
Beyond Assertions: Advanced Specification
and Verification with JML and ESC/Java2

Patrice Chalin1, Joseph R. Kiniry2,
Gary T. Leavens3, and Erik Poll4

1 Concordia University, Montréal, Québec, Canada
2 University College Dublin, Ireland

3 Iowa State University, Ames, Iowa, USA
4 Radboud University Nijmegen, the Netherlands

Abstract. Many state-based specification languages, including the Java
Modeling Language (JML), contain at their core specification constructs
familiar to most undergraduates: e.g., assertions, pre- and postcondi-
tions, and invariants. Unfortunately, these constructs are not sufficiently
expressive to permit formal modular verification of programs written
in modern object-oriented languages like Java. The necessary extra con-
structs for specifying an object-oriented module include (perhaps the less
familiar) frame properties, datagroups, and ghost and model fields. These
constructs help specifiers deal with potential problems related to, for ex-
ample, unexpected side effects, aliasing, class invariants, inheritance, and
lack of information hiding. This tutorial paper focuses on JML’s realiza-
tion of these constructs, explaining their meaning while illustrating how
they can be used to address the stated problems.

1 Introduction

Textbooks on program verification typically explain the notions of pre- and
postconditions, loop invariants, and so on for toy programming languages. The
goal of this paper is to explain some of the more advanced concepts that are
necessary in order to allow the formal modular verification of (sequential) pro-
grams written in a popular mainstream object-oriented language: Java. The Java
Modeling Language (JML) [BCC+05, LBR06, LPC+06], a Behavioral Interface
Specification Language (BISL) [Win90] for Java, will be our notation of choice
for expressing specifications.

The reader is assumed to be familiar with the basics of Design by Contract
(DBC) [Mey97] or Behavioral Interface Specifications (BISs) and the central
role played by assertions in these approaches. Readers without this background
may wish to consult one of several books or articles offering tutorials on the
subject [Hoa69, LG01, MM02, Mey92, Mey97, Mor94]. A tutorial that explains
these basic ideas using JML is also available [LC05].

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 342–363, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Beyond Assertions: Advanced Specification and Verification 343

1.1 Approaches to Verification

Tools useful for checking that JML annotated Java modules meet their specifi-
cations fall into two main categories:1

– runtime assertion checking (RAC) tools, and
– static verification (SV) tools.

These categories also represent two complementary forms of assertion checking,
the foundations of which were laid out before the 1950s in the pioneering work
of Goldstine, von Neumann and Turing [Jon03]. Runtime assertion checking
involves the testing of specifications during program execution; any violations
result in special errors being reported. The idea of checking contracts at runtime
was popularized by Eiffel [Mey97] as of the late 80s; other early work includes
Rosenblum’s APP annotation language for C [Ros92, Ros95]. The main RAC
tool for JML is jmlc [CL02]. RAC support for JML is also planned for the next
release of the Jass tool [BFMW01].

In static verification, logical techniques are used to prove, before runtime,
that no violations of specifications will take place at runtime. The adjective
static emphasizes that verification happens by means of a static analysis of the
code, i.e., without running it. Program verification tools supporting JML include
JACK [BRL03], KeY [ABB+05], Krakatoa [MPMU04], LOOP [BJ01], and Jive
[MPH00]. In this paper we will focus on ESC/Java2 [CK04], the main (extended)
static checker for JML.

RAC and SV tools have complementary strengths. Compared to runtime as-
sertion checking, static verification often provides stronger guarantees and it can
give them earlier. However, these advantages come at a price: SV tools generally
require fairly complete specifications not only for the module being checked, but
also for the modules and libraries that it depends on. Furthermore, in order to be
effective and keep false positives to a minimum, SV tools require specifications
to make use of some of the advanced features described in this paper.

1.2 Outline

The remainder of the paper is organized as follows. The basic notation used
in JML for method contracts and invariants is covered in Section 2. Section 3
explains frame properties, and Section 4 model fields. The treatment of behav-
ioral subtyping is given in Section 5. Section 6 explains ghost fields. Section 7
introduces the JML notations that deal with ownership and aliasing. Finally,
conclusions and related work are given in Section 8.

2 JML Basics: Pre- and Postconditions, and Invariants

This section examines the specification and implementation of various kinds of
clocks. In doing so, we review basic concepts such as method contracts and class
invariants and introduce their JML notation.
1 There are also several other kinds of tool available for use with JML [BCC+05].

344 P. Chalin et al.

2.1 Method Contracts

We begin with the specification of a TickTockClock as given in Fig. 1. This
specification illustrates basic method contracts formed by:

– preconditions (introduced by the requires keyword), and
– postconditions (ensures).

An example of such a contract is found in the specification of the method
getSecond() on lines 23–24. The JML specification for each method is writ-
ten in front of the method itself, and is found in stylized Java comments that
begin with an at-sign (‘@’).

A method contract without an explicit requires clause has an implicit pre-
condition of true. Thus, such a method imposes no requirements on its callers.
This default means that the requires clause written for getHour() could have
been omitted entirely. Similarly, the default postcondition when none is ex-
plicitly given in an ensures clause is also true, which says that the method
makes no guarantees to its caller. The constructor (on lines 12–15) and the
method getMinute() (on lines 21–22) are examples of class members with im-
plicit requires clauses.

Note that assertion expressions appearing in requires and ensures clauses
are written using a Java-like syntax. In postconditions of (non-void) methods,
\result can be used to refer to the value being returned by the method. The
only other JML specific operator used in this clock specification is the \old()
operator, which is used in an ensures clause of tick (on lines 29–31). The
expression \old(e) refers to the value of e in the method’s pre-state, i.e., the
state just before the method is executed.

Preconditions and postconditions are often split over multiple requires and
ensures clauses, as illustrated for the postcondition of getSecond() (on lines
23–24). Multiple ensures clauses, or multiple requires clauses, are equivalent
to a single clause consisting of the conjunction (&&) of their respective assertions.

Method contracts, like the contract of tick() on lines 27–37 of Fig. 1, are
written as one or more specification cases combined with the keyword also. Each
specification case is a “mini-contract” in itself, having a precondition and post-
condition (either explicit or implicit) as well as other clauses that are covered
below. Use of specification cases allows developers to structure their specifica-
tions and to (literally) break it up into (generally) distinct cases.

