
On a Probabilistic Chemical Abstract Machine
and the Expressiveness of Linda Languages

Alessandra Di Pierro1, Chris Hankin2, and Herbert Wiklicky2

1 Dipartimento di Informatica, University of Pisa, Italy
2 Department of Computing, Imperial College London, UK

Abstract. The Chemical Abstract Machine (CHAM) of Berry and
Boudol provides a commonly accepted, uniform framework for describ-
ing the operational semantics of various process calculi and languages,
such as for example CCS, the π calculus and coordination languages
like Linda. In its original form the CHAM is purely non-deterministic
and thus only describes what reactions are possible but not how long
it will take (in the average) before a certain reaction takes place or its
probability. Such quantitative information is however often vital for “real
world” applications such as systems biology or performance analysis. We
propose a probabilistic version of the CHAM. We then define a linear
operator semantics for the probabilistic CHAM which exploits a tensor
product representation for distributions over possible solutions. Based
on this we propose a novel approach towards comparing the expressive
power of different calculi via their encoding in the probabilistic CHAM.
We illustrate our approach by comparing the expressiveness of various
Linda Languages.

1 Introduction

The chemical reaction metaphor was introduced in [1]. Gamma is a declarative
programming language that supports massive parallelism. A Gamma program
consists of a shared data space – a multiset – and a collection of conditional rewrite
rules. The chemical metaphor is of molecules reacting in a solution under physical
laws; the condition in a Gamma rule is normally referred to as the reaction con-
dition, whilst the non-conditional part of the rule is referred to as the action. A
major principle in Gamma is that of local action: rules consume a small number of
elements from the multiset and produce a small number of elements into the mul-
tiset; the conditional application of rules is determined by predicates over the con-
sumed elements – there is no global state. Rules potentially compete for elements
from the multiset. The “program” terminates when no further rules are enabled.
This process is described in [2] in the following way: computation is “the global
result of the successive applications of local, independent, atomic reactions”.

One motivation for the model was that the standard data types used in declar-
ative languages, for example the ubiquitous list, were over-constraining for par-
allel systems. For example, a Gamma rule for computing primes is:

x, y → x ⇐ multiple(x, y)

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 388–407, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On a Probabilistic CHAM and the Expressiveness of Linda Languages 389

where multiple is a predicate which is true whenever y is a multiple of x (the
reader should compare this with the usual sieve solution). When this rule is
combined with the solution {|2, 3, 4, 5, 6, 7, 8|}, the program will terminate with
{|2, 3, 5, 7|}. There are a number of different reduction sequences that lead to this
result; for example, one sequence might include the parallel execution of:

2, 4 → 2 and 3, 6 → 3

There have been a number of later developments of Gamma; for example to
introduce more structure to the multiset but without constraining the execution
[3] and to add higher-order features [4]. The shared data space concept has proved
to be a powerful principle in coordination programming [5]. More importantly
from the perspective of this paper, Gamma provided inspiration for Berry and
Boudol’s Chemical Abstract Machine [6].

The CHAM was introduced to provide an abstract machine-based operational
semantics for process calculi. It has been used for a variety of calculi includ-
ing CCS, π-calculus and Linda-based coordination languages. The solution in a
CHAM is again a multiset which may be structured using the notion of mem-
branes – to encapsulate a sub-multiset – and airlocks – to expose part of a
sub-multiset for interaction with the rest of the solution. A CHAM specification
is then a collection of rules. Rules are either specific or general. Specific rules are
similar to our primes example from above; however, the CHAM rules generally
rely on sophisticated pattern matching rather than reaction conditions – this
is sufficient to match input channels and output channels in the typical syn-
chronous communication of CCS. The general rules provide for the “compatible
closure” of the specific rules – allowing computation inside membranes and also
in the presence of other elements in the solution.

The main contributions of this paper are twofold:

– to adapt the CHAM model to allow probabilistic computation; we believe
this to be important not only to provide a formal semantics for the burgeon-
ing number of probabilistic process calculi but also because probabilities
will be essential for the more advanced modelling of biological and chemical
systems.

– to use the structure of particular CHAMs to compare the expressiveness of
different calculi.

The rest of this paper is structured as follows: in Section 2 we introduce
the probabilistic CHAM; we then present a linear operator semantics for the
pCHAM in Section 3; Section 4 presents a number of properties of the pCHAM;
we describe the process of encoding various calculi in the pCHAM in Section 5
— this is relatively straightforward and follows the classical CHAM encodings;
Section 6 concerns expressiveness; and we conclude in Section 7.

2 A Probabilistic CHAM

The idea of the probabilistic CHAM (pCHAM) is to “quantify” the likelihood
or probability of executing an applicable rule. This allows us to resolve any

390 A. Di Pierro, C. Hankin, and H. Wiklicky

non-deterministic choice in a reaction (sequence) probabilistically. We define the
semantics of the pCHAM in terms of a Probabilistic Transition System (PTS)
where the state space is represented by multisets of molecules. We recall the
general definition of a (labelled) PTS as given in [7, Def 2].

Definition 1. A probabilistic transition system is a tuple (S, A, −→, π0), where:

– S is a non-empty, countable set of states,
– A is a non-empty, finite set of actions,
– −→ ⊆ S × A × Dist(S) is a transition relation, and
– π0 ∈ Dist(S) is an initial distribution on S.

A PTS (S, A, −→, π0) is called generative if the transition relation is a partial
function −→: S ↪→ Dist(S × A).

The semantics of a pCHAM is defined by a generative unlabelled PTS, i.e.
a PTS with a single, anonymous label τ ∈ A (which we simply omit). We will
concentrate on finite state spaces S, although we will occasionally also remark
on the general countable case.

2.1 State Space

The probabilistic CHAM has the same basic state space as the classical CHAM,
namely solutions, i.e. multisets of molecules. We denote by T the set of possible
molecules, i.e. terms in some formal algebra or language, and by M = M(T)
the set of multisets of molecules in T , i.e. functions of the form S : T → N for
which we will usually use the common notation {| . . . |}.

We will assume a finite set of possible molecules in T = {m1, . . . , mt}, i.e.
t = |T | < ∞ and a finite (strict) upper bound s for the multiplicity of any
molecule, i.e. maxmi∈T S(mi) < s < ∞. We will denote the set of possible
multiplicities by N = {1, . . . , s − 1} ⊆ N. These finiteness conditions can be
relaxed relatively easily. However, they allow us for the time being a clearer
presentation of the basic elements of the pCHAM; we can, for example, work
with distributions in place of general measures, etc.

