a valid MAC configura-
tion, was introduced in [17]. Given a role-based graph in which any role contains
permissions to data objects that are labeled with security labels, Osborn et al.
pointed at conflicts that are resulted from information flow, but they did not
suggest any solution for these conflicts. In this paper we handle role-based graph
conflicts from the following aspects:

– We address a more general model of information flow and permission conflicts
then just MAC.

– We present an algorithm for detecting conflicts in a role-based graph and
correcting them by creating new roles or assigning some of the conflicting
permissions to existing roles. We then suggest a valid user-role assignment
to the corrected graph. This algorithm is also very useful for Role-based
administration.

– The resolution of conflicts is based on partitioning the permission-set to
canonical groups that do not contain conflicts. Such partition raises inter-
esting theoretical issues, which are also discussed.
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The above are the main contributions of this paper. The rest of the paper
is organized as follows: Section 2 discusses related work and reviews Osborn’s
work on information flow conflicts for the role-graph model. Section 3 focuses on
role-based graph conflicts. We define several constraints, which are more general
than those, which have been defined for the MAC model, and we introduce our
role-graph consistency verification and correction algorithm. This is followed by
a discussion of theoretical issues, which relate to constructing a partition of the
role-graph to non-conflicting collections. Finally, in Section 4 we discuss possible
applications and future work.

2 Related Work

The Role-based model was introduced first by Sandhu et al. [21] and was followed
by many papers and standards [1], [11], [19], [20], [8]. An important area in
RBAC research is assigning users to roles under various constraints. This was
addressed in [4], [12]. Information flow models started with the Bell/Lapadulla
model and the MAC methodology, and was followed by work in other directions,
such as information flow in object-oriented databases [18], and information flow
in distributed systems [14]. The latter works are relevant here, because one can
derive from those models sets of permissions, which are in conflict for information
flow reasons, and if one assigns such permissions to roles, it will get a role-graph
model with possible conflicts. Our work mostly relates to Osborn’s work, which
investigated several aspects of the RBAC model, using the role-graph model.
The role-graph model is discussed in [1], [2], [15], [16], [19]. In [17] Osborn et
al. show the power of RBAC by configuring RBAC to enforce Mandatory and
Discretionary Access control policies. Conflicts of interest and their reflection in
a role-based graph are demonstrated in [15]. Role and permission administration
for the role graph model are described in [10], [15], [23]. In the next section we
briefly review those aspects of Osborn et al. work, which are most relevant to
the issues we focus on in this paper.

2.1 Osborn’s Previous Model

Mapping Role Hierarchies to LBAC. LBAC (Lattice Based Access Con-
trol) model uses labels to enforce multilevel security. The allowable paths of
information flow in an LBAC system, are defined by Mandatory access rules as
follows, where λ is the security label of the specified entity:

Definition 1. Simple Security Property: Subject s can read object o only if
λ(s) ≥ λ(o).

Definition 2. Liberal (Strict)* Property: Subject s can write object o only
if λ(s) ≤ (=)λ(o).

In [17] Osborn et al. show how RBAC can be configured to enforce MAC pol-
icy. Nevertheless, the structure of role hierarchies that do map to valid LBAC
configuration is greatly restricted since several permissions combinations that
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belong to a role’s effective permission-set may cause information flow when as-
signing the role to a user. Figure 2 illustrates a role-based system, where a role
contains permissions to data objects that are labeled with security labels (e.g. rs
mean “read secret”). All of the roles except the role labeled R7 can be assigned
to users without causing any information flow conflict (for example, the roles
labeled R1 and R4 can be assigned to unclassified users and the roles labeled
R3 and R6 can be assigned to secret users.) Making an assignment of the role
labeled R7 to any user is not possible without violating either the Simple Secu-
rity Property or the Liberal*-Property. Thus, the effective permission-set of R7
is not valid because it can’t be assigned to any user without causing information
flow.

R1  ru

R6  ru, rs
     ws, wts

     ws, wts
R7  ru, rs, rts,

R5  ws, wts

R4  ru, ws

R2  ws

R3  ru, rs, ws

Fig. 2. A role-based graph, which includes a role (R7) that can’t be assigned to any
user, since it contains an illegal effective permission set

Osborn introduces two more definitions to capture the maximum read level
and the minimum write level (if exists) of objects in a role as follows:

Definition 3. The r-level of a role R (denoted r-level(R))
r-level(R) is the least upper bound (lub) of the security levels of the objects o for
which (o, r) is in the permissions of R.

Definition 4. The w-level of a role R (denoted w-level(R))
w-level(R) is the greatest lower bound (glb) of the security levels of the objects o
for which (o, w) is in the permissions of R, if such a glb exists. If the glb does
not exist, w-level is undefined.

Using Definitions 3-4, Osborn defines the following constraint on user/role as-
signments UA:

Constraint on UA:

(for every(u, R)that belongs to UA[λ(u) ≥ r-level(R)])

(for every(u, R)that belongs to UA[λ(u) ≤ w-level(R)])
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Conflicting Permissions and Conflicting Roles. As was illustrated in
Fig. 2, the pair (rts, ws) creates a permission-permission conflict. It obviously
violates the constraint above and it means that the two permissions must not
appear together. This example demonstrates an information flow conflict but
there can be other kinds of conflicts among permissions such as Object-based
separation of duty, or existence of both positive and negative authorizations on
the same object. The current paper is focused on information flow conflicts. Nev-
ertheless the presented algorithm is general enough to be used on any kind of
permission-permission conflicts.

The basic constraint for conflicting permissions states that no role’s effec-
tive permission-set may contain two permissions, which have been defined to
be in conflict. When such a role is discovered it should be modified into one
or more consistent roles. This modification is discussed later in the current
paper.

Conflicting roles demand even tighter restrictions: If two roles are declared to
be in a Role-role conflict, then a user authorized to one of the roles, must not be
authorized to any of the permissions of the other role. As role-role conflicts apply
great limitations on user-role assignments, they induce organizing graph’s roles
into collections of roles that can be assigned together. Nyanchama and Osborn
[15] developed the following technique for partitioning the graph’s roles to non-
conflicting role collections, using a role-role Matrix C, which describes pairs of
conflicting roles. For any two roles ri , rj that have been defined to conflict – ci,j

is set to 1. Next, the dual matrix of C (in which 1’s are substituted for 0’s vise
versa) represents pairs of roles that can be assigned together. The dual matrix is
represented by a graph and the cliques in this graph correspond to set of roles,
which can be assigned together.

Role Graph Administration. Algorithms for manipulating role-based graph
are also described in [15]. Graph administration includes role addition, role dele-
tion, permission addition and deletion and edge insertion and deletion. Revised
algorithms, which improve the original addition algorithms, are introduced in
[10]. While the previous algorithms assume that when a permission p is added
to a role, all permissions that might be implied by p are presented in the role
automatically, the late addition algorithms actually add those permissions. The
role-graph manipulating algorithms that are introduced in [15] and [10] only
detect conflicting permissions and roles. The resolving of such conflicts is not
dealt with. In case that a permission addition creates a conflict, the permission
addition is not performed [10] or the algorithm execution abort [15].

3 Resolving Role-Based Graph Conflicts – Our Approach

3.1 Assignments Validation Constraints for the MAC Model

We first rewrite Osborn constraints in a slightly more general way, by using the
concept of effective permissions.
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effective permissions - the set of permissions assigned directly or inherited
via the role-hierarchy.

Valid effective permission-role constraint: Effective permission set which
is assigned to role R is valid only if: r-level(R) ≤ w-level(R).

Valid user-role assignment constraint: A valid role R can be assigned to
user u only if: λ(u) = r-level(R).

The Valid user-role assignment constraint satisfies MAC rules, since the min-
imal write level of objects in a valid role R, is greater than the maximal read
level of objects in R, as the Valid effective permission set for a role R constraint
assures. Therefore, no information flow occurs while using these assignments
constraints. Next we discuss a more general model for permission information
flow conflicts.

3.2 Assignments Validation Constraints – Extended Model

The model that has been described above is based on the MAC rules, which
explicitly determine allowable paths of information flow. In this section we use
more general definitions for conflict of interest that may cause information flow.
For example Myer’s model [14] refers to a system that includes two sets of
objects, one that contains objects to which a read operation is defined and
the second set contains objects to which a write operation is defined. It also
supports multiple independent policies on the same object. The model defines
the conditions under which a write operation can be performed on a certain
object. When such operations are not allowed then a permission conflict can
be defined. Our extended model below can then apply also to Myer’s [14] or
Samarati et al.[18] models. In the following definitions of the extended model,
we use Read and Write operations, but in fact we could have used any conflicting
permissions as explained above. Also, in the rest of the discussion we assume the
hierarchical model of roles, where a role inherits all permissions of the roles
below it.

Extended model Definitions:

– r-set is a set of objects for which a read permission is defined.
– r-set(R) contains all the read permissions that are assigned to a role R,

where r-set(R) ⊆ r-set.
– w-set is a set of objects for which a write permission is defined.
– w-set(R) contains the write permissions that are assigned to a role R, where

w-set(R) ⊆ w-set.
– c-set(R) is a set of conflicting permissions pairs of the form (ri, wj) that

can’t exist together in a role R, where ri ∈ r-set and wj ∈ w-set.
– R-set is the set of roles.
– R-set(u) contains the roles that are assigned to a user u, where R-set(u) ⊆

R-set.

Based on the extended model definitions, we can determine the following assign-
ments constraints:
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Valid permission set for a role R constraint – extended model:
Permission set which is assigned to a role R is valid only if

for any ri ∈ r-set(R), wj ∈ w-set(R)
(ri, wj) �∈ c-set(R)

Valid user-role assignment constraint – extended model:
A valid role R can be assigned to a user u only if

for any ri ∈ r-set(R), wj ∈ w-set(R)
for any Rk ∈ R-set(u) /* already assigned set of roles */

for any rm ∈ r-set(Rk), wn ∈ w-set(Rk)
(ri, wn) �∈ c-set(R) ∪ c-set(Rk)
(rm, wj) �∈ c-set(R) ∪ c-set(Rk)

We like to show now that the above constraints will prevent information flow in
the general case. Assume there is information flow from object X to object Y .
Then there must be a sequence of permissions:

P1(X1 = X), P2(X2), . . . Pn(Xn = Y )

that caused this information flow. In this sequence there must be two permissions
in conflict, otherwise there wouldn’t be such a flow (proof by induction). Now if
these two permissions are assigned to the same role, or to two roles assigned to
the same user, the constraint above will detect it, and prevent such assignment.
Therefore no information flow is possible. Next we present an algorithm to check
the above constraints.

3.3 Role Graph Consistency Verification Algorithm

In this section we introduce our resolution, which refers to the model that was
described above. It shall be noticed that external regulations as administrative
constrains, must be considered before operating the algorithm since such con-
straints might change the graph’s initial configuration.

The purpose of our algorithm is twofold. The first is to check the validity of
a given role graph and correct it if needed. The second is to find a valid user-
role assignment to the corrected role graph. The algorithm is divided into the
following phases:

a. Creating a consistent graph
Based on the extended model definitions, the algorithm checks every role’s effec-
tive permission set for validity, while performing a recursive top-down walk on
the role graph G. The algorithm’s output is G′, the corrected role-based graph.
The algorithm first phase is presented in Alg. 1.

Since the algorithm descends the graph top-down, it assures that when a role
is consistent (or resolved to be consistent), all its sons are already consistent.
Therefore, the role-based graph which is output by this algorithm is consistent.

b. Handling user-role assignments
The algorithm’s second phase handles user assignments to the corrected role
graph, and is shown in Alg. 2. This algorithm is very similar to the algorithm
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Algorithm 1 Role graph consistency verification algorithm
Input G(N, →) a role-based graph possibly containing information flow conflicts.
Output G′(N, →) a role graph based on G, which does not include any information
flow conflict.
Method Resolving permission assignment conflicts
1: copy G to G′

2: for every connected component of G′ do
3: for every root of component of G′ do
4: if root is consistent then exit
5: for every son of root do
6: perform a recursive Depth-first walk, in which:
7: for every role R do
8: for every ri , wj where ri ∈ r-set(R) , wj ∈ w-set(R) do
9: if (ri, wj) ∈ c-set(R) then

10: create the canonical groups for R effective permission set
11: for every canonical group cg do
12: combine cg permissions to an existing role or create a new role
13: for cg or for a part of it, according to the system’s policy
14: Phase b

presented in [15], except that it accepts as input the already modified role-based
graph generated by Alg. 1. and in the last step it may handle additional user-user
constraints as follows. At the last step one may assign users to the found cliques
or to subsets of them. However, when individual users are assigned, additional
user-user constraints such as separation of duty constraints may be present. A
general scheme for user-role assignment with general constraints was presented
in [12] using the techniques of Constraint processing (CSP). This technique is
very powerful for solving various types of constraints and can works also in the
distributed case as was shown in [13].

Next we discuss in detail the correction of inconsistent roles.

The Problem of Correcting Role Inconsistency. Once we find an incon-
sistent role, we are faced with the problem of correcting it, and create a valid
new and consistent role graph. There may be several approaches to solving this
problem, And we discuss two of them here.

The first approach tries to locate the permissions, which are most ”problem-
atic”, and remove them from the checked role. If we represent the permissions and
the conflicts between them as a graph, we like to find minimal set of permissions
that will remove all conflicts. This problem is equivalent to the Vertex-Cover
problem and is known to be NP-hard [7]. For any permission removed from the
checked role, we should first check if it already exists in another role, and only if
it does not exist, we should create a new role for it. This new role may contain
the removed permission plus all consistent permissions with it, which were in
the checked role. The problem with this approach is that it tends to split the
original permissions to too many groups.
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Algorithm 2 Handling user assignments to the consistent graph
Input G′(N, →) a role graph based on G, which does not include any information flow
conflict.
Output Legal user-role assignments.

Phase1 Performing a search for conflicting permissions that are assigned to sepa-
rate roles and representing the conflicts by a graph

1: for every two roles Ri , Rj such that there exist permissions p1 in Ri and p2 in Rj

that are in conflict do
2: add the edge (Ri, Rj) to the role conflict graph GC.

Phase2 Constructing GC’ – GC graph complement and Getting potentially legal
user-role assignments

3: for every couple of roles Ri , Rj which appear in the role-based graph G′: do
4: if the edge (Ri, Rj) does not appear in GC then
5: add (Ri, Rj) to GC′.
6: find all the cliques in graph GC′. � Get legal user-role assignments

Phase3 Perform the actual user-role assignment considering all constraints

Another approach uses the concept of canonical groups. A canonical group is a
maximal set of permissions with no conflict in it. The problem of finding canon-
ical groups is discussed in Section 3.4. For now we assume that the permission
set was divided into a set of canonical groups. Then we suggest the following
heuristics: When an inconsistent role R is found, the graph correction has to be
performed using the algorithm: Resolve Using Canonical Groups.

Resolve Using Canonical Groups. For every canonical group cg, which in-
cludes permissions that have to be removed from the effective permission set
of R:

1. In case that there is not any role to which the permissions that are included
in cg are assigned – create a new role RN and assign cg permissions to it.
RN will be put above the role that contains the maximal subset of cg, in the
role hierarchy.

2. In case that the role graph contains already a consistent role R′ to which cg
permissions are assigned:
(a) If R′ does not contain any permission except cg permissions – there is

no need to perform any change.
(b) In case that R′ – to which cg permissions are assigned, contains addi-

tional permissions – the decision whether a creation of a new role for cg
permissions is needed – is depended on the system designer policy.

3. In case that the role graph contains a consistent role R′′ to which only a
part of cg permissions are assigned – create a new role, RN , for those cg
permissions that are not included in R′′. In case R′′ contains only permissions
which are in cg, put RN above R′′ in the role hierarchy, otherwise perform
step 2b above.

In any case: Delete cg permissions from the original role’s permission set.
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Theorem 1. The two algorithms, the verification and the resolving algorithms
result with a consistent role-based graph.

The proof uses mathematical induction and is omitted here for space reasons.
Note that the heuristics above is not necessarily “optimal”. One may define

optimal by the following criteria: Find a division of the permission set of the
checked role, such that the total number of changes (including role addition,
permission addition and permission deletion) is minimized. We are still inves-
tigating this problem. The other issue is what we called ”system policy”. it is
possible that an organization will have some policy constraints regarding the
composition of roles and the hierarchy of roles, e.g. a specific branch of a hi-
erarchy should not be modified. Such constraints should be taken into account
when we assign the cannonical groups to roles or create new roles. We plan to
investigate this issue too in the future.

Figures 3a, 3b illustrate the algorithm’s operation on a given inconsistent role
based graph G. Note that for this example, we assumed that R1 is the only
inconsistent role in the graph, therefore the canonical groups can be assigned to
existing roles without checking those role’s permission sets for consistency. As
explained earlier, the general algorithm can handle multiple inconsistent roles.
Figure 4a shows the resultant role-conflicts graph and Fig. 4b shows the resul-
tant dual graph GC′ and the resulting conflict-free cliques. Finally, as discussed
earlier, the actual user/role assignment may be performed using the methods
presented in [12].

R6  ru, rs, rts R1  ru, rs, rts

R4  ru

R5  ru, rs

R3  ru, wu

R2  ru, rs, ws

        ws, wts

(a) Inconsistent Graph G. The role labeled
R1 contains an inconsistent permission-set

      rts, wts

R1  ru, rs,

R4  ru

R2  ru, rs, wsR5  ru, rs

R3  ru, wu

R7   ru, rs

R6  ru, rs, rts
        ws, wts

(b) Consistent Graph G′. R1 permission-
set is divided into two canonical groups:
{ru, rs, ws, wts}, which remains in R1 and
{ru, rs, rts, wts}, which demands the cre-
ation of a new role – R7

Fig. 3. Resolving information flow conflicts in a role based graph
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R4

ru, rs, rts, wts

R2

R7

R1

R3R5 ru, rs ru, wu
 

R6  ru, rs, rts  ru, rs, ws, wts

ru

ru, rs, ws 

(a) GC - the conflicting-roles graph which is derived of G′

R4

ru, rs ru, wu

ru, rs, rts, wts

R2

R7

R1

 

R6  ru, rs, rts

ru, rs, ws 

R3R5

ru

ru, rs, ws, wts

(b) GC′ - the dual non-conflicting-roles graph

G1 : {R1, R2, R4, R5}
G2 : {R3, R4}
G3 : {R4, R5, R6, R7}

Fig. 4. Finding conflict-free cliques for user-role assignment

3.4 The Problem of Finding Canonical Groups

The problematic permission-set which is assigned to the role labeled R7 in Fig. 2,
can be divided into non-conflicting groups in several ways, as it is illustrated in
Table 1. One possible division is to include the read permissions in one group
and the write permissions into another group, as is shown in line 1 of the ta-
ble. An alternative resolution is to partition the permissions set into canonical
groups. Canonical groups are defined to be maximal groups of non-conflicting
elements, as is demonstrated in the second line of Table 1. In this case first the
two conflicting permissions are divided between the two groups, and then the
rest of the permissions can be assigned to both of the groups.

Obviously, not all resolutions can be satisfied by forming only two cannonical
groups, but one is usually interested in minimizing the number of such groups
in order to minimize the required changes to the role-graph.



Resolving Information Flow Conflicts in RBAC Systems 159

Table 1. Two optional divisions for the inconsistent permission set (ru, rs, rts, ws,
wts) to non-conflicting groups

ru, rs, rts, ws, wts
1. ru, rs, rts / ws, wts
2. rts, ru, rs, wts / ws, ru, rs, wts

The problem of dividing a permission set into a minimal number canonical
groups is similar to the problem of finding cliques in an undirected graph. A
clique of a graph is a maximal complete sub-graph. Covering vertices by cliques
(Vertex Clique Cover or Clique Partition), is an NP-complete problem
[7], [22], and is also equivalent to the Graph Coloring problem: A graph has a
vertex clique cover of size k iff its complement graph can be colored with k colors
such that adjacent vertices have different colors [7]. Finding a minimal coloring
can be done using brute-force search [6], [22], [24], but more efficient algorithms
exist for some special cases. The four-color theorem establishes that all planar
graphs (graphs that can be drawn in a plane without graph edges crossing) are
4-colorable [22].

Two-colorable graphs are exactly bipartite graphs. A bipartite graph is a set of
graph vertices decomposed into two disjoint sets such that no two graph vertices
within the same set are adjacent. A bipartite graph is a special case of a k-partite
graph with k = 2. A graph is bipartite iff all its cycles are of even length [22].
To determine if a graph G = (V, E) is bipartite, we perform a BFS search on it
with a little modification, whose run time is O(V + E) [7].

A related problem is covering the edges of a graph with a minimum number
of cliques, which is known as the Clique Cover problem, and is also an NP-
complete problem. For Clique Cover there is a solving algorithm, which is
polynomial time heuristic from the 1970’s. Gramm et al. present an improved
version for this heuristic, using data reduction techniques, in [9].

In practice, it may very well be that two cannonical groups will be sufficient
for resolving the inconsistency. So it will be worthwhile first to check if the graph
is bi-partite, before attempting to use the more complex algorithms for finding
more than two cannonical groups.

Note that the second algorithm, the user-role assignment also requires find-
ing cliques, so similar theoretical problems arise. Finally, the actual user-role
assignment under user-user constraints also present some theoretical questions,
some of them are NP hard and some are polynomial and can be reduced to a
network-flow problem. This is discussed in detail in [13].

3.5 Extending Administration Algorithms

Nyanchama and Osborn’s basic algorithms for adding a permission to a role and
for adding a role to the role based graph [15], contain the following lines for
conflict of interest detection which checks any role that belongs to the graph’s
roles, after making the addition:

If effective(r) contains a pair of privileges which is in p-conflicts then abort.
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Our solution in this case is to perform the Role graph consistency verification
algorithm, which checks any role for consistency and makes graph corrections
using the algorithms discussed above. Note that the organization (system) poli-
cies may be different when a permission is added to a role, or when a role is
added to a hierarchy and these should be taken into account.

4 Discussion and Future Work

The algorithms above can be useful in several applications and also raise several
outstanding issues. These issues and future research are discussed in this section.

1. User-role assignment and delegation. As was discussed above the role
hierarchy does not limit user-role assignments only to roles along the same
hierarchy. However, if we allow delegation of roles from one user to another,
the problem becomes more difficult. Such delegation requires running the
verification algorithm for each such delegation, which may create consider-
able overhead. One possible restriction is to allow delegation only along the
role hierarchy. Obviously, if a user of role Ri delegates to a user with role Rj

where Ri < Rj then no role conflict will occur, since originally the graph is
consistent and role Ri has inherited all permissions of Rj . Therefore, if users
are assigned to roles only along a single hierarchy, delegation will be consis-
tent and no verification will be needed (except for constraints such as SOD).
Otherwise, the algorithm needs to be executed for each such delegation.

2. Dynamic user-role assignment. The restrictions above on static role as-
signment (i.e. assigning users only conflict-free cliques) may put heavy re-
striction on a real life system. Similar to the MAC policy, if we enforce the
static * property, then an employee who has a top-secret job cannot write an
email to his wife who has a confidential level. The water-mark policy used in
MAC systems can be used here. Thus, roles can be assigned dynamically to
an application based on its dynamic needs, and therefore role conflicts must
be checked dynamically. Furthermore, the application may require a tem-
porary assignment of hierarchy between roles. In that case, the verification
algorithm will need to be executed as well. Note that even in the dynamic
case, to detect the conflicts one does not need to create a log of the oper-
ations performed. If we extend the “water-mark” idea to permissions and
allow assignment of conflicting roles to the same user, then we just need to
create a log of permissions and make sure no conflicting permissions were
assigned.

3. Distributed systems. The algorithm can be also used in distributed sys-
tems. For example, a system composed of two sub-systems, anyone of them
contains data-base and files. Suppose that a user gets access to sub-system1,
by assigning him to a role R that belongs to sub-system1’s roles. In case
that the user is also assigned to certain roles in sub-ststem2, the system has
to check whether the new permissions he gets are not conflicting with his
sub-system2’s permissions. This check and the corrections that follow it are
made using the Role graph consistency verification algorithm.
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4. Integrating multi-domains. The problem of integrating the security re-
quirements of multiple domains is a serious problem in our cooperative busi-
ness world (see [3], [5]). The integration of such multiple domains requires
the mapping of two separate role hierarchies into a single hierarchy. Such
integration will require an algorithm, which is basically a generalization of
the single verification and correction algorithm shown here and is a topic of
future research

5. The problem of optimal correction. As was demonstrated in Section 3,
there may be several policies to correct an inconsistency in role definition.
The criteria of optimality, is not very obvious, and both the criteria and the
algorithm required to satisfy it are a subject for future research. Related to
that is the issue of satisfying system policy and organization constraints.

6. Other kinds of permission-permission conflicts. Although our model
can be implemented on any kind of permission-permission conflicts, it refers
mostly to information flow conflicts. Solving other kinds of permission-
permission conflicts may force different criteria for division to canonical
groups than has been introduced here. This is also a topic for future work.
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Abstract. In this paper we identify an undesirable side-effect of combining dif-
ferent email-control mechanisms for protection from unwanted messages,
namely, leakage of recipients’ private information to message senders. The prob-
lem arises because some email-control mechanisms like bonds, graph-turing tests,
etc., inherently leak information, and without discontinuing their use, leakage
channels cannot be closed. We formalize the capabilities of an attacker and show
how she can launch guessing attacks on recipient’s mail acceptance policy that
utilizes leaky mechanism in an effort to avoid unwanted mail.

The attacker in our model guesses the contents of a recipient’s private in-
formation. The recipients’ use of leaky mechanisms allow the sender to verify
her guess. We assume a constraint logic programming based policy language for
specification and evaluation of mail acceptance criteria and present two different
program transformations that can prevent guessing attacks while allowing recip-
ients to utilize any email-control mechanism in their policies.

Keywords: Application layer security, inference attacks, information leakage
channels, secrecy.

1 Introduction

Email, a widely popular communication medium, is plagued with several problems
like delivery of unsolicited commercial or fraudulent messages, lack of authentication
of message senders, inability to ensure integrity and secrecy of message content, etc.
Several solutions have been proposed to counter these problems and many have been in-
corporated into the delivery mechanisms. However, there exists a class of problems that
has not received much attention yet, which is the problem of protection of recipients’
sensitive information. It is surprisingly easy to uncover information that recipients may
consider sensitive, like recipient maintained blacklist or whitelist. Not only can this lead
to security breaches; it can also jeopardize the defenses against unwanted messages. In
this paper, we formalize this problem and a new attack technique on policy based eval-
uation, which is a counterpart to dictionary attacks on cryptographic protocols [3]. As
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a solution we also provide a policy transformation technique to prevent attacks on sen-
sitive information.

Leakages can occur in many ways. For instance, simple address harvesting attacks
through the Simple Mail Transfer Protocol (SMTP [16]), the default email delivery
protocol, are easy to construct. In this attack, a malicious sender attempts delivery to
a preconstructed list of possible recipient addresses, and recipient mail server replies
help her to identify which addresses are assigned to users [13]. Contrary to the SMTP
protocol recommendations, mail servers can prohibit such feedback, thus implementing
a blanket protection policy against harvesting attacks. More fine-tuned, policy-based
schemes for feedback control are also possible [8].

Because email-control techniques in use at a mail server can send feedback out of
band with SMTP, controlling SMTP feedback to senders is not enough to protect re-
cipient’s private data. For example, graph-turing tests for ensuring human-initiation of
email messages [12] respond to incoming messages with a puzzle that can only be
solved by humans. Senders can, thus, infer that mail address belongs to a real user and
being protected against unwanted mail. This signal also informs the sender that the sent
message was able to overcome the recipient’s Bayesian filters. This knowledge can fur-
ther help a malicious sender in propagating unwanted emails in future. Apart from the
efficacy of filter rules, a recipient or a domain may wish to protect a lot of other private
data, like their email behavior, the set of their email acquaintances, etc.

In this paper, we identify two types of email-control mechanisms, viz., leaky mecha-
nisms like monetary bonds, acknowledgement receipts, etc., and sensitive mechanisms
like white-lists, i.e., the set of senders from whom a recipient always accepts emails,
blacklists, i.e., the set of senders from whom the recipient does not wish to receive mes-
sages, filters, etc. A leaky mechanism is defined as an email-control mechanism that,
when used, informs the sender whether his or her message was accepted by the recipient
or not. Whereas, a sensitive mechanism is defined as an email control mechanism that
uses recipient’s private information to decide whether to accept a message or not, but
does not disclose any information to the sender. However, if these two types of mecha-
nisms are used in combination, disclosure of recipient’s private information is possible
and it is the security goal of this paper to prevent such disclosures. Readers may be
familiar with leakages due to well-crafted web addresses and images embedded within
a message that provide automatic acknowledgement receipts. In section 2 we provide
additional details on such leakages. Mechanisms like blacklists, filters, etc., are sensi-
tive because of the nature of the information they control and because their knowledge
can help a malicious sender to bypass the control they provide.

The abundance of email-control solutions and the need for automation of several as-
pects of user’s email agents have led to the use of policies that allow flexible control
over the behavior of local email systems. Such policies are easily constructed through
end user input (e.g., simple user feedback allows Gmail to display or not display em-
bedded images, etc.) and through explicit administrator level policies, leading to con-
siderable automation of repetitive tasks. However, because the email system is highly
automated, there exists a potential for confidential information to be leaked unintention-
ally. Even though it is not guaranteed that using a means to leak information will reveal
information, however, the probability of leakage of sensitive information, when using
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leaky and sensitive mechanisms in combination, is non-zero. In particular, schemes that
allow sharing acceptance policies to stop undesirable messages earlier in the transmis-
sion process (see [8]) compound the problem. Armed with this knowledge, an attacker
can simply send a large volume of messages and extract sensitive information from the
behavior of the feedback channel.

Our modeling of an attacker assumes basic capabilities of computing unfold/fold
transformations [17], computing Clark completion of predicate definitions, and the abil-
ity to generate a large number of messages. Though, in the worst case analysis, the
attacker need send only a O(n) number of message, where n is the size of the policy.

1.1 Overview of Our Approach

A survey of recent proposals and initiatives for controlling unwanted messages give
sufficient evidence of an eventual move towards policy-controlled email systems. Exist-
ing implementations exhibit varied policy evaluation strategies, from complete secrecy
(like silent dropping of messages identified as unwanted during Bayesian filtering [19])
to requests for additional information (like human verification tests [12]). Bringing all
strategies under a single umbrella enables, both, sharing and hiding of acceptance crite-
ria. Clearly, sanitization of acceptance policies is a prerequisite to communicating them
upstream. However, it is our view that such a (non-trivial) task cannot be entrusted
to end users. The only option that remains is to automatically ‘strengthen’ or sanitize
policies susceptible to leakage; a non-trivial problem addressed here.

Our first step in policy sanitization is to distinguish leaky mechanisms and sensitive
information in the policy syntax. Next, we provide a syntactic transformation of the
original policy into two zero-information leakage policies and show that they don’t leak
protected information. The first transformation simply drops all references to sensitive
information. The resultant policy, called necessary policy, identifies a set of criteria thus
must be satisfied, assuming best case scenario with respect to sensitive information.
Similarly, the second transformation constructs a sufficient policy that assumes worst
case scenario with respect to sensitive information and identifies messages that can
still be accepted. The necessary policy can be shared without risk of leakages, while
sufficient policy is designed to be applied at only at the recipient end – thereby achieving
complete secrecy in policy evaluation.

1.2 Our Contribution

The main contributions of this paper include what is to the best of our knowledge the
first formal analysis of confidentiality problems in the context of emails, and a novel
solution to protect sensitive information from attacks. In summary:

• We develop a logical formalism for expressing and solving the problem of leakage
of private information due to the use of leaky mechanisms.

• We define a new attacker model with the attacker being capable of computing Clark
completion of programs and applying unfold/fold transformations in addition to the
ability of generating messages. We show that this is enough to uncover information
considered sensitive by the message recipient.
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• We describe a new type of information leakage attack on email systems due to the
combination of email-control mechanisms.

• We develop two policy transformation schemes, namely, necessary and sufficient
policies that, when used in tandem, can prevent the leakage of sensitive email
information.

The rest of the paper is organized as follows. In section 2 we provide some motivating
examples of information leakage attacks. Formal model of security policies for email
are presented in section 3, followed by the attacker model in section 4. In section 5 we
discuss the transformation algorithm and necessary and sufficient policy transforma-
tions that can prevent leakage of information, followed by the related work (section 6)
and the conclusion (section 7).

2 Examples

We focus on automatic leakage of information through the email system. A simple leak-
age scenario is one where specially crafted messages can lead to recipients divulging
private financial information to attackers. Such attack techniques are termed as ‘phish-
ing’ and are beyond the scope of this paper. Several types of information may be re-
garded as valuable by different classes of message senders. For example, a large set of
valid email users or the strength of message filtering rules of an email domain would
be valuable to bulk emailers. For these and other reasons senders may want to know if
their messages were read by the recipient, even if the recipient does not wish to release
an acknowledgment receipt. We provide some basic examples below how the system
could be manipulated to yield such confirmations.

2.1 Direct Disclosure

SMTP, the default email protocol, allows leakage of information, as discussed earlier.
In table 1 we list some of the reply codes that can be used for gaining confirmation of
valid/invalid email addresses and is an example of direct leakage. In addition, email-
control schemes using protocols layered on top of the SMTP protocol can also result in
leakage of information. For instance, graph-turing tests [12] generate a human-solvable
challenge for incoming messages, and accept messages only if the answer is correct.
However, issuing a challenge confirms that the recipient address is in use. As these
disclosures are made through feedback provided in the protocol, they can be prevented
by modifying the behavior of SMTP state machine. In the rest of the paper, we assume
that these disclosures can be prevented using policy-based control schemes for feedback
control [8] and don’t investigate them further.

2.2 Disclosure Through Leaky Mechanisms

Mechanisms that provide feedback beyond the SMTP reply codes are called leaky as
they can reveal information even if all SMTP feedback is prevented. For instance, bond
seizure [10] is one such means. We characterize these leakages as follows:

• Confirmation of email address: Confirmation of email addresses is desired (usu-
ally by bulk emailers) for increased ‘viewership’.
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Table 1. Leakage through SMTP reply codes

Reply Code Meaning Confirmation provided
251 User not local; will forward to 〈email address〉 Forwarding address
450 Mailbox unavailable Invalid address
452 Insufficient system storage Valid address
550 Mailbox unavailable Invalid address
551 User not local; try 〈email address〉 Forwarding address
553 Mailbox name not allowed Invalid address

• Leakage of sensitive information: Validity of address is known by sender; addi-
tional private information, like contents of filter rules, reputation lists are sought.

Example 1 (Leakage through monetary bonds). Consider a simple recipient policy
that allows messages from people not on her blacklist if they attach a bond valued at
least at $ a; for all other users, a bond worth $ b (b > a) is required. We represent this
policy informally next. A formal definition of syntax is presented later.

accept −if− some ‘allow’ rule is true and all ‘disallow’ rules are false (1)

allow −if− sender is not blacklisted and message is bonded with value a (2)

allow −if− for all other senders message is bonded with value b > a (3)

disallow −if− if message has an attachment with extension .scr (4)

First, assume the sender knows that an acceptance policy uses blacklists and bonds
together, but doesn’t know the values a and b. The sender can send a large number of
messages with different bonds and analyze seizure information to deduce a and b. If on
the other hand, policies are shared, the values are already known. With this informa-
tion, the sender can easily verify if an email address he can send mail from is in the
recipient’s blacklist or not – by sending as little as only one email message with bond of
value $ c, c ∈ (a,b) attached. Assuming that the targeted recipient seizes bonds for all
commercial mail delivered, no seizure or seizure of bond will prove to the sender that
he is not on the blacklist or not, respectively.

3 Formal Model

We assume that each message is evaluated by a single evaluation engine, unlike other
proposals [8]. We reconcile this design decision with existing proposals by admitting a
syntax that is more general, and can be specialized according to the needs.

3.1 Syntax

Definition 1 (Constraint domain). We use finite integer domain as the constraint do-
main, represented by R, that supports standard interpretation of the symbols =, �=, ≤
and ≥. We assume that non-numeric constants can be encoded in finite integer domain.

Definition 2 (Terms). Terms consist of only variables and constants. Constants are
from the set R. Tuples of terms t1, . . ., tN may be represented by

−→
t .
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Definition 3 (Primitive constraint). A primitive constraint is of the form q(t1, t2)
where q is a symbol from the set {=, �=, ≤, ≥} and t1, t2 are terms such that t1 is a
variable and t2 is a constant. We use infix notation to represent primitive constraints.

Definition 4 (Constraint). A constraint is conjunction (∧) of primitive constraints.

Definition 5 (Predicates). Predicate symbols are partitioned into three sets: RD,
which are the user defined predicates, RU , which are the system defined predicates,
and RA is the set of predicates that are guesses for predicates in RD. In particular, we
assume that top level predicate symbols allow and disallow ∈ RD and accept ∈ RU . .

We treat a message as a set of facts that constrain email message headers and con-
tent to sender supplied values. For instance, Mail From: abc@xyz is encoded as
atrbFrom(abc@xyz.com) where atrbFrom is an RD predicate. Example RD predicates
include atrbBond – representing attached bonds, atrbAttachment representing attach-
ments, etc. Predicates required for defining allow, disallow predicates are included in
RD, as discussed in the definition of clauses below.

Definition 6 (Private and Sensitive Predicates). Subsets of RD predicates, repre-
sented by P and L, form the set of private and sensitive predicates, respectively.

Definition 7 (System-defined Predicates RU ). RU predicates are further partitioned
into following sets:

Mch. For each predicate pi ∈ P , two predicate symbols, matchPi and matchNotPi

of same arity as pi, are reserved to be defined by the program. In addition for
every predicate Qj �∈ P , the program reserves predicate symbols QjMatchPi

and QjMatchNotPi.
Pes. For every predicate Q, such that Q �∈ P , the program reserves a predicate symbol

‘pesQ’, Q’s pessimistic version (defined in section 5).
Opt. For every predicate Q, such that Q �∈ P , the program reserves a predicate symbol

‘optQ’, Q’s optimistic version (defined in section 5).

Definition 8 (Atom and Literal). An atom is of the form q(t1, . . . , tn) where q is a
symbol from RD ∪ RU∪ {=, �=, ≤, ≥} and t1, . . . , tn are terms. A literal is an atom
(called a positive literal) or its negation (called a negative literal).

Definition 9 (Clause, Fact and Rule). A clause is of the form H ← B where H is an
atom, and B is a list of literals. A fact is a clause in which B is an empty list or a list
of literals with predicate symbols from the set {=, �=, ≤, ≥}. A clause is called a rule
otherwise.

Definition 10 (CLP Program). A CLP Program (simply a program) is a set of clauses.
For a program Π and a predicate P, P ∝ Π if for any rule H ← B1,. . .,Bn in Π , P =
Hθ or P = Biθ (i ∈ [1,n]) for some θ.

Definition 11 (Message). A message is a set of facts.
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Definition 12 (Mail Acceptance Policy). A mail acceptance policy, or simply, a policy
is a pair Π = 〈ΠR, ΠD〉 where ΠR is a set of rules (ruleset) and ΠD is a set of facts.
The program ΠR is required to be stratified and contain definitions of top level pred-
icate accept and at least one of the predicates: allow, disallow. The predicate symbol
accept is always defined as

accept(−−→msg) ← allow(−−→msg),¬disallow(−−→msg)

Here −−→msg tuple represents all the variables and their bindings derived from a message,
e.g., From, To, Time, Bond, etc., would all be included in the tuple. Predicates other than
allow, disallow may have single variables from −−→msg tuple as arguments.

3.2 Semantics

We reuse the three-valued semantics (with constructive negation) used in [8], which is
Fages’ fully abstract semantics (TP (I)= 〈T +

P (I), T−
P (I)〉) where symbols are as defined

in [6], P = Π∪ M where M is a message and I = 〈I+, I−〉 in which I+ and I− are
disjoint sets of constrained atoms, defined next.

Definition 13 (Constrained atom). A constrained atom is a pair c|A in which c is a
solvable constraint, A is an atom and free variables occurring in c also occur as free in
A. The set of all constrained atoms is denoted by B.

Definition 14. Immediate consequence function
T +

P (I) ={c|p(X)∈B | there exist a p(X)← d|A1, . . .,Am,¬Am+1,. . .,¬An ∈ P with
local variables Y, ci|Ai ∈ I+ for i∈[1,m] and cj |Aj ∈ I− for j∈[m+1,n] such that
c= ∃Y(d∧

∧n
i=ici) is satisfiable } T−

P (I) ={c|p(X)∈B | p(X)← dk|Ak,1,. . .,Ak,mk
, ¬

Ak,mk+1,. . .,¬Ak,nk
for every clause with head p ∈ P and local variables Yk, there

exist ek,1|Ak,1,. . ., ek,mk
|Ak,mk

∈ I− and ek,mk+1 | Ak,mk+1,. . .,ek,nk
|Ak,nk

∈ I+,
such that c=

∧
k∀Yk(¬ dk ∨

∨nk

i=iek,i) is satisfiable }.

Definition 15. Ordinal powers of TP

TP ↑ 0 = ∅; TP ↑ β = TP (TP ↑ β−1), β is a successor ordinal; TP ↑ α =
⊔

β<α TP ↑
β, in which α is a limit ordinal and

⊔
β<α TP ↑ β = 〈

⋃
β<α(TP ↑ β)+,

⋃
β<α(TP ↑

β)−〉.
A message is accepted if c| accept(−−→msg) ∈ T +

P ↑ ω where −−→msg is a tuple of headers
and content supplied in the message. The authors show that the decision procedure
using the presented semantics is complete [8].

Definition 16 (Extension of a predicate). Extension of a predicate p is the set ext(p)
⊂ T +

P (I) such that each constrained atom in ext(p) is of the form c| p(−→x ).

Space constraints prohibit us from defining Clark completion here, so we refer the
reader to Jaffar and Maher’s survey on CLP [7]; later examples can help unfamiliar
readers understand the concept better. We represent completion of a predicate p by p∗.

4 Attacker Model

An attacker is constrained to unlimited, but legal runs of the SMTP protocol. We make
following (worst-case) assumptions:
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• Form of policies used at an email domain may be known, e.g., use of blacklists,
whitelists, filters, etc. In particular ΠR (rule set) may be known but not ΠD (set of
facts) where contains definitions of private predicates.

• By observing protocol runs alone an attacker cannot conclude if a message was
delivered. (Recipient may silently drop messages.)

• Recipient acts on every delivered message, like, seizes bond for unwanted message,
etc.

4.1 Capabilities

Given a set of rules Π = {π1, . . . , πn}, and the set P ={q | q ∝ Π}, an attacker has
following capabilities:

1. Capability of computing Clark completion: For all q ∈ P , the attacker can com-
pute q∗, q’s Clark completion with respect to P .

2. Capability of unfold transformation [15, 17]: Given a rule πk: H ← A, B, C
where A, C ⊂ P and B ∈ P is a positive literal such that for some rule πi and some
θ where B = head(πi)θ, the attacker can transform πk to H ← A, body(πi)θ, C (here
head and body functions map a rule to the atom in its head and literals in its body,
respectively). Note that variables in πi and πk are renamed apart. We represent the
fully unfolded form of a program Π by Πω.

3. Capability of fold transformation [15, 17]: Given a rule πk: H ← A, B, C where
A, B, C ⊂ P such that for some rule πi and some θ such that B = body(πi)θ, the
attacker can transform πk to H ← A, head(πi)θ, C.