The contract for tick(), which is somewhat contrived for illustrative pur-
poses, highlights to clients that its behavior essentially has two cases of interest.
Either

– seconds are less than 59 and the seconds are incremented by one, or
– seconds are at 59 and they will be wrapped back to 0.

We note in passing that the specification of tick() is incomplete, as it might
be during the development of the TickTockClock class. Informal comments, like
the one on line 36, are useful for remembering what remains to be formalized
or to avoid formalization (e.g., if it is too costly), although they do not help in
verification.

Beyond Assertions: Advanced Specification and Verification 345

1 public class TickTockClock {
2 //@ public model JMLDataGroup _time_state;
3

4 //@ protected invariant 0 <= hour && hour <= 23;
5 protected int hour; //@ in _time_state;
6 //@ protected invariant 0 <= minute && minute <= 59;
7 protected int minute; //@ in _time_state;
8 //@ protected invariant 0 <= second && second <= 59;
9 protected int second; //@ in _time_state;

10

11 //@ ensures getHour() == 12 && getMinute() == 0 && getSecond() == 0;
12 public /*@ pure @*/ TickTockClock() {
13 hour = 12; minute = 0; second = 0;
14 }
15

16 //@ requires true;
17 //@ ensures 0 <= \result && \result <= 23;
18 public /*@ pure @*/ int getHour() { return hour; }
19

20 //@ ensures 0 <= \result && \result <= 59;
21 public /*@ pure @*/ int getMinute() { return minute; }
22

23 //@ ensures 0 <= \result;
24 //@ ensures \result <= 59;
25 public /*@ pure @*/ int getSecond() { return second; }
26

27 /*@ requires getSecond() < 59;
28 @ assignable hour, minute,second;// NB for expository purposes only
29 @ assignable _time_state;
30 @ ensures getSecond() == \old(getSecond() + 1) &&
31 @ getMinute() == \old(getMinute()) &&
32 @ getHour() == \old(getHour());
33 @ also
34 @ requires getSecond() == 59;
35 @ assignable _time_state;
36 @ ensures getSecond() == 0;
37 @ ensures (* hours and minutes are updated appropriately *);
38 @*/
39 public void tick() {
40 second++;
41 if (second == 60) { second = 0; minute++; }
42 if (minute == 60) { minute = 0; hour++; }
43 if (hour == 24) { hour = 0; }
44 }
45 }

Fig. 1. JML specification for TickTockClock. The datagroup time state, the associ-
ated assignable clauses and in clauses are explained later, in Section 3

346 P. Chalin et al.

2.2 Purity

In the DBC approach, only query methods can be used in assertion expressions
because they are required to be side-effect free [Mey97]. The corresponding con-
cept in JML is known as method purity; pure methods are not allowed to have
side effects, and pure constructors can only assign to the fields of the object
they are initializing. Purity is statically checked by the JML tools. The restric-
tion that only methods declared as pure can be used in assertion expressions is
also checked statically. E.g., since the method getSecond() is declared pure, it
is legal to make use of it in the postcondition of tick().

Notice that the TickTockClock constructor is declared as pure despite the
fact that it assigns to the fields hour, minute and second. Such instance field
assignments are permitted inside the bodies of constructors because they are
benevolent side-effects—i.e., that have no observable effect on clients. On the
other hand, a pure constructor would not be permitted to assign to a static
field. Purity, and particularly variants in the strength (restrictiveness) of its
definition are a subject of active research—e.g., a stronger notion of purity than
that of JML has been proposed by Darvas and Müller [DM05]. On the other
hand, purity is often too strong [LCC+05], and so a notion of “observational
purity” that permits benevolent side effects (such as updates to caches) is also
under consideration [BSS04, Nau05].

2.3 Lightweight vs. Heavyweight

JML actually has two kinds of specification cases: lightweight and heavyweight.
Lightweight specification cases are useful when giving partial specifications, and
in practice are often used with ESC/Java2. To convey that one is intending
to give a complete specification for some precondition, one would use a heavy-
weight specification case. Such heavyweight specification cases are often used
with runtime assertion checking.

The specification cases of the tick() method are lightweight. An example
use of heavyweight specification cases is found on the setTime() method of the
SettableClock class given in Fig. 2. A heavyweight specification case is easily
recognized by the use of a “behavior” keyword at the beginning of the case.
The contract of setTime() illustrates the two kinds of heavyweight specification
cases most often used. The first specification case uses the normal behavior
keyword and it describes the intended behavior of the method when it returns
normally. The second specification case uses the exceptional behavior key-
word and it describes the intended behavior of the method when the method
raises an exception. The latter case is described at greater length in Section 2.4.
Notice that the heavyweight specification cases of setTime() start with public.
This means that the specification cases are visible to clients, and hence, for ex-
ample, will be included as a part of client visible documentation generated using
JmlDoc [BCC+05]. It also means that these specification cases cannot refer to
private or protected fields.

Beyond Assertions: Advanced Specification and Verification 347

1 class SettableClock extends TickTockClock {
2

3 // ...
4

5 /*@ public normal_behavior
6 @ requires 0 <= hour && hour <= 23 &&
7 @ 0 <= minute && minute <= 59;
8 @ assignable _time_state;
9 @ ensures getHour() == hour &&

10 @ getMinute() == minute && getSecond() == 0;
11 @ also
12 @ public exceptional_behavior
13 @ requires !(0 <= hour && hour <= 23 &&
14 @ 0 <= minute && minute <= 59);
15 @ assignable \nothing;
16 @ signals (IllegalArgumentException e) true;
17 @ signals_only IllegalArgumentException;
18 @*/
19 public void setTime(int hour, int minute) {
20 if (!(0 <= hour & hour <= 23 & 0 <= minute & minute <= 59)) {
21 throw new IllegalArgumentException();
22 }
23 this.hour = hour;
24 this.minute = minute;
25 this.second = 0;
26 }
27 }

Fig. 2. JML specification for SettableClock

Contracts built from lightweight specification cases have fewer keywords and
mandatory clauses. In particular, the visibility of a lightweight specification case
cannot be given explicitly since, by definition, its visibility is the same as the vis-
ibility of the method it is attached to. The method contracts in TickTockClock
are all examples of lightweight method specifications.