We will refer to distributions over solutions, i.e. over M = M(T), as ensembles
of molecules in T and denote them by:

μ = {〈{|m11, . . . , m1i1 |}, p1〉 , . . . ,
〈
{|mj1, . . . , mjij |}, pj

〉
}

where ik is the cardinality and pk the probability of the multiset {|mk1, . . . , mkik
|}.

For the sake of simplicity of notation we use mji instead of the the more correct
notation mji . Moreover, in order to make the representation of ensembles more
compact, we do not list multisets with zero probability.

A pCHAM with molecules in T and with an initial solution S0 ∈ M(T) defines
a probabilistic transition system (M, =⇒p, μ0) with the point distribution μ0 =
{〈S0, 1〉}.

On a Probabilistic CHAM and the Expressiveness of Linda Languages 391

2.2 Specific Rules

The transition relation =⇒p for the PTS (M, =⇒p, μ0) representing a pCHAM
is specified via a certain set R of specific rules or — as with the non-deterministic
CHAM in order to avoid “multiset matching” — by rule schemata. These rules
are expressions of the form:

mi1, . . . , mik −→p mj1, . . . , mjl

where mi′j′ are molecules (or variables, cf [6]). These rules specify an individual
pCHAM by describing possible rewriting steps together with a probability p.

It is important (in the context of the pCHAM) to distinguish between rules,
for which we use the notation −→p, and the probabilistic transition relation on
M which defines the multiset rewriting and for which we use the notation =⇒p.

Probabilities are associated with rules not molecules. However, the rules of a
specific pCHAM can exploit information contained in the molecules in order to
obtain the intended probability p.

Example 2. We can also introduce probabilistic information as part of a mole-
cule, e.g. m′

i = pi : mi, i.e. we can annotate standard molecules by providing
information about their “reactiveness”. Rules like m1, m2 −→ m3 then would
become, for example, something like:

p1 : m1, p2 : m2 −→p1·p2 max(p1, p2) : m3

Example 3. Another possibility could be to provide “position information” and
make the reaction probability of two molecules proportional to their “spatial”
closeness, e.g.:

m1@(x1, y1), m2@(x2, y2) −→d(m1,m2) m3@((x1 + x2)/2, (y1 + y2)/2)

with d(m1, m2) =
√

(x1 − x2)2 + (y1 − y2)2 the “Euclidean distance” between
m1 and m2.

Example 4. The “spatial” information can also be generalised to “allocation en-
vironments” — similar to the notion in KLAIM [8], i.e. we can specify a sub-
(multi)set {|m1, . . . , mk|} of molecules a given molecule m0 can react with, i.e.
the (multi)set of its “neighbours”.

A further generalisation could introduce “probabilistic allocation environ-
ments” which specifies not just the possibility of reactions between certain mole-
cules, but also their probability. Allocation environments can be used to simulate
membranes of sub-solutions and probabilistic allocation environments allow the
introduction of “soft membranes”.

Example 5. Any non-deterministic CHAM can be lifted to a pCHAM by re-
placing the specific rule mi1, . . . , mik −→ mj1, . . . , mjl by mi1, . . . , mik −→1
mj1, . . . , mjl. The ‘standard probability’ p = 1 will be renormalised (see below)

392 A. Di Pierro, C. Hankin, and H. Wiklicky

to obtain a uniform distribution over all possible transformations of a multi-
set. Note that this is only one of the many possible ways a nondeterministic
specific rule can be implemented as a probabilistic rule in order to specify an
individual pCHAM. We will make the relationship between non-deterministic
and probabilistic CHAM more precise in Section 4.2.

2.3 General Laws

A concrete pCHAM is defined by specifying its set of possible molecules T ,
specific rules R and (optionally) an initial solution S0 ∈ M. The rules of the
pCHAM can be extended and translated into the transition relation =⇒p of the
corresponding probabilistic transition system (M, =⇒p, μ0), with μ0 = {〈S0, 1〉},
via four general laws which are straightforward generalisations of the laws of the
non-deterministic CHAM, cf [6, Sect 3].

Reaction Law. This provides the essential mechanism which translates or lifts
specific pCHAM rules to multiset rewritings. It also renormalises the (intended)
transition probabilities p such that the probabilities associated to the transitions
from any given multiset add up to one.

mi1, . . . , mik −→p mj1, . . . , mjl

{|mi1, . . . , mik|} =⇒p̃ {|mj1, . . . , mjl|}

where p̃ is the normalised probability p̃ = p
P with P the sum over all possible

rewritings of {|mi1, . . . , mik|}.
This law is non-local as the normalisation has to take into account all the other

transitions which could be applied to a given multiset/solution. However, as we
will see later, we can actually avoid normalisation until we reach, for example,
a terminal solution.

Chemical Law. The remaining general laws of the pCHAM extend the specific
rules. The Chemical Law allows us to apply a rule in any context:

mi1, . . . , mik −→p mj1, . . . , mjl

mi1, . . . , mik, m′
1, . . . , m

′
n −→p mj1, . . . , mjl, m′

1, . . . , m
′
n

where m′
1, . . . , m

′
n is any (maybe empty) collection of molecules.

This means that if we state a specific rule like mi1, . . . , mik −→p mj1, . . . , mjl

for a pCHAM we also can use rules like mi1, . . . , mik, m0 −→p mj1, . . . , mjl, m0,
and mi1, . . . , mik, m0, m3 −→p mj1, . . . , mjl, m0, m3, etc.

Membrane Law. For solutions with solutions as molecules we extend the set of
specific rules such that a sub-solution can develop on its own.

mi1, . . . , mik −→p mj1, . . . , mjl

m′
1, . . . , m

′
n, {|mi1, . . . , mik|} −→p m′

1, . . . , m
′
n, {|mj1, . . . , mjl|}

On a Probabilistic CHAM and the Expressiveness of Linda Languages 393

If we define a context C[] as usual as a multiset with a “hole”, i.e. as a multiset
{|m1, . . . , mn, []|} with a distinguished “hole” molecule [] which can be replaced
by any multiset S then we obtain the corresponding law of the general CHAM:

{|mi1, . . . , mik|} =⇒p {|mj1, . . . , mjl|}
{|m′

1, . . . , m
′
n, {|mi1, . . . , mik|}|} =⇒p̃ {|m′

1, . . . , m
′
n, {|mj1, . . . , mjl|}|}

or more concisely:
S =⇒p S′

{|C[S]|} =⇒p̃ {|C[S′]|}
where p̃ is obtained by (re)normalising p.