4. Capability of message generation: An attacker can generate any number of mes-
sages (Mi, . . . , Mn) of her choice.

(For additional information on unfold/fold transformation of logic programs the
reader is referred to [15, 17]).

4.2 Scripting an Attack

Next we show how an attack can be effected using capabilities defined above. Essen-
tially, the steps to an attack involve computing the fully unfolded form of accept predi-
cate, followed by computing its Clark completion. With this computed predicate an at-
tacker can design messages effectively, to verify her guesses. A sample attack is shown
next. The unfold/fold transformation belongs to NP complexity class [2], as does the
Clark completion operation. Overall, the complexity of policy attack is NP.

Example 2. We provide the formal syntax of policy in example 1 and show how an
attack can be orchestrated against it. Here, blacklist is a private predicate, whose
definition (or extension) is hidden from the attacker and atrbbond is a leaky predicate.
The rules (2), (3) and (4) from example 1 written in the above syntax are as follows:

allow(−→m) ← ¬blacklist(Y ), atrbbond(X), X ≥ 5
allow(−→m) ← blacklist(Y ), atrbbond(X), X ≥ 10

disallow(−→m) ← atrbext(‘.scr′)
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Similarly, rule (1) in example 1 is encoded as:

accept(−→m) ← allow(−→m),¬disallow(−→m)

Using the unfolding capability, accept predicate definitions can be transformed to (for
simplicity, we ignore disallow clause):

accept(−→m) ← ¬blacklist(Y ), atrbbond(X), X ≥ 5
accept(−→m) ← blacklist(Y ), atrbbond(X), X ≥ 10

Next the attacker can compute Clark completion of accept definition:

∀−→m accept(−→m)∗ ↔ ∃Y1, X1 ¬blacklist(Y1), atrbbond(X1), X1 ≥ 5
∨
∃Y2, X2 blacklist(Y2), atrbbond(X2), X2 ≥ 10

An attacker is now in a position to guess parts of the extension of blacklist using
following rule:

blacklist′(Yg) ← ¬accept(−→m1), accept(−→m2), atrbbond(X1),
atrbbond(X2), X1 ∈ [5, 10], X2 > 10

Here blacklist′ ∈ RA, is defined by the attacker. The attacker can send two messages
with all facts same except the bond values. The first message (m1) is bonded with a
value v ∈ (5,10) and second one (m2) bonded with a value greater than 10. It is easy
to see that if Yg ∈ ext(blacklist), then the sender will get one negative and one posi-
tive verification – c|accept(−→m1) ∈ T−

P (I) and c|accept(−→m2) ∈ T +
P (I); otherwise both

verifiers are positive.

5 Policy Transformations for Privacy

To prevent an attacker from deducing subsets of recipient maintained set(s) of private
information, we propose to transform the evaluation policy such that leakage signals are
rendered useless. There are two flavors of transformation that we propose: the sufficient
policy and the necessary policy transformation. Intuitively, the sufficient policy should
accept a message just in case the message is accepted by the original policy under all
possible definitions of the private predicates. On the other hand, the necessary policy
accepts a message for some definition of the private predicates in the original policy,
hence ensuring that only messages satisfying the necessary policy can satisfy the orig-
inal policy. These policies are designed to be used in tandem, i.e., single evaluation of
original policy is replaced by the evaluation of necessary and sufficient policies.

5.1 Transformation Algorithm

Transformation algorithm is discussed next. Since only those rules that use private liter-
als in their bodies can leak private information, the algorithm applies to such rules and
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Qu(
−→
Yu): − Q1(

−→
Y1), . . . , ¬Qv(

−→
Yv), p1(

−−→
X1,1), . . . , p1(

−−−→
Xm1,1), ¬p1(

−−−−−→
Xm1+1,1), . . . ,

¬p1(
−−−−−−→
Xm1+n1,1), . . . , pt′(

−−−→
Xt′,1), . . . , ¬pt′(

−−−−−−−→
Xmt′+nt′ ,t′), c.

For each clause in ΠR as shown above, add create following clauses, for each k and u, if not already
present: (with i ∈ [1, mk

′ ], j ∈ [1, nk
′ ], k

′ ∈ [1, t′])

pesQu(
−→
Yu): −QumatchP1(

−→
X1,

−→m), QumatchNotP1(
−→
X1,

−→m).
...

pesQu(
−→
Yu): −QumatchPt′(

−→
Xt′ , −→m), QumatchNotPt′(

−→
Xt′ , −→m).

QumatchPk(
−−−−→
Xmk+j ,

−→m): −pesQ1(
−→
Y1), . . . , ¬optQv(

−→
Yv), QumatchP1(

−−→
X1,1,

−→m), . . . ,

QumatchP1(
−−−→
Xm1,1,

−→m), . . . , QumatchPk(
−−→
X1,k, −→m), . . . , QumatchPk(

−−−−→
Xmk,k, −→m),

QumatchNotPk(
−−−−−→
Xmk+1,k, −→m), . . . , QumatchNotPk(

−−−−−−−−→
Xmk+(j−1),k, −→m),

QumatchNotPk(
−−−−−−−−→
Xmk+(j+1),k, −→m), . . . , QumatchNotPk(

−−−−−−→
Xmk+nk,k, −→m), . . . ,

QumatchPt′(
−−−→
X1,t′ , −→m), . . . , QumatchNotPt′(

−−−−−−−→
Xmt′+nt′ ,t′ , −→m),

−−−→
Xi,k

′ �= −−−−−−−→
Xm

k
′ +j,k

′ , c.

QumatchNotPk(
−→
Xi,

−→m): −pesQ1(
−→
Y1), . . . , ¬optQv(

−→
Yv), QumatchP1(

−−→
X1,1,

−→m), . . . ,

QumatchP1(
−−−−→
Xma,1,

−→m), . . . , QumatchPk(
−−→
X1,k, −→m), . . . , QumatchPk(

−−−−→
Xi−1,k, −→m),

QumatchPk(
−−−−→
Xi+1,k, −→m), . . . , QumatchPk(

−−−−→
Xmk,k, −→m), QumatchNotPk(

−−−−−→
Xmk+1,k, −→m), . . . ,

QumatchNotPk(
−−−−−−→
Xmk+nk,k, −→m), . . . , QumatchPt′(

−−−→
X1,t′ , −→m), . . . ,

QumatchNotPt′(
−−−−−−−→
Xmt′+nt′ ,t′ , −→m),

−−−→
Xi,k

′ �= −−−−−−−→
Xm

k
′ +j,k

′ , c.

optQu(
−→
Yu): −optQ1(

−→
Y1), . . . , ¬pesQv(

−→
Yv),

−−−→
Xi,k

′ �= −−−−−−−→
Xm

k
′ +j,k

′ , c.

Fig. 1. Transformation algorithm

leaves others unchanged. The transformation algorithm is shown in figure 1 and consists
of two transformations for each rule containing sensitive predicates and is described in
detail next.

Figure 1 begins with a general Horn clause representation of rules in ΠR with meta-
variables Qu, Qv and pk and −→m is the tuple of all variables used in ΠR. Qu(−→y ) repre-
sents a non-sensitive literal at the uth position in a rule, and can also appear in the head
of the rule. The rule is shown to have v non-sensitive predicates in its body and some
sensitive predicates pk, for k ∈ [1, t

′
], each used positively mk times and negatively nk

times. In other words, recursive calls and multiple calls to the same predicate may be
made in a rule, i.e., Qu may be in [Q1, Qv] or Qu1 = Qu2 for u1, u2 ∈ [1, v], u1 �=
u2. However, Qu cannot make recursive calls to itself through negation or include calls
such that the program dependency graph includes negative cycles, the stratification re-
striction. Also, each pk literal need not appear in the body of every Qu clause, i.e., both
mk and nk can be equal to zero.

As shown in the figure, each Qu definition is transformed to two related predicates,
viz., pesQu and optQu, where pesQu is the ‘pessimistic’ version of Qu, independent of
the definition of any private predicate used in the definition of Qu, and optQu is the ‘op-
timistic’ version of Qu predicate, which holds for ‘some’ definition of private predicates.
More precisely, optQu will hold if there exists some definition of private predicates used
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in the definition of Qu, such that Qu can be shown to hold in Π , whereas pesQu will
only hold if for all definitions of private predicates, Qu can be shown to hold true in Π .

It must be noted that the algorithm, as presented, does not include the details of how
transformed and non transformed rules are linked. Suppose there is a predicate Q(−→x )
in the body of a transformed clause that does not use any sensitive literals. The transfor-
mation still renames it as pesQ(−→x ) whenever it is used positively, and optQ(−→x ) when
it is used negatively. However, the transformed versions of the definition of Q(−→x ) are
not created since it does not use any sensitive predicates in the body. Hence we add two
rules for each such predicate, which are, pesQ(−→x ) ← Q(−→x ) and optQ(−→x ) ← Q(−→x ).
In example 3 we present a concrete example of this transformation.

Example 3. Pessimistic and optimistic transformations.
Consider the ΠR definition of predicate trusted(x,. . .,z) that uses non sensitive predi-
cates professor(Profile), student(Profile) and bonded(B, minValue) and private predi-
cate blacklist(XFrom) defined in ΠD (ignore the distinction between ‘atrb’ and other
predicates):

trusted(−→x ) ← professor(XFrom)
trusted(−→x ) ← student(XFrom),¬blacklist(XFrom)
trusted(−→x ) ← blacklist(XFrom), bonded(XX-Bnd, 5)

The optimistic and pessimistic forms of the predicate trusted in Πsuf are as follows.
For simplicity we retain the names of other predicates (i.e., student, professor, bonded
are unchanged), however, in reality, their pessimistic and optimistic versions coincide.
Also, we use trustedMB symbol for trustedMatchBlacklist and trustedMNB for trusted-
MatchNotBlacklist predicate due to space constraints:

pesT rusted(−→x ) ← professor(XFrom)
pesT rusted(−→x ) ← trustedMB(−→y1),

trustedMNB(−→y2)
trustedMB(−→y1) ← student(XFrom)

trustedMNB(−→y2) ← bonded(XX-Bnd, 5)
optT rusted(−→x ) ← student(XFrom)
optT rusted(−→x ) ← bonded(XX-Bnd, 5)

5.1.1 Necessary Policy
Intuitively, the necessary policy, Πnec, strips away sensitive predicates from the original
policy. The basic idea is to generate a policy where satisfaction requirements are in
terms of non-sensitive literals, while assuming the best possible scenario with respect to
the definition of sensitive predicates. This aim is achieved by the following definition of
top-level accept predicate (acceptnec(−−→msg) for clarity) and while example 4 illustrates
the basic idea:

acceptnec(−→m) ← optAllow(−→m),¬pesDisallow(−→m)
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Example 4 (Illustration of necessary policy). Consider a ruleset ΠR where B1 and
B2 are a list of positive literals with no literal belonging to P . Hence their ‘opt’ and
‘pes’ versions coincide. Also, p ∈ P

allow(−−→msg) ← B1, p(X) (5)

allow(−−→msg) ← B2,¬p(X) (6)

Applying the necessary transformation we get:

acceptnec(−→m) ← optAllow(−→m),¬pesDisallow(−→m)
optAllow(−→m) ← B1

optAllow(−→m) ← B2

By unfolding and completing the definition of acceptnec we get (−→y1 and −→y2 are free
variables in B1 and B2 respectively)

∀−→m acceptω∗
nec(

−→m) ↔ ∃−→y1 B1 ∨ ∃−→y2 B2

This policy accepts messages depending upon the clauses of the original policy, with
the change that sensitive predicate is dropped from rules 5,6.

5.1.2 Sufficient Policy
The basic idea behind this transformation is to syntactically match the uses of sensi-
tive literals in the body of rules with allow head, e.g., use pesAllow(−→m) in place of
allow(−→m). In other words, we wish to resolve away the uses of sensitive literals, akin
to the predicate elimination strategy proposed by Reiter [14]. The following top-level
predicate accept (acceptsuf for clarity) achieves this aim:

acceptsuf (−→m) ← pesAllow(−→m),¬optDisallow(−→m)

Example 5 (Illustration of sufficient policy). Consider the ruleset given by rules 5
and 6. The sufficient transformation of rules yields the following ruleset

acceptsuf (−→m) ← pesAllow(−→m),¬optDisallow(−→m)
pesAllow(−→m) ← matchP (X), matchNotP (X)

matchP (X,−→m) ← B1

matchNotP (X,−→m) ← B2

By unfolding and completing the definition of acceptsuf we get

∀−→m acceptω∗
suf (−→m) ↔ ∃−→y1,

−→y2 B1, B2

This policy accepts messages that simultaneously satisfy the bodies of clauses 5 and 6,
with private predicate stripped off from the rules.

5.2 Syntactic Properties

The syntactic properties of necessary and sufficient policies essentially state that the
predicates identified as private in the original policy do not occur in transformed poli-
cies. These follow in a straightforward manner from the transformation algorithm.
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Lemma 1. Given P ⊆ P such that if pi ∈ P and pi ∝ ΠR then pi �∝ Πnec (resp.
Πsuf ) where Πnec (resp. Πsuf ) is necessary (resp. sufficient) transformation of ΠR.

Corollary 2. Given P ⊆ P such that if pi ∈ P and pi ∝ ΠR then pω∗ or p do not
occur in Πω∗

nec (resp. Π∗
suf ).

5.3 Semantic Properties

To show how evaluation of Πnec and Πsuf instead of ΠR prevents sensitive leakages,
we need to show some semantic properties of the transformed rulesets. However, space
constraints don’t allow us to go into the full details of our claims, the theorems and
their proofs. Hence, we briefly describe the results informally and refer the interested
reader to a technical report [9] with complete results. However, here we state our main
theorem without its proof.

We use the following notations. The program corresponding to the original policy is
represented by P, where P = ΠR∪ΠD∪M , in which M is the message being evaluated,
ΠD is the set of private facts and ΠR is a ruleset. The sufficient transformation yields a
set of rules represented by Πsuf , whereas the necessary ruleset is represented by Πnec.
Assuming ΠD contains only facts constructed from private predicates, we denote the
program corresponding to Πsuf by PS , where PS = Πsuf ∪M and the program corre-
sponding to Πnec by PN , where PN = Πnec∪M . Both these programs are independent
of the definitions of the sensitive predicates.

The main theorem involves a general relation between satisfaction of ‘optimistic’
and ‘pessimistic’ versions of any literal and the satisfaction of the literal itself. Intu-
itively, this means that whenever the pessimistic version of a predicate is true, then the
original predicate is also true, irrespective of the truth values of the sensitive predicates.
Similarly, ‘optimistic’ version being satisfied implies that there is a possible definition
of private predicates (in the set of program facts, ΠD), such that the original predicate
is satisfied.

Theorem 3. Given a program P = ΠR ∪ ΠD ∪ M , in which ΠR ∪ ΠD is a policy
that includes sensitive predicates p1 to pt defined in ΠD and M is a set of facts, any
literal pesQu(−→y ) in the program PS = Πsuf ∪M or PN = Πnec ∪M , apart from the
accept(−−→msg) atom, is satisfied if and only if for all definitions of p1, . . . , pt Qu(−→y ) is
satisfied in P, and optQu(−→y ) is satisfied if and only if there exists some definition of
p1, . . . , pt such that Qu(−→y ) is satisfied.

With the help of the theorem above, semantic closeness of transformations to the orig-
inal policy can be shown in a straightforward manner. That is, transformed policies
are closest, semantically, to the original policy compared to any other policy that pro-
tects recipient’s private information. Based on semantic closeness, email policies can
be partially ordered (additional details can be found in [9]) and it can be shown that the
necessary policy is the least upper bound for all policies that protect recipient’s sensitive
information, while the sufficient policy the greatest lower bound.

Protection against attacks. Under the assumed capabilities of the attacker, the above
results enable us to prove certain results regarding the protection offered by the trans-
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formations. We summarize when an attacker can gain sensitive information and when
the information is protected, next. (For proofs see [9]).

• The attacker can gain knowledge of sensitive information (i.e., portions of ΠD) if
she knows the original ruleset (i.e., ΠR) and messages (i.e., Mi) are evaluated by
the original policy (i.e., the program ΠR ∪ ΠD ∪ Mi).

• Attacker’s knowledge of necessary and sufficient policy and evaluation of messages
by these policies does not lead to leakage of sensitive information.

• Attacker’s knowledge of original policy and evaluation of messages by sufficient
and necessary policies will not lead to leakage of sensitive information.

6 Related Work

Cryptanalysis of private-key cryptosystems through statistical attacks, like correlation
attacks [11], aim to determine the statistical relationship between outputs and inputs
of cryptographic transformations. Zhang, Tavares et al. [20] describe a zero informa-
tion leakage between the change of output(s) and prescribed change patterns in the
inputs for protecting against correlation attacks. Our approach resembles this informa-
tion theoretic model of protection against information leakage, however, we describe
how correlation-like attacks can be mounted against sets of Horn clauses and present a
transformation that can prevent against such attacks.

Our transformation procedure resembles the predicate elimination strategy, a com-
plete resolution proof strategy for multi-predicate formulas, proposed by Reiter [14].
Essentially, this strategy involves rewriting the theory with a predicate P ‘resolved
away’. Subsequently, a set of unsatisfiable P-independent clauses can be derived if the
original set of clauses were unsatisfiable. In our approach, we propose a strategy for
‘resolving away’ the private predicates in a given set of rules. However, our aim here
is not to detect unsatisfiability. Instead, we construct new clauses that do not leak any
discernible information to guessing attacks.

The third closely related work is of Delaune and Jacquemard [3], who give a theory
of dictionary attacks against cryptographic protocols. In their work, they claim that if
the set of possible values of the input is finite (and small), then a dictionary attack
(guessing attack) is only PTIME complex. They go on to give a theory of dictionary
attack by extending the classic Dolev-Yao intruder model for statistical inferences. In
our work, we adopt their attack model, and even though we require the attacker to be
able to handle a greater degree of computational complexity, the basis of launching
attacks remains the same.

Relational databases have mature techniques for both access control and inference
control. Access control protects direct access to sensitive information. In our case, we
assume that this is possible by policy specification and enforcement. Inference control
has been extensively studied in statistical databases and census data [4, 18, 1]. These ap-
proaches can be classified into restriction-based, or restricting queries, or perturbation-
based, i.e., addition of random noises to source data. Our approach is closer to the
restriction based techniques.

In restriction based inference control schemes, one of the concerns is of an attacker
deriving protected information through aggregation of separate queries. In other words,
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the protected information cannot be queried directly, but deducible from the results of
other queries. In the email domain, a query can be replaced by a message, and the
result of a query by a yes or no decision (i.e., accept or a reject). Even with a boolean
response, attackers can deduce relevant information. This is the reason why we claim
that inference attacks are easier to construct. Similar to their response, we transform the
evaluation policies, and thus reduce attacker’s capabilities to run some queries.

In summary, we have applied a well-studied problem to the context of email mes-
sages and showed that important information can be lost due to the current email de-
livery protocols and deployed mechanisms. Solutions applied to other domains are not
directly applicable to our domain, and therefore we provide a custom solution based
on program transformations, using ideas developed by researchers who have studied
similar problems in other domains.

7 Conclusion

In this paper we have identified an undesirable side effect of combining different email-
control mechanisms, namely, the leakage of sensitive information. Even though con-
fidentiality of sensitive information has been widely studied as a research problem, it
assumes a different form in the email context, because of the ease with which sensitive
information is leaked. We provide example scenarios where leakage is made possible
in two ways – using the message delivery protocol itself and using leakage channels
beyond the mail delivery protocol. Based on how these leakages may be used by an at-
tacker, we categorize them into two classes – automatic generation of acknowledgement
receipts for validating an email address and automatic generation of acknowledgments
for inferring private information about the recipient. As leakage channels beyond the
control of the delivery protocol can’t be closed by modifying email delivery protocol
alone, preventing leakages is hard to achieve. In particular, we investigate in detail the
second class of attacks where a victim’s sensitive information is leaked.

As opposed to the classical Dolev-Yao attacker [5], we define a new attacker model
and a new attack technique. In the worst case scenario, we assume that the attacker
knows recipient’s mail acceptance criteria, but not the sensitive information maintained
by the recipient. With the abilities of computing Clark completion of normal Horn
clauses, unfold/fold transformations and generating messages, the attacker can mount
attacks such that sensitive information is leaked. As a solution, we provide an algorith-
mic transformation which can sanitize the combination of email-control mechanisms,
so that the leakage is plugged, while being ‘closest’ semantically to the original policy.
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Abstract. We demonstrate how access control models and policies can
be represented by using term rewriting systems, and how rewriting may
be used for evaluating access requests and for proving properties of an
access control policy. We focus on two kinds of access control models:
discretionary models, based on access control lists (ACLs), and role-
based access control (RBAC) models. For RBAC models, we show that
we can specify several variants, including models with role hierarchies,
and constraints and support for security administrator review querying.

1 Introduction

Access control has long been recognised as being of fundamental importance
in computer security. In early work on access control models, Lampson [27]
described the use of a matrix for describing the access privileges that users may
exercise on system resources. Variations of the access matrix, typically Access
Control Lists (ACLs), are still very much in use today (see, for example, [16]).
In recent years, Role-Based Access Control (RBAC) [32,9] has emerged as the
principal form of access control model in theory and practice.

For all types of access control models, from the access matrix to RBAC, re-
searchers have recognised the importance of applying formal techniques to define
access control models, access policies and the operational methods used for ac-
cess request evaluation. Formal specification makes it possible to, for instance,
compare policies rigorously, to understand the consequences of modifying poli-
cies, and to prove properties of policies.

In this paper, we demonstrate how term rewriting [15,24,5] may be profitably
used in the formalisation of ACL and RBAC models and policies, and we demon-
strate the use of rewriting for access request evaluation with respect to policies
that are defined in terms of these models.

Term rewriting systems are usually defined by specifying a set of terms, and a
set of rewrite rules that are used to “reduce” terms. This simple idea is very pow-
erful: term rewriting techniques have been successfully applied to many domains
in the last 20 years. They have had deep influence in the development of com-
putational models, programming and specification languages, theorem provers
and proof assistants. More recently, rewriting techniques have been fruitfully ex-
ploited in the context of security protocols (see, for instance, [10]) and security
policies for controlling information leakage (see, for example, [17]).
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Although rewriting is widely applicable, its application to problems in access
control has hitherto been quite restricted (albeit [26], which uses graph trans-
formations, is a notable exception). Instead, the emphasis in the literature, on
the formalisation of access control, has been on the use of logic languages for (i)
the specification of access control requirements [9,22,12], and (ii) sound, com-
plete and PTIME operational methods for evaluating access control requests
with respect to policy requirements (see, for example, [8]). Nevertheless, there
are several reasons to consider the use of term rewriting approaches for ACL
and RBAC model definition, policy specification and access request checking.
The expressivity of term rewriting is an important reason for applying rewrite
techniques to access control: in the past, rewriting systems have been used to
specify, in a uniform way, several computational paradigms, including functional,
logic, imperative and concurrent ones (see, for example, [4,18,21]); in this paper
we will show that rewriting can also be used to define ACL and RBAC policies
in a uniform and formal way. Another important reason to use rewrite-based
languages to specify access control policies is that we can then apply rewrit-
ing techniques, and use tools such as ELAN [13,23], MAUDE [14] and CiME
(www.lri.fr), to study properties of the policies (for instance, to check conflu-
ence and termination of the reduction relation induced by the rewrite rules), to
test, compare and experiment with evaluation strategies, to automate equational
reasoning, and also for rapid prototyping of access policies. Rewriting systems
can provide a formal basis for the study of a broad range of security issues (e.g.,
authentication [1,20] and intrusion detection [2]). In this paper we will use term
rewriting systems for the specification, implementation and validation of ACL
and RBAC policies that are used to protect resources in centralised computer
systems from pre-authenticated system users.

The rest of this paper is organised as follows. In Section 2, some preliminary
notions are briefly described. Discretionary access control models are studied
in Section 3, where we show how to specify ACLs as rewrite systems and how
properties of ACL policies may be proven. In Section 4, we describe a variety
of RBAC policies as rewrite systems, and we demonstrate how properties of
these policies may be proven. In Section 5, we discuss related work. Finally, in
Section 6, we draw conclusions and make suggestions for further work.

2 Preliminaries

We begin by describing the principal components of ACLs and RBAC. We then
describe some basic notions on term rewriting. We refer the reader to [16,9,5]
for additional information on ACLs, RBAC and term rewriting, respectively.

2.1 The Access Matrix and Access Control Lists

The language of the access matrix [27] includes a finite set U of users (e.g., human
users and software agents), a finite set O of objects (e.g., files and directories),
and a finite set A of access privileges (e.g., read, write and execute privileges).
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The access matrix [27] itself includes a row for each subject, and a column
for each object in the system. Each cell of the matrix describes the set of access
privileges that a subject may exercise on an object. An access matrix is usually
implemented as an ACL, which records for each subject the privileges on objects
that are assigned to the subject. A reference monitor is used to evaluate requests
by subjects to exercise access privileges on an object. A user u ∈ U is authorised
to exercise an access privilege p ∈ P on an object o ∈ O if and only if the access
matrix/access control list includes an entry that specifies that u is assigned the
p privilege on o.

2.2 Role-Based Access Control

In very simple terms, the fundamental idea of RBAC is that:

– a user u of a resource o may be assigned to a set of roles {r1, . . . , rn} (usually
as a consequence of the user performing a job function in an organisation
e.g., doctor, CEO, etc);

– access privileges on resources are also assigned to roles;
– a user u may exercise an access privilege p on a resource o if and only if u is

assigned to a role r to which the privilege p on o is also assigned.

It follows, from the discussion above, that RBAC models/policies are specified
with respect to a domain of discourse that includes the sets U of users, O of
objects, and P of access privileges, together with a (finite) set R of roles.

The capability of assigning users to roles and permissions (i.e., access privilege
assignments on objects) to roles are primitive requirements of all RBAC mod-
els. The most basic category of RBAC model, flat RBAC [32] (or RBACF for
short), requires that these types of assignment are supported. The RBACH2A

model extends RBACF to include the notion of an RBAC role hierarchy (see
below) in addition to user-role and permission-role assignments. The RBACC3A

model extends RBACH2A by allowing constraints on policies to be represented,
and the RBACS4A model extends RBACC3A by allowing administrator queries
to be evaluated with respect to an RBAC policy specification. The flat RBAC,
RBACH2A, RBACC3A and RBACS4A models from [32] are referred to, respec-
tively, as RBACF , RBACP

H2A, RBACP
C3A and RBACP

S4A logic theories in the
formal representation of RBAC models in [9]. In the remainder of the paper,
we will refer to RBACF , RBACP

H2A, RBACP
C3A and RBACP

S4A theories rather
than models.

In the RBACP
H2A theory, the semantics of user-role assignment may be defined

in terms of a 2-place ura predicate (where ura is short for “user role assignment”)
and permission-role assignment can be defined in terms of a 3-place predicate
pra (where pra is short for “permission role assignment”). The extensions of
these predicates define role and permission assignments in a world of interest.

Definition 1. Let Π be an RBACP
H2A theory. Then,

– Π |= ura(u, r) if and only if user u ∈ U is assigned to role r ∈ R;
– Π |= pra(a, o, r) if and only if the access privilege a ∈ A on object o ∈ O is

assigned to the role r ∈ R.
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An RBACP
H2A role hierarchy is defined as a (partially) ordered (and finite) set of

roles. The ordering relation is a role seniority relation. In an RBACP
H2A theory

Π , a 2-place predicate senior to(ri, rj) is used to define the seniority ordering
between pairs of roles i.e., the role ri ∈ R is a more senior role (or more powerful
role) than role rj ∈ R. If ri is senior to rj then any user assigned to the role ri

has at least the permissions that users assigned to role rj have. Role hierarchies
are important for specifying implicitly the inheritance of access privileges on
resources.

The semantics of the senior to relation may be expressed, in terms of an
RBACP

H2A theory Π , thus:

– Π |= senior to(ri, rj) if and only if the role ri ∈ R is senior to the role
rj ∈ R in an RBACP

H2A role hierarchy.

The senior to relation may be defined as the reflexive-transitive closure of an
irreflexive-intransitive binary relation ds (where ds is short for “directly senior
to”). The semantics of ds may be expressed, in terms of an RBACP

H2A theory
Π , thus:

– Π |= ds(ri, rj) iff ri �= rj , the role ri ∈ R is senior to the role rj ∈ R in
an RBACP

H2A role hierarchy defined in Π , and there is no role rk ∈ R such
that [ds(rk, rj) ∧ ds(ri, rk)] holds where rk �= ri and rk �= rj .

Remark 1. In RBAC, users activate and deactivate roles in the course of session
management. Session management is an implementation issue, the details of
which will be the subject of future work.

Example 1. Suppose that the users u1 and u2 are assigned to the roles r2 and
r1 respectively, and that write (w) permission on object o1 is assigned to r1 and
read (r) permission on o1 is assigned to r2. Moreover, suppose that r1 is directly
senior to r2 in an RBACP

H2A role hierarchy. Then, using the notation introduced
above, this RBACH2A policy is represented by the relations:

ura(u1, r2), ura(u2, r1), pra(w, o1, r1), pra(r, o1, r2), ds(r1, r2).

User-role and permission-role assignments are related via the notion of an au-
thorisation. An authorisation is a triple (u, a, o) that expresses that the user u
has the a access privilege on the object o. Given an RBACP

H2A theory Π , the
set of authorisations AUT H defined by Π may be expressed thus:

(u, a, o) ∈ AUT H ⇔ ∃r1, r2.ura(u, r1) ∧ senior to(r1, r2) ∧ pra(a, o, r2)

According to the definition of the set AUT H above, a user u may exercise the
a access privilege on object o if:

u is assigned to the role r1,1 r1 is senior to a role r2 in an RBACP
H2A

role hierarchy, and r2 has been assigned the a access privilege on o.
1 Here we assume that u is also active in r1 at the time of any access request.
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Example 2. By inspection of the user-role assignments, permission-role assign-
ments, and the role seniority relationships that are specified in Example 1, it
follows that the set of authorisations that are included in AUT H is:

{(u2, w, o1), (u2, r, o1), (u1, r, o1)}.

To extend RBACH2A theories to RBACC3A theories, separation of duties con-
straints must be supported. The static separation of duties (ssd) constraint is
used to specify that a user cannot be assigned to a pair of mutually exclusive
roles [9]. The dynamic separation of duties (dsd) constraint is used to prevent a
user simultaneously activating a pair of roles that are specified as being dynam-
ically separated [9].

To extend RBACC3A programs to RBACS4A theories, permission-role review
must be possible in addition to user-role reviews, the latter being a requirement
of RBACF theories (see [32,9]). That is, it must be possible for security admin-
istrators to pose queries on RBAC policy specifications to determine (i) the set
of roles a user is assigned to, and (ii) the permissions that are assigned to roles.

2.3 Term Rewriting

Term rewriting systems can be seen as programming or specification languages,
or as formulae manipulating systems that can be used in various applications
such as operational-semantics specification, program optimisation or automated
theorem proving. We recall briefly the definition of first-order terms and term
rewriting systems, and refer the reader to [5] for further details and examples.

A signature F is a finite set of function symbols together with their (fixed)
arity. X denotes a denumerable set of variables, and T (F ,X ) denotes the set of
terms built up from F and X .

Terms are identified with finite labeled trees, as usual. The symbol at the
root of t is denoted by root(t). Positions are strings of positive integers. The
subterm of t at position p is denoted by t|p and the result of replacing t|p with
u at position p in t is denoted by t[u]p.

V(t) denotes the set of variables occurring in t. A term is linear if variables
in V(t) occur at most once in t. A term is ground if V(t) = ∅. Substitutions are
written as in {x1 &→ t1, . . . , xn &→ tn} where ti is assumed different from xi. We
use Greek letters for substitutions and postfix notation for their application.

Definition 2. Given a signature F , a term rewriting system on F is a set of
rewrite rules R = {li → ri}i∈I , where li, ri ∈ T (F ,X ), li �∈ X , and V(ri) ⊆ V(li).
A term t rewrites to a term u at position p with the rule l → r and the substitution
σ, written t →l→r

p u, or simply t →R u, if t|p = lσ and u = t[rσ]p. Such a term
t is called reducible. Irreducible terms are said to be in normal form.

We denote by →+
R (resp. →∗

R) the transitive (resp. transitive and reflexive) clo-
sure of the rewrite relation →R. The subindex R will be omitted when it is clear
from the context.

Example 3. Consider a signature for lists of natural numbers, with function
symbols:
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– Z (with arity 0) and S (with arity 1, denoting the successor function) to build
numbers;

– nil (with arity 0, to denote an empty list), cons (with arity 2, to construct
non-empty lists), and append(also with arity 2, to represent the operation
that concatenates two lists).

We can specify list concatenation with the following rewrite rules:

append(nil, x) → x
append(cons(y, x), z) → cons(y, append(x, z))

Then we have a reduction sequence:

append(cons(Z, nil), cons(S(Z), nil)) →∗ cons(Z, cons(S(Z), nil))

Let l → r and s → t be two rewrite rules (we assume that the variables of s → t
were renamed so that there is no common variable with l → r), p the position
of a non-variable subterm of s, and μ a most general unifier of s|p and l. Then
(tμ, sμ[rμ]p) is a critical pair formed from those rules. Note that s → t may be
a renamed version of l → r. In this case a superposition at the root position is
not considered a critical pair.

A term rewriting system R is:

– confluent if for all terms t, u, v: t →∗ u and t →∗ v implies u →∗ s and
v →∗ s, for some s;

– terminating (or strongly normalising) if all reduction sequences are finite;
– left-linear if all left-hand sides of rules in R are linear;
– non-overlapping if there are no critical pairs;
– orthogonal if it is left-linear and non-overlapping;
– non-duplicating if for all l → r ∈ R and x ∈ V(l), the number of occurrences

of x in r is less than or equal to the number of occurrences of x in l.

For example, the rewrite system in Example 3 is confluent, terminating, left-
linear and non-overlapping (therefore orthogonal), and non-duplicating.

A hierarchical union of rewrite systems consists of a set of rules defining
some basic functions (this is called the basis of the hierarchy) and a series of
enrichments. Each enrichment defines a new function or functions, using the
ones previously defined. Constructors may be shared between the basis and the
enrichments.

We recall a modularity result for termination of hierarchical unions from [19]
(Theorem 14), which will be useful later:

If in a hierarchical union the basis is non-duplicating and terminating, and
each enrichment satisfies a general scheme of recursion, where each recursive
call in the right-hand side of a rule uses subterms of the left-hand side, then the
hierarchical union is terminating.

3 Access Control Lists as a Rewrite System

In this section, we illustrate the use of rewriting systems to specify ACL policies
with an example. We do not claim that this is the only way to formalise an ACL
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policy as a rewrite system. Instead, our goal is to give an executable2 specification
of an ACL policy, to show some basic properties, and to address, using rewriting
techniques, the problem of checking that the specification is consistent, correct,
and complete (that is, no access can be both granted and denied, no unauthorised
access is granted and no authorised access is denied).

3.1 Rewrite Rules

Consider a set of objects, and a set of user-identifiers: U = {u1, . . . , un}, such
that each user has a certain number of access privileges on those objects. For
simplicity, assume that user identifiers are natural numbers, and to make the
example more concrete, assume that the objects are files and the access privileges
are read (r), write (w) or execute (x). For simplicity, we will only consider one
file (the generalisation to many files is straightforward). The policy that we will
model specifies that a user with an even identifier has rw rights (i.e., can read
and write on the file), whereas users with odd numbers can only read, and users
whose identifier is a multiple of 4 can read, write and also execute the file.

Users will request access to the file by using the function access, which will
grant or deny the access depending on the user and the operation requested.
Requests will be expressed as access(u, req) where u is a user-identifier and req
is either r, w or x. The request will be evaluated using the rewrite system RACL

given below; the result will be either grant or deny.
In the rewrite rules below, we denote variables with capital letters (e.g., U is

a variable), and function symbols (including constants) with lower-case letters
(e.g. r, w, x are constants). We use rem(n, m) to compute the remainder of the
division of n by m.

access(U, R) → acl(rem(U, 2), R, U)

acl(1, r, U) → grant
acl(1, w, U) → deny
acl(1, x, U) → deny

acl(0, r, U) → grant
acl(0, w, U) → grant
acl(0, x, U) → f(rem(U, 4))

f(0) → grant
f(1) → deny
f(2) → deny
f(3) → deny

For example, with these rewrite rules a request from user 101 to write on the
file is denied, whereas a request from user 20 to execute it is granted, since:

2 For instance, the language MAUDE [14] can be used to execute rewrite-based spec-
ifications.
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access(101, w) →∗
RACL

deny.
access(20, x) →∗

RACL
grant.

RACL provides an executable specification of the policy (the rewrite rules are
both a specification and an implementation of the access control function).

3.2 Properties of the Policy

In order for an access policy to be “acceptable”, it is necessary that the policy
satisfies certain acceptability criteria. As an informal example, it may be neces-
sary to ensure that an access policy formulation does not specify that any user
is granted and denied the same access privilege on the same data item (i.e., that
the policy is consistent).

The following properties of RACL are easy to check, and will be used to prove
that the policy specified is consistent, correct, and complete.

Property 1. The rewrite system RACL is terminating and confluent.

Proof. Termination is trivially obtained, since RACL is a first-order system,
and there are no recursive or mutually recursive functions.
To prove confluence, first note that there are no critical pairs, therefore the
system is locally confluent. Termination and local confluence imply conflu-
ence, by Newman’s Lemma [30].

Corollary 1. Every term has a unique normal form in RACL.

As a consequence of the unicity of normal forms, our specification of the access
control policy is consistent.

Property 2 (Consistency). For any user u and request req, it is not possible to
derive both grant and deny for a request access(u, req).

We can give a characterisation of the normal forms:

Property 3. The normal form of a ground term of the form access(u, req) where
u is a number and req ∈ {r, w, x} is either grant or deny.

As a consequence, our specification of the access control policy is total, in the
sense that any valid request (i.e., a request from a valid user to perform a valid
operation on an existing object) produces a result (a denial or an acceptance).

Property 4 (Totality). Each access request access(u, req) from a valid user u to
perform a valid operation req is either denied or granted.

Correctness and Completeness are also easy to check:

Property 5 (Correctness and Completeness). For any user u and request req:

– access(u, req) →∗ grant if and only if u has the access privilege req on the
file.

– access(u, req) →∗ deny if and only if u does not have the access privilege req
on the file.
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Proof. Since we have consistency and totality, it is sufficient to show:

access(u, req) →∗ grant if and only if u has the access privilege req.

This is shown by inspection of the rewrite rules.

4 RBAC Policy Specifications as Rewrite Systems

In this section, we specify RBAC policies in terms of a rewrite system that is
confluent and terminating. The normal forms of access requests are grant/deny
i.e., each access request is reducible to grant or deny but not both.

4.1 Rewrite Rules

As indicated in Section 2, RBAC policies are specified with respect to: a set U
of users, a set O of objects, a set A of access privileges, and a set R of roles.

We will use the function roles : U → List(R) to represent the assignment of
roles to users (note that a user may be assigned to several roles). Lists will be
built from constructors nil and cons (see Example 3), and we will write [e1, . . . , en]
as an abbreviation for the list constructed from the elements e1, . . . , en. It is
worth noting that a predicate ura, as discussed in Section 2, can also be specified
with rewrite rules, since predicates are boolean functions (in this case we could
define a function from pairs (u, r) ∈ (U ×R) to booleans True, False). However,
we prefer to model ura as a function from users to lists of roles because of the
additional advantages this provides. In particular, modelling ura as a function
makes it easy to obtain all of the roles that a specific user is assigned to. This is
an essential requirement of RBACF theories, which emphasise the importance
of performing administrative checks of user-role assignments from an RBAC
policy specification. The following rewrite rules specify a function roles, where
we assume U = {u1, . . . , un} and each rij ∈ R.

roles(u1) → [r11, . . . , r1i]
...

roles(un) → [rn1, . . . , rnk]

To represent the assignment of privileges to roles (called pra in Section 2), we
have again two design choices: we could use a boolean function (i.e., , a predicate)
with three arguments (role, access privilege, object) or we can use a function
priv from roles to lists of pairs (a, o) ∈ (A × O), priv : R → List(A × O).
The second approach has advantages from a security administrator’s point of
view, since a function priv, to compute the set of access privileges assigned to
a role, can be used to perform checks on the access policy specification (as
required for RBACP

S4A policies). We define priv by the following set of rules,
where ri, . . . , rn ∈ R, aij ∈ A, and oij ∈ O.

priv(r1) → [(a11, o11), . . . , (a1i, o1i)]
...

priv(rn) → [(an1, on1), . . . , (ank, onk)]
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Example 4. The user-role and permission-role assignments described in Exam-
ple 1 may be expressed by the following rewrite rules:

roles(u1) → [r2]
roles(u2) → [r1]
priv(r1) → [(w, o1)]
priv(r2) → [(r, o1)]

Access requests from users can be evaluated by using a rewrite system to grant
or deny the request according to the user-role and permission-role assignments
that are included in an RBAC policy specification. For that, we may use the
following rules, where U, A, O, R, L are variables and the operators member and
∪ are the standard membership test and union operators.

access(U, A, O) → check(member((A, O), privileges(roles(U))))
check(True) → grant
check(False) → deny

privileges(nil) → nil
privileges(cons(R, L)) → priv(R) ∪ privileges(L)

For example, with the assignment shown in Example 4, we have a reduction
sequence: access(u1, r, o1) →∗ grant.

In the discussion that follows, we will use RRBAC to refer to the rewrite system
that contains the set of rules that we have defined in this section.

4.2 Properties of the RBAC Policy

The following properties of RRBAC are easy to check and will be used to show
that the specification is consistent, correct and complete:

Property 6. The rewrite system RRBAC is terminating and confluent.

Proof. To prove termination, we use a modularity result for hierarchical
unions (see Section 2 and [19]). First, observe that the system RRBAC is
hierarchical: the rules defining roles, priv and check form the basis of the
hierarchy, they are trivially terminating since the right-hand sides of rules
are normal forms, and they are non-duplicating because the right-hand sides
contain no variables. The rules defining privileges are recursive, but the re-
cursive call is made on a subterm of the left-hand side argument. The rule
defining access is not recursive. Therefore, the rules defining privileges and
access satisfy the recursive scheme and the full system is terminating.
To prove confluence, first note that there are no critical pairs, therefore the
system is locally confluent. Termination and local confluence imply conflu-
ence, by Newman’s Lemma [30].

Corollary 2. Every term has a unique normal form in RRBAC .

As a consequence of the unicity of normal forms, our specification of the RBAC
policy RRBAC is consistent.
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Property 7 (Consistency). For any u ∈ U , a ∈ A, o ∈ O: it is not possible to
derive, from RRBAC , both grant and deny for a request access(u, a, o).

We can give a characterisation of the normal forms:

Property 8. The normal form of a ground term of the form access(u, a, o) where
u ∈ U , a ∈ A and o ∈ O is either grant or deny.

As a consequence, our specification of the access control policy is total.

Property 9 (Totality). Each access request access(u, a, o) from a valid user u to
perform a valid action a on the object o is either granted or denied.

Correctness and Completeness are also easy to check:

Property 10 (Correctness and Completeness). For any u ∈ U , a ∈ A, o ∈ O:

– access(u, a, o) →∗ grant if and only if u has the access privilege a on o.
– access(u, a, o) →∗ deny if and only if u does not have the access privilege a

on o.

