

Lecture Notes in Computer Science 4111
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Frank S. de Boer Marcello M. Bonsangue
Susanne Graf Willem-Paul de Roever (Eds.)

Formal Methods
for Components
and Objects

4th International Symposium, FMCO 2005
Amsterdam, The Netherlands, November 1-4, 2005
Revised Lectures

13

Volume Editors

Frank S. de Boer
Centre for Mathematics and Computer Science, CWI
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
E-mail: F.S.de.Boer@cwi.nl

Marcello M. Bonsangue
Leiden University
Leiden Instiute of Advanced Computer Science
P. O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: marcello@liacs.nl

Susanne Graf
VERIMAG
2 Avenue de Vignate, Centre Equitation, 38610 Grenoble-Giéres, France
E-mail: Susanne.Graf@imag.fr

Willem-Paul de Roever
University of Kiel
Institute of Computer Science and Applied Mathematics
Hermann-Rodewald-Str. 3, 24118 Kiel, Germany
E-mail: wpr@informatik.uni-kiel.de

Library of Congress Control Number: 2006930291

CR Subject Classification (1998): D.2, D.3, F.3, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-36749-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-36749-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11804192 06/3142 5 4 3 2 1 0

Preface

Large and complex software systems provide the necessary infrastructure in all
industries today. In order to construct such large systems in a systematic manner,
the focus in the development methodologies has switched in the last two decades
from functional issues to structural issues: both data and functions are encap-
sulated into software units which are integrated into large systems by means of
various techniques supporting reusability and modifiability. This encapsulation
principle is essential to both the object-oriented and the more recent component-
based software engineering paradigms.

Formal methods have been applied successfully to the verification of medium-
sized programs in protocol and hardware design. However, their application to
the development of large systems requires more emphasis on specification, mod-
eling and validation techniques supporting the concepts of reusability and mod-
ifiability and their implementation in new extensions of existing programming
languages like Java.

The new format of FMCO 2005 consisted of invited keynote lectures and
tutorial lectures selected through a corresponding open call. The latter provide
a tutorial perspective on recent developments. In contrast to existing conferences,
about half of the program consisted of invited keynote lectures by top researchers
sharing their interest in the application or development of formal methods for
large-scale software systems (object or component oriented). FMCO does not
focus on specific aspects of the use of formal methods, but rather it aims at a
systematic and comprehensive account of the expanding body of knowledge on
modern software systems.

This volume contains the contributions submitted after the symposium by
both invited and selected lecturers. The proceedings of FMCO 2002, FMCO
2003, and FMCO 2004 have already been published as volumes 2852, 3188,
and 3657 of Springer’s Lecture Notes in Computer Science. We believe that
these proceedings provide a unique combination of ideas on software engineering
and formal methods which reflect the expanding body of knowledge on modern
software systems.

June 2006 F.S. de Boer
M.M. Bonsangue

S. Graf
W.-P. de Roever

Organization

The FMCO symposia are organized in the context of the project Mobi-J, a
project founded by a bilateral research program of The Dutch Organization
for Scientific Research (NWO) and the Central Public Funding Organization for
Academic Research in Germany (DFG). The partners of the Mobi-J projects are:
the Centrum voor Wiskunde en Informatica, the Leiden Institute of Advanced
Computer Science, and the Christian-Albrechts-Universität Kiel.

This project aims at the development of a programming environment which
supports component-based design and verification of Java programs annotated
with assertions. The overall approach is based on an extension of the Java lan-
guage with a notion of component that provides for the encapsulation of its
internal processing of data and composition in a network by means of mobile
asynchronous channels.

Sponsoring Institutions

The Dutch Organization for Scientific Research (NWO)
The Royal Netherlands Academy of Arts and Sciences (KNAW)
The Dutch Institute for Programming research and Algorithmics (IPA)
The Centrum voor Wiskunde en Informatica (CWI), The Netherlands
The Leiden Institute of Advanced Computer Science (LIACS), The Netherlands

Table of Contents

Component and Service Oriented Computing

A Software Component Model and Its Preliminary Formalisation
Kung-Kiu Lau, Mario Ornaghi, Zheng Wang . 1

Synchronised Hyperedge Replacement as a Model for Service Oriented
Computing

Gian Luigi Ferrari, Dan Hirsch, Ivan Lanese, Ugo Montanari,
Emilio Tuosto . 22

System Design

Control of Modular and Distributed Discrete-Event Systems
Jan Komenda, Jan H. van Schuppen . 44

Model-Based Security Engineering with UML: Introducing Security
Aspects

Jan Jürjens . 64

The Pragmatics of STAIRS
Ragnhild Kobro Runde, Øystein Haugen, Ketil Stølen 88

Tools

Smallfoot: Modular Automatic Assertion Checking with Separation
Logic

Josh Berdine, Cristiano Calcagno, Peter W. O’Hearn 115

Orion: High-Precision Methods for Static Error Analysis
of C and C++ Programs

Dennis R. Dams, Kedar S. Namjoshi . 138

Algebraic Methods

Beyond Bisimulation: The “up-to” Techniques
Davide Sangiorgi . 161

Separation Results Via Leader Election Problems
Maria Grazia Vigliotti, Iain Phillips, Catuscia Palamidessi 172

VIII Table of Contents

Divide and Congruence: From Decomposition of Modalities to
Preservation of Branching Bisimulation

Wan Fokkink, Rob van Glabbeek, Paulien de Wind 195

Model Checking

Abstraction and Refinement in Model Checking
Orna Grumberg . 219

Program Compatibility Approaches
Edmund Clarke, Natasha Sharygina, Nishant Sinha 243

Cluster-Based LTL Model Checking of Large Systems
Jǐŕı Barnat, Luboš Brim, Ivana Černá . 259

Safety and Liveness in Concurrent Pointer Programs
Dino Distefano, Joost-Pieter Katoen, Arend Rensink 280

Assertional Methods

Modular Specification of Encapsulated Object-Oriented Components
Arnd Poetzsch-Heffter, Jan Schäfer . 313

Beyond Assertions: Advanced Specification and Verification with JML
and ESC/Java2

Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, Erik Poll 342

Boogie: A Modular Reusable Verifier for Object-Oriented Programs
Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
K. Rustan M. Leino . 364

Quantitative Analysis

On a Probabilistic Chemical Abstract Machine and the Expressiveness
of Linda Languages

Alessandra Di Pierro, Chris Hankin, Herbert Wiklicky 388

Partial Order Reduction for Markov Decision Processes: A Survey
Marcus Groesser, Christel Baier . 408

Author Index . 429

A Software Component Model and Its
Preliminary Formalisation

Kung-Kiu Lau1, Mario Ornaghi2, and Zheng Wang1

1 School of Computer Science, the University of Manchester
Manchester M13 9PL, United Kingdom
{kung-kiu, zw}@cs.man.ac.uk

2 Dipartimento di Scienze dell’Informazione,
Universita’ degli studi di Milano

Via Comelico 39/41, 20135 Milano, Italy
ornaghi@dsi.unimi.it

Abstract. A software component model should define what components are, and
how they can be composed. That is, it should define a theory of components
and their composition. Current software component models tend to use objects
or port-connector type architectural units as components, with method calls and
port-to-port connections as composition mechanisms. However, these models do
not provide a proper composition theory, in particular for key underlying concepts
such as encapsulation and compositionality. In this paper, we outline our notion
of these concepts, and give a preliminary formalisation of a software component
model that embodies these concepts.

1 Introduction

The context of this work is Component-based Software Engineering, rather than
Component-based Systems. In the latter, the focus is on system properties, and
components are typically state machines. Key concerns are issues related to communi-
cation, concurrency, processes, protocols, etc. Properties of interest are temporal, non-
functional properties such as deadlock-freedom, safety, liveness, etc. In the former, the
focus is on software components and middleware for composing them. Usually a soft-
ware component model, e.g. Enterprise JavaBeans (EJB) [21], provides the underlying
framework.

A software component model should define (i) what components are, i.e. their syntax
and semantics; and (ii) how to compose components, i.e. the semantics of their composi-
tion. Current component models tend to use objects or port-connector type architectural
units as components, with method calls and port-to-port connections as composition
mechanisms. However, these models do not define a proper theory for composition.

We believe that encapsulation and compositionality are key concepts for such a the-
ory. In this paper, we explain these notions, and their role in a composition theory.
Using these concepts, we present a software component model, together with a prelim-
inary formalisation.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 1–21, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 K.-K. Lau, M. Ornaghi, and Z. Wang

2 Current Component Models

Currently, so-called component models, e.g. EJB and CCM (CORBA Component Mo-
del) [24], do not follow a standard terminology or semantics. There are different def-
initions of what a component is [6], and most of these are not set in the context of a
component model. In particular, they do not define composition properly.

For example, a widely used definition of components is the following, due to
Szyperski [28]:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.”

A different definition is the following by Meyer [20]:

“A component is a software element (modular unit) satisfying the following
conditions:
1. It can be used by other software elements, its ‘clients’.
2. It possesses an official usage description, which is sufficient for a client
author to use it.
3. It is not tied to any fixed set of clients.”

Both these definitions do not mention a component model, in particular how composi-
tion is defined.

The following definition given in Heineman and Councill [12] mentions a component
model:

“A [component is a] software element that conforms to a component model and
can be independently deployed and composed without modification according
to a composition standard.”

but it does not define one.
Nevertheless, there is a commonly accepted abstract view of what a component

is, viz. a software unit that contains (i) code for performing services, and (ii) an in-
terface for accessing these services (Fig. 1(a)). To provide its services, a component

Name
Interface

Code
provided services
required services

(a) (b)

Fig. 1. A software component

may require some services. So a component is often depicted as in Fig. 1(b), e.g. in
CCM and UML2.0 [23].

In current software component models, components are typically objects as in object-
oriented languages, and port-connector type architectural units, with method calls and
ADL (architecture description languages [26]) connectors as composition mechanisms
respectively.

A complete survey of these models is beyond the scope of this paper. It can be found
in [17].

A Software Component Model and Its Preliminary Formalisation 3

3 Our Component Model

In our component model, components encapsulate computation (and data),1 and com-
position operators encapsulate control. Our components are constructed from (i) com-
putation units and (ii) connectors. A computation unit performs computation within
itself, and does not invoke computation in another unit. Connectors are used to build
components from computation units, and also as composition operators to compose
components into composite components.

3.1 Exogenous Connectors

Our connectors are exogenous connectors [16]. The distinguishing characteristic of ex-
ogenous connectors is that they encapsulate control. In traditional ADLs, components

C
A

B
D

E

(a) Components and connectors (b) Control flow

Fig. 2. Traditional ADLs

are supposed to represent computation, and connectors interaction between components
[19] (Fig. 2 (a)). Actually, however, components represent computation as well as con-
trol, since control originates in components, and is passed on by connectors to other
components. This is illustrated by Fig. 2 (b), where the origin of control is denoted by
a dot in a component, and the flow of control is denoted by arrows emanating from the
dot and arrows following connectors.

In this situation, components are not truly independent, i.e. they are tightly coupled,
albeit only indirectly via their ports.

In general, component connection schemes in current component models (including
ADLs) use message passing, and fall into two main categories: (i) connection by di-
rect message passing; and (ii) connection by indirect message passing. Direct message

A

b();

C

B

a();
B.a();
C.b(); C.b();

D

c();

B.a();
notify();

notify();
C.b();

K2

K1
A

a();

b();

B

C
notify();
C.b();

K1.notify();
K2.notify();

K3.notify();
c();

DK3

component
connector

(a) Direct message passing (b) Indirect message passing

Fig. 3. Connection by message passing

passing corresponds to direct method calls, as exemplified by objects calling methods
in other objects (Fig. 3 (a)), using method or event delegation, or remote procedure
call (RPC). Software component models that adopt direct message passing schemes as

1 For lack of space, we will not discuss data in this paper.

4 K.-K. Lau, M. Ornaghi, and Z. Wang

composition operators are EJB, CCM, COM [5], UML2.0 [23] and KobrA [3]. In these
models, there is no explicit code for connectors, since messages are ‘hard-wired’ into
the components, and so connectors are not separate entities.

Indirect message passing corresponds to coordination (e.g. RPC) via connectors, as
exemplified by ADLs. Here, connectors are separate entities that are defined explic-
itly. Typically they are glue code or scripts that pass messages between components
indirectly. To connect a component to another component we use a connector that
when notified by the former invokes a method in the latter (Fig. 3 (b)). Besides ADLs,
other software component models that adopt indirect message passing schemes are Jav-
aBeans [27], Koala [30], SOFA [25], PECOS [22], PIN [14] and Fractal [8].

In connection schemes by message passing, direct or indirect, control originates in
and flows from components, as in Fig. 2 (b). This is clearly the case in both Fig. 3 (a)
and (b).

A categorical semantics of connectors is proposed in [9], where coordination is mod-
elled through signature morphisms. There is a clear separation between computation,
occurring in components, and coordination, performed by connectors. However, shared
actions may propagate control from one component to others.

By contrast, in exogenous connection, control originates in and flows from connec-
tors, leaving components to encapsulate only computation. This is illustrated by Fig. 4.

a();
b();

A
A.a();
B.c(); c();

B

d();

C

f();
e();
D

A.b();
C.d(); C.d();

D.e();

K1

K2 K3 a();
b();

A
c();

B

d();

C

f();
e();
D

K1

K2 K3

(a) Example (b) Control flow

Fig. 4. Connection by exogenous connectors

In Fig. 4 (a), components do not call methods in other components. Instead, all method
calls are initiated and coordinated by exogenous connectors. The latter’s distinguishing
feature of control encapsulation is clearly illustrated by Fig. 4 (b), in clear contrast to
Fig. 2 (b).

Exogenous connectors thus encapsulate control (and data), i.e. they initiate and co-
ordinate control (and data). With exogenous connection, components are truly indepen-
dent and decoupled.

The concept of exogenous connection entails a type hierarchy of exogenous con-
nectors. Because they encapsulate all the control in a system, such connectors have to
connect to one another (as well as components) in order to build up a complete control
structure for the system. For this to be possible, there must be a type hierarchy for these
connectors. Therefore such a hierarchy must be defined for any component model that
is based on exogenous connection.

3.2 Components

Our view of a component is that it is not simply a part of the whole system. Rather
it is something very different from traditional software units such as code fragments,

A Software Component Model and Its Preliminary Formalisation 5

functions, procedures, subroutines, modules, classes/objects, programs, packages, etc,
and equally different from more modern units like DLLs and services.

We define a component as follows:

Definition 1. A software component is a software unit with the following defining char-
acteristics: (i) encapsulation and (ii) compositionality.

A component should encapsulate both data and computation. A component C encapsu-
lates data by making its data private. C encapsulates computation by making sure that
its computation happens entirely within itself.

An object can encapsulate data, but it does not encapsulate computation, since ob-
jects can call methods in other objects (Fig. 5(a)).

Object A Object B

m2(...)B.m2(...)
}

m1(...){
... m2 m2

RPC
(a) (b)

Fig. 5. Objects and architectural units

Port-connector type components, as in e.g. ADLs, UML2.0 and Koala, can encapsu-
late data. However, they usually do not encapsulate computation, since components can
call methods in other components by remote procedure call (RPC), albeit only indirectly
via connectors (and ports) (Fig. 5(b)).

Components should be compositional, i.e. the composition of two components C1
and C2 should yield another component C3, which in turn should also have the defining
characteristics of encapsulation and compositionality. Thus compositionality implies
that composition preserves or propagates encapsulation.2

Classes and objects are not compositional. They can only be ‘composed’ by method
calls, and such a ‘composition’ does not yield another class or object. Indeed, method
calls break encapsulation. Port-connector type components can be composed, but they
are not compositional if they do not have (computation) encapsulation.

Encapsulation entails that access to components must be provided by interfaces.
Classes and objects do not have interfaces. Access to (the methods of) objects, if per-
mitted, is direct, not via interfaces. So-called ‘interfaces’ in object-oriented languages
like Java are themselves classes or objects, so are not interfaces to components. Port-
connector type components use their ports as their interfaces.

Our components are constructed from computation units and exogenous connectors.
A computation unit performs just computation within itself and does not invoke compu-
tation in another unit. It can be thought of as a class or object with methods, except that
these methods do not call methods in other units. Thus it encapsulates computation.

Exogenous connectors encapsulate control, as we have seen in the previous section.
The type hierarchy of these connectors in our component model is as follows. At the

2 Compositionality in terms of other (non-functional) properties of sub-components is an open
issue, which we do not address here.

6 K.-K. Lau, M. Ornaghi, and Z. Wang

lowest level, level 1, because components are not allowed to call methods in other com-
ponents, we need an exogenous invocation connector. This is a unary operator that
takes a computation unit, invokes one of its methods, and receives the result of the in-
vocation. At the next level of the type hierarchy, to structure the control and data flow
in a set of components or a system, we need other connectors for sequencing exoge-
nous method calls to different components. So at level 2, we need n-ary connectors for
connecting invocation connectors, and at level 3, we need n-ary connectors for connect-
ing these connectors, and so on. In other words, we need a hierarchy of connectors of
different arities and types. We have defined and implemented such a hierarchy in [16].
Apart from invocation connectors at level 1, our hierarchy includes pipe connectors,
for sequencing, and selector connectors, for branching, at levels n ≥ 2. These con-
nectors are called composition connectors for the obvious reason. Level-1 connectors
are invocation connectors, and level-2 composition connectors connect only invocation
connectors, but composition connectors at higher levels are polymorphic since they can
connect different kinds of connectors at different levels (and with different arities).

We distinguish between (i) atomic components and (ii) composite components.

Definition 2. An atomic component C is a pair 〈i, u〉 where u is a computation unit,
and i is an invocation connector that invokes u’s methods. i provides an interface to the
component C.

A composite component CC is a tuple 〈k, C1, C2, . . . Cj〉, for some j, where k is a
j-ary connector at level n ≥ 2, and each Ci, i = 1, . . . , j, is either an atomic component
or a composite component. k is called a composition connector. It provides an interface
to the component CC.

Invocation
connector

Computation
unit

IU

U

IA

A

Composition
connector

...
C1 C2

K

IB

B

CJ

IJ

J

(a) An atomic component (b) A composite component

Fig. 6. Atomic and composite components

IU

U

Encapsulation

IA

A ...
C1 C2

K

IB

B

CJ

IJ

J

IA

A ...
C1 C2

K

IB

B

CJ

IJ

J

CompositionalityEncapsulation

(a) An atomic component (b) A composite component

Fig. 7. Encapsulation and compositionality

Figure 6 illustrates atomic and composite components. Clearly, an atomic compo-
nent encapsulates computation, since a computation unit does so, and an invocation
connector invokes only methods in the unit (Fig 7(a)). It is easy to see that a composite
component also encapsulates computation (Fig 7(b)).

A Software Component Model and Its Preliminary Formalisation 7

3.3 Composition Operators

To construct systems or composite components, we need composition operators that
preserve encapsulation and compositionality. Such composition operators should work
only on interfaces, in view of encapsulation.

Glue code is certainly not suitable as composition operators. Neither are object
method calls or ADL connectors, as used in current component models. Indeed, these
models do not have proper composition operators, in our view, since they do not have
the concepts of encapsulation and compositionality.

As in Definition 2, we use exogenous connectors at level n ≥ 2 as composition
operators. These operators are compositional and therefor preserve and propagate en-
capsulation. As shown in Fig 7(b), a composite component has encapsulation, as a result
of encapsulation in its constituent components. Furthermore, the composite component
is also compositional. Thus, any component, be it atomic or composite, has a top-most
connector that provides an interface, and it can be composed with any other component
using a suitable composition operator.

This self-similarity of a composite component is a direct consequence of component
encapsulation and compositionality, and provides the basis for a compositional way of
constructing systems from components. Fig. 8(b) illustrates self-similarity of a com-

A

B
D

E

C
F

G
D

ID

E

IE

B

IB

A

IA

C

IC

F

IF IG

G

(a) Acme (b) Exogenous connection

Fig. 8. Self-similarity of a composite component

posite component in a system composed from atomic and composite components. Each
dotted box indicates a composite component. Note in particular that the composite at
the top level is the entire system itself. Most importantly, every composite component
is similar to all its sub-components.

The system in Fig. 8(b) corresponds to the Acme [11] architecture in Fig. 8(a). By
comparison, in the Acme system, the composites are different from those in Fig. 8(b).
For instance, (D,E) is a composite in (b) but not in (a). Also, in (a) the top-level com-
posite is not similar to the composite (B,D,E) at the next level down. The latter has an
interface, but the former does not.

In general, self-similarity provides a compositional approach to system construction,
and this is an advance over hierarchical approaches such as ADLs which are not com-
positional, strictly speaking.

3.4 The Bank Example

Having defined our component model, we illustrate its use in the construction of a
simple bank system. The bank system has just one ATM that serves two banks (Bank1
and Bank2) as shown in Fig. 9.

8 K.-K. Lau, M. Ornaghi, and Z. Wang

The ATM obtains client details including card number, PIN, and requested ser-
vices, etc., and locates the bank that the client account belongs to. It then passes client
details to the client’s bank, which then provides the requested services of withdrawal,
deposit, etc.

To construct the bank system, first, two Bank components, Bank1 and Bank2, are as-
sembled by a Selector connector into a BankComposite. Then BankComposite is com-
posed with an ATM component by a Pipe connector into the bank system.

ATM

IA

Pipe

Bank2

IB2IB1

Bank1

BankComposite

Selector

Loop

Fig. 9. A simple bank system

All the components in Fig. 9 are well encapsulated. Every atomic component is made
up of an invocation connector and a computation unit. The computation unit implements
methods that the component could offer, and the invocation connector provides func-
tionalities to invoke those methods of the computation unit; thus it provides the interface
to the component. For example, the ATM component is made up of a computation unit
ATM and an invocation connector IA. The ATM component encapsulates both data and
functions, by defining its data as private and computing its functions entirely within
itself. IA invokes methods of ATM and thus serves as its interface.

All the components in Fig. 9 are compositional. The composite component Bank-
Composite is itself a component, with the composition connector Selector as its inter-
face. BankComposite also has encapsulation: it encapsulates data and functions of its
constituent components, Bank1 and Bank2.

Moreover, the composite component BankComposite in Fig. 9 is self-similar. Bank-
Composite has a top-level connector as an interface, and so have its sub-components
Bank1 and Bank2.

Finally, in this example, we built the bank system with a loop connector at the outer-
most level, which iterates and waits for client requests.

4 A Preliminary Formalisation

So far we have defined our component model informally. In this section we present a
preliminary formalisation of our model. The formalisation serves as a useful check on
the soundness, in the sense of good judgement, of the underlying ideas.

We will assume that our component model provides the basis for a Component-based
Software Design System, which we will call DS for convenience. DS should support all
the phases of the component life-cycle [18], i.e.:

A Software Component Model and Its Preliminary Formalisation 9

(i) Design Phase. A system or a new component C is designed from the connectors,
the computation units, and/or existing components, in a repository. If C is a new
component, it is added to the repository.

(ii) Deployment Phase. Deployment prepares a system or a component C for execution,
i.e. turns it into a binary bC and establishes the way of loading and instantiating it
when it is launched.

(iii) Run-time Phase. A binary bC is launched by loading and instantiating it into a
running instance, which provides the services offered by C.

Deployment-phase compositionality should be supported by suitable deployment
tools and should follow from design-phase compositionality. For this, a DS should be
provided with a composition and run-time infrastructure, implementing deployment-
phase composition according to the design-phase semantics of connectors.

Here we outline a first abstract meta-model for the design phase, and discuss func-
tional compositionality and encapsulation. The meta-model is formalised in many-
sorted first-order logic with identity. In the explanation we will introduce the signature
incrementally and we will explain the intended meaning informally. Axioms are given
in the appendix. The purpose is to devise and establish the basic requirements to be
satisfied by DS and the design-phase semantics of connectors.

4.1 Components and Their Interfaces

DS should provide a design environment for components with the characteristics of
compositionality and encapsulation, as discussed in Section 3.2. Component interfaces
play a key role, for two main reasons:

(i) They are the counterpart of encapsulation, i.e., they represent what is made public,
while encapsulation represents what is hidden.

(ii) Compositionality requires that the services of a component are defined in terms of
those of its sub-components.

To represent components and their interfaces in our general meta-model, we assume
that DS has a signature including the following sorts and declarations (Decls):

Sorts: Request, Result, ReqType, ResType, OpType, Comp
Decls: >> : ReqType× ResType → OpType

:: : Comp × OpType
∈ : Request× ReqType | Result× ResType

Request is the sort of possible requests, and Result is that of possible results.
ReqType is the sort of request types, and ResType is that of the result types. By the
overloaded membership relation ∈, each request type Q : ReqType is interpreted as a
set of requests, and each result type R : ReqType as a set of results. Comp is the sort
of possible components. OpType is introduced to represent component interfaces. It is
freely generated by the constructor >>, i.e., its elements are of the form Q >> R, with
Q : ReqType and R : ResType. Interfaces are represented by the interface relation:

C :: Q >> R

10 K.-K. Lau, M. Ornaghi, and Z. Wang

It means that the component C accepts requests q ∈ Q and yields results r ∈ R. We say
that C supports the operation type Q >> R. The interface of C is the set of operation
types it supports.

Requests and result types are disjoint. Thus a component cannot answer a request by
another request to another component, that is, computation encapsulation is enforced.
This will be further discussed in Section 4.3. Request, Result, ReqType, and ResType
are open, i.e., they depend on the DS at hand.

Example 1. In a programming language L, an operation template such as, e.g., sum(x :
int, y : int) : int can be represented in our formalism as the operation type

sum(x : int, y : int) >> int

where the request type sum(x : int, y : int) represents all the call-instances
sum(m, n) and the result type is the data type int. That is, Request is the set of all
possible call-instances of L, Result is the set of all the elements of the data types of L,
ReqType is the set of call-templates, ResType is the set of data types of the language,
and an operation type m(x1 : T1, . . . , xn : Tn) >> T corresponds to an operation
template m(x1 : T1, . . . , xn : Tn) : T .

Request and result types could also include semantic information, allowing us to use
them as specifications and to deal with the correctness issue. Moreover, it may be use-
ful to allow structured information, as illustrated by the following example.

Example 2. We introduce atomic request and result types by templates. A template is
of the form s(x1 : T1, . . . , xn : Tn), where s is the template symbol, n ≥ 0, and
x1 : T1, . . . , xn : Tn are its parameters. We distinguish between request and result
templates. In general, request templates correspond to procedure calls, such as read(),
write(x : string), etc. Result templates are semantic properties, such as odd(x : int),
x = a + b, etc. Semantic properties can also be used in requests, as pre-conditions. A
request is an instance of a request template, e.g. read, write(4), odd(3), and so on. A
result is an instance of a result template, e.g. odd(5), done, and so on.

An example of an operation type using templates is:

sum(x : int, y : int) >> z = x + y

The meaning is that for every request sum(m, n) we get a result z = m + n.
It may be useful to introduce structured templates, as shown by the following

example.
read(F : text) >> x : int|notAnInteger

expresses the fact that reading from F yields an integer x, unless the characters read do
not represent an integer. The use of structured templates is also useful in correspondence
with connectors, as will be explained in Section 4.4.

4.2 Composition Operators

Composite components are built by means of composition connectors, starting from
atomic components. The latter are built from computation units, by means of invocation

A Software Component Model and Its Preliminary Formalisation 11

connectors. To model this situation, we enrich the signature introduced in the previous
section by adding:

Sorts: Unit, InvConn, CompConn, List(X)
Decls: The usual operations and relations on lists

• : InvConn × Unit → Comp
• : CompConn × List(Comp) → Comp
ctype : CompConn × List(OpType)× OpType

Unit is the sort of units, InvConn that of invocation connectors, and CompConn
that of composition connectors. Parametric lists List(X) are defined as usual, and a
list will be represented by the notation [x1, . . . , xn]. The overloaded operator • is the
composition operator.

Components are defined by composition terms. A composition term T indicates how
a component is built by connectors starting from units or components already defined
and stored in the repository of the DS. Composition terms are generated by the com-
position •: i • u denotes the application of an invocation connector i to a unit u, and
k • [T1, . . . , Tn] denotes the application of a composition operator k to the sub-terms
(denoting sub-components) T1, . . . , Tn.

Composition connectors are typed by ctype. We will write k : [Op1, . . . , Opn] →
Op as a different notation for ctype(k, [Op1, . . . , Opn], Op). If k has a composition
type Op1, . . . , Opn → Op, then k • [T1, . . . , Tn] has operation type Op whenever it is
applied to T1 :: Op1, . . ., Tn :: Opn.

Not all the composition terms represent components. Components, together with their
interface relation ::, are defined by inductive composition rules of the following form:

r(i, u)
i • u :: Op

T1 :: Op1 . . . Tn :: Opn
r(k)

k • [T1, . . . , Tn] :: Op

For the invocation connector rule r(i, u), the operation type Op is determined by both
i and u. For the composition connector rule r(k), Op is determined by the composition
type Op1, . . . , Opn → Op of k. Connectors and the related composition rules are, in
general, domain specific and depend on the DS. The components of a DS are defined as
follows:

Definition 3. A composition term T is a component of a DS with operation type Op iff
T :: Op can be derived by the composition rules of the DS.

New composite components can be introduced in the repository of the DS by defini-
tions of the form C := T , where C is a new constant symbol and T is a composition
term. As usual, the definition C := T expands the current signature by the new con-
stant C : Conn and introduces the definition axiom C = T . The interface relation of a
component C introduced by a definition C := T is that of T :

if C := T, then C :: Q >> R iff T :: Q >> R (1)

12 K.-K. Lau, M. Ornaghi, and Z. Wang

Typed composition connectors have a compositional semantics given by:

– the composition rules of the DS;
– the execution rules explained in Section 4.3, which give the run-time semantics of

a component in terms of that of its sub-components.

We distinguish between designing a DS and using it. Designing a DS means design-
ing its units and, more importantly, the rules of its connectors, according to the general
assumptions of the meta-model. Using a DS to design systems and components means
using its units and its composition rules. Although, in general, connectors and their
composition rules are domain specific, there are general-purpose connectors. Some of
them will be shown in Section 4.4. In the following example we show the general-
purpose connector pipe.

Example 3. A pipe connector pipe : [Q1 >> R1, Q2 >> R2] → Q1 >> R2 assumes
a map p : Result → Request, to pipe the results r1 ∈ R1 of component C1 :: Q1 >>
R1 into requests q2 ∈ Q2 for C2 :: Q2 >> R2 (details in Example 4). The composition
rule is:

C1 :: Q1 >> R1 C2 :: Q2 >> R2
r(pipe)

pipe • [C1, C2] :: Q1 >> R2
.

4.3 A Run-Time Semantics

As mentioned before, to run a component represented by a composition term T , we need
to compile the units and connectors of T into binaries, to deploy binaries according to T ,
to load them into the memory and to launch them. This process requires an appropriate
infrastructure, that guarantees that the implementation agrees with the intended run-
time semantics of T . In this section we define the intended run-time semantics in an
abstract, i.e. implementation independent, way. To this end, we enrich our signature as
follows:

Sorts: D, Instance, Step
Decl: halt, error : D

�→ : D × Request× D × Result → Step;
i : Comp × D → Instance;
exec : Comp × Step

Instance is the sort of run-time instances, and D is the sort of data that can be con-
tained in the memory of instances. We do not model data and their structure in this
paper. In the examples we will assume that D is closed with respect to the pairing
operation (i.e., if d1, d2 ∈ D, then 〈d1, d2〉 ∈ D). By i(C, d) we represent a running in-
stance of a component C with current memory content d ∈ D. The relation data(C, d)
indicates which data are admitted for a component C.

Step is the sort of execution steps. It is freely generated by �→, i.e., its elements are
uniquely represented by terms of the form �→ (d, q, d′, r). A term �→ (d, q, d′, r) is also
written [d, q] �→ [d′, r]. It indicates an execution step from the current memory content
d and request q, into the new memory content d′ and result r.

A Software Component Model and Its Preliminary Formalisation 13

Instances can execute requests. Let i(C, d) be a run-time instance with operation type
C :: QT >> RT , and let q ∈ Q be a request. The execution relation of a component C

exec(C, [d, q] �→ [d′, r])

indicates that when the instance i(C, d) executes a request q, it performs the execution
step [d, q] �→ [d′, r]. To treat regular halting and run-time errors, we consider halt and
error as particular memory contents:

exec(C, [d, q] �→ [halt, r])
exec(C, [d, q] �→ [error, r])

We define the run-time semantics of an atomic component i • u by a map M(i, u) :
D × Request → D × Result as follows:

exec(i • u, [d, q] �→ [d′, r]) ↔ M(i, u)(d, q) = 〈d′, r〉

We define the run-time semantics of a non-atomic component k • [T1, . . . , Tn] by a
map M(k) : Stepn → Step as follows:

exec(k • [T1, . . . , Tn], S) ↔ ∧n
j=1exec(Tj , Sj)∧

S = M(k)(S1, . . . , Sn)

Invocation connectors provide encapsulation for atomic components through inter-
faces. The unit u in an atomic component i • u cannot directly call any other unit or
component. It can only provide results, i.e., the only way of requiring a service from
outside (if needed) is to pass the request as a result through the invocation connec-
tor. This “request-result” is then managed by the other connectors, that is, control is
performed by connectors. The semantics of composition connectors is compositional.
Indeed: (a) it preserves encapsulation through interfaces and (b) M(k) indicates how
the resulting step S is obtained from the computation steps Sj of the sub-components, in
a way that does not depend on the specific features of the sub-components, but only on
their operation types Op1, . . . , Opn and on the connector k : [Op1, . . . , Opn] → Op.

An abstract compositional run-time semantics is useful for two main reasons. The
first one is that a compositional semantics supports “predictability”, since the result of
a composition is also a component and its services are defined in terms of those of the
sub-components. The second reason is that it abstracts from the implementation details,
related to the compilation of composition terms into runnable binaries. The correct-
ness of different implementations with respect to the abstract run-time semantics fixed
for composition terms supports interoperability. Thus, designing the abstract run-time
semantics of connectors and units means defining the maps M(i, u) and M(k) accord-
ing to the general requirements explained above. Implementing it means implementing
a run-time infrastructure that is correct with respect to the abstract semantics.

The correctness of an implementation is with respect to the abstract execution se-
mantics. With the step [d, q] �→ [d′, r] we associate the observable step q �→ r. An
implementation is correct if the observable steps obtained by running it coincide with
those defined by the abstract run-time semantics. That is, we abstract from the internal
representation of data, and we are only interested in observable requests and results.

14 K.-K. Lau, M. Ornaghi, and Z. Wang

Example 4. Here we show the run-time semantics of the pipe rule of Example 3.

exec(pipe • [C1, C2], [〈d1, d2〉, q1], [〈d′1, d′2〉, r2]) ↔ exec(C1, [d1, q1] �→ [d′1, r1])∧
exec(C2, [d2, q2] �→ [d′2, r2])∧
q2 = p(r1)

In this rule, results r1 ∈ R1 are piped into requests p(r1) ∈ Q2, the sub-component
C1 has data d1 and the sub-component C2 has separate data d2, and the whole com-
ponent has data 〈d1, d2〉 (i.e., data(pipe • [C1, C2], d) holds iff d = 〈d1, d2〉, with
data(C1, d1) and data(C2, d2)). We may have different kinds of pipe, e.g., the piping
mechanism could also depend on the request q1.

4.4 The Bank Example

In this section, we illustrate our general model. Firstly we outline part of a possible DS,
and then we apply it to the bank example (Section 3.4).

The DS defines interfaces through structured templates, as in Example 2. Here we
consider the structuring operators |, sel and ∗, defined as follows.

– A request/result of a type A1| · · · |An is a pair 〈k, a〉, with 1 ≤ k ≤ n and a ∈ Ak.
– A request/result of type sel(p ∈ S : A(p)) is a pair 〈v, a〉, where S is a finite set of

values, v ∈ S and a ∈ A(v).
– A request/result of type A∗ is a sequence [a1, . . . , an] such that ai ∈ A.

The composition rules for the connectors related to the above structures are:

C :: Q >> R
r(loop)

loop • [C] :: Q∗ >> R∗
C1 :: Q1 >> R1 . . . Cn :: Qn >> Rn

r(case)
case • [C1, . . . , Cn] :: Q1| · · · |Qn >> R

C(v1) :: Q(v1) >> R . . . C(vn) :: Q(vn) >> R
r(sel)

sel • [C(v1), . . . , C(vn)] :: sel(p ∈ {v1, . . . , vn} : Q(p) >> R)

The execution semantics is:

exec(case • [C1, . . . , Cn], [d, 〈j, q〉] �→ [d′, r]) ↔ exec(Cj, [dj , q] �→ [d′
j , r

′])∧
(∧k �=j d′

k = dk) ∧ r′ Rj ,R
�→ r

exec(sel • [C(v1), . . . , C(vm)], [d, 〈vj , q〉] �→ [d′, r]) ↔ exec(C(vj), [dj , q] �→ [d′
j , r])

∧(∧k �=j d′
k = dk)

exec(loop • C, [d, [q|q]] �→ [d′, [r|r]]) ↔ exec(C, [d, q] �→ [d1, q1])∧
exec(loop • C, [d1, q], [d′, r])

The case component has data(case • [C1, . . . , Cn], 〈d1, . . . , dn〉), with data(Cj , dj)
(similarly for the sel component). The connector case requires that there is a map

r′
Rj ,R�→ r from r′ ∈ Rj into r ∈ R, depending on the result types Rj and R. In

particular:

a
A,A|B�→ 〈1, a〉

b
B,A|B�→ 〈2, b〉

A Software Component Model and Its Preliminary Formalisation 15

The connector sel applies to n instances of a parametric component C(p) :: Q(p) >>
R and executes the one indicated by vj . The loop connector iterates C over a sequence
of requests. Besides these connectors, we also have the pipe connector explained above.

Now we sketch a possible construction of the bank system (Section 3.4) using the
DS partially outlined above.

In Fig. 9, the invocation connectors for the ATM and bank computation units encap-
sulate them into atomic components with the following operation types:

atmC := IA • ATM :: choose() >> (chosen(n, Acc, Op)|notOkP in)
b(n) := IBn • Bankn :: do(n, Acc, Op) >> amount(Acc, A)|refusedOp

Firstly, we informally explain the semantics of the atomic components.
In the operation type of atmC, choose() indicates that the user inputs a PIN and

an operation choice. If the PIN is not recognised, the result is notOkPin, otherwise it
is chosen(n, Acc, Op), indicating that the PIN corresponds to the account Acc of the
bank number n, and Op is the operation chosen.

In the operation type of b(n), do(n, Acc, Op) indicates that an operation Op has
been requested on the account Acc of bank n. The operation Op may be accepted or
refused, as indicated by the result type of amount(Acc, A)|refusedOp. If accepted, the
result amount(Acc, A) indicates that A is the amount of Acc after the operation. The
operation (when not refused) may update the current amount.

Now we compose the atomic components by connectors, to obtain our system. We
firstly build the banks composite of the two banks and sending a requested operation to
the target bank n, by means of a selector connector:

banks := sel • [b(1), b(2)] ::
sel(n ∈ {1, 2} : do(n, Acc, Op)) >> (amount(Acc, A)|refusedOp)

By a pipe, we build the component atmOp, performing a single ATM request and,
by a loop, the component system, looping on ATM requests, as follows.

atmOp := pipe • [atmC, case • [banks, noOperation]] ::
choice() >> (amount(Acc,A)|refusedOp)|notOkP in

system := loop • atmOp :: choice()∗ >> ((amount(Acc,A)|refusedOp)|notOkP in)∗

The internal connector case • [C, noOperation] is to be considered as a part of the
pipe connector, and the noOperation branch is not a sub-component. It maps re-
sults into results and is used to bypass C. In our example, the request type of case •
[banks, noOperation] is sel(n ∈ {1, 2} : do(n, Acc, Op))|notOkPin. If the re-
sult of atmC is 〈2, notOkPin〉, we pipe it into 〈2, notOkPin〉 itself, so that case
passes the result notOkPin to the noOperation branch. If the result of atmC is
〈1, chosen(n, Acc, Op)〉, we pipe it into 〈1, 〈n, do(n, Acc, Op)〉〉, so that the request
〈n, do(n, Acc, Op)〉 is passed to banks.

To illustrate the run-time semantics of connectors, we show the execution of a re-
quest. The whole system has the following data:

– a database atmdb, associating each valid PIN to a bank and an account number;
– databases dbi (with i = 1 or i = 2), containing the accounts of bank i.

16 K.-K. Lau, M. Ornaghi, and Z. Wang

The data-components association should be decided in the deployment phase. Since
here we abstract from it, data are triples d = 〈atmdb, db1, db2〉, where atmdb is used
by atmC, db1 by b(1), and db2 by b(2).

By the semantics of loop, the computation step corresponding to a sequence of re-
quests of length n has the form

[[d0, [choice(), choice(), . . . , choice()]] �→ [dn, [Res1, Res2, . . . , Resn]]]

where each [dn−1, choice()] �→ [dn, Resn] is performed by atmOp. We consider the
first step [d0, choice()] �→ [d1, Res1], and we assume that the the user inputs a correct
PIN and requires a withdrawal of £50, and that the (correct) PIN input is related to the
bank b(2) and the account number Acc = 2341. We assume that the total amount of the
account (stored in db2) is £5170.

By the semantics of the pipe connector, we have two sub-steps:

[d0, choice()] atmC�→ [d0, 〈1, chosen(2, 2341, withdraw(50))〉]

[d0, 〈1, 〈2, op(2, 2341, withdraw(50))〉〉] case•[banks,noOperation]�→ [d1, Res1]

where we indicate on the top of �→ the sub-component performing the step. The first
step corresponds to the semantics of the atomic component atmC informally explained
above, and its result 〈1, chosen(2, 2341, withdraw(50))〉 is piped into the request for
the second step. By the semantics of case, the second step is obtained from the sub-step:

[d0, 〈2, op(2, 2341, withdraw(50))〉] sel•[b(1),b(2)]�→ [d1, Res1]

By the semantics of sel, the latter is obtained from the step

[d0, op(2, 2341, withdraw(50))]
b(2)�→ [d1, 〈1, amount(2341, 5120)〉]

performed by the atomic component b(2), which updates the current amount of the
account 2341 stored in the database db2. By the semantics of case, the result Res1

is obtained by the mapping
R2,R�→ . Here R2 is amount(Acc, A)|refusedOp, and R is

(amount (Acc, A)|refusedOp)|notOkPin. Thus, the mapping is:

〈1, amount(2341, 5120))〉 R2,R�→ Res1 = 〈1, 〈1, amount(2341, 5120)〉〉

The result Res1 : (amount(Acc, A)|refusedOp)|notOkPin indicates that the pin is
okay, the operation has been performed successfully and the new amount is £5120.

5 Discussion

In our component model, exogenous connectors play a fundamental role, not only for
constructing atomic components but also for composing components into composites,
whilst providing interfaces to all these (atomic and composite) components. Indepen-
dently, exogenous connection has been defined as exogenous coordination in coordina-
tion languages for concurrent computation [2]. Also independently, in object-oriented

A Software Component Model and Its Preliminary Formalisation 17

programming, the courier patter [10] uses the idea of exogenous connection. There are
also similarities with Service Oriented Architectures [29], where business processes
accessing (independent) services can be specified by means of an orchestration lan-
guage. However, no current model relies on encapsulation requirements as strong as
ours. We believe that strong encapsulation is a key feature to obtain truly independent
and reusable components.

The preliminary formalisation of our component model provides a semantic frame-
work for our approach to component-based software development. Our model and for-
malisation highlight the basic ideas and fix the minimal requirements for a component
system based on exogenous connectors, whilst leaving completely open the choice of
the specific connectors and of the interface language. The possibility of designing con-
nectors and interfaces in our model is illustrated by the example of Section 4.4, which
outlines part of a possible DS. The example shows that an interface language tailored to
the structural properties of connectors allows us to link the meaning of data involved in
computation to the structure of components. In this way, the semantic framework of our
model should enable us to reason formally not only about the correctness of individual
atomic components, but also about the correctness of any composite component, and
therefore the correctness of any system built from components.

Consequently, two benefits should accrue, viz. predictable assembly of component-
based systems, and verified software built from pre-verified components. Predictable
assembly is the ultimate goal of Component-based Software Engineering, whilst veri-
fied software has remained a grand challenge for a long time [13]. We believe that our
component model can contribute to predictable assembly because it allows us to gen-
erate interfaces to any composite component (or system) we build, directly from the
interfaces of its constituent (sub)components.

By the same token, our model can contribute to the verified software challenge by
breaking the problem down into smaller sub-problems, and in particular by enabling
proof reuse, i.e. using proofs of sub-components directly in the proof of a composite
or system. To realise these benefits, we are implementing our component model in the
Spark [4] language, which has proof tools which can support verification of components.

Our formalisation (and model) is only preliminary at present however. Many issues
still need to be investigated, e.g. what kinds of connectors are useful in practice, con-
sidering the constructs introduced in other approaches, e.g. in web service orchestration
languages such as BPEL [1]. The problem is to establish whether particular connectors
are compositional and preserve strong encapsulation.

For instance, in the bank example, we have used a loop connector at the outer-most
level, simply because it is natural to use such a connector to handle continuous inputs
from clients. This connector, as defined here, is compositional because it iterates on a
finite sequence of requests. Ideally, however, it should allow an infinite stream of inputs,
but unfortunately such a loop connector is not compositional. Clearly whether a loop
terminates is usually only known at run-time. So whether it can ever be used as a com-
position connector at design time remains a moot point. Equally, a non-terminating loop
connector may be acceptable, even desirable, at the outer-most level. It would be inter-
esting to study the possibility of introducing infinite streams into our approach while
maintaining a notion of control encapsulation, by using general formal contexts, such
as FOCUS [7].

18 K.-K. Lau, M. Ornaghi, and Z. Wang

6 Conclusion

In this paper, we have presented a software component model and its preliminary for-
malisation. Encapsulation and compositionality are the key concepts that underlie our
model. In contrast, existing component models tend to use either objects or architectural
units as components, which are neither well encapsulated nor compositional.

Our component model is based on exogenous connectors. Using these connectors to
construct and compose components is the key to achieving encapsulation and composi-
tionality. Composite components constructed by exogenous connectors are self-similar,
which makes a compositional approach to system construction possible. In contrast to
existing software component models, our self-similar components are also encapsulated
and compositional.

Another benefit of exogenous connection is that components are loosely coupled,
since control is originated and encapsulated by connectors, unlike ADL connectors that
do not originate or encapsulate control. As a result, systems are modular and therefore
easier to maintain and re-configure.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for Web Services(BPEL4S) - Version 1.1. IBM, http://www-106.ibm.com/developerworks/
library/ws-bpel/, 2004.

2. F. Arbab. The IWIM model for coordination of concurrent activities. In P. Ciancarini and
C. Hankin, editors, LNCS 1061, pages 34–56. Springer-Verlag, 1996.

3. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig,
B. Paech, J. Wüst, and J. Zettel. Component-based Product Line Engineering with UML.
Addison-Wesley, 2001.

4. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-
Wesley, 2003.

5. D. Box. Essential COM. Addison-Wesley, 1998.
6. M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger, W. Pree, M. Stal, and

C. Szyperski. What characterizes a software component? Software – Concepts and Tools,
19(1):49–56, 1998.

7. M. Broy and K. Stølen. Specification and Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement. Springer, 2001.

8. E. Bruneton, T. Coupaye, and M. Leclercq. An open component model and its support
in Java. In Proc. 7th Int. Symp. on Component-based Software Engineering, pages 7–22.
Springer -Verlag, 2004.

9. J.L. Fiadeiro, A.Lopes, and M.Wermelinger. A mathematical semantics for architectural
connectors. LNCS 2793, pages 178-221, 2003.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. The Courier pattern. Dr. Dobb’s Journal,
Feburary 1996.

11. D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-based
systems. In G.T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Sys-
tems, pages 47–68. Cambridge University Press, 2000.

12. G.T. Heineman and W.T. Councill, editors. Component-Based Software Engineering: Putting
the Pieces Together. Addison-Wesley, 2001.

A Software Component Model and Its Preliminary Formalisation 19

13. IFIP TC2 working conference on Verified Software: Theories, Tools, Experiments, 10-13
October 2005, ETH Zürich, Switzerland. http://vstte.ethz.ch/.

14. J. Ivers, N. Sinha, and K.C Wallnau. A Basis for Composition Language CL. Technical
Report CMU/SEI-2002-TN-026, CMU SEI, 2002.

15. K.-K. Lau and M. Ornaghi. Specifying compositional units for correct program development
in computational logic. In M. Bruynooghe and K.-K. Lau, editor, Program Development
in Computational Logic, Lecture Notes in Computer Science 3049, pages 1–29. Springer-
Verlag, 2004.

16. K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software compo-
nents. In Proc. 8th Int. SIGSOFT Symp. on Component-based Software Engineering, LNCS
3489, pages 90–106, 2005.

17. K.-K. Lau and Z. Wang. A survey of software component models. Pre-print CSPP-
30, School of Computer Science, The University of Manchester, April 2005. http://
www.cs.man.ac.uk/cspreprints/PrePrints/cspp30.pdf.

18. K.-K. Lau and Z. Wang. A taxonomy of software component models. In Proc. 31st Euromi-
cro Conference, pages 88–95. IEEE Computer Society Press, 2005.

19. N.R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software connectors. In
Proc. 22nd Int. Conf. on Software Engineering, pages 178–187. ACM Press, 2000.

20. B. Meyer. The grand challenge of trusted components. In Proc. ICSE 2003, pages 660–667.
IEEE, 2003.

21. Sun Microsystems. Enterprise Java Beans Specification, Version 3.0, 2005.
22. O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Müller, C. Zeidler, T. Genssler,

and R. van den Born. A component model for field devices. In Proc. 1st Int. IFIP/ACM
Working Conference on Component Deployment, pages 200–209. ACM Press, 2002.

23. OMG. UML 2.0 Superstructure Specification. http://www.omg.org/cgi-bin/
doc?ptc/2003-08-02.

24. OMG. CORBA Component Model, V3.0, 2002. http://www.omg.org/technology/
documents/formal/components.htm.

25. F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for component trading and
dynamic updating. In Proc. ICCDS98, pages 43–52. IEEE Press, 1998.

26. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

27. Sun Microsystems. JavaBeans Specification, 1997. http://java.sun.com/
products/javabeans/docs/spec.html.

28. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, second edition, 2002.

29. E. Thomas. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall, 2005.

30. R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala component model
for consumer electronics software. IEEE Computer, pages 78–85, March 2000.

Appendix

We formalise our model as an open specification framework [15]. We distinguish be-
tween open and defined symbols. The meaning of the defined symbols is established by
the definition axioms, in terms of the open ones. The open symbols are to be axiomatised
when designing a specific DS based on exogenous connectors. The constraint axioms
represent proof obligations to be satisfied when axiomatising a DS. The axiomatisation
presented here contains the minimal requirements and has a loose semantics.

20 K.-K. Lau, M. Ornaghi, and Z. Wang

The signature is the one explained in Section 4. We import the parametric abstract
data type List(X). The defined sorts are OpType, List(X), Comp, Instance, and
Step. They are freely generated from the open sorts, according to the following con-
structor axioms (see [15]):

OpType constructed by >>: ReqType × ResType → OpType;
Comp constructed by • : InvConn × Unit → Comp,

• : CompConn × List(Comp) → Comp;
Instance constructed by i : Comp × D → Instance;
Step constructed by �→: D × Request × D × Result → Step;

In Section 4.3 we have informally introduced the semantic function M. Here we
introduce it in the signature by the declaration

M : InvConn × Unit× Step | CompConn × List(Step)× Step

and we axiomatise exec by mutual recursion (axioms dax1,j), using the auxiliary
(overloaded) predicate exec : List(Comp) × List(Step). The other axioms intro-
duce auxiliary predicates used later, in the constraint axioms: dax2 extend the over-
loaded interface relation to sequences of components ([C1, . . . , Cn] :: [Op1, . . . , Opn]
indicates that Ci :: Opi); dax3,k introduce the relations domain, range and stype,
indicating the expected types of requests, data and results in computation steps; dax4,1
introduce total(C, Op), indicating that C :: Op computes a total input-output relation,
and the axiom dax4,2 extends total to lists of components. In the axioms we will use
the following typed variables: i : InvConn, k : CompConn, u : Unit, S : Step,
LC : List(Comp), LS : List(Step), LO : List(Op), Q : ReqType, R : ResType,
q : Request, r : Result, d : D, Op : OpType, and we will leave the most external
quantification understood.
Definition Axioms:

dax1,1 exec(i • u, S) ↔ M(i, u, S)
dax1,2 exec(k • LC, S) ↔ ∃LS(exec(LC,LS) ∧ M(k, LS, S))
dax1,3 exec([], []) ∧ (exec([C|LC], [S|LS]) ↔ exec(C,S) ∧ exec(LC, LS))
dax2 [] :: [] ∧ ([C|LC] :: [Op|LO] ↔ C :: Op ∧ LC :: LO)
dax3,1 domain(d, q, C, Q >> R) ↔ C :: Q >> R ∧ q ∈ Q ∧ data(C,d)
dax3,2 range(d, r, C, Q >> R) ↔ C :: Q >> R ∧ r ∈ R ∧ (data(C,d) ∨ d = halt)
dax3,3 stype([d, q] �→ [d′, r], C, Op) ↔ domain(d, q, C, Op) ∧ range(d′, r, C, Op)
dax3,4 stype([], [], [])∧

(stype([S|LS], [C|LC], [Op|LO]) ↔ stype(S,C, Op) ∧ stype(LS,LC, LO))
dax4,1 total(C, Op) ↔ C :: Op ∧

∀d, q(domain(d, q, C, Op) → ∃d′, r exec(C, [d, q] �→ [d′, r]))
dax4,2 total([], []) ∧ (total([C|LC], [Op|LO]) ↔ total(C,Op) ∧ total(LC, LO))

In the following, instead of ctype(k, LO, O) and stype(S, C, Op) we will use the
more intuitive notation k : LO → Op and S : (C :: OP). Now we give the constraint
axioms. By c1 we require that a composition term k • [T1, . . . , Tn] is a component with
operation type Op only if the subcomponents T1, . . . , Tn agree with the type of k. The
if part is left open and has to be fixed by the composition rules of the specific DS

A Software Component Model and Its Preliminary Formalisation 21

(see Definition 3). By c2,i we require that the semantic relation M conforms to the do-
main and range types of components. The other constraints allow us to prove Theorem
1, which states that each component terminates.

Constraints:

c1 (k • L) :: Op → ∃ LO(L :: LO ∧ k : LO → Op)
c2,1 (i • u) :: Op → ∀ S(M(i, u, S) → S : (i • u :: Op))
c2,2 (k • LC :: Op) ∧ LS : (LC :: LO) → ∀S(M(k,LS, S) → S : (k • LS :: Op))
c3,1 (i • u) :: Op → ∀ d, q(domain(d, q, i • u, Op) → ∃ d′, r M(i, u, [d, q] �→ [d′, r]))
c3,2 (k • LC :: Op) ∧ total(LC,LO) → ∀ d, q (domain(d, q, k • LC, Op)

→ ∃ d′, r(exec(k • LC, [d, q] �→ [d′, r])))

Theorem 1. The following sentences can be proved from the above axioms:
∀C, Op(C :: Op → total(C, Op))

It is worthwhile to remark that constraints are proof obligations when a specific DS
is axiomatised. In particular, c1 is a proof obligation for the composition rules, and
the other constraints are proof obligations for the relation M defining the run-time
semantics. We show how such proof obligations work by proving, as an example, that
the semantics for pipe(Q1 >> R1, Q2 >> R2) satisfies c3,2.

Let pipe • [C1, C2] be a generic pipe component, and [〈d1, d2〉, q1] be a generic
element of its domain. We have to prove that there is a step

exec(pipe • [C1, C2], [〈d1, d2〉, q1] �→ [〈d′1, d′2〉, r2])

By the assumption total([C1, C2] :: [Q1 >> R1, Q2 >> R2]) of c3,2, we get total(C1
:: Q1 >> R1) and total(C2 :: Q2 >> R2). By total(C1 :: Q1 >> R1), there is
[d′1, r1] such that exec(C1, [d1, q1] �→ [d′1, r1]). By the pipe operation we can build
q2 = p(r1), and we get [d2, q2] in the domain of C2. Finally, by total(C2 :: Q2 >>
R2), we can conclude that the required result [〈d′1, d′2〉, r2] exists. Thus, the semantics
of pipe is well defined in our model.

Synchronised Hyperedge Replacement as a Model
for Service Oriented Computing�

Gian Luigi Ferrari1, Dan Hirsch2, Ivan Lanese3, Ugo Montanari1, and Emilio Tuosto4

1 Computer Science Department, University of Pisa, Italy
{giangi, ugo}@di.unipi.it

2 Computer Science Department, University of Pisa, Italy and Department of Computing,
Imperial College, London, UK

dhirsch@doc.ic.ac.uk
3 Computer Science Department, University of Bologna, Italy

lanese@cs.unibo.it
4 Computer Science Department, University of Leicester, UK

et52@mcs.le.ac.uk

Abstract. This tutorial paper describes a framework for modelling several as-
pects of distributed computing based on Synchronised Hyperedge Replacement
(SHR), a graph rewriting formalism. Components are represented as edges and
they rewrite themselves by synchronising with neighbour components the pro-
ductions that specify their behaviour. The SHR framework has been equipped
with many formal devices for representing complex synchronisation mechanisms
which can tackle mobility, heterogeneous synchronisations and non-functional
aspects, key factors of Service Oriented Computing (SOC). We revise the SHR
family as a suitable model for contributing to the formalisation of SOC systems.

1 Introduction

Modern distributed inter-networking systems are very complex and constituted by a
varied flora of architectures and communicating infrastructures. Such systems are het-
erogeneous, geographically distributed and highly dynamic since the communication
topology can vary and the components can, at any moment, connect to or detach from
the system. Recently, Service Oriented Computing (SOC) has emerged as a suitable
paradigm for specifying such global systems and applications. Engineering issues are
tackled by exploiting the concept of services, which are the building blocks of systems.
Services are autonomous, platform-independent, mobile/stationary computational enti-
ties. In the deployment phase, services can be independently described, published and
categorised. At runtime they are searched/discovered and dynamically assembled for
building wide area distributed systems.

All this requires, on the one hand, the development of foundational theories to cope
with the requirements imposed by the global computing context, and, on the other hand,
the application of these theories for their integration in a pragmatic software engineer-
ing approach. At the architectural level, the fundamental features to take into account
for the description of components and their interactions include: dynamic (possibly self

� Partially supported by the Project EC FET – Global Computing 2, IST-2005-16004 SENSORIA.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 22–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Synchronised Hyperedge Replacement as a Model for SOC 23

organising) reconfiguration, mobility, coordination, complex synchronisation mecha-
nisms, and awareness of Quality of Service (QoS).

Process calculi are among the most successful models for concurrency and, in the
last years, CSP [19], CCS [26] and π-calculus [27] gained paramount relevance and
helped to understand many of the phenomena arising in distributed computing. Many
of the recent proposals like Ambient [2], Klaim [8], Join [12] and D-π [30] (to cite a
few) have been deeply inspired by the work on CSP, CCS and π-calculus. Also, dis-
tributed systems can be naturally modelled by means of graph-based techniques [32].
Among those, we choose Synchronised Hyperedge Replacement (SHR) where systems
are modelled as hypergraphs, that is graphs where each (hyper)edge can be connected
to any number of nodes (instead of just two). Edges represent components connected
via shared nodes (representing communication ports).

Originally, SHR aimed at modelling distributed systems and software architectures,
however, it turns out to be expressive enough to model many process calculi. In fact, it
can naturally encode π-calculus [14], Ambient and Klaim [33] or Fusion [23]. In our
opinion, SHR conjugates the ability of expressing various forms of synchronisation and
communication features (typical of process calculi) with a suggestive visual represen-
tation of systems’ topology (typical of graph models). In SHR, constraint satisfaction
is exploited to guide rewriting by synchronising context-free productions that specify
the behaviour of single edges. Productions define how an edge can be rewritten into a
generic graph and the conditions that this rewriting imposes on adjacent nodes. Global
transitions are obtained by parallel application of productions with “compatible” condi-
tions. What “compatible” exactly means depends on the chosen synchronisation model.
The Hoare model (so called since it extends CSP synchronisation [19]), for instance,
requires that all edges connected to the same node execute the same action on it. In-
stead, the Milner model (extending the model of CCS [26]) requires exactly two edges
to interact by performing complementary actions while the other edges must stay idle
on that node. SHR, and in particular its variant SHR-HS [25] (outlined in § 7), allows
also different synchronisation policies to live together in a single framework.

Aims and structure of the paper. A number of published results (see the brief bibli-
ographic note at the end of this section) is here collected with the main goal to give
a systematic presentation of the SHR approach. A relevant effort has indeed been put
on giving a uniform and incremental presentation. Also, we tried to help intuition by
showing how the various synchronisation mechanisms actually extend the basic model
discussed in § 3. It might be useful to have the many versions of SHR harmonised
within a common formal context and we hope to have been able to clearly introduce the
SHR family by rephrasing it in simpler, yet rigorous, definitions.

Preliminary definitions and notations for graphs are reported in § 2. We introduce ba-
sic Milner SHR (bMSHR for short) in § 3, where the mathematical basis of SHR are dis-
cussed in the simpler framework based on Milner synchronisation without
considering name mobility and name fusion. These aspects are added in § 4, giving
rise to MSHR. This extension allows to substantially increase the expressivity of the
approach for modelling both architectural and programming aspects of mobile and re-
configurable distributed applications. In § 5 we define Synchronisation Algebras with
Mobility (SAMs for short), an abstract formalisation of the concept of synchronisation

24 G.L. Ferrari et al.

model, extending Winskel’s synchronisation algebras (SAs) [35] to cope with mobility
and handling of local resources. SAMs are exploited in § 6, where we present parametric
SHR [24,22] which permits to abstract from the synchronisation model by choosing each
time the most adequate SAM (whose primitives correspond to the ones used in the mod-
elled system). Parametric SHR smoothly adapts SHR to various interaction mechanisms;
for instance, it can uniformly represent MSHR and SHR with Hoare synchronisation.
A first SAM-based SHR is SHR for heterogeneous systems (SHR-HS) [25,21] in § 7
where different SAMs can be associated to different nodes. SHR-HS has been devised
to model systems where heterogeneity concerns both applications and their underly-
ing middlewares so that different synchronisation policies can be used and dynamically
changed (and, hence, negotiated) within systems. This feature is fundamental to model
coordination at the application level, where interaction patterns are dynamically deter-
mined. Another SAM-based SHR proposal is SHReQ [17] (§ 8), an SHR framework
for handling abstract high-level QoS requirements expressed as constraint-semirings
(c-semirings) [1], algebraic structures suitable for multi-criteria QoS [6]. We exploit the
algebraic features of c-semirings by embedding them in the SHR synchronisation mech-
anism: interactions among components are ruled by synchronising them on actions that
are c-semiring values, expressing QoS constraints imposed by all components participat-
ing to the synchronisation. Finally, in § 9 we outline our plans for future investigations.

Brief SHR bibliography. Various facets of SHR have been studied w.r.t. issues related
to distributed systems. SHR has been introduced in [3] with the name of “Grammars
for Distributed Systems”. Here Hoare synchronisation was used, and the emphasis was
on analysing the history of the computation, explicitly represented as part of the graph.
Infinite computations and concurrency issues have been considered in [9] while [4] ex-
tends SHR by allowing to merge and split nodes. In [31] there is a presentation of SHR
inside the Tile Model [13], and an approach to find the allowed transitions using con-
straint solving techniques is also proposed. A main extension is given in [15], where
node mobility is added. This is obtained by allowing actions to carry tuples of nodes.
When actions synchronise the carried tuples of nodes are merged. This allows to create
new connections at runtime. In literature, inference rules (in the SOS style [29]) based
on a notation for representing graphs as syntactic judgements are defined for different
mobile synchronisation mechanisms, presenting SHR as a general model for mobile
process calculi. However, SHR extends process algebras to allow synchronisations of
any number of partners and on any number of channels at the same time. In [15] only
newly created nodes can be communicated and merged. In [20] a mapping into the Tile
Model [13] is used to prove that an ad hoc bisimilarity is a congruence. Another impor-
tant step is made in [16], where also old nodes can be communicated, but they can be
merged only with new nodes. This kind of SHR, with Milner synchronisation, is shown
to be strictly related [16] to π-calculus [27]. A later improvement is presented in [10],
where fusions of arbitrary nodes are allowed. These are exploited [10,23] to give se-
mantics to the Ambient Calculus [2] and to the Fusion Calculus [28]. Finally, in [24,22]
the SHR synchronisation mechanism is generalised allowing a complete parametrisa-
tion of SHR w.r.t. the synchronisation and mobility policies. Many applications of SHR
can be found in literature, in particular in the field of process calculi [33], of software
architectures [14,15,5] and QoS [17].

Synchronised Hyperedge Replacement as a Model for SOC 25

2 Hypergraphs

In this section we introduce a presentation of (hyper)graphs as (syntactic) judgments,
which is convenient to write the rules for describing SHR behaviour. We first introduce
some mathematical notations.

Notation. Given a set V , we let V ∗ be the set of tuples on V . We denote a tuple as
v = 〈v1, . . . ,vn〉, the empty tuple as 〈〉, the i-th element of v as v[i], and write |v| for the
length of v.

Given a function f , dom(f) is its domain, and function f�S is the restriction of f to
S, namely f�S (x) = f (x) if x ∈ S, f�S (x) is undefined otherwise. We denote with f ◦ g
the composition of f and g, namely (f ◦ g)(x) = f (g(x)).

For a syntactic structure s with names and binders, fn(s) is the set of its free names.
A graph is composed by a set of nodes and a set of (hyper)edges which connect

nodes. Set N is a countable infinite set of node names while set L is the set of edge
labels. A label L ∈ L is assigned a rank, i.e., a natural number (denoted as rank(L)). An
edge labelled by L connects rank(L) nodes and a node connected to an edge is said to
be an attachment node of that edge.

A syntactic judgment specifies a graph along with its interface, i.e., its free nodes.

Definition 2.1 (Graphs as judgements). A judgment has form Γ � G where:

1. Γ ⊆ N is a finite set of names (the free nodes of the graph);
2. G is a graph term generated by the grammar

G ::= L(x) | G|G | νy G | nil

where x is a tuple of names, L ∈ L , rank(L) = |x| and y is a name.

In νy G, restriction operator ν binds y in G, fn(G) is defined accordingly as usual and
we demand that fn(G) ⊆ Γ.

Graph nil is the empty graph, | is the parallel composition operator of graphs (merging
nodes with the same name) and νy is the restriction operator of nodes; free/bound nodes
correspond to free/bound names. Edges are terms of the form L(x1, . . . ,xn), where the
xi are arbitrary names and rank(L) = n. Condition fn(G) ⊆ Γ accounts for having free
isolated nodes in G (e.g., {x} � nil is graph with only the isolated node x).

We assume that restriction has lower priority than parallel composition. For concise-
ness, curly brackets are dropped from interfaces Γ in judgements and Γ1,Γ2 denotes
Γ1 ∪Γ2, provided that Γ1 ∩Γ2 = /0 (e.g., Γ,x = Γ∪{x}, if x /∈ Γ).

Example 2.2. Consider the judgment

u � νz1, . . . ,zn Bn(u,z1, . . . ,zn)|S1(z1)| . . . |Sn(zn)

which describes a system where many servers Si are connected to the network via a
manager Bn and can be graphically represented as:

◦z1 ...
S1��

•
u

Bn�� ◦
...

zi
Si

��

...

◦zn Sn��

...

26 G.L. Ferrari et al.

Edges are drawn as rectangles and nodes are bullets (empty for bound nodes and solid
for free nodes). A connection between a node and an edge is represented by a line,
called tentacle; an arrowed tentacle indicates the first attachment node of the edge. The
other nodes are determined by numbering tentacles clockwise (e.g., for Bn, u is the first
attachment node, z1 is the second and so on).

Definition 2.3 (Structural congruence on graph judgements). Graph terms are
considered up to axioms (AG1÷7) below:

(AG1) (G1|G2)|G3 ≡ G1|(G2|G3) (AG2) G1|G2 ≡ G2|G1 (AG3) G|nil ≡ G

(AG4) νx νy G ≡ νy νx G (AG5) νx G ≡ G if x /∈ fn(G)
(AG6) νx G ≡ νy G{y/x}, if y /∈ fn(G) (AG7) νx G1|G2 ≡ G1|νx G2, if x /∈ fn(G1)

For judgments, we define Γ1 � G1 ≡ Γ2 � G2 iff Γ1 = Γ2 and G1 ≡ G2.

Axioms (AG1), (AG2) and (AG3) define respectively the associativity, commutativity
and identity over nil for operator |. Axioms (AG4) and (AG5) state that nodes can be
restricted only once and in any order. Axiom (AG6) defines α-conversion of a graph w.r.t
its bound names. Axiom (AG7) defines the interaction between restriction and parallel
composition (note that function fn is well-defined on equivalence classes). We consider
judgements for graphs up to structural congruence which amounts to consider graphs
up to graph isomorphisms that preserve free nodes, labels of edges, and tentacles [14].

3 Basic Milner SHR

The simplest version of SHR is basic Milner SHR (bMSHR), where “basic” refers to
the absence of mobility and “Milner” is reminiscent of the CCS synchronisation. Later,
bMSHR will be extended with mobility and more complex synchronisation policies.

Milner synchronisation models two-parties synchronisation and requires that actions
are partitioned into normal actions a and co-actions a (where a = a). Furthermore, there
are two special actions: an action ε standing for “not taking part to the synchronisation”
and an action τ representing a complete binary synchronisation. Thus, Milner synchro-
nisation on a node x requires two complementary actions to interact, while other con-
nected edges must stay idle on x (i.e., they all exhibit action ε on x). The final result of
the synchronisation is τ.

Notation. A renaming is a function σ : N →N , xσ is the application of σ to x∈ dom(σ)
and yields σ(x). If σ ◦σ = σ, the renaming is said idempotent and is injective when σ
is injective. Renaming {x/y} is such that {x/y}(y) = x and {x/y}(z) = z for all z �= y in
the domain of {x/y}.

We use {(x,y) | x ∈ dom(f) ∧ y = f (x)} as a set-theoretic representation of a
function f .

We can now define transitions, and then we show some inference rules to derive
them from productions.

Definition 3.1 (SHR transitions). A relation Γ � G
Λ−→ Γ � G′ is an SHR transition if

Γ � G and Γ � G′ are judgments for graphs, and Λ : Γ → Act is a total function, where
Act is a set of actions.

Synchronised Hyperedge Replacement as a Model for SOC 27

Intuitively transition Γ � G
Λ−→ Γ � G′ specifies that graph Γ � G is rewritten into Γ � G′

and, while doing this, the action Λ(x) is performed on each node x in the interface Γ.
Notice that the starting and the final graph share the same interface.

Productions are special transitions specifying the behaviour of a single edge.

Definition 3.2 (Productions). A production is an SHR transition of the form:

x1, . . . ,xn � L(x1, . . . ,xn)
Λ−→ x1, . . . ,xn � G (1)

where rank(L) = n and x1, . . . ,xn are all distinct. Production (1) is idle iff Λ(xi) = ε for
each i and G is L(x1, . . . ,xn).

A transition is obtained by composing productions in a set P that contains any idle
production and is closed under all injective renamings (that is, the application of an
injective renaming to a productions in P yields productions in P).

Composition is performed by merging nodes and thus connecting the edges. Syn-
chronisation conditions as specified in productions must be satisfied.

Definition 3.3 (Inference rules for bMSHR). The admissible behaviours of bMSHR
are defined by the following inference rules.

(par-b)
Γ � G1

Λ−→ Γ � G2 Γ′ � G′
1

Λ′
−→ Γ′ � G′

2 Γ∩Γ′ = /0

Γ,Γ′ � G1|G′
1

Λ∪Λ′
−−−→ Γ,Γ′ � G2|G′

2

(merge-b)
Γ � G1

Λ−→ Γ � G2

Γσ � G1σ Λ′
−→ Γσ � G2σ

where σ : Γ → Γ is an idempotent renaming and:

1. for all x,y ∈ Γ such that x �= y, if xσ = yσ, Λ(x) �= ε and Λ(y) �= ε then
(∀z ∈ Γ\ {x,y}.zσ = xσ ⇒ Λ(z) = ε) ∧ Λ(x) = a ∧ Λ(y) = a ∧ a �= τ

2. Λ′(z) =

⎧⎨⎩
τ if xσ = yσ = z ∧ x �= y ∧ Λ(x) �= ε ∧ Λ(y) �= ε
Λ(x) if xσ = z ∧ Λ(x) �= ε
ε otherwise

(res-b)
Γ,x � G1

Λ−→ Γ,x � G2 Λ(x) = ε∨Λ(x) = τ

Γ � νx G1
Λ�Γ−−→ Γ � νx G2

(new-b)
Γ � G1

Λ−→ Γ � G2 x /∈ Γ

Γ,x � G1
Λ∪{(x,ε)}−−−−−→ Γ,x � G2

Rule (par-b) deals with the composition of transitions which have disjoint sets of nodes
and rule (merge-b) allows to merge nodes. Condition 1 requires that at most two non ε
actions are performed on nodes to be merged. If they are exactly two then they have to
be complementary, and the resulting action is τ (condition 2). Since σ is required to be
idempotent, it yields an equivalence relation on Γ and a choice of a standard represen-
tative. In fact, x,y ∈ Γ are equivalent under σ iff xσ = yσ; the representative element

28 G.L. Ferrari et al.

of the equivalence class of x is xσ. Rule (res-b) binds node x. This is allowed only if
either τ or ε actions are performed on x, forcing either a complete synchronisation (τ)
or no synchronisation (ε). Rule (new-b) allows to add to the source graph an isolated
free node where an action ε is performed.

Example 3.4. Consider an instance of the system in Example 2.2 where edge
B2(u,z1,z2) takes requests on node u and broadcasts them to S1(z1) and S2(z2) by syn-
chronising on nodes z1 and z2, respectively. The productions for B2 and Si (i ∈ {1,2})
are:

u,z′1,z
′
2 � B2(u,z′1,z

′
2)

(u,req),(z′1,req),(z′2,req)
−−−−−−−−−−−−−→ u,z′1,z

′
2 � B2(u,z′1,z

′
2) (2)

zi � Si(zi)
(zi,req)−−−−→ zi � S′i(zi) (3)

The inference rules for bMSHR can be used to derive transition

u,z1,z2 � B2(u,z1,z2)|S1(z1)|S2(z2)
(u,req)−−−−→ u � νz1,z2 B2(u,z1,z2)|S′1(z1)|S′2(z2)

a proof of which can be as follows. First, rule (par-b) is applied to productions (2)
and (3) for S1 and then applied again the production (3) for S2. This yields a transition
whose target graph is u,z′1,z

′
2,z1,z2 � B2(u,z′1,z

′
2)|S1(z1)|S2(z2). Then, synchronisation

is obtained by applying rule (merge-b) with substitution {z1/z′1,z2/z′2} so that, on node
z1 (resp. z2), complementary actions req by B2 and req by S1 (resp. S2) are performed,
producing a τ. Finally, z1 and z2 can be restricted using rule (res-b).

4 Milner SHR

This extension introduces a main feature of SHR, namely mobility. In the SHR frame-
work mobility is intended as node mobility: nodes can be created and communicated
together with actions, and when two actions interact corresponding nodes are merged.
This allows to change the graph topology by creating new links during the computation.

We extend the definition of SHR transitions (Definition 3.1), adding the mobility part
according to the approach of [10], which allows to send and merge both already existent
and newly created nodes. We first formalise our alphabet of actions.

Definition 4.1 (Action signature). An action signature is a triple (Act,ar,ε) where Act
is the set of actions, ε ∈ Act, and ar : Act → N is the arity function satisfying ar(ε) = 0.

The action signature (ActMil,ar,ε) for Milner synchronisation has further structure. In
fact, ActMil = A ∪A ∪{τ,ε} where A is the set of (input) actions and A = {a | a ∈ A}
is the set of co-actions, τ is a special action with ar(τ) = 0. Finally, for each a ∈ A we
have the constraint that ar(a) = ar(a).

Mobility is modelled by letting function Λ in transitions to carry tuples of nodes.
Hereafter, Λ : Γ → (Act ×N ∗) is a total function assigning, to each node x ∈ Γ, an
action a ∈ Act and a tuple y of node references sent to x such that ar(a) = |y|. We let
actΛ(x) = a and nΛ(x) = y when Λ(x) = (a,y). Finally, the set of communicated (resp.
fresh) names of Λ is n(Λ) = {z | ∃x.z ∈ nΛ(x)} (resp. ΓΛ = n(Λ)\Γ).

Synchronised Hyperedge Replacement as a Model for SOC 29

Definition 4.2 (SHR transitions with mobility). Given an action signature (Act,ar,ε)
as described above, a SHR transition with mobility is a relation of the form:

Γ � G
Λ,π−−→ Φ � G′

where π : Γ → Γ is an idempotent renaming accounting for node merging such that
∀x ∈ n(Λ). xπ = x. Finally, Φ = Γπ∪ΓΛ.

As for σ in Definition 3.3, idempotency of π introduces equivalence classes on nodes
and maps every node into a standard representative. By condition ∀x ∈ n(Λ). xπ = x,
only references to representatives can be sent while Φ = Γπ∪ΓΛ states that free nodes
are never erased (⊇) and new nodes are bound unless communicated (⊆).

Note that Φ is fully determined by Λ and π (since Γ = dom(Λ)) and that, unlike in
bMSHR, it might be Φ �= Γ.

The definition of productions is extended as follows.

Definition 4.3 (Productions). A production is now an SHR transition of the form:

x1, . . . ,xn � L(x1, . . . ,xn)
Λ,π−−→ Φ � G (4)

where rank(L) = n and x1, . . . ,xn are all distinct. Production (4) is idle if Λ(xi) = (ε,〈〉)
for each i, π = id and Φ � G = x1, . . . ,xn � L(x1, . . . ,xn).

As before, sets of productions include all the idle productions and are closed under
injective renamings.

MSHR semantics (and the successive extensions) exploits a most general unifier
(mgu) accounting for name fusions. The result of the application of the mgu is the
fusion of nodes (new and old ones) changing the topology of graph (i.e. mobility).

The rules for MSHR presented below extend the ones for bMSHR with the machin-
ery to deal with mobility.

Definition 4.4 (Inference rules for MSHR). The admissible behaviours of MSHR are
defined by the following inference rules.

(par-M)
Γ � G1

Λ,π−−→ Φ � G2 Γ′ � G′
1

Λ′,π′−−−→ Φ′ � G′
2 (Γ∪Φ)∩ (Γ′ ∪Φ′) = /0

Γ,Γ′ � G1|G′
1

Λ∪Λ′,π∪π′−−−−−−→ Φ,Φ′ � G2|G′
2

(merge-M)
Γ � G1

Λ,π−−→ Φ � G2

Γσ � G1σ Λ′,π′−−−→ Φ′ � νU G2σρ
where σ : Γ → Γ is an idempotent renaming and:

1. for all x,y ∈ Γ such that x �= y, if xσ = yσ ∧ Λ(x) �= ε ∧ Λ(y) �= ε then
(∀z ∈ Γ\ {x,y}.zσ = xσ ⇒ Λ(z) = ε) ∧ Λ(x) = a ∧ Λ(y) = a ∧ a �= τ

2. S1 = {nΛ(x) = nΛ(y) | xσ = yσ}
3. S2 = {x = y | xπ = yπ})
4. ρ = mgu((S1∪S2)σ) and ρ maps names to representatives in Γσ whenever possible

30 G.L. Ferrari et al.

5. Λ′(z) =

⎧⎨⎩
(τ,〈〉) if xσ = yσ = z ∧ x �= y ∧ actΛ(x) �= ε ∧ actΛ(y) �= ε
(Λ(x))σρ if xσ = z ∧ actΛ(x) �= ε
(ε,〈〉) otherwise

6. π′ = ρ�Γσ
7. U = (Φσρ)\Φ′

(res-M)
Γ,x � G1

Λ,π−−→ Φ � G2

Γ � νx G1
Λ�Γ,π�Γ−−−−→ Φ′ � νZ G2

where:

6. (∃y ∈ Γ.xπ = yπ) ⇒ xπ �= x
7. actΛ(x) = ε∨ actΛ(x) = τ
8. Z = {x} if x /∈ n(Λ�Γ),Z = /0 otherwise

(new-M)
Γ � G1

Λ,π−−→ Φ � G2 x /∈ Γ∪Φ

Γ,x � G1
Λ∪{(x,ε,〈〉)},π−−−−−−−−→ Φ,x � G2

Rules (par-M) and (new-M) are essentially as before. In rule (merge-M) now mobility
must be handled. In particular, when actions and co-actions synchronise, parameters in
corresponding positions are merged. This set of merges is computed in S1 (condition 2),
while S2 (condition 3) describes old merges traced by π. Condition 4 combines the two
sets of equations, updates them with σ and then chooses a representative for each equiv-
alence class using a mgu. Among the possible equivalent mgus we choose one of those
where nodes in Γσ are chosen as representatives (if they are in the equivalence class).
This is necessary to avoid unexpected renamings of nodes because of fusions with new
nodes which may then disappear. Note that (condition 5) Λ is updated with the merges
specified by ρ and that (condition 6) π′ is ρ restricted to the nodes of the graph which
is the source of the transition. We may have to reintroduce restrictions (condition 7) if
some nodes were extruded by the synchronised actions, since they will no more appear
in the label. In rule (res-M) the bound node x must not be a representative if it belongs
to a non trivial equivalence class.

Example 4.5. Consider the system in Example 3.4 with two servers S1 and S2, but
where a client C must be first authenticated by an authority A. The graph represent-
ing the system is as follows:

◦z1 S1��

C �� •
x

A�� ◦
u

B2��

◦z2 S2��

We can model the fact that C is allowed to access the services by letting it move from
node x to node u, namely by extruding the private node u to C. The productions for C
and A are as follows:

Synchronised Hyperedge Replacement as a Model for SOC 31

x �C(x)
(x,auth,〈y〉)−−−−−−→ x,y �C′(y) x,u � A(x,u)

(x,auth,〈u〉)−−−−−−→ x,u � A(x,u)

where, in the first production the client becomes attached to the received node y after
the transition. In fact, when synchronisation is performed, new node y and node u are
merged, with u as representative. Note that the restriction on u is reintroduced. Starting
from x � νu C(x) | A(x,u) we will obtain x � νu C′(u) | A(x,u).

5 Synchronisation Algebras with Mobility

Synchronisation Algebras with Mobility (SAMs) allow us to parameterise SHR w.r.t.
synchronisation models, e.g., MSHR will come out as just a particular instance of the
general framework. SAMs extend synchronisation algebras (SAs), introduced in the
framework of calculi for interaction such as CCS in [35]. Specifically, SAMs allow us
to deal with mobility and to handle local resources (i.e., restriction), as they are used in
SHR and more generally in mobile calculi. In general, SAMs must be able to express
the synchronisation among any number of actions, each carrying its tuple of parameters.
Actions from a multiset {|a1, . . . ,an|} can interact, and either they express compatible
constraints, thus the system can perform a transition where these actions are executed
on the same node, or they express incompatible constraints. For instance, in Milner
synchronisation, a synchronisation among a, a and ε is allowed, while one involving
a and b is not. With respect to [35], SAMs require to manage nodes carried by the
actions.

A main ingredient in the formalisation of SAMs is the action synchronisation, which
specifies an allowed pattern of interaction between two components. Before giving the
definition, some notations are required.

Notation. The disjoint union of sets A and B is denoted as A�B and inj1 : A → A�B
(resp. inj2 : B → A�B) is the left (resp. right) inclusion. When no confusion arises,
inji(x) is written as x. Given inji(x) ∈ A�B, comp(inji(x)) is element inj3−i(x) in B�A.

The set {1, . . . ,n} is denoted by n (where 0
def= /0) and idn is the identity function on

it. Finally, given two functions f : A → C and g : B → D, [f ,g] : A�B → C�D is the
pairing of f and g, namely, [f ,g] applies f to elements in A and g to those in B.

Definition 5.1 (Action synchronisation). Given an action signature A = (Act,ar,ε),
an action synchronisation on A is a triple (a,b,(c,Mob,

.=)) where a,b,c ∈ Act, Mob :
ar(c) → ar(a)� ar(b) and

.= is an equivalence relation on ar(a)� ar(b).

An action synchronisation (a,b,(c,Mob,
.=)) relates two synchronising actions a and

b to a triple (c,Mob,
.=), representing the results of the synchronisation of a and b.

Action c is the out-coming action, Mob is a communication function that tells how
the parameters of c are taken from those of a and b and

.= is an equivalence relation
on the parameters of a and b which generalises set S1 in rule (merge-M) of Defin-
ition 4.4. Since actual parameters are not known at SAM-definition time, Mob and
.= are defined according to the positions of the parameters in the tuples: for instance

32 G.L. Ferrari et al.

Mob(1) = inj2(3) means that the first parameter of c comes from the third parameter of
the second action.

In order to finitely specify interactions among an unbound number of components, a
compositional approach is needed. The intuition is that action synchronisation specifies
how two components interact. The result of a synchronisation of many actions must be
independent of the order of composition, hence composition of action synchronisations
must be associative and commutative. The formalisation of this requirement is rather
technical, thus we refer the interested reader to [22].

Action synchronisation relations impose conditions on action synchronisations.

Definition 5.2 (Action synchronisation relation). An action synchronisation relation
on an action signature A = (Act,ar,ε) is a set ActSyn of action synchronisations s.t.:

1. (a,b,(c,Mob,
.=)) ∈ ActSyn ⇒ (c = ε ⇔ a = b = ε);

2. composition of action synchronisations is associative and commutative.

Condition 1 states that action ε can arise only as combination of actions ε. Note that
condition 2 must be enforced not only as far as actions are concerned, but also for the
part related to communication (Mob) and fusions (

.=). It amounts to say that when all the
actions in a tuple are composed, the result is independent on the order of composition.
This can be formalised as a condition on the used SAM.

Having multiple action synchronisations for the same pair of interacting actions al-
lows nondeterminism. In particular, the result of the synchronisation is nondeterminis-
tically chosen among the allowed alternatives.

As last step toward SAMs, we introduce a commonly used communication function
and a related equivalence relation. The two definitions jointly define message passing,
in the sense that they merge parameters in the same position and they make the result
available as parameter of the composed action.

Definition 5.3 (Communication function for message passing). The communication
function for message passing MPi, j with i, j ∈ N is the function from max(i, j) to (any
superset of) i� j such that MPi, j(m) = inj1(m) if m ≤ i, MPi, j(m) = inj2(m) otherwise.

Definition 5.4 (Equivalence relation for message passing). The equivalence relation
for message passing EQi with i ∈ N is the equivalence relation on any superset S of i� i
given by idS ∪{(inj1(m), inj2(m)) | m ≤ i}.

Example 5.5. A synchronisation between two actions a and b of arity 2 and 4, giving
an action c of arity 3, with Mob = MP2,3 and

.= = EQ2 can be depicted as

=.

=.

a b c

Mob

Mob

Mob

Synchronised Hyperedge Replacement as a Model for SOC 33

The first two parameters of c are obtained by merging the ones from a and b, while the
third one is taken from b. The fourth parameter of b is simply discarded.

Definition 5.6 (SAM). A quintuple (I,A, Init,Fin,ActSyn) is a Synchronisation Alge-
bra with Mobility over the action signature A where I is an identifier, Init,Fin ⊆ Act
are the initial actions and final actions respectively and ActSyn is an action synchroni-
sation relation on A. We require that ε ∈ Init and

1. ∀i∈ Init,a∈Act \{ε}.(i,a,(c,Mob,
.=))∈ActSyn =⇒ c = a ∧ Mob = MPar(i),ar(a)

∧ .= ⊆ EQar(a);
2. ∀a ∈ Act.∃i ∈ Init.(i,a,(a,MPar(i),ar(a),

.=)) ∈ ActSyn with
.= ⊆ EQar(a).

Identifier I is used to distinguish SAMs with the same structure but that can be com-
posed in different ways (this will be used in SHR-HS, see § 7). Set Init contains ε and
some trivial actions that can be executed by nodes themselves, and they are a techni-
cal trick to deal with isolated nodes. Condition 1 specifies that the synchronisation of
an initial action i with any action a �= ε, if allowed, preserves a and its parameters.
Condition 2 requires that each action a has an action i to synchronise with.

Finally, the set Fin of final actions contains the actions that are considered complete,
and which thus do not require any further interaction in order to be meaningful. From a
technical point of view, these are the actions allowed on bound channels, and they allow
to deal with local resources.

Remark 5.7. From now on, to simplify the presentation, we will not write explicitly
the action synchronisations obtained by commutativity; furthermore, given a SAM A =
(I,A, Init,Fin,ActSyn), (a,b,(c,Mob,

.=)) ∈ A denotes (a,b,(c,Mob,
.=)) ∈ ActSyn.

We present some examples of SAMs over a parametric set inp of input actions.

Definition 5.8 (Milner SAM). For SAM Milnerinp, Init = {ε}, Fin = {τ,ε} where

– Act = {τ,ε}∪ a∈inp{a,a} with ar(a) = ar(a) for each a ∈ inp, ar(τ) = 0;
– (λ,ε,(λ,MPar(λ),0,EQ0)) ∈ ActSyn for each λ ∈ Act,

(a,a,(τ,MP0,0,EQar(a))) ∈ ActSyn for each a ∈ inp.

The first action synchronisation specifies that an action synchronising with ε is just
propagated, together with its parameters. The second action synchronisation formalises
the reaction of an action and the corresponding co-action. As expected, corresponding
parameters are merged by EQar(a).

Definition 5.9 (Hoare SAM). SAM Hoareinp is given by:

– Act = Init = Fin = {ε}∪ inp;
– (λ,λ,(λ,MPar(λ),ar(λ),EQar(λ))) ∈ ActSyn for each λ ∈ Act.

The only (schema of) action synchronisation in Hoare SAM models the agreement
among the participants on the action to perform. During synchronisation corresponding
parameters are merged and the results are propagated.

34 G.L. Ferrari et al.

Definition 5.10 (Broadcast SAM). For SAM Bdcinp, Init = {ε} ∪ inp, Fin = {ε} ∪
a∈inp{a} and

– Act = {ε}∪ a∈inp{a,a} with ar(a) = ar(a) for each a ∈ inp;
– (a,a,(a,MPar(a),ar(a),EQar(a))) ∈ ActSyn for each a ∈ inp,

(a,a,(a,MPar(a),ar(a),EQar(a))) ∈ ActSyn for each a ∈ inp∪{ε}.

The main difference w.r.t. Milner SAM is that here an output can synchronise with more
than one input, thus when synchronisation is performed the result is the output itself,
which can thus interact with further inputs. Notice also that two inputs can interact (this
is required to ensure associativity), thus when an output is finally met, its parameters
are merged with the ones of all the inputs. If no output is met then the resulting action
is an input, which is not allowed on a bound channel. Also, broadcast SAM forces all
the connected edges to interact with an output, in fact they cannot perform an action
ε. Thus this SAM models secure broadcast, where a check is made to ensure that the
broadcasted message is received by all the listeners. Multicast SAM Mulinp can be easily
obtained from Bdcinp by adding (λ,ε,(λ,MPar(λ),0,EQ0)) to ActSyn, for each λ ∈ Act.

6 Parametric SHR

We outline parametric SHR, an SHR framework where the synchronisation policy can
be freely chosen. The main ingredients of this model are a SAM, which specifies the
synchronisation model used, and a set of inference rules, parametric on the above SAM,
used to derive transitions from productions. Clearly, productions for parametric SHR
must use actions in the set of actions ActA of the SAM A used as parameter.

For space constraints we show just the rule (merge-p), and we outline the main differ-
ences between the other rules and the corresponding ones for Milner synchronisation.
For a full formal account of the topic see [24,22].

Definition 6.1 (Merge rule for parametric SHR). Let σ = {x/y},

(merge-p)
Γ,x,y � G1

Λ,π−−→ Φ � G2

Γ,x � G1σ Λ′,π′−−−→ Φ′ � νU G2σρ

1. Λ(x) = (a1,v1),Λ(y) = (a2,v2)
2. (a1,a2,(c,Mob,

.=)) ∈ ActSyn
3. S1 = {vi1 [j1] = vi2 [j2] | inji1(j1)

.= inji2(j2)}
4. S2 = {t = u | tπ = uπ}
5. ρ = mgu((S1∪S2)σ) and ρ maps names to representatives in Γ,x whenever possible
6. w[i] = (v j[k])σρ if Mob(i) = inj j(k)

7. Λ′(z) =
{

(c,w) if z = x
(actΛ(z),(nΛ(z))σρ) for each z ∈ Γ

8. π′ = ρ�Γ,x

9. U = Φσρ\Φ′

Synchronised Hyperedge Replacement as a Model for SOC 35

The main difference between the parametric inference rules and the ones in Defini-
tion 4.4 is that the parametric ones can be instantiated to model systems using a chosen
synchronisation model.

To make the presentation clearer, rule (merge-p) uses a renaming σ = {x/y} instead
of a generic idempotent renaming. Synchronisation between two actions a1 and a2 is
allowed iff there is an action synchronisation in ActSyn with a1 and a2 as first and
second field respectively (condition 2). Also, the component Mob is used to compute
the parameters of the resulting action (condition 6), while

.= is used to compute the first
set of equalities (condition 3) which contributes to ρ.

In the rule for restriction, the action performed on the bound node must belong to Fin,
while only actions in Init (with a tuple of fresh names as parameters) can be performed
on a new node.

Parametric SHR fully recovers Milner SHR, in fact it is enough to instantiate it using
the Milner SAM, see [24,22] for a formal statement. Naturally, parametric SHR can do
more, as shown by the following example.

Example 6.2. We can exploit parametric SHR to improve the modelling of the system
in Example 4.5. In fact, if we consider parametric SHR instantiated with Milner SAM,
the example can be fully recovered. The synchronisation is obtained using rule (merge-
p), which produces the same effect as the one in Example 4.5. Moreover, if we consider
the SAM for broadcast synchronisation (Definition 5.10) instead of Milner, then the
edge B2, which is part of the infrastructure for communication, can be deleted. The
graph for the new system with broadcast is:

S1

��C �� •
x

A�� ◦
u

S2

��

In fact, broadcast synchronisation obtains the desired effect, by allowing an action
req to interact with two actions req. The result of the broadcast synchronisation gives
req that is in set Fin, thus u can be restricted.

7 SHR for Heterogeneous Systems

An heterogeneous system is a system where different subsystems exploit different syn-
chronisation protocols. A further generalisation of SHR is SHR for heterogeneous sys-
tems (SHR-HS) [25,22] where heterogeneity is introduced by labelling nodes with
SAMs that specify the synchronisation policy used on them. Hence, SHR-HS focuses
on the management of the primitives available on nodes. Depending on circumstances,
different strategies have to be followed. Specifically, at the network level the labelling
is quite static, since it depends on hardware features, while at the application level it
can change dynamically as a result of negotiations among different components. In
fact, services that differ (e.g., w.r.t. their QoS aspects) can be conveniently described by
different SAMs.

36 G.L. Ferrari et al.

In SHR-HS this is modelled by allowing SAMs labelling a node to dynamically
change as a result of a synchronisation among different parties. Technically, this corre-
sponds to update the labelling when nodes are merged or created. Therefore, a set A lg of
SAMs is assumed together with an operator � of SAM composition. Also, 〈A lg,�,Aε〉
is assumed to be a commutative monoid. Associativity and commutativity are needed
so that the result of the composition of SAMs does not depend on the order of com-
position. The requirement of having a neutral element is not restrictive since one can
always add an unused element and set it as neutral element of the composition. A neu-
tral element is useful when one wants to ensure that the label of a node x is preserved
when x is merged with another node, e.g., with a parameter of an initial action. The
main definitions of SHR are extended to deal with nodes labelled by SAMs, introduced
by turning Γ into a function from nodes to SAMs.

Definition 7.1 (Labelled graphs). A labelled graph is a judgement Γ � G where Γ is a
finite function from N to A lg; G is like before, but now restricted nodes are labelled,
e.g., νy : A.G where y ∈ N and A ∈ A lg.

Extending previous notation, x1 : A1, . . . ,xn : An denotes a function mapping xi ∈ N to
Ai ∈ A lg, for i ∈ {1, . . . ,n}. Structural congruence and isomorphisms of graphs are as
in Definition 2.3 but, now, they must preserve SAMs labelling nodes.

Transitions Γ � G
Λ,π−−→ Γ � G′ are extended accordingly with the additional require-

ment that actΛ(x) ∈ Γ(x). Moreover, productions Γ � L(x)
Λ,π−−→ Φ � G impose some

requirements on how the labels in the target graph are chosen. Any SAM can be used
to label nodes not in dom(Γ), i.e., generated in the production, while for a node x ∈
dom(Γ), Φ(xπ) is Γ(x1)� . . .�Γ(xn) where x1, . . . ,xn are all the nodes that π maps to
xπ.

In the inference rules, a production can be applied to an edge only if it specifies
correct labels for the attached nodes. To specify SAMs applicable in different circum-
stances, suitable meta-notations can be used. Moreover, since now contexts are func-
tions, both their domains (i.e., the sets of nodes) and their labelling SAMs must be kept
into account. As an example, we give the merge rule (the others can straightforwardly
be adapted from rules in Definition 4.4 and can be found in [25,22]).

Definition 7.2 (Merge rule for SHR-HS). Let σ = {x/y},

(merge-HS)
Γ,x : A,y : A � G1

Λ,π−−→ Φ � G2

Γ,x : A � G1σ Λ′,π′−−−→ Φ′ � νU G2σρ

1. Λ(x) = (a1,v1),Λ(y) = (a2,v2)
2. (a1,a2,(c,Mob,

.=)) ∈ A
3. S1 = {vi1 [j1] = vi2 [j2] | inji1(j1)

.= inji2(j2)}
4. S2 = {t = u | tπ = uπ}
5. ρ = mgu((S1 ∪S2)σ) and ρ maps names to representatives in dom(Γ)∪{x} when-

ever possible
6. w[i] = (v j[k])σρ if Mob(i) = inj j(k)

7. Λ′(z) =
{

(c,w) if z = x
(actΛ(z),(nΛ(z))σρ) for each z ∈ Γ

Synchronised Hyperedge Replacement as a Model for SOC 37

8. π′ = ρ�dom(Γ)∪{x}
9. dom(U) = dom(Φ)σρ\ dom(Φ′)

10. the label of each node x ∈ dom(U)∪ dom(Φ′) is computed as follows: x is the
representative according to σρ of an equivalence class {x1, . . . ,xn} of nodes which
have in Φ labels A1, . . . ,An. Then the label of x is A1 � . . .�An

Nodes x and y can be merged only if they have the same label A, and the interaction is
performed according to one of the action synchronisations in its action synchronisation
relation. The node resulting from the merge of x and y is also labelled with A. Nodes not
involved in the merging preserve their label while the others get their labels as resulting
from the application of �.

Example 7.3. The system of Example 6.2 can be now more accurately modelled by si-
multaneously using a SAM for Milner synchronisation on actions for authorisation, and
one for broadcast of requests. Thus on each node only the desired actions are available.
This avoids undesired executions caused by malicious clients. Available synchronisa-
tions are exploited by the authority to ensure that clients can issue only authorised
requests. Also, actions can specify the synchronisation policy (e.g, Milner or broadcast
synchronisation) so that clients dynamically choose what protocol to use.

At a first sight, it might be argued that parametric SHR can model heterogeneous sys-
tems. However, parametric SHR does not fit with heterogeneous systems because it
makes each synchronisation policy available on each node, which is not what heteroge-
neous systems (as we consider them here) require. On the other hand, parametric SHR
is a special case of SHR-HS where a unique SAM is used (as shown in [22]).

8 SHReQ: Coordinating Application Level QoS

Awareness of Quality of Service (QoS) is an emergent exigency in SOC which is no
longer considered only as a low-level aspect of systems. The ability of formally spec-
ifying and programming QoS requirements may represent a significant added-value of
the SOC paradigm. Moreover, QoS information can drive the design and development
of programming interfaces and languages for QoS-aware middlewares as well as to
drive the search-bind cycle of SOC.

In SHReQ, a calculus based on SHR, abstract high-level QoS requirements are ex-
pressed as constraint-semiring [1] and embedded in the rewriting mechanism which is
parameterised with respect to a given c-semiring. Basically, values of c-semirings are
synchronisation actions so that synchronising corresponds to the product operation of c-
semirings that can be regarded as the simultaneous satisfaction of the QoS requirements
of the participants to the synchronisation.

Definition 8.1 (C-semiring). An algebraic structure 〈S,+, ·,0,1〉 is a constraint semi-
ring if S is a set with 0,1 ∈ S, and + and · are binary operations on S such that:

– + is commutative, associative, idempotent, 0 is its unit element and 1 is its absorb-
ing element (i.e., a + 1 = 1, for any a ∈ S);

– · is commutative, associative, distributes over +, 1 is its unit element, and 0 is its
absorbing element (i.e., a ·0 = 0, for any a ∈ S).

38 G.L. Ferrari et al.

The additive operation (+) of a c-semiring induces a partial order on S defined as
a ≤S b ⇐⇒ ∃c : a+c = b. The minimum is thus 0 and the maximum is 1. C-semirings
have two distinguished features that result very useful for modelling abstract QoS.
First, the cartesian product of c-semirings is still a c-semiring, hence we can uniformly
deal with many different quantities simultaneously. Second, partial order ≤S provides
a mechanism of choice. These features make c-semirings suitable for reasoning about
multi-criteria QoS issues [6,7]. The fact that c-semiring structure is preserved by carte-
sian product is here exploited to compose synchronisation policies.

Example 8.2. The following examples introduce some c-semirings together with their
intended application to model QoS attributes. A more complete list can be found
in [1].

– The boolean c-semiring 〈{true, f alse},∨,∧, f alse, true〉 can be used to model net-
work and service availability.

– The optimisation c-semiring 〈Real,min,+,+∞,0〉 applies to a wide range of cases,
like prices or propagation delay.

– The max/min c-semiring 〈Real,max,min,0,+∞〉 can be used to formalise band-
width, while the corresponding c-semiring over the naturals 〈N,max,min,0,+∞〉
can be applied for resource availability.