2.4 Exceptions and Exceptional Postconditions

JML distinguishes two kinds of postcondition:

– normal postconditions, expressed by means of ensures clauses, that must
hold when a method terminates normally, and

– exceptional postconditions, expressed by means of signals clauses, that
must hold when a method terminates with an exception.

The exceptional specification case of SettableClock.setTime() is interpreted
as follows: if hour and minute are not within their valid ranges, then the method

348 P. Chalin et al.

will raise an IllegalArgumentException and the system state will be left un-
changed.

Notice that in the TickTockClock class there are no Java throws clauses.
Still, Java permits the constructor and any of the methods of this class to throw
a RuntimeException—one commonly raised runtime exception is NullPointer-
Exception. JML is more strict when it comes to declaring runtime exceptions:
whereas Java allows any constructor or method to throw a runtime exception,
JML only allows this if the exception is listed in the method’s throws clause,
or in the method contract’s signals only clause. SettableClock.setTime()
illustrates use of the latter. Therefore, constructors or methods without an
explicit throws clause have an implicit exceptional postcondition of signals
(Exception) false. So the specification in Fig. 1 rules out the generation of
any runtime exceptions, making the specification much stronger than it might
appear at first sight. However, JML, like Java, makes a distinction between ex-
ceptions and errors; since Java’s type Error is not a subtype of Exception, JML
specifications do not say anything about virtual machine errors, such as running
out of memory [PH97].

2.5 Instance and Static Invariants (and the Callback Problem)

A JML invariant clause declared with a static modifier is called a static
invariant. Static invariants express properties which must hold of the static at-
tributes of a class. An assertion that appears in a non-static invariant clause
is called a instance invariant or an object invariant. Note that while this ter-
minology is contrary to the literature, it is more accurate with respect to the
nomenclature of Java. In this paper, an unqualified use of the term “invariant”
will refer to an “object invariant.”

The semantics of object invariants is more involved than most specifiers ex-
pect, especially for newcomers to the field of object-oriented specification. Hence,
while this issue has been widely known for quite some time [Szy98], we believe
it is worth a brief explanation. Intuitively, an object invariant:

– has to be established by constructors—i.e., it is implicitly included in the
postcondition of constructors;

– can be assumed to hold on entry to methods, but methods must also re-
establish it on exit. Hence, the invariant is implicitly included in the precon-
ditions, and (normal and exceptional) postconditions of methods.

This intuition may suggest that the notion of object invariant is not re-
ally necessary, but rather that it just provides a convenient shorthand. This
idea is a common misconception, as there is more to the notion of invariant
than the intuitions summarized above. One difference is that invariants apply
to all subtypes through specification inheritance (Section 5), whereas predi-
cates that just happen to appear in all pre-and post conditions are not inher-
ited as part of the specification of any new methods that may be added in a
subtype.

Beyond Assertions: Advanced Specification and Verification 349

One other issue is related to callbacks. For example, suppose that the tick
method called another method at a program point where its invariant is broken,
such as the call to canvas.paint() in the following:

public void tick() {
second++;
// object invariant might no longer hold
canvas.paint();
/* ... */

}

It would then be reasonable for the canvas to invoke, e.g., the getSecond()
method of the current clock object, performing a so-called callback. However,
since the invariant of this clock object is broken, its behavior is unconstrained,
in particular because the preconditions of all methods (which implicitly include
the object invariant) are all false.

To avoid such problems, the invariant not only has to be re-established at
the end of each method, but also at those program points where a (non-helper)
method is invoked. These program points—i.e., all program points at which
a method invocation starts or ends—are called the visible states. The visible
state semantics for invariants says that all invariants of all objects must hold
at these visible states. This semantics is very strong and in many cases overly
restrictive. Less restrictive, but still sound, approaches are still a hot topic of
ongoing research. A more thorough discussion of this problem and a proposed
solution for JML is given in [MPHL05]; alternative solutions are explored else-
where [BDF+04, HK00, JLPS05, MHKL05].

3 Frame Properties

In traditional specifications that give pre- and postcondition for methods (or
procedures) one often uses the convention that any variables not mentioned in
the postcondition have not been changed. This approach is not workable for
realistic object-oriented programs. For example, consider the method tick() in
Fig. 1. This method may modify the three private fields second, minute and
hour, but these do not appear in the postcondition. Rewriting the specification
so it does mention these fields is clearly not what we would want, since in the
specification of this public method we do not want to refer to private fields.

A JML assignable clause is used in a method contract to specify which parts
of the system state may change as the result of the method execution. This is
the so-called frame property [BMR95]. Any location outside the frame property
is guaranteed to have the same value after the method has executed (called the
post-state) as it did before the method executed (in the pre-state). The notion
of datagroup [Lei98] allows us to abstract away from private implementation
details in frame properties and provides flexibility in specifications. This section
explains these notions and the need for them.

350 P. Chalin et al.

An assignable clause specifies that a method may change certain fields with-
out having to specify how they might change. So the specification of the method
tick() could include

assignable hour, minute, second;

to state that it may modify these three fields, without having to mention the
fields in the postcondition. If no assignable clause is given for a non-pure
method, then it has the default frame condition assignable \everything.
However, pure methods (Section 2.2) have a default frame of assignable
\nothing.

Object-oriented languages such as Java require some means for abstraction in
assignable clauses. E.g., the first assignable clause for tick() given above leaves
a lot to be desired. Firstly, it exposes implementation details, because it men-
tions the names of protected fields. Secondly, the specification is overly restrictive
for any future subclasses. By the principle of behavioral subtyping, discussed in
more detail in Section 5, the implementation of tick() in any future subclass of
TickTockClockhas to meet the specification given in TickTockClock.This means
that the method body can only assign to the three fields of TickTockClock,which
is far too restrictive in practice. To give a concrete example, suppose we intro-
duce a subclass TickTockClockWithDate of TickTockClock that, in addition to
keeping the time, also keeps track of the current date. Clearly such a subclass
will introduce additional fields to record the date and tick will have to modify
these fields when the end of a day is reached; however, the assignable clause
given above will not allow these fields to be changed, as they are not explicitly
listed.