Airlock Law. The “partial activation” of a sub-solution providing an ‘airlock’ to
the surrounding solution is realised via:

m, m1, . . . , mn −→h(T) m � {|m1, . . . , mn|}
m � {|m1, . . . , mn|} −→f(T) m, m1, . . . , mn

The probabilities h(T) and f(T) specify the chances of “heating” up or “freez-
ing” down airlocks. It could be the case that h(T) = f(T), i.e. that the two
rewritings happen with the same probability, but it could also be that one hap-
pens more frequently. Furthermore, it is also possible to change the probabilities
depending on a control parameter T (temperature).

Considering the multiset rewrites which this universal rule justifies we get the
following “probabilistic version” of the corresponding classical law:

{|m|}
 S =⇒h̃(T) {|m � S|} and {|m � S|} =⇒f̃(T) {|m|}
 S.

2.4 An Example

Consider (a finite version) of a CHAM which implements the well known sieve
method for finding prime numbers. The initial solution is in this case the set of
natural numbers {2, 3, . . . , n} or in general a multiset of numbers. The specific
reaction rules are as follows:

If i and j are in solution such that there exists a k �= 1 such that j = i ·k
then eliminate j from solution.

or as a simple rule schemata:

i, j −→ j iff ∃k �= 1.ik = j

An execution of this CHAM leads, for example, to the following reductions:

{|2, 3, 4, 5, 6, 7, 8, 9|} −→ {|2, 3, 5, 6, 7, 8, 9|}
−→ {|2, 3, 5, 7, 8, 9|}
−→ {|2, 3, 5, 7, 8|}
−→ {|2, 3, 5, 7|}

394 A. Di Pierro, C. Hankin, and H. Wiklicky

It is easy to see that we will always end up with the (multi)set of primes up to
n. However, it is left open how fast we will reach this state, or how long it will
take in the average until a certain non-prime number is eliminated.

A probabilistic version of the CHAM in this example needs to specify the
probabilities for rule applications. A rather simple, maybe somewhat uninspired,
way to this is to assume each rule will fire with the same probability, i.e.

i, j −→1 j iff ∃k �= 1.ik = j

One possible sequence of reductions for this pCHAM is then:

{|2, 3, 4, 5, 6, 7, 8, 9|} =⇒ 1
6

{|2, 3, 5, 6, 7, 8, 9|}
=⇒ 1

4
{|2, 3, 5, 7, 8, 9|}

=⇒ 1
2

{|2, 3, 5, 7, 8|}
=⇒1 {|2, 3, 5, 7|}

Again, it is easy to see that this pCHAM will always end up with a multiset con-
taining only primes. However, (despite the uniform distribution of probabilities
to rules) we observe certain execution paths or traces with different probabilities,
e.g. the one above with probability 1

6
1
4

1
2 = 1

48 .

3 Linear Operator Semantics of the pCHAM

As in the theory of stochastic processes, in particular of Markov Chains, we
encode the probabilistic transition relation =⇒p as a linear operator T on the
vector spaces V(M). Suppose we have an enumeration of the solutions in M. The
fact that Si =⇒pij Sj will then be reflected by the fact that the entry Tij = pij .
The advantage of the linear operator semantics is that it not only encodes the
probability of transitions between solutions but also canonically extends to a
relation between ensembles, i.e. distributions over solutions.

3.1 State Space

The first question we have to address is how many possible solutions are there in
M; this means that we have to determine the reachable set, i.e. the state space
of possible configurations of the pCHAM. Unfortunately, the general situation
requires an exponentially growing space to represent it: Assume that we have t
different types of molecules and that their multiplicity is restricted by s, i.e. a
given molecule/term type can appear with multiplicities 0 (not at all), 1, 2, etc.
up to s − 1.

A finite multiset representing such a solution can be defined as a map from
the set of all possible molecules T = {m1, m2, . . . , mt} to the set of multiplicities
N = {0, 1, . . . , s−1}. The cardinality of the set of all maps T → N is |N ||T | = st.

On a Probabilistic CHAM and the Expressiveness of Linda Languages 395

Ensembles correspond to particular vectors in the vector space of (formal)
linear combinations of multisets:

V(M) =

{
∑

i

xiSi | xi ∈ R and Si ∈ M
}

which, concentrating on the coordinates xi, we can also identify with the space of
tuples in R

|M|. A distribution over solutions of the pCHAM is a positive vector
with 1-norm one, i.e. xi ≥ 0 for all i and

∑
i |xi| = 1. The vector space containing

all ensembles thus is unfortunately extremely large: V(M(T)) = R
st

.

3.2 Tensor Product Representations

The state space of size st is prohibitively large but at the same time unavoidable;
a priori we cannot exclude any of the st possible molecular solutions and in
principle it is possible that rules governing the dynamics of the pCHAM specify
transitions from any of the st configurations to any other.

However, we can exploit the “structure” of the state space. If we consider
for the moment only a single type of molecules, i.e. t = 1, then we have only to
consider the bounding multiplicity s. The state space of this type of pCHAM has
s1 = s possible states; ensembles thus are vectors in R

s = V({0, . . . , s − 1}) =
V(N). Considering two types of molecules, i.e. t = 2, requires that we keep
track of the multiplicity of each of the two types of molecules. We thus get the
state space of possible solutions as the Cartesian product N × N . The possible
ensembles, i.e. distributions of this space, are then elements of the tensor product:
V(N × N) = V(N) ⊗ V(N).

As an example, let us consider an ensemble on T = {m1, m2, m3} which is
given by {

〈
S1,

1
3

〉
,
〈
S2,

2
3

〉
} with S1 = {|m1, m1, m3|} and S2 = {|m1, m2|}. The

two multisets are represented by the vectors (taking as bound s = 2 for the
multiplicities) in R

33
= (R3)⊗3 = R

27: (0, 0, 1) ⊗ (1, 0, 0) ⊗ (0, 1, 0) — which
specifies the multiplicity of m1 to be 2, the one for m2 as 0 and of m3 to be 1 —
and (0, 1, 0)⊗(0, 1, 0)⊗(1, 0, 0) — which expresses the fact that molecules m1 and
m2 have a multiplicity one, while m3 does not appear — and which we denote
by μ1 and μ2. For both solution the three factors in the tensor product describe
the multiplicity of each of the three molecules m1, m2 and m3; the entries in
these factors (p0, p1, p2) specify that the molecule is missing with probability p0,
that there is one copy with probability p1, and that its multiplicity is two with
probability p2. The original ensemble is represented by the weighted vector sum

1
3
μ1 +

2
3
μ2 =

1
3
(0, 0, 1) ⊗ (1, 0, 0) ⊗ (0, 1, 0) +

2
3
(0, 1, 0) ⊗ (0, 1, 0) ⊗ (1, 0, 0).