– Performance can be represented by the probabilistic c-semiring 〈[0,1],max, ·,0,1〉.
– Security degrees are modelled via the c-semiring 〈[0,1, . . . ,n],max,min,0,n〉,

where n is the maximal security level (unknown) and 0 is the minimal one (public).

Hereafter, given a c-semiring 〈S,+, ·,0,1〉, arS : S → N is an arity function assigning
arities to values in S. Graphs in SHReQ are called weighted graphs because values is
S are used as weights and record quantitative information on the computation of the
system.

Syntactically, SHReQ graphs are as those in SHR-HS where SAMs are replaced
by c-semiring values. We write x1 : s1, . . . ,xn : sn � G for the weighted graph whose
weighting function maps xi to si, for i ∈ {1, . . . ,n}.

SHReQ rewriting mechanism relies on c-semirings where additional structure is de-
fined. More precisely, we assume sets Sync, Fin and NoSync such that

– Sync ⊆ Fin ⊆ S, 1 ∈ Sync and arS(s) = 0 if s ∈ Sync;
– NoSync ⊆ S \Fin, 0 ∈ NoSync and ∀s ∈ S.∀t ∈ NoSync.s · t ∈ NoSync.

The intuition follows the SAM approach (Definition 5.6) and it is that Fin contains those
values of S representing events of complete synchronisations. Among the actions in Fin
we can select a subset of “pure” synchronisation actions, namely complete synchroni-
sations that do not expose nodes. Set NoSync, on the contrary, contains the values that
represent “impossible” synchronisations.

SHReQ productions follow the lines of Definition 4.3 and 4.4, but have a slightly
different interpretation. For simplicity, we avoid the π component in SHReQ transitions
and require that free nodes cannot be merged. Technically, this is obtained by consid-
ering undefined the most general unifier operation when it yields the fusion of two free
nodes. In [18] the general unification is defined for SHReQ.

Synchronised Hyperedge Replacement as a Model for SOC 39

Definition 8.3 (SHReQ productions). Let S be a c-semiring 〈S,+, ·,0,1〉. A SHReQ
production is a production

Γ � L(x1, . . . ,xn)
Λ−→ Φ � G (5)

built on top of the action signature (S,arS,1) where Γ maps nodes in {x1, . . . ,xn} to S.

Production (5) states that, in order to replace L with G in a graph H, applicability con-
ditions expressed by the function Γ on the attachment nodes of L must be satisfied in
H and, henceforth, L “contributes” to the rewriting by offering Λ in the synchronisa-
tion with adjacent edges. Function Γ expresses the minimal QoS requirements on the
environment in order to apply the production, i.e., given x ∈ dom(Γ), the weight w on
the node corresponding to x must satisfy Γ(x) ≤ w. As before, function Φ is fully deter-
mined by Γ and Λ, where the weight of new nodes is set to 1 (i.e., Φ(y) = 1 if y ∈ ΓΛ),
while for old nodes it traces the result of the synchronisation performed on them.

In production (5), c-semiring values play different roles in Γ and Λ: in Γ, they are
interpreted as the minimal requirements to be fulfilled by the environment; in Λ they
are the “contribution” that L yields to the synchronisation with the surrounding edges.

For space limitations, we only give the inference rule (merge-s) for merging nodes,
the other rules being a simple rephrasing of those seen in previous sections. Rule
(merge-s) is an adaptation of (merge-p) in Definition 6.1:

(merge-s)
Γ,x : r,y : s � G1

Λ∪{(x,s1,v1),(y,s2,v2)}−−−−−−−−−−−−−→ Φ � G2

Γ,x : r + s � G1σ Λ′
−→ Φ′ � νU G2σρ

with σ = {x/y} and Λ′, Φ′, ρ and U computed as in Definition 6.1, where action syn-
chronisation on x is given by the c-semiring multiplication and its result is saved as the
new weight of the synchronising node (i.e., x : s1 · s2) both for free nodes and for nodes
in U . In order to ensure applicability of productions also when there are more resources
available than required, the following rule is introduced.

(order-s)
Γ,x : r � G1

Λ−→ Φ � G2 r ≤ t

Γ,x : t � G1
Λ−→ Φ � G2

The other rules are similar to the ones in Definition 4.4.

Example 8.4. Let us consider Example 6.2. We can model the authority choosing the
server that offers the cheapest service. To this aim, we use the cartesian product of two
c-semirings. The first c-semiring is: 〈R+,max,min,0,∞〉, for the price of the service.
The second c-semiring is used for synchronisation. In this way, we are able to define a
general synchronisation policy as a unique c-semiring combining a classical synchroni-
sation algebra with QoS requirements. The second c-semiring corresponds to multicast
synchronisation. Assume W = {req,auth, req,auth,1W ,0W ,⊥}. Set W can be equipped
with a c-semiring structure 〈W,+, ·,0W ,1W 〉, where:

req · req = req, auth · auth = auth, req · req = req, auth · auth = auth,

a,b ∈W \ {0W ,1W}∧a �= b∧b �= a =⇒ a ·b =⊥
plus rules obtained by commutativity and the ones for 0W and 1W .

40 G.L. Ferrari et al.

The operation + is obtained by extending the c-semiring axioms for the additive oper-
ation with a + a = a and a,b �∈ {0W ,1W}∧a �= b =⇒ a + b =⊥, for all a,b ∈W .

Below we show a graphical representation of a two steps derivation. Instead of re-
porting productions for each rewriting step, tentacles are decorated with actions. For
the sake of clarity, in each step we only write actions and weights of the relevant nodes.

C

��

C

(∞,auth)〈y〉
��

C

��
•x •x • y •x

A

��

(∞,req)

=⇒ A

(∞,auth)〈y〉
��

(∞,req)〈y〉

=⇒ A

��

◦ u ◦ u:(p1,req) ◦ u

S1

(p1,req)

��

S2

(p2,req)

		

S′1

(p1,req)〈y〉
��

S′2

		

S”1

��

S2

		

The first step selects the server with the lowest price where pi is the price for Si (in this
step no names are communicated). This is obtained as the result of the synchronisation
in u, i.e., ((req · req) · req, min(∞, p1, p2)). Assuming p1 less than p2 the new weight
of u is (req, p1). The second step shows the client connecting to the cheapest server
S1 (informed by A) by connecting to a new node y. After the first synchronisation, the
cheapest server is identified by the authority using the new weight on node u. This
guides the behaviour of S1 and of the authority to produce the new connection to the
client. In particular, the applicability condition of server rule requires its price to be less
than or equal to the price on the node, and this can be satisfied only by the cheapest one
(we suppose for simplicity that server costs are unique).

9 Concluding Remarks

In this tutorial paper we introduced SHR as a basic metalanguage with strong theoretical
foundations for describing distributed systems within the SOC paradigm. We have ad-
dressed the key issues of the SHR model describing features like mobility, heterogeneity
and Quality of Service. A great deal of future work remains. At the experimental level,
more experience in specifying and designing service oriented applications is needed.
The problem of supporting the development of highly decentralised applications (from
requirement and design to implementation and maintenance) is at the edge of research in
software engineering. Indeed, software engineering technologies must support the shift
from the client-server interaction model to other models which better accommodate the
constraints posed by the SOC paradigm. We argue that the SHR model fosters a declar-
ative approach by identifying the interaction borders of services where satisfaction of
certain properties (e.g. Quality of Service) has a strong impact on the behaviours. Some
preliminary results on the exploitation of the SHR model in specifying and designing
internetworking systems can be found in [11]. In this perspective the development of

Synchronised Hyperedge Replacement as a Model for SOC 41

tool support for the SHR framework would be of great value. In the short term, we plan
to experiment our framework to model workflow among services (e.g. by extending the
Petri Nets translation developed in [34]).

At the foundational level, future work will be focused on the definition of abstract
semantics for the SHR model. A basic question is ”what is the appropriate notion of
semantic equivalence for SHR?”. Bisimulation-based equivalences have been proved
to be a powerful basis for semantic equivalence of process calculi. Bisimulation se-
mantics has the main advantage of capturing the idea of interaction within arbitrary
contexts thus providing the semantic machinery for compositional reasoning. Hence, a
main problem is understanding whether bisimilarity is a congruence w.r.t. the operators
of system composition or not, i.e. whether the compositions of bisimilar systems are
bisimilar or not. If they are, then the observational properties of a complex system can
be derived by composing the results obtained on their components. The development of
a compositional bisimulation semantics for SHR is not straightforward, since it requires
to define a suitable algebra of graphs and exploit bialgebraic techniques in a non trivial
way. Some preliminary results can be found in [22]. A further line of future research
concerns the development of a ”true concurrent” semantics for SHR where the notions
of causality and independence are explicitly represented. The ability of reasoning on the
causality flow could be particularly useful to manage the complexity of service oriented
applications. For instance the analysis of service workflows can benefit from knowledge
about causality: it suffices to focus on the causal dependencies among service invoca-
tions to understand the properties of the business interactions. We plan to extend the
techniques introduced in [9] to equip SHR with a truly concurrent semantics.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
comments and suggestions.

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti-
mization. Journal of the ACM, 44(2):201–236, 1997.

2. L. Cardelli and A. D. Gordon. Mobile ambients. In Proc. of FoSSaCS’98, volume 1378 of
LNCS, pages 140–155. Springer, 1998.

3. I. Castellani and U. Montanari. Graph grammars for distributed systems. In Graph-
Grammars and Their Application to Computer Science, volume 153 of LNCS, pages 20–38.
Springer, 1983.

4. A. Corradini, P. Degano, and U. Montanari. Specifying highly concurrent data structure
manipulation. In Proc. of Computing 85. Elsevier Science, 1985.

5. A. Corradini and D. Hirsch. An operational semantics of CommUnity based on graph trans-
formation systems. In Proc. of GT-VMT 2004, volume 109 of Elect. Notes in Th. Comput.
Sci., pages 111–124. Elsevier Science, 2004.

6. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Formal Basis for
Reasoning on Programmable QoS. In International Symposium on Verification – Theory and
Practice, volume 2772 of LNCS, pages 436–479. Springer, 2003.

7. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A process calculus for
qos-aware applications. In Proc. of Coordination’05, volume 3454 of LNCS, pages 33–48.
Springer, 2003.

42 G.L. Ferrari et al.

8. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents interaction
and mobility. IEEE Trans. Software Eng., 24(5):315–330, 1998.

9. P. Degano and U. Montanari. A model for distributed systems based on graph rewriting.
Journal of the ACM, 34(2):411–449, 1987.

10. G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via graph synchro-
nization with mobility. In ICTCS’01, volume 2202 of LNCS, pages 1–16. Springer, 2001.

11. G. Ferrari, U. Montanari, and E. Tuosto. Graph-based models of internetworking systems.
In Formal Methods at the Crossroads: From Panacea to Foundational Support, volume 2757
of LNCS, pages 242–266. Springer, 2003.

12. C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In Proc. of POPL
’96, pages 372–385, 1996.

13. F. Gadducci and U. Montanari. The tile model. In Proof, Language and Interaction: Essays
in Honour of Robin Milner. MIT Press, 2000.

14. D. Hirsch. Graph Transformation Models for Software Architecture Styles. PhD thesis,
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, U.B.A., 2003.

15. D. Hirsch, P. Inverardi, and U. Montanari. Reconfiguration of software architecture styles
with name mobility. In Proc. of Coordination ’00, volume 1906 of LNCS, 2000.

16. D. Hirsch and U. Montanari. Synchronized hyperedge replacement with name mobility. In
Proc. of CONCUR’01, volume 2154 of LNCS. Springer, 2001.

17. D. Hirsch and E. Tuosto. SHReQ: A framework for coordinating application level QoS. In
Proc. of SEFM’05, pages 425–434. IEEE Computer Society Press, 2005.

18. D. Hirsch and E. Tuosto. Coordinating Application Level QoS with SHReQ. Journal of
Software and Systems Modelling, 2006. Submitted.

19. C. A. R. Hoare. A model for communicating sequential processes. In On the Construction
of Programs. Cambridge University Press, 1980.

20. B. König and U. Montanari. Observational equivalence for synchronized graph rewriting. In
Proc. of TACS’01, volume 2215 of LNCS, pages 145–164. Springer, 2001.

21. I. Lanese. Exploiting user-definable synchronizations in graph transformation. In Proc. of
GT-VMT’06, Elect. Notes in Th. Comput. Sci. ES, 2006. To appear.

22. I. Lanese. Synchronization Strategies for Global Computing Models. PhD thesis, Computer
Science Department, University of Pisa, Pisa, Italy, 2006. Forthcoming.

23. I. Lanese and U. Montanari. A graphical fusion calculus. In Proceedings of the Workshop
of the COMETA Project on Computational Metamodels, volume 104 of Elect. Notes in Th.
Comput. Sci., pages 199–215. Elsevier Science, 2004.

24. I. Lanese and U. Montanari. Synchronization algebras with mobility for graph transforma-
tions. In Proc. of FGUC’04 – Foundations of Global Ubiquitous Computing, volume 138 of
Elect. Notes in Th. Comput. Sci., pages 43–60. Elsevier Science, 2004.

25. I. Lanese and E. Tuosto. Synchronized hyperedge replacement for heterogeneous systems.
In Proc. of Coordination’05, volume 3454 of LNCS, pages 220–235. Springer, 2005.

26. R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1982.
27. R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II. Inform. and

Comput., 100(1):1–40,41–77, 1992.
28. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile

processes. In Proc. of LICS’98, pages 176–185. IEEE Computer Society Press, 1998.
29. G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program.,

60-61:17–139, 2004.
30. J. Riely and M. Hennessy. Distributed processes and location failures. TCS, 266(1–2):693–

735, 2001.

Synchronised Hyperedge Replacement as a Model for SOC 43

31. F. Rossi and U. Montanari. Graph rewriting, constraint solving and tiles for coordinating
distributed systems. Applied Categorical Structures, 7(4):333–370, 1999.

32. G. Rozenberg, editor. Handbook of graph grammars and computing by graph transforma-
tions, vol. 1: Foundations. World Scientific, 1997.

33. E. Tuosto. Non-Functional Aspects of Wide Area Network Programming. PhD thesis, Com-
puter Science Department, University of Pisa, Italy, 2003.

34. W. M. P. van der Aalst and K. B. Lassen. Translating workflow nets to BPEL4WS. Technical
Report WP 145, Eindhoven University of Technology, 2005.

35. G. Winskel. Synchronization trees. TCS, 34:33–82, 1984.

Control of Modular and Distributed
Discrete-Event Systems

Jan Komenda1 and Jan H. van Schuppen2

1 Institute of Mathematics - Brno Branch, Czech Academy of Sciences,
Žižkova 22, 616 62 Brno, Czech Republic

komenda@ipm.cz
2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

J.H.van.Schuppen@cwi.nl

Abstract. Control of modular and distributed discrete-event systems
appears as an approach to handle computational complexity of synthesiz-
ing supervisory controllers for large scale systems. For both modular and
distributed discrete-event systems sufficient and necessary conditions are
derived for modular control synthesis to equal global control synthesis for
the supremal controllable sublanguage, for the supremal normal sublan-
guage, and for the supremal controllalble and normal sublanguage. The
modular control synthesis has a much lower computational complexity
than the corresponding global control synthesis for the respective sub-
languages.

1 Introduction

The purpose of the paper is to present an overview of recent results together
with new results on control of modular (concurrent) and distributed discrete-
event systems. Discrete-event systems (DES) are dynamical systems which are
studied in computer science with applications in manufacturing, communica-
tion networks, but also in software engineering (automated system design). In
particular the various types of state transition systems (automata, Petri Nets,
process algebras) are typical instances of DES. The topic of modular DES arises
because of an increasing complexity of engineering systems, in particular of com-
puter and communication networks. There is a strong need for system theoretical
treatment of modular DES motivated by these emerging application fields. Con-
trol of discrete-event systems is a natural generalization of their verification that
is now very well established for both finite and infinite state transition systems.

In computer science the problems of supervisory control synthesis are studied
as automated synthesis. In control theory for DES the goal is not to verify the
specification, but to impose it by means of a supervisor that runs in parallel with
the original system. The supervisor is chosen such that the composed system
meets the specification. In the Ramadge-Wonham framework it is an automaton
which runs in parallel with the original system and the parallel composition of
the original system with the supervisor (called closed-loop or controlled system)

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 44–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Control of Modular and Distributed DES 45

meets the specification given mostly by a language or a logical formula. In this
way the specification is imposed on the controlled system.

Although most of the verification and control problems for finite-state
transition systems are decidable, the high complexity of most control and ver-
ification problems makes them practically difficult. Moreover, there are un-
decidable control problems for decentralized DES [10], [16]. In order to limit
the high computational complexity of (global) control synthesis efficient meth-
ods for component-based control synthesis are developed. Synthesis of modular
and distributed systems has also been treated by computer scientists, see for
example [13].

A discrete-event system is said to have complete observations if all events are
observed and are available for the supervisory control. A discrete-event system is
said to have partial observations if only a strict subset of the events are observed
and are available for the supervisory control. A modular discrete-event system
is a system consisting of a composition of two or more subsystems where each
subsystem or module has complete observations of its (local) events. A distributed
discrete-event system is a system consisting of a composition of two or more
subsystems where at least one subsystem has only partial observations of its
events.

The novelty of the paper is in the following results: The necessary condi-
tions for commutativity between parallel composition and supremal sublan-
guages (Theorems 3, 4, and 5; supremal controllable sublanguages, supremal
normal sublanguages, and supremal controllable and normal sublanguages), nec-
essary conditions in case of indecomposable specifications (Theorems 7, 8, and
9), and necessary and sufficient conditions for closed-loop languages with respect
to the antipermissive control policy in case of global specification (Theorems 6
and 10).

Because this paper appears in a proceedings of a theoretical computer sci-
ence symposium, there is an additional tutorial text in Section 2 for computer
scientists on the concepts and results of control theory for discrete-event systems.

The paper has the following structure. The next section is an introduction
to supervisory control. Section 3 is devoted to modular control with complete
observations and with decomposable specification languages. In Section 4 the
case of a distributed DES and a decomposable specification is treated. In Section
5 the case is discussed of a modular DES with an indecomposable specification.
Finaly in Section 6 the case of a distributed system with an indecomposable
specification is treated. In Section 7 concluding remarks are proposed.

2 Control of Discrete-Event Systems - Introduction

In this section basic notation and terminology of supervisory control is recalled.
The notation used in this paper is mostly taken from the lecture notes of W.M.
Wonham [19] and the book [1].

A (deterministic) generator

G = (Q, A, f, q0, Qm),

46 J. Komenda and J.H. van Schuppen

is an algebraic structure consisting of a state set Q, an event set A, a partial
transition function f : Q × A → Q, an initial state q0 ∈ Q, and a subset of
marked states Qm ⊆ Q. A transition is also denoted as q

a�→ q+ = f(q, a). If a
transition is defined then this is denoted by f(q, a)! Denote by A∗ the set of all
finite strings of elements of the alphabet A and the empty string. Extend the
transition function f to f : Q × A∗ → Q by induction. Define respectively the
language and the marked language of the generator as,

L(G) = {s ∈ A∗|f(q0, s)!}, Lm(G) = {s ∈ L(G)|f(q0, s) ∈ Qm}.

Note that unlike Lm(G), L(G) is always prefix-closed. The prefix closure of a
language K ⊆ A∗ is denoted by prefix(K). We often abuse notation and write L
instead of L(G). The tuple of languages (Lm(G), L(G)) will be called the behavior
of the generator. The system is said to be nonblocking if the the prefix closure
of the marked language Lm(G) equals the language L(G). This is equivalent to
the property that every string of the system, s ∈ L(G), can be extended to a
marked string, thus there exists a string v ∈ A∗ such that sv ∈ Lm(G).

A controlled generator is a structure

(G, Ac, Γc), where,
G is a generator,

Ac ⊆ A is the subset of controllable events,
Auc = A \ Ac is the subset of uncontrollable events, and

Γc = {S ⊆ A|Auc ⊆ S}, is called the set of control patterns.

The set of control patterns S(s) is the subset of events that the supervisor
enables after string s has been generated by G. A supervisory control or a su-
pervisor for the controlled generator is map S : L(G) → Γc. The closed-loop
system associated with a controllable generator and a supervisory control as de-
noted above is defined as the language L(S/G) ⊆ A∗ and the marked language
Lm(S/G) ⊆ L(S/G) which satisfy respectively,

(1) ε ∈ L(S/G),
(2) if s ∈ L(S/G) and if a ∈ S(s) such that sa ∈ L(G)

then sa ∈ L(S/G);
Lm(S/G) = L(S/G) ∩ Lm(G).

Note that at the automata level the supervision is implemented by a parallel
composition of the generator and the supervisor. This composition is a special
form of the synchronous product (with priorities), in order to ensure that a
supervisor never disables uncontrollable events.

Problem 1. Supervisory control problem. Consider a controlled generator (G,
Ac, Γc) and a specification sublanguage K ⊂ Lm(G). Does there exist a su-
pervisor S such that the closed-loop system satisfies (1) Lm(S/G) ⊆ K and (2)
L(S/G) is nonblocking?

Control of Modular and Distributed DES 47

Because often the subset of the specification sublanguage K contains only the
safe strings, thus the unsafe strings are excluded, the control objective (1) of the
above problem is called the safety control objective. Not every language can be
exactly achieved by a supervisor. The property called controllability is needed.

Definition 1. A language K ⊆ A∗ is said to be controllable with respect to
plant language L = L(G) and alphabet Auc if ∀s ∈ prefix(K) and ∀a ∈ Auc such
that sa ∈ L we have that sa ∈ prefix(K). Equivalently,

prefix(K)Auc ∩ L ⊆ prefix(K). (1)

Theorem 1. (Due to Ramadge, Wonham, see [14].) There exists a nonblocking
supervisory control S for a generator G such that Lm(S/G) = K and L(S/G) =
prefix(K) if and only if

1. K is controllable with respect to L(G) and Auc and
2. K = prefix(K) ∩ Lm(G) (then one says that K is Lm(G)−closed.).

As a corollary for prefix-closed specifications:

Corollary 1. Let ∅ �= K ⊆ L(G) be prefix closed. There exists a supervisory
control S for G such that Lm(S/G) = K and L(S/G) = K if and only if K is
controllable with respect to L(G) and Auc.

The corresponding supervisory control S : L(G) → Γc is:

S(s) = Auc ∪ {a ∈ Ac : sa ∈ prefix(K)}.

Note the abuse of notaton, where the same symbol is used to denote a supervisor
and a control law. This is justified by the fact that, considering a supervisor, the
control law is described by the transition function of the supervisor in the form of
the set of active events after string s has been processed by the supervisor. Most
often one is concerned only with the safety issue, i.e. the controlled behavior must
be included in the specification language. This is why for specifications which
are not controllable, supremal controllable sublanguages are considered. The
notation sup C(K, L, Au) is chosen for the supremal controllable sublanguage
of K with respect to L and Au. This language always exists, it is the union
of all controllable sublanguages because controllability is preserved by language
unions.

In the presence of partial observations additional issues appear. A generator
with partial observations is a structure (G, Ao) where G is a generator, Ao ⊆ A
is called the subset of observable events, and Auo = A \ Ao is called the subset
of unobservable events. In this case define the natural projection P : A∗ → A∗

o

such that P (ε) = ε and P erases only the unobservable events. Note that the
supervisor cannot distinguish between two strings with the same projections,
i.e. after two such strings the same control law must be applied. Therefore, a
supervisor with partial observations is a map S : P (L(G)) → Γc. Define also the
inverse projection P−1

i : Pwr(A∗
i) → Pwr(A∗) on subsets of strings or languages.

48 J. Komenda and J.H. van Schuppen

Let K be a specification language. The supervisory control with partial ob-
servations is:

S(s) = Auc ∪ (2)
{a ∈ Ac : ∃s′ ∈ prefix(K) with P (s′) = P (s) and s′a ∈ prefix(K)}.

The additional property needed to exactly achieve a specification language by
a supervisor with partial observations is called observability.

Definition 2. The sublanguage K ⊆ P (L) is said to be observable with respect
to the plant language L and the projection P if

∀s ∈ prefix(K), ∀a ∈ Ac,

sa ∈ L, s′a ∈ prefix(K), and P (s) = P (s′) ⇒ sa ∈ prefix(K). (3)

Theorem 2. (Due to F. Lin and W.M. Wonham, see [11].) Consider a gener-
ator with partial observations. There exists a nonblocking supervisory control S
with partial observations such that Lm(S/G) = K and L(S/G) = prefix(K) if
and only if

1. K is controllable with respect to L(G) and Auc,
2. K is observable with respect to L(G) and P , and
3. K = prefix(K) ∩ Lm(G). (K is Lm(G)−closed.)

Unfortunately, unlike controllability, observability is not preserved by language
unions. This is why a stronger property, called normality, has been introduced.

Definition 3. [1] Consider a controlled generator with partial observations and
a specification sublanguage K ⊆ Lm(G). Call the specification sublanguage K
(L, P)− normal if

prefix(K) = P−1P (prefix(K)) ∩ L. (4)

It is known that normal languages are closed with respect to unions, hence the
supremal normal sublanguage of K always exists, it is the union of all normal
sublanguages of K and it is denoted by sup N(K, L, P).

Recall finally that in the case Ac ⊆ Ao normality coincides with observability.
This assumption is widely accepted in the computer science community, where
only uncontrollable actions might be internal (silent).

For control problems with partial observations and a safety control objective,
supremal controllable and normal sublanguages are important.

Recall that the synchronous product (also called the parallel composition) of
languages L1 ⊆ A∗

1 and L2 ⊆ A∗
2 is defined by L = L1 ‖ �L2 = ∩2

i=1P
−1
i (Li),

where Pi : A∗ → A∗
i , i = 1, 2 are natural projections to local event sets.

Definition 4. Consider two generators,

G1 = (Q1, A1, f1, q1,0, Q1,m), G2 = (Q2, A2, f2, q2,0, Q2,m).

Control of Modular and Distributed DES 49

Their synchronous product is the generator

G1‖G2 = (Q1 × Q2, A1 ∪ A2, f, q0, Qm),
q0 = (q1,0, q2,0), Qm = Q1,m × Q2,m,

f((q1, q2), a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(f1(q1, a), f2(q2, a)) if a ∈ A1 ∩ A2,

i = 1, 2, fi(qi, a)!
(f1(q1, a), q2), if a ∈ A1 \ A2, f1(q1, a)!
(q1, f2(q2, a)), if a ∈ A2 \ A1 f2(q2, a)!
undefined, otherwise.

It can then be proven that,

L(G1‖G2) = L(G1)||L(G2), Lm(G1‖G2) = Lm(G1)||Lm(G2).

Denote for n ∈ Z the set of the first n integers by Zn = {1, 2, . . . , n}.

Definition 5. A modular discrete-event system (also called a concurrent dis-
crete-event system) is the synchronous product of two or more modules or local
subsystems in which each module has complete observations of the state of its
own module but does not have observations of the states of other modules unless
it shares observable events with these other modules. Mathematically, a modular
discrete-event system with n ∈ Z modules is a structure {Gi, Ai,c, Ai,o, Γi,c, i ∈
Zn} consisting of n controlled generators. The associated global system is the
synchronous product of the modules or the local subsystems, ‖n

i=1Gi. Denote the
natural projections by Pi : (∪n

i=1Ai)∗ → A∗
i .

A distributed discrete-event system is a structure as above consisting of n con-
trolled generators where at least one of the modules has only partial observations
of that module.

3 Modular Supervisory Control with a Decomposable
Specification

In this section the concurrent behavior of the modules {Gi, i ∈ Zn} is considered.
Consider the local alphabets of these subplants, {Ai, i ∈ Zn}, which are not
necessarily pairwise disjoint. Denote the partition of the local alphabet into the
subset of controllable events, Aic, and the subset of uncontrollable events, Aiu,
by Ai = Aiu ∪ Aic for all i ∈ Zn.

Definition 6. Consider a modular DES. The local plants {Gi, i ∈ Zn} agree on
the controllability of their common events if

Aiu ∩ Aj = Ai ∩ Aju, ∀i, j ∈ Zn. (5)

This definition stemming from [18] means that the events shared by two mod-
ules or local subsystems must have the same control status for both controllers
associated to these subsystems. In the following it will often be assumed that
the modules satisfy the condition of agreement on the controllability of their

50 J. Komenda and J.H. van Schuppen

common events. Denote Ac = ∪n
i=1Aic. The assumption on the agreement on

common events implies that Aic = Ac ∩ Ai. Also, if we denote Au = ∪n
i=1Aiu

then we still have the disjoint union A = Ac ∪ Au due to the assumption of
agreement on the controllability of their common events. Denote by A = ∪n

i=1Ai

the global alphabet and by Pi : A → Ai the projections to the local alphabets.
The concept of inverse projection P−1

i : Pwr(Ai) → Pwr(A) is also used.
The local plant languages or the languages of the modules will be denoted by

{Li, i ∈ Zn} and the local specification languages by {Ki, i ∈ Zn}. We assume
in this section that the global plant L and the specification K languages are
decomposable into local plant and local specification languages: L =‖n

i=1 Li and
K =‖n

i=1 Ki. This formulation is equivalent to the following definition.

Definition 7. Consider a modular DES. One says that L ⊆ A∗ is decomposable
with respect to {Pi, i ∈ Zn} if L = ‖n

i=1Pi(L).

Proposition 1. Consider a modular DES. L ⊆ A∗ is decomposable with respect
to {Pi, i ∈ Zn} if and only if there exists {Li ⊆ A∗

i , i ∈ Zn} such that

L =‖n
i=1 Li = ∩n

i=1(Pi)−1(Li). (6)

Proof. (⇒) It is sufficient to consider Li := Pi(L).
(⇐) If L =‖n

i=1 Li = ∩n
i=1(Pi)−1(Li), then it follows from properties of projec-

tions that

Pi(L) ⊆ Li ∩ ∩j �=iPiP
−1
j (Lj) ⊆ Li, ∀i ∈ Zn. Thus we have that,

‖n
i=1Pi(L) = ∩n

i=1(Pi)−1Pi(L) ⊆ ∩n
i=1 P−1

i (Li) = L,

by our assumption. The first inclusion follows from the fact that Pi(Pi)−1 is
identity and that projection of an intersection is contained in the intersection of
projections. The inclusion L ⊆ ∩n

i=1P
−1
i (Pi(L)) is obvious.

Note that Pi(L) ⊆ Li means that for any tuple of languages {L′
i ⊆ A∗

i , ∀i ∈ Zn}
such that L =‖n

i=1 L′
i we have Pi(L) ⊆ L′

i, i.e. {Pi(L), i ∈ Zn} is the smallest
possible decomposition of L into local languages.

Definition 8. Consider a modular discrete-event system and either a global
specification language or a family of local specifications. From the local speci-
fications one can always compute the global specification as described above.

Global control synthesis of a modular discrete-event system is the procedure by
which first all modules are combined into the global plant and then control synthe-
sis is carried out as described in Section 2. This can refer to either construction
of a supervisor which meets the specification or to the supremal supervisor.

Modular control synthesis of a modular discrete-event system is the procedure
by which control synthesis is carried out for each module or local subsystem.
The global supervisor formally consists of the synchronous product of the local
supervisors though that product is not computed in practice.

Control of Modular and Distributed DES 51

In terms of behaviors, the optimal global control synthesis is represented by the
closed-loop language

supC(K, L, Au) = sup C(‖n
i=1 Ki, ‖n

i=1 Li, Au),

using the operation supremal controllable sublanguage sup C(K, L, Au) defined
in the last section. Similarly, modular control synthesis yields in terms of behav-
iors the partial language

‖n
i=1 sup C(Ki, Li, Aiu).

Problem 2. Consider a modular discrete-event system and a decomposable spec-
ification language. Determine necessary and sufficient conditions with respect to
which modular control synthesis equals global control synthesis for the supremal
controllable sublanguage within the specification language. Equivalently, if,

‖n
i=1 sup C(Ki, Li, Aiu) = sup C(‖n

i=1 Ki, ‖n
i=1 Li, Au). (7)

Later in the paper also the problems are investigated of when modular control
synthesis equals global control synthesis for the supremal normal sublanguage,
for the supremal controllable and normal sublanguage, and for the closed-loop
language in case of an antipermissive control policy.

There exists an example which establishes that modular control synthesis does
not equal global control synthesis in general. Theorem 3 provides necessary and
sufficient conditions for modular control synthesis to equal global control synthe-
sis. This problem has been studied algebraically in [18]. The concept of mutual
controllability ([18]) plays the key role.

Definition 9. Consider a modular DES. The modular plant languages {Li ⊆
A∗

i , i ∈ Zn} are called mutually controllable if

prefix(Lj)(Aju ∩ Ai) ∩ Pj(Pi)−1prefix(Li) ⊆ prefix(Lj), ∀i, j ∈ Zn, i �= j. (8)

Note that both local and global plant languages are typically prefix closed, hence
the prefix closures above can be removed.

Mutual controllability can be viewed as local controllability of the modular
plant languages with respect to the shared uncontrollable events; thus, for all
i, j ∈ Zn with i �= j, the modular language Lj is controllable with respect
to the shared uncontrallable events (Aju ∩ Ai) and the local view of the other
module (Pi(Pj)−1(Lj)) as the new plant. This condition is important for modular
computation of global supremal controllable sublanguages.

The computational complexity of checking mutual controllability is much
lower than that of checking controllability of a sublanguage over the global al-
phabet.

The sufficiency part of Theorem 3 is due to K.C. Wong and S.-H. Lee, see [18].
We have presented in [3] a coalgebraic version of the proof for commutativity of
supremal controllable sublanguages with the synchronous product:

52 J. Komenda and J.H. van Schuppen

Theorem 3. Modular control synthesis equals global control synthesis for the
supremal controllable sublanguage in case of a modular DES. Assume that the
local plants agree on the controllability of their common events.

If the local plant languages {Li ⊆ A∗
i , i ∈ Zn} are mutually controllable then

‖n
i=1 sup C(Ki, Li, Aiu)sup C(‖n

i=1 Ki, ‖n
i=1 Li, Au). (9)

Conversely, if for fixed local plant languages {Li, i ∈ Zn} equation (9) holds
true for any {Ki ⊆ Li, i ∈ Zn} then, for all i ∈ Zn, Pi(L) is controllable with
respect to Li and Aiu; equivalently, then

Pi(L)Aiu ∩ Li ⊆ Pi(L), ∀i ∈ Zn. (10)

Proof. We have shown the first part of the theorem in [3], the proof is stated in
[6]. Note that an algebraic proof of sufficiency is stated in [18].

It remains to prove the necessity part of the theorem. Assume now that for
fixed local plant languages {Li, i ∈ Zn} equation (9) holds true for any local
specification languages Ki ⊆ Li. Then it holds true in particular for Ki := Pi(L).
Since L and K are decomposable we have

L =
n⋂

i=1

P−1
i Pi(L) =

n⋂
i=1

P−1
i Ki = K, (cf. Proposition 1). (11)

L = K = sup C(L, L, Au) =‖n
i=1 sup C(Pi(L), Li, Aiu)

⊆ ∩n
i=1P

−1
i (sup C(Pi(L), Li, Aiu)),

L ⊆ (Pi)−1(sup C(Pi(L), Li, Aiu), ∀i ∈ Zn; (12)
Note that Pi(L) ⊆ Li, ∀i ∈ Zn, because L is decomposable. Indeed

Pi(L) = Pi(
n⋂

i=1

P−1
i (Li)) ⊆ Pi(Pi)−1(Li) ∩ ∩j �=iPi(Pj)−1(Lj) ⊆ Li,

where the last inclusion follows from Pi(Pi)−1(Li) = Li.

By applying the projection on both sides of inclusion (12)
it follows from the monotonicity of projections that

Pi(L) ⊆ Pi(Pi)−1sup C(Pi(L), Li, Aiu) = sup C(Pi(L), Li, Aiu) ⊆ Pi(L),
from the definition of supremal controllable sublanguages. Hence,

Pi(L) = supC(Pi(L), Li, Aiu),

which means that for all i ∈ Zn, Pi(L) is controllable with respect to Li and
Aiu.

4 Distributed Supervisory Control with a Decomposable
Specification

In this section we consider the situation of a distributed plant, thus for which
at least one module or subsystem does not have complete observations but only

Control of Modular and Distributed DES 53

partial observations. For each local plant, the local alphabet admits a partition,
denoted by Ai = Ao,i ∪ Auo,i,∀i ∈ Zn into locally observable and locally unob-
servable event sets. The global system has observation set Ao = ∪n

i=1Ao,i ⊆ A =
∪n

i=1Ai. Globally unobservable events are denoted by Auo = A \ Ao and locally
unobservable events by Auo,i = Ai \Ao,i. The projections of the global alphabet
into the local ones are denoted by Pi : A∗ → A∗

o,i, i = 1, 2. Partial observations
in individual modules are expressed via local projections P loc

i : A∗
i → A∗

o,i, while
the global projection is denoted by P : A∗ → A∗

o.

Definition 10. Consider a distributed DES. The local plants are said to agree
on the observability of their common events if

Ao,i ∩ Aj = Ai ∩ Ao,j , ∀i, j ∈ Zn. (13)

The problem is to determine necessary and sufficient conditions for modular con-
trol synthesis to equal global control synthesis for a distributed control system.
In Theorem 4 a condition similar to mutual controllability is needed. By analogy
it is called mutual normality.

Definition 11. Consider a distributed DES. Local plant languages {Li ⊆ A∗
i ,

i ∈ Zn} are called mutually normal if

(P loc
i)−1P loc

i (Li) ∩ Pi(Pj)−1(Lj) ⊆ Li, ∀i, j ∈ Zn, i �= j. (14)

Mutual normality can be viewed as normality of the local plant languages with
respect to the local views of the other plant languages.

Theorem 4. Modular control synthesis equals global control synthesis for
supremal normal sublanguages in case of a distributed DES. Assume that the
local plants agree on the observability of their common events.

If {Li ⊆ A∗
i , i ∈ Zn} are mutually normal then

sup N(‖n
i=1 Ki, ‖n

i=1 Li, P) =‖n
i=1 supN(Ki, Li, P

loc
i). (15)

Conversely, if for fixed local plant languages {Li, i ∈ Zn} equation (15) holds
true for any {Ki ⊆ Li, i ∈ Zn}, then

Pi(L) are normal with respect to Li and P loc
i , ∀i ∈ Zn. (16)

Proof. The sufficiency part has been shown in [6], where the coinductive proof
principle has been used. Now we show the necessity part of the theorem. Assume
now that for fixed local plant languages {Li i ∈ Zn} equation (15) holds true.
Consider any i ∈ Zn and any local specification languages Ki ⊆ Li. Then it
holds true in particular for Ki := Pi(L). Since L is decomposable we have

L =
n⋂

i=1

P−1
i Pi(L) = K;

L = sup N(L, L, Au) =‖n
i=1 sup N(Pi(L), Li, P

loc
i).

L ⊆ (Pi)−1sup N(Pi(L), Li, P
loc
i), ∀i ∈ Zn. Recall that (17)

54 J. Komenda and J.H. van Schuppen

Pi(L) ⊆ Li, because L is decomposable. (18)
By applying the projection Pi on both sides of the inclusion (17)
it follows from the monotonicity of projections that

Pi(L) ⊆ Pi(Pi)−1sup N(Pi(L), Li, P
loc
i) = sup N(Pi(L), Li, P

loc
i).

supN(Pi(L), Li, P
loc
i) ⊆ Pi(L),

from the definition of supremal normal sublanguages.
Pi(L) = supN(Pi(L), Li, P

loc
i),

which means that for all i ∈ Zn, Pi(L) is normal with respect to Li and P loc
i .

The proof of the above theorem for one direction depends only on the assumption
that the local plants agree on the observability of their common events. Hence
the following corollary is obtained.

Corollary 2. If the local plants agree on the observability of their common
events then we have

sup N(‖n
i=1 Ki, ‖n

i=1 Li, P) ⊇‖n
i=1 supN(Ki, Li, P

loc
i). (19)

Theorem 4 is useful for the computation of (global) supremal normal sublan-
guages of large distributed plants. If the conditions of the theorem are satisfied,
then it is sufficient to compute local supremal normal sublanguages and to syn-
chronize them.

The interest of this theorem should be clear: Under the conditions which are
stated it is possible to do the optimal (least restrictive) control synthesis with
partial observations locally, and this represents an exponential savings on the
computational complexity and makes in fact the optimal control synthesis of
large distributed plants feasible.

Let us introduce the notation supCN(K, L, P, Au) for the supremal (L, P)−
normal and controllable sublanguage of K with respect to Au. Using a single-step
algorithm for computation of supremal controllable and normal sublanguages
([8]), we have proven in [4] the sufficiency part of the following theorem:

Theorem 5. Modular control synthesis equals global control synthesis for
supremal controllable and normal sublanguage in case of a distributed DES.
Assume that the local plants agree on the controllability of their common events
and on the observability of their common events.

If the local plant languages {Li ⊆ A∗
i , i ∈ Zn} are mutually controllable and

mutually normal then

‖n
i=1 sup CN(Ki, Li, P

loc
i , Aiu) = sup CN(‖n

i=1 Ki, ‖n
i=1 Li, P, Au). (20)

Conversely, if for fixed local plant languages {Li i ∈ Zn} equation (20) holds true
for any {Ki ⊆ Li, i ∈ Zn}, then for any i, j ∈ Zn with i �= j, {Pi(L), i ∈ Zn}
are (1) normal with respect to Li and P loc

i and (2) controllable with respect to
Li and Aiu.

Control of Modular and Distributed DES 55

Proof. The sufficiency was shown in [4]. In view of the preceding theorems for
sup C and sup N the necessity part follows.

In [18] there is a procedure to change a plant which does not satisfy the mutual
controllability condition to one that satisfies it. It may be that a similar proce-
dure can be found in the future for mutual normality. Nevertheless one cannot
hope to find a universal procedure how to make a set of local plant languages
mutually normal. Indeed, in the shuffle case mutual normality cannot hold as we
show in the next section. However specific methods exist for this simpler case.

Example and Verification of Sufficient Conditions

The purpose of this section is mainly to illustrate our results with an example.
Before starting with concrete examples we consider several extreme cases of
distributed DES. First of all, if all event alphabets are disjoint, the so called
shuffe case, we notice that Pi(Pj)−1(Lj) = A∗

i for any Lj ⊆ A∗
j . This means that

the condition of mutual normality cannot be satisfied. The intuitive reason is that
there is no relation between local subsystems in this case. This is not surprising,
because the observations of local agents are in this case completely independent
and therefore there is a huge gap between local and global observations.

On the other hand, it is obvious from the definition of mutual normality that in
the case of full local observations (all P loc

i ’s become identity mappings), mutual
normality is trivially satisfied. Another extreme case occurs when all subsys-
tems have the same event alphabets. Then all the Pi’s are identity mappings,
i.e. the mutual normality becomes usual normality between two languages in a
slightly more general sense (the assumption is lifted that one of the languages is
a sublanguage of the other). This might justify why we call our condition mutual
normality, it is a symmetric notion of normality.

We show an example of a plant composed of two modules, where the commu-
tativity between the supremal normal sublanguages and parallel product does
not hold. Therefore mutual normality does not hold either.

Example 1. Let A = {a, a1, a2, τ, τ1, τ2}, A1 = {a1, τ1, a, τ}, A2 = {a2, τ2, a, τ},
Ao = {a1, a2, a}, Ao,1 = {a1, a}, and Ao,2 = {a2, a}. Consider the following
plant languages and specification sublanguages (the marked languages are not
considered):

K1 = L1 K2 L2

(K1)τ

�
τ

(K1)τ1

τ
1

�

(K2)τ

�
τ

(K2)τ2

τ
2�

(L2)τ

�
τ

(L2)τ2

τ
2
�

(K1)τa

a
�

(K1)τ1a1

a1
�

(K2)τa

a
�

(L2)τa

a
�

(L2)τ2a

a
�

We use the notation U1 = sup N(K1, L1, P
loc
1), U2 = sup N(K2, L2, P

loc
2), U =

sup N(K1, L1, P
loc
1) ‖ sup N(K2, L2, P

loc
2), and V = sup N(K1 ‖ K2, L1 ‖ L2, P).

56 J. Komenda and J.H. van Schuppen

We have trivially that U1 = K1 = L1. It is easy to see that U2 = sup N(K2, L2,
P loc

2) = {ε, τ, τ2}. Computing the parallel products K = K1 ‖ K2 and L = L1 ‖
L2 yields K = L, i.e. we obtain trivially K = L = V as is shown in the diagram
below, where U = U1 ‖ U2 is also computed:

U2 U K = L = V

(U2)τ

�
τ

(U2)τ2

τ
2�

Uτ

�
τ

Uτ1

τ1
�

Uτ2

τ
2

�

Kτ

�
τ

Kτ1

τ1
�

Kτ2

τ
2

�

Uτ1a1

a1
�

Uτ1τ2

τ
2
�

Uτ2τ1

τ
1
�

Kτa

a
�

Kτ1a1

a1
�

Kτ1τ2

τ
2
�

Kτ2τ1

τ
1
�

Uτ1a1τ2

τ2
�

Uτ1τ2a1

a1
�

Uτ2τ1a1

a1
�

Kτ1a1τ2

τ2
�

Kτ1τ2a1

a1
�

Kτ2τ1a1

a1
�

Thus, U �= V , because Uτ � a→, while Vτ
a→. Therefore we only have the strict

inclusion U ⊂ V and the commutativity studied in this paper does not hold for
this example. According to Theorem 4 mutual normality cannot hold. Indeed,
we have

(P loc
1)−1P loc

1 (L1) ∩ P1(P2)−1(L2) = τ∗
1 (ττ∗

1 a1 + a1τ
∗
1 τ)τ∗

1 ,

but we have e.g. (τ1)n �∈ L1 for n ≥ 2.

Antipermissive Control Policy

The standard permissive control law is useful for safety control problems only
if the specification is observable, otherwise it yields infimal coobservable and
controllable superlanguages of K. If K represents safety specifications then these
are violated if permissive control policy is applied.

There exists a dual control policy for DES with partial observations, called
antipermissive. For the supervisor to enable event a ∈ A it is necessary that all
indistinguishable events corresponding to this trace can be prolongated within
K (in permissive control policy it is sufficient that one of those strings can be
prolongated within K). The interest of the antipermissive control policy is in its
safety and the fact that the synthesized languages are observable languages in
general larger then supremal normal sublanguages.

Denote by V the supervisor associated with a partial automaton S, and the
corresponding antipermissive control policy by SA : P (L(G)) → Γc, where Γc is
the class of enabled events, also called control patterns (i.e. supersets of the event
subset Au that are always enabled). Algebraically, the antipermissive control
policy is defined as follows:

SA(s) = Auc ∪
{

a ∈ Ac : ∀s′ ∈ prefix(K) ∩ P−1P (s)
(s′a ∈ L ⇒ s′a ∈ prefix(K))

}
. (21)

Control of Modular and Distributed DES 57

Similarly as for the permissive control policy the supervisor marks all states that
have been marked in the plant and that ’survive’ under supervision.

We have formulated in [8] a single-step algorithm for computation of closed-
loop languages with respect to the antipermissive control policy. This algorithm
has been used in [5] for deriving sufficient conditions under which these languages
are preserved by modular (local) control synthesis.

Denote for all i ∈ Zn by AP(Ki, Li, P
loc
i) the closed-loop language correspond-

ing to the local antipermissive control synthesis (with local projection P loc
i , local

DES Li, and local specification Ki). Similarly, AP(‖n
i=1 Ki, ‖n

i=1 Li, P) stands
for closed-loop language corresponding to the global antipermissive control syn-
thesis.

In Theorem 6 a condition similar to mutual controllability (Wong and Lee,
2002) is used. By analogy it is called mutual observability.

Definition 12. Consider a distributed DES. Local plant languages {Li ⊆ A∗
i ,

i ∈ Zn} are called mutually observable if

∀i, j ∈ Zn, i �= j, ∀s, s′ ∈ Li and a ∈ Aic :
(sa ∈ Pi(Pj)−1(Lj) and P loc

i (s) = P loc
i (s′) and s′a ∈ Li)

⇒ sa ∈ Li. (22)

Now we extend the main result of [5] where only sufficient conditions were pre-
sented.

Theorem 6. Modular control synthesis equals global control synthesis for the
closed-loop language in case of a completely-observed DES using an antipermis-
sive control policy. Assume that the modular plants agree on the observability of
their common events.

If the local plant languages {Li ⊆ A∗
i , i ∈ Zn} are mutually observable then

AP(‖n
i=1 Ki, ‖n

i=1 Li, P) =‖n
i=1 AP(Ki, Li, P

loc
i). (23)

Conversely, if for fixed local plant languages {Li i ∈ Zn} equation (23) holds true
for any {Ki ⊆ Li, i ∈ Zn}, then, for any i �= j, {Pi(L), i ∈ Zn} are observable
with respect to Li and Ao,i.

In view of our previous results it is straightforward to show that a neccesary
structural condition for local antipermissive control policy to equal global an-
tipermissive control policy is that AP(Pi(L), Li, P

loc
i) = Pi(L), which means

that for all i ∈ Zn, Pi(L) is observable with respect to Li and Ai,o.
The interest of this theorem should be clear: under the conditions that are

stated it is possible to perform the antipermissive control synthesis with partial
observations locally, which represents an exponential save on the computational
complexity and makes in fact the antipermissive control synthesis of large dis-
tributed plants feasible. Recall that under very general conditions we have one
inclusion meaning that global antipermissive control synthesis yields in general
a larger language that the local antipermissive control synthesis.

58 J. Komenda and J.H. van Schuppen

5 Modular Supervisory Control with an Indecomposable
Specification

In many engineering problems the specification is only defined globally and is not
decomposable unlike the plant language. An example is the specification for a
communication protocol of a wireless network. In this section the case of general
specification languages that are neither necessarily decomposable nor contained
in the global plant language is studied. Necessary and sufficient conditions are
found with respect to which handling of the global plant is avoided for the
computation of supremal controllable sublanguages of (global) indecomposable
specification languages.

Consider a modular discrete-event system and assume that the local plants
agree on the controllability of their common events. Denote the global plant
and the specification languages by L and K, respectively. In our setting, L is
decomposable into local plant languages: L = L1 ‖ · · · ‖ Ln (note that the Li

may have different alphabets). In most of the works on this topic K is similarly
decomposable into local specification languages and K ⊆ L. The general case is
when this condition is not satisfied and, moreover, K may not be included in L.
This case has been studied in [2], where the assumption that all shared events
are controllable is used. A condition on K called G−observability was needed
for local synthesis of the supremal controllable sublanguage.

Instead of local specifications, languages Ki := K ∩ P−1
i (Li) are considered.

These will play the role of local components of specification languages, although
their alphabet is the global alphabet A. They can be considered as local over-
approximations of K ∩ L, because clearly K ∩ L = ∩n

i=1Ki.

Definition 13. Consider a modular DES. The modular plant languages {Li, i ∈
Zn} are called globally mutually controllable if

P−1
j (Lj)(Aju) ∩ P−1

i (Li) ⊆ P−1
j (Lj), ∀i, j ∈ Zn, i �= j. (24)

Proposition 2. Consider a modular DES. Global mutual controllability (GMC)
is equivalent to the following property:

P−1
j (Lj)Au ∩ P−1

i (Li) ⊆ P−1
j (Lj), ∀i, j ∈ Zn, i �= j. (25)

Proof. Note that the only difference is that Aju in GMC is replaced by Au.
Therefore the new property is clearly stronger then GMC. Maybe surprisingly
the converse implication is satisfied as well. Let GMC hold true, s ∈ P−1

j (Lj),
u ∈ Au, and su ∈ P−1

i (Li). Then we have two cases: either u ∈ Aj or u �∈ Aj .
The former case entails that u ∈ Aju due to the shared event controllability
status assumption. Using GMC we conclude su ∈ P−1

j (Lj). In the latter case we
notice that Pj(u) = ε, i.e. Pj(su) = Pj(s), which means that Pj(su) ∈ Lj, i.e.
s ∈ P−1

j (Lj).

Definition 14. Consider a modular DES. The modular plant languages
{Li, i ∈ Zn} are called modularly controllable if

(LAu) ∩ P−1
i (Li) ⊆ L, ∀i ∈ Zn. (26)

Control of Modular and Distributed DES 59

Modular controllability is in general weaker than global mutual controllability
and it will play the role of a necessary condition.

Proposition 3. Consider a modular DES. Global mutual controllability (GMC)
implies modular controllability.

Proof. Let for any i �= j ∈ Zn:

P−1
j (Lj)Au ∩ P−1

i (Li) ⊆ P−1
j (Lj).

Since for j = i the inclusion is trivially true, we have the inclusion for any
i, j ∈ Zn. Then, by taking intersection for j over Zn we obtain:

n⋂
j=1

[P−1
j (Lj)Au ∩ P−1

i (Li)] ⊆
n⋂

i=1

[P−1
j (Lj).Au]

Since [
⋂n

i=1 P
−1
j (Lj)]Au ⊆

⋂n
i=1[P

−1
j (Lj).Au] we obtain finally, LAu ∩ P−1

i

(Li) ⊆ L, i.e. modular controllability (MC).

The next theorem provides novel necesary and sufficient conditions for modular
control synthesis to equal global control synthesis. In [9] it was shown only that
global mutual controllability is a sufficient condition.

Theorem 7. Modular control synthesis equals global control synthesis for the
supremal controllable sublanguage in case of complete observations and of in-
decomposable specifications. Consider a modular discrete-event system. Assume
that the local plants agree on the controllability of their common events.

If the local plants {Li, i ∈ Zn} are modularly controllable then

sup C(K ∩ L,L,Au) =
n⋂

i=1

sup C(Ki, P
−1
i (Li), Au). (27)

Conversely, if for a given modular plant equality (27) holds true for any global
specification K then the local plant languages, {Li, i ∈ Zn} are modularly con-
trollable.

6 Distributed Supervisory Control with an
Indecomposable Specification

In this section the case is studied of control of a distributed discrete-event system,
thus for which one or more of the local plants has only partial observations, and
of an indecomposable specification. First a structural condition called global
mutual normality is introduced. It is similar to mutual normality in the case of
decomposable specification ([3]), but it concerns P−1

i (Li) instead of Li.

Definition 15. Consider a distributed DES. The modular plant languages
{Li ⊆ A∗

i , i ∈ Zn} are called globally mutually normal if

(P−1PP−1
j)(Lj) ∩ P−1

i Li ⊆ P−1
j Lj , ∀i, j ∈ Zn, i �= j. (28)

60 J. Komenda and J.H. van Schuppen

Definition 16. Consider a distributed DES. Modular plant languages {Li, i ∈
Zn} are called modularly normal if L is (P−1

i (Li), P)−normal; or, equivalently,

P−1P (L) ∩ P−1
i (Li) ⊆ L, ∀i ∈ Zn. (29)

Modular normality is in general weaker than global mutual normality (GMN).

Proposition 4. Consider a distributed DES. Global mutual normality (GMN)
implies modular normality (MN).

Proof. Let GMN holds true, or, equivalently,

(P−1PP−1
j)(Lj) ∩ P−1

i Li ⊆ P−1
j Lj , ∀i, j ∈ Zn, i �= j.

Since for i = j the inclusion becomes trivial, we may assume that the inclusion is
satisfied for any i, j ∈ Zn. We obtain: P−1PL∩P−1

i Li = P−1P (
⋂n

i=1 P
−1
j Lj) ⊆⋂n

j=1(P
−1PP−1

j)(Lj) ∩ P−1
i Li ⊆

⋂n
i=1 P

−1
j Lj = L, where the last inclusion

follows from intersecting both sides of the first inclusion (GMN) for j ranging
over Zn. Thus MN holds true.

Theorem 8. Modular control synthesis equals global control synthesis for the
supremal normal sublanguage in case of a distributed DES and of an indecom-
posable specification. Consider a distributed DES. Assume that the local plants
agree on the observability of their common events.

If the local plant languages {Li, i ∈ Zn} are modularly normal then

sup N(K ∩ L,L, P) =
n⋂

i=1

sup N(Ki, P
−1
i (Li), P). (30)

Conversely, if for a given modular plant equality (30) holds true for any global
specification K ⊆ A∗ then the local plant (partial) languages {Li, i ∈ Zn} are
modularly normal.

Now we present an example, where it is shown that global mutual normality
(GMN) is not a necessary condition.

Example 2. Let A = {a, a1, a2, τ, τ1, τ2}, A1 = {a1, τ1, a, τ}, A2 = {a2, τ2, a, τ},
Ao = {a1, a2, a}, Ao,1 = {a1, a}, and Ao,2 = {a2, a}. Consider the following lo-
cal plant languages (the marked languages are not considered): Let prefix(K) =
{ε, a, a1, a1a2}. One can easily verify that K is not decomposable. Indeed, the in-
clusion prefix(K) ⊂ P−1

1 P1(prefix(K)) ∩ P−1
2 P2(prefix(K)) is strict, i.e.

prefix(K) �= P−1
1 P1(prefix(K))∩P−1

2 P2(prefix(K)). Computing further the par-
allel product L = L1 ‖ L2 yields:

sup N(K ∩ L,L, P) = {ε}.

Note that in this example Ki = K ∩ P−1
i Li = K for i = 1, 2. It is also easy to

see that sup N(Ki, P
−1
i (Li), P) = {ε} as well for i = 1, 2. i.e. the commutativity

holds trivially true.
On the other hand, global mutual normality does not hold. We have e.g.

τ1 ∈ (P−1PP−1
1)(L1) ∩ (P2)−1(L2) \ P−1

1 (L1).

Control of Modular and Distributed DES 61

Modular Computation of Supremal Controllable and Normal
Sublanguages

Theorem 9. Modular control synthesis equals global control synthesis for the
supremal controllable and normal sublanguage in case of a distributed DES and
of an indecomposable specification. Consider a distributed DES. Assume that
the local plants (1) agree on the controllability of their common events and (2)
agree on the observability of their common events.

If the local plant languages {Li, i ∈ Zn} are modularly controllable and mod-
ularly normal, then

sup CN(K ∩ L,L, P,Au) =
n⋂

i=1

sup CN(Ki, P
−1
i (Li), P, Au). (31)

Conversely, if for a given modular plant equality (31) holds true for any global
specification K then local plant languages {Li, i ∈ Zn} are modularly controllable
and modularly normal.

Proof. The proof of sufficiency relies on a coinduction-like algorithm for com-
puation of sup CN from [8] and the coinduction proof principle. The proof for
necessity is the same as in the previous theorems.

Note that global mutual controllability together with global mutual normality
imply modular controllability and modular normality, and the former notions
are easier to verify than the latter ones, because they do not include the global
plant. In fact, although modular controllability and modular normality can be
checked in polynomial time (but in size of global DES!), their verification requires
the construction of the global system, which contradicts the modular approach,
because the size of global system grows exponentially with the number of compo-
nents. On the other hand verification of global mutual controllability and global
mutual normality is polynomial in the size of the local components.

Antipermissive Control Policy

In this subsection our intention is to generalize the results concerning modular
computation of supremal normal sublanguages of global specifications to modu-
lar computation of closed-loop languages using the antipermissive control policy.
This will be done in the very same way as was done in section 4 for local spec-
ification. Unlike the setting of section 4 we will work with P−1

i (Li) instead of
Li. Since we work with the global alphabet, synchronous composition coincides
with intersection. The concept of modular observability using Definition 2 is
needed:

Definition 17. Consider a distributed DES. The modular plant languages
{Li, i ∈ Zn} are called modularly observable if for any i ∈ Zn we have that
L is observable with respect to P−1

i (Li) and Ao.

62 J. Komenda and J.H. van Schuppen

Theorem 10. Modular control synthesis equals global control synthesis for
the closed-loop language in case of a distributed DES, of an indecomposable
specification, and of an antipermissive control policy. Consider a distributed
discrete-event system. Assume that the local plants (1) agree on the controllabil-
ity of their common events and (2) agree on the observability of their common
events.

If {Li, i ∈ Zn} are modularly observable then

AP(K ∩ L,L, P) =
n⋂

i=1

AP(Ki, P
−1
i (Li), P). (32)

Conversely, if for a given modular plant equality (32) holds true for any global
specification K then the local plant (partial) languages {Li, i ∈ Zn} are modu-
larly observable.

7 Conclusion

An overview has been presented of different methods for modular control of DES
together with new methods and conditions. Most of the possible special cases
of modular and distributed control have been covered (both fully and partially
observed systems, both local and global specifications). Among the new results
we provided for all presented cases necessary conditions for modular control
synthesis to equal global control synthesis. Antipermissive control policy was
proposed for the global specification and necessary and sufficient conditions have
been presented for local antipermissive control policy to yield the same result as
computationally much more efficient local antipermissive control policy.

These results are important for the optimal supervisory control of large dis-
tributed plants, because with respect to the derived conditions control synthesis
can be implemented modularly. All the sufficient conditions we have presented
are easier to check than their counterparts for global systems. The structural
condition do not depend on a particular specification, which is very important
for global (indecomposable) specifications.

Acknowledgements. Partial financial support of theGrantGAAVNo.B100190609
and of the Academy of Sciences of the Czech Republic, Institutional Research Plan
No. AV0Z10190503 is gratefully acknowledged.

References

1. S.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems, Kluwer
Academic Publishers, Dordrecht 1999.

2. B. Gaudin and H. Marchand. Modular Supervisory Control of a Class of Concurrent
Discrete Event Systems. Proceedings WODES’04, Workshop on Discrete-Event
Systems, pp. 181-186, Reims, September 22-24, 2004.

Control of Modular and Distributed DES 63

3. J. Komenda and J.H. van Schuppen. Supremal Normal Sublanguages of Large Dis-
tributed Discrete-Event Systems. Proceedings WODES’04, Workshop on Discrete-
Event Systems, Reims, September 22-24, 2004.

4. J. Komenda. Modular Control of Large Distributed Discrete-Event Systems with
Partial Observations. In Proceedings of the 15th International Conference on Sys-
tems Science, Vol. II, pp. 175-184, Wroclaw, Poland, September 2004.

5. J. Komenda and J. H. van Schuppen. Modular antipermissive control of discrete-
event systems. Proceedings of IFAC World Congress 2005, Prague, July 2005.

6. J. Komenda and J. H. van Schuppen. Supremal Sublanguages of General Spec-
ification Languages Arising in Modular Control of Discrete-Event Systems. Pro-
ceedings of Joint 44th IEEE Conference on Decision and Control and European
Control Conference, Sevilla, pp. 2775-2780, December 2005.

7. J. Komenda, J. H. van Schuppen. Modular control of discrete-event systems with
coalgebra. Submitted, August 2005.

8. J. Komenda and J. H. van Schuppen. Control of Discrete-Event Systems with
Partial Observations Using Coalgebra and Coinduction. Discrete Event Dynamical
Systems: Theory and Applications 15(3), 257-315, 2005.

9. J. Komenda and J. H. van Schuppen. Optimal Solutions of Modular Supervisory
Control Problems with Indecomposable Specification Languages. Proceedings In-
ternational Workshop on Discrete Event Systems (WODES), 2006, to appear.

10. M. Lamouchi and J.G. Thistle. Effective Control Synthesis For Discrete Event
Systems Under Partial Observations. In Proceedings of the IEEE Conference on
Decision and Control, 2000.

11. F. Lin and W.M. Wonham, On Observability of Discrete-Event Systems, Informa-
tion Sciences,44: 173-198, 1988.

12. R. Milner. Communication and Concurrency. Prentice Hall International Series in
Computer Science. Prentice Hall International, New York, 1989.

13. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize,
Proceedings of the 1990 IEEE Symposium on the Foundations of Computer Science,
IEEE, New York, 1990, 746–757.

14. P.J. Ramadge and W.M. Wonham. The Control of Discrete-Event Systems. Proc.
IEEE, 77:81-98, 1989.

15. J.J.M.M. Rutten. Universal Coalgebra: A Theory of Systems. Theoretical Computer
Science 249(1):3-80, 2000.

16. S. Tripakis. Undecidable Problems of Decentralized Observation and Control. In
Proceedings of the IEEE Conference on Decision and Control, 2001.

17. J.N. Tsitsiklis. On the Control of Discrete-Event Dynamical Systems, Mathematics
of Control, Signal, and Systems, 95-107, 1989.

18. K.C. Wong and S. Lee. Structural Decentralized Control of Concurrent Discrete-
Event Systems. European Journal of Control, 8:477-491, 2002.

19. W.M. Wonham. Lecture notes on control of discrete-event systems, University of
Toronto, Department ECE, Toronto, 2005.
http://www.control.toronto.edu/people/profs/wonham/wonham.html

20. W.M. Wonham and P.J. Ramadge. On the Supremal Controllable Sublanguage of
a Given Language, SIAM J. Control Optim., 25:637-659, 1987.

Model-Based Security Engineering with UML:
Introducing Security Aspects

Jan Jürjens�

Dep. of Informatics, TU Munich, Germany

Abstract. Developing security-critical systems is difficult and there are
many well-known examples of security weaknesses exploited in practice.
Thus a sound methodology supporting secure systems development is
urgently needed.

Our aim is to aid the difficult task of developing security-critical sys-
tems in a formally based approach using the notation of the Unified
Modeling Language. We present the extension UMLsec of UML that al-
lows one to express security-relevant information within the diagrams in
a system specification. UMLsec is defined in form of a UML profile using
the standard UML extension mechanisms. In particular, the associated
constraints give criteria to evaluate the security aspects of a system de-
sign, by referring to a formal semantics of a simplified fragment of UML.
In this tutorial exposition, we concentrate on an approach to develop
and analyze security-critical specifications and implementations using
aspect-oriented modeling.

1 Introduction

Constructing security-critical systems in a sound and well-founded way poses
high challenges. To support this task, we defined the extension UMLsec of the
UML [Jür01, Jür02, Jür04]. Various recurring security requirements (such as se-
crecy, integrity, authenticity and others), as well as assumptions on the security
of the system environment, are offered as stereotypes and tags by the UMLsec
definition. These can be included in UML diagrams firstly to keep track of the
information. Using the associated constraints that refer to a formal semantics
of the used simplified fragment of UML, the properties can be used to evaluate
diagrams of various kinds and to indicate possible vulnerabilities. One can thus
verify that the stated security requirements, if fulfilled, enforce a given security
policy. One can also ensure that the requirements are actually met by the given
UML specification of the system. This way we can encapsulate knowledge on
prudent security engineering and thereby make it available to developers which
may not be specialized in security. One can also go further by checking whether
the constraints associated with the UMLsec stereotypes are fulfilled in a given
specification, if desired by performing an automated formal security verifica-
tion using automated theorem provers for first order logic or model-checkers. In
� http://www4.in.tum.de/˜juerjens

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 64–87, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model-Based Security Engineering with UML 65

this tutorial exposition, we present in particular an Aspect-Oriented Modeling
approach which separates complex security mechanisms (which implement the
security aspect model) from the core functionality of the system (the primary
model) in order to allow a security verification of the particularly security-critical
parts, and also of the composed model.

We explain how to formally evaluate UML specifications for security require-
ments in Sect. 2. We introduce a fragment of the UMLsec notation in Sect. 3
and explain the various stereotypes with examples. In Sect. 4, we explain how
one can specify security aspects in UMLsec models and how these are woven
into the primary model using our approach. Sect. 5 explains our code analysis
framework. Throughout the paper we demonstrate our approach using a variant
of the Internet protocol Transport Layer Security (TLS). In Sect. 6, we report
on experiences from using our approach in an industrial setting. After comparing
our research with related work, we close with a discussion and an outlook on
ongoing research.

2 Security Evaluation of UML Diagrams

A UMLsec diagram is essentially a UML diagram where security properties and
requirements are inserted as stereotypes with tags and constraints, although cer-
tain restrictions apply to enable automated formal verification. UML offers three
main “light-weight” language extension mechanisms: stereotypes, tagged values,
and constraints [UML03].1 Stereotypes define new types of modeling elements
extending the semantics of existing types or classes in the UML metamodel.
Their notation consists of the name of the stereotype written in double angle
brackets 〈〈 〉〉, attached to the extended model element. This model element is
then interpreted according to the meaning ascribed to the stereotype. One way
of explicitly defining a property is by attaching a tagged value to a model ele-
ment. A tagged value is a name-value pair, where the name is referred to as the
tag. The corresponding notation is {tag = value} with the tag name tag and a
corresponding value to be assigned to the tag. If the value is of type Boolean,
one usually omits {tag = false}, and writes {tag} instead of {tag = true}.
Another way of adding information to a model element is by attaching logical
constraints to refine its semantics (for example written in first-order predicate
logic).

To construct an extension of the UML one collects the relevant definitions of
stereotypes, tagged values, and constraints into a so-called profile [UML03]. For
UMLsec, we give validation rules that evaluate a model with respect to listed
security requirements. Many security requirements are formulated regarding the
behavior of a system in interaction with its environment (in particular, with
potential adversaries). To verify these requirements, we use the formal semantics
defined below.

1 In the following, we use UML 1.5 since the official DTD for UML 2.0, which would
be needed by our tools, has not yet been released at the time of writing.

66 J. Jürjens

2.1 Outline of Formal Semantics

For some of the constraints used to define the UMLsec extensions we need to refer
to a precisely defined semantics of behavioral aspects, because verifying whether
they hold for a given UML model may be mathematically non-trivial. Firstly,
the semantics is used to define these constraints in a mathematically precise
way. Secondly, we have developed mechanical tool support for analyzing UML
specifications for security requirements using model-checkers and automated the-
orem provers for first-order logic [Jür05b]. For this, a precise definition of the
meaning of the specifications is necessary. For security analysis, the security-
relevant information from the security-oriented stereotypes is then incorporated
(cf. Sect. 2.3).

The semantics for the fragment of UML used for UMLsec is defined formally
in [Jür04] using so-called UML Machines, which is a kind of state machine with
input/output interfaces similar to the Focus model [BS01], whose behavior can
be specified in a notation similar to that of Abstract State Machines [Gur00], and
which is equipped with UML-type communication mechanisms. Because of space
restrictions, we cannot recall the definition of UML Machines nor the formal
semantics here completely. Instead, we use an abstraction of UML Machines in
terms of their associated input/output functions to define precisely and explain
the interfaces of the that part of our UML semantics that we need here to define
the UMLsec profile. Our semantics includes simplified versions of the following
kinds of diagrams:

Class diagrams define the static class structure of the system: classes with
attributes, operations, and signals and relationships between classes. On the
instance level, the corresponding diagrams are called object diagrams.

Statechart diagrams (or state diagrams) give the dynamic behavior of an
individual object or component: events may cause a change in state or an
execution of actions. For our approach to be as widely applicable as possible
and for the purposes of the current paper, we use a general definition of the
notion of a component by which a component is a part of the system which
interacts with the rest of the system (and possibly the system environment)
through a well-defined interface (this definition is inspired for example by
the view taken in [BS01]).

Sequence diagrams describe interaction between objects or system compo-
nents via message exchange.

Activity diagrams specify the control flow between several components within
the system, usually at a higher degree of abstraction than statecharts and
sequence diagrams. They can be used to put objects or components in the
context of overall system behavior or to explain use cases in more detail.

Deployment diagrams describe the physical layer on which the system is to
be implemented.

Subsystems (a certain kind of packages) integrate the information between
the different kinds of diagrams and between different parts of the system
specification.

Model-Based Security Engineering with UML 67

There is another kind of diagrams, the use case diagrams, which describe
typical interactions between a user and a computer system. They are often used
in an informal way for negotiation with a customer before a system is designed.
We will not use it in the following. Additionally to sequence diagrams, there
are collaboration diagrams, which present similar information. Also, there are
component diagrams, presenting part of the information contained in deployment
diagrams.

The used fragment of UML is simplified to keep automated formal verification
that is necessary for some of the more subtle security requirements feasible. Note
that in our approach we identify system objects with UML objects, which is
suitable for our purposes. Also, we are mainly concerned with instance-based
models. Although simplified, our choice of a subset of UML is reasonable for our
needs, as we have demonstrated in several industrial case-studies (some of which
are documented in [Jür04]).

The formal semantics for subsystems incorporates the formal semantics of the
diagrams contained in a subsystem. It

– models actions and internal activities explicitly (rather than treating them
as atomic given events), in particular the operations and the parameters
employed in them,

– provides passing of messages with their parameters between objects or com-
ponents specified in different diagrams, including a dispatching mechanism
for events and the handling of actions, and thus

– allows in principle whole specification documents to be based on a formal
foundation.

In particular, we can compose subsystems by including them into other
subsystems.

Objects, and more generally system components, can communicate by ex-
changing messages. These consist of the message name, and possibly arguments
to the message (which will be assumed to be elements of the set Exp defined
in Sect. 2.2). Message names may be prefixed with object or subsystem instance
names. Each object or component may receive messages received in an input
queue and release messages to an output queue.

In our model, every object or subsystem instance O has associated multi-
sets inQuO and outQuO (event queues). Our formal semantics models sending
a message msg = op(exp1, . . . , expn) ∈ Events from an object or subsystem
instance S to an object or subsystem instance R as follows:

(1) S places the message R.msg into its multi-set outQuS .
(2) A scheduler distributes the messages from out-queues to the intended in-

queues (while removing the message head); in particular, R.msg is removed
from outQuS and msg added to inQuR.

(3) R removes msg from its in-queue and processes its content.

In the case of operation calls, we also need to keep track of the sender to allow
sending return signals. This way of modeling communication allows for a very

68 J. Jürjens

flexible treatment; for example, we can modify the behavior of the scheduler to
take account of knowledge on the underlying communication layer (for example
regarding security issues, see Sect. 2.3).

At the level of single objects, behavior is modeled using statecharts, or (in
special cases such as protocols) possibly as using sequence diagrams. The internal
activities contained at states of these statecharts can again be defined each as a
statechart, or alternatively, they can be defined directly using UML Machines.

Using subsystems, one can then define the behavior of a system component
C by including the behavior of each of the objects or components directly con-
tained in C, and by including an activity diagram that coordinates the respective
activities of the various components and objects.

Thus for each object or component C of a given system, our semantics defines
a function �C�() which

– takes a multi-set I of input messages and a component state S and
– outputs a set �C�(I, S) of pairs (O, T) where O is a multi-set of output

messages and T the new component state (it is a set of pairs because of the
non-determinism that may arise)

together with an initial state S0 of the component.
Specifically, the behavioral semantics �D�() of a statechart diagram D models

the run-to-completion semantics of UML statecharts. As a special case, this
gives us the semantics for activity diagrams. Any sequence diagram S gives us
the behavior �S.C�() of each contained component C.

Subsystems group together diagrams describing different parts of a system:
a system component C given by a subsystem S may contain subcomponents
C1, . . . , Cn. The behavioral interpretation �S�() of S is defined as follows:

(1) It takes a multi-set of input events.
(2) The events are distributed from the input multi-set and the link queues con-

necting the subcomponents and given as arguments to the functions defining
the behavior of the intended recipients in S.

(3) The output messages from these functions are distributed to the link queues
of the links connecting the sender of a message to the receiver, or given as
the output from �S�() when the receiver is not part of S.

When performing security analysis, after the last step, the adversary model may
modify the contents of the link queues in a certain way explained in Sect. 2.3.

2.2 Modeling Cryptography

We introduce some sets to be used in modeling cryptographic data in a UML
specification and its security analysis.

We assume a set Keys with a partial injective map ()−1 : Keys → Keys.
The elements in its domain (which may be public) can be used for encryption
and for verifying signatures, those in its range (usually assumed to be secret)
for decryption and signing. We assume that every key is either an encryption
or decryption key, or both: Any key k satisfying k−1 = k is called symmetric,

Model-Based Security Engineering with UML 69

• :: (concatenation)
• head() and tail() (head and tail of a concatenation)
• { } (encryption)
• Dec () (decryption)
• Sign () (signing)
• Ext () (extracting from signature)
• Hash() (hashing)

Fig. 1. Abstract Crypto Operations

the others are called asymmetric. We assume that the numbers of symmetric
and asymmetric keys are both infinite. We fix infinite sets Var of variables
and Data of data values. We assume that Keys, Var, and Data are mutually
disjoint. Data may also include nonces and other secrets.

To define the algebra of cryptographic expressions Exp one considers a term
algebra generated from ground data in Var∪Keys∪Data using the symbolic op-
erations in Fig. 1. In that term algebra, one defines the equations DecK−1({E}K)
= E and ExtK(SignK−1(E)) = E (for all E ∈ Exp andK ∈ Keys) and the usual
laws regarding concatenation, head(), and tail(). We write fst(E) def= head(E),
snd(E) def= head(tail(E)), and thd(E) def= head(tail(tail(E))) for each E ∈
Exp.

This symbolic model for cryptographic operations implies that we assume
cryptography to be perfect, in the sense that an adversary cannot “guess” an
encrypted value without knowing the decryption key. Also, we assume that one
can detect whether an attempted decryption is successful. See for example [AJ01]
for a formal discussion of these assumptions.

Based on this formalization of cryptographical operations, important condi-
tions on security-critical data (such as freshness, secrecy, integrity) can then be
formulated at the level of UML diagrams in a mathematically precise way (see
Sect. 3).

In the following, we will often consider subalgebras of Exp. These are subsets
of Exp which are closed under the operations used to define Exp (such as
concatenation, encryption, decryption etc.). For each subset E of Exp there
exists a unique smallest (wrt. subset inclusion) Exp-subalgebra containing E,
which we call Exp-subalgebra generated by E. Intuitively, it can be constructed
from E by iteratively adding all elements in Exp reachable by applying the
operations used to define Exp above. It can be seen as the knowledge one can
obtain from a given set E of data by iteratively applying publicly available
operations to it (such as concatenation and encryption etc.) and will be used to
model the knowledge an attacker may gain from a set E of data obtained for
example by eavesdropping on Internet connections.

2.3 Security Analysis of UML Diagrams

Our modular UML semantics allows a rather natural modeling of potential ad-
versary behavior. We can model specific types of adversaries that can attack

70 J. Jürjens

different parts of the system in a specified way. For example, an attacker of type
insider may be able to intercept the communication links in a company-wide
local area network. Several such adversary types are predefined in UMLsec and
can be used directly (see Sect. 3). Advanced users can also define adversary types
themselves by making use of threat sets defined below. If it is unknown which
adversary type should be considered, one can use the most general adversary
that has the capabilities of all possible adverary types. We model the actual be-
havior of the adversary by defining a class of UML Machines that can access the
communication links of the system in a specified way. To evaluate the security
of the system with respect to the given type of adversary, we consider the joint
execution of the system with any UML Machine in this class. This way of reason-
ing allows an intuitive formulation of many security properties. Since the actual
verification is rather indirect this way, we also give alternative intrinsic ways of
defining security properties below, which are more manageable, and show that
they are equivalent to the earlier ones.

Thus for a security analysis of a given UMLsec subsystem specification S, we
need to model potential adversary behavior. We model specific types of adver-
saries that can attack different parts of the system in a specified way. For this we
assume a function ThreatsA(s) which takes an adversary type A and a stereotype
s and returns a subset of {delete, read, insert, access} (abstract threats). These
functions arise from the specification of the physical layer of the system under
consideration using deployment diagrams. They are predefined for the standard
UMLsec adversary types, as explained in Sect. 3, but can also be defined by the
advanced users themselves. For a link l in a deployment diagram in S, we then
define the set threatsSA(l) of concrete threats to be the smallest set satisfying the
following conditions:

If each node n that l is contained in2 carries a stereotype sn with access ∈
ThreatsA(sn) then:

– If l carries a stereotype s with delete ∈ ThreatsA(s) then delete ∈ threatsSA(l).
– If l carries a stereotype s with insert ∈ ThreatsA(s) then insert ∈ threatsSA(l).
– If l carries a stereotype s with read ∈ ThreatsA(s) then read ∈ threatsSA(l).
– If l is connected to a node that carries a stereotype t with access ∈

ThreatsA(t) then {delete, insert, read} ⊆ threatsSA(l).

The idea is that threatsAA(x) specifies the threat scenario against a component
or link x in the UML Machine System A that is associated with an adversary
type A. On the one hand, the threat scenario determines, which data the ad-
versary can obtain by accessing components, on the other hand, it determines,
which actions the adversary is permitted by the threat scenario to apply to the
concerned links. delete means that the adversary may delete the messages in the
corresponding link queue, read allows him to read the messages in the link queue,
and insert allows him to insert messages in the link queue.

Then we model the actual behavior of an adversary of type A as a type A
adversary machine. This is a state machine which has the following data:
2 Note that nodes and subsystems may be nested one in another.

Model-Based Security Engineering with UML 71

– a control state control ∈ State,
– a set of current adversary knowledge K ⊆ Exp, and
– for each possible control state c ∈ State and set of knowledge K ⊆ Exp, we

have
• a set Deletec,K which may contain the name of any link l with delete ∈

threatsSA(l)
• a set Insertc,K which may contain any pair (l, E) where l is the name of

a link with insert ∈ threatsSA(l), and E ∈ K, and
• a set newStatec,k ⊆ State of states.

The machine is executed from a specified initial state control := control0 with
a specified initial knowledge K := K0 iteratively, where each iteration proceeds
according to the following steps:

(1) The contents of all link queues belonging to a link l with read ∈ threatsSA(l)
are added to K.

(2) The content of any link queue belonging to a link l ∈ Deletecontrol,K is
mapped to ∅.

(3) The content of any link queue belonging to a link l is enlarged with all
expressions E where (l, E) ∈ Insertcontrol,K.

(4) The next control state is chosen non-deterministically from the set
newStatecontrol,K.

The set K0 of initial knowledge contains all data values v given in the UML
specification under consideration for which each node n containing v carries a
stereotype sn with access ∈ ThreatsA(sn). In a given situation, K0 may also be
specified to contain additional data (for example, public encryption keys).

Note that an adversary A able to remove all values sent over the link l (that
it, deletel ∈ threatsSA(l)) may not be able to selectively remove a value e with
known meaning from l: For example, the messages sent over the Internet within
a virtual private network are encrypted. Thus, an adversary who is unable to
break the encryption may be able to delete all messages undiscrimatorily, but
not a single message whose meaning would be known to him.

To evaluate the security of the system with respect to the given type of adver-
sary, we then define the execution of the subsystem S in presence of an adversary
of type A to be the function �S�A() defined from �S�() by applying the modi-
fications from the adversary machine to the link queues as a fourth step in the
definition of �S�() as follows:

(4) The type A adversary machine is applied to the link queues as detailed above.

Thus after each iteration of the system execution, the adversary may non-
deterministically change the contents of link queues in a way depending on the
level of physical security as described in the deployment diagram (see Sect. 3).

There are results which simplify the analysis of the adversary behavior defined
above, which are useful for developing mechanical tool support, for example
to check whether the security properties secrecy and integrity (see below) are

72 J. Jürjens

provided by a given specification. These are beyond the scope of the current
paper and can be found in [Jür04].

One possibility to specify security requirements is to define an idealized sys-
tem model where the required security property evidently holds (for example,
because all links and components are guaranteed to be secure by the physical
layer specified in the deployment diagram), and to prove that the system model
under consideration is behaviorally equivalent to the idealized one, using a no-
tion of behavioral equivalence of UML models. This is explained in detail in
[Jür04].

In the following subsection, we consider alternative ways of specifying the
important security properties secrecy and integrity which do not require one to
explicitly construct such an idealized system and which are used in the remaining
parts of this paper.

2.4 Important Security Properties

As an example, the formal definitions of the important security property secrecy
is considered in this section following the standard approach of [DY83]. The
formalization of secrecy used in the following relies on the idea that a process
specification preserves the secrecy of a piece of data d if the process never sends
out any information from which d could be derived, even in interaction with an
adversary. More precisely, d is leaked if there is an adversary of the type arising
from the given threat scenario that does not initially know d and an input
sequence to the system such that after the execution of the system given the
input in presence of the adversary, the adversary knows d (where “knowledge”,
“execution” etc. have to be formalized). Otherwise, d is said to be kept secret.

Thus we come to the following definition.

Definition 1. We say that a subsystem S preserves the secrecy of an expression
E from adversaries of type A if E never appears in the knowledge set K of A
during execution of �S�A().

This definition is especially convenient to verify if one can give an upper bound
for the set of knowledge K, which is often possible when the security-relevant part
of the specification of the system S is given as a sequence of command schemata
of the form await event e – check condition g – output event e’ (for example when
using UML sequence diagrams or statecharts for specifying security protocols,
see Sect. 3).

3 The UMLsec Extension

We can only shortly recall part of the UMLsec notation here for space reasons.
A complete account can be found in [Jür04]. In Table 1 we give some of the
stereotypes from UMLsec, in Table 2 the associated tags, and in Table 3 the
threats corresponding to the default adversary (which define the “security se-
mantics” of the UMLsec models). The constraints connected to the stereotypes

Model-Based Security Engineering with UML 73

Table 1. UMLsec stereotypes (excerpt)

Stereotype Base Class Tags Constraints Description
Internet link Internet connection
encrypted link encrypted connection
LAN link LAN connection
secure links subsystem dependency security enforces secure

matched by links communication links
secrecy dependency assumes secrecy
integrity dependency assumes integrity
secure subsystem 〈〈 call 〉〉, 〈〈 send 〉〉 respect structural interaction
dependency data security data security

critical object secrecy, critical object
integrity

data security subsystem provides secrecy basic datasecurity
requirements

Table 2. UMLsec tags (excerpt)

Tag Stereotype Type Multipl. Description
secrecy critical String * data secrecy
integrity critical String * data integrity

are explained in detail below. They can be formalized in first-order logic and
thus verified by an automated first-order logic theorem prover, which is part of
our UML analysis tool suite.

The primary model is a set of UML models and the dynamic aspect are weaved
in by including the stereotypes defined above.

Internet, encrypted, LAN: These stereotypes on links (resp. nodes) in deploy-
ment diagrams denote the corresponding requirements on communication links
(resp. system nodes), namely that they are implemented as Internet links, en-
crypted Internet links, resp. as LAN links. We require that each link or node
carries at most one of these stereotypes. For each adversary type A, we have a
function ThreatsA(s) from each stereotype

s ∈ {〈〈 Internet 〉〉, 〈〈 encrypted 〉〉, 〈〈 LAN 〉〉}

to a set of strings ThreatsA(s) ⊆ {delete, read, insert, access} under the following
conditions:

– for a node stereotype s, we have ThreatsA(s) ⊆ {access} and
– for a link stereotype s, we have ThreatsA(s) ⊆ {delete, read, insert}.

Thus ThreatsA(s) specifies which kinds of actions an adversary of type A can
apply to node or links stereotyped s. This way we can evaluate UML specifi-
cations using the approach explained in Sect. 2.1. We make use of this for the
constraints of the remaining stereotypes of the profile.

74 J. Jürjens

Table 3. Some threats from the default attacker

Stereotype Threatsdefault ()
Internet {delete,read,insert}
encrypted {delete}
LAN ∅

As an example the threat sets associated with the default adversary type are
given in Table 3.

secure links: This stereotype, which may label (instances of) subsystems, is
used to ensure that security requirements on the communication are met by the
physical layer. More precisely, the constraint enforces that for each dependency
d with stereotype s ∈ {〈〈 secrecy 〉〉, 〈〈 integrity 〉〉} between subsystems or objects
on different nodes n,m, we have a communication link l between n and m with
stereotype t such that

– in the case of s = 〈〈 secrecy 〉〉, we have read /∈ ThreatsA(t), and
– in the case of s = 〈〈 integrity 〉〉, we have insert /∈ ThreatsA(t).

Example. In Fig. 2, given the default adversary type, the constraint for the
stereotype 〈〈 secure links 〉〉 is violated: The model does not provide communica-
tion secrecy against the default adversary, because the Internet communication
link between web-server and client does not give the needed security level ac-
cording to the Threatsdefault (Internet) scenario. Intuitively, the reason is that
Internet connections do not provide secrecy against default adversaries. Tech-
nically, the constraint is violated, because the dependency carries the stereo-
type 〈〈 secrecy 〉〉, but for the stereotype 〈〈 Internet 〉〉 of corresponding link we have
read ∈ Threatsdefault(Internet).

«Internet»

«secrecy» server machineclient machine
get_password

browser
client apps

access control
web server«call»

«secure links»remote access

Fig. 2. Example secure links usage

Model-Based Security Engineering with UML 75

secrecy, integrity: 〈〈 call 〉〉 or 〈〈 send 〉〉 dependencies in object or component dia-
grams stereotyped 〈〈 secrecy 〉〉 (resp. 〈〈 integrity 〉〉) are supposed to provide secrecy
(resp. integrity) for the data that is sent along them as arguments or return
values of operations or signals. This stereotype is used in the constraint for the
stereotype 〈〈 secure links 〉〉.

secure dependency: This stereotype, used to label subsystems containing object
diagrams or static structure diagrams, ensures that the 〈〈 call 〉〉 and 〈〈 send 〉〉 de-
pendencies between objects or subsystems respect the security requirements on
the data that may be communicated along them, as given by the tags {secrecy}
and {integrity} of the stereotype 〈〈 critical 〉〉. More exactly, the constraint enforced
by this stereotype is that if there is a 〈〈 call 〉〉 or 〈〈 send 〉〉 dependency from an ob-
ject (or subsystem) C to an interface I of an object (or subsystem) D then the
following conditions are fulfilled.

– For any message name n in I, n appears in the tag {secrecy} (resp.
{integrity}) in C if and only if it does so in D.

– If a message name in I appears in the tag {secrecy} (resp. {integrity}) in C
then the dependency is stereotyped 〈〈 secrecy 〉〉 (resp. 〈〈 integrity 〉〉).

If the dependency goes directly to another object (or subsystem) without involv-
ing an interface, the same requirement applies to the trivial interface containing
all messages of the server object.

Example. Figure 3 shows a key generation subsystem stereotyped with the
requirement 〈〈 secure dependency 〉〉. The given specification violates the constraint
for this stereotype, since the Random generator and the 〈〈 call 〉〉 dependency do
not provide the security levels for random() required by Key generator. More
precisely, the constraint is violated, because the message random is required to
be secret by Key generator (by the tag {secrecy} in Key generator), but it is
not guaranteed to be secret by Random generator (in fact there are no secret
messages in Random generator and so the tag {secrecy} is missing), and also the

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»

Key generation
«secure dependency»

newkey(): Key

«call»

«critical»Key generator

newkey(): Key

{secrecy={newkey(),random()}}

Fig. 3. Key generation subsystem

76 J. Jürjens

communication dependency is not guaranteed to preserve secrecy. Note that the
{secrecy} tag is used at the key generator to both require and assure secrecy (for
the random() method called at the random generator resp. the newkey() method
offered by the key generator).

critical: This stereotype labels objects or subsystem instances containing data
that is critical in some way, which is specified in more detail using the corre-
sponding tags. These tags include {secrecy} and {integrity}. Their values are
the names of expressions or variables (that is, attributes or message arguments)
of the current object the secrecy (resp. integrity) of which is supposed to be
protected. These requirements are enforced by the constraint of the stereotype
〈〈 data security 〉〉 which labels (instances of) subsystems that contain 〈〈 critical 〉〉

objects (see there for an explanation).

data security: This stereotype labeling (instances of) subsystems has the follow-
ing constraint. The subsystem behavior respects the data security requirements
given by the stereotypes 〈〈 critical 〉〉 and the associated tags contained in the sub-
system, with respect to the threat scenario arising from the deployment diagram.

More precisely, the constraint is given by the following conditions that use
the concepts of preservation of secrecy resp. integrity defined in Sect. 2.3.

secrecy. The subsystem preserves the secrecy of the data designated by the tag
{secrecy} against adversaries of type A.

integrity. The subsystem preserves the integrity of the data designated by the
tag {integrity} against adversaries of type A.

Note that it is enough for data to be listed with a security requirement in one
of the objects or subsystem instances contained in the subsystem to be required
to fulfill the above conditions.

Thus the properties of secrecy and integrity are taken relative to the type of
adversary under consideration. In case of the default adversary, this is a prin-
cipal external to the system; one may, however, consider adversaries that are
part of the system under consideration, by giving the adversary access to the
relevant system components (by defining ThreatsA(s) to contain access for the
relevant stereotype s). For example, in an e-commerce protocol involving cus-
tomer, merchant and bank, one might want to say that the identity of the goods
being purchased is a secret known only to the customer and the merchant (and
not the bank). This can be formulated by marking the relevant data as “secret”
and by performing a security analysis relative to the adversary model “bank”
(that is, the adversary is given access to the bank component by defining the
Threats() function in a suitable way).

The secrecy and integrity tags can be used for data values as well as variable
and message names (as permitted by the definitions of secrecy and integrity in
Sect. 2.3). Note that the adversary does not always have access to the input
and output queues of the system (for example, if the system under consideration
is part of a larger system it is connected through a secure connection). There-
fore it may make sense to use the secrecy tag on variables that are assigned

Model-Based Security Engineering with UML 77

K
/transmit({d})

Request

Send

Wait
/request()

send(d)

return(K,C)
KCA

[Ext (C)=rcv::K]

s

Received

«data security»
SecureChannel

Sendercomp

S:Sender
«call»

Sendernode

«send»

Receivernode

Receivercomp

R:Receiver

«Internet»

WaitReq WaitTrm

request()

KCA
/return(Sign (rcv::K),K)

transmit(d)

r

receive():Data
send(d:Data)

R:Receiver

s r

S:Sender «critical»Sender «critical»

receive():Data

Receiver

request():Exp
send(d:Data)

«call»

«send»

transmit(d:Data)

receive()

/return(Dec (d))
K

{secrecy=d} {secrecy=d}

Fig. 4. Security protocol

values received by the system; that is, effectively, one may require values that
are received to be secret. Of course, the above condition only ensures that the
component under consideration keeps the values received by the environment
secret; additionally, one has to make sure that the environment (for example,
the rest of the system apart from the component under consideration) does not
make these values available to the adversary.

Example. The example in Fig. 4 shows the specification of a very simple secu-
rity protocol. The sender requests the public key K together with the certificate
SignKCA

(rcv :: K) certifying authenticity of the key from the receiver and sends
the data d back encrypted under K (here {M}K is the encryption of the mes-
sage M with the key K, DecK(C) is the decryption of the ciphertext C using
K, SignK(M) is the signature of the message M with K, and ExtK(S) is the
extraction of the data from the signature using K). Assuming the default adver-
sary type and by referring to the adversary model outlined in Sect. 2.3 and by
using the formal semantics defined in [Jür04], one can establish that the secrecy
of d is preserved. (Note that the protocol only serves as a simple example for

78 J. Jürjens

the use of patterns, not to propose a new protocol of practical value.) Recall
from Sect. 2.4 that the requirements {secrecy} and {integrity} refer to the type
of adversary under consideration. In the case of the default adversary, in this
example this is an adversary that has access to the Internet link between the two
nodes only. It does not have direct access to any of the components in the speci-
fication (this would have to be specified explicitly using the Threats() function).
In particular, the adversary to be considered here does not have access to the
components R and S (if it would, then secrecy and integrity would fail because
the adversary could read and modify the critical values directly as attributes of
R and S).

4 Introducing Dynamic Security Aspects

Aspects encapsulate properties (often non-functional ones) which crosscut a sys-
tem, and we use transformations of UML models to “weave in” dynamic security
aspects on the model level. The resulting UML models can be analyzed as to
whether they actually satisfy the desired security requirements using automated
tools [Jür05b]. Secondly, one should make sure that the code constructed from
the models (either manually or by code generation) still satisfies the security
requirements shown on the model level. This is highly non-trivial, for example
because different aspects may be woven into the same system which may inter-
fere on the code level in an unforeseen way. To achieve it, one has in principle
two options: One can either again verify the generated code against the desired
security requirements, or one can prove that the code generation preserves the
security requirements fulfilled on the model level. Although the second option
would be conceptually more satisfying, a formal verification of a code generator
of industrially relevant strength seems to be infeasible for the foreseeable future.
Also, in many cases, completely automated code generation may not be practical
anyway. We therefore followed the first option and extended our UML security
analysis techniques from [UML04] to the code level (presently C code, while the
analysis of Java code is in development). The analysis approach (of which early
ideas were sketched in [JH05]) now takes the generated code and automatically
verifies it against the intended security requirement, which has been woven in as
dynamic aspects. This is explained in Sect. 5. This verification thus amounts to
a translation validation of the weaving and code construction process. Note that
performing the analysis both at the model and the code level is not overly redun-
dant: the security analysis on the model level has the advantage that problem
found can be corrected earlier when this requires less effort, and the security
analysis on the code level is still necessary as argued above. Also, in practice
generated code is very rarely be used without any changes, which again requires
verification on the code level.

The model transformation resulting from the “weaving in” of a dynamic se-
curity aspect p corresponds to a function fp which takes a UML specification
S and returns a UML specification, namely the one obtained when applying p
to S. Technically, such a function can be presented by defining how it should

Model-Based Security Engineering with UML 79

act on certain subsystem instances3, and by extending it to all possible UML
specifications in a compositional way. Suppose that we have a set S of subsys-
tem instances such that none of the subsystem instances in S is contained in
any other subsystem instance in S. Suppose that for every subsystem instance
S ∈ S we are given a subsystem instance fp(S). Then for any UML specification
U , we can define fp(U) by substituting each occurrence of a subsystem instance
S ∈ S in U by fp(S). We demonstrate this by an example.

We consider the data secrecy aspect in the situation of communication over
untrusted networks, as specified in Fig. 5. In the subsystem, the Sender object
is supposed to accept a value in the variable d as an argument of the operation
send and send it over the 〈〈 encrypted 〉〉 Internet link to the Receiver object, which
delivers the value as a return value of the operation receive. According to the
stereotype 〈〈 critical 〉〉 and the associated tag {secrecy}, the subsystem is supposed
to preserve the secrecy of the variable d.

A well-known implementation of this aspect is to encrypt the traffic over the
untrusted link using a key exchange protocol. As an example, we consider a
simplified variant of the handshake protocol of the Internet protocol TLS in
Fig. 6. This can be seen as a refinement of the generic scenario in Fig. 5 and
is a similar but different protocol from the one in Fig. 4. The notation for the
cryptographic algorithms was defined in Sect. 2.2.

The goal of the protocol is to let a sender send a secret over an untrusted
communication link to a receiver in a way that provides secrecy, by using sym-
metric session keys.4 The sender S initiates the protocol by sending the
message request(N,KS,SignK−1

S
(S :: KS)) to the receiver R. If the condition

[snd(ExtK′(cS))=K′] holds, where K ′ and cS are the second and third arguments
of the message received earlier (that is, if the key KS contained in the signa-
ture matches the one transmitted in the clear), R sends the return message
return

(
{SignK−1

R
(K :: N′)}K′ ,SignK−1

CA
(R :: KR)

)
back to S (where N′ is the first

argument of the message received earlier). Then if the condition

[fst(ExtKCA(cR))=R ∧ snd(ExtK′′(DecK−1
S

(ck)))=N]

holds, where cR and ck are the two arguments of the message received by the
sender, and K′′ ::= snd(ExtKCA(cR)) (that is, the certificate is actually for R
and the correct nonce is returned), S sends transmit({d}k) to R, where k ::=
fst(ExtK′′(DecK−1

S
(ck))). If any of the checks fail, the respective protocol partici-

pant stops the execution of the protocol.
Note that the receiver sends two return messages - the first matches the return

trigger at the sender, the other is the return message for the receive message with
which the receiver object was called by the receiving application at the receiver
node.

3 Although one could also define this on the type level, we prefer to remain on the
instance level, since having access to instances gives us more fine-grained control.

4 Note that in this simplified example, which should mainly demonstrate the idea of
dynamic security aspect weaving, authentication is out of scope of our considerations.

80 J. Jürjens

send(d)

/transmit(d)

s:
Wait Send

receive()
/return(d’)

transmit(d’)r:
Wait Received

«Interface»

send(d:Data)

R:Receiver

send(d:Data)

«Interface»
receiving

receive():Data

transmit(d’:Data)
receive():Data

«send»S:Sender

sending

{secrecy={d}}
«critical»

Receivercomp

Sendernode Receivernode

Sendercomp

S:Sender R:Receiver

«LAN»«LAN»

«Internet»

«send»

«secrecy»

receive():Data

Channel «data security»

send(d:Data)

{adversary=default}

Fig. 5. Aspect weaving example: sender and receiver

To weave in this aspect p in a formal way, we consider the set S of subsystems
derived from the subsystem in Fig. 5 by renaming: This means, we substitute
any message, data, state, subsystem instance, node, or component name n by
a name m at each occurrence, in a way such that name clashes are avoided.
Then fp maps any subsystem instance S ∈ S to the subsystem instance derived
from that given in Fig. 6 by the same renaming. This gives us a presentation of
fp from which the definition of fp on any UML specification can be derived as
indicated above.

One can do the weaving by defining the transformation explained above using
the model transformation framework BOTL developed at our group [BM03]. The
overall tool-suite supporting our aspect-oriented modeling approach is given in
Fig. 7. The tool-flow proceeds as follows. The developer creates a primary UML
model and stores it in the XMI file format. The static checker checks that the
security aspects formulated in the static views of the model are consistent. The
dynamic checker weaves in the security aspects with the dynamic model. One
can then verify the resulting UML model against the security requirements using

Model-Based Security Engineering with UML 81

«send»

«call»
receive():Data
transmit(e:Data)
request():Exp

send(d:Data)

s:
r:

R:Receiver

sending
«Interface»

receiving
«Interface»

Received

WaitTrm

Send

Request

«critical»
«critical»

{secrecy={d}}
S:Sender

transmit(E)

send(d)

receive()

WaitReq

Wait

receive():Datasend(d:Data)

K′′ ::=snd(ExtKCA(cR))
k ::= fst(ExtK′′(DecK−1

S
(ck)))

/return {SignK−1
R

(K ::N′)}K′ , SignK−1
CA

(R ::KR)

/request(N, KS, SignK−1
S

(S ::KS)) [snd(ExtK′(cS)) = K′]

/return(E)

return(ck, cR)

request(N′, K′, cS)

[fst(ExtKCA(cR)) = R ∧
snd(ExtK′′(DecK−1

S
(ck))) = N]

/transmit({d}k)

K−1
S ,KS,KCA :Keys

K−1
R ,KR :Keys

Fig. 6. Aspect weaving example: secure channel

UMLsec

XMI1.2)
(UML1.5/

Model

Model
UML

Modified
Code

Report
Text
and

(UML1.5 / XMI1.2 compliant)
UML Editor

MDR JMI

UMLsec Tool Framework

Code Analyzer

ties
Proper−

Code
and

Analysis

Result

Code Generator

Model Analyzer

Aspect Weaver

Error Analyzer

data flow

"uses"

Fig. 7. UML verification framework: usage

the analysis engine (an automated theorem prover for first-order logic). One then
constructs the code and also verify it against the security requirements using the
theorem prover. The error analyzer uses the information received from the static
and dynamic checkers to produce a text report for the developer describing

82 J. Jürjens

the problems found, and a modified UML model, where the errors found are
visualized.