Proof. Since the specification is consistent and total, it is sufficient to show that
access(u, a, o) →∗ grant if and only if u is assigned the access privilege a on the
object o. By inspection of the rewrite rules:

access(u, a, o) → check(member(a, o), privileges(roles(u)))

Therefore, the result is grant if and only (a, o) ∈ privileges(roles(u)) if and only
if (a, o) ∈ priv(r) for some r ∈ roles(u).

It is important to note that the proofs above do not have to be generated by
a security administrator; rather, the proofs demonstrate that an RBAC policy
RRBAC satisfies the properties described above. A security administrator can
simply base an RBAC policy on the term rewrite system that we have defined
and can be sure that the properties of RRBAC hold.

4.3 RBAC with a Hierarchy of Roles: RBACP
H2A Policies

It is easy to accommodate a notion of seniority of roles where a role inherits, via a
role hierarchy, the privileges of its subordinate roles (as explained in Section 2).
For that, we just add rules of the form dsub(ri) → [r1, . . . , rj ] to specify a
function dsub : R → List(R), where dsub(ri) = [r1, . . . , rj ] means that r1, . . . , rj

are direct subordinate roles of ri (hence ri is directly senior to r1 . . . rn). Then,
we redefine the privileges of a role as its privileges plus the privileges of its direct
subordinate roles. We use the functions dp to compute direct privileges (which
corresponds to the previously defined priv) and the function privileges defined
above:

priv(r) → dp(r) ∪ privileges(dsub(r))
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Note that we do not need to change the definition of access (see Section 4.1) to
accommodate hierarchies of roles, and we do not need to impose conditions on
the form that a role hierarchy takes (apart from an acyclicity condition, which
is a natural requirement for RBAC role hierarchies).

There are obvious optimisations that could be made if the hierarchy contains
sharing (i.e., we should avoid computing twice the privileges of a role if it appears
as a subordinate role of several of a user’s roles). For instance, we may want to
compute first all the roles of a user, including subordinate ones, and then the
privileges of this set of roles. Efficiency considerations will be addressed in future
work.

4.4 RBAC with Constraints and Reviews

For RBAC policies beyond RBACP
H2A policies, separation of duties constraints

must be supported and it must be possible for security administrators to review
policy specifications (beyond simple user-role reviewing). We can implement sev-
eral administrative checks on an RBAC policy, again as rewrite rules.

Separation of Duties is the property that specifies that roles assigned to a user
cannot be mutually exclusive. To ensure that a specification of an RBAC policy
satisfies the separation of duties property, we will erase conflicting roles assigned
to a user (producing a list of roles without mutually exclusive pairs). This is
obtained by evaluation of clean(roles(u)) in a rewrite system containing the rules:

clean(nil) → nil
clean(cons(R, L)) → cons(R, clean(eraseclash(R, L)))
eraseclash(R, nil) → nil

eraseclash(R, cons(R′, L)) → cons(R′, eraseclash(R, L)) (R, R′ do not clash)
eraseclash(R, cons(R′, L)) → eraseclash(L) (R, R′ clash)

Reviews. We can add to the specification RRBAC the rules given below. Then,
to check that every user has been assigned a role, an administrator could simply
evaluate the term RolesDefined?(u).

RolesDefined?(u) → review(roles(u))
review(nil) → “error: user without a role”

review(cons(r, lr)) → “OK”

5 Related Work

In terms of security applications, we note that the SPI-calculus [1] was developed
as an extension of the π-calculus for proving the correctness of authentication
protocols. In [3], the π-calculus is applied to reason about a number of basic ac-
cess control policies and access mechanisms. However, the work described in [3]
does not treat RBAC models and policies as rewrite systems. The work most
closely related to ours is Koch et al’s proposal [26]. In [26], RBAC is formalised
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by using a graph-based approach, with graph transformation rules used for de-
scribing the effects of actions as they relate to RBAC notions. This formalisation
is used by Koch et al as a basis for proving properties of RBAC specifications,
based on the categorical semantics of the graph transformations. Our work ad-
dresses similar issues to Koch et al’s work but provides a different formulation
of RBAC policies, and focuses on operational aspects. We use rewrite rules both
as a specification and an implementation of an access control policy. To obtain
efficient evaluators for request evaluation, sharing of computations is an impor-
tant issue; for that, we note that graph-based rewriting may be used to devise
efficient evaluation strategies.

In recent years, researchers have developed some sophisticated access control
models in which access control requirements may be expressed by using rules that
are employed to reason about authorised forms of access (see, for example, [22],
[11], and [9]). In these approaches, the requirements that must be satisfied in or-
der to access resources are specified by using rules expressed in (C)LP languages
and access request evaluation may be viewed as being performed by rewrit-
ing, using, for example, SLG-resolution [33] or constraint solvers [28]. Our term
rewriting approach offers similar attractions to the (C)LP approaches. We envis-
age term rewriting, or more generally, equational specifications, being used as an
alternative to (C)LP. Term rewriting offers an algebraic approach to specifica-
tion, where functional definitions can be easily accommodated. In this paper we
have used first-order rewriting system; we could also consider a more restricted
framework, for instance, orthogonal rewrite systems (in which case the conflu-
ence property is guaranteed). On the other hand, we could also consider more
general rewriting frameworks, such as higher-order rewriting systems [25,29], to
gain expressivity: we could then use higher-order functions in our policy speci-
fications.

6 Conclusions and Further Work

In this paper, we have described the representation of ACL policies and RBAC
policies as term rewrite systems. In particular, we have shown how different ac-
cess control models may be flexibly defined in a completely uniform way. We also
demonstrated how access requests may be evaluated with respect to an access
policy specification by term rewriting, and how (static) properties of policies
may be proven of ACL and RBAC policy specifications.

We have argued that term rewriting is particularly attractive in allowing mul-
tiple access control models and policies to be defined in a uniform way. In future
work, we intend to consider the use of term rewriting for the specification of
access control models other than ACL and RBAC. In particular, we wish to
consider the specification of usage control models [31] as term rewrite systems,
and access control models that may be used in a distributed computing envi-
ronments. We also intend to apply our term rewriting approach to problems
relating to the administration of RBAC policies (e.g., issues of administrative
delegation), and to the specification of RBAC policies that allow conditional
user-role, permission-role and denial-role assignments to be specified (see, for
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example, [6] and [9]). We also propose to investigate the use of policy material-
isation [22] and policy specialisation methods [8] for the optimisation of access
request evaluation with respect to the formulation of ACL and RBAC policies
as rewrite systems.

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus.
In Proc. 4th ACM Conf. on Computer and Communication Security, pages 36–47,
1997.

2. T. Abbes, A. Bouhoula, and M. Rusinowitch. Protocol analysis in intrusion detec-
tion using decision tree. In Proc. ITCC’04, pages 404–408, 2004.

3. J. Abendroth and C. Jensen. A unified security mechanism for networked applica-
tions. In SAC2003, pages 351–357, 2003.

4. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics for
declarative multi-paradigm languages. Journal of Symbolic Computation, 2004.

5. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

6. S. Barker. Data protection by logic programming. In Proc. 1st International Con-
ference on Computational Logic, volume 1861 of LNAI, pages 1300–1314. Springer-
Verlag, 2000.

7. S. Barker. Protecting deductive databases from unauthorized retrieval and update
requests. Journal of Data and Knowledge Engineering, 23(3):231–285, 2002.

8. S. Barker, M. Leuschel, and M. Varea. Efficient and flexible access control via jones
optimality logic program specialisation. HOSC, To Appear, 2006.

9. S. Barker and P. Stuckey. Flexible access control policy specification with constraint
logic programming. ACM Trans. on Information and System Security, 6(4):501–
546, 2003.

10. G. Barthe, G. Dufay, M. Huisman, and S. Melo de Sousa. Jakarta: a toolset to
reason about the JavaCard platform. In Proceedings of e-SMART’01, volume 2140
of Lecture Notes in Computer Science. Springer-Verlag, 2002.

11. E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A system to specify and manage
multipolicy access control models. In Proc. IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks (POLICY 2002), 2002.

12. E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for rea-
soning about access control models. In SACMAT, pages 41–52, 2001.

13. P. Borovansky, C. Kirchner, H. Kirchner, and P-E. Moreau. ELAN from a rewriting
logic point of view. Theoretical Computer Science, 285:155–185, 2002.

14. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In Rewriting Techniques and Applications (RTA
2003), number 2706 in Lecture Notes in Computer Science, pages 76–87. Springer-
Verlag, 2003.

15. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science: Formal Methods and Semantics,
volume B. North-Holland, 1989.

16. S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Access control:
principles and solutions. Softw., Pract. Exper., 33(5):397–421, 2003.

17. R. Echahed and F. Prost. Security policy in a declarative style. In Proc. 7th
ACM-SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming (PPDP’05). ACM Press, 2005.



Term Rewriting for Access Control 193

18. M. Fernández. Programming Languages and Operational Semantics: An Introduc-
tion. King’s College Publications, 2004.

19. M. Fernández and J.-P. Jouannaud. Modular termination of term rewriting systems
revisited. In Recent Trends in Data Type Specification. Proc. 10th. Workshop on
Specification of Abstract Data Types (ADT’94), number 906 in LNCS, 1995.

20. G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term
Rewriting Systems. JAR, 33 (3-4):341–383, 2004.

21. M. Hanus. A unified computation model for functional and logic programming. In
Proc. 24st ACM Symposium on Principles of Programming Languages (POPL’97),
ACM Press, 1997.

22. S. Jajodia, P. Samarati, M. Sapino, and V.S. Subrahmaninan. Flexible support for
multiple access control policies. ACM TODS, 26(2):214–260, 2001.

23. C. Kirchner, H. Kirchner, and M. Vittek. ELAN user manual. Nancy (France),
1995. Technical Report 95-R-342, CRIN.

24. J.-W. Klop. Term Rewriting Systems. In S. Abramsky, Dov.M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2. Oxford Uni-
versity Press, 1992.

25. J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems, introduction and survey. Theoretical Computer Science, 121:279–308,
1993.

26. M. Koch, L. Mancini, and F. Parisi-Presicce. A graph based formalism for rbac.
In SACMAT, pages 129–187, 2004.

27. Butler W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, 1974.
28. K. Marriott and P.J. Stuckey. Programming with Constraints: an Introduction.

MIT Press, 1998.
29. Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their conflu-

ence. Theoretical Computer Science, 192:3–29, 1998.
30. M.H.A. Newman. On theories with a combinatorial definition of equivalence. An-

nals of Mathematics, 43(2):223–243, 1942.
31. J. Park and R. Sandhu. The uconabc usage control model. ACM Trans. Inf. Syst.

Secur., 7(1):128–174, 2004.
32. R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access

control: Towards a unified standard. In Proc. 4th ACM Workshop on Role-Based
Access Control, pages 47–61, 2000.

33. The XSB System Version 2.7.1, Programmer’s Manual, 2005.



Discretionary and Mandatory Controls
for Role-Based Administration

Jason Crampton

Information Security Group, Royal Holloway, University of London
jason.crampton@rhul.ac.uk

Abstract. Role-based access control is an important way of limiting the
access users have to computing resources. While the basic concepts of
role-based access control are now well understood, there is no consensus
on the best approach to managing role-based systems. In this paper, we
introduce a new model for role-based administration, using the notions of
discretionary and mandatory controls. Our model provides a number of
important features that control the assignment of users and permissions
to roles. This means that we can limit the damage that can be done by
malicious administrative users. We compare our approach to a number
of other models for role-based administration, and demonstrate that our
model has several advantages.

1 Introduction

Role-based access control (RBAC) is an increasingly popular model for limiting
the access users have to resources provided by a computer system. A role pro-
vide a means of associating a group of users (typically corresponding to some
particular job within an organization) to some set of permissions (corresponding
to the functions and duties performed by users with that particular job).

“Administration” in the context of access control is a generic term that is
taken to mean the management of the sets and relations underpinning the access
control model. Adding users or changing the access rights associated with those
users are part of the administrative process, for example. The administration of
role-based systems using role-based principles has been less widely studied than
RBAC itself, although some important progress has been made [1,2,3]. A number
of important ideas have emerged from this work: RBAC96 introduces the idea
of administrative permissions [3]; ARBAC97 requires that the parameters of
administrative operations should satisfy certain conditions [2]; the RHA model
introduces the idea of administrative scope which divides the role hierarchy into
a number of different administrative domains [1].

The ANSI-RBAC standard was released in 2004 [4]. It is very strongly in-
fluenced by the RBAC96 model [3] and the NIST proposal for an RBAC stan-
dard [5]. It states the administrative functions that must be supported by an
RBAC system that is compliant with the standard. However, it provides no
model for administration, nor does it specify how those functions should be
implemented.

E. Damiani and P. Liu (Eds.): Data and Applications Security 2006, LNCS 4127, pp. 194–208, 2006.
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We believe, therefore, that there is a pressing need for a comprehensive model
for administration in role-based systems, and it is this need that we address in
this paper. Moreover, we believe that existing models for administration each
have certain limitations: primarily, the assignment of administrative permissions
to roles in RBAC96 is insufficiently structured and leads to a lack of control
over the propagation of permissions, while the highly structured approaches of
ARBAC97 and RHA are insufficiently flexible.

In this paper, we construct a general model for role-based administration
that takes advantage of some of the features of existing models and introduces
some new features. That is, we employ administrative permissions, divide the
role hierarchy into different administrative domains, and require that the pa-
rameters of an administrative operation meet certain conditions. In particular,
we will show that this approach provides far more control over which roles can
perform different administrative operations and provides stronger control over
which operations are permitted. We can insist that only a human resources role
can update the assignment of users to roles, for example, and that the assignment
of a user to a role only succeeds if the user, the role and the administrative role
performing the assignment satisfy certain conditions. Our approach also means
that we are able to require that different roles perform different types of opera-
tions within each administrative domain; what we call administrative separation
of duty.

In the next section we introduce our model for administration. We introduce
some prerequisite concepts from mathematics and RBAC, and then define ad-
ministrative permissions, domains and commands. We then define the extensions
to RBAC96 that are required to support role-based administration. In Sect. 4 we
introduce the use of separation of duty constraints for administration. In Sect. 5
we illustrate our approach using an example from the literature. In this section
we also compare our approach to related work. We conclude the paper in Sect. 6
by summarizing our contribution and suggesting some ideas for future work.

2 Foundations for a New Model for Administration

2.1 Mathematical Preliminaries

Let � be a reflexive, anti-symmetric, transitive binary relation on X . Then we
say (X, �) is a partially ordered set or poset. When the order relation is obvious
from context we will simply write “X is a poset”. We may write y � x whenever
x � y.

Let Y ⊆ X : we say y ∈ Y is a maximal element in Y if y � x implies that
x = y for all x ∈ Y . Informally, there is no element bigger than y in Y . A
minimal element of Y is defined analogously. We write max(Y ) (respectively
min(Y )) to denote the set of maximal (minimal) elements in Y . Let x, y ∈ X :
we say y is the parent of x if for any z ∈ X such that x < z � y, y = z.
In other words, y is the parent of x if there is no element of X that can “fit
between” x and y in the ordering. Given Y ⊆ X , we use the following notation:
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↓ Y = {x ∈ X : x � y, y ∈ Y }; ↑ Y = {x ∈ X : x � y, y ∈ Y }. We write ↓ x
rather than ↓{x} and ↑x rather than ↑{x}.

2.2 RBAC Preliminaries

A hierarchical role-based access control model1 has the following features [3,4]: a
partially ordered set of roles (R, �); a set of permissions P and a permission-role
assignment relation PA ⊆ P × R; a set of users U and a user-role assignment
relation UA ⊆ U × R. The set of roles available to a user u ∈ U is defined to
be {r ∈ R : r � r′, (u, r′) ∈ UA}, and the set of permissions available to u is
defined to be {p ∈ P : (p, r) ∈ PA, r � r′, (u, r′) ∈ UA}.

2.3 Administrative Permissions

In the early RBAC literature, permissions were simply “uninterpreted symbols”,
because the precise nature of permissions is “implementation and system depen-
dent” [3]. In the ANSI-RBAC standard, which is based on the RBAC96 model,
permissions are defined by an object and an action (or operation). In the context
of administrative permissions, it is instructive to actually specify the object and
action for each permission.

The RBAC96 model defines five sets, P , U , (R, �), UA ⊆ U × R, and
PA ⊆ P × R, and we require administrative permissions that can update each
of these sets. We assume that the partially ordered set of roles is implemented
by a role hierarchy relation RH ⊆ R×R. We assume that there are two generic
(primitive) actions add and delete, and that either of these actions may be
applied to one of the objects that define the role-based model. In other words,
we may add or delete entries from each of P , U , RH , UA, and PA. We will write
addX to denote the permission (add, X) and delX to denote the administrative
permission (delete, X), where X ∈ {P, U,RH ,UA,PA}.

2.4 Administrative Commands

A request to invoke an administrative permission is made by an administra-
tive role. The request will specify a number of parameters, determined by the
permission requested. For example, the parameters required when invoking the
addUA permission, which is a request to assign a user u to a role r, will obviously
be u and r, as well as the administrative role a in which the requesting user
is acting. In this paper, we will write parameterized administrative requests as
function calls and refer to them as administrative commands (in the style of
Harrison-Ruzzo-Ullman commands [6]).

Table 1 summarizes the ten administrative commands. It should be noted
that we have only stated the immediate effect of an administrative command.
In general, additional changes may need to be made: in particular, when a role
1 Both RBAC96 [3] and the ANSI-RBAC standard [4] distinguish between flat RBAC

(RBAC0 [3]) and hierarchical RBAC (RBAC1 [3]). This distinction is unnecessary
as an unordered set is a partially ordered set with an empty order relation.
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Table 1. Administrative commands

Command Effect Description

addU(a, u) U ← U ∪ {u} Create a new user account
addP(a, p) P ← P ∪ {p} Create a new permission
addR(a, r,C, P ) R ← R ∪ {r} Add role with children C and parents P
addE(a, c, p) RH ← RH ∪ {(c, p)} Add edge (c, p)
addUA(a, u, r) UA ← UA ∪ {(u, r)} Create a new user-role assignment
addPA(a, p, r) PA ← PA ∪ {(p, r)} Create a new permission-role assignment

is added or deleted, the set of edges (RH) will also need to be updated. We have
omitted these changes in order to simplify the presentation. We assume each
command is initiated by an administrative role a. For each add command, there
is a corresponding delete command; these commands are not shown in the table.

2.5 Administrative Domains

A fundamental part of our model is the concept of an administrative domain.
Intuitively, an administrative domain is a set of roles within the role hierarchy
that can be administered by the same role. Given a role hierarchy, we would
expect that an appropriate choice of domains would be quite apparent. However,
formalizing the notion of an administrative domain is rather more difficult.

In fact, it is easier to consider the set of administrative domains. This is
because it seems reasonable that there should be no overlap between different ad-
ministrative domains. The justification for this lies in the notions of “ownership”
and “responsibility”. Suppose that role r belongs to two different administrative
domains D1 and D2 and each domain is associated with an administrative role a1
and a2. Then if a1 assigns a user u to r, u may acquire certain roles and permis-
sions within D2 without a2’s knowledge or approval. This suggests that the set
of roles should be partitioned (in a mathematical sense) into different domains.

There is, however, one situation where overlapping domains would be intu-
itively reasonable, particularly within the context of RBAC. That is, when one
domain D2 is completely contained within a second D1. In this case, when a1
assigns u to a role within D1, any roles that u obtains in D2 through inheritance
are also contained within D1. Hence, we define the notion of a nested partition
of a set and use this to define an administrative partition of a set of roles.

Definition 1. Let X be a set. A family of sets Y = {Y1, . . . , Yn}, ∅ ⊂ Yi ⊆ X,
is a nested partition of X if X =

⋃n
i=1 Yi, and for all Yi, Yj ∈ Y, one of the

following conditions holds: (i) Yi ∩ Yj = ∅ (ii) Yi ⊆ Yj (iii) Yj ⊆ Yi.

Let (R, �) be a set of roles and let D = {D1, . . . , Dn}, Di ⊆ R. We say D is an
administrative partition of R if D is a nested partition of R. Each element of an
administrative partition is called an administrative domain. In other words, D
is an administrative partition if every role is contained in at least one domain
and every pair of domains either has empty intersection or one is completely
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contained in the other. Clearly, D = {R} is a (trivial) set of administrative
domains. At the other extreme, D = {{r1}, . . . , {rn}}, where R = {r1, . . . , rn},
is a set of administrative domains. Note that a set of administrative domains is
partially ordered by subset inclusion. In fact, we have the following two results.

Proposition 2. Let D be a set of administrative domains. Then for any D ∈ D,
D has at most one parent.

Proof. We need to show that if a domain D has a parent D′, then D′ is unique.
Suppose, in order to obtain a contradiction, that there exist two distinct domains
D′ and D′′ that are both parents of D. Now D′ ∩ D′′ �= ∅, since D ⊆ D′ ∩ D′′.
Hence, since D′ and D′′ are distinct administrative domains, either D′ ⊂ D′′ or
D′′ ⊂ D′. We can assume without loss of generality that D′ ⊂ D′′ and hence
D′′ is not a parent of D (since we have D ⊂ D′ ⊂ D′′). This is the required
contradiction and the result now follows.

Corollary 3. Let D be an administrative partition of R. Then the graph of the
reflexive transitive reduction of the poset (D,⊆) is a forest.

3 A New Administrative Model for RBAC96

We augment the standard RBAC96 model with a set of administrative domains
D and a domain-role assignment relation DA ⊆ D × R. We say r has admin-
istrative control over D if (D, r) ∈ DA. We say r is an administrative role if
(D, r) ∈ DA, for some D ∈ D. (If D = {R}, we do not require the DA relation.)
Let D, D′ ∈ D and D ⊆ D′. If r has administrative control over D′ then we
assume that r also has administrative control over D. Hence, the ordering on
the set of domains induces an ordering on the set of administrative roles.

We define a new relation assigning administrative permissions to roles APA ⊆
AP × R, where AP is the set of administrative permissions. An administrative
command is issued by (a user acting in) an administrative role a and is inter-
preted as an attempt to invoke an administrative permission with particular
parameters (chosen by the requesting user). An administrative command is per-
mitted if the discretionary administrative property and the mandatory adminis-
trative property are satisfied:

Property 1. The administrative command cmdX(a, . . . ) satisfies the
discretionary administrative property if (a, (cmd, X)) ∈ APA, where
cmd ∈ {add, delete}.

Property 2. The administrative command cmdX(a, . . . ) satisfies the mandatory
administrative property if the role parameters of the command belong to a do-
main over which a has administrative control. In particular:

– for addR(a, r, C, P ) to succeed, there must exist a domain D over which a
has administrative control and C, P ⊆ D;

– for addE(a, c, p) and delE(a, c, p) to succeed, there must exist a domain D
over which a has administrative control and c, p ∈ D;
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– for delR(a, r), addUA(a, u, r), addPA(a, p, r), delUA(a, u, r), and
delPA(a, p, r) to succeed, there must exist a domain D over which a
has administrative control and r ∈ D.

Note that if r has administrative control over D′ then r also has administra-
tive control over every domain D ∈ D such that D ⊆ D′. In other words, the
mandatory administrative property is similar to the simple security property of
the Bell-LaPadula model [7], which states that a subject s can read any object
o with a security label that is less than or equal to that of s.

3.1 User-Role Assignment

It is fairly easy to see that the existence of a role hierarchy means that admin-
istrative commands could affect more than one administrative domain. In this
section we introduce a further mandatory control on the execution of user-role
assignment commands.

This control is motivated by the following observation: the assignment of a
user u to a role r results in u being implicitly assigned (via inheritance in the role
hierarchy) to all roles r′ < r. In other words, if an administrative role assigns u
to a role r within its domain D, it may have an impact on the roles available
to u in an administrative domain D′ ⊃ D. Hence, a very natural (mandatory)
requirement on user-role assignment should be that u is already assigned to more
junior roles that are not in the administrative domain of the role to which u is to
be assigned. More formally, we have the following security property for user-role
assignment.

Property 3. The command addUA(a, u, r) satisfies the mandatory UA property
if there exists a domain D over which a has administrative control such that
r ∈ D and u is already assigned to all roles in max(↓r \ D).

Let us assume that an administrative role a has the permission to create new
user accounts. An important consequence of the mandatory UA property is that
an administrative role assigned to domain D cannot assign a new user to a role
r ∈ D unless ↓r ⊆ D. This means that it is impossible for an administrative user
(assigned to some administrative role), by virtue of the mandatory restrictions
on user-role assignment, to assign users to roles over which he has no control. In
other words, the damage that a malicious administrative user can do is limited
to the domain(s) he controls.

3.2 Permission-Role Assignment

Just as the act of assigning a user to a role r may have an impact outside the
domain controlled by the administrative role performing the assignment, the
act of assigning a permission to a role may also have undesirable consequences.
Consider the command addPA(a, p, r). If r belongs to a domain controlled by a
then we might expect that this command should be permitted. However, consider
the case when r < r′, p is not currently assigned to r′, and r′ does not belong
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to any domain controlled by a. In this case, a is “giving away” the permission
p and the permission leaks from the domain(s) to which it has previously been
confined. Hence we introduce a mandatory security property for permission-role
assignment.

Property 4. The command addPA(a, p, r) satifies the mandatory PA property
if there exists a domain D over which a has administrative control such that
r ∈ D and p is already assigned to all roles in min(↑r \ D).

An important consequence of the mandatory PA property is that an administra-
tive user cannot downgrade permissions, by assigning them to less senior roles
in the domain(s) he controls, beyond a certain level. As with the mandatory
UA property, the mandatory PA property limits the damage that a malicious
administrative user can do.

3.3 Automatic Assignment of Domains

Note that the union of the set of administrative domains is R. Therefore, we
need to specify which domain a newly created role should belong to. Intuitively,
we wish to assign the role to the most appropriate domain automatically. More
formally, we can specify that a newly created role r should belong to the smallest
domain D that contains P , where P is the set of parents of r.2 (Note that
“smallest domain” is well defined since the set of administrative domains can be
represented as a forest.)

3.4 Choosing Administrative Domains

Of course, the choice of appropriate administrative domains is an important
practical aspect of the model proposed in this paper. In fact, the notion of
administrative scope, introduced in the RHA model, can be particularly useful
in choosing administrative domains.

Definition 4 (Crampton [1]). The administrative scope of a role r, denoted
σ(r), is defined in the following way: σ(r) = {r′ � r :↑r′ ⊆↓r∪ ↑r}.

In other words, r′ ∈ σ(r) if any role bigger than r′ is comparable to r in the role
hierarchy. The intuition is that if r′ ∈ σ(r), then r “knows about” all the upward
inheritance from r′, and hence it is appropriate for r to be able to administer
r′. However, the reason that administrative scope is particularly useful in the
context of this paper is that it can be used to define a nested partition of R.

Lemma 5 (Crampton [8, Lemma 2]). Let r, r′ ∈ R. Then

σ(r) ∩ σ(r′) =

⎧⎪⎨
⎪⎩

σ(r) if r ∈ σ(r′),
σ(r′) if r′ ∈ σ(r),
∅ otherwise.

2 Note also that if role r is deleted, every domain to which r belongs has r removed
from it.
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Corollary 6. Σ(R) =
⋃

r∈R σ(r) defines a nested partition of R.

Proof. For all r ∈ R, r ∈ σ(r). Hence Σ(R) = R. The remaining condition for
Σ(R) to be a nested partition follows from Lemma 5.

Let R′ ⊆ R and write Σ(R′) for
⋃

r∈R′ σ(r). Then any R′ ⊆ R such that Σ(R′) =
R can be used to define a set of administrative domains. Figure 1 illustrates the
non-trivial domains (cardinality greater than 1) identified using administrative
scope. Each domain is enclosed by a broken line. {σ(a), σ(b), σ(c), σ(d)} would
be a suitable choice of administrative domains; each of these domains is enclosed
by a heavier broken line. The domain forest in this example is simply a root node
for σ(a), and three child nodes, one for each of the domains determined by the
administrative scope of b, c and d.

a

b c d

Fig. 1. Administrative domains from administrative scope

3.5 Checking Access Requests Using the Domain Forest

Given an administrative command with administrative role parameter a and role
parameters X , we can check whether the mandatory administrative properties
are satisfied by considering the sub-tree of the domain forest rooted at a. We
simply check whether each role in X is contained in one of the domains in the
sub-tree. The simplicity with which the satisfaction of mandatory properties
can be checked contrasts sharply with the difficulty of checking whether an
administrative command is permitted in the ARBAC97 model [1].

Of course, additional resources are required to store and maintain the domain
forest. In particular, the domain forest will need to be updated following an addR
or delR command. Nevertheless, we believe that the benefits that are obtained
by using the domain forest more than offset this disadvantage.
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4 Administrative Separation of Duty

We now introduce a second facet of our model for administration. We have
already seen that the mandatory UA and PA properties can prevent certain
types of administrative abuse. We now consider the use of separation of duty
constraints to further reduce the possibility that a single malicious user can com-
promise the security of a system through a sequence of administrative commands.

Separation of duty is an important control principle in management whereby
sensitive combinations of duties are partitioned between different individuals
in order to prevent the violation of business rules. The research community
has taken an active interest in incorporating separation of duty controls into
computer systems since the late 1980s. One of the rules of the Clark-Wilson
model [6] requires that separation of duty requirements must be met. In recent
years, a number of papers have studied separation of duty in the context of
RBAC [9,10,11,12,13,14].

Many of these papers have considered rather complex separation of duty re-
quirements. In the context of role-based administration, we claim that the re-
quirements are rather simple, so we will confine our attention to a very simple
model for separation of duty. The model is based on the RBAC96 notion of mu-
tually exclusive roles. However, in our case we will consider mutually exclusive
permissions.

Definition 7. An administrative separation of duty (ASD) constraint is a set
of administrative permissions. An ASD constraint C is satisfied provided no
user is assigned to all the permissions in C. An ASD policy is a family of ASD
constraints.

As a motivating example, let us assume that we wish to separate the following
functions: the creation of new user accounts (or simply users) and the assignment
of users to roles. We might wish to do this so that one user cannot create a new
user account and assign it to roles, preferring instead that a user acting in some
IT support role is responsible for creating users and a user acting in some human
resources role is responsible for deciding which roles are relevant to a user’s job.
In order to realize this requirement, we specify the separation of duty constraint
{addU, addUA}. This constraint is satisfied provided no user is assigned to both
permissions (via the UA and APA relations).

In the case when |C| = 2, we can ensure the satisfaction of C by assigning
each permission to different administrative roles a1 and a2, and ensuring that no
user is assigned to both roles. In other words, we can convert the ASD constraint
on administrative permissions into an ASD constraint on administrative roles.
In fact, we can ensure the satisfaction of any ASD constraint {p1, . . . , pn} by
re-writing it as a set of ASD constraints on administrative roles. Specifically, we
ensure that each permission pi is assigned to a different administrative role ai

and define the constraints {{ai, aj} : 1 � i < j � n}. Now we can be assured
that the ASD constraint on administrative permissions is satisfied provided the
ASD policy on administrative roles is satisfied. It is quite straightforward to
ensure that this policy is always satisfied:
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– at system initialization we simply check each user’s administrative role as-
signments;

– before allowing any command of the form addUA(a, u, a′), where a′ is an
administrative role, we must check that, if there exists an ASD constraint of
the form {a′, a′′}, then u is not already assigned to a′′.

Suppose, for example, that {a1, a2} is an ASD constraint on administrative roles
and u is already assigned to a1. Then the command addUA(a, u, a2) must fail,
because allowing it to succeed would violate the ASD constraint.

Another constraint that is likely to be useful in practice is {addUA, addPA},
which would prevent any administrative role from establishing a link between a
user and a particular permission by assigning them to the same role. In practice,
we might assign addUA to human resources and addPA to senior operational roles
within each domain. Clearly, the set of constraints that will be used in practice
will vary depending on the environment and on the personnel available.

5 Related Work

As we noted in the introduction, there have been two generic approaches to
administration of role-based systems. We now consider these approaches in more
detail and compare them to our approach. In order to provide a concrete basis for
this discussion, we introduce an example from the literature. This also provides
an opportunity to illustrate the use of our model.

Figure 2(a) shows a typical role hierarchy that has been used as an illustrative
example by Sandhu [2]. The hierarchy should be considered in the context of a
software engineering company, with two projects under the leadership of roles
PL1 and PL2. All employees are assigned to the E role and all software engineers
are assigned to the ED (engineering department) role. Each project has its own
security officer role (PSO1 and PSO2); the engineering department has a security
officer role (DSO); and the company has a senior security officer (SSO).

It is clear that there are four main administrative domains, one corresponding
to each of the projects, one corresponding to the department (which incorpo-
rates both project teams) and one corresponding to the whole role hierarchy.
These domains (sets of roles) are enclosed by dashed lines in Fig. 2. The PSO
roles have control over their respective projects, while the DSO and SSO roles
have control over the department and organization domains. Hence we would
suggest the following administrative configuration: we define the set of adminis-
trative domains to be {DP1 , DP2 , DEng , R}, where DPi = {ENGi, PEi, QEi, PLi}3

and DEng = {ED} ∪ DP1 ∪ DP2 ; and we define the domain assignment rela-
tion to be {(DP1 , PSO1), (DP2 , PSO2), (DEng , DSO), (R, SSO)}. Note that D1, D2 ⊆
DEng ⊆ R induces the following partial order on the set of administrative roles:
PSO1, PSO2 < DSO < SSO. In addition we would need to assign administrative
permissions to each administrative role.

The mandatory UA property allows the PSO roles to assign u to a role in their
respective domains if u is already assigned to ED; DSO can assign u to a role in
3 Note that σ(PLi) = {ENGi, PEi, QEi, PLi}.
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DIR

PL1

PE1 QE1 PE2

PL2

QE2

ENG2ENG1

ED

E

(a) A role hierarchy

PSO1 ED {E1, PE1, QE1}

PSO2 ED {E2, PE2, QE2}

DSO ED {E1, . . . , PL1, E2, . . . , PL2}

SSO E {ED, . . . , DIR}

(b) The can assign relation

PSO1 {E1, PE1, QE1}

PSO1 {E2, PE2, QE2}

DS0 {E1, . . . , PL1, E2, . . . , PL2}

SSO {ED, . . . , DIR}

(c) The can revoke relation

Fig. 2. An ARBAC97 example [2]

DEng if u is already assigned to E; and SSO can assign any user to any role in R.
In other words, the larger the domain controlled by an administrative role, the
more trust is placed in that role regarding administrative operations.

5.1 “Mandatory” Approaches

The ARBAC97 model was designed specifically as a management model for
RBAC96. It includes three sub-models URA97, PRA97, and RRA97, for man-
aging user-role assignment, permission-role assignment and role-role assignment
(the role hierarchy), respectively.

Each of the three sub-models uses relations that control what administrative
roles are permitted to do. Each of these relations (can assign and can revoke in
URA97, can assignp and can revokep in PRA97, and can modify in RRA97)
define sets of roles that each administrative role is permitted to change. An
element (a, q, R′) ∈ can assign, for example, means that an administrative role
a can assign any user who is assigned to the “prerequisite” role q ∈ R to any
role in the set R′ ⊆ R.

Figure 2 shows examples of the two URA97 relations. The project security
officers (PSO1 and PSO2), for example, can assign a user to roles in their respective
projects, provided the user is already assigned to ED. The departmental and
senior security officer roles (DSO and SSO) have greater powers to assign users to
roles. Similarly, the different security officer roles can revoke roles from different
sets of roles in the hierarchy, as specified by the can revoke relation.

Note that our model for administration is very much simpler than ARBAC97.
We only require a domain-role assignment relation and the APA relation.
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Indeed, Fig. 2 omits the other ARBAC97 relations, can assignp, can revokep
and can modify.

The ARBAC97 approach mixes the definition of administrative domains with
administrative rights. Our proposed approach to role-based administration sep-
arates the specification of administrative domains and the assignment of admin-
istrative rights. One useful consequence of this is that we only need to specify a
set of administrative domains and a domain-role assignment relation.

The ARBAC97 model assumes that can-assign and the other relations in
the model are static. This means that if a new role is added to the hierarchy,
for example, no constraints can be imposed on the assignment of users (and
permissions) to that role. We believe that the static nature of ARBAC97 relations
is a considerable disadvantage.

The role sets specified in ARBAC97 relations are always expressed as ranges
within the partially ordered set of roles. Moreover, it is impossible to delete a
role that is the end-point of a range in an ARBAC97 relation. A particularly
significant limitation of ARBAC97 is the requirement in RRA97 that all ranges
in the can modify relation are encapsulated [2] and that all hierarchy operations
should preserve the encapsulation of ranges defined in the can modify relation.
One side effect of this requirement is that the creation of a role with either no
parent or no child will violate the encapsulation of some encapsulated range in
the hierarchy and hence such operations are prohibited. In addition, encapsulated
ranges are actually quite rare in partially ordered sets.4 In short, the use of ranges
leads to significant usability problems for the ARBAC97 model.

The ARBAC02 model extends ARBAC97 by introducing organizational
units [15]. The main motivation for this seems to be to reduce the number
of steps that are required when assigning users (and permissions) to roles. This
problem arises as a consequence of the use of prerequisite roles in the can assign
and can assignp relations. Organizational units are nothing more than groups
of roles and hence can be thought of as administrative domains. The designers
of ARBAC02 do not impose any structure on organizational units. Can one role
belong to two different organizational units, for example? Organizational units
are only used to simplify the prerequisite conditions in the assignment relations
can assign and can assignp, which seems a wasted opportunity.

The RHA family of models defines the notion of administrative scope.
Whether a request to perform an administrative action is permitted is defined
in terms of administrative scope. In this respect, administrative scope is similar
to the different role ranges that are defined in each of the ARBAC97 relations.
The big advantage of RHA over ARBAC97 is that a single set of roles (namely
administrative scope) is used to determine the success or otherwise of admin-
istrative commands. In many ways, the RHA family of models is simpler and
more versatile than ARBAC97 [1].

However, RHA shares one weakness with ARBAC97: it is vulnerable to
changes in the role hierarchy, because the administrative domains are defined
in terms of the role hierarchy structure itself. In ARBAC97, domains are defined

4 A comprehensive analysis of the shortcomings of ARBAC97 can be found in [1].
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by encapsulated ranges; in RHA, domains are defined by administrative scope.
Hence, it is necessary to perform some additional checks before allowing hierar-
chy operations, in order to check that administrative domains are preserved by
the operation. Again, it turns out that this is easier to check whether domains
are preserved in RHA than in ARBAC97, but it is still an overhead [8]. In other
words, we believe the approach advocated in this paper, in which domains are
simply specified by the system administrator and then left to evolve according
to the successful execution of commands by administrative roles, is likely to lead
to more useable systems.

5.2 “Discretionary” Approaches

The RBAC96 family of models does not explicitly include administrative func-
tionality. The original paper on RBAC96 suggests that the model can be aug-
mented by administrative permissions and roles, as well as an administrative
role hierarchy and an administrative permission-role assignment relation. This
approach assumes that there is a single administrative domain D.

There are two significant disadvantages to this approach. Firstly, it is rather
difficult to provide fine-grained administrative control: an administrative role
either has an administrative permission or it doesn’t. Secondly, it is difficult
to reason about the propagation of permissions to users, for reasons similar to
those that make it difficult to reason about the propagation of access rights in
a protection matrix [6].

X-GTRBAC is an XML-based RBAC model that includes temporal con-
straints on the activation of roles. Bhatti et al have proposed an administra-
tive model for X-GTRBAC based on the use of administrative permissions [16].
The interesting aspect of X-GTRBAC Admin is its introduction of adminis-
trative domains and the association of administrative permissions with admin-
istrative domains. However, X-GTRBAC Admin simply defines domains and
associates roles and permissions with each domain. Like ARBAC02, it makes
no attempt to impose any structure on administrative domains or to exploit
the existence of domains in any way. As such, X-GTRBAC Admin simply ex-
tends the administrative model of RBAC96 by the introduction of administra-
tive domains, but does not take advantage of the additional possibilities that
this provides.

6 Conclusion

In this paper we have introduced a new model for role-based administration.
To our knowledge, this is the first model to combine the use of administrative
permissions and conditions on the parameters of an administrative command.
These requirements are characterized as discretionary and mandatory adminis-
trative controls, respectively. The mandatory controls limit the extent to which
administrative users can propagate user- and permission-role assignments, mak-
ing it more difficult for an administrative user to compromise or damage the
access control system (either deliberately or accidentally).
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We believe that our model offers a number of advantages over existing ap-
proaches to role-based administration. In particular, it is more flexible than
approaches such as ARBAC97 and RHA because it does not require adminis-
trative domains to have a particular structure (beyond requiring that the set
of domains forms a nested partition of R). Nevertheless, it does incorporate
mandatory controls, which means it provides greater control over the evolution
of the access control system than unstructured approaches such as RBAC96 and
X-GTRBAC Admin.

One obvious aspect of future work will be the development of a prototype im-
plementation. On a more theoretical level, it would be interesting to see whether
further mandatory properties are required for hierarchy operations. For example,
should we limit the ability of a senior administrative role to add an edge between
roles in two different domains? Our recent paper considers what conditions need
to be placed on hierarchy operations in order to preserve administrative scope in
the RHA model and encapsulated ranges in ARBAC97 [8]. It will be interesting
to investigate whether analogous conditions are required or can be used for the
less structured model described in this paper.
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Abstract. It is often necessary for organizations to come together in a coalition
to share services, without prior planning, to accomplish certain tasks. The dy-
namic coalition-based access control (DCBAC) model facilitates the formation
of dynamic coalitions through the use of a registry service, where available ser-
vices can be advertised by potential coalition members. The central component of
the DCBAC model is the distributed coalition service registry (DCSR). Depend-
ing upon the levels of service needed by the service providers and requesters,
DCSR provides different functionality. We define three levels of DCSR services:
(i) Registry Service (ii)Authenticator Service, and (iii) Query Service. For the last
service, DCSR answers a specific question directly by using the information re-
sources of service providers, when the requester has needed credentials. No direct
interactions are needed between the coalition members in this level of service. In
this paper, we describe our service-oriented approach to DCSR design and show
the flexibility that it offers. The design features are tested through a prototype
DCBAC system built using the .Net framework.

1 Introduction

It is often necessary for organizations to come together to share resources without prior
planning to accomplish a certain task. This is driven by a number of applications includ-
ing emergency and disaster management, peace keeping, humanitarian operations, or
simply virtual enterprises. Typically, resource sharing is done by establishing alliances
and collaborations, also known as coalitions. Secure sharing methods, typically used
in an intra-organizational setup, may incur significant administrative overhead since
they may require access identification for each user who requests resource access. Such
methods do not suit the needs of a dynamic coalition where entities may join or leave
the coalition in an ad-hoc manner or where they need to be formed without warning.
As an example, in a natural disaster scenario such as Hurricane Katrina in 2005, gov-
ernment agencies (e.g. FEMA, local police and fire departments), non-government or-
ganizations (e.g., Red Cross) and private organization (e.g., local hospitals, suppliers of
emergency provisions) needed to share information about victims, supplies and logis-
tics. While they may have had some on-going information sharing, increased resource
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sharing was needed to directly address the situation and they could have benefited from
an automated coalition establishment.