Generalising this construction gives us an alternative description of the state-
space of a pCHAM with t types of molecules and bounding multiplicity s:

V(N t) = V(N)⊗t = (Rs)⊗t = R
st

where V⊗t denotes the t-fold tensor product of V , i.e. V ⊗ V ⊗ . . . ⊗ V .

396 A. Di Pierro, C. Hankin, and H. Wiklicky

Although this representation (obviously) does not reduce the dimension of the
state space of the pCHAM it “partitions” it in a certain way which will allow us
to describe “local” rules in a more efficient way.

3.3 Representation of Rules

The encoding of a specific rule of a concrete pCHAM is straightforward and
purely syntax-directed. Given a rule of the form:

mi1 , . . . , mik
−→p mj1 , . . . , mjl

we can translate it into a linear operator on the ensemble space V(M) = (Rs)⊗t.
We first need to consider a creation operator C = Cs and a destruction opera-

tor D = Ds on each tensor component of V(M), i.e. on V(N) = R
s represented

by the following matrices which increase or decrease the multiplicity of certain
molecules, i.e.

(C)ij =
{

1 for j = i + 1
0 otherwise and (D)ij =

{
1 for j = i − 1
0 otherwise

These creation and destruction operators link the semantics of the pCHAM
closely to so-called “Birth-and-Death processes” in probability theory, cf.
e.g. [10].

Using these operators we can increase and decrease the multiplicity of every
molecule mk in a solution. To increase, for example, the multiplicity of the
molecule m2 by two in a solution made up of (at most) four different molecules
we have to apply (I ⊗ C ⊗ I ⊗ I) · (I ⊗ C ⊗ I ⊗ I) = (I ⊗ CC ⊗ I ⊗ I) with I the
identity operator/matrix on V(N), to the vector representing a given solution.
In general, we can define the following two operators on M:

Gk =
k−1⊗

i=1

I ⊗ C ⊗
t⊗

i=k+1

I and Kk =
k−1⊗

i=1

I ⊗ D ⊗
t⊗

i=k+1

I

which increase (generate) or decrease (kill) the multiplicity of the molecule mk.
The last thing we need in order to define the encoding of rules is a test operator

which checks whether there exists a certain molecule in the current solution. The
local version of this existence operator E and its obvious extension E≥min are
given by:

(E)ij =
{

1 for i = j ≥ 1
0 otherwise and (E≥min)ij =

{
1 for i = j ≥ min
0 otherwise

Note that En �= E≥n. Using these local tests we can construct a global one:

Ek =
k−1⊗

i=1

I ⊗ E ⊗
t⊗

i=k+1

I and E≥min
k =

k−1⊗

i=1

I ⊗ E≥min ⊗
t⊗

i=k+1

I

On a Probabilistic CHAM and the Expressiveness of Linda Languages 397

A specific rule of a pCHAM mi1 , . . . , mik
−→p mj1 , . . . , mjl

is now represented
by the operator product:

E
≥S(mi1)
i1

· · ·E≥S(mik
)

ik
· KS(mi1)

i1
· · ·KS(mik

)
ik

· GS(mj1)
j1

· · ·GS(mjl
)

jl

where S(mk) is the multiplicity of each molecule on the left and right-hand side
of the rule. The encoding simply tests if enough molecules are present such that
the rule can be applied, then it destroys the molecules mentioned on the left-
hand side of the rule, and finally it generates all molecules on the right-hand
side. Of course, one can think of optimising the encoding by only destroying
molecules which do not re-appear on the right-hand side, etc.

3.4 Representation of pCHAMs

After we have represented all specific rules we finally can present the encoding
of a concrete pCHAM (M, R, μ0). We first have to construct the operators Ri

of all specific rules in R together with all the extended rules we obtain by the
Chemical, Membrane and Airlock Laws. We denote the extended set of rules
by R′. Each of these rules comes with a probability pi (either inherited from a
more specific version if the Chemical, Membrane or Airlock Law was involved
or directly from the specification of the specific rules).

The execution of the pCHAM now simply corresponds to choosing one of the
applicable rule operators with the corresponding probability and applying it to
the vector representing the current solution or more generally ensemble. This is
achieved by considering the operator:

T = N
(

∑

Ri∈R′

piRi

)

where the normalisation operation N is defined by:

N (T)ij =

⎧
⎨

⎩

Tij

Tj
if Tj =

∑
i Tij �= 0

1 if Tj =
∑

i Tij = 0 and i = j
0 otherwise.

The test operators E in the definitions of the Ris “filter” out all those rules
which are not applicable, the pi’s weight the chances of each reaction according
to the specific rules, and the normalisation N computes the correct probabilities
p̃i. If a solution is inactive, normalisation adds a one on the diagonal which
preserves the current solution without changing anything.

The linear operator T encodes the probabilistic transition relation =⇒p of the
probabilistic transition system (M, =⇒p, μ0) defining the operational semantics
of the pCHAM (M, R, μ0) as stated by the following proposition.

Proposition 6. Given a pCHAM (M, R, μ0), let =⇒p be the probabilistic tran-
sition relation on M of the associated probabilistic transition system, and let T
be the linear operator on V(M) associated to R. Then, for all Si, Sj ∈ M

Si =⇒p Sj iff Tij = p.

398 A. Di Pierro, C. Hankin, and H. Wiklicky

In order to implement the execution of a pCHAM (M, R, μ0) we have only
to compute the iterated applications of the operator to the vector representing
the initial ensemble, i.e. Tn(μ0), which realises a discrete time Markov Chain.
Depending on the questions we are interested in we can investigate, for example,
the long run average of this Markov Chain, or other features commonly studied
in the theory of stochastic processes.

4 Properties of the pCHAM

Let us next discuss some of the properties and aspects of the pCHAM and its
linear operator semantics. This is not an exhaustive study but merely attempts
to address some of the more interesting features.

4.1 Completeness of the Linear Operator Semantics

In the previous section we have shown that the linear operator semantics allows
us to encode any transformation of ensembles of a set of molecules T, that is
any pCHAM. The following proposition shows that the reverse also holds.

Proposition 7. For every linear operator T on a finite-dimensional vector
space V there exists a set of molecules T with |T | = t and multiplicity bounded
by s and a pCHAM (M, R, μ0) over T , such that V = V(M(T)), i.e. the ten-
sor product (Rs)⊗t, and T is represented by a linear combination of the rule
operators Ri.

Proof. It is sufficient to show that all matrix units Bij , i.e. matrices with a single
1 at row i and column j and all other entries 0, for each tensor factor V(N) can
be represented as E≥max · Dn · Cm.