5 Analyzing the Code

We define the translation of security protocol implementations to first-order logic
formulas which allows automated analysis of the source code using automated
first-order logic theorem provers. The source code is extracted as a control flow
graph using the aiCall tool [Abs04]. It is compiled to first-order logic axioms
giving an abstract interpretation of the system behavior suitable for security
analysis following the well-known Dolev-Yao adversary model [DY83]. The idea is
that an adversary can read messages sent over the network and collect them in his
knowledge set. He can merge and extract messages in the knowledge set and can
delete or insert messages on the communication links. The security requirements
are formalized with respect to this adversary model. For example, a data value
remains secret from the adversary if it never appears in the knowledge set of the
adversary. Our approach works especially well with nicely structured code, such
as that obtained using our aspect weaving tool from the previous section. For
example, we apply an automated transformation which abstracts from pointers
before applying our security analysis (which is a standard technique in C code
verification, see e.g. [DHH02]).

We explain the transformation from the control flow graph generated from
the C program to first-order logic, which is given as input to the automated
theorem prover. For space restrictions, we restrict our explanation to the analysis
for secrecy of data. The idea here is to use a predicate knows which defines
a bound on the knowledge an adversary may obtain by reading, deleting and
inserting messages on vulnerable communication lines (such as the Internet) in
interaction with the protocol participants. Precisely, knows(E) means that the
adversary may get to know E during the execution of the protocol. For any data
value s supposed to remain confidential, one thus has to check whether one can
derive knows(s). Here we use the algebra of cryptographic expressions defined in
Sect. 2.2.

The set of predicates defined to hold for a given program is defined as follows.
For each publicly known expression E, the statement knows(E) is derived. To
model the fact that the adversary may enlarge his set of knowledge by construct-
ing new expressions from the ones he knows, including the use of cryptographic
operations, formulas are generated which axiomatize these operations.

We now define how a control flow graph generated from a C program gives rise
to a logical formula characterizing the interaction between the adversary and the
protocol participants. We observe that the graph can be transformed to consist
of transitions of the form trans(state, inpattern, condition, action, truestate), where
inpattern is empty and condition equals true where they are not needed, and
where action is a logical expression of the form localvar = value resp. outpattern
in case of a local assignment resp. output command (and leaving it empty if not
needed). If needed, there may be additionally another transition corresponding

Model-Based Security Engineering with UML 83

to the negation of the given condition, where we safely abstract from the negated
condition (for logical reasons beyond this exposition).

Now assume that the source code gives rise to a transition TR1 = trans(s1, i1,
c1, a1, t1) such that there is a second transition TR2 = trans(s2, i2, c2, a2, t2)
where s2 = t1. If there is no such transition TR2, we define TR2 = trans(t1, [],
true, [], t1) to simplify our presentation, where [] is the empty input or output
pattern. Suppose that c1 is of the form cond(arg1, . . . , argn). For i1, we define
ī1 = knows(i1) in case i1 is non-empty and otherwise ī1 = true. For a1, we define
ā1 = a1 in case a1 is of the form localvar = value and ā1 = knows(outpattern) in
case a1 = outpattern (and ā1 = true in case a1 is empty). Then for TR1 we define
the following predicate:

PRED(TR1)≡ ī1&c1 ⇒ā1&PRED(TR2) (1)

The formula formalizes the fact that, if the adversary knows an expression he
can assign to the variable i1 such that the condition c1 holds, then this implies
that ā1 will hold according to the protocol, which means that either the equation
localvar = value holds in case of an assignment, or the adversary gets to know
outpattern, in case it is send out in a1. Also then the predicate for the succeeding
transition TR2 will hold.

To construct the recursive definition above, we assume that the control flow
graph is finite and cycle-free. As usual in static code analysis, loops are unfolded
over a number of iterations provided by the user. The predicates PRED(TR) for
all such transitions TR are then joined together using logical conjunctions and
closed by forall-quantification over all free variables contained. It is interesting to
note that the resulting formula is a Horn formula. Previous investigations of the

void TLS_Client (char* secret)
{ char Resp_1 [MSG_MAXLEN];

char Resp_2 [MSG_MAXLEN];
// allocate and prepare buffers
memset (Resp1, 0x00, MSG_MAXLEN);
memset (Resp2, 0x00, MSG_MAXLEN);
// C->S: Init
send (n, k_c, sign(conc(c, k_c), inv(k_c)));
// S->C: Receive Server’s respond
recv (Resp_1, Resp_2);
// Check Guards
if ((memcmp(fst(ext(Resp_2, k_ca)), s, MSG_MAXLEN) == 0) &&

(memcmp(snd(ext(dec(Resp_1, inv(k_c)),
snd(ext(Resp_2, k_ca)))), n, MSG_MAXLEN) == 0))

{ // C->S: Send Secret
send (symenc(secret, fst(ext(dec(Resp_1,
inv(k_c)), snd(ext(Resp_2, k_ca)))))); }}

Fig. 8. Fragment of abstracted client code

84 J. Jürjens

input_formula(protocol,axiom,(
![Resp_1, Resp_2] : (

((knows(conc(n, conc(k_c,sign(conc(c,conc(k_c,eol)),inv(k_c)))))
& ((knows(Resp_1) & knows(Resp_2)
& equal(fst(ext(Resp_2,k_ca)),s)
& equal(snd(ext(dec(Resp_1,inv(k_c)),snd(ext(Resp_2,k_ca)))),n))

=> knows(enc(secret,fst(ext(dec(Resp_1,inv(k_c)),
snd(ext(Resp_2,k_ca)))))))))).

Fig. 9. Core protocol axiom for client

interplay between Horn formulas and control flow have been done in [dBKPR89],
although with a different motivation.

Figure 8 gives a simplified C implementation of the client side of the TLS
variant considered earlier. From this, the control flow graph is generated auto-
matically. The main part of the transformation of the client to the e-SETHEO
input format TPTP is given in Fig. 9. We use the TPTP notation for the first-
order logic formulas, which is the input notation for many automated theorem
provers including the one we use (e-SETHEO). Here & means logical conjunction
and ![E1,E2] forall-quantification over E1, E2. The protocol itself is expressed by
a for-all quantification over the variables which store the message arguments
received.

Given this translation of the C code to first-order logic, one can now check
using the automated theorem prover that the code constructed from the UMLsec
aspect model still satisfies the desired security requirements. For example, if the
prover can derive knows(secret) from the formulas generated by the protocol, the
adversary may potentially get to know secret. Details on how to perform this
analysis given the first-order logic formula are explained in [Jür05b] and on how
to use this approach to analyze crypto-based Java implementations in [Jür06].

6 Industrial Application

We have applied our method in several project with industrial partners. In one
of them, the goal was the correct development of a security-critical biometric au-
thentication system which is supposed to control access to a protected resource.
Because the correct design of such cryptographic protocols and the correct use
within the surrounding system is very difficult, our method was chosen to sup-
port the development of the biometric authentication system. Our approach has
been applied at the specification level in [Jür05b] where several severe security
flaws had been found. We have also applied the approach presented here to
the source-code level for a prototypical implementation we constructed from the
specification [Jür05a]. The security analaysis results achieved so far are obtained
with the automated theorem prover within less than a minute computing time on
an AMD Athlon processor with 1533 MHz. tact frequency and 1024 MB RAM.

Model-Based Security Engineering with UML 85

7 Related Work

So far, there seems to be no comparable approach which allows one to include
a comparable variety of security requirements in a UML specification which is
then, based on a formal semantics, formally verified for these requirements using
tools such as automated theorem provers and model-checkers, and which comes
with a transition to the source code level where automated formal verification
can also be applied.

There has, however, been a substantial amount of work regarding some of
the topics we address here (for example formal verification of security-critical
systems or secure systems development with UML). Work on logical foundations
for object-oriented design in general and UML in particular includes for example
[FELR98, HS03, ABdBS04, dBBSA04, OGO04, FSKdR05]. There has been a lot
of work on formal methods for secure systems, for an overview we have to refer
to [Jür04].

[HLN04] represents threats as crosscutting concerns to help determining the
effect of security requirements on functional requirements. The approach analy-
sis the interaction between assets and functional requirements to expose vul-
nerabilities to security threats against the security requirements. In [FRGG04],
aspect models are used to describe crosscutting solutions that address quality
or non-functional concerns on the model level. It is explained how to identify
and compose multiple concerns, such as security and fault tolerance, and how to
identify and solve conflicts between competing concerns.

A more complete discussion of related work has to be omitted for space reasons
but can be found in [Jür04].

8 Conclusion and Future Perspectives

We gave an overview over the extension UMLsec of UML for secure systems
development, in the form of a UML profile using the standard UML extension
mechanisms. Recurring security requirements are written as stereotypes, the as-
sociated constraints ensure the security requirements on the level of the formal
semantics, by referring to the threat scenario also given as a stereotype. Thus
one may evaluate UML specifications to indicate possible vulnerabilities. One
can thus verify that the stated security requirements, if fulfilled, enforce a given
security policy. At the hand of small examples, we demonstrated how to use
UMLsec to model security requirements, threat scenarios, security concepts, se-
curity mechanisms, security primitives, underlying physical security, and security
management.

In this tutorial exposition, we concentrated on an approach to develop and an-
alyze security-critical specifications and implementations using aspect-oriented
modeling. As demonstrated, UMLsec can be used to encapsulate established
rules on prudent security engineering, also by applying security patterns, and
thereby makes them available to developers not specialized in security. We also
explained how to analyze the source code resulting in the aspect-oriented devel-
opment approach from the UMLsec diagrams against security requirements with

86 J. Jürjens

respect to its dynamic behavior, using automated theorem provers for first-order
logic.

The definition and evolvement of the UMLsec notation has been based on
experiences from in industrial application projects. We reported on the use of
UMLsec and its tool-support in one such application, the formal security verifi-
cation of a biometric authentication system, where several security weaknesses
were found and corrected using our approach during its development. For space
restrictions, we could only present a brief overview over a fragment of UMLsec.
The complete notation with many more examples and applications can be found
in [Jür04].

Acknowledgements. The research summarized in this chapter has benefitted from
the help of too many people to be able to include here; they are listed in [Jür04].
Helpful comments from the reviewers to improve the presentation are gratefully
acknowledged.

References

[ABdBS04] E. Ábráham, M.M. Bonsangue, F.S. de Boer, and M. Steffen. Object
connectivity and full abstraction for a concurrent calculus of classes. In
ICTAC 2004, pages 37–51, 2004.

[Abs04] AbsInt. aicall. http://www.aicall.de/, 2004.
[AJ01] M. Abadi and J. Jürjens. Formal eavesdropping and its computational

interpretation. In N. Kobayashi and B.C. Pierce, editors, Theoretical As-
pects of Computer Software (4th International Symposium, TACS 2001),
volume 2215 of LNCS, pages 82–94. Springer, 2001.

[BM03] P. Braun and F. Marschall. The BOTL tool. http://www4.in.tum.de/
˜marschal/botl, 2003.

[BS01] M. Broy and K. Stølen. Specification and Development of Interactive Sys-
tems. Springer, 2001.

[dBBSA04] F.S. de Boer, M.M. Bonsangue, M. Steffen, and E. Ábráham. A fully
abstract semantics for UML components. In FMCO 2004, pages 49–69,
2004.

[dBKPR89] F.S. de Boer, J.N. Koek, C. Palamidessi, and J.J.M.M. Rutten. Control
flow versus logic: a denotational and a declarative model for guarded Horn
clauses. In MFCS 1989, pages 165–176, 1989.

[DHH02] D. Dams, W. Hesse, and G.J. Holzmann. Abstracting C with abC. In
CAV 2002, pages 515–520, 2002.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29(2):198–208, 1983.

[FELR98] R.B. France, A. Evans, K. Lano, and B. Rumpe. The UML as a formal
modeling notation. Computer Standards & Interfaces, 19:325–334, 1998.

[FRGG04] R.B. France, I. Ray, G. Georg, and S. Ghosh. Aspect-oriented approach
to early design modelling. IEE Proceedings - Software, 151(4):173–186,
2004.

[FSKdR05] H. Fecher, J. Schönborn, M. Kyas, and W.P. de Roever. 29 new unclarities
in the semantics of UML 2.0 state machines. In ICFEM 2005, pages 52–65,
2005.

Model-Based Security Engineering with UML 87

[Gur00] Y. Gurevich. Abstract state machines. In T. Rus, editor, 8th International
Conference on Algebraic Methodology and Software Technology (AMAST
2000), volume 1816 of LNCS. Springer, 2000.

[HLN04] C. Haley, R. Laney, and B. Nuseibeh. Deriving security requirements
from crosscutting threat descriptions. In 3rd International Conference on
Aspect Oriented Software Development (AOSD’04). ACM, 2004.

[HS03] Ø. Haugen and K. Stølen. STAIRS – steps to analyze interactions with
refinement semantics. In P. Stevens, editor, The Unified Modeling Lan-
guage (UML 2003), volume 2863 of LNCS, pages 388–402. Springer, 2003.
6th International Conference.

[JH05] J. Jürjens and S.H. Houmb. Dynamic secure aspect modeling with UML:
From models to code. In ACM / IEEE 8th International Conference
on Model Driven Engineering Languages and Systems (MoDELS / UML
2005), LNCS. Springer, 2005.

[Jür01] J. Jürjens. Towards development of secure systems using UMLsec. In
H. Hußmann, editor, 4th International Conference on Fundamental Ap-
proaches to Software Engineering (FASE), volume 2029 of LNCS, pages
187–200. Springer, 2001.

[Jür02] J. Jürjens. UMLsec: Extending UML for secure systems development.
In J.-M. Jézéquel, H. Hußmann, and S. Cook, editors, 5th International
Conference on the Unified Modeling Language (UML 2002), volume 2460
of LNCS, pages 412–425. Springer, 2002.

[Jür04] J. Jürjens. Secure Systems Development with UML. Springer, 2004.
[Jür05a] J. Jürjens. Code security analysis of a biometric authentication system

using automated theorem provers. In 21st Annual Computer Security
Applications Conference (ACSAC 2005). IEEE, 2005.

[Jür05b] J. Jürjens. Sound methods and effective tools for model-based security
engineering with UML. In 27th International Conference on Software
Engineering (ICSE 2005). IEEE, 2005.

[Jür06] J. Jürjens. Security analysis of crypto-based Java programs using auto-
mated theorem provers. In S. Easterbrook and S. Uchitel, editors, 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2006). ACM, 2006.

[OGO04] Iu. Ober, S. Graf, and Il. Ober. Validation of UML models via a mapping
to communicating extended timed automata. In SPIN 2004, pages 127–
145, 2004.

[UML03] UML Revision Task Force. OMG UML Specification v. 1.5. OMG Doc-
ument formal/03-03-01. Available at http : //www.omg.org/uml, March
2003.

[UML04] UMLsec group. Security analysis tool, 2004. http://www.umlsec.org.

The Pragmatics of STAIRS

Ragnhild Kobro Runde1, Øystein Haugen1, and Ketil Stølen1,2

1 Department of Informatics, University of Oslo, Norway
2 SINTEF ICT, Norway

Abstract. STAIRS is a method for the compositional development of
interactions in the setting of UML 2.0. In addition to defining deno-
tational trace semantics for the main aspects of interactions, STAIRS
focuses on how interactions may be developed through successive re-
finement steps. In this tutorial paper, we concentrate on explaining the
practical relevance of STAIRS. Guidelines are given on how to create
interactions using the different STAIRS operators, and how these may
be refined. The pragmatics is illustrated by a running example.

1 Introduction

STAIRS [HHRS05a] is a method for the compositional development of interac-
tions in the setting of UML 2.0 [OMG05]. In contrast to e.g. UML state machines
and Java programs, interactions are usually incomplete specifications, typically
describing example runs of the system. STAIRS is designed to deal with this
incompleteness. Another important feature of STAIRS is the possibility to dis-
tinguish between alternative behaviours representing underspecification and al-
ternative behaviours that must all be present in an implementation, for instance
due to inherent nondeterminism.

STAIRS is not intended to be a complete methodology for system develop-
ment, but should rather be seen as a supplement to methodologies like e.g. RUP
[Kru04]. In particular, STAIRS focuses on refinement, which is a development
step where the specification is made more complete by information being added
to it in such a way that any valid implementation of the refined specification
will also be a valid implementation of the original specification.

In this paper we focus on refinement relations. We define general refinement,
which in turn has four special cases referred to as narrowing, supplementing,
detailing and limited refinement. Narrowing means to reduce the set of possi-
ble system behaviours, thus reducing underspecification. Supplementing, on the
other hand, means to add new behaviours to the specification, taking into ac-
count the incomplete nature of interactions, while detailing means to add more
details to the specification by decomposing lifelines. By general refinement, the
nondeterminism required of an implementation may be increased freely, while
limited refinement is a special case restricting this possibility.

Previous work on STAIRS has focused on its basic ideas, explaining the various
concepts such as the distinction between underspecification and inherent non-
determinism [HHRS05a, RHS05b], time [HHRS05b], and negation [RHS05a], as

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 88–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Pragmatics of STAIRS 89

well as how these are formalized. In this paper, we take the theory of STAIRS one
step further, focusing on its practical consequences by giving practical guidelines
on how to use STAIRS. In particular, we explain how to use the various STAIRS
operators when creating specifications in the form of interactions, and how these
specifications may be further developed through valid refinement steps.

The paper is organized as follows: In Sect. 2 we give a brief introduction to
interactions and their semantic model as we have defined it in STAIRS. Section 3
is an exampleguided walkthrough of the main STAIRS operators for creating in-
teractions, particularly focusing on alternatives and negation. For each operator
we give both its formal definition and guidelines for its practical usage. Section 4
gives the pragmatics of refining interactions. In Sect. 5 we explain how STAIRS
relates to other similar approaches, in particular UML 2.0, while we give some
concluding remarks in Sect. 6.

2 The Semantic Model of STAIRS

In this section we give a brief introduction to interactions and their trace seman-
tics as defined in STAIRS. The focus here is on the semantic model. Definitions
of concrete syntactical operators will mainly be presented together with the dis-
cussion of these operators later in this paper. For a thorough account of the
STAIRS semantics, see [HHRS05b] and the extension with data in [RHS05b].

An interaction describes one or more positive (i.e. valid) and/or negative
(i.e. invalid) behaviours. As a very simple example, the sequence diagram in
Fig. 1 specifies a scenario in which a client sends the message cancel(appointment)
to an appointment system, which subsequently sends the message appointment-
Cancelled back to the client, together with a suggestion for a new appointment
to which the client answers with the message yes. The client finally receives the
message appointmentMade.

Formally, we use denotational trace semantics to explain the meaning of a
single interaction. A trace is a sequence of events, representing a system run. The
most typical examples of events are the sending and the reception of a message,
where a message is a triple (s, tr, re) consisting of a signal s, a transmitter lifeline
tr and a receiver lifeline re. For a message m, we let !m and ?m denote the
sending and the reception of m, respectively. As will be explained in Sect. 3.2,
we also have some special events representing the use of data in e.g. constraints
and guards.

The diagram in Fig. 1 includes ten events, two for each message. These
are combined by the implicit weak sequencing operator seq, which will be for-
mally defined at the end of this section. Informally, the set of traces described
by such a diagram is the set of all possible sequences consisting of its events
such that the send event is ordered before the corresponding receive event,
and events on the same lifeline are ordered from top down. Shortening each
message to the first and the capitalized letter of its signal, we thus get that
Fig. 1 specifies two positive traces 〈!c, ?c, !aC, ?aC, !aS, ?aS, !y, ?y, !aM, ?aM〉
and 〈!c, ?c, !aC, !aS, ?aC, ?aS, !y, ?y, !aM, ?aM〉, where the only difference is the

90 R.K. Runde, Ø. Haugen, and K. Stølen

sd CancelAppointment

:Client :AppSystem

cancel(appointment)

appointmentCancelled()

appointmentSuggestion(time)

yes()

appointmentMade()

Fig. 1. Example interaction: CancelAppointment

relative ordering of the two events ?aC and !aS. Figure 1 gives no negative
traces.

Formally, we let H denote the set of all well-formed traces. A trace is well-
formed if, for each message, the send event is ordered before the corresponding
receive event. An interaction obligation (p, n) is a pair of trace-sets which gives
a classification of all of the traces in H into three categories: the positive traces
p, the negative traces n and the inconclusive traces H\ (p∪n). The inconclusive
traces result from the incompleteness of interactions, representing traces that
are not described as positive or negative by the current interaction. We say
that the interaction obligation is contradictory if the same trace is both positive
and negative, i.e. if p ∩ n �= ∅. To give a visual presentation of an interaction
obligation, we use an oval divided into three regions as shown in Fig. 2.

Positive: p

Negative: n

Inconclusive: H \(p n)

Fig. 2. Illustrating an interaction obligation

As explained in the introduction, one of the main advantages of STAIRS is
its ability to distinguish between traces that an implementation may exhibit
(e.g. due to underspecification), and traces that it must exhibit (e.g. due to
inherent nondeterminism). Semantically, this distinction is captured by stating
that the semantics of an interaction d is a set of m interaction obligations,

The Pragmatics of STAIRS 91

[[d]] = {(p1, n1), . . . , (pm, nm)}. Intuitively, the traces allowed by an interaction
obligation (i.e. its positive and inconclusive traces) represent potential alterna-
tives, where being able to produce only one of these traces is sufficient for an
implementation. On the other hand, the different interaction obligations repre-
sent mandatory alternatives, in the sense that each obligation specifies traces
of which at least one must be possible for a correct implementation of the
specification.

We are now ready to give the formal definition of seq. First, weak sequencing
of trace sets is defined by:

s1 � s2
def= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : h� l = h1 � l�h2 � l} (1)

where L is the set of all lifelines, � is the concatenation operator on sequences,
and h� l is the trace h with all events not taking place on the lifeline l removed.
Basically, this definition gives all traces that may be constructed by selecting
one trace from each operand and combining them in such a way that the events
from the first operand must come before the events from the second operand
(i.e. the events are ordered from top down) for all lifelines. Events from different
operands may come in any order, as long as sending comes before reception for
each message (as required by h ∈ H). Notice that weak sequencing with an
empty set as one of the operands yields the empty set.

Weak sequencing of interaction obligations is defined by:

(p1, n1) � (p2, n2)
def= (p1 � p2, (n1 � p2) ∪ (n1 � n2) ∪ (p1 � n2)) (2)

Finally, seq is defined by

[[seq [d]]] def= [[d]]
[[seq [D, d]]] def= {o1 � o2 | o1 ∈ [[seq [D]]] ∧ o2 ∈ [[d]]}

(3)

where d is a single interaction and D a list of one or more interactions. For a
further discussion of seq, see Sect. 3.4.

3 The Pragmatics of Creating Interactions

In this section, we focus on the different syntactical constructs of interactions in
order to explain the main theory of STAIRS and how these constructs should
be used in practical development. For each construct, we demonstrate its usage
in a practical example, to motivate its formal semantics and the pragmatic rules
and guidelines that conclude each subsection.

As our example, we will use a system for appointment booking to be used
by e.g. doctors and dentists. The appointment system should have the following
functionality:

– MakeAppointment: The client may ask for an appointment.
– CancelAppointment: The client may cancel an appointment.

92 R.K. Runde, Ø. Haugen, and K. Stølen

– Payment: The system may send an invoice message asking the client to pay
for the previous or an unused appointment.

The interactions specifying this system will be developed in a stepwise manner.
In Sect. 4 we will justify that all of these development steps are valid refinement
steps in STAIRS.

3.1 The Use of alt Versus xalt

Consider again the interaction in Fig. 1. As explained in Sect. 2, this interac-
tion specifies two different traces, depending on whether the client receives the
message appointmentCancelled before or after the system sends the message ap-
pointmentSuggestion. Which one of these we actually get when running the final
system, will typically depend on the kind of communication used between the
client and our system. If the communication is performed via SMS or over the
internet, we may have little or no delay, meaning that the first of these messages
may be received before the second is sent. On the other hand, if communication
is performed by sending letters via ordinary mail, both messages (i.e. letters)
will probably be sent before the first one arrives at the client.

Seeing that the means of communication is not specified in the interaction, all
of these are acceptable implementations. Also, it is sufficient for an implementa-
tion to have only one of these available. Hence, the two traces of Fig. 1 exemplify
underspecification. In the semantics, this is represented by the two traces being
grouped together in the same interaction obligation.

The underspecification in Fig. 1 is an implicit consequence of weak sequencing.
Alternatives representing underspecification may also be specified explicitly by
using the operator alt, as in the specification of MakeAppointment in Fig. 3. In
this interaction, when requesting a new appointment the client may ask for either

sd MakeAppointment

:Client :AppSystem

needApp(hour)

alt

ref
DecideAppTime

needApp(date)

Fig. 3. MakeAppointment

The Pragmatics of STAIRS 93

a specific date or a specific hour of the day (for instance if the client prefers his
appointments to be after work or during the lunch break). As we do not require
the system to offer both of these alternatives, they are specified using alt. After
the client has asked for an appointment, the appointment is set up according to
the referenced interaction DecideAppTime.

The specification of DecideAppTime is given in Fig. 4. Here, the system starts
with suggesting an appointment, and the client then answers either yes or no.
Finally, the client gets a receipt according to his answer. As the system must
be able to handle both yes and no as reply messages, these alternatives are not
instances of underspecification. Specifying these by using alt would therefore
be insufficient. Instead, they are specified by the xalt operator (first introduced
in [HS03]) in order to capture alternative traces where an implementation must
be able to perform all alternatives.

sd DecideAppTime

:Client :AppSystem

appointmentSuggestion(time)

xalt yes()

appointmentMade()

no()

noAppointment()

Fig. 4. DecideAppTime

In Fig. 5, which gives a revised version of CancelAppointment from Fig. 1,
another use of xalt is demonstrated. In this case, xalt is used to model alternatives
where the conditions under which each of them may be chosen is not known.
This interaction specifies that if a client tries to cancel an appointment, he may
either get an error message or he may get a confirmation of the cancellation, after
which the system tries to schedule another appointment (in DecideAppTime). In
Sect. 3.2 we demonstrate how guards may be added as a means to constrain the
applicability of the two alternatives in this example.

A third use of xalt is to specify inherent nondeterminism, as in a coin toss
where both heads and tails should be possible outcomes. More examples, and a
discussion of the relationship between alt and xalt, may be found in [RHS05b]
and [RRS06].

The crucial question when specifying alternatives is: Do these alternatives
represent similar traces in the sense that implementing only one is sufficient? If
yes, use alt. Otherwise, use xalt.

94 R.K. Runde, Ø. Haugen, and K. Stølen

sd CancelAppointment

:Client :AppSystem

cancel(appointment)

ref
DecideAppTime

xalt errorMessage()

appointmentCancelled()

Fig. 5. CancelAppointment revisited

Formally, the operands of an xalt result in distinct interaction obligations in
order to model the situation that they must all be possible for an implementa-
tion. On the other hand, alt combines interaction obligations in order to model
underspecification:

[[xalt [d1, . . . dm]]] def=
⋃

i∈[1,m]

[[di]] (4)

[[alt [d1, . . . , dm]]] def= {
⊎

{o1, . . . , om} | ∀i ∈ [1,m] : oi ∈ [[di]] } (5)

wherem is the number of interaction operands and the inner union of interaction
obligations,

⊎
, is defined as:⊎

i∈[1,m]

(pi, ni)
def= (

⋃
i∈[1,m]

pi ,
⋃

i∈[1,m]

ni) (6)

The difference between alt and xalt is also illustrated in Fig. 6, which is an
informal illustration of the semantics of Fig. 3. The dotted lines should be in-
terpreted as parentheses grouping the semantics of sub-interactions, and the
second seq-operand is the semantics of the referenced interaction DecideApp-
Time. In each interaction obligation of Fig. 6, every trace that is not positive is
inconclusive, as Fig. 3 gives no negative traces.

Every interaction using the STAIRS-operators except for infinite loop is equiv-
alent to an interaction having xalt as the top-level operator. This is because xalt
describes mandatory alternatives. If there are only finitely many alternatives
(which is the case if there is no infinite loop) they may be listed one by one. In
particular, we have that all of these operators distribute over xalt. For instance,
we have that the interaction alt [xalt [d1, d2], d3] is equivalent to the interaction
xalt [alt [d1, d3], alt [d2, d3]], and similarly for interactions with more than two
operands and for the other operators.

The Pragmatics of STAIRS 95

The pragmatics of alt vs xalt
– Use alt to specify alternatives that represent similar traces, i.e. to model

• underspecification.
– Use xalt to specify alternatives that must all be present in an implemen-

tation, i.e. to model
• inherent nondeterminism, as in the specification of a coin toss.
• alternative traces due to different inputs that the system must be

able to handle (as in Fig. 4);
• alternative traces where the conditions for these being positive are

abstracted away (as in Fig. 5).

3.2 The Use of Guards

In Fig. 5, xalt was used in order to specify that the system should be able to
respond with either an error message or with the receipt message appointment-
Cancelled (followed by DecideAppTime), if a client wants to cancel an appoint-
ment. With the current specification, the choice between these alternatives may
be performed nondeterministically, but as suggested in the previous section, it
is more likely that there exist some conditions for when each of the alternatives
may be chosen. In Fig. 7 these conditions are made explicit by adding them to
the specification in the form of guards as a step in the development process.

For the first alternative, the guard is used to specify that if the client wants to
cancel an appointment less than 24 hours in advance, he will get an error message.
In general, the guard else may be used as a short-hand for the conjunction of
the negation of all the other guards. This means that for the second alternative
of Fig. 7, the appointment will be cancelled and the system will try to schedule
a new appointment only if the appointment is at least 24 hours away.

Similarly, in Fig. 8, guards are added to the alt-construct of Fig. 3 in order
to constrain the situations in which each of the alternatives needApp(date) and
needApp(hour) is positive. The guards specify that the client may only ask for
an appointment at today or at a later date, or between the hours of 7 A.M. and
5 P.M. We recommend that one always makes sure that the guards of an alt-
construct are exhaustive. Therefore, Fig. 8 also adds an alternative where the
client asks for an appointment without specifying either date or hour. This al-
ternative has the guard true, and may always be chosen. As this example demon-
strates, the guards of an alt-construct may be overlapping. This is also the case
for xalt.

In order to capture guards and more general constraints in the semantics, the
semantics is extended with the notion of a state. A state σ is a total function
assigning a value (in the set V al) to each variable (in the set V ar). Formally,
σ ∈ V ar → V al. Semantically, a constraint is represented by the special event
check(σ), where σ is the state in which the constraint is evaluated:

[[constr(c)]] def= { ({〈check(σ)〉 | c(σ)}, {〈check(σ)〉 | ¬c(σ)}) } (7)

96 R.K. Runde, Ø. Haugen, and K. Stølen

appSugg(time)-yes-appMade appSugg(time)-no-noApp

needApp(date)

seq

=

needApp(date)-appSugg(time)-yes-appMade

needApp(hour)-appSugg(time)-yes-appMade

needApp(hour)

alt

xalt

appSugg(time)-yes-appMade appSugg(time)-no-noApp

needApp(date)
needApp(hour)

seq

=

needApp(date)-appSugg(time)-no-noApp

needApp(hour)-appSugg(time)-no-noApp

everything else everything else

everything else everything else

everything else

everything else everything else

everything else everything else

Fig. 6. IllustratingMakeAppointment

The semantics of guarded xalt is defined by:

[[xalt [c1 → d1, . . . , cm → dm]]] def=
⋃

i∈[1,m]

[[seq [constr(ci), di]]] (8)

Notice that for all states, a constraint is either true and the trace 〈check(σ)〉
is positive, or the constraint is false and the trace 〈check(σ)〉 is negative. For
guarded xalt (and similarly for alt defined below), this has the consequence that a
guard must cover all possible situations in which the specified traces are positive,

The Pragmatics of STAIRS 97

sd CancelAppointment

:Client :AppSystem

cancel(appointment)

ref
DecideAppTime

[else]

xalt [appointment < now + 24h]

errorMessage()

appointmentCancelled()

Fig. 7. CancelAppointment revisited

sd MakeAppointment

:Client :AppSystem

needApp(date)
[date today]

[7 hour 17]

alt [true]

needApp(hour)

ref
DecideAppTime

needApp()

Fig. 8. MakeAppointment revisited

since a false guard means that the traces described by this alternative are nega-
tive. When relating specifications with and without guards, an alt/xalt-operand
without a guard is interpreted as having the guard true. This interpretation,
together with the use of constr in the definition of guards, ensures that adding
guards to a specification (as in the examples above) is a valid refinement step as
will be explained in Sect. 4.

98 R.K. Runde, Ø. Haugen, and K. Stølen

The semantics of guarded alt is defined by:

[[alt [c1 → d1, . . . , cm → dm]]] def= (9)
{
⊎
{o1, . . . , om} | ∀i ∈ [1,m] : oi ∈ [[seq [constr(ci), di]]] }

The UML 2.0 standard ([OMG05]) states that if all guards in an alt-construct
are false then the empty trace 〈〉 (i.e. doing nothing) should be positive. In
[RHS05b], we gave a definition of guarded alt which was consistent with the
standard. However, implicitly adding the empty trace as positive implies that
alt is no longer associative. For this reason, we have omitted this implicit trace
from definition (9).

Definition (9) is consistent with our general belief that everything which is
not explicitly described in an interaction should be regarded as inconclusive for
that diagram. If all guards are false, all of the described traces are negative and
the interaction has an empty set of positive traces. To avoid confusion between
our definition and that of UML, we recommend to always make sure that the
guards of an alt-construct are exhaustive. If desired, one of the alternatives may
be the empty diagram, skip, defining the empty trace as positive:

[[skip]] def= {({〈〉}, ∅)} (10)

The pragmatics of guards
– Use guards in an alt/xalt-construct to constrain the situations in which

the different alternatives are positive.
– Always make sure that for each alternative, the guard is sufficiently

general to capture all possible situations in which the described traces
are positive.

– In an alt-construct, make sure that the guards are exhaustive. If doing
nothing is valid, specify this by using the empty diagram, skip.

3.3 The Use of refuse, veto and assert

As explained in the introduction, interactions are incomplete specifications, spec-
ifying only example runs as opposed to the complete behaviour of the system.
In this setting, it is particularly important to specify not only positive, but also
negative traces, stating what the system is not allowed to do. In STAIRS, neg-
ative traces are defined by using one of the operators refuse, veto, or assert. The
operators refuse and veto are both used to specify that the traces of its operand
should be considered negative. They differ only in that veto has the empty trace
as positive, while refuse does not have any positive traces at all. The impor-
tance of this difference will be explained later in this section, after the formal
definitions. The assert operator specifies that only the traces in its operand are
positive and that all other traces are negative.

In the revised version of DecideAppTime given in Fig. 9, these three operators
are used in order to add negative traces to the specification in Fig. 4. Figure 9

The Pragmatics of STAIRS 99

sd DecideAppTime

:Client :AppSystem

appointmentSuggestion(time)

loop {0...4}
no()

appointmentSuggestion(time)

xalt yes()

refuse
noAppointment()

appointmentMade()

no()

assert noAppointment()

veto appointmentMade()

alt

Fig. 9. DecideAppTime revisited

also adds some positive traces via the loop-construct, which may be interpreted
as an alt between performing the contents of the loop 0, 1, 2, 3, or 4 times. For
a formal definition of loop, see [RHS05b].

Inside the loop, veto is used to specify that after the client has answered no
to the suggested appointment, the system should not send the message Appoint-
mentMade before suggesting another appointment. In the first xalt-operand, alt
in combination with refuse is used to specify that the client should get the re-
ceipt message AppointmentMade when he accepts the suggested appointment,
and that it would be negative if he instead got the message noAppointment. In
the second xalt-operand, assert is used to specify that the system should send
the message noAppointment after the client has answered with the final no, and
that no other traces are allowed. This is in contrast to the first xalt-operand,
which defines one positive and one negative trace, but leaves all other traces
inconclusive.

100 R.K. Runde, Ø. Haugen, and K. Stølen

Formally, refuse and veto are defined by:

[[refuse [d]]] def= {(∅, p ∪ n) | (p, n) ∈ [[d]]} (11)

[[veto [d]]] def= alt [skip, refuse [d]] (12)

Both operators define that all traces described by its operand should be con-
sidered negative. The difference between refuse and veto is that while refuse
has no positive traces, veto has the empty trace as positive, meaning that doing
nothing is positive for veto. To understand the importance of this difference, it is
useful to imagine that for each lifeline, each interaction fragment is implemented
as a subroutine. Entering a new interaction fragment will then correspond to
calling the subroutine that implements this fragment. For an interaction frag-
ment with refuse as its main operator, no such subroutine may exist, as there
are no positive traces. Hence, the program fails to continue in such a case. How-
ever, an interaction fragment with veto as its main operator, corresponds to an
empty routine that immediately returns and the program may continue with the
interaction fragment that follows.

The choice of operator for a concrete situation, will then depend on the ques-
tion: Should doing nothing be possible in this otherwise negative situation? If
yes, use veto. If no, use refuse.

Consider again Fig. 9. Here, veto is used inside the loop construct as sending the
message no (then doing nothing), and then sending AppointmentSuggestion(time)
should be positive. On the other hand, refuse is used in the first xalt operand, as
we did not want to specify the message yes followed by doing nothing as positive.

Using assert ensures that for each interaction obligation of its operand, at least
one of the described positive traces will be implemented by the final system, as
all inconclusive traces are redefined as negative. Formally:

[[assert [d]]] def= {(p, n ∪ (H \ p)) | (p, n) ∈ [[d]]} (13)

The pragmatics of negation
– To effectively constrain the implementation, the specification should in-

clude a reasonable set of negative traces.
– Use refuse when specifying that one of the alternatives in an alt-construct

represents negative traces.
– Use veto when the empty trace (i.e. doing nothing) should be positive,

as when specifying a negative message in an otherwise positive scenario.
– Use assert on an interaction fragment when all possible positive traces

for that fragment have been described.

3.4 The Use of seq

As explained in Sect. 2, the weak sequencing operator seq is the implicit com-
position operator for interactions, defined by the following invariants:

The Pragmatics of STAIRS 101

– The ordering of events within each of the operands is maintained in the
result.

– Events on different lifelines from different operands may come in any order.
– Events on the same lifeline from different operands are ordered such that an

event of the first operand comes before that of the second operand, and so on.

Consider again the revised specification of CancelAppointment in Fig. 7. In
the second xalt-operand, the system sends the message appointmentCancelled to
the client, and subsequently the referenced interaction DecideAppTime is per-
formed. Here, the first thing to happen is that the system sends the message
AppointmentSuggestion to the client (as specified in Fig. 9).

As seq is the operator used for sequencing interaction fragments, this means
that in general no synchronization takes place at the beginning of an interaction
fragment, i.e. that different lifelines may enter the fragment at different points in
time. In the context of Fig. 7, this means that there is no ordering between the
reception of the message appointmentCancelled and the sending of the message
AppointmentSuggestion, in exactly the same way as there would have been no
ordering between these if the specification had been written in one single diagram
instead of using a referenced interaction.

In Fig. 10, traces are added to the specification of CancelAppointment in the
case where the client wants to cancel an appointment less than 24 hours before
it is supposed to take place.

The first alt-operand specifies that the system may give an error message (as
before). The second operand specifies that the sending of the message appoint-
mentCancelled alone is negative, while the third operand specifies that sending
the message appointmentCancelled and then performing (the positive traces of)
Payment (specified in Fig. 11) is positive.

This example demonstrates that a trace (e.g. appointmentCancelled followed
by Payment) is not necessarily negative even if a prefix of it (e.g. appointmentCan-
celled) is. This means that the total trace must be considered when categorizing
it as positive, negative or inconclusive. Another consequence is that every trace
which is not explicitly shown in the interaction should be inconclusive. For in-
stance, in Fig. 10 all traces where the message appointmentCancelled is followed
by something other than Payment, are still inconclusive.

The formal definition of seq was given in Sect. 2. As no synchronization takes
place at the beginning of each seq-operand, it follows from the definitions that
i.e. seq [d1, alt [d2, d3]] = alt [seq [d1, d2], seq [d1, d3]] and that loop {2} [d] =
seq [d, d] as could be expected.

The pragmatics of weak sequencing
– Be aware that by weak sequencing,

• a positive sub-trace followed by a positive sub-trace is positive.
• a positive sub-trace followed by a negative sub-trace is negative.
• a negative sub-trace followed by a positive sub-trace is negative.
• a negative sub-trace followed by a negative sub-trace is negative.
• the remaining trace combinations are inconclusive.

102 R.K. Runde, Ø. Haugen, and K. Stølen

sd CancelAppointment

:Client :AppSystem

cancel(appointment)

ref
DecideAppTime

[else]

xalt [appointment < now + 24h]

appointmentCancelled()

alt errorMessage()

appointmentCancelled()

ref Payment

refuse

appointmentCancelled()

Fig. 10. CancelAppointment revisited

sd Payment

:Client :AppSystem

pleasePay(amount,appointment)

assert

pay(cardData,amount,appointment)

paid(amount,appointment)

Fig. 11. Payment

The Pragmatics of STAIRS 103

4 The Pragmatics of Refining Interactions

In a development process, specifications may be changed for several reasons,
including capturing new user requirements, giving a more detailed design, or
correcting errors. STAIRS focuses on those changes which may be defined as re-
finements. In this section, we explain some main kinds of refinement in STAIRS,
and demonstrate how each of the development steps taken in the example in
Sect. 3 are valid refinement steps.

Figure 12 illustrates how the different refinement notions presented in this
paper are related. Supplementing, narrowing and detailing are all special cases
of the general refinement notion. Limited refinement is a restricted version of
general refinement, which limits the possibility to increase the nondeterminism
required of an implementation. In Fig. 12, we have also illustrated what refine-
ment relation is used for each of the development steps in our running example.
For instance, the placement of 1 → 5 means that Fig. 5 is a supplementing and
general refinement of Fig. 1, but not a limited refinement.

General
refinement

Limited
refinement

1 5

5 7

3 8

4 9
7 10

8 15

11 17
15 19

Supplementing Narrowing

Detailing

Fig. 12. The refinement relations of STAIRS

In the discussion of each of the five refinement notions, we will refer to the
following definition of compositionality:

Definition 1 (Compositionality). A refinement operator � is compositional
if it is

– reflexive: d � d
– transitive: d � d′ ∧ d′ � d′′ ⇒ d � d′′

– monotonic with respect to refuse, veto, (guarded) alt, (guarded) xalt and seq:

104 R.K. Runde, Ø. Haugen, and K. Stølen

d � d′ ⇒ refuse [d] � refuse [d′]
d � d′ ⇒ veto [d] � veto [d′]
d1 � d′1, . . . , dm � d′m ⇒ alt [d1, . . . , dm] � alt [d′1, . . . , d

′
m]

d1 � d′1, . . . , dm � d′m ⇒ xalt [d1, . . . , dm] � xalt [d′1, . . . , d
′
m]

d1 � d′1, . . . , dm � d′m ⇒ seq [d1, . . . , dm] � seq [d′1, . . . , d
′
m]

Transitivity enables the stepwise development of interactions, while monotonicity
is important as it means that the different parts of an interaction may be refined
separately.

4.1 The Use of Supplementing

As interactions are incomplete specifications typically describing only example
runs, we may usually find many possible traces that are inconclusive in a given
interaction obligation. By supplementing, inconclusive traces are re-categorized
as either positive or negative as illustrated for a single interaction obligation
in Fig. 13. Supplementing is an activity where new situations are considered,
and will most typically be used during the early phases of system development.
Examples of supplementing includes capturing new user requirements and adding
fault tolerance to the system.

Positive: p

Negative: n

Inconclusive: H \(p n)

Fig. 13. Supplementing of interaction obligations

DecideAppTime in Fig. 9 is an example of supplementing, as it adds both
positive and negative traces to the specification in Fig. 4. All traces that were
positive in the original specification, are still positive in the refinement. Another
example of supplementing is CancelAppointment in Fig. 10, which adds traces
to the specification in Fig. 7. Again, all traces that were positive in the original
specification remain positive in the refinement, and the negative traces remain
negative.

Formally, supplementing of interaction obligations is defined by:

(p, n) �s (p′, n′) def= p ⊆ p′ ∧ n ⊆ n′ (14)

For an interaction with a set of interaction obligations as its semantics, we
require that each obligation for the original interaction must have a refining
obligation in the semantics of the refined interaction. This ensures that the

The Pragmatics of STAIRS 105

alternative traces (e.g. the inherent nondeterminism) required by an interaction
are also required by the refinement. Formally:

d �s d
′ def= ∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o �s o

′ (15)

Supplementing is compositional as defined by Definition 1.

The pragmatics of supplementing
– Use supplementing to add positive or negative traces to the specification.
– When supplementing, all of the original positive traces must remain

positive and all of the original negative traces must remain negative.
– Do not use supplementing on the operand of an assert.

4.2 The Use of Narrowing

Narrowing means to reduce underspecification by redefining positive traces as
negative, as illustrated in Fig. 14. As for supplementing, negative traces must
remain negative in the refinement.

Positive: p

Negative: n

Inconclusive: H \(p n)

Fig. 14. Narrowing of interaction obligations

One example of narrowing, is adding guards to CancelAppointment in Fig. 7.
In the original specification in Fig. 5, we had for instance no constraint on the
alternative with the message appointmentCancelled, while in the refinement this
alternative is negative if it occurs less than 24 hours prior the appointment.

In general, adding guards to an alt/xalt-construct is a valid refinement through
narrowing. Seeing that an operand without a guard is interpreted as having
true as guard, this is a special case of a more general rule, stating that a valid
refinement may limit a guard as long as the refined condition implies the original
one. This ensures that all of the positive traces of the refinement were also
positive (and not negative) in the original specification.

Another example of narrowing is given in MakeAppointment in Fig. 15. Here,
the refuse-operator is used to specify that the client may not ask for an appoint-
ment at a specific hour. This means that even though these traces were positive
in the specification in Fig. 8, they are now considered negative in the sense that
asking for a specific hour is not an option in the final implementation.

106 R.K. Runde, Ø. Haugen, and K. Stølen

sd MakeAppointment

:Client :AppSystem

needApp(date)
[date today]

alt [true]

needApp(hour)

ref
DecideAppTime

needApp()

refuse

Fig. 15. MakeAppointment revisited

Formally, narrowing of interaction obligations is defined by:

(p, n) �n (p′, n′) def= p′ ⊆ p ∧ n′ = n ∪ p \ p′ (16)

and narrowing of interactions by:

d �n d
′ def= ∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o �n o

′ (17)

Narrowing is compositional as defined by Definition 1. In addition, the narrowing
operator �n is monotonic with respect to assert.

The pragmatics of narrowing
– Use narrowing to remove underspecification by redefining positive traces

as negative.
– In cases of narrowing, all of the original negative traces must remain

negative.
– Guards may be added to an alt-construct as a legal narrowing step.
– Guards may be added to an xalt-construct as a legal narrowing step.
– Guards may be narrowed, i.e. the refined condition must imply the orig-

inal one.

4.3 The Use of Detailing

Detailing means reducing the level of abstraction by decomposing one or more
lifelines, i.e. by structural decomposition. As illustrated in Fig. 16, positive traces

The Pragmatics of STAIRS 107

remain positive and negative traces remain negative in relation to detailing. The
only change is that the traces of the refinement may include more details, for
instance internal messages that are not visible in the more abstract specification.

Positive: p

Negative: n

Inconclusive: H \(p n)

Positive: p

Negative: n

Inconclusive: H \(p n)

Abstract:

Concrete:

Fig. 16. Detailing of interaction obligations

Figure 17 is a detailing refinement of Payment in Fig. 11. In this case, the
lifeline AppSystem is decomposed into the two lifelines Calendar, taking care of
appointments, and Billing, handling payments. This decomposition has two ef-
fects with respect to the traces of the original specification. First of all, internal
communication between Billing and Calendar is revealed (i.e. the messages need-
Pay and paymentReceived), and secondly, Billing has replaced AppSystem as the

sd Payment

:Client :Billing

pleasePay(amount,appointment)

assert

pay(cardData,amount,appointment)

paid(amount,appointment)

:Calendar

needPay(appointment)

paymentReceived(appointment)

Fig. 17. Payment with decomposition

108 R.K. Runde, Ø. Haugen, and K. Stølen

sender/receiver of messages to and from the client. In general, some of the client’s
messages could also have been sent to/from Calendar.

We say that an interaction is a detailing refinement if we get the same positive
and negative traces as in the original specification when both hiding the internal
communication in the decomposition and allowing for a possible change in the
sender/receiver of a message. Formally, the lifeline decomposition will in each
case be described by a mapping L from concrete to abstract lifelines. For the
above example, we get

L = {Client �→ Client,Billing �→ AppSystem,Calendar �→ AppSystem}

Formally, we need to define a substitution function subst(t, L), which sub-
stitutes lifelines in the trace t according to the mapping L. First, we define
substitution on single events:

subst(e, L) def=
{
k(s, L(tr), L(re)) if e = k(s, tr, re), k ∈ {!, ?}
e otherwise (18)

In general, a trace t may be seen as a function from indices to events. This trace
function may be represented as a mapping where each element i �→ e indicates
that e is the i’th element in the trace, and we define the substitution function
on traces by:

subst(t, L) def= {i �→ subst(t[i], L) | i ∈ [1 . . .#t]} (19)

where #t and t[i] denotes the length and the i’th element of the trace t, respec-
tively.

We then define an abstraction function abstr(t, L,E), which transforms a
concrete trace into an abstract trace by removing all internal events (with respect
to L) that are not present in the set of abstract events E:

abstr(t, L,E) def= {e ∈ E | tr.e �= re.e ∨ e ∈ E}� (subst(t, L)) (20)

where E denotes the set of all events, tr.e and re.e denote the transmitter and
the receiver of the event e, and A� t is the trace t with all events not in the set
A removed. We also overload abstr to trace sets in standard pointwise manner:

abstr(s, L,E) def= {abstr(t, L,E) | t ∈ s} (21)

Formally, detailing of interaction obligations is then defined by:

(p, n) �L,E
c (p′, n′) def= p = abstr(p′, L, E) ∧ n = abstr(n′, L, E) (22)

where L is a lifeline mapping as described above, and E is a set of abstract
events.

Finally, detailing of interactions is defined by:

d �L,E
c d′

def= ∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o �L,E
c o′ (23)

Detailing is compositional as defined by Definition 1. In addition, the detailing
operator �L,E

c is monotonic with respect to assert.

The Pragmatics of STAIRS 109

The pragmatics of detailing
– Use detailing to increase the level of granularity of the specification by

decomposing lifelines.
– When detailing, document the decomposition by creating a mapping
L from the concrete to the abstract lifelines.

– When detailing, make sure that the refined traces are equal to the origi-
nal ones when abstracting away internal communication and taking the
lifeline mapping into account.

4.4 The Use of General Refinement

Supplementing, narrowing and detailing are all important refinement steps when
developing interactions. Often, it is useful to combine two or three of these
activites into a single refinement step. We therefore define a general refinement
notion, of which supplementing, narrowing and detailing are all special cases.
This general notion is illustrated for one interaction obligation in Fig. 18.

Positive: p

Negative: n

Inconclusive: H \(p n)

Positive: p

Negative: n

Inconclusive: H \(p n)

Abstract:

Concrete:

Fig. 18. General refinement of interaction obligations

As an example of general refinement, MakeAppointment in Fig. 8 combines
supplementing and narrowing in order to be a refinement of the interaction in
Fig. 3. Adding an operand to the alt-construct is an example of supplementing,
and is not covered by the definition of narrowing. On the other hand, adding
guards is an example of narrowing, and is not covered by the definition of sup-
plementing. For this to be a valid refinement step, we therefore need the general
refinement notion, formally defined by:

d �L,E
r d′

def= ∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o �L,E
r o′ (24)

where general refinement of interaction obligations is defined by:

110 R.K. Runde, Ø. Haugen, and K. Stølen

(p, n) �L,E
r (p′, n′) def= n ⊆ abstr(n′, L, E) ∧ (25)

p ⊆ abstr(p′, L, E) ∪ abstr(n′, L, E)

Note that L may be the identity mapping, in which case the refinement does
not include any lifeline decompositions (as in the case of MakeAppointment de-
scribed above). Also, E may be the set of all events, E , meaning that all events
are considered when relating the traces of the refinement to the original traces.
General refinement is compositional as defined by Definition 1.

Combining narrowing and supplementing may in general result in previously
inconclusive traces being supplemented as positive, and the original positive
traces made negative by narrowing. In order to specify that a trace must be
present in the final implementation, and not removed by narrowing, we need to
specify an obligation with this trace as the only positive, and all other traces as
negative. The only legal refinement of this operand will then be redefining the
trace as negative (by narrowing), leaving an empty set of positive traces and a
specification that is not implementable.

The pragmatics of general refinement
– Use general refinement to perform a combination of supplementing, nar-

rowing and detailing in a single step.
– To define that a particular trace must be present in an implementation

use xalt and assert to characterize an obligation with this trace as the
only positive one and all other traces as negative.

4.5 The Use of Limited Refinement

Limited refinement is a special case of general refinement, with less possibilities
for adding new interactions obligations. By definition (24) of general refinement,
new interaction obligations may be added freely, for instance in order to increase
the nondeterminism required of an interaction. One example of this is Cance-
lAppointment in Fig. 5, which is a refinement of the interaction given in Fig. 1.
While the original specification only gave one interaction obligation with two
positive traces, the refinement gives both this interaction obligation and also
two new interaction obligations that are not refinements of the original one.

At some point during the development process, it is natural to limit the pos-
sibilities for creating new interaction obligations with fundamentally new traces.
This is achieved by limited refinement, which has the additional requirement that
each obligation of the refined interaction must have a corresponding obligation
in the original interaction.

In STAIRS, stepwise development of interactions will be performed by first
using general refinement to specify the main traces of the system, before switch-
ing to limited refinement which will then be used for the rest of the development
process. Typically, but not necessarily, assert on the complete specification will
be used at the same time as switching to limited refinement. This ensures that

The Pragmatics of STAIRS 111

new traces may neither be added to the existing obligations, nor be added to the
specification in the form of new interaction obligations. Note that using assert
on the complete specification is not the same as restricting further refinements
to be limited, as assert considers each interaction obligation separately.

Note also that limited refinement allows a refinement to have more interac-
tion obligations than the original specification, as long as each obligation is a
refinement of one of the original ones. One example is given in Fig. 19, which
is a limited refinement of MakeAppointment in Fig. 15. In Fig. 19, alt has been
replaced by xalt in order to specify that the client must be offered the choice
of specifying a preferred date when asking for an appointment, while assert has
been added to specify that there should be no other alternatives. In this partic-
ular case, we have not included the referenced interaction DecideAppTime in the
scope of the assert-construct, as we want the possibility of supplementing more
traces here. Transforming alt to xalt means in this example that each of the
interaction obligations for Fig. 15 (there are two due to the xalt in DecideApp-
Time) has two refining obligations in the semantics of Fig. 19. As all obligations
in Fig. 19 have a corresponding obligation in Fig. 15, this is a valid instance of
limited refinement.

sd MakeAppointment

:Client :AppSystem

needApp(date)
[date today]

xalt [true]

ref
DecideAppTime

needApp()

assert

Fig. 19. MakeAppointment revisited

Formally, limited refinement is defined by:

d �L,E
l d′

def= d �L,E
r d′ ∧ ∀o′ ∈ [[d′]] : ∃o ∈ [[d]] : o �L,E

r o′ (26)

Limited refinement is compositional as defined by Definition 1.

112 R.K. Runde, Ø. Haugen, and K. Stølen

The pragmatics of limited refinement
– Use assert and switch to limited refinement in order to avoid fundamen-

tally new traces being added to the specification.
– To specify globally negative traces, define these as negative in all

operands of xalt, and switch to limited refinement.

5 Related Work

The basis of STAIRS is interactions and sequence diagrams as defined in UML
2.0 [OMG05]. Not all of the UML 2.0 operators are defined by STAIRS, but we
believe that those covered are the most useful ones in practical system devel-
opment. The STAIRS operator xalt is added to this set as UML 2.0 does not
distinguish between alternatives that represent underspecification and alterna-
tives that must all be present in an implementation, but uses the alt operator in
both cases.

For guarded alt, we have in our semantics chosen not to follow UML 2.0 in
that the empty trace is positive if no guard is true. Instead, we recommend
to make all specifications with guarded alt so that the guards are exhaustive,
ensuring that this will never be a problem in practice. The UML 2.0 standard
[OMG05] is vague with respect to whether the traces with a false guard should
be negative or not. As we have argued, classifying these as negative is fruitful as
adding guards to a specification will then be a valid refinement step.

For defining negative behaviour, UML 2.0 uses the operators neg and assert.
In [RHS05a], we investigated several possible formal definitions of neg, trying to
capture how it was being used on the basis of experience. However, we concluded
that one operator for negation is not sufficient, which is why STAIRS defines
the two operators refuse and veto to be used instead of neg.

Decomposition in UML 2.0 is the same as detailing in STAIRS, but with
a more involved syntax using the concepts of interaction use and gates. With
the UML 2.0 syntax, the mapping from concrete to abstract lifelines is given
explicitly in the diagram.

In [GS05], Grosu and Smolka give semantics for UML sequence diagrams in
the form of two Büchi automata, one for the positive and one for the negative
behaviours. Refinement then corresponds to language inclusion. Their refine-
ment notion is compositional and covers supplementing and narrowing, but not
detailing. All alternatives are interpreted as underspecification, and there is no
means to capture inherent nondeterminism as with xalt in STAIRS.

In [CK04], the semantics of UML interactions are defined by the notions
of positive and negative satisfaction. This approach is in many ways similar
to STAIRS, but does not distinguish between underspecification and inherent
nondeterminism. Their definition of the UML operator neg corresponds to the
STAIRS operator veto, where the empty trace is taken as positive. [CK04] defines

The Pragmatics of STAIRS 113

that for alternatives specified by alt, a trace is negative only if it is negative in
both operands. Also, a trace is regarded as negative if a prefix of it is described
as negative, while we in STAIRS define it as inconclusive as long as the complete
trace is not described by the diagram.

Another variant of sequence diagrams is Message Sequence Charts (MSCs)
[ITU99]. The important distinction between different kinds of alternatives is
not made for MSCs either. As in our approach, a trace is negative if its guard
is false in an MSC. Refinement of MSCs is considered by Krüger in [Krü00].
Narrowing in STAIRS corresponds closely to property refinement, while detailing
corresponds to structural refinement. As there is no notion of inconclusive traces
in [Krü00], refinement in the form of supplementing is not considered.

Live Sequence Charts (LSCs) [DH99, HM03] is an extension of MSCs, where
charts, messages, locations and conditions are specified as either universal
(mandatory) or existential (optional). An existential chart specifies a behav-
iour (one or more traces) that must be satisfied by at least one system run,
while a universal chart is a specification that must be satisfied at all times. As
a universal chart specifies all allowed traces, this is not the same as inherent
nondeterminism in STAIRS, which only specifies some of the traces that must
be present in an implementation. In contrast to STAIRS and UML 2.0, LSC
synchronizes the lifelines at the beginning of each interaction fragment. This
reduces the set of possible traces, and makes it easier to implement their oper-
ational semantics.

6 Conclusions and Future Work

In this paper we have focused on giving practical guidelines for the use of STAIRS
in the development of interactions. For each concept, these guidelines have been
summarized in paragraphs entitled “The Pragmatics of. . . ”. We have focused
on situations in which STAIRS extends or expands interactions as defined in
UML 2.0 [OMG05]. This includes how to define negative behaviours and how
to distinguish between alternatives that represent the same behaviour and alter-
natives that must all be present in an implementation. STAIRS is particularly
concerned with refinement, and we have given guidelines on how to refine in-
teractions by adding behaviours (supplementing), removing underspecification
(narrowing) or by decomposition (detailing).

In [RHS05b], we gave a brief explanation of what it means for an implemen-
tation to be correct with respect to a STAIRS specification. We are currently
working on extending this work, leading to “the pragmatics of implementations”.

The research on which this paper reports has been partly carried out within
the context of the IKT-2010 project SARDAS (15295/431). We thank the other
members of the SARDAS project for useful discussions related to this work. We
thank Iselin Engan for helpful comments on the final draft of this paper. We also
thank the anonymous reviewers for constructive feedback.

114 R.K. Runde, Ø. Haugen, and K. Stølen

References

[CK04] Mara Victoria Cengarle and Alexander Knapp. UML 2.0 interactions:
Semantics and refinement. In Proc. 3rd Int. Wsh. Critical Systems De-
velopment with UML (CSDUML’04), Technical report TUM-I0415, pages
85–99. Institut für Informatik, Technische Universität München, 2004.

[DH99] Werner Damm and David Harel. LSC’s: Breathing life into message se-
quence charts. In Proc. 3rd IFIP Int. Conf. on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’99), 1999.

[GS05] Radu Grosu and Scott A. Smolka. Safety-liveness semantics for UML se-
quence diagrams. In Proc. 5th Int. Conf. on Applications of Concurrency
to System Design (ACSD’05), pages 6–14, 2005.

[HHRS05a] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil
Stølen. STAIRS towards formal design with sequence diagrams. Journal
of Software and Systems Modeling, 22(4):349–458, 2005.

[HHRS05b] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil
Stølen. Why timed sequence diagrams require three-event semantics. In
Scenarios: Models, Transformations and Tools, volume 3466 of LNCS,
pages 1–25. Springer, 2005.

[HM03] David Harel and Rami Marelly. Come, Let’s Play.: Scenario-Based Pro-
gramming Using LSCs and the Play-Engine. Springer, 2003.

[HS03] Øystein Haugen and Ketil Stølen. STAIRS — Steps to analyze inter-
actions with refinement semantics. In Proc. International Conference on
UML (UML’2003), volume 2863 of LNCS, pages 388–402. Springer, 2003.

[ITU99] International Telecommunication Union. Recommendation Z.120 — Mes-
sage Sequence Chart (MSC), 1999.

[Krü00] Ingolf Heiko Krüger. Distributed System Design with Message Sequence
Charts. PhD thesis, Technische Universität München, 2000.

[Kru04] Philippe Kruchten. The Rational Unified Process. Addison-Wesley, third
edition, 2004.

[OMG05] Object Management Group. UML Superstructure Specification, v. 2.0,
document: formal/05-07-04 edition, 2005.

[RHS05a] Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. How to trans-
form UML neg into a useful construct. In Norsk Informatikkonferanse
NIK’2005, pages 55–66. Tapir, 2005.

[RHS05b] Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. Refining UML
interactions with underspecification and nondeterminism. Nordic Journal
of Computing, 12(2):157–188, 2005.

[RRS06] Atle Refsdal, Ragnhild Kobro Runde, and Ketil Stølen. Underspecifica-
tion, inherent nondeterminism and probability in sequence diagrams. In
Proc. 8th IFIP Int. Conf. on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’06), volume 4037 of LNCS, pages 138–155.
Springer, 2006.

Smallfoot: Modular Automatic Assertion
Checking with Separation Logic

Josh Berdine1, Cristiano Calcagno2, and Peter W. O’Hearn3

1 Microsoft Research
2 Imperial College, London

3 Queen Mary, University of London

Abstract. Separation logic is a program logic for reasoning about pro-
grams that manipulate pointer data structures. We describe Smallfoot, a
tool for checking certain lightweight separation logic specifications. The
assertions describe the shapes of data structures rather than their de-
tailed contents, and this allows reasoning to be fully automatic. The
presentation in the paper is tutorial in style. We illustrate what the tool
can do via examples which are oriented toward novel aspects of separa-
tion logic, namely: avoidance of frame axioms (which say what a proce-
dure does not change); embracement of “dirty” features such as memory
disposal and address arithmetic; information hiding in the presence of
pointers; and modular reasoning about concurrent programs.

1 Introduction

Separation logic is a program logic geared toward specifying and verifying proper-
ties of dynamically-allocated linked data structures [35], which has lead to much
simpler by-hand specifications and program proofs than previous formalisms.
Specifications in separation logic are “small”, in that a specification of a pro-
gram component concentrates on the resources relevant to its correct operation
(its “footprint”), not mentioning the resources of other components at all [32].
In this paper we describe Smallfoot, an experimental tool for checking certain
separation logic specifications.

The aim of the tool was simple: we wanted to see whether the simplicity
of the by-hand proofs in separation logic could be transferred to an automatic
setting. Smallfoot uses lightweight assertions that describe the shapes of data
structures rather than their detailed contents; this restriction allows the rea-
soning to be fully automatic. The input language allows first-order procedures
with reference and value parameters, essentially as in [17], together with oper-
ations for allocating, deallocating, mutating and reading heap cells. Smallfoot
requires pre- and post-conditions for the procedures, and loop invariants. It also
supports annotations for concurrency, following a concurrent extension of sepa-
ration logic [31,11].

In [5] we defined the symbolic execution mechanism and proof procedure that
lie at the heart of Smallfoot, but we did not there show how they could be used
to prove programs. The purpose of this paper is the opposite: to show what the

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 115–137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 J. Berdine, C. Calcagno, and P.W. O’Hearn

tool can do, without exposing its innards. We proceed in a tutorial style. We
describe in an informal way how the proof rules of [32,35,31] are used in the
tool, in conjunction with the execution mechanism, but we do not give a fully
formal description or a repeat of the techniques of [5]. For a full understanding
of exactly how Smallfoot works familiarity with [32,35,31,5] is essential. But we
have tried to make the presentation relatively self-contained, and we hope that
many of the main points can be gleaned from our examples and the discussion
surrounding them.

We begin in the next section by introducing Smallfoot with three examples.
The purpose of this work is to explore separation logic’s modularity in an au-
tomatic setting, and that is the subject of all three examples. We will discuss
some of the features of Smallfoot as we go through the examples, and highlight
some of the issues for automation that guided its design. A description of the
input language and some central points in the verification condition mechanism
is then given in Sections 3 and 4. Several further examples are given in Section
5, and we conclude with a discussion of related and future work.

We stress that Smallfoot is limited in various ways. Its input language has
been designed to match the theoretical work on separation logic, rather than an
existing widely-used language; our purpose was to experiment with the logic,
rather than to produce a mature end-user tool. Beyond the basic primitives of
separation logic, Smallfoot at this point includes several hardwired predicates for
singly-, doubly-, and xor-linked lists, and for trees, but not (yet) a mechanism
for arbitrary inductive definitions of data structures. We included xor lists just
to illustrate how reachability does not feature in separation logic; we have not
incorporated more general address arithmetic. Smallfoot cannot handle all of
the more advanced algorithms that have been the subject of by-hand proofs in
separation logic, particularly graph algorithms [40,6,7]. Further, it does not have
specifications for full functional correctness. Extensions in some of these direc-
tions would necessitate abandoning the automatic aspect, relying on interactive
proof. Those are areas for further work.

2 Smallfoot in Three Nutshells

We begin with a warning: you should suspend thinking about the global heap
when reading separation logic specifications, otherwise the logic can seem coun-
terintuitive. Rather than global heaps you can think of heaplets, portions of
heap. An assertion talks about a heaplet rather than the global heap, and a spec
[P]C [Q] says that if C is given a heaplet satisfying P then it will never try to
access heap outside of P (other than cells allocated during execution) and it will
deliver a heaplet satisfying Q if it terminates. (Of course, this has implications
for how C acts on the global heap.) This heaplet reading may seem a simple
point, but we have found that separation logic’s “local way of thinking” can lead
to confusions, which arise from reverting to thinking in terms of the global heap.
So we will return to this point several times below.

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 117

2.1 Local Specifications and Framing

Consider a procedure for disposing a tree:

disp_tree(p) [tree(p)] {
local i,j;
if (p = nil) {} else {

i := p�l; j := p�r; disp_tree(i); disp_tree(j); dispose(p); }
} [emp]

This is the expected procedure that walks a tree, recursively disposing left and
right subtrees and then the root pointer. It uses a representation of tree nodes
with left and right fields, and the empty tree is represented by nil.

This Smallfoot program includes a precondition and postcondition, corre-
sponding to a partial correctness specification:

[tree(p)] disp_tree(p) [emp]

(We use square instead of curly brackets, despite treating partial correctness, to
maintain consistency with Smallfoot’s concrete syntax.) This is an example of
the small specifications supported by separation logic: it talks only about the
portion of heap relevant to the correct operation of the procedure. In particular,
tree(p) describes a heaplet where p points to a tree, and where there are no junk
cells, cells not in the tree. This “no junk cells” part is necessary to be able to
conclude emp, that the heaplet on termination is empty.

Smallfoot discovers a proof of this program by symbolic execution. The proof
in the else branch corresponds to the proof steps:

[(p �→l: x, r: y) ∗ tree(x) ∗ tree(y)]
i := p�l; j := p�r;

[(p �→l: i, r: j) ∗ tree(i) ∗ tree(j)]
disp_tree(i);

[(p �→l: i, r: j) ∗ tree(j)]
disp_tree(j);

[p �→l: i, r: j]
dispose(p);

[emp]

After we enter the else branch we know that p �=nil so that, by unrolling, p is an
allocated node that points to left and right subtrees occupying separate storage.
Then the roots of the two subtrees are loaded into i and j. Notice how the
next proof steps follow operational intuition. The first recursive call removes the
left subtree, the second call removes the right subtree, and the final instruction
removes the root pointer p. The occurrences of the separating conjunction ∗ in
these assertions ensure that the structures described, the two subtrees and root
pointer, occupy separate memory, as is necessary if an operation that removes
one of them is not to affect one of the others. This verification is carried out
using the specification of disp_tree as an assumption, as in the usual treatment
of recursive procedures in Hoare logic [17].

118 J. Berdine, C. Calcagno, and P.W. O’Hearn

In the if branch we use an implication tree(p) ∧ p=nil ⇒ emp, which relies on
the “no junk” character of the tree predicate.

The assertions in this proof use very little of separation logic; they are all of
the form Π ∧Σ where Π is a pure boolean condition and Σ is a ∗-combination
of heap predicates. All of the assertions in Smallfoot are of this special form
(together with conditionals over them), and this enables a symbolic execution
mechanism where ∗-conjuncts are updated in-place.

There is a hidden part in the proof outline just given: in the two procedure
calls the preconditions at the call sites do not match the preconditions for the
overall specification of disp_tree. For example, for the second call the assertion
at the call site is (p �→l: i, r: j)∗tree(j) while the procedure spec would suggest that
the precondition should just be tree(j) (after renaming of the parameter). This
is where the local way of thinking comes in. The specification of disp_tree says
that a heaplet satisfying tree(j) is transformed into one satisfying emp. The input
heaplet need not be the whole heap, we can effect this transformation on a heap-
let that lives inside a larger heap, and then slot the result into that larger heap.

In separation logic, this pulling out and slotting in is described using the
∗ connective. Generally, a heaplet h satisfies P ∗ Q if it can be split into two
disjoint heaplets hP and hQ that satisfy P andQ. The above narrative for the call
disp_tree(j) tells us to take (p �→l: i, r: j)∗tree(j), pull out the heaplet description
tree(j), transform it to emp, and slot that back in, obtaining (p �→l: i, r: j) ∗ emp.
Then, we can use an identity P ∗ emp ⇔ P .

Separation logic has an inference rule (the frame rule)

[P]C [Q]
[R ∗ P]C [R ∗Q]

(where C doesn’t assign to R’s free variables) which lets us do “pull out, perform
local surgery, slot in” in a proof. To automatically generate proofs using this rule,
which was implicitly applied in the steps in the proof for the else branch above,
we need a way to infer frame axioms. If we are given an assertion at a call site
and a procedure precondition, we must find the leftover part (which lets us do
the “pull out” step). Often, this leftover part can be found by simple pattern
matching, as is the case in the disp_tree example, but there are other cases where
pattern matching will not do. Technically, Smallfoot uses a method of extracting
frame axioms from incomplete proofs in a proof theory for entailments [5].

2.2 Processes That Mind Their Own Business

Concurrent separation logic [31] has the following rule for parallel composition:

[P]C [Q] [P ′]C′ [Q′]
[P ∗ P ′]C ‖ C′ [Q ∗Q′]

where C does not change variables free in P ′, C′, Q′, and vice versa. The idea
of this rule is that the specifications [P]C [Q] and [P ′]C′ [Q′] describe all the
resources that C and C′ might access, that they mind their own business; so,

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 119

if we know that the resources are separate in the precondition, then we can
reason about the concurrent processes independently. A simple example of this
is a parallel composition of two heap alterations on different cells, where the ∗
in the precondition guarantees that x and y are not aliases:

[x�→c: 3 ∗ y �→c: 3]
[x�→c: 3]
x�c := 4

[x�→c: 4]

∥∥∥∥∥∥∥
[y �→c: 3]
y�c := 5

[y �→c: 5]
[x�→c: 4 ∗ y �→c: 5]

The local thinking is exercised more strongly in concurrent than in sequential
separation logic. A points-to fact x�→c: 3 describes a heaplet with a single cell
x that is a record with a c field whose value is 3. As far as the left process is
concerned, reasoning is carried out for a heaplet with a single cell, its heaplet,
and similarly for the right. In the global heap, though, it is not the case that
there is only one cell; there are at least two! The two views, local and more
global, are reconciled by the form of the concurrency rule.

To apply the concurrency rule automatically we need a way to get our hands
on the preconditions of the constituent processes. We could do this in several
ways, such as by requiring an annotation with each ‖, or by introducing a “named
process” concept which requires a precondition but no postcondition. We settled
on requiring the constituents of a ‖ to be procedure calls; because procedures
come with pre/post specs we can use their preconditions when applying the
concurrency rule. The postconditions are not strictly necessary for automating
the concurrency rule. We made this choice just to avoid multiplying annotation
forms. A Smallfoot program corresponding to the above example, but where we
create the two separate cells, is:

upd(x,y) [x �→] {x�c := y;} [x �→c: y]

main() {
x := new(); y := new(); x�c := 3; y�c := 3;
upd(x,4) ‖ upd(y,5);

} [x �→c: 4 ∗ y �→c: 5]

In the precondition of upd the assertion x�→ indicates that x points to something.
It denotes a singleton heaplet in which x is the only allocated or defined cell.
The postcondition describes a singleton heaplet where the c field of location x
has y as its contents.

When a pre- or post-condition is left out, as the pre for main is in this program,
it defaults to emp. Also, Smallfoot accepts a collection of procedures as input,
one optionally “main”.

In contrast, when we change the main program to

main() {
x := new(); x�c := 3; y := x;
upd(x,4) ‖ upd(y,4);

} [y=x ∧ x �→c: 4]

120 J. Berdine, C. Calcagno, and P.W. O’Hearn

then Smallfoot flags an error; since x and y are aliases, there is no way to split
the heap into two parts, giving one symbolic cell to each of the constituent
processes. In general, if a Smallfoot program has a race — where two processes
may attempt to access the same cell at the same time — then an error is reported.
(More precisely, any such attempted parallel accesses must be wrapped in critical
sections which specify atomicity assumptions for accesses.)

Our description of how the proof is found for sequential disp_tree is almost
the same for a parallel variant, which Smallfoot proves using the concurrency
rule:

par_disp_tree(p) [tree(p)] {
local i,j;
if (p = nil) {} else {

i := p�l; j := p�r;
par_disp_tree(i) ‖ par_disp_tree(j);
dispose(p); }

} [emp]

The reader’s reaction to disp_tree and par_disp_tree might be: aren’t they
rather trivial? Well, yes, and that is part of the point. For contrast, consider
par_disp_tree in the rely/guarantee formalism [21,27], which is rightly cele-
brated for providing compositional reasoning about concurrency. In addition to
a precondition and a postcondition saying that the nodes in the tree are deallo-
cated, we would have to formalize two additional assertions:

Rely. No other process touches my tree tree(p); and
Guarantee. I do not touch any storage outside my tree.

Although compositional, as this example demonstrates the relies and guarantees
can be rather global, and can complicate specifications even in simple examples
when no interference is present. The Smallfoot specification for this procedure
is certainly simpler.

2.3 Process Interaction and Heaplet Transfer

Process interaction in Smallfoot is done with conditional critical regions (ccrs)
[18]. The programming model is based on “resources” r and ccr statements
with r when(B) {C}. ccrs for common resource r must be executed with mutual
exclusion, and each has a guard which must hold before execution.

Data abstractions can be protected with ccrs by wrapping critical regions
around code that accesses a data structure. A more daring form of concurrency
is when several processes access the same piece of state outside of critical sec-
tions [31]. In separation logic it is possible to show that daring programming
idioms are used consistently. An example is a pointer-transferring buffer: in-
stead of copying a (perhaps large) portion of data from one process to another,
a pointer to the data is sent. Typically, the sending and receiving processes access
the pointer without synchronization.

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 121

A toy version of this scenario is the following code snippet using buffer oper-
ations put and get:

x := new();
put(x);

∥∥ get(y;);
dispose(y);

This creates a new pointer in the left process and then places it in the buffer.
The right process then reads out the pointer and disposes it. We would typically
want to fill the pointer contents in the left process before sending it, and to do
something with those contents in the right. The point is that to reason about
the dispose in the right process we must know that y is not dangling after we do
the get operation. It is useful to use the intuition of “permission to access” to
describe this [9,8]: the permission to access the pointer moves from the first to the
second process along with the pointer value. Further, when permission transfers
it must disappear from the left process or else we could mistakenly justify a
further dispose(x) in the left process, after the put. In conjunction with the
dispose(y) in the right process that would disastrously lead to a double-disposal
that we must rule out.

This is where the local way of thinking helps. An assertion at a program point
describes a heaplet, which represents a local permission to access, instead of a
global heap. put(x) will have precondition x�→ and postcondition emp, the idea
being that the heaplet for x flows out of the left process and into the buffer.
The emp postcondition ensures that, even if the value of x remains unchanged,
the local knowledge that x is not dangling (the permission) is given up, thus
preventing further disposal. At this point the global heap is not empty, but the
heaplet/permission for the left process is. get(y;) will have precondition emp
and postcondition y �→, connoting that the heaplet (the permission) materializes
in the second process.

A Smallfoot program encoding this scenario is:

resource buf (c) [if c=nil then emp else c�→]

init() { c := nil; }

put(x) [x �→] { with buf when(c=nil) { c := x; } } [emp]

get(y;) [emp] { with buf when(c�=nil) { y := c; c := nil; } } [y �→]

putter() { x := new(); put(x); putter(); }

getter() { get(y;); /* use y */ dispose(y); getter(); }

main() { putter() ‖ getter(); }

In the ccr model resource names are used to determine units of mutual
exclusion. Different ccrs with r when(B) {C} for the same resource name r
cannot overlap in their executions. A ccr can proceed with its body C only when
its boolean condition B holds. A resource declaration indicates some private
variables associated with the resource (in this case c) and an invariant that
describes its internal state.

122 J. Berdine, C. Calcagno, and P.W. O’Hearn

When we have resource declarations as here an init procedure is needed for
initialization; when we do not have a resource declaration, the initialization can
be omitted. The init procedure is run before main; it’s job is to set up the state
that is protected by the named resource, by establishing the resource invariant.

In this code the omitted preconditions and postconditions are all (by default)
emp, except the post of init which is (by default) the resource invariant (the
assertion in the resource declaration). The put and get operations are encoded
using little critical regions. The resource buf has an invariant which describes
its heaplet: it says that if c=nil then the buffer has no permission, else it holds
permission to access c. The put operation can fire only when c=nil, and so
because of the invariant we will know at that point that buf’s heaplet is emp.
The assignment c:=x changes the buf state so that the only way for the invariant
to be true is if c �→; the permission to access the pointer (at this point denoted by
both c and x) flows into the buffer. Furthermore, the put operation cannot have
x�→ as its postcondition because separation is maintained between the resource
invariant and the heaplet assertions for the two processes. A similar narrative can
be given about how get effects a transfer from the buffer to the getter process.

In fact, the annotations in this code are more than is strictly needed. If we
were to inline put and get, then Smallfoot would verify the resulting code. We
separated out these operations only to display what their specifications are.

What makes this all work is an inference rule

[(P ∗Rr) ∧B]C [Q ∗Rr]
[P] with r when(B) {C} [Q]

where Rr is an invariant formula associated with resource r. This rule is used to
verify the put and get procedures, and the concurrency rule is then used for the
composition of putter and getter. Even though the program loops, the fact that
it gets past Smallfoot ensures that no pointer is ever disposed twice (without
an intervening allocation), that there is no race condition, and that the resource
invariant is true when not in the middle of a critical section.

Besides the separation between resource and process enforced using ∗, this
rule (which stems originally from [18]) is wonderfully modular: the precondition
and postcondition P and Q of a ccr do not mention the invariant Rr at all. This
allows reasoning about processes in isolation, even in the presence of interaction.

3 The Input Language

3.1 Annotated Programs

A Smallfoot program consists of sets of resource declarations

resource r(�xr)Rr

where �xr andRr are resource r’s protected variables and invariant; and procedure
declarations

f(�p ; �v)[Pf]Cf [Qf]

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 123

where procedure f ’s parameters �p are passed by reference and �v by value, and
assertions Pf and Qf are f ’s pre- and post-conditions. In this formal description
the preconditions and postconditions have to be included, but we repeat that
in the tool if a pre or post is left out then it is emp by default. Assertions are
described later; commands are generated by:

E ::= x | nil | c | E xorE

B ::= E=E | E �=E
S ::= x:=E | x:=E�t | E�t:=E | x:= new() | dispose(E)
C ::= S | C ;C | if(B) {C} else {C} | while(B) [I] {C}

| f(�x ; �E) | f(�x ; �E) ‖ f(�x ; �E) | with r when(B) {C}

There is the additional evident constraint on a program that in any procedure
call f(�y ; �E) or region with r when(B) {C} the variable f/r must be defined in a
procedure/resource declaration.

Smallfoot programs are subject to certain variable restrictions, which are
needed for the soundness of Hoare logic rules; for example, that variable aliasing
and concurrent races for variables (not heap cells) are ruled out. These conditions
are, in general, complex and unmemorable; they may be found in [4].

3.2 Assertions and Specifications

The assertions are ∗-combinations of heap predicates and ∧-combinations of
pure boolean facts, together with conditionals over these. Conditionals are used
rather than disjunctions because they preserve the “preciseness” property that
is needed for soundness of concurrent separation logic [11]. The heap predicates
include the points-to relation, the tree predicate, a predicate for singly-linked list
segments and one for xor-linked lists. (We also have conventional doubly-linked
lists in Smallfoot, but do not include any examples for them in this paper.)

P,Q,R, I ::= Π ∧Σ | if B then P else P H ::= E �→ρ | tree(E) | ls(E,E)
Π ::= B1 ∧ · · · ∧Bn | true | false | xlseg(E,E,E,E)
Σ ::= H1 ∗ · · · ∗Hn | emp ρ ::= t1:E1, . . . , tn:En

The model assumes a finite collection Fields (from which the ti are drawn),
and disjoint sets Loc of locations and Values of non-addressable values, with
nil ∈ Values. We then set:

Heaps def= Loc fin
⇀ (Fields → Values ∪ Loc)

Stacks def= Variables → Values ∪ Loc

In this heap model a location maps to a record of values. The formula E �→ρ can
mention any number of fields in ρ, and the values of the remaining fields are
implicitly existentially quantified.

124 J. Berdine, C. Calcagno, and P.W. O’Hearn

For s ∈ Stacks, h ∈ Heaps, the key clauses in the satisfaction relation for
assertions are as follows:

s � E=F
def

iff �E�s = �F �s

s � E �=F
def

iff �E�s �= �F �s

s � Π0 ∧Π1
def

iff s � Π0 and s � Π1

s, h � E0 �→t1:E1, . . . , tk:Ek

def

iff h = [�E0�s�r] where r(ti) = �Ei�s for i ∈ 1..k

s, h � emp
def

iff h = ∅

s, h � Σ0 ∗Σ1
def

iff ∃h0, h1. h = h0∗h1 and s, h0 � Σ0 and s, h1 � Σ1

s, h � Π ∧Σ
def

iff s � Π and s, h � Σ

For pure assertions Π we do not need the heap component in the satisfaction
relation. h = h0∗h1 indicates that the domains of h0 and h1 are disjoint, and
that h is their graph union. The semantics �E�s ∈ Values of expressions is as
expected. We will not provide semantic definitions of the predicates for trees and
lists now, but give inductive characterizations of them later.

Each command C determines a relation:

�C�: (Stacks × Heaps) ←→ (Stacks × Heaps) ∪ {fault}

The fault output occurs when a command attempts to dereference a dangling
pointer. For example, x�tl:= y produces a fault when applied to state s, h, where
s(x) is not a location in the domain of h. We will not give a formal definition of
�C�; when considering concurrency it is especially intricate [11]. The interpreta-
tion of Hoare triples is:

[P]C [Q] holds if, whenever given a state satisfying P , C will not pro-
duce a fault and, if it terminates, will deliver a state satisfying Q. More
mathematically: s, h � P ∧ (s, h)�C�σ =⇒ σ �= fault ∧ σ � Q

This interpretation guarantees that C can only access heap which is guaranteed
to exist by P . For, if C were to alter heap outside of an assertion P , then it
would fault when that heap was deleted, and that would falsify [P]C [Q].

4 Verification Condition Generation

Smallfoot chops an annotated program into Hoare triples for certain symbolic
instructions, that are then decided using the symbolic execution mechanism
of [5]. Execution reduces these triples to entailments P � Q. These entailments
are usually called verification conditions; we will use the same terminology for
the output of the chopping phase, before the execution phase.

4.1 Verification Conditions

A verification condition is a triple [P]SI [Q] where SI is a “symbolic instruction”:

SI ::= ε | S | [P] jsr�x [Q] | if B then SI else SI | SI ;SI

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 125

A symbolic instruction is a piece of loop-free sequential code where all procedure
calls have been instantiated to jsr instructions of the form [P] jsr�x [Q]. This form
plays a central role in Smallfoot. We use it not only to handle procedure calls,
but also for concurrency and for entry to and exit from a critical region.

Semantically, [P] jsr�x [Q] is a “generic command” in the sense of [38]. It is
the greatest relation satisfying the pre- and post-condition, and subject to the
constraint that only the variables in �x are modified. An adaptation of generic
commands which requires the relation to agree on local and pull out/slot in
interpretations of triples, can be found in [33].

Overall, what the execution mechanism does for [P]SI [Q] is start with P and
run over statements in SI generating postconditions. For each postcondition P ′

thus obtained, it checks an entailment P ′ � Q using a terminating proof theory.
We will not give a detailed description of the symbolic execution mechanism,

referring to [5] for the details. (We remark that the presentation there does not
include conditional assertions if B then P else Q, but these are easily dealt with.)
Instead, we will describe how the mechanism works in a particular case, in the
else branch of the disp_tree program.

When we take that branch we have to establish a triple

[p �=nil ∧ tree(p)]C [emp]

where C is the command in the else branch, with procedure calls instantiated
to jsr instructions. Applying the tree unroll rule yields

[p �=nil ∧ (p �→l: i′, r: j′) ∗ tree(i′) ∗ tree(j′)]C [emp]

for fresh variables i′ and j′. After the first two assignment statements in C we
are left with:

[p �=nil ∧ (p �→l: i, r: j) ∗ tree(i) ∗ tree(j)]
([tree(i)] jsr [emp]) ;([tree(j)] jsr [emp]) ; dispose(p) [emp]

To apply [tree(i)] jsr [emp] we have to find a frame axiom, using the frame rule
from earlier, and it is just (p �→l: i, r: j) ∗ tree(j). Similarly, in the next step we
obtain p �→l: i, r: j as the frame axiom, and finally we dispose p. (Frame infer-
ence is not always so easy; for example, ccr examples later require a certain
amount of logical reasoning beyond pattern matching.) This leaves us with an
easy entailment:

p �=nil ∧ emp � emp

4.2 VCGen

For each procedure declaration f(�p ;�v)[P]C [Q] we generate a set of verification
conditions vcg(f, [P]C [Q]). The formal definition can be found in [4], and here
we illustrate how it applies to the par_disp_tree and heaplet transfer examples
presented in Sections 2.2 and 2.3.

126 J. Berdine, C. Calcagno, and P.W. O’Hearn

Recall the specification of par_disp_tree: [tree(p)] par_disp_tree(p) [emp]. So
for a call par_disp_tree(i), vcg considers a single generic command:

[tree(i)] jsr [emp]

which indicates that the net effect of calling par_disp_tree on i is to con-
sume a tree starting from i, produce no heap, and modify no (nonlocal) vari-
ables in the process. Using this straight-line command, and the similar one for
the call par_disp_tree(j), the net effect of the recursive parallel function calls
par_disp_tree(i) ‖ par_disp_tree(j) is to consume trees starting at i and j,
produce no heap, and modify no variables. This is the core of the verification
condition of par_disp_tree, and is expressed by the straight-line command:

[tree(i) ∗ tree(j)] jsr [emp]

With this, the whole body of par_disp_tree is expressed by a conditional com-
mand, and so par_disp_tree’s single vc is obtained by tacking on the pre- and
post-conditions:

[tree(p)]
if p=0 then ε else i := p�l ; j := p�r ;([tree(i) ∗ tree(j)] jsr [emp]) ; dispose(p)
[emp]

This vc is then discharged by symbolic execution, which propagates the precon-
dition forward through the command and then checks (for each branch of the
execution) that the computed postcondition entails the specified one.

For the heaplet transfer example, the init procedure must establish the re-
source invariant from precondition emp, yielding vc:

[emp] jsr [if c=nil then emp else c �→]

For brevity, if we inline put and get in putter and getter:

putter() [emp] {
local x;
x := new();
with buf when(c=nil) {

c := x; }
putter();

} [emp]

getter() [emp] {
local y;
with buf when(c�=nil) {

y := c; c := nil; }
dispose(y);
getter();

} [emp]

The crux of the vcs of these functions is the straight-line command which
expresses the ccr commands. For getter this is:

[emp] jsr [(if c=nil then emp else c �→) ∧ c �=nil] ;
y:= c ; c:=nil
[if c=nil then emp else c �→] jsrc [emp]

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 127

The generic commands for ccr entry and exit act as resource transformers.
Recalling that the resource invariant for buf is (if c=nil then emp else c �→), the
initial generic command expresses that upon entry into the ccr, the guard holds
and resource invariant is made available to the body. Notice how the invariant
is obtained starting from emp as a precondition, “materializing” inside the ccr
as it were. Then the body runs, and the final generic command expresses that
the body must reestablish the resource invariant prior to exiting the ccr.

The ccr in putter works similarly, but illustrates resource transfer on exit:

[emp] jsr [(if c=nil then emp else c �→) ∧ c=nil] ;
c:=x

[if c=nil then emp else c �→] jsrc [emp]

The use of emp in the postcondition, considering that x�=nil since x will have
just been allocated, effectively deletes the invariant c �→ from consideration, and
the cell pointed-to by c will not be accessible to the code following the ccr.

The vcs for putter and getter are then:

[emp]
x:= new();
[emp]

jsr
[(if c=nil then emp else c�→) ∧ c=nil];
c:= x;
[if c=nil then emp else c�→] jsrc [emp];
[emp] jsr [emp]

[emp]

[emp]
[emp]

jsr
[(if c=nil then emp else c�→) ∧ c�=nil];
y:= c;
c:= nil;
[if c=nil then emp else c�→] jsrc [emp];
dispose(y);
[emp] jsr [emp]

[emp]

Note that, as usual, when verifying a recursive procedure, the procedure’s spec-
ification is assumed. Here, this means that each recursive call is replaced by a
generic command with the procedure’s pre- and post-conditions.

The main command is then a parallel function call:

putter();
∥∥ getter();

which gives the additional verification condition:

[emp] ([emp] jsr [emp]) [emp]

Note that in both of these examples, no analysis of potential interleavings of
the executions of parallel commands is needed. Given the resource invariants,
the concurrent separation logic treatment of ccrs allows us to just verify a few
triples for simple sequential commands.

5 Further Examples

5.1 More on Trees

The specification of disp_tree does not use ∗, even though the proof does. An
example that uses ∗ in its spec is:

128 J. Berdine, C. Calcagno, and P.W. O’Hearn

copy_tree(q;p) [tree(p)] {
local i,j,i’, j’;
if (p = nil) { q := p; }
else {

i := p�l; j := p�r;
copy_tree(i’;i); copy_tree(j’;j);
q := new(); q�l := i’; q�r := j’; }

} [tree(q) ∗ tree(p)]

The tree predicate that we use is not sensitive to the contents of the tree, only
the fact that it is a tree. So, if in copy_tree the final two steps were

q�l := j’; q�r := i’;

then we would actually have an algorithm for rotating the tree, though it would
satisfy the same spec. If, on the other hand, we mistakenly point back into the
old tree

q�l := i; q�r := j;

then an error is reported; we do not have separation on termination.
The tree predicate that we have used here is one that satisfies

tree(E) ⇐⇒ (E=nil ∧ emp) ∨ (∃x, y. (E �→l:x, r: y) ∗ tree(x) ∗ tree(y))

where x and y are fresh. The use of the ∗ between E �→l:x, r: y and the two
subtrees ensures that there are no cycles, the ∗ between the subtrees ensures
that there is no sharing (it is not a dag), and the use of emp in the base case
ensures that there are no cells in a memory satisfying tree(E) other than those
in the tree. The fact that the specification does not mention any data field is
what makes this a shape specification, insensitive to the particular data.

This definition of tree(E) is not something that the user of Smallfoot sees; it
is outside the fragment used by the tool (it has a quantifier). Reasoning inside
the tool essentially uses rolling and unrolling of this definition. For instance, the
proof step where we entered the else branch uses an entailment

p �=nil ∧ tree(p) � ∃x, y. (p �→l:x, r: y) ∗ tree(x) ∗ tree(y)

together with stripping the existential (generating fresh variables) when the
right-hand side is subsequently used as a precondition.

5.2 Linked Lists

We now give an example, using lists, that cannot be handled using simple
(un)rolling of an inductive definition. We work with linked lists that use field tl
for the next element. The predicate for linked-list segments is the least satisfying
the following specification.

ls(E,F) ⇐⇒ (E=F ∧ emp) ∨ (E �=F ∧ ∃y.E �→tl: y ∗ ls(y, F))

A complete linked list is one that satisfies ls(E, nil).

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 129

Consider the following Smallfoot program, where the pre and post use com-
plete lists only, but the loop invariant requires a genuine segment ls(x, t). (One
would use genuine segments in pres and posts for, e.g., queues.):

append_list(x;y) [ls(x, nil) ∗ ls(y, nil)] {
if (x = nil) { x := y; }
else {

t := x; u := t�tl;
while (u �=nil) [ls(x, t) ∗ t �→tl: u ∗ ls(u, nil)] {

t := u; u := t�tl; }
t�tl := y; }

} [ls(x, nil)]

The most subtle part of reasoning in this example comes in the last step,
which involves a triple

[ls(x, t) ∗ t �→tl: nil ∗ ls(y,nil)] t�tl := y; [ls(x,nil)]

We use a symbolic execution axiom

[A ∗ x�→f : y]x�f := z [A ∗ x�→f : z]

to alter the precondition in-place, and then we use the rule of consequence with
the entailment

ls(x, t) ∗ t �→tl: y ∗ ls(y, nil) � ls(x,nil)

of the postcondition. This entailment does not itself follow from simple unrolling
of the definition of list segments, but is proven in the proof theory used within
Smallfoot by applying the inductive definition to conclude ls(t, nil) from t �→tl: y∗
ls(y, nil), and then applying a rule that encodes the axiom

ls(E1, E2) ∗ ls(E2, nil) � ls(E1, nil)

It is this axiom that does not follow at once from list rolling and unrolling; in
the metatheory it would require a proof by induction.

Generally, for each hardwired inductive predicate Smallfoot uses a collection
of such rules that are consequences of induction, but that can be formulated
in a way that does not require enumeration of inductive hypotheses. The proof
theory we have obtained in this manner is complete as well as terminating for
entailments involving lists and trees [5].

This ability to prove inductive properties is one of the characteristics which
sets this approach apart from Alias Types [39] and its descendants. Alias Types
includes coercions to roll and unroll inductive types, but (as far as we under-
stand) consequences of induction must be witnessed by loops.

A final comment on this example. In the loop invariant we did not include a
∗-conjunct ls(y, nil), which would indicate that the loop preserves the listness of
y. The reason we did not include this is that y’s list is outside the footprint of
the loop; Smallfoot discovers it as a frame axiom.

130 J. Berdine, C. Calcagno, and P.W. O’Hearn

5.3 Information Hiding

The following describes a toy memory manager, which maintains binary cons
cells in a free list. When the list is empty, the alloc(x;) operation calls new in
a way similar to how malloc() might call a system routine sbrk() to request
additional memory.

resource mm (f) [ls(f, nil)]

init() { f := nil; }

alloc(x;) [emp] {
with mm when(true) {
if(f = nil) { x := new(); } else { x := f; f := x�tl; } }

} [x �→]

dealloc(y) [y �→] { with mm when(true) { y�tl := f; f := y; } } [emp]

The use of ccrs provides mutual exclusion, so that several calls to alloc

or dealloc in different process will not interfere. The real point of the exam-
ple, though, is information hiding. Because of the modularity of the ccr rule,
the interface specifications for alloc and dealloc do not mention the free list
at all. Furthermore, the specification of dealloc forces permission to access a
deallocated cell to be given up, and this is essential to prevent incorrect usage.

For example, the little main program

main() { alloc(z;); dealloc(z); z�tl := z; }

is flagged as an error by Smallfoot, because the precondition to z�tl := z will be
emp; we must know that z points to something to do a dereference, this program
would tie a cycle in the free list.

However, the reason that this program is ruled out is not just because the
invariant it violated, it is because the cell z (now in the free list) cannot be
touched at all after dealloc(z). For example, if we were to replace z�tl := z by
z�tl := nil then the free list would not be corrupted in the global state, but the
example still would not pass Smallfoot; it breaks abstraction by dereferencing a
cross-boundary pointer, into the free list abstraction.

The effect of this information hiding can be seen more strongly by replacing
the occurrences of new and dispose in the pointer-transferring buffer with calls
to the homegrown memory manager.

putter() { alloc(x;); put(x); putter(); }

getter() { get(y;); /* use y */ dealloc(y); getter(); }

If we replace the putter and getter procedures from Section 2.3 with these,
include joint initialization of the two resources

init() { f := nil; c := nil; }

and leave everything else the same, then the code verifies. If we did not use the
ccr rule to hide resource invariants, we would have to “thread” the free list

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 131

through the buffer code, forcing us to alter the specifications of put and get by
including ls(f,nil) in their preconditions and postconditions.

5.4 XOR-deqs

For our final example we consider deqs – double-ended queues – implemented
using an xor-linked list. Recall that an xor-linked list is a compact representation
of doubly-linked lists where, instead of using separate fields to store previous
and next nodes, their bitwise exclusive or is stored in one field [23]. Besides their
entertainment value, using xor lists here demonstrates how Smallfoot does not
depend on reachability. The fact that the separation logic triple [P]C [Q] asserts
that execution of C in states described by P will not access any other locations
(except possibly locations newly allocated by C) does not depend on whether
other such locations are reachable or not. We will also allow concurrent access
to the deq, though that aspect is of secondary importance for the example.

The following predicate describes xor-linked list segments:

xlseg(E1, F1, E2, F2)
def

iff (E1=F1 ∧ E2=F2 ∧ emp)
∨ (E1 �=F1 ∧ E2 �=F2 ∧ ∃x. (E1 �→l: (E2 xorx)) ∗ xlseg(x, F1, E1, F2))

In reading this definition it helps to think of a picture:

The basic idea is that a resource will own the deq represented as an xor
list, while processes accessing the two ends will hold dummy nodes back and
front which will be used for putting elements in the deq. Operations for getting
from the deq will release nodes into the calling processes. The resource declara-
tion and invariant are as follows; additionally, an initialization is needed (code
omitted) which sets up the pictured postcondition.

resource xdeq(n,p) [front=p ∧ back=n ∧ xlseg(f, n, p, b)]

init() { ... } [(front �→l: prev xor f) ∗ (back �→l: next xor b)]

In this invariant it helps to consider the picture above: heaps cells corresponding
to the nodes n and p (and hence front and back) are not held in the deq, but
rather are pointers into the processes that hold them as dummy nodes.

There are four procedures for accessing the deq: in Table 1 we show the code
for putting on the back and getting from the front, and the specifications only
for the other two (their code is similar).

What the getf procedure does is dispose the dummy node front it currently
has, replacing it with the first node f that is in the deq. This is done by an

132 J. Berdine, C. Calcagno, and P.W. O’Hearn

Table 1. xor -linked deq accessors

getf(x;) [front �→l: prev xor f] {
local t, old f;
t := front�l;
old f := prev xor t;
dispose(front);
prev := front;
/* split new dummy link

off front */
with xdeq when(old f �=n) {

t := f�l;
f := t xor p;
p := old f;
front := p;

}
x := front�d;

} [front �→l: prev xor f]

getb(x;) [back �→l: next xor b] {
...

} [back �→l: next xor b]

putb(x) [back �→l: next xor b] {
local t, new n, old p;
/* allocate new dummy link */
new n := new();
new n�l := next xor back;
/* store datum in previous dummy,

link to new dummy */
back�d := x;
t := back�l;
old b := t xor next;
back�l := new n xor old b;
/* move previous dummy link

into deq */
with xdeq when(p �=back) {

b := back;
n := new n;
back := n;

}
} [back �→l: next xor b]

putf(x) [front �→l: prev xor f] {
...

} [front �→l: prev xor f]

ownership transfer, within a critical region, similar to what was done in the
pointer-transferring buffer in Section 2.3. Note that, although front �→l: prev xor f
is true at the beginning and end of the procedure, it is false at intermediate
points. Similarly, the putb procedure stores a new item in the d field of its
dummy node back, and then effects an ownership transfer where this node gets
swallowed into the deq data structure. The crucial point is that the accesses
x:= front�d and back�d:=x of the data fields occur outside of critical sections.
It is this that allows these accesses to be done in parallel.