In an earlier work [11], we proposed a dynamic coalition-based access control
(DCBAC) model that enables coalitions to be formed dynamically. Its central compo-
nent is a coalition service registry (CSR) similar to the model adopted for web service
through which services are offered to potential collaborators. Such a model mitigates
the need to negotiate and establish collaboration policies among coalition entities. Any
entity can set its own sharing policies, describe the types of services that it is willing
to share, and specify the required organizational credentials needed to access these ser-
vices. Any coalition entity with rights to the CSR can search the CSR to find relevant
resources. Once found, a coalition entity can obtain a ticket to request the resource
from its owner by submitting its entity’s credentials and having them evaluated by the
CSR. In a later work [6], we extended the concept of a centralized registry to a dis-
tributed CSR (DCSR) in order to promote improved availability, higher concurrency,
better response times and enhanced flexibility. In a distributed DSCR architecture as
seen in Figure 1, several service registry agents cooperate to provide controlled access
to resources.

In this paper, we extend our previous work to suit situations where not all coalitions
need the same level of service. At one extreme, we may have a coalition of members
who simply want a service registry to provide registry service and nothing more (e.g.,
UDDI, DNS, LDAP, etc.). At the other extreme, we may have a coalition where mem-
bers need the service registry to provide credential checking or to even act as the entity
that retrieves and processes the information needed. We examine these two ends of the
spectrum as well as a level in between. Specifically, we consider the following three
service levels:

1. Information Resource Registry Service: Here, DCSR service is simply a registry
- a place for potential coalition members to locate resources that might be of use.
Members themselves perform all needed authorizations and interact directly with
one another.

2. Authenticator Service: Besides performing the registry service, DCSR also per-
forms organizational authentication for requesters. Thus, service providers will
only get requests from the types of organizations with which they are willing to
share their resources. Resource providers need only check individual credentials to
ensure that the individual making the request should have the right to access the
resource.

3. Query Service: Here, DCSR acts as a portal for all shared coalition services. The
coalition members trust the portal to check all credentials. The portal has access
to all information that the resource providers are willing to share and can combine
the information to provide the resource requester with more than simple access to
relevant resources.

These levels of service depend upon four characteristics of coalition membership: (i)
the level of trust amongst coalition members; (ii) the level of trust that the members have
towards DCSR; (iii) the level of processing and security capabilities of the coalition
members; and (iv) the level of desire for anonymity.
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Table 1. Summary of DSCR Service Characteristics

Service Level Level of Trust Level of Access Coalition Member
Control in DCSR Left to Members Anonymity

Registry Low High Low
Authenticator Service Med Med Low
Query Service High Low Med

Functions provided by DCSR depend upon the level of service required by the coali-
tions. We group them into the following four categories: Authentication, Registration,
Querying, and Routing. For the first level of service, only registration functions are
needed to register organizations and the services they provide. For the second level of
service, both registration and authentication functions are needed to authenticate the or-
ganizational level credentials of service requesters on behalf of the resource providers.
For the third level of service, all four categories – registration, authentication, routing,
and querying – are needed.

Access control research in the area of dynamic coalitions is relatively new. Philips
et al. [9] described the dynamic coalition problem by providing several motivating sce-
narios in a defense and disaster recovery settings. They have developed a prototype that
controls access to APIs and software artifacts [8]. Cohen et al. [3] proposed a model
that captures the entities involved in coalition resource sharing and identifies the inter-
relationships among them. In [1,5], the researchers addressed the issue of automating
the negotiation of policy between coalition members in a dynamic coalition. Finally,
in [12], Yu et al proposed automated mechanisms for trust building between entities
using digital credentials Our research complements these works by addressing the issue
of automatic translation of coalition level policies to the implementation level policies,
and vice versa. Our approach [11,6] concentrated on enabling coalitions to be formed
dynamically through a coalition service registry. In this paper, we expand our ideas on
the functionality of the coalition service registry to meet the needs of various types of
coalitions and we provide our initial results in implementing these ideas.

This paper is organized as follows. In section 2, we describe the proposed service-
level architecture of DCSR. In section 3, we provide details of DCSR design.
Section 4 describes the prototype implementation that serves as a proof-of-concept.
Finally, section 5 summarizes the contributions and describes future work.

2 DCSR: Functions and Services

Depending upon the service level, the DCSR provides a subset of the following func-
tions as shown in Table 2: Registration, Authentication, Authorization, Query Process-
ing, Request Routing.

The Registration function is used whenever a member intends to share its local
services with the coalition. The registration process is as follows.

1. The member (or service provider) sends a service registration request to DCSR. The
request consists of details such as API (methods), key terms, service policy (e.g.,
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Fig. 1. Distributed Coalition-based Access Control: Architecture

Table 2. Summary of DSCR Functions Used Per Service

Service Level Registration Authentication Authorization Query Request
Processing Routing

Registry X X
Authenticator X X X
Service
Query Service X X X X X

WS-Policy), service location, etc. It is also possible to register a service proxy (e.g.,
Jini’s proxy service or stub [7]). The API describes the service being offered, the
inputs, and the outputs. The key terms are useful when a non-local user is searching
for a service (e.g., yellow pages). The service policy (e.g., WS-policy) describes
the service policy. This includes the credentials needed to execute the service, any
special security parameters such as encryption algorithms, authentication schemes,
etc. The location field indicates the web location where the service is available (e.g.,
URL address). In cases where a service proxy is registered, the proxy would be
downloaded by the non-local members to access the service. Once again, following
the philosophy of the naming services (e.g., DNS) and service providers such as
Jini, the service registration is only for a limited time (e.g., lease) after which the
service is either automatically revoked or renewed by the provider.

2. On receiving the service registration request, DCSR authenticates the service
provider organization. The authentication process may use any standard protocol
such as the ones using public key cryptography or secret key cryptography. In addi-
tion to authentication, if other security methods such as encryption and digital signa-
tures are used, then DCSR validates the received request using appropriate methods.

3. DCSR checks the request for completeness and its compliance with the coali-
tion policies. For example, there may be a coalition policy in which only certain
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members are allowed to register services or there may be restrictions on the type of
services they offer.

4. Optionally, DCSR could be provided with the ability to test the registered services.
While DCSR will not be able to check the correctness of the semantics, it may be
able to check some syntactic checks and the location information.

5. DCSR makes the service available to the coalition by publishing it in its service
directory. The associated service policy is stored in the policy database.

6. DCSR sends an acknowledgment to the service provider.
7. Optionally, it may inform (advertise) the new service to the coalition members.

The authentication function is needed for interaction between a coalition member
and the DCSR. The DCSR interacts with coalition members during initial joining of the
coalition, service registration, service access, etc. When a member first joins a coalition,
it establishes an authentication policy such as shared key for challenge, credentials, cer-
tificates, login/password, etc. This procedure may have been established using an out-
of-band channel. For example, the DCSR administrator could directly interact with the
new member’s administrator to establish the authentication procedure and keys. Alter-
natively, they may use other in-band channels such as SSL to first establish a secure
channel and then mutually agree on the authentication procedure an keys to be used
henceforth. To limit the damage in case of compromised nodes, the authentication pro-
cedure may include limited time keys which need to be renewed or changed prior to
their lapse.

Once a member joins a coalition, DCSR authenticates it using the established proce-
dure in all its interactions.

The authorization function decides what service are to be made available to which
users. Here, we use credential-based authorization where authorization policies are
specified in terms of policies at different levels: coalition-level, organization-level, and
service-level. The authorization function is initially enforced by the DCSR in showing
only permissible services to a specific user. Service-lvele enforcement is done by the
service provider.

The Query function identifies whether a resource request can be met by a registered
service. As stated above, this requires the resolution of policies at the coalition, mem-
ber, and service levels, and determining which services are to be made available to the
specified user (with given credentials).

The Routing function is responsible for routing member service requests to the ser-
vice provider and sending back the reply to the requester. As shown in Figure 2, there
are three options for DCSR in handling service requests. According to the option spec-
ified, (or implemented), DCSR routes the requests and replies.

2.1 Registry Service

For the registry service (Figure 2a), the DCSR simply acts as a service directory re-
sponding with one of the following options from general to specific:(a) A list of services
offered (b) A list of services (API) as well as the associated WS-policies (c) WS-policy
only when the query is for a specific service. After responding, it has no role to play
in terms of the service access request from a member. However, in the case where a
member registers a service proxy with the DCSR, it could send the proxy to the re-
quester. A member can send two types of queries to the DCSR.
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Fig. 2. Three Modes of Operation of DCSR

2.2 Authenticator Service

Under the authenticator service (Figure 2b), the DCSR receives the service request and
generates a token to be submitted to the service provider. Under this option, the DCSR is
also acting as a trusted third party. This is similar to the role of Kerberos in establishing
a secure session between two untrusted parties. The steps under this role are as follows.

(i) Authenticate the requesting organization.
(ii) Extract the requester credentials from the request (e.g., decrypt the message, ver-

ify the digital signature, etc.).
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(iii) Check the coalition policy as well as WS-policy of the service being requested for
acceptance of the service request.

(iv) If all checks are successful, generate a token (similar to Kerberos tokens) with the
submitted credentials. In addition, as in Kerberos, it may generate a session key to
be shared between the requester and the provider and include it in the token. The
token itself is signed and encrypted. Features such as nonces and validity periods
may be included to limit the possible damage due to requester compromise and to
avoid replay attacks.

(v) The token is sent to the requester along with the generated shared key.

Once the requester receives the token, it can directly establish a connection with the
service provide and get services using the token.

2.3 Query Service

For the query service (Figure 2c), DCSR does it all. In particular, it follows the follow-
ing steps.

(i) Authenticate the requesting organization.
(ii) Extract the requester credentials from the request (e.g., decrypt the message, ver-

ify the digital signature, etc.).
(iii) Check the coalition policy as well as service policy of the service being requested

for acceptance of the service request.
(iv) Invoke the services at the service provider (using whatever agreed upon protocol),

submitting the requester credentials.
(v) Receive result/reply from the service provider.

(vi) Forward the result/reply to the requester.

In the above steps, we implicitly assume that the messages between the requester
and the DCSR as well as the ones between DCSR and service provider are signed and
encrypted. Under this option, first DCSR acts as a server to the requester. Next, it acts
as a client to the service provider.

In fact, under this role, DCSR’s functionality may be extended to that of a service
provider that provides new aggregation services that are themselves built using the ser-
vices registered by the members.

3 DCSR Design

In the above section, we have described the services offered by DCSR. We now look at a
way to design DCSR so as to achieve the service objectives set for DCSR. In particular,
we have the following goals for the DCSR design.

1. Customizability. It should be possible to customize the services offered by DCSR
for a specific coalition.

2. Extendibility. It should be possible to add new functionalities to DCSR within an
established DCSR in a coalition.
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3. Scalability. It should be possible to use the same design framework for small,
medium, and large coalitions

4. Performance. It should offer good performance in terms of low overhead, expected
response time, and good throughput.

Keeping these goals in mind, we propose a service-oriented design (SOD) that offers
all functionality (internal and external) as a service [4]. The proposed design has seven
components. Following is a brief description of each of these components.

User interface is the primary gateway into DCSR. It receives all requests, makes the
necessary checks, and invokes other required services.

Security services is part of infrastructure services needed by all other components
and higher level services. It services include authentication, authorization (e.g., issue of
tokens), encryption and decryption, digital signatures and MAC, key management (e.g.,
key generation, key distribution, key storage), and certificate management (e.g., certifi-
cate validation, certificate storage, certificate generation). Almost all DCSR services
use these services.

Communication services is another infrastructure service and hence used by other
services. It offers both unicast (one-to-one communication) and multicast (one-to-many)
options. DCSR management is a key component that manages the set of agents that rep-
resent distributed DCSR as one logical unit. These services are primarily used by DCSR
agents, and not by the users. Agent registration management, agent monitoring, consis-
tency management, and load balancing (among agents) are part of this component.

Policy management component offers services that are used by other DCSR com-
ponents (e.g., member services, membership management, and DCSR management)
to register and retrieve policies. These policies may correspond to the services, to the
members, or to the DCSR agents themselves. It would also include coalition policies.
In fact, components such as security services may register its own policies for key man-
agement here.

Member management component provides several services for the coalition members
(i.e., organizations). Whenever a new members intends to join a coalition, it uses the
registration services. In addition to join operation, it also handles the leave operations.
In case the join operation is only on a lease basis (as in Jini [7]), it also provides means
to renew the membership.

Member services registers services for sharing offered by the coalition members. A
member may register its services using the service registration function. As before, the
module also handles withdrawal of services as well as renewal of services when they are
made available only on a lease (e.g., Jini [7]). A member also registers a service policy
along with the registered service. When a member intends to search for a service, it uses
this service. The service returns a set of services that satisfy the query criteria.

3.1 SOD: An Example

To illustrate how our design follows service-oriented approach (SOD), consider the
service registration function of the DCSR service architecture. Figure 3 illustrates how
this function is implemented by composing several DCSR services. Here are a few
instances of how it uses these services.
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Fig. 3. Service-oriented design: An example

– Authenticate the coalition member who is requesting service registration using Au-
thentication service (of Security Services component).

– Decrypt the service request and parameters with Decryption service.
– Check request validity using Digital Signature service.
– Verify coalition’s policy of registration (e.g., which members are allowed to register

services) by means of Query Polices service (of Policy Management).
– Check if this is a duplicate request using Query Service Registry service (of Mem-

ber Services).
– Register the service policy (e.g., WS-policy) of the new service using Policy Reg-

istration (of Policy Management).
– Check the validity of the registered policy (with coalition policies as well as the

requesting member’s policies) using Policy Validation service (of Policy Manage-
ment).

– Propagate the service registration information to other DCSR agents using DCSR
Consistent management service (of DCSR Management).

– Send a reply to the requester using Unicast service and Secure Communication
service (of the Communication Services).

– Alternately, it could use the Multicast service, Secure Communication service, and
Reliable Communication service to reliably propagate the service registration in-
formation to other DCSR agents. Optionally, in a publish/subscribe paradigm, it
could send the same information to the subscriber coalition members.

3.2 Meeting the Design Goals

We will now briefly analyze as to how the proposed design satisfies its goals. Clearly, the
proposed DCSR design satisfies the customizability goal as it is modular in structure.
For example, if a coalition with minimal trust on DCSR intends to use DSCR only
as a registry, then the member services module can be simplified to offer only service
registration and query service functions. If there is a single DCSR agent, then much
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of the communication services module can be simplified to offer only unicast services.
Similarly, the DCSR management services module can be eliminated. Policy validation
service of the Policy Management component can also be eliminated.

Similarly, suppose a coalition has initially settled with level 1 service (i.e., DCSR as
registry only). If it now decides to extend the functionality to level 2 service, then using
our design one simply needs to add additional service blocks into DCSR components.
For example, if initially there was a single DCSR agent, and if it is to be extended to
have multiple agents, then one simply needs to add the DCSR Management component.
Thus, extendability goal is achieved.

The scalability goal is achieved through the ability to have multiple DCSR agents
and the ability to add/remove agents using DCSR Management services. Thus, as a
coalition grows or shrinks, the number of DCSR agents also can grow or shrink. The
load balancing service helps balance the load at an agent. The addition of new coalition
members is handled by the Membership Management.

The final goal of performability can only be verified through prototype building and
further analysis. So we can’t yet claim that this design goal is achieved.

4 DCSR Implementation

As a proof-of-concept, we have currently implemented a DCSR prototype using .Net
framework. The primary reason for the choice, in addition to its being a service-oriented
architecture, is the flexibility it offers in the creation and the use of services [10]. For
example, by declaring every service as a web service, it is very easy to create and
refer to these services in .Net. In fact, due to this flexibility, every service, whether
offered to coalition members by DCSR, or offered to processes within DCSR itself, is
implemented as a web service. We now describe the implementation.

The current prototype structure is shown in Figure 4. Here, we have implemented the
security layer as the bottom most layer. This layer handles both secure communication

Service Registry
Maintains a list of services
registered by coalition
members and by DCSR

Policy Registry
Holds policies for the

registered services from
coalitions and DCSR
(including validation

policies)

Coalition Manager
Handles Coalition member:

1. Login
2. Registration
3. Renewal
4. Withdrawal

Service Support Layer
Holds procedures for handling service requests by coalition members and DCSR agents

DCSR Security Layer

Handles secure communication and authentication

Coalition members and other DCSR agents

Fig. 4. DCSR: Prototype Implementation
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and authentication functions. Once a message (request/reply) has been validated, it is
forwarded to the service support layer. This has procedures that handle the incoming
requests from other DCSR agents and coalition members. These procedures make use
of the service registry, policy registry, and coalition manager. For example, when a
member registers a service, the request is handled by a registration procedure that calls
services of policy registry and service registry. Similarly, coalition member manage-
ment procedures use services of the policy registry and coalition registry. In the current
prototype, we assume a static set of DCSR agents and hence we have not implemented
the DCSR management component.

Since we are using .Net framework, several of the services proposed in the DCSR
design are already available. For example, consider .Net cryptography module. It of-
fers a variety of hashing algorithms, symmetric and asymmetric encryption algorithms,
and digital signatures. The .Net cryptography service hierarchy is described under Sys-
tem.Security.Cryptography. The available asymmetric algorithms are DSA and RSA,
both available under System.Security.Cryptography.DSA and System.Security. Cryp-
tography.RSA. Similarly, under the hashing algorithms, .Net offers SHA1, SHA256,
SHA 384, SHA 512, DES, Triple DES, and RC2. The prototype makes extensive use of
these services.

While .Net does provide services for expressing policies, we feel that they are inad-
equate for DCSR needs. Accordingly, we built our own policy management services.
We express our policies in XML. This even makes communication with web services
natural and platform independent.

The DCSR member management is completely specific to our application domain
and hence is being implemented completely by us. Similarly, member management is
also being implemented by us with help from other .Net infrastructure services.

It is interesting to note that the implementation issues for DCSR are equally appli-
cable at the coalition member but at a smaller scale. For example, a coalition member
also offers services (for local and non-local users). It also needs to maintain policies and
let its own users register services, etc. While in the real world, each coalition member
may be implementing their system independently and probably using legacy systems,
the prototype design tries capture the similarity by having similar structures for DCSR
and coalition members.

We now describe the prototype through several interfaces made available to mem-
ber organizations and their users. First, as shown in Figure 5, Organization 1 registers
itself with DCSR. At this time, it creates a new username and a password for future au-
thentications (here, username and password alone are used for member authentication).
In addition, it also specifies its organizational policy. For simplicity, the organizational
policy simply describes the type of accesses it is prepared to offer for coalition users
with different credentials. In this prototype, a level number alone is considered as a
user credential. There is also an option for a coalition member to choose to override the
policy at the coalition level (not shown here). For example, the coalition may have a
policy that level 1 users have no access to any service. But a specific coalition member
may choose to override this policy by specifying a read access. The coalition policy is
stored in XML format at DCSR. The coalition policy is itself stored in an XML file at
DCSR.
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Fig. 5. Registration of a Coalition Member

Second, a coalition member intending to share a service, registers the service with
DCSR. For example, in Figure 6, organization 2 registers a service, Dell Drivers, at
DCSR. As part of the registration, it also indicates its service policy. In this example,
it provides read access for level 1 users of the coalition and read/write access for both
level 2 and level 3 users. Once again, an XML file is created and stored at DCSR as
a service policy for each service. At the time of service registration, a member has the
choice of the service to be made accessed directly (using the URL of the service as in
Figure 2a) or indirectly via DCSR (Figure 2c). In the former case, at the time of service
request, DCSR authenticates the requesting member (via login name and password) and
generates a signed token. The token contains the coalition member credentials as well
as the requesting user’s credentials. For simplicity, we have used only the name of the
organization as the coalition member’s credential. Similarly, a level number is used as
a user’s credential. Accordingly, the signed token would also contain the level of the
service requester as indicated by its coalition layer. In the latter case, DCSR sends the
token directly to the service provider to get the reply. The reply is then displayed to the
user. In Figure 6, the latter choice of service via DCSR was made.

Third, a user at a coalition member wants to access a service. After a successful local
login, a user is presented with links to both local services and global services (Figure 7).
What is presented to a user, on clicking each link, depends on the local user’s own level
(or credential). In fact the list is presented by DCSR only after it applies the coalition
policy, the service provider policy, and the service policy with the user’s level. In Figure
7, the logged in user (from Organization 2) is presented with two services: Dell drivers
at the global level (non-local services) and intel manuals locally. When a user clicks on
a specific service, that service is invoked. The actions that take place on an invocation
depend on the choice of the registered service.

Fourth, when a user clicks on a service link, the request (in the form of an XML)
is sent to the DCSR by the coalition layer. After DCSR performs the member authen-
tication and other authorization checks, depending on the choice made by the service
provider (i.e., direct or via DCSR) for this particular service, DCSR takes different
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Fig. 6. Registration of a Service

Fig. 7. Services offered to a User

actions. In the case of direct option, DCSR forwards an encrypted token to the coali-
tion layer of the user along with an URL for the service. The coalition layer uses the
service at that link and supplies the provided token. The service provider checks for
the validity of the token and performs its own authorization checks before making the
service available. In the case where the services are for read access of pdf files, the files
are sent to the member who in turn displays them to the user. In case, the option is
via DCSR, DCSR forwards the service request (in XML) along with user level to the
service provider. It provides the same service as above but sends it to DCSR who in
turn forwards it to the member. In Figure 7, the user has selected one of the drivers and
clicked on it. He is now provided with the option of executing the file or saving the file
locally. These options depend on DCSR and the underlying policies.
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Fig. 8. Invocation of a service

Due to limited space, we could not illustrate other features of our prototype such as
coalition member validation, local user validation, the token generation, etc.

5 Conclusion and Future Work

In this paper, we have presented a distributed service registry system that offers differ-
ent levels of services to its coalition members, based on the level of trust among the
members, level of desired anonymity by a member and the degree of the knowledge of
the services offered by the members. Specifically, at the other extreme, we may have
a coalition where members are generally strangers to each other and need the service
registry to provide credential checking or to even act as the entity that retrieves and pro-
cesses the information needed. We have implemented a prototype using .Net framework
to test the features of our proposed DCBAC system.

We have prototyped our DCSR design using .Net framework. Our next step is to
study the impact of different design choices on the performance of the overall DCSR
system and the services it offers to the coalition members. We also plan to measure
the cost (if any) due to the service-oriented approach. To achieve these objectives, we
plan to implement extend our current DCSR prototype with several different types of
options. In particular, we are interested in measuring the impact on performance (e.g.,
response time to user) due to the overhead imposed by the service-oriented architecture
and different CSR options.

References

1. V. Bharadwaj and J. Baras. A framework for automated negotiation of access control policies.
Proceedings of DISCEX III, 2003.

2. K. Birman. Reliable distributed systems. Springer, 2005.
3. E. Cohen, W. Winsborough, R. Thomas, and D. Shands. Models for coalition-based access

control (cbac). SACMAT, 2002.



A DCSR for Ad-Hoc Dynamic Coalitions: A Service-Oriented Approach 223

4. T. Erl. Service-oriented Architecture. Prentice Hall, 2004.
5. H. Khurana, S. Gavrila, R. Bobba, R. Koleva, A. Sonalker, E. Dinu, V. Gligor, and J. Baras.

Integrated security services for dynamic coalitions. Proc. of the DISCEX III, 2003.
6. R. Mukkamala, V. Atluri, and J. Warner. A distributed service registry for resource sharing

among ad-hoc dynamic coalitions. In Lecture Notes in Computer Science. IFIP, December
2005.

7. S. Oaks and H. Wong. Jini in a Nutshell. O’Reilly, 2000.
8. C. Philips, E. Charles, T. Ting, and S. Demurjian. Towards information assurance in dynamic

coalitions. IEEE IAW, USMA, February 2002.
9. C. Philips, T.C. Ting, and S. Demurjian. Information sharing and security in dynamic coali-

tions. SACMAT, 2002.
10. D. Reilly. Designing Microsoft ASP.Net applications. Microsoft Press, 2002.
11. J. Warner, V. Atluri, and R. Mukkamala. A credential-based approach for facilitating auto-

matic resource sharing among ad-hoc dynamic coalitions. In IFIP, 2005. To be published -
August 2005.

12. T. Yu, M. Winslett, and K.E. Seamons. Supporting structured credentials and sensitive poli-
cies through interoperable strategies for automated trust negotiation. ACM Transactions on
Information and System Security, 6(1):1–42, February 2003.



Enhancing User Privacy Through Data
Handling Policies

C.A. Ardagna, S. De Capitani di Vimercati, and P. Samarati

Dipartimento di Tecnologie dell’Informazione
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Abstract. The protection of privacy is an increasing concern in today’s
global infrastructure. One of the most important privacy protection prin-
ciples states that personal information collected for one purpose may not
be used for any other purpose without the specific informed consent of
the person it concerns. Although users provide personal information for
use in one specific context, they often have no idea on how such a per-
sonal information may be used subsequently.

In this paper, we introduce a new type of privacy policy, called data
handling policy , which defines how the personal information release will
be (or should be) dealt with at the receiving party. A data handling
policy allows users to define simple and appropriate levels of control over
who sees what information about them and under which circumstances.

1 Introduction

Privacy is repeatedly identified as one of the main concern that prevents
users from using the Internet for transactions. Information technology gives
organizations the power to gather and disclose vast amounts of personal
information and therefore those who collect and disseminate data should
be responsible for maintaining privacy. A number of useful privacy en-
hancement technologies (PETs) have been developed for dealing with the
privacy issue such as a variety of anonymizing and de-identifying mecha-
nisms [10]. One of the most important privacy protection principles (see
http://ohsr.od.nih.gov/guidelines/belmont.html) states that personal in-
formation collected for one purpose may not be used for any other purpose
without the specific informed consent of the person it concerns. However, al-
though the informed consent is intended to prevent inappropriate use of the
data, it represents an important problem involving PETs because users provide
personal information for use in one specific context, but they often have no idea
on how a such personal information may be used subsequently. In other words,
users do not always realize that the information they disclose for one purpose
(e.g., name, date of birth, and address within an on-line transaction) may also
have secondary uses (e.g., access to existing data for purposes of grouping to-
gether users on the basis of common characteristics such as age or geographic
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location). Therefore, even if users consent to the initial collection of their per-
sonal information, they must also be given a mechanism to specify whether or
not to consent to the future use of that information in secondary applications.

In this paper, we focus on a new type of privacy policy, called data handling
policy, that regulates the secondary use of a user’s personal data. In particu-
lar, a data handling policy regulates how Personal Identifiable Information (PII)
will be used (e.g., information collected through a service will be combined with
information collected from other services and used in aggregation for market re-
search purposes), how long PII will be retained (e.g., information will be retained
as long as necessary to perform the service), and so on. Users can therefore use
these policies to define how their information will be used and processed by the
counterpart.

2 Related Work

Previous work on privacy protection has focused on a wide variety of is-
sues [4,9,14,18,21]. The work most directly related to ours is in the area of
access control and privacy-aware languages and models [2,7,13,8,12,20]. In [8]
the authors propose a policy language for regulating service access and informa-
tion disclosure in an open, distributed network system. Access regulations are
specified as logical rules, where some predicates are explicitly identified. Besides
certificates, the proposal also allows to reason about declarations (i.e., unsigned
statements) and user-profiles that the server can maintain and exploit for tak-
ing the access decision. PeerTrust [12] defines a logic syntax used to automate
trust establishment. Trust is established gradually by disclosing certificates and
requests for certificates. Each party can define access control policies to protect
their sensitive resources. PROTUNE (PROvisional TrUst NEgotiation) [7] is a
policy specification language that provides a powerful declarative metalanguage
for driving critical negotiation decisions such as the specification of what certifi-
cates are needed to gain an access, where certificates can be retrieved, and so
on. In [2], the authors propose an XML-based privacy preference expression lan-
guage, called PReference Expression for Privacy (PREP), for storing the user’s
privacy preferences with Liberty Alliance. PREP allows users to specify, for each
attribute, a privacy label that is characterized by a purpose, type of access, re-
cipient, data retention, remedies, and disputes.

P3P (Platform for Privacy Preferences) [20] is an XML-based language that
addresses the need of a user to assess whether the privacy practices adopted
by a server provider comply with her privacy preferences. Users specify their
privacy preferences in term of a policy language, called APPEL [19], and enforce
privacy protection through a user agent. The user agent compares the users’
privacy policy with the service provider P3P policy and checks whether the P3P
policy conforms to the user privacy preferences. Although P3P is a good starting
point, it has some drawbacks as the lack of a technical mechanism to verify
that Web sites respect and enforce users policies, and a process to negotiate
the privacy practices between the interacting parties. Also, P3P presents some
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limitations on the user side [1]: users can only accept or deny the privacy prac-
tices defined by a service provider. We believe that a better way to enforce the
privacy practices is to offer users a richer, more active role in establishing how
their personal data should be used. Two relevant XML-based languages designed
to enforce privacy policies are XACML (eXtensible Access Control Markup Lan-
guage) with a privacy policy profile [11,15] and EPAL (Enterprise Privacy Au-
thorization Language) [5]. They allow the definition of powerful and expressive
access control languages but do not regulate the use of personal information in
secondary applications.

3 Data Handling Policy Specification

We consider a scenario that involves three main entities: users are human entity
that present requests to the service provider; a service provider provides ser-
vices and collects personal information from users; and third parties are external
organizations to which the service provider can disclose personal information.
We assume that the service provider collects personal data that are necessary
to provide access to services. In particular, when a user decides to use a service,
she needs to complete a registration process. Information collected from a given
user is then stored into profiles associated with the user. Registered users are
characterized by a unique user identifier (user id). Users may also choose not to
become registered users. In this case, the service provider can generate a persis-
tent user identifier (pseudonym) that is associated with the user who requires
the service. The pseudonym is automatically sent by the Web browser to the
service provider whenever the user submits a request to the service provider.1

In this case, personal information is stored under pseudonyms and not users’
real names. Users can require access to data about themselves. Other access
to personal data by the employees of the service provider (internal users) and
third parties who are granted access by the service provider (external users)
should also be supported. For simplicity, we assume that the server collecting
the users data and the third parties accessing them are trusted entities. Personal
data collected by the service provider should be managed in accordance with the
informed consent principle stating that personal information will not be made
available for secondary uses without notice to the subjects of the information.
However, there are situations where the strictly application of this principle can
be impracticable to enforce (e.g., in the context of large studies on population
health). A possible approach to solve this problem consists in giving the users
the possibility to specify a policy, called data handling policy, which defines how
their data can be subsequently used by the service provider and/or third parties.
The data handling policy follows the data when they are manipulated by dif-
ferent applications and transferred between different systems. A data handling
policy should be simple and expressive enough to support the following privacy
requirements.
1 This features can be implemented using different strategies (e.g., cookies). However,

this implementation issue is outside the scope of our paper.
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– Individual control. Users should be able to specify who can see what infor-
mation about them and when.

– Consent. Users should be able to give their explicit consent on how to use
their personal data.

– Correction. Users should be able to access their personal information to
modify it when needed.

– Security. Adequate security mechanisms have to be applied, according to the
sensitivity of the data collected.

Data handling policies can be pre-defined by service providers (and possibly
by users) or can be defined at access time. These different strategies require
different levels of negotiation between a user and a service provider. In particular,
we identify the following three strategies: server-side strategy, where a service
provider defines its data handling policies and a user can accept or reject these
policies according to her privacy preferences; customized , where a user requires
a service and a predefined policy template is provided by the service provider
as a starting point for creating data handling policies; user- and server-side,
where both a user and a service provider define their data handling policies
and a negotiation process between them starts. This negotiation process can be
initiated either by the service provider or the user. The negotiation process ends
when the involved parties have reached an agreement. The user then provides
her personal data attached to the data handling policy on which the user and
the service provider agree.

Another aspect that has to be investigated is how data handling policies can
be integrated with traditional access control policies [17]. Intuitively, if an ac-
cess request satisfies at least one access control policy, the service provider has
to verity whether there exists at least one data handling policy attached to the
requested data. In particular, there may exist one or more data handling policies
and each of them can impose different restrictions on how such data can be used
in secondary applications. Since, as we will see in Section 4.1, a data handling
policy establishes which party (subject , in the access control terminology) can
execute which actions on which resources and under which circumstances (condi-
tions), it is easy to see that access control and data handling policies are similar
in syntax but they are conceptually different. Data handling policies allow the
users to define restrictions on their PII management when data are received at
server-side (e.g., retention, notification, and so on), while access control policies
protect access to data. At evaluation-time, data handling policies are evaluated
together with the access control policies, but at disclosure time they are attached
to the released data, building a chain of control coming from the data owner. The
similarity with access control policies introduces two different ways for defining a
data handling policy: it can be an extension of traditional access control policies
or it can be defined as a stand-alone policy. In the first case, the authorization
rules should be extended by adding a DHP component . This approach has the
main disadvantage that whereas including a DHP component within an access
control rule simplifies the policy specification at first sight, it also makes the
policy less clear. Stand-alone definition means that data handling policies are
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Fig. 1. An example of recipient hierarchy (a) and data type hierarchy (b)

defined as independent rules. Therefore, a data handling policy should represent
the users’ privacy preferences and should then include different components that
allow to define how the third parties can use personal data. Personal data are
then tagged with such data handling policies. Although the stand-alone option
can introduce some redundancy in policy definition, choosing the stand-alone
representation provides a good separation between policies that are used with
different purposes. This clear separation makes data handling policies more intu-
itive and user-friendly, and implicitly suggests the differences with access control
policies.

4 DHP Language

We now introduce a language for the specification of data handling policies on
the data. We start by describing the basic constructs of the language and then
we illustrate the syntax of the language together with some examples.

4.1 Elements of a Data Handling Policy

To illustrate what kinds of privacy requirements our solution supports, in the
following we will consider an e-commerce scenario where company ACME provides
a set of services such as rent-a-car , book-a-flight , and flight+hotel .

Recipients. It is a third party to which PII can be disclosed. Since we work
in an open environment, the third parties may be unknown a-priori and there-
fore the user should also have the ability to define to which entities her data
may be disclosed without knowing their identity. Our approach supports then
the definition of the recipient according to one of the following three options:
identity-based , where the third parties may be identified by their unique identi-
ties; category-based , where the third parties are grouped into different categories,
which represent recipients of different domains; and attribute-based , where an at-
tribute expression allows the definition of a recipient in term of the properties
that it has to satisfy, instead of its identity.
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Categories can be hierarchically organized and within the hierarchy, a cate-
gory inherits from its ancestors all their permissions. For instance, Figure 1(a)
illustrates a recipient hierarchy where the third parties are partitioned into two
main domains: Internal and External. Also, the attributes that characterize a
recipient can be certified by given authorities or can be simply declared by the re-
cipient itself. At an abstract level, an attribute certificate is characterized by the
following elements: the certificate’s name, the issuer ’s public key, the subject ’s
public key, a validity period , a list (possibly empty) of pairs 〈attribute name,
attribute value〉 representing the subject’attributes, and a signature. For sim-
plicity, we assume that the service provider maintains a binding between the
public key of the authority trusted for asserting a specific set of attributes and
an authority name. For instance, InternationalMarketBoard is the name of the
authority whose public key is 00:b4:31...:7e:41:8f. Note that in case of certi-
fied attributes, the user can then define the authorities trusted for asserting those
attributes. For instance, a user can decide to disclosure her personal information
only to a company of the MarketAgencies category specialized for distribution
of computers and such that its attribute specialization has been certified by the
InternationMarketBoard authority.

Actions. The term action is used to denote privacy-relevant operations (e.g.,
read, disclose, and modify) that recipients can require on personal data.

Privacy profiles. Users interacting with a service provider are required to
provide a significant amount of PII, which is stored within a set of privacy
profiles . A privacy profile can be seen as a container of pairs of the form
〈attribute name,attribute value〉, where attribute name is the name of the at-
tribute provided by the user and attribute value is the value. Each privacy
profile, uniquely identified by the user id or pseudonyms together with a pro-
file number , is characterized by a specific set of privacy preferences expressed
via data handling policies. For instance, suppose that Alice is a registered
user of company ACME and that she requires service book-a-flight . To book a
flight, Alice must provide her name, credit card number and expiration
date, telephone number, e-mail address, and frequent traveler number
(if any). Since Alice requires different levels of privacy according to her per-
ception of the information sensitivity, her PII is partitioned into two privacy
profiles: profile p1 stores the credit card number and expiration date, and
the telephone number; profile p2 stores the name, e-mail address, and the
frequent traveler number. Intuitively, the first profile includes information
with a high level of sensitivity and the second profile stores information with
a lower level of sensitivity. A data handling policy can be defined on a whole
privacy profile and/or can be associated with a specific attribute in a privacy
profile. Data types can be introduced as abstractions on single PII and therefore
privacy preferences may be expressed in terms of data types. Data types can be
organized into a hierarchy (we assume that users know the data type hierarchy
defined by a server). Figure 1(b) illustrates an example of data type hierarchy,
where PII has been partitioned into two data types: cc info is an abstraction
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for the credit card information and personal info is an abstraction for the per-
sonal information. According to the correction principle mentioned in Section 3,
users can view, update, or delete their personal information (i.e., the information
stored in all privacy profiles associated with them).

Restrictions. A privacy statement specifies restrictions that have to be satisfied
before access to personal data is granted and such that, if at least one condition
is not satisfied, the access should not be granted. One of the most important
restrictions is the purpose for which the information will be used. Abstractions
can be defined within the domain of purposes, which allow grouping together
purposes with common characteristics and referring to the whole group with a
name (e.g., pure research and applied research can be seen as a specializa-
tion of research). We distinguish between two kinds of conditions: provisions
and obligations . Provisions represents actions that have to be performed before
a decision can be rendered [6]. For instance, a data handling policy can state
that a business partner can read the email address of the users provided that it
has paid a fee. Obligations represents actions that have to be performed after an
access has been granted [6]. For instance, a data handling policy can state that
users will be notified whenever their personal information is disclosed. In addi-
tion, generic conditions evaluate membership of requesters and personal data
into classes or properties in their profiles or can represents conditions that can
be brought to satisfaction at run-time processing of the request.

Conditions on properties of a party are specified via a set of predicates based
on the attribute certificates above-mentioned. Let C and P be a set of certificates’
names and predicates, respectively. We first need to introduce the concept of
certificate expression as follows.

Definition 1 (Certificate expression). Given a certificate name c ∈ C, a
certificate expression over c is a boolean formula of terms of the form c.attr name
math-op value, where c.attr name denotes attribute attr name within certificate
c, math-op is a standard binary built-in mathematic operator (i.e., =, �=, >, ≥,
<, ≤), and value is a constant or an attribute.

A binary predicate certificate(ce,A) ∈ P , where ce is a certificate expression
and A is the name or the public key of a trusted authority is evaluated to true if
and only if there exists a certificate c issued by authority A and such that certifi-
cate expression ce is evaluated to true. Provisions and obligations are represented
by two disjoint sets of non predefined predicates PR ⊆ P and O ⊆ P, respec-
tively. Examples of provision predicates are fill in form() and log access().
Examples of obligation predicates are notify() and delete after(num days).

4.2 Syntax

Syntactically, a data handling policy has the form:

〈recipients〉 can 〈actions〉 for 〈purpose〉 on 〈PII 〉 [ if 〈gen conditions〉]
[provided 〈prov〉] [follow 〈obl〉],
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where recipients identifies the parties to which the policy refers; actions is the
action (or class of actions) to which the policy refers; PII identifies the personal
data to which the policy refers; gen conditions is an optional boolean expression
of conditions that every request to which the policy applies must satisfy; prov
is an optional boolean expression of provisions; and obl is an optional boolean
expression of obligations that the server must follow when manages the PII.

A data handling policy specifies that recipients can execute actions on PII
for purpose provided that prov is satisfied, gen conditions are satisfied, and with
obligations obl . The actions field in the policy is simply the identifier of an
action or group thereof. Data handling policies referred to groups of actions
are considered applicable to all actions in the set. We now look at the different
components in the rule.

Recipients. The field recipients can be an identifier, a recipient category, or
a recipient expression of terms that evaluate conditions on the requester. A
recipient expression is a boolean formula of terms of the form:

– certificate(ce,A), where ce is a certificate expression over certificate c
and A is the authority that must have issued certificate c. The requester and
the subject of certificate c have to be the same.

– attr name math op attr value, where attr name is an attribute, math op is a
standard binary built-in mathematic operator, and attr value is a constant
or an attribute. Intuitively, this formula is evaluated to true whenever the
requester presents property attr name which satisfies the specified condition.

Since it may be necessary to refer to the user of the request being evaluated,
we introduce the keyword requestor, which is intended to be substituted with
the actual parameters of the request in the evaluation at access control time. For
instance, recipient requestor.country = ‘EU’ indicates that property country
provided by the party whose request is being processed has to be equal to ‘EU’.

PII. The field PII can be the name of an attribute, the name of a data type, the
identifier of a privacy profile, or a specific attribute stored within a privacy pro-
file, which is specified by means of the usual dot notation (e.g., Alice.p2.email).

Prov, Gen conditions, Obl. These fields contain conditions that are syntactically
similar and correspond to a boolean formula of terms of the form:

– predicate name(arguments), where arguments is a list, possibly empty, of
arguments on which predicate predicate name is evaluated.

From the evaluation point of view, however, gen conditions , prov , and obl
are different: provisions are preconditions that need to be evaluated as pre-
requisites before a decision can be taken; generic conditions specify conditions
of different type (e.g., trusted-based, location-based [3], and so on); obligations
are additional steps that must be taken in account after the policy evaluation.

As an example of data handling policies, consider the following rules that reg-
ulate the secondary use of personal information stored by the ACME organization.
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Rule 1. The business partners of ACME can read for market purpose the name
of the ACME’s users provided that they have paid a fee.
BusinessPartners can read for market on name provided pay a fee()

Rule 2. The credit card information of Alice can be read by the business part-
ners of ACME for service release purpose and must be deleted at the end of
the service.
BusinessPartners can read for service release on Alice.p1 fol-
low delete after service()

Rule 3. The market agencies specialized for distribution of computers and
whose specialization has been certified by the International Market Board
(IMB) authority can read the snailmail information for market purpose.
MarketAgencies and certificate(speciality.category = ‘com-
puter’,IMB) can read for market on snailmail

Rule 4. The seller of ACME can read the personal information of their clients for
statistical purpose during the working hours (i.e., from 8:30 am to 6:00 pm)
provided that the access is logged.
Seller can read for statistical on personal info if
time(8:30,6:00) provided log access()

Rule 5. The e-mail address of Alice can be released for market purpose to
European business partners of organization ACME with the obligation of no-
tify Alice.
BusinessPartners and requestor.country = ‘EU’ can read for
market on Alice.p2.e-mail follow notify()

Rule 6. The administrative staff of ACME can read the contact information of
their clients for market purpose only if they are in the building of ACME.
Administrative can read for market on contact info if
inarea(requestor, ACMEBuilding)

Rule 1, Rule 3, Rule 4, and Rule 6 are associated with the privacy pro-
files of the ACME’s users that store property name, properties of data type
snailmail, properties of data type personal info, and properties of data type
contact info, respectively. Rule 2, and Rule 3 are associated with and protect
the privacy profiles (p1, p2) of user Alice.

5 The Privacy Architecture

We are currently developing a privacy-aware architecture (see Figure 2) in the
framework of the European PRIME project [16]. The architecture is composed
of three main components: a Privacy Control Module, a Policy Repository, and
a Context Manager .

The Policy Repository contains the policies, both access control and data
handling policies, used to protect the data/services. It provides functionalities
for administering policies such as search, modify, insert, and delete.