Datagroups [Lei98] provide a solution to this problem. The idea is that a
datagroup is an abstract piece of an object’s state that may still be extended
by future subclasses. The specification in Fig. 1 declares a (public) datagroup
time state and declares that the three (private) fields belong to this datagroup.
This datagroup is (partially) used to specify tick(). This avoids exposing any
private implementation details, and subclasses of TickTockClock may extend
the datagroup with additional fields it introduces.

Datagroups may be nested by using the in clause to say that one datagroup
is part of another one. The JML specification for java.lang.Object declares a
datagroup named objectState. Since this datagroup is inherited by all other
classes, as a convention one can use objectState in any class to describe what
constitutes the ‘state’ of an object of that class. Had we followed this conven-
tion then, e.g., we would have declared the time state datagroup to be in
objectState.

Finally we note that, although assignable clauses are needed when doing pro-
gram verification, they are not currently used during runtime assertion checking.
(The RAC tool checks assignable clauses statically and does not check them
at runtime.)

Beyond Assertions: Advanced Specification and Verification 351

1 public class Clock {
2 //@ public model long _time;
3 //@ private represents _time = second + minute*60 + hour*60*60;
4

5 //@ public invariant _time == getSecond()+ getMinute()*60 + getHour()*60*60;
6 //@ public invariant 0 <= _time && _time < 24*60*60;
7

8 //@ private invariant 0 <= hour && hour <= 23;
9 private int hour; //@ in _time;

10 //@ private invariant 0 <= minute && minute <= 59;
11 private int minute; //@ in _time;
12 //@ private invariant 0 <= second && second <= 59;
13 private int second; //@ in _time;
14

15 //@ ensures _time == 12*60*60;
16 public /*@ pure @*/ Clock() { hour = 12; minute = 0; second = 0; }
17

18 //@ ensures 0 <= \result && \result <= 23;
19 public /*@ pure @*/ int getHour() { return hour; }
20

21 //@ ensures 0 <= \result && \result <= 59;
22 public /*@ pure @*/ int getMinute() { return minute; }
23

24 //@ ensures 0 <= \result && \result <= 59;
25 public /*@ pure @*/ int getSecond() { return second; }
26

27 /*@ requires 0 <= hour && hour <= 23;
28 @ requires 0 <= minute && minute <= 59;
29 @ assignable _time;
30 @ ensures _time == hour*60*60 + minute*60;
31 @*/
32 public void setTime(int hour, int minute) {
33 this.hour = hour; this.minute = minute; this.second = 0;
34 }
35

36 //@ assignable _time;
37 //@ ensures _time == \old(_time + 1) % 24*60*60;
38 public void tick() {
39 second++;
40 if (second == 60) { second = 0; minute++; }
41 if (minute == 60) { minute = 0; hour++; }
42 if (hour == 24) { hour = 0; }
43 }
44 }

Fig. 3. Example JML specification illustrating the use of model fields

352 P. Chalin et al.

4 Model Fields

Model fields [CLSE05] are closely related to the notion of data abstraction pro-
posed by Hoare [Hoa72]. A model field is a specification-only field that provides
an abstraction of (part of) the concrete state of an object. The specification in
Fig. 3 illustrates the use of a model field. It abstracts away from the particu-
lar concrete representation of time by using a model field time that represents
the number of seconds past midnight. Notice how this abstraction allows for a
brief but complete specification of the method tick(). The represents clause
of line 3 relates the model field to its concrete representation, in this case as a
function of hour, minute and second. Hence, the represents clause defines the
representation function of time. (In its most general form, JML also permits
represents clauses that are relational [LPC+06], but we do not discuss these
here.)

Note that the time model field is public, and hence visible to clients, though
its representation is not. The represents clause must be declared private, be-
cause it refers to private fields. For every model field there is an associated
datagroup, so that the model field can also be used in assignable clauses. In
fact, a field of type JMLDataGroup is a degenerate model field that holds no
information.

A difference between model fields for objects and the traditional notion of
abstract value for abstract data types is that an object can have several model
fields, providing abstractions of different aspects of the object. For instance, the
specification of AlarmClock (a subclass of Clock, given in Fig. 4) uses two model
fields, one for the current time, which it inherits from Clock, and one for the
alarm time.

Model fields are especially useful in the specification of Java interfaces, as
interfaces do not contain any concrete representation we can refer to in speci-
fications. We can declare model fields in a Java interface then every class that
implements the interface can define its own represents clause relating this
abstract field to its concrete representation. For a more extensive discussion
of model fields see [CLSE05]. Cok discusses how model fields are treated in
ESC/Java2 [Cok05], while Leino and Müller have recently worked on handling
model fields in the context of verification [LM06].

5 Behavioral Subtyping and Specification Inheritance

JML enforces behavioral subtyping [Ame90, DL96, LD00, LW95, LW94, Mey97]:
instances of a given type T must meet the specifications of each of type T ’s
supertypes. This ensures Liskov’s “substitution principle” [Lis88], i.e., it ensures
that using an object of a subclass in a place where an object of the superclass
is expected does not cause any surprises, ensuring that the introduction of new
subclasses does not break any existing code. This idea is also known as supertype
abstraction [Lea90, LW95].

Beyond Assertions: Advanced Specification and Verification 353

For example, consider the class AlarmClock in Fig. 4. Because AlarmClock
is a subtype of Clock, it inherits all the specifications of Clock, i.e., all invari-
ants specified for Clock also apply to AlarmClock, and any (overriding) method
in AlarmClock has to meet the specification for the corresponding method in
Clock. For example, the overriding AlarmClock method tick() has to meet
the specification given for it in Clock. Note that any methods which are not
overridden have to be re-verified, to ensure that they maintain any additional
invariants of the subclass. ([RL00] investigates ways to avoid some of this re-
verification.)