[Aside: There is one limitation of Smallfoot that this example shows: in the
putb procedure we include a test (p �=back) which happens to be true in any
execution. This condition is an additional annotation that Smallfoot needs to
verify the code. The difficulty is that two processes may be allocating nodes
concurrently, and the allocated nodes will indeed be different, but our current
assertions do not allow us to say so, locally. We say “current” because if we
change the memory model to allow “existence permissions” [7,8] then it is pos-
sible to do away with the extra annotation in a by-hand proof; we have not,
though, incorporated existence permissions into Smallfoot as of yet.]

To show these procedures working, we set up two parallel processes procf and
procb which nondeterministically choose whether to do a put or get operation on

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 133

the two ends of the deq. (The nondet keyword was not in the formal grammar
for Smallfoot before, but it is in the tool and is implemented by talking both
branches of a conditional in symbolic execution.)

procf(x) [front �→l: prev xor f] {
if(nondet) {
getf(x;); /* use x */ }

else {
/* produce an x */ putf(x); }

procf(x);
} [false]

procb(x) [back �→l: next xor b] {
if(nondet) {
getb(x;); /* use x */ }

else {
/* produce an x */ putb(x); }

procb(x);
} [false]

main() procf(42) ‖ procb(13);

Smallfoot verifies the resulting program using a terminating proof theory for
facts about xor lists. It involves basic identities for xor, together with adaptations
of the rules in [5] for list segments. Again, this example could not be verified
without consequences of induction that go beyond rolling and unrolling of an
inductive definition, and Smallfoot uses several such for xor lists, akin to the
axiom described in Section 5.2.

This is a variant of classic algorithms which allow concurrent access to two
ends of a queue. As usual, we could allow multiple processes at each end of the
queue by using mutexes to rule out concurrent accesses from the same end.

6 Conclusions and Related Work

Before discussing related work we mention some of Smallfoot’s limitations.
First, even when a program’s preconditions and postconditions can be ex-

pressed using Smallfoot assertions, we will not be able to verify it if its (loop
and resource) invariants cannot be expressed. An example of this is Parkinson
and Bornat’s proof [34] of the non-blocking stack of Michael [26]. (Parkinson has
verified a different non-blocking algorithm which is included amongst the exam-
ples on our web pages, but we are unable to express the invariant for Michael’s
algorithm.)

Incidentally, although Brookes has shown that concurrent separation logic
rules out races [11], this should not be taken to mean that it cannot be used on
programs that are normally considered racy. Generally, one can use little ccrs
to explicitly notate statements that are considered atomic, or one could use some
other notation (e.g., “atomic”) with the same proof methodology, and that is
what Parkinson and Bornat have done in [34].

Second, Smallfoot uses a strict separation model, which does not allow sharing
of read access. As a consequence it cannot handle, e.g., a readers and writers
program, which is proven in [8] using a less strict “counting permissions” model
of separation logic. Adding permission accounting is on our to-do list.

Third, it would be straightforward to include inductive definitions, if we
were content to just roll and unroll them. However, then very many interesting

134 J. Berdine, C. Calcagno, and P.W. O’Hearn

programs would not verify. Several examples in this paper involving linked lists
required properties to be proven at both ends, and these would not be verifiable
using rolling and unrolling alone. A direction for future research is to find a class
of inductive definitions and to classify consequences of induction that can be
included in a terminating proof theory.

The most closely related works to Smallfoot are the Pointer Assertion Logic
Engine [28] and Alias Types [39] and its relatives (e.g. [13,9]). PALE is stronger
than Smallfoot in the range of predicates it considers, based on graph types.
The state of development of Smallfoot is more directly comparable to the first
version of PALE [20], which was for linked lists only, and we hope to encom-
passes some graph structures in the future. Conversely, PALE does not check
frame conditions on recursive calls, and this (intentionally) leads to unsound-
ness, whereas the treatment of framing is a focus of Smallfoot. Also, PALE does
not deal with concurrency. Early on in the Smallfoot development we considered
whether we could translate a fragment of separation logic into the fragment of
monadic second-order logic that PALE is based on. For some specific assertions
it is possible but we were unable to find a general scheme. The decidability of
fragments of monadic second-order logic is brittle, and can be broken by adding
features. Most importantly, we were unable to see how to give a compositional
interpretation of ∗.

With regard to Alias Types, there are many similarities. Most importantly,
both approaches use a substructural logic or type theory for heaps. We believe it
is fair to say that the annotation burden in Smallfoot is considerably less than in
Alias Types, owing mainly to inference of frame axioms. Alias Types were aimed
at intermediate languages, so that is not a criticism of them. Another difference
is that Alias Types use a range of inductive predicates, while we only use several
specific predicates. However, our proof theory uses strong and sometimes com-
plete inductive properties, such as are needed when working at both ends of a
linked list.

The shape analysis of Sagiv, Reps and Wilhelm [37] provides a powerful ver-
ification technique for heaps. The biggest problem with the approach is that it
is non-modular, in that an update to a single abstract heap cell can necessitate
changing the whole abstract heap (some steps to build in modularity have been
taken in [36]). We considered whether we could use ideas from shape analy-
sis within a single procedure, and leverage ∗’s modularity for interprocedural
and concurrent analysis. Again, we had great difficulty dealing with ∗ composi-
tionally, and further difficulties with the dispose instruction. But investigations
continue; if this direction worked out it would give us access to a much wider
range of abstractions (using “canonical abstraction” [37]).

We are often asked: why did you not just give a deep (semantic) embedding
of separation logic in a predicate logic, and then use a general theorem prover,
instead of constructing your own proof method? The short answer is that the
deep embedding leads to nested quantifiers in the interpretation of ∗, and this
is an impediment to automation; attempts so far along these lines have proven
to be highly non-automatic. Of course it would be valuable to construct a deep

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 135

embedding and develop a range of tactics and make use of general purpose
provers, but that is for separate work.

Work on ESC and Spec# has resulted in important advances on modular heap
verification [16,3]. Ideas of ownership and inclusion have been used to classify ob-
jects, and give a way of avoiding frame axioms, intuitively related to work on own-
ership types and semantics [12,1]. Methods based on fixed ownership structures
have been described (e.g., [25,14]), but fixed structures are inflexible, e.g., having
difficulty dealing with ownership transfer examples (like our pointer-transferring
buffer or memory manager), except possibly under draconian restrictions (such as
unique-pointer restrictions). A recent emphasis has been on using ownership as-
sertions that refer to auxiliary fields that may be altered, and this leads to added
flexibility [2,24], including transfer. New schemes are being invented to extend
the basic idea, such as a “friends” concept that lets invariants reach across hier-
archical ownership domain [30]. We refer to David Naumann’s survey paper for
a fuller account of and further references to research in this area [29].

In contrast, separation logic does not require a hierarchical ownership
structure to ensure locality or encapsulation. Assertions just describe heaplets,
portions of state, and an assertion encapsulates all of the state that a command
is allowed to change. Still, there appear to be some similarities between the
owner-ship assertion approaches and the reasons for why separation logic works
modularly [41,33]; there seem to be, in particular, remarkably similar intuitions
underlying a recent ownership-invariant system for concurrency [19] and con-
current separation logic [31]. A careful comparison of their models could be
worthwhile.

Modular reasoning about concurrent programs has also received much atten-
tion, often based on the fundamental work of Jones, Misra and Chandy [21,27].
Our remarks at the end of Section 2.2 apply also in any comparison between
Smallfoot and tools based on rely/guarantee (e.g. [15]). Our remarks should not
be taken to be an ultimate argument for separation logic over rely/guarantee,
and it would be interesting to attempt to marry their strong points (easy treat-
ment of independence, powerful treatment of dependence). We should add that
the criticisms we made echo comments made by Jones himself [22].

Smallfoot is written in OCaml, and all of the examples in this paper verified
in a few milliseconds on an ordinary laptop. We have not included a timing
table or other experimental results, because for the small examples we have
considered the interpretation of such results would be questionable, except that
if the verifications had taken minutes or hours and not milliseconds then that
would have been a negative indication. The source code for the current version of
Smallfoot (v0.1), together with the examples from this paper and several others,
is available for download from the address given in reference [4].

Acknowledgments. Thanks to Matthew Parkinson, who wrote lots of little
programs that tested the tool and pointed out a number of bugs. All three au-
thors were partially supported by the EPSRC. During Berdine’s stay at Carnegie
Mellon University during 2003, his research was sponsored by National Science
Foundation Grant CCR-0204242.

136 J. Berdine, C. Calcagno, and P.W. O’Hearn

References

1. A. Banerjee and D.A. Naumann. Ownership confinement ensures representation
independence for object-oriented programs. Journal of the ACM, 52(6):894–960,
2005. Preliminary version in POPL’02.

2. M. Barnett, R. DeLine, M. Fahndrich, K.R.M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–
56, 2004.

3. M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# programming system: An
overview. In CASSIS’04 post-proceedings, 2004.

4. J. Berdine, C. Calcagno, and P.W. O’Hearn. Verification condition generation and
variable conditions in Smallfoot. Available from
http://www.dcs.qmul.ac.uk/research/logic/theory/projects/smallfoot/index.html.

5. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution with separation
logic. In 3rd APLAS , pages 52–68, 2005.

6. L. Birkedal, N. Torp-Smith, and J.C. Reynolds. Local reasoning about a copying
garbage collector. In 31st POPL, pages 220–231, 2004.

7. R. Bornat, C. Calcagno, and P. O’Hearn. Local reasoning, separation, and aliasing.
Presented at 2nd SPACE Workshop, 2004.

8. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. 32nd POPL, 59–70, 2005.

9. J. Boyland. Checking interference with fractional permissions. In 10th SAS, pages
55–72, 2003.

10. P. Brinch-Hansen, editor. The Origin of Concurrent Programming. Springer-
Verlag, 2002.

11. S.D. Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, to appear. Preliminary version in CONCUR’04, 2006.

12. D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment.
In 15th ECOOP, pages 53–76, 2001.

13. R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software.
In 8th PLDI, pages 59-69, 2001.

14. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology, 2006.

15. C. Flanagan, S.N. Freund, and S. Qadeer. Thread-modular verification for shared-
memory programs. In 11th ESOP, pages 262-277, 2002.

16. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.
Extended static checking for Java. In 9th PLDI, pages 234 - 245, 2002.

17. C.A.R. Hoare. Procedures and parameters: An axiomatic approach. In E. En-
geler, editor, Symposium on the Semantics of Algorithmic Languages, volume 188
of Lecture Notes in Mathematics, pages 102–116. Springer-Verlag, 1971.

18. C.A.R. Hoare. Towards a theory of parallel programming. In Operating Systems
Techniques, Acad. Press, pages 61-71. Reprinted in [10], 1972.

19. B. Jacobs, K.R.M. Leino, F. Piessens, and W. Schulte. Safe concurrency for ag-
gregate objects with invariants. In 3rd SEFM, 2005.

20. J. Jenson, M. Jorgensen, N. Klarkund, and M. Schwartzback. Automatic verifi-
cation of pointer programs using monadic second-order logic. In 4th PLDI, pages
225-236, 1997.

21. C.B. Jones. Specification and design of (parallel) programs. IFIP Conf., 1983.
22. C.B. Jones. Wanted: A compositional approach to concurrency. In A. McIver and

C. Morgan, editors, Programming Methodology, pages 1–15, 2003. Springer-Verlag.

Smallfoot: Modular Automatic Assertion Checking with Separation Logic 137

23. D.E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algo-
rithms. Addison Wesley, 2nd edition, 1973.

24. K.R.M. Leino and P. Müller. Object invariants in dynamic contexts. In 18th
ECOOP, pages 491-516, 2004.

25. K.R.M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify and
check side effects. In 9th PLDI, pages 246 - 257, 2002.

26. M.M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE TPDS, 15(6):491–504, 2004.

27. J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Trans. Software
Eng., 7(4):417–426, 1981.

28. A. Möller and M.I. Schwartzbach. The pointer assertion logic engine. In 8th PLDI,
pages 221-231, 2001.

29. D.A. Naumann. Assertion-based encapsulation, invariants and simulations. In 3rd
FMCO, pages 251-273, 2005.

30. D.A. Naumann and M. Barnett. Friends need a bit more: Maintaining invariants
over shared state. In 7th MPC, pages 54-84, 2004.

31. P.W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, to appear. Preliminary version in CONCUR’04, 2006.

32. P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In 15th CSL. pages 1-19, 2001.

33. P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and information hiding.
In 31st POPL, pages 268-280, 2004.

34. M. Parkinson and R. Bornat. Exploiting linearisability in program logic. Draft
paper, 2005.

35. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th LICS, pages 55-74.

36. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for pro-
cedure local heaps and its abstractions. In 32nd POPL, pages 296–309, 2005.

37. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM TOPLAS, 24(3):217–298, 2002.

38. J. Schwarz. Generic commands—A tool for partial correctness formalisms. The
Computer Journal, 20(2):151–155, 1977.

39. D. Walker and J.G. Morrisett. Alias types for recursive data structures. In 3rd
Types in Compilation Workshop, pages 177-206, 2001.

40. H. Yang. An example of local reasoning in BI pointer logic: the Schorr-Waite graph
marking algorithm. Presented at 1st SPACE Workshop, 2001.

41. H. Yang and P.W. O’Hearn. A semantic basis for local reasoning. In 5th FOSSACS,
pages 402–416, 2002.

Orion: High-Precision Methods for Static Error
Analysis of C and C++ Programs

Dennis R. Dams and Kedar S. Namjoshi

Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974,
{dennis, kedar}@research.bell-labs.com

Abstract. We describe the algorithmic and implementation ideas be-
hind a tool, Orion, for finding common programming errors in C and
C++ programs using static code analysis. We aim to explore the fun-
damental trade-off between the cost and the precision of such analyses.
Analysis methods that use simple dataflow domains run the risk of pro-
ducing a high number of false error reports. On the other hand, the use
of complex domains reduces the number of false errors, but limits the
size of code that can be analyzed.

Orion employs a two-level approach: potential errors are identified
by an efficient search based on a simple domain; each discovered error
path is then scrutinized by a high-precision feasibility analysis aimed at
filtering out as many false errors as possible.

We describe the algorithms used and their implementation in a GCC-
based tool. Experimental results on a number of software programs bear
out the expectation that this approach results in a high signal-to-noise
ratio of reported errors, at an acceptable cost.

1 Introduction

We consider the use of data-flow analysis (DFA) as a debugging aid, as im-
plemented in tools like Flexelint [1], Coverity [2], Fortify [3] and Uno [4]. The
inherent approximate nature of DFA leads in this context to false alarms: bogus
error messages, which often are far more numerous than genuine ones. Such poor
signal-to-noise ratios may be the reason why DFA-based debugging aids are not
routinely used. If this problem can be overcome, static error checks can become a
standard element of the regular build process, much like the type checking that
is already performed by compilers. A prerequisite is that the additional time
taken by the analysis remains acceptable.

The standard answer of DFA to the false-alarm problem is to track more
dataflow facts, or, in terms of Abstract Interpretation, to use more precise ab-
stract domains. For example, by tracking known and inferred ranges for boolean
and other variables, many false alarms can be avoided. However, the added pre-
cision may render the analysis forbiddingly expensive. A new generation of tools,
including SLAM [5] and BANDERA [6], take an incremental approach in that
they add additional precision only as needed, as identified by e.g. “Counter-
Example Guided Abstraction Refinement” (CEGAR, [7]). The BLAST [8] tool

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 138–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Orion: High-Precision Methods for Static Error Analysis 139

takes this even further by increasing the precision only for certain regions of the
analyzed code. Still, these tools are limited in terms of the size of code that can
be handled in a reasonable amount of time: usually in the order of 10-20KLoC
(KLoC=1000 lines of source code), although there have been applications to
larger code bases [9]. The reason is that these are software verifiers, targeted
towards producing a yes/no answer for a particular query. This forces them to
apply sound abstractions, and to make a substantial effort, in terms of using
complex abstract domains, in order to prove correctness.

The aim of static error checkers, on the other hand, is to find errors with a high
degree of accuracy within a reasonable amount of time and memory resources.
Specifically, it is acceptable to sacrifice soundness, and miss a few errors, to the
benefit of the signal-to-noise ratio and analysis time. We aim at a ratio of 3:1 or
higher — meaning at least 3 out of every 4 reported errors have to be real ones.
This number has been suggested by software developers as being acceptable.
Furthermore, analysis time should be in the same order of magnitude as build
time.

1.1 Path-Oriented, Two-Level Analysis

Orion is a static error checker that achieves an excellent signal-to-noise ratio
within a favorable analysis time. It reconciles these conflicting aims by using
two precision levels for its analysis, as follows. It performs a DFA with light-
weight abstract domains (level 1). Unlike traditional DFA, this is done with an
automaton-based model checking algorithm. The advantage is that the search is
path-oriented, meaning that it readily produces execution paths corresponding
to potential errors. To bring down the high ratio of false error paths that would
result, each of the potential-error paths found is then submitted to a separate,
more precise analysis (level 2). Scrutinizing a single path acts as a feasibility
check. If the path is infeasible, it is suppressed; otherwise it is reported as a
potential error. The scope of this additional precision remains limited to the
individual path, however, and does not get communicated back to any part of
the level-1 analysis, as would be the case with the software verifiers mentioned
above.

We note two consequences of this scheme. First, reasoning about a single
(“straight-line”) path is much easier than about code fragments that may contain
branch/merge points and loops. As a result, we can afford to use very precise
domains for level 2. Second, the overall two-level approach exploits the fact that
we accept unsoundness of the analysis. This point will be discussed in Section 3.2.

Level 1: Path-Oriented, Light-Weight DFA. The level-1 data-flow analysis per-
forms a depth-first search on the product of the control-flow graph and an
observer automaton based on a light-weight abstract domain. This observer
automaton, in turn, is represented by a product of automata, each represent-
ing a particular, usually simple, data-flow fact being tracked. The depth-first
search scheme allows error paths to be produced instantly. The abstract domain
keeps track of any information that is necessary for Orion’s defect detection.

140 D.R. Dams and K.S. Namjoshi

Parser:
GCC front−end

DFA:
automata−based

Solver:
Simplify/CVC

C, C++
program

parse−tree
dump

high−precision
error report

potential
error
path

feasible
yes/no

Fig. 1. Orion tool architecture

For example, in order to identify uses of uninitialized variables (use-before-def
analysis), it needs to be known which variables have not been assigned a value
along each path being explored. We sometimes refer to the automaton that
tracks this information as the error automaton. In addition, by tracking a small
amount of additional information, e.g. known and inferred ranges for boolean
and other variables, many infeasible paths can be weeded out without reliance on
level 2 checks. Such additional automata are called information automata. The
automata, including the control-flow graph, typically depend on each other. For
example, an error automaton that flags out-of-bounds array accesses depends on
an information automaton that tracks variable ranges.

While the path exploration is based on a depth-first search, we have developed
a number of optimizations to it. Our algorithm utilizes the notion of covering,
known from the area of Petri Nets [10], to shortcut the search. In addition, we
propose a novel idea called differencing to further optimize the algorithm.

Level 2: Tunable Feasibility Checking. The feasibility check that determines
whether a path can actually occur under some run-time valuation of data vari-
ables makes use of theorem-provers. Theorem-provers are powerful but require
human interaction and patience. However, Orion uses them in an “incomplete”
way, resulting in an approach that is fully automatic and fast. Namely, the prover
is allowed a predetermined amount of time; only if it finds within this time that
the path is infeasible, that path is ignored. This crude, but effective, approach
provides a simple way to tune Orion’s precision by trading the signal-to-noise ra-
tio for analysis time. In addition, the architecture of Orion allows one to plug in
different provers so as to experiment with alternatives and profit from advances
in the field.

1.2 Tool Architecture

There are three main parts to Orion: the parser, the data-flow analyzer (for
level 1), and the solvers (for level 2), see Figure 1. The parser being used is the
front-end of GCC, the Gnu Compiler Collection. Relying on this open source
compiler has several advantages: it supports multiple languages, is widely used,
and is being actively developed. The GCC version used is 3.5-tree-ssa, a de-
velopment branch that offers a uniform, simplified parse tree for C and C++,

Orion: High-Precision Methods for Static Error Analysis 141

and is intended to be the basis for future code transformations and static analyses
to be built by GCC developers [11].

GCC can dump the parse tree to a text file, which then forms the starting
point for the analysis. The data-flow analyzer, together with several utilities,
forms the core of Orion. This is written mostly in Objective Caml, about 18K
lines of code altogether. The GCC dump is parsed into an OCaml data structure,
from which a control-flow graph is constructed that is the main object of the
path exploration. At every step of this search, each of a collection of automata
is updated. Every automaton can be viewed as an observer of the sequences of
statements being traversed in the path exploration, keeping track of the data-
flow facts of a particular kind that hold at each control location that is reached.
This modular set-up allows for an easy selection and combination of abstract
domains in effect during the data-flow analysis.

Error paths, as flagged by one of the observer automata, are sent off to a solver
during the path exploration. These solvers are theorem provers based mainly on
decision procedures, aimed at providing automatic proofs for most questions
submitted. Currently, two such provers have been interfaced to Orion: Simplify
[12] and CVC [13].

1.3 Paper Outline

Section 2 gives details of the model-checking based abstract state space explo-
ration of level 1. In particular, it gives general formulations of the covering and
differencing algorithms together with several theoretical results, and discusses
their relation to standard data-flow algorithms. These algorithms are then spe-
cialized to the setting of automata-based analysis of control-flow graphs, and an-
other optimization, state aggregation, is briefly discussed. Section 3 is concerned
with the level 2 feasibility checking. It also explains how the interaction between
depth-first search and feasibility may affect completeness of the approach. The
experimental results on several programs are presented in Section 4. Section 5
discusses the contributions in the perspective of related work, and Section 6
concludes.

2 Path Exploration, Covering, and Differencing

The approach to DFA sketched above, namely an exploration of a graph in
search for error states, is an instance of the view of DFA as model checking
of an abstract interpretation [14]. In this view, the error automaton represents
the (negation of the) property being checked, while the product of the flow
graph and the information automata represents the abstract interpretation over
which the property is checked. That is, each state of this abstract interpretation
represents an overapproximation of the set of all run-time states that may be
reached at the corresponding flow graph location. Traversing the overall prod-
uct (of abstract interpretation and error automaton) state by state, in search for

142 D.R. Dams and K.S. Namjoshi

1

2

5

int x,y;

3

z==0

4

z!=0

x=3

f(y)

Decl(x)

Def(x) Use(x)
x

x

DFS:

1

2 {x,y}

3 {x,y}

4 {x,y}

5 {x,y}

3 {y}

4 {y}

(a) (b) (c) (d)

1

2

5

Decl(x)
Decl(y)

3

4

Use(z)

Def(x)

Use(y)

Use(z)

Fig. 2. Use-before-def checking

reachable error states (product states in which the error-automaton component
is an error state), amounts to performing an explicit-state model check of a safety
property.

While this view is conceptually appealing, applying it naively may lead to
algorithms that are inferior to the traditional approach to DFA, in which a
solution to a set of flow equations is computed iteratively. We illustrate this point
by an example. Figure 2, part (a), shows a small C program as a control-flow
graph whose edges are labeled with the program statements. Part (c) shows an
error automaton that checks for use-before-def errors of the variable x (unmarked
edges are taken when no other transitions are enabled). A similar automaton, not
shown, is assumed that checks y. We think of these as a single error automaton
defined by their product, whose states are thus subsets of {x, y}; e.g., the state
{x} represents all run-time states in which x has been declared but not yet
defined. Thus, if a variable v is an element of some state automaton s, the
automaton moves to an error state if a transition is taken that is labeled with
Use(v). As its transitions depend on information about whether variables are
declared, defined, and used in the program, we need the abstract interpretation
of the program that is shown in part (b). The overall product graph to be
explored has states (n, s) where n is the location in the graph of part (b) and s
is the state of the product error automata.

Part (d) shows a sequence of states that is visited in a typical depth-first
traversal; the error states are underlined. The point to note is that the use-
before-def error of y (in the statement f(y)) is found twice along this sequence:
once from state (3, {x, y}), where both x and y are tracked as being declared but
not yet defined, and another time when only y is tracked, from state (3, {y}).
This is an inefficiency: clearly, after having checked for use-before-def errors,
“below” location 3, of any variable in {x, y}, when the search hits location 3
again with a subset of these variables, it could have backtracked safely, without
missing any errors. In Figure 2 this is indicated by a dashed line, showing that
state (4, {y}) does not need to be visited. In general, the savings from such early
backtracking may be much more significant than in this example.

Orion: High-Precision Methods for Static Error Analysis 143

In an equation-solving approach this effect would not occur due to the fact
that the first data-flow set to be associated with location 3 is {x, y}; when the
set {y} is then merged with it, it does not change ({x, y} ∪ {y} = {x, y}), so
no further propagation is needed [15]. In this section, we fix this shortcoming
of the model-checking based approach to DFA by combining it with a notion
of covering. In the example above, the search can backtrack from state (3, {y})
because, intuitively, it is “covered” by the already-visited state (3, {x, y}). While
the addition of covering restores the efficiency of the algorithm in comparison to
the equation-solving approach, we present a second optimization, called differ-
encing, that may result in an additional performance improvement, and which
has not been proposed in the context of the equation-solving approach, to the
best of our knowledge. Both notions are formalized as extensions of a highly
non-deterministic White-Grey-Black coloring search [16]. Depth-first search, as
well as other strategies, can be obtained by restricting the non-determinism in
this algorithm.

2.1 General Search with Covering and Differencing

The goal is to search a finite graph for the presence of a reachable error state.
Throughout, let G = (S, I, R) be the graph being searched, where S is a finite
set of states, I ⊆ S is a set of initial states, and R ⊆ S × S is a transition
relation. Let E ⊆ S be a set of error states. We say that a state t is reachable
in G from a state s, and denote it by s

∗−→ t, iff either s = t, or there is a
finite sequence (a path) s0, s1, . . . , sn with n > 0, where s0 = s, sn = t, and
(si, si+1) ∈ R for all i, 0 ≤ i < n. The set of reachable states, Reach, is given by
{t | (∃s : I(s) ∧ s

∗−→ t)}.

Algorithm I: Basic White-Grey-Black Search. We first describe the very gen-
eral search strategy, attributable to Edsger W. Dijkstra, which starts with all
states colored white, and re-colors states as grey or black during execution. The
intuition is that white states are unexplored, grey states are the “frontier” of
partially explored states, and black states are fully explored. The program is
given below. The color of a state is given by its entry in the array “color”. We
abbreviate (color [s] = W) by white(s), and similarly for grey(s) and black (s).
We use upper case symbols, e.g., Grey ,Black , to indicate the set of states with
that color. Actions are non-deterministically chosen (indicated by []) guarded
commands, where each guarded command has the form guard −→ assignment .
The notation ([]s, t : . . .) indicates a set of actions indexed by variables s, t of
the appropriate types.

var color: array [S] of (W,G,B)
initially (∀s : white(s))
actions

([]s : I(s) ∧ white(s) −→ color [s] := G)
[] ([]s, t : grey(s) ∧ R(s, t) ∧ white(t) −→ color [t] := G)
[] ([]s : grey(s) ∧ (∀t : R(s, t) ⇒ ¬white(t)) −→ color [s] := B)

144 D.R. Dams and K.S. Namjoshi

The key properties are: (a) invariantly, Grey ∪ Black is a subset of Reach,
and (b) if Grey cannot increase, then (Grey ∪ Black) is the set of reachable
states, and the size of Grey must decrease through the last action. Hence, we
obtain the well-known theorem below.

Theorem 1. Algorithm I terminates with Black = Reach.

Algorithm II: Covering-based Search. The basic WGB search terminates with
Black = Reach, so to determine whether there is a reachable error state, one can
check if Black ∩ E is non-empty. (Of course, this check could be made during
the execution of the algorithm, but in the worst-case, the algorithm may have
to explore all reachable states.) The goal of a covering-based search is to explore
fewer than all reachable states, while still determining the exact answer. This is
done by exploiting a “covering” relation between states where, informally, if a
state s covers state t, then any path to an error state from t has a “matching”
path to an error from s. Thus, there is no harm in stopping the exploration from
t if it is covered by an already explored state.

Formally, a subset-covering relation (usually a pre-order), # ⊆ 2S × 2S , is
required to have the following property: for all subsets X,Y of S, if X # Y
(read as X covers Y), then: for every k > 0, and every y in Y that has a path
of length k to an error state, there is x in X that has a path of length at most k
to an error state. We also introduce an additional color, Red (R), to label states
that have been covered. The new algorithm is given below – it extends the WGB
algorithm with the final indexed action.

var color: array [S] of (W,G,B,R)
initially (∀s : white(s))
actions

([]s : I(s) ∧ white(s) −→ color [s] := G)
[] ([]s, t : grey(s) ∧ R(s, t) ∧ white(t) −→ color [t] := G)
[] ([]s : grey(s) ∧ (∀t : R(s, t) ⇒ ¬white(t)) −→ color [s] := B)
[] ([]s : grey(s) ∧ ((Grey \ {s}) ∪ Black) # {s} −→ color [s] := R)

The new action colors s red if it is covered by the other explored, but uncovered
(i.e., non-red), set of states. Once a state is colored red, exploration is stopped
from that state, as if it is colored black, but with the difference that red states
cannot be used as part of a covering set. Both path matching and the distinction
between red and black states are important: there are simple examples showing
that dropping either one leads to an unsound or incomplete search method. As
the algorithm proceeds, all white initial states are examined and turn grey, and
grey states turn red or black. Thus, the final result is given by the following
theorem. Note that (Black ∪ Red) is generally a strict subset of the reachable
states, yet it suffices to detect errors.

Theorem 2. Algorithm II terminates, and there is a reachable error state iff
one of the states in (Black ∪ Red) is an error state.

Orion: High-Precision Methods for Static Error Analysis 145

Algorithm III: Adding Differencing Mechanisms. In the previous algorithm, a
state s is covered, intuitively, because all error paths from s have matching paths
from the set of states that covers {s}. It may, however, be the case that for some
states s′ that remain uncovered, most, but not all, of the error paths from s′ are
matched by already explored states, while the remainder can be matched from a
small set of as yet unexplored states. These new states represent, in a sense, the
small “difference” of the error behavior of s′ and that of the already explored
states. One may then choose to stop exploring s′, and explore the difference
states instead. We modify the last action of the previous program to enable this
choice, with Diff being the choice of the difference set. (The previous action
can be recovered by setting Diff to the empty set; note that T # ∅ is true
for all T .)

([]s,Diff : grey(s) ∧ (Diff ⊆ White) ∧
((Grey \ {s}) ∪ Black ∪ Diff) # {s} ∧ {s} # Diff
−→ color [s] := R; (foreach t : t ∈ Diff : color [t] := G))

The new action chooses a difference set Diff for some grey node s, and uses it
to provide a covering. Then s is colored red, and all the states in Diff are colored
grey. The choice of a difference set cannot, however, be completely arbitrary: it
includes only white states, and {s} must cover Diff . This last constraint ensures
that, even though Diff may contain unreachable states, any errors found from
Diff states are also errors from {s} and, inductively, from a reachable state.
The full proof of correctness takes this into account, and otherwise is essentially
identical to the proof for the covering only search.

Theorem 3. Algorithm III terminates, and there is a reachable error state iff
one of the states in (Black ∪ Red) is an error state.

2.2 Application to Control-Flow Graphs

In Orion, the differencing-based algorithm is applied in the level-1 analysis to
control flow graphs of individual functions. Formally, a control flow graph (CFG)
is a tuple (V, V0, Σ,E), where V is a finite set of control locations, V0 ⊆ V is a
set of entry locations, Σ is a set of program statements, and E ⊆ V ×Σ × V is
a finite set of program transitions, where a transition (n, a, n′) can be viewed as a
control flow transition from n to n′, labeled with statement a. Orion adopts the
model checking approach to analysis: thus, analysis properties are represented by
finite state automata, which operate on Σ, and reject if an erroneous execution is
found. An analysis automaton is a tuple (S, I,Σ,Δ, F), where S is a finite set of
states, I ⊆ S is a set of initial states,Σ, as above, is the alphabet,Δ ⊆ S×Σ×S, is
the transition relation, and F ⊆ S is the set of rejecting states. The (synchronous)
composition of K such automata, A1, . . . , AK , with a CFG (V, V0, Σ,E) can
be viewed as the single automaton with: V × S1 × . . . × SK as the state set,
V0 × I1 × . . . × IK as the initial states, Σ as the alphabet, with a transition
relation Δ defined by ((n, s1, . . . , sK), a, (n′, s′1, . . . , s′K)) ∈ Δ iff (n, a, n′) ∈ E,
and (si, a, s

′
i) ∈ Δi for all i in [1,K], and (n, s1, . . . , sK) being a rejecting state

146 D.R. Dams and K.S. Namjoshi

iff for some i in [1,K], si is in Fi. This definition implies that the language
of the combined automaton is the union of the (rejecting) languages of the
components. While the automata can be run individually on the CFG, combining
them can sometimes saves analysis time, while requiring more space. Moreover,
the automata are sometimes combined in more complex ways, where the state
of one automaton is used as an input to the other (this is referred to as the
cascade or wreath product). For instance, array bounds checking is carried out
by a combination of two automata: one that tracks upper and lower bounds
on the values of program variables (this information is also used to filter out
infeasible paths), the other simply applies the computed bounds to each array
indexing operation.

The model checking problem is to determine whether there is a path in this
product to a rejecting state (recall that rejecting automaton states signal pro-
gram errors). Note that we focus on safety properties, which can be analyzed
by checking reachability. In order to use covering and differencing during the
search, we need a general mechanism by which covering and differencing oper-
ations for individual automata are combined to provide such operations for a
tuple of automata. We show how this can be done below.

We assume the existence of individual covering relations, #i, for each au-
tomaton, and construct the point-wise global covering relation: (n, s1, . . . , sK) #
(n′, s′1, . . . , s

′
K) if and only if n = n′ and si #i s

′
i for all i in [1,K]. For example,

one automaton could keep track of the current set of uninitialized variables, U ,
in its internal state. This can be done by letting each state of the automaton be
one such set, and including a transition from a state U to a state U ′ on program
action a, if U ′ results from U by removing variables defined in a and adding
variables newly declared in a (e.g., local scope declarations). Another automa-
ton could, similarly, keep track of an estimate, B, of upper and lower bounds
for each defined variable. For the first automaton, U #1 U

′ may be defined as
U ⊇ U ′. If there is a sequence of program actions that results in a use-before-def
error because a variable, say x, in U ′ is accessed by the last action without being
defined along the sequence, then the same sequence causes an error from U , as x
is included in U (note that the same sequence is possible because n = n′). Simi-
larly, B #2 B

′ iff the bounds information in B′ denotes a subset of the run-time
states denoted by the information in B. Any error path from B′ can be enabled
from B, as the information in B is more approximate than that in B′. E.g., the
joint covering relation ensures that ({a, b}, (c > 0)) covers ({a}, (c > 1)), since
{a} is a subset of {a, b}, and (c > 1) implies (c > 0).

Similarly, given functions diff i that choose an appropriate difference set for
each automaton, we can define a point-wise global differencing function as fol-
lows: diff ((n, s1, . . . , sK), (n′, s′1, . . . , s

′
K)) is defined only if n = n′ (i.e., same

control location), and is given by the set {(n, s) | (∃i, d : d ∈ diff i(si, s
′
i) ∧ s =

(s1, . . . , si−1, d, si+1, . . . , sK))}. I.e., for the common control location, the differ-
ence set is obtained by taking, in turn, the difference of one of the component
automaton states, while keeping the others the same. For the example above,
the difference function for uninitialized variable sets is just set difference, while

Orion: High-Precision Methods for Static Error Analysis 147

that for bounds information is bounds difference. Thus, the global difference of
({a, b}, (c > 0)) relative to ({a, d}, (c > 10)) at control location n is given by the
set {(n, {b}, (c > 0)), (n, {a, b}, (c > 0 ∧ c ≤ 10))}.

Aggregating States. An optimization made in Orion to enable fast covering
and differencing calculations is to merge the set of currently reached automata
states for each control location in an approximate, but conservative manner.
This is done by defining merge functions per automaton domain, and apply-
ing them point-wise to states with the same control location. Thus, if mergei is
the merge function for automaton i, then the point-wise global merge is defined as
merge((n, s1, . . . , sK), (n, s′1, . . . , s′K)) = (n,merge1(s1, s′1), . . . ,mergei(sK , s

′
K)).

In our example, the merge of uninitialized variable sets is done through set
union, and that of bounds by widening bounds. Thus, merge((n, {a, b}, (c >
0)), (n, {a, d}, (c > 10))) gives (n, {a, b, d}, (c > 0)). While the merge operator
can be quite approximate, we have not observed it to lead to many false error
reports, and furthermore, it does indeed considerably speed up the covering and
differencing operations. An approximate merge may lead to missed errors due
to early covering, this issue is discussed further in Section 3.2.

3 Feasibility Checking

As explained in the introduction, a potential finite error path detected at level 1
is subjected to further analysis by a feasibility check, which determines whether
it can correspond to a real execution. By integrating bounds information in the
abstract state at level 1 some error paths can already be ruled out at an early
stage. The level-2 feasibility check described here is applied to other error paths
that are generated at level 1. In this section we describe the manner in which this
check is performed, optimizations, and some consequences for the completeness
of the error detection strategy.

3.1 Checking for Feasibility with Weakest Preconditions

Any finite path through a control flow graph of a function is a sequence formed
from assignment statements, function calls, and boolean tests. For example,
read(&x); (x < 0); y = x; (y > 3); z = f(x, y) could be such a path, where x, y, z
are integer valued variables, and f is a function. This path is infeasible: from
the first three actions, one may infer that the value of y is negative; hence, the
subsequent test (y > 3) fails. Such inference can be formalized in many equiv-
alent ways; we do so primarily through the use of weakest liberal preconditions
for statements, as introduced by Dijkstra in [17].

The weakest liberal precondition for statement S to establish property φ after
execution, denoted by wlp(S, φ), is that set of states from which every terminat-
ing execution of S makes the program enter a state satisfying φ. Letting s S−→ t
denote the fact that execution of statement S from state s can result in state
t, this set is formally defined as wlp(S, φ) = {s | (∀t : s S−→ t ⇒ φ(t))}. The

148 D.R. Dams and K.S. Namjoshi

weakest precondition can be calculated by substitution for simple assignments
(wlp(x = e, φ(x)) = φ(e)), and by implication for tests (wlp(g, φ) = (g ⇒ φ)),
and inductively for sequences of actions (wlp((S1;S2), φ) = wlp(S1,wlp(S2, φ))).
Its relationship to feasibility checking is given by the following theorem.

Theorem 4. A finite path π is feasible if and only if wlp(π, false) is not valid.

Proof. From the inductive definition of wlp for paths, one obtains the following
set-based characterization of wlp(π, φ): it is the set {s | (∀t : s π−→ t ⇒ φ(t))}. A
path π is feasible iff (by definition) there are program states s, t such that s π−→ t
holds. By the prior characterization of wlp, this is equivalent to saying that there
exists a state s such that s is not in wlp(π, false); i.e., that wlp(π, false) is not a
validity.

For the example above, the wlp calculation proceeds as follows: wlp(z = f(x, y),
false) = false; wlp((y > 3), false) = ((y > 3) ⇒ false) = (y ≤ 3); wlp(y =
x, (y ≤ 3)) = (x ≤ 3); wlp((x < 0), (x ≤ 3)) = ((x < 0) ⇒ (x ≤ 3)) = true; and
wlp(read(&x), true) = true. But true is trivially valid: hence, by the theorem
above, this path is infeasible. Notice that as wlp(π, true) = true holds for all
π, infeasibility can be detected early, and the read statement does not really
need to be examined. The weakest precondition calculates backwards; its dual
is the strongest postcondition, sp, which calculates forwards, and is defined as
follows: sp(S, φ) = {t | (∃s : φ(s) ∧ s

S−→ t)}. Their duality leads to the following
theorem.

Theorem 5. A finite path π is feasible if and only if sp(π, true) is satisfiable.

Proof. It is well known that wlp and sp are near-inverses (formally, adjoints in
a Galois connection). Thus, (ψ ⇒ wlp(π, φ)) is valid iff (sp(π, ψ) ⇒ φ) is
valid. Substituting ψ = true, φ = false, we obtain that wlp(π, false) is valid iff
¬(sp(π, true)) is valid; thus, wlp(π, false) is not valid iff sp(π, true) is satisfiable.

We thus have two equivalent ways of calculating feasibility: either perform a
forwards, symbolic calculation of sp(π, true) and apply a satisfiability solver, or
perform a backwards, substitution-based calculation for wlp(π, false) and apply
a validity checker. The approach we have implemented in Orion is somewhat of
a hybrid: we calculate aliasing and points-to information along π in the forward
direction, and use it to reduce the intermediate results of the wlp calculation. A
key point is that aliasing information is quite accurate along a single path, more
so than when it is calculated for a control flow graph, where accuracy is lost
when merging information for incoming edges at a CFG node. The need for such
points-to information is due to the fact that wlp, when applied to assignments
through pointer variables, results in a case explosion. For instance, computing
wlp(∗p = e, φ(x, y)) requires a case split on whether p points to x, to y, or to
neither. Formally, it is given by the expression below, where pt(p, x) is a predicate
that is true iff p holds the address of x.

if pt(p, x) then (if pt(p, y) then φ(e, e) else φ(e, y))
else (if pt(p, y) then φ(x, e) else φ(x, y))

Orion: High-Precision Methods for Static Error Analysis 149

Without points-to information to contain this case splitting, the wlp expres-
sions at intermediate points on the path can grow exponentially, resulting in a
slowdown. Orion can also use bounds information gathered for this path during
the first phase analysis of the control flow graph to similarly reduce arithmetic
expressions early in the wlp calculation.

Orion sends the expressions that represent wlp’s of paths to a validity checker
— we currently use either Simplify [12] or CVC [13] as the checkers. An inter-
esting observation is that the use of wlp automatically provides a slicing [18]
of the path relative to the feasibility check, since an assignment that does not
affect variables in the current post-condition is treated as a no-op by the wlp
substitution mechanism (e.g., wlp(z = e, φ(x)) = φ(x)).

An example of the effect of Orion’s feasibility check is shown in Figure 3.
When run on the source code shown on the left, without feasibility check the
error path on the right is produced. With feasibility checking enabled, no errors
are reported. The example is somewhat contrived to demonstrate several aspects
of Orion’s reasoning power on a few lines of code.

int f(int i) // line 1
{ // 2
int r, a, *p = &a; // 3
int m = 1; // 4

// 5
if (i<2) // 6

r = m*i; // 7
else // 8

m++; // 9
a = m*(i+1); // 10
if (*p>=6) // 11

r = m*6; // 12
return r; // 13

}

example.c:13 (function f) ::
use of un-initialized
variable(s): r

Possibly feasible error path:
example.c:3: p=(&a)
example.c:4: m=1
example.c:6: !((i<=1))
example.c:9: m=(m+1)
example.c:10: a=(m*(i+1))
example.c:11: !(((*p)>5))
example.c:11: ((void)0)
example.c:13: return_value=r

Fig. 3. With feasibility checking, the error path (on the right) is suppressed

3.2 Implications for Completeness

Orion is focussed on finding errors. Two important correctness (i.e., non-
performance) aspects in this context1 are (i) soundness : is every reported
error feasible? and (ii) completeness : does the procedure find all real errors?

Although Orion uses feasibility checking, as described above, to filter out
false error reports, soundness is weakened due to fundamental limitations in
decision procedures. These include the exponential complexity of some decision
procedures and, indeed, the non-computability of validity for certain logics (e.g.,
arithmetic with multiplication). To achieve a reasonable analysis time, Orion
1 Note that the notions of soundness and completeness are defined opposite from those

in the context of program verification.

150 D.R. Dams and K.S. Namjoshi

limits the time allowed for the solvers, inevitably permitting in some false error
paths to be reported. Orion thus aims to achieve a high degree of – but not
perfect – precision in its error reports.

An analysis algorithm can obtain perfect completeness by reporting all poten-
tial errors: all real errors are contained in this report. However, this comes at the
expense of soundness. Conversely, an algorithm can achieve perfect soundness
by not reporting any errors but, of course, at the cost of completeness. Thus,
there appears to be a balance between the two aspects: it may be necessary to
sacrifice some completeness in order to achieve a high degree of soundness. In
what follows, we point out two such tradeoffs in Orion.

State-based vs. Path-based Search. In the previous section, we argued that path-
based search was impractical, and presented three state-based search algorithms.
While these are indeed more efficient, they may compromise completeness, when
combined with feasibility checking. Consider, for instance, the program below.

int foo(int x)
{
int u,v;

L1: if (x > 0) v=x; else v=x+1;
L2: if (x < 0)
L3: return u;
L4: else return x;
}

The return statement at L3 is a candidate for an uninitialized variable error,
and there are two possible paths to L3: P1 :: (x > 0); v = x; (x < 0); return u,
and P2 :: (x ≤ 0); v = x + 1; (x < 0); return u. A search that tries all paths
will consider both, and point out P2 as a feasible error path. But now consider
a depth-first search that only keeps track of the current set of uninitialized
variables. If the search tries path P1 first, it will find the potential error, but a
feasibility check will reject the path as being infeasible. Backtracking to L1, the
search tries the else-branch at L1. However, it enters L2 with the same set of
uninitialized variables, {u}, as before, and must backtrack without exploring P2
in full. Hence, the real error goes unreported, a failure of completeness!

Notice that the failure is due to the feasibility check: dropping the check
will cause an error report to be generated, with a path that is infeasible —
but, of course, at the cost of soundness. The fundamental problem is that any
state-based search that uses a finite abstract domain can be “fooled” into not
distinguishing between some of the possibly infinitely many different paths that
reach a control point. Orion actually avoids the problem for this example, since
it also keeps track of upper and lower bounds on variable values, which can
distinguish the prefixes of P1 and P2 at L2. However, it may be possible for a
complex enough program to fool the bounds tracking procedure into considering
distinct prefixes as indistinguishable from one another: [19] has a discussion of
this phenomenon in the more general context of abstraction methods.

Orion: High-Precision Methods for Static Error Analysis 151

Covering vs. Depth-first Search. As described in the previous section, a covering-
based search is far more efficient than pure depth-first search. However, this too,
may come with a completeness cost. The covering property preserves the exis-
tence of error paths, but not specific errors: i.e., if state t covers state s, and
there is a path to an error from s, there must be a matching path from t, but
not necessarily to the same error location. This general problem does not hold
for the case of control-flow graphs, since covering states share a common con-
trol location. However, we have observed that a covering based search can miss
reporting some errors in our tests of Orion. In this case, it is due to a different,
but related phenomenon: the potentially over-approximate aggregation. Such an
over-approximation enables some states to be covered, while this would not have
been the case with an exact aggregation — such false covering, if it occurs, leaves
some paths unexplored. However, in our tests, the number of missed errors is
small (usually one or two) and, in all the cases we encountered, the missed error
paths are infeasible. There is a tradeoff here that can be exploited. For instance,
one can try Orion with the fast covering-based search for initial testing, but
once all reported real errors have been fixed, one may try Orion with the more
comprehensive, but slower depth-first search to expose any missed errors.

4 Experimental Evaluation

Covering and Differencing. Experiments with the covering and differencing
algorithms show a clear advantage in execution times relative to pure depth-
first search: at least 3-fold, usually more. The intuition behind the differencing
method is that it can speed up the search by: (i) potentially covering more states,
thus exploring fewer states overall, and (ii) faster computations, as difference
states are generally smaller than the original (e.g., a subset). Experiments so
far show, however, that for the properties we check for with Orion, the speedup
obtained with smaller representations is nearly matched by the cost of the differ-
encing operation. The benefit in run times is marginal, with a maximum speedup
of about 10%. We continue to explore this issue, however, and to look for more
efficient differencing implementations.

Feasibility. The table in Figure 4 summarizes the result of running Orion on var-
ious publicly available software packages. The experiments were run on an AMD
Opteron 2.6GHz dual core, 8GB, under Linux, except for the first (emacs-21.3),
which had to be run on a considerably slower machine due to OS incompatibility
issues. In any case, the measurements are not directly comparable over the differ-
ent entries, as they were collected in multi-user mode. The errors being checked
are use-before-def of variables variables, null-pointer dereferencing, and out-of-
bounds indexing of arrays. These checks are made for individual functions in the
program, making no assumptions about the context in which a function is called.
The first three columns in the table show the name and version of the program
analyzed, the number (in 1000s) of lines of code that were analyzed (this need
not be the total amount of C code in the package, due to configuration options),

152 D.R. Dams and K.S. Namjoshi

compile compile + analyze real
Source KLoC time (s) time (s) errs. infeas. errs.

emacs-21.3 25.9 199 412 3 5 3
jpeg-6b 28.8 7 35 0 25 0

libxslt-1.1.12 31.2 27 103 2 1 0
sendmail-8.11.6 76.2 9 82 5 16 2
libxml-2.6.16 200.1 97 295 3 12 2

Fig. 4. Results on some open source packages

and the compilation time, in seconds, when Orion is not used. The next three
columns give the results of compilation with the Orion checks enabled. The col-
umn “errs.” lists the number of errors as reported by Orion, i.e., the number of
error paths (as identified at level 1) that are determined to be feasible by Orion’s
feasibility check (at level 2). The column “infeas.” lists the number of paths that
show up as potential errors at level 1, but that are determined to be infeasible
at level 2, and are thus not reported. The last column lists the number of real
errors, among those reported by Orion, as determined by a manual inspection,
see below. The analyses are run with precision 2, meaning that the time allotted
for every feasibility check is 2 seconds. Increasing this time-out value does not
show a significant decrease in the number of errors reported for these examples,
while with precision 1 and lower, Orion does not invoke external validity check-
ers for feasibility checking, which leads to significantly more false alarms. For
sendmail, jpeg, and emacs, a few additional customized options were given to
indicate that certain functions should be considered as “exit functions” that do
not return. This helped suppress a couple of false alarms.

The numbers of errors that are reported versus infeasible paths that are sup-
pressed witness the effectiveness of the feasibility checking. An indication of the
signal-to-noise ratio that is achieved may be derived by comparing the number
of reported errors (column “errs.”) to the number of those that are deemed real
(column “real errs.”). For the manual checks, we considered an error to be real
if it was feasible locally within a procedure. It may be that some of these “real”
errors are infeasible when considered in their interprocedural context. Still, ar-
guably such cases indicate a lack of defensive coding (in no case did we find
comments or assertions in the code that indicated the assumptions made).

5 Related Work

Run-time Checking and Dynamic Analysis. An alternative way to detect pro-
gramming errors is to monitor the code during execution. Tools such as Purify
(from Rational/IBM) and CCured [20] insert checks into the code to this ef-
fect, that get compiled and executed along with the program. VeriSoft [21],
DART [22], and JPF [23] on the other hand do not insert checking code, but
can be seen as advanced schedulers that perform various checks on the under-
lying code. Since they have full control over the scheduling, several different

Orion: High-Precision Methods for Static Error Analysis 153

executions can be tested, i.e. they can be viewed as bounded model checkers.
What run-time checkers and dynamic analyzers have in common is that they ex-
plore an under-approximation of a program’s run-time state space. In this sense
they are orthogonal to the DFA approach.

Static Analyzers. Tools that approach Orion most closely in terms of usage, pur-
pose, and underlying techniques are Uno [4], MC/Coverity [24], PolySpace [25],
klocwork [26], ESP [27], FlexeLint [1], and BEAM [28]. The distinguishing fea-
tures of Orion are:

– Its 2-level, tunable approach, which results in excellent signal-to-noise ratios
without serious time penalties. At the same time it gives the user control over
the desired precision: High precision can be achieved by allowing the solvers
more time to perform a deep semantic analysis of the error paths returned
at the first, more superficial level. The experimental results reported show
that this reduces the amount of false alarms in a significant way, without
excessively burdening the analysis time.

– The application of the covering and differencing optimizations uniformly for
all abstract domains. MC/Coverity uses similar techniques to handle aggre-
gate state machines produced by the per-variable check paradigm adopted
in that tool (cf. the handling of block summaries by the tool). Uno imple-
ments a form of covering and differencing as well. Our general treatment
allows us to prove the correctness of covering and differencing independently
of the search scheme and the covering relation used. The current implemen-
tation of Orion uses a covering relation over a combined domain for tracking
uninitialized variables and bounds information, as explained in Section 2.2.
We are considering adding points-to information as well; such extensions are
easy to add thanks to the generality of the implementation.

The roots of the covering algorithm go back at least to work by Karp and
Miller [10], but it has been reformulated several times in connection with various
abstract domains (cf. [29,30,8]).

While the high degree of automation offered by all these tools increases their
acceptance by software developers, there will always be errors that escape such
static analyses — this is due to the undecidability of the problem of showing the
absence of errors. If correctness is a serious concern, like in case of safety-critical
applications, tools that require annotations can offer more certainty. ESC [31]
and LClint [32] are examples of such tools. Orion also allows insertion of a limited
form of user-annotations, but this feature has not been used in the experiments.

Several alternative approaches exist to ameliorate the signal-to-noise ratio.
One is to rank the errors reported, based on heuristic rules and history informa-
tion, such that errors with a high probability of being real occur first. This idea is
e.g. implemented in Microsoft’s PREfix and PREfast defect detection tools [33],
and also in MC/Coverity [24]. The drawback is that in order to be effective, such
rules must be partly specific to the area of application, and consequently it may
take a domain expert to devise effective heuristics. Another technique used in
the above-mentioned tools is to suppress certain errors based on similarity to

154 D.R. Dams and K.S. Namjoshi

previously reported ones. Orion’s distinguishing features are orthogonal to these
techniques, and can be combined to get the best of worlds.

Software Verification Tools. The introduction already discussed the relation of
Orion to software verification tools based on symbolic processing, such as SLAM
[5], BLAST [8], and BANDERA [6], stressing the difference between error check-
ing and verification. Orion can be seen as an effort to apply techniques from the
model checking and verification field to the problem of improving the precision
of static error analysis to acceptable levels. Our experimental results appear to
bear out the hypothesis that the 2-level analysis procedure discussed in this
paper is effective at performing high-precision static error analysis. Some of the
technical details of Orion’s implementation differ from, or extend, the algorithms
used in the verification tools mentioned above. The covering search algorithm
presented here is more general than the one used in BLAST, and the addition
of differencing is novel. Orion analyzes paths using weakest preconditions, as in
BLAST, but with a forward, path-specific, points-to analysis (SLAM uses sym-
bolic processing—i.e., strongest postconditions—to analyze for feasibility). On
the other hand, these verifiers include methods for automatic refinement of the
initial abstraction, based on hints obtained from the infeasibility proofs for false
error paths; such refinement is necessary to show correctness. So far, we have
not found a need to add such abstraction refinement: the feasibility checking
mechanism appears to do a good enough job of filtering out false errors.

6 Conclusions and Ongoing Work

We have presented the static error checker Orion, which is aimed at producing
error reports with a low false-alarm rate in reasonable analysis time. The ap-
proach that enables this is an automaton-based, path-oriented, two-level data-
flow analysis, that uses powerful external solvers in a tunable fashion, and is
optimized by the use of covering, differencing, and state aggregation schemes.

Depth-first search can be seen as a particular scheduling of the general chaotic
iteration scheme for data flow analyses. However, our covering and differencing
algorithms presented earlier are more general than DFA, since they do not require
a control flow graph skeleton on which to execute the algorithm.

Experiments on several programs shows that in most cases the targeted signal-
to-noise ratio of 3:1 is achieved. A detailed inspection of the reasons that some
infeasible paths are still reported as errors suggest two priorities for further work.

First, it turns out that the computation of expressions that represent weak-
est preconditions, tends to run out of the allocated resources in cases where
the paths are very long (hundreds of statements). Orion can perform an inter-
procedural analysis for uses of uninitialized global pointer variables2, and since
interprocedural paths tend to be very long, no feasibility checks are performed
in this case. We are currently investigating alternative solvers such as CVC-Lite
2 The implementation is based on standard techniques for model checking of recursive

state machines [34,35], and thus can deal with recursive functions in C and C++.

Orion: High-Precision Methods for Static Error Analysis 155

[36], and also looking into other approaches to feasibility checking such as the use
of a SAT-based symbolic model checker (CBMC, see [37]) and of a testing-based
tool (DART, see [22]).

Another source of false alarms is the out-of-bounds array check. We are cur-
rently working on an improved and generalized buffer-overflow checking module
for Orion.

It has been pointed out that Orion is not a complete method for error de-
tection. The interaction between the level-1 and level-2 checks may cause errors
to be missed as explained in Section 3. Furthermore, when encountering certain
language features such as long-jumps and function pointers, Orion favors analy-
sis speed over completeness. The fact that it still finds a significant amount of
errors in code that may be considered well-tested, confirms that such sacrifices
are justified. Nevertheless, it is our intention to address the various sources of
incompleteness by offering options to run Orion in a stricter mode, or at least
to warn of the occurrence of language constructs that are not treated conserva-
tively. In comparison, note that a static analyzer like Astrée [38], which is aimed
at proving the absence of certain types of errors, comes with rather drastic re-
strictions on the allowed language constructs in order to guarantee its claims.

While the analysis times reported in our experiments are reasonable, in some
cases they are an order of magnitude more than the time required to compile a
program without error analysis by Orion. In addition, when software is analyzed
that less well-tested, the number of errors can be significantly higher, leading
to an increased analysis time due to more numerous feasibility checks. In order
to address this, we have implemented an incremental algorithm in Orion; the
results are reported elsewhere, see [39].

Acknowledgements. We would like to thank Gerard Holzmann for sharing in-
sights into the implementation of Uno. We would also like to thank Glenn Bruns,
Nils Klarlund, and the anonymous referees for suggesting several improvements
to the presentation. This work is supported in part by grant CCR-0341658 from
the National Science Foundation.

References

1. (FlexeLint) http://www.gimpel.com.
2. (Coverity) http://www.coverity.com.
3. (Fortify) http://www.fortifysoftware.com/products/sca.jsp.
4. Holzmann, G.: Static source code checking for user-defined properties. In: Proc.

IDPT 2002, Pasadena, CA, USA (2002)
http://www.cs.bell-labs.com/what/uno/index.html.

5. Ball, T., Rajamani, S.: The SLAM toolkit. In: CAV. Volume 2102 of LNCS. (2001)
6. Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, Laubach, S., H.Zheng:

Bandera: extracting finite-state models from Java source code. In: ICSE. (2001)
http://www.cis.ksu.edu/santos/bandera.

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5) (2003) 752–794

156 D.R. Dams and K.S. Namjoshi

8. Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.:
Temporal-safety proofs for systems code. In: CAV. Volume 2404 of LNCS. (2002)

9. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL. (2004) 232–244

10. Karp, R., Miller, R.: Parallel program schemata. J.CSS 3(2) (1969)
11. Merrill, J.: GENERIC and GIMPLE: A new tree representation for entire functions.

In: First GCC Developers Summit. (2003) at www.gcc.gnu.org.
12. (Simplify) http://research.compaq.com/SRC/esc/Simplify.html.
13. Stump, A., Barrett, C., Dill, D.: CVC: a Cooperating Validity Checker. In: 14th

International Conference on Computer-Aided Verification. (2002)
14. Schmidt, D., Steffen, B.: Program analysis as model checking of abstract interpre-

tations. In: SAS. Volume 1503 of LNCS., Springer Verlag (1998)
15. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.

Addison–Wesley (1987)
16. Dijkstra, E., Lamport, L., Martin, A., Scholten, C., Steffens, E.: On-the-fly garbage

collection: An excercise in cooperation. C.ACM 21(11) (1978)
17. Dijkstra, E.: Guarded commands, nondeterminacy, and formal derivation of pro-

grams. CACM 18(8) (1975)
18. Tip, F.: A survey of program slicing techniques. Journal of programming languages

3 (1995) 121–189
19. Dams, D.: Comparing abstraction refinement algorithms. In: SoftMC: Workshop

on Software Model Checking. (2003)
20. Necula, G., McPeak, S., Weimer, W.: CCured: type-safe retrofitting of legacy code.

In: POPL. (2002)
21. Godefroid, P.: Model checking for programming languages using Verisoft. In:

POPL. (1997)
22. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.

In: Proc. of the ACM SIGPLAN. (2005)
23. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: ICSE.

(2000) http://ase.arc.nasa.gov/visser/jpf.
24. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for building

system-specific, static analyses. In: PLDI. (2002)
25. (PolySpace) http://www.polyspace.com.
26. (Klocwork) http://www.klocwork.com.
27. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-

nomial time. In: PLDI. (2002)
28. Brand, D.: A software falsifier. In: International symposium on Software Reliability

Engineering. (2000) 174–185
29. Finkel, A.: Reduction and covering of infinite reachability trees. Information and

Computation 89(2) (1990)
30. Emerson, E., Namjoshi, K.S.: On model checking for non-deterministic infinite-

state systems. In: LICS. (1998)
31. Flanagan, C., Leino, K.M., Lillibridge, M., Nelson, G., Saxe, J., Stata, R.: Extended

static checking for Java. In: PLDI. (2002)
32. Larochelle, D., Evans, D.: Statically detecting likely buffer overflow vulnerabilities.

In: USENIX Security Symposium. (2001)
33. Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic program-

ming errors. Software: Practice and Experience 30(7) (2000) 775–802
34. Benedikt, M., Godefroid, P., Reps, T.: Model checking of unrestricted hierarchical

state machines. icalp 2001: 652-666. In: ICALP. Volume 2076 of LNCS. (2001)

Orion: High-Precision Methods for Static Error Analysis 157

35. Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In:
CAV. Volume 2102 of LNCS. (2001)

36. (CVC Lite) http://chicory.stanford.edu/CVCL/.
37. (CBMC) http://www.cs.cmu.edu/~modelcheck/cbmc/.
38. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:

The ASTRÉE Analyser. In Sagiv, M., ed.: Proceedings of the European Symposium
on Programming (ESOP’05). Volume 3444 of Lecture Notes in Computer Science.,
Edinburgh, Scotland, c© Springer (2005) 21–30

39. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental algorithms
for inter-procedural analysis of safety properties. In Etessami, K., Rajamani, S.K.,
eds.: Computer Aided Verification. Number 3576 in LNCS (2005) 449–461

Appendix

We present detailed proofs of theorems in this section.

Algorithm I: White-Grey-Black Search

The algorithm is reproduced below.

var color: array [S] of (W,G,B)
initially (∀s : white(s))
actions

([]s : I(s) ∧ white(s) −→ color [s] := G)
[] ([]s, t : grey(s) ∧ R(s, t) ∧ white(t) −→ color [t] := G)
[] ([]s : grey(s) ∧ (∀t : R(s, t) ⇒ ¬white(t)) −→ color [s] := B)

Theorem 1. Algorithm I terminates with Black = Reach.

Proof. 1. Termination: to show termination, consider the progress measure ρ =
(|White|, |Grey |) under lexicographic ordering. As the graph is finite, this mea-
sure is finite, and the lexicographic order is well-founded. Notice that the first
two actions, if executed, strictly decrease |White|, while the third action, if ex-
ecuted, keeps |White| constant, but strictly decreases |Grey |. Thus, ρ decreases
strictly for every executed action; hence, the program terminates.

2. Correctness: we show some auxiliary invariants first.
2a. (Grey ∪ Black) ⊆ Reach is invariant. (proof) this is true initially as

the sets on the left are empty. The first action turns a white initial state grey,
thus preserving the invariant. The second action turns a white successor of a
grey state (reachable, by induction) grey, thus preserving the invariant. The
third action changes the color of a grey state to black, thus keeping the union
constant. (endproof)

2b. post(Black) ⊆ (Grey ∪ Black) is invariant. (proof) this is true initially
as Black is empty. The first two actions increase only Grey, thus they preserve
the invariant. The last action moves a state from grey to black, but the newly
blackened state satisfies this condition. (endproof)

158 D.R. Dams and K.S. Namjoshi

At termination, all actions are disabled. Thus: (i) from the disabling of the
first action, all initial states are non-white, so I ⊆ (Grey ∪ Black); (ii) from
the disabling of the second action, all grey states have non-white successors, so
post(Grey) ⊆ (Grey ∪ Black); (iii) from the disabling of the third action, all
grey states have at least one white successor. The second and third consequences
together imply that Grey = ∅. Hence, from (i), I ⊆ Black , and from (2b),
post(Black) ⊆ Black . Thus, Black is a solution to the fixpoint equation for the
set of reachable states. Since Reach is the least solution, and from (2a) we have
that Black ⊆ Reach, we get that Black = Reach.

Algorithm II: Covering-Based Search

The algorithm is given below.

var color: array [S] of (W,G,B,R)
initially (∀s : white(s))
actions

([]s : I(s) ∧ white(s) −→ color [s] := G)
[] ([]s, t : grey(s) ∧ R(s, t) ∧ white(t) −→ color [t] := G)
[] ([]s : grey(s) ∧ (∀t : R(s, t) ⇒ ¬white(t)) −→ color [s] := B)
[] ([]s : grey(s) ∧ ((Grey \ {s}) ∪ Black) # {s} −→ color [s] := R)

Theorem 2. Algorithm II terminates, and there is a reachable error state iff
one of the states in (Black ∪ Red) is an error state.

Proof. 1. Termination: We use the same progress measure, ρ = (|White|, |Grey |),
as before. This decreases strictly for the first three actions, which are identical
to those of the previous algorithm. The fourth action keeps |White| unchanged
while decreasing |Grey |.

2. Correctness:
2a. (Grey ∪ Black ∪ Red) ⊆ Reach is invariant. (proof) this is true initially

as the sets on the left are empty. The first action turns a white initial state
grey, thus preserving the invariant. The second action turns a white successor of
a grey state (reachable, by induction) grey, thus preserving the invariant. The
third action changes the color of a grey state to black, while the last one changes
the color of a grey state to red, thus keeping the union constant. (endproof)

2b. post(Black) ⊆ (Grey ∪ Black ∪ Red) is invariant. (proof) this is true
initially as Black is empty. The first two actions increase only Grey , thus they
preserve the invariant. The third action moves a state from grey to black, but
the newly blackened state satisfies this condition. The fourth action only moves
a state from grey to red. (endproof)

At termination, all actions are disabled. Thus: (i) from the disabling of the
first action, all initial states are non-white, so I ⊆ (Grey ∪ Black ∪ Red); (ii)
from the disabling of the second action, all grey states have non-white successors,
so post(Grey) ⊆ (Grey ∪ Black ∪ Red); (iii) from the disabling of the third
action, all grey states have at least one white successor. The second and third

Orion: High-Precision Methods for Static Error Analysis 159

consequences together imply that Grey = ∅. Hence, from (i), I ⊆ (Black ∪ Red),
and from (2b), post(Black) ⊆ (Black ∪ Red).

However, we cannot claim, as in the previous proof, that Black ∪ Red satisfies
the fixpoint equation. Indeed, we hope it does not, since this would mean that
Black ∪ Red = Reach, and we want this set of states to be a strict subset of
the reachable states. At termination, red states can have successors that are any
color except grey, as there are no grey states left. What we would like to claim
is that Reach ∩ E �= ∅ if, and only if, (Black ∪ Red) ∩ E �= ∅. To do so, we
prove the stronger invariant below.

3. Invariantly, Reach ∩E �= ∅ iff (Grey ∪ Black ∪ Red ∪ (I ∩ White)) ∗−→ E.
(proof) [right-to-left] by contrapositive. Suppose that there is no reachable

error state. By (2a), it is not possible to reach an error state from (Grey ∪
Black ∪ Red ∪ (I ∩ White)), which is a subset of the reachable states.

[left-to-right] suppose that there is a reachable error state. We have to show
that the right-hand expression is an invariant. The property is true initially as all
initial states are white. The first transition only moves a state from (I ∩ White)
to Grey , so error reachability is invariant. The second adds a Grey state, hence
reachability to an error state is preserved. The third moves a state from Grey
to Black , while the last moves a state from Grey to Red , so again, reachability
to error states is preserved. (endproof)

At termination, this invariant implies, as Grey is empty, and all initial states
are non-white (condition (i) above), that Reach ∩E �= ∅ iff (Black ∪ Red) ∗−→ E.
This is not enough to imply the equivalence of Reach ∩ E �= ∅ and (Black ∪
Red) ∩ E �= ∅: though the successors of a black state are colored only red
or black, the error may be in a white successor of a red state, which remains
unexplored on termination. We use the path-length constraint on the covering
relation to show that this situation can occur only if a red/black state is itself
an error state.

4. Invariantly, for any k > 0, if Red =k−→ E, then (Grey ∪ Black) ≤k−→ E.
(proof) This is true initially as there are no red states, so the antecedent is false
for all k. Assuming the claim to be true, we show that it is preserved by every
transition. The first three transitions can only increase the set (Grey ∪ Black),
without affecting red states, thus the property, being monotonic in (Grey ∪
Black), continues to hold. The last transition moves a state s from grey to red.
By the path-length constraint on the covering relation, the implication holds for
the newly red state s after the transition. Consider any other red state t and
any k for which there is a path to error of length k. By the induction hypothesis,
before the transition, there is a path from a grey/black state, t′, of length k′,
where k′ ≤ k, to a state in E. If this path cannot be used as a witness after the
transition, it must be because t′ turns red after the transition; hence, t′ = s. But
then, by the covering property for s, there must be a path of length at most k′

from one of the grey/black states after the transition to a state in E. (endproof)
Now we argue that (Black ∪ Red) ∗−→ E holds iff (Black ∪ Red) ∩ E �= ∅.

The direction from right to left is trivial. For the other direction, let k be the
length of the shortest path to an E-node from (Black ∪ Red). If k = 0, we are

160 D.R. Dams and K.S. Namjoshi

done. If k > 0, the start state of the path must be in Red , otherwise there is a
shorter path by (2b) and the assumption that Grey �= ∅. However, in that case,
by (4) and the assumption that Grey �= ∅, there is a path of length at most k
from a black node to E; hence, again, there is a shorter path by (2b). Thus, k
must be 0.

Algorithm III: Adding Differencing Mechanisms

The algorithm is identical to that presented before, but for a modified final
action.

([]s,Diff : grey(s) ∧ (Diff ⊆ White) ∧
((Grey \ {s}) ∪ Black ∪ Diff) # {s} ∧ {s} # Diff
−→ color [s] := R; ([]t : t ∈ Diff : color [t] := G))

Theorem 3. Algorithm III terminates, and there is a reachable error state iff
one of the states in (Black ∪ Red) is an error state.

Proof. Surprisingly, the proof of correctness is essentially identical to the one for
the covering-only search.

1. Termination: this holds with reasoning identical to that in the previous
proof.

2. Correctness: The only difference is that since Diff can include unreachable
states, so (2a) no longer holds, so we have to adjust the proof of the right-to-
left direction of (3). We give the new proof below; the rest of the argument is
identical.

3. Invariantly, Reach ∩E �= ∅ iff (Grey ∪ Black ∪ Red ∪ (I ∩ White)) ∗−→ E.
[right-to-left proof] Suppose that there is no reachable E-state. We have to

show that the r.h.s. is invariantly false. The r.h.s. is false initially as it reduces
to I ∗−→ E, which is false by assumption.

Suppose that it is false, we show that no action can make it true. The first
action only colors a white initial state grey, so the r.h.s. stays false. Since there
is no path to error from grey states, marking white successors of grey states as
grey (the second action) cannot introduce a path to error. Similarly, the third
action only colors a grey state black, so it does not make the r.h.s. true.

The fourth action, however, turns a grey state red and adds a set of — perhaps
unreachable — states, Diff , to Grey . So the only way in which the property can
be true after the transition is if Diff ∗−→ E holds. But the constraint {s} #
Diff in the guard, together with the path-matching constraint on the covering
relation, implies that s ∗−→ E is true. But this is known to be false, as s is a grey
state before the transition. Hence, the property remains false after the transition.

Beyond Bisimulation: The “up-to” Techniques

Davide Sangiorgi

Università di Bologna, Italy
http://www.cs.unibo.it/~sangio/

Abstract. We consider the bisimulation proof method – an instance of
the co-induction proof method – that is at the heart of the success of
bisimulation. We discuss a number of enhancements of the method and
some open problems.

1 Bisimulation

Bisimulation (and, more generally, co-induction) can be regarded as one of the
most important contributions of Concurrency Theory to Computer Science.
Nowadays, bisimulation and the co-inductive techniques developed from the idea
of bisimulation are widely used, not only in Concurrency, but, more broadly, in
Computer Science, in a number of areas: functional languages, object-oriented
languages, type theory, data types, domains, databases, compiler optimisations,
program analysis, verification tools, etc.. For instance, in type theory bisimu-
lation and co-inductive techniques have been used: to prove soundness of type
systems; to define the meaning of equality between (recursive) types and then to
axiomatise and prove such equalities; to define co-inductive types and manipu-
late infinite proofs in theorem provers. Also, the development of Final Semantics,
an area of Mathematics based on co-algebras and category theory and that gives
us a rich and deep perspective on the meaning of co-induction and its duality
with induction, has been largely motivated by the interest in bisimulation.

In this paper we consider the bisimulation proof method – an instance of the
co-induction proof method – that is at the heart of the success of bisimulation.
More precisely, we discuss enhancements of the method, motivate them, and
hint at some related open problems. This is not supposed to be a comprehensive
paper, but rather a quick guide to the state of the art in the topic, which the
interested reader could also use to search for more details.

We consider bisimilarity on standard labelled transition systems. Their tran-
sitions are of the form P

μ−→ Q, where P and Q are processes, and label μ is
drawn from some alphabet of actions.

Definition 1. A relation R on processes is an bisimulation if whenever
(P,Q) ∈ R,

1. P α−→ P ′ implies Q α−→ Q′ and (P ′, Q′) ∈ R, for some Q′

2. the converse, on the actions from Q.

P and Q are bisimilar, written P ∼ Q, if (P,Q) ∈ R for some bisimulation R.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 161–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 D. Sangiorgi

(∼ can also be viewed as the greatest fixed-point of a certain monotone function
on relations, whose definition closely follows the bisimulation clauses above.) By
definition of ∼, a bisimulation relation is contained in ∼, and hence it consists
of only pairs of bisimilar processes. This immediately suggests a proof method
for ∼, by far the most popular one: to demonstrate that (P,Q) ∈ ∼ holds, find
a bisimulation relation containing the pair (P,Q).

2 An Example of Redundancy

In the clauses of definition (1) the same relation S is mentioned in the hypothesis
and in the thesis. In other words, when we check the bisimilarity clause on a
pair (P,Q), all needed pairs of derivatives, like (P ′, Q′), must be present in S.
We cannot discard any such pair of derivatives from S, or even “manipulate”
its process components. In this way, a bisimulation relation often contains many
pairs strongly related with each other, in the sense that, at least, the bisimilarity
between the processes in some of these pairs implies that between the processes
in other pairs. For instance, in a process algebra a bisimulation relation might
contain pairs of processes obtainable from other pairs through application of
algebraic laws for bisimilarity, or obtainable as combinations of other pairs and of
the operators of the language. These redundancies can make both the definition
and the verification of a bisimulation relation annoyingly heavy and tedious: it is
difficult at the beginning to guess all pairs which are needed; and the bisimulation
clauses must be checked on all pairs introduced.

As an example, let P be a non-deadlocked process from a CCS-like language,
and !P the process recursively defined thus: !P def= P | !P . Process !P represents
the replication of P , i.e., a countable number of copies of P in parallel. (In certain
process algebras, e.g., the π-calculus, replication is the only form of recursion
allowed, since it gives enough expressive power and enjoys interesting algebraic
properties.) A property that we naturally expect to hold is that duplication of
replication has no behavioural effect, i.e, !P | !P ∼ !P . To prove this, we would
like to use the singleton relation

S def= {(!P | !P ,!P)} .

But S is easily seen not to be a bisimulation relation. For instance, if P
μ−→ P ′,

then we have
!P | !P

μ−→ !P | P ′ | !P

The derivative process does not appear in the processes of S, hence !P can-
not possibly match the transition from !P | !P in a way that would close the
bisimulation diagram.

If we add pairs of processes to S so as to make it into a bisimulation relation,
then we might find that the simplest solution is to take the infinite relation

R def= { (Q1, Q2) : for some R,
Q1 ∼ R | !P | !P and Q2 ∼ R | !P} .

Beyond Bisimulation: The “up-to” Techniques 163

The size augmentation in passing from S to R is rather discouraging. But it
does somehow seem unnecessary, for the bisimilarity between the two processes
in S already implies that between the processes of all pairs of R. In this sense
we can consider the added pairs redundant, because they can be derived from
the original pair using the laws of ∼.

3 Enhancements of the Bisimulation Proof Method

The objective of enhancements of the bisimulation proof method is to prove
bisimilarity results using relations smaller than bisimulations; that is, relations
in which some redundant pairs have been omitted. To write this formally, we
introduce the notion of progression, and set some terminology.

We let R and S range over binary relations on processes. The union of relations
R and S is R∪ S, and their composition is RS (i.e., (P, P ′) ∈ RS holds if for
some P ′′, both (P, P ′′) ∈ R and (P ′′, P ′) ∈ S hold). We often use the infix
notation for relations; hence P RQ means (P,Q) ∈ R.

Definition 2 (progression). Given two relations R and S, we say that R
progresses to S, written R � S, if P RQ implies:

1. whenever P
μ−→ P ′, there is Q′ such that Q

μ−→ Q′ and P ′ S Q′;
2. the converse, i.e., whenever Q

μ−→ Q′, there is P ′ such that P
μ−→ P ′ and

P ′ S Q′.

When R and S coincide, the above clauses are the ordinary ones of the definition
of a bisimulation relation. By “enhancement of the bisimulation proof method”
we refer to a technique that, for a given relation R, allows us to infer R⊆∼ if

R � R∪ {some redundant pairs}

holds; that is, in the bisimulation diagrams we allow the derivative processes to
belong to a relation larger than the original one.

Such enhancements relieve the work involved with the bisimulation proof
method, because fewer diagrams have to be proved (one works with relations
that are included in bisimulations but need not be bisimulations themselves).
They can also make it simpler to find the relation R to work with.

4 Examples of Enhancements

Some enhancement techniques were proposed shortly after the discovery of bisim-
ulation. The best known example is Milner’s bisimulation up to bisimilarity tech-
nique [Mil89], in which the closure of a bisimulation relation is achieved up to
bisimilarity itself. Precisely, this technique allows us to prove bisimilarities using
progressions of the form R � ∼ R ∼ , in which one requires that (P,Q) ∈ R
and P

μ−→ P ′ imply that

164 D. Sangiorgi

there are processes P ′′, Q′, Q′′ such that
P ′ ∼ P ′′, Q

μ−→ Q′ ∼ Q′′ and (P ′′, Q′′) ∈ R.

Intuitively, the technique is sound because ∼ is transitive; hence from the bisim-
ilarity between P ′′ and Q′′ we can also infer the bisimilarity between the deriv-
atives P ′ and Q′.

A different form of enhancement is the up-to-contexts [San98, San96, BS98],
which allows us to cut a common context in matching derivatives. Now progres-
sions are of the form R � C(R), where

C(R) def= {(C[P], C[Q]) : P RQ}

Here we are assuming – without getting into the mathematical details – that
the process language is defined by means of a grammar, and C[·] represents a
process context for such grammar (precisely, a monadic context, meaning that
the hole appears at most once). With up-to-contexts, the bisimulation clause
becomes: (P,Q) ∈ R and P

μ−→ P ′ imply that

there are processes P ′′, Q′′ and a context C[·] such that
P ′ = C[P ′′], Q

μ−→ C[Q′′] and (P ′′, Q′′) ∈ R.

In this case, the technique would seem sound if ∼ is preserved by contexts.
Hence from the bisimilarity between P ′′ and Q′′ we can infer that between the
derivatives C[P ′′] and C[Q′′].

Yet another technique is up to injective substitutions, widely used in π-calculus
and related formalisms (see [SW01]). This technique allows us to apply injective
substitutions on names to the derivatives of two processes, which is very handy
when dealing with languages whose transition system make use of substitutions
on names. Progressions are of the form R � Inj(R) , where

Inj(R) def= {(Pσ,Qσ) : P RQ , σ injective on names}

The soundness of the technique would seem to rely on the invariance of bisimi-
larity with respect to injective substitutions.

Sometimes it can also be useful to compose different techniques to obtain
more powerful forms of enhancements. For instance, one can think of combining
the three techniques above into an up to bisimilarity, contexts, and injective
substitutions, in which progressions are of the form R �∼ C(Inj(R)) ∼ (the
three constituent techniques could even be combined in a different way). Thus,
the bisimulation clause becomes: (P,Q) ∈ R and P

μ−→ P ′ imply that

there are processes P ′′, Q′′, a context C[·],
and an injective substitution σ on names such that
P ′ ∼ C[P ′′σ], Q

μ−→∼ C[Q′′σ] and (P ′′, Q′′) ∈ R.

We can apply the technique above to our example about replication in
Section 2 to show that S is a bisimulation up to bisimilarity and contexts (up-to-
injective-substitutions in this case is not necessary). We do not present the full

Beyond Bisimulation: The “up-to” Techniques 165

proof; we only sketch a representative case of the proof. Thus suppose P
μ−→ P ′

and therefore !P | !P
μ−→ !P | P ′ | !P . We show that this transition can be

matched by !P . We can use the corresponding transition !P
μ−→ P ′ | !P . We

have
!P | P ′ | !P ∼ P ′ | !P | !P,

and
P ′ | !P ∼ P ′ | !P .

Now, from the pair (P ′ | !P | !P, P ′ | !P) we get back to the original pair
(!P | !P, !P) of S by removing the common context P ′ | [·]. In summary, we
have:

!P | !P !P

μ ↓ μ ↓
!P | P ′ | !P ∼ P ′ | !P | !P C(S) P ′ | !P ∼ P ′ | !P

which closes the diagram, up to ∼ and contexts.
Enhancements of the bisimulation proof methods are sometimes extremely

useful; they seem to be even essential in calculi for mobility such as the
π-calculus, and higher-order languages such Ambients [CG98] or Higher-Order
π-calculus [San92, SW01]. See for instance Merro and Zappa Nardelli’s proof
of the Ambient perfect firewall equation, one of the basic laws for Ambients
[MZN05].

To be able to use an enhancement we first have to prove its soundness. This
can be a difficult task. The difficulty tends to increase as the technique itself, or
the language onto which it is applied, become more powerful or sophisticated.
For instance, the proof of soundness of the technique that we above called “up to
bisimilarity, contexts, and injective substitutions” can be far from trivial. Indeed,
it is quite challenging if the language is higher order, meaning that terms of the
language can be communicated or move about.

In summary, we look for a general theory of enhancements that, most notably,
would allow us to understand what an enhancement is, how enhancements can
be composed, and how to prove their soundness. We discuss below some of the
difficulties that one encounters in this direction, and some (partial) solutions
that have been proposed.

5 What Is a Redundant Pair?

First, one would need to understand what a redundant pair is. The intuition
that we gave at the end of Section 2 – a pair is redundant if it can be derived
from the remaining pairs using laws for bisimilarity – is not quite right (in the
sense that the condition is important but, as it stands, it is not sufficient).

Here is a counterexample, in CCS. The following is a valid inference rule for
∼ (i.e., if the pair in the premise is in ∼ then also the pair in the conclusion is
so):

Pref-inv
(a.P, a.Q)

(P,Q)

166 D. Sangiorgi

Consider now relation
R def= {(a. b, a. c)}

The pair (b, c) would thus be redundant in R ∪{(b, c)}, since (b, c) can be derived
from the other pair (a. b, a. c) via rule Pref-inv. However, we have

R �R ∪ {(b, c)},

and yet a. b �∼ a. c. This shows that this definition of redundant pair is unsound:
from the progression R �R ∪ {(b, c)} we cannot derive R ⊆∼.

Even for the techniques discussed in Section 4, stating when they are sound
(i.e., which languages, which forms of bisimilarity) is difficult. For instance, con-
sider the up-to-bisimilarity-and-contexts technique. We hinted in Section 4 that
its soundness would seem to derive from the properties that bisimilarity is tran-
sitive and preserved by contexts. Again, surprisingly, this condition alone is not
sufficient (and, again, we do not know at present how to refine the condition).
Consider the simple process language

P := f(P) | a. P | 0

where a. − is a CCS-like prefix, 0 is the inactive process and f is an operator
whose behaviour is given by the rule

X
a−→ X ′ X ′ a−→ X ′′

f(X) a−→ X ′′

That is, in order to release some action, f requires the release of two actions
from its argument. On this language it is easy to show that bisimilarity is tran-
sitive and preserved by all contexts (in fact, we can infer that bisimilarity is a
congruence from the fact that the transition rules of the operators are in tyft
format [GV92]). Despite this, the up-to-bisimilarity-and-contexts technique is
not sound. To see this, take

R def= {(a. 0, a. a. 0)}

Processes a. 0 and a. a. 0 are not bisimilar. But the diagram

a. 0 R a. a. 0
a ↓ a ↓
0 ∼ f(a. 0) C(R) f(a. a. 0) ∼ a. 0

shows that R �∼C(R)∼ holds. In this diagram, 0 ∼ f(a. 0) and f(a. a. 0) ∼
a. 0 hold because the operator f transforms two consecutive a transitions into
a single one.

Below is another counterexample, in this case showing that the form of the
bisimilarity matters. So far we have used strong bisimilarity, in which all actions
are treated equally. Other forms of bisimilarity have been proposed, such as weak
bisimilarity and branching bisimilarity. In weak bisimilarity, for instance, internal

Beyond Bisimulation: The “up-to” Techniques 167

actions (indicated as τ) are partially ignored. Weak transitions are introduced
thus: first, P =⇒ P ′ holds if P can evolve into P ′ with a – possibly empty –
sequence of τ -steps; then P

μ
=⇒ P ′ stands for P =⇒ μ−→ =⇒ P ′ (where =⇒

μ−→=⇒ is the composition of relations). In weak bisimulation, the bisimulation
clauses become:

1. if (P,Q) ∈ R and P
μ−→ P ′ with μ �= τ , then there is Q′ such that Q

μ
=⇒ Q′

and (P ′, Q′) ∈ R;
2. if (P,Q) ∈ R and P −→ P ′, then there is Q′ such that Q =⇒ Q′ and

(P ′, Q′) ∈ R.
3. the converse of (1) and (2), on the actions from Q.

Weak bisimilarity, written ≈, is transitive; yet, the up-to-bisimilarity technique
fails. To see this, take

R def= {(τ . a.0,0)}
The processes in this pair can match each other’s transitions, up to ≈. For in-
stance, the transition τ . a.0 τ−→ a.0 is matched by 0 =⇒ 0, using the equalities
a.0 ≈ τ . a.0 and 0 ≈ 0. However, τ . a.0 ≈ 0 is obviously false.

6 Towards an Algebra of Enhancements

We mention here an attempt towards an algebra of enhancements, proposed in
[San98] and that focuses on the properties of composition of techniques.

The progressions used in [San98] are of the form R � F(R), where F is a
function from relations to relations. One is interested in functions F that are
sound with respect to ∼, i.e. such that R � F(R) implies R ⊆ ∼. Relevant
questions are: Which conditions ensure soundness of functions? Which interest-
ing functions are sound? Which interesting properties are satisfied by the class
of sound functions?

A simple functorial-like condition, called respectfulness, is suggested to guar-
antee the soundness of F . This condition requires that if R ⊆ S and R � S
hold, then F(R) ⊆ F(S) and F(R) � F(S) must hold too. A useful property
about the class of respectful functions is that it is closed under important func-
tion constructors like composition, union, iteration, and chaining (chaining gives
us relational composition). Consequently, it suffices to define a few primitive re-
spectful functions: more complex functions can then be derived via combinations
of the primitive ones, and the soundness of the former follows from that of the
latter.

Among the primitive functions there is the identity function and the constant-
to-∼ function, which maps every relation onto ∼. Another primitive function is
the function C of the up-to-contexts technique. (More precisely, the paper shows
that when the transition relation among processes is defined structurally on
the operators of the language, certain conditions on the form of the transition
rules ensure the respectfulness of C; these conditions are met in familiar process
algebras like ACP [BK84], CCS [Mil89], and the π-calculus [Mil99, SW01].)

168 D. Sangiorgi

Examples of respectful functions easily derivable from the above primitive ones
are: the function which returns the transitive closure of a relation; the function
which returns the closure of a relation under polyadic contexts (i.e., contexts
which might have more than one hole, and each of these hole can appear more
than once); the function mapping a relation R onto ∼R∼, where ∼R∼ is the
composition of the three relations (this function gives us Milner’s bisimulation
up to bisimilarity technique; in this setting, it is recovered as a combination of
the identity and constant-to-∼ functions). Again, more sophisticated functions
– and hence proof techniques for ∼ – can in turn be derived from these ones;
for instance, the function that gives us the “up to bisimilarity, contexts, and
injective substitutions” technique that we defined and used in Section 4.

Hirschkoff [Hir99, Hir98] has proved the theory of respectful functions in Coq,
and has used the theory to develop a prototype for mechanically verifying bisim-
ilarity results.

However, the present theory of respectful functions can only be a preliminary
attempt towards a more general and robust theory. To begin with, the definition
of respectfulness looks very ad hoc; we do not have abstract mathematical char-
acterisations of it as in the case of the bisimulation proof method (notably using
Final Semantics and co-algebras). Further, chaining, one of the key constructors
for composing techniques according to the theory of respectfulness for strong
bisimilarity, is not sound with weak bisimilarity. Therefore, when in comes to
composing different techniques for weak bisimilarity, the theory of respectfulness
might not help.

7 Weak Bisimilarity and Expansion

We mentioned above that chaining, one of the key constructors in the theory of
respectfulness, is not sound for weak bisimilarity. For strong bisimilarity, chaining
is mainly used to make top-compositions with the up-to-bisimilarity technique,
that is, to add this technique on top of others. For instance, chaining allows us
to add ‘up to bisimilarity” on top of “up to contexts” and therefore infer that
the progression R � ∼ C(R) ∼ is sound. The theory of respectfulness for weak
bisimilarity prevent us from making similar inferences precisely because of the
problems with chaining.

Therefore, at present, if one wants to use similar compositions of techniques
for weak bisimilarity one has to prove directly that the specific compositions of
interest are sound. The analogue in the strong case would be proving directly
that, for example, the up-to-bisimilarity-and-contexts technique is sound.

A further problem with weak bisimilarity is that we cannot use, alone or in
compositions, the up-to-bisimilarity technique, which, as shown in Section 5, is
not sound. In its place, a number of variations have been proposed; for instance,
allowing only uses of strong bisimilarity within the up to bisimilarity [Mil89]. The
most important variation, however, involves a relation called expansion [AKH92,
SM92]. Expansion is a preorder derived from weak bisimilarity by, essentially,
comparing the number of silent actions. The idea underlying expansion is roughly

Beyond Bisimulation: The “up-to” Techniques 169

that if Q expands P , then P and Q are bisimilar, except that in mimicking Q’s
behaviour, P cannot perform more τ transitions than Q. We can think of P
as being at least as fast as Q, or more generally, we can think that Q uses at
least as many resources as P . An interest of expansion derives from the fact
that, in practice, most of the uses of weak bisimilarity are indeed instances
of expansion. Expansion enjoys an elegant mathematical theory, explored in
[AKH92]. Expansion is preserved by all CCS operators but sum, and has a
complete proof system for finite terms based on a modification of the standard τ
laws for CCS. Expansion is also a powerful auxiliary relation for up-to techniques
involving weak forms of behavioural equivalence.

To define expansion we need the following notation.

1. P τ−→ P ′ holds if P τ−→ P ′ or P ′ = P .
2. If α �= τ then P α−→ P ′ if P α−→ P ′.

Definition 3. A relation S is an expansion if whenever (P,Q) ∈ S,

1. P α−→ P ′ implies Q α=⇒ Q′ and (P ′, Q′) ∈ S for some Q′

2. Q α−→ Q′ implies P α−→ P ′ and (P ′, Q′) ∈ S for some P ′.

Q expands P , written P ' Q or Q (P , if (P,Q) ∈ S for some expansion S.

In the bisimulation up to expansion, the requirement is: (P,Q) ∈ R and P
μ−→ P ′

imply that

there is a process Q′ such that
Q

μ
=⇒ Q′ and P ′ (R ' Q′;

“Up to expansion” can be added on top of other techniques; thus, in “up-to
expansion and contexts”, the bisimulation clause becomes: (P,Q) ∈ R and P

μ−→
P ′ imply that

there are processes P ′′, Q′, Q′′ and a context C[·] such that
P ′ (C[P ′′], and Q

μ−→ Q′ (C[Q′′], and (P ′′, Q′′) ∈ R.

Two major problems still remain:

1. How to integrate a relation such as expansion in a general theory of bisimu-
lation enhancements.

2. Expansion is sometimes too rigid.

The second problem arises because, in the definition of expansion, at every step
the same comparison between the two processes is maintained; that is, if P ' Q
then P should be “better” than Q in every matching transitions. This require-
ment can sometimes be too strong. For instance, P may be globally more efficient
than Q and yet in a few places P may require some more internal work than
Q. An example of this situation can be found in [HPS05], where two abstract
machines for an implementation of (a variant of) Ambients are compared. One

170 D. Sangiorgi

of the machines is an optimisation of the other, and is therefore more efficient.
However its efficiency is obtained partly by employing more sophisticated data
structures, which require an initialisation phase. As a consequence, when the
data structures are created, the optimised machine can be slower; as the two
machines continue to execute, however, the choice of better data structures pro-
duces a gain. Thus neither machine is an expansion of the other. Further, because
of similar technical details, one cannot even use expansion as an auxiliary up-to-
relation in a prove of weak bisimilarity between the two machines. Indeed, the
proof of correctness of the optimised abstract machine in [HPS05] makes use of
a full weak bisimulation, which makes the relation to use, and the proof that
this relation is a weak bisimulation, long and complex.

Very recently, Damien Pous [Pou05] has proposed refinements of the expansion
relation that can be integrated into the theory of respectful functions of Section 6
and that could overcome the problems of expansion indicated above. A possible
drawback of these refinements is that they might be difficult to use (i.e., it
might be difficult to establish the existence of such a refinement between two
given processes). However, more experiments are needed to prove or disprove
such claims.

8 Conclusions

We need to understand better what is an enhancement of the bisimulation proof
method: what makes an enhancement sound and why, and how it can be used.
It would be highly desirable to have general results, applicable to different lan-
guages and different forms of bisimulation.

References

[AKH92] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta
Informatica, 29:737–760, 1992.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-
tion. Information and Computation, 60:109–137, 1984.

[BS98] M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the
π-calculus. Acta Informatica, 35:353–400, 1998.

[CG98] L. Cardelli and A.D. Gordon. Mobile ambients. In Nivat. M., editor, Proc.
FoSSaCS ’98, volume 1378 of Lecture Notes in Computer Science, pages
140–155. Springer Verlag, 1998.

[GV92] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100:202–260,
1992.

[Hir98] D. Hirschkoff. Automatically proving up to bisimulation. In Petr Jancar
and Mojmir Kretinsky, editors, Proceedings of MFCS ’98 Workshop on Con-
currency (Brno, Czech Republic, 27-29 August 1998), volume 18 of entcs.
Elsevier Science Publishers, 1998.

[Hir99] D. Hirschkoff. Mise en oeuvre de preuves de bisimulation. PhD thesis, Phd
Thesis, Ecole Nationale des Ponts et Chausses, 1999.

Beyond Bisimulation: The “up-to” Techniques 171

[HPS05] Daniel Hirschkoff, Damien Pous, and Davide Sangiorgi. A correct abstract
machine for safe ambients. In COORDINATION, pages 17–32, 2005.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge

University Press, 1999.
[MZN05] M. Merro and F. Zappa Nardelli. Behavioural theory for mobile ambients.

Journal of the ACM. To appear, 2005.
[Pou05] Damien Pous. Up-to techniques for weak bisimulation. In ICALP, pages

730–741, 2005.
[San92] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and

Higher-Order Paradigms. PhD thesis CST–99–93, Department of Computer
Science, University of Edinburgh, 1992.

[San96] D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile
processes. Theoretical Computer Science, 155:39–83, 1996.

[San98] D. Sangiorgi. On the bisimulation proof method. Journal of Mathematical
Structures in Computer Science, 8:447–479, 1998.

[SM92] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In
W.R. Cleveland, editor, Proc. CONCUR ’92, volume 630 of Lecture Notes
in Computer Science, pages 32–46. Springer Verlag, 1992.

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

Separation Results Via Leader Election
Problems

Maria Grazia Vigliotti1,3, Iain Phillips2, and Catuscia Palamidessi3,4

1 INRIA Sophia-Antipolis, France
2 Department of Computing, Imperial College London, England

3 INRIA Futurs, France
4 LIX Polytechnique, France

Abstract. We compare the expressive power of process calculi by study-
ing the problem of electing a leader in a symmetric network of processes.
We consider the π-calculus with mixed choice and with separate choice,
value-passing CCS and Mobile Ambients. We provide a unified approach
for all these calculi using reduction semantics.

1 Introduction

Expressiveness results, in formal languages, deal primarily with the question of
the power of the underpinning formal model. Different models of computation
can be compared using the notion of encoding. A typical example comes from
classical computability theory: Turing machines, Unlimited Register Machines
and Lambda Calculus are considered to be equally powerful since they can be
reciprocally encoded.

In this tutorial we consider expressiveness results about concurrent models of
computation. In the last twenty years, many different concurrent calculi have
been developed, and most of them are Turing complete, that is, they can com-
pute the same functions as Turing machines. However, function computability
is only one possible way to evaluate the power of a concurrent language: other
aspects, related to the concurrent nature of the model, should also be taken into
account. Our focus is on the synchronisation capabilities of a calculus, and more
precisely on the mechanisms that allow remote processes to achieve an agree-
ment. Agreement is considered an important problem in Distributed Computing
and a lot of research has been devoted to finding algorithms to achieve it, or,
depending on the model of computation, proving its impossibility. Apart from
the theoretical interest, the problem has important implications of a practical
nature in the field of Distributed Systems, where the design of the operating
system has to ensure the correct interaction between remote processes in a dis-
tributed setting, when a central coordinator is not available or not feasible. Also,
in the implementation of (concurrent) languages one has to face the problem of
whether certain interaction primitives are too expressive to be implemented in
a given distributed architecture.

One approach to comparing two calculi is to exhibit an encoding or to show
that such an encoding cannot exist. The notion of encoding is, naturally, sub-
ject to specific conditions. For instance, the encoding should not itself solve the

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 172–194, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Separation Results Via Leader Election Problems 173

problem of synchronisation: it would be like mapping Turing machines into finite
automata by using a translation which adds an oracle.

To show that an encoding does not exist, one way of proceeding is to show that
there is a problem that can be solved in one calculus, but not in the other. In the
field of distributed algorithms [11, 30], various models of computation have been
compared via the symmetric leader election problem, which consists in requiring
the members of a symmetric network to elect one of them as their leader. The
difficulty consists in breaking the initial symmetry to achieve a situation which
is inherently asymmetric (one is the leader and the others are not). This method
has proved rather successful also for the comparison of various process calculi [3,
20, 7, 22, 21, 24, 23, 25, 31]. In the case of process calculi, actually, some of
the symmetry-breaking arguments are rather sophisticated and use additional
discriminations that are related to the topology of the network. In other words,
some calculi admit a solution to leader election problems only if the network has
a specific topology, such as a fully connected graph.

In this tutorial we shall collect, present, systematise and interpret a collection
of results regarding expressiveness in process calculi obtained by means of the
symmetric leader election problem. We shall provide a uniform presentation by
the use of reduction semantics, and we shall highlight the similarities and differ-
ences between the various approaches to leader election problems. In particular,
we shall focus on the following calculi: Communicating Concurrent Systems
(CCS), the π-calculus with mixed choice (πm) and with separate choice (πs),
and Mobile Ambients (MA).

CCS [12, 14] is a simple calculus, that aims to represent concurrency with
synchronous communication. Based on the concept of channels, it contains two
primitives for sending and receiving which can synchronise by handshaking on
the same channel. In this paper we shall consider value-passing CCS, where
input and output primitives carry value parameters. However, for the sake of
simplicity, we shall call it CCS throughout the paper.

The π-calculus [15] enhances the CCS model by allowing processes to com-
municate channel names, which can also be used as channels for communication,
allowing the dynamic creation of new links between processes (link mobility).
In this paper we do not consider the full π-calculus as originally presented; we
omit the matching operator and require choices to be guarded, as in [14]. We
call this version the mixed-choice π-calculus, which we denote by πm; here the
word “mixed” signifies that a choice can contain both input and output guards.
CCS as we shall present it can be seen as a subset of πm.

The asynchronous π-calculus [10, 2] has become particularly popular as a
model for asynchronous communication. In this fragment there is no explicit
choice, and outputs have no continuation. However output prefixing and sep-
arate choice can be encoded in the asynchronous π-calculus [2, 19]; separate
choice is guarded choice with the restriction that input and output guards can-
not be mixed in the same choice. In this tutorial we look at the separate-choice
π-calculus, which we denote by πs, rather than the asynchronous π-calculus;
however the results valid for πs also hold for the asynchronous π-calculus.

174 M.G. Vigliotti, I. Phillips, and C. Palamidessi

Finally, we shall deal with Mobile Ambients. MA [5] has been proposed to
model features of computation over the Internet. This calculus is based on the
simple unifying concept of ambient. Computation is no longer defined as ex-
changing values, but it is the result of ambients moving into and out of other
ambients bringing along active processes and possibly other ambients.

Several relations among the above calculi are obvious or have been proved in
the literature, addressing at least partially the issue of expressiveness. However,
questions about their expressive power can still be asked:

– πs is a subcalculus of πm. Is πm strictly more expressive?
– CCS with value passing can be viewed as a subcalculus of πm. Thus πm is as

least as expressive as CCS. Does an encoding exist from πm into CCS?
– The asynchronous π-calculus can be encoded into MA. Can MA be encoded

into the asynchronous π-calculus or CCS?

In the tutorial we shall show that the answers to the previous questions are
negative, i.e. those encodings do not exist under certain conditions (Section 2.3).
The proofs are based on the possibility/impossibility of solving the symmetric
leader election problem.

In encodings of languages that (do not) admit a solution for leader election
problems, one important requirement is that the encoding preserves the origi-
nal distribution among processes. This requirement aims at avoiding that the
encoding may introduce a central coordinator [21, 23]. Therefore this condition
makes the notion of encoding suitable to compare expressiveness of languages
for distributed systems, where processes are expected to coordinate without the
help of a centralised server.