The Privacy Control Module operates on top of the context manager and
contains two sub-modules: a Policy Decision Point (PDP) and a Policy En-
forcement Point (PEP). PDP is responsible for taking an access decision for all
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Fig. 2. Privacy-aware access control architecture

access requests directed to data/services. It retrieves and evaluates all policies
(both access control and data handling) applicable to a request and includes:
a Decision Maker that produces the final response possibly combining different
access decisions coming from different evaluation of different policy types; a Pol-
icy Handler that is in charge of managing all communications with the Policy
Repository to retrieve all policies applicable to an access request; and a Context
Administrator that manages the access and the communication with the Con-
text Manager component, which contains the information associated with the
requestor during a session. PEP is responsible for the enforcing of access control
decisions by intercepting accesses to resources and granting them only if they
are part of an operation for which a positive decision has been taken.

The Context Manager is the component that keeps track of all contextual
information and combines information from various context sources and deducts
new contextual information from this aggregation. The main task of the Con-
text Manager is to provide contextual information from various sources in a
standardized way.

5.1 Access Request Enforcement

We now discuss how our system evaluates an access request and we start by
characterizing the requests to which the system will have to respond. Each re-
quest is characterized by three elements: the requestor that makes the request;
the action that is being requested; and the target on which the requestor wishes
to perform the action. We assume that the requestor element contains the iden-
tity of the requestor (if any) plus additional contextual information such as the
purpose for which the access is requested and certificates that can be used to
verify whether the requestor has some properties. Such an information provided
by the requestor is then managed by the Context Manager. We assume that the
target of an access request can be a service or some personal data associated
with a specific user. The access request is first received by the PEP module that
sends it to the PDP module. The evaluation process is now composed of two
main steps.
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Step 1. The access request is evaluated against the applicable access control
policies. Note that, if no policy is selected the access is denied meaning that the
default access decision is “no”. The discussion on how this step is performed is
outside the scope of this paper and we simply assume that at the end of this first
step the system has reached a “yes” or “no” access decision.2 In case of a negative
(no) access decision, the access request is denied and the process terminates. In
case of a positive (yes) access decision, the system has to verify whether there
exists some restrictions on the secondary use of the requested target.

Step 2. The PDP module asks the Policy Repository to retrieve all the applica-
ble data handling policies. This selection is performed by using the requestor, ac-
tion, and target specified in the access request. For each applicable data handling
policy, the system evaluates the conditions specified in the gen conditions field,
when possible. Indeed, field gen conditions can contain conditions that have to
be brought to satisfaction at run-time, while processing the request. For each of
them, we require the existence of an interface function that performs the control
and possibly triggers the necessary actions. The corresponding procedure returns
either a true or a false value depending on whether or not the implemented condi-
tion was or has been brought to satisfaction. Then, the gen conditions are simpli-
fied using the usual boolean laws for true and false and the corresponding policy
is taken into consideration if and only if the gen conditions would be simplify to
true. At this point of the evaluation process, there may exists different data han-
dling policies with different sets of provisions and obligations. The system now
should select the most convenient combination of provisions and obligations for
the requestor.3 As an example, suppose that Alice requests service rent-a-car
and that she has to provide her name, credit card number, and expiration
date. Suppose also that ACME collaborates with company BestCar.com which is
a business partner. To make a reservation and rent a car, company BestCar.com
requires access to the credit card information of Alice. By considering the data
handling policies in Section 4.2, it is easy to see that Rule 2 applies to the ac-
cess request submitted by BestCar.com. According to this policy, BestCar.com
can use the credit card information of Alice but such an information has to be
deleted at the end of the transaction.

6 Conclusions

Privacy is one of the most important issue for electronic commerce. In this paper,
we introduce the definition of data handling policies, that is, policies regulating
the use of personal information in secondary applications. This paper is only the
first step towards the definition of such a language and leaves space for further
work. Future work to be carried out includes investigation of the negotiation
2 Note that a yes/no access decision can be the result of a multi-step process where

the requestor and the system interact thus introducing possible forms of negotiation
between them.

3 The development of an efficient technique used to make such a selection will be part
of future work.
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process between a user and a service provider needed to reach an agreement
on the data handling policies; techniques for linking data handling policies with
the corresponding personal information; and the implementation of a proof-of-
concept prototype, which is under development, to assess the real applicability
of the proposed model.
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Abstract. Recent advances to mobile communication, Global Position-
ing System (GPS) and Radio Frequency Identification (RFID) technolo-
gies have propelled the growth of a number of mobile services. These
require maintaining mobile object’s location information and efficiently
serving access requests on the past, present and future status of the mov-
ing objects. Moreover, these services raise a number of security and pri-
vacy challenges. To address this, security policies are specified to ensure
controlled access to the mobile user’s location and movement trajectories,
their profile information, and stationary resources based on the mobile
user’s spatiotemporal information. Considering the basic authorization
specification 〈subject, object, privilege〉, in a mobile environment, a mov-
ing object can be a subject, an object, or both. Serving an access request
requires to search for the desired moving objects that satisfy the query,
as well as enforce the security policies.

Often, enforcing security incurs overhead, and as a result may degrade
the performance of a system. To alleviate this problem, recently Atluri
and Guo have proposed an unified index structure, STPR-tree, to or-
ganize both the moving objects and authorizations specified over them.
However, the STPR-tree is not capable supporting security policies based
on tracking of mobile users. In this paper, we present an index structure,
called SPPF -tree, which maintains past, present and future positions of
the moving objects along with authorizations by employing partial per-
sistent storage. We demonstrate how the SPPF -tree can be constructed
and maintained, and provide algorithms to process two types of access
requests, including moving object requests by stationary subjects such
as locate and track, and stationary object requests by moving subjects.

1 Introduction

Recent advances to mobile communication, Global Positioning System (GPS)
and Radio Frequency Identification (RFID) technologies have propelled the
growth of a number of mobile services. Location-based service is one such exam-
ple, which aims at delivering personalized services to mobile customers. These
include: providing nearby points of interest based on the real-time location of
the mobile customer, advising of current conditions such as traffic and weather,
� This work is supported in part by the National Science Foundation under grant
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deliver personalized, location-aware, and context-sensitive advertising based on
mobile customer profiles and preferences, or provide routing and tracking infor-
mation. Delivery of these services requires maintaining mobile object’s location
information as well as the preference profiles of the customers carrying these
mobile objects. In addition, it requires efficient processing of access requests to
find the past, present and future status of the moving objects.

Since effective delivery of a mobile service may need to locate and track a
mobile customer, and gain access to his/her profile, it raises a number of secu-
rity and privacy challenges. Location information has the potential to allow an
adversary to physically locate a person. As such, wireless subscribers carrying
mobile devices have legitimate concerns about their personal safety, if such in-
formation should fall into the wrong hands. Moreover, services such as targeted
advertising may deliver the service based on the mobile customers’ profile and
preferences. As such, privacy of mobile users can be compromised if the sensitive
profile information of the mobile users is revealed to unintended users. There-
fore, it is important that the sensitive profile information is revealed only on the
need-to-know basis. In addition to the privacy concerns mentioned above, there
are a number of applications that call for securing resources based on the crite-
ria of mobile objects. These include context (location)-sensitive access control,
and ubiquitous computing environment, where access is permitted based on the
location of the subjects/objects during a specific time.

In summary, in a mobile environment, there are a number of applications
that require enforcing security policies to provide controlled access to the mobile
user profiles, to their current location and movement trajectories, to mobile
resources, stationary resources based on the user’s spatiotemporal information.
Thus, an appropriate access control mechanism must be in place to enforce the
authorization specifications reflecting the above security and privacy needs.

Traditionally, access policies are specified as a set of authorizations, where
each authorization states if a given subject possesses privileges to access an ob-
ject. Considering the basic authorization specification 〈subject, object, privilege〉,
in a mobile environment, a moving object can be a subject, an object, or both.
Access requests in such an environment can typically be on past, present and
future status of the moving objects [1,2]. Serving an access request requires to
search for the desired moving objects that satisfy the query, as well as enforce
the security policies.

Often, enforcing security incurs overhead, and as a result may degrade the
performance of a system. One way to alleviate this problem and to effectively
serve access requests, is to efficiently organize the mobile objects as well as autho-
rizations. Towards this end, recently Atluri and Guo [3] have proposed a unified
index structure called STPR-tree in which authorizations are carefully overlaid
on a moving object index structure (TPR-tree), based on their spatiotemporal
parameters. One main limitation of the STPR-tree is that it is not capable of
maintaining past information. As a result, it cannot support queries based on
past location and security policies based on tracking of mobile users.
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In this paper, we present an index structure, called SPPF -tree, which
maintains past, present and future positions of the moving objects along with
authorizations by employing the partial persistent storage. In particular, we build
on the concepts of the RPPF -tree [4] and overlay authorizations suitably on
the nodes of the index tree. Essentially, a partial persistent structure keeps all
past states of the data being indexed, but updates only the newest version. We
demonstrate how the SPPF -tree can be constructed and maintained, and pro-
vide algorithms to process access requests. Specifically, we support two types of
access requests: requests for moving objects by stationary subjects and requests
for stationary objects by moving subjects. The first type of requests, in addition
to retrieving the moving objects in a specific spatiotemporal region, allow re-
trieving the location of the moving objects as well as their trajectories. As such
our model would support security policies based on tracking of moving objects.

This paper is organized as follows. In section 2, we present our moving object
authorization model. We present the preliminaries in section 3. In section 4, we
present our proposed novel unified index structure, the SPPF -tree and illustrate
our approach and strategy to overlay authorizations on top of the RPPF -tree.
In this section, we also describe how access requests are evaluated. Related work
is presented in section 5. In section 6, we conclude the paper by providing some
insight into our future research in this area.

2 Moving Object Authorization Model

In this section, we introduce an authorization model for moving object data,
which is an extension of the model proposed in [3]. In a moving object environ-
ment, authorization specifications should be capable of expressing access control
policies based on spatiotemporal attributes of both subjects and objects.

Definition 1 (Authorization). An authorization α is a 4 tuple 〈ce, ge, p, τ〉,
where ce is a credential expression denoting a set of subjects, ge is a object
expression denoting a set of objects, p is a set of privilege modes, and τ is a
temporal term.

The formalism to specify ce, ge and τ has been developed in [5]. Credential
expression ce can be used to specify a set of subjects such that they are associated
with (i) a set of spatiotemporal and/or other traditional credential attributes,
(ii) a set of subject identifiers, or (iii) a combination of both. In the same way,
object expression ge can be used to specify a set of objects such that they (i)
are associated with a set of spatiotemporal and/or other types of attributes,
(ii) a set of object identifiers, or (iii) a combination of both. Note that the set
of subjects and objects denoted by ce and ge can be moving objects. To avoid
confusion, from now on, we denote the objects specified in the authorization as
auth-objects (stands for authorization objects). τ can be a time point, a time
interval or a set of time intervals.

Our model supports not only read, write, and execute privileges for tradi-
tional auth-objects but also viewing and compose for moving objects. We sup-
port three viewing privileges: View, Locate, and Track privileges allow subjects
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to access a moving object(s), to read the location or trajectory information of
a moving object(s) in the authorized spatiotemporal region, respectively. Com-
pose privileges allow subjects to write information on the auth-objects. In the
following, we present some examples of security policies.

– Policy 1: A mobile customer is willing to reveal his personal profile infor-
mation to a merchant only during the evening hours, and while he is close to
the shopping mall. In this case, only the auth-object (customer) is a moving
object and this policy is based on auth-object’s spatiotemporal attributes.

– Policy 2: An employee is allowed to update certain company data only
during “office hours” and while “in the office.” Note that only the subject
(employee) is a moving object. Also note that the policy is based on the
subject’s spatiotemporal attributes.

– Policy 3: An airport security official can access the trajectory information
of travelers in the airport only while he is on-duty (i.e., during 11pm-7am).
In this case, both the subject and the auth-objects are moving objects, and
the policy is based on the spatiotemporal attributes of both subject and
auth-object.

– Policy 4: A FBI agent can access the current location and trajectory in-
formation of a truck with id 325. Note that although the subject and the
auth-object are moving objects, the subject is allowed to access the informa-
tion regardless of his location and time. In this case, the policy is based on the
identifiers of both subject (FBI agent) and auth-object (truck with id 325).

– Policy 5: A police office in Newark, NJ can access only the dispatched patrol
cars from the Newark area. Note that only auth-objects are moving objects.
Also, the policy is specified on two types of auth-objects: object identifiers
(patrol cars from Newark police station) and spatiotemporal region.

The above policies can be specified as the following authorizations.

– α1=〈merchant(i), {profile(i)∧rectangle(j)=(5,6,1,2)∧[5pm,9pm]},locate〉
– α2=〈{emp(i)∧ rectangle(j)=(3,5,1,5)∧[9am,5pm]},{profile(j)}, update 〉
– α3=〈{security official(i) ∧ rectangle(j)=(1,4,3,4) ∧ [9am, 5pm]},

{travelers(i) ∧ rectangle(j)=(100,50,30,30) ∧ [current time]}, track 〉
– α4=〈 FBI agent(i), truckid(j)=325, track 〉
– α5=〈{dispatch department(i) ∧ office location(j)=’Newark’}, {patrol cars

(k)∧rectangle(l)=(10,50,30,30) ∧ dispatched from(k) = ’Newark’}, track 〉

3 Preliminaries

In this section, we present the partial persistence framework and review the
RPPF -tree [4], a moving object index that maintains not only the present and
anticipated future positions of moving objects, but also their past positions.

Representation of Moving Objects: Let the set of moving objects be
O={o1, . . . , on}. In the d-dimensional space, objects are specified as points
which move with constant velocity v̄ = {v1, v2, . . . , vd} and initial location
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Fig. 1. The Time Parameterized
Bounding Rectangle (tpbr)
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x̄ = {x1, x2, . . . , xd}. The position x̄(t) of an object at time t(t ≥ t0) can
be computed through the linear function of time, x̄(t) = x̄(t0) + v̄(t − t0)
where t0 is the initial time, and x̄(t0) the initial position. Considering a two-
dimensional space, a moving object oi moving in 〈x, y〉 space can be represented
as oi = ((xi, vix), (yi, viy)).

Time Parameterized Bounding Rectangle (tpbr): Given a set of mov-
ing objects O = {o1, . . . , on} in the time interval [t0, t0 + δt] in 〈x, y, t〉 space,
the tpbr of O is a 3-dimensional bounding trapezoid which bounds all the
moving objects in O during the entire time interval [t0, t0 + δt]: tpbr(O) =
{(x�, x�, y�, y�), (v�x , v�x , v�y , v�y )} where ∀ i ∈ {1, 2, . . . , n}, x� = mini{xi(t0)},
x� = maxi{xi(t0)}, y� = mini{yi(t0)}, y� = maxi{yi(t0)}, v�x = mini{vix},
v�x = maxi{vix}, v�y = mini{viy}, v�y = maxi{viy}.
Time Horizon (H): Given a moving object, it is unrealistic to assume that its
velocity remains constant. Therefore, the predicted future location of a object
specified as a linear function of time becomes less and less accurate as time
elapses [6]. To address this issue, a time horizon H is defined, which represents
the time interval during which the velocities of the moving objects assumed to be
the same. Figure 1 shows how tpbr bounds the trajectory of two moving objects
o1 and o2 in [t0, t0 + H ].

The Tree Structure: Given a set of tpbrs, they can be organized in a hier-
archical structure. In figure 2, tpbr C encloses tpbrs A and B. These three can
be organized as a hierarchical structure with A and B being the children of C.
Essentially, at the bottom-most level of the hierarchy, a set of moving objects
could be grouped to form tpbrs. Each tpbr of the next higher level is the bound-
ing tpbr of the set of tpbrs of all of its children. The root of the hierarchy is thus
the bounding tpbr covering all its lower level tpbrs in a recursive manner.

The Partial Persistence Framework: Partial persistence is a data structure
that keeps all past states of the data being indexed, but applies updates only to
the newest version. It is based on the following important concepts.

– Evolution of Index Nodes and Data Entry: In order to be transformed
to a partially persistent structure, each index (leaf or index) node and data
entry (moving object) include two additional fields for maintaining the evo-
lution of the index records: insertion time and deletion time. These are de-
noted as N.insertionT ime and N.deletionT ime for node N . If a new moving
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object is available and captured at time t0, its insertion time is set to t0 and
deletion time is set to ∞. When the object is logically deleted from the index
at time td, its deletion time is changed from ∞ to td. The same rule applies
to index nodes. A node or a data entry is said to be dead if its deletion time
is less than ∞, otherwise it is said to be alive.

– Time Split: When an update (insertion or deletion) occurs at a node N , it
may result in structural changes if it becomes underfull or overfull. If this is
the case, a time-split occurs to N . The time-split on N at time t is performed
by copying all alive entries in N at t to a new leaf node L and timestamp of
both L and those copied entries are set to [t, ∞). In addition, the deletion
time of N is set to t, and N is considered dead. Then, the new node L is
investigated further in order to incorporate it into the tree. Essentially, three
different cases may arise: (i) split: If L is overfull, split it into two nodes and
then insert these two nodes into the tree. (ii) merge: If L is underfull, merge it
with another alive node. (iii) no change: If L is neither overfull or underfull,
insert it directly into the tree. After the structural change, the tpbr of the
parent node may need to be updated accordingly and the described process
may be repeated up to the root node. If the root node is time-split at time
t, a pointer to the new alive node together with timestamp [t, ∞) is added
to a special root array that is stored in the main memory [4].

Note that if the tree is constructed at t0 and time split for the alive root
element of the root array occurs at {t1, t2, . . . , tn}, each root element in the
root array is associated with time interval [t0, t1), [t1, t2), . . . , [tn−1, tn), and
[tn,∞). The associated time interval for each root element represents the
valid structure of the tree during those time intervals. Thus, if we want to
know the status of the tree at time t, we simply need to find a root element
r from the root array such that the time interval of r includes t.

In the following, we explain the concept of time-split, root array, dead and
alive nodes by taking a concrete example. Consider a tree with a node that can
hold 5 data entries. Obviously, the node is considered underfull if the number
of data entries is less than 2, and overfull if the number of data entries is more
than 5. Observe that the dead nodes are shaded in figures.

– Time interval t = [0, 4]: Moving objects o1, o2, and o3 are inserted into
the root node at t=0: the insertion time and deletion time of all these objects
are set to [0,∞). Then at t = 2 and 3, o4 and o5 are inserted, and, thus, their
insertion time and deletion times are [2,∞) and [3,∞), respectively. At t =
4, o6 is inserted to the root node N , which becomes overfull. So, time split
occurs. A new leaf node L with insertion and deletion time [4,∞) is created
and all the alive data entries (o1, . . . , o6) in the root node are copied there
with insertion and deletion times as [4,∞). Because L is also overfull, it is
split into two nodes, which are inserted into the tree. A new root entry is
added, forming a root array. The previous root’s deletion time is set to 4,
representing it as a dead node, and the time interval of the newly created
root is set to [4,∞), as shown in Figure 3.
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Fig. 3. The Index Structure at time 4
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Fig. 4. The Index Structure at time 6

– Time interval t = [5, 6]: At t = 5, o2 is deleted and o7 is inserted. Thus,
the deletion time of o2 is set to 5, and o7 is inserted in the tree with the
insertion and deletion times [5, ∞). Then, at t = 6, o3 and o7 are deleted. So,
deletion time of these objects are set to 6. Because the deletion of o3 results
in the underfull of the node L1 that stores o3, a time split occurs: another
new node K is created and alive entry o1 is copied there. Since newly created
node K is underfull, it is merged with its neighboring alive node L2. The
deletion time of the node L1 is set to 6, representing that L1 is dead. The
resultant data structure is shown in figure 4.

When update occurs, the resulting trajectory of a moving object may consist
of disconnected and slightly incorrect segments because at the insertion of the
object, the predicted future positions can be different from the actual positions.
Therefore, during update, the last-recorded trajectory segment of an object needs
to be updated. It may be stored in more than one leaf node because the leaf
node in question may have been time split a number of times since the previous
updates [4]. RPPF -tree corrects the last-recorded trajectory segment by visiting
all leaf nodes that contain copies of the segment and also tightens the tpbr
accordingly. For example, in figure 4, suppose the actual location of o3 turns out
to be different from the predicted location during update (deletion). Then, after
setting the deletion time of o3 as 6, all the nodes that include the trajectory of
o3 since the last update (insertion of o3 at t = 3) are updated to point the actual
location of o3 correctly. The first root element and the node L1 is such a case.

4 The SPPF -Tree

In this section, we present our proposed unified index, the SPPF -tree that indexes
authorizations as well as the moving objects by capturing their past, present,
and future locations. As a result, we can support authorizations based on locate
and track privileges.

4.1 Authorization Overlaying

Our approach is to first construct a RPPF -tree index for moving objects,
and then overlay authorizations on top of each node of the index by carefully
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examining the spatiotemporal extents of both the node and the authorizations.
The resulting tree is the SPPF -tree. We denote the spatiotemporal extent of an
authorization α by α�. In other words, x-axis interval = [α.xb, α.xe], y-axis in-
terval = [α.yb, α.ye], and t-axis interval = [α.τb, α.τe] where α.xb, α.xe, α.yb and
α.ye denote the spatiotemporal extent specified by ce or ge represented by the
lower and upper bounds in the x and y axes, respectively, and [α.τb, α.τe] denote
the time interval during which α is valid. Also, we denote the spatiotemporal
extent (tpbr) of a node N by N�.

An authorization α is said to be subject-based authorization, if α� is computed
from α.ce. Similarly, if α� is from α.ge, it is said to be an object-based autho-
rization. In other words, in the former case, subjects are the moving objects and
in the latter case, objects are the moving objects. In our tree, we are capable
of overlaying only if the authorization is specified based on the spatiotemporal
extent of ce or ge, but not both. In addition, we assume that α� is a contiguous
spatiotemporal region without losing any generality because each non-continuous
spatiotemporal region can be sliced to form a single contiguous region.

A node of SPPF -tree is similar to that of RPPF -tree except that it includes
two pointers that point to a set of subject-based authorizations (αS) and a set
of object-based authorizations (αO) overlaid on the node.

The overlaying strategy first selects the root nodes from the root array such
that the root node’s alive time interval is overlapped with the authorization’s
time interval. Then, for each selected root node r, it traverses the tree recursively
starting from the root node r to the leaf level in a way that for each node N in
the traversal path, α� is compared with N�. All the possible scenarios for this
comparison are as follows:

– Case 1: If the spatiotemporal extent of α fully encloses that of the node N ,
we will stop traversing and overlay α on N . This is because, if a subject is al-
lowed to access objects within a certain spatiotemporal region, it is allowed to
access objects in the subregion of that [3]. (If alphaS.ce (alphaO.ge) points to
a combination of spatiotemporal region and a set of subjects (auth-objects),
we can exclude unauthorized subjects (auth-objects) by post-processing the
query result when we evaluate the query.) After overlaying an authorization
on a node, it is not necessary to overlay the same authorization on any of
its descendents.

– Case 2: If the spatiotemporal extent of α overlaps with that of the node N ,
the level of the node decides where it is overlaid.
• If N is a non-leaf node, each of N ’s children is traversed and the al-

gorithm repeats the comparison between α� and each child�. The goal
here is to check if there exist a child of N whose spatiotemporal extent
is enclosed by that of α.

• If the node N is a leaf node, we overlay α on the leaf node N . This is
because, when the spatiotemporal extent of the authorization α� does
not enclose, but overlaps with that of the leaf node N�, we need to ensure
that no relevant authorizations are discarded. Also, note that only part
of the spatiotemporal extent of N� is in the authorized region. The
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moving objects from the remaining unauthorized spatiotemporal region
N� − α� must be removed from the user’s output, if the user request
includes this region.

– Case 3: Else, which implies the spatiotemporal extent of the authorization,
α� is disjoint with that of the node N�, we stop the overlaying process. This
is because, if α.ce does not have privilege to the region covered by N�, then
α is not applicable to that region. Also, since N� includes spatiotemporal
extent of all of its children nodes, α� is disjoint with the spatiotemporal
extent of each child. Thus, there is no need to traverse further to the leaf
level.

4.2 Maintenance of the SP P F -Tree

One main challenge of the SPPF -tree is to maintain the overlaid authorizations
as the tree evolves. Changes to the SPPF -tree are needed due to the following
two reasons:

– Updates to the moving object: It is important to note that, while the
spatiotemporal region of an overlaid authorization is static in nature, the
tpbr of each node in the tree changes over time. Therefore, it is possible that
certain overlaid authorizations may no longer satisfy the conditions. As a
result, it may be necessary to reposition the existing overlaid authorization.

– Change of applicable authorizations: If the overlaid authorizations are
valid only during a certain time interval, as time elapses, they are no longer
applicable. Therefore, these need to be removed from the overlaid set. Also,
certain new authorizations may become applicable, which need to be overlaid
appropriately.

Because the SPPF -tree is an unified index that maintains not only moving
objects but also authorizations, we need to pay attention to how updates of one
type can be performed without hampering the properties of the SPPF -tree.

4.2.1 Handling Updates due to Change of Applicable Authorizations
To handle this issue, we introduce the notion of Authorization Log, described
below.
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Authorization Log: An authorization log is nothing but a data structure con-
structed by spreading all the authorizations on the time line. For each autho-
rization, we consider the following two events: (1) auth-begin event and (2)
auth-end event. These two are nothing but [τ.tb, τ.te] specified in the autho-
rization specification. (Note that each authorization will have only two such
events since we are not considering periodic authorizations. However, our pro-
posed solution can be easily extended to handle periodic authorizations.) For
example, in figure 5, the auth-begin event of the authorization alpha1 occurs at
time t13, and the auth-end event will occur at time t28.

Essentially, as time elapses, new authorizations may become applicable and
we do not want to miss overlaying these authorizations on the SPPF -tree. An
authorization α is said to be applicable to the tree constructed at t, if the two
time intervals [α.τb, α.τe] and [t, t+H ] overlap. For example, suppose the SPPF -
tree is constructed at t = t10, which is valid until t10 + 2 (assuming H = 2).
Referring to figure 5, only α2, α3, and α4 are overlaid on the tree. Since valid
intervals of α1 and α5 are outside [t10, t10 + 2], they are applicable now and
therefore are not overlaid on the tree. On the other hand, at t20, both α1 and
α5 must have been overlaid on the tree. However, the tree has no capability to
keep track of newly applicable authorizations that need to be overlaid on the
appropriate nodes of the tree. An auth-begin event triggers the overlay procedure
to take care of this issue. For example, α1 in figure 5 will be overlaid on the tree
at t13 because the tree is valid up to the current time + time horizon.

Also, after some time later, certain overlaid authorizations become invalid and
therefore must be removed from the tree. This is taken care by the auth-end event
to trigger such removals. The removed authorization needs to be re-overlaid on
the SPPF -tree because it may satisfy the overlaying conditions of another node
in the tree.

In addition to triggering the overlaying and deletion of authorizations, update
must take care of the cases when the time-split occurs. In this case, an entirely
new node will be created for which there exist no overlaid authorizations. The
find-auth method computes all the authorizations overlapping with the inter-
val of the newly created nodes. Figure 6 depicts the relationship between the
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Fig. 7. Re-overlaying of authorizations due to updates to moving objects

authorization log and the SPPF -tree along with the auth-begin and auth-end
events, and the find-auth method.

4.2.2 Handling Updates due to Changes to Moving Objects
Updates to moving objects may cause a structural change to the SPPF -tree.
When update (insertion/deletion) occurs on the SPPF -tree, all the access nodes,
which are ancestors of the leaf node which the update is applied to, need to be
checked because the overlaid authorizations in the nodes may either be degraded
authorizations (authorizations which were originally overlaid on the access nodes,
but no longer fit in their original positions due to the spatiotemporal enlargement
of the nodes by updates) or upgraded authorizations (authorizations which were
originally overlaid on the access nodes, but able to fit in an ancestor of their
original positions due to spatiotemporal shrinkage of the nodes by updates).
This procedure is even more complicated if the update process results in the
structural changes due to time-split. The details are summarized below.

1. Update authorizations on the adjusted nodes: Based on the periodic
updates on the position of the moving objects, the tpbr of each node in the
SPPF -tree will be adjusted; they may either shrink or expand. Moreover,
adjustments to the tpbr of a node may trigger adjustments to the tpbrs of its
ancestor nodes. For each adjusted node N , every overlaid authorization α
on it can fall into one of the three categories: (i) degraded authorization, (ii)
upgraded authorization, (iii) no changes. The algorithm checks first if it is
an upgraded authorization and attempts to overlay it as high in the tree as
possible. Else, the same overlaying strategy is used to find the appropriate
position for α. Figure 7 shows these three different cases. Suppose N2 is the
adjusted leaf node. Figure 7 (a) shows the shrinkage of the tpbr for N2 and its
parents. The authorization initially overlaid on N1 is now repositioned to N0:
it can enclose N�

1 as well as N�
0 spatiotemporally and therefore becomes an

upgraded authorization. On the other hand, the tpbr of N2 may be expanded
due to the adjustment. Figure 7 (b) shows this expanded case, and that the
overlaid authorization does not enclose N�

1 spatiotemporally any more. It
becomes a downgraded authorization. Therefore, it is repositioned to the
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child of N1, i.e., N2. In addition, it may be possible that the shrinkage or
expansion of the corrected node does not affect the overlaid authorizations
if the overlaid authorization still encloses N�

1 but does not enclose its parent
N0 spatiotemporally. Figure 7 (c) presents this case.

2. Overlay authorizations on the newly created node: The newly created
node due to a time-split does not have any authorizations overlaid on it.
Therefore, all the authorizations whose valid time intervals are overlapped
with the interval of this node are overlaid on the alive root node from the
root array.

4.3 Access Request Evaluation

In this section, we present the different types of access requests and how these
are evaluated against the specified authorizations to retrieve the information
that satisfies the user request. Two types of user requests are possible under our
framework.

– Moving Object Request (MOR): A subject who is stationary may wish to
access moving objects that fall within a spatiotemporal region. This can be
a locate, a track or a view request on a moving object.

– Stationary Object Request (SOR): A subject who is within a spatiotemporal
region may wish to access objects that are stationary.

Definition 2 (Moving Object Request). A moving object request (MOR),
denoted as a triple U = 〈s, Q, m〉, where s is the subject of the user request, Q
is a spatiotemporal region, and m is a track, a locate, or a view access mode.

The result of a MOR would be one of the trajectory of an object(s), the posi-
tion of an object(s), or the identifier of an object(s). A trajectory is of the form
〈o, {loc1, loc2 . . . , locn}〉, where o is the object, and loci is the ith location infor-
mation of o in the x, y, t dimensional space. In case of locate, the result would be
of the form 〈o, loc〉. The result of a view access mode would be a set of object ids.
We use U�, U.s, U.mode, U.τb, and U.τe to denote the spatiotemporal extent, the
subject, the access mode, effective time interval [U.τb, U.τe] of the access request
U respectively.

Definition 3 (Stationary Object Request). A stationary object request
(SOR), denoted as a triple V = 〈s, loc, o〉, where s is the subject of the user
request, loc is the current locations of the subject in the x, y, t dimensional space,
and o is an auth-object that the subject s tries to gain access to.

The spatiotemporal query evaluation is based on the overlaying procedure that
is introduced in the section 4.1. For a given user request U , the procedure first
locates a set of roots from the root array of SPPF such that the alive time
interval of the root is overlapped with [U.τb, U.τe]. Then, for each located root
r, the procedure traverses the subtree under this root r until it reaches the leaf
level During this traversal, it compares the spatiotemporal extent of user request
with that of each node in the search path. One would encounter three different
cases:
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– enclosing: If there exists any α such that the set of subjects evaluated by
ce contains U.s, then return all the moving objects that are overlapped with
(N� ∩ α�). In the case of the locate access mode, return the location in-
formation of those objects at time = U.τb. U.τe is ignored if it is different
from U.τb because, if we allow time interval, the trajectory information be-
tween the time interval [U.τb, U.τe] is rather revealed to the user instead of
the location information. If it is a track access mode, return the trajectory
information of those objects. The trajectory of each object o in the result
set is traced back by using the pointer N.ptr where N is the leaf node that
stores o. Whenever a node L is time split, ptr of newly created node is set to
point back to the original node L. Thus, all the past location information of
o can be reached by following the ptr created each time a node is split. This
tracking is processed within the spatiotemporal region U� ∩α� where α� is
the spatiotemporal region of all the authorizations with track privilege that
are applicable to U.s.

– overlapping: If there exists any α such that the set of subjects evaluated
by ce contains U.s, return the objects overlapping with U� only. However,
we still need to check authorizations overlaid for the descendents of the node
N because authorizations overlaid for the descendents may include another
spatiotemporal region that α� does not cover. In the case of the leaf node,
return all the moving objects that are overlapped with (N� ∩ α� ∩ U�).
Again, if it is a track access mode, return the trajectory information of
those objects. If it is a locate access mode return the location information.

– disjoint: Stop the evaluation process because no relevant authorizations can
be found in the descendents of the node N to satisfy the request.

In SOR, we use V.s, V.o, and V point to denote the subject, the requested
auth-object and the spatiotemporal position of V , respectively. Only the alive
root node among the root array is traversed because the access control request
is evaluated only by the V.s’s location at tc. The algorithm traverses the alive
tree from the alive root node until it reaches the leaf level. During the traversal,
it checks if the spatiotemporal extent of each node in the search path includes
the V point. If so, the procedure collects all the auth-objects contained in the
set of ge such that V.s is in the set of subjects evaluated by ce. If o is among
this auth-objects set, stop traversing and return true, which means that the
user s is allowed to get access to o. Otherwise, continue traversing. In case N
is a leaf node, for each authorization N in αS , include the auth-objects of α if
N� ∩ α� encloses V point since we do not want to get the false positive result
for the area N� - α�.

5 Related Work

Recently, there has been some endeavors to support effectively evaluating queries
of past, present and future locations of moving objects. Patel et al. [7] index the
positions that result from the dual data transformation. Lin et al. [8] propose
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the BBx-index structure that inherits the ability to index present and future po-
sitions from the Bx-tree [9], and it extends this ability with support for also past
positions. However, BBx-index does not correct trajectory segments and there-
fore, the index may include disconnected trajectories. Pelanis et al. [4] address
this problem by applying partial persistence to the TPR-tree [6] and correcting
the last-recorded prediction of moving object.

An index scheme for moving object data and user profiles has been proposed
by Atluri et al. [10], but this does not consider authorizations. Beresford et al.
[11], [12] have proposed techniques that let users benefit from location-based
applications, while preserving their location privacy. Mobile users, in general,
do not permit the information shared among different location based services.
Primarily, the approach relies on hiding the true identity of a customer from the
applications receiving the user’s location, by frequently changing pseudonyms so
that users avoid being identified by the locations they visit. A system for deliv-
ering permission-based location-aware mobile advertisements to mobile phones
using Bluetooth positioning and Wireless WAP Push has been developed [13].
An index structure has been proposed to index authorizations ensuring that the
customer profile information be disclosed to the merchants based on the choice
of the customers [14]. However, this provides separate index structures for data
and authorizations, and therefore is not a unified index.

Atluri and Guo have proposed a unified indexing scheme for moving objects
and authorizations, called STPR-tree. However, because STPR-tree does not
maintain historical information on moving objects, it does not support security
policies based on tracking of mobile users. The focus of this paper is to provide
persistence for unified indexing scheme for mobile objects and authorizations.

6 Conclusions

A number of services in the area of mobile commerce environment require main-
taining mobile object’s location information and efficiently serving access re-
quests on past, present and future status of the moving objects. Proper access
control policies must be enforced to address the security and privacy concerns
in this environment. Recently, Atluri and Guo have proposed an unified index
structure, STPR-tree, to organize both the moving objects and authorizations
specified over them. However, the STPR-tree is not capable of answering queries
based on the past information, and therefore cannot support security policies
based on tracking of mobile users. In this paper, we have proposed an index
structure, called the SPPF -tree, which maintains past, present and future posi-
tions of the moving objects along with authorizations by employing the partial
persistent storage, and therefore can support authorizations based on tracking
of mobile objects. Currently, we are conducting a performance evaluation to
demonstrate that our uniform indexing scheme indeed has significant impact on
the response time.

In our proposal, an authorization is based on the spatial and temporal at-
tributes of either subjects or objects. Thus, we are not capable of overlaying
authorizations that cannot be represented with spatiotemporal region. Also, our
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overlaying strategy cannot accommodate authorizations whose subjects and ob-
jects are both moving at the same time. As a result, supporting such autho-
rizations overlaying may require splitting the subject and object components.
We will enhance our SPPF -tree to address these issues. Support for negative
authorizations require significant changes to the overlaying of authorizations as
well as evaluating access requests. In this paper, we do not consider negative
authorizations; we will extend our work to support negative authorizations.
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Abstract. Traditional access control models are often found to be inadequate for
digital libraries. This is because the user population for digital libraries is very
dynamic and not completely known in advance. In addition, the objects stored
in a digital library are characterized by fine-grained behavioral interfaces and
highly-contextualized access restrictions that require a user’s access privileges to
be updated dynamically. These motivate us to propose a trust-based authorization
model for digital libraries. Access privileges can be associated with both objects
and content classes. Trust levels associated with these specify the minimum ac-
ceptable level of trust needed of a user to allow access to the objects. We use a
vector trust model to calculate the system’s trust about a user. The model uses
a number of different types of information about a user, for example, prior us-
age history, credentials, recommendations etc., to calculate the trust level in a
dynamic manner and thus achieve a fine-grained access control.

1 Introduction

Access control is one of the major concerns for content-providers on the Internet. With-
out a proper access control mechanism confidentiality and integrity of information can-
not be guaranteed. Different models exist for specifying access control policies like
discretionary access control, mandatory access control and role-based access control.
However, with increasing complexity of systems and security concerns, a single model
does not suffice to provide access control in all systems. In this work we address the
problem of access control in digital libraries.

Conventional access control models specify an access control policy as a triple
〈subject, object, permission〉. This states that that a subject (user) is authorized to ex-
ercise some permission on an object. The traditional models implicitly assume that the
user population is known a-priori. In a digital library system (DLS) the user popula-
tion is vast and dynamic. It is almost next to impossible to know all the users before
hand. Thus traditional access control mechanisms that rely on knowing the user and
associating permissions with them fail significantly in digital libraries. A digital library
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environment poses some additional challenges for access control [1]. The users of a
digital library often need access from remote locations or by following links from re-
mote documents. Thus it does not suffice to merely control access to documents local
to the digital library. The access control policies are often based on user qualifications
and characteristics. For example, a user can be given access to R-rated movies only if
she is older than 18 years. Last, but not the least, a digital library needs to support ac-
cess control to its objects based on the object content in addition to object identity. For
example, high resolution satellite images of nuclear power plants can be made available
only to citizens of the country.

In one of the early works on access control in digital libraries, Gladney [2] pro-
poses a scheme called DACM (Document Access Control Methods). The basic idea is
geared toward discretionary access control with some extensions to handle mandatory
access control. Though it is a scalable mechanism, it does not have the provision to
dynamically change user privileges. Researchers have also proposed credential-based
access control [3,4,5], to address the problem of unknown users. In these models a
user has to produce one or more credentials that have been certified by one or more
third parties. The credential provides information about the rights, qualifications, re-
sponsibilities and other characteristics attributable to its bearer by the third parties.
These third parties need to be trusted by the service provider. Bertino et al [1] de-
velops a credential based system for enforcing access control in digital library system.
Winslett et al. [6] also propose a credential-based mechanism to assure security and
privacy for digital library transactions. Skogsrud et al. [7] introduce a model-driven
trust negotiation framework called Trust-Serv for digital library environments. It uses
credentials for establishing trust relationships. Ryutov et al. [8] present a framework
named ATNAC (Adaptive Trust Negotiation and Access control) to protect sensitive
resources in e-commerce. It is designed by integrating two existing systems – Trust-
Builder with an adaptive access control API called, GAA-API (Generic Authoriza-
tion and Access control). In [9], Adam et. al propose a content-based authorization
model for digital library environments. Authorization is specified based on positive and
negative qualifications and characteristics of the user which are expressed using cre-
dentials. Bonatti and Samarati [10] propose a uniform formal framework to regulate
service access and information disclosure on the Internet. The regulation is based on
credentials.

As is evident from the above discussion most access control methodologies for dig-
ital libraries use credential in one form or the other. Credential based access control,
however, is not completely satisfactory. For one, a credential based system implements
a binary notion of trust. If a user’s credentials are accepted the corresponding privi-
leges are allowed; if the credentials are not successfully validated the user is denied
access. There is no way to implement fine-grained access control without requiring a
large set of credentials. Additionally, reasoned decisions cannot be made in the face of
incomplete, insufficient or inconclusive information. For example, let us assume that to
validate a particular user credential three different credential certifying authorities need
to be consulted. If, for any reason, one of these trusted authorities is not reachable and
could not validate the credential, while the other two successfully validated the creden-
tial, the access will still be denied. Current credential based systems cannot implement
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a notion of limited access. Third, the objects stored in a digital library are characterized
by fine-grained behavioral interfaces and highly-contextualized access restrictions that
require a user’s access privileges to be updated dynamically. Credential based access
control models do not keep track of a user’s behavior history. Access is provided based
solely on the credentials presented during the specific access request. Thus, a user’s
access privileges cannot be updated dynamically under this model.

Note that a basic requirement of any access control mechanism is to determine if a
user can be trusted with the access privileges. The notion of trust thus plays a crucial
role. Classical access control models establish trust in the user based on the user’s iden-
tity. Credential based access control does this by means of attestations from a-priori
trusted authorities. Thus, using trust relationships to enable secure interactions among
computational agents or to enforce proper policy seems appropriate. This motivates us
to propose a new trust-based access control framework in this work. It is based on the
vector model of trust that we had proposed earlier [11]. We use a prototype digital li-
brary system – called the DLS system – that we are developing at our institution as the
testbed for the new access control framework. In the DLS system the digital library con-
tents are classified into a number of content type categories. Each content type category
is associated with a trust level. A user who is trusted to the trust level of the content
category or higher can access the contents. The trust level of the user can be established
via a number of different means. For example, the trust level can be determined based
on past interactions with the user. It can be established based on some credentials pre-
sented by the user. It can also be established by virtue of recommendations provided by
a partner digital library.

The rest of the paper is organized as follows. Section 2 provides an overview of
access control in the DLS digital library system. In particular, it talks about how a no-
tion of trust is used in access control decisions. Section 3 describes the access control
model. In section 4 we outline how trust relationships are established between the DLS
system and its user population. Section 5 gives the architecture of the DLS access con-
trol framework. Finally, we conclude our discussion in section 6 with a summary for
future work.

2 Digital Library Access Control Model

Access control in the DLS digital library system is implemented using a multi-level
trust model. For a digital library, access privileges to a particular category content is
restricted to the users with a certain trust level. This trust level can be determined from
many different pieces of information available about the user. For example, trust level
can be determined from the credentials presented during an access request. Trust levels
can be established based on previous behavior of the user. Trust levels can be estab-
lished from certain physical properties of the user. Changes to the ‘trust-level’ changes
the access privileges of the user. Our model allows access privileges to be updated
dynamically during a user’s access session. How this change is going to affect user’s
authorization level depends on the digital library’s policy. Similarly what information
will be used in determining the trust level and how the information will be used, also
depend on the digital library’s policy.
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Unlike other access control models, our framework keeps track of the behavior of a
user. Access privileges are not assigned forever. The user may be denied access to the
same resource for which she used to have access, if her trust level detoriates. If a user
performs malicious task (e.g., forging credential), her trust level decreases and she gets a
reduced set of privileges. In this case the user is not able to access previously accessible
contents even if she presents necessary credentials. The digital library system allows
the user to access those contents again after the necessary level of trust about the user
is reached. Another advantage of this type of multi-level trust-based authorization is it
provides finer control over specifying access privileges. The system can define as many
trust levels as it wants and can assign each level to specific set of resources tied with
a specific set of access privileges. The association of trust levels with set of contents
defines the access control policy for the digital library system. The digital library system
needs only compute and monitor the trust level of the user and the regulation of access
is automatically achieved.