When it comes to method specifications, behavioral subtyping requires that
the specification of an overriding method m must refine that of its supertypes in
the sense that whenever a supertype’s precondition for m is satisfied, then the
supertype’s postcondition for m must hold. It follows that the preconditions of
an overriding method may only be weaker. Furthermore, whenever an overrid-
den method’s precondition is satisfied then the postcondition of the overriding
method must imply the postcondition of the overridden method. One way to
achieve this is would be to allow a subtype to give a new specification for a
method—effectively overriding the one in the supertype—and then prove the
necessary refinement relationship. Instead, JML uses the principle of specifica-
tion inheritance for method specifications [DL96]: all specification cases written
for an overriding method are “conjoined” (using also) with the specification
cases of the method(s) being overridden. Specification inheritance guarantees
that the overriding method obeys all the inherited specification cases and thus
that the method satisfies a refinement of the inherited specifications. This auto-
matically makes all subtypes behavioral subtypes and thus validates the principle
of supertype abstraction.

The meaning of specification cases conjoined by also can be a bit subtle.
However, it is easiest to just keep in mind that all specification cases of all in-
herited methods have to each be obeyed by a method. If, for a given method,
the subtype and supertypes all specify the same precondition and assignable
clause, then the conjoined specification will be equivalent to a single specifi-
cation case whose precondition and assignable clause are the same as in the
individual specification cases, and with a postcondition that is the conjunc-
tion of the postconditions in the individual specification cases. If different pre-
conditions are given in a sub- and supertype the meaning of the conjoined
specification cases is more involved: the precondition of the conjoined specifi-
cation will effectively be the disjunction of the preconditions from the individual
specification cases, and the postcondition of the conjoined specification will ef-
fectively be a conjunction of implications, where each precondition (wrapped
in \old()) implies the corresponding postcondition. This effective postcondi-
tion is slightly weaker than the conjunction of the postconditions, since each
postcondition only has to apply in case the corresponding precondition was
satisfied [DL96].

Before closing this section we point out that the alarm field (line 13) and
alarm parameter (line 15) of the AlarmClock class are explicitly declared to be

354 P. Chalin et al.

1 class AlarmClock extends Clock {
2 //@ public model int _alarmTime;
3 //@ private represents _alarmTime = alarmMinute*60 + alarmHour*60*60;
4

5 //@ public ghost boolean _alarmOn = false; //@ in _time;
6

7 //@ private invariant 0 <= alarmHour && alarmHour <= 23;
8 private int alarmHour; //@ in _alarmTime;
9

10 //@ private invariant 0 <= alarmMinute && alarmMinute <= 59;
11 private int alarmMinute; //@ in _alarmTime;
12

13 private /*@ non_null @*/ AlarmInterface alarm;
14

15 public /*@ pure @*/ AlarmClock(/*@ non_null @*/ AlarmInterface alarm) {
16 this.alarm = alarm;
17 }
18

19 /*@ requires 0 <= hour && hour <= 23;
20 @ requires 0 <= minute && minute <= 59;
21 @ assignable _alarmTime;
22 @*/
23 public void setAlarmTime(int hour, int minute) {
24 alarmHour = hour;
25 alarmMinute = minute;
26 }
27

28 // spec inherited from superclass Clock
29 public void tick() {
30 super.tick();
31 if (getHour()== alarmHour & getMinute() == alarmMinute & getSecond()== 0){
32 alarm.on();
33 //@ set _alarmOn = true;
34 }
35 if ((getHour() == alarmHour & getMinute() == alarmMinute+1 & getSecond() == 0)||
36 (getHour() == alarmHour+1 & alarmMinute == 59 & getSecond()== 0)) {
37 alarm.off();
38 //@ set _alarmOn = false;
39 }
40 }
41 }

Fig. 4. Example JML specification illustrating the concepts of specification inheritance
and ghost fields

non-null instances of AlarmInterface. While this is unnecessary (since declara-
tions of reference types are non-null by default in JML [LCC+05, Cha06]), it is
also harmless and can in fact be helpful to JML newcomers. Though we will not
have the need in our examples, declarations that may be null must be annotated
with the nullable modifier.

Beyond Assertions: Advanced Specification and Verification 355

1 public interface AlarmInterface {
2 public void on();
3 public void off();
4 }

Fig. 5. Interface of the alarm used in AlarmClock

6 Ghost Fields

Like model fields, ghost fields are specification-only fields, so they cannot be
referred to by Java code. While a model field provides an abstraction of the
existing state, a ghost field can provide some additional state, which may—or
may not—be related to the existing state. Unlike a model field, a ghost field
can be assigned a value. This is done by a special set statement that must be
given in a JML annotation. Before we discuss the difference between model and
ghost fields in more detail, let us first look at an example of the use of a ghost
field.

Suppose that we want to convince ourselves that the implementation of
AlarmClock will not invoke the method alarm.on() twice in a row, or the
method alarm.off() twice in a row, but that it will always call alarm.on() and
alarm.off() alternately. (One could add JML contracts to AlarmInterface to
specify this requirement, but we will not consider that here.)

The state of an AlarmClock object does not record if the associated alarm is
ringing or not, nor does it record which method it has last invoked on alarm.
For the purpose of understanding the behavior of the AlarmClock, and possibly
capturing this understanding in additional JML annotations, it may be useful
to add an extra boolean field to the state that records if the associated alarm
is ringing. In Fig. 4, we have declared a boolean ghost field alarmRinging.
Two assignments to this field are included in the method tick(). The as-
signments ensure that the field is true when the alarm ringing and false oth-
erwise. A subtle issue here is that alarmRinging has to be included in the
datagroup associated with time. This is because—by the principle of specifi-
cation inheritance—the method tick() is only allowed to have side effects on
time. Since tick() assigns to alarmRinging, the field has to be included in
this datagroup. (As was mentioned in Section 3, we could have instead declared
time to be in objectState, and used objectState in the assignable clause of
tick(). It then would have been more natural to declare alarmRinging to be
in objectState.)