The negative results mentioned above have been achieved in recent years as
follows:

– Palamidessi [20, 21] established that πm is strictly more expressive than πs;
– Phillips and Vigliotti [24, 23, 31] proved a that small fragment of MA is not

encodable in πs.

Both those separation results are proved by considering the leader election prob-
lem in a fully connected (and symmetric) network. For instance, Palamidessi
showed that the problem can be solved in the case of πm, but not in the case of
πs. If there were an encoding from πm to πs, then the solution for πm could be
translated into one for πs, provided that the encoding satisfied certain conditions
(such as distribution—see Section 2.3). No such encoding can exist.

Moreover, finer-grained separation results are proved by considering the leader
election problem in a network whose underlying graph is a ring. Those latter
negative results have been achieved in recent years as follows:

– Palamidessi [20, 21] proved that CCS does not admit a solution to the leader
election problem for certain symmetric rings, while πm does. She deduced
that there is no encoding from πm into CCS.

– Phillips and Vigliotti [25] proved that a subcalculus of MA admits a solution
to the leader election problem for symmetric rings. They concluded that this
calculus cannot be encoded into CCS.

Separation Results Via Leader Election Problems 175

The tutorial is organised in three parts as follows: (1) A general part where we
discuss leader election in distributed networks, and how to formalise the problem
in process calculi (Section 2). In Section 3 we define the various calculi we shall
consider. (2) A part where we deal with leader election problems in general
symmetric networks (with no restriction on topology) (Section 4). We present
solutions for various calculi, show that other calculi do not admit solutions, and
derive separation results. (3) A part where we deal with leader election problems
in rings (Section 5). We shall present positive and negative results for various
calculi, and again derive separation results. We end the tutorial with a history
of related work and conclusions.

2 Leader Election, Electoral Systems and Encodings

After first discussing leader election informally, we show how it can be formalised
in the setting of process calculi and reduction semantics. We then discuss criteria
for encodings between calculi.

2.1 Leader Election Problems in Distributed Systems

In this section we introduce leader election problems as described in the field of
distributed systems. We talk of problems in the plural, because there are different
settings that lead to diverse solutions (when solutions do exist). A network is
informally a set of machines that run independently and that compute through
communication. Abstractly we can think of them as processes. Processes have
the same state, if they can perform intuitively the same actions. The essence of a
symmetric leader election problem is to find an algorithm where, starting from a
configuration (network) of processes in the same state, any possible computation
reaches a configuration where one process is in the state of leader and the other
processes are in the state lost (i.e. they have lost the election). In some cases
a solution may be impossible, and in other cases there may be more than one
algorithm, and then complexity measures can be used in order to compare the
different solutions. In this tutorial, we shall not consider such issues.

The criteria common to all leader election problems are the following:

Symmetry. Each process in the network has to have the same duties. This is
a necessary requirement in order not to trivialise the problem. In fact, in
an asymmetric configuration of processes, one process can declare itself the
winner. This is not possible in symmetric configurations, since if one process
can declare itself the winner, every other process in the configuration can
do the same. Thus, in symmetric networks, for the winner to be elected, the
initial symmetry has to be somehow broken.

Distribution. The computation has to be decentralised, in the sense that the com-
putation has to start from any subset of processes in the network or config-
uration. In general, leader election problems are run after a reconfiguration
or crash of a system, to the end of establishing which process can start the
initialisation. In this context, the configuration of processes has to be able
to elect a leader without any help from outside.

176 M.G. Vigliotti, I. Phillips, and C. Palamidessi

Uniqueness of the leader. The processes in a network reach a final configuration
from any computation. In the final configuration there is one process only
that is elected the winner and the other processes in the configuration have
lost.

Leader election problems may vary according to the following parameters:

Topology of the network. The network could be a fully connected graph or a ring
or tree or any other graph or hyper-graph [1, 30, 11]. The topology of the
network influences the construction of the algorithm, since it changes the
information regarding the totality of the processes involved.

In this tutorial we look at general networks, where there is no restriction
on topology, in Section 4, and at rings in Section 5. In the general case, our
algorithms will assume that the network is fully connected, though of course
this is not assumed when we state impossibility results.

Knowledge of size of the network. The number of processes can be known or un-
known to the processes before starting the election [30]. This parameter also
influences the construction of an algorithm. In this tutorial we shall imple-
ment algorithms where the size of the network is known.

Declaration of the leader. The leader could be announced by one process only,
which could be the leader itself or any other process. Alternatively every
process in the configuration has to be aware of the winner. The latter re-
quirement is considered standard, although the weaker one (the former one)
is also acceptable, since the winner could inform the other processes of the
outcome of the election.

We shall adopt the weaker assumption in this tutorial for simplicity. Note
that the original paper [21] uses the stronger requirement for her results.

We have described the leader election problem as presented in the field of
distributed algorithms. In this field, it is common to reason on what is known
as pseudo-code [18]. This means that proofs are given by using some form of
‘general-enough-language’, that is, a mixed ad-hoc Pascal-like language and
natural language without any formalised semantics. Nestmann shows that this
approach very often hides underpinning problems and assumptions. The for-
mal and rigorous semantics of process algebra, as presented in this tutorial, is
therefore an advantage in the description of leader election problems. Formal
semantics is necessary when proving that either a given algorithm is the correct
solution to a leader election problem, or that no algorithm exists.

2.2 Electoral Systems

In this section we formalise the leader election problem in process calculi us-
ing reduction semantics (unlabelled transitions). Milner and Sangiorgi [16] mo-
tivated the study of reduction semantics on the grounds that it is a uniform
way of describing semantics for calculi that are syntactically different from each
other. In fact, reduction semantics has been widely used for its simplicity and

Separation Results Via Leader Election Problems 177

ability to represent uniformly simple process calculi such as CCS [14], first- and
second-order name passing-calculi such as the π-calculus and the higher-order
π-calculus [16, 28], and more complex calculi such as the Seal Calculus [6] and
the Ambient Calculus [5]. Reduction semantics will provide a uniform framework
for all calculi we shall consider.

In reduction semantics a process calculus L is identified with: (1) a set of
processes; (2) a reduction relation; and (3) an observational predicate. First
of all, we assume the existence of a set of names N : the variables m,n, x, y . . .
range over it. Names are meant to be atomic, and they are a useful abstraction
to represent objects that in real life we do not want to view as separated, such
as identifiers, sequences of bits, etc.

Some operators of a language are binding, in the sense that names that fall
within their scope are called bound, and processes that differ in bound variables
only are considered identical. Names that are not bound in a process are called
free. These concepts will be explicitly defined for each concrete syntax considered
later in this tutorial.

We assume that a language L contains at least the parallel composition op-
erator | and the restriction operator νn P . We assume that in each calculus |
is a fair operator, in the sense that it does not nondeterministically choose the
right or the left-hand side process. This semantics will be common to all the
calculi we shall consider in this tutorial. Restriction νn P binds n; it makes the
name n private in P . We write ν�n instead of νn1 . . . νnk for some list of names
n1, . . . , nk which is not relevant in the context.

The computational steps for a language can be captured by a simple relation
over the set of processes called the reduction relation, written →. To model visible
behaviour of programs, an observation relation is defined between processes and
names; P ↓ n means intuitively that the process P has the observable name n.
We shall see in each concrete calculus how these notions are defined.

Networks are informally compositions of processes or processes composed with
the operator |; the size of a network is the number of processes that can be
“regarded as separate units”. This means that a composition of processes can
be seen as one process only in counting the size of the network. A symmetric
network is a network where components differ only on their names. Components
of a network are connected if they share names, using which they can engage in
communication. Rings are networks where each process is connected just to its
left-hand and right-hand neighbours. A network elects a leader by exhibiting a
special name, and an electoral system is a network where every possible maximal
computation elects a leader.

We now make these notions precise. We assume that N includes a set of
observables Obs = {ωi : i ∈ N}, such that for all i, j we have ωi �= ωj if
i �= j. The observables will be used by networks to communicate with the outside
world.

Definition 2.1. Let P be a process. A computation C of P is a (finite or infi-
nite) sequence P = P0 → P1 → · · ·. It is maximal if it cannot be extended, i.e.
either C is infinite, or else it is of the form P0 → · · · → Ph where Ph �→.

178 M.G. Vigliotti, I. Phillips, and C. Palamidessi

Definition 2.2. Let C be a computation P0 → · · · → Ph → · · ·. We define the
observables of C to be Obs(C) = {ω ∈ Obs : ∃h Ph ↓ ω}.
Networks are collections of processes running in parallel:

Definition 2.3. A network Net of size k is a pair (A, 〈P0, . . . , Pk−1〉), where A
is a finite set of names and P0, . . . , Pk−1 are processes. The process interpreta-
tion Net� of Net is the process νA (P0 | · · · | Pk−1). We shall always work up to
structural congruence, so that the order in which the restrictions in A are applied
is immaterial.

Networks are to be seen as presentations of processes, showing how the global
process is distributed to the k nodes of the network. We shall sometimes write
[P0 | · · · | Pk−1] instead of νA (P0 | · · · | Pk−1), when the globally restricted
names do not need to be made explicit.

We shall tend to write networks in their process interpretation (i.e. as re-
stricted parallel compositions), while still making it clear which process belongs
to each node of the network.

Networks inherit a notion of computation from processes through the process
interpretation: Net → Net′ if Net� → Net′�. Overloading notation, we shall let C
range over network computations. Also, we define the observables of a network
computation C to be the observables of the corresponding process computation:
Obs(C) = Obs(C�).

The definitions that follow lead up to the formulation of symmetry in a net-
work (Definition 2.7), capturing the notion that each process is the same apart
from the renaming of free names.

Definition 2.4. A permutation is a bijection σ : N → N such that σ preserves
the distinction between observable and non-observable names, i.e. n ∈ Obs iff
σ(n) ∈ Obs. Any permutation σ gives rise in a standard way to a mapping on
processes, where σ(P) is the same as P , except that any free name n of P is
changed to σ(n) in σ(P), with bound names being adjusted as necessary to avoid
clashes.

A permutation σ induces a bijection σ̂ : N → N defined as follows: σ̂(i) = j
where σ(ωi) = ωj. Thus for all i ∈ N, σ(ωi) = ωσ̂(i). We use σ̂ to permute the
indices of processes in a network.

Definition 2.5. Let Net = ν�n (P0 | · · · | Pk−1) be a network of size k. An
automorphism on Net is a permutation σ such that (1) σ̂ restricted to {0, . . . , k−
1} is a bijection, and (2) σ preserves the distinction between free and bound
names, i.e. n ∈ �n iff σ(n) ∈ �n. If σ̂ restricted to {0, . . . , k−1} is not the identity
we say σ is non-trivial.

Definition 2.6. Let σ be an automorphism on a network of size k. For any
i ∈ {0, . . . , k − 1} the orbit Oσ̂(i) generated by σ̂ is defined as follows:

Oσ̂(i) = {i, σ̂(i), σ̂2(i), . . . , σ̂h−1(i)}

where σ̂j represents the composition of σ̂ with itself j times, and h is least such
that σ̂h(i) = i. If every orbit has the same size then σ is well-balanced.

Separation Results Via Leader Election Problems 179

Definition 2.7. Let Net = ν�n (P0 | · · · | Pk−1) be a network of size k and let σ
be an automorphism on it. We say that Net is symmetric with respect to σ iff
for each i = 0, . . . , k − 1 we have Pσ̂(i) = σ(Pi).

We say that Net is symmetric if it is symmetric with respect to some auto-
morphism with a single orbit (which must have size k).

Intuitively an electoral system is a network which reports a unique winner, no
matter how the computation proceeds.

Definition 2.8. A network Net of size k is an electoral system if for every
maximal computation C of Net there exists an i < k such that Obs(C) = {ωi}.

2.3 Encodings

The concept of encoding is inherently associated to expressiveness. If there exists
an encoding [[−]] from a source language S to a target language T , one could
see the language T as ‘mirroring’ S. Thus, the model underpinning S is at least
as expressive as the one underpinning T . At the highest level of abstraction, an
encoding [[−]] is a function from a source language to a target language. However,
not just any function [[−]] from source language to target language should be
accepted as an encoding; some ‘relevant’ behaviour of the first language must be
‘preserved’.

We appeal here to the intuitive meaning of the words ‘relevant’ and ‘to pre-
serve’, but it remains to formalise the meaning of these words, by exhibiting the
semantic properties that [[−]] must satisfy. There is no definitive list of properties
that are relevant or that have to be satisfied by an encoding. We shall give below
some of the most common ones. Assuming that P ∈ S, and that →∗ means the
reflexive and transitive closure of the reduction relation, we then have:

– Preservation of execution steps (completeness): if P → P ′ then [[P]] →∗

[[P ′]] [19, 13, 4];
– Reflection of execution steps (soundness): if [[P]] →∗ Q then there is P ′ such

that P →∗ P ′ and Q→∗ [[P ′]] [19, 13];
– Barb preservation (completeness): if P ↓ n then [[P]] ↓ n [32];
– Barb reflection (soundness): if [[P]] ↓ n then P ↓ n [32].

(Of course, other properties could be added.)
One might also add syntactic requirements on an encoding. To give a concrete

example, assuming that | and ν are two operators common to S and T , then
the statements below express that [[−]] preserves bound names (restriction) and
distribution (parallel composition). Clearly the list could be longer, according to
the number of common operators in the source and the target language. Other
syntactic properties specific to languages could be considered.

– Distribution preservation: [[P | Q]] = [[P]] | [[Q]] [21, 25, 23];
– Name preservation: [[νn P]] = νn [[P]] [7];

180 M.G. Vigliotti, I. Phillips, and C. Palamidessi

– Substitution preservation: for all substitutions σ on S there exists a substi-
tution θ on T such that [[σ(P)]] = θ([[P]]) [21, 31];

– Link independence: if fn(P)∩ fn(Q) = ∅ then fn([[P]]) ∩ fn([[Q]]) = ∅ [21, 25].

(Of course, other properties could be added.)
The list of properties given above is certainly not exhaustive, but it includes

some common properties used by the scientific community [19, 5, 21, 23, 25, 32, 8].
In general, it is not required that all of the properties above are satisfied in

order for a function to be called an encoding. More specifically, there is not even
a subset of these properties that is regarded as necessary. In fact, the conditions
regarded as relevant depend on the reasons why the encoding is sought in the
first place. For instance one could show that some primitives are redundant in a
calculus by showing an encoding from the full set of processes to an appropriate
fragment. This could be very useful for implementation purposes. This is the case
for the programming language Pict [26], which is based on the asynchronous π-
calculus, where input-guarded choice can be implemented [19]. One could also
show that one calculus can be encoded into another in order to ‘inherit’ some
(possibly good) properties. For instance, from the encoding of the λ-calculus into
the π-calculus one could derive easily the Turing completeness of the π-calculus.

In encodings of languages that admit a solution for leader election problems,
one important requirement is that the encoding is homomorphic with respect
to parallel composition, i.e. preserves distribution. This requirement aims at
avoiding that the encoding introduces a trivial solution to such a problem [21, 23].
However, Nestmann [17] and Prasad [27] argue that this requirement is too strong
for practical purposes. We would like to defend it, on the basis that it corresponds
to requiring that the degree of distribution of the processes is maintained by
the translation, i.e. no coordinator is added. This condition makes the notion of
encoding suitable to compare expressiveness of languages for distributed systems,
where processes are expected to coordinate without the help of a centralised
control.

Although there is no unanimous agreement on what constitutes an encoding,
it is clear that the judgment as to whether a function is an encoding relies
on acceptance or rejection of the properties that hold for the encoding. That
is, to give a meaning to the results that will be presented in this tutorial, the
conditions on encodings we shall now present have to be accepted and considered
‘reasonable’.

In dealing with leader election problems, an encoding must preserve the fun-
damental criteria of the problem, that is, the conditions for an encoding must
preserve symmetric electoral systems without introducing a solution.

Definition 2.9. Let L and L′ be process languages. An encoding [[−]] : L→ L′ is

1. distribution-preserving if for all processes P , Q of L, [[P | Q]] = [[P]] | [[Q]];
2. permutation-preserving if for any permutation of names σ in L there exists

a permutation θ in L′ such that [[σ(P)]] = θ([[P]]) and the permutations are
compatible on observables, in that for all i ∈ N we have σ(ωi) = θ(ωi), so
that σ̂(i) = θ̂(i);

Separation Results Via Leader Election Problems 181

3. observation-respecting if for any P in L,
(a) for every maximal computation C of P there exists a maximal computa-

tion C′ of [[P]] such that Obs(C) = Obs(C′);
(b) for every maximal computation C of [[P]] there exists a maximal compu-

tation C′ of P such that Obs(C) = Obs(C′).

The condition of preserving distribution is important in ruling out encodings
which make use of a central server. That means that, if the target language
does not admit a fully distributed solution to the leader election problem, the
encoding cannot introduce a spurious solution. The second condition prevents a
trivial solution from being introduced by collapsing all the set of natural numbers
{0, 1, . . . , k− 1} to a j ∈ N. The first two items aim to map symmetric networks
to symmetric networks of the same size and with the same orbits. The third
item aims at preserving the uniqueness of the winner. The condition is on barbs
because the winner in this framework is represented with a barb. The conditions
of Definition 2.9 have been formulated with the aim of achieving the following
lemma, which says that symmetric electoral systems are preserved.

Lemma 2.10. [24, 23] Let L and L′ be process languages. Suppose [[−]] : L→ L′

is a uniform observation-respecting encoding. Suppose that Net is a symmetric
electoral system of size k in L with no globally bound names. Then [[Net]] is a
symmetric electoral system of size k in L′.)*

3 Calculi

In this section we define the various calculi we shall consider.

3.1 The π-calculus with Mixed Choice

We assume the existence of names n ∈ N and co-names n ∈ N . The set of
process terms of the π-calculus with mixed choice (πm) is given by the following
syntax:

P,Q ::= 0 |
∑

i∈Iαi.P | P | Q | νn P | !P

where I is a finite set. The prefixes of processes, ranged over by α, are defined
by the following syntax:

α ::= m(n) | m〈n〉 .

Summation
∑

i∈Iαi.Pi represents a finite choice among the different processes
αi.P . This operator is also called mixed choice, since both input and output
prefixes can be present in the same summation. The symbol 0, called nil, is the
inactive process. Commonly in the π-calculus, 0 is an abbreviation for the empty
choice. Although redundant, we introduce it here as a primitive for uniformity
with the syntax of other calculi. Replication !P simulates recursion by spinning
off copies of P . Parallel composition of two processes P | Q represents P and Q
computing independently from each other. Restriction νnP creates a new name
n in P , which is bound. We shall feel free to omit trailing 0s. Thus we write α

182 M.G. Vigliotti, I. Phillips, and C. Palamidessi

instead of α.0. The notion of the free names fn(P) of a term P is standard, taking
into account that the only binding operators are input prefix and restriction. We
write P{n/m} to mean that each free occurrence of m is substituted by n in
P. We reserve η for a bijection on I; we write

∑
η(i)∈I for permutation on the

sub-processes in the choice operator. The reduction relation over the processes
of πm is the smallest relation satisfying the following rules:

(Pi Comm) (m(x).P +G) | (m〈n〉.Q+H) → P{n/x} | Q

(Par)
P → P ′

P | Q→ P ′ | Q (Res)
P → P ′

νn P → νn P ′

(Str)
P ≡ Q Q→ Q′ Q′ ≡ P ′

P → P ′

where G,H are summations. Structural congruence ≡ allows rearrangement of
processes; it is the smallest congruence over the set of processes that satisfies
the following equations:

P | 0 ≡ P νn (P | Q) ≡ P | νn Q if n /∈ fn(P)
P | Q ≡ Q | P νm νn P ≡ νn νm P

(P | Q) | R ≡ P | (Q | R) !P ≡ P | !P
νn 0 ≡ 0

∑
i∈Iαi.Pi ≡

∑
η(i)∈Iαη(i).Pη(i)

together with α-conversion of bound names. A process P exhibits barb n, written
as P ↓ n, iff P ≡ ν �m ((n〈x〉.Q + G) | R) with n /∈ �m. We only use barbs on
outputs; input barbs are not needed, and we thereby obtain greater uniformity
across the calculi we are considering.

3.2 The π-calculus with Separate Choice

The π-calculus with separate choice (πs) [29] is the sub-calculus of πm where
summations cannot mix input and output guards. The set of processes is given
by the following grammar:

P,Q ::= 0 |
∑

i∈Iα
I
i .Pi |

∑
i∈Iα

O
i .Pi | !P | P |Q | νn P

αI ::= m(n) αO ::= m〈n〉
The semantics of this calculus is the same as for πm taking into account the
syntactic restrictions. One could regard πs as having the same expressive strength
as the asynchronous π-calculus [10, 2], in view of the results on encoding of
separate choice [17].

3.3 CCS

In this paper we shall use the version of CCS presented in [14], with the addition
of value passing. As well as names n ∈ N , we use co-names n ∈ N , a set V of

Separation Results Via Leader Election Problems 183

values, ranged over by v, . . ., and a set W of variables, ranged over by x, The
sets N , N , V and W are mutually disjoint. Processes are defined as follows:

P,Q ::= 0 |
∑
i∈I

πi.Pi | P | Q | νn P | A〈m1, . . . ,mk〉

where I is a finite set. The prefixes of processes, ranged over by π, are defined
by the following syntax:

π ::= n(x) | n〈v〉.

Here recursion is handled by process identifiers with parameters; each identifier
A is equipped with a defining equation A(�m) df= PA. Structural congruence is
the same as for πm, except that the law for replication is omitted and we add
the following rule for the identifiers:

A〈�n〉 ≡ PA{�n/�m} if A(�m) df= PA .

The reduction relation has the rule

(CCS Comm) (n(x).P +G) | (n〈v〉.Q+H) → P{v/x} | Q

(where G,H are summations) together with (Par), (Res) and (Str) as for πm.
The notion of the free names fn(P) of a term P is standard, taking into account
that the only binding operator on names is restriction. Barbs are much as for
πm: a process P exhibits barb n, written as P ↓ n, iff P ≡ ν �m ((n〈v〉.Q+G) | R)
with n /∈ �m.

The difference between CCS and πm may be illustrated by the πm process
P

df= a(x).x〈b〉. This is not a valid CCS process, since x cannot be used as a
name in CCS. Clearly, when P is composed with Q df= a〈c〉.Q′, P can acquire a
new name c that may be used for future communication.

3.4 Mobile Ambients

In the presentation of Mobile Ambients, we follow [5], except for communication,
as noted below. Let P,Q, . . . range over processes and M, . . . over capabilities.
We assume a set of names N , ranged over by m,n, Processes are defined as
follows:

P,Q ::= 0 | P | Q | νn P | !P | n[P] | M.P | (n).P | 〈n〉

We describe here only the operators specific to ambients: n[P] is an ambient
named n containing process P ; M.P performs capability M before continuing
as P ; and (n).P receives input on an anonymous channel, with the input name
replacing free occurrences of name n in P ; and finally 〈n〉 is a process which out-
puts name n. Notice that output is asynchronous, that is, it has no continuation.
Restriction and input are name-binding, which naturally yields the definition of
the free names fn(P) of a given process P .

184 M.G. Vigliotti, I. Phillips, and C. Palamidessi

Capabilities are defined as follows:

M ::= in n | out n | open n

Capabilities allow movement of ambients (in n and out n) and dissolution of
ambients (open n).

We confine ourselves in this paper to communication of names, rather than
full communication including capabilities (as in [5]). This serves to streamline
the presentation; the results would also hold for full communication.

The reduction relation → is generated by the following rules:

(In) n[inm.P | Q] | m[R] → m[n[P | Q] | R]
(Out) m[n[outm.P | Q] | R] → n[P | Q] | m[R]
(Open) open n.P | n[Q] → P | Q
(MA Comm) 〈n〉 | (m).P → P{n/m}

(Amb)
P → P ′

n[P] → n[P ′]

together with rules (Par), (Res) and (Str) as given for πm. Structural congruence
is the least congruence generated by the following laws:

P | Q ≡ Q | P νn νm P ≡ νm νn P
(P | Q) | R ≡ P | (Q | R) νn (P | Q) ≡ P | νn Q if n /∈ fn(P)

P | 0 ≡ P νnm[P] ≡ m[νn P] if n �= m
!P ≡ P | !P νn 0 ≡ 0

together with α-conversion of bound names. The most basic observation we can
make of an MA process is the presence of an unrestricted top-level ambient. A
process P exhibits barb n, written as P ↓ n, iff P ≡ ν �m (n[Q] | R) with n /∈ �m.

4 Leader Election in General Symmetric Networks

We present solutions to the leader election problem for symmetric networks in
a variety of calculi (Section 4.1), followed by results showing the impossibility
of solutions in other calculi (Section 4.2). We conclude the section by using the
preceding to obtain separation results (Section 4.3).

4.1 Calculi with Electoral Systems

In this section we present solutions to the leader election problem in symmetric
networks of any finite size in some fragments of CCS, πm and MA. The solutions
are of course still valid in the full calculi. The solutions for CCS and πm are the
same, since CCS is a subcalculus of πm and therefore once a solution is proposed
for CCS it trivially implies that there is a solution for πm.

Definition 4.1. 1. Let π−ν
m be πm but without restriction (public πm).

Separation Results Via Leader Election Problems 185

2. Let CCS−ν be CCS but without restriction (public CCS).
3. Let MAio be MA without communication, restriction and the open capability

(pure public boxed MA).

We start by defining a symmetric electoral system of size two in CCS−ν . Let a
network Net be defined as follows:

P0
df= x0(y) + x1〈z〉.ω0〈z〉 P1

df= x1(y) + x0〈z〉.ω1〈z〉 Net df= P0 | P1.

The network is symmetric with respect to a single-orbit automorphism σ which
swaps 1 and 0, with σ the identity on all other names. There are only two
possible computations. One is the following:

C : Net → ω1〈z〉 Obs(C) = {ω1}.

The other one is identical up to the renaming of σ. The values passed are just
dummies, which can be omitted; there is a crucial use of mixed choice to break
symmetry.

The previous solution can be generalised to networks of any size k. Before
giving the formal definition, we provide an informal description of the algorithm.
Successive pairs of processes fight each other. Winning an individual fight is
achieved by sending a message to the loser. Each time, the loser drops out of the
contest. Eventually only one process is left standing. It has defeated every other
process and is therefore the winner. Each node is composed of two parts:

1. A process that either sends a message to another node and proceeds to fight
the remaining processes, or receives a message and will no longer take part
in the election process. In this latter case, it will announce to every other
node that it has lost.

2. A counter, which collects all the messages of loss from the other processes,
and after k−1 messages declares victory (so processes have to know the size
of the network).

One important feature in this implementation is the use of mixed choice, in
the description of the process that runs for the election. Let

∏
i<k Pi stand for

P0 | · · · | Pk−1.

Theorem 4.2. For any k ≥ 1, in CCS−νthere exists a symmetric electoral sys-
tem of size k defined by Net df=

∏
i<k Pi where

Pi
df= Electi | Counterk

i,0

Electi
df= ni.Electi +

∑
0≤s<k,s�=i ns.(

∏
0≤t<k,t�=i lostt)

Counterk
i,j

df= losti.Counterk
i,j+1 (0 ≤ j < k − 1)

Counterk
i,k−1

df= ωi.)*

Because CCS−ν can be regarded as a subcalculus of π−ν
m , the algorithm written

above is also a solution for π−ν
m . Hence:

186 M.G. Vigliotti, I. Phillips, and C. Palamidessi

Corollary 4.3. For any k ≥ 1 , in π−ν
m there exists a symmetric electoral system

of size k.

We now turn to showing the existence of symmetric electoral systems in MA. In
fact we can make do with the fragment MAio. Before presenting a solution for
networks of arbitrary size, we present an electoral system of size two. Let

P0
df= n0[in n1.ω0[out n0.out n1]] P1

df= n1[in n0.ω1[out n1.out n0]]

Net df= P0 | P1 .

The network is symmetric with respect to a single-orbit automorphism σ which
swaps 1 and 0. There are only two possible computations. We shall present the
first one in detail:

C : n0[in n1.ω0[out n0.out n1]] | n1[in n0.ω1[out n1.out n0]] →
n1[n0[ω0[out n0.out n1]] | in n0.ω1[out n1.out n0]] →
n1[ω0[out n1] | n0[] | in n0.ω1[out n1.out n0]] →
ω0[] | n1[n0[] | in n0.ω1[out n1.out n0]].

Thus we conclude Obs(C) = {ω0}. The other computation is identical up to
renaming via σ. Notice that symmetry is broken by one ambient entering the
other.

The general solution for a network of any size is more complex, and before
introducing the technical solution we shall provide an informal description.

The basic idea of the algorithm is that winning the election is achieved by
having all the opponents inside. Each process is composed of two ambients: one
that runs for the election and the other that has the rôle of a counter. Any
ambient entering another one has lost the election. It will release an ambient
called lose, which will eventually appear at the top level, where the counters
are. The winning ambient is left on its own, at the top level, while all the other
ambients are inside the winner. The counter will declare the winner once every
loser has entered.

Theorem 4.4. [23] In MAio, for any k ≥ 1 there exists a symmetric electoral
system of size k, defined by Net df=

∏
i<k Pi where

Pi
df= ni[

∏
j �=i in nj .losei[Outn]] | ci[Ci,i+1]

Outn
df=
∏

j<k ! out nj

Ci,i
df= ωi[out ci]

Ci,j
df= in losej.C

′
i,j (j �= i)

C′
i,j

df= out losej.Ci,j+1 (j �= i))*

In the preceding theorem we use addition modulo k.

4.2 Calculi Without Electoral Systems

In this section we shall show that there are calculi that do not admit a sym-
metric electoral system. We shall see that certain operators are needed to break

Separation Results Via Leader Election Problems 187

symmetry and for a solution to be possible. For π-calculus and CCS the crucial
operator is the mixed choice operator. In fact, both π-calculus and CCS with
separate choice cannot solve the problem of electing a leader in any graph. In
the case of MA, the in capability is the symmetry-breaking operator.

The proof of the impossibility of symmetric leader election has different tech-
nical details according to the different formalisms, but there is a common struc-
ture. The basic idea is to construct one maximal computation which preserves,
at some points, the invariant property of reaching a symmetric state. In fact, in
symmetric states, election fails either because no one declares himself the winner
or, if anybody declares himself a winner, the other processes in the network can
do the same.

To make this more concrete we consider an example in πs.

P0
df= n0.ω0 | n1 P1

df= n1.ω1 | n0 Net df= P0 | P1.

The network of size two written above is symmetric with the standard auto-
morphism that swaps 1 and 0, but it is not an electoral system. To see this it is
sufficient to follow one maximal computation:

C : P0 | P1 → ω0 | n1 | n1.ω1 → ω0 | ω1 .

This example shows that, after the initial step breaking symmetry made by P0
in trying to declare himself the winner, P1 can respond in a similar way, which
leads to a symmetric network again. Finally, no leader is elected because there
is more than one winner: Obs(C) = {ω1, ω0}. The proof for the general case
follows closely such reasoning; each time a step is made by a process (or pair of
processes), the other processes can mimic this step, in such a way that symmetry
is reached again, and no winner is possible.

There is no solution to the leader election problem in πs:

Theorem 4.5. [21] Let Net = [P0 | · · · | Pk−1] with k ≥ 2 be a symmetric
network in πs. Then Net cannot be an electoral system.)*

A similar theorem could be stated for CCS with separate choice; however, unlike
πs, such a calculus has never been considered, and therefore we leave out the
statement. It is clear that the mixed choice operator is the key for the ex-
pressiveness result in the π-calculus. In MA, the in capability is crucial in order
to break the symmetry; in fact, if this is removed, the leader election problem
cannot be solved in any graph.

Definition 4.6. Let MA−in denote MA without the in capability.

Theorem 4.7. [24, 23] Let Net = [P0 | · · · | Pk−1] with k ≥ 2 be a symmetric
network in MA−in. Then Net cannot be an electoral system.)*

4.3 Separation Results

By Lemma 2.10, a uniform observation-respecting encoding maps symmetric
electoral systems (with no globally bound names) to symmetric electoral systems.

188 M.G. Vigliotti, I. Phillips, and C. Palamidessi

So for instance we can now deduce that there can be no uniform observation-
respecting encoding from πm into πs, since the former has a symmetric elec-
toral system of at least size two (from Corollary 4.3) and the latter does not
(Theorem 4.5).

We can tabulate the positive results of Section 4.1 and the negative results of
Section 4.2 in the following diagram:

CCS−ν π−ν
m MAio

πs MA−in

All calculi above the line have symmetric electoral systems for any finite size.
Those below the line do not have symmetric electoral systems for any size greater
than one. Therefore there is no uniform, observation-respecting encoding from
any calculus above the line to any below the line, giving us many separation
results.

5 Leader Election in Symmetric Rings

In distributed computing, one standard network topology is a ring, where each
process can only communicate with its left-hand and right-hand neighbours. As
far as leader election is concerned, this means that algorithms which assume
that all processes are directly linked to all other processes (as considered in
Section 4) will no longer work. In this section we examine whether enhanced
leader election algorithms which can handle rings are available for the languages
we are considering. This will enable us to separate some of the languages in the
top row of the diagram in Section 4.3.

One possible way to conduct leader election in rings is what we shall call the
two-phase method. This starts by using an algorithm to create links between all
processes. Symmetry is preserved during this first (or link-creation) phase. Once
this is done, in the second (or election) phase a leader election algorithm devised
for fully connected networks (as in Section 4) can be used to produce the leader.

The π-calculus has the power to create new links; we shall see that the link-
creation phase referred to above can be carried out in πm (in fact it can be
done in πs). Since πm can solve leader election for fully connected networks, it
can therefore perform leader election on rings using the two-phase method. By
contrast, CCS does not have the power to create new links; therefore CCS cannot
perform leader election on rings with composite (non-prime) size.

We now consider the ambient world. In MA, the communication primitives
have the same operational semantics as the π-calculus, except that they are
anonymous, in the sense that there are no channels on which communication
happens (in the π-calculus one would write m(x).P for an input on the channel
m, while in MA one would write (x).P for an anonymous input). Thus, since the
communication primitives in ambients are very similar to those of the π-calculus,
it would be not surprising if the two-phase method could be formulated in MA,
since MA can solve the leader election problem in fully connected networks.

Separation Results Via Leader Election Problems 189

However, the leader election problem for symmetric rings of any size is solved
without the use of communication primitives. This means that link passing, in
this case, is somehow simulated, since there is no explicit way of passing names
in the absence of communication. The open capability is crucial in this setting. It
is, in fact, the capability that simulates link passing, since it can be shown that
MA, without the open capability does not admit a solution for leader election
problems in rings of composite size.

5.1 Rings and Independence Preservation

We start by providing a general framework for leader election problems in rings,
augmenting that presented in Section 2.2. Note that in our framework, unlike
in the standard distributed systems literature, we do not distinguish between
unidirectional rings, where messages are passed in one direction only, say from
left-hand to right-hand neighbours or vice-versa, and bidirectional rings, where
communication can flow in either direction.

Given a network Net = ν�n (P0 | · · · | Pk−1), we can associate a graph with Net
by letting the set of nodes be {0, . . . , k − 1} and letting i, j < k be adjacent iff
fn(Pi) ∩ fn(Pj) �= ∅. A network forms a ring if the processes can be arranged in
a cycle, and each node i is adjacent to at most its two neighbours in the cycle.

Definition 5.1. A ring is a network Net = ν�n (P0 | · · · | Pk−1) which has a
single-orbit automorphism σ such that for all i, j < k, if fn(Pi) ∩ fn(Pj) �= ∅
then one of i = j, σ̂(i) = j or σ̂(j) = i must hold. A ring is symmetric if it is
symmetric with respect to such an automorphism σ.

Notice that the definition bans links between non-adjacent nodes in the ring, but
does not require the existence of links between adjacent nodes. Thus a completely
disconnected network is a ring.

Recall that an independent set in a graph is a set of nodes such that no two
nodes of the set are adjacent.

Definition 5.2. Two processes P and Q are independent if they do not share
any free names: fn(P) ∩ fn(Q) = ∅.

Definition 5.3. Let σ be an automorphism on a network Net = ν�n (P0 | · · · |
Pk−1). Then Net is independent with respect to σ if every orbit forms an inde-
pendent set, in the sense that if i, j < k are in the same orbit of σ̂ with i �= j,
then Pi and Pj are independent.

Unlike in Section 4, in this section we shall consider encodings which map rings to
rings. We therefore need a further property on top of uniformity and the preser-
vation of the observables. This property will guarantee that the connectivity of
the original network is not increased.

Definition 5.4. An encoding is independence-preserving if for any processes P ,
Q, if P and Q are independent then [[P]] and [[Q]] are also independent.

The property above states that such an encoding “does not increase the level of
connectivity of the network”.

190 M.G. Vigliotti, I. Phillips, and C. Palamidessi

Lemma 5.5. [25] Suppose [[−]] : L → L′ is a uniform, observation-respecting
and independence-preserving encoding. Suppose that Net is a symmetric ring of
size k ≥ 1 which is an electoral system. Then [[Net]] is also a symmetric ring of
size k which is an electoral system.)*

5.2 Calculi with Electoral Systems for Rings

In this section we show that we can solve leader election on symmetric rings in
πm and in MA. We start with a solution to the leader election problem for rings
in πm. The algorithm has two phases. In phase one the processes pass names
around the ring so that every process becomes directly connected to every other
process. Here there is an essential use of the π-calculus, though without any use
of choice.

We define a symmetric ring P0 | · · · | Pk−1 which is an electoral system.
Suppose that process Pi has a channel ni initially known only to itself, and can
send messages to Pi−1 along channel xi. Then the names ni are passed around
the ring so that all processes share them and can use them in the election phase.
We have to be careful that for each Pi the outputs occur in the same order as
the inputs, so that names do not get confused. We therefore allocate to each Pi a
“synchroniser” name yi which ensures that each successive output is completed
before the next one is enabled. We elide the dummy names passed along yi.

For 0 ≤ i ≤ k, we let Pi
df= P 0

i 〈xi, xi+1, yi, ni〉, where for 0 ≤ j ≤ k − 2 we let

P j
i (xi, xi+1, yi, ni, . . . , ni+j)

df= x̄i〈ni+j〉.ȳi | xi+1(ni+j+1).yi.P
j+1
i 〈xi, xi+1, yi, ni, . . . , ni+j+1〉

and P k−1
i (xi, xi+1, yi, ni, . . . , ni−1)

df= Qi〈ni, . . . , ni−1〉. Here Qi is a process
which has acquired all the ni and is ready to carry out the election phase.
Once Qi is reached, the names xi, xi+1 and yi are no longer required.

For πm, we have seen what the Qi would look like in Theorem 4.2, and there-
fore we can state the following theorem:

Theorem 5.6. (cf. [21]) For any k ≥ 1, there is a symmetric ring of size k
which is an electoral system in π−ν

m .)*

We now discuss the solution to the leader election problem for rings in pure pub-
lic MA (i.e. MA without communication and restriction). We use the two-phase
method. In the link-creation phase we send ambients round the ring which con-
tain the appropriate capabilities. These are opened by their intended recipients,
which then can exercise these capabilities. We already know how to carry out the
election phase from Theorem 4.4, though in fact we use a different algorithm,
which is easier to set up via the link-creation phase. We omit the precise details
of the construction, as they are quite lengthy.

Theorem 5.7. [25] For any k ≥ 1 there is a symmetric ring of size k which is
an electoral system in pure public MA.)*

Separation Results Via Leader Election Problems 191

5.3 Calculi Without Electoral Systems for Rings

In this section, we consider the calculi that do not have electoral systems for
symmetric rings. In this case, the failure of the election is not related to the
ability of breaking the initial symmetry. In fact in CCS or MAio, leader election
problems can be solved in fully connected networks. The separation results say
something regarding the possibility of creating new shared resources. In the π-
calculus this phenomenon is present since channels can be values as well; in MA,
this phenomenon is simulated via the open capability. Thus, CCS and boxed
MA (i.e. MA without the open capability) do not admit a solution to the leader
election problem in rings.

As in the case of general networks, the proofs for the negative results differ
in their technical details in each formalism, but there is a common strategy. If
a ring is of composite (non-prime) size, then it is symmetric with respect to a
permutation with multiple independent orbits of the same size. The basic idea
is to show that there is a maximal computation where, even though symmetry
may be broken in the ring as a whole, symmetry is maintained within each orbit,
and the nodes of each orbit remain independent. It remains an open problem
whether the result presented below still holds in networks whose size is a prime
number.

Theorem 5.8. [21, 25] For any composite k > 1, CCS and boxed MA do not
have a symmetric ring of size k which is an electoral system.)*

5.4 Separation Results

By Lemma 5.5, we can now deduce that there can be no uniform, observation-
respecting and independence-preserving encoding from πm into CCS, since the
former has a symmetric electoral system which is a ring of size four (from The-
orem 5.6) and the latter does not (Theorem 5.8).

Much as in Section 4.3, we can tabulate the results of Sections 5.2 and 5.3 as
follows:

π−ν
m pure public MA

CCS boxed MA

All calculi above the line have symmetric electoral systems which are rings for
any finite size. Those below the line do not have symmetric electoral systems
which are rings for composite sizes greater than one. Therefore there is no uni-
form, observation-respecting and independence-preserving encoding from either
calculus above the line to either below the line.

6 Conclusions and Related Work

The first attempt to represent leader election problems in process algebra was
made by Bougé [3]. He formalised the notion of leader election problem in sym-
metric networks for CSP [9]. The most remarkable achievements are the sepa-
ration results between CSP with input and output guards and CSP with input

192 M.G. Vigliotti, I. Phillips, and C. Palamidessi

guards only, and between the latter and CSP without guards, based on the notion
of symmetric reasonable implementation.

A similar formalisation of the notion of leader election problem was made
by Palamidessi [21] for the π-calculus. Palamidessi proves formally that any
symmetric network in the π-calculus with separate choice admits a computation
that never breaks the initial symmetry. This result is used to show that there is
no encoding of the π-calculus with mixed choice into the π-calculus with separate
choice. In her paper Palamidessi uses a graph framework, as in the tradition of
distributed algorithms [11, 30, 1, 3], and she proves that CCS [12] does not admit
a symmetric electoral system in a ring, as opposed to the π-calculus with mixed
choice. Using a similar approach Ene and Muntean [7] show that the π-calculus
with broadcasting primitives cannot be encoded in the standard π-calculus.

Finally, Phillips and Vigliotti used these proof techniques to separate MA from
the separate-choice π-calculus and MA−in [23], and mixed choice π-calculus and
MA from CCS and boxed MA [25]. This work was carried out in the reduction se-
mantics framework used also in this tutorial. This framework has the advantage
of uniformity across a range of process calculi. Our results say nothing, with re-
spect to leader election, on the relationship between the mixed choice π-calculus
and MA, or between CCS and boxed MA. These are still open problems.

In this tutorial we have collected together results from different papers [20,
21, 24, 23, 25], given a uniform presentation and highlighted the similarities and
differences between the various approaches to leader election problems. We have
omitted proofs and lengthy details; however, those are available in the original
papers.

Acknowledgements

The work of Catuscia Palamidessi and Maria Grazia Vigliotti has been partially
supported by the INRIA/ARC project ProNoBiS. Maria Grazia Vigliotti thanks
the Group MIMOSA at INRIA Sophia Antipolis for having allowed her to work
as guest at their site. We also thank the anonymous referees for their comments.

References

[1] D. Angluin. Local and global properties in networks of processors. In Proceedings
of the 12th Annual ACM Symposium on Theory of Computing, pages 82–93. ACM,
1980.

[2] G. Boudol. Asynchrony and the π-calculus. Technical Report 1702, INRIA Sophia-
Antipolis, 1992.

[3] L. Bougé. On the existence of symmetric algorithms to find leaders in networks
of communicating sequential processes. Acta Informatica, 25:179–201, 1988.

[4] L. Cardelli and A.D. Gordon. Anytime, Anywhere: Modal Logic for Mobile Ambi-
ents. In Proceedings of the 27th ACM Symposium on Principles of Programming
Languages, pages 365–377, 2000.

[5] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

Separation Results Via Leader Election Problems 193

[6] G. Castagna, J. Vitek, and F. Zappa Nardelli. The Seal calculus. Information
and Computation, 201(1):1–54, 2005.

[7] C. Ene and T. Muntean. Expressiveness of point-to-point versus broadcast com-
munications. In Proceedings of 12th International Symposium on Fundamentals
of Computation Theory (FCT’99), volume 1684 of Lecture Notes in Computer
Science, pages 258–268. Springer-Verlag, 1999.

[8] D. Gorla. On the relative expressive power of asynchronous communication prim-
itives. In L. Aceto and A. Ingólfsdóttir, editors, Proceedings of 9th Interna-
tional Conference on Foundations of Software Science and Computation Struc-
tures (FoSSaCS’06), volume 3921 of Lecture Notes in Computer Science, pages
47–62. Springer-Verlag, 2006.

[9] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[10] K. Honda and M. Tokoro. An object calculus for asynchronous communica-

tion. In Proceedings of European Conference on Object-Oriented Programming
(ECOOP’91), volume 512 of Lecture Notes in Computer Science, pages 133–147.
Springer-Verlag, 1991.

[11] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[12] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[13] R. Milner. Functions as processes. Mathematical Structures in Computer Science,

2(2):269–310, 1992.
[14] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-

versity Press, 1999.
[15] R. Milner, J. Parrow, and D. Walker. A calculus for mobile processes, parts I and

II. Information and Computation, 100(1):1–77, 1992.
[16] R. Milner and D. Sangiorgi. Barbed Bisimulation. In Proceedings of the 19th

International Colloquium on Automata, Languages and Programming, volume 623
of Lecture Notes in Computer Science, pages 685–695. Springer-Verlag, 1992.

[17] U. Nestmann. What is a ‘good’ encoding of guarded choice? Information and
Computation, 156:287–319, 2000.

[18] U. Nestmann. Modeling consensus in a process calculus. In Proceedings of CON-
CUR’03, volume 2761 of Lecture Notes in Computer Science, pages 393–407.
Springer-Verlag, 2003.

[19] U. Nestmann and B.C. Pierce. Decoding Choice Encodings. Information and
Computation, 163(1):1–59, 2000.

[20] C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculus. In Proceedings of the 25th ACM Symposium on Principles
of Programming Languages, pages 256–265. ACM, 1997.

[21] C. Palamidessi. Comparing the expressive power of the synchronous and the
asynchronous π-calculi. Mathematical Structures in Computer Science, 13(5):685–
719, 2003.

[22] I.C.C. Phillips. CCS with priority guards. In Proceedings of 12th International
Conference on Concurrency Theory, CONCUR 2001, volume 2154 of Lecture
Notes in Computer Science, pages 305–320. Springer-Verlag, 2001.

[23] I.C.C. Phillips and M.G. Vigliotti. Symmetric electoral systems for ambient cal-
culi. Submitted.

[24] I.C.C. Phillips and M.G. Vigliotti. Electoral systems in ambient calculi. In Pro-
ceedings of 7th International Conference on Foundations of Software Science and
Computation Structures, FoSSaCS 2004, volume 2987 of Lecture Notes in Com-
puter Science, pages 408–422. Springer-Verlag, 2004.

[25] I.C.C. Phillips and M.G. Vigliotti. Leader election in rings of ambient processes.
Theoretical Computer Science, 356(3):468–494, 2006.

194 M.G. Vigliotti, I. Phillips, and C. Palamidessi

[26] B.C. Pierce and D.N. Turner. Pict: A programming language based on the pi-
calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner, pages 455–494. MIT Press, 2000.

[27] K.V.S. Prasad. Broadcast Calculus Interpreted in CCS up to Bisimulation. In
Proceedings of Express’01, volume 52 of Electronic Notes in Theoretical Computer
Science, pages 83–100. Elsevier, 2002.

[28] D. Sangiorgi. Expressing Mobility in Process Algebra: First-Order and Higher-
Order Paradigms. PhD thesis, University of Edinburgh, 1993.

[29] D. Sangiorgi and D. Walker. The π-Calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[30] G. Tel. Distributed Algorithms. Cambridge University Press, 2000.
[31] M.G. Vigliotti. Reduction Semantics for Ambient Calculi. PhD thesis, Imperial

College London, 2004.
[32] N. Yoshida. Graph Types for Monadic Mobile Process Calculi. In Proceedings

of 16th FST/TCS, volume 1180 of Lecture Notes in Computer Science, pages
371–386. Springer-Verlag, 1996.

Divide and Congruence:
From Decomposition of Modalities

to Preservation of Branching Bisimulation

Wan Fokkink1,2, Rob van Glabbeek3,4, and Paulien de Wind1

1 Vrije Universiteit Amsterdam, Section Theoretical Computer Science, Amsterdam
2 CWI, Department of Software Engineering, Amsterdam

3 National ICT Australia, Sydney
4 University of New South Wales, School of Computer Science and Engineering,

Sydney
{wanf, pdwind}@cs.vu.nl, rvg@cs.stanford.edu

Abstract. We present a method for decomposing modal formulas for
processes with the internal action τ . To decide whether a process algebra
term satisfies a modal formula, one can check whether its subterms satisfy
formulas that are obtained by decomposing the original formula. The de-
composition uses the structural operational semantics that underlies the
process algebra. We use this decomposition method to derive congruence
formats for branching and rooted branching bisimulation equivalence.

1 Introduction

Structural operational semantics [20] provides process algebras and specification
languages with an interpretation. It generates a labelled transition system, in
which states are the closed terms over a (single-sorted, first-order) signature, and
transitions between states may be supplied with labels. The transitions between
states are obtained from a transition system specification, which consists of a
set of proof rules called transition rules.

Labelled transition systems can be distinguished from each other by a wide
range of behavioural equivalences, based on e.g. branching structure or decorated
versions of execution sequences. Van Glabbeek [11] classified equivalences for
processes that take into account the internal action τ . Here we focus on one such
equivalence, called branching bisimulation [14].

In general a behavioural equivalence induced by a transition system specifica-
tion is not a congruence, i.e. the equivalence class of a term f(p1, . . . , pn) need
not be determined by the equivalence classes of its arguments p1, . . . , pn. Being a
congruence is an important property, for instance in order to fit the equivalence
into an axiomatic framework. Syntactic formats for transition rules have been
developed with respect to several behavioural equivalences, to ensure that such
an equivalence is a congruence. These formats help to avoid repetitive congru-
ence proofs. Several congruence formats were introduced for bisimulation, such
as the De Simone format [21], the GSOS format [4], the tyft/tyxt format [16],
and the ntyft/ntyxt format [15]. Bloom [2] introduced congruence formats for

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 195–218, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

196 W. Fokkink, R. van Glabbeek, and P. de Wind

weak and branching bisimulation and for rooted weak and branching bisimula-
tion. These formats include so-called patience rules for arguments i of function
symbols f , which imply that a term f(p1, . . . , pn) inherits the τ -transitions of
its argument pi. Furthermore, arguments of function symbols that contain run-
ning processes are marked, and this marking is used to restrict occurrences of
variables in transition rules.

Behavioural equivalences can be characterised in terms of the observations
that an experimenter could make during a session with a process. Modal logic
captures such observations. A modal characterisation of an equivalence consists
of a class C of modal formulas such that two processes are equivalent if and only
if they make true the same formulas in C. For instance, Hennessy-Milner logic
[17] is a modal characterisation of bisimulation.

Larsen and Liu [19] introduced a method for decomposing formulas from
Hennessy-Milner logic for concrete processes, with respect to terms from a
process algebra with a structural operational semantics in De Simone format.
To decide whether a process algebra term satisfies a modal formula, one can
check whether its subterms satisfy certain other formulas, obtained by decom-
posing the original formula. This method was extended by Bloom, Fokkink &
van Glabbeek [3] to ntyft/ntyxt format without lookahead, and by Fokkink,
van Glabbeek & de Wind [9] to tyft/tyxt format. In [3], the decomposition
method was applied to obtain congruence formats for a range of behavioural
equivalences. The idea is that given an equivalence and its modal characterisa-
tion C, the congruence format for this equivalence must ensure that decomposing
a formula in C always produces formulas in C.

Here we extend the work of [3] to processes with τ -transitions. We present
a method for decomposing formulas from modal logic for processes with τ -
transitions. In order to minimise the complexity inherent in the combination
of modal decomposition and the internal action τ , we apply the decomposition
method to so-called abstraction-free TSSs, where only the patience rules contain
the label τ in the conclusion. Furthermore, we use this decomposition method
to obtain congruence formats for branching and rooted branching bisimulation.
These formats include TSSs that are not abstraction-free, owing to the com-
positionality of the abstraction operator, which renames certain actions into τ .
Our formats use two predicates on arguments of function symbols, to mark both
running processes and processes that may have started running. Our congruence
formats are more liberal than the simply BB and RBB cool formats from [2]
and the RBB safe format from [7]. In Sect. 7 we will present a more in-depth
comparison with congruence formats from [2,7,13].

In a companion paper [10], we derive congruence formats for η- and rooted
η-bisimulation, with a reference to the current paper for the decomposition
method. Thus we drive home the point that, in contrast to the ad hoc con-
struction of congruence formats from the past, we can now systematically derive
expressive congruence formats from the modal characterisations of behavioural
equivalences.

Divide and Congruence: From Decomposition of Modalities 197

2 Preliminaries

2.1 Equivalences on Labelled Transition Systems

A labelled transition system (LTS) is a pair (P,→) with P a set of processes and
→ ⊆ P× (A∪ {τ})×P where τ is an internal action and A a set of actions not
containing τ . We use α, β, γ for elements of A ∪ {τ} and a, b for elements of A.
We write p α−→ q for (p, α, q) ∈ → and p �α−→ for ¬∃q ∈ P : p α−→ q. Furthermore,

ε=⇒ denotes the transitive-reflexive closure of τ−→.

Definition 1 ([14]). A symmetric relation B ⊆ P×P is a branching bisimula-
tion if pBq and p α−→ p′ implies that either α = τ and p′B q, or q ε=⇒ q′

α−→ q′′

for some q′ and q′′ with pBq′ and p′Bq′′.
Processes p, q are branching bisimilar, denoted by p ↔b q, if there exists a

branching bisimulation B with pBq.

Branching bisimulation is not a congruence with respect to most process algebras
from the literature, meaning that the equivalence class of a term f(p1, . . . , pn)
is not always determined by the equivalence classes of its arguments p1, . . . , pn.
A rootedness condition remedies this imperfection.

Definition 2 ([14]). A symmetric relation R ⊆ P × P is a rooted branching
bisimulation if pRq and p α−→ p′ implies that q α−→ q′ for some q′ with p′↔b q

′.
Processes p, q are rooted branching bisimilar, denoted by p ↔rb q, if there

exists a rooted branching bisimulation R with pRq.

2.2 Modal Logic

Modal logic aims to formulate properties of processes in an LTS. Following [11],
we extend Hennessy-Milner logic [17] with the modal connectives 〈ε〉ϕ and 〈τ̂ 〉ϕ.

Definition 3. The class O of modal formulas is defined as follows, where I
ranges over all index sets:

O ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈α〉ϕ | 〈ε〉ϕ | 〈τ̂ 〉ϕ

p |= ϕ denotes that p satisfies ϕ. By definition, p |= 〈α〉ϕ if p α−→ p′ with p′ |= ϕ,
p |= 〈ε〉ϕ if p ε=⇒ p′ with p′ |= ϕ, and p |= 〈τ̂ 〉ϕ if either p |= ϕ or p τ−→ p′

with p′ |= ϕ. We use abbreviations + for the empty conjunction, ϕ1 ∧ ϕ2 for∧
i∈{1,2} ϕi, ϕ〈α〉ϕ′ for ϕ ∧ 〈α〉ϕ′, and ϕ〈τ̂ 〉ϕ′ for ϕ ∧ 〈τ̂ 〉ϕ′. We write ϕ ≡ ϕ′ if

p |= ϕ⇔ p |= ϕ′ for any process p in any LTS.

Definition 4. The subclasses Ob and Orb of O are defined as follows:

Ob ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈ε〉(ϕ〈τ̂ 〉ϕ′) | 〈ε〉(ϕ〈a〉ϕ′)
Orb ϕ ::=

∧
i∈Iϕi | ¬ϕ | 〈α〉ϕ̂ | ϕ̂ (ϕ̂ ∈ Ob)

The classes O≡
b and O≡

rb are the closures of Ob, respectively Orb, under ≡.

198 W. Fokkink, R. van Glabbeek, and P. de Wind

The last clause in the definition of Orb guarantees that Ob ⊆ Orb, which will be
needed in the proof of Prop. 4. If this clause were omitted, it would still follow
that O≡

b ⊆ O≡
rb, using structural induction together with 〈ε〉ϕ ≡ ϕ∨〈τ〉〈ε〉ϕ and

〈τ̂ 〉ϕ ≡ ϕ ∨ 〈τ〉ϕ. Note that if ϕ ∈ O≡
b , then 〈ε〉ϕ ≡ 〈ε〉(ϕ〈τ̂ 〉ϕ) ∈ O≡

b .
For L ⊆ O, we write p ∼L q if p and q satisfy the same formulas in L. Note

that, trivially, p ∼Ob
q ⇔ p ∼O≡

b
q and p ∼Orb

q ⇔ p ∼O≡
rb
q.

Theorem 1. p↔b q ⇔ p ∼Ob
q and p↔rb q ⇔ p ∼Orb

q, for all p, q ∈ P.

A proof of this theorem is presented in the appendix.

2.3 Structural Operational Semantics

Let V be an infinite set of variables, with typical elements x, y, z. A syntactic
object is closed if it does not contain any variables. A signature is a set Σ of
function symbols f with arity ar(f). We always take |Σ|, |A| ≤ |V |. The set
T(Σ) of terms over Σ and V is defined as usual. t, u denote terms and p, q
closed terms. var (t) is the set of variables that occur in t. A substitution is a
partial function from V to T(Σ). A closed substitution σ is a total function from
V to closed terms.

Definition 5. A (positive or negative) literal is an expression t α−→ t′ or t �α−→.
A (transition) rule is of the form H

t
α−→t′ with H a set of literals called the

premises. t α−→ t′ is the conclusion and t the source of the rule. A rule ∅
t

α−→t′
is also written t α−→ t′. A transition system specification (TSS), written (Σ,R),
consists of a signature Σ and a collection R of transition rules over Σ.

Definition 6. Let P = (Σ,R) be a TSS. An irredundant proof from P of a rule
H

t
α−→t′ is a well-founded tree with the nodes labelled by literals and some of the

leaves marked “hypothesis”, such that the root has label t α−→ t′, H is the set of
labels of the hypotheses, and if μ is the label of a node that is not a hypothesis
and K is the set of labels of the children of this node, then μ is positive and K

μ
is a substitution instance of a rule in R.

The proof of H

t
α−→t′ is called irredundant because H must equal (instead of in-

clude) the set of labels of the hypotheses. This irredundancy will be crucial for
the preservation of our congruence formats in Sect. 4.1 (see Prop. 2).

A TSS is meant to specify an LTS in which the transitions are closed positive
literals. A TSS with only positive premises specifies an LTS in a straightforward
way, but it is not so easy to associate an LTS to a TSS with negative premises.
From [12] we adopt the notion of a well-supported proof of a closed literal.
Literals t α−→ t′ and t �α−→ are said to deny each other.

Definition 7. Let P = (Σ,R) be a TSS. A well-supported proof from P of a
closed literal μ is a well-founded tree with the nodes labelled by closed literals,
such that the root is labelled by μ, and if ν is the label of a node and K is the
set of labels of the children of this node, then:

Divide and Congruence: From Decomposition of Modalities 199

1. either ν is positive and K
ν is a closed substitution instance of a rule in R;

2. or ν is negative and for each set N of closed negative literals with N
κ irre-

dundantly provable from P and κ a closed positive literal denying ν, a literal
in K denies one in N .

P �ws μ denotes that a well-supported proof from P of μ exists. P is complete
if for each p and α, either P �ws p �α−→ or P �ws p

α−→ p′ for some p′.

A complete TSS specifies an LTS, consisting of the ws-provable closed positive
literals.

2.4 Notions Regarding Transition Rules

In this section we present terminology for syntactic restrictions on rules, origi-
nating from [3,15,16].

Definition 8. An ntytt rule is a rule in which the right-hand sides of positive
premises are variables that are all distinct, and that do not occur in the source.
An ntytt rule is an ntyxt rule if its source is a variable, an ntyft rule if its source
contains exactly one function symbol and no multiple occurrences of variables,
and an nxytt rule if the left-hand sides of its premises are variables.

Definition 9. A variable in a rule is free if it occurs neither in the source nor
in right-hand sides of premises. A rule has lookahead if some variable occurs in
the right-hand side of a premise and in the left-hand side of a premise. A rule
is decent if it has no lookahead and does not contain free variables.

The ntyft/ntyxt and ready simulation formats [15,3] were originally introduced
to guarantee congruence for bisimulation and ready simulation.

Definition 10. A TSS is in ntyft/ntyxt format if it consists of ntyft and ntyxt
rules, and in ready simulation format if moreover its rules do not have lookahead.

A predicate ℵ marks arguments of function symbols that contain running
processes (cf. [3]). Typically, in process algebra, ℵ holds for the arguments of
the merge ‖, but not for the arguments of alternative composition +.

Definition 11. Let ℵ be a unary predicate on {(f, i) | 1 ≤ i ≤ ar(f), f ∈ Σ}.
If ℵ(f, i), then argument i of f is liquid; otherwise it is frozen. An occurrence
of x in t is at an ℵ-liquid position (or ℵ-liquid for short), if either t = x, or
t = f(t1, . . . , tar(f)) and the occurrence is at an ℵ-liquid position in ti for a liquid
argument i of f ; otherwise the occurrence is at an ℵ-frozen position.

A patience rule for an argument i of a function symbol f expresses that term
f(p1, . . . , pn) inherits the τ -transitions of argument pi (cf. [2,7]). We will require
the presence of patience rules for ℵ-liquid arguments.

200 W. Fokkink, R. van Glabbeek, and P. de Wind

Definition 12. An ntyft rule is a patience rule for f if it is of the form

xi
τ−→ y

f(x1, . . . , xi, . . . , xar(f))
τ−→ f(x1, . . . , xi−1, y, xi+1 . . . , xar(f))

It is an ℵ-patience rule if ℵ(f, i).

An ntytt rule is ℵ-patient if it is irredundantly provable from the ℵ-patience
rules. Such rules have the form t

τ−→y

C[t] τ−→C[y]
with C[] an ℵ-liquid context, meaning

that the context symbol [] occurs at an ℵ-liquid position.

Definition 13. A TSS is abstraction-free with respect to ℵ if only ℵ-patience
rules have a conclusion of the form t

τ−→ u.

In Section 4.2 we will obtain preservation results of modal formulas in Ob and
Orb on abstraction-free TSSs. We will lift these to congruence results for ↔b

and ↔rb on general TSSs, using two facts: abstraction operators preserve ↔b

and ↔rb , and each TSS can be embedded in an abstraction-free TSS augmented
with an abstraction operator.

2.5 Ruloids

To decompose modal formulas, we use a result from [3], where for any TSS P
in ready simulation format a collection of decent nxytt rules, called P -ruloids,
is constructed. We explain this construction on a rather superficial level; the
precise transformation can be found in [3].

First P is converted to a TSS in decent ntyft format. In this conversion from
[16], free variables in a rule are replaced by closed terms, and if the source is
of the form x then this variable is replaced by a term f(x1, . . . , xn) for each
f ∈ Σ. Next, using a construction from [8], left-hand sides of positive premises
are reduced to variables. Roughly the idea is, given a premise f(t1, . . . , tn) α−→ y
in a rule r, and a rule H

f(x1,...,xn) α−→t
, to transform r by replacing the aforemen-

tioned premise by H , y by t, and the xi by the ti; this is repeated (transfinitely)
until all positive premises with a non-variable left-hand side have disappeared.
In the final transformation step, rules with a negative conclusion t �α−→ are intro-
duced. The motivation is that instead of the notion of well-founded provability
in Def. 7, we want a more constructive notion like Def. 6, by making it possible
that a negative premise is matched with a negative conclusion. A rule r with a
conclusion f(x1, . . . , xn) �α−→ is obtained by picking one premise from each rule
with a conclusion f(x1, . . . , xn) α−→ t, and including the denial of each of the
selected premises as a premise of r. For this last transformation it is essential
that rules do not have lookahead.

The resulting TSS, which is in decent ntyft format, is denoted by P+. The
notion of irredundant provability is adapted in a straightforward fashion to ac-
commodate rules with a negative conclusion. In [3] it is established that P �ws μ

Divide and Congruence: From Decomposition of Modalities 201

if and only if μ is irredundantly provable from P+, for all closed literals μ. P -
ruloids are those decent nxytt rules that are irredundantly provable from P+.
The following correspondence result from [3] between a TSS and its ruloids plays
a crucial role in the decomposition method employed here. It says that there is a
well-supported proof from P of a transition p a−→ q, with p a closed substitution
instance of a term t, if and only if there is a proof of this transition that uses at
the root a P -ruloid with source t.

Proposition 1 ([3]). Let P be a TSS in ready simulation format. Then
P �ws σ(t) α−→ p if and only if there are a P -ruloid H

t
α−→u

and a σ′ with P �ws

σ′(μ) for μ ∈ H, σ′(t) = σ(t) and σ′(u) = p.

It is not hard to see that the notion of abstraction-freeness is preserved by the
transformation to P -ruloids.

Lemma 1. If a TSS P is abstraction-free with respect to some ℵ, then all P -
ruloids with a conclusion of the form t

τ−→ u are ℵ-patient.

3 Decomposition of Modal Formulas

In this section we show how one can decompose formulas from O. To each term
t and formula ϕ we assign a set t−1(ϕ) of decomposition mappings ψ : V → O.
Each of these mappings ψ ∈ t−1(ϕ) guarantees that σ(t) |= ϕ if σ(x) |= ψ(x) for
x ∈ var(t). Vice versa, whenever σ(t) |= ϕ, there is a decomposition mapping
ψ ∈ t−1(ϕ) with σ(x) |= ψ(x) for x ∈ var (t). This is formalised in Thm. 2.

In order to minimise the complexity inherent in the combination of modal
decomposition and the internal action τ , we apply the decomposition method to
abstraction-free TSSs. In Sect. 4, where we will develop congruence formats on
the basis of this decomposition method, we will be able to circumvent the restric-
tion to abstraction-free TSSs, owing to the compositionality of the abstraction
operator.

Definition 14. Let P be a TSS in ready simulation format, which contains
the ℵ-patience rules and is abstraction-free with respect to ℵ. We define ·−1 :
T(Σ) ×O → P(V → O) as follows. Let t denote a univariate term, i.e. without
multiple occurrences of the same variable.

1. ψ ∈ t−1(
∧

i∈I ϕi) iff for x ∈ V

ψ(x) =
∧
i∈I

ψi(x)

where ψi ∈ t−1(ϕi) for i ∈ I.
2. ψ ∈ t−1(¬ϕ) iff there is a function h : t−1(ϕ) → var(t) with

ψ(x) =
∧

χ∈h−1(x)

¬χ(x) for x ∈ V

202 W. Fokkink, R. van Glabbeek, and P. de Wind

3. ψ ∈ t−1(〈α〉ϕ) iff there is a P -ruloid H

t
α−→u

and a χ ∈ u−1(ϕ) with

ψ(x) =

⎧⎪⎨⎪⎩
χ(x) ∧

∧
x

β−→y∈H

〈β〉χ(y) ∧
∧

x �γ−→∈H

¬〈γ〉+ if x ∈ var (t)

+ if x �∈ var (t)

4. ψ ∈ t−1(〈ε〉ϕ) iff there is a χ ∈ t−1(ϕ) with

ψ(x) =
{
〈ε〉χ(x) if x occurs ℵ-liquid in t
χ(x) otherwise

5. ψ ∈ t−1(〈τ̂ 〉ϕ) iff one of the following holds:
(a) ψ ∈ t−1(ϕ), or
(b) there is an x0 ∈ V that occurs ℵ-liquid in t and a χ ∈ t−1(ϕ) such that

ψ(x) =
{
〈τ̂〉χ(x) if x = x0
χ(x) if x �= x0

6. ψ ∈ ρ(t)−1(ϕ) for ρ : var(t) → V not injective iff there is a χ ∈ t−1(ϕ) with

ψ(x) =
∧

y∈ρ−1(x)

χ(y) for x ∈ V

It is not hard to see that if ψ ∈ t−1(ϕ), then ψ(x) ≡ + for x �∈ var(t).
To explain the idea behind Def. 14, we expand on two of its cases. Consider

t−1(¬ϕ), and let σ be any closed substitution. We have σ(t) �|= ϕ if and only if
there is no χ ∈ t−1(ϕ) such that σ(x) |= χ(x) for all x ∈ var(t). In other words,
for each χ ∈ t−1(ϕ), ψ(x) must contain a conjunct ¬χ(x), for some x ∈ var (t).

Consider t−1(〈α〉ϕ), and let σ be any closed substitution. The question is
under which conditions ψ(x) ∈ O on σ(x), for x ∈ var (t), there is a transition
σ(t) α−→ q with q |= ϕ. According to Prop. 1, there is such a transition if and only
if there is a closed substitution σ′ with σ′(t) = σ(t) and a P -ruloid H

t
α−→u

such
that (1) the premises in σ′(H) are satisfied and (2) σ′(u) |= ϕ. The first condition
is covered if for x ∈ var (t), ψ(x) contains conjuncts 〈β〉+ for x

β−→ y ∈ H and
conjuncts ¬〈γ〉+ for x �γ−→ ∈ H . By adding a conjunct χ(x), and replacing each
conjunct 〈β〉+ by 〈β〉χ(y), for some χ ∈ u−1(ϕ), the second condition is covered
as well.

The following theorem will be the key to the forthcoming congruence results.

Theorem 2. Given a complete TSS P in ready simulation format, which con-
tains the ℵ-patience rules and is abstraction-free with respect to ℵ. For any term
t, closed substitution σ and ϕ ∈ O:

σ(t) |= ϕ ⇔ ∃ψ ∈ t−1(ϕ) ∀x ∈ var(t) : σ(x) |= ψ(x)

Proof. By structural induction on ϕ. First we treat the case where t is univariate.

Divide and Congruence: From Decomposition of Modalities 203

– ϕ =
∧

i∈I ϕi

σ(t) |=
∧

i∈I ϕi ⇔ ∀i ∈ I : σ(t) |= ϕi ⇔ ∀i ∈ I ∃ψi ∈ t−1(ϕi) ∀x ∈ var(t) :
σ(x) |= ψi(x) ⇔ ∃ψ ∈ t−1(

∧
i∈I ϕi) ∀x ∈ var (t) : σ(x) |= ψ(x).

– ϕ = ¬ϕ′

σ(t) |= ¬ϕ′ ⇔ σ(t) �|= ϕ′ ⇔ ∃h : t−1(ϕ′) → var (t) ∀χ ∈ t−1(ϕ′) : σ(h(χ)) �|=
χ(h(χ)) ⇔ ∃h : t−1(ϕ′) → var (t) ∀x ∈ var (t) : σ(x) |=

∧
χ∈h−1(x) ¬χ(x) ⇔

∃ψ ∈ t−1(¬ϕ′) ∀x ∈ var (t) : σ(x) |= ψ(x).
– ϕ = 〈α〉ϕ′

(⇒) Let σ(t) |= 〈α〉ϕ′. Then P �ws σ(t) α−→ p with p |= ϕ′. By Prop. 1 there
is a P -ruloid H

t
α−→u

and a σ′ with P �ws σ
′(μ) for μ ∈ H , σ′(t) = σ(t), i.e.

σ′(x) = σ(x) for x ∈ var(t), and σ′(u) = p. Since σ′(u) |= ϕ′, by induc-
tion there is a χ ∈ u−1(ϕ′) with σ′(z) |= χ(z) for z ∈ var(u). Furthermore,
σ′(z) |= χ(z) ≡ + for z �∈ var (u). Define ψ ∈ t−1(〈α〉ϕ′) as in Def. 14.3, using

H

t
α−→u

and χ. Let x ∈ var(t). For x
β−→ y ∈ H , P �ws σ

′(x)
β−→ σ′(y) |= χ(y),

so σ′(x) |= 〈β〉χ(y). Moreover, for x �γ−→ ∈ H , P �ws σ
′(x) �γ−→, so the con-

sistency of �ws (see [12]) yields P ��ws σ
′(x)

γ−→ q for all closed terms q, and
thus σ′(x) |= ¬〈γ〉+. Hence σ(x) = σ′(x) |= ψ(x).

(⇐) Let ψ ∈ t−1(〈α〉ϕ′) with σ(x) |= ψ(x) for x ∈ var (t). There is a P -ruloid

{x βi−→ yi | i ∈ Ix, x ∈ var(t)} ∪ {x �γj−→| j ∈ Jx, x ∈ var (t)}
t

α−→ u

and a χ ∈ u−1(ϕ′) with ψ(x) = χ(x)∧
∧

i∈Ix
〈βi〉χ(yi)∧

∧
j∈Jx

¬〈γj〉+ for x ∈
var (t). For x ∈ var(t), σ(x) |= ψ(x) yields, for i ∈ Ix, P �ws σ(x)

βi−→ pi with
pi |= χ(yi) for some closed term pi; moreover, for j ∈ Jx, P ��ws σ(x)

γj−→ q
for all closed terms q, so by the completeness of P , P �ws σ(x) �γj−→. Define
σ′(x) = σ(x) and σ′(yi) = pi for x ∈ var (t) and i ∈ Ix. Here we use
that the yi are all different and do not occur in t. Then σ′(z) |= χ(z) for
z ∈ var(u), since var(u) ⊆ {x, yi | x ∈ var (t), i ∈ Ix}. So by induction,

σ′(u) |= ϕ′. Moreover, for x ∈ var(t), P �ws σ
′(x)

βi−→ σ′(yi) for i ∈ Ix,
and P �ws σ

′(x) �γj−→ for j ∈ Jx, so by Prop. 1, P �ws σ
′(t) α−→ σ′(u). Hence

σ(t) = σ′(t) |= 〈α〉ϕ′.
– ϕ = 〈ε〉ϕ′

(⇒) We prove by induction on n: if P �ws pi
τ−→ pi+1 for i ∈ {0, . . . , n− 1}

with σ(t) = p0 and pn |= ϕ′, then there is a ψ ∈ t−1(〈ε〉ϕ′) with σ(x) |= ψ(x)
for x ∈ var (t).
n = 0 Since σ(t) = p0 |= ϕ′, by induction on formula size, there is a χ ∈

t−1(ϕ′) with σ(x) |= χ(x) for x ∈ var(t). Define ψ ∈ t−1(〈ε〉ϕ′) as in
Def. 14.4, using χ. Then σ(x) |= ψ(x) for x ∈ var(t).

n > 0 Since P �ws σ(t) τ−→ p1, by Prop. 1 there is a P -ruloid H

t
τ−→u

and
a σ′ with P �ws σ

′(μ) for μ ∈ H , σ′(t) = σ(t), i.e. σ′(x) = σ(x) for
x ∈ var (t), and σ′(u) = p1. Since σ′(u) = p1

τ−→ · · · τ−→ pn |= 〈ε〉ϕ′,
by induction on n, there is a χ ∈ u−1(〈ε〉ϕ′) with σ′(y) |= χ(y) for
y ∈ var (u). Furthermore, σ′(y) |= χ(y) ≡ + for y �∈ var(u). Since P

204 W. Fokkink, R. van Glabbeek, and P. de Wind

is abstraction-free, by Lem. 1, the P -ruloid H

t
τ−→u

must be ℵ-patient.
Thus H = {x0

τ−→ y0}, where x0 occurs ℵ-liquid in t and, since t is
univariate, u = t[y0/x0]. Moreover, y0 �∈ var (t), so u is also univari-
ate. The occurrence of y0 in u is ℵ-liquid, so according to Def. 14.4,
χ(y0) is of the form 〈ε〉ϕ′′. Let ψ(x0) = χ(y0), ψ(y0) = χ(x0) ≡ +,
and ψ(z) = χ(z) otherwise. By alpha-conversion, χ ∈ u−1(〈ε〉ϕ′) implies
ψ ∈ t−1(〈ε〉ϕ′). For x ∈ var (t)\{x0}, σ(x) = σ′(x) |= χ(x) = ψ(x). Fur-
thermore, P �ws σ

′(x0)
τ−→ σ′(y0) and σ′(y0) |= χ(y0) = ψ(x0); so since

ψ(x0) is of the form 〈ε〉ϕ′′, σ(x0) = σ′(x0) |= ψ(x0).

(⇐) Let ψ ∈ t−1(〈ε〉ϕ′) with σ(x) |= ψ(x) for x ∈ var (t). Then there is a
χ ∈ t−1(ϕ′) with ψ(x) = 〈ε〉χ(x) if x occurs ℵ-liquid in t and ψ(x) = χ(x)
otherwise. For each x that occurs ℵ-liquid in t, σ(x) |= ψ(x) = 〈ε〉χ(x), i.e.
σ(x) ε=⇒ px with px |= χ(x). Define σ′(x) = px if x occurs ℵ-liquid in t and
σ′(x) = σ(x) otherwise. Due to the presence of the ℵ-patience rules and
the fact that t is univariate, σ(t) ε=⇒ σ′(t). Furthermore, σ′(x) |= χ(x) for
x ∈ var(t), so by induction on formula size, σ′(t) |= ϕ′. Hence σ(t) |= 〈ε〉ϕ′.

– ϕ = 〈τ̂ 〉ϕ′

(⇒) Suppose σ(t) |= 〈τ̂ 〉ϕ′. Then either σ(t) |= ϕ′ or P �ws σ(t) τ−→ p |= ϕ′

for some closed term p. In the first case, by induction there is a ψ ∈ t−1(ϕ′)
such that σ(x) |= ψ(x) for x ∈ var (t); by Def. 14.5(a), ψ ∈ t−1(〈τ̂ 〉ϕ′),
and we are done. In the second case, by Prop. 1 there is a P -ruloid H

t
τ−→u

and a closed substitution σ′ with P �ws σ
′(μ) for μ ∈ H , σ′(t) = σ(t), i.e.

σ′(x) = σ(x) for x ∈ var (t), and σ′(u) = p. Since σ′(u) |= ϕ′, by induction
there is a χ ∈ u−1(ϕ′) such that σ′(y) |= χ(y) for y ∈ var (u). Furthermore,
σ′(y) |= χ(y) ≡ + for y �∈ var (u). Since P is abstraction-free, by Lem. 1, the
P -ruloid H

t
τ−→u

must be ℵ-patient. Thus H = {x0
τ−→ y0}, where x0 occurs

ℵ-liquid in t and, since t is univariate, u = t[y0/x0]. Moreover, y0 �∈ var(t),
so u is also univariate. Let ψ(x0) = 〈τ̂ 〉χ(y0), ψ(y0) = χ(x0) ≡ +, and
ψ(x) = χ(x) otherwise. By Def. 14.5(b) together with alpha-conversion, ψ ∈
t−1(〈τ̂ 〉ϕ′). For x ∈ var (t)\{x0}, σ(x) = σ′(x) |= χ(x) = ψ(x). Moreover,
since P �ws σ

′(x0)
τ−→ σ′(y0) and σ′(y0) |= χ(y0), it follows that σ(x0) =

σ′(x0) |= 〈τ̂ 〉χ(y0) = ψ(x0).

(⇐) Suppose ψ ∈ t−1(〈τ̂ 〉ϕ′) with σ(x) |= ψ(x) for all x ∈ var (t). If
ψ ∈ t−1(ϕ′), then by induction σ(t) |= ϕ′, so σ(t) |= 〈τ̂ 〉ϕ′, and we are
done. Suppose that for some χ ∈ t−1(ϕ′) and some x0 that occurs ℵ-liquid
in t, ψ(x) = χ(x) for x �= x0 and ψ(x0) = 〈τ̂ 〉χ(x0). Then σ(x) |= χ(x)
for x ∈ var(t)\{x0}. Furthermore, σ(x0) |= ψ(x0) = 〈τ̂ 〉χ(x0), so either
σ(x0) |= χ(x0) or σ(x0)

τ−→ p |= χ(x0) for some closed term p. In the first
case, by induction σ(t) |= ϕ′, so σ(t) |= 〈τ̂ 〉ϕ′, and we are done. In the
second case, define σ′(x) = σ(x) for x ∈ var (t) and σ′(y0) = p. Since
P �ws σ

′(x0)
τ−→ σ′(y0), and x0

τ−→y0

t
τ−→t[y0/x0]

is an ℵ-patient P -ruloid, by Prop. 1,

P �ws σ
′(t) τ−→ σ′(t[y0/x0]). Furthermore, by induction σ′(t[y0/x0]) |= ϕ′.

Hence σ(t) = σ′(t) |= 〈τ̂ 〉ϕ′.

Divide and Congruence: From Decomposition of Modalities 205

Finally, suppose t is not univariate. Let t = ρ(u) for some univariate u and
ρ : var (u) → V not injective. σ(ρ(u)) |= ϕ ⇔ ∃χ ∈ u−1(ϕ) ∀y ∈ var(u) :
σ(ρ(y)) |= χ(y) ⇔ ∃χ ∈ u−1(ϕ) ∀x ∈ var (t) : σ(x) |=

∧
y∈ρ−1(x) χ(y) ⇔ ∃ψ ∈

t−1(ϕ) ∀x ∈ var(t) : σ(x) |= ψ(x).)*

The part of Thm. 2 that deals with the modalities
∧

i∈I , ¬ and 〈α〉 only has been
established in [9]. There, a few examples are given showing how Def. 14 can be
used to decompose a modal formula, as well as a counterexample showing that
the completeness requirement in Thm. 2 cannot simply be skipped. The inclusion
of the modalities 〈ε〉 and 〈τ̂ 〉 is new. The following example illustrates the use of
the decomposition method on a formula with the modality 〈ε〉.

Example 1. Let A = {a} and P = (Σ,R), where Σ consists of a binary func-
tion symbol ‖ with liquid arguments, and R contains the rules x

α−→x′

x‖y
α−→x′‖y

and

y
α−→y′

x‖y
α−→x‖y′ for α ∈ {a, τ}. The TSS P is complete and in ready simulation format.

Furthermore, it contains the two patience rules and is abstraction-free.
We compute (x‖y)−1(〈ε〉〈a〉+). By Def. 14.4, for each ψ ∈ (x‖y)−1(〈ε〉〈a〉+)

we have ψ(x) = 〈ε〉χ(x) and ψ(y) = 〈ε〉χ(y) for some χ ∈ (x‖y)−1(〈a〉+). Accord-
ing to Def. 14.3, (x‖y)−1(〈a〉+) = {χ1, χ2}, where χ1 and χ2 are constructed
from the only P -ruloids with a conclusion x‖y a−→ , namely x

a−→x′

x‖y
a−→x′‖y

and

y
a−→y′

x‖y
a−→x‖y′ , together with ξ1 ∈ (x′‖y)−1(+) resp. ξ2 ∈ (x‖y′)−1(+):

χ1(x) = ξ1(x) ∧ 〈a〉ξ1(x′) ≡ 〈a〉+ χ2(x) = +
χ1(y) = + χ2(y) = ξ2(y) ∧ 〈a〉ξ2(y′) ≡ 〈a〉+

Hence (x‖y)−1(〈ε〉〈a〉+) = {ψ1, ψ2} with ψ1 and ψ2 defined as follows:

ψ1(x) = 〈ε〉χ1(x) ≡ 〈ε〉〈a〉+ ψ2(x) = 〈ε〉χ2(x) = 〈ε〉+ ≡ +
ψ1(y) = 〈ε〉χ1(y) = 〈ε〉+ ≡ + ψ2(y) = 〈ε〉χ2(y) ≡ 〈ε〉〈a〉+

4 Branching Bisimulation as a Congruence

We proceed to apply the decomposition method from the previous section to de-
rive congruence formats for branching and rooted branching bisimulation equiv-
alence. The idea is that the branching bisimulation format must guarantee that
a formula from Ob is always decomposed into formulas from O≡

b (see Prop. 3).
Likewise, the rooted branching bisimulation format must guarantee that a for-
mula from Orb is always decomposed into formulas from O≡

rb (see Prop. 4). This
implies the desired congruence results (see Thm. 3 and Thm. 4). In the derivation
of the congruence formats, we will circumvent the restriction in the decomposi-
tion method to abstraction-free TSSs, using compositionality of the abstraction
operator.

206 W. Fokkink, R. van Glabbeek, and P. de Wind

4.1 Congruence Formats

We assume a second predicate Λ on arguments of function symbols, to denote
that the processes they contain may have started running, but might currently be
resting, in which case no patience rules are needed for these arguments. Always
ℵ ⊆ Λ.

Definition 15. Let ℵ ⊆ Λ. An ntytt rule H

t
α−→u

is rooted branching bisimulation
safe with respect to ℵ and Λ if:

1. it has no lookahead,
2. right-hand sides of premises occur only Λ-liquid in u, and
3. if x occurs exactly once1 in t, at a Λ-liquid position, then:

(a) all occurrences of x in the rule are Λ-liquid,
(b) x has no ℵ-liquid occurrences in left-hand sides of negative premises,
(c) x has at most one ℵ-liquid occurrence in the left-hand side of one positive

premise, and this premise has a label from A, and
(d) if x occurs ℵ-frozen in t, then x does not occur ℵ-liquid in left-hand sides

of premises.

In case Λ is the universal predicate, we say that the rule is branching bisimulation
safe with respect to ℵ.

Definition 16. A TSS in ready simulation format is in rooted branching bisim-
ulation format if, for some ℵ ⊆ Λ, it consists of the ℵ-patience rules and rules
that are rooted branching bisimulation safe with respect to ℵ and Λ.

A TSS in ready simulation format is in branching bisimulation format if, for
some ℵ, it consists of the ℵ-patience rules and rules that are branching bisimu-
lation safe with respect to ℵ.

If a TSS P is in rooted branching bisimulation format then there are small-
est predicates ℵ0 and Λ0 such that P consists of the ℵ0-patience rules and
rules that are rooted branching bisimulation safe with respect to ℵ0 and Λ0.
Namely the Λ0-liquid arguments are generated by requirements 2 and 3(a) of
Def. 15; they are the smallest collection of arguments such that these two re-
quirements are satisfied. Given Λ0, ℵ0 is the unique collection of arguments
within Λ0 for which patience rules exists. For any TSS P , ℵ0 and Λ0 can be
calculated in this way, and whether P is in rooted branching bisimulation for-
mat then depends solely on whether requirements 1 and 3(b–d) of Def. 15 are
satisfied.

When restricting to TSSs consisting of nxytt rules only, it becomes easier
to reformulate the definition of the rooted branching bisimulation format with-
out mentioning ℵ. Namely, requirements 3(b–d) of Def. 15, together with the
existence of the patience rules required in Def. 16 then amount to
1 For the rooted branching bisimulation format in Def. 16, only the requirements for

rules in which t is univariate matter. The formulation of Def. 15 for general terms t
paves the way for Prop. 2.

Divide and Congruence: From Decomposition of Modalities 207

3. (b) x does not occur as the left-hand side of a negative premise,
(c) x occurs at most once as the left-hand side of a positive premise, and

this premise has a label from A, and
(d) if within t, x occurs in an argument of an operator f for which there is

no patience rule, then x does not occur in the left-hand side of premises.

A TSS is now in rooted branching bisimulation format if it consists of patience
rules and rules that are rooted branching bisimulation safe with respect to Λ
and that collection of patience rules.

Using this, it is not hard to see that the rooted branching bisimulation format
strengthens the RBB safe format from [7].

In the definition of modal decomposition, we did not use the rules from the
original TSS P , but the P -ruloids. Therefore we must verify that if P is in
(rooted) branching bisimulation format, then so are the P -ruloids.

Proposition 2. If a TSS P is in (rooted) branching bisimulation format with
respect to some ℵ (and Λ), then each P -ruloid is either ℵ-patient or (rooted)
branching bisimulation safe with respect to ℵ (and Λ).

The proof of Prop. 2 is omitted here. The key part of the proof is to show that the
decent (rooted) branching bisimulation format is preserved under irredundant
provability. The adjective irredundant is essential here; this preservation result
would fail if “junk” could be added to the premises of derived transition rules.

4.2 Preservation of Modal Characterisations

In this section we prove that given a TSS in rooted branching bisimulation
format, if ψ ∈ t−1(ϕ) with ϕ ∈ Ob, then ψ(x) ∈ O≡

b if x occurs only Λ-liquid in
t. (That is why in the branching bisimulation format, Λ must be universal.) If
ϕ ∈ Orb, then ψ(x) ∈ O≡

rb for all variables x.

Proposition 3. Let P be an abstraction-free TSS in rooted branching bisimu-
lation format, with respect to some ℵ and Λ. For any term t and variable x that
occurs only Λ-liquid in t:

ϕ ∈ Ob ⇒ ∀ψ ∈ t−1(ϕ) : ψ(x) ∈ O≡
b

Proof. We apply structural induction on ϕ ∈ Ob. Let t ∈ T(Σ) and ψ ∈ t−1(ϕ),
and let x occur only Λ-liquid in t. First we treat the case where t is univariate.
If x �∈ var(t), then ψ(x) ≡ + ∈ O≡

b . Suppose x occurs once in t.

– ϕ =
∧

i∈I ϕi with ϕi ∈ Ob for i ∈ I. By Def. 14.1, ψ(x) =
∧

i∈I ψi(x) with
ψi ∈ t−1(ϕi) for i ∈ I. By induction, ψi(x) ∈ O≡

b for i ∈ I, so ψ(x) ∈ O≡
b .

– ϕ = ¬ϕ′ with ϕ′ ∈ Ob. By Def. 14.2, there is a function h : t−1(ϕ′) → var(t)
such that ψ(x) =

∧
χ∈h−1(x) ¬χ(x). By induction, χ(x) ∈ O≡

b for χ ∈ h−1(x),
so ψ(x) ∈ O≡

b .

208 W. Fokkink, R. van Glabbeek, and P. de Wind

– ϕ = 〈ε〉(ϕ1〈τ̂ 〉ϕ2) with ϕ1, ϕ2 ∈ Ob. By Def. 14.4, either ψ(x) = 〈ε〉χ(x) if x
occurs ℵ-liquid in t, or ψ(x) = χ(x) if x occurs ℵ-frozen in t, for some χ ∈
t−1(ϕ1〈τ̂ 〉ϕ2). By Def. 14.1, χ(x) = χ1(x)∧χ2(x) with χ1 ∈ t−1(ϕ1) and χ2 ∈
t−1(〈τ̂ 〉ϕ2). By Def. 14.5, either χ2(x) = 〈τ̂ 〉ξ(x) and x occurs ℵ-liquid in t, or
χ2(x) = ξ(x), for some ξ ∈ t−1(ϕ2). So ψ(x) is of the form 〈ε〉(χ1(x)〈τ̂ 〉ξ(x)),
〈ε〉(χ1(x) ∧ ξ(x)) or χ1(x) ∧ ξ(x). By induction, χ1(x), ξ(x) ∈ O≡

b . Hence
ψ(x) ∈ O≡

b .
– ϕ = 〈ε〉(ϕ1〈a〉ϕ2) with ϕ1, ϕ2 ∈ Ob. By Def. 14.4, either ψ(x) = 〈ε〉χ(x) if
x occurs ℵ-liquid in t, or ψ(x) = χ(x) if x occurs ℵ-frozen in t, for some
χ ∈ t−1(ϕ1〈a〉ϕ2). By Def. 14.1, χ(x) = χ1(x) ∧ χ2(x) with χ1 ∈ t−1(ϕ1)
and χ2 ∈ t−1(〈a〉ϕ2). By induction, χ1(x) ∈ O≡

b . By Def. 14.3,

χ2(x) = ξ(x) ∧
∧

x
β−→y∈H

〈β〉ξ(y) ∧
∧

x �γ−→∈H

¬〈γ〉+

for some ξ ∈ u−1(ϕ2) and P -ruloid H

t
a−→u

. Since a �= τ , by Prop. 2, H

t
a−→u

is
rooted branching bisimulation safe with respect to ℵ and Λ. Since the occur-
rence of x in t is Λ-liquid, x occurs only Λ-liquid in u. Moreover, variables in
right-hand sides of premises in H occur only Λ-liquid in u. So by induction,
ξ(x) ∈ O≡

b and ξ(y) ∈ O≡
b for x

β−→ y ∈ H . We distinguish two cases.
Case 1: The occurrence of x in t is ℵ-liquid. Then ψ(x) = 〈ε〉χ(x). Since

H

t
a−→u

is rooted branching bisimulation safe with respect to ℵ and Λ and
an nxytt rule, x does not occur in left-hand sides of negative premises
in H , and at most once in the left-hand side of one positive premise in
H , which is of the form x

b−→ y with b ∈ A. Hence either χ2(x) = ξ(x)
or χ2(x) = ξ(x)〈b〉ξ(y). Since ψ(x) = 〈ε〉(χ1(x) ∧ χ2(x)), either ψ(x) =
〈ε〉(χ1(x) ∧ ξ(x)) ∈ O≡

b or ψ(x) ≡ 〈ε〉(χ1(x) ∧ ξ(x)〈b〉ξ(y)) ∈ O≡
b .

Case 2: The occurrence of x in t is ℵ-frozen. Then ψ(x) = χ(x). Since
H

t
a−→u

is rooted branching bisimulation safe with respect to ℵ and Λ and
an nxytt rule, x does not occur in left-hand sides of premises in H . So
χ2(x) = ξ(x), and thus ψ(x) = χ1(x) ∧ χ2(x) = χ1(x) ∧ ξ(x) ∈ O≡

b .

Finally, suppose t is not univariate. Then t = ρ(u) for some univariate term u
and ρ : var (u) → V not injective. By Def. 14.6, ψ(x) =

∧
y∈ρ−1(x) χ(y) for some

χ ∈ u−1(ϕ). Since u is univariate, and for each y ∈ ρ−1(x) the occurrence in u
is Λ-liquid, χ(y) ∈ O≡

b for y ∈ ρ−1(x). Hence ψ(x) ∈ O≡
b .)*

Proposition 4. Let P be an abstraction-free TSS in rooted branching bisimu-
lation format, with respect to some ℵ and Λ. For any term t and variable x:

ϕ ∈ Orb ⇒ ∀ψ ∈ t−1(ϕ) : ψ(x) ∈ O≡
rb

Proof. We apply structural induction on ϕ ∈ Orb. Let t ∈ T(Σ) and ψ ∈ t−1(ϕ).
We restrict attention to the case where t is univariate; the general case then
follows just as at the end of the proof of Prop. 3. If x �∈ var (t), then ψ(x) ≡ + ∈
O≡

rb. So suppose x occurs once in t.

Divide and Congruence: From Decomposition of Modalities 209

– The cases ϕ =
∧

i∈I ϕi and ϕ = ¬ϕ′ proceed as in the proof of Prop. 3.
– ϕ = 〈α〉ϕ′ with ϕ′ ∈ Ob. By Def. 14.3,

ψ(x) = χ(x) ∧
∧

x
β−→y∈H

〈β〉χ(y) ∧
∧

x �γ−→∈H

¬〈γ〉+

for some χ ∈ u−1(ϕ′) and P -ruloid H

t
α−→u

. By induction, χ(x) ∈ O≡
rb. (In-

duction may be applied because ϕ′ ∈ Ob ⊆ Orb.) By Prop. 2, H

t
α−→u

is either
rooted branching bisimulation safe with respect to ℵ and Λ or ℵ-patient.
In either case, variables in right-hand sides of premises in H occur only Λ-
liquid in u. By Prop. 3, χ(y) ∈ O≡

b for x
β−→ y ∈ H, so 〈β〉χ(y) ∈ O≡

rb. Also
¬〈γ〉+ ∈ O≡

rb. Hence ψ(x) ∈ O≡
rb.

– ϕ ∈ Ob. If the occurrence of x in t is Λ-liquid, then ψ(x) ∈ O≡
rb follows

from Prop. 3. So we can assume that this occurrence is Λ-frozen, and hence
ℵ-frozen. The cases ϕ =

∧
i∈I ϕi and ϕ = ¬ϕ′ proceed as before. We focus

on the other two cases.
∗ ϕ = 〈ε〉(ϕ1〈τ̂ 〉ϕ2) with ϕ1, ϕ2 ∈ Ob ⊆ Orb. Since the occurrence of x in
t is ℵ-frozen, by Def. 14.4, ψ(x) = χ(x) for some χ ∈ t−1(ϕ1〈τ̂ 〉ϕ2). By
Def. 14.1, χ(x) = χ1(x) ∧ χ2(x) with χ1 ∈ t−1(ϕ1) and χ2 ∈ t−1(〈τ̂ 〉ϕ2).
Since the occurrence of x in t is ℵ-frozen, by Def. 14.5, χ2(x) = ξ(x) for
some ξ ∈ t−1(ϕ2). By induction, χ1(x), ξ(x) ∈ O≡

rb. Hence ψ(x) ∈ O≡
rb.

∗ ϕ = 〈ε〉(ϕ1〈a〉ϕ2) with ϕ1, ϕ2 ∈ Ob ⊆ Orb. Since the occurrence of x in t is
ℵ-frozen, by Def. 14.4, ψ(x) = χ(x) for some χ ∈ t−1(ϕ1〈a〉ϕ2). By Def. 14.1,
χ(x) = χ1(x)∧χ2(x) with χ1 ∈ t−1(ϕ1) and χ2 ∈ t−1(〈a〉ϕ2). By induction,
χ1(x), χ2(x) ∈ O≡

rb. Hence ψ(x) ∈ O≡
rb.)*

4.3 Congruence Results

Finally we are in a position to prove the promised congruence results.

Lemma 2. Given a complete, abstraction-free TSS in branching bisimulation
format, with respect to some ℵ. If σ(x)↔b σ

′(x) for x∈var (t), then σ(t)↔b σ
′(t).

Proof. By Thm. 1, σ(x) ↔b σ
′(x) implies σ(x) ∼O≡

b
σ′(x) for x ∈ var(t). Let

σ(t) |= ϕ ∈ Ob. By Thm. 2 there is a ψ ∈ t−1(ϕ) with σ(x) |= ψ(x) for x ∈ var(t).
Since Λ is universal, by Prop. 3, ψ(x) ∈ O≡

b for x ∈ var (t). Since σ(x) ∼O≡
b
σ′(x),

σ′(x) |= ψ(x) for x ∈ var (t). By Thm. 2, σ′(t) |= ϕ. Likewise, σ′(t) |= ϕ ∈ Ob

implies σ(t) |= ϕ. So σ(t) ∼Ob
σ′(t). Hence σ(t)↔b σ

′(t).)*

Theorem 3. Given a complete TSS P = (Σ,R) in branching bisimulation for-
mat, with respect to some ℵ. If σ(x)↔b σ

′(x) for x∈var (t), then σ(t)↔b σ
′(t).

Proof. Let P ′ be obtained from P , by changing in all rules, expect the ℵ-patience
rules, conclusions of the form t

τ−→ u into t i−→ u, for a fresh action i �∈ A∪{τ}.
By construction, P ′ is abstraction-free and in branching bisimulation format
with respect to ℵ. So by Lem. 2, ↔b is a congruence for all operators of P ′.

210 W. Fokkink, R. van Glabbeek, and P. de Wind

Let P ′′ be obtained from P ′ by adding a new operator τi with rules

x
α−→ y

τi(x)
α−→ τi(y)

(α �= i)
x

i−→ y

τi(x)
τ−→ τi(y)

This operator turns all i-labels into τ -labels. It is well-known and trivial to check
that ↔b is a congruence for τi as well.

If follows trivially that for any operator f ∈ Σ the behaviour of τi ◦ f in P ′′

is the same as the behaviour of f in P . So as ↔b is a congruence for τi ◦ f in
P ′′, it must be a congruence for f in P .)*

Lemma 3. Given a complete, abstraction-free TSS in rooted branching bisim-
ulation format, with respect to some ℵ and Λ. If σ(x) ↔rb σ

′(x) for x∈ var (t),
then σ(t)↔rb σ

′(t).

Theorem 4. Given a complete TSS in rooted branching bisimulation format,
with respect to some ℵ and Λ. If σ(x)↔rb σ

′(x) for x∈var (t), then σ(t)↔rb σ
′(t).

The proof of Lem. 3 is similar to the one of Lem. 2, except that Prop. 4 is applied
instead of Prop. 3. Likewise, the proof of Thm. 4 is similar to the one of Thm. 3.

5 Applications

In this section we present four applications of the rooted branching bisimulation
format.

5.1 Basic Process Algebra

Basic process algebra BPA [1] assumes a collection Act of constants, called
atomic actions, which upon execution terminate successfully. The signature of
BPA moreover includes function symbols + and · of arity two, called alterna-
tive composition and sequential composition, respectively. Intuitively, t1 + t2 exe-
cutes either t1 or t2, while t1·t2 first executes t1 and upon successful termination
executes t2. We assume a special atomic action tick ∈ Act , indicating the activ-
ity of successful termination upon executing the internal action τ , and a special
constant deadlock δ, outside Act , which does not display any behaviour. These
intuitions are made precise by means of the transition rules for BPAtick

δ presented
below. In these rules, � ranges over Act , and α over A = {�, �√ | � ∈ Act}. The
label �√ denotes that upon execution of �, the process terminates successfully.

�
�√
−→ δ

x1
α−→ y

x1 + x2
α−→ y

x2
α−→ y

x1 + x2
α−→ y

x1
�−→ y

x1·x2
�−→ y·x2

x1
�√
−→ y

x1·x2
�−→ x2

Divide and Congruence: From Decomposition of Modalities 211

The label tick counts as internal action, and for this reason the labels tick
and tick√ can also be written τ and τ√, respectively. The label τ√ denotes
termination and counts as a normal observable action. When this action occurs
in the first component of a sequential composition, it changes into the internal
action τ , so that this TSS is not abstraction-free. We do not have a↔rb a·tick ,
as the former process performs one visible action and the latter two. For this
reason we call the constant tick tick , rather than τ .

The TSS above is in rooted branching bisimulation format, if we take the argu-
ments of alternative composition to be Λ-frozen, the first argument of sequential
composition to be ℵ-liquid, and the second argument of sequential composition
to be ℵ-frozen. For the sake of the application to the action refinement opera-
tor, in Sect. 5.4, we take the second argument of sequential composition to be
Λ-liquid.