To achieve these goals we adapt the trust model we have proposed earlier [11]. Un-
like binary trust models, trust in this new model has different degrees and is computed
based on aspects of social interactions in addition to exchange of credentials rather than
on just exchange of credentials. The idea is that each interaction that a user performs
with the digital library system, the server discloses some portion of the resources. The
digital library should have a comfort level with this disclosure. Before giving the access
permission to the user for a particular category of content, the digital library needs to
determine to what degree it trusts or distrusts the user to have access to those contents.
We discuss how access privileges for a portion of the content can be controlled using
trust levels. We propose mechanisms by which the system collects, stores, and manages
information about the user. The information collected allows the system to compute a
trust value for the user. The computed trust value acts as a confidence level for the dig-
ital library system for disclosing its resources to that user. Note that, we envision this
system to be used in a membership based system that allows monitoring of user access
and activities. Thus privacy issues related to this is not addressed in this work. The pro-
posed scheme provides a flexible and powerful approach for the proper disclosure of
contents. It offers the digital library system considerable control over how it wishes to
disseminate its contents.

3 Content Dependent Access Control in DLS

The DLS supports content dependent as well as content independent access control.
The basic idea of content dependent access control in DLS is that a user’s trust level
determines which portion of content she can access with the allowed privileges on that
portion. To do this DLS classifies its entire content into sub-categories.

Definition 1. Each DLS object ok ∈ O (where O is the set of DLS objects, and ok is the
identity of the kth object) has a set Pk

o = {p1
o,p

2
o, . . . ,p

k
o} of properties that specifies the

content characteristics of the object. These properties are drawn from a larger set of
(potentially hierarchically organized) concepts called object properties.

Some examples of object properties are “journal articles”, “magazines”, “free content”,
“premium content”, “fiction”, “non-fiction”, “drama”, “comedy”, “adult”, “mp3-music”
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etc. The DLS defines a set CC of content classes for classifying its objects. A subset of
properties from the set of object properties define a content class. Every DLS object is
assigned to one or more content classes.

Definition 2. Let prop(cci) = {pk, . . . ,pn} be the object properties corresponding to the
content class cci. An object ok is classified to the content class cci if prop(cci) ⊆ Pk

o .

The function OC : O → P(CC) maps an object to some subset of content classes. The
function OC−1 : CC → P(O) gives the objects that belong to any content class in CC.

Definition 3. Two objects oi and oj belong to the same content class ccn if and only

if P i
o ∩P j

o �= ∅ and P i
o ∩P j

o = {pnk . . .pnm} contains all the properties for ccn i.e.,

prop(ccn) ⊆ P i
o ∩P j

o.

The content classes are organized in a hierarchy. Figure 1 gives an example of content
classes in the DLS system. We define the content class hierarchy as follows.

Definition 4. Content class hierarchy CCH ⊆ CC×CC is a partial order on CC. For
any two content classes (cc1,cc2) ∈ CCH, we say cc1 dominates cc2, denoted by cc1 )
cc2 if all the object properties that are in cc2 are also in cc1.
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Fig. 1. Example of content class hierarchy in DLS system

Access privileges are associated with content classes. We formally define an access
privilege as follows.

Definition 5. An access privilege, api, is specified as the tuple 〈 action, sign, con-
straints, exceptions 〉, where

1. action is a set of possible operations on digital library objects such as browsing,
authoring, retrieving, etc,

2. sign ∈ (+,-), denotes whether the privilege is positive or negative,
3. constraints define a set of pre-conditions for the actions; the pre-conditions can

include spatial and temporal conditions,
4. exceptions define conditions under which the constraints can be overridden.
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The access privilege “deny browsing if age less than 18 years unless supervised by
adult” will be expressed as 〈 browse, -, age < 18, adult-supervision 〉. The set APC
defines the set of all possible access privileges for the DLS. What type of access privi-
leges would be associated with which content class depends on the content class access
policy of the DLS.

Definition 6. The content class access policy is a function CCSP : CC → P(APC) that
maps a content class in CC to a set of access privileges in APC. The inverse function
CCSP−1 defined as CCSP−1 : APC → P(CC) maps an access privilege to a set of con-
tent classes.

The set of access privileges corresponding to the content class cci is represented by
cci

ap. Objects of the DLS are also associated with access privileges. Thus we define the
object access policy as follows.

Definition 7. The object access policy is a function OAP : O → P(APC) that maps an
object in O to a set of access privileges in APC. The inverse function OAP−1 defined as
OAP−1 : APC → P(O) maps an access privilege to a set of objects.

In DLS, users get different access privileges to different resources on the basis of their
‘trust-level’ with DLS during access request. Before presenting the authorization frame-
work, we would like to define what we mean by trust.

Definition 8. Trust is defined to be the firm belief in the competence of an entity to act
according to some specific rules within a specific context.

Definition 9. Distrust is defined as the firm belief in the competence of an entity to act
contrary to some specific rules within a specified context.

Although we define trust and distrust separately, we allow neutrality in the belief about
competence of the entity. Neutrality represents a position where there is neither trust
that the entity will act according to the specified rules nor distrust that the entity will
act contrary to those rules.

Trust (distrust) is specified as a relationship between the DLS system – the truster
that trusts the target entity – and a user (or an agent working on behalf of the user) –
the trustee that is trusted. We use the following notation to specify a trust relationship
– (DLS

c−→ U)N
t where U is a specific user of DSL. This expression specifies DLS’s

normalized trust on U at a given time t for a particular context c. The normalized trust
relationship is obtained from the simple trust relationship – (DLS

c−→ U)t – by com-
bining the latter with a normalizing factor. This trust is always related to a particular
context c.

Definition 10. A context ci of a trust relation in DLS is defined as a set of actions
a1, . . . ,an from the set of all possible actions that can be defined on objects. The context
is interpreted as the conjunction of all these actions, that is ci ≡ a1 ∧ . . .∧an.

Definition 11. A trust context ci covers another context cj if cj ⊆ ci. A trust relation

(DLS
ci−→ U)N

t is useful in context cj if ci covers cj.
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If a trust relationship is useful in a context other than the one it was specified for,
then the trust relationship can be used to make access control decisions for the dif-
ferent context. Next we introduce a concept called the value of a trust relationship. This
is denoted by the expression v(DLS

c−→ U)N
t and is a number in [−1,1]∪ {⊥} that

is associated with the normalized trust relationship. A user is completely trusted (or
distrusted) if the value of the trust relationship is 1 (-1). If the value is in the range
(0,1) the user is semi-trustworthy; if the value is in the range (-1,0) the user is semi-
distrustworthy. The 0 value represents trust neutrality that is, the user is neither trust-
worthy nor untrustworthy. The special symbol ⊥ is used to denote the value when there
is not enough information to decide about trust, distrust, or neutrality. The whole range
of trust values are sub-divided into some non-overlapping intervals. Each interval rep-
resents a set of trust levels. We use the symbol I to represent a set of trust-intervals intk
with the properties:

⋃
k intk = [−1,1]∪{⊥} and intj ∩ intk = ∅, ∀ j �= k. The function

TI : v(DLS
c−→ U)N

t → intk maps a trust value to a trust interval.

Definition 12. A trust-based access control policy of a digital library system, is defined
as one of either 〈CC,I ,A〉 or 〈O,I ,A〉 or both where CC is the set of content-classes,
I is a set of trust-intervals with each interval being a set of trust levels, and a trust
association function A : CC∪O →I which defines the association between a content-
class or an object and a trust-interval. Formally, the association is represented as:

A(cck) = intj where ∀k, cck ∈ CC, and ∀ j, intj ∈ I . (1)

A(ok) = intj where ∀k, ok ∈ O, and ∀ j, intj ∈ I . (2)

This mapping actually defines the access control policy of the system. The policy speci-
fies what trust-level allows a user to access a specific object or a set of objects. If a user’s
trust level is in the interval intj, she can access any object belonging to the class cck with
all the privileges tied to this class, provided no exception is defined on the access priv-
ilege. Decreasing the trust level beyond this interval intj results in a change in access
privileges of the user; the user may no longer have the same access rights for the same
information. The system may also choose to tie special condition(s) (e.g., a mandatory
credential) to allow access to a particular content-class ccj, where A(ccj) = intk,. In this
case, the user needs to have her trust level in intk as well as has to satisfy the mandatory
condition in order to have access to the content-class. Figure 2 gives the conceptual
model of access control in the DLS.

4 Establishing Trust Relationship Between DLS and a User U

To gain access to DLS resources, a user U first needs to register. The user signs in as a
‘new user’ and the system asks U to choose a ‘username’ and ‘password’. Even if the
user U chooses not to provide any information about herself (including name, address,
phone number etc.), the registration is successful. The DLS builds a trust relationship
(DLS

c−→ U)N
t with each registered user U. The underlying context c for the trust re-

lationship is set to the most basic action that is possible as defined in DLS (log-in, for
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Fig. 2. DLS access control model

example). Depending partly on DLS’s policy on registration information required, an
initial trust level is set for the user. Typically it will be neutral. As the user continues to
interact with DLS the trust level changes.

The vector trust model defines three different parameters that influences the compu-
tation of a trust level – experience, knowledge and recommendation.

Definition 13. The experience of a truster about a trustee is defined as the cumulative
effect of a number of events that occurred between the truster and the trustee over a
specific period of time in the given context.

DLS categorizes each experience as trust-positive, trust-negative or trust-neutral ex-
perience. A trust-positive experience increases trust degree whereas a trust-negative
experience diminishes trust degree. A trust-neutral event contributes neither way.

Definition 14. The knowledge of the truster regarding a trustee for a particular context
is defined as a measure of the characteristic attributes or information of the trustee for
which the truster can have some assertion to be truly related to the trustee.

The trust value of DLS on a user can change because of some knowledge that the DLS
possesses about the user. Information about the user may be obtained by the DLS in
some earlier time for some purpose or, it may be a piece of information about the user
for which the DLS can have a proof to be true. As with interactions, we have trust-
positive, trust-negative, and trust-neutral knowledge.

Definition 15. A recommendation about a trustee is defined as a measure of the sub-
jective or objective judgment of a recommender about the trustee to the truster.

It is important to note that the importance of the judgment of the third entity depends
on how much the DLS trusts the third person’s ability to judge others. As before we
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can have a trust-positive, trust-negative, and a trust-neutral recommendation. Finally,
recommendations can be obtained by the DLS from more than one source and these
together will contribute to the final trust relationship.

To compute a trust relationship we assume that each of these three factors is ex-
pressed in terms of a numeric value in the range [−1,1] and a special value ⊥. A
negative value for the component is used to indicate the trust-negative type for the
component, whereas a positive value for the component is used to indicate the trust-
positive type of the component. A 0 (zero) value for the component indicates trust-
neutral. To indicate a lack of value due to insufficient information for any component
we use the special symbol ⊥. Properties of ⊥ are: If R is the set of real numbers, then
(i) a · ⊥=⊥ · a =⊥, ∀ a ∈ R; (ii) a + ⊥=⊥ + a = a, ∀ a ∈ R; (iii) ⊥ + ⊥=⊥ and
⊥ · ⊥=⊥. We now discuss how values will be assigned to each of these components.

Evaluation of knowledge. The parameter “knowledge” is difficult to compute and is,
to some extent, subjective. To begin with, the DLS must define its own criteria for
gradation of information (or, properties) regarding any user. After the user U registers
with DLS, the system asks for several specific information from U. The user can dis-
close those at once or she can choose to disclose them gradually at later times. For
every piece of information that DLS receives from the user, a value between [−1,1]
is assigned. How the values are assigned, depends on the scheme and policy (called,
knowledge evaluation policy) of the DLS. Also the DLS solely is responsible for as-
signing the relative weights to different attributes or information. At any time t, the
average of those values gives the value of knowledge about U. If the DLS is aware of
k attributes of the user, then knowledge of user U according to the DLS in context c is

evaluated as DLSKc
U = ∑k

i=1 vi
k , where vi ∈ [−1,1] ∀ i = 1,2, . . . ,k. User’s personal as well

as professional information constitute the ‘knowledge’. For example the following can
constitute ‘knowledge’ about a user U:

– Personal information: Name, Address, Home phone number, Work phone number,
Cell number etc.

– Financial Account information: Credit card number, validity period, credit card
security code, Bank name, Bank routing number, Checking account number, etc.

– Affiliation: Name of the organization, Branch location, Organization accreditation,
Designation of U in the organization, Proofs/Certificates related to affiliation, Des-
ignation of certifying authority (like, manager, CEO, advisor, department-chair,
dean-of-studies) etc.

It is possible that the DLS has insufficient information to assign a value to knowledge.
For these types of cases, it assigns ⊥ to the component. Note, DLSKc

U =⊥ is different
from DLSKc

U = 0. Value 0 implies that after evaluating the information according to trust
policy, the DLS’s decision is neutral. But the value ‘⊥’ implies “lack of information”,
that is there is not enough data to determine ‘knowledge’ about the user.

Evaluation of experience. Most of the information that goes toward the forming the
‘knowledge’ of DLS about U in context c does not necessarily enhance or degrade the
system’s trust on U. This is because all the above information are provided voluntarily
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by the user U. There is no guarantee that U discloses all information correctly. More
useful, is perhaps, the interactions between the user and DLS. The user’s behavior man-
ifests in the form of events. We model experience in terms of the number of events
encountered by the DLS regarding a user U in the context c within a specified period
of time [t0, tn]. Like knowledge, an event can be trust-positive, trust-negative or, trust-
neutral. If there are events that conforms to the knowledge that the system has gathered
then these events will be termed trust-positive. Every successful verification of informa-
tion or every successful transaction with U can be considered as a trust-positive event. If
the events are contrary to the knowledge then they are trust-negative. Otherwise they are
trust-neutral. In fact, negative outcome of a verification procedure or failure of verifica-
tion of a piece of information results in a trust-negative event. Every time the user logs
in, the system tries to verify the information about the user that is stored in the system.
The user may accept all information as correct or can edit them. The system verifies the
validity of those information. If verification fails or any anomaly is found, it is consid-
ered a negative event. Note that all information may not be verifiable at once. Results
of those information have the impact on the next transaction. For that instance, user U’s
trust level is calculated on the basis of the current available results. Some examples of
events are as follows. The list is not exhaustive.

– Every successful transaction is considered to be a positive event.
– Providing invalid e-mail id, wrong home address or, wrong contact numbers are

considered as negative events. Correct informations are trust positive events.
– Providing wrong credit card or invalid credit card details is a negative event. Simi-

larly, wrong checking account information (either false routing number or account
number or combination of these results in a trust-negative event). Correct informa-
tion results in a trust-positive event.

– Purchase request with stolen or forged credit card/account number is a negative
event. Successful purchase is a positive event.

– Forging a credential is a negative event while providing a valid credential generates
a positive event.

– Posting improper, objectionable, or irrelevant remarks through review center is con-
sidered to be negative events.

Events far back in time does not count as strongly as very recent events for comput-
ing trust values. Hence we introduce the concept of experience policy. It is defined as
follows.

Definition 16. An experience policy specifies a totally ordered set of non-overlapping
time intervals together with a set of non-negative weights corresponding to each ele-
ment in the set of time intervals.

Recent intervals in the experience policy are given more weight than those far back.
The whole time period [t0, tn] is divided in such intervals and the DLS keeps a log of
events occurring in these intervals.

If ei
k denote the kth event in the ith interval, then we denote the value associated with

ei
k as vi

k. This value is assigned according to relative importance of the event ei
k. vi

k ∈
[−10,0) if ei

k ∈ Q , vi
k ∈ (0,10] if ei

k ∈ P and vi
k = 0 if ei

k ∈ N where, P = set of all
trust-positive events, Q = set of all trust-negative events and N = set of all trust-neutral
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events. The system assigns different weights to different events on a 10-point scale de-
pending on the seriousness or effect of the event. For example, providing a wrong tele-
phone number by a user may not be as serious offense as forging a credit card number.
So the system assign two different negative values for these two trust-negative events.

The incidents INj, corresponding to the jth time interval is the normalized sum of the
values of all the events, trust-positive, trust-negative, or neutral for the time interval.
The normalization is done in such a way that INj ∈ [−1,1]. If nj is the number of events
that occurred in the jth time interval, then

INj =

⎧⎨
⎩
⊥ , if � ek ∈ [tj−1, tj] for any k
∑

nj
k=1 vj

k

∑
nj
k=1|v

j
k|

, otherwise

The experience of DLS with regards to U in the context c is given by, DLSEc
U =

∑n
i=1 wiINi, where, wi ∈ [0,1] is a non-negative weight assigned to ith interval.

Evaluation of recommendation. In our modified trust model [12] recommendation is
evaluated on the basis of a recommendation value returned by a recommender to the
truster about the trustee. A truster will, most likely, have a trust relationship with the
recommender, which is different from a trust relationship between truster and trustee
and is formulated as specified by the trust model in [12]. The context of this trust re-
lationship will be to act “reliably to provide a service (recommendation, in this case)”
and it can be established parallelly or prior to the establishment of current trust rela-
tionship. This trust relationship will affect the score of the recommendation provided
by the recommender. Therefore, recommendation of the DLS with regards to a user U

for a context c is given by ΨRc
U =

∑n
j=1(v(DLS

rec−→j)N
t )·Vj

∑n
j=1(v(DLS

rec−→j)N
t )

, where Ψ is a group of n recom-

menders, v(DLS
rec−→ j)N

t ) = trust-value of jth recommender and Vj = jth recommender’s
recommendation value about the user U.

Recommendation plays a role in the evaluation of trust level of a user when the DLS
is a member of a consortium of digital libraries. In such cases, a member of the consor-
tium should be able to provide information about certifiable behavior at resource pool
boundaries. Also recommendations play a role in the process of delegation. Delegations
are task oriented relationships that recur within a community. A delegation is a set of
privileges required to accomplish related task.

We next observe that given the same set of values for the factors that influence trust,
two different DLS may come up with two different trust values for the same user. Dur-
ing evaluation of a trust value, one DLS may assign different weights to the different
factors that influence trust. For example, the DLS may choose to emphasize more on
its experience about the user than some knowledge about the user. Which particular
component of the trust vector needs to be emphasized more than other is a matter of the
normalization policy of the DLS.

Definition 17. The normalization policy for a trust relationship (DLS
c−→ U)t is a vec-

tor of same dimension as of (DLS
c−→ U)t; the components are weights in the range

[0,1] with their sum being equal to 1 and assigned to experience, knowledge, and rec-
ommendation components of (DLS

c−→ U)t.
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We use the notation (DLS
c−→ U)N

t , called normalized trust relationship to specify a
trust relationship between the DLS and the user U. This relationship is obtained from
the simple trust relationship after combining the former with the normalizing policy. It is
derived as, (DLS

c−→U)N
t = W*(DLS

c−→ U)t. The * operator represents the normal-
ization operator. Let (DLS

c−→ U)t = [DLSEc
U, DLSKc

U, ΨRc
U] be a trust vector such that

DLSEc
U, DLSKc

U , ΨRc
U ∈ [−1,1]∪{⊥}. Let also W = [WE,WK ,WR] be the correspond-

ing trust policy vector such that WE + WK + WR = 1 and WE,WK ,WR ∈ [0,1]. The *
operator generates the normalized trust relationship as (DLS

c−→U)N
t = W*(DLS

c−→
U)t = [WE, WK , WR]* [LSEc

U, DLSKc
U , ΨRc

U] = [WE ·DLSEc
U, WK ·DLSKc

U , WR ·ΨRc
U] =

[ ˆDLSEc
U, ˆDLSKc

U , ˆΨRc
U].

We next introduce a concept called the value of a trust relationship. This is denoted
by the expression v(DLS

c−→ U)N
t and is a number in [−1,1]∪{⊥} that is associated

with the normalized trust relationship (DLS
c−→ U)N

t . It is defined as v(DLS
c−→ B)N

t =
ˆDLSEc

U + ˆDLSKc
U + ˆΨRc

U .
Trust (and distrust) changes over time. We claim that even if the underlying param-

eters do not change between times ti and tn at which a trust relationship is being eval-
uated, the trust relationship will change. To model this trust dynamics (i.e., the change
of trust over time) we observe that the general tendency is to forget about past hap-
penings. This leads us to argue that trust (and distrust) tends toward neutrality as time
increases. Initially, the value does not change much; after a certain period the change
is more rapid; finally the change becomes more stable as the value approaches the neu-

tral (value = 0) level. The idea is captured by the equation v(Ttn) = v(Tti)e
−(v(Tti )Δt)2k

where, v(Tti), be the value of a trust relationship, Tti , at time ti and v(Ttn) be the decayed
value of the same at time tn. The effect of time is captured by the parameter k which is
determined by the truster’s dynamic policy regarding the trustee in context c.

The trust model also has a method to obtain a vector of same dimension as of
(DLS

c−→ U)N
t from this value v(Ttn). The current normalized vector together with this

time-affected vector are combined according to their relative importance. Relative im-
portance is determined by the DLS’s history weight policy which specifies two values
α and β in [0,1] (where, α+β = 1) as weights to current vector and the vector obtained
from previous trust value. The new vector thus obtained gives the actual normalized
trust vector at time t for the trust relationship between the DLS and a user U in context
c. This is represented by the following equation.

(DLS
c−→U)N

tn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ ˆDLSEc
U, ˆDLSKc

U , ˆΨRc
U] if tn = 0

[ v(T̂)
3 , v(T̂)

3 , v(T̂)
3 ] if tn �= 0 and ˆDLSEc

U = ˆDLSKc
U = ˆΨRc

U =⊥
α · [ ˆDLSEc

U, ˆDLSKc
U, ˆΨRc

U]+ β · [ v(T̂)
3 , v(T̂)

3 , v(T̂)
3 ]

if tn �= 0 and at least one of ˆDLSEc
U, ˆDLSKc

U , ˆΨRc
U �=⊥

(3)

where [ v(T̂)
3 , v(T̂)

3 , v(T̂)
3 ] is the time-effected vector and v(T̂) = v(Ttn).

Note, for DLS, it may not be reasonable to decrease (increase) the trust (distrust)
level of a user at a faster rate. Because that will result in reduction (enhancement) in her
access privileges with duration of time. For example, let a user with trust value, say 0.4
stop interacting with the DLS. At this point she is cleared to say, cci. After a long time,
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the user again interacts with DLS and finds her trust level goes down to, say 0.25 and
she can not access all of cci anymore and is restricted to a content class, say ccj where
cci ) ccj. This issue can be solved in one or both of the following ways: (i) Choose
the value for k in the dynamic policy to ensure a very slow decay in trust values, or
(ii) Assign a very small value for β in history-weight-policy thereby putting very less
importance on the time-affected vector.

Sometimes it may not be possible to obtain a non null value for any of the trust
parameters. In such cases the DLS system tries to determine if it is aware of a trust
relationship for the same user in a related context that covers the current context. Recall
from section 3 that if such a trust relationship exist it is useful in the given context. In
such cases, the trust level established for the related context is used by the DLS system
to determine access.

5 Architecture of the DLS Access Control Module

The high level system architecture of the DLS access control module consists of the
components as shown in figure 3. The two main components are authorization con-
troller and trust engine. The authorization controller interacts with the content-server
and the trust engine.

Access specification module. This module defines the classification of resources into
content classes and objects. That is, the module defines CC and Pos for each ob-
ject. It also defines the content class hierarchy CCH. Types of access privileges
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Fig. 3. Architecture of DLS digital library system
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that are to be tied to each content class or object is also specified here. This mod-
ule is also responsible for specifying any special constraint (other than trust level)
or an exception that has to be satisfied to allow access to a content class or to an
object. In other words, the module is responsible for definitionning the functions
OC,CCSP,CCSP−1,OAP, and OAP−1.

Access control module. This module is responsible to classify trust levels into differ-
ent sub-intervals i.e., defines the set I . It also defines the association function A .

Access analysis module. This module has a user database. It receives the user’s in-
formation and user’s request through a Service module. It passes user information
to trust engine and receives trust related result from it. Consulting with the ac-
cess specification module and access policy module, it takes the decision about the
specific request of the user and pass it to the service module. It also verifies user
information and checks for special constraints and exceptions.

Service module. The service module is an independent module outside the authoriza-
tion controller as well as trust engine. Its job is to interact with the user through an
interface. It collects user input and sends it to access analysis module of authoriza-
tion controller. According to the decision it receives from access analysis module
about the request it interacts with the content-server and provides the requested
service to the user.

Trust specification module. It is responsible for definitionning and managing trust re-
lationships. It creates database entries corresponding to a specific user when a new
trust relationship is established. It codifies general trust evaluation policies (for
example policy for trust dynamics). The specification module conveys this infor-
mation to the analysis module and the evaluation module as and when needed.

Trust analysis module. The analysis module processes trust queries from access anal-
ysis module of authorization controller. It obtains trust vectors from the evaluation
module.

Trust Evaluation module. This module retrieves information about experience,
knowledge, and recommendation from the database and also other pertinent in-
formation from the trust specification module to compute trust vector according to
the theory specified in this paper. It also stores back resulting values in the database
kept in trust specification module.

6 Conclusion and Future Work

In this work we develop a flexible access control framework for digital library systems.
The framework is based on the vector trust model that we had proposed earlier. We
show how a digital library system can specify access control policies by associating
a set of objects and access privileges with a set of trust levels. The underlying trust
model evaluates a user’s trust level with respect to the system using knowledge about
the user. The system also considers its experience with the user to evaluate trust. This is
a major contribution of the scheme where history of user’s behavior is used to control
her access clearance. A lot of work, however, still remains to be done. The scheme is
proposed with a server-side approach. Extending the underlying trust model to a mutual
trust negotiation model, we plan to design a two-way scheme to include client-side
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access control. Designing such a scheme would help to solve the issues like disclosure
of policies, especially privacy protection policies, in online transactions. We also plan
to develop efficient methods of interaction between an authorization controller and a
trust engine.
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Abstract. As part of the access control process an authorization deci-
sion needs to be taken based on a certain authorization model. Depending
on the environment different models are applicable (e.g., RBAC in orga-
nizations, MAC in the military field). An authorization model contains
all necessary elements needed for the decision (e.g., subjects, objects, and
roles) as well as their relations. As these elements are usually inherent in
the software architecture of an access control module, such modules limit
themselves to the use of a certain specific authorization model. A later
change of the model consequently results in a substantial effort for re-
vising the software architecture of the given module. Rule-based systems
are well suited to represent authorization models by mapping them to
facts and rules, which can be modified in a flexible manner. In this paper
we present a generic authorization module, which can take authorization
decisions on the basis of arbitrary models utilizing rule-based technology.
The implementation of the popular RBAC and ABAC (attribute-based
access control) models is demonstrated.

1 Introduction and Motivation

Depending on the environment of an IT system, there are varying requirements
for its access control mechanism. These requirements determine which autho-
rization model is adequate. For instance, for military purposes, the mandatory
access control model (MAC) is favourable as it supports information flow control.
This model is however inadequate for commercial purposes—in business IT sys-
tems, the mostly used authorization model is role-based access control (RBAC).
For information services on the Internet, an attribute-based access control model
(ABAC) might be the first choice due to the lack of stable role structures. It
is important to note that there is no authorization model that is suitable for
all different kinds of scenarios—the best suitable authorization model must be
chosen depending on the requirements.

The usual approach for implementing an access control system is to first
decide which authorization model matches the requirements and then develop
a software module to implement this authorization model. This approach has a
major drawback: The software is bound to a single authorization model. This

E. Damiani and P. Liu (Eds.): Data and Applications Security 2006, LNCS 4127, pp. 267–281, 2006.
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means, that if the requirements change and if it is necessary to switch to a new
authorization model, this would require substantial changes on the software.

This paper describes a generic approach that led to an authorization compo-
nent that supports multiple authorization models and can easily be extended to
support arbitrary authorization models. To accomplish this, a rule-based system
is used to map authorization models to rule sets; an inference engine processes
the authorization requests. Moving from one authorization model to another
only requires minor changes on the software—different authorization models are
represented as modules plus rule-base that can easily be replaced. To ensure that
authorization models can be easily exchanged, the access control logic is kept in
the separate authorization model and not interweaved with the business logic.

2 Fundamentals

2.1 Authorization Models

Authorization models are essential for access control. They represent all infor-
mation that is needed to perform an authorization decision. This information
consists of entities and their relation to each other. These entities and relations
vary from model to model, but they have some commonality, like the subject
(user) that requests the access, the object that is to be accessed and the oper-
ation that the subject requests to perform on the object. Operation and object
together represent a permission. This paper focuses on two very popular and
well elaborated authorization models, RBAC and ABAC.

The role based access control model (RBAC) is the de-facto standard for
access control. The standardization process was initiated by the NIST [3]. It
introduces an intermediation between user and permission, called role. Roles
are assigned to users and permissions are assigned to roles. The NIST also de-
fined two extensions of this basic Core RBAC model: Hierarchical RBAC and
Constrained RBAC.

The attribute based access control model (ABAC) relies on attributes of the
requesting subject as well as the object to perform the authorization decision.
There is no common or standard model like for RBAC, but it can be found
in many research works, e.g. DLAM [1,4] or UCON [8] as well as the XML
access control language XACML [6]. An attempt to define a common ABAC
reference model was made in [9]1,[10]. Permissions are assigned by defining which
attributes a subject has to have in order to be able to access certain objects (with
certain attributes). The ABAC model can be extended to take environment
attributes into account or to directly compare the subject attributes with those
of the object.

In general, an authorization decision is a simple yes/no query that can be
described with a limited set of authorization rules. This characteristic allows
representing authorization models in rule bases and performing authorization
1 In this paper the authors refer to metadata-based access control (MBAC) instead of

ABAC. However, the terminilogy has changed in more recent work.
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decisions with inference engines. Such authorization module can therefore im-
plement virtually any authorization model. In addition, the more complex an
authorization model is structured, the more effectively rule based systems can
perform their advantages over classical software architectures, that reflect the
authorization model in their structure.

2.2 Rule-Based Systems

Rule-based systems are able to represent knowledge by storing structured in-
formation (called facts) and using rules to generate new facts from the already
existing ones. Facts are represented by predicates, which—similar to tuples in
relational databases—describe relations of some entities. A set of facts together
with a set of corresponding rules is called a knowledge base. Queries can be
run against this knowledge base by using an inference engine. When using a
rule-based system for authorization decisions, the entities of the authorization
model and their relations are represented by a set of facts. Additionally, rules
are defined to state, under which circumstances access will be granted and when
it will be denied. Authorization decisions are then performed by querying the
knowledge base with a query like granted(subject, object, operation).

Implementations of rule-based systems vary in their approach, flexibility and
maturity. For the purpose of using a rule-based system as kernel for a Java-based
authorization module, the Mandarax2 distribution was chosen. Mandarax was
found to fit best to our requirements. Mandarax is an open source Java library
implementing a very flexible and extensible rule-based system. One of the main
features of Mandarax is the possibility to load facts from any JDBC data source
on demand (i.e. when they are needed to answer a query). This way, Mandarax
can handle huge amounts of data as the data is not kept into main memory but
rather read from the data source as needed. As an interface for communicating
with the rule-based system, RuleML3 was chosen, as this is a XML-based format
capable of describing all important elements of a rule-based system.

3 Authrule Architecture and Design

3.1 Requirements

Authorization models represent the data and logic that are used to perform
authorization decisions. As stated above, there is a vast variety of authorization
models which differ quite significantly in the data and logic they use. The aim
of this work is to design an authorization module that is able to execute any
potential authorization model; this means that authorization models should be
exchangeable and that new authorization models should be addable with only
little effort. To make the implementation of a new authorization model as easy
as possible, an easy format should be used for describing the elements of the

2 http://www.mandarax.org
3 http://www.ruleml.org
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model. Furthermore, the system should be platform-independent and it should
be able to support different data sources easily.

The choice of the authorization model of course in some way influences the
functional requirements that can be divided into two groups: functionality nec-
essary for performing authorization requests (called client functions) and func-
tionality necessary to manage the authorization data (called administration func-
tions). Additionally, the functional requirements can be devided into those that
are specific to a certain authorization model (model-specific) and those that are
not (model-unspecific). For the client functions for instance, the authorization
request itself can be easily abstracted to a generic authorization request that
has the same form regardless of the authorization model the software is cur-
rently applying. But there are also client functions that are model-specific and
cannot easily be abstracted, e.g., for RBAC there must be a client function to
create sessions and activate or deactivate roles. Some administration functions
are model-unspecific, for instance creating or deleting users, objects or opera-
tions. Most of the administration functions however use specific characteristics
of the authorization model and are therefore model-specific.

3.2 Realization of Authrule

As shown in Fig.1, the authorization module Authrule processes authorization
requests from client business applications and additionally supplies a (separate)
interface for administration. These services were implemented in an API con-
sisting of Java interfaces. The interfaces are supplied by a class called Knowl-
edgeBaseManager, which represents the software to the user.
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Fig. 1. Overall software architecture of Authrule
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According to the requirements, these services are made available in a way that
they are as generic as possible and at the same time offer all necessary function-
ality. Client functionality is provided by the Java interface ClientI (see Sec. 4)
which forms the API for the applications in Fig.1. 4 For model-specific func-
tionality, this interface was extended, e.g., the RBAC-specific functions (session
management, etc.) are provided by the interface RBACClientI. Accordingly, the
generic administration interface is AdminI, which is extended for model-specific
functionality. For RBAC-specific administration (role management, etc.), the in-
terface RBACAdminI was created. It is possible to use client functionality by
using the generic ClientI interface—this allows a client business application to
use Authrule for authorization requests without even knowing what authoriza-
tion model is used. In contrast to the client side, administration of the Authrule
can only be done properly, when using the model-specific administration inter-
face, as the administration requires knowledge of the authorization model (e.g.,
for RBAC, the administrator must know that roles have to be used to assign
permissions to users).

The API encapsulates the rule-based system, which actually processes the re-
quests. A class derived from the abstract class AuthorizationModel transforms
the method calls from the API to rule-based queries. This class also takes care
of calls that require writing/modifying data, which cannot be done by sim-
ply querying the rule-based system. A helper class (called PredicateDatasource)
was developed to provide an easy and abstracted way of writing and deleting
data.

The representation of the authorization model as a set of facts and rules is de-
scribed in a RuleML configuration file, which is loaded on startup. The RuleML
format is human-readable an easy to understand and edit. This data format is
mapped to the the internal, object-oriented and Mandarax-specific runtime rep-
resentation of the rule-based system, which is not human-readable. The same
format can also be used to directly query and/or as an intermediate step map-
ping calls from the Java API to query the the rule-based system. The core of
Authrule is designed to be extensible in several aspects and therefore conforms
to the above requirement. As mentioned above, the authorization model can
be exchanged seamlessly. One class (derived from the class AuthorizationModel)
includes all program code that is specific for this authorization model; by ex-
changing this class (and changing two configuration files), a new authorization
model can be applied. Facts that have to be included in the knowledge base as
they are necessary for the authorization decision (like user names, roles, etc.)
can be added in two ways: If the amount of data for these facts is small, they
can be manually added into the RuleML configuration file that is used to define
a certain authorization model. This file should only comprise the set of rules
(and some basic facts) that made up the model and are loaded into the knowl-
edge base on startup. For larger amounts of data, it is more appropriate to map
these predicates to a JDBC data source, this way the data does not reside in

4 Business applications in Fig. 1 and the SecurityProxy in Fig. 3 are called clients
from the perspective of Authrule. Not to be confused with Client in Fig. 3.
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the knowledge base but is loaded into memory from the data source on demand.
The mapping of predicates to data sources is configured in a different XML
configuration file.

Administrative clients will use the administrative interfaces of Authrule. If
they add new facts, this will internally result in adding a tuple to the database.
If the access control model is modified, i.e. adding new authorization constraints,
this will result in extending the authorization model with new rules.

4 Implementing Authorization Models

To implement an authorization model, only a Java class, two Java interfaces and
two XML files have to be created, as described in Sec. 3.2. The elements of the
authorization model are described as facts and rules in a RuleML file. Another
XML file describes how the facts are mapped to data sources. Functionality for
client use and administration is declared by extending the interfaces ClientI and
AdminI (see Fig.2). An implementation of the abstract class AuthorizationModel
is created to map the interfaces to requests to the rule-based system.

+addUser ()
+deleteUser ()
+addResource ()
+deleteResource ()
+addOperation ()
+deleteOperation ()
+addPermission ()
+deletePermission ()

«Schnittstelle»
AdminI

+checkAccess ()

«Schnittstelle» ClientI

AuthorizationModel

ABACAuthorizationModel RBACAuthorizationModel

«Schnittstelle» ABACClientI

+createSession ()
+deleteSession ()
+addActiveRole ()
+dropActiveRole ()

«Schnittstelle» RBACClientI
+addRole ()
+deleteRole ()
+assignUser ()
+deassignUser ()
+grantPermission ()
+revokePermission ()
+getAssignedUser ()
+getAssignedRoles ()
+getRolePermissions ()
+getUserPermissions ()
+getSessionRoles ()
+getSessionPermissions ()

«Schnittstelle»
RBACAdminI

+addQualifier ()
+deleteQualifier ()
+addPermissionRule ()
+deletePermissionRule ()

«Schnittstelle»
ABACAdminI

«Interface »

«Interface »

«Interface »

«Interface » «Interface »

«Interface »

Fig. 2. Authrule application programming interface (with interfaces for RBAC and
ABAC)

Each authorization model has to be assigned a unique ID, called ModelId.
Each part of the authorization model implementation, i.e. the Java class derived
from the class AuthorizationModel as well as the XML files for defining the rules
and mappings, is tagged by this ModelId. Upon startup, Authrule loads the Java
class and XML-files that are specified in the configuration file and checks if they
all have the same ModelId. This ensures the integrity of the loaded authorization
module.
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4.1 Role-Based Access Control

The first step for implementing an authorization model is to describe the model
itself, which is the static part of a RBAC policy, as a set of facts and rules. The
following listing shows an excerpt of the RuleML file that forms the Core-RBAC
model described in [3] translated to a rule-based representation.

...
<rulebase model_id="ifs.uni-regensburg.de/rbac-core/0.1">
<imp>
<_head>

<atom>
<_opr><rel>granted</rel></_opr>
<var>a User</var>
<var>an Object</var>
<var>an Operation</var>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>hasRole</rel></_opr>
<var>a User</var>
<var>a Role</var>

</atom>
<atom>

<_opr><rel>hasPermission</rel></_opr>
<var>a Role</var>
<var>a Permission</var>

</atom>
<atom>

<_opr><rel>session</rel></_opr>
<var>a Session</var>
<var>a User</var>

</atom>
<atom>

<_opr><rel>activeRole</rel></_opr>
<var>a Session</var>
<var>a Role</var>

</atom>
... <!-- predicates to check existence of elements are omitted -->

</and>
</_body>

</imp>
</rulebase>

The RBAC model comprises just one rule for the predicate granted that repre-
sents the authorization decision. It is not necessary to declare the used predicates
separately as they are declared implicitly when used in a rule definition. The use
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of predicates that represent the existence of elements (like user, role, object, etc.)
are omitted in this excerpt:

Since the facts according to the predicates tend to be numerous and change
frequently, they can be mapped to an arbitrary number of JDBC data source
and therefore separated from the definition of the model.

The Java interfaces RBACClientI and RBACAdminI were created to extend
the interfaces ClientI and AdminI with additional, RBAC-specific functionality
like handling sessions and defining roles. Fig.2 shows theses interfaces and their
methods as well as the class RBACAuthorizationModel, which implements them.
Requests can be passed to the rule based system in several ways, see Sec. 3.2.
The call checkAccess() of the interface ClientI results in a RuleML query similar
to that in Sec. 4.2 that is sent to the rule-based system to find out if a user is
allowed to perform an operation on an object. In other words, the implementa-
tion of interface methods like checkAccess() use the provided RuleML interface
to implement their functionality.

4.2 Attribute-Based Access Control

Implementing the ABAC model requires—similarly to the implementation of
RBAC-a Java class, two Java interfaces and two XML files. A major difference
compared to RBAC is that an ABAC policy cannot be so clearly distiguished into
a static model and its instances. The ABAC model itself is translated into some
static set of rules that can be separated from the dynamic authorizations of some
instance of the ABAC model, also translated into rules. These instances of the
model are formulated into a separated set of rules and facts that are temporarly
combined for an authorization decision. A second major difference is, that in this
ABAC implementation the requesting user and the user’s attributes (also called
credentials) are external to the rule base and handed over when checkAccess() is
called. The attributes can, for example, originate from a X.509 attribute client
certificate 5.This is in contrast to most RBAC implementations, where server-
side roles are derived from the identity without additional information from the
client. Therefore, the parameter user that is used with the API is an object that
has methods to get and set its attributes. Consequently, the RuleML query for
handing the authorization request to the rule-based system is extended to take
the attributes of the user into account when processing the query. This is shown
in the following listing:

<rulebase>
<!-- facts added temporarly to knowledgebase for executing the query -->

<atom>
<_opr><rel>user</rel></_opr>

<ind>Bob</ind>
</atom>
<atom>

5 X.509: Public Key and Attribute Certificate Frameworks. ITU-T Recommendation,
2000.
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<_opr><rel>hasAttribute</rel></_opr>
<ind>Bob</ind>
<ind>age</ind>
<ind>23</ind>

</atom>
<!-- the query, same for RBAC/ABAC -->
<query>

<_body>
<atom>

<_opr><rel>granted</rel></_opr>
<ind>Bob</ind>
<ind>DocumentA</ind>
<ind>write</ind>

</atom>
</_body>

</query>
</rulebase>

The rule base for the ABAC model is more complex. The following excerpt
of the corresponding RuleML file show how ABAC can be formulated in rules:

<rulebase model_id="ifs.uni-regensburg.de/abac/0.1">
<!-- this rule maps the granted predicate to the hasPermission
predicate and checks existence of the passed elements -->

<imp>
<_head>

<atom>
<_opr><rel>granted</rel></_opr>
<var>a User</var>
<var>an Object</var>
<var>an Operation</var>

</atom>
</_head>
<_body>

<and>
... <!-- predicates to check existence of elements are omitted -->

<atom>
<_opr><rel>hasPermission</rel></_opr>
<var>a User</var>
<var>an Object</var>
<var>an Operation</var>

</atom>
</and>

</_body>
</imp>
<!-- greater_equal (int) Operator -->
<imp>
<_head>

<atom>
<_opr><rel>matchesQualifier</rel></_opr>
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<var>a User or Object</var>
<var>a Qualifier</var>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>qualifier</rel></_opr>
<var>a Qualifier</var>
<ind>greater_equal</ind>
<var>an Attribute</var>
<var type="Integer">IntValue 2</var>

</atom>
<atom>

<_opr><rel>hasAttribute</rel></_opr>
<var>a User or Object</var>
<var>an Attribute</var>
<var type="Integer">IntValue 1</var>

</atom>
<atom>

<_opr><rel predefined="true">=&gt;</rel></_opr>
<var type="Integer">IntValue 1</var>
<var type="Integer">IntValue 2</var>

</atom>
</and>

</_body>
</imp>
...