One can show that Bij = E≥iDi−1Cj . Operationally this corresponds to
filtering out all situations where the multiplicity of a molecule is too small, then
by destroying all additional copies and then creating the needed j copies.

Any element in V(N)⊗t can then be represented by a linear combination of
matrix units in V(N)⊗t which in turn are represented as the tensor product of
certain matrix units in each V(N). ��

This result proves that any Markov Chain on V(M(T)) can be represented by a
pCHAM, i.e. whatever (memoryless, discrete time) random process one chooses,
it is always possible to define the rules of a particular pCHAM which implements
this behaviour.

It is interesting to note that the proof of this fact is not by giving an explicit
construction of this pCHAM but by arguing that the dimension of the space
generated by the “rule operators” is as large, i.e. has the same dimension, as
L(V(M(T))) — where L(V) denotes the set of all linear operators on V —
and that we therefore can construct a representation of any possible random
“behaviour” as a linear combination of the basic operators C, D and E. We
will utilise a similar reasoning when we compare the expressiveness of calculi in
Section 6.

On a Probabilistic CHAM and the Expressiveness of Linda Languages 399

4.2 Non-deterministic vs Probabilistic CHAMs

An obvious issue concerns the relation between the classical CHAM and its
probabilistic version. In order to clarify this relation it may help to discuss the
role non-determinism plays in a specification as opposed to the role of probability.
The following example illustrates the difference.

Example 8. Consider two types of molecules: a and d. We think of the first one
as “active” elements which can spontaneously produce a d molecule or turn itself
into a d molecule; the other one is “dead”, i.e. it decays immediately.

The specification of such a behaviour via a non-deterministic CHAM can be
given using the following specific rules.

a −→ a, d a −→ d d −→

A concrete pCHAM with the same behaviour might have the following rules:

a −→ 1
2

a, d a −→ 1
2

d d −→1

or a general specification of pCHAMs with this behaviour could utilise ‘unspec-
ified’ probabilities, i.e. with p ∈ [0, 1]:

a −→p a, d a −→1−p d d −→1

If we assume fairness in the CHAM case and p ∈ (0, 1), i.e. p �= 0 and p �= 1
then we could expect that we get the same long time behaviour if we start with
{|a|} in the case of the CHAM and pCHAM formulation.

It is easy to see that in the case of the CHAM it is possible to obtain after
n steps the solution {|a|} as well as {|a, d, . . . , d|} = {|a, dk|} for k ≤ n, as well as
the empty solution {||}. However, in the case of the pCHAM, we will — after n
steps — quite likely have the empty solution. More precisely, the probability of
obtaining {|a, dk|} tends to vanish for increasing n.

In some sense the probabilistic specification reflects more closely than the
non-deterministic specification the real situation as it discards the most unlikely
solution. As the classical example of the Gambler’s Ruin (cf. e.g. [9]) shows: In
real life it is not enough to state that it is possible that one will win the lottery;
we need to say how probable this is.

Essentially we can simulate a non-deterministic CHAM by a pCHAM by “for-
getting” about the concrete probabilities which describe the ensembles Tn(μ).

Given a non-deterministic CHAM (M, R, μ0) we can construct a correspond-
ing pCHAM (M, R′, μ0) by attaching to each classical rule in R some non-zero
probability in order to obtain the set of probabilistic rules R′. Vice versa we can
also construct a non-deterministic CHAM for every given pCHAM by dropping
the probabilities related to the rules. A pCHAM gives rise to a unique CHAM,
but there are several pCHAM which correspond to any given CHAM.

Proposition 9. Given a CHAM (M, R, S0) and a corresponding pCHAM rep-
resented by the operator T on V(M(T)) = V(M)⊗t, a solution S ∈ M is reach-
able in n reaction steps in (M, R, S0) if and only if Tn({〈S0, 1〉} has a non-zero
component corresponding to S.

400 A. Di Pierro, C. Hankin, and H. Wiklicky

4.3 Locality of Rules of the pCHAM

Several people have argued that the need for normalisation imposes a severe
non-locality constraint on probabilistic models of computations. This is only
partly true as one can postpone the normalisation under certain circumstances.
More precisely, if we start with a point distribution μ, i.e. if we know exactly
with which chemical solution we start, then instead of normalising T we can
normalise the T(μ) — extending the normalisation to positive vectors in the
obvious way by dividing them by their 1-norm ‖.‖1, i.e. the sum of all their
coordinates.

Proposition 10. Given a pCHAM (M, R, μ0) and its operator T = N (T′)
with T′ =

∑
i piRi on V(M(T)) = V(N)⊗t and an ensemble μ = {〈μ, 1〉} then

we have:

T(μ) =
{

N (T′(μ)) if N (T′(μ)) �= o
μ otherwise with N (μ) =

{ μ
‖μ‖1

if ‖μ‖1 �= 0
μ otherwise.

We have for a single step and a point-ensemble essentially that T′ and N com-
mute, i.e. N (T′)(μ) = N (T′(μ)) — only in the case of “blocked” solutions,
which result in the zero vector o, we have to complicate things by ‘re-producing’
the original vector.

In other words, if we consider the probabilities along a certain execution path
we do not need to normalise the complete operator T′. We can start with a
point-ensemble, compute the probabilities of its successors in the above way by
N (T′(μ)), pick a single successor ensemble and repeat the application of the
non-normalised T′. Non-locality problems only arise when we consider Tn(μ).
The reason for this is that in this case we do not compute (the probabilities of)
a single computational path but of all possible paths at the same time. This
obviously implies the need to “distribute” the available probability non-locally
between them by normalising T′.

The operator T′ encodes the rules −→p while T = N (T′) represents the
rewrite steps =⇒p. The possibility to postpone normalisation has also impor-
tant consequences for the Linear Operator Semantics and its tensor product
representation which can be treated in a “lazy” fashion. The only time we have
to compute the tensor product effectively is when we normalise T′, as long as we
work with the original T′ we can apply it component-wise to a given vector as for
a distribution μ =

∑
i xiμi with μi =

⊗
j μij the application of T =

∑
k pkRk

with Rk =
⊗

j Rkj is obtained as:

T(μ) =
∑

k

pk

∑

i

(
⊗

j

Rkj)(
⊗

j

μij) =
∑

k

pk

∑

i

⊗

j

Rkj(μij)

4.4 Finite vs Infinite pCHAMs

In the foregoing sections we have assumed that the multiplicity of molecules is
bounded. However we can drop this finiteness condition and work instead with

On a Probabilistic CHAM and the Expressiveness of Linda Languages 401

infinite matrices E, C and D. These correspond to so called projections (E), and
shift operators (C and D).