Corollary 1. Rooted branching bisimulation is a congruence for BPAtick
δ .

5.2 Binary Kleene Star

The binary Kleene star t1∗t2 [18] repeatedly executes t1 until it executes t2. This
operational behaviour is captured by the following rules, which are added to the
rules for BPAtick

δ .

x1
�−→ y

x1∗x2
�−→ y·(x1∗x2)

x1
�√
−→ y

x1∗x2
�−→ x1∗x2

x2
α−→ y

x1
∗x2

α−→ y

The resulting TSS is in rooted branching bisimulation format, if we take the
arguments of the binary Kleene star to be Λ-frozen.

Corollary 2. Rooted branching bisimulation is a congruence for BPAtick
δ with

the binary Kleene star.

5.3 Initial Priority

Initial priority is a unary function symbol that assumes an ordering on labels
(which is usually defined on the level of atomic actions). The term θ(t) executes
the transitions of t, with the restriction that an initial transition t

α−→ t1 only
gives rise to an initial transition θ(t) α−→ t1 if there does not exist an initial

transition t
β−→ t2 with α < β. This intuition is captured by the rule for the

initial priority operator below, which is added to the rules for BPAtick
δ .

x
α−→ y x �β−→ for α < β

θ(x) α−→ y

The resulting TSS is in rooted branching bisimulation format, if we take the
argument of initial priority to be Λ-frozen.

Corollary 3. Rooted branching bisimulation is a congruence for BPAtick
δ with

initial priority.

212 W. Fokkink, R. van Glabbeek, and P. de Wind

5.4 Action Refinement

In the previous applications, it sufficed to take Λ = ℵ. In the following example,
however, this is not possible.

The binary action refinement operator t1[� � t2], for � ∈ Act\{tick}, replaces
each �-transition in t1 by t2. Its transition rules, presented below, are added to
the rules for BPAtick

δ .

x1
α−→ y

x1[� � x2]
α−→ y[� � x2]

(α �= �, �√)

x1
�−→ y1 x2

�′
−→ y2

x1[� � x2]
�′
−→ y2·(y1[� � x2])

x1
�√
−→ y1 x2

�′
−→ y2

x1[� � x2]
�′

−→ y2

x1
�−→ y1 x2

�′√
−→ y2

x1[� � x2]
�′

−→ y1[� � x2]

x1
�√
−→ y1 x2

�′√
−→ y2

x1[� � x2]
�′√
−→ y2

The resulting TSS is in rooted branching bisimulation format, if we take the
first argument of action refinement to be ℵ-liquid and the second argument to
be Λ-frozen. For the second rule to be rooted branching bisimulation safe, it is
essential that the second argument of sequential composition is Λ-liquid, for else
it would violate restriction 2 of Def. 15.

Corollary 4. Rooted branching bisimulation is a congruence for BPAtick
δ with

action refinement.

6 Counterexamples

This section presents a series of counterexamples of complete TSSs in ntyft/ntyxt
format, to show that none of the syntactic restrictions of our congruence formats
can be omitted. (Of course it remains possible that certain restrictions can be
refined.) In [16] a series of counterexamples can be found showing that the syn-
tactic restrictions of the ntyft/ntyxt format are essential as well. Furthermore,
in [5] a counterexample is given to show that completeness (there called positive
after reduction) is essential.

It is well-known that branching bisimulation is not a congruence for BPAtick
δ .

For instance, a↔b tick ·a, but a+ c �↔b (tick ·a)+ c. Still we saw in Sect. 5.1 that
the TSS for this process algebra is in rooted branching bisimulation format. This
shows that universality of the predicate Λ cannot be omitted from the branching
bisimulation format.

The examples in this section assume an action set A = {a, b, c} and a TSS
P = {Σ,R}, where the signature Σ contains the constant 0 and unary function
symbols α for α ∈ A∪ {τ}, and R contains the rules αx α−→ x for α ∈ A∪ {τ}.
The argument of α is ℵ-frozen. Unlike before, in this section occurrences of

Divide and Congruence: From Decomposition of Modalities 213

a, b, c as labels in rules are explicit action names, instead of parameters ranging
over A.

Example 2. We extend P with the following rule:

x
a−→ y y

b−→ z

f(x) c−→ 0

The rule above is not rooted branching bisimulation safe, because it contains
lookahead, violating restriction 1 (of Def. 15). Clearly, ab0↔rb aτb0 (and thus
ab0↔b aτb0). However, f(ab0) �↔b f(aτb0) (and thus f(ab0) �↔rb f(aτb0)), since
f(ab0) c−→ 0, while f(aτb0) �α−→ for α ∈ {c, τ}.

Example 3. We extend P with the following rule:

x
a−→ y

f(x) a−→ f(y)

The argument of f must be ℵ-frozen, in view of the restriction in Def. 16 that for
each ℵ-liquid argument there is an ℵ-patience rule. The rule above is not rooted
branching bisimulation safe. Namely, if the argument of f is Λ-frozen, then y
occurs both as the right-hand side of a premise and Λ-frozen in the right-hand
side of the conclusion, violating restriction 2. And if the argument of f is Λ-liquid,
then x occurs Λ-liquid and ℵ-frozen in the source and ℵ-liquid in the left-hand
side of the premise, violating restriction 3(d). We have f(aa0) �↔b f(aτa0), since
f(aa0) a−→ f(a0) a−→ f(0), while f(aτa0) can only do an a-transition to f(τa0),
and f(τa0) �α−→ for α ∈ {a, τ}.

Example 4. We extend P with the following rules:

x
τ−→ y

f(x) τ−→ f(y)

x
a−→ y

f(x) a−→ f(y)

x �a−→
f(x) c−→ 0

The argument of f has to be Λ-liquid, for else the first and second rule would
violate restriction 2. It even has to be ℵ-liquid, for otherwise these rules would
violate requirement 3(d). However, with the argument of f ℵ-liquid, the third
rule is not rooted branching bisimulation safe, because x occurs ℵ-liquid both in
the source and in the left-hand side of the negative premise, violating restriction
3(b). We have f(aa0) �↔b f(aτa0), since f(aτa0) a−→ f(τa0) c−→ 0, while f(aa0)
can only do an a-transition to f(a0), and f(a0) �α−→ for α ∈ {c, τ}.

Example 5. We extend P with the following rules:

x
τ−→ y

f(x) τ−→ f(y)

x
a−→ y

f(x) a−→ f(y)

x
τ−→ y

f(x) c−→ 0

As in the previous example, the argument of f has to be ℵ-liquid. The third rule
is not rooted branching bisimulation safe, because x occurs ℵ-liquid both in the

214 W. Fokkink, R. van Glabbeek, and P. de Wind

source and in the left-hand side of the positive premise with label τ , violating
restriction 3(c). We have f(aa0) �↔b f(aτa0), since f(aτa0) a−→ f(τa0) c−→ 0,
while f(aa0) can only do an a-transition to f(a0), and f(a0) �α−→ for α ∈ {c, τ}.

Example 6. We extend P with the following rules:

η
a−→ 0 ζ

b−→ 0 η
τ−→ ζ ζ

τ−→ η ν
a−→ 0 ν

b−→ 0

x
τ−→ y

f(x) τ−→ f(y)

x
a−→ y x

b−→ z

f(x) c−→ 0

Again, the argument of f is ℵ-liquid. The last rule is not rooted branching
bisimulation safe, because x has an ℵ-liquid occurrence in the source, and two ℵ-
liquid occurrences in the left-hand sides of the premises, violating restriction 3(c).
Clearly, τν↔rb τη. However, f(τν) �↔b f(τη), since f(τν) τ−→ f(ν) c−→ 0, while
f(τη) only exhibits an infinite sequence of τ -transitions: f(τη) τ−→ f(η) τ−→
f(ζ) τ−→ f(η) τ−→ · · · .

Example 7. In the TSS from Example 6, we replace the last rule with the fol-
lowing rules:

f(x) τ−→ g(x)
x

a−→ y x
b−→ z

g(x) c−→ 0

The argument of f is again ℵ-liquid, and the argument of g must be Λ-frozen, as
otherwise the second rule would violate restriction 3(c). The first rule above is not
rooted branching bisimulation safe, because x occurs ℵ-liquid (hence Λ-liquid)
in the source and Λ-frozen in the right-hand side of the conclusion, violating
restriction 3(a). We have f(τν) �↔b f(τη), since f(τν) τ−→ f(ν) τ−→ g(ν) c−→ 0,
while f(τη) can only perform τ -transitions.

Example 8. In the TSS from Example 6, we replace the last rule with the fol-
lowing rules:

x
a−→ y x

b−→ z

g(x) c−→ 0

g(x) c−→ y

f(x) c−→ 0

As in the previous example, the argument of f must be ℵ-liquid, and the ar-
gument of g Λ-frozen. The last rule above is not rooted branching bisimula-
tion safe, because x occurs ℵ-liquid in the source and Λ-frozen in the left-hand
side of the premise, violating restriction 3(a). We have f(τν) �↔b f(τη), since
f(τν) τ−→ f(ν) c−→ 0, while f(τη) can only perform τ -transitions.

7 Related Work

The first congruence formats for branching and rooted branching bisimulation
were presented in [2], and reformulated in [13]. Those formats, which are con-
tained in the GSOS format [4], distinguish so-called “principal” operators and

Divide and Congruence: From Decomposition of Modalities 215

“abbreviations”. The latter can be regarded as syntactic sugar, adding nothing
that could not be expressed with principal operators. Our formats are incom-
parable with the ones of [2,13]. However, our formats generalise the result of
simplifying the formats of [2,13] by requiring all operators to be principal.

For the branching bisimulation format our generalisation consists of allow-
ing transition rules outside the GSOS format; the simplified format of [2,13]
is exactly the intersection of our branching bisimulation format and the GSOS
format. However, the intersection of our rooted branching bisimulation format
and the GSOS format is still a proper generalisation of the simplified format for
rooted branching bisimulation of [2,13]. The latter can be described as the in-
tersection of our rooted branching bisimulation format and the GSOS format in
which all arguments of all operators that occur in right-hand sides of conclusions
of transition rules are required to be Λ-liquid.

The format of [2,13] for rooted branching bisimulation distinguishes “tame”
and “wild” function symbols. In terms of our approach, wild operators have only
Λ-frozen arguments, and tame operators only Λ-liquid arguments. The idea to
allow operators with both kinds of arguments stems from [7].

In [7] a format for rooted branching bisimulation was proposed that generalises
the simplified format of [2,13]. Given that it applies to TSSs with predicates, it is
incomparable with our current rooted branching bisimulation format. However,
predicates can easily be encoded in terms of transitions, and when disregarding
predicates, our current format is more general than the format of [7]. Still, the
format of [7] strictly contains the intersection of our format with the GSOS
format, and all applications of our work discussed in Sect. 5 fall within that
intersection.

In [10] we apply the techniques of the current paper to derive congruence
formats for η- and rooted η-bisimulation. These formats differ from the ones
of the current paper only in restriction 2 of Def. 15. There it is required that
right-hand sides of premises occur only ℵ-liquid in u, whereas here we merely
require Λ-liquidity. That the rooted branching bisimulation format is essentially
more general than the rooted η-bisimulation format is illustrated by the action
refinement example of Sec. 5.4. BPAtick

δ with action refinement falls outside
the rooted η-bisimulation format, due to the fact that the second argument
of sequential composition needs to be ℵ-liquid in order for the second action
refinement rule to be rooted η-bisimulation safe. Indeed, this operator fails to
be compositional for rooted η-bisimulation [14].

References

1. J.A. Bergstra & J.W. Klop (1984): Process algebra for synchronous communi-
cation. Information and Control 60(1/3), pp. 109–137.

2. B. Bloom (1995): Structural operational semantics for weak bisimulations. Theo-
retical Computer Science 146(1/2), pp. 25–68.

3. B. Bloom, W.J. Fokkink & R.J. van Glabbeek (2004): Precongruence formats
for decorated trace semantics. ACM Transactions on Computational Logic 5(1),
pp. 26–78.

216 W. Fokkink, R. van Glabbeek, and P. de Wind

4. B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation can’t be traced. Jour-
nal of the ACM 42(1), pp. 232–268.

5. R.N. Bol & J.F. Groote (1996): The meaning of negative premises in transition
system specifications. Journal of the ACM 43(5), pp. 863–914.

6. R. De Nicola & F.W. Vaandrager (1995): Three logics for branching bisimu-
lation. Journal of the ACM 42(2), pp. 458–487.

7. W.J. Fokkink (2000): Rooted branching bisimulation as a congruence. Journal of
Computer and System Sciences 60(1), pp. 13–37.

8. W.J. Fokkink & R.J. van Glabbeek (1996): Ntyft/ntyxt rules reduce to ntree
rules. Information and Computation 126(1), pp. 1–10.

9. W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2006): Compositionality of
Hennessy-Milner logic by structural operational semantics. Theoretical Computer
Science 354(3), pp. 421–440.

10. W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2005): Divide and congru-
ence applied to η-bisimulation. In Proc. SOS’05, To appear, ENTCS. Elsevier.

11. R.J. van Glabbeek (1993): The linear time-branching time spectrum II: The
semantics of sequential systems with silent moves. In Proc. CONCUR’93, LNCS
715, pp. 66–81. Springer.

12. R.J. van Glabbeek (2004): The meaning of negative premises in transition system
specifications II. Journal of Logic and Algebraic Programming 60/61, pp. 229–258.

13. R.J. van Glabbeek (2005): On cool congruence formats for weak bisimulations
(extended abstract). In Proc. ICTAC’05, LNCS 3722, pp. 331–346. Springer.

14. R.J. van Glabbeek & W.P. Weijland (1996): Branching time and abstraction
in bisimulation semantics. Journal of the ACM 43(3), pp. 555–600.

15. J.F. Groote (1993): Transition system specifications with negative premises. The-
oretical Computer Science 118(2), pp. 263–299.

16. J.F. Groote & F.W. Vaandrager (1992): Structured operational semantics and
bisimulation as a congruence. Information and Computation 100(2), pp. 202–260.

17. M.C.B. Hennessy & R. Milner (1985): Algebraic laws for non-determinism and
concurrency. Journal of the ACM 32(1), pp. 137–161.

18. S.C. Kleene: Representation of events in nerve nets and finite automata. In
(C. Shannon and J. McCarthy, eds.) Automata Studies, pp. 3–41. Princeton Uni-
versity Press, 1956.

19. K.G. Larsen & X. Liu (1991): Compositionality through an operational semantics
of contexts. Journal of Logic and Computation 1(6), pp. 761–795.

20. G.D. Plotkin (2004): A structural approach to operational semantics. Journal
of Logic and Algebraic Programming 60/61, pp. 17–139. Originally appeared in
1981.

21. R. de Simone (1985): Higher-level synchronising devices in Meije–SCCS. Theo-
retical Computer Science 37(3), pp. 245–267.

A Modal Characterisation of Branching Bisimulation

We prove the first part of Thm. 1, which states that Ob is a modal characterisa-
tion of branching bisimulation equivalence. The proof is based on [6]. We need
to prove, given an LTS (P,→), that p↔b q ⇔ p ∼Ob

q for all p, q ∈ P.

Proof. (⇒) Suppose p↔b q, and p |= ϕ for some ϕ ∈ Ob. We prove q |= ϕ, by
structural induction on ϕ. The reverse implication (q |= ϕ implies p |= ϕ) follows
by symmetry.

Divide and Congruence: From Decomposition of Modalities 217

– ϕ =
∧

i∈I ϕi. Then p |= ϕi for i ∈ I. By induction q |= ϕi for i ∈ I, so
q |=

∧
i∈I ϕi.

– ϕ = ¬ϕ′. Then p �|= ϕ′. By induction q �|= ϕ′, so q |= ¬ϕ′.
– ϕ = 〈ε〉(ϕ1〈τ̂ 〉ϕ2). Then for some n there are p0, . . . , pn ∈ P with p0 = p,
pi

τ−→ pi+1 for i ∈ {0, . . . , n − 1}, and pn |= ϕ1〈τ̂ 〉ϕ2. We apply induction
on n.
n = 0 Then p |= ϕ1, so by induction on formula size, q |= ϕ1. Further-

more, either (1) p |= ϕ2 or (2) there is a p′ ∈ P with p
τ−→ p′ and

p′ |= ϕ2. In case (1), by induction on formula size, q |= ϕ2, so q |=
〈ε〉(ϕ1〈τ̂ 〉ϕ2). In case (2), since p↔b q, by Def. 1 either (2.1) p′ ↔b q or
(2.2) q ε=⇒ q′

τ−→ q′′ with p↔b q
′ and p′↔b q

′′. In case (2.1), by induc-
tion on formula size, q |= ϕ2. In case (2.2), by induction on formula size,
q′ |= ϕ1 and q′′ |= ϕ2. In both cases, q |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2).

n > 0 Since p
τ−→ p1, and p ↔b q, according to Def. 1 there are two

possibilities.
1. Either p1 ↔b q. Since p1 |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2), by induction on n, q |=

〈ε〉(ϕ1〈τ̂ 〉ϕ2).
2. Or q ε=⇒ q′

τ−→ q′′ with p1 ↔b q
′′. Since p1 |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2), by in-

duction on n, q′′ |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2). Hence q |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2).
– ϕ = 〈ε〉(ϕ1〈a〉ϕ2). Then for some n there are p0, . . . , pn ∈ P with p0 = p,
pi

τ−→ pi+1 for i ∈ {0, . . . , n − 1}, and pn |= ϕ1〈a〉ϕ2. We apply induction
on n.
n = 0 Then p |= ϕ1, and there is a p′ ∈ P with p a−→ p′ and p′ |= ϕ2. Since

p↔b q, by Def. 1 q ε=⇒ q′
a−→ q′′ with p↔b q

′ and p′↔b q
′′. By induction

on formula size, q′ |= ϕ1 and q′′ |= ϕ2. Hence q |= 〈ε〉(ϕ1〈a〉ϕ2).
n > 0 Since p

τ−→ p1, and p ↔b q, according to Def. 1 there are two
possibilities.
1. Either p1 ↔b q. Since p1 |= 〈ε〉(ϕ1〈a〉ϕ2), by induction on n, q |=

〈ε〉(ϕ1〈a〉ϕ2).
2. Or q ε=⇒ q′

τ−→ q′′ with p1 ↔b q
′′. Since p1 |= 〈ε〉(ϕ1〈a〉ϕ2), by in-

duction on n, q′′ |= 〈ε〉(ϕ1〈a〉ϕ2). Hence q |= 〈ε〉(ϕ1〈a〉ϕ2).

We conclude that p ∼Ob
q.

(⇐) We prove that ∼Ob
is a branching bisimulation relation. The relation is

clearly symmetric. Let p ∼Ob
q. Suppose p α−→ p′. If α = τ and p′ ∼Ob

q, then
the first condition of Def. 1 is fulfilled. So we can assume that either (i) α �= τ
or (ii) p′ �∼Ob

q. We define two sets:

Q′ = {q′ ∈ P | q ε=⇒ q′ ∧ p �∼Ob
q′}

Q′′ = {q′′ ∈ P | ∃q′ ∈ P : q ε=⇒ q′
α−→ q′′ ∧ p′ �∼Ob

q′′}

For each q′ ∈ Q′, let ϕq′ be a formula in Ob such that p |= ϕq′ and q′ �|= ϕq′ .
(Such a formula always exists because Ob is closed under negation ¬.) We define

ϕ =
∧

q′∈Q′
ϕq′

218 W. Fokkink, R. van Glabbeek, and P. de Wind

Similarly, for each q′′ ∈ Q′′, let ψq′′ be a formula in Ob such that p′ |= ψq′′ and
q′′ �|= ψq′′ . We define

ψ =
∧

q′′∈Q′′
ψq′′

Clearly, ϕ, ψ ∈ Ob, p |= ϕ and p′ |= ψ. We distinguish two cases.

1. α �= τ . Since p |= 〈ε〉(ϕ〈α〉ψ) ∈Ob and p∼Ob
q, also q |= 〈ε〉(ϕ〈α〉ψ). Hence

q
ε=⇒ q′

α−→ q′′ with q′ |= ϕ and q′′ |= ψ. By the definition of ϕ and ψ it
follows that p ∼Ob

q′ and p′ ∼Ob
q′′.

2. α = τ and p′ �∼Ob
q. Let ϕ̃ ∈ Ob such that p′ |= ϕ̃ and p, q �|= ϕ̃. Since

p |= 〈ε〉(ϕ〈τ̂ 〉(ϕ̃ ∧ ψ)) ∈ Ob and p ∼Ob
q, also q |= 〈ε〉(ϕ〈τ̂ 〉(ϕ̃ ∧ ψ)). So

q
ε=⇒ q′ with q′ |= ϕ〈τ̂ 〉(ϕ̃ ∧ ψ). By definition of ϕ it follows that p ∼Ob

q′.
Thus q′ �|= ϕ̃, so q′ τ−→ q′′ with q′′ |= ϕ̃ ∧ ψ. By the definition of ψ it follows
that p′ ∼Ob

q′′.

Both cases imply that the second condition of Def. 1 is fulfilled. We therefore
conclude that ∼Ob

is a branching bisimulation relation.)*

Using the first part of Thm. 1, which was proved above, it is not hard to derive
the second part of Thm. 1, i.e. that Orb is a modal characterisation of rooted
branching bisimulation equivalence.

Abstraction and Refinement in Model Checking

Orna Grumberg

Computer Science Department
Technion

Haifa 32000, Israel

1 Introduction

In this paper we survey abstraction and refinement in model checking. We re-
strict the discussion to existential abstraction which over-approximates the be-
haviors of the concrete model. The logics preserved under this abstraction are
the universal fragments of branching-time temporal logics as well as linear-time
temporal logics. For simplicity of presentation, we also restrict the discussion
to abstraction functions, rather then abstraction relations. Thus, every concrete
state is represented by exactly one abstract state. An abstract state then rep-
resents a set of concrete states, which is disjoint from the sets represented by
other abstract states.

Abstraction is identified by a set of abstract states Ŝ, an abstraction mapping
h, that associates with each concrete state the abstract state which represents it,
and a set of atomic propositions AP which label the concrete and abstract states.
We present three types of abstractions which differ in the choice of Ŝ, h, and AP :
predicate abstraction, visible-variable abstraction, and data abstraction. We also
suggest how an abstraction can be extracted from a high-level description of a
program.

We describe the CounterExample-Guided Abstraction-Refinement (CEGAR)
methodology which suggests an iterative, automated approach to verification
with abstraction. We comment on different possible implementations for con-
structing the abstract model and its refinements.

2 Preliminaries

2.1 Temporal Logics

Model checking algorithms typically use finite state transition systems to model
the verified systems and propositional temporal logics to specify the desired
properties. In this section we present the syntax and semantics of several subsets
of the temporal logic CTL∗ [25].

Let AP be a set of atomic propositions. We define CTL∗ in positive normal
form, in which negations are applied only to atomic propositions. This will fa-
cilitate the definition of universal and existential subsets of CTL∗ [29]. Since
negations are not allowed, both conjunction and disjunction are required. Nega-
tions applied to the next-time operator X can be “pushed inwards” using the

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 219–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

220 O. Grumberg

logical equivalence ¬(X f) = X¬f . The unless operator V (sometimes called
the release operator), which is the dual of the until operator U, is also added.
Thus, ¬(f U g) = ¬f V ¬g.

Definition 1 (CTL∗). For a given set of atomic propositions AP , the logic
CTL∗ is the set of state formulas, defined recursively by means of state formulas
and path formulas as follows. State formulas are of the form:

– If p ∈ AP , then p and ¬p are state formulas.
– If f and g are state formulas, then so are f ∧ g and f ∨ g.
– If f is a path formula, then A f and E f are state formulas.

Path formulas are of the form:

– If f is a state formula, then f is a path formula.
– If f and g are path formulas, then so are f ∧ g, and f ∨ g.
– If f and g are path formulas, then so are X f , f U g, and f V g.

The abbreviations true, false and implication → are defined as usual. For path
formula f , the following abbreviations are widely used. F f ≡ trueU f express
the properties that sometimes in the future f holds. G f ≡ falseV f express
the properties that f holds globally.

CTL [14] is a branching-time subset of CTL∗ in which every temporal operator is
immediately preceded by a path quantifier. Thus, nesting of temporal operators
with no path quantifier in between is not allowed. Formally, CTL (in positive
normal form) is the set of state formulas defined by:

– If p ∈ AP , then p and ¬p are CTL formulas.
– If f and g are CTL formulas, then so are f ∧ g and f ∨ g.
– If f and g are CTL formulas, then so are AX f , A(f U g), A(f V g) and

EX f , E(f U g), E(f V g).

ACTL∗ is the universal subset of CTL∗ in which only A path quantifiers
are allowed. Similarly, ECTL∗ is the existential subset of CTL∗in which only E
path quantifiers are allowed. ACTL and ECTL are the restriction of ACTL∗ and
ECTL∗ to CTL.

LTL [49] can be defined as the subset of ACTL∗ consisting of formulas of
the form A f , where f is a path formula in which the only state subformulas
permitted are Boolean combinations of atomic propositions. More precisely, f is
defined (in positive normal form) by

1. If p ∈ AP then p and ¬p are path formulas.
2. If f1 and f2 are path formulas, then f1∧f2, f1∨f2, X f1, f1Uf2, and f1Vf2

are path formulas.

We will refer to such f as an LTL path formula.
The semantics of CTL∗ is defined with respect to a finite state transition

system called Kripke structure.

Abstraction and Refinement in Model Checking 221

Definition 2 (Kripke structure). Let AP be a set of atomic propositions. A
Kripke structure M over AP is a four-tuple M = (S, S0, R, L), where

– S is a (finite) set of states;
– S0 ⊆ S is the set of initial states;
– R ⊆ S×S is the transition relation, which must be total, i.e., for every state
s ∈ S there is a state s′ ∈ S such that R(s, s′);

– L : S → P(AP) is a function that labels each state with the set of atomic
propositions true in that state.

A path in M starting from a state s is an infinite sequence of states π = s0s1s2 . . .
such that s0 = s, and for every i ≥ 0, R(si, si+1). The suffix of π from state si

is denoted πi. The requirement that R is total simplifies the semantics of tem-
poral logics over a Kripke structure since all paths are infinite. Several different
semantics over finite paths can be found in [24].

We now consider the semantics of the logic CTL∗ with respect to a Kripke
structure.

Definition 3 (Satisfaction of a formula). Given a Kripke structure M , sat-
isfaction of a state formula f by a model M at a state s, denoted M, s |= f , and
of a path formula g by a path π, denoted M,π |= g, is defined as follows (where
M is omitted when clear from the context).

1. s |= p if and only if p ∈ L(s); s |= ¬p if and only if p �∈ L(s).
2. s |= f ∧ g if and only if s |= f and s |= g.
s |= f ∨ g if and only if s |= f or s |= g.

3. s |= A f if and only if for every path π from s, π |= f .
s |= E f if and only if there exists a path π from s such that π |= f .

4. π |= f , where f is a state formula, if and only if the first state of π satisfies
f .

5. π |= f ∧ g if and only if π |= f and π |= g.
π |= f ∨ g if and only if π |= f or π |= g.

6. (a) π |= X f if and only if π1 |= f .
(b) π |= f U g if and only if for some n ≥ 0, πn |= g and for all i < n,

πi |= f .
(c) π |= f V g if and only if for all n ≥ 0, if (for all i < n, πi �|= f) then

πn |= g.

M |= f if and only if for every s ∈ S0, M, s |= f .

In [25] it has been shown that CTL and LTL are incomparable in their expressive
power, and that CTL∗ is more expressive than either of them.

2.2 Model Checking

Given a Kripke structure M = (S,R, S0, L) and a specification ϕ in a temporal
logic such as CTL, the model checking problem is the problem of finding all

222 O. Grumberg

states s such that M, s |= ϕ and checking whether the initial states are included
in those states.

When M does not satisfy ϕ, model checking can provide a counterexample
which demonstrates why the specification does not hold in the model. Coun-
terexamples are very helpful for debugging. However, most model checking tools
provide them only in limited cases. Common counterexamples have the form
of either a finite path or a “lasso”, which is a finite path followed by a simple
cycle. The former is suitable for demonstrating why a specification of the form
AG p fails to hold. It provides a finite path to a state satisfying ¬p. The latter
is suitable to demonstrate why AF p fails. It shows an infinite path in a “lasso”
shape along which all states satisfy ¬p. For general specifications, a tree or even a
general graph is needed. Counterexamples for ACTL formulas are defined in [19]
and for full CTL in [53].

Model checking has been successfully applied in hardware verification, and is
emerging as an industrial standard tool for hardware design . A partial list
of tools for hardware verification includes SMV [41] and NuSMV [12], For-
malCheck [31], RuleBase [2], and Forecast [26]. Recently, several tools for model
checking of software have been developed as well and applied to non-trivial ex-
amples. A partial list consists of SPIN [34], Bandera [21], Java PathFinder [32],
SLAM, Bebop, and Zing [1], Blast [3], Magic [9], and CBMC [16]. An extensive
overview of model checking algorithms can be found in [13].

The main technical challenge in model checking is the state explosion problem
which occurs if the system is a composition of several components or if the system
variables range over large domains.

An explicit state model checker is a program which performs model checking
directly on a Kripke structure. SPIN [33] is an example of a successful tool of that
kind. Large models are often handled implicitly. Two widely used approaches are
the BDD-based [8,42] and the SAT-based [4] model checking.

BDD-based model checking: Ordered Binary Decision Diagrams (BDDs) [7]
are canonical representations of Boolean functions. They are often concise in
their memory requirements. Furthermore, most operations needed for model
checking can be defined in terms of Boolean functions and can be implemented
efficiently with BDDs.

In BDD-based (also called symbolic) model checking, the transition relation
of the Kripke structure is represented by a Boolean function, which in turn is
represented by a BDD. Sets of states are also represented by Boolean functions.
Fixpoint characterizations of temporal operators are applied to the Boolean func-
tions representing the Kripke structure. BDDs are sometimes, but not always,
exponentially smaller than explicit representation of the corresponding Boolean
functions. In such cases, symbolic verification is successful.

Two operations are central to model checking. Given a set of states Q, Image
computation computes the set of successors of states in Q:

Image(Q) := {t | ∃s[R(s, t) ∧ Q(s)]}.

Abstraction and Refinement in Model Checking 223

Preimage computation computes the set of predecessors of states in Q:

Preimage(Q) := {s | ∃t[R(s, t) ∧ Q(t)]}.

Unfortunately, in contrast to pure Boolean operations, these operations are not
efficiently computable [42], and their computation is a major bottleneck in sym-
bolic model checking.

SAT-based model checking: Many problems, including some versions of
model checking, can very naturally be translated into the satisfiability problem
of propositional calculus. The satisfiability problem is known to be NP-complete.
Nevertheless, modern SAT-solvers, developed in recent years, can handle formu-
las with several thousands of variables within a few seconds. SAT-solvers such
as Grasp [39], Prover [52], Chaff [47], and Berkmin [27], and many others, are
based on sophisticated learning techniques and data structures that accelerate
the search for a satisfying assignment, if exists.

Below we describe a simple way to exploit satisfiability for bounded model
checking of properties of the form AG p, where p is a Boolean formula. Bounded
Model Checking [5,4] accepts a model M , a natural number (a bound) k, and a
formula AG p as above. It constructs a propositional formula fM,k, describing
all computations of M of length k. It also constructs a propositional formula
fϕ,k, describing all paths of length k satisfying the property ϕ = ¬AG p =
EF¬p. Next, it sends fM,k ∧ fϕ,k to a SAT-solver to check for satisfiability.
If the formula is satisfiable then M �|= AG p and the satisfying assignment
corresponds to a computation of M , leading to a state satisfying ¬p. This path
is a counterexample for the checked formula. If fM,k ∧ fϕ,k is unsatisfiable then
no counterexample of length k exists in M . The bound k is then increased and
the check is repeated.

The method described above is mainly suitable for refutation. Verification is
obtained only if k exceeds the length of the longest path among all shortest paths
from an initial state to some state in M . In practice, it is hard to compute this
bound and even when known, it is often too large to handle. Full verification
with SAT is possible using other methods, such as interpolation [43,40], induc-
tion [51], and ALL-SAT [11,44,30]. However, these methods are more limited
in their applicability to large systems. Bounded model checking can easily be
extended for checking LTL formulas, interpreted over finite paths [5].

Many of the modern hardware verification tools such as NuSMV [12], Rule-
Base [2], Forecast & Thunder [26,20], and FormalCheck [31] include both SAT
and BDD methods and apply the one that is most successful in each case.

2.3 Equivalences and Preorders

In this section we define relations on Kripke structures that guarantee logic
preservation. The relations are structural. That is, they are defined by means of
states and transitions of the Kripke structures. The structural relations corre-
spond to logical relations that guarantee preservation of truth of formulas be-
tween related structures. These relations are exploited in many of the approaches

224 O. Grumberg

to avoiding the state explosion problem in model checking, such as, abstraction,
modular model checking, symmetry, and partial-order reductions [13]. Instead
of checking the full model of the system, a smaller model with guaranteed logic
preservation is checked.

We define two structural relations: The bisimulation relation [48] and the
simulation preorder [45]. Intuitively, two states are bisimilar if they are identically
labeled and for every successor of one there is a bisimilar successor of the other.
Similarly, one state is smaller than another by the simulation preorder if they
are identically labeled and for every successor of the smaller state there is a
corresponding successor of the greater one. The simulation preorder differs from
bisimulation in that the greater state may have successors with no corresponding
successors in the smaller state.

Let AP be a set of atomic propositions and let M1 = (S1, S01 , R1, L1) and
M2 = (S2, S02 , R2, L2) be two structures over AP .

Definition 4. A relation B ⊆ S1 × S2 is a bisimulation relation [48] over M1
and M2 if the following conditions hold:

1. For every s1 ∈ S01 there is s2 ∈ S02 such that B(s1, s2). Moreover, for every
s2 ∈ S02 there is s1 ∈ S01 such that B(s1, s2).

2. For every (s1, s2) ∈ B,
– L1(s1) = L2(s2) and
– ∀t1[R1(s1, t1) −→ ∃t2[R2(s2, t2) ∧ B(t1, t2)]].
– ∀t2[R2(s2, t2) −→ ∃t1[R1(s1, t1) ∧ B(t1, t2)]].

We write s1∼=s2 for B(s1, s2). We say that M1 and M2 are bisimilar (denoted
M1∼=M2) if there exists a bisimulation relation B over M1 and M2.

Definition 5. A relation H ⊆ S1 × S2 is a simulation relation [46] over M1
and M2 if the following conditions hold:

1. For every s1 ∈ S01 there is s2 ∈ S02 such that H(s1, s2).
2. For every (s1, s2) ∈ H,

– L1(s1) = L2(s2) and
– ∀t1[R1(s1, t1) −→ ∃t2[R2(s2, t2) ∧ H(t1, t2)]].

We write s1 ' s2 for H(s1, s2). M2 simulates M1 (denoted M1 ' M2) if there
exists a simulation relation H over M1 and M2.

The following theorem relates bisimulation and simulation to the logics they
preserve1.

Theorem 1

– [6] Let M1∼=M2. Then for every CTL∗ formula f (with atomic propositions
in AP), M1 |= f if and only if M2 |= f .

– [29] Let M1 ' M2. For every ACTL∗ formula f with atomic propositions
in AP , M2 |= f implies M1 |= f .

1 Bisimulation and simulation also preserve the μ-calculus logic [35] and its univer-
sal [37] subset, respectively. The discussion of μ-calculus is beyond the scope of this
paper.

Abstraction and Refinement in Model Checking 225

2.4 Programs and Their Models

We describe a simple syntactic framework to formalize programs. A program
P has a finite set of variables V = {v1, · · · , vn} (sometimes also denoted as a
tuple v = (v1, . . . , vn)), where each variable vi has an associated domain Dvi .
The set of all possible states for program P is Dv1 × · · ·Dvn which we denote
by D. The value of a variable v in state s is denoted by s(v). Expressions are
built from variables in V , constants in Dvi , and function symbols in the usual
way, e.g. v1 + 3. Atomic formulas are constructed from expressions and relation
symbols, e.g. v1 + 3 < 5. Similarly, predicates are composed of atomic formulas
using negation (¬), conjunction (∧), and disjunction (∨). Thus, predicates are
in fact quantifier-free first order formulas. Given a predicate p, Atoms(p) is the
set of atomic formulas occurring in it. Let p be a predicate containing variables
from V , and d = (d1, . . . , dn) be an element from D. Then we write d |= p when
the predicate obtained by replacing each occurrence of the variable vi in p by
the constant di evaluates to true.

Predicates are used to identify initial states of the program as well as condi-
tions in program statements such as if and while.

A specification for a programP is an ACTL� formula ϕ whose atomic formulas
are predicates over the program variable. Let Atoms(ϕ) be the set of atomic
formulas appearing in the specification ϕ. Atoms(P) is the set of atomic formulas
that appear in the definition of initial states or in the conditions in the program.

Each programP naturally corresponds to a Kripke structureM=(S, S0, R, L),
where S = D is the set of states, S0 ⊆ S is a set of initial states, R ⊆ S × S is a
transition relation, and L is a labeling function given by L(d) = {f ∈ Atoms(P) |
d |= f}. Translating a program into a Kripke structure is straightforward and will
not be described here.

3 Abstract Models

In this section we define an abstract model (Kripke structure) based on a given
concrete one. The abstract model is guaranteed by construction to be greater
than the concrete model by the simulation relation, thus preservation of universal
logics is obtained. In practice, however, the concrete model is too large to fit
into memory and therefore is never produced. The abstract models are in fact
constructed directly from some high-level description of the system.

For simplicity we consider abstractions obtained by collapsing disjoint sets of
concrete states (in S) into single abstract states (in Ŝ). We will not consider
here non-disjoint sets, as is done for instance in Abstract Interpretation [37,22].

We use a function h : S → Ŝ, called the abstraction mapping, to map each
concrete state to the abstract state that represents it. The abstraction mapping
h induces an equivalence relation ≡h on the domain S in the following manner:
Let s, t be states in S, then

s ≡h t iff h(s) = h(t).

226 O. Grumberg

Since an abstraction can be represented either by an abstraction mapping h or by
an equivalence relation ≡h, we sometimes switch between these representations.
When the context is clear, we often write ≡ instead of ≡h.

3.1 Existential Abstraction

We define abstract Kripke structures by means of existential abstraction [15].
Existential abstraction defines an abstract state to be an initial state if it rep-
resents an initial concrete state. Similarly, there is a transition from abstract
states ŝ to abstract state ŝ′ if there is a transition from a state represented by ŝ
to a state represented by ŝ′ (see Figure 1). Formally,

M

M

Fig. 1. Existential Abstraction. M is the original Kripke structure, and M the ab-
stracted one. The dotted lines in M indicate how the states of M are clustered into
abstract states.

Definition 6. Let M = (S, S0, R, L) be a (concrete) Kripke structure, let Ŝ be
a set of abstract states and h : S → Ŝ be an abstraction mapping. The abstract
Kripke structure M̂ = (Ŝ, Ŝ0, R̂, L̂) generated by h for M is defined as follows:

1. Ŝ0(ŝ) iff ∃s (h(s) = ŝ ∧ S0(s)).
2. R̂(ŝ1, ŝ2) iff ∃s1∃s2 (h(s1) = ŝ1 ∧ h(s2) = ŝ2 ∧ R(s1, s2)).
3. L̂(ŝ) =

⋂
h(s)=s L(s).

Having ‘iff’ in items 1 and 2 of the definition above results in the exact abstract
model of M , with respect to h. Replacing ‘iff’ by ‘if’ results in a model with more
initial states and more transitions, which still over-approximates the structure
M . Such a model is sometimes easier to construct. The results below hold for
any abstract Kripke structure constructed by existential abstraction, not only
for the exact one.

Abstraction and Refinement in Model Checking 227

Note that, ŝ is labeled by an atomic proposition if and only if all the states
it represents are labeled by that proposition. We would like the abstract model
to satisfy as many atomic propositions as possible. In order to achieve this, we
introduce a condition on the abstraction mapping, guaranteeing that all concrete
states in an equivalence class of ≡h share the same labels.

An abstraction mapping h is appropriate for a specification ϕ if for all atomic
formulas f ∈ Atoms(ϕ), and for all states s and t in S such that s ≡h t it holds
that s |= f ⇔ t |= f .

Let M and ϕ be defined over AP and let h be appropriate for ϕ, then s ≡h t
implies L(s) = L(t). Moreover, h(s) = ŝ implies L̂(ŝ) = L(s).

The following theorem shows that for ACTL∗, specifications which are correct
for M̂ are correct for M as well.

Theorem 2. Let M be a Kripke structure and ϕ be an ACTL∗ formula, both de-
fined over AP . Further, let h be appropriate for ϕ. Then M ' M̂ . Consequently,
M̂ |= ϕ implies M |= ϕ.

Note that once Ŝ, h, and AP are given, Ŝ0, R̂, and L̂ are uniquely determined.
Thus, Ŝ, h, and AP uniquely determine M̂ . Since h implicitly includes the
information about Ŝ and AP , we sometimes refer to h for identifying M̂ . In
the next subsections we will define different types of abstraction by means of
their abstract states and abstraction mapping. Other abstraction types are also
possible.

3.2 Abstraction Types

Let P be a program and let ϕ be an ACTL∗ formula. We describe several ways
to define abstractions that are appropriate for checking ϕ on P . They are all
based on the existential abstraction. They differ from each other in their choice
of abstract states, in the set of atomic propositions that label both concrete and
abstract states and in the definition of the abstraction function h.

Predicate Abstraction: Predicate abstraction [28,50] is based on a set of pred-
icates {P1, . . . , Pk}, defined over the program variables. Recall that predicates
are quantifier-free first order formulas. Since our goal is to check a property ϕ on
a program P , Atoms(ϕ), the set of predicates appearing in ϕ, must be included
in the set of predicates. In addition, this set will contain some of the conditions
in control statements in P , and possibly other predicates.

In order to define the abstract state space, each predicate Pj is associated with
a Boolean variable Bj . The set of abstract states are valuations of {B1, . . . , Bk}.
Thus, Ŝ = {0, 1}k.

The predicates are also used to define the abstraction mapping h between
the concrete and abstract state spaces. A concrete state s will be mapped to an
abstract state ŝ through h if and only if the truth value of each predicate on s

228 O. Grumberg

equals the value of the corresponding Boolean variable in the abstract state ŝ.
Formally,

h(s) = ŝ ⇔
∧

1≤j≤k

(Pj(s) ⇔ Bj(ŝ)). (1)

The predicates also serve as the atomic propositions that label the states
in the concrete and abstract models. That is, the set of atomic propositions is
AP = {P1, P2, .., Pk}. A state in the concrete system will be labeled with all the
predicates it satisfies. Note that, all concrete states mapped to the same abstract
state ŝ agree on the values of all predicates Pj and also agree with ŝ on the value
of the corresponding Bj . Thus, an abstract state will be labeled with predicate
Pj if and only if the corresponding bit Bj is 1 in that state.

Note also that h is a function because each Pj can have one and only one
value on a given concrete state and so the abstract state corresponding to the
concrete state is unique. h is also appropriate for any ACTL∗ formula over AP ,
and in particular ϕ.

Once Ŝ, h, and AP have been determined, the rest of the abstract model is
defined as explained before, by means of existential abstraction.

Example 1. We will exemplify some of the notions defined above on a simple
example. Consider a program P with variables x, y over the natural numbers
and a single transition x := x + 1. Let AP = {P1, P2, P3} where P1 = (x ≤ 1),
P2 = (x > y), and P3 = (y = 2).

Let s and t be two concrete states such that s(x) = s(y) = 0, t(x) = 1 and
t(y) = 2. Then, L(s) = {P1} and L(t) = {P1, P3}.

The abstract states are defined over valuations of the Boolean variable
B1, B2, B3. Thus, Ŝ ⊆ {0, 1}3. The abstraction mapping h is: h(s) = (1, 0, 0)
and h(t) = (1, 0, 1). Note that L̂((1, 0, 0)) = L(s) = {P1}, where L̂((1, 0, 1)) =
L(t) = {P1, P3}. The abstract transition relation can be represented by the
following formula:

R̂(B1, B2, B3, B
′
1, B

′
2, B

′
3) ⇐⇒

∃x, y, x′, y′[P1(x, y) ⇔ B1 ∧ P2(x, y) ⇔ B2 ∧ P3(x, y) ⇔ B3 ∧
x′ = x+ 1 ∧ y′ = y ∧
P1(x′, y′) ⇔ B′

1 ∧ P2(x′, y′) ⇔ B′
2 ∧ P3(x′, y′) ⇔ B′

3].

If the program P is over a finite, relatively small state space, then BDDs can
be used to compute R̂. For that, we will need a BDD representation of the
concrete transition relation R (possibly in the form of a partitioned transition
relation [13]). Further, we will need a BDD representation for h.

If the program is over a finite but large state space then SAT solvers will be
more appropriate, while if its state space is infinite then theorem prover will
have to be used [50].

The two other types of abstractions described next can both be defined by
means of predicate abstraction. However, they are interesting special cases.

Abstraction based on visible and invisible variables: The visible-variables
abstraction, also known as localization reduction [36], is based on a partition of

Abstraction and Refinement in Model Checking 229

the program variables into visible and invisible variables. It is a simpler special
case of predicate abstraction and is widely used in model checking of hardware.
The visible variables, denoted V , are considered to be important for the checked
property ϕ and hence are retained in the abstract model. This set includes,
in particular, all variables that appear in ϕ. The rest of the variables, called
invisible, are considered irrelevant for checking ϕ. Ideally, only a small subset of
the variables will be considered visible.

Formally, given a set of variables U = {u1, . . . , up}, U ⊆ V , let sU denotes
the portion of s that corresponds to variables in U , i.e., sU = (s(u1), . . . , s(up))

Let V = {u1, . . . , uq} ⊆ V be the set of visible variables. Then, the set of
abstract states is Ŝ = Du1 × . . . ×Duq . The abstraction function h : S → Ŝ is
defined as h(s) = sV . AP includes all atomic propositions in ϕ. Since all variables
that appear in ϕ are visible, h is appropriate for ϕ.

A conservative choice of the set of visible variables is described below. As-
sume that each variable v ∈ V is associated with a next-state function fv(V).
Typically, fv depends only on a subset of V . The Cone Of Influence (COI) [13]
of a formula ϕ is defined inductively as follows. It includes all the variables in
ϕ. In Addition, if v is in COI, then all variables on which fv depends are also in
COI.

Taking the COI of ϕ to be the set of visible variable, results in an abstract
model which is equivalent to the concrete model with respect to ϕ. That is, the
abstract model satisfies ϕ if and only if the concrete model satisfies it. As a
result, refutation of ϕ on the abstract model implies refutation on the concrete
model. This choice, however, is often not practical, since COI is typically too
large.

Note that, in contrast to predicate abstraction, the visible-variables abstrac-
tion cannot retain any information on variables over infinite domain. Such
variables must be considered invisible. This is because the domain of a visi-
ble variable is taken as is and no abstraction is applied to it. In the next section
we present an abstraction that can abstract domains of individual variables.

Data abstraction: Another useful abstraction can be obtained by abstracting
away some of the data information. Data abstraction [15,38] is done by choosing,
for every variable in the system, an abstract domain that is typically significantly
smaller than the original domain. The abstraction function maps concrete data
domains to abstract data domains and induces an abstraction function from
concrete states to abstract states.

Clearly, a property verified for the abstract model can only refer to the ab-
stract values of the program variables. In order for such a property to be mean-
ingful in the concrete model we label the concrete states by atomic formulas
of the form v̂i = a, where a is an element of the abstract domain of vi. These
atomic formulas indicate that the variable vi has some value d that has been
abstracted to a.

Let P be a program with variables v1, . . . , vn. For simplicity we assume that
all variables are over the same domainD. Thus, the concrete model of the system

230 O. Grumberg

is defined over states s of the form s = (d1, . . . , dn) in D × . . .×D, where di is
the value of vi in this state.

In order to build an abstract model for P we need to choose an abstract
domain A and an variable-abstraction mapping h : D → A. The abstract state
space is then defined by

Ŝ = A× . . .×A.

The abstraction mapping is an extension of the variable-abstraction mapping h
to n-tuples in D×. . .×D. By abuse of notion we denote the abstraction mapping
by h as well.

h((d1, . . . , dn)) = (h(d1), . . . , h(dn)).

As before, an abstract state (a1, . . . , an) of Ŝ represents the set of all states
(d1, . . . , dn) such that h((d1, . . . , dn)) = (a1, . . . , an).

The next step is to restrict the concrete model of P so that it reflects only
the abstract values of its variables. This is done by defining the set of atomic
propositions as follows:

AP = { v̂i = a | i = 1, . . . , n and a ∈ A }.

The notation v̂i is used to emphasize that we refer to the abstract value of the
variable vi. The labeling of a state s = (d1, . . . , dn) in the concrete model will
be defined by

L(s) = { v̂i = ai | h(di) = ai, i = 1, . . . , n }.

By restricting the state labeling we lose the ability to refer to the actual values
of the program variables. However, many of the states are now indistinguishable
and can be collapsed into a single abstract state.

Here again all states mapped to an abstract state agree on all atomic proposi-
tions. Thus, the abstraction mapping h is appropriate for every ACTL∗ formula
defined over AP . The abstract labeling, defined according to the existential ab-
straction, can also be described as follows. Let ŝ = (a1, . . . , an). Then,

L̂(ŝ) = { v̂i = ai | i = 1, . . . , n }.

Example 2. Let P be a program with a variable x over the integers. Let s, s′

be two program states such that s(x) = 2 and s′(x) = −7. Following are two
possible abstractions.

Abstraction 1:

A1 = {a−, a0, a+} and

h1(d) =

⎧⎨⎩
a+ if d > 0
a0 if d = 0
a− if d < 0

Thus, h(s) = (a+) and h(s′) = (a−). The set of atomic propositions is
AP1 = { x̂ = a−, x̂ = a0, x̂ = a+ }.

Abstraction and Refinement in Model Checking 231

The labeling of states in the concrete and abstract models induced by A1
and h1 is:

L1(s) = L̂(a+) = {x̂ = a+} and L1(s′) = L̂(a−) = {x̂ = a−}.

Abstraction 2:

A2 = {aeven, aodd} and

h2(d) =
{
aeven if even(|d|)
aodd if odd(|d|)

Here h(s) = (aeven) and h(s′) = (aodd). The set of atomic propositions is
AP2 = { x̂ = aeven, x̂ = aodd }.
The labeling induced by A2 and h2 is:

L2(s) = L̂(aeven) = {x̂ = aeven} and L2(s′) = L̂(aodd) = {x̂ = aodd}.

4 Deriving Models from the Program Text

In the next section we explain how the exact and approximated abstract model
for the system can be derived directly from a high-level description of a program.
In order to avoid having to choose a specific programming language, we argue
that the program can be described by means of first-order formulas. In this
section we demonstrate how this can be done.

Let P be a program, and let v = (v1, . . . , vn) and v′ = (v′1, . . . , v′n) be two
copies of the program variables, representing the current and next state, respec-
tively. The program will be given by two first-order formulas, S0(v) and R(v, v′),
describing the set of initial states and the set of transitions, respectively. Let
d = (d1, . . . , dn) be a vector of values. The notation S0[v ← d] indicates that for
every i = 1, . . . , n, the value di is substituted for the variable vi in the formula
S0. A similar notation is used for substitution in the formula R.

Definition 7. Let S = D × . . . × D be the set of states in a model M . The
formulas S0(v) and R(v, v′) define the set of initial states S0 and the set of
transitions R in M as follows. Let s = (d1, . . . , dn) and s′ = (d′1, . . . , d

′
n) be two

states in S.

– S0(s) ⇔ S0(v)[v ← d] is true.
– R(s, s′) ⇔ R(v, v′)[v ← d, v′ ← d′] is true.

The following example demonstrates how a program can be described by means
of first-order formulas. A more elaborate explanation can be found in [13]. We
assume that each statement in the program starts and ends with labels that
uniquely define the corresponding locations in the program. The program loca-
tions will be represented in the formula by the variable pc (the program counter),
which ranges over the set of program labels.

232 O. Grumberg

Example 3. Given a program with one variable x that starts at label l0, in any
state in which x is even, the set of its initial states is described by the formula:

S0(pc, x) = pc = l0 ∧ even(x).

Let l : x := e l′ be a program statement. the transition relation associated
with this statement is described by the formula:

R(pc, x, pc′, x′) = pc = l ∧ x′ = e ∧ pc′ = l′.

Given the statement l : if x = 0 then l1 : x := 1 else l2 : x := x + 1 l′ , the
transition relation associated with it is described by the formula:

R(pc, x, pc′, x′) = ((pc = l ∧ x = 0 ∧ x′ = x ∧ pc′ = l1) ∨
(pc = l ∧ x �= 0 ∧ x′ = x ∧ pc′ = l2) ∨
(pc = l1 ∧ x′ = 1 ∧ pc′ = l′) ∨
(pc = l2 ∧ x′ = x+ 1 ∧ pc′ = l′)).

Note that checking the condition of the if statement takes one transition, along
which the value of the program variable is checked but not changed. If the
program contains an additional variable y, then y′ = y will be added to the
description of each of the transitions above. This captures the fact that variables
that are not assigned a new value keep their previous value.

4.1 Deriving Abstract Models

Let S0 and R be the formulas describing a concrete model M . Let Ŝ and h be the
set of abstract states and the abstraction mapping, defining an abstract model
M̂ . We would like to define formulas Ŝ0 and R̂ that describe the model M̂ . We
first define formulas that describe the exact abstract model. To emphasize that
it is the exact model we will denote it by M̂e. We then show how to construct
formulas describing an approximated abstract model with possibly more initial
states and more transitions. The latter formulas represent an abstract model
which is less precise than the exact one, but is easier to compute.

Let Ŝ be defined over the variables (v̂1, . . . , v̂k), that is Ŝ is the set of valuations
of those variables. Further, let h((v1, . . . , vn))) = (v̂1, . . . , v̂k). Thus, h maps
valuations over the concrete domain to valuations over the abstract domain.
The new formulas that we construct for M̂ will be defined over the variables
(v̂1, . . . , v̂k). The formulas will determine for abstract states whether they are
initial and whether there is a transition connecting them. For this purpose, we
first define a derivation of a formula over variables v̂1, . . . , v̂k from a formula over
v1, . . . , vn.

Definition 8. Let ϕ be a first-order formula over variables v1, . . . , vn. The for-
mula [ϕ] over v̂1, . . . , v̂k is defined as follows:

[ϕ](v̂1, . . . , v̂k) = ∃v1 . . . vn (h((v1, . . . , vn))) = (v̂1, . . . , v̂k) ∧ ϕ(v1, . . . , vn)) .

Abstraction and Refinement in Model Checking 233

Lemma 1. Let S0 and R be the formulas describing a model M . Then the
formulas Ŝ0 = [S0] and R̂ = [R] describe the exact model M̂e.

The lemma holds since M̂e is defined by existential abstraction (see Definition 6).
This is directly reflected in [S0] and [R].

Using Ŝ0 and R̂ allows us to build the exact model M̂e without first building
the concrete model M . However, the formulas S0 and R might be quite large.
Thus, applying existential quantification to them might be computationally ex-
pensive. We therefore define a transformation T on first-order formulas. The
idea of T is to push the existential quantification inwards, so that it is applied
to simpler formulas.

Definition 9. Let ϕ be a first-order formula in positive normal form. Then
T (ϕ) is defined as follows:

1. If p is a predicate, then T (p(v1, . . . , vn)) = [p](v̂1, . . . , v̂k) and T (¬p(v1, . . . ,
vn)) = [¬p](v̂1, . . . , v̂k).

2. T (ϕ1 ∧ ϕ2) = T (ϕ1) ∧ T (ϕ2).
3. T (ϕ1 ∨ ϕ2) = T (ϕ1) ∨ T (ϕ2).
4. T (∀vϕ) = ∀v̂T (ϕ).
5. T (∃vϕ) = ∃v̂T (ϕ).

We can now define an approximated abstract model M̂ . It is defined over the same
set of states as the exact model, but its set of initial states and set of transitions
are defined using the formulas T (S0) and T (R). The following lemma ensures
that every initial state of M̂e is also an initial state of M̂ . Moreover, every
transition of M̂e is also a transition of M̂ .

Lemma 2. For every first-order formula ϕ in positive normal form, [ϕ] implies
T (ϕ). In particular, [S0] implies T (S0) and [R] implies T (R).

Note that the other direction does not hold. Cases 2 and 4 of Definition 9 result
in nonequivalent formulas.

Corollary 1. M ' M̂e ' M̂ .

By allowing M̂ to have more behaviors than M̂e, we increase the likelihood that
it will falsify ACTL∗ formulas that are actually true in the concrete model and
possibly true in M̂e. This reflects the tradeoff between the precision of the model
and the ease of its computation.

In practice, there is no need to construct formulas in order to build the ap-
proximated model. Let p be a predicate associated with a basic action a in the
program (e.g. conditions, assignments of mathematical expressions). The user
should provide abstract predicates [p] and [¬p] for every such action a. Based on
these, the approximated model can be constructed automatically.

In [15,38], the construction of abstract models presented here has been devel-
oped and applied in the context of data abstraction.

234 O. Grumberg

5 Counterexample-Guided Abstraction Refinement

It is easy to see that, regardless of the type of abstraction we use, the ab-
stract model M̂ contains less information than the concrete model M2. Thus,
model checking the structure M̂ potentially produces incorrect results. Theo-
rem 2 guarantees that if an ACTL∗ specification is true in M̂ then it is also
true in M . On the other hand, the following example shows that if the abstract
model invalidates an ACTL� specification, the actual model may still satisfy the
specification.

Example 4. The US traffic light controller presented in Figure 2, is defined over
atomic propositions AP = {state = red}. We would like to prove for it the
formula ψ = AGAF(state = red) using the abstraction mapping h(red) = r̂ed

and h(green) = h(yellow) = ĝo. It is easy to see that M |= ψ while M̂ �|=
ψ. There exists an infinite abstract trace 〈r̂ed, ĝo, ĝo, . . . 〉 that invalidates the
specification. However no corresponding concrete trace exists.

red green yellow red go

Fig. 2. Abstraction of a US traffic light

When an abstract counterexample does not correspond to some concrete coun-
terexample, we call it spurious. For example, 〈r̂ed, ĝo, ĝo, . . . 〉 in the above ex-
ample is a spurious counterexample.

Let us consider the situation outlined in Figure 3. We see that the abstract
path does not have a corresponding concrete path. Whichever concrete path we
go, we will end up in state D, from which we cannot go further. Therefore, D
is called a deadend state. On the other hand, the bad state is state B, because
it made us believe that there is an outgoing transition. Finally, state I is an
irrelevant state since it is neither deadend nor bad. To eliminate the spurious
path, the abstraction can be refined, for instance, as indicated by the thick line,
separating deadend states from bad states.

5.1 The Abstraction-Refinement Framework for ACTL�

In this section we present the framework of CounterExample-Guided Abstraction-
Refinement (CEGAR), for the logic ACTL� and existential abstraction. The
main steps of the CEGAR framework are presented below:

1. Given a model M and an ACTL� formula ϕ, generate an initial abstract
model M̂ .

2 From now on we will assume that M is defined according to an abstraction mapping
h which is appropriate for the checked property.

Abstraction and Refinement in Model Checking 235

D

I B

M

M

Fig. 3. The abstract path in M (indicated by the thick arrows) is spurious. To eliminate
the spurious path, the abstraction has to be refined as indicated by the thick line in
M .

2. Model check M̂ with respect to ϕ 3. If ϕ is true, then conclude that the
concrete model satisfies the formula and stop. If a counterexample T̂ is found,
check whether it is also a counterexample in the concrete model. If it is,
conclude that the concrete model does not satisfy the formula and stop.
Otherwise, the counterexample is spurious. Proceed to step 3.

3. Refine the abstract model, so that T̂ will not be included in the new, refined
abstract model. Go back to step 2.

Suggesting an initial abstraction and refinements manually requires great in-
genuity and close acquaintance with the verified system. Here we present a frame-
work, developed in [17], in which both steps are done automatically. The initial
abstraction is constructed based on the program text, and refinements are de-
termined by spurious counterexamples.

5.2 Detailed Overview of CEGAR

We now describe in more detail the CEGAR framework for ACTL�. For a pro-
gram P and an ACTL� formula ϕ, our goal is to check whether the Kripke
structure M corresponding to P satisfies ϕ. The CEGAR methodology consists
of the following steps.

1. Generate the initial abstraction: We generate an initial abstraction mapping
h by examining the program text. We consider the conditions used in control
statements such as if, while, and case, and also the atomic formulas in ϕ.
The initial abstraction is an existential abstraction, constructed according
to one of the abstractions described in Section 3.2.

3 Most existing model checking tools handle CTL or LTL which are subsets of ACTL�.

236 O. Grumberg

2. Model-check the abstract structure: Let M̂ be the abstract Kripke structure
corresponding to the abstraction mapping h. We check whether M̂ |= ϕ.
If the check is affirmative, then we can conclude that M |= ϕ (see Theo-
rem 2). Suppose the check reveals that there is a counterexample T̂ . We
ascertain whether T̂ is an actual counterexample, i.e., it corresponds to a
counterexample in the unabstracted structure M . If T̂ turns out to be an
actual counterexample, we report it to the user, otherwise T̂ is a spurious
counterexample, and we proceed to step 3.

3. Refine the abstraction: We refine the abstraction mapping h by partitioning a
single equivalence class of ≡ so that after the refinement, the refined abstract
structure M̂ does not admit the spurious counterexample T̂ . We will not
discuss here partitioning algorithms. After refining the abstraction mapping,
we return to step 2.
The refinement can be accelerated in the cost of faster increase of the abstract
model if the criterion obtained for partitioning one equivalence class (e.g. a
new predicate) is used to partition all classes.

Depending on the type of h and the size of M , the initial abstract model
(i.e., abstract initial states and abstract transitions) can be built using BDDs,
SAT solvers or theorem provers. Similarly, the partitioning of abstract states,
performed in the refinement, can be done using BDDs (e.g. as in [17]), SAT
solvers (e.g. as in [10]), or linear programming and machine learning (e.g. as
in [18]).

5.3 BDD-Based CEGAR

In this section we describe a BDD-based implementation of the CEGAR frame-
work, in which the initial abstraction and the refinements are computed and
represented symbolically, using BDDs.

Model Checking the Abstract Model. We use standard symbolic model
checking procedures to determine whether M̂ satisfies the specification ϕ. If it
does, then by Theorem 2 we can conclude that the original Kripke structure also
satisfies ϕ. Otherwise, assume that the model checker produces a counterexam-
ple T̂ corresponding to the abstract model M̂ . In the rest of this section, we
will focus on counterexamples which are finite paths. In [17], counterexamples
consisting of a finite path followed by a loop are also considered. In [19], tree-like
counterexamples for all of ACTL are considered.

5.4 Identification of Spurious Path Counterexamples

Assume the counterexample T̂ is a path 〈ŝ1, · · · , ŝn〉. Given an abstract state ŝ,
the set of concrete states s such that h(s) = ŝ is denoted by h−1(ŝ),

Abstraction and Refinement in Model Checking 237

1

2

3

4 7

11

12

8

6

5

9

10

1̂ 2̂ 4̂3̂

Fig. 4. An abstract counterexample

i.e., h−1(ŝ) = {s|h(s) = ŝ}. We extend h−1 to sequences in the following way:
h−1(T̂) is the set of concrete paths defined as follows:

h−1(T̂) = {〈s1, · · · , sn〉|
n∧

i=1

h(si) = ŝi ∧ S0(s1) ∧
n−1∧
i=1

R(si, si+1)}.

Next, we give a symbolic algorithm to compute h−1(T̂). Let S1 = h−1(ŝ1) ∩ S0.
For 1 < i ≤ n, we define Si in the following manner: Si := Image(Si−1) ∩
h−1(ŝi). Recall that, Image(Si−1) is the set of successors of states in Si−1. The
sequence of sets Si is computed symbolically using BDDs and the standard image
computation algorithm. The following lemma establishes the correctness of this
procedure.

Lemma 3. The following are equivalent:

(i) The path T̂ corresponds to a concrete counterexample.
(ii) The set of concrete paths h−1(T̂) is non-empty.
(iii) For all 1 ≤ i ≤ n, Si �= ∅.

Suppose that condition (iii) of Lemma 3 is violated, and let i be the largest
index such that Si �= ∅. Then ŝi is called the failure state of the spurious coun-
terexample T̂ . It follows from Lemma 3 that if h−1(T̂) is empty (i.e., if the
counterexample T̂ is spurious), then there exists a minimal i (2 ≤ i ≤ n) such
that Si = ∅.

Example 5. In this example we apply data abstraction. Consider a program with
only one variable with domain D = {1, · · · , 12}. Assume that the abstraction
mapping h maps d ∈ D to -(d− 1)/3.+ 1. There are four abstract states corre-
sponding to the equivalence classes {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and {10, 11, 12}.
We call these abstract states 1̂, 2̂, 3̂, and 4̂. The transitions between states
in the concrete model are indicated by the arrows in Figure 4; small dots de-
note non-reachable states. Suppose that we obtain an abstract counterexample

238 O. Grumberg

T̂ = 〈1̂, 2̂, 3̂, 4̂〉. It is easy to see that T̂ is spurious. Using the terminology of
Lemma 3, we have S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {9}, and S4 = ∅. Notice
that S4 is empty. Thus, ŝ3 is the failure state.

Algorithm SplitPATH(T)

S := h−1(s1) ∩ S0

j := 1
while (S �= ∅ and j < n) {

j := j + 1
Sprev := S
S := Image(S) ∩ h−1(sj) }

if S �= ∅ then output ”counterexample exists”
else output j-1, Sprev

Fig. 5. SplitPATH checks if an abstract path is spurious

The symbolic Algorithm SplitPATH in Figure 5 computes the index of the
failure state and the set of states Si−1; the states in Si−1 are called dead-end
states. After the detection of the dead-end states, we proceed to the refinement
step. On the other hand, if the conditions stated in Lemma 3 are true, then
SplitPATH will report a “real” counterexample and we can stop.

5.5 Refining the Abstraction

In this section we explain how to refine an abstraction to eliminate the spurious
counterexample. In order to simplify the discussion we assume that the abstract
model is exact (see the discussion following Definition 6). Less precise abstract
models can also be handled. Recall the discussion concerning Figure 3 in Sec-
tion 5.1 where we identified deadend states, bad states, and irrelevant states.
The refinement should suggest a partitioning of equivalence classes, that will
separate the deadend states SD from the bad states SB.

We already have the deadend states. SD is exactly the set Sprev, returned by
the algorithm SplitPATH(T̂). The algorithm also returns j − 1, the index in
the counterexample where the failure state has been encountered. We can now
compute the bad states symbolically as follows:

SB = PreImage(h−1(ŝj+1)) ∩ h−1(ŝj).

h−1(ŝj) should now be partitioned to separate these two sets of states. This can
be done in different ways. For example, if we work directly with BDDs, then we
can add a new abstract state ŝ′j to Ŝ and update the BDD for h so that states

in SD are now mapped to the new state ŝ′j . Of course, now R̂, Ŝ0 and L̂ should
be updated.

Abstraction and Refinement in Model Checking 239

Our refinement procedure continues to refine the abstraction mapping by par-
titioning equivalence classes until a real counterexample is found, or the property
is verified. If the concrete model is finite, then the partitioning procedure is guar-
anteed to terminate.

6 Conclusion

We surveyed abstractions based on over-approximation and preserving truth
results of universal branching-time logics from the abstract model to the concrete
model.

We did not cover many other approaches to abstraction. Those are usually
based on more elaborated models. Such models allow, for instance, for abstract
states to represent non-disjoint sets of concrete states. Others allow two types of
transitions that over- or under-approximate the concrete transition relation and
thus preserve the truth of full branching-time logics. Others allow to interpret
formulas over 3-valued semantics, and can preserve both truth and falsity of full
branching-time logics.

A relevant question for the abstraction-refinement framework is whether every
infinite-state model has a finite-state abstraction (sometimes referred to as
completeness). This question has been discussed for branching-time logics in,
e.g., [23]. It turns out that some notion of fairness is needed in order to guaran-
tee completeness. It should be noted that for a finite model this question does
not arise since it can always serve as its own abstraction. It should also be noted
that even for complete abstraction the iterative process of abstraction-refinement
is not guaranteed to terminate since there is no constructive way to construct
the abstraction.

References

1. T. Ball and S. Rajamani. Checking temporal properties of software with boolean
programs. In In Proceedings of the Workshop on Advances in VErification
(WAVE), July 2000.

2. I. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: an industry-oriented
formal verification tool. In proceedings of the 33rd Design Automation Conference
(DAC’96), pages 655–660. IEEE Computer Society Press, June 1996.

3. Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Check-
ing memory safety with blast. In Proceedings of the International Conference on
Fundamental Approaches to Software Engineering (FASE), volume 3442 of Lecture
Notes in Computer Science, pages 2–18, 2005.

4. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. In proceedings of the 36rd Design
Automation Conference (DAC’99). IEEE Computer Society Press, June 1999.

5. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
bdds. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’99), number 1579 in Lecture Notes in Computer
Science. Springer-Verlag, 1999.

240 O. Grumberg

6. M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite kripke struc-
tures in propositional temporal logic. Theor.Comp.Science, 59(1–2), July 1988.

7. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers, pages 35(8):677–691, 1986.

8. J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020

states and beyond. Information and Computation, 98:142–170, 1992.
9. Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Mod-

ular verification of software components in C. In International Conference on
Software Engineering (ICSE), pages 385–395, 2003.

10. P. Chauhan, E.M. Clarke, J. Kukula, S. Sapra, H. Veith, and D.Wang. Automated
abstraction refinement for model checking large state spaces using SAT based con-
flict analysis. In Formal Methods in Computer Aided Design (FMCAD), November
2002.

11. Pankaj Chauhan, Edmund M. Clarke, and Daniel Kroening. Using SAT based
image computation for reachability analysis. Technical Report CMU-CS-03-151,
Carnegie Mellon University, School of Computer Science, 2003.

12. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic
model checker. Software Tools for Technology Transfer, 1998.

13. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Publishers, 1999.
14. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-

ing time temporal logic. In D. Kozen, editor, Logic of Programs: Workshop, York-
town Heights, NY, May 1981, volume 131 of Lecture Notes in Computer Science.
Springer-Verlag, 1981.

15. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Program-
ming Languages. Association for Computing Machinery, January 1992.

16. Edmund Clarke and Daniel Kroening. Hardware verification using ANSI-C pro-
grams as a reference. In Proceedings of ASP-DAC 2003, pages 308–311. IEEE
Computer Society Press, January 2003.

17. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. J. ACM, 50(5):752–794, 2003.

18. E.M. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-
refinement using ILP and machine leraning techniques. In Proc. of Conference on
Computer-Aided Verification (CAV), volume 2404 of Lecture Notes in Computer
Science, pages 137–150, Copenhagen, Denmark, July 2002. Springer-Verlag.

19. E.M. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-like counterexamples in model
checking. In Seventeenth Annual IEEE Symposium on Logic In Computer Science
(LICS), Copenhagen, Denmark, July 2002.

20. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, , and M. Y.
Vardi. Benefits of bounded model checking at an industrial setting. In 13th In-
ternational Conference on Computer Aided Verification (CAV’01), volume 2102 of
LNCS, Paris, France, July 2001.

21. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby,
and H. Zheng. Bandera: extracting finite-state models from java source code. In
International Conference on Software Engineering, pages 439–448, 2000.

22. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive sys-
tems. ACM Transactions on Programming Languages and System (TOPLAS),
19(2), 1997.

23. Dennis Dams and Kedar S. Namjoshi. The existence of finite abstractions for
branching time model checking. In Logic in Computer Science (LICS), pages 335–
344, 2004.

Abstraction and Refinement in Model Checking 241

24. Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and
David Van Campenhout. Reasoning with temporal logic on truncated paths. In
15th International Conference on Computer Aided Verification (CAV’03), volume
2725 of Lecture Notes in Computer Science, pages 27–39, Boulder, CO, USA, July
2003.

25. E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” revisited: On
branching time versus linear time. J. ACM, 33(1):151–178, 1986.

26. R. Fraer, G. Kamhi, Z. Barukh, M.Y. Vardi, and L. Fix. Prioritized traversal: Ef-
ficient reachability analysis for verification and falsification. In 12th International
Conference on Computer Aided Verification (CAV’00), volume 1855 of LNCS,
Chicago, USA, July 2000.

27. E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT-solver. In DATE,
2002.

28. Sussanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS.
In Proc. of Conference on Computer-Aided Verification (CAV), volume 1254 of
Lecture Notes in Computer Science, pages 72–83. Springer-Verlag, June 1997.

29. O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Trans. on Programming Languages and Systems, 16(3):843–871, 1994.

30. O. Grumberg, A. Schuster, and A. Yadgar. Reachability using a memory-efficient
all-solutions sat solver. In Fifth Inernation Conference on Formal Methods in
Computer-Aided Design (FMCAD’04), November 2004.

31. Z. Har’El and R. P. Kurshan. Software for analytical development of communica-
tions protocols. AT&T Technical Journal, 69(1):45–59, Jan.–Feb. 1990.

32. K. Havelund and T. Pressburger. Model checking JAVA programs using JAVA
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

33. G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inter-
national Editors, 1991.

34. G. Holzmann. Logic verification of ansi-c code with SPIN. In Proceedings of the
7th international SPIN workshop, volume 1885 of LNCS, pages 131–147, 2000.

35. D. Kozen. Results on the propositional μ-calculus. TCS, 27, 1983.
36. R. P. Kurshan. Computer-Aided Verification of coordinating processes - the au-

tomata theoretic approach. Princeton University Press, Princeton, New Jersey,
1994.

37. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:11–45, 1995.

38. D. E. Long. Model Checking, Abstraction, and Compositional Reasoning. PhD
thesis, Carnegie Mellon University, 1993.

39. J.P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

40. K. McMillan. Applications of craig interpolation to model checking. In 11th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), Lecture Notes in Computer Science, pages 1–12, Edinburgh,
Scotland, April 2005. Springer.

41. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University, 1992.

42. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
43. K. L. McMillan. Interpolation and SAT-based model checking. In CAV, volume

2725 of Lecture Notes in Computer Science, 2003.

242 O. Grumberg

44. Ken L. McMillan. Applying SAT methods in unbounded symbolic model checking.
In Computer Aided Verification, 2002.

45. R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd
Int. Joint Conf. on Artificial Intelligence, pages 481–489. BCS, 1971.

46. R. Milner. An algebraic definition of simulation between programs. In Proceedings
of the Second Internation Joint Conference on Artificial Intelligence, pages 481–
489, September 1971.

47. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engi-
neering an efficient SAT solver. In 39th Design Aotomation Conference (DAC’01),
2001.

48. D. Park. Concurrency and automata on infinite sequences. In 5th GI-Conference
on Theoretical Computer Science, pages 167–183. Springer-Verlag, 1981. LNCS
104.

49. A. Pnueli. The Temporal Semantics of Concurrent Programs. Theoretical Com-
puter Science, 13:45–60, 1981.

50. Hassen Saidi and Natarajan Shankar. Abstract and model check while you prove.
In Proceedings of the eleventh International Conference on Computer-Aided Veri-
fication (CAV99), Trento, Italy, July 1999.

51. M. Sheeran, S. Singh, and G. Staalmarck. Checking safety properties using induc-
tion and a sat-solver. In Third International Conference on Formal methods in
Computer-Aided Design (FMCAD’00), Austin, Texas, November 2000.

52. M. Sheeran and G. Staalmarck. A tutorial on stalmarck’s proof procedure for
propositional logic. Formal Methods in System Design, 16(1), January 2000.

53. Sharon Shoham and Orna Grumberg. A game-based framework for CTL coun-
terexamples and 3-valued abstraction-refinemnet. In Proceedings of the 15th In-
ternational Conference on Computer Aided Verification (CAV’03), volume 2725 of
Lecture Notes in Computer Science, pages 275–287, Boulder, CO, USA, July 2003.
Springer.

Program Compatibility Approaches

Edmund Clarke1, Natasha Sharygina1,2, and Nishant Sinha1

1 Carnegie Mellon University
2 Universita della Svizzera Italiana

Abstract. This paper is a survey of several techniques that have proven useful
in establishing compatibility among behaviorally similar programs (e.g., system
upgrades, object sub- and supertypes, system components produced by different
vendors, etc.). We give a comparative analysis of the techniques by evaluating
their applicability to various aspects of the compatibility problem1.

1 Introduction

Component-based development aims to facilitate the construction of large-scale appli-
cations by supporting the composition of simple building blocks into complex applica-
tions. The use of off-the-shelf components offers a great potential for: (1) significantly
reducing cost and time-to-market of large-scale and complex software systems, (2) im-
proving system maintainability and flexibility by allowing new components to replace
old ones, and (3) enhancing system quality by allowing components to be developed
by those who are specialized in the application area. Despite the advantages of the
component-based approach, the use of commercial off-the-shelf software–especially
when delivered as black-box components–has raised a number of technical issues. One
of the fundamental problems relates to guaranteeing the safety of replacement of older
components by their newer or upgraded counterparts. This problem is a particular in-
stance of a more general task of checking compatibility between behaviorally similar
program components. Among many approaches for component-based specification and
design developed over the years (see an excellent overview in [25]), assessment of com-
patibility between different components remains a challenging task.

A limited answer to the component compatibility problem can be given by traditional
type systems. It is well known [19], however, that type checking, while very useful,
captures only a small part of what it means for a program to be correct. Instead it is
necessary to establish a stronger requirement that ensures the behavioral correctness of
components.

This paper provides a selective overview of several techniques that ensure the re-
quirement of behavioral compatibility among components. The paper is organized as
follows. Section 2 gives an overview of the interface automata formalism and describes
the notions of compatiblity and substitutability as defined in this formalism. Section 3
presents a technique to check if upgrades to one or more components in a component

1 The work described in section on substitutability check is based on a 2005 Formal Methods
paper, Dynamic Component Substitutability, Lecture Notes in Computer Science 3582, 2005
by the same authors.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 243–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 E. Clarke, N. Sharygina, and N. Sinha

assembly are compatible with the other components in the assembly. Section 4 outlines
ideas of behavioral subtyping which ensure that subtype objects preserve properties of
their supertypes. Section 5 presents an automated and compositional procedure to solve
the component substitutability problem in the context of evolving software systems.
Finally, Section 6 provides a comparative evaluation of the presented techniques.

2 Interface Automata Compatibility

Interface automata [10] were proposed by Alfaro et al. for capturing the temporal input-
output (I/O) behaviors of software component interfaces. Given a software component,
these automata model both input assumptions about the temporal order of inputs and
output guarantees about generation of outputs for the component. In contrast to similar
formalisms like I/O automata [20], the interface automata approach handles both com-
position and refinement of automata differently. Two automata are said to be compatible
if there exists some environment that can provide inputs so that the illegal states of the
product automaton are avoided. Composition of two interface automata is defined only
if they are mutually compatible. One interface automaton refines another if it has weaker
input assumptions and stronger output guarantees. Both concepts are formally defined
using game theory semantics. More specifically, they are defined in terms of a game
between Input and Output players, which model the environment and the component
interface automata, respectively.

The interface automata formalism relies on an optimistic approach to component
composition. Composing two interface automata could lead to error states where one
automaton generates an output that is an illegal input for the other automaton. However,
the optimistic composition approach steers clear of the error states by checking if there
exists a legal environment that does not lead the composed system to an error state. As
opposed to the I/O automata approach [20] which allows an arbitrary input environ-
ment (which may lead the composed system to an illegal state), the interface automata
assumes a helpful environment while computing the reachable states of the composed
automaton. Algorithmically, such a composition is obtained by solving a game between
the product automaton of the components (which attempts to get to an error state) and
the environment (which attempts to avoid error states).

The following provides formal description of the interface automata formalism and
the notions of the component composition and refinement.

An interface automaton is a tuple, P = 〈VP , V
init
P , AI

P , A
O
P , A

H
P , TP 〉, where :

– VP is a set of states.
– V init

P ⊆ VP is a set of initial states, having at most one state.
– AI

P , A
O
P , A

H
P are mutually disjoint sets of input, output and internal actions. The

set of all actions AP = AI
P ∪AO

P ∪AH
P .

– TP ⊆ VP ×AP × VP is a set of steps.

P is said to be closed if it has only internal actions, i.e., AI
P = AO

P = ∅, otherwise it is
said to be open. If (v, a, v′) ∈ TP , then action a is said to be enabled at state v. The set
AI

P (v) of enabled input actions specifies which inputs are accepted at the state v; the
other inputs in AI

P \AI
P (v) are illegal inputs at that state.

Program Compatibility Approaches 245

2.1 Composition

Composition of two interface automata is defined only if their actions are disjoint,
except that an input action of one component may coincide with the output action of an-
other component, in which case it is called a shared action. Two automata synchronize
on shared actions, and asynchronously interleave on all other actions.

Formally, two automata P and Q are composable if AI
P ∩ AI

Q = ∅, AO
P ∩ AO

Q = ∅,
AH

Q∩AP = ∅ andAH
P ∩AP = ∅. The shared actions shared(P,Q) of the two automata

are given by the expression (AI
P ∩ AO

Q) ∪ (AO
P ∩ AI

Q). If P and Q are composable
interface automata, their product P ⊗ Q is the interface automaton defined by: VP⊗Q

= VP × VQ, VP⊗Q = V init
P × V init

Q , AI
P⊗Q = (AI

P ∪ AI
Q) \ shared(P,Q), AO

P⊗Q =
(AO

P ∪ AO
Q) \ shared(P,Q) and AH

P⊗Q = AH
P ∪AH

Q ∪ shared(P,Q). The transitions
TP⊗Q are obtained by synchronizing P and Q on shared actions and asynchronously
interleaving all other action steps. A state (v, u) in P ⊗ Q is said to be illegal if there
exists a shared action a ∈ P⊗Q, such that a is enabled in P at state v but is not enabled
in Q at state u or vice-versa.

Compatibility. If the productP ⊗Q is closed, then P andQ are compatible if no illegal
state of P ⊗Q is reachable from an initial state. When P ⊗Q is open, then P andQ can
be compatible if there exists a legal environment interface automaton E (composable
with P ⊗ Q) that can provide inputs to P ⊗ Q such that no illegal state is reachable
in the composition E ⊗ (P ⊗ Q). Alternatively, two interface automata P and Q are
compatible iff (a) they are composable and (b) their composition is non-empty. If P
and Q are compatible, then their composition can be computed by a polynomial time
algorithm [10]. Composition of compatible interface automata is associative and hence
can be computed in an iterative manner.

Intuitively, an interface automaton for a system component represents both assump-
tions about the environment and guarantees (or the observed outputs) of the specified
component. Two assumptions are made about the environment: (i) each output step of
the component must be accepted by the environment as an input and (ii) if an input
action is not enabled at a state of a component, then the environment does not provide
it as an input. The component guarantees consist of the behavior sequences and choices
of input, output and internal actions at each state of the automaton. A drawback of this
formalism is that one can construct trivial legal environments to show compatibility
of components; an environment that generates no inputs for P ⊗ Q can trivially avoid
the illegal states of P ⊗Q. In other words, the formalism can not express the fact that
specific inputs must be present in the environment.

2.2 Refinement

The refinement relation formalizes the relation between abstract and concrete versions
of the same component. The usual approaches to check refinement are based on the
trace containment or simulation preorder relations. It is argued that the former notions
are only suitable for input-enabled systems, where all input actions at each state are
always enabled. In contrast, for non-input-enabled systems like interface automata, a
refinement check based on checking alternating simulation [10] is proposed. The key

246 E. Clarke, N. Sharygina, and N. Sinha

idea here is that, in the non-input-enabled setting, the implementation must allow more
legal inputs and exhibit fewer outputs, than the specification.

Intuitively, an interface automaton Q refines another interface automaton P (written
Q 	 P), if there exists an alternating simulation relation 	 between Q and P , i.e., all
input steps of P can be simulated byQ and all output steps ofQ can be simulated by P .
Moreover, AI

P ⊆ AI
Q and AO

Q ⊆ AO
P . Note that both P and Q may also have internal

steps, which are independent from each other. Therefore, the definition of alternating
simulation is extended to handle internal steps. Given a state v of an interface automaton
P , ε − closureP (v) is defined to be the set of states (including v) that are reachable
from v in P via internal actions. Given a state u in Q, ε − closureQ(u) is defined
similarly. Let IP (v) and IQ(u) denote the set of input steps enabled at all states in
ε−closureP (v) and ε−closureQ(u), respectively. Similarly, letO(v) andO(u) denote
the set of output steps enabled at some state in ε− closureP (v) and ε− closureQ(u),
respectively. Also let SP (v, a) denote the set of all successors v′′ in P such that for
some v′ ∈ ε− closureP (v), (v′, a, v′′) ∈ TP . SQ(u, a) is defined similarly.

Now, a binary relation 	⊆ VQ × VP is an alternating simulation from Q to P if for
all states v ∈ VP and u ∈ VQ such that u 	 v, the following conditions hold:

1. I(v) ⊆ I(u) and O(u) ⊆ O(v).
2. For all a ∈ I(v)∪O(u) and all states u′′ ∈ SQ(u, a), there is a state v′′ ∈ SP (v, a)

such that u′′ 	 v′′.

Finally, Q is said to refine P , if there exist states v ∈ V init
P and u ∈ V init

Q such that
u 	 v and bothAI

P ⊆ AI
Q andAO

Q ⊆ AO
P hold. Refinement between interface automata

is a preorder, i.e., reflexive and transitive.
This notion of refinement has two useful properties:

– Substitutivity. If Q refines P and is connected to the environment by the same in-
puts, then we can always replace P by Q in a larger system. Note that Q must
have no more inputs than P since incompatibilities may occur when environment
presents those inputs to Q.

– Compositionality. In order to check if Q ‖ Q′ 	 P ‖ P ′ , it is sufficient to check
Q 	 P and Q′ 	 P ′, separately.

Interface automata, as defined above, execute asynchronously. The formalism has
been extended to synchronous interfaces [6]. A general formalism relating compo-
nents and their interface models has been developed [11] using the notion of interface
automata.

3 Checking Compatibility of Upgrades

McCamant and Ernst present a technique [21] to check if upgrades to one or more com-
ponents in a component assembly (also referred to as an application) are compatible
with the other components in the assembly. More precisely, their work seeks to identify
unanticipated interactions among software components as a result of an upgrade, be-
fore the older components are replaced by the upgraded ones. Their approach is based
on computing a summary (a set of pre- and post-condition pairs on interface variables)

Program Compatibility Approaches 247

of the observed behavior of the old and new components as well as a summary of the
environment components that interact with the old component. An upgrade is permitted
only if these summaries for the old and new components are compatible; otherwise, a
warning is issued together with a witness that illustrates the incompatibility. The tech-
nique uses a large number of input test sequences and valid executions of components to
compute the summary of the input/output behavior of a component and its environment.
The compatibility check procedure crucially depends on the computed summaries and
the authors have used it successfully to detect incompatibilities during upgrade of the
Linux C library.

3.1 Single Component Upgrade

We now describe their approach for the case of a single component upgrade in an ap-
plication. It is assumed that the application is observed to function properly with some
version of the component and the verification task is to validate that the application will
function correctly after upgrading the component to a new version. The upgrade com-
patibility check technique first computes an operational abstraction (summary) of the
behaviors of the old component that are used by the rest of the system. The summary
is computed using the tool Daikon [14] for automatically inferring program invariants
from a representative set of program behaviors and consists of pre- and post-condition
tuples for the component. The new component vendor also computes this observation
summary for the new component, based on the test suite for the component and pro-
vides the summary to the compatibility check procedure. The procedure then compares
the old and the new operational abstractions to test if the new abstraction is stronger
than the older one. More precisely, the procedure checks if the new abstraction is able
to accept as many inputs and produces no more outputs than the old abstraction. This
check is performed using the Simplify theorem prover [12].

If the test succeeds, then the new component can be safely used in all situations
where the old component was used. Otherwise, the check provides feedback about the
incompatibility in terms of specific procedure pre- and post-conditions. In spite of an
incompatibility being present, it may still be the case that the new component is accept-
able. The final decision is made by examining the feedback manually.

3.2 Multiple Component Upgrades

Handling upgrades for components with persistent state (e.g., due to variables in object-
oriented programs) or callbacks is more difficult. Similarly, handling simultaneous up-
grades for multiple components requires more sophisticated analysis. For this analysis,
an application is sub-divided into modules with the assumption that any upgrade affects
one or more complete modules. Now, the upgrade compatibility check technique not
only computes an observational summary of each upgraded module in the context of
its environment modules, but also computes a summary of the behavior of environment
modules, as observed by that module.

The observational summaries consist of three types of relations. (1) Call and re-
turn relations represent the procedure call dependencies between modules. (2) Internal

248 E. Clarke, N. Sharygina, and N. Sinha

data-flow relations represent how the output of a module depends on the module’s in-
puts. This relation is stored as logical formula on input and output variables of a module
and generalizes upon the observed behaviors of the module during testing. (3) Exter-
nal summary relations represent how each input to the module might depend on the
behavior of the rest of the system and any previous outputs of the module. These re-
lations may be considered to be dual of the internal data-flow relations and represent
assumptions about how the module is used in the application.

In the event of an upgrade of multiple modules, it is assumed that each upgraded
module is accompanied by sets of new data-flow and external summary relations. The
compatibility check is then performed by checking if the new summary relations obey
the old relations. This check is performed using the notion of a feasible subgraph [21]
for a summary relation, which captures a subset of system executions over which the
summary relation should hold. An upgrade is considered to be safe if it allows each sum-
mary relation to hold over every corresponding feasible subgraph. Several optimizations
are presented aimed at reducing the number of feasible subgraphs to be re-validated for
each summary relation.

As an example, consider an application with two modules, U and C, where C is
supplied by a vendor and provides a procedure f and U calls f. The calls and returns
to f are denoted by f and f ′, respectively. The summary relation associated with C
consists of two parts: (i) the preconditions of f (assumptions on external components)
represented by C(f) and (ii) a data-flow relation C(f |f ′) describing the postconditions
of f. Both these relations are based on the vendor’s testing of C. Similarly, the relations
associated with U are as follows:U(f) consists of a set of preconditions describing how
U calls f and U(f |f ′) describes the postconditions U expects from the call. In order to
verify that the new componentC may be safely substituted for the old one in the above
application, the following checks are performed:

U(f) =⇒ C(f) (U(f) ∧ C(f ′|f)) =⇒ U(f ′|f)
Here, the first check makes sure that all preconditions C(f) of f in C are met by post-
conditions U(f) of U and the second check ensures that the return values from call to
f satisfy the expectation of the module U . This procedure has been extended to han-
dle upgrades for modules with internal state and callbacks and also for simultaneous
upgrades of multiple modules.

3.3 Case Studies

The authors evaluate their technique on upgrades of the GNU C library distributed
with Linux systems. The library provides the C standard library functions and wrappers
around the low-level system calls and is used by a large number of commonplace appli-
cations on Linux. It contains multiple versions of some procedures in order to maintain
backward compatibility and the linker is responsible for compiling the correct versions
together. The authors subverted the version compatibility checks and checked if the
procedures marked as incompatible can be used without error by the client applications
and whether differences between procedures marked with the same version can cause
errors. Binary versions of the applications and the C library were used together with
a wrapper around the C library, which keeps track of the arguments to and from each
function call in the library.

Program Compatibility Approaches 249

The authors compare two versions of the C library and used the set of common
Linux applications as a ”test suite” for constructing the observational summaries. Of the
selected 76 procedures in the library, the tool correctly warns of 10 behavioral differ-
ences and approves 57 upgrades as compatible. For the remaining 9 procedures, an
(spurious) incompatibility is detected with respect to summaries computed with one
or more test applications. A different experiment examined two incompatible upgrades
of another set of procedures from the C library, where the tool was able to detect the
incompatibilities.

4 Preservation of Program Properties by Behavioral Subtyping

The problem of behavioral consistency among various versions of programs is also ad-
dressed in the work of Liskov and Wing [19]. This work explores ideas of behavioral
subtyping using invariants and constraints. It defines the subtype relation that ensures
that subtype objects preserve properties of their supertypes. The properties are the for-
mal specifications of the sub- and supertypes.

Liskov and Wing define an object’s type not only by the object’s legal values (as
in traditional type checking) but also by its interface with environment (by means of
the object’s methods). Therefore, the properties of the subtype relations are both the
supertype’s values and its methods. Thus, altogether, the behavioral subtyping is defined
to preserve the behavior of supertype methods and also all invariant properties of its
supertype.

4.1 Subtype Relation

The formalization of the subtype relation is given in Figure 1. It uses the model of
a type that is defined as a triple, 〈O, V,M〉, where O is a set of objects, V is a set of
values for an object, andM is a set of methods that provide the means to manipulate the
object. A computation, i.e., program execution, is a sequence of alternating states and
transitions starting in some initial state. The formalization of types uses type invariants
and constraints (for example, type σ can refer to its invariant Iσ and constraint, Cσ).
Methods of each type are denoted by m (for example, methods of type τ are denoted
as mτ .

Subtyping is enforced by the invariant checking that is essentially established as an
abstraction function. Additionally, a renaming map is defined. The rest of the section
provides the formalization of this approach as presented in [19].

The subtype relation relates two types σ and τ . Each type’s specifications preserve
their invariants, Iσ and Iτ , and satisfy their constraints, Cσ and Cτ , respectively. In
the rules, since x is an object of type σ, its value (xpre or xpost) is a member of S
(set of values of type σ) and therefore cannot be used directly in the predicates about
objects of the supertype τ (which are in terms of values in T). Therefore, an abstraction
functionA is used to translate these values using the system predicates from subtype to
supertype values. This approach requires that an abstraction function be defined for all
legal values of the subtype (although it need not be defined for values that do not satisfy
the subtype invariant). Moreover, it must map legal values of the subtype to legal values
of the supertype.

250 E. Clarke, N. Sharygina, and N. Sinha

The first clause (cf. Figure 1) addresses the need to relate inherited methods of the
subtype to those of the supertype. The first two signature rules are the standard con-
tra/covariance rules [4,3]. The exception rule says that mσ may not throw more ex-
ceptions (the exceptions concept is taken from object-oriented programming) than mτ ,
since a caller of a method on a supertype object should not expect to handle an un-
known exception. The pre- and post-condition rules are the intuitive counterparts to the
contravariant and covariant rules for method signatures. The pre-condition rule ensures
the subtype’s method can be called in any state required by the supertype. The post-
condition rule says that the subtype method’s post-condition can be stronger than the
supertype method’s post-condition; hence, any property that can be proved based on
the supertype method’s post-condition also follows from the subtype’s method’s post-
condition.

The second clause addresses preserving program-independent properties. The invari-
ant rule and the assumption that the type specification preserves the invariant suffices
to argue that invariant properties of a supertype are preserved by the subtype. This ap-
proach does not include the invariant in the methods (or constraint) rule directly.

Definition of the subtype relation, �: σ = 〈Oσ, S, M〉 is a subtype of τ = 〈Oτ , T, N〉 if
∃A : S → T , and a renaming map, R : M → N , such that:

1. Subtype methods preserve the supertype methods’ behavior. If mτ of τ is the corresponding
renamed method mσ of σ, the following rules must hold:

Signature Rule.

− Contravariance of arguments. mτ and mσ have the same number of arguments. If the list of
argument types of mτ is α and that of mσ is β, then ∀i.αi � βi.
− Covariance of result. Either both mτ and mσ have a result or neither has. If there is a result,
let mτ ’s result type be α and and mσ’s be β. Then β � α.
− Exception rule. The exceptions thrown during execution of mσ are contained in the set of
exceptions thrown during execution of mτ .

Methods Rule. For all (x : σ), the following holds:

− Pre-condition rule. mτ .pre[A(xpre)/xpre] ⇒ mσ.pre.
− Post-condition rule. mσ.post ⇒ mτ .post[A(xpre)/xpre, A(xpost)/xpost]

2. Subtypes preserve supertype properties. For all computations c, and all states ρ and ψ in c
such that ρ precedes ψ, and for all (x : σ), the following holds :

−Invariant Rule. Subtype invariants ensure supertype invariants. Iσ ⇒ Iτ [A(xρ)/xρ]
−Constraint Rule. Subtype constraints ensure supertype constraints.
Cσ ⇒ Cτ [A(xρ)/xρ, [A(xψ)/xψ]

Fig. 1. Definition of the subtype relation [19]

Program Compatibility Approaches 251

4.2 Pragmatics of the Subtype Relation Approach

The definition of the subtype relation by Liskov and Wing captures the intuition of
programmers for designing type hierarchies in object-oriented languages. The major
contribution is that it provides precise definitions to capture it. As a result systems be-
come amenable to formal analysis of ensuring behavioral compatibility between super-
and subtype objects. Liskov and Wing report a number of successful examples where
the subtype relation was useful in validating several benchmarks.

5 Substitutability Check

Our own earlier work [5] gives an automated and compositional procedure to solve the
substitutability problem in the context of evolving software systems. Checking substi-
tutability is defined as verifying whether (i) any updated portion of software continues
to provide all services provided by it earlier counterpart, and (ii) all previously es-
tablished system correctness properties remain valid after the upgrades. A component
is essentially a C program communicating with other components via blocking mes-
sage passing. A component assembly consists of collection of such concurrent compo-
nents. In the following, I denotes the set of indices of the upgraded components in the
assembly.

The procedure consists of two phases, namely, containment and compatibility. The
containment phase checks locally if any useful behavior has been lost during upgrade
of a component in the assembly and relies on simultaneous use of over- and under-
approximations of the evolved software component. The compatibility phase checks if
the added behaviors of the upgraded component violate any global safety specifications.
This phase uses a dynamic assume-guarantee reasoning algorithm, wherein previously
generated assumptions before upgrades are reused efficiently to re-validate the new as-
sembly. The framework uses iterative abstraction/refinement paradigm [2,8,17] for both
containment and compatibility phases. This approach enabled extraction of relatively
simple finite-state models from complex C code. State-event automata (finite automata
with both state and edges labeled) are used to represent these abstractions. Moreover,
simultaneous upgrade of multiple components are allowed in this framework.

5.1 Containment Check

The containment step verifies for each i ∈ I, that Ci 0 C
′
i , i.e., every behavior of Ci

is also a behavior of C
′
i . If Ci �0 C

′
i , we also generate a counterexample behavior in

Behv (Ci) \Behv (C
′
i) which will be subsequently provided as feedback. This contain-

ment check is performed iteratively and component-wise as depicted in Figure 2 (CE
refers to the counterexample generated during the verification phase). For each i ∈ I,
the containment check proceeds as follows:

1. Abstraction. Construct finite models M and M ′ such that the following conditions
C1 and C2 hold:

(C1) Ci 0M (C2)M ′ 0 C
′
i

252 E. Clarke, N. Sharygina, and N. Sinha

Here M is an over-approximation of Ci and can be constructed by standard predicate
abstraction [15]. M ′ is constructed from C

′
i via a modified predicate abstraction which

produces an under-approximation of its input C component. We now describe the details
of the abstraction steps.

Suppose that Ci comprises of a set of C statements Stmt = {st1, . . . , stk}. Let V be
the set of variables in the Ci. A valuation of all the variables in a program corresponds
to a concrete state of the given program. We denote it by v̄.

Predicates are functions that map a concrete state v̄ ∈ S into a Boolean value. Let
P = {π1, . . . , πk} be the set of predicates over the given program. On evaluating the
set of predicates in P in a particular concrete state v̄, we obtain a vector of boolean
values b̄, where bi = πi(v̄). The boolean vector b̄ represents an abstract state and we
denote this operation by an abstraction function α: b̄ = α(v̄).

True

No All behaviors are preserved

No

Over−approximate Under−approximate

False + CE

Yes

M′
iMi

C′
iCi

Check: CE �∈C′
i

Check: CE ∈CiVALIDATION1

VALIDATION2

Check: Mi 0 M′
iVERIFICATION

ABSTRACTION

Yes ⇒CE ∈Ci \C′
i

Refine Enlarge

Fig. 2. The containment phase of the substitutability framework

May Predicate Abstraction: Over-approximation. This step corresponds to the standard
predicate abstraction. Each statement (or basic block) St in Ci is associated with a
transition relation T (v̄, v̄′). Here, v̄ and v̄′ represent a concrete state before and after
execution of St, respectively. Given the set of predicates P and associated vector of
Boolean variables b̄ as before, we compute an abstract transition relation T̂ (b̄, b̄′) as
follows:

T̂ (b̄, b̄′) = ∃v̄, v̄′ : T (v̄, v̄′) ∧ b̄ = α(v̄) ∧ b̄′ = α(v̄′) (1)

T̂ is an existential abstraction of T and is also referred to as its may abstraction
T̂may [24]. We compute this abstraction using the weakest precondition (WP) trans-
former [13,18] on predicates in P along with an automated theorem prover [15].

Must Predicate Abstraction: Under-approximation. The modified predicate abstrac-
tion constructs an under-approximation of the concrete system via universal or must

Program Compatibility Approaches 253

abstraction. Given a statement St in the modified component C
′
i and its associated

transition relation T (v̄, v̄′) as before, we compute its must abstraction with respect to
predicates P as follows:

T̂ (b̄, b̄′) = ∀v̄, ∃v̄′ : T (v̄, v̄′) ∧ b̄ = α(v̄) ∧ b̄′ = α(v̄′) (2)

We use T̂must to denote the above relation. Note that T̂must contains a transition from
an abstract state b̄ to b̄′ iff for every concrete state v̄ corresponding to b̄, there exists a
concrete transition to a state v̄′ corresponding to b̄′ [24]. Further, it has been shown [24]
that the concrete transition relation T simulates the abstract transition relation T̂must.
Hence, T̂must is an under-approximation of T . Again, we compute T̂must using the WP
transformer on the predicates together with a theorem prover. At the end of this phase,
we obtainM as an over-approximation of Ci andM ′ as an under-approximation of C

′
i .

2. Verification. Verify if M 0 M ′ (or alternatively M \ B 0 M ′ if the upgrade
involved some bug fix and the bug was defined as a SE automata B). If so then from
(C1) and (C2) (cf. Abstraction) above we know that Ci 0 C

′
i and we terminate with

success. Otherwise we obtain a counterexample CE .