The granted predicate checks for the existence of the passed elements and
then refers to the predicate hasPermission. The predicate hasPermission yields
true, if one of the permission rules match the authorization query.

Permission rules use qualifiers [9,10] to describe what kind of attributes qualify
users and objects for this rule. As qualifiers use operators (like equal, greater
than, etc.), these operators must be first defined. The above excerpt shows the
definition of the operator greater equal6 . Permissions are assigned by adding
permission rules to the rule-based system. The following listing shows an example
of a permission rule and the qualifier this permission rule uses:

<fact>
<atom>

<_opr><rel>qualifier</rel></_opr>
<var>adult</var>
<ind>greater_equal</ind>

6 This is an example of a predefined predicate. It represents special functions that
the Mandarax distribution supplies—in this example, it checks if the first term is
greater than or equals the second term. To use predefined predicates with RuleML,
the RuleML format was extended with a marker attribute predefined, as can be seen
in the code example above.
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<var>age</var>
<var type="Integer">18</var>

</atom>
</fact>
<fact>
<atom>

<_opr><rel>qualifier</rel></_opr>
<var>belongs_to_hemauer</var>
<ind>equal</ind>
<var>project_name</var>
<var type=" String">Hemauer Project </var>

</atom>
</fact>
<imp>
<_head>

<atom>
<_opr><rel>hasPermission</rel></_opr>

<var>a User</var>
<var>an Object</var>
<ind>read</ind>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>matchesQualifier</rel></_opr>
<var>a User</var>
<ind>adult</ind>

</atom>
<atom>

<_opr><rel>matchesQualifier</rel></_opr>
<var>an Object</var>
<ind>belongs_to_hemauer</ind>

</atom>
</and>

</_body>
</imp>

Qualifiers are represented by a predicate called qualifier that defines the qual-
ifier’s name, an operation, an attribute type, and a value. In the above example,
the qualifier adult is defined to match all users whose attribute age is grater or
equals 18. The second qualifier belongs to hemauer matches all objects that have
an attribute project name indicating that they belong to the project ”Hemauer
Project”. The permission rule that is listed afterwards uses these two qualifiers
to specify that adult users are allowed to read objects that are associated to the
project ”Hemauer Project”.

As shown in Fig.2 the Java interfaces for ABAC are quite straight forward.
The API remains the same, however, the prerequisite must be met that the
attributes are contained in the subject. Hence, only few additional functionality
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is required on the client side. This can be accomplished in transparent way
using general APIs for authentication (like JAAS7 , PAM,.etc.). On the client
side, the interface remains the same, which means that this ABAC model can
be used by means of the generic interface ClientI. This is made possible as
the parameters for the generic interface ClientI are based on instances of the
interfaces UserI, OperationI and ObjectI. These interfaces supply functions to
get and set attributes. For this reason, these methods can be used regardless
of the authorization model that is actually used. On the administration side,
the generic AdminI is extended by the interface ABACAdminI with methods to
create and delete qualifiers and permission rules.

5 Usage Scenario

In order to evaluate our approach and the Authrule module, we deployed it for ac-
cess control in a component-based business application. Over the last years J2EE
(Java 2 Enterprise Edition) evolved as a major framework for enterprise applica-
tion development. This framework comprises the software component standard
EJB (Enterprise Java Beans) [5]. EJBs are well suited for constructing business
applications as they come with out-of-the-box solutions and mechanisms for a set
of non-functional requirements like security. EJBs can also be made externally
available as web services using JAX-RPC8. Unfortunately the EJB standard
has been designed to be tightly bound to RBAC. This fact inhibits principals
like application field neutrality, transparency and flexibility. EJB-based appli-
cations can be deployed in a variety of application domains that have different
requirements for authorization see Sec. 1. A further substantial inconvenience of
the EJB security approach is, that roles are derived from the users’ identity on
the server side see Sec. 4.2. Consequently, we consider the existent role based
access control in EJB systems as a form of basic security, which needs to be
supplemented by additional security measures. In Fig.3 an interceptor (called a
”security proxy”) is placed in the communication path between the client and
a component transparently to the application logic. Each software component
can be preceded with its own interceptor that can contain authorization logic in
which we integrate Authrule to protect several EJBs. Consequently each piece
of application logic in form of an EJB can be supplied with attribute-based ac-
cess control with arbitrary authorization rules. The non-functional requirements
transparency, flexibility, and interoperability have been taken into special consid-
eration. Transparency in this sense means, that security should not be part of the
application logic. In this way security unaware applications can be secured with-
out requiring to change their code and security mechanisms are interchangeable.

Fig.3 depicts our approach in detail. A user/principal uses a client, which is
linked to the authentication interfaces. On startup of the client application, the
7 Java Authentication and Authorization Service (JAAS).

http://java.sun.com/products/jaas/
8 Java API for XML-Based RPC (JAX-RPC)

http://java.sun.com/webservices/jaxrpc/index.jsp



Authrule: A Generic Rule-Based Authorization Module 279

EJB -Container

JAX-RPC
JAX-RPC

Client / JVM

Client

JAX-RPC
Handler

User

Authentication

EJB

JVM / JBoss (EJB Server )

ABAC
(Authent .)

Authentication / Authorization

Security
Manager

JAAS

JAX-RPC
Handler

JAAS

ABAC
(Authent .)

JAX-RPC
Stub

SOAP
SAML

Assertion

API

EJB

Authrule :
ABAC Knowledge 

Base

Security
Proxy

Service
Endpoint
Interface

Fig. 3. Authrule for EJB access control

authentication process is being triggered. It calls the attribute-based authentica-
tion module, which is deployed in conformance to the server-side authorization
module. The client is requested to provide the attributes, he wants to use and
a subject instance containing these attributes is created. By invoking the web
service methods the subject is transparently encapsulated. Server-side authen-
tication is processed and a security context is established. Before invoking an
EJB the interceptor forwards the attributes to Authrule in order to take the au-
thorization decision. Depending on this decision the authorization enforcement
within the interceptor/security proxy grants access to the bean or prevents the
further invocation.

6 Related Work

Since it has been demonstrated that RBAC can be configured to also enforce
DAC and MAC, RBAC has been considered to be a generic authorization model.
The flexibility of RBAC and its ability to enforce MAC policies and a number
of access constraints to realise the equivalent of Bell-LaPadula has been demon-
strated in [13]. With the appearance of attribute-based access control models
(XACML[6], UCON[8], DLAM[1]) authorization requirements have shown up,
which eventually cannot be solved by RBAC. As a result, RBAC cannot longer
be considered as ”ultima ratio”. A lot of RBAC implementations yet exist, one
of it is described in [12]. It was implemented in a classical straightforward man-
ner by mapping the static model to an equivalent software architecture. CSAP
[12] afterwards has been extended with ABAC resulting in the above mentioned
substantial changes on the software and runtime inefficiencies.

There have been other attempts to find a universal way of describing autho-
rization models as set of rules and predicates. One of the broadest approaches
is described by Bertino et al. [2]—however, the intention for describing autho-
rization models in that work was to create a framework to compare them in
respect to their expressiveness; it did not discuss how rule-based systems can be
used to build a generic authorization module. Additionally, assumptions about
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the authorization models (e.g. that users are organized in groups) were made,
constraining the generality of their framework. Other research works that use
logics-based languages and reasoners for access control can be found in the area
of the Semantic Web. For example, the KAoS framework [11] provides a collec-
tion of services for distributed policy management and enforcement. It uses the
description-logics-based Web Ontology Language (OWL) to specify the policies.
Likewise, the policy engine in Rei [6] can handle policies specified in RDFS (a
subset of OWL).

In this work, we decided to use RuleML as basis for the input and output
format when communicating with the application core. One might argue that
the XACML[6] could be used as it is also able to formulate authorization requests
and express the permission data for several different authorization models. In
fact, XACML is a very versatile standard that is capable of mapping many
different authorization models. However, XACML has drawbacks that make it
unsuitable when a very generic, but simple approach is desired. One reason is
that the versatility of XACML resulted in a very complex format, which is not
easy to handle and involves a lot of overhead. Another reason is that XACML,
though very versatile, is not generic enough to cover all possible authorization
requirements. For example, even though core RBAC requirements can be easily
implemented using XACML, a full-featured constrained RBAC [3] is hard to
achieve as XACML rules are not as expressible as the logics used by a rule-based
system. Using a descriptive format like RuleML ensures that the approach is so
generic that it can capture all authorization models that can be formulated as
set of predicates and rules—and, as we argued in this paper, every authorization
model can be formulated as set of predicates and rules.

7 Conclusions

This paper presented an approach that led to a generic authorization mod-
ule that supports arbitrary authorization models and can be easily extended.
To accomplish this, a rule-based system was used to map authorization mod-
els to rule sets and an inference engine processes the authorization requests.
There are different authorization models for different application fields with
different requirements. Usually, authorization modules limit themselves to the
use of a certain specific authorization model and a later change or modifica-
tion of the model consequently results in a substantial effort for revising the
software architecture. Rule-based systems are well suited to represent autho-
rization models by mapping their elements and relations to facts and rules,
which can be modified in a flexible manner. The implementation of the popular
RBAC and ABAC (attribute-based access control) models with our approach
was demonstrated, giving the deployment in a J2EE/web service scenario as a
usage scenario. This scenario was chosen, because it also demonstrates how flexi-
bility and transparency can be reached in conjunction with other state-of-the-art
mechanisms.
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Future work will elaborate on more integrative tasks. We will investigate dif-
ferent models, additional constraints, delegation, and trust, as well as the envi-
ronment as an attribute source. We will also examine the semantics of exchanged
attributes in web service scenarios.
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Abstract. Security breaches seldom occur because of faulty security mecha-
nisms. Often times, security mechanisms are incorrectly incorporated in an
application which allows them to be bypassed resulting in a security breach.
Methodologies are needed for incorporating security mechanisms in an appli-
cation and assessing whether the resulting system is indeed secure. We propose
one such methodology for designing secure applications. We begin by identify-
ing the assets in the application that need protection. We then find the kinds of
attacks that are typical for such applications. We show how to evaluate the ap-
plication against such attacks. If the results are unacceptable, that is, they pose
a high security risk, then some security mechanism must be incorporated into
the application. We illustrate how this can be done and show how the resulting
system can be evaluated to give assurance that it is resilient to the given attack.

1 Introduction

In the commercial world, designing secure applications is impacted by various parame-
ters, such as time-to-market, cost and effort involved. The presence of these constraints
often prevents the development of applications which are adequately secure. We pro-
pose a risk driven development approach for designing such applications. While de-
signing an application one needs to understand the threats in the current design and the
risks associated with those threats. If the risks are unacceptably high, the application
must be redesigned. Redesigning the application means methodically incorporating se-
curity mechanisms into the application and evaluating whether the resulting application
is adequately secure.

Security mechanisms are solutions to security problems in applications. For example,
encrypting information is a solution to prevent malicious attackers from eavesdropping
on sensitive information sent in clear-text. However, there might be several mechanisms
to solve one problem. This implies that we need to evaluate to what extent the different
mechanisms solve the problem for a given application and what is the cost associated
with each. Security and risk management standards [1,2,6] were developed to aid se-
cure systems development. Such standards often require extensive amount of work and
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also include other activities that are necessary for evaluating security mechanisms. In
this paper, our goal is to complement the above mentioned work on standards and show
how to assess whether an application is indeed secure when a particular security mech-
anism has been incorporated. This is important because often the security mechanisms
designed to thwart attacks are adequate; yet security breaches still occur because the
security mechanisms are often bypassed in an application.

Our approach begins by specifying the primary model which represents the applica-
tion functionality. The items that need protection are identified as assets. The attacks
on the application are then identified and modeled. The attack model is then composed
with the primary model to produce the misuse model. The misuse model illustrates the
degree to which the application can be compromised and the risk posed by the attack.
If the risk is unacceptable, some security mechanism must be incorporated into the ap-
plication. The model of the security mechanism is then methodically composed with
the application. The result, which we refer to as the security treated model, represents
the application in which the security has been incorporated. Finally, we show how the
security treated model can be analyzed to give assurance that the application is indeed
resilient to the given attack.

Our approach is based on aspect-oriented modeling techniques. Complex software
is not developed as a monolithic unit but is decomposed into modules on the basis of
functionality. An attack is not confined to one module of the application but impacts
several of the modules. Similarly, a security mechanism will impact multiple modules
of the application. Modeling security mechanisms and attack models as aspects have
several benefits - it allows the attacks and the mechanisms to be understood in isolation,
which makes it easier to manage and change these models. Once security mechanisms
or attack models are represented as aspects, then techniques for composing aspects
with the primary model can be used to understand the effect of the attack or the effect
of security mechanism on the application.

The rest of the paper is organized as follows. Section 2 describes the e-commerce
system which we use to illustrate our methodology. Section 3 gives an example attack
and shows how the attack can be represented as an aspect. This section also describes
how to generate the misuse model from which we we can identify the impact of the at-
tack on our example application. Section 4 shows how the security mechanism designed
to thwart the given attack can be represented as an aspect and how this mechanism can
be integrated with the application. It also shows how the resulting system can be ana-
lyzed to give assurance that it is indeed resilient to the attack. Section 5 discusses some
related work. Section 6 concludes the paper with some pointers to future directions.

2 Example E-Commerce System

We illustrate the reasoning about security risk mitigation with the login service of an
e-commerce platform. The ACTIVE e-commerce platform provides services for elec-
tronic purchasing of goods over the Internet. The platform was developed initially for
the purchase of medical equipment, although it is generalized to provide services for any
kind of goods. (For details, please see T. Dimitrakos et. al [2]). ACTIVE is a general pur-
chase platform that can host a variety of electronic stores for vendors. The infrastructure
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consists of a web server running Microsoft Internet Information Server (IIS), a Java ap-
plication server (Allaire JSP Engine) and a Microsoft SQL server running RDBMS.
The communication between the application server and the database is handled using
the JDBC protocol.

There are two types of consumer users in the ACTIVE system, visitors and registered
users. Personalized shopping services are only available to registered users, but all users
can browse and purchase items from ACTIVE. In addition, visitors cannot add any
personal information to the system that will be retained for future shopping sessions.

The IST EU-project CORAS (for details see CORAS project report [7]) performed
three risk assessments of ACTIVE in the period 2000-2003. The project looked into
security risks of the user authentication mechanism, secure payment mechanism, and
the agent negotiation mechanisms of ACTIVE. The example in this paper concentrates
on the result from the risk assessment of the user authentication mechanism, and its
impact on login services.

* 1

*

*

*
*

*

*

*

*

*
1

UAcctManager

validate ()

*

*

ACTIVEclient
uname
pword requestLine

manageAccts

accessAccts

registerUsers

setupNewProfsmanageProfs

purchServices

registrationManager

registerUser ()

loginManager

requestLoginPage ()
login ()
lockRegUserSession ()
lockVisitorSession ()
handleUserRequest ()

UProfileManager

getUProfile ()
changeProfile ()

accessPurchaseServices

accessRegUserPurchaseServices ()
accessVisitorPurchaseServices ()

UAcctDB

retrieveAcct ()
storeAcct()
changeAcct ()

uname
pword

<<classAsset>>
{stakeholderInfo [0] = (‘VPMktg’, decision_maker, high)

Fig. 1. Primary model (E-commerce login service) static diagram

We begin by creating a static diagram of the login service components. This diagram
is shown in Figure 1. (We have simplified the diagram to only include model elements
directly affected by the attack and its treatment.) There are several classes that play a
part in the login process. A user wishing to login to the e-commerce system runs an AC-
TIVEclient in a web browser on their local machine. The browser communicates with
a login manager (loginManager) which is located on a server across the Internet. The
login manager has several related classes. An account manager (UAcctManager) and
the associated database (UAcctDB) are used to authenticate users using a simple user
name and password provided by the client web browser. A profile manager (UProfile-
Manager) is used to keep track of personalized shopping information. A registration
manager (registrationManager) is used to allow a visitor to become a registered user
and a purchase service class (accessPurchaseServices) is used to access the different
shopping services.

Risk-driven development (RDD) UML profile elements are also shown in Figure 1.
These profile elements are used to annotate UML diagrams with additional information
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useful in risk treatment trade-off analysis. For example, the <<classAsset>> stereo-
type is used to indicate that the UAcctDB class is an asset in the system. A RDD profile
tag (stakeholder information) is associated with the asset. Stakeholder information is an
array containing the name of the stakeholder (“VPMktg” in this case), the role of the
stakeholder (decision maker), and the value the stakeholder places on the asset (in this
case, extremely high value).

:ACTIVEclient :loginManager :UAcctManager :UProfileManager:UAcctDB

requestLoginPage

loginPage

login (uname, pword)

userValidated

HomePage

errorVisitorPage

getUProfile (uname)

[acct <> NULL]

validate (uname, pword)

[else]

retrieveAcct (uname, pword)

<<userService>>
{loginService.SLdefault.start = TRUE}

<<userService>>
{loginService.SLdefault.end = TRUE}

<<userService>>
{registeredUService.SLdefault.start = TRUE}
{registeredUService.SLdefault.serviceInfo [0] = (‘expert1’, 0.8)

<<userService>>
{visitorUServicelSLdefault.start = TRUE}
{visitorUService.SLdefault.serviceInfo [0] = (‘expert1’, 0.2)

VisitorPage <<userService>>
{visitorUService.SLdefault.start = TRUE}
{visitorUService.SLdefault.serviceInfo [0] = (‘expert1’, 0.2)

alt

alt

<<userService>>
{loginService.SLdefault.end = TRUE}

<<userService>>
{loginService.SLdefault.end = TRUE}

acct

prof

[prof <> NULL]

[else]

Fig. 2. Primary model (E-commerce login service) sequence diagram

The login sequence is shown in Figure 2. The registrationManager and accessPur-
chaseServices classes are not shown in this figure since they are classes whose services
are used after a user has entered the system as a registered user or a visitor.

Figure 2 shows the sequence for a login operation. First, a user, through a web
browser (ACTIVEclient), requests a login page from the e-commerce system by sending
requestLoginPage to loginManager. loginManager responds with loginPage. The user
enters his unique user name (uname) and password (pword), and this information is
sent to loginManager. The server then sends validate message to UAcctManager. The
UAcctManager sends an error message to the loginManager if the user account does not
exist or cannot be validated. Otherwise userValidated message is returned to the server.
If the user login information is valid, the loginManager sends getUProfile message to
UProfileManager. The UProfileManager retrieves the user’s profile and sends it to the
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loginManager. Using this information the loginManager creates an appropriate home
page which is returned to the user’s web browser. If the user’s login information could
not be validated, or the user’s profile could not be obtained, a visitor page is returned to
the browser. Although this is the end of the login sequence, the user can either continue
as a visitor, or register as a new user in the e-commerce system.

In this example, our requirements are that users should have access to the e-commerce
system and non-users should be allowed access as visitors. Consequently, we add sev-
eral RDD profile elements in the login service sequence. The first defines the start
of the login service with the stereotype <<userService>>, and the associated tag
{loginService.SLdefault.start = TRUE }. This service begins when the ACTIVEclient
sends a requestLoginPage message to the loginManager. Another set of user service
beginning tags occurs when loginManager returns either a HomePage (registeredUSer-
vice) or a VisitorPage (visitorUService) to the ACTIVEclient. These other user services
have service information associated with them, namely the probability that they will be
achieved, and the source of that information. In this example, “expert1” supplied the
information, but there can be multiple sources of such information, including running
system data from a honeypot. In this example, the probability of a user being registered
is higher than that of a user being a visitor. Note that the visitor user service is achieved
under two circumstances: 1) if the user name and password cannot be validated, and 2)
if the user profile information cannot be obtained. Finally, RDD profile elements iden-
tify the points in the sequence when the login service has been completed, namely, at
the end of the message when the login manager returns HomePage or VisitorPage to
the ACTIVEclient. Note that the messages in the sequence diagram all have an explicit
return message. This is required to be able to compose sequence diagrams according to
our composition mechanism.

3 The Man-in-the-Middle Attack

The risk assessments performed as part of the CORAS project identified the login pro-
cess as being vulnerable to man-in-the-middle attacks. During this kind of attack user
names and passwords can be intercepted by an attacker, and used at later times to im-
personate a valid user.

Each attack in our model is an aspect because an attack is not confined to one spe-
cific module of the application but impacts the entire application. We propose to repre-
sent those attacks that are not confined to one specific application as a generic aspect.
Generic aspects are represented as patterns which are described using UML templates.
These templates must be instantiated for each application to obtain a context-specific
attack model.

In this section, we show how the man-in-the-middle attack can be represented as a
generic aspect. Messages between a requestor and authenticator are intercepted by an
attacker. This can only occur if all messages flow through the attacker and not through a
direct association between the requestor and authenticator. The attacker either intercepts
the message intended for the server, or the attacker eavesdrops on the communication
medium between the browser and the server. In the first case, the attacker must pose as
the server so that the message intended for the server really gets sent to the attacker.
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The attacker then relays messages between the client browser and the server until the
private information has been obtained by the attacker. In the second case the attacker
does not impersonate the server, but rather just eavesdrops on the message flow. The
attacker may not obtain all of the messages flowing between the client and server, but
simply sample messages in the hopes of obtaining information. We use the first type
of man-in-the-middle attack in this paper since the attacker can actually participate in
complex protocols, and change messages if desired before passing them on to the client
or server.

Due to space constraints, we not not show the attack model, but rather describe it.
The attack model is shown as part of the misuse model described in the next section.

The generic attack model describes two service levels for the user service. The first
is the default service level (indicated by SL0) which is the “best” level of service. This
level of service is based on the physical connection. The second level of service de-
scribed is level X (denoted by SLX), which means that either a non-user has gained ac-
cess to the system, or that users have lost access to system services (that is, the system
has gone down). In short, the service level X means that the system has been compro-
mised. In addition, a requestor, authenticator, and an attacker must all be connected to
the same network to enable a man-in-the-middle attack.

The annotations for the misuse service include service information such as that in-
cluded for the user services in the primary login sequence, but they also contain other
information. Misuse service information consists of the source of the information, the
probability that the service level will be achieved, the average time it takes to achieve
the service level (MTTM), the average effort it takes (METM), and the impact on as-
set value (IV). Probability information can either be supplied by an expert, based on
experience with similar systems, or by a honeypot system that logs actual events. Dif-
ferent generic diagram with different probabilities, values of MTTM, METM, and IV
can be created for cases where the connection is an Internet, LAN, or some other type
of connection.

3.1 Generating the Misuse Model

In order to understand the impact the man-in-the-middle attack has on the e-commerce
application, we need to generate the misuse model. The misuse model will indicate how
much the primary model can be compromised by the attack. Two steps are needed to
generate the misuse model:

1. Instantiate the generic attack aspect to obtain the context-specific attack aspect.
2. Compose the context-specific attack aspect with the primary model to obtain the

misuse model.

Instantiating the Generic Aspect: The generic aspect is application-independent. It is
specified using UML templates. These templates must be instantiated for a given ap-
plication. This instantiation is done by binding names in the generic aspect to those in
the primary model. Elements present in the generic aspect that do not have a counter-
part in the primary model must also be instantiated. The instantiation of the generic
aspect will be referred to as a context-specific aspect. For the e-commerce example,
a context-spceific aspect is obtained by making the ACTIVEclient the requestor of an



288 G. Georg, S.H. Houmb, and I. Ray

authentication, the loginManager the authenticator, and the login message the authenti-
cation request. The user service of interest is the login service.

Obtaining the misuse model: The context-specific aspect must be composed with the
primary model to obtain the misuse model. The first step is to compose the class dia-
grams of the attack and primary models. For lack of space, we do not show the class di-
agram of the attack model or the composition process. The result from this composition
is the class diagram of the misuse model shown in Figure 3. The misuse class diagram
differs from the primary model class diagram in the following ways: (i) an attacker
class is added, (ii) an association between attacker and ACTIVEclient is added, (iii) an
association between attacker and loginManager is added, and (iv) direct association be-
tween the ACTIVEclient and loginManager is deleted because all communications now
go through the attacker class.
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accessAccts
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Fig. 3. Misuse model (primary model + man-in-the-middle attack) static diagram

The sequence diagrams describe the behavior of the primary model and the man-
in-the-middle attack. The sequence diagrams must also be composed. The composi-
tion must be performed such that important properties of each model are preserved.
Here again, we do not describe the mechanics of the composition process. The com-
posed sequence diagram will serve to illustrate how much the primary model can be
compromised.

The properties identified for the login service sequence that need to be preserved
in this composition process are: (1) an application session is created, (2) users must
be validated, (3) registered users receive a home page with profile information, and
(4) unregistered users receive a visitor page. The properties that need to be preserved
from the man-in-the-middle misuse are: (1) all messages from the client to the server
through the duration of the session must pass through the attacker, (2) an authenticated
session returned to the attacker indicates that the SLX service level has been achieved
(3), no session returned to the attacker indicates that the SLX service level has not been
achieved. The resulting composed sequence diagram is shown in Figure 4.

The main change in this sequence diagram from that given in Figure 2 is that an at-
tacker lifeline has been inserted and all communication between the ACTIVEclient and
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:ACTIVEclient :loginManager :UAcctManager :UProfileManager:UAcctDB

requestLoginPage ()

loginPage

login (uname, pword)

userValidated

HomePage

errorVisitorPage

getUProfile (uname)

[acct <> NULL]

validate (uname, pword)

[else]

alt

retrieveAcct (uname, pword)

<<userService>>
{loginService.SL0.start = TRUE}

<<userService>>
{loginService.SL0, end}

:attacker

requestLoginPage ()

loginPage

login (uname, pword)

HomePage

VisitorPage

<<userService>>
{registeredUService.SL0.start = TRUE}
{registeredUService.SL0.serviceInfo [0] = (‘expert1’, 0.8)}

VisitorPageVisitorPage <<userService>>
{visitorUService.SL0.start = TRUE}
{visitorUService.SL0.serviceInfo [0] = (‘expert1’, 0.2)}

alt

<<userService>>
{loginService.SL0, end}

<<userService>>
{loginService.SL0, end}

<<userService>>
{visitorUService.SL0.start = TRUE}
{visitorUService.SL0.serviceInfo [0] = (‘expert1’, 0.2)}

prof

acct

<<misuseService>>
{loginService.SLX.start = TRUE}
{loginService.SLX.misuseInfo [0] = (‘expert3', 0.64, low, low, negative)

[prof <> NULL]

[else]

Fig. 4. Misuse model (primary + man-in-the-middle) sequence diagram

the loginManager go through attacker. The other change is in the probability associated
with the SLX service level of the login service. This probability has been changed to
reflect that the original probability is now included in an alternative sequence whose
probability is 0.8 (the probability that the user profile exists). The value is calculated as
part of the composition, by multiplying the outermost probability by the inner proba-
bility to obtain the new value of the inner probability.

3.2 Evaluating the Impact of Attack on the Application

The misuse model must be analyzed to determine the impact the attack can have on
the primary model. The login service composed with the man-in-the-middle attack thus
contains some properties that are undesirable. Paramount is the achievement of the SLX
service level. The presence of the SLX service level means that some user service has
been made available to persons not authorized to use it. Specifically in this example,
an attacker gains knowledge of the user account login information, uname and pword.
The class containing these items has been tagged as an asset in the primary static dia-
gram, with a value that is “extremely high”. Once the HomePage message is returned
to the attacker, the value of this asset has been decreased, as is indicated by the RDD tag
stating that the impact on asset value is “negative”. The ability of the attacker to extract
these secrets can be formally analysed using tool support of the formal security analysis
techniques developed by Jürjens [17]. To counter this attack, some security mechanisms
must be incorporated with the application. The mechanism that we choose is TLS Au-
thentication that is described next. We chose to use TLS since it is a follow-on to SSL
(Secure Sockets Layer), which is a commonly available authentication mechanism used
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in web applications. Other mechanisms could also be used to provide a stronger authen-
tication mechanim for the application.

4 Incorporating TLS Authentication in the Application

The security properties of integrity and confidentiality are compromised with the man-
in-the-middle attack, so mechanisms that address integrity and confidentiality are po-
tential risk treatments. We demonstrate the use of transport layer security (TLS) [10]
to mitigate the man-in-the-middle attack risk. TLS is based on passing certificates be-
tween a client and server for authentication purposes, and to establish secret session
keys for the encryption of all subsequent messages. In this paper, we use the version
of TLS proposed by Jürjens [17]. The sequence of the TLS mechanism is shown as a
generic aspect diagram in Figure 5.

|Client |Server

val = extract (usingCPublicKey, |C, CPublicKey)

encryptedSignedMessage, CASignedSCert (|S, SPublicKey)

val = extract (usingCAPublicKey, |S', SPublicKey')

sMess = decrypt (usingCPrivateKey, encryptedSignedMessage)

val = extract (usingSPublicKey', sessionKey', iNonce', CPublicKey')

|abortCOperation

alt

alt

alt

[res = TRUE]

[else]

[res = TRUE]

[else]

[else]

[res = TRUE]

|init (iNonce, CPublicKey, selfSignedCCert (|C, CPublicKey))
<<userService>>
{|tls.SL0.start = TRUE}

res = compare (iNonce', iNonce) && compoare (CPublicKey', CPublicKey)

res = compare (|S', |S)

res = compare (CPublicKey', CPublicKey)

<<userService>>
{|tls.SL0.end = TRUE}

<<userService>>
{|tls.SL0.serviceInfo [0] = (‘expert2’, 0.83)

<<userService>>
{|tls.SL0.serviceInfo [0] = (‘expert2’, 0.9)

<<userService>>
{|tls.SL0.serviceInfo [0] = (‘expert2’, 0.85)

|continue

<<userService>>
{|tls.SL0.end = TRUE}

<<userService>>
{|tls.SL0.end = TRUE}

<<userService>>
{|tls.SL0.end = TRUE}

|abortCOperation

|abortCOperation

signedMessage = sign (usingSPrivateKey,
sessionKey, iNonce’, CPublicKey’)

encryptedSignedMessage = encrypt
(usingCPublicKey’, signedMessage)

Fig. 5. Generic aspect of TLS mechanism sequence diagram

The TLS generic aspect contains two main classes: |Client and |Server. For this
example, certificate creation and certificate authority public keys are assumed to be
obtained in a secure manner. The client must have the certificate authority’s public key,
and the server must have a certificate, signed by the certificate authority (CA), of its
name and public key. The notation in Figure 5 includes the concept of sent and received
values, using a primed (’) sent value name to indicate a value that has been received.
Other assumptions include the fact that both nonces (unique identifier numbers) and
session keys must change each time the protocol is initiated.

A TLS sequence begins with |Client sending an init message that contains a nonce
(iNonce), its public key (CPublicKey), and a self-signed certificate containing its name
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and its public key (selfSignedCCert(|C, CPublicKey)). When |Server receives this mes-
sage, it extracts the client name and public key using the client public key sent in the
message (shown as extract(usingCPublicKey, |C, CPublicKey) in Figure 5). It checks to
make sure that the public key in the signed portion of the message is the same as the pub-
lic key sent in the unsigned portion of the message. If not, the entire operation is aborted.

If the client public keys match, the server creates a message containing the session
key that needs to be used for encryption once the connection is complete, the nonce
received in the original client message, and the client public key. This message is then
signed using the server’s private key. This signed message is then encrypted using the
client’s public key. The result, along with the server’s certificate (signed by a trusted
certificate authority) is sent to the client in a respond message. This is message labeled
encryptedSignedMessage, CASignedSCert(S,SPublicKey) in Figure 5.

The client first extracts the server name and public key using the certificate author-
ity’s public key. If the name of the server in the message (|S′) matches the name of the
server (|S) to which the original init message was sent, the protocol proceeds. Otherwise
the client aborts the operation. The encrypted portion of the message is decrypted using
the client private key (CPrivateKey), and the items in the resulting signed message are
extracted using the server’s public key. The received nonce value (iNonce) in the signed
message is compared to the nonce originally sent by the client (iNonce′), and the client
public key (CPublicKey) in the signed message is compared to the client’s public key
(CPublicKey’). If either of these items does not match, this indicates that an attack on
the communication has occurred, and the client aborts the operation. If the items match,
then the communication path is secure, and the client can encrypt its secrets using the
session key and transmit them to the server.

4.1 Generating the Security Treated Primary Model

The sequence diagram in Figure 5 can be composed with the e-commerce sequence di-
agram in Figure 2 in order to add TLS capabilities to the e-commerce system. Similarly,
the static portion of the aspect model can be composed with the static diagram of the
login service, although the result of this composition is not discussed in this paper.

To compose the sequence diagrams, we use the same method as we used to compose
the primary sequence with the man-in-the-middle attack sequence. The TLS aspect,
specified in template form, must be instantiated for the e-commerce application. This
instantiation is done with the following bindings: (i) |Client in TLS is bound to AC-
TIVEclient in the e-commerce application, and (ii) |Server is bound to loginManager.

Properties in the login service sequence and in the TLS sequence are identified, and
the properties that need to be preserved in the composed sequence are also identified.
The resulting composed sequence diagram is shown in Figure 6.

The sequence shown in Figure 6 begins as the sequence did in Figure 2, with the AC-
TIVEclient requesting a login page from the loginManager. The loginManager responds
with loginPage. Now the TLS sequence is inserted; instead of ACTIVEclient sending
a login message with a user name (uname) and password (pword), a different login
message is sent. This new login message contains a nonce (iNonce), the user’s pub-
lic key (CPublicKey), and a self-signed certificate containing the user name and user’s
public key (selfSignedCCert(uname, CPublicKey)). The logic for the TLS handshake
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:ACTIVEclient :loginManager

val = extract (usingCPublicKey, uname, CPublicKey)

signedMessage = sign (usingSPrivateKey, sessionKey, iNonce', CPublicKey')

encryptedSignedMessage = encrypt (usingCPublicKey', signedMessage)

val = extract (usingCAPublicKey, sName', SPublicKey')

abortLoginAttempt

alt

alt

alt

[else]

[res = TRUE]

[else]

[res = TRUE]

login (iNonce, CPublicKey, selfSignedCCert (uname, CPublicKey))

<<userService>>
{loginService.SL0.start = TRUE}

res = compare (sName', sName)

res = compare (CPublicKey', CPublicKey)

<<userService>>
{loginService.SL0.serviceInfo [0] = (‘expert2’, 0.83)

<<userService>>
{loginService.SL0.serviceInfo [0] = (‘expert2’, 0.9)

requestLoginPage ()

loginPage

<<userService>>
{loginService.SL0.end = TRUE}

UProfileManager

encryptedSignedMessage, CASignedSCert (sName, SPublicKey)

continueWithLogin ()

getUProfile (uname)

HomePage

VisitorPage

<<userService>>
{registeredUService.SL0.start = TRUE}
{registeredUService.SL0.serviceInfo [0] = (‘expert1’, 0.664)

<<userService>>
{visitorUService.SL0.start = TRUE}
{visitorUService.SL0.serviceInfo [0] = (‘expert1’, 0.166)

alt

<<userService>>
{loginService.SL0.end = TRUE}

<<userService>>
{loginService.SL0.end = TRUE}

<<userService>>
{loginService.SL0.end = TRUE}

<<userService>>
{loginService.SL0.end = TRUE}

prof

abortLoginAttempt

abortLoginAttempt

[res = TRUE]

[else]

<<userService>>
{loginService.SL0.serviceInfo [0]= (‘expert2’, 0.85)

[prof <> NULL]

[else]

sMess = decrypt (usingCPrivateKey, encryptedSignedMessage)

val = extract (usingSPublicKey', sessionKey', iNonce', CPublicKey')

res = compare (iNonce', iNonce) && compoare (CPublicKey', CPublicKey)

Fig. 6. Security treated model (primary model + TLS) sequence diagram

continues as in the TLS aspect model, with model element name changes per the
bindings discussed above. Once the TLS handshake completes successfully, the
ACTIVEclient sends a continue message to loginManager, which in turn causes
the loginManager to get personal profile information (if it exists), and a HomePage
is sent back to the user via ACTIVEclient. If the profile information does not exist, a
VisitorPage is sent back to the user. Note that the probabilities of the registeredUService
and visitorUService have been changed as was discussed in the previous composition
section to reflect the probability that the third test is successful (0.83 multiplied by 0.8
and 0.2 respectively). We can informally argue that the properties identified for each
model have been preserved in the composed model.

4.2 Analyzing the Security Treated Primary Model

Once the security mechanisms have been incorporated into the primary model, we need
to verify whether the given attack is prevented in this new model. That is, we need to
determine whether the TLS authentication adequately protects the application from the
man-in-the-middle attack. We can reason about the effective security by composing the
man-in-the-middle aspect with the security treated primary model.

The models are composed as before and the properties that need to be preserved
in the security treated model are identified and used to create the composed sequence
diagram.

Figure 7 shows the sequence when the man-in-the-middle attack is composed with
the system protected by the TLS mechanism. We can reason informally about the com-
posed sequence as follows. First, the properties identified as part of the composition
are preserved in the composed sequence. Next, consider the login message parameters
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attacker:ACTIVEclient :loginManager

val = extract (usingCPublicKey, uname, CPublicKey)

alt

alt

alt

[else]

[res = TRUE]

[else]

[else]

[res = TRUE]

<<userService>>
{loginService.SL0.start = TRUE}

res = compare (CPublicKey', CPublicKey)

<<userService>>
{loginService.SL0.serviceInfo [0] = (‘expert2’, 0.9)

<<userService>>
{loginService.SL0.end = TRUE}

UProfileManager

<<userService>>
{registeredUService.SL0.start = TRUE}
{registeredUService.SL0.serviceInfo [0] = (‘expert1’, 0.664)

<<userService>>
{visitorUService.SL0.start = TRUE}
{visitorUService.SL0.serviceInfo [0] = (‘expert1’, 0.166)

alt

<<userService>>
{loginService.SL0.end = TRUE}

<<userService>>
{loginService.SL0.end = TRUE}

requestLoginPage ()
loginPage

login (iNonce, CPublicKey,
selfSignedCCert (uname,
CPublicKey))

encryptedSignedMessage,
CASignedSCert (sName,
SPublicKey)

continueWithLogin () getUProfile (uname)

prof

HomePage

VisitorPage

abortLoginAttempt

abortLoginAttempt

abortLoginAttempt

requestLoginPage ()

loginPage

login (iNonce, APublicKey,
selfSignedCCert (uname, CPublicKey))

encryptedSignedMessage,
CASignedSCert (sName, SPublicKey)

continueWithLogin ()

HomePage

VisitorPage

abortLoginAttempt

signedMessage = sign (usingSPrivateKey, sessionKey, iNonce’,
CPublicKey’)

encryptedSignedMessage = encrypt (usingCPublicKey’,
signedMessage)

[prof <> NULL]

[else]

<<userService>>
{loginService.SL0.end = TRUE}

<<userService>>
{loginService.SL0.end = TRUE}

<<userService>>
{loginService.SL0.serviceInfo [0] = (‘expert2’, 0.83)

<<userService>>
{loginService.SL0.serviceInfo [0]= (‘expert2’, 0.85)

val = extract (usingCAPublicKey, sName’, SPublicKey’)

res = compare (sName’, sName)

sMess = decrypt (usingCPrivateKey, encryptedSignedMessage)

val = extract (usingSPublicKey’, sessionKey’, iNonce’, CPublicKey’)

res = compare (iNonce’, iNonce) && compare (CPublicKey’, CPublicKey)

<<misuseService>>
{loginService.SLX.start = TRUE}
{loginService.SLX.misuseInfo [0] = (‘expert3',
0.664, low, low, negative)

[res = TRUE]

Fig. 7. Misuse model (security treated model + man-in-the-middle) sequence diagram

between the ACTIVEclient and attacker and between the attacker and loginManager.
The attacker must replace the ACTIVEclient public key (CPublicKey) with the attacker’s
own public key. This must be done so that any messages from the loginManager that
have been encrypted using the “client” public key are encrypted with the attacker’s pub-
lic key. This encryption means that the attacker can decrypt them. Since the attacker is
posing as the ACTIVEclient, the client’s certificate must be changed to include the client
user name and the attacker public key. The result is that the login message parameters
change to replace the client’s public key with the attacker’s public key, APublicKey.
Once the loginManager receives this message, it uses the public key in the message to
extract the name and public key in the certificate.

Since the public key in the message is the one used to encrypt the certificate, the first
test comparison will work. Next the loginManager creates a signed message containing
the attacker’s public key, and encrypts it using that same public key. This message
and the loginManager’s CA-signed certificate is sent to the attacker, which decrypts
the signed message with its private key. The signed message from the server is then
encrypted with the ACTIVEclient’s public key, and is sent to the ACTIVEclient, along
with the server’s official certificate from the CA.

The ACTIVEclient first extracts the server name and public key from the CA cer-
tificate using the CA public key. A comparison is made between the server name the
ACTIVEclient has and the server name in the certificate. This test will work. Next, the
ACTIVEclient decrypts the signed message from the loginManager using its private key.
It then compares the message nonce included in that message with the one it originally
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sent, and the client public key included in that message with its own public key. This
test will fail because the client key included in the signed message from the loginMan-
ager is that of the attacker. Therefore the sequence will always move to the third test
failure alternative where the abortLoginAttempt message will be returned to the user
of ACTIVEclient and the sequence ends. Thus, the treatment prevents the attack, and
consequently the undesirable properties it allows, from occurring.

5 Related Work

Standards such as the ISO 15408 Common Criteria for Information Technology Secu-
rity Evaluation [6] can help developers focus on processes and development activities
that lead to more secure systems. However, these standards only address the devel-
opment activities of the system, not its operational security. They are also based on
assessment by certified assessors. Trade-off techniques such as Architecture Trade-off
Analysis Method (ATAM) [19] and Cost Benefit Analysis Method (CBAM) [18] oper-
ate at an architectural level, and also require experienced assessors. Any of these assess-
ments require a strong resource commitment on the part of the organization that uses
them. Risk identification, assessment, and management are the targets of the CCTA Risk
Analysis and Management Methodology (CRAMM) [3] and CORAS [7,21] frame-
works. CORAS makes use of multiple standards, including the Australian/New Zealand
Standard for Risk Management [1], ISO/IEC 17799-1: Code of Practice for Information
Security Management [13] and ISO/IEC 13335: Information technology – guidelines
for management of IT security [14]. CORAS adapts the asset-driven structured ap-
proach in CRAMM, and uses model-based risk assessment in integrated system devel-
opment processes. Our Aspect-Oriented Risk Driven Development (AORDD) frame-
work [12,11] makes use of the CORAS processes and the asset-driven approach of
CRAMM. The analysis described in this paper is a part of the AORDD framework. It is
lightweight in that there is no need for a certified assessor, and it also provides informa-
tion that is directed to a single risk treatment, rather than to an overall system. Unlike
the process-targeted frameworks and standards, it deals with system operation.

The aspect-oriented techniques we use are part of our on-going AOM research,
where aspects are UML templates that are instantiated in the context of a system prior
to composition (see France et al. [8,9] and Straw et al. [22] for details on the AOM nota-
tions and composition). Jacobson [15,16] and Kiczales [20] describe AOM techniques
that require that an aspect contains information regarding where and how it will be com-
posed with a system model. Our generic aspects are free of this information and thus
can be reused in multiple systems by instantiating them in different contexts. Clarke et
al. [4,5] describe AOM composition techniques that augment or replace model elements
and behavior. Our composition also allows elements and behavior to be deleted from a
composition, or to be interleaved with other behavior and elements. The latter capability
has been particularly useful in our AORDD work with security risk treatments.