We can consider instead of V(N) the (Banach) space of infinite sequences
with bounded p-norm, i.e.

�p(M) =

{ ∞∑

i=0

xiSi | xi ∈ R, Si ∈ M, (
∞∑

i=0

|xi|p)
1
p < ∞

}

⊆ V(N)

The infinite matrices E, C and D represent bounded (and therefore continuous)
operators. In particular, we can take the Hilbert space �2(M) and directly re-
cast our finite-dimensional framework in this setting. To a certain degree this
framework is even more convenient than the finite-dimensional one; for example
we have CD = I, which is not the case in finite dimensions.

The construction of T follows the same recipe as before. We also observe that
if we start with any initial solution μ0 which can be represented by a vector in
�2(M) — which is obviously the case for a point distribution — we can guarantee
that the iterations Tn(μ) will stay in �2(M).

5 Encoding Probabilistic Linda Languages

The CHAM model can be used to describe the operational semantics of various
calculi like CCS, the π-calculus, and the Linda calculus which is at the base of
several coordination languages, see e.g. [2]. Probabilistic versions of such calculi
can be modelled via the pCHAM. We will concentrate here on the encoding of
probabilistic Linda-like languages which we will then use as a base for demon-
strating our approach to define and measure language expressiveness.

We consider a family of languages L(X) which differ from one another for
the set X of communication primitives used. These primitives correspond to the
basic Linda primitives for adding a token to a shared data-space, getting it from
the data-space, and checking for its presence or absence in the data-space. The
languages L(X) also include standard prefix and a probabilistic choice operator.

The syntax of L(X) is formally defined by the following grammar:

P ::= stop | C.P | P | P | P +p P

C ::= ask(t) | tell(t) | get(t)

where t is a generic element called token in a denumerable set D, P is a process
and C a communication action (or prefix); we denote by P the set of all processes.
The parameter X defining a Linda-like language L(X) is a subset of the primi-
tives defined by C.

A program in L(X) is therefore either an inactive, trivial program stop, or a
sequential composition C.P or a probabilistic choice P +p P . As usual we omit
a trailing stop if it is prefixed by a non-empty sequence of basic actions C.

A pCHAM encoding for L(X) is defined by specifying the set of molecules as
D ∪P and the following molecule transformation, i.e. specific rules (cf also [11]):

402 A. Di Pierro, C. Hankin, and H. Wiklicky

(i) P1 | P2 −→1 P1, P2
(ii) P1, P2 −→1 P1 | P2
(iii) P1 +p P2 −→p P1
(iv) P1 +p P2 −→1−p P2

(v) stop −→1 stop
(vi) tell(t).P −→1 P, t
(vii) ask(t).P, s −→1 P, s if t = s
(viii) get(t).P, s −→1 P if t = s

As with any pCHAM these rules give rise to a set of rule operators Ri. All
possible executions of L(X) programs are choices between or sequential applica-
tion of these rules. In other words, all possible “behaviours” of L(X) programs
are linear combinations and products of the rule operators Ri. The possibilities
of programs in a language L(X) are thus reflected in the structure of the alge-
bra A(X) which is generated by (linear combinations and products of) the rule
operators Ri of the pCHAM for L(X).

Example 11. To illustrate this let us construct the algebra A(tell, ask,get) for
a “bounded” version version of the language L(tell, ask,get). We will allow only
one type of token t, i.e. D = {t}, which appears only with multiplicity 0, 1 or 2.

The linear operator semantics of this language is given by operators on V(P)⊗
V({{||}, {|t|}, {|t, t|}}). To keep things as simple as possible we will concentrate only
on the behaviour of the store, i.e. the possible transformations on V({{||}, {|t|},
{|t, t|}}) and ignore how the processes themselves change.

The operators corresponding to the rules for tell and get and the guard in
the ask rule are given by:

T =

⎛

⎝
0 1 0
0 0 1
0 0 1

⎞

⎠ G =

⎛

⎝
1 0 0
1 0 0
0 1 0

⎞

⎠ A =

⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠

The stop rule is implemented by the identity matrix I. The other four rules do
not directly influence the store component. However, they allow the combination
of basic operators via linear combination (the choice rules) and product (via the
parallel rules). The possible “behaviours” are therefore linear combination and
products of these basic operators, i.e. we have to look at the algebras generated
by some subset of {A,G,T, I}.

We can show that {A,G,T, I} generate the full 3 × 3 matrix algebra M(3).
To do this it is sufficient to show that we can construct all matrix units (cf. proof
of Proposition 7) in M(3) using the basic matrices A, G, T and I. Any other
matrix in M(3) is then a linear combination of the matrices Enm. For example
one can easily check that the following holds:

B11 = I − A, B12 = (I − A)T, B13 = (I − A)TT
B21 = (I − G)ATGG, B22 = (I − G)ATG, B23 = (I − G)AT
B31 = GAG, B32 = GA, B33 = GAT

It might be worth noting that we extensively used the negative of A, i.e. the
testing for the absence of the token. One might therefore argue that the algebra
A(X) contains not only the effective behaviours of programs in L(X) but also
artificial ones. However, for the method for comparison of the expressiveness of
languages we introduce in the next section, A(X) is a useful approximation.

On a Probabilistic CHAM and the Expressiveness of Linda Languages 403

6 Expressiveness

The pCHAM provides a uniform encoding for several probabilistic languages
and calculi, in that it is a common abstract semantics on the base of which the
observable behaviour of programs/processes in different languages/calculi can
be specified. It is therefore reasonable to utilise such an encoding to compare
the expressive power of one language relative to another. The idea is similar
to the notion of embedding introduced in [12] and later refined in [13]: given
two probabilistic languages Γ1 and Γ2 we first define their associated pCHAMs
and then we compare them by checking whether or not one can “simulate” the
other. The difference with the original notion of embedding is that we do not
need to specify any particular observation criteria nor to compile a program in a
language into a program in the other language; rather we encode both languages
into the same kind of abstract semantics and compare “how many” computations
can be performed by the first abstract machine which cannot be performed by
the second. In fact, the linear operator semantics of the pCHAM also allows us
to determine the “size” of the space of “behaviours” generated by a certain set
of specific rules and thus provide obstructions which prevents the embedding or
simulation of one pCHAM into another without constructing a counter-example.

This approach can also be adopted to compare the expressive power of non-
probabilistic languages: we just need to consider the restriction of our linear
operators to point distributions.