One can now try to capture the informal requirement that “the alarm will ring
for the minute that follows the specified alarm time,” by formulating invariants
relating the new ghost field alarmRinging to the ‘real’ state of the AlarmClock.
There are many ways to express such a relation, for instance using the following
as the invariant:

_alarmRinging <==> _alarmTime <= _time && _time < alarmTime + 60;

356 P. Chalin et al.

Verification by ESC/Java2 will immediately point out that these invariants may
be violated, namely by invocations of setTime and setAlarmTime. This high-
lights a potential weakness in the implementation: relying on the comparison of
the current time and the alarm time in the decision to turn the alarm off might
result in unwanted behavior. The alarm could be turned on twice in a row, or
turned off twice in a row. Also, the alarm could ring for longer than 60 seconds,
if one of these times is changed while the alarm is ringing.

An improvement in the implementation is to count down the number of sec-
onds left until the alarm is disabled and use this count as a basis for switching
off the alarm, rather than relying on a comparison of the current time and the
alarm time.

/** The number of seconds remaining to keep ringing the alarm.
* If zero, the alarm is silent (off). */

//@ private invariant 0 <= alarmSecondsRemaining &&
//@ alarmSecondsRemaining <= 60;

/*@ private invariant _alarmRinging
@ <==> alarmSecondsRemaining > 0; @*/

private int alarmSecondsRemaining = 0; //@ in _time;
...

public boolean tick() {
super.tick();
if (alarmSecondsRemaining > 0) {
alarmSecondsRemaining--;
if (alarmSecondsRemaining == 0) {

alarm.off();
//@ set _alarmRinging = false;

}
} else if (getHour() == alarmHour &

getMinute() == alarmMinute) {
alarm.on();
alarmSecondsRemaining = 60 - getSecond();
//@ set _alarmRinging = true;

}
}

Now that we have a close correspondence between the ghost field alarmRinging
and the field alarmSecondsRemaining, one could choose to replace the ghost
field by a model field:

/*@ public model boolean _alarmRinging; in _time;
@ private represents _alarmRinging
@ <- alarmSecondsRemaining > 0;
@*/

Beyond Assertions: Advanced Specification and Verification 357

Of course, one could also choose to turn the ghost field into a real field. This
would make the implementation simpler to understand.

Ghost vs. model fields. To recap, the crucial difference between a ghost and
a model field is that a ghost field extends the state of an object, whereas a model
field is an abstraction of the existing state of an object. A ghost field may be
assigned to in annotations using the special set keywords. A model field cannot
be assigned to, but changes value automatically whenever some of the state that
it depends on changes, as laid down by the representation relation.

Since ghost fields are only changed by set statements, they are only changed
under program control. Model fields, however, potentially change their values
whenever the concrete fields they depend on change. As Leino and Müller re-
cently noted [LM06], such instantaneous changes to model fields are not neces-
sarily sensible, because the computation of the model fields may assume that
various invariants hold.

7 Aliasing

The potential of aliasing is a major complication in program verification, and
indeed a major source of bugs in programs. To illustrate the issue, Fig. 6 shows
DigitalDisplayClock, which uses an integer array time of length 6 to rep-
resent time (line 13). For the correct functioning of the clock it will be im-
portant that this array is not aliased by a field outside of the class. If the
array is aliased, code outside of this class could alter time and break the in-
variants for the array [NVP98]. Indeed, the fact that the (private) invariants
depends on the array time already suggest that the field needs to be alias-
protected.

By inspecting the entire code of the class, it is easy to convince oneself that
references to this array are not leaked. However, this does not guarantee that a
subclass does not introduce ways to leak references to time. For example, the
subclass BrokenDigitalDisplayClock in Fig. 7 breaks the guarantee that time
will not be aliased.

There has been considerable work on extending programming languages with
some form of ownership (also known as confinement). JML includes support
for the universe type system [MPHL03] as a way to specify and enforce owner-
ship constraints. As is illustrated in Fig. 6 line 13, the time array is declared
as a rep-field2 hence forbidding time from being aliased outside the object.
The typechecker incorporated in the JML compiler will, e.g., warn that the
class BrokenDigitalDisplayClock in Fig. 7 is not well-typed because it breaks
the guarantee that time will not be aliased outside this class. Verification with
ESC/Java2 does not yet take universes into account and this is still the subject
of ongoing work.

2 rep is short for representation.

358 P. Chalin et al.

1 public class DigitalDisplayClock {
2 //@ public model long _time;
3 //@ private represents _time = getSecond()+getMinute()*60+getHour()*60*60;
4

5 //@ protected invariant time.length == 6;
6 //@ protected invariant 0 <= time[0] && time[0] <= 9; // sec
7 //@ protected invariant 0 <= time[1] && time[1] <= 5; // sec
8 //@ protected invariant 0 <= time[2] && time[2] <= 9; // min
9 //@ protected invariant 0 <= time[3] && time[3] <= 5; // min

10 //@ protected invariant 0 <= time[4] && time[4] <= 9; // hr
11 //@ protected invariant 0 <= time[5] && time[5] <= 2; // hr
12 //@ protected invariant time[5] == 2 ==> time[4] <= 3; // hr
13 protected /*@ non_null rep @*/ int[] time; // NB rep modifier
14 /*@ pure @*/ public DigitalDisplayClock() {
15 { time = new rep int [6]; } // NB rep modifier
16

17 //@ ensures 0 <= \result && \result <= 23;
18 public /*@ pure @*/ int getHour() { return time[5]*10 + time[4]; }
19

20 //@ ensures 0 <= \result && \result <= 59;
21 public /*@ pure @*/ int getMinute() { return time[3]*10 + time[2]; }
22

23 //@ ensures 0 <= \result && \result <= 59;
24 public /*@ pure @*/ int getSecond() { return time[1]*10 + time[0]; }
25

26 /*@ requires 0 <= hour && hour <= 23 && 0 <= minute && minute <= 59;
27 @ assignable _time;
28 @ ensures getHour()==hour && getMinute()==minute && getSecond()==0;
29 @*/
30 public void setTime(int hour, int minute) {
31 time[5] = hour / 10; time[4] = hour % 10;
32 time[3] = minute % 10; time[2] = minute % 10;
33 time[1] = 0 ; time[0] = 0;
34 }
35