6 Conclusion

In this paper, we propose a methodology for designing secure applications. We identify
the assets in the application that need protection. We then find the kinds of attacks
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that are typical for such applications, based on risk assessments that are beyond the
scope of this paper. We show how to evaluate the application against such attacks. If
the results of this evaluation indicate that the assets may be compromised, then some
security mechanism must be incorporated into the application. Our focus is therefore
on evaluating the ability of security mechanisms to protect against previously identified
risks rather than on detecting new vulnerabilities. We illustrate how this can be done
and show how the resulting system can be evaluated to give assurance that it is resilient
to the given attack. A lot of work remains to be done. In this paper, all our analysis
was done manually without any tool support. In future, we plan to investigate how this
analysis can be automated to some extent. Specifically, we will look at how existing
theorem-provers and model-checkers can aid this process.
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Abstract. A choreography specifies the interactions between the re-
sources of multiple collaborating parties at design time. The runtime
management of authorization policies in order to support such a specifi-
cation is however tedious for administrators to manually handle. By com-
piling the choreography into enhanced authorization policies, we are able
to automatically derive the minimal authorizations required for collabo-
ration, as well as enable and disable the authorizations in a just-in-time
manner that matches the control flow described in the choreography. We
have evaluated the advantage of this utility in a collaborative engineering
scenario.

1 Introduction

We present a system architecture and algorithm for automatically generating,
installing and enforcing authorization policies that correspond to an agreed
specification of inter-organizational collaboration. The planning and execution
of inter-organization collaboration is known as business process choreography
[1,7,16], with the specification document being referred to as a choreography de-
scription. From a choreography description we were able to automatically derive
the corresponding authorization policies. Moreover, authorizations (which are
determined based on authorization policies) are enabled only for the duration of
their corresponding interactions in the running collaborative business process.
We ensure that an organization is quickly prepared to fulfill its obligations in
a collaborative business process, while obeying the least privileges principle. In
collaborative business there is a need to reduce both the risk of losing market
credibility, due to slow response, and the risk of exposing valuable information.
This challenge is presented in collaborative engineering, where multiple organi-
zations collaborate on a short term basis within a specific project, in order to
exchange design objectives, detect and resolve conflicts, as well as generate new
ideas and design options [2]. In order to support collaborative business processes
such as collaborative engineering, new methodologies, specification languages
and tools [1,7,10,16] are being produced, alongside which we position and eval-
uate our work.
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The paper continues with a preliminary introduction to business process
choreography, authorization and collaborative engineering, outlining the problem
domain. Secondly, we present the system architecture, elements and component
interactions for deriving authorization policies from a choreography description.
This is followed by the details of the authorization policy generation algorithm,
and a discussion of its merits. We conclude with a discussion of the solution and
related work.

2 Preliminaries

2.1 Business Process Choreography

Business process choreography is the description of how multiple organizations
coordinate their activities in a collaborative business process. A choreography
may have been agreed to, but it is then the job of individual organizations to
provide authorized access to the systems and resources that will do the actual
specified work. The basic building blocks of a choreography are interactions, such
as web service invocations across organizations, and internal actions within one
organization. [16] explains this as a three stage process:

1. create a common understanding of the inter-organizational workflow (or col-
laborative business process) by specifying a shared public workflow,

2. partition the public workflow over the organizations involved, and
3. for each organization, create a private workflow which is a subclass of the

respective part of the public workflow.

The choreography description therefore defines the public workflow, which acts
as a means of combining the private workflows of multiple organizations into one
global control-flow.

The Web Services Choreography Description Language (WS-CDL) [7] is an
emerging, XML-based standard for describing message-based interactions be-
tween web services. We however only discuss the elements that were impor-
tant for generating authorization policies. For a more complete introduction
to WS-CDL see [1,7]. WS-CDL offers an element for encoding a web service
call, referred to as an <InterAction> element. This contains references to the
source <roleType> and the receiver <roleType>. In addition the expected inter-
nal actions of participant organizations are denoted using the <SilentAction>
and <NoAction> tags. As control-flow elements the WS-CDL specification offers
sequential <Sequence>, parallel <Parallel>, branching <Choice> and looping
<WorkUnit> composition, which we take into consideration when specifying de-
pendencies between generated authorization policies.

2.2 Authorization and Access Control

Having described and agreed to a choreography, each collaborating organization
still needs to provide the appropriate authorizations that allow the agreed in-
teractions to be executed. Furthermore, authorizations should only be activated
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according to the control-flow of the choreography. An authorization is defined as
a triple 〈subject s, object o, action a〉, stating that a subject s can perform action
a on object o [4,12]. Messages originating from a subject and targeted at an ob-
ject are composed of a corresponding triple. Access control is then the process of
intercepting every incoming message before it reaches its target, and determining
whether or not the request can be granted [12]. The decision requires policies to
be specified that consider the message plus the conditions under which it was
received. A generic authorization policy is then specified as 〈s, o, a, q〉, where q
is a set of conditions that must evaluate to true in order for the 〈s, o, a〉 triple
to be a valid authorization. A general architecture for access control therefore
consists of a policy decision point (PDP), which makes the authorization deci-
sions based on installed authorization policies, and a policy enforcement point
(PEP), which intercepts all incoming messages and enforces the authorizations
or denials resulting from policy decisions [12]. A message also consists of a triple
〈s, o, a〉, such that its authorization is evaluated according to a policy, whose
〈s, o, a〉 triple matches the corresponding elements of the message. In order for
an authorization decision to be made, the PEP first authenticates the identity of
s in all intercepted messages, then forwards to the PDP. The PDP then makes
decisions concerning if 〈s, o, a〉 is valid given q, a set of condition variables.

3 Collaborative Engineering

Having discussed the background of our work (choreography and authorization),
we now consider this in the context of a specific application domain. We have
selected collaborative engineering, as the issues of managing short-term, inter-
organization control flow arise, along with the requirement to provide minimal
access to sensitive documents and services. Collaborative engineering is a way
in which multi-functional development teams coordinate their communication
and work in order to improve the process of developing a new product. It in-
volves different partners with different perspectives on the engineering tasks [2].
We draw an example from the aerospace engineering domain, as depicted in fig-
ure 1, where they use grid and web-service technology in order to share resources
[3]. The engineering team partners, computational resources and data are not
part of the same administrative domain. Therefore each organization maintains
and administers its own PDP, PEP and services it provides, as well as the Pol-
icy Generation Component (PGC) introduced in section 4. Each partner has a
right to protect access to the resources they own, yet must still maintain their
obligations to complete the business process. The team partners involved are
discussed with respect to their authorization and collaboration requirements:

– Initiator, in this case the Aircraft Company, specifies the overall require-
ments for the product to be designed during the project. The series of de-
sign documents need to be version controlled and accessed only for specific
project tasks. Leaking the design documents could destroy the opportunity
to gain a market or patent. The Initiator adds and removes partners in the
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Fig. 1. Scenario for Collaborative Engineering in the Aerospace Domain

project based on their performance or changes in the environment (e.g. if a
partner becomes a competitor).

– Storage Providers are contracted to store, version control and maintain ac-
cess to large design documents, analysis reports and simulation data. A Stor-
age Provider must ensure that access to shared resources does not violate
the rules of the document owners nor the availability requirements of the
contract.

– Engineers are contracted to provide models that meet the Initiator’s require-
ments specification, using their own methods and tools. The Engineers may
maintain models on their local machines or use the computational facilities
of a Storage Provider.

– Analysts are contracted to provide models of the environment where the
product is to be operational and therefore make predictions about how the
final product will perform in a live environment. Their access is limited to
very specific specification and design documents.

In order to coordinate the activities between the different specialist teams, a
series of notifications and requests are interchanged, to which particular response
actions occur. The notifications and requests are messages that state that an ac-
tion is to be performed or an explicit attempt by a subject to perform an action
on a resource such as read, write or delete. Coordination and authorization are
critical throughout the lifetime of the project, with respect to confidentiality,
availability and performance. For example, analysts should only be able to ac-
cess design documents when a draft had been agreed in an earlier interaction,
otherwise extra effort must be invested in organizational conflict analysis and
resolution [2]. The partners may change during the lifetime of the project, such
that the authorizations of old partners should be immediately removed. The
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required guarantees are that resources are available when they need to be avail-
able and only to whom they need be available.

4 System Architecture

The PDP and PEP components form the basic trusted computing base of our
system architecture, but we introduce an additional component for authoriza-
tion policy generation called the PGC. In addition to generating authorization
policies, the PGC is also responsible for installing them on the PDP. Each of
these components are assumed to be trusted, as there is no intermediate policy
decision that intercepts their interactions and they are assumed to be in the
same administrative domain. We do not cover the administration authorization
model of these components in this paper.

– Policy Generation Component (PGC): interprets a choreography and gen-
erates authorization policies. In addition to the choreography (WS-CDL),
the service description (WSDL) containing the end point references (EPRs)
of the target objects, as well as the public key certificates (PKCs) of the
selected parties in the choreography are received.

– Policy Enforcement Point (PEP): intercepts requests to the resources and ex-
tracts authorization queries of the form 〈s, o, a〉, authenticates the subject of
the message msg and queries a PDP for an authorization decision. Only au-
thenticated and authorized messages msgauth are allowed to reach targeted
resources. Typical examples of where PEP functionality is implemented are
network routers, switches, firewalls, proxies, OS filesystem interfaces and
database interfaces.

– Policy Decision Point (PDP): makes authorization decisions based on
〈s, o, a, q〉 policies that have been generated by a PGC. A PDP receives
a triple 〈s, o, a〉 from the PEP and outputs either an authorization msggrant

or denial message msgdeny.
– Resources: the objects to which access is requested, as agreed to in the

choreography. We assume that there is a standard means of representing
and exposing the interface to these resources as services, such as WSDL, but
the issues of interoperability and interconnection are not discussed in the
paper.

4.1 Component Interactions and Assumptions

Before describing the component interactions, there are some assumptions that
we make with respect to a particular instance of the environment within which
they interact. Firstly, we assume that the PEP, PDP and PGC are all in the
same administrative domain as the resources being protected.

Each project partner’s PEP is therefore situated in a logical DMZ (demili-
tarized zone), while the PDP, resources and PGC are in a protected domain.
Secondly, we assume that there is a PKI (Public Key Infrastructure) in place
that allows each project partner to validate the certificates of each other. The
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Fig. 2. Sequence diagram of component interactions

“Authority” in figure 2 represents a standard PKI Certificate Authority (CA).
Finally we assume that each partner maintains a project management system
that at least provides information concerning which projects are currently active.
The component interactions are represented in figure 2 and discussed below:

1. The Initiator (i.e. Aircraft Company) must first be issued a public-key cer-
tificate (PKC) from an authority, asserting its identity and claim to be the
initiator of a project with a unique universal identifier PRJid. The cer-
tificate has the format: Cert(subject = Initiator, keyinfo = PKInitiator,
extension = Claim(isInitiator, PRJid), issuer = PKAuthority)

2. The identities of all partners must also be validated by an authority, as well
as the claim that they have been selected to play a role rname in the project
PRJid. Cert(subject = Partner, keyinfo=PKPartner, extension = Claim
(rname, PRJid), . . ., issuer = PKAuthority)

3. The Initiator then sends the WS-CDL (choreography), WSDLs (service in-
terfaces) and PKCs of all selected partners to the PGC of each partner, using
the initiator certificate as its authentication token. Recall that the PGC is
not directly accessible from outside the network, such that there must be an
authorization in place that allows s = Initiator, o = PGC, a = Add, under
the conditions q : isActive(Initiator, Partner, PRJid).

4. The PGC derives the authorization policies and installs them on the PDP,
given that the above condition q holds. This allows administration to simul-
taneously confirm participation in the collaborative business process and
determine valid authorizations.

5. The Initiator issues an initiation message to all partners, indicating that
the project is in the operation state. A PGC of partners implementing our
proposed architecture must simply enable the first authorizations according
to the choreography.

6. Incoming message requests are intercepted by each partner’s PEP. We
assume that there is mutual authentication between the communicating
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parties. If the authentication is successful, the PEP extracts the authoriza-
tion-relevant information (〈s, o, a〉) and uses this to query the PDP.

7. The PDP evaluates the request by the PEP and returns its decision (msggrant

or msgdeny). Every time a policy decision is made, the PDP updates its
internal state with the next set of authorizations to be installed.

8. The PEP drops all msgdeny and forwards all msggrant to the appropriate
resource, e.g. analysis service.

9. The actual resource is then invoked using only authorized messages (requests
and invocations) forwarded by the PEP.

We now proceed to describe the algorithm for implementing the policy
derivation.

5 Control-Flow Aware Authorization Policy Derivation

Our policy derivation algorithm uses the control flow of the choreography in
order to minimize the time a policy is enabled. In addition to extracting only
the relevant <InterAction> elements and enabling them over the life-time of
the choreography, we also use the control-flow of the choreography to trigger the
enabling and disabling of the policies, given the following extensions to the basic
specification.

5.1 Extended Authorization Policies

We extended the specification of authorization policies in order to develop a
mechanism for supporting the control-flow of a choreography. Instead of repre-
senting the run-time control-flow (and monitoring it with a second component)
we have chosen to represent the static control-flow and extend the policy enforce-
ment and decision with two mechanisms to track the control-flow. Each autho-
rization policy is annotated with two additional fields, one set of policies that are
enabled and one with policies that are disabled after the policy has been success-
fully matched. Let lenable = {policy − id1, policy − id2, . . ., policy − idn} be the
set of policies to enable and ldisable = {policy−id1, policy−id2, . . ., policy−idm}
be the set of policies to disable. Additionally we store the policy − id of each
policy as an unique identifying integer and the state of the policy. The state of
a policy can be either enabled or disabled. Disabled policies are not considered
when making a policy decision, but they have already been created and can be
activated on-demand, i.e. q : enabled(policy − id). This allows us to create all
policies initially and then reference them by policy-id for enabling and disabling.
The life-cycle of a policy is depicted in figure 3. Furthermore, a policy might be
enabled and disabled multiple times during the execution of a choreography.
Summarizing a policy is a 7-tuple of 〈policy − id, s, o, a, lenable, ldisable, state〉
where s, o and a are the usual authorization policy elements mentioned above.

The sets lenable and ldisable are evaluated by the PDP after a policy has been
successfully matched. I.e. the PDP evaluates all enabled policies in order, com-
paring them to the request, and, on the first policy matching subject s, object o
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Fig. 3. Policy State Model

and action a it allows access. All our policies are grant policies specifying an
allowed access. The PDP has an implicit deny policy that is used for all un-
matched requests. Since we only have grant policies there is no conflict specified
by our policies. Furthermore, if all policies are generated by the policy generator
they are non-overlapping. After a policy has been successfully matched to the
request the PDP processes the set lenable of this policy and enables all policies
in the set, followed by the set ldisable of this policy disabling all policies in the
set. This implies that a policy might disable itself after successful matching. Our
algorithm ensures that no policy appears in both sets (lenable and ldisable), such
that the order of evaluation causes no conflict.

5.2 Automatic Policy Generation

In this section we will describe the algorithm to populate the enable and disable
sets of each policy. WS-CDL offers four activities for control-flow: <Sequence>,
<Choice>, <Parallel> and <WorkUnit>. <Sequence>, <Choice> and
<Parallel> are self-explaining and work like expected. It is important to note
that <Parallel> introduces parallelism into the control-flow which complicates
the analysis. <WorkUnit> encapsulates another activity and makes its execution
conditional. The enclosed activity may be executed 0 to n times depending on
the guard and repetition conditions.

As we are interested in deriving authorization policies, the only activity that
results in a (cross-domain) access to a resource is <InterAction>.
Each <InterAction> represents an access from one party to another (i.e. no
multi-party access).

We first present an overview of our algorithm and then detail its important
steps. The algorithm steps are as follows:

1. Verify all partner certificates carry the role extension with the choreography
role name. We place the canonical name of the subject of the certificate as
the subject s into the authorization policy. The PDP can then match the
subject of the certificate presented for authentication to the subject s in the
authorization policy.

2. Derive control-flow with all intermediate nodes (i.e. XML elements, like
<Choice> and <Parallel>) from the parsed choreography description.

3. Filter all <InterAction> elements that do not have oneself as a target, i.e.
remove all <InterAction> elements that do not result in a local access (and
therefore a local authorization policy).
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4. Remove all XML nodes that do not contain <InterAction> elements by
directly linking predecessors and successors. (Exception: Empty nodes in
<Parallel> are simply removed.)

5. Create policies with empty lenable and ldisable sets in disabled state.
6. Compute lenable and ldisable set for each policy from the choreography.
7. Install policies on a partner’s PDP and enable start policy (or policies) on

request.

The derivation of the control-flow is straightforward from the syntactic con-
structs of WS-CDL. We store the predecessor and successor information in a
two-dimensional array in the activity. Let predi(N) denote the set of sequen-
tial predecessors of node N for i = 1, . . . , p where i is the i-th parallel ac-
tivity, i.e. one of each pred0(N), pred1(N), . . ., predp(N) has occurred before
N . Similarly let succi(N) denote the set of sequential successors for the i-th
parallel activity, i.e. one of each succ0(N), succ1(N), . . ., succq(N) will occur
after N . Let pred(N) and succ(N) denote the union of all parallel activities, i.e.
pred(N) =

⋃p
i=0 predi(N) and succ(N) =

⋃q
i=0 succi(N). Let predN (M) and

succN(M) denote the set of predecessors and successors, respectively, of M of
that activity that contains N . Due to the syntax of <Parallel> and <Choice>
in WS-CDL this set is unique. We use the same notation when applying prede-
cessor and successor operators to sets, i.e. the operator is applied to each element
in the set removing duplicate results. E.g. succ(pred(N)) denotes the set of all
possible sequential and parallel siblings of N (including N itself).

The creation of policies in step 5 requires the subject, object and action in-
formation for each policy. We analyze each <InterAction> for this purpose.
The subject is the canonical name as extracted from the certificate for the role
(attribute fromRole in the <participate> element). The object is the web ser-
vice EPR from the WSDL file referenced in the <behavior> element of the
<roleType> with the name of the operation attribute of the <InterAction>.
The action is the method of the web service that is called and, in our convention,
is referred to as the operation attribute. With this information we construct
a draft of each policy, such that all policies are disabled, but have a policy-id
assigned. Each such policy is associated with a node in the control-flow and,
after the removal of empty nodes, each node has one policy associated with it.
I.e. we can use control-flow nodes and policies interchangeably.

The set ldisable is the set of all alternative sequential choices, i.e. for each
node N

ldisable = succN(pred(N))

Note that this includes N itself, i.e. by default each policy is disabled after it
has been activated unless the control-flow allows it to be reactivated.

The set lenable is the set of all successors of a node N

lenable = succ(N)

Since a node may be contained in both ldisable and lenable, e.g. a loop to itself
(in a <WorkUnit> activity with repetition), we postprocess both sets and remove
all elements that are contained in both sets from the sets.



306 P. Robinson, F. Kerschbaum, and A. Schaad

φ = ldisable ∩ lenable

ldisable = ldisable \ φ

lenable = lenable \ φ

The policies are now ready for deployment and we only need to enable the
start policies to allow the choreography to start.

6 Discussion and Related Work

An authorization is said to be passive with respect to a given condition, if for
all possible values of the condition’s variables the authorization remains un-
changed. Conditions include tasks performed, time of day, resource availability
and various other properties that can be used to describe a system’s current
operational state and behavior. The implications of “active”, “just-in-time” or
“need-to-know” authorizations have been discussed by various authors includ-
ing [5,15,17]. We consider the authorizations generated from a choreography as
active with respect to project membership, role, task and control flow. These
therefore maintain the membership of a group and enforce access controls on
resources and functions that are reserved for active and qualified partners of the
group. When an organization needs to enforce an access control on a resource
reserved for usage in a project, it is therefore important to have a means of vali-
dating the membership of the subject with the project, otherwise residual access
could be granted to a requesting subject that is no longer an active partner.

6.1 Active, Task and Membership-Based Access Control

TBAC [15] has similar foundations as RBAC [11], with the goal of modelling au-
thorizations at the enterprise and application level as opposed to restricting them
to the system and resource level. TBAC authorizations are granted and revoked
based on when tasks are scheduled and performed, such that permissions to
objects should be granted to subjects only for the duration of a task that neces-
sitates the subject performing some action on the object. TBAC’s authorization
policy extensions are two fields for activating or deactivating authorizations at
runtime. A TBAC authorization has the form 〈s, o, a, usage u, authorization-
step as〉. Each task in a workflow is associated with an authorization-step,
representing the workflow’s protection state when the task or activity is being
performed. An authorization such as 〈s, o, a〉 is only valid when contained in the
current authorization-step. Secondly, authorizations are conditioned by a usage
or validity count u, specifying the number of times the authorization can be
granted in the workflow. The authorization-steps are similar to our lenable and
ldisable sets, but seem to assume that parallel activities will conclude at the same
time. Our approach therefore offers a finer granularity with the enabling and dis-
abling of authorizations. Secondly, TBAC must be integrated with a workflow
engine in order to function, creating a large trusted computing base beyond
standard PEPs and PDPs.
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TMAC (Team-based Access Control) [14] is a related framework to TBAC and
RBAC, but adds the feature of authorization enabling based on team existence
and membership. That is, a subject s may be assigned a role rt containing a set of
permissions 〈o, a〉, but these roles are only active when a relevant team T exists
and s plays role rt in T . The authorizations are deactivated either by removing
the role assignment or the team assignment. A project is a team of multiple
participants, such that we achieve a similar membership-based access control
activation and deactivation. We however support a finer-grained activation and
deactivation mechanism, such that we achieve dynamic authorization based on
role, task and membership.

6.2 Generation of Access Controls

[8] also addresses the idea of adding workflow states to the protection state vari-
ables of a system. They use Petri nets as the basis for modeling workflows, as
the theoretical and practical understanding of Petri nets to modeling informa-
tion and control flow are well established. The activities of a workflow corre-
spond to the transitions in a Petri net, while the workflow state, data-stores and
control flow are represented by the places and markings. Their extensions to
the authorization policies are quite simple, as they express an authorization as
〈s, o, a, task〉, stating that a subject s is allowed to perform action a on object o
if q : isScheduled(task). They also define a simple read/write {r, w} policy that
is associated with incoming and outgoing data of a task. That is, if a subject
s is assigned to a task taski with incoming data oi and outgoing data oj , then
s should have read ’r’ rights to the data-store of oi and write ’w’ rights to the
data-store of oj . The claim of their work is that given the appropriate Petri
net model of a workflow, by applying the 〈s, o, a, task〉 scheme and the {r, w}
policy the required authorizations can be derived and enforced at runtime of the
workflow. They envisioned the enforcement being done by a workflow engine as
tasks were scheduled. Again this is tight coupling of functionality and too large
a trusted computing base. A workflow engine is already a complicated piece of
software that must maintain state, manage concurrencies, handle exceptions and
perform compensation actions. We believe that their simple derivation scheme
could work, but suggest decoupling authorization and workflow management. [6]
achieve this decoupling by using task-based capabilities, which are assigned to
subjects that have specific roles in the workflow. A PDP maintains a matrix of
tasks and objects, where the cells specify actions that holders of task-based capa-
bilities are allowed to perform on these objects. Our architecture and algorithm
manage to capture a combination of these concepts.

[9] have taken advantage of the existence of maturing standards for defin-
ing business processes and workflows, such as the Business Process Execution
Language for web services (BPEL4WS). They have presented a conceptual in-
tegration of BPEL with RBAC in order to provide an authorization concept to
accompany BPEL. They have defined a conceptual mapping between their in-
terpretations of the meta-models of BPEL and RBAC. While what we achieve is
also a transformation or mapping, this is still only a first step when considering
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the requirements of collaborative engineering projects that need to meet tough
deadlines. The enabling, disabling and removal of these derived authorizations
must be supported with respect to the control flow of the process from which
they have been derived.

7 Conclusions

We have described an architecture and algorithm for deriving authorization poli-
cies from a business process choreography. This enables partners in e.g. a col-
laborative engineering project to focus on agreeing on the protocol for how they
collaborate and still have the assurance that their authorization requirements
will be addressed. Our approach has been implemented and is being applied in
the context of a larger research project – TrustCoM [13] – for security in collabo-
rative business processes, which includes collaborative engineering as a main test
case, and also considers legal and business elements that influence the validity
and control flow of collaboration. Future work will therefore consider how these
can be included into our framework, as well as handling faults and exceptions.
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Abstract. Privacy protection has become one of the most important
issues in the information era. Consequently, many protocols have been
developed to achieve the goal of accomplishing a computational task co-
operatively without revealing the participants’ private data. Practical
protocols, however, do not guarantee perfect privacy protection, as some
degree of privacy leakage is allowed so that resources can be used effi-
ciently, e.g., the number of random bits required and the computation
time. A metric for measuring the degree of information leakage based
on an information theoretical framework was proposed in [2]. Based on
that formal framework, we present a lower bound of the scalar product
problem in this paper, and show that to solve the problem without the
help of a third party, approximately half the private information must
be revealed. To better capture our intuition about the secrecy of various
protocols, we propose two more measurements: evenness and spread. The
first measures how evenly the information leakage is distributed among
the participants’ private inputs. The second measures the size of the
smallest set an adversary could use to obtain the same ratio of leaked
information that could be derived in the worst case scenario.

Keywords: Privacy Analysis, Private Computation, Scalar Product.

1 Introduction

Privacy protection is one of the most pressing issues in the information era. The
massive databases spread over the Internet are gold mines for some and, at the
same time, one of the greatest threats to privacy for others. How to accomplish
a computational task cooperatively without revealing the participants’ private
inputs has therefore gained a great deal of attention in recent years and the de-
velopment of efficient solutions is now an active research area. In theory [11,7],
it is possible to securely compute almost any function without revealing any-
thing, except the output. Unfortunately, the theoretical results are not readily
applicable to real applications due to their high computational complexity.
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Most theoretical approaches adopt a computationally indistinguishable view
of secrecy and try to find provable secure solutions, but such a definition leaves
little room to quantify secrecy. Meanwhile, in application-oriented studies, re-
searchers usually take an intuitive approach to the definition of secrecy and try
to argue for the secrecy of protocols by refuting possible attacks. There is a gap
between these two approaches in terms of provable secrecy. Although, privacy is
a basic human right, it is not the only one. When multi-party private compu-
tation is applied in the public sector, sometimes privacy must be compromised
in order to accommodate other important social values. The computation can
also be applied in the private sector, such as in a business setting. For example,
two (or more) companies might want to compute a function cooperatively; how-
ever, neither of them wants to share their private information. In both public
and private sector applications, it would be beneficial to be able to quantify
secrecy so that a tradeoff could be made, for example, between secrecy and com-
putational efficiency. In [5], similar arguments are presented about ideal secrecy
and acceptable secrecy. Meanwhile in [2], an information theoretical framework
is proposed and two quantitative definitions of secrecy for multi-party private
computation are defined, namely, relative secrecy and absolute secrecy. In this
paper, we prove a lower bound for the relative secrecy of protocols that solve
scalar product problems. We also propose two refined measurements, evenness
and spread, for quantifying information leakage by multiparty private computa-
tion protocols.

The remainder of this paper is organized as follows. We give a short review
of related works in Section 2. In Section 3, we present the formal framework
proposed in [2]. In Section 4, we present our lower bound proof. In Section 5,
we present our extension of the formal framework, and use three examples to
explain our new measurements. Finally, in Section 6, we present our conclusions
and a short discussion about possible extensions of our model. We also indicate
the direction of future work.

2 Related Work

Secure two-party computation was first studied by Yao [11] and extended to the
multi-party case by Goldreich et al [7]. Through a sequence of efforts, a satis-
factory definitional treatment was found and precise proofs for the security of
multi-party computation were devised . A full description of these developments
is given in [6]. The general construction approach is as follows. To securely com-
pute a function, it is first converted into a combinatorial circuit. Next, all the
parties run a protocol to compute the result of each gate in the circuit. Both
the input and the output of each gate are shared randomly and the final output
is also shared randomly among all parties, who then exchange their share of
information to compute the final result. Although, this general construction is
impressive, it also implies that both the size of the circuit and the number of
parties involved dominate the size, i.e., complexity, of the protocol. Note that
the size of the circuit is related to the size of the input. Therefore, this general
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construction is not feasible for real world applications with a large input and/or
a large number of parties [9].

The high cost of the general approach for large problems has motivated re-
searchers to look for efficient solutions for specific functions, and many protocols
have been developed to solve particular problems. There are specific protocols
for general computation primitives, such as, scalar products [1,10], set union
and set intersection cardinality [8], and private permutation [3]. In addition,
there are protocols for specific application domains, for example, data mining,
computational geometry, and statistical analysis. An excellent survey of secure
multi-party computation problems can be found in [4].

Most of the above approaches are based on the notion of ideal secrecy, as
observed in [5]. In that paper, the authors ask if it would be possible to lower
the security requirement from an ideal level to an acceptable level so that an
efficient protocol can be developed. A formal framework based on information
theory is presented in [2] in which quantitative metrics of the security level of a
protocol are proposed.

3 Framework

As our lower bound proof is based on the formal framework in [2], we include a
brief introduction to the framework here. In multi-party private computation, n
players cooperate to compute a function. Each player holds some private input
that is part of the parameters for computing the function. The goal is to compute
the function and maintain the secrecy of each party’s private input. Given a
protocol, P , we use XP

i to denote the private input of party i, and msgP
i to

denote the message received by party i. We use information theory to model the
amount of information revealed after running P . Note that before running P ,
none of the parties has any information about the other parties’ private inputs.
However, after running P , each party may know something about some of the
other parties’ private inputs because of new information gathered during the
execution of P . Let HP

i = H(XP
i ) denote the entropy of the random variable

XP
i , and HP

ij = H(XP
i |msgP

j ) denote the entropy of the random variable XP
i

given msgP
j . The conditional entropy corresponds to the intuitive idea of the

amount of information (uncertainty) of XP
i from party j’s perspective after

receiving msgP
j .

Two measurements, relative secrecy and absolute secrecy, of the secrecy of
protocol P are defined as mini,j(HP

ij/HP
i ) and mini,j(HP

ij ) respectively.

4 Lower Bound

In this section we show that for any two party scalar product protocol, the
relative secrecy can not be better than 1

2 . Without loss of generality, let us
assume that the protocol proceeds in rounds, where Alice and Bob send mes-
sages to each other alternately, with Alice sending the first message. We can
record the communication between Alice and Bob as a sequence of messages,
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msg = (msgA
1 , msgB

2 , . . .). Given a message sequence msg, we say that an in-
put sequence X of Alice(Bob) is compatible with msg if it is a possible record
of the communication when the input sequence of Alice(Bob) is X . We use
IA(msg)(IB(msg)) to denote the set of input sequences, that are compatible
with msg, for Alice(Bob). Note that msg is a possible record of the communica-
tion when Alice’s input is in IA(msg) and Bob’s in IB(msg). We use IA,B(msg)
to denote {(X, Y )|X ∈ IA(msg), Y ∈ IB(msg)}. The set IA(msg)(IB(msg)) can
be further partitioned into two subsets according to the output value u(v). We
use IA,u(msg)(IB,v(msg)) to denote the set of input sequences compatible with
msg and the final outcome. Note that, for all X ∈ IA,u(msg) and Y ∈ IB,v(msg),
XY = u + v. Here, we consider the case where each number is from GF (2) and
the input vector is n dimensional. A general lower bound can be derived by the
same approach. Below, we present a high-level sketch of the lower bound proof.
If after the execution of the protocol, the information content of the input se-
quence of Alice(Bob) is still high, it means that many input sequences should
be compatible with the recorded conversation. However, a larger IA(msg) would
imply a smaller IB(msg), since each sequence in IB(msg) paired with each se-
quence in IA(msg) has to satisfy the condition that their scalar product is equal
to the sum of their outputs. We therefore derive a lower bound. To formalize
the above sketch, we state some basic facts from information theory and linear
algebra.

Fact 1. Let X be a random source with n possible outcomes, H(X) ≤ log n. In
other words, for a random source to have entropy n, we need at least 2n possible
outcomes.

Fact 2. Let I1, I2 be two sets of n-dimensional binary vectors. We use dim(I1)
to denote the dimension of the subspace spanned by I1.

– If |I1| ≥ 2k, then dim(I1) ≥ k; and if dim(I) ≤ k, then |I| ≤ 2k.
– If I1 and I2 are orthogonal, i.e., the scalar product between every vector in

I1 and I2 is zero, then dim(I1) + dim(I2) ≤ n.

Given a message sequence msg, let 0A = IA,0(msg), 0B = IB,0(msg), 1A =
IA,1(msg), and 1B = IB,1(msg). By Fact 2, we get dim(0A) + dim(0B) ≤ n
and dim(1A) + dim(1B) ≤ n. Now consider the relationship between 1A and
0B. Assume that dim(1A) = k and (i1, i2, . . . , ik) form a basis of the subspace
spanned by 1A. Consider the set of vectors constructed by combining an even
number of vectors in the basis, denoted by I ′. There are exactly 2k−1−1 vectors
in the set, because the summations of the even terms and odd terms of a binomial
sequence are the same. However, the zero vector is not included in our subset.
Clearly dim(I ′) ≥ k − 1 and the space spanned by 1A contains both vectors in
1A and I ′. Using Fact 2 again, but this time for I ′ and 0B, we get dim(I ′) +
dim(0B) ≤ n, which implies dim(1A) + dim(0B) ≤ n + 1. If H(XA|msg) ≥
k1, then by Fact 1, |IA(msg)| ≥ 2k1 . Without loss of generality, assume that
|1A| ≥ 2k1−1; therefore, dim(1A) ≥ k1 − 1. Since |I ′| ≥ |1A| − 1 and the
the number of vectors in the space spanned by 1A contains every vector in
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I ′ and 1A, we derive that there are at least |I ′| + |1A| ≥ 2k1 − 1 vectors in
this space. Therefore, dim(1A) ≥ k1. Hence, by dim(1A) + dim(1B) ≤ n and
dim(1A) + dim(0B) ≤ n + 1, we get dim(1B) ≤ n − k1 and dim(0B) ≤ n −
k1 + 1. There are at most 2n−k1+1 vectors in the vector space spanned by 0B.
However, half the vectors in this space are not in 0B, so we get |0B| ≤ 2n−k1 ;
therefore, |IB(msg)| = |0B|+ |1B|LIA ≤ 2n−k1+1. If H(XB|msg) ≥ k2, then by
Fact 1, |IB(msg)| ≥ 2k2 . Now we have 2k2 ≤ |IB(msg)| ≤ 2n−k1+1. Thus, we get
k1 + k2 ≤ n + 1 and the following lemma and theorem.

Lemma 1. For any two-party scalar product protocol P , if H(XA|msg) ≥ k1
and H(XB|msg) ≥ k2, then k1 + k2 ≤ n + 1.

Since H(XA) = H(XB) = n, we get H(XA|msg)/H(HA)+H(XB|msg)/H(XB)
≤ 1 + 1/n. The relative secrecy of the protocol is

min(
H(XA|msg)

H(XA)
,
H(XB|msg)

H(XB)
) ≤ 1

2
+

1
n

.

Theorem 1. For any two-party scalar product protocol, the relative secrecy is
at most 1

2 + Ω( 1
n ).

5 Extension of the Formal Framework and Examples

Although the two metrics, relative secrecy and absolute secrecy, capture the
amount of information revealed by a protocol, they fail to distinguish intuitively
apparent differences between various protocols. For example, many two-party
scalar product protocols have a relative secrecy of 1

2 , but, it is obvious that a
protocol that allows Alice and Bob to send half of their respective inputs to
each other is not acceptable. We try to capture the intuition by extending the
definition of the secrecy metrics. First we introduce the concept of evenness to
overcome the drawback of the above-mentioned measurements, which only cap-
ture a global view of information leakage. Now consider two protocols, each with
relative secrecy 1

2 . In the first protocol, the amount of information leakage only
reaches 1

2 when all the input elements are considered. In the other protocol,
however, the information leakage reaches 1

2 when only a single input element is
considered. Clearly, the first protocol is better than the second. We introduce
the concept of spread to capture the intuition that the first protocol is better.
Before we formally define evenness and spread, we introduce some notations.
We present only the two-party case here, and defer the multi-party case to a
full paper. Let us first generalize the definition of HP

i and HP
ij to any subset of

input elements. Let A and B denote the two parties. For player A(the definition
for party B is similar), let XP

A = (x1, x2, . . . , xn), and S = {xk1 , xk2 , . . . , xkr} ⊆
{x1, x2, . . . , xn}. We use H(S) to denote H(xk1 , xk2 , . . . , xkr ) and H(S|msg)
to denote H(xk1 , xk2 , . . . , xkr |msg). Define HP

A (S) = H(S) and HP
AB(S) =

H(S|msgP
B). Let rA = r = minS{H(S|msgP

B)
H(S) }, rgA = H(XP

A |msgP
B )

H(XP
A ) , and ηA =
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rgA − rA. In the above definitions, rA is the minimum ratio between the infor-
mation of any subset of the secret input before and after the execution of the
protocol, rgA is the ratio for the whole input. It is reasonable to replace rgA

by rA; however, we feel it is more informative to define evenness to be ηA, and
interpret it as the measurement of the evenness of information leakage about
player A. When ηA equals zero, it means that player A’s input is leaked evenly.
We define the spread for player A as min{|S| : {H(S|msgP

B)
H(S) } = rA}; that is, the

minimum number of input elements required to reach the maximum information
leakage level. An ideal protocol should have relative secrecy as close to one as
possible, evenness of every player as close to zero as possible, and spread of every
player as large as possible. We use three two-party scalar product protocols to
demonstrate the concept of evenness and spread. In the two-party scalar product
problem, the two parties, Alice and Bob, have private input XA and XB(two n
dimensional vectors), respectively. A solution to this problem is a protocol that,
after running, enables Alice and Bob to correctly compute the numbers u and v
respectively, such that u + v is the inner product of XA and XB, i.e., XA · XB.
Let ∗ be the matrix product operator, and XT

B be the transpose of XB. Then,
u + v = XA · XB = XA ∗ XT

B . Hereafter, we assume that XA, XB ∈ GF (p)n,
where GF (p) is a Galois field of order p, and p is a prime number. We also
assume that XA and XB are uniformly distributed and that both parties are
semi-honest, i.e., they both follow the protocol and do not deliberately deviate
from it to get more information. Instead, they only deduce information from the
messages they receive.

Examples

Our first example is a naive protocol whereby Alice sends the first half of her
vector to Bob, and Bob sends the second half of his vector to Alice. It is obvious
that relative secrecy rg = 1

2 , which matches the best protocol. However, it is
also obvious that this is not a very appealing solution, because the evenness of
this protocol is 1

2 . Thus one party has full information of half the private input
elements. In addition, the fact that the spread is equal to one makes the situation
even worse.

For the second protocol, we use the Chinese Remainder theorem to encode
each element of the input vectors with the same base. Specifically, we pick
two consecutive integers, p1, p2, such that p1p2 > p and encode each num-
ber x as (x mod p1, x mod p2). Thus, XA = ((x11, x12), . . . , (xn1, xn2)) and
XB = ((y11, y12), . . . , (yn1, yn2)). Alice then sends the first coordinate of her pri-
vate input, (x11, x21, . . . , xn1), to Bob and Bob sends the second coordinate of
his private input, (y12, y22, . . . , yn2), to Alice. Alice computes a =

∑n
i=1 xi2yi2

mod p2, and set u = p1p
−1
1 a; and Bob computes b =

∑n
i=1 xi1yi1 mod p1, and

set v = p1p
−1
1 b, where p1p

−1
1 = 1 mod p2 and p2p

−1
2 = 1 mod p1. It is easy to

see that the relative secrecy of the protocol is again 1
2 , but this time the evenness

is 0, since half of the information of each private input element is revealed to
the other party. However, the spread of the protocol is 1; for example, once Bob
gets x11 the information about x1 is reduced to about 1

2 .
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The third protocol [5] operates as follows. First Alice and Bob agree to an
n ∗n invertible matrix M and a positive integer k that is not larger than n. The
rest of the protocol comprises the following steps:

Alice Bob
1. Compute X ′

A = XA ∗ M . Compute X ′
B = (M−1 ∗ XT

B)T .
Let X ′

A = [xA1 , . . . , xAn
], Let X ′

B = [xB1 , . . . , xBn
],

X̄A = [xA1 , . . . , xAk
], X̄B = [xB1 , . . . , xBk

],
X
¯A=[xAk+1 , . . . , xAn

] X
¯B = [xBk+1 , . . . , xBn

]

2. Alice
X̄A−→ Bob

Alice
X
¯ B←− Bob

3. u = X
¯A ∗ X

¯
T
B v = X̄A ∗ X̄T

B

In this protocol, M is an n by n invertible matrix. Without loss of generality,
let S = {xA1 , xA2 , ..., xAr} and T = {xAr+1 , ..., xAn}. H(S) = r ∗ log p. Let
msg = {msg1, msg2, ..., msgn}. We have the following linear system of equations
from Bob’s perspective:

⎧⎪⎪⎨
⎪⎪⎩

a11 ∗ xA1 + a12 ∗ xA2 + · · · + a1r ∗ xAr + · · · + a1n ∗ xAn = msg1
a21 ∗ xA1 + a22 ∗ xA2 + · · · + a2r ∗ xAr + · · · + a2n ∗ xAn = msg2

...............
ak1 ∗ xA1 + ak2 ∗ xA2 + · · · + akr ∗ xAr + · · · + akn ∗ xAn = msgk

H(S, T |msg) = (n − k) log p. Moreover, H(S, T |msg) = H(S|msg) +
H(T |S, msg) = H(S|msg)+maxS{(n−r−k), 0}∗ log p. If r ≤ n−k, H(S|msg)

H(S) =
r∗log p
r∗log p = 1. Otherwise, H(S|msg)

H(S) = (n−k)∗log p
r∗log p = n−k

r < 1. Therefore,

minS{H(S|msg)
H(S) } = n−k

n , where |S| = r = n. The relative secrecy for Alice’s
input is n−k

n . The evenness is thus n−k
n − n−k

n = 0, and the spread is n. For
Bob’s input, the relative secrecy is now k

n , however, the evenness and spread are
the same as for Alice.

6 Conclusion and Future Works

In this paper, by proving a lower bound, we show that revealing half of the
private information is unavoidable in two-party protocols that solve the scalar
product problem by only allowing the two parties to communicate with each
other. Although this seems intuitively straightforward, proving the claim with-
out the help of an information theoretical formalism is non-trivial. Our lower
bound proof not only confirms our intuition, but also demonstrates the advan-
tage of the information theoretical framework. To better capture our intuition,
we also propose refinements and extensions of the measurements of information
leakage for two-party secure computation. We hope that analyzing protocols for-
mally will not only provide solid certification of the secrecy of existing protocols,
but also facilitate the design of better protocols. Using the Chinese Remainder



Information Theoretical Analysis of Two-Party Secret Computation 317

theorem to design protocols is an interesting approach worthy of further investi-
gation. In this paper, we assume that inputs are uniformly distributed. We feel
it would be a very interesting and challenging task to develop a method that
incorporates players’ a priori information about others players’ private inputs
into the formalism. Finally, and obviously, extending the model to multi-party
situations and analyzing some interesting problems is logically the next step.
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