3. Validation 1. Check if CE is a real behavior of Ci. To do this we first compute the
set S of concrete states of Ci that are reachable by simulating CE on Ci. This is done
via symbolic simulation and the result is a formula φ that represents S. Then CE is a
real behavior of Ci iff S �= ∅, i.e., iff φ is satisfiable. If CE is a real behavior of Ci,
we proceed to the next step. Otherwise we refine model M (remove spurious CE) by
constructing a new set of predicates P ′ and repeat from Step 2.

4. Validation 2. Check if CE is not a real behavior of C
′
i . To do this we first sym-

bolically simulate CE on C
′
i to compute the reachable set S′ of concrete states of C

′
i .

This is done as in the previous validation step and the result is again a formula φ that
represents S′. Then CE is not a real behavior of C

′
i iff S′ = ∅, i.e., iff φ is unsatisfiable.

If CE is not a real behavior of C
′
i , we know that CE ∈ Behv (Ci)\Behv (C

′
i). We add

CE to the feedback step and stop. Otherwise we enlarge M ′ (add CE) by constructing
a new set of predicates P ′ and repeat from Step 2. This step is an antithesis of standard
abstraction-refinement since it adds the valid behavior CE back to M ′. However it is
conceptually similar to standard abstraction-refinement and we omit its details in this
article.

Figure 2 depicts the individual steps of this containment check. The check is either
successful (all behaviors of Ci are verified to be present in C

′
i) or returns an actual

diagnostic behavior CE as a feedback to the developers.

5.2 Compatibility Check

The compatibility check ensures that the upgraded system satisfies global safety speci-
fication. The check relies on an automated assume-guarantee reasoning procedure [9],
where the key idea is to generate an environment assumption for a component automat-
ically and then verify if the rest of the system satisfies the assumption. An algorithm

254 E. Clarke, N. Sharygina, and N. Sinha

for learning regular sets, L∗ [1,23], is used to automatically generate these assump-
tions assisted by a modelchecker [7]. It is assumed that appropriate assumptions have
been generated by performing automated A-G reasoning over the assembly before an
upgrade occurs. Upon an upgrade, the compatibility check procedure reuses the previ-
ously generated assumptions and locally modifies them in order to re-validate the up-
graded component assembly. Similar to the containment phase, this check is performed
on finite-state state-event (SE) automaton abstractions from the C components.

Automated Assume-Guarantee Reasoning. Assume-guarantee (A-G) based reason-
ing [22] is a well-known compositional verification technique. The essential idea here
is to model-check each component independently by making an assumption about its
environment, and then discharge the assumption on the collection of the rest of the com-
ponents. Given a set of component SE automataM1, . . . ,Mn obtained after abstraction
and a specification SE automata ϕ, consider the following non-circular A-G rule (called
AG-NC) for n components:

M1 ‖ A1 0 ϕ
M2 ‖ · · · ‖Mn 0 A1

M1 ‖ · · · ‖Mn 0 ϕ

In the above, A1 is a deterministic SE automata representing the assumption about the
environment under which M1 is expected to operate correctly. The second premise is
itself an instance of the top-level proof-obligation with n− 1 component SE automata.
Therefore, AG-NC can be recursively applied to the rest of the components so that every
rule premise contains exactly one component automaton. The assumptions are gener-
ated using L∗ together with a model checker for SE automata in an iterative fashion, in
a manner similar to the technique proposed by Cobleigh et al. [9]. In order to show that
a component satisfies a global property, the technique first iteratively learns an assump-
tion automaton that must be satisfied by its environment components. However, this
initial assumption may be too strong to hold on its environment. Therefore, the assump-
tion is gradually weakened by model checking it alternately against the component and
its environment, and using the counterexamples generated.

The compatibility check makes use of AG-NC in the above form to first generate
n− 1 assumptions and then perform re-validation of upgrades. This re-validation may
involve modifying several previously generated assumptions. The compatibility check
avoids re-generating all such assumptions from scratch by proposing a technique to
effectively reuse the previous assumptions by re-validating them first. A dynamic L∗

algorithm is proposed that first re-validates the previously stored set of samples with
respect to the upgraded assembly and then continues to learn in the usual fashion. This
gives rise to a dynamic procedure for A-G reasoning over component assemblies across
upgrades, also called as dynamic A-G.

Compatibility check with Dynamic A-G. The central idea in the compatibility check
algorithm is to use dynamic L∗ for learning assumptions as opposed to the original L∗

algorithm. This allows the check to fully reuse the previous verification results, and in
particular, contributes to its locally efficient nature.

Program Compatibility Approaches 255

Suppose we have a component assembly C consisting of n components and a given
index set I, identifying the upgraded components. We assume that a set of n − 1 as-
sumptions are available from a compatibility check before the upgrade took place. Now,
suppose that the component assembly goes through an upgrade and the behaviors of
one or more SE automata Mi (1 ≤ i ≤ n) change. Note that the previous compat-
ibility check provides us with a set of assumptions Aj (1 ≤ j < n). The dynamic
compatibility check procedure DynamicCheck learns new assumptions required for
the verification of the upgraded assembly while reusing the previous set of assumptions
Aj by first re-validating them, if necessary.

We present an overview of the algorithm DynamicCheck for two SE automata. The
complete details of the generalization of the algorithm to an arbitrary collection of SE
automata can be found in [5]. Suppose we have two old SE automata M1,M2 and a
property SE automaton ϕ. We assume that we previously verified M1 ‖ M2 0 ϕ using
DynamicCheck. The algorithm DynamicCheck uses dynamic L∗ to learn appropriate
assumptions that can discharge the premises of AG-NC. In particular suppose that while
trying to verify M1 ‖ M2 0 ϕ, DynamicCheck generated an assumption A, with an
observation table T .

Now suppose we have new versions M ′
1,M

′
2 for M1,M2 where at least one of the

Mi is different fromM ′
i . DynamicCheck will now reuse T and invoke the dynamic L∗

algorithm to automatically learn an assumption A′ such that: (i) M ′
1 ‖ A′ 0 ϕ and (ii)

M ′
2 0 A′. More precisely, DynamicCheck proceeds iteratively as follows:

1. It checks if M1 = M ′
1. If this holds, then it follows from the definition of AG-

NC that the corresponding assumption language remains the same. Therefore, the
algorithm starts learning from the previous table T itself, i.e., it sets T ′ := T .
Otherwise it re-validates T againstM ′

1 to obtain a new table T ′.
2. The algorithm then derives a conjectureA′ from T ′ and checks if M ′

2 0 A′. If this
check passes, then the procedure terminates with TRUE and a new assumption A′.
Otherwise, a counterexample CE is obtained.

3. The counterexample CE is analyzed to see if CE corresponds to a real counterex-
ample to M ′

1 ‖ M ′
2 0 ϕ (same as a membership query with M ′

1). If so, the algo-
rithm constructs such a counterexample and terminates with FALSE. Otherwise it
updates T ′ using CE .

4. T ′ is closed by making membership queries and the algorithm repeats from Step 2.

5.3 Case Studies

The compatibility check phase for checking component substitutability was imple-
mented in the COMFORT [16] framework. COMFORT extracts abstract component
SE models from C programs using predicate abstraction and performs automated A-G
reasoning on them. If the compatibility check returns a counterexample, the counterex-
ample validation and abstraction-refinement modules of COMFORT are employed to
check for spuriousness and perform refinement, if necessary. The evaluation bench-
marks consist of an assembly having seven components, which implement an inter-
process communication (IPC) protocol.

256 E. Clarke, N. Sharygina, and N. Sinha

Both single and simultaneous upgrades of the write-queue and the ipc-queue compo-
nents in the IPC assembly were used. The upgrades had both missing and extra behav-
iors as compared to the original system. A set of properties describing behaviors of the
verified portion of the IPC protocol were used. It was observed that the compatibility
check required much less time for re-validation (due to reuse of previously generated
assumptions) as compared to time for compositional verification of the original system.

6 Comparative Analysis

We have presented four techniques each of which addresses a problem of behavioral con-
sistency among programs. While the techniques address similar problems of the program
compatibility, they differ greatly in the specification formalisms and algorithmic ap-
proaches. This makes it difficult to conduct comparative analysis among the techniques.
To overcome this difficulty, we chose one of the techniques as a reference point against
which we compared the other three approaches. Specifically, we compared the automata
interface approach, the observation summary approach of McCamant and Ernst, and the
behavioral subtyping technique to our own work on component substitutability.

6.1 Interface Automata Formalism

In the interface automata formalism, substitution check corresponds to a refinement
check, which ensures that the newer component exhibits fewer outputs and accepts
more inputs than the old component. Our approach, however, differentiates between the
refinement and substitution checks. We believe that the refinement check is too strong
to be used as a substitution check since it is not adequate to check substitution locally
without taking into account the exact behaviors of the environment components.

Given two interface automata M and N , checking alternating refinement [10] be-
tween M and N (N 	 M , cf. Section 2) is an effective way to locally check for
substitution of M by N . However, this refinement check assumes that the environment
components remain the same, i.e., they continue to stimulate all inputs of M and are
capable of responding to no more than the present outputs of M . Note that in case of
multiple component upgrades, it is possible that the new environment for the compo-
nent is more supportive, i.e., on one hand, it does not stimulate all inputs of M and on
the other it is able to respond to even more outputs from M . If the new environment
is more supportive, then it is possible that N �	 M but is still substitutable. In other
words, even though some inputs of N may be absent in M , M may still substitute N
since the absent inputs are no longer stimulated by the new environment. Therefore a
substitutability check must take account of the new environment precisely rather than
identifying it on basis of input and output behaviors of the previous component M .
These criteria becomes even more important if multiple components in an assembly
are upgraded and as a consequence, the environment for several components changes
simultaneously.

6.2 Observation-Based Compatibility of Upgrades

McCamant et al. [21] suggest a technique for checking compatibility of multi-
component upgrades. They derive consistency criteria by focusing on input/output

Program Compatibility Approaches 257

component behavior only and abstract away the temporal information. Even though
they state that their abstractions are unsound in general, they report success in detect-
ing important errors on GNU C library upgrades. In contrast, our work on component
substitutability uses abstractions that preserve temporal information about component
behavior and are always sound. Moreover, they need to recompute the external ob-
servational summaries for each upgrade from scratch while our compatibility check
procedure is able to reuse the previous verification proofs to re-validate the upgraded
system.

6.3 Behavioral Subtype Checking

Conceptually, the subtype relation-based approach is similar to our work not only in
that it is based on establishing the behavioral consistency among system components,
but also in that it handles changes among versions of programs. The subtype check
approach handles mutable objects and allows subtypes to have more methods than their
supertypes. The component substitutability approach allows removal and addition of
behaviors to the upgraded component as compared to its earlier counterpart.

The subtype relation is established as an invariant check. It requires defining an
abstraction function that is a restricted form of the simulation relation between the sub-
type and supertype objects. Our work, uses the language containment approach and thus
is more expensive computationally. However, our framework allows checking general
safety properties, while work of Liskov and Wing handles only a restricted set of safety
properties.

References

1. Dana Angluin. Learning regular sets from queries and counterexamples. In Information and
Computation, volume 75(2), pages 87–106, November 1987.

2. T. Ball and S. Rajamani. Boolean programs: A model and process for software analysis.
TR-2000-14, 2000.

3. A. Black, A. Hutchinson, N. Jul, E. Levy, and L. Carter. Distribution and abstract types in
emerald. IEEE TSE, 13(1):65–76, 1987.

4. L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138–164,
1988.

5. Sagar Chaki, Edmund Clarke Natasha Sharygina, and Nishant Sinha. Dynamic component
substitutability analysis. In Proc. of Conf. on Formal Methods, volume 3582 of Lecture Notes
in Computer Science, pages 512–528. Springer Verlag, 2005.

6. Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. Syn-
chronous and bidirectional component interfaces. In CAV, pages 414–427, 2002.

7. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, December 1999.
8. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In E. Allen Emerson and A. Prasad Sistla,
editors, Proceedings of the 12th International Conference on Computer Aided Verification
(CAV ’00), volume 1855 of Lecture Notes in Computer Science, pages 154–169. Springer-
Verlag, July 2000.

258 E. Clarke, N. Sharygina, and N. Sinha

9. J. M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learning assumptions
for compositional verification. In Hubert Garavel and John Hatcliff, editors, Proceedings of
the 9th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS ’03), volume 2619 of Lecture Notes in Computer Science, pages 331–346.
Springer-Verlag, April 2003.

10. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In FSE, 2001.
11. Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design.

In EMSOFT, pages 148–165, 2001.
12. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program

checking. J. ACM, 52(3):365–473, 2005.
13. Edsger Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
14. M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically discovering likely

program invariants to support program evolution. In International Conference on Software
Engineering (ICSE’99), pages 213–224, 1999.

15. Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs with PVS. In Orna
Grumberg, editor, Proceedings of the 9th International Conference on Computer Aided Ver-
ification (CAV ’97), volume 1254 of Lecture Notes in Computer Science, pages 72–83.
Springer-Verlag, June 1997.

16. James Ivers and Natasha Sharygina. Overview of ComFoRT: A model checking reasoning
framework. CMU/SEI-2004-TN-018, 2004.

17. Robert Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, 1994.

18. K. Rustan M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–288,
2005.

19. B. Liskov and J. Wing. Behavioral subtyping using invariants and constraints. Formal Meth-
ods for Distributed Processing, an Object Oriented Approach, pages 254–280, 2001.

20. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. 1987.
21. Stephen McCamant and Michael D. Ernst. Early identification of incompatibilities in multi-

component upgrades. In ECOOP Conference, Olso, Norway, 2004.
22. A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics

and models of concurrent systems. Springer-Verlag New York, Inc., 1985.
23. Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-

quences. In Information and Computation, volume 103(2), pages 299–347, 1993.
24. Sharon Shoham and Orna Grumberg. Monotonic abstraction-refinement for CTL. In TACAS,

pages 546–560, 2004.
25. Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software - Beyond

Object-Oriented Programming. Addison-Wesley, ACM Press, 2002.

Cluster-Based LTL Model Checking
of Large Systems

Jǐŕı Barnat, Luboš Brim, and Ivana Černá�

Department of Computer Science, Faculty of Informatics
Masaryk University, Brno, Czech Republic

Abstract. In recent years a bundle of parallel and distributed algo-
rithms for verification of finite state systems has appeared. We sur-
vey distributed-memory enumerative LTL model checking algorithms
designed for networks of workstations communicating via MPI. In the
automata-based approach to LTL model checking the problem is re-
duced to the accepting cycle detection problem in a graph. Distributed
algorithms, in opposite to sequential ones, cannot rely on depth-first
search postorder which is essential for efficient detection of accepting
cycles. Therefore, diverse conditions that characterise the existence of
cycles in a graph have to be employed in order to come up with efficient
and practical distributed algorithms. We compare these algorithms both
theoretically and experimentally and determine cases where particular
algorithms can be successful.

1 Introduction

With the increase in complexity of computer systems, it becomes more important
to develop formal methods for ensuring their quality and reliability. Various tech-
niques for automated and semi-automated analysis and verification have been
successfully applied to real-life computer systems. However, these techniques
are computationally hard and memory intensive in general and their applica-
bility to extremely large systems is limited. The major hampering factor is the
state space explosion problem due to which large industrial models cannot be
efficiently handled by a single state-of-the-art computer.

Much attention has been focused on the development of approaches to battle
the state space explosion problem. Many techniques, such as abstraction, state
compression, state space reduction, symbolic state representation, etc., are used
to reduce the size of the problem to be handled allowing thus a single com-
puter to process larger systems. There are also techniques that purely focus on
increasing the amount of available computational power. These are, for exam-
ple, techniques to fight memory limits with efficient utilisation of an external
I/O device [1,24,34,40], or techniques that introduce cluster-based algorithms to
employ aggregate power of network-interconnected computers.

� Supported in part by grant no. GACR 201/06/1338.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 259–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 J. Barnat, L. Brim, and I. Černá

Cluster-based algorithms perform their computation simultaneously on a
number of workstations that are allowed to communicate and synchronise them-
selves by means of message passing. Cluster-based algorithms can thus be charac-
terised as parallel algorithms performing in a distributed memory environment.
The algorithms prove their usefulness in verification of large-scale systems. They
have been successfully applied to symbolic model checking [29,30], analysis of
stochastic [31] and timed [7] systems, equivalence checking [10] and other related
problems [8,11,28].

In this tutorial paper we focus on LTL model checking and we survey all the
known cluster-based algorithms for enumerative LTL model checking, compare
them, discuss their advantages and disadvantages, and determine cases in which
individual algorithms are more appropriate than the others.

2 Distributed LTL Model Checking

Model checking is one of the major techniques used in the formal verification [21].
It builds on an automatic procedure that takes a model of the system and decides
whether it satisfies a given property. In case the property is not satisfied, the
procedure gives a counterexample, i.e. a particular behaviour of the model that
violates the verified property.

Linear temporal logic LTL [37] is a widely used language for specification
of properties of concurrent programs. An efficient automata-based procedure
to decide LTL model checking problem was introduced in [42]. The approach
exploits the fact that every set of executions expressible by an LTL formula
is an ω-regular set and can be described by a Büchi automaton. In particular,
the approach suggests to express all system executions by a system automaton
and all executions not satisfying the formula by a property or negative claim
automaton. These automata are combined into their synchronous product in
order to check for the presence of system executions that violate the property
expressed by the formula. The language recognised by the product automaton is
empty if and only if no system execution is invalid.

The language emptiness problem for Büchi automata can be expressed as
an accepting cycle detection problem in a graph. Each Büchi automaton can
be naturally identified with an automaton graph which is a directed graph G =
(V,E, s, A) where V is the set of vertices (n = |V |), E is a set of edges (m = |E|),
s is an initial vertex, and A ⊆ V is a set of accepting vertices. We say that
a reachable cycle in G is accepting if it contains an accepting vertex. Let A
be a Büchi automaton and GA the corresponding automaton graph. Then A
recognises a nonempty language iff GA contains an accepting cycle. The LTL
model-checking problem is thus reduced to the accepting cycle detection problem
in automaton graphs.

The best known enumerative sequential algorithms for detection of accepting
cycles are the Nested DFS algorithm [22,33] (implemented, e.g., in the model
checker SPIN [32]) and SCC-based algorithms originating in Tarjan’s algorithm
for the decomposition of the graph into strongly connected components

Cluster-Based LTL Model Checking of Large Systems 261

(SCCs) [41]. While Nested DFS is more space efficient, SCC-based algorithms
produce shorter counterexamples in general. For a survey on sequential
algorithms see [25].

An important criterion for a model checking algorithm is whether it works on-
the-fly. On-the-fly algorithms generate the automaton graph gradually as they
explore vertices of the graph. An accepting cycle can thus be detected before the
complete set of vertices is generated and stored in memory. On-the-fly algorithms
usually assume the graph to be given implicitly by the function Finit giving the
initial vertex and by the function Fsucc which returns immediate successors of a
given vertex.

Cluster-based algorithms we describe in this paper work with implicit graph
representation and use the so called partition function in order to exploit the dis-
tributed memory. The partition function distributes vertices of the graph among
the participating workstations so that every workstation maintains only a part
of the graph. In particular, when immediate successors of a vertex are generated,
they are classified according to partition function into local and remote vertices.
The local vertices are stored and further processed locally while the remote ver-
tices are sent over the network for local processing on the owning workstations.
In this manner the workstations generate the graph in parallel.

As the state space generation and reachability analysis are easily parallelised,
their cluster-based implementations appeared as extension modules within a
few model checking tools, see e.g. [35,28,7]. However, accepting cycle detection
algorithms cannot be parallelised as easily. In [3] the authors showed that cluster-
based version of Nested DFS may produce incorrect results. The reason for
this is the crucial dependency of sequential accepting cycle detection algorithms
on depth-first search postorder. Reif showed that computing depth-first search
postorder is P-complete [39], hence unamenable to parallelisation.

A few fundamentally different cluster-based techniques for accepting cycle
detection appeared though. They typically perform repeated reachability over
the graph. Unlike the postorder problem, reachability is a graph problem which
can be well parallelised.

The first cluster-based algorithm for full LTL model checking was presented
in [3] and further improved in [6]. The algorithm introduces a new data structure
to detect split cycles (Section 7). In [12,13] the LTL model checking problem is
reduced to the negative cycle problem (Section 5). Set-based approach is put to
use in the algorithm presented in [18] (Section 4). Algorithmic solution based
on breadth-first search (BFS) is given in [2,5] (Section 6). Algorithm described
in [14,16] employs ordering of vertices to solve the LTL model checking problem.

The purpose of this survey paper is to provide a unifying presentation of the
above mentioned cluster-based LTL model checking algorithms with the aim to
better understand their principles and to learn about the strengths and weak-
nesses of individual techniques. For each algorithm we first explain its underlying
idea, then we present the algorithm using a high-level pseudo-code and conclude
by some comments about the complexity and other interesting issues related to
the algorithm. For details the reader is asked to consult the respective papers.

262 J. Barnat, L. Brim, and I. Černá

3 Maximal Accepting Predecessor

Fundamentals

A vertex u is a predecessor of a vertex v if there is a non-trivial path from u to
v. The main idea behind the algorithm is based on the fact that each accepting
vertex lying on an accepting cycle is its own predecessor. Instead of expensive
computing and storing of all accepting predecessors for each (accepting) vertex,
the algorithm computes a single representative accepting predecessor for each
vertex. We presuppose a linear ordering ≺ of vertices (given e.g. by their memory
representation) and choose the maximal accepting predecessor. For a vertex u we
denote its maximal accepting predecessor in the graph G by mapG(u). Clearly,
if an accepting vertex is its own maximal accepting predecessor (mapG(u) =
u), it lies on an accepting cycle. Unfortunately, the opposite does not hold in
general. It can happen that the maximal accepting predecessor for an accepting
vertex on a cycle does not lie on the cycle. This is exemplified on the graph
given in Figure 1. The accepting cycle 〈2, 1, 3, 2〉 is not revealed due to the
greater accepting vertex 4 outside the cycle. However, as vertex 4 does not lie on
any cycle, it can be safely deleted from the set of
accepting vertices and the accepting cycle still re-

4 3

1 2

Fig. 1. Undiscovered cycle

mains in the resulting graph. This idea is formalised
as a deleting transformation. Whenever the delet-
ing transformation is applied to automaton graph
G with mapG(v) �= v for all v ∈ V , it shrinks the
set of accepting vertices by those vertices that do
not lie on any cycle.

Definition 1. Let G = (V,E, s, A) be an automaton graph and mapG its max-
imal accepting predecessor function. A deleting transformation (del) is defined
as del(G) = (V,E, s, A), where A = A \ {u ∈ A | mapG(u) ≺ u}).

As the set of accepting vertices can change after the deleting transformation
has been applied, maximal accepting predecessors must be recomputed. It can
happen that even in the graph del (G) the maximal accepting predecessor func-
tion is still not sufficient for cycle detection. However, after a finite number of
applications of the deleting transformation an accepting cycle is certified. For
i ∈ N let us define a graph Gi inductively as G0 = G and Gi+1 = del(Gi).

Theorem 1. Let G = (V,E, s, A) be an automaton graph. The graph G contains
an accepting cycle if and only if there is a natural i ∈ N and a vertex v ∈ V such
that mapGi(v) = v.

For an automaton graph without accepting cycles the repetitive application of
the deleting transformation results in an automaton graph with an empty set of
accepting vertices.

Cluster-Based LTL Model Checking of Large Systems 263

Algorithmics

The algorithm (for pseudo-code see Figure 2) iteratively computes maximal ac-
cepting predecessors and modifies the set of accepting vertices. The MAP pro-
cedure always starts by initialising the map value of the initial vertex to nil, all
the other vertices are assigned the undefined initial map value, denoted by ⊥.
Every time a vertex receives a new (greater) map value, the vertex is pushed
into a waiting queue and the new map value is propagated to all its successors.
If an accepting vertex is reached for the first time (line 14) the vertex is inserted
into the set shrinkA of vertices to be removed from A by the deleting trans-
formation. However, if the accepting vertex is reached from a greater accepting
vertex (lines 15 and 16) this value will be propagated to all its successors and
the vertex is removed from the set shrinkA.

1 proc Main(V, E, s, A)
2 while A �= ∅ do
3 MAP (V, E, s, A)
4 A := A \ shrinkA
5 od
6 report (NO ACCEPTING CYCLE exists)
7 end

8 proc MAP(V, E, s, A)
9 foreach u ∈ V do map(u) := ⊥ od

10 map(s) := nil
11 waiting.push(s)
12 while waiting �= ∅ do
13 u := waiting.pop()
14 if u ∈ A then if map(u) ≺ u then propag := u; shrinkA.add(u)
15 else propag := map(u);
16 shrinkA.remove(u) fi
17 else propag := map(u)
18 fi
19 foreach (u, v) ∈ E do
20 if propag = v then report (ACCEPTING CYCLE found) fi
21 if propag � map(v) then map(v) := propag
22 waiting.push(v) fi
23 od
25 od
26 end

Fig. 2. Maximal Accepting Predecessor

We do not explicitly describe the actual distribution of the algorithm as this
is quite direct. The very basic operation is the propagation of map values which
can be done in any order and thus also in parallel.

The distributed algorithm implements several improvements of the above
given basic algorithm. The most important one is based on the observation that
accepting cycle in G can be formed from vertices with the same maximal ac-
cepting predecessor only. A graph induced by the set of vertices having the same
maximal accepting predecessor is called predecessor subgraph. It is clear that
every strongly connected component (hence every cycle) in the graph is com-
pletely included in one of the predecessor subgraphs. Therefore, after applying

264 J. Barnat, L. Brim, and I. Černá

the deleting transformation, the new map function can be computed separately
and independently for every predecessor subgraph. This allows for speeding up
the computation (values are not propagated to vertices in different subgraphs)
and for an efficient parallelisation of the computation. Every predecessor sub-
graph is identified through the accepting vertex which is the common maximal
accepting predecessor for all vertices in the subgraph. Once an accepting cycle
is detected, the predecessor subgraphs are effectively used to output a reachable
accepting cycle representing an invalid execution of the system.

Comments

Time complexity of the distributed Maximal Accepting Predecessor algorithm
is O(a2 ·m), where a is the number of accepting vertices. Here the factor a ·m
comes from the computation of the map function and the factor a relates to the
number of iterations.

Experimental evaluation demonstrates that accepting cycles are typically de-
tected in very early iterations. On the other hand, if there is no accepting cy-
cle in the graph, the number of iterations is typically very small comparing to
the size of the graph (up to 40-50). Thus, the algorithm exhibits nearly linear
performance.

One of the key aspects influencing the overall performance of the algorithm is
the underlying ordering of vertices used by the algorithm. In order to optimise
the complexity one aims to decrease the number of iterations by choosing an
appropriate vertex ordering. Ordering ≺ is optimal if the presence of an accepting
cycle can be decided in one iteration. It can be easily shown that for every
automaton graph there is an optimal ordering. Moreover, an optimal ordering
can be computed in linear time.

An example of an optimal ordering is depth-first search postorder. Unfortu-
nately, the optimal ordering problem, which is to decide for a given automaton
graph and two accepting vertices u, v whether u precedes v in every optimal
ordering of graph vertices, is P-complete [14] hence unlikely to be computed
effectively in a distributed environment. Therefore, several heuristics for com-
puting a suitable vertex ordering are used. The trivial one orders vertices lexico-
graphically according to their bit-vector representations. The more sophisticated
heuristics relate vertices with respect to the order in which they were traversed.
However, experimental evaluation has shown that none of the heuristics signifi-
cantly outperforms the others. On average, the most reliable heuristic is the one
based on breadth-first search followed by the one based on (random) hashing.

4 Strongly Connected Components

Fundamentals

The accepting cycle detection problem can be directly reformulated as a question
whether the automaton graph contains a nontrivial accepting strongly connected
component.

Cluster-Based LTL Model Checking of Large Systems 265

A strongly connected component (SCC) of G = (V,E, s, A) is a maximal (with
respect to set inclusion) set of vertices C ⊆ V such that for each u, v ∈ C, the
vertex v is reachable from u and vice versa. The quotient graph of G, Q(G), is
a graph (W,H) where W is the set of the SCCs of G and (C1, C2) ∈ H if and
only if C1 �= C2 and there exist r ∈ C1, s ∈ C2 such that (r, s) ∈ E. The height
of the graph G, h(G), is the length of the longest path in the quotient graph of
G (note that the quotient graph is acyclic). A strongly connected component is
trivial if it has no edges, initial if it has no predecessor in the quotient graph,
and accepting if it contains an accepting vertex.

Decomposition into SCCs can be solved in linear time by Tarjan’s algo-
rithm [41]. Once a graph is decomposed to its SCCs, the accepting cycle problem
is easily answered by testing the particular components for acceptance. However,
Tarjan’s algorithm is based on depth-first search postorder and its transforma-
tion into a cluster setting is difficult.

The inspiration for the distributed SCC-based algorithm for detection of ac-
cepting cycles is taken from symbolic algorithms for cycle detection, namely from
SCC hull algorithms. SCC hull algorithms compute the set of vertices contain-
ing all accepting components. Algorithms maintain the approximation of the set
and successively remove non-accepting components until they reach a fixpoint.
Different strategies to remove non-accepting components lead to different algo-
rithms. An overview, taxonomy, and comparison of symbolic algorithms can be
found in independent reports [26] and [38].

As the base for the distributed enumerative algorithm presented here the
One Way Catch Them Young strategy [26] has been chosen. The enumerative
algorithm works on individual vertices rather than on sets of vertices as is the
case in symbolic approach. A component is removed by removing its vertices. The
algorithm employs two rules to remove vertices of non-accepting components:

– if a vertex is not reachable from any accepting vertex then the vertex does
not belong to any accepting component and

– if a vertex has in-degree zero then the vertex does not belong to any accepting
component.

Note that an alternative set of rules can be formulated as

– if no accepting vertex is reachable from a vertex then the vertex does not
belong to any accepting component and

– if a vertex has out-degree zero then the vertex does not belong to any ac-
cepting component.

This second set of rules results in an algorithm which works in a backward manner
and we will not describe it explicitly here.

Algorithmics

The basic scheme is given in Figure 3. The function Reachability(A) computes
the set of all vertices that are reachable from A (including A) in G(S). The
function Elimination(S) eliminates those vertices that have zero in-degree in

266 J. Barnat, L. Brim, and I. Černá

G(S). When starting the computation of Elimination(S) only vertices from A
can have zero in-degree G(S), however by their elimination in-degree of their
successors can be decreased. The computation of Elimination(S) is performed
by successive removal of vertices that do not have predecessors in G(S).

proc SCC((V, E, s, A))
S := V ;
S := Reachability(A);
old := ∅;
while (S �= old) do

old := S;
S := Reachability(A);
S := Elimination(S);

od
if (S = ∅) then report (NO ACCEPTING CYCLE exists)

else report (ACCEPTING CYCLE found) fi
end

Fig. 3. SCC-based Algorithm

The assignment S := Reachability(A) removes from the graph G(S) all initial
non-accepting components (in fact only SCCs reachable from an accepting com-
ponent are left in G(S)). The assignment S := Elimination(S) removes from
the graph G(S) all initial trivial components (in fact a trivial SCC is left in
G(S) only if it is reachable from an accepting component in G(S)). Thus each
iteration of the while cycle (so called external iteration) removes initial unfair
components of Q(G) until the fixpoint is reached.

The actual distribution of the algorithm is quite direct as the very basic
operations are reachability, which is well distributable, and a local testing of
vertex in-degree.

Comments

The presented SCC-based algorithm in its forward version does not work on-
the-fly and the entire automaton graph has to be generated first. The same is
true for the backward version. Moreover, the backward version actually needs
to store the edges to be able to perform backward reachability. This is however
payed out by relaxing the necessity to compute successors, which is in fact a
very expensive operation in practise.

Time complexity of the SCC-based algorithm is O(h · m) where h = h(G).
Here the factor m comes from the computation of Reachability and Elimination
functions and the factor h relates to the number of external iterations. In prac-
tise, the number of external iterations is very small (up to 40-50) even for large
graphs. This observation is supported by experiments in [26] with the symbolic
implementation and hardware circuits problems. Similar results are communi-
cated in [36] where heights of quotient graphs were measured for several models.
As reported, 70% of the models has height smaller than 50.

A positive aspect of SCC-based distributed algorithms is their effectiveness
for weak automaton graphs. A graph is weak if each SCC component of G is

Cluster-Based LTL Model Checking of Large Systems 267

either fully contained in A or is disjoint with A. For weak graphs one iteration
of the SCC-based algorithm is sufficient to decide accepting cycles. The stud-
ies of temporal properties [23,19] reveal that verification of up to 90% of LTL
properties leads to weak automaton graphs.

Last but not least, SCC-based algorithms can be effortlessly extended to au-
tomaton graphs for other types of nondeterministic word automata like gener-
alised Büchi automata and Streett automata.

5 Negative Cycles

Fundamentals

The general idea behind the next approach is to reduce the accepting cycle de-
tection problem to another one which admits better parallelisation. A suitable
problem is the negative cycle detection problem. The reduction assigns lengths
to automaton graph edges in such a way that all edges outgoing from accepting
vertices have length -1 and all the other edges have length 0. Under this assign-
ment negative length cycles coincide with accepting cycles. The negative cycle
problem is closely related to the single-source shortest path (SSSP) problem.
In fact, the presented algorithm solves the SSSP problem and can be seen as a
distributed version of the Bellman-Ford method [9,27].

The method maintains for every vertex v its distance label d(v), parent ver-
tex p(v), and status S(v) ∈ {unreached , labelled , scanned}. Initially, d(v) =
∞, p(v) = nil , and S(v) = unreached for every vertex v. The method starts
by setting d(s) = 0, p(s) = nil and S(s) = labelled , where s is the initial vertex.
At every step a labelled vertex is selected and scanned. When scanning a vertex
u, all its outgoing edges are relaxed. Relaxation of an edge (u, v) means that if
d(v) > d(u) + l(u, v) then d(v) is set to d(u) + l(u, v) and p(v) is set to u. The
status of u is changed to scanned while the status of v is changed to labelled. If all
vertices are either scanned or unreached then d gives the shortest path lengths.
Moreover, the parent graph Gp is the graph of shortest paths. More precisely,
the parent graph is a subgraph Gp of G induced by edges (p(v), v) for all v such
that p(v) �= nil .

Different strategies for selecting a labelled vertex to be scanned lead to differ-
ent algorithms. The Bellman–Ford algorithm employs FIFO strategy to select
vertices and runs in O(m · n) time in the worst case. For graphs with negative
edge lengths there is no shortest path to the vertices on a negative length cycle
and the scanning method must be modified to recognise negative cycles. The
cluster-based algorithm employs the walk to root strategy which traverses a par-
ent graph. The walk to root strategy is based on the fact (see e.g. [20]) that
any cycle in parent graph Gp corresponds to a negative cycle in the automaton
graph.

The walk to root method tests whether Gp is acyclic. Suppose the parent
graph Gp is acyclic and an edge (u, v) is relaxed, i.e. d(v) is decreased. This
operation creates a cycle in Gp if and only if v is an ancestor of u in the current
Gp. Before applying the operation, we follow the parent pointers from u until we

268 J. Barnat, L. Brim, and I. Černá

reach either v or s. If we stop at v a negative cycle is detected. Otherwise the
relaxation does not create a cycle. However, since the path to the initial vertex
can be long, the cost of edge relaxation becomes O(n) instead of O(1). In order
to optimise the overall computational complexity, amortisation is used to pay
the cost of checking Gp for cycles. More precisely, the parent graph Gp is tested
only after the underlying shortest paths algorithm performs Ω(n) relaxations.
The running time is thus increased only by a constant factor.

Algorithmics

Each workstation performs repeatedly the basic scanning operation on vertices
with status labelled. To relax a cross-edge (u, v), where u and v belong to different
workstations, a message is sent to the owner of v. For negative cycle detection a
procedure Walk to Root (WTR) is used in an amortised manner. A workstation
starts the detection only after it has relaxed n edges. WTR tries to identify a
cycle in the parent graph by following the parent pointers from a current vertex.

As the relaxation of edges is performed in parallel and the cycle detection is
not initiated after every change in the parent graph, it can happen that even if
the relaxation of an edge (u, v) does not create a cycle in the parent graph Gp

there can be a cycle in Gp on the way from u to the initial vertex s. In order
to recognise such a cycle a value walk(x) is associated with every vertex x. Its
initial value is nil . Once procedure WTR that started at a vertex origin, passes
through a vertex v, the value walk(v) is set to origin. Reaching a vertex already
marked with the value origin clearly indicates a cycle in the parent graph.

However, it can happen that more than one procedure WTR is active at the
same time. Consequently, WTR initiated in vertex origin can get to a vertex
marked with a value different from origin indicating that some other WTR is
active. Such a collision is resolved in favour of the procedure which has started at
the greater vertex (with respect to a linear ordering on vertices). WTR started
at the lower vertex is terminated. Another situation that could happen is that
WTR started at origin gets to a vertex already marked with origin, but this
mark has been introduced by a previous WTR initiated at origin. This would
lead to a false detection of a cycle. To guarantee correctness the algorithm in fact
marks every vertex with two values: origin and stamp. The value stamp is equal
to the number of WTR procedures initiated by the particular workstation. This
value allows to distinguish among vertices marked by current and some previous
WTRs started at the same vertex.

Comments

The worst case time complexity of the algorithm is O(n ·m), i.e. it is the same
as that of Bellman-Ford algorithm. Experiments have shown that the algorithm
is of great use for models without errors where the computation stabilises in the
early stages. Several other strategies (see [20] for their survey) to detect negative
cycles in the parent graph were implemented and experimentally evaluated in [17]
with the conclusion that the walk to root strategy in most cases outperforms the
others.

Cluster-Based LTL Model Checking of Large Systems 269

6 Back-Level Edges

Fundamentals

The algorithm builds on breadth-first search (BFS) exploration of the graph.
BFS is typically used in graph algorithms that work with distances and distances
can also be used to characterise cycles in a graph.

Distance of a vertex u ∈ V , d(u), is the length of a shortest path from the
initial vertex to the vertex u. The set of vertices with the same distance is called
level. An edge (u, v) ∈ E is called a back-level edge if d(u) ≥ d(v).

The key observation connecting the cycle detection problem with the back-
level edge concept is that every cycle contains at least one back-level edge. A
parallel level-synchronised breadth-first search is performed to discover back-
level edges. Back-level edges are used as triggers which start a cycle detection.
However, it is too expensive to test every back-level edge for being a part of a
cycle. The algorithm therefore integrates several optimisations and heuristics to
decrease the number of tested edges and speed-up the cycle test.

Algorithmics

Breadth-first search systematically explores edges of G starting from the initial
vertex s. It expands the frontier between discovered and undiscovered vertices
uniformly across the breadth of the graph. When a new vertex is generated, its
owner is computed, and the vertex is sent for exploration to the workstation
where it belongs. Relating this approach to breadth-first search, the main prob-
lem is that the breadth-first search frontier can get split, i.e., there might be a
vertex that is expanded prematurely with respect to breadth-first search order.

The algorithm for back-level edge detection (see the pseudo-code in Figure 4)
builds on preventing the breadth-first search frontier from getting split. In partic-
ular, every workstation participating in the computation organises vertices from
its part of the global BFS frontier into two queues, the current level queue (CLQ)
and the next level queue (NLQ). Only vertices stored in CLQ are processed.
Newly generated vertices are inserted into respective NLQs. Workstations par-
ticipating in computation synchronise as soon as all their CLQs are empty. After
that, each workstation moves vertices from NLQ to CLQ and continues with ex-
ploration vertices from CLQ.

Note that it is difficult to compute the distance for a newly generated vertex if
its relevant predecessor is not local. In such a case the workstation cannot access
the distance value of the predecessor. However, in level-synchronised breadth-
first search the distance of a vertex can be computed by counting the number of
synchronisations. A similar problem arises when a back-level edge needs to be
reported. In sequential breadth-first search, a back-level edge is detected when
its destination vertex1 is reached. In the distributed setting, the initial vertex
of the edge may be remote and thus locally inaccessible. To solve this problem
the contents of CLQ and NLQ are slightly modified. While in the sequential
1 Destination vertex of an oriented edge (u, v) is the vertex v.

270 J. Barnat, L. Brim, and I. Černá

proc Distributed-bl-edge-detection(netid)
CLQ := ∅; NLQ := ∅; Visited := ∅; Level := 0
initvertex := Finit(); finished := false
if (netid = Partition(initvertex))

then enqueue(NLQ, (−, initvertex))
fi
while (¬finished) do

swap(NLQ, CLQ)
while (CLQ �= ∅) do

(p, v) := dequeue(CLQ)
if (v �∈ Visited)

then Visited := Visited ∪ {v}
d(v) := Level;
foreach t ∈ Fsuccs(v) do

if (Partition(t) �= netid)
then SendTo(Partition(t),

enqueue(NLQ, (v, t)))
else enqueue(NLQ, (v, t))

fi
od

else if (d(v) < Level)
then Report back-level edge (u, v)

fi
fi

od
Synchronize(finished := (all NLQ = ∅))
Level := Level + 1

od
end

Fig. 4. BFS-based cycle detection algorithm – back-level edge detection

algorithm the objects enqueued to queues are vertices to be explored, in the
distributed algorithm the objects enqueued to queues are edges to be explored.
Each edge is actually a pair of vertices that contains a vertex to be explored and
its predecessor.

In general, a sufficient technique to decide about the presence of a cycle is to
check each vertex for its self-reachability in a separate reachability procedure.
The back-level edge based algorithm builds on the self-reachability approach,
but limits the number of self-reachability tests. The idea is that it is enough
to perform a self-reachability test for only one vertex on a cycle. Every cycle
contains at least one back-level edge and if the self-reachability test is performed
for all back-level edge initial vertices then no cycle can be missed. Thus, the
algorithm alternates between two phases. In the first phase it discovers all back-
level edges from the current level and in the second phase it performs all self-
reachability tests.

Each self-reachability test is restricted to vertices with distances less or equal
to the distance of the vertex to be reached. In this way it can happen that a
path to the vertex to be reached remains undetected. However, every cycle in
the graph is detected when the self-reachability test is started in a vertex with
maximal distance among vertices forming the cycle.

The goal of each self-reachability test (see Figure 5) is to hit the initial vertex
of back-level edge from which it was initiated (the so-called target). If at least
one test succeeds then the presence of a cycle is ensured and the algorithm is

Cluster-Based LTL Model Checking of Large Systems 271

terminated. Otherwise, it continues with the exploration of the next level. Since
there are many self-reachability procedures performed concurrently, the target
of each nested procedure cannot be maintained in a single variable (as it is in
the case of the Nested DFS algorithm) but has to be propagated by the nested
procedures.

proc Check-BL-edges(netid)
while (¬Synchronize() ∨ BLQ �= ∅) do

if (BLQ �= ∅)
then (target, q) := dequeue(BLQ)

if d(q) < Level
then if (q = target)

then Report cycle
fi
foreach t ∈ Fsuccs(q) do

if (Partition(t) �= netid)
then SendTo(Partition(t),

enqueue(BLQ, (target, t)))
else enqueue(BLQ, (target, t))

fi
od

fi
fi

od
end

Fig. 5. BFS-based cycle detection algorithm – self-reachability test

When checking vertex u for self-reachability, the corresponding test procedure
may revisit every vertex v that is reachable from vertex u and satisfies d(u) ≥
d(v) as many times as there are different paths leading from u to v. Therefore
the algorithm includes several improvements to decrease the number of re-visits.

To distinguish accepting and non-accepting cycles, the nested procedure is
modified to maintain an additional accepting bit. This accepting bit is used
to indicate that the self-reachability test has passed through an accepting
vertex.

Comments

The algorithm performs well on graphs with small number of back-level edges.
In such cases the performance of the algorithm approaches the performance of
reachability analysis, although, the algorithm performs full LTL model checking.
On the other hand, a drawback shows up when a graph contains many back-level
edges. In such a case, frequent revisiting of vertices in the second phase of the
algorithm causes the time of the computation to be high.

The level-synchronised BFS approach also allows to involve BFS-based Par-
tial Order Reduction (POR) technique [21] in the computation. POR technique
prevents some vertices of the graph from being generated while preserving re-
sult of the verification. Therefore, it allows analysis of even larger systems. The
standard DFS-based POR technique strongly relies on DFS stack and as such it
is inapplicable to cluster-based environment [15].

272 J. Barnat, L. Brim, and I. Černá

7 Dependency Graph

Fundamentals

Local cycles in a distributed graph can be detected using standard sequential
techniques, therefore, the real problem in cluster-based detection of accepting
cycles is the detection of cycles that are split among workstations. The idea of
the last algorithm is to construct a smaller graph by omitting those parts of the
original graph that are irrelevant for the detection of split cycles.

By a split cycle we mean a cycle that contains at least one cross-edge. An edge
(u, v) is a cross-edge if vertices u and v are owned by two different workstations.
Vertex v is called a transfer vertex if there is a cross-edge (u, v). Let G =
(V,E, s, A) be a graph, we call graph Gdep = (Vdep, Edep) a dependency graph if
Vdep contains the initial vertex, all accepting vertices, and all transfer vertices of
the product automaton graph, and the reachability relation induced by reflexive
and transitive closure of Edep is a subset of the reachability relation induced by
reflexive and transitive closure of E. Directly from the definition we have that
there is an accepting cycle in Gdep if and only if there is a split accepting cycle
in G.

The cluster-based algorithm stores the dependency graph explicitly in a dis-
tributed manner. In particular, vertices of the dependency graph are distributed
among the workstations by the same partition function as used for the origi-
nal graph. To maintain consistency of the dependency graph in a distributed
environment, the graph is implemented using a particular data structure called
dependency structure.

Definition 2. Let workstations be identified by numbers 1, . . . , n. Let DS be a
collection of graphs {(S1, T1), . . . , (Sn, Tn)} where every Si is the set of initial,
accepting and transfer vertices owned by workstation i, and a set of (transfer)
vertices reachable through a cross-edge from vertices owned by workstation i, and
Ti ⊆ Si × Si is a set of transitions. DS is called a dependency structure if the
graph (S, T), where S = ∪n

i=1Si and T = ∪n
i=1Ti, has the following properties:

– v ∈ S =⇒ (s, v) ∈ T ∗

– u, v ∈ S ∧ u �G v ∧ Partition(u) �= Partition(v) =⇒ (u, v) ∈ T ∗

– u, v ∈ S ∧ u ��G v =⇒ (u, v) �∈ T ∗.

where T ∗ is the reflexive and transitive closure of T , s is the initial vertex of
the graph, �G (��G) correspond to the standard reachability (un-reachability)
relation in the graph G, and function Partition is used to determine the owning
workstation for a given vertex.

An example of a partitioned graph and a corresponding dependency structure is
depicted in Figure 6.

Algorithmics

The algorithm employing dependency structure performs its task in two global
steps [3,6]. In the first step it explores the given graph in order to construct

Cluster-Based LTL Model Checking of Large Systems 273

�
�

�
�

�
�

�

�������	S

�����			

I I : S ��
��

 X

������
�����

������
��

B �� V

II �������	X

��
� ��

������
��

Y

������

���
��

��
�

������

��
��

�������	��������B

��

�������	Y II : X �� B

������
�� � � � � �

�
	

����

Z

������

�������	Z

��

������
����

�

�������� �������	V�� ��
������

��

III : V

���
��

��
��

��

���
� Y

�������	��������C

�����
III C �� Z

B

Fig. 6. Example of dependency structures

the dependency structure and detect local accepting cycles. If no local accepting
cycle is detected, the algorithm continues with the second step. Vertices that
have no successors in the dependency structure are recursively removed from it
as they cannot lie on a split cycle. If all vertices are removed from the structure,
there is no split cycle in the original graph. In the other case, the presence of a
split cycle is detected. Note that a split cycle must be accepting if it belongs to a
fully accepting component of the graph (see Section 8). In the case of partially ac-
cepting components, the algorithm employs sequential techniques to distinguish
accepting and non-accepting cycles.

The purpose of the first step is to compute the dependency structure. There-
fore, for each local vertex v the procedure has to explore all paths starting at
v and leading to a transfer vertex or vertex already stored in the local part
of the dependency structure. Thus, the complexity of the local computation is
O(n!), where n is the number of local vertices. Note that exploring all local
paths starting at v is sufficient for detection of local accepting cycles reachable
from v.

Comments

The algorithm was historically the first cluster-based algorithm for detection of
accepting cycles, hence for the full LTL model checking. The original idea of
the algorithm builds on backward elimination of vertices with no successors (see
Section 4) from the dependency structure. However, any cluster-based algorithm
presented in this survey can be combined with the dependency structure in order
to detect split accepting cycles. The worst case complexity of O(n!) has never
been encountered in numerous practical experiments. The only disadvantages of
the approach are thus the additional space needed for storing the dependency
structure and a small inconvenience caused by sequential distributed-memory
computation in the case of partially accepting components.

274 J. Barnat, L. Brim, and I. Černá

8 Preserving Cycle Locality

Technique presented in this Section should be viewed as a problem decomposition
technique rather than a cluster-based algorithm. In the case of automata-based
approach to LTL model checking the product automaton originates from syn-
chronous product of the property and system automata. Hence, vertices of prod-
uct automaton graph are ordered pairs. An interesting observation formalised in
Lemma 1 is that every cycle in a product automaton graph emerges from cycles
in system and property automaton graphs.

Lemma 1. Let A,B be Büchi automata and A⊗B their synchronous product.
If C is a strongly connected component in the automaton graph of A ⊗ B, then
A-projection of C and B-projection of C are (not necessarily maximal) strongly
connected components in automaton graphs of A and B, respectively.

As the property automaton origins from the LTL formula to be verified, it is
typically quite small and can be pre-analysed. In particular, it is possible to
identify all strongly connected components of the property automaton graph.
Respecting strongly connected components of the property automaton a parti-
tion function preserving cycle locality can be defined. The partitioning strategy
is to assign all vertices that project to the same strongly connected component of
the property automaton graph to the same workstation. Since no cycle is split it
is possible to employ localised Nested DFS algorithm to perform local accepting
cycle detection simultaneously on all participating workstations.

Yet another interesting information can be drawn from the property automa-
ton graph decomposition. Maximal strongly connected components can be clas-
sified into three categories:

Type F:(Fully Accepting) Any cycle within the component contains at least one
accepting vertex. (There is no non-accepting cycle within the component.)

Type P: (Partially Accepting) There is at least one accepting cycle and one
non-accepting cycle within the component.

Type N: (Non-Accepting) There is no accepting cycle within the component.

Realising that vertex of a product automaton graph is accepting only if the
corresponding vertex in the property automaton graph is accepting it is possible
to characterise types of strongly connected components of product automaton
graph according to types of components in the property automaton graph. Clas-
sification of components into types N , F , and P is useful in other cluster-based
algorithms presented in this paper.

9 Experiments

To experimentally evaluate the presented cluster-based model checking algo-
rithms a series of experiments was conducted [43]. All experiments were per-
formed on a cluster of homogeneous Linux workstations equipped with 1GB
RAM and 2.6 GHz Pentium 4 CPU using verification tool DiVinE [4].

Cluster-Based LTL Model Checking of Large Systems 275

Table 1. Comparison of cluster-based LTL model checkers

20 workstations PLC Anders Bakery1 Bakery2 MCS1 MCS2
Negative Cycle 2.4 142.1 5.3 53.4 75.2 1.0
Forward SCC elimination 1408.1 528.0 11.1 1.8 253.4 137.7
Backward SCC elimination 868.8 159.2 3.7 2.1 85.2 50.2
Max Accepting Preds 0.7 411.3 1.2 0.9 126.6 0.4
Localised Nested DFS 0.8 919.9 0.2 12.7 465.5 2.7
Back Level Edges 5.1 TE 41.6 4.7 31211.6 1.8
Dependency Structure 1.0 ME 4.2 4.4 ME 1436.7

Peterson LUP1 LUP2 Elevator1 Elevator2 Phils
Negative Cycle 86.7 197.8 52.8 2004.1 1477.4 1.7
Forward SCC Elimination 291.2 527.8 398.7 1715.3 4138.3 2083.9
Backward SCC Elimination 113.9 174.6 126.6 ME ME ME
Max Accepting Preds 43.3 481.6 64.9 ME ME ME
Localised Nested DFS 2.9 1785.4 4.7 ME 0.8 84.0
Back Level Edges 98.0 14077.1 514.4 41.6 ME 9.9
Dependency Structure 454.0 ME 338.9 ME ME 3.7

10 workstations PLC Anders Bakery1 Bakery2 MCS1 MCS2
Negative Cycle 1.9 180.7 5.0 33.8 90.8 0.3
Forward SCC Elimination 1627.6 670.6 12.2 1.6 336.0 186.8
Backward SCC Elimination 955.3 207.3 3.9 1.0 110.8 73.7
Max Accepting Preds 0.6 693.9 1.0 0.6 239.6 1.0
Localised Nested DFS 0.1 1964.6 0.1 9.5 530.5 2.3
Back Level Edges 3.2 TE 41.8 2.7 TE 0.5
Dependency Structure 0.7 ME 5.1 2.9 ME 3100.8

Peterson LUP1 LUP2 Elevator1 Elevator2 Phils
Negative Cycle 274.0 254.4 15.6 3539.1 1934.9 ME
Forward SCC Elimination 376.2 679.3 508.3 2555.0 ME 3157.9
Backward SCC Elimination 166.2 227.3 172.2 ME ME ME
Max Accepting Preds 104.2 732.5 106.2 ME ME ME
Localised Nested DFS 2.2 2155.6 3.7 ME 0.6 45.5
Back Level Edges 289.7 16909.1 947.4 ME ME 2.1
Dependency Structure 464.3 ME 433.5 ME ME 0.3

Graphs used in experiments were both with and without accepting cycles, and
their size ranged from 105 vertices and 106 edges (Bakery2) to 108 vertices and
109 edges (Elevator2). The graphs were distributed among workstation using the
default partition function as implemented in DiVinE. The function distributes
states among workstations randomly preserving even distribution.

In Table 1 runtimes in seconds are given. The names of algorithms should be
self-explanatory. Values “ME” and “TE” stand for memory and time (10 hours)
limit exceed, respectively.

276 J. Barnat, L. Brim, and I. Černá

10 Conclusions

The paper surveys cluster-based algorithms for verification of LTL properties
of large systems. The cluster-based approach to LTL model checking widens
the set of systems and LTL formulae that can be verified within reasonable
time and space limits. This was conclusively demonstrated by the experiments
performed. However, the cluster-based approach brings only linearly increasing
computational resources and as such it cannot solve the state explosion problem
completely.

Another contribution of the cluster-based approach observed during the ex-
perimental evaluation relates to the verification of middle-sized systems. These
are such systems that can still be verified sequentially using the Nested DFS
algorithm, but whose verification requires a nontrivial amount of time. This is
surprisingly not a rare situation as a single workstation manages to store au-
tomaton graphs with up to ten millions of vertices. In that case cluster-based
LTL model checker can be faster.

In model checking applications, the existence of an accepting cycle indicates
an invalid behaviour. In such a case, it is essential that the user is given an
accepting cycle as a counterexample, typically presented in the form of a finite
stem followed by a cycle. The counterexample should be as short as possible to
facilitate debugging. The great advantage of the presented cluster-based tech-
niques is that due to their the breadth-first search nature, the counterexamples
are very short in comparison to those computed by depth-first search algorithms.

The overall complexity of cluster-based algorithms strongly depends on the
graph partition. As the graph is given implicitly, we cannot pre-compute an
optimal partition. The experiments with various static partitions indicate that
a random partition is in this situation the best choice.

As indicated by numerous experiments, no single cluster-based LTL model
checking algorithm has the edge over the others in any application area. More-
over, it is very difficult to determine a priori which technique is the most suitable
for a given verification problem. It is thus sensible to apply different techniques
to the same problem.

References

1. T. Bao and M. Jones. Time-Efficient Model Checking with Magnetic Disks. In
Proc. Tools and Algorithms for the Construction and Analysis of Systems, volume
3440 of LNCS, pages 526–540. Springer-Verlag, 2005.

2. J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL Model-
Checking. In Proc. 18th IEEE International Conference on Automated Software
Engineering, pages 106–115. IEEE Computer Society, 2003.

3. J. Barnat, L. Brim, and J. Stř́ıbrná. Distributed LTL model-checking in SPIN.
In Proc. SPIN Workshop on Model Checking of Software, volume 2057 of LNCS,
pages 200–216. Springer-Verlag, 2001.

4. J. Barnat, L. Brim, I. Černá, and P.Šimeček. DiVinE – The Distributed Verifica-
tion Environment. In Proceedings of 4th International Workshop on Parallel and
Distributed Methods in verifiCation, pages 89–94, 2005.

Cluster-Based LTL Model Checking of Large Systems 277

5. J. Barnat and I. Černá. Distributed Breadth-First Search LTL Model Checking.
Formal Methods in System Design, 2006. to appear.

6. Jǐŕı Barnat. Distributed Memory LTL Model Checking. PhD thesis, Faculty of
Informatics, Masaryk University Brno, 2004.

7. G. Behrmann, T. S. Hune, and F. W. Vaandrager. Distributed Timed Model
Checking – How the Search Order Matters. In Proc. Computer Aided Verification,
volume 1855 of LNCS, pages 216–231. Springer, 2000.

8. A. Bell and B. R. Haverkort. Sequential and distributed model checking of petri
net specifications. Int J Softw Tools Technol Transfer, 7(1):43–60, 2005.

9. R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16(1):87–
90, 1958.

10. S. Blom and S. Orzan. A Distributed Algorithm for Strong Bisimulation Reduction
Of State Spaces. Int J Softw Tools Technol Transfer, 7(1):74–86, 2005.

11. B. Bollig, M. Leucker, and M. Weber. Parallel Model Checking for the Alternation
Free μ-Calculus. In Proc. Tools and Algorithms for the Construction and Analysis
of Systems, volume 2031 of LNCS, pages 543 – 558. Springer-Verlag, 2001.

12. L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL Model Checking
Based on Negative Cycle Detection. In Proc. Foundations of Software Technology
and Theoretical Computer Science, volume 2245 of LNCS, pages 96–107. Springer-
Verlag, 2001.

13. L. Brim, I. Černá, P. Krčál, and R. Pelánek. How to Employ Reverse Search in Dis-
tributed Single-Source Shortest Paths. In Proc. Theory and Practice of Informatics
(SOFSEM), volume 2234 of LNCS, pages 191–200. Springer-Verlag, 2001.

14. L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting Predecessors are Bet-
ter than Back Edges in Distributed LTL Model-Checking. In Formal Methods in
Computer-Aided Design (FMCAD 2004), volume 3312 of LNCS, pages 352–366.
Springer-Verlag, 2004.

15. L. Brim, I. Černá, P. Moravec, and J. Šimša. Distributed Partial Order Reduction.
Electronic Notes in Theoretical Computer Science, 128:63–74, 2005.

16. L. Brim, I. Černá, P. Moravec, and J. Šimša. How to Order Vertices for Distrib-
uted LTL Model-Checking Based on Accepting Predecessors. In 4th International
Workshop on Parallel and Distributed Methods in verifiCation (PDMC’05), July
2005.

17. L. Brim, I. Černá, and L. Hejtmánek. Distributed Negative Cycle Detection Algo-
rithms. In Proc. Parallel Computing: Software Technology, Algorithms, Architec-
tures & Applications, volume 13 of Advances in Parallel Computing, pages 297–305.
Elsevier, 2004.

18. I. Černá and R. Pelánek. Distributed Explicit Fair cycle Detection (Set Based Ap-
proach). In Model Checking Software. 10th International SPIN Workshop, volume
2648 of LNCS, pages 49–73. Springer-Verlag, 2003.

19. I. Černá and R. Pelánek. Relating Hierarchy of Temporal Properties to Model
Checking. In Proc. Mathematical Foundations of Computer Science, volume 2747
of LNCS, pages 318–327. Springer-Verlag, 2003.

20. B. V. Cherkassky and A. V. Goldberg. Negative-Cycle Detection Algorithms.
Mathematical Programming, 85:277–311, 1999.

21. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT, 1999.
22. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient

Algorithms for the Verification of Temporal Properties. Formal Methods in System
Design, 1:275–288, 1992.

278 J. Barnat, L. Brim, and I. Černá

23. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specification Patterns
for Finite-State Verification. In Proc. Workshop on Formal Methods in Software
Practice, pages 7–15. ACM Press, 1998.

24. S. Edelkamp and S. Jabbar. Large-Scale Directed Model Checking LTL. In Model
Checking Software: 13th International SPIN Workshop, volume 3925 of LNCS,
pages 1–18. Springer-Verlag, 2006.

25. J. Esparza and S. Schwoon. A note on on-the-fly verification algorithms. In Proc.
Tools and Algorithms for the Construction and Analysis of Systems, volume 3440
of LNCS, pages 174–190. Springer-Verlag, 2005.

26. K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In Proc. Tools and Algorithms for the Construction and
Analysis of Systems, volume 2031 of LNCS, pages 420–434. Springer-Verlag, 2001.

27. L.R. Ford. Network Flow Theory. Rand Corp., Santa Monica, Cal., 1956.
28. H. Garavel, R. Mateescu, and I. Smarandache. Parallel State Space Construction

for Model-Checking. In Proc. SPIN Workshop on Model Checking of Software,
volume 2057 of LNCS, pages 216–234. Springer-Verlag, 2001.

29. O. Grumberg, T. Heyman, N. Ifergan, and A. Schuster. ”achieving speedups in
distributed symbolic reachability analysis through asynchronous computation”. In
Correct Hardware Design and Verification Methods, 13th IFIP WG 10.5 Advanced
Research Working Conference, CHARME 2005, Lecture Notes in Computer Sci-
ence, pages 129–145. Springer, 2005.

30. O. Grumberg, T. Heyman, and A. Schuster. Distributed Model Checking for μ-
calculus. In Proc. Computer Aided Verification, volume 2102 of LNCS, pages 350–
362. Springer-Verlag, 2001.

31. B. R. Haverkort, A. Bell, and H. C. Bohnenkamp. On the Efficient Sequential and
Distributed Generation of Very Large Markov Chains From Stochastic Petri Nets.
In Proc. 8th Int. Workshop on Petri Net and Performance Models, pages 12–21.
IEEE Computer Society Press, 1999.

32. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

33. G. J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth First Search.
In Proc. SPIN Workshop on Model Checking of Software, pages 23–32. American
Mathematical Society, 1996.

34. S. Jabbar and S. Edelkamp. Parallel External Directed Model Checking with
Linear I/O. In Verification, Model Checking, and Abstract Interpretation: 7th
International Conference, VMCAI 2006, volume 3855 of LNCS, pages 237–251.
Springer-Verlag, 2006.

35. F. Lerda and R. Sisto. Distributed-Memory Model Checking with SPIN. In Proc.
SPIN Workshop on Model Checking of Software, number 1680 in LNCS, pages
22–39. Springer-Verlag, 1999.

36. R. Pelánek. Typical Structural Properties of State Spaces. In Proc. of SPIN
Workshop, volume 2989 of LNCS, pages 5–22. Springer-Verlag, 2004.

37. A. Pnueli. The Temporal Logic of Concurrent Programs. Theoretical Computer
Science, 13:45–60, 1981.

38. K. Ravi, R. Bloem, and F. Somenzi. A Comparative Study of Symbolic Algorithms
for the Computation of Fair Cycles. In Proc. Formal Methods in Computer-Aided
Design, volume 1954 of LNCS, pages 143–160. Springer-Verlag, 2000.

39. J. Reif. Depth-first Search is Inherently Sequential. Information Proccesing Letters,
20(5):229–234, 1985.

Cluster-Based LTL Model Checking of Large Systems 279

40. U. Stern and D.L. Dill. Using magnetic disc instead of main memory in the murϕ
verifier. In Proc. of Computer Aided Verification, volume 1427 of LNCS, pages
172 – 183. Springer-Verlag, 1998.

41. R. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM Journal on
Computing, pages 146–160, Januar 1972.

42. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. IEEE Symposium on Logic in Computer Science, pages 322–
331. Computer Society Press, 1986.

43. Pavel Šimeček. DiVinE – Distributed Verification Environment. Master’s thesis,
Masaryk Univeristy Brno, 2006.

Safety and Liveness
in Concurrent Pointer Programs

Dino Distefano1, Joost-Pieter Katoen2,3, and Arend Rensink3

1 Dept. of Computer Science, Queen Mary, University of London, United Kingdom
2 Software Modeling and Verification Group, RWTH Aachen, Germany
3 Formal Methods and Tools, University of Twente, The Netherlands

Abstract. The incorrect use of pointers is one of the most common
source of software errors. Concurrency has a similar characteristic. Prov-
ing the correctness of concurrent pointer manipulating programs, let
alone algorithmically, is a highly non-trivial task. This paper proposes
an automated verification technique for concurrent programs that ma-
nipulate linked lists. Key issues of our approach are: automata (with
fairness constraints), heap abstractions that are tailored to the program
and property to be checked, first-order temporal logic, and a tableau-
based model-checking algorithm.

1 Introduction

Pointers are an indispensable part of virtually all imperative programming lan-
guages, be it implicitly (like in Java or “pure” object-oriented languages) or
explicitly (like in the C family of languages). However, programming with point-
ers is known to be error-prone, with potential pitfalls such as dereferencing null
pointers and the creation of memory leaks. This is aggravated by aliasing, which
may easily give rise to unwanted side-effects because apparently unaffected vari-
ables may be modified by changing a shared memory cell — the so-called com-
plexity of pointer swing. The analysis of pointer programs has been a topic of
continuous research interest since the early seventies [10,15]. The purpose of this
research is twofold: to assess the correctness of pointer programs, or to identify
the potential values of pointers at compile time so as to allow more efficient
memory management strategies and the use of code optimization.

The problems of pointer programming become even more pressing in a con-
current setting where memory is shared among threads. Since the mainstream
object-oriented languages all offer shared-memory concurrency, this setting is in
fact quite realistic. Concurrent systems are difficult enough to analyze in the
absence of pointers; the study of this area has given rise to techniques such
as process algebra [30,6], temporal logic [35] and comparative concurrency the-
ory [23]. Techniques for analyzing programs that feature both concurrency and
pointers are scarce indeed.

Properties of pointer programs. Alias analysis, i.e., checking whether pairs of
pointers can be aliases, has received much attention (see, e.g., [13,26]) initially.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 280–312, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Safety and Liveness in Concurrent Pointer Programs 281

[16] introduced and provided algorithms to check the class of so-called position-
dependent alias properties, such as “the n-th cell of v’s list is aliased to the m-th
cell of list w”. Recently, extensions of predicate calculus to reason about pointer
programs have become en vogue: e.g., BI [24], separation logic [37], pointer as-
sertion logic (PAL) [25], alias logic [8,9], local shape logic [36] and extensions of
spatial logic [11]. These approaches are almost all focused on verifying pre- and
postconditions in a Hoare-style manner.

Since our interest is in concurrent (object-oriented) programs and in ex-
pressing properties over dynamically evolving pointer (i.e., object reference)
structures, we use first-order linear-time temporal logic (LTL) as a basis and
extend it with pointer assertions on single-reference structures, such as aliasing,
position-dependent aliasing, as well as predicates to reason about the birth and
death of cells. This results in an extension of propositional logic, which we call
NTL (Navigation Temporal Logic), similar in nature to that proposed in Evo-
lution Temporal Logic (ETL) [40] — see below for a more detailed comparison.
The important distinguishing feature of these logics with respect to “plain old”
propositional logic is that quantification occurs outside the temporal modalities;
in other words, we can reason about the evolution of entities over time. This
type of logic is known as quantified modal logic; see, e.g., [21,3]. This is in con-
trast to PAL, which contains similar pointer assertions as NTL (and goes beyond
lists), but has neither primitives for the birth and death of cells nor temporal
operators.

In the semantics of NTL (in contrast to ETL, which uses 3-valued logical
structures) we follow the traditional automata-based approach: models of NTL
are infinite runs that are accepted by Büchi automata where states are equipped
with a representation of the heap. (In terms of quantified modal logic, our models
have variable domains and are non-rigidly designating.) Evolving heaps have
been lately used to model mobile computations. In that view NTL combines
both spatial and temporal features as the ambient logic introduced in [11]. In
fact in [17] one of the authors has shown how to use the NTL model to analyze
mobile ambients.

Heap abstraction. Probably the most important issue in analyzing pointer pro-
grams is the choice of an appropriate representation of the heap. As the number
of memory cells for a program is not known a priori and in general is unde-
cidable, a concrete representation is inadequate. Analysis techniques for pointer
programs therefore typically use abstract representations of heaps such as, e.g.,
location sets [39] (that only distinguish between single and multiple cells), k-
limiting paths [26] (allowing up to k distinct cells for some fixed k), or summary
nodes [38] in shape graphs. This paper uses an abstract representation that is
tailored to unbounded linked list structures. The novelty of our abstraction is
its parameterization in the pointer program as well as in the formula. Cells that
represent up toM elements, where M is a formula-dependent constant, are exact
whereas unbounded cells (akin to summary nodes) represent longer lists. The
crux of our abstraction is that it guarantees each unbounded cell to be preceded
by a chain of at least L exact cells, where L is a program-dependent constant.

282 D. Distefano, J.-P. Katoen, and A. Rensink

Parameters L andM depend on the longest pointer dereferencing in the program
and formula, respectively. In contrast with the k-limiting approach, where an ad-
equate general recipe to determine k is lacking, we show how (minimal bounds
on) the parameters L and M can be determined by a simple static analysis.

Pointer program analysis. Standard type-checking is not expressive enough to
establish properties of pointer programs such as (the absence of) memory leaks
and dereferencing null pointers. Instead, existing techniques for analyzing
pointer programs include abstract interpretation [16], deduction techniques
[8,22,24,33,37,25,32], design by derivation a la Dijkstra [28], and shape analy-
sis [38], or combinations of these techniques.

We pursue a fully automated verification technique, and for that reason we
base our approach on model checking. Our model-checking algorithm is a non-
trivial extension of the tableau-based algorithm for LTL [27], tailored to the
variable-domain models described above. For a given NTL-formula Φ, this algo-
rithm is able to check whether Φ is valid in the automaton-model of the con-
current pointer program at hand. The algorithm, like in any approach based
on abstraction, is approximative: in our case this means that it suffers from
false negatives, i.e., a verification may wrongly conclude that the program re-
futes a formula. In such a case, however, diagnostic information can be provided
(unlike ETL, and as for PAL) that may be used for further analysis. Besides,
by incrementing the parameters M and L, a more concrete model is obtained
that is guaranteed to be a correct refinement of the (too coarse) abstract rep-
resentation. This contrasts with the ETL approach where manually-provided
instrumentation predicates are needed. As opposed to the PAL approach, which
is fully automated only for sequential loop-free programs, our technique is fully
automated for concurrent pointer programs that may include loops.

Main contributions. Summarizing, the main contributions of this paper are:

1. A quantified temporal logic (with some second-order features) that contains
pointer assertions as well as predicates referring to the birth or death of
memory cells;

2. An automaton-based model for pointer programs where states are abstract
heap structures and transitions represent the dynamic evolving of these
heaps; the model deals finitely with unbounded allocations.

3. A program analysis that automatically derives an over-approximation of the
invariant of concurrent programs manipulating lists. This analysis is sound
and it is guaranteed to terminate.

4. A control on the degree of concreteness of abstract heap structures, in
the form of two parameters that are obtained by a straightforward static
analysis of the program and formula at hand. On incrementing these para-
meters, refined heap structures are automatically obtained. Vice-versa, by
decrementing them more abstract models are derived. Hence the process of
abstraction-refinement of the analysis is reduced to only tuning these two
numeric parameters.

Safety and Liveness in Concurrent Pointer Programs 283

5. A model checking algorithm to verify safety and liveness properties (ex-
pressed by formulae in our logic) against abstract representations of pointer
programs.

This results in a push-button technique: given a program and a temporal logic
property, the abstract automaton as well as the verification result for the prop-
erty are determined completely algorithmically. Moreover, to our knowledge,
we are the first to develop model-checking techniques for (possibly) unbounded
evolving heaps of the kind described above. (Recently, regular model checking
has been applied to check properties of linked lists [7])

Our current approach deals with single outgoing pointers only. This still allows
us to consider many interesting structures such as acyclic, cyclic, shared and
unbounded lists (as in [28] and [16]), as well as hierarchies (by back-pointers).
Besides, several resource managers such as memory managers only work with
lists [34]. Moreover, several kernel routines and device drivers uses lists. Our
abstract heap structures can also model mobile ambients [17].

Related work. Above we have already mentioned many sources of related work.
Two of them, however, deserve a more detailed discussion: shape analysis and
separation logic.

In [38], a framework for the generation of a family of shape analysis algorithms
based on 3-valued logic and abstract interpretation is presented. This very gen-
eral framework can be instantiated in different ways to handle different kinds of
data structures at different levels of precision and efficiency.

The similarity between the analysis in [38] and ours is mostly in the use of
summary nodes in order to obtain finite states representation of the invariant of
the program. However, our summaries are only used (and tailored) to abstract
lists whereas in [38] they can be more general. In fact, since in [38] states are
represented by 3-valued logical structures, the abstraction is done by the par-
titioning induced by the predicate values (canonical abstraction). In contrast,
our abstraction is technically implemented by means of morphisms which keep
a strong correspondence between the abstract heap and the concrete ones it
represents.

Among the differences between the two approaches, we have that [38] gives
a collecting semantics of the program. We use an automata semantics which
allows us to apply temporal reasoning and verify a wide range of safety and
liveness properties. Also, the framework of [38] makes use of instrumentation
predicates to refine the analysis whereas the refinement in our case is done by
tuning two numerical parameters. Moreover using morphisms, the soundness of
the new refined model is automatically guaranteed and therefore there is no need
to provide a proof of the equivalence for the two models.

The closest extension of [38] to our work is the aforementioned [40] on a first-
order modal (temporal) logic (called ETL) for allocation and deallocation of
objects and threads as well as for the specification of properties related to the
evolution of the heap. Although the aims of that paper and ours are surprisingly
close (for example in the kind of properties expressible in NTL and ETL), the

284 D. Distefano, J.-P. Katoen, and A. Rensink

technical machinery has those differences mentioned above between our work
and the setting of [38]. Moreover, [40] uses a trace semantics where each trace
is encoded by first-order logical structure. Formulae of ETL are then translated
in first-order logic with transitive closure for the evaluation on a trace. We use
Büchi automata to generate traces and verify NTL by an extension of the LTL
model-checking algorithm.

Separation logic [37,24,34] is an extension of Hoare logic able to prove heap-
manipulating programs in a concise and modular manner. At the core of sepa-
ration logic there is a new operator ∗ called separating conjunction. The formula
P ∗Q holds if P and Q hold in disjoint parts of memory. The ∗ operator stands
at the foundation of local reasoning in separation logic: it allows one to focus
only on the cells that are accessed by the program without the need to keep
track of possible aliases. Lately a lot of attention has been devoted in the design
of decision procedures and tools for program analysis that uses separation logic
as an effective model [4,5].

Although separation logic uses the random access memory model, it seems
that it would be possible to give a graph-based semantics for the logic. Interest-
ingly, for subsets of separation logic working only on lists, many features, of this
model would be very similar to the heaps we have introduced in this paper. For
example, our unbounded entities would correspond to the predicate listseg(x, y)
indicating a pure list segment from x to y. It would be interesting to see if
the frame rule of separation logic, which allows modular reasoning about heap
manipulating programs, can be proved sound for such graph model.

Outline of the paper. This paper is, in a sense, a companion to [18] and a sum-
mary (and partial revision) of [19], where we presented the technical details of
the automata, logic and (to some degree) the model checking algorithm. Here we
focus more on the usability aspects. We present the concurrent pointer language
in Section 2 and discuss a number of examples. Section 3 presents a concrete
semantics for the language. In Section 4 we define the operational semantics on
the basis of the abstract automata described above; in Section 5 we introduce
the logic and its semantics, and discuss it on the basis of the examples given in
Section 2. We also (quite briefly) discuss the principles of the model checking
algorithm, in Section 6. Details of the model checking algorithm and all proofs
can be found in [19].

2 Concurrent Pointer-Manipulating Programs

This section introduces a simple concurrent programming language dealing with
pointer structures. It incorporates means to create and destroy heap cells (re-
ferred to by pointers), and operations to manipulate them. A concurrent
producer-consumer problem and an in-place reversal program are used to il-
lustrate the kind of programs that can be written. In the discussion of these
programs, some relevant temporal properties will be introduced. Later on in the
paper, the formal specification and verification of these properties is treated.

Safety and Liveness in Concurrent Pointer Programs 285

2.1 Programming Language

Let PV be a set of program variables with v, vi ∈ PV . Each program variable is
assumed to denote a memory cell, where the constant nil is treated as a special
cell. A program variable is said to be undefined in case it is not pointing to any
cell. The syntax of programs is given by the following grammar:

p ::= var v1, . . . , vn : (s1 ‖ · · · ‖ sk)

s ::= new(�)
∣∣∣ dispose(α)

∣∣∣ � := α
∣∣∣ skip

∣∣∣ s; s ∣∣∣ if (b){ s }{ s }
∣∣∣

while (b){ s }
∣∣∣ 〈s〉 ∣∣∣ error

α ::= nil
∣∣∣ v ∣∣∣ α↑

� ::= v
∣∣∣ �↑

b ::= α = α
∣∣∣ undef(α)

∣∣∣ b ∨ b ∣∣∣ ¬b
Thus, a program p is a parallel composition of a finite number of statements
preceded by the declaration of a finite number of global variables. Statements
have the following intuitive interpretation.

– new(�) creates (i.e., allocates) a new cell that will be referred to by �. The
old value of � is lost. Thus, if � is the only pointer to cell e, say, then after
the execution of new(�), e has become “unreachable”. In this case, e is auto-
matically garbage collected together with the entities that are only reachable
from e.

– dispose(α) destroys (i.e., deallocates) the cell associated to α, and makes α
and every other pointer referring to it undefined. For the sake of simplicity,
new and dispose create, respectively destroy, a single entity only; generaliza-
tions in which several entities are considered simultaneously can be added
in a straightforward manner.

– The assignment � := α assigns a reference to the cell denoted to by α to �.
(Note that nil cannot occur as left-hand side of an assignment.) Again, the
cell that � was referring to might become unreferenced, in which case it is
removed by garbage collection.

– Sequential composition, while, skip and if have the standard interpretation.
The statement 〈s〉 denotes an atomic region, i.e., all statements in s are
executed atomically, without possible interference of any other concurrent
statement.

– α stands for a pointer expression whereas � stands for a location. The suf-
fix ↑ in both cases expresses dereferencing, or following the single outgoing
pointer. We denote x↑0 = x and x↑n+1 = (x↑n)↑.

– The expression undef(α) yields true if and only if α is undefined (which can
for instance happen as a consequence of dispose(β) if originally β = α).
Obviously, this is different from testing for α = nil . The capability of testing
for undefinedness within the language can be useful if we want to express
behavior on the level of system programs.

286 D. Distefano, J.-P. Katoen, and A. Rensink

Statements containing meaningless but legal expressions, such as dispose(nil)
and nil↑, will result in a run-time error (as defined by our semantics later on).
The halting of a statement due to such error is indicated by the construct error.
This construct is thus a semantical one, and cannot be part of any program.

2.2 Some Example Programs

Producer-consumer programs. Consider the concurrent producer-consumer prob-
lem that consists of three concurrent processes. The producer process repeatedly
generates new items by allocating new memory cells referred to by the global
program variable p. It does so only when p is undefined. A one-place buffer
process copies the memory cell referred to by p (if any) and makes p unde-
fined. As soon as an item is available in the buffer, the consumer process is able
to empty the buffer by disposing the memory cell. Typical properties that the
producer-consumer program should satisfy are:

– absence of memory leaks, i.e., any produced item is eventually consumed
– first-in first-out property, i.e., items are consumed in the order of production
– unboundedness of the number of produced items

The first and last are typical liveness property, whereas the second is a safety
property.

To show the intricacy of the producer-consumer problem, we present several
programs that are slight variants of each other, and discuss their properties. A
first producer-consumer program that realizes the sketched approach is:

var c, p, w : // program variables

(while (true) if (undef(p)) {new(p); } // producer

|| while (true) if (¬undef(p)) {c := p; p := w; } // buffer

|| while (true) if (¬undef(c)) {dispose(c); } // consumer

)

This first program clearly suffers from a memory leak, as it allows produced cells
to be never consumed. This can be expressed by “possibly, a produced entity is
never referred to by c”. This stems from the fact that the producer can put a new
item in the buffer before the consumer retrieves the previous one. The following
variant avoids this problem by exploiting the auxiliary variable w (which was
used before just to make p undefined). The buffer process thus becomes:

while (true) if (¬undef(p)) {w := p; p := c; c := w; }

whereas the producer and consumer processes remain as before. This program
indeed has no memory leak — provided that the consumer process is scheduled
infinitely often — but violates the order-preservation property; i.e., items may be
consumed in a different order than they are produced. This occurs for instance
in Fig. 1, which represents an example run of the program.

Safety and Liveness in Concurrent Pointer Programs 287

cp w cp w cp w cp w

cp wcp wcp wcp w

cp w cp w

new(p) p := cw := p
new

(p)

c := ww := pp := c

c
:=

w

dispose(c)
· · · · · ·

w := p

Fig. 1. The order of consumption �= the order of production

To overcome this problem, the guard of the buffer process is strengthened such
that the producer is only allowed to put a new item into the buffer whenever
the previous item has been retrieved. This yields the following buffer process:

while (true) if (¬undef(p)∧ undef(c)) {w := p; p := c; c := w; }

The producer and consumer process are as before. It can be shown that this
program indeed satisfies all properties: it guarantees that memory leaks cannot
occur (assuming process fairness), the order of production is preserved, and an
unbounded number of items is produced.

Although the discussed programs can in the course of time produce an un-
bounded number of items, the buffer capacity is still finite. This is no longer valid
for the following variant. Rather than modeling the buffer as a separate process,
we consider the buffer to be realized as a global linked list of unbounded length.
The producer adds entities to the tail tl of the buffer, whereas the consumer
process removes and consumes them from the head hd of the buffer.

var hd , tl , t :

(new(tl); hd := tl ;while (true) {new(tl↑); tl := tl↑ } // producer

|| while (true) if (hd �= tl) {t := hd ; hd := hd↑; dispose(t) } // consumer

)

In addition to the previously mentioned properties, it is desirable that during
the execution of this program, the tail of the buffer never gets disconnected from
the head.

In-place list reversal. As a final example we consider a classical sequential list-
manipulating problem, viz. reversing the direction of a list. We show two solu-
tions, one of which is actually incorrect. Both programs try to establish reversal
in a destructive (or so-called in-place) manner as they reuse the cells of the orig-
inal list, as initially pointed to by program variable v, to built the reversed list.
Properties of interest for this problem include, for instance:

288 D. Distefano, J.-P. Katoen, and A. Rensink

– v’s list will be (and remains to be) reversed;
– none of the elements in v’s list will ever be deleted;
– v and w always point to distinct lists (heap non-interference).

Here, w is an auxiliary variable that is used in the construction of the reversed
list. The following program is taken from [2], but violates the first property.

var v, w, t, z :

if (v �= nil) {
t := v↑; w := nil ;

while (t �= nil) {
z := t↑; v↑ := w; w := v; v := t; t := z

}
}

The problem in this erroneous program is that one pointer is missing in the
reversed list. Before continue reading, the reader is invited to find the error in
the program.

The following list-reversal program (see, e.g., [8,37,38]) reverses the list in a
correct manner, i.e., this program satisfies the three aforementioned properties:

var v, w, t :

w := nil ;

while (v �= nil) {
t := w; w := v; v := v↑; w↑ := t

}

2.3 The Topic of This Paper

To check properties like the ones in the previous examples in a fully automated
manner is the challenge that is faced in this paper. We advocate an automata-
based model-checking approach in which states are equipped with (abstract)
heap representations. As property-specification language we propose to use a
first-order variant of linear temporal logic. Before explaining the heap abstraction
mechanism, we provide the concrete (and infinite-state) semantics of our example
programming language. This is characterized by the fact that each cell and
pointer is represented explicitly.

3 Concrete Semantics

We assume a universe of entities, Ent, including a distinguished element nil , used
to represent a canonical entity without outgoing references. We let PV ⊆ Ent,
i.e., program variables are assumed to correspond to special entities that exist
throughout the entire computation.

Safety and Liveness in Concurrent Pointer Programs 289

Configurations. Automata will be used as semantical model for our programming
language. States (called configurations) of these automata are equipped with
information about the current entities, their pointer structure, and the current
set of fresh entities.

Definition 1 (configuration). A configuration is a tuple c = 〈E,≺, N〉 such
that:

– E ⊆ Ent is a finite set of entities, with nil ∈ E.
– ≺ ⊆ E × E is a binary relation over E, such that:

outdegree≺(e)
 1 for all e ∈ E and outdegree≺(nil) = 0

– N ⊆ E is the set of fresh entities

c is called reachable if for all e ∈ E, there is some e′ ∈ PV∩E such that e′ ≺∗ e
(where ≺∗ is the reflexive and transitive closure of ≺).

A configuration is used to model the heap of a program. Note that in general
these concrete heaps can grow unboundedly. The only data structure allowed is
a cell with at most a single pointer to another cell. The cells are modeled by
entities and the pointers by the binary relation ≺. Note the restriction on the
≺-outdegree, which implies that any entity has at most one ≺-successor. The
derived partial function succ : E ⇀ E is defined by:

succ(e) = e′ if e ≺ e′ .

Example 1. In Fig. 1, the configurations are depicted as ovals, program variables
stand for the entities representing them, and the dashed lines between variables
and entities represent the pointers from ev to succ(ev). The entity nil is not
depicted in these configurations. If in cells the outgoing pointer is not depicted
then it is dangling. The fresh entities in a configuration are the entities that are
absent in the previous configuration. They typically arise as a result of executing
the new statement.

Interpreting navigation expressions. The semantics of navigation expression α
in configuration c = 〈E,≺, N〉 is given by:

[[nil]]expc = nil

[[v]]expc = succ(v)

[[α↑]]expc = succ ([[α]]expc)

where succ is assumed to be strict, i.e., succ(⊥) = ⊥. We omit the subscript c
from [[]]expc in case the configuration is clear from the context. The semantics of
left-hand sides of assignments is defined as:

[[v]]loc
c = v

[[�↑]]loc
c = succ

(
[[�]]loc

c

)
Note that [[v]]loc equals the entity denoting v in case v occurs as left-hand side
of an assignment (or as argument of new), whereas [[v]]exp is the cell referred to
by v whenever v occurs as right-hand side (or as argument of dispose).

290 D. Distefano, J.-P. Katoen, and A. Rensink

Heap manipulations. The following operations on configurations are useful to de-
fine the operational semantics of operations such as new, dispose and assignment.
All operations manipulate the heap, and yield a new heap that is obtained by
either adding or deleting entities, or by changing pointers. Assume w.l.o.g. that
Ent is totally ordered by some arbitrary natural ordering; this is convenient for
selecting a fresh entity in a deterministic way. The following operations require
[[�]]loc and [[α]]exp to be different from ⊥ and nil .

– The operation add(c, �) extends the configuration c = 〈E,≺, N〉 with a fresh
entity e referred to by the expression �:

add(c, �) = 〈E ∪ {e},≺′, {e}〉with e = min(Ent \ E)
≺′ = ≺ \ {([[�]]loc, [[�]]exp)} ∪ {([[�]]loc, e)}

– The operation cancel(c, α) deletes the entity denoted by the navigation ex-
pression α from the configuration c:

cancel(c, α) = 〈E′,≺ ∩ (E′ × E′),∅〉, with E′ = E \ {[[α]]exp}

Note that in the resulting configuration, every pointer to [[α]]exp becomes
undefined.

– Finally, the operation modify(c, �, α) changes the configuration c such that
the entity denoted by � points to the entity referred to by α:

modify(c, �, α) = 〈E,≺′,∅〉 with ≺′ = ≺ \ {([[�]]loc, [[�]]exp)}
∪ {([[�]]loc, [[α]]exp)}

Stated in words, the outgoing pointer of the entity denoted by � is redirected
to the entity denoted by α.

The final operation on heap structures that is needed for the semantics is
garbage collection. This is done by explicitly determining the entities in a con-
figuration that are “reachable” (via the pointer structure) from some program
variable. We define:

gc(c) = 〈E′,≺ ∩ (E′ × E′), N ∩ E′〉 with E′ = {e | ∃e′ ∈ PV. e′ ≺∗ e}

Example applications of the heap manipulations are provided in Fig. 2.

Pointer automata. The semantics of the programming language is given by a
pointer automaton, in fact an automaton that accepts infinite sequences of con-
figurations according to a generalized Büchi acceptance condition. Each state in
the pointer automaton is equipped with a concrete configuration that represents
the current heap content.

Definition 2 (pointer automaton). A pointer automaton A is a tuple (Q, cf,
→, I,F) where:

– Q is a non-empty, denumerable set of states
– cf : Q→ Cnf is a mapping associating a configuration with every state

Safety and Liveness in Concurrent Pointer Programs 291

c′′

y

x
y

y

add(c, x) gc(c′)

c

x y

c′

c′

x
y

x y

c′′

cancel(c, x) gc(c′)

c′′
c c′

x yx

modify(c, x, y)

c

x y

x
y gc(c′)

x

Fig. 2. Example heap manipulations

– →⊆ Q×Q is a transition relation
– I ⊆ Q is a set of initial states, and
– F ⊆ 2Q is a generalized Büchi acceptance condition.

We write q−→ q′ instead of (q, q′) ∈ −→ . According to the generalized Büchi
acceptance condition, q0q1q2 · · · is an accepting run of A if qi −→ qi+1 for all
i � 0, q0 ∈ I and |{i | qi ∈ F}| = ω for all F ∈ F . That is, each accept set
F ∈ F needs to be visited infinitely often. Let runs(A) denote the set of runs of
A. Run q0q1q2 · · · accepts the sequence of configurations cf(q0) cf(q1) cf(q2) · · · .
The language L(A) denotes the set of configuration sequences that is accepted
by some run of A.

Note that here and in the sequel we will implicitly interpret all configura-
tion sequences up to isomorphism, where a sequence c0 c1 c2 · · · is isomorphic to
c′0 c

′
1 c

′
2 · · · if each ci is isomorphic to c′i, in the natural sense of having a bijective

mapping ψi : Ei → E′
i that both preserves and reflects structure, and, moreover,

ψi(e) = ψi+1(e) for e ∈ Ei ∩ Ei+1.

Operational semantics. Let Par denote the compound statements, i.e., the state-
ments generated by r ::= s | r ‖ s with s a program statement as defined in
Section 2. The compound statements constitute the states of the pointer au-
tomaton that will be associated to a program. We first provide the inference
rules for those statements that might affect the heap structure, cf. Table 1. Any
manipulation on an undefined navigation expression results in a run-time error,
denoted by the process error. Any attempt to delete, create or assign a value
to the constant nil fails too. These errors are considered to be local, i.e., the
process attempting to execute these statements aborts, but this does not affect
other concurrent processes. This will become clear from the rules for parallel
composition.

The semantics of the other control structures is defined by the rules in
Table 2. The rules for the alternative and sequential composition as well as

292 D. Distefano, J.-P. Katoen, and A. Rensink

Table 1. Operational rules for heap manipulations

[[�]]loc �∈ {⊥,nil}
new(�), c −→ skip, gc ◦ add(c, �)

[[�]]loc ∈ {⊥,nil}
new(�), c −→ error, c

[[α]]exp �∈ {⊥, nil}
dispose(α), c −→ skip, gc ◦ cancel(c, α)

[[α]]exp ∈ {⊥, nil}
dispose(α), c −→ error, c

[[�]]loc �∈ {⊥,nil}
� := α, c −→ skip, gc ◦ modify(c, �, α)

[[�]]loc ∈ {⊥,nil}
� := α, c −→ error, c

Table 2. Operational rules for the control structures

[[b]]exp = true
if (b){s1}{s2}, c −→ s1, c

[[b]]exp = false
if (b){s1}{s2}, c −→ s2, c

s1, c −→ s′
1, c

′ ∧ s′
1 �∈ {skip, error}

s1 ; s2, c −→ s′
1 ; s2, c

′
s1, c −→ skip, c′

s1 ; s2, c −→ s2, c
′

s1, c −→ error, c
s1 ; s2, c −→ error, c

while (b){s}, c −→ if (b){ s ; while (b){s} }{ skip }, c

s, c −→ s′, c′

〈s〉, c −→ atomic s′, c′

s, c −→ s′, c′ ∧ s′ �∈ {skip, error}
atomic s, c −→ atomic s′, c′

s, c −→ s′, c′ ∧ s′ ∈ {skip, error}
atomic s, c −→ s′, c′

sj , c −→ s′
j , c

′ ∧ s′
j �= error ∧ (∀i �= j. si �= atomic s′

i)
s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, c −→ s1 ‖ · · · ‖ s′

j ‖ · · · ‖ sk, c′

sj , c −→ error, c ∧ (∀i �= j. si �= atomic s′
i)

s1 ‖ · · · ‖ sj ‖ · · · ‖ sk, c −→ s1 ‖ · · · ‖ error ‖ · · · ‖ sk, c

∀0 < j
 k. sj ∈ {skip, error}
s1 ‖ · · · ‖ sk, c −→ s1 ‖ · · · ‖ sk, c

for iteration are straightforward. Note that the boolean expression undef(α)
yields true whenever [[α]]exp = ⊥, and false otherwise. The semantics of the
other boolean expressions is standard (where equality is assumed to be strict)
and is omitted here. The semantics of atomic regions are determined by three
rules. On entering an atomic region, the process s is marked as “being in con-
trol”; this is indicated by the prefix atomic. This mark is lost once the atomic
region is left, or whenever an error occurs. Once marked as being atomic, the
process has control and is allowed to complete its atomic region without any
possible interference of any other process. This is established by the first two
rules for parallel composition. Once all processes are finished or aborted, the

Safety and Liveness in Concurrent Pointer Programs 293

program loops. This is established by the last inference rule, and is exploited
to impose fairness constraints. As a result, all runs of any pointer program are
infinite.

Definition 3. The concrete semantics of program

p = decl v1, . . . , vn : (s1 ‖ · · · ‖ sk)

is the pointer automaton [[p]]conc = (Q, cf,→, I,F) such that:

– Q ⊆ Par × Cnf with cf(r, c) = c
– −→ ⊆ Q×Q is the smallest relation satisfying the rules in Table 1 and 2;
– I = {(s1 ‖ · · · ‖ sk, 〈{v1, . . . , vn},∅,∅〉)}
– F = {F̂i | 0
 i < k} ∪ {F̃i | 0
 i < k} where:

F̂i = {(s′1‖ · · · ‖s′k, c) ∈ Q | s′i = skip ∨ s′i = error ∨ s′i = while(b){s}; s′′}
F̃i = {(s′1‖ · · · ‖s′k, c) ∈ Q | s′i = skip ∨ s′i = error ∨ s′i = s;while(b){s}; s′′}.

A few remarks are in order. For state (r, c) ∈ Q, r is the compound statement to
be executed and c is a reachable (concrete) configuration, i.e., it only contains
the entities reachable from some program variable in the program p. [[p]]conc has
a single initial state s1 ‖ · · · ‖ sk together with a heap that initially contains
a cell for each program variable only. The set of accept states for the i-th se-
quential component si consists of all states in which the component i has either
terminated (si = skip), aborted (si = error), or is processing a loop (which could
be infinite). Note that according to this acceptance condition, processes that
consist of an infinite loop are executed in a fair manner. This applies, e.g., to
both processes in the producer-consumer example.

Example 2. Consider the example programs provided in Section 2. It can be
checked that Fig. 1 indeed is a possible run that is allowed by the semantics of
the second producer-consumer program. The transition labels are provided for
convenience only. The initial part of the (infinite-state) pointer automaton that
is obtained for the producer-consumer program with the shared list is given in
Fig. 3.

4 Heap Abstractions

The most obvious way to model pointer structures is to represent each entity and
each pointer individually as we did in the previous section. For most programs,
like, e.g., the producer/consumer program with the shared linked list, this will
give rise to infinite pointer automata. To obtain more abstract (and compact)
views of pointer structures, chains of cells will be aggregated and represented
by one (or more) cells. We consider the abstraction of pure chains (and not of
arbitrary graphs) in order to be able to keep the “topology” of pointer structures
invariant in a more straightforward manner.

294 D. Distefano, J.-P. Katoen, and A. Rensink

var hd , tl , t :

(new(tl); hd := tl ;

while (true) {
new(tl↑);

tl := tl↑
}

‖ while (true) {
if (hd �= tl) {

t := hd ;

hd := hd↑;
dispose(t) }

}
)

0

1

2

3

4

5

6

13

14

12

7

8

9

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

ttl hd

dispose(t)

dispose(t)

new(tl)

new(tl↑)

new(tl↑)

new(tl↑)

new(tl↑)

new(tl↑)

new(tl↑)

tl := tl↑

hd := tl

tl := tl↑

tl := tl↑

tl := tl↑
t
:=

hd
t
:=

hd

t
:=

hd

hd
:=

hd
↑

hd
:=

hd
↑

hd
:=

hd
↑

· · · · · ·

· · · · · ·

· · · · · ·

new(tl↑) dispose(t)

Fig. 3. Fragment of the automaton for the producer-consumer program

4.1 Abstracting Pure Chains

Pure chains. A sequence e1, . . . , ek of entities in a configuration is a chain (of
length k) if ei ≺ ei+1, for 0 < i < k. The non-empty set E of entities is a
chain of length |E| = k iff there exists a bijection f : {1, . . . , k} → E such that
f(1), . . . , f(k) is a chain; let first(E) = f(1) and last(E) = f(k). E is a pure
chain if indegree≺(e) = 1 for all e ∈ f(2), f(3), . . . , f(k) and f is unique (which
may fail to be the case if the chain is a cycle). Note that chains consisting of a
single element are trivially pure.

Abstracting pure chains. An abstract entity may represent a pure chain of “con-
crete” entities. The concrete representation of abstract entity e is indicated by
its cardinality C(e) ∈ M = {1, . . . ,M} ∪ {∗}, for some fixed constant M > 0.
Entity e for which C(e) = m
 M represents a chain of m “concrete” entities; if
C(e) = ∗, e represents a chain that is longer than M . (Such entities are similar to
summary nodes [38], with the specific property that they always abstract from

Safety and Liveness in Concurrent Pointer Programs 295

pure chains.) The special cardinality function 1 yields one for each entity. The
precision of the abstraction is improved on increasing M (because more config-
urations are distinguished); moreover, as we will discuss in the next section, to
model check a given temporal property, M has to be large enough to at least
evaluate all atomic predicates in the property with certainty.

Definition 4 (abstract configuration). An abstract configuration is a tuple
c = 〈E,≺, N, C〉 such that 〈E,≺, N〉 is a configuration and C : E → M is a
mapping associating a cardinality to each e ∈ E, such that C(e) = 1 if e ∈ N∪PV.

Evidently, each concrete configuration (cf. Def. 1) is an abstract configuration
such that C = 1.

Configurations representing pure chains at different abstraction levels are re-
lated by morphisms, defined as follows. Let Cnf denote the set of all configura-
tions ranged over by c and c′, and C({e1, . . . , en}) = C(e1) ⊕ . . .⊕ C(en) denote
the number of concrete cells represented by e1 through en, where n⊕m = n+m
if n+m
 M and ∗ otherwise.

Definition 5 (morphism). For c, c′ ∈ Cnf, a morphism from c to c′ is a sur-
jective function h : E → E′ such that:

1. for all e ∈ E′, h−1(e) is a pure chain and C′(e) = C(h−1(e))
2. e ≺′ e′ ⇒ last(h−1(e)) ≺ first(h−1(e′))
3. e ≺ e′ ⇒ h(e) '′ h(e′) where '′ denotes the reflexive closure of ≺′

4. h(e) ∈ N ′ if and only if e ∈ N .

According to the first condition only pure chains may be abstracted by a single
entity, while keeping the cardinalities invariant. The second and third condition
enforce the preservation of the pointer structure under h. The last condition
asserts that the notion of freshness should be preserved. Intuitively speaking, by
means of a morphism the abstract shape of the pointer dependencies represented
by the two related configurations is maintained. The identity function id is a
morphism and morphisms are closed under composition.

2 2

*

(a) (b)

*

tl hd t tl hd t

ttl hd tl hd t

Fig. 4. Morphisms between configurations of the producer-consumer program at dif-
ferent abstraction levels

296 D. Distefano, J.-P. Katoen, and A. Rensink

Example 3. Fig. 4(a) shows two configurations of the producer-consumer pro-
gram with a shared list as buffer, at two levels of abstraction. It is assumed that
M=2. The top configurations are abstractions of the bottom ones. Open circles
denote concrete entities and filled circles denote abstract entities; their cardi-
nality is indicated next to them. The morphism is indicated by dashed arrows.
An alternative abstraction of the same configuration is depicted in Fig. 4(b).
Although the indicated mapping is indeed a morphism in the sense of Def. 5,
it is clear that this abstraction is too coarse as there is no way to distinguish
between the cells pointed to by hd and hd↑, expressions that both occur in the
producer-consumer program.

Evolving pointer structures. Morphisms relate configurations that model the
pointer structure at distinct abstraction levels. They do not model the dy-
namic evolution of such linking structures. To reflect the execution of pointer-
manipulating statements, such as either the creation or deletion of entities, or
the change of pointers — the so-called “pointer swing” —by assignments (e.g.,
x := x↑↑), we use reallocations.

Definition 6 (reallocation). For c, c′ ∈ Cnf, λ : (E⊥ × E′⊥) → M is a real-
location if:

1. (a) C(e) =
⊕

e′∈E′⊥ λ(e, e′) and (b) C′(e′) =
⊕

e∈E⊥ λ(e, e′)
2. (a) for all e ∈ E, {e′ | λ(e, e′) �= 0} is a chain, and

(b) for all e′ ∈ E′, {e | λ(e, e′) �= 0} is a chain
3. for all e ∈ E, |{e′ | λ(e, e′) = ∗}|
 1
4. {e | λ(⊥, e) > 0} = N ′

Let Λ denote the set of reallocations, and c
λ
� c′ denote that there exists a

reallocation λ between c and c′.