Example 12. Assume a finite set of molecules {m1, . . . , mt} without a bound on
the multiplicity s. If the specific rules of a (p)CHAM are of the form:

mi1, . . . , mik −→ mj1, . . . , mjl or mi1, . . . , mik −→p mj1, . . . , mjl

such that l > k it is immediately clear that in each reaction the size of the solu-
tion is monotonically increasing. Such a (p)CHAM therefore is unable to, for ex-
ample, purge a solution from all multiples of a certain molecule {|m1, m1, m1|} =⇒
{|m1|}. It is also unable to embed a (p)CHAM whose specific rules include a rule
like m2, m4 −→ m2.

Let Γ be a probabilistic calculus and consider an operational semantics for Γ
defined via a set of states C(Γ) and a transition relation →p on C(Γ). By an
encoding e of Γ into a pCHAM pCHAM(Γ) = (M, R, μ0) we mean a (total)
function:

e : C(Γ) → M
which associates to every state of Γ a solution of pCHAM(Γ) such that tran-
sitions in Γ correspond to transitions in pCHAM(Γ), i.e. C1 →p C2 implies
e(C1) =⇒p e(C2). We omit a more formal definition (which might impose addi-
tional constraints and correctness conditions on e) as we will consider here only
the encoding of the Linda-like languages we presented in Section 5.

In order to compare the expressiveness of languages we could, on one hand,
introduce a notion of an embedding of languages following directly Shapiro’s ap-
proach [12,13]. Our idea, on the other hand, is to compare languages on the base

404 A. Di Pierro, C. Hankin, and H. Wiklicky

of the possible behaviours of their associated pCHAMs. In order to do this one
could develop a general notion of pCHAM embeddings, or a bit more concretely,
address the question when pCHAMs, which are the result of the encoding of
calculi or programming languages, can simulate each others behaviour. How-
ever, we will go one step further and base our notion of embedding not on the
pCHAMs themselves but instead on the linear operator semantics. Our notion
of embedding is illustrated by the following diagram:

Γ1
e1 �� pCHAM(Γ1) ������ ������ A(Γ1)

Γ2 e2
�� pCHAM(Γ2) ������ ������ A(Γ2)

N

��

where e1 and e2 are the pCHAM encodings of Γ2 and Γ1 respectively, A(Γ1)
and A(Γ2) are the linear algebras generated from the rules in pCHAM(Γ1)
and pCHAM(Γ2) respectively, and N is a map N : A(Γ2) → A(Γ1) which
implements the embedding.

In principle this embedding could be as complicated as one wants. If the two
pCHAMs in question encode Turing complete calculi then it is always possible to
encode one in the other in some way. However, we will consider only “reasonable”
encodings which respect the structure of the calculi and their pCHAMs, i.e.
encodings which are somehow compositional (on the molecular level). We will
therefore concentrate our attention only on particular linear maps N between
A(Γ2) and A(Γ1).

Definition 13. A linear embedding of a linear algebra A1 into a linear algebra
A2 is an injective algebra homomorphism, i.e. a linear and product preserving
map N : A1 → A2.

A linear embedding of a calculus Γ1 into another one Γ2 is given by a linear
embedding of the corresponding algebras A(Γ1) into A(Γ2).

There are further restrictions one could impose, e.g. that the pCHAMs and
their algebras reflect the structure of the calculi in a particular way, etc. A
particular situation is the comparison of sub-calculi of a given calculus; in this
case e1 and e2 are the same function.

Example 14. A language L(X) can be embedded into a language L(Y) iff A(X)
can be embedded in A(Y), cf also [14]. A simple property of the algebras A(X)
and A(Y) like their dimension can give us a criterion to decide whether A(X)
can be embedded into A(Y): if dim(A(X)) > dim(A(Y)) then it is impossible to
embed A(X) into A(Y). However, it is not correct to conclude the opposite, i.e.
dim(A(X)) ≤ dim(A(Y)) does not necessarily imply that there is a “reasonable”
embedding of L(X) into L(Y).

Considering the Linda-like languages from the previous section we can show,
for example, that dim(A(tell,ask)) > dim(A(tell)) and dim(A(tell,get)) >
dim(A(tell)) which means that it is impossible to embed either L(tell,get)

On a Probabilistic CHAM and the Expressiveness of Linda Languages 405

nor L(tell,ask) in L(tell). More concretely, one can show that L(tell,ask)
generates only the sub-algebra of upper triangular 3 × 3 matrices U(3). We
can embed this sub-algebra into the full matrix algebra M(3) by taking N the
identity restricted to the sub-algebra U(3), but not vice versa. An obstruction
against the embeddability of M(3) into U(3) is the fact that the dimensions are
incompatible, i.e. dim(M(3)) = 9 while dim(U(3)) = 6.

This is consistent with the hierarchy of languages in, e.g., [14]:

L(tell)

������������

���
��

��
��

��
��

��
��

��
��

L(tell,ask)

�� ����������������������

L(tell,get) �� �� L(tell, ask,get)

7 Conclusions

We presented a probabilistic version of the Chemical Abstract Machine. The
CHAM and its probabilistic version pCHAM provide a basic and simple frame-
work for comparing various probabilistic (or quantitative) calculi. The pCHAM
model is based on a particular, discrete time Markov Chain (DTMC) model in
which a scheduler decides at each time step on the probability that any of the
applicable rules or reactions gets executed.

It will be interesting to investigate different, perhaps more general execution
models for a pCHAM: For example, one could allow the scheduler to execute at
each time step not only a single rule but any number of rules as long as they are
not in “conflict”; this makes it necessary to develop a probabilistic mechanism
for resolving such conflicts. Another line of further work will be devoted to the
formulation of a continuous time Markov Chain (CTMC) model which we can
define via so-called Q matrices which themselves generate transition matrices as
Tt = exp(tQ); in this model the chance that any two rules “fire” simultaneously
is zero and conflicts between rules are therefore not a problem.

Finally, we plan a closer investigation of the relation between (general) discrete
and continuous time models and of expressiveness issues regarding the pCHAM
encodings of synchronous versus asynchronous calculi, see e.g. [15].

References

1. Banâtre, J.P., Le Métayer, D.: The gamma model and its discipline of program-
ming. Science of Computer Programming 15 (1990) 55–77

2. Banâtre, J.P., Fradet, P., Le Métayer, D.: Gamma and the chemical reaction model:
Fifteen years after. In Calude, C., ed.: Multiset Processing. Volume 2235 of Lecture
Notes in Computer Science., Springer Verlag (2001) 17–44

406 A. Di Pierro, C. Hankin, and H. Wiklicky

3. Fradet, P., Le Métayer, D.: Structured gamma. Science of Computer Programming
31 (1998) 263–289

4. Le Métayer, D.: Higher-order multiset programming. In: DIMACS workshop on
specifications of parallel algorithms. Volume 18 of Dimacs series in Discrete Math-
ematics., American Mathematical Society (1994)

5. Andreoli, J.M., Hankin, C., Le Métayer, D.: Coordination Programming. Imperial
College Press, London (1996)

6. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer
Science 96 (1992) 217–248

7. Jonsson, B., Yi, W., Larsen, K.: 11. In: Probabilistic Extensions of Process Alge-
bras. Elsevier Science, Amsterdam (2001) 685–710 see [16].

8. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24 (1998)
315–330

9. Grimmett, G., Stirzaker, D.: Probability and Random Processes. second edn.
Clarendon Press, Oxford (1992)

10. Parzen, E.: Stochastic Processes. second edn. Classics in Applied Mathematics.
SIAM (1999)

11. Ciancarini, P., Jensen, K., Yankelevich, D.: On the operational semantics of a coor-
dination language. In Ciancarini, P., Nierstrasz, O., Yonezawa, A., eds.: ECOOP
Workshop. Volume 924 of Lecture Notes in Computer Science., Springer Verlag
(1995) 77–106

12. Shapiro, E.: Embeddings among concurrent programming languages. In Cleave-
land, W.R., ed.: Proceedings CONCUR 92, Stony Brook, NY, USA. Volume 630
of Lecture Notes in Computer Science., Springer-Verlag (1992) 486–503

13. de Boer, F.S., Palamidessi, C.: Embedding as a tool for language comparison.
Information and Computation 108 (1994) 128–157

14. Brogi, A., Di Pierro, A., Wiklicky, H.: Linear embedding for a quantitative compar-
ison of language expressiveness. In: QAPL’01 — ACM Workshop on Quantitative
Aspects of Programming Languages. Volume 59:3 of ENTCS., Elsevier (2002)

15. Palamidessi, C.: Comparing the expressive power of the synchronous and the
asynchronous pi-calculus. Mathematical Structures in Computer Science 13 (2003)
685–719

16. Bergstra, J., Ponse, A., Smolka, S., eds.: Handbook of Process Algebra. Elsevier
Science, Amsterdam (2001)

17. Palmer, T.: Banach Algebras and The General Theory of ∗-Algebras – Volume I:
Algebras and Banach Algebras. Volume 49 of Encyclopedia of Mathematics and
Its Applications. Cambridge University Press, Cambridge – New York (1994)

18. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras:
Volume I — Elementary Theory. Volume 15 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, Rhode Island (1997) reprint from
Academic Press edition 1983.

19. Fillmore, P.A.: A User’s Guide to Operator Algebras. John Wiley & Sons, New
York — Chicester (1996)

20. Wegge-Olsen, N.: K-Theory and C∗-Algebras — A Friendly Approach. Oxford
University Press, Oxford (1993)

On a Probabilistic CHAM and the Expressiveness of Linda Languages 407

A Tensor Products

The tensor product plays a central role in our discussion. For the convenience
of the reader we therefore recall some of the important facts about the tensor
product of vectors, (Hilbert) spaces, operators, etc.

Let V1, V2, . . . , Vn and W be linear spaces. A map f : V1 × V2 × . . . × Vn →
W is called multi-linear if f is linear in each of its arguments. We denote by
L(V1, V2, . . . , Vn; W) the set of multi-linear maps. The algebraic tensor product
of vector spaces is defined via a universal property as follows (see e.g. Definition
1.10.1 in [17]).

Definition 15. The algebraic tensor product of vector spaces V1, V2, . . . , Vn is
given by a vector space

⊗n
i=1 Vi and a map p = ⊗n

i=1 ∈L(V1, V2, . . . , Vn;
⊗n

i=1 Vi)
such that if W is any vector space and f ∈ L(V1, V2, . . . , Vn; W) then there exists
a unique map h :

⊗n
i=1 Vi → W satisfying f = h ◦ p.

This algebraic construction is sufficient for finite dimensional vector spaces.
It is easy to show that in the finite dimensional case we have: V(X × X) ∼=
V(X) ⊗ V(X). In the infinite dimensional case one has to consider also topo-
logical aspects; for example, the algebraic tensor product of Hilbert spaces does
not form in general a Hilbert space. Without going into the details — see for
example [18], [19] or Appendix T in [20] — it is however possible to construct
from the algebraic tensor product of Hilbert spaces H1, H2, . . . , Hn, a Hilbert
space which is the tensor product

⊗n
i=1 Hi.

The following results summarise important properties of the tensor product:

Proposition 16. If H1, . . . , Hn are Hilbert spaces and Ai ∈ B(Hi) with i =
1, . . . , n bounded linear operators, then there exists a unique bounded linear op-
erator A ∈ B(H1 ⊗ . . . ⊗ Hn) such that:

A(x1 ⊗ . . . ⊗ xn) = A1(x1) ⊗ . . . ⊗ An(xn).

for all xi ∈ Hi and we write A = A1 ⊗ . . . ⊗ An.

Proposition 17. The tensor product of (bounded) linear operators A1, A2, . . . ,
An (on Hilbert spaces) is associative and has the following properties:

(i) (A1 ⊗ . . . ⊗ An)(B1 ⊗ . . . ⊗ Bn) = (A1B1 ⊗ . . . ⊗ AnBn)
(ii) A1 ⊗ . . . ⊗ (αAi) ⊗ . . . ⊗ An = α(A1 ⊗ . . . ⊗ Ai ⊗ . . . ⊗ An)
(iii) A1 ⊗ . . . ⊗ (Ai + Bi) ⊗ . . . ⊗ An = A1 ⊗ . . . ⊗ Ai ⊗ . . . ⊗ An + A1 ⊗ . . . ⊗

Bi ⊗ . . . ⊗ An

(iv) (A1 ⊗ . . . ⊗ An)∗ = A∗
1 ⊗ . . . ⊗ A∗

n

(v) ‖A1 ⊗ . . . ⊗ An‖ = ‖A1‖ . . . ‖An‖

For a proof of these properties see e.g. discussions and remarks following Propo-
sition 2.6.12 in [18].

	Introduction
	A Probabilistic CHAM
	State Space
	Specific Rules
	General Laws
	An Example

	Linear Operator Semantics of the pCHAM
	State Space
	Tensor Product Representations
	Representation of Rules
	Representation of pCHAMs

	Properties of the pCHAM
	Completeness of the Linear Operator Semantics
	Non-deterministic vs Probabilistic CHAMs
	Locality of Rules of the pCHAM
	Finite vs Infinite pCHAMs

	Encoding Probabilistic Linda Languages
	Expressiveness
	Conclusions
	Tensor Products

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