36 //@ assignable _time;
37 //@ ensures _time == (\old(_time)+1) % 24*60*60;
38 public void tick() {
39 time[0]++;
40 if (time[0] == 10) { time[0] = 0; time[1]++; }
41 if (time[1] == 6) { time[1] = 0; time[2]++; } // minute passed
42 if (time[2] == 10) { time[2] = 0; time[3]++; }
43 if (time[3] == 6) { time[3] = 0; time[4]++; } // hour passed
44 if (time[4] == 10) { time[4] = 0; time[3]++; }
45 if (time[5] == 2 & time[4] == 4)
46 { time[5] = 0; time[4] = 0; } // day passed
47 }
48 }

Fig. 6. Clock implementation using an array and the universe type system to ensure
that references to this array are not leaked outside the current object

Beyond Assertions: Advanced Specification and Verification 359

1 class BrokenDigitalDisplayClock extends DigitalDisplayClock {
2 //@ requires time.length == 6;
3

4 public BrokenDigitalDisplayClock(/*@ non_null @*/ int[] time) {
5 this.time = time; // illegal!
6 }
7

8 public /*@ pure @*/ int[] expose() { return time; } // illegal!
9 }

Fig. 7. A subclass of DigitalDisplayClock which breaks encapsulation of the private
array time, both by its constructor, which imports a potentially aliased reference, and
the method expose, which exports a reference to time

8 Conclusions

Preconditions, postconditions and invariants alone are insufficient to accurately
specify object-oriented programs. This paper has illustrated some of the more ad-
vanced specification constructs of the JML specification language, notably: frame
conditions, datagroups, model and ghost fields, and support for alias control.

A language extension to C# that is similar in purpose and scope to JML is
the Spec# specification language [BLS04]. Like JML, Spec# enjoys tool sup-
port for runtime checking and static verification, the latter being provided by
the Boogie program verifier. Spec# and JML share similar basic and advanced
language constructs, although details vary. In particular, Spec# provides a novel
methodology to cope with object invariants [BDF+04].

As a final note, we point out that the question of which constructs are neces-
sary and sufficient for the specification of mainstream object-oriented programs
is far from settled. Even the semantics for some of the basic, let alone advanced,
features discussed in this paper are still the subject of active research as is clear
from the references given to very recent work.

Acknowledgments. Thanks to David Cok of Eastman Kodak Company for
his comments and feedback on this paper. The work of Joseph Kiniry and Erik
Poll is funded in part by the Information Society Technologies programme of
the European Commission, Future and Emerging Technologies under the IST-
2005-015905 MOBIUS project. The work of Gary Leavens was funded by the
US National Science Foundation under grants CCF-0428078 and CCF-0429567.
Patrice Chalin was funded in part by the Natural Sciences and Engineering
Research Council of Canada under grant 261573-03.

References

[ABB+05] W. Ahrendt, Th. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle,
W. Menzel, W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt.
The KeY tool. Software and System Modeling, 4:32–54, 2005.

360 P. Chalin et al.

[Ame90] P. America. Designing an object-oriented language with behavioural sub-
typing. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors,
Foundations of Object-Oriented Languages, number 489 in LNCS, pages
60–90. Springer-Verlag, 1990.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael Ernst, Joseph R.
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview
of JML tools and applications. International Journal on Software Tools
for Technology Transfer (STTT), 7(3):212–232, 2005.

[BDF+04] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Verification of object-oriented programs with in-
variants. Journal of Object Technology, 3(6):27–56, 2004.

[BFMW01] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass — Java
with assertions. In Workshop on Runtime Verification at CAV’01, 2001.
Published in ENTCS, K. Havelund and G. Rosu (eds.), 55(2), 2001.

[BJ01] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java
and JML. In T. Margaria and W. Yi, editors, TACAS’01, number 2031
in Lecture Notes in Computer Science, pages 299–312. Springer-Verlag,
2001.

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Construction and Analysis of Safe,
Secure and Interoperable Smart devices (CASSIS), volume 3362 of Lecture
Notes in Computer Science, pages 49–69. Springer-Verlag, 2004.

[BMR95] Alex Borgida, John Mylopoulos, and Raymond Reiter. On the frame
problem in procedure specifications. IEEE Transactions on Software En-
gineering, 21(10):785–798, October 1995.

[BRL03] Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. Java applet correct-
ness: A developer-oriented approach. In D. Mandrioli K. Araki, S. Gnesi,
editor, FME 2003, volume 2805 of Lecture Notes in Computer Science,
pages 422–439. Springer-Verlag, 2003.

[BSS04] Mike Barnett, David A. Naumann Wolfram Schulte, and Qi Sun.
99.44% pure: Useful abstractions in specification. In Formal Tech-
niques for Java-like Programs (FTfJP’2004), pages 11–19, May 2004.
http://www.cs.ru.nl/ftfjp/2004/Purity.pdf.

[Cha06] Patrice Chalin. Towards support for non-null types and non-null-by-
default in Java. In Formal Techniques for Java-like Programs (FTfJP),
2006. To appear.

[CK04] David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and
JML. Technical report, University of Nijmegen, 2004. NIII Technical
Report NIII-R0413.

[CL02] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for
the Java Modeling Language (JML). In Hamid R. Arabnia and Young-
song Mun, editors, the International Conference on Software Engineering
Research and Practice (SERP ’02), pages 322–328. CSREA Press, June
2002.

[CLSE05] Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and Stephen Ed-
wards. Model variables: Cleanly supporting abstraction in design by con-
tract. Software:Practice and Experience, 35(6):583–599, May 2005.

[Cok05] David R. Cok. Reasoning with specifications containing method calls in
JML. Journal of Object Technology, 4(8):77–103, 2005.

http://www.cs.ru.nl/ftfjp/2004/Purity.pdf

Beyond Assertions: Advanced Specification and Verification 361

[DL96] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyp-
ing through specification inheritance. In 18th International Conference
on Software Engineering, pages 258–267. IEEE Computer Society Press,
1996.

[DM05] Á. Darvas and P. Müller. Reasoning about method calls in JML Specifi-
cations. In Formal Techniques for Java-like Programs (FTfJP), 2005.

[HK00] K. Huizing and R. Kuiper. Verification of object-oriented programs us-
ing class invariants. In E. Maibaum, editor, Fundamental Approaches to
Software Engineering, volume 1783 of Lecture Notes in Computer Science,
pages 208–221. Springer-Verlag, 2000.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–583, October 1969.

[Hoa72] C.A.R. Hoare. Proof of correctness of data representations. Acta Infor-
matica, 1(4):271–281, 1972.

[JLPS05] Bart Jacobs, K. Rustan M. Leino, Frank Piessens, and Wolfram Schulte.
Safe concurrency for aggregate objects with invariants. In IEEE Interna-
tional Conference on Software Engineering (SEFM 2005), pages 137–147.
IEEE Computer Society, 2005.

[Jon03] Cliff B. Jones. The early search for tractable ways of reasoning about
programs. IEEE Annals of the History of Computing, 25(2):26–49, 2003.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. Technical
Report 98-06-rev29, Iowa State University, Department of Computer Sci-
ence, January 2006. To appear in ACM SIGSOFT Software Engineering
Notes.

[LC05] Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML.
Draft, available from jmlspecs.org., 2005.

[LCC+05] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and
David R. Cok. How the design of JML accommodates both runtime asser-
tion checking and formal verification. Science of Computer Programming,
55(1–3):185–208, March 2005.

[LD00] Gary T. Leavens and Krishna Kishore Dhara. Concepts of behav-
ioral subtyping and a sketch of their extension to component-based sys-
tems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, chapter 6, pages 113–135. Cambridge Uni-
versity Press, 2000.

[Lea90] Gary T. Leavens. Modular verification of object-oriented programs
with subtypes. Technical Report 90–09, Department of Computer Sci-
ence, Iowa State University, Ames, Iowa, 50011, July 1990. Available
by anonymous ftp from ftp.cs.iastate.edu, and by e-mail from al-
manac@cs.iastate.edu.

[Lei98] K. Rustan M. Leino. Data groups: Specifying the modification of extended
state. In OOPSLA ’98 Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 144–153. ACM, October 1998.

[LG01] Barbara Liskov and John Guttag. Program Development in Java. The
MIT Press, Cambridge, Mass., 2001.

[Lis88] Barbara Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices,
23(5):17–34, May 1988. Revised version of the keynote address given at
OOPSLA ’87.

ftp.cs.iastate.edu

362 P. Chalin et al.

[LM06] K. Rustan M. Leino and Peter Müller. A verification methodology
for model fields. In ESOP’2006, Lecture Notes in Computer Science.
Springer-Verlag, 2006. To appear.

[LPC+06] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David R. Cok, Peter Müller, Joseph R. Kiniry, and Patrice Chalin. JML
Reference Manual. Department of Computer Science, Iowa State Univer-
sity. Available from http://www.jmlspecs.org, January 2006.

[LW94] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems, 16(6):1811–
1841, November 1994.

[LW95] Gary T. Leavens and William E. Weihl. Specification and verification of
object-oriented programs using supertype abstraction. Acta Informatica,
32(8):705–778, November 1995.

[Mey92] Bertrand Meyer. Applying “Design by Contract”. Computer, 25(10):40–
51, October 1992.

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall,
New York, NY, second edition, 1997.

[MHKL05] Ronald Middelkoop, Cornelis Huizing, Ruurd Kuiper, and Erik Luit.
Cooperation-based invariants for OO languages. In Proceedings of
the International Workshop on Formal Aspects of Component Software
(FACS’05), 2005.

[MM02] Richard Mitchell and Jim McKim. Design by Contract by Example.
Addison-Wesley, Indianapolis, IN, 2002.

[Mor94] Carroll Morgan. Programming from Specifications: Second Edition. Pren-
tice Hall International, Hempstead, UK, 1994.

[MPH00] J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program
provers. In S. Graf and M. Schwartzbach, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 1785 of LNCS,
pages 63–77. Springer-Verlag, 2000.

[MPHL03] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular spec-
ification of frame properties in JML. Concurrency, Computation Practice
and Experience., 15:117–154, 2003.

[MPHL05] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular in-
variants for layered object structures. Technical Report 424, ETH Zurich,
March 2005.

[MPMU04] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for
certification of Java/JavaCard programs annotated in JML. Journal of
Logic and Algebraic Programming, 58(1–2):89–106, 2004.

[Nau05] David A. Naumann. Observational purity and encapsulation. In Fun-
damental Aspects of Software Engineering (FASE), 2005. Obtained from
the author.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In
Eric Jul, editor, ECOOP ’98 – Object-Oriented Programming, 12th Eu-
ropean Conference, Brussels, Belgium, volume 1445 of Lecture Notes in
Computer Science, pages 158–185. Springer-Verlag, July 1998.

[PH97] Arnd Poetzsch-Heffter. Specification and verification of object-oriented
programs. Habilitation thesis, Technical University of Munich, January
1997.

http://www.jmlspecs.org

Beyond Assertions: Advanced Specification and Verification 363

[RL00] Clyde Ruby and Gary T. Leavens. Safely creating correct subclasses
without seeing superclass code. In OOPSLA 2000 Conference on Object-
Oriented Programming, Systems, Languages, and Applications, Min-
neapolis, Minnesota, volume 35(10) of ACM SIGPLAN Notices, pages
208–228, October 2000.

[Ros92] D. S. Rosenblum. Towards a method of programming with assertions. In
Proceedings of the 14th International Conference on Software Engineer-
ing, pages 92–104, May 1992.

[Ros95] David S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Transactions on Software Engineering, 21(1):19–31, January
1995.

[Szy98] C. Szyperski. Component Software. Addison-Wesley, 1998.
[Win90] Jeannette M. Wing. A specifier’s introduction to formal methods. Com-

puter, 23(9):8–24, September 1990.

	Introduction
	Approaches to Verification
	Outline

	JML Basics: Pre- and Postconditions, and Invariants
	Method Contracts
	Purity
	Lightweight vs. Heavyweight
	Exceptions and Exceptional Postconditions
	Instance and Static Invariants (and the Callback Problem)

	Frame Properties
	Model Fields
	Behavioral Subtyping and Specification Inheritance
	Ghost Fields
	Aliasing
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