We explicitly use the undefinedness symbol ⊥ to model birth (allocation) and
death (deallocation) of entities: λ(⊥, e) = n �= 0 denotes the birth of (n instances
of) e whereas λ(e,⊥) = n �= 0 denotes the death of (n instances of) e. The
conditions express that reallocation λ redistributes cardinalities on E to E′ such
that (1a) the total cardinality sent by λ from a source entity e ∈ E equals C(e)
and (1b) the total cardinality received by a target entity e′ ∈ E′ equals C′(e′);
also, (2a) the entities that send at least one instance to a given target entity
e′ ∈ E′ form a chain in the source, and likewise, (2b) the entities that receive at
least one entity from a given source e ∈ E form a chain in the target. Moreover,
(3) for each source entity e, at most one target entity e′ receives unboundedly
many instances. Finally (4) expresses the correlation between the birth of entities
and the freshness of those entities in the target. Note that, due to C′(e′) = 1 for
e′ ∈ N ′ (see 4) and condition (1b) it follows that λ(⊥, e′) = 1 and λ(e, e′) = 0
for all e ∈ E.

In some cases we can derive a reallocation λR between abstract configurations
unambiguously from a binary relation R between the sets of entities. In the
lemma below we use R(e) to denote {e′ | (e, e′) ∈ R} and R−1(e′) to denote
{e | (e, e′) ∈ R}.

Safety and Liveness in Concurrent Pointer Programs 297

Lemma 1. Let c, c′ be two abstract configurations, and let R ⊆ E × E′ be a
binary relation. We call R predictable if it satisfies the following conditions for
all (e, e′) ∈ R:

– either |R(e)|=1 and C(R−1(e′))=C′(e′) or |R−1(e′)|=1 and C′(R(e))=C(e);
– R(e) is a ≺′-chain and R−1(e′) is a ≺-chain;
– e′′ ∈ R(e) implies either e′′ = e′ or C′(e′) = 1 or C′(e′′) = 1;
– e′ /∈ N ′.

If R is predictable, there is exactly one reallocation λR between c and c′ with:

– R = {(e, e′) ∈ E × E′ | λ(e, e′) > 0};
– λ(⊥, e′) > 0 if and only if R−1(e′) = ∅;
– λ(e,⊥) > 0 if and only if R(e) = ∅.

Note that, in particular, any one-to-one relation between c and c′ for which
C(e) = C′(e′) if (e, e′) ∈ R, is predictable. A special class are the so-called
functional reallocations, which leave all cardinalities unchanged.

It is straightforward to check that, for any configuration c, the “identity”
function that maps each pair (e, e) for e ∈ Ec onto Cc(e) is a reallocation.

(a)

2

(b)

2

hd hd tt

hd := hd↑;
dispose(t)

t := hd ;

tl hd t

tl := tl↑;
new(tl↑)

tl hd t

tl tl

Fig. 5. Reallocations for evolution in the producer-consumer program

Example 4. Fig. 5(a) shows how an abstract configuration of the producer-
consumer program (for M=2) evolves on performing two assignments and a
disposal. The corresponding reallocation is depicted by dashed arrows between
the configurations. Fig. 5(b) shows the reversed transition and its reallocation.
Note that in (a) a cell is disposed (the one without outgoing dashed arrow),
whereas in (b) a cell is created (the one without incoming dashed arrow).

The concept of reallocation can be considered as a generalization of the idea of
identity change as, for instance, present in history-dependent automata [31]: be-
sides the possible change of the abstract identity of concrete entities, it allows for
the evolution of pointer structures. Reallocations allow “extraction” of concrete
entities from abstract entities by a redistribution of cardinalities between enti-
ties. Extraction is analogous to materialization [38]. Reallocations ensure that
entities that are born do not originate from any other entity. Moreover, entities
that die can only be reallocated to ⊥. This is the way in which birth and death
of cells is modeled.

298 D. Distefano, J.-P. Katoen, and A. Rensink

Pointer automata. In order to model the dynamic evolution of programs ma-
nipulating abstract representations of linked lists, we use (abstract) pointer au-
tomata. These are the same structures as before, except that each transition is
now indexed with a reallocation, and states are equipped with abstract (rather
than concrete) configurations.

Definition 7 (abstract pointer automaton). An abstract pointer automaton
A = 〈Q, cf,→, I,F〉 with Q, cf, I and F as before (cf. Def 2), and transition
relation →⊆ Q× Λ×Q, indexed by reallocations, such that:

q λ−−→ q′ implies that λ is a reallocation from cf(q) to cf(q′)

Runs of abstract pointer automata are alternating sequences of states and re-
allocations, i.e., q0λ0q1λ1q2 · · · such that qi λi−−→ qi+1 for all i � 0, q0 ∈ I, and
each accept set in F is visited infinitely often. Each run can be said to accept
sequences of concrete configurations that are compatible with the reallocations,
in a way to be defined below.

4.2 Symbolic Semantics

Although the concrete semantics is rather simple and intuitive, it suffers from
the problem that it easily results in an infinite state space. To circumvent this
problem, we provide a semantics in terms of abstract pointer automata.

Informal idea of the symbolic semantics. As a start, we determine by means
of a syntactic check through the program p under consideration, the “longest”
navigation expression that occurs in it and fix constant Lp such that

Lp > max{n | v↑n occurs in program p}

Besides the formula-dependent constant M , the program-dependent constant
Lp can be used to tune the precision of the symbolic representation, i.e., by
increasing Lp the model becomes less abstract. Unbounded entities (i.e., those
with cardinality ∗) will be exploited in the semantics to keep the model finite.
The basic intuition of our symbolic semantics is that unbounded entities should
always be preceded by a chain of at least Lp concrete entities. Such states (or
configurations) are called safe. This principle allows us to precisely determine the
concrete entity that is referred to by any navigation expression in the program.1

As assignments may yield unsafe configurations (due to program variables that
are “shifted” too close to an unbounded entity), these statements require some
special treatment (as we will see).

Definition 8 (safe configuration). For fixed L > 0, configuration c is L-safe
if:

∀e ∈ PV. ∀e′ : d(e, e′)
 L ⇒ C(e′) = 1

where d(e, e′) = n if e′ = succn(e), and d(e, e′) = ⊥ if e �≺∗ e′.
1 This is the sense in which the configuration is safe. The reader should not confuse

the idea of safe configuration we use here with other concepts such as memory safety.

Safety and Liveness in Concurrent Pointer Programs 299

Here, succ0(e) = e and succn+1(e) = succ(succn(e)). That is to say, in an L-safe
configuration, all entities within distance L of a program variable are concrete.

Example 5. The upper configuration in Fig. 4(a) is 2-safe, since each program
variable is at distance at least two from the abstract entity, but not 3-safe. (Recall
that each program variable is an entity.) The upper configuration in Fig. 4(b) is
not 1-safe. It follows by easy verification that all states in the concrete pointer
automaton [[p]]conc for program p are L-safe for any L > 0.

Normal form. For the symbolic semantics we consider configurations that, up
to isomorphism, uniquely represent a set of “safe” states that may be related by
morphisms. Such configurations are said to be in normal form. The notion of
normal form is based on compactness:

Definition 9 (compact configuration). For fixed L > 0, configuration c is
L-compact if for any entity e:

indegree≺(e) > 1 or d(e′, e)
 L+1 for some e′ ∈ PV

Configuration c is thus called L-compact if non-trivial pure chains appear within
at most distance L+1 from some program variable. Cells that belong to a cycle
and that are “entrances” to the cycle are compact, i.e., these cells will not be
abstracted from.

Example 6. The upper configuration in Fig. 4(a) is 2-compact, as all entities
are within distance at most three from a program variable. The following L-safe
configuration (for any L > 0), on the other hand, is not L-compact for L < 3:

thdtl

as two concrete cells are “too far” from a program variable, and thus need to be
represented in a more compact way.

Definition 10 (normal-form configuration). For fixed L > 0, configuration
c is in L-normal form whenever it is L-safe and L-compact.

Given that the number of program variables is finite, and that we only consider
cells that are reachable from program variables, it follows that:

Theorem 1. There are only finitely many L-normal form configurations.

The fact that the normal form of an L-safe configuration is unique follows from
the following:

Theorem 2. For c ∈ Cnf: if c is L-safe and reachable, then there is a unique
L-normal c′ ∈ Cnf and a unique morphism between c and c′.

300 D. Distefano, J.-P. Katoen, and A. Rensink

Intuitively speaking, configurations in L-normal form are the most compact rep-
resentations of L-safe configurations. The normal form of L-safe configuration c is
denoted nf (c), and hnf (c) denotes the corresponding unique morphism between
c and nf (c).

Example 7. Let M=2. In the following figure, the right hand configuration is
the L-normal form of left hand one for L=2:

2

thdtl thdtl

In the following figure, the right hand configuration is the L-normal form of left
hand one for L=1:

*

2

v

w

v

w

For normal form configurations, we define the following relation between abstract
reallocations and pairs of concrete configurations.

Definition 11 (encoding). Let c, c′ be in L-normal form (for some L) and
let λ be a reallocation between c and c′. λ is said to encode a concrete pair of
reallocations c1, c′1 if c = nf (c1) and c′ = nf (c′1) with normal form morphisms
hnf and h′nf , respectively, and for all e ∈ E and e′ ∈ E′:

λ(e,⊥) = |h−1
nf (e) \ E′

1|

λ(⊥, e′) = |h′−1
nf (e′) \ E1|

λ(e, e′) = |h−1
nf (e) ∩ h′−1

nf (e′)|

(where the cardinalities on the right hand side are interpreted modulo M , i.e.,
they turn into ∗ if the cardinality exceeds M).

For an abstract pointer automaton A whose configurations are all in normal
form, such as the ones we will use below to give a finite-state semantics to our
language, using this notion of encoding we can define what it means for A to
simulate a concrete automaton (see Sect. 4.3), as well as the language of A. In
particular, for the latter, we consider that a run q0λ0q1λ1q2 · · · of A accepts a
sequence of concrete configurations c0 c1 c2 · · · if each λi encodes the pair ci, ci+1,
and we define L(A) to be the set of configuration sequences accepted by some
run of A.

Safe expansions. As argued above, performing an assignment to an L-safe state
may lead to a state that is not L-safe due to program variables that are moved
too close to an unbounded entity. This happens, for instance, when variable

Safety and Liveness in Concurrent Pointer Programs 301

v is assigned an entity further down in the list originally pointed to by v. To
overcome this difficulty, the semantics of assignment yields a set of possible
successor configurations that are related to each other in some sense. This is the
main source of nondeterminism (i.e., over-approximation). These configurations,
together with the morphisms that relate them to the configuration c in which
the assignment is executed, are the safe expansions of c.

Definition 12 (safe expansion). For fixed L > 0 and configuration c, ⇑c is
the set of pairs (c′, h) such that c′ is L-safe and h is a morphism from c′ to c
with shrink factor at most L.

The shrink factor of morphism h is defined as max{|h−1(e)| − 1 | e ∈ E′}. It is
important to note that ⇑c is finite (up to isomorphism).

Operational semantics. With the use of safe expansions we are now in a position
to define the symbolic semantics of our programming language. A key observation
is that the definitions of add(c, �), cancel(c, α) and modify(c, �, α) can also be
applied if c is abstract, provided it is L-safe for some L no smaller than the
number of consecutive dereferencing operations in � and α — so that [[�]]loc,
[[�]]exp and [[α]]exp all point to a uniquely determined, concrete entity. For that
reason we can use the relation −→ as derived according to Tables 1 and 2 over
abstract configurations, as long as we ensure L-safety for sufficiently large L.
Furthermore, if we derive a transition s, c−→ s′, c′ using these rules, then the
identity relation {(e, e) | e ∈ E ∩ E′} is predictable in the sense of Lemma 1.

Definition 13. The symbolic semantics of the program

p = decl v1, . . . , vn : (s1 ‖ · · · ‖ sk)

is the (abstract) pointer automaton [[p]]symb = 〈Q, cf,→, I,F〉 where Q, cf, I and
F are defined as for the concrete semantics (see Def. 3) and −→ ⊆ Q × Λ ×Q
is the smallest relation satisfying:

s, c−→ s′, c′ ∧ (c′′, h) ∈ ⇑c′
s, c−→λRs

′,nf (c′′)
where R = hnf ◦ h−1 ◦ idE∩E′ .

Let us explain this rule. The idea is that, by construction, all abstract configu-
rations generated by the semantics are in L-normal form, implying that they are
L-safe for sufficiently large L, so that we can indeed apply the concrete opera-
tional semantics (as discussed above). The abstract configuration thus derived,
however, is no longer in L-normal form; therefore we take all safe expansions
(introducing non-determinism) and normalize them. These steps (derivation–
expansion–normalization) are accompanied by, respectively, a one-to-one iden-
tity relation or partial function (idE∩E′), an inverse morphism (h−1) and a
morphism (hnf). By the definition of safe expansion it follows that h(e) = h(e′)
for distinct e, e′ implies (i) either e or e′ has cardinality 1, and (ii) hnf (e) �=
hnf (e′). From this and the fact that both h and hnf are morphisms, it can be

302 D. Distefano, J.-P. Katoen, and A. Rensink

deduced that hnf ◦ h−1 ◦ idE∩E′ is predictable in the sense of Lemma 1, and
hence λR is well-defined.

It is noteworthy that the safe expansion step is only really necessary if the
original, concrete transition has been caused by an underlying modify() operation
(i.e., is the result of an assignment): the add() and cancel() operations cannot
result in unsafe configurations, and hence no expansion is necessary afterwards.
It is, therefore, only assignment statements that cause non-determinism in the
abstract semantics.

Example 8. Consider the producer-consumer program where the buffer is mod-
eled as a shared (unbounded) list:

var hd , tl , t :

(new(tl); hd := tl ;while (true) {new(tl↑); tl := tl↑ } // producer

|| while (true) if (hd �= tl) {〈t := hd ; hd := hd↑〉; dispose(t) } // consumer

)

An initial fragment of the (abstract) pointer automaton for this program has
already been provided in Example 2. For L=2 and M=1, Fig. 6 illustrates the
part of the abstract pointer automaton in which abstraction plays a role. (The
entire pointer automaton has 30 states.) With respect to the version given before,
we have introduced atomicity in the consumer, which now atomically takes an
item from the list and shifts the hd of the buffer. To avoid cluttering up the
figure, the reallocations and the program statements are omitted, as are the
accept states. The same applies to the intermediate states of the atomic regions.

Note that a collector cell is introduced as soon as two concrete cells can be
“summarized” without violating the 2-safeness constraint. This happens, e.g.,
when performing the assignment tl := tl↑ in configuration 22. A case of nonde-
terminism that arises from considering safe expansions for assignments are the
two transitions, both labeled with the statement 〈t := hd ; hd := hd↑〉, emanating
from configuration 28. As the source configuration contains a collector cell, this
cell represents a list of two or more cells. Both possibilities are considered: for a
list of exactly two elements, configuration 22 results; the other case corresponds
to configuration 26.

4.3 Properties of the Semantics

The symbolic semantics gives us an analysis that by itself already yields some
useful information on the program, such as the possibility of memory violation
(e.g., if one of the parallel components of the program in a reachable state equals
error). This analysis has two important properties: it is sound since it represents
an over-approximation of the concrete semantics; and it is finite, and therefore
computable.

In more detail, the concrete and abstract pointer automata generated by the
concrete and symbolic semantics of a given program, respectively, are related by
a forward simulation defined using the notion of encoding in Def. 11. Let q be

Safety and Liveness in Concurrent Pointer Programs 303

25

28

*

* *

*

22

27

19

20

24

26tl

tl t

t

hdtl t

new(tl↑)

tl := tl↑

tl := tl↑

dispose(t)

new(tl↑)

〈t
:=

hd
;h

d
:=

hd
↑〉

dispose(t)
tl := tl↑

ttl hd

tl := tl↑

· · ·

thdtl

〈t
:=

hd
; hd

:=
hd↑〉

ttl hd

hdtl t

〈t
:=

hd
; h

d
:=

hd
↑〉hdtl t

〈t
:=

hd
; h
d
:=

hd
↑〉

di
sp

os
e(

t)

· · ·

· · ·· · ·

tl := tl↑

new(tl↑)

new(tl↑)

tl := tl↑

dispose(t)

dispose(t)

hd

hd

Fig. 6. Abstract pointer automaton for producer-consumer with shared list

a state in the concrete automaton. The abstract state qabs is said to simulate q
whenever

(i) cf(qabs) = nf (cf(q)), and
(ii) for every transition q−→ q′, there exists a reallocation λ that encodes the pair

cf(q), cf(q′), such that qabs −→λ q
′
abs and q′abs simulates q′.

Pointer automatonAsymb simulates Aconc, denoted Aconc 0 Asymb, whenever there
exists a forward simulation relation satisfying (i) and (ii) for all pairs (c, cabs) in
the relation, such that initial states and accept states correspond. The following
is then straightforward to prove:

Theorem 3. If Aconc 0 Asymb, then L(Aconc) ⊆ L(Asymb).

The relation between the concrete and symbolic semantics can be expressed in
terms of this notion of forward simulation (for details see [18]):

Theorem 4. For any program p: [[p]]conc 0 [[p]]symb.

Moreover, we have the following crucial property of the symbolic semantics:

Theorem 5. For any program p: [[p]]symb is finite state.

304 D. Distefano, J.-P. Katoen, and A. Rensink

More specifically, the number of states of the symbolic semantics is bounded by
k · 2K ·

∑K
n=0(n+1)n ·

∑K
n=0(M+1)n where k is a constant dependent on the

length of the longest sequential component and K is an upper-bound on the
number of entities in each state. Note that K is bounded since the number of
program variables is finite, and there cannot be an infinite-length chain in a
state, due to normal form.

5 Pointer Logic

To express properties of concurrent pointer programs, we use a first-order ex-
tension of linear temporal logic [35]. The logic allows to express properties over
sequences of configurations. The intention is that these sequences are generated
by the pointer automata.

5.1 Syntax of the Pointer Logic

In the logic, heap cells (i.e., entities) are referred to by logical variables, taken
from a countable set LV, ranged over by x, y, z, such that LV ∩ PV = ∅. The
connection between logical variables and cells is established by a partial valua-
tion, meaning that logical variables, like program variables, may be undefined.
Logical variables are a special case of pointer expressions, i.e., expressions that
refer to heap cells. The syntax of pointer expressions is defined as before by the
grammar:

α ::= nil
∣∣∣ x ∣∣∣ α↑

where nil denotes the special entity in Ent, x denotes the cell assigned by the
current valuation (which may be nil or undefined), and α↑ denotes the entity
referred to by (the entity denoted by) α (if any). Thus, x↑n denotes the (n+1)-st
cell in the list referred to by x.

The syntax of the logic Navigation Temporal Logic (NTL, for short) is defined
by the grammar:

Φ := α = α
∣∣∣ α � α

∣∣∣ undefα
∣∣∣ newα

∣∣∣ ∃x. Φ ∣∣∣ Φ ∧ Φ
∣∣∣ ¬Φ ∣∣∣ ©Φ

∣∣∣ ΦUΦ

The proposition α = β states that α and β are aliases. Here, equality is strict.
Proposition x↑2 = y↑3, for example, denotes that the third cell in x’s list is
also the fourth cell in y’s list. The proposition α � β expresses that (the cell
denoted by) β is reachable from (the cell denoted by) α via the pointer structure.
Thus, x � y↑3 expresses that in the current state the fourth cell in y’s list
can be reached by following the pointer structure from the cell denoted by x.
Proposition undefα states that α is dangling (i.e., undefined), and newα asserts
that the cell referred to by α is fresh. The existential quantification ∃x.Φ is
valid if an appropriate cell for x can be found such that Φ holds. The boolean
connectives, and the linear temporal connectives © (next) and U (until) have
the usual interpretation. We denote α �= β for ¬ (α = β), α �� β for ¬ (α � β),
aliveα for ¬(undefα), and ∀x. Φ for ¬ (∃x. ¬Φ). The other boolean connectives

Safety and Liveness in Concurrent Pointer Programs 305

(such as disjunction, implication and equivalence) and the temporal operators
� (eventually) and � (always) are obtained in the standard way.

Note that NTL is in fact a quantified modal logic (see, e.g., [3,21]) as quantifi-
cation and temporal operators can be mixed arbitrarily. In particular, temporal
operators can be used inside quantification.

Example 9. We illustrate the expressiveness of the logic NTL by a number of
example properties that are frequently encountered for pointer manipulating
programs.

– The third cell in x’s list and the head of y’s list eventually become aliases:

�(x↑↑ = y).

– x↑ will never be dangling:
�(alivex↑).

– Eventually, v will be part of a non-empty cycle:

�(∃x. x �= v ∧ x � v ∧ v � x)

– Every cell reachable from v will be eventually disposed:

∀x. (v � x⇒ �undefx)

– Whenever y is a cell in x’s list, y and x can only become disconnected when
y is disposed:

(∀x.∀y. x � y ⇒ (�alive y ∨ (x � y)U undef y))

– An unbounded number of cells will be created:

��(∃x. new x)

– Cells are disposed in the order of creation:

� (∀x. new x ⇒ � (∀y. new y ⇒ (alive y Uundefx)))

This can be understood as follows: any entity x that is fresh in the current
state will be dead before (or at the same time as) any younger entity y (fresh
in some later state) dies.

Program variables. To enable reasoning over program variables (rather than
just logical ones), we introduce for each relevant program variable v a logical
variable xv, which always evaluates to the entity v ∈ E. We then use v in the
logic as syntactic sugar for xv↑, so that it has the expected value. Furthermore,
when we write ∃x. Φ we really mean ∃x. (x �= xv1 ∧ . . . ∧ x �= xvn) ⇒ Φ, where
{v1, . . . , vn} is the set of program variables occurring in the program.

306 D. Distefano, J.-P. Katoen, and A. Rensink

Example 10. Consider the list-reversal program (cf. Section 2) that intends to
reverse the list initially pointed to by variable v. Properties of interest of this
program include, for instance:

– v and w always point to distinct lists (heap non-interference):

�(∀x. v � x ⇒ w �� x)

– v’s list will be (and remains to be) reversed and the resulting list will be
given to w 2:

∀x. ∀y. ((v � x ∧ x↑ = y) ⇒ ��(y↑ = x ∧ w � y))

Note that the previous formula expresses the precise specification of the list
reversal program. In particular, it implies that the reversed list contains
precisely the same elements of the original list and that their pointers are
properly reversed. This property is not usually verifiable by shape analy-
ses that do not keep track of the evolution of entities during the program
computation.

– none of the cells in v’s list will ever be deleted:

∀x. (v � x ⇒ �alivex)

Properties for the producer-consumer program with a shared list are:

– every element in the buffer is eventually consumed:

�(hd �= tl ⇒ ∃x. (x = hd ∧ �undefx))

(Note that this is not the same as �(hd �= tl ⇒ �undef hd); in the former
property, x is frozen to the value of hd in the state where it is bound, and so
the property expresses that that particular entity dies; the latter expresses
that hd itself may become undefined.)

– the tail is never deleted nor disconnected from the head:

�(alive tl ∧ hd � tl)

Taking into account the semantics of the logic, to be defined below, from Fig. 6 it
can be observed that both formulae are valid in the abstract pointer automaton
that models the producer-consumer program. Using Theorem 4 and Corollary 1,
we conclude that the original program (as represented in the concrete semantics)
also exhibits these properties. The same applies to the ordering property that
requires elements to be consumed in the order of production.
2 If one is interested in only checking whether v’s list is reversed at the end of the

program, program locations can be added and referred to in the standard way.

Safety and Liveness in Concurrent Pointer Programs 307

5.2 Semantics of the Pointer Logic

Logical formulae are interpreted over infinite sequences of configurations. We
need a function θ that is a partial valuation of the logical variables, i.e., θ(x) is
either undefined or equals some cell, which is then the value of x — as we shall
see, this is always an entity in the initial configuration of the sequence under
consideration.

The semantics of navigation expression α is given by:

[[nil]]≺,θ = nil

[[x]]≺,θ = θ(x)

[[α↑]]≺,θ = succ ([[α]]≺,θ)

Let σ = c0 c1 c2 · · · be a sequence of concrete configurations. The semantics of
NTL-formulae is defined by the satisfaction relation σ, θ |= Φ, defined as follows:

σ, θ |= α = β iff [[α]]≺0,θ = [[β]]≺0,θ

σ, θ |= α � β iff ∃ k � 0. [[α↑k]]≺0,θ = [[β]]≺0,θ

σ, θ |= undefα iff [[α]]≺0,θ = ⊥
σ, θ |= newα iff [[α]]≺0,θ ∈ N0

σ, θ |= ∃x. Φ iff ∃e ∈ E0 : σ, θ{e/x} |= Φ

σ, θ |= Φ∧Ψ iff σ, θ |= Φ and σ, θ |= Ψ

σ, θ |= ¬Φ iff σ, θ �|= Φ

σ, θ |= ©Φ iff σ1, θ̃1 |= Φ

σ, θ |= ΦUΨ iff ∃i. (σi, θ̃i |= Ψ and ∀j < i. σj , θ̃j |= Φ).

Here, θ̃i is defined by θ̃0 = θ and θ̃i+1 = θ̃i(x) ∩ (LV × Ei+1); i.e., as soon as an
entity is deallocated in the sequence (at some step j
 i), it can no longer occur
as an image in θi. The substitution θ{e/x} is defined as usual, i.e., θ{e/x}(x) = e
and θ{e/x}(y) = θ(y) for y �= x. σi denotes the suffix of σ that is obtained by
erasing the first i items from σ. Note that the proposition α � β is satisfied if
[[β]] = ⊥ and [[α]] can reach some cell with an undefined outgoing reference.

5.3 Properties

For pointer automaton A and NTL-formula Φ, A |= Φ holds whenever for all
allocation sequences σ of configurations in L(A) we have σ, θ |= Φ. The following
is then an immediate consequence of Theorem 3.

Corollary 1. For any NTL-formula Φ and pointer automata A and A′:

A 0 A′ ⇒ (A′ |= Φ ⇒ A |= Φ)

In particular, as for any program p we have that [[p]]conc 0 [[p]]symb (Theorem 4),
it follows that any NTL-formula Φ that is valid for (the finite-state!) [[p]]symb, it
holds that Φ is valid in the (possibly infinite-state) program p. As this applies
to all NTL-formulae, this includes safety and liveness properties.

308 D. Distefano, J.-P. Katoen, and A. Rensink

6 Model Checking Pointer Logic

For the setup proposed in this paper we have developed a model checking al-
gorithm, using tableau graphs as in [27] to establish whether or not a formula
Φ is valid on a given (finite) abstract pointer automaton A. The algorithm is
described in detail in [19]; here we give a brief summary.

The parameters M and L. In the previous section, we have stressed that the
precision of automaton A is ruled by two parameters: L, which controls the dis-
tance between entities before they are collected into unbounded entities, and M ,
which controls the information we have about unbounded entities. As described
in Sect. 4, L is used in the generation of models from programs; it is no longer of
importance in the model checking stage (where we supposed to have the model
already). M , on the other hand, is a formula-dependent constant that must ex-
ceed

∑
x∈Φ max{i | x↑i occurs in Φ} for the formula Φ that we want to check on

the model A. This may mean that the A at hand is not (yet) suitable for checking
a given formula Φ, namely if M for that model does not meet this lower bound.
In that case we have to stretch the model.

Example 11. Consider, for instance, the model depicted in Fig. 6. If we want to
check whether the buffer may have size 5, this can be expressed by the formula
�(hd↑5

� tl); but in states where entities of the buffer have been collected into
an unbounded entity (states 25–29 in the figure), it is not clear whether hd↑5

is pointing to (some entity within) that unbounded entity, or to some entity
following it, in particular to tl .

To overcome this problem, we can stretch a given model without loss of infor-
mation (but with loss of compactness, and hence increase of complexity of the
model checking). Let, C(A) be the maximal concrete cardinality of some entity
in A. In [19], the operation A ⇑ M̂ is defined, which stretches A such that
C(A ⇑ M̂) is M̂ . The resulting pointer automaton copies each state in A that
contains an unbounded entity e, such that for each materialization of e from
M,M+1, . . . , M̂ and ∗ a state exists. We then have the following result:

Theorem 6. For all abstract pointer automata A such that C(A) < M̂ : L(A) =
L(A ⇑ M̂).

The automaton A ⇑ M̂ is a factor nM−M times as large as A, where n is the
maximum number of unbounded entities in the abstract configurations of A.

The tableau graph. The next step is to construct a tableau graph GA(Φ) for Φ
from a given pointer automaton A, assuming that stretching has been done, so
M satisfies the given lower bound for Φ. GA(Φ) enriches A, for each of its states
q, with information about the collections of formulae relevant to the validity
of Φ that possibly hold in q. These “relevant formulae” are essentially sub-
formulae of Φ and their negations; they are collected into the so-called closure

Safety and Liveness in Concurrent Pointer Programs 309

of Φ. For instance, the closure of the formula tl alive ⇒ �(tl alive) which expands
to ¬Ψ ∨ ¬(true U¬Ψ) with Ψ = tl alive, is the set

true Ψ true U¬Ψ ©(true U¬Ψ) ©¬(true U¬Ψ) Φ
¬true ¬Ψ ¬(true U¬Ψ) ¬©(true U¬Ψ) ¬©¬(true U¬Ψ) ¬Φ .

In general, the size of the closure is linear in the size of the formula (as in [27]).
The states of GA(Φ) are called atoms (q,D) where q is a state of A and D a
consistent and complete set of valuations of formulae from the closure of Φ on
(the entities of) q. Consistency and completeness approximately mean that, for
instance, if Ψ1 is in the closure then exactly one of Ψ1 and ¬Ψ1 is “included in”
D (i.e., D contains a valuation for it), and if Ψ1 ∨ Ψ2 is in the closure then it is
“in” D iff Ψ1 or Ψ2 is “in” D, etc. For the precise definition we refer to [19]. For
any q, the number of atoms on q is exponential in the size of the closure and in
the number of entities in q.

A transition from (q,D) to (q′, D′) exists in the tableau graph GA(Φ) if
q−→ λ q

′ in A and, moreover, to the valuation of each sub-formula ©Ψ in D
there exists a corresponding valuation of Ψ in D′ — where the correspondence
is defined modulo the reallocation λ.

A fulfilling path in GA(Φ) is then an infinite sequence of transitions, starting
from an initial state, that also satisfies all the “until” sub-formulae Ψ1 UΨ2 in
the atoms, in the sense that if a valuation of Ψ1 UΨ2 is in a given atom in the
sequence, then a corresponding valuation of Ψ2 occurs in a later atom — where
correspondence is the same notion as above, but now modulo a sequence of
reallocations. We have the following result:

Proposition 1. A |= Φ iff there does not exist a fulfilling path in GA(¬Φ).

Hence the validity of the formula Φ is related to the existence of a fulfilling path
in the graph GA(¬Φ). To decide this, we seek for the existence of a self-fulfilling
strongly connected sub-component (SCS) of the tableau graph that is reachable
from an initial state through some prefix trace. This gives a necessary criterion
for the existence of a fulfilling path. In particular, if we use Inf (π) to denote
the set of atoms that occur infinitely often in an (arbitrary) infinite path π in
GA(Φ), then we have:

Proposition 2. Inf(π) is not a self-fulfilling SCS ⇒ π is not a fulfilling path.

Since the number of SCSs of any finite tableau graph is finite, and the property of
self-fulfillment is decidable, this gives rise to a mechanical procedure for verifying
the validity of formulae. This is formulated in the following theorem:

Theorem 7. For any finite abstract pointer automaton A, it is possible to verify
mechanically whether A |= Φ.

This, combined with Th. 4, implies that, for any concrete automaton Aconc of
which A is an abstraction, it is also possible to verify mechanically whether
Aconc |= Φ. Note that although this theorem leaves the possibility of false neg-
atives (as usual in model checking in the presence of abstraction), it does not

310 D. Distefano, J.-P. Katoen, and A. Rensink

produces false positives. This applies to both safety and liveness properties. Hav-
ing false negatives means that if the algorithm fails to show A |= Φ then it cannot
be concluded that Φ is not satisfiable (by some run of A). However, since such
a failure is always accompanied by a “prospective” fulfilling path of ¬Φ, further
analysis or testing may be used to come to a more precise conclusion.

The algorithm is summarized in Table 3.

Table 3. Procedure for validity of Φ in A

procedure valid(A, Φ)
begin

construct GA(¬Φ);
construct the set Π of reachable self-fulfilling SCS

satisfying the accept condition on FA;
if Π = ∅

then return: “Φ is valid in A”;
else return G′ ∈ Π with its prefix as a (possible) counterexample;
fi

end

7 Concluding Remarks

In this paper, we have introduced a sound analysis of concurrent programs ma-
nipulating heap-allocated linked lists. The analysis is based on an automaton
model where states are equipped with abstract heap representations and tran-
sitions with mappings that allow to model the evolution of heap during the
program computation. Moreover, the analysis is parametric in two constants.
This latter feature reduces the process of abstraction-refinement to simply in-
creasing/decreasing these parameters.

Furthermore, we define a temporal logic called NTL with pointer assertions as
well as predicates referring to the birth or death of memory cells. Although NTL is
essentially a first-order logic, it contains two second-order features: the reachabil-
ity predicate α � β (which computes the transitive closure of pointers), and the
freshness predicate newα (which expressesmembership of the set of fresh entities).

For NTL, we introduce a sound (but not complete) model-checking algorithm
to verify formulae against our automata models. Thus, safety and liveness prop-
erties of heap mutating programs can be verified. We like to mention that for the
(much) simpler framework in which pointers are ignored, it is possible to check
dynamic properties such as the creation and disposal of heap cells in a sound
and complete manner, as described in [20].

References

1. S. Bardin, A. Finkel, and D. Nowak. Towards symbolic verification of programs
handling pointers. In: AVIS 2004.

2. A. Barr. Find the Bug in this Java Program. Addison-Wesley, 2005.

Safety and Liveness in Concurrent Pointer Programs 311

3. D. Basin, S. Matthews and L. Vigano. Labelled modal logics: quantifiers. J. of
Logic, Language and Information, 7(3);237–263, 1998.

4. J. Berdine, C. Calcagno, P.W. O’Hearn. A decidable fragment of separation
logic. In: FSTTCS, LNCS 3328, pp. 97-109, 2004.

5. J. Berdine, C. Calcagno, P.W. O’Hearn. Symbolic execution with separation
logic. APLAS, LNCS 3780, pp. 52-68, 2005.

6. J. Bergstra, A. Ponse and S.A. Smolka (editors). Handbook of Process Algebra.
Elsevier, 2001.

7. A. Bouajjani, P. Habermehl, P. Moro and T. Vojnar. Verifying programs with
dynamic 1-selector-linked list structures in regular model checking. In: TACAS,
LNCS 3440, pp. 13–29, 2005.

8. M. Bozga, R. Iosif, and Y. Lakhnech. Storeless semantics and alias logic. In:
PEPM, pp. 55–65. ACM Press, 2003.

9. M. Bozga, R. Iosif and Y. Lakhnech. On logics of aliasing. In: SAS, LNCS 3148,
pp. 344-360, 2004.

10. R. Burstall. Some techniques for proving correctness of programs which alter data
structures. Machine Intelligence 6: 23–50, 1971.

11. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In:
ICALP, LNCS 2380, pp. 597–610. Springer, 2002.

12. L. Cardelli and A.D. Gordon. Anytime, anywhere: modal logics for mobile ambi-
ents. In: POPL, pp. 365–377. ACM Press, 2000.

13. D.R. Chase, M. Wegman and F. Zadeck. Analysis of pointers and structures. In:
PLDI, pp. 296–310. ACM Press, 1990.

14. S. Chong and R. Rugina. Static analysis of accessed regions in recursive data
structures. In: SAS, LNCS 2694, pp. 463–482, 2003.

15. S.A. Cook and D. Oppen. An assertion language for data structures. In: POPL,
pp. 160–166. ACM Press, 1975.

16. A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In:
PLDI, pp. 230–241. ACM Press, 1994.

17. D. Distefano. A parametric model for the analysis of mobile ambients. In: APLAS,
LNCS 3780, pp. 401–417, 2005.

18. D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom? –
On the automated verification of linked list structures In: FSTTCS, LNCS 3328,
pp. 250–262, 2004.

19. D. Distefano, A. Rensink and J.-P. Katoen. Who is pointing when to whom? – On
the automated verification of linked list structures CTIT Tech. Rep. 03-12, 2003.

20. D. Distefano, A. Rensink, and J.-P. Katoen. Model checking birth and death. In:
TCS, pp. 435–447. Kluwer, 2002.

21. M. Fitting. On quantified modal logic. Fundamenta Informatica, 39(1):5–121,
1999.

22. P. Fradet, R. Gaugne, and D. Le Métayer. Static detection of pointer errors: an
axiomatisation and a checking algorithm. In: ESOP, pp. 125–140, LNCS 1058,
1996.

23. R.J. van Glabbeek. The linear time-branching time spectrum I. In [6], Chapter 1,
pp. 3–101, 2001.

24. S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In: POPL, pp. 14–26, ACM Press, 2001.

25. J. Jensen, M. Jørgensen, M. Schwartzbach and N. Klarlund. Automatic verification
of pointer programs using monadic second-order logic. In: PLDI, pp. 226–236. ACM
Press, 1997.

312 D. Distefano, J.-P. Katoen, and A. Rensink

26. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-
tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, Chapter 4, pp. 102-131, Prentice-Hall, 1981.

27. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In: POPL, pp. 97–107. ACM Press, 1985.

28. G. Nelson. Verifying reachability invariants of linked structures. In: POPL, pp.
38–47. ACM Press, 1983.

29. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. In: VMCAI, LNCS 3385, pp. 181–198,
2005.

30. R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer, 1980.
31. U. Montanari and M. Pistore. An introduction to history-dependent automata.

ENTCS 10, 1998.
32. A. Møller and M. Schwartzbach. The pointer assertion logic engine. In: PLDI, pp.

221–213. ACM Press, 2001.
33. J. Morris. Assignment and linked data structures. In: Th. Found. of Progr. Meth.,

pp. 25–34. Reidel, 1981.
34. P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and information hiding.

In: POPL, pp. 268–280. ACM Press, 2004.
35. A. Pnueli. The temporal logic of programs. In: FOCS, pp. 46–57. IEEE CS Press,

1977.
36. A. Rensink. Canonical graph shapes. In: ESOP, LNCS 2986, pp. 401–415. Springer,

2004.
37. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In:

LICS, pp. 55–74. IEEE CS Press, 2002.
38. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages

with destructive updating. ACM TOPLAS, 20(1): 1–50, 1998.
39. L. Séméria, K. Sato and G. de Micheli. Resolution of dynamic memory allocation

and pointers for the behavioural synthesis from C. In: DATE, pp. 312–319. ACM
Press, 2000.

40. E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties
specified via evolution logic. In: ESOP, LNCS 2618, pp. 204–222. Springer, 2003.

41. T. Yavuz-Kahveci and T. Bultan. Automated verification of concurrent linked lists
with counters. In: SAS, LNCS 2477, pp. 69–82, 2002.

Modular Specification of Encapsulated
Object-Oriented Components

Arnd Poetzsch-Heffter and Jan Schäfer

Technische Universität Kaiserslautern, Germany
poetzsch@informatik.uni-kl.de

Abstract. A well-defined boundary of components allows to encapsu-
late internal state and to distinguish between internal calls that remain
inside the component and external calls that have target objects outside
the component. From a static point of view, such boundaries define the
programmer’s interface to the component. In particular, they define the
methods that can be called on the component. From a dynamic point of
view, the boundaries separate the component state and those parts of
the program state outside the component.

In this tutorial paper, we investigate encapsulated components that
are realized based on object-oriented concepts. We define a semantics
that captures a flexible notion of hierarchical encapsulation with con-
fined references. The semantics generalizes the encapsulation concepts
of ownership types. It is used as a foundation for modular behavioral
component specifications. In particular, it allows to provide a simple se-
mantics for invariants and an alternative solution for the frame problem.
We demonstrate this new specification methodology by typical program-
ming patterns.

1 Introduction

Component-based software is developed by linking components or by building
new components from existing ones. A key issue in component-based software
development is to specify the component interfaces in an implementation inde-
pendent way so that components can be used relying only on their specifications.
The often cited component definition by Szyperski [36], p. 41, says: ”A software
component is a unit of composition with contractually specificied interfaces and
explicit context dependencies only (...).” In this tutorial paper, we investigate
behavioral specification techniques for encapsulated object-oriented components
that we call boxes. A box instance is a runtime entity that encapsulates a number
of objects. Some of these objects are confined to the box, that is, they may not
be referenced from outside the box. Other objects of the box may be referenced
from the outside. The box model is a generalization of programming models
underlying ownership type systems. It simplifies the semantics of specification
constructs and handles complex program patterns. In particular, we consider
reentrant calls and components with multiple ingoing references. According to
the tutorial character of the paper, conveying the general concepts will be favored
over technical rigour.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 313–341, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

314 A. Poetzsch-Heffter and J. Schäfer

Component specifications are used as documentation and to improve program
development and understanding. They can support program testing and runtime
checks. Furthermore, they simplify static analysis and are a prerequisite for the
verification of program properties. A central goal for specification techniques in
all these areas is modularity. A modular specification technique allows show-
ing that a component implementation satisfies its specification by only knowing
the modules implementing the component and by only using specified proper-
ties of referenced components. In particular, knowledge about the application
context of a component is not necessary. Modularity is a very important re-
quirement for the scalability of a specification technique, because components
can be checked once and for all independent of future application contexts. Un-
fortunately, due to aliasing and subtyping, modularity is difficult to achieve in
an object-oriented setting, in particular if components consist of collaborating
objects.

In the remainder of this section, we introduce the programming model under-
lying boxes (Subsect. 1.1), explain the challenges of modularity in more detail,
and shortly describe our approach (Subsect. 1.2). In Sect. 2, we present the box
model and its semantic foundations. Section 3 describes the developed specifi-
cation technique along with its application. A discussion of our approach and
its relation to existing work is contained in Sect. 4. The paper is completed by
conclusions and topics for future work in Sect. 5.

1.1 Programming Model Based on Boxes

In this subsection, we informally introduce the box model consisting of the new
concept “Box” and the underlying programming model. We build on the gen-
eral object-oriented model with classes, objects, (object) references, object-local
state represented by instance variables, methods to define behavior, and a type
system with subtyping. We use notations from Java and C# (see [14,22]).
Throughout the paper, we make two simplifiying assumptions: We only consider
single-threaded programs with terminating methods1.

A box instance or box, for short, is a runtime entity. Like an object, a box is
created, has an identity and a local state. However, a box is in general realized by
several objects. A prominent example — often discussed in work on ownership
and alias control — is a linked list object with iterators (see e.g. [2]). Figure 1
shows such a list box, indicated by a rounded rectangle with a dashed line. A
box and its state is characterized by:

– an owner object that is created together with the box (the IterList-object
in Fig. 1); the owner is one of the boundary objects;

– other boundary objects, that is, objects that can be accessed from outside
the box (the two Iterator-objects in Fig. 1);

1 These assumptions focus the paper, they are not necessary requirements. On the
contrary, one major motivation for the development of the box model is a higher-
level model for synchronization in multi-threaded programs.

Modular Specification of Encapsulated Object-Oriented Components 315

IterList

Iterator Iterator

ObjectObject

NodeNodeNode

Node

Fig. 1. A box encapsulating the implementation of a linked list

– so-called confined objects that may not be accessed from outside the box
(the Node-objects in Fig. 1);

– so-called external objects that are referenced from within the box (the ob-
jects outside the dashed line in Fig. 1).

The concrete state of a box changes if the state of one of its objects changes or
if a new object is created within the box. As part of the concrete state of a box
may be hidden, clients of a box usually see only an abstraction of the concrete
state, the so-called abstract state. Clients use the functionality of a box by calling
methods on the owner or the other boundary objects. Thus, to work with a box,
a client has to know the constructor and public interface of the owner object
and the public interfaces of the other boundary objects. In addition, it is helpful
to know the public interfaces of external objects passed to the box, because this
is the only way a box can influence the state outside the box, the so-called box
environment. Figure 2 presents the interfaces of the IterList-box.

The interfaces in Fig. 2 use two notations that go beyond Java or C#.
Interfaces marked with the keyword box provide a box constructor (IterList
in Fig. 2). Thus, a box interface is similar to the public interface of a class
without public fields. The annotion of arguments and results by the keyword
external indicates that such arguments and results may refer to objects in the

box interface IterList {
IterList ();
external Object get(int index);
void add(external Object x);
external Object remove(int index);
boolean contains(external Object x);
Iterator listIterator ();

}

interface Iterator {
boolean hasNext();
external Object next();
void remove();

}

interface Object {
boolean equals(external Object x);

}

Fig. 2. Interfaces of lists with iterators

316 A. Poetzsch-Heffter and J. Schäfer

box interface SecretHolder {
SecretHolder();
void invite(external Stranger x);

}

box interface Stranger {
Stranger();
void doMeAFavor(external Object x);

}

Fig. 3. Exporting objects by calls to external references

box environment. More precisely, we distinguish three different kinds of argu-
ments and results:

1. Data objects are considered global values of the system that can be arbitrarily
passed around. They are either of a primitive type like boolean or int or
of a so-called pure type. A pure type has only immutable objects and its
methods have no side-effects (see [18]). A typical example for a pure type is
the type String in Java. We assume that types are declared as pure so that
it is known whether a type is pure or not.

2. Boundary objects are the internal objects of a box that may be exposed to
the box environment either as a result of a method or by passing them as a
parameter to a method called on an external object. Arguments or results
that are not pure and have no annotation are considered boundary objects.

3. External objects are objects that are passed into the box. Usually, these
objects are objects from outside the box. For flexibility reasons, we allow as
well to pass boundary objects as external objects into a box. (The semantic
details will be treated in Sect. 2.)

Component Categories. Based on the box model, we can categorize components
according to their behavior at the boundary. For example, lists with iterators
have the following characteristic features:

1. They have a nontrivial encapsulated state that can be manipulated from the
outside by “handles”, like e.g. iterators (below, we will see that an iterator
can change the state of the list and of the other iterators).

2. They import external references only by methods called on boundary objects.
3. They do not call methods with side-effects on external references (below we

see, that a call of method contain in IterList leads to external calls of
method equals).

The list with iterator example is often used in the literature, because its fea-
tures are shared by other components, for example by complex data structures
with iterators for special traversals or, on a more conceptual level, by file sys-
tems with file handlers. Although many specification and verification frameworks
already have problems handling components with these feature, we believe for
two reasons that we have to cover a larger class of components. One reason is
that more general components are used in practice. We will look at a representa-
tive example, namely an instance of the observer pattern, in the next subsection.

Modular Specification of Encapsulated Object-Oriented Components 317

The other reason is that we would like to use the model to analyse, specify,
or exclude more complex component interaction. As an example, consider the
boxes in Fig. 3. At first sight, secret holders will keep their secret. There is no
method returning anything. However, a secret holder can reference a Stranger-
object and it can do the stranger a favor, passing some object to the stranger.
Accidentally, it might pass an object of type Secret representing a secret. The
stranger could cast the received object down to a Secret-object and extract the
secret. Two aspects that have motivated design decision of the box model can
be learned from this example:

– External calls should be explicit in specifications.
– Downcasts of external objects should not be allowed.

Before we present the semantic basis for the box model, we look at the main
motivation for the model, that is, the challenges of modular specification.

1.2 Specification and Modularity

Component specifications express different kinds of properties of components.
Functional properties relate method results to method arguments. Structural
properties describe invariants on the reference structure between objects. For
example, in the box model, we guarantee that all reference chains from an object
outside the box to an object inside the box go through a boundary object. Frame
properties state the effects of a method call and what is not affected by a call,
often called the non-effects. The treatment of non-effects is very important in an
object-oriented setting, because a method call X .m(Y ,Z) can potentially affect
all objects that are reachable from X , Y , Z via reference chains.

In this subsection, we explain what modularity means for box specifications
and describe the challenges of modularity.

Box Specifications and Modularity. For the definition of modularity, we
have to make some assumptions about the implementation of a box B and need
some terminology. In a first step, we assume that an implementation ofB consists
of a set of classes and interfaces. One of the classes implements B and has a public
constructor with the same argument types as the constructor in the box interface
of B (the external annotations are not considered). An implementation of a box
is called a box class. Boxes with such implementations are called simple. For an
interface I, the minimally type-closed set of interfaces containing I, denoted by
MTC(I), is the smallest set satisfying the properties:

– I ∈MTC(I)
– if J ∈MTC(I) and T is an argument or result type of J , then T is primitive

or T ∈MTC(I)

An interface specification consists of annotations specifying properties of the
interface. Our interface specification technique is explained in Sect. 3. An exam-
ple of an interface specification for IterList is shown in Fig. 11, p. 333.

318 A. Poetzsch-Heffter and J. Schäfer

For a box B, we distinguish between three not necessarily disjoint subsets of
MTC(B):

– The exposed interfaces describe the interfaces of boundary objects including
the interface of B.

– The referenced interfaces describe the interfaces of external objects.
– The additional interfaces are the interfaces in MTC(B) that are neither

exposed nor referenced.

A box specification consists of the exposed interface specifications and uses the
referenced and additional interface specifiations. In many cases, some of the
exposed interfaces already exist when a new box class is developed.

Definition (Modularity). A specification technique for simple boxes or box-
like components is called modular if one can show that the box class satisfies its
specification by using only

– the referenced and additional interface specifications, and
– the classes and interfaces of the implementation.

Before we analyse the challenges of modularity, we slightly generalize our
implementation concept and, together with it, the notion of modularity. The
implementation of a compound box may use other boxes. Whereas — from an
implementation point of view — this merely structures the complete set of classes
and interfaces an implementation consists of, it generalizes the notion of modu-
larity. The implementation of a compound box B consists of a set of classes and
interfaces, and a set of box specifications not containing B.2 The classes can use
the specified boxes. As these boxes are encapsulated in B, we call them inner
boxes of B.

For compound boxes or similar hierarchical components, modularity allows
the use of inner box specification, but not of their implementation. Compound
boxes have a flavor of composition. However, the box model does not support
direct composition without glue code. Box classes are composed by additional
program parts that link the box instances at runtime and provide further func-
tionality or adaption.

Challenges of Modularity. Every modular specification and verification
framework for object-oriented components with method call semantics is con-
fronted with three main challenges:

1. Control of specification scope: The specification of a component C may only
express properties that are under full control of C. Otherwise, these prop-
erties might be invalidated by other components or program parts that are
not known when C’s specification is checked.

2 We claim that even recursive boxes can be allowed, but do not consider it here,
because we have not yet investigated it in detail.

Modular Specification of Encapsulated Object-Oriented Components 319

2. Underspecification and reentrance: A component C can reference another
component D through an interface I with a very weak specification. That
is, C knows almost nothing about the behavior of D. In particular, methods
called from C on D might cause reentrant calls on C that are not specified
in I.

3. Frame problem: Specifications have to be sufficiently expressive w.r.t. effects
and non-effects to the enviroment. For example, if a component C uses com-
ponents D and E for its implementation, it has to know whether a method
call on D causes a side-effect on E or not. Otherwise, it has no information
about the state of E after the call.

To illustrate these main challenges of modularity, we consider a simplified in-
stance of the observer pattern. An observable game is a two-player game with
alternative moves where a human plays against the computer. One player plays
white, the other black. The interfaces of this example are given in Fig. 4. Method
move allows the human to make a move that is internally answered by the com-
puter, method swapPlayers swaps the players, and method readPos reads and
returns the current position on the board. MoveDescr and Position are pure
types. Method register registers observers of the game. The interface of box
GameObserver describes a simple observer.

To both box interfaces in Fig. 4, we have already added ghost and model
variables expressing the box state. The ghost variable gameObs in interface
ObservableGame captures the set of referenced observers of a game, variable
obsGame holds the observed game of a game observer. The model variables
currentPos, player, and displayedPos hold the current position of a game, the
color of the human player, and the displayed position of an observer respectively.
(More details are given in Sect. 3.)

box interface ObservableGame {
references Observer∗ gameObs;
model Position currentPos;
model Color player;
ObservableGame();
void move(MoveDescr md);
void swapPlayers();
Position readPos();
void register (external Observer go);

}

interface Observer {GameObserver
void stateChanged()

}

box interface GameObserver
extends Observer {

references ObservableGame obsGame;
model Position displayedPos;
GameObserver(

external ObservableGame g);
void stateChanged();

invariant
// out of control :

forall(o in obsGame.gameObs){
o instanceof GameObserver

}
// problematic:

this in obsGame.gameObs
}

Fig. 4. Interfaces of ObservableGame and GameObserver

320 A. Poetzsch-Heffter and J. Schäfer

Control of Specification Scope. The scope of a specification depends on the com-
ponent model and encapsulation discipline. In our case, the scope is related to
the box. The situation is simple if specifications only depend on the local state
of the box, because this state can be controlled. It is less clear if a specifica-
tion depends on state of referenced boxes. For example, the first invariant of
box GameObserver, stating that the referenced game has only game observers
of type GameObserver in Fig. 4, is not locally verifiable, because the interface
of ObservableGame allows to register observers of other types. The second in-
variant is more interesting. If the specification of ObservableGame guarantees
a reasonable behavior of register and allows us to prove that the set of game
observes is only growing and if we can verify that the constructor GameObserver
does registration correctly, one might be able to verify the second invariant in a
modular way (cf. [4] for a detailed discussion).

Underspecification and Reentrance. In a typical observer scenario, the observed
subject has only very little information about the observers. For example, the
box ObservableGame only knows that observers have a method stateChanged. It
knows nothing about the behavior of stateChanged. Now, let us assume we want
to prove that the implementation of method move does not swap the players. As
method move changes the position, it will call method stateChanged. Figure 5
shows a scenario in which a somewhat malicious observer calls swapPlayers
before returning from stateChanged. Thus, we can only prove the “non-swap-
players” property in a modular way if the specification of ObservableGame can
restrict reentrant calls. More generally, a modular specification technique has to
provide mechanisms to control reentrant calls.

Frame Problem. To illustrate the frame problem, we consider a gaming system
that uses ObservableGame and GameObserver as inner boxes, that is, modular
verification has to rely on their specification. A central invariant of the gaming
system would be that the current observers currObs of the system display the
current position of their observed games:

forall(o in currObs){ o.displayPos == o.obsGame.currentPos }
This invariant can only be shown if the specification of move guarantees that
all registered observers are notified. More generally, a method specification must

Fig. 5. An observer modifying the state of the game by a reentrant call

Modular Specification of Encapsulated Object-Oriented Components 321

describe its side-effects. Furthermore, we want to know what is left unchanged by
a method execution. For example, it should be derivable from the specifications
that a move in one game does not affect the state of another game (if this is the
case).

Approach. Our specification approach is based on the encapsulation properties
of the box model. The box model is semantically founded in the programming
language. This is different from most other approaches to modular specification,
where the structuring and encapsulation techniques are only part of the specifi-
cation framework. Having a clear foundation in the language semantics provides
a more expressive basis to develop a specification technique. This is important
for our goal to separate the behavioral specifications from the implementation.

The remainder of this tutorial paper presents central parts of our approach. In
Sect. 2, we demonstrate how the box model can be integrated into the semantics
of a simple class-based language. To keep the presentation focused, the language
supports only a subset of the constructs that we use in the specification examples.
In Sect. 3, we explain the main concepts of our specification technique and show
how the specifications profit from the box model.

2 Encapsulated Object-Oriented Components

Heap encapsulation can be achieved by different techniques. We propose here a
semantic-based approach, that is, an approach in which the structuring of the
heap is part of the programming language semantics.

It is helpful to compare the general approach with the step from untyped to
typed languages. Typed languages provide an additional notion, the types, to
formulate certain desirable program properties. Types have a clear foundation
in the language semantics (e.g. the type of an object is needed for casts). They
avoid runtime errors (e.g. situations where a target object of a call does not have
an appropriate method), but most of the checks can be done at compile time
so that runtime overhead can be kept small. Our goals are similar. We provide
a notion of encapsulation, namely the boxes. Our box model has the following
features:

1. They hierarchically structure the heap. In particular, this structure can be
used to define the meaning of interface specifications.

2. They distinguish between internal and external calls. This is important for
partitioning systems into components.

3. They provide a notion of object confinement. This supports the programmer
management of alias control and is important for modular verification.

In this section, we show how boxes can be founded in the language semantics.
We believe that the presented approach can be extended to object-oriented pro-
gramming languages like e.g. Java and C#. Techniques for static checking are
shortly discussed in Sect. 4.

322 A. Poetzsch-Heffter and J. Schäfer

P ∈ Program ::= D
D ∈ TypeDecl ::= ID | BD | CD

ID ∈ IntfDecl ::= interface I extends I { G }
BD ∈ BoxDecl ::= box interface B extends I { G }
CD ∈ ClassDecl ::= class C implements S { T f ; M }

A ∈ Annotation ::= boundary | external
m ∈ MethodName
G ∈ AbstractMeth ::= A S m(A S x)
M ∈ MethodDecl ::= T m(T x) { e }
e ∈ Expr ::= x | (T) e | new lm em R(e) | e.f | e.f = e | e.m(e) |

let x = e in e | . . .
lm ∈ LocModifier ::= local | global
em ∈ ConfModifier ::= confined | exposable
x, y ∈ Variable

I ∈ InterfaceName R ∈ BoxName ∪ ClassName
B ∈ BoxName S ∈ InterfaceName ∪ BoxName
C ∈ ClassName T ∈ InterfaceName ∪ BoxName ∪ ClassName

Fig. 6. Syntax of OBO

A Simple OO-Language with Boxes. We present a simple OO-language
supporting the box model, called OBO. The language is similar to other OO-
kernel languages ([13,16]). To focus on the central issues, we make the following
simplifications:

– OBO supports subtyping, but not inheritance. In particular, the root type
Object is an interface (see Fig. 2).

– OBO supports only default constructors.
– OBO has no exception handling mechanism. If a runtime error occurs, that

is, if there is no applicable semantic rule, we assume that the program aborts.
– In OBO, all pure types, including String, are predefined. They have ap-

propriate box interfaces and are treated as external types. That is, in OBO
interfaces, we only distinguish between boundary and external types.

Figure 6 shows the syntax of OBO. Within the syntax, lists are denoted by
an overline. A program consists of a list of interfaces, box interface, and class
declarions, including a startup class Main of the form:

class Main { String main(String arg){ e } }

Interfaces and box interfaces are as explained in Subsect. 1.1. For each box
interface B in a program, there has to be exactly one class implementing B.
This class is denoted by class(B) in the semantics below. Context conditions
are essentially like in Java, in particular the typing rules apply. The subtype
relation is denoted by '.

The creation expression starting with keyword new deserves consideration. It
allows to create instances of a class or box. The instance can be created locally

Modular Specification of Encapsulated Object-Oriented Components 323

b ∈ Box ::= bc | globox
o ∈ Object ::= (b, C, j; em)
r ∈ Reference ::= 〈o, T, rk〉

rk ∈ RefKind ::= intn | extn
v ∈ Value ::= null | r

OS ∈ ObjState ::= 〈v〉
BS ∈ BoxState ::= {o : OS}
H ∈ Heap ::= {b : BS}
F ∈ StackFrame ::= {x : v}
j ∈ ObjId

bc ∈ CreatedBox

Fig. 7. Dynamic entities of OBO

or globally. Within a program, global creation is only allowed for the predefined
pure types of OBO. That is, all other creations take place in the box of the
this-object. A more general creation scheme is desirable for programmers, but
would complicate our kernel language and is beyond the scope of this presenta-
tion. Instances can be created as confined or exposable. References to confined
instances may not leave the box in which the instance is created whereas expos-
able instances may be passed out. More precise explanations of the expressions
are given together with the semantics.

Semantics. A box could be represented by the owner object that is created
together with the box. This is certainly an appropriate solution for implemen-
tations and is essentially the idea of Boogie where ownership is represented by
ghost variables. Here, we use an approach with explicit box instances. As formal-
ized in Fig. 7, a box is either the predefined global box globox or a created box.
A created box has a parent box from which it was created. The transitive reflex-
ive closure of the child-parent relation is called the inclusion relation, denoted
by ⊆. In particular, we have for any created box b: b ⊂ parent(b) ⊆ globox.
The creation of boxes is formalized similar to object creation. We assume that
there is a sufficiently large set of boxes from which we choose and allocate a box.
Details are described together with the operational semantics below.

Each box b is confined in one of its ancestors. This so-called confining box is
denoted by confIn(b). The meaning of the confinement is that boundary objects
of b may not be accessed from outside confIn(b). The confining box will be
determined at box creation. We assume that we can create new boxes for any
given parent with an appropriate confining box.

An object is represented as a triple consisting of its box, its class, and an
identifier to distinguish objects of the same class in a box. Furthermore, an
object carries the information whether it is confined to its box b or whether it
can be exposed (see Fig. 7). In the latter case, it is confined to confIn(b). To
distinguish between internal and external calls, we access objects over explicitly
modeled references. A reference is a triple consisting of the referenced object,

324 A. Poetzsch-Heffter and J. Schäfer

box : Object → Box
box (b, , ;) = b

thisBox : StackFrame ⇀ Box
thisBox(F) = box(F (this))

receivingBox : lm × StackFrame → Box
receivingBox(global, F) = globox
receivingBox(local, F) = thisBox(F)

passable : Value × Box × A → Bool
passable(null, br, a) = true
passable(〈(b,C, ; conf), , 〉, br, external) = (br ≤ b)
passable(〈(b,C, ; expo), , 〉, br, external) = (br ≤ confIn(b))
passable(〈(b,C, ; conf), ,〉 , br, boundary) = (b = br)
passable(〈(b,C, ; expo), , 〉, br, boundary) = (br ≤ confIn(b) ∧ b ≤ br)

adapt : Value × S × Box × A → Value
adapt(null, S, br, a) = null
adapt(〈o, , 〉, S, br, external) = 〈o, S, extn〉
adapt(〈(b,C, j; em), , 〉, S, br, boundary) = 〈(b, C, j; em), C, intn〉 if br = b

= 〈(b, C, j; em), S, extn〉 otherwise

Fig. 8. OBO’s auxiliary functions

a type, and a reference kind. The type is a supertype of the object type and
is used to prevent illegal downcasts. The reference kind distinguishes between
internal objects, and objects that are considered external. (Notice, that this is
similar to external references in JavaCard applets [34]; see as well Sect. 4).

Figure 7 contains as well the definitions of heaps and stack frames. Heaps map
boxes to box-local state reflecting the structuring of the store. Figure 9 presents
the big-step operational semantics for OBO. The underlying judgment H,F �
e⇒ v,H ′ expresses that the evaluation of an expression e in a state with heap H
and stack frame F has v as result and H ′ as resulting heap. The semantics uses
auxiliary functions from Fig. 8. In the following, we discuss the interesting rules.

Rule (e-cast obj) shows how the distinction between references and objects
is used to restrict downcasts. A downcast is only allowed to the type of the
reference, not to the type of the object.

Rule (e-new box) captures the creation of a box instance b together with
its owner object o. A possible approach would have been to make the functions
parent and confIn part of the state and enlarge their domain whenever a box
is allocated. As our core language does not support modification of the box
structure after box creation, we use a simpler formalization that avoids this. We
assume a rich box structure with an infinite carrier set CreatedBox∪{globox}
and functions parent and confIn having the following properties:

Modular Specification of Encapsulated Object-Oriented Components 325

(e-var)
F (x) = v

H,F � x ⇒ v, H

(e-cast null)
H,F � e ⇒ null, H0

H, F � (T) e ⇒ null, H0

(e-cast obj)
H, F � e ⇒ r, H0

r = 〈 , T1, 〉 T1 � T

H,F � (T) e ⇒ r,H0

(e-new box)
b /∈ dom(H) b0 = receivingBox(lm,F) parent(b) = b0

confIn(b) = if em = conf then b0 else confIn(b0) class(B) = C

o = (b, C, j; expo) fields(C) = T f BS = {o �→ 〈null〉} with |null| = |f |
H, F � new lm em B() ⇒ 〈o, B, extn〉, H [b �→ BS]

(e-new obj)
b = thisBox(F) o = (b, C, j, em)

o /∈ dom(H(b)) fields(C) = T f BS = H(b)[o �→ 〈null〉] with |null| = |f |
H, F � new local em C() ⇒ 〈o, C, intn〉, H [b �→ BS]

(e-field)
H,F � e ⇒ 〈o, C, intn〉, H0 fields(C) = T f H0(box(o))(o) = v

H, F � e.fi ⇒ vi, H0

(e-fieldup)
H,F � e0 ⇒ 〈o, C, intn〉, H0 fields(C) = T f

b = box(o) H0(b)(o) = v H0, F � e1 ⇒ v, H1 BS = H1(b)[o �→ [v/vi]v]

H,F � e0.fi = e1 ⇒ v, H1[b �→ BS]

(e-invk intn)
H,F � e ⇒ 〈o, C, intn〉, H0 H0, F � e1 ⇒ v1, H1 · · · Hn−1, F � en ⇒ vn, Hn

mbody(m,C) = x.eb Hn, {this �→ 〈o, C, intn〉, x �→ v} � eb ⇒ vm, Hm

H,F � e.m(e) ⇒ vm, Hm

(e-invk extn)
H,F � e ⇒ 〈o0, S, extn〉, H0

o0 = (br, C, ; em) am Sm m(a1 S1, . . . , an Sn) signatureOf m in S
H0, F � e1 ⇒ v1, H1 · · · Hn−1, F � en ⇒ vn, Hn

passable(v1, br, a1) · · · passable(vn, br, an) mbody(m,C) = x.eb

Hn, {this �→ 〈o0, C, intn〉, x �→ adapt(vi, Ti, br, ai)} � eb ⇒ vm, Hm

passable(vm, thisBox(F),external)
H, F � e.m(e) ⇒ adapt(vm, Tm, thisBox(F), am), Hm

(e-let)
H,F � e0 ⇒ v0, H0 H0, F [x �→ v0] � e ⇒ v, H1

H, F � let x = e0 in e ⇒ v, H1

Fig. 9. Rules of OBO’s operational semantics

326 A. Poetzsch-Heffter and J. Schäfer

1. parent defines a tree structure on CreatedBox with root globox.
2. For all nodes b and all ancestor nodes ba of b, the set of b’s children with

confIn(b) = ba is infinite (where the ancestor relation is the transitiv reflexive
closure of the parent relation).

Box creation means to choose a box b from the box structure that is not yet part
of the heap. Let b0 be the receiving box which is either the global box (recall
that this is only allowed for pure types) or the box of the current this-object.
The new box b is chosen such that its parent is b0 and its owner is confined either
in b0 or in confIn(b0) depending on the encapsulation modifier em. The second
property above guarantees that such a new box always exists. Rule (e-new obj)
shows the creation of objects. Objects may only be created locally.

Rules (e-field) and(e-fieldup) show that read and write accesses are only
allowed through internal references. Below we show that expressions only eval-
uates to internal references, if the referenced object is in the same box as the
current this-object.

Rules (e-invk intn) and (e-invk extn) describe internal and external calls.
An internal call is an ordinary dynamically bound method call. The function
mbody yields the parameters and body of method m in class C. The receiver
object of an external call might belong to a different box than the current this-
object. Thus, values can be passed from one box to another. The value null can
always be passed. To check whether a reference r is passable, we distinguish two
cases:

– r is considered external in the receiving box br: Then the confined box of r’s
object has to include br (otherwise, confinement is violated).

– r should be boundary in the receiving box br: Then, it has to be checked that
r’s object is included in br (otherwise it cannot be a boundary object of br)
and that the confined box of r’s object includes br (otherwise, confinement
is violated).

If a reference is passable, it has to be adapted to the new box. The adapted
reference is an internal reference if the parameter annotation is boundary and
the receiving box is equal to the box of the referenced object. Otherwise, it is
an external reference.

Execution of an OBO program starts with a configuration containing an object
X of class Main in the global box and a stack frame F for executing method
main with F (this) = X and F (arg) referencing the input string. The result
of executing the expression in the body of main is the result of the program
execution.

Properties. The box semantics has two central properties: Internal references
never leave their box, and objects are never referenced from outside their con-
fining box. To formulate these properties precisely, we interpret each semantic
rule as a recursive procedure that takes the heap, stack frame, and expression
as parameters and returns the expression value and heap as results. The an-
tecedents of the rule constitute the body of the procedure, a sequence of checks

Modular Specification of Encapsulated Object-Oriented Components 327

and recursive calls. Execution of an OBO program corresponds to a call tree of
these recursive procedures. A pre-configuration consists of the input heap and
stack frame and the value null, a post-configuration consists of the result heap,
the input stack frame, and the result value. A configuration is either a pre- or
post-configuration. For all configurations (H,F, v) of a OBO program execution
the following holds:

– Internal references never leave their box, that is:
if H(b)(o0) = v with vi = 〈o, T, intn〉, then box(o) = b;
if thisBox(F) = b and F (x) = 〈o, T, intn〉, then box(o) = b;
if thisBox(F) = b and v = 〈o, T, intn〉, then box(o) = b.

– An object o is never referenced from outside its confining box bcf(o):
if H(b)(o0) = v with vi = 〈o, , 〉, then b ⊆ bcf(o);
if thisBox(F) = b and F (x) = 〈o, , 〉, then b ⊆ bcf(o);
if thisBox(F) = b and v = 〈o, , 〉, then b ⊆ bcf(o).

A proof sketch of these properties is contained on the appendix. A further dis-
cussion of the box model is given in Sect. 4.

3 Modular Specification of Box Interfaces

We have seen that a box is a generalization of an object. Consequently, we reuse
language concepts for class specifications, in particular from JML [18], and for
refinement of object-oriented programs, in particular from [7]. Our contributions
in this area are the extension of such techniques to the box model and full
implementation independence which is important in a component setting. We
present the specification technique along with the examples introduced in Sect. 1
and explain central aspects of box specifications.

The specification technique is concerned with the internal state of the box,
with access to a box from the enviroment, and with accesses of the box to the
enviroment. A box specification addresses four aspects:

– Declarative object-oriented models that are used to express box state and
method behavior in an implementation independent way.

– Specification of encapsulation aspects consisting of method argument and
result annotations and a mechanism to keep track of the references that are
exposed to the environment and that refer to external objects.

– The internal state of a box as described by model variables of its boundary
objects. Model variables are specification only variables that are visible to
the client of the box. The initial state of a box is described together with
the constructor. The state space can be restricted by invariants.

– The behavior of methods contained in exposed interfaces. In addition to
declarative pre-post specifications, the technique supports abstract state-
ments and a simple approach to achieve modularity in the context of
reentrant calls.

328 A. Poetzsch-Heffter and J. Schäfer

In the following, we first introduce declarative models. Then, we explain specifi-
cations for boxes that can only be accessed through their owner, focusing on the
specification of external calls. Finally, we show how multiple-access boxes can
be handled.

3.1 Declarative Models

To be applicable to components, specifcations should not refer to implementation
parts. We achieve implementation independency by using declarative models. A
declarative model provides the types, values, and mathematical functions to ex-
plain the state space of a box. A specification framework usually provides stan-
dard models for datatypes like sets and lists. Other models may be component
specific and must be developed by the component developer. For the following,
we assume the parametric datatypes Set<A> and List<A> as standard models.
We use Java-like notation for the interfaces and indicate by the keywork pure
that method calls of these types have no side-effects.

pure interface Set<T> {
static Set<T> empty();
boolean contains(T elem);
Set<T> insert(T elem);
Set<T> delete(T elem);

}

pure interface List<T> {
static List<T> empty();
boolean contains(T elem);
T nth(int index);
int length ();
List<T> appendLast(T elem);
List<T> delete(T elem);
Set<T> toSet ();

}

As an example for a component specific model, we consider the declara-
tive model the ObservableGame interface of Fig. 4. Moves are described by a
string and are checked and converted to values of type MoveDescr by a function
mkMoveDescr. The type Position models the positions of the game and pro-
vides functions for the initial position, for checking whether a move is legal in a
position, and for yielding the new position after a move.

pure interface Color {
static Color WHITE = new Color();
static Color BLACK = new Color();
Color other();
// WHITE.other() == BLACK
// BLACK.other() == WHITE

}

pure interface MoveDescr {
static MoveDescr mkMvDescr(String s);

}

pure interface Position {
static Position initial ();
boolean legal (MoveDescr md);
Position doMove(MoveDescr md);
// if this . legal (md),
// return position after move,
// else return this

}

Different techniques can be used to specify declarative models. As declaritive
models are simpler than state-based models with side-effects, an informal de-
scription is often sufficient. JML uses functional programming [17]. The Larch

Modular Specification of Encapsulated Object-Oriented Components 329

approach uses abstract datatypes ([15]). We applied logic-based specification
techniques in previous work ([31]).

3.2 Specifying Single-Access Boxes

A box that can only be accessed through its owner is called a single-access box.
Such a box exposes only one reference to clients, that is, it essentially behaves like
one object (of course, it can be implemented by many objects). We explain the
specification technique along with the specification of ObservableGame in Fig. 10.

Encapsulation. As explained in Sect. 2, encapsulation is based on the box model
of the underlying programming language. From the method signatures in Fig. 10,
one can see that only the contructor exposes a reference, namely the owner, and
that only method register imports external non-pure references to the box.
To keep track of imported references, the specification technique supports the
declaration of specification-only ghost variables using the keyword references.
The variables are either of a type T or of a type T ∗ where T is a reference type.
In the latter case, the variable stores sets of references of type T (we do not use
type Set<T> to distinguish between references to sets of T and sets of references
to T -objects).

Box State. The state of a box consists of the internal state of the box and the
set of external and exposed references. For single access boxes, the internal box
state can be associated with the owner. The state space is expressed by so-
called model variables. Model variables are similar to instance variables, but are
specification-only variables. As shown in Fig. 10, the state of ObservableGame-
boxes is captured by two model variables. Variable currentPos holds the current
position of the game and variable player records the color of the human player.

The initial state of a box after termination of the constructor is described
together with the constructor (cf. Fig. 10). The techniques for specifying con-
structors are the same as those for methods and are explained below.

Method Behavior. According to the semantics of Sect. 2, the general execution
behavior of a method m on box B can be described by a list of execution seg-
ments. A segment is either internal or external. Internal segments consist of box
internal execution actions not containing an external call. External segments
correspond to external calls. They are indexed by the receiver object and the
sent message. External segments are called simple if they do not cause a reen-
trant call to B. Otherwise each call back to B is again described by a list of
execution segments. The specification of a method should describe:

– the precondition, if any3,
– the local effects, that is, the modifications of the box state,
– the frame effects, that is, the external calls to the box environment, and
– restrictions on reentrant calls.

3 A missing precondition is equivalent to precondition true.

330 A. Poetzsch-Heffter and J. Schäfer

box interface ObservableGame
{
references Observer∗ gameObs;
model Color player;
model Position currentPos;

ObservableGame()
ensures player == Color.WHITE && currentPos == Position.initial()

&& gameObs == Set.empty() ;

pure Position readPos()
ensures result == currentPos ;

void register (external Observer go)
requires go != null
ensures gameObs == pre(gameObs).insert(go)

&& unchanged([currentPos,player]) ;

void move(MoveDescr md)
behavior if(currentPos. legal (md)) {

currentPos = currentPos.doMove(md);
foreach(o in gameObs){ o.stateChanged(); }
forsome(cmd : currentPos.legal(cmd)){

currentPos = currentPos.doMove(cmd);
foreach(o in gameObs){ o.stateChanged(); }

}
}

ensures unchanged([player,gameObs]) ;
invokable this.readPos() ;

void swapPlayers()
behavior player = other(player);

forsome(cmd : currentPos.legal(cmd)){
currentPos = currentPos.doMove(cmd));
foreach(o in gameObs){ o.stateChanged(); }

}
ensures unchanged([gameObs]) ;
invokable this.readPos() ;

}

interface Observer {
void stateChanged()
behavior arbitrary ;

}

Fig. 10. Behavioral specification of box ObservableGame

Modular Specification of Encapsulated Object-Oriented Components 331

The new aspect of our technique is the treatment of effects and frame properties.
We distinguish between local and external effects. Local effects may be under-
specified. That is, a method may modify more than the specification reveals. For
external effects, it is the other way round. A method may only perform external
calls that are mentioned in the specification. Thus, a specification provides a
guarantee that no effects or only certain effects can happen.

We use language constructs from precondition-postcondition-style specifica-
tions and from refinement-style specifications. The precondition, indicated by
the keyword requires, is given by a boolean expression (e.g. the precondition
of method register in Fig. 10 requires that the argument is non-null). Methods
that do not change the box state and have no effects on the box environment
can be declared as pure (e.g. the method readPos in Fig. 10 is a pure method).
The local and frame effects of a method are specified by an ensures clause or a
behavior clause.

As usual, an ensures clause is expressed by a boolean expression. It may
use the prestate values of box-local variables, denoted by an application of the
operator pre to the variable name, and their poststate values as well as the
return value of the method, denoted by the identifier result. As abbreviation,
we use the operator unchanged taking a list of variables and stating that the
value of the variables is the same in pre- and poststate (the specification of
register illustrates its use).

A behavior clause consists of an abstract statement describing the internal
segments of the method and when external calls happen. Abstract statements
might be nondeterministic. For example, the specification of move in Fig. 10
calls method stateChanged for each registered observer. The order of the calls
is not fixed by the foreach-statement (compare [7]). We support as well a non-
deterministic forsome-statement: If there exists an element satisfying the given
predicate, one such element is chosen and the body is executed. Otherwise, the
body is not executed. The completely unknown behavior is denoted by arbitrary
(the specification of stateChanged provides a typical example).

A method execution satisfies a behavior clause if it implements one of the
possible behaviors. The order of internal actions is not relevant as long as the
specified state before an external call is correct. An ensures clause may be added
to a behavior clause, to explicitly state properties that can be derived from the
behavior clause. It is not allowed to specify additional properties. Methods move
and swapPlayers show a combination of behavior and ensures clauses.

In connection with the box model, specifications based on abstract statements
provide a new solution to the frame problem. The effects of a method are seper-
ated into two parts: the box-local effects and the external effects. Local effects
may be underspecified, that is, the behavior clauses need not completely deter-
mine the state changes. In particular, subboxes (not treated in this paper) can
refine the local effects, for example w.r.t. extended state. We could have used
modifies clauses to express what remains unchanged within a box. However, as
the abstract state space of the box is known, one can as well simply list what re-
mains unchanged (see for example the ensures clause of method move in Fig. 10).

332 A. Poetzsch-Heffter and J. Schäfer

The real difference between our approach and the modifies-clause approach to the
frame problem concerns the modifications to the environment. In our approach,
a method specification has to define all possible external calls. In particular, if
no external call is specified, it is a guarantee that there are no effects to the
environment. In the case of external modifications, the modifies-clause approach
needs to describe the unknown effected state by some abstract variables and
later specify the dependencies between the abstract variables and the concrete
environment. This is often a difficult task. On the other hand, the verification
techniques for modifies clauses are more advanced than for our approach based
on external calls.

Finally, a method specification can limit the acceptable reentrant calls. With-
out an invokable clause, all reentrant calls are allowed. If an invokable clause is
given, like, for example, in the specification of the methods move and swapPlayers
in Fig. 10, only the listed reentrant calls are acceptable. If the client of the box
does not prevent inacceptable reentrant calls, the box need no longer satisfy its
contract. As shown in Subsect. 1.2, the restriction on reentrant calls is needed for
modularity.

3.3 Specifying Multiple-Access Boxes

Boxes with multiple boundary objects and boundary objects of different types
provide additional specification challenges. We will focus here on three aspects:

1. Control of the exposed references to boundary objects.
2. Box state with multiple objects and invariants.
3. Internal method calls in specifications.

We explain these aspects along with the IterList example (see Fig. 11 and 12).
The specification essentially formulates the behavior of the Java class LinkedList
(see [35]).

Controling Exposed References. In addition to its owner, a box can expose other
boundary objects. Similar to the outgoing references (e.g., variable elems keeps
track of outgoing references in the specification of Fig. 114), a specification has to
control exposed references in special ghost variables declared with the keyword
exposes. For example, the IterList specification captures the set of exposed
iterators in variable iters (see Fig. 11). Updates of the exposes variables are
described in the method specifications; we say that exposed references are reg-
istered. An implementation satisfies an exposes specification if only registered
references are exposed.

4 We enforce that all outgoing, non-pure references are registered. We investigate
whether it is sufficient to register only references that are used in external calls.
That could reduce the specification overhead; in particular, the ghost variable elems
would become dispensable.

Modular Specification of Encapsulated Object-Oriented Components 333

box interface IterList {
exposes Iterator∗ iters ;
references Object∗ elems;
model List<Object> value;

IterList ()
ensures value==List.empty() && iters==Set.empty() && elems==Set.empty();

invariant
forall(it1, it2 in iters){ (it1 .pos<=it2.pos && !it1.valid) ==> !it2.valid }

pure external Object get(int index)
requires 0 <= index && index < value.length();
ensures result == value.nth(index);

void add(external Object x)
behavior foreach(it in iters){

if(it .pos == value.length()) it . valid = false;
}
value = value.appendLast(x);
elems = toSet(value);

external Object remove(int index)
requires 0 <= index && index < value.length()
behavior foreach(it in iters){

if(it .pos >= index) it . valid = false;
}
result = value.nth(index);
value = value.delete(index);
elems = value.toSet();

pure boolean contains (external Object x)
behavior if(x == null) {

result = value.contains(null);
} else {
result = false;
foreach(y in value) {
if(x.equals(y)) {

result = true; break;
} } }

Iterator listIterator ()
ensures !pre(iters).contains(result) && iters .contains(result)

&& result .myList == this && result .pos == 0
&& result . valid == true && result .hasCurrent == false ;

}

Fig. 11. Behavioral specification of box IterList

334 A. Poetzsch-Heffter and J. Schäfer

interface Iterator
{
model IterList myList;
model int pos;
model boolean valid;
model boolean hasCurrent;

invariant
(0 <= pos) && (valid ==> pos <= myList.value.length())

pure boolean hasNext()
requires valid
ensures result == (pos < myList.value.length())

external Object next()
requires valid && (pos < myList.value.length())
behavior result = myList.get(pos);

pos++;
hasCurrent = true;

void remove()
requires valid && hasCurrent
behavior myList.remove(pos);

}

Fig. 12. Behavioral specification of interface Iterator

Box State Revisited. Whereas in single-access boxes the box state can be associ-
ated with the owner object, this is not appropriate for multiple-access boxes. For
a client of the box, it is more natural to distribute the box state over the bound-
ary objects, in particular, because newly created boundary objects often make
it necessary to extend the state space. For the IterList example, distributing
the state means that part of the box state is associated with the owner (namely
the represented list, see model variable value in Fig. 11) and other parts are
associated with the iterators (namely the current iterator position in the list
and the information whether an iterator is valid and has a current element; see
model variables pos, valid, and hasCurrent in Fig. 12).

In addition to the state of the boundary objects, the relationship between
boundary objects has to be modeled. As demonstrated by the model variable
myList in Fig. 12, references between boundary objects can be used. It is allowed
to access the state of referenced objects in specifications, because the references
are encapsulated within the box. For example, the invariant of the Iterator in-
terface accesses the value of the associated list and the invariant of the IterList
interface accesses the exposed iterators.

The box model provides a fairly straightforward semantics for invariants. The
invariants of a box B have to hold whenever execution is outside B, that is, in

Modular Specification of Encapsulated Object-Oriented Components 335

any configuration with box(F (this)) �⊆ B. In particular, they have to hold before
outgoing calls. Note that there may as well be reentrant calls from inner boxes
(although, one can argue that this is bad programming style). However, these
calls are under the control of the box designer. To achieve modularity, invariants
may only refer to box local state. This is for example true for the invariants
given in Fig. 11 and 12. The requirement is not satisfied by the invariants given
in Fig. 4. The references clause in GameObserver states that the observed game
obsGame is outside the box. Thus, its fields may not be used in the invariants. To
handle such invariants and the one given on page 320 in our approach, one has de-
fine a box GamingSystem that encapsulate ObservableGame and GameObserver.
This can be a very lightweight box providing only methods for creating ob-
servable games and game observers. It would be a multiple-access box having
observable games and game observers as boundary objects. The invariants in
question would become part of the box specification of GamingSystem.

Internal Calls. Whereas the support of external calls is necessary to handle
effects and non-effects to the environment in an abstract way, internal calls are
important to structure interface specifications and to improve reuse. A good
example is the remove method of the iterator in Fig. 12. The behavior is simply
described by an internal call to the remove method of the list. If this was not
allowed, one would have had to describe the complex behavior of the latter
method twice. Notice that the specification of the remove method in IterList
demonstrates as well how the exposes variables can be used to describe effects
to all boundary objects.

Distributing the box state and supporting internal calls over the boundary
objects has the additional advantage that interface specifications can be used
for different boxes. For example the Iterator-specification of Fig. 12 could be
used for different collection boxes if the model variable myList is generalized to
a more abstract type.

4 Discussion and Related Work

In this section, we relate the presented techniques to existing work and shortly
discuss our design decisions. The section is structured according to the main
aspects of the specification technique.

Encapsulation. Encapsulation is a central technique to achieve modularity
([26] discusses the relation between encapsulation- and visibility-based modular-
ity). The current techniques for object-based encapsulation build on ownership
concepts (see [9,8]). The basic idea is to guarantee the owner-as-dominator prop-
erty: All reference chains from an object in the global context to an object X
in a non-global context go through X ’s owner. The box model incorporates two
extensions to the original ownership model:

336 A. Poetzsch-Heffter and J. Schäfer

– In [6,8], objects of inner classes are allowed as boundary objects. We gener-
alized this to arbitrary boundary objects. At the moment, we do not have
a checking technique for our full model. In particular, we cannot support
programs in which boundary objects are passed back into a box as explicit
parameters. Our currently developed checking approach (see [33]) builds on
a variant of ownership domains [2].

– The universe type system [23,24] realizes a slightly different discipline (see
[11]) and controls references leaving a context. Such references have to be
read-only in the universe model.

There are different approaches to specify and check ownership. Most of the work
cited above uses type systems. Many aspects of our approach are inspired by the
assertion-based ownership technique of Boogie [5]. Within Boogie, each object
X has a ghost variable referencing X ’s owner. These ghost variables can be used
for specification and verification purposes and support ownership transfer [19].

Our work was also inspired by techniques for applet isolation in Java Card. To
control accesses from other applets, Java Card allows such external accesses only
through so-called shareable interfaces. Dynamic checks enforce this condition
at runtime [34]. The semantics that was used in a paper on static checking
of applet isolation has already separated references and objects and supported
context information in the references [12]. The distinction between internal and
external references is also motivated by role models for objects, in particular
those described in [28].

Invariants and Reentrant Calls. Invariants are a central specification tech-
nique, for both hidden implementation aspects and visible properties of the ab-
stract state of a component. Unfortunately, it is fairly difficult to provide a
modular semantics for them in object-oriented programming. In [26], Müller et
al. investigate the most common semantic approach based on so-called visible
states. The visible state semantics requires that invariants have to hold in pre-
and post-states of all calls to public methods. They show that a naive visible
state semantics does not work for layered objects structures and provide a re-
fined version. This so-called relevant invariant semantics inspired our approach
in which box invariants have to hold whenever execution is outside the box.
Our semantics is simpler as it does not enforce invariants to hold in pre- and
poststates of internal method calls.

The Boogie methodology supports a more dynamic approach. The execution
points at which invariants have to hold are expressed by special specification
constructs ([5,27]) that are placed in the program. This makes the approach
difficult to use for an implementation independent setting. A very strong feature
of the Boogie approach is its flexible support for inheritance.

To extend our box-based invariant semantics and our basic mechanism to
exclude unwanted reentrant calls, we can build on work on typestates [10] and
on friend concepts [4]. Typestates can be used to represent sets of invokable
methods that allow reentrance under certain specified conditions. The friends
concept would enable us to support invariants that access state outside the box
(like the invariants in Fig. 4).

Modular Specification of Encapsulated Object-Oriented Components 337

Frame Problem. The specification of frame properties is a notoriously difficult
problem. The main source of the problem for object-oriented programming is the
weak knowledge about the effects or non-effects in the context of extendible state
and virtual methods (recall the ObservableGame example from Fig. 4). Most ex-
isting solutions are based on abstraction techniques and lists of variables that
might be modified ([20,23,21,25]). Specifications based on abstract statements
do not explicitly list the modifiable variables, but associate modifications with
methods ([7]). As described in Subsect. 3.2, we use the same approach for exter-
nal effects.

5 Conclusions and Future Work

We presented an object-oriented kernel language OBO that supports a notion
of dynamically created encapsulation regions called boxes. The implementation
of a box can create and encapsulate other boxes. The box model distinguishes
between internal and external references and supports object confinement.

In this paper, we used boxes as a semantic foundation for object-oriented soft-
ware components. We described a behavioral specification technique for compo-
nent instances that supports dynamically created interface objects and external
modifying calls that might lead to reentrance.

In summary, we consider the presented work a further step to close the gap
between specification techiques for programs and implementation independent
specifications for components. Directions of future work include:

– the extension to all features of object-orientation; in particular, a behavioral
subtype relation between box interfaces is needed;

– the development of powerful checking techniques;
– the adaption of existing verification techniques to the box model;
– the exploitation of boxes for higher-level concurrency models.

In addition, we are interested in more theoretical aspects like representation
indepence (cf. [3]), calculi for OO-programming [1] and components [32], and
questions related to specification completeness.

Acknowledgement. We thank the reviewers and Ina Schaefer for their helpful
comments on previous versions of this paper.

References

1. Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer, Andreas Grüner, and
Martin Steffen. Observability, connectivity, and replay in a sequential calculus of
classes. In Frank S. de Boer et. al., editors, Formal Methods for Components and
Objects, FMCO 2004, volume 3657 of LNCS, pages 296–316. Springer-Verlag, 2005.

2. Jonathan Aldrich and Criag Chambers. Ownership domains: Separating aliasing
policy from mechanism. In Odersky [29], pages 1–25.

338 A. Poetzsch-Heffter and J. Schäfer

3. Anindya Banerjee and David A. Naumann. Representation independence, con-
finement and access control. In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’02), pages 166–177.
ACM Press, January 2002.

4. Michael Barnett and David A. Naumann. Friends need a bit more: Maintaining
invariants over shared state. In Dexter Kozen and Carron Shankland, editors,
Mathematics of Program Construction, 7th International Conference, MPC 2004,
volume 3125 of Lecture Notes in Computer Science, pages 54–84. Springer-Verlag,
2004.

5. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wol-
fram Schulte. Verification of object-oriented programs with invariants. Journal of
Object Technology, 3(6), 2004.

6. Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In OOPSLA’02 [30], pages
211–230.

7. Martin Büchi. Safe Language Mechanisms for Modularization and Concurrency.
PhD thesis, Turku Centre for Computer Science, May 2000.

8. Dave Clarke. Object Ownership and Containment. PhD thesis, University of New
South Wales, July 2001.

9. Dave Clarke, John Potter, and James Noble. Ownership types for flexible alias
protection. In Proceedings of the 13th ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applications (OOPSLA’98), pages
48–64. ACM Press, October 1998.

10. Robert DeLine and Manuel Fähndrich. Typestates for objects. In Odersky [29],
pages 465–490.

11. Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. Journal
of Object Technology, 4(8):5–32, 2005.

12. Werner Dietl, Peter Müller, and Arnd Poetzsch-Heffter. A type system for check-
ing applet isolation in Java Card. In Construction and Analysis of Safe, Secure
and Interoperable Smart devices (CASSIS 2004), volume 3362 of Lecture Notes in
Computer Science. Springer-Verlag, March 2004.

13. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s
reduction semantics for classes and mixins. Formal Syntax and Semantics of Java,
1523:241–269, 1999.

14. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language
Specification – Second Edition. Addison-Wesley, June 2000.

15. J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Specifica-
tion. Texts and Monographs in Computer Science. Springer-Verlag, 1993.

16. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems (TOPLAS), 23(3):396–450, May 2001.

17. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed
design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral
Specifications of Businesses and Systems, chapter 12, pages 175–188. Kluwer, 1999.

18. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML.
Technical Report No. 98-06z, Iowa State University, 2004.

19. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In Odersky
[29], pages 491–516.

20. K. Rustan M. Leino and Greg Nelson. Data abstraction and information hid-
ing. ACM Transactions on Programming Languages and Systems (TOPLAS),
24(5):491–553, 2002.

Modular Specification of Encapsulated Object-Oriented Components 339

21. K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using data groups
to specify and check side effects. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implementation (PLDI’02), pages
246–257. ACM Press, June 2002.

22. Microsoft. C# Language Specification. 2001.
23. Peter Müller. Modular Specification and Verification of Object-Oriented Programs,

volume 2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002.
24. Peter Müller and Arnd Poetzsch-Heffter. Universes: A type system for alias and

dependency control. Technical Report 279–1, Fernuniversität Hagen, 2001.
25. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular specifica-

tion of frame properties in JML. Concurrency and Computation: Practice and
Experience, 15(2):117–154, 2003.

26. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for
layered object structures. Technical Report 424, ETH Zürich, Chair of Software
Engineering, 2005.

27. David A. Naumann. Assertion-based encapsulation, object invariants and simula-
tions. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P.
de Roever, editors, Formal Methods for Components and Objects, Third Inter-
national Symposium, FMCO 2004, volume 3657 of Lecture Notes in Computer
Science, pages 251–273. Springer-Verlag, 2005.

28. James Noble, Jan Vitek, and John Potter. Flexible alias protection. In Eric Jul, edi-
tor, Proceedings of the 12th European Conference on Object-Oriented Programming
(ECOOP’98), volume 1445 of Lecture Notes in Computer Science, pages 158–185.
Springer-Verlag, July 1998.

29. Martin Odersky, editor. Proceedings of the 18th European Conference on Object-
Oriented Programming (ECOOP’04), volume 3086 of Lecture Notes in Computer
Science. Springer-Verlag, June 2004.

30. Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications (OOPSLA’02). ACM Press, November 2002.

31. Arnd Poetzsch-Heffter. Specification and verification of object-oriented programs.
Habilitationsschrift, Technische Universität München, 1997.

32. Riccardo Pucella. Towards a formalization for COM part I: the primitive calculus.
In OOPSLA’02 [30], pages 331–342.

33. Jan Schäfer and Arnd Poetzsch-Heffter. Simple fuzzy ownership domains.
Unpublished. Preliminary version. Available at http://softech.informatik.
uni-kl.de/~janschaefer.

34. Sun Microsystems, Inc., Palo Alto, CA. Java CardTM2.1.1 Virtual Machine Spec-
ification, May 2000.

35. Sun Microsystems, Inc. JavaTM2 Platform, Standard Edition, v 1.4.2 API Specifi-
cation, 2003. http://java.sun.com/j2se/1.4.2/docs/api/.

36. Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software —
Beyond Object-Oriented Programming. Addison-Wesley, second edition, 2002.

Appendix

The appendix present proof sketches for the properties given in Sect. 2.

Definition (Configuration). A configuration is a triple 〈H,F, v〉, consisting
of a heap H , a stack frame F and a value v.

340 A. Poetzsch-Heffter and J. Schäfer

Definition (Intern-Closed Configuration). A configuration (H,F, v) is
called intern-closed, denoted by (H,F, v) � �, if the following conditions hold:

1. If H(b)(o0) = v with vi = 〈o, , intn〉, then box(o) = b

2. If thisBox(F) = b and F (x) = 〈o, , intn〉, then box(o) = b

3. If thisBox(F) = b and v = 〈o, , intn〉, then box(o) = b

Theorem 1. If (H,F, null) � � and H,F � e⇒ v,H0 then (H0, F, v) � �

Note that initial configurations appearing in premises of evaluation rules are all
intern-closed, which is (and needs to be) shown in the proof below.

Proof. Suppose (H,F, null) � � and H,F � e⇒ v,H0. We show that (H0, F, v)
� �. As F does not change, we only have to show conditions (1) and (3) of the
intern-closed definition. We do an induction on the evaluation rules.

(e-var) Immediate.
(e-cast null) By the induction hypothesis.
(e-cast obj) By the induction hypothesis.
(e-new box) (1) follows by assumption (H,F, null) � � and the fact that

H(b)(o) = null. (3) follows because v = 〈o,B, extn〉.
(e-new obj) (1) follows by assumption (H,F, null) � � and the fact that

H(b)(o) = null. (3) follows from the premises b = thisBox(F) and o =
(b, C, j, em).

(e-field) By the induction hypothesis.
(e-fieldup) By the induction hypothesis we get (H0, F, 〈o, C, intn〉) � � and

(H1, F, v) � �. With the premise b = box(o) it follows thisBox(F) = b. Let
v = 〈o1, , intn〉. Hence thisBox(F) = box(o1) and so b = box(o1). Thus
(H1[b �→ BS], F, v) � �.

(e-invk intn) By the induction hypothesis we get (H0, F, 〈o, C, intn〉) � �.
Hence thisBox(F) = box(o). By repeated application of the induction hy-
pothesis we get (Hi, F, vi) � �, for 0 < i ≤ n. Let Fm = {this �→ o, x �→
v}. Hence thisBox(Fm) = thisBox(F) and so (Hn, Fm, null) � �. Ap-
plying the induction hypothesis leads to (Hm, Fm, vm) � �. And finally,
(Hm, F, vm) � �.

(e-invk extn) By repeated application of the induction hypothesis we get
(H0, F, 〈o0, S, extn〉) � � and (Hi, F, vi) � �, for 0 < i ≤ n. Let Fm =
{this �→ 〈o0, C, intn〉, x �→ adapt(vi, Ti, b, ai)}. Note that thisBox(Fm) =
b. We have to show that ∀x with Fm(x) = 〈ox, Tx, intn〉. box(ox) = b.
The adapt function turns all references into extn references, except for the
case, where ai = boundary. In that case, however, b = box(ox). Hence
(Hn, Fm, null) � �. By the induction hypothesis, (Hm, Fm, vm) � �. Let
vr = adapt(vm, Tm, thisBox(F), am). The adapt function only returns an
intn reference if thisBox(F) = box(vm), thus (Hm, F, vr) � �.

(e-let) By the induction hypothesis.)*

Modular Specification of Encapsulated Object-Oriented Components 341

Definition. cf(o) is defined as follows.

cf : Object → Box
cf(b, C, k; confined) = b
cf(b, C, k; exposable) = confIn(b)

Definition (Confined Configuration). A configuration (H,F, v) is called
confined, denoted by (H,F, v) �, if the following conditions hold:

1. If H(b)(o0) = v with vi = 〈o, , 〉, then b ⊆ cf(o)
2. If thisBox(F) = b and F (x) = 〈o, , 〉, then b ⊆ cf(o)
3. If thisBox(F) = b and v = 〈o, , 〉, then b ⊆ cf(o)

Theorem 2. If (H,F, null) � and H,F � e⇒ v,H0 then (H0, F, v) �

Like above, the proof also shows that all initial configurations of rule premises
are confined.

Proof. Suppose (H,F, null) � andH,F � e⇒ v,H0. We show that (H0, F, v) �
. As F does not change, we only have to show conditions (1) and (3) of the
confinedness definition. We do an induction on the evaluation rules.

(e-var) Immediate.
(e-cast null) By the induction hypothesis.
(e-cast obj) By the induction hypothesis.
(e-new box) (1) follows by the fact thatH(b)(o) = null. (3): Depending on em,

confIn(b) is either b0 or confIn(b0). Hence cf(o) is either b, b0, or confIn(b0).
As parent(b) = b0, it follows b ⊂ b0. In addition, b ⊆ confIn(b0). Thus
b ⊆ cf(o).

(e-new obj) (1) follows by the fact that H(b)(o) = null. (3): From the premise
box(o) = b we get cf(o) ∈ {b, confIn(b)}. Hence b ⊆ cf(o).

(e-field) (1) by the induction hypothesis. (3): Let thisBox(F) = b, for some
b. By Theorem 1, b = box(o). Hence b ⊆ cf(o).

(e-fieldup) Let thisBox(F) = b1, for some b1. By Theorem 1, b1 = box(o).
Hence by the premise b = box(o), it follows b1 = b. Let v = 〈ov, , 〉. Hence,by
Theorem 1, box(ov) = b. Hence b ⊆ cf(ov). Thus (H1[b �→ BS], F, v) �.

(e-invk intn) By repeated application of the induction hypothesis we get
(Hi, F, vi) �, for 0 < i ≤ n. Let Fm = {this �→ 〈o, C, intn〉, x �→ v}. Hence,
thisBox(F) = thisBox(Fm). Hence, (Hn, Fm, null) �. We can apply the
induction hypothesis and get (Hm, Fm, vm) �. Thus, (Hm, F, vm) �.

(e-invk extn) By repeated application of the induction hypothesis we get
(Hi, F, vi) �, for 0 < i ≤ n. Let Fm = {this �→ 〈o0, C, intn〉, x �→
adapt(vi, Ti, b, ai)}. The passable(vi, b, ai) premises ensure that b ⊆ box(vi).
Hence it follows (Hn, Fm, null) �. We can apply the induction hypothe-
sis and get (Hm, Fm, vm) �. Let adapt(vm, Tm, thisBox(F), external) =
〈or, , 〉. We must show that thisBox(F) ⊆ cf(or) But this is ensured by the
premise passable(vm, Tm, thisBox(F), external). Thus (Hm, F, 〈or , , 〉)
� .

(e-let) By the induction hypothesis.)*

Beyond Assertions: Advanced Specification
and Verification with JML and ESC/Java2

Patrice Chalin1, Joseph R. Kiniry2,
Gary T. Leavens3, and Erik Poll4

1 Concordia University, Montréal, Québec, Canada
2 University College Dublin, Ireland

3 Iowa State University, Ames, Iowa, USA
4 Radboud University Nijmegen, the Netherlands

Abstract. Many state-based specification languages, including the Java
Modeling Language (JML), contain at their core specification constructs
familiar to most undergraduates: e.g., assertions, pre- and postcondi-
tions, and invariants. Unfortunately, these constructs are not sufficiently
expressive to permit formal modular verification of programs written
in modern object-oriented languages like Java. The necessary extra con-
structs for specifying an object-oriented module include (perhaps the less
familiar) frame properties, datagroups, and ghost and model fields. These
constructs help specifiers deal with potential problems related to, for ex-
ample, unexpected side effects, aliasing, class invariants, inheritance, and
lack of information hiding. This tutorial paper focuses on JML’s realiza-
tion of these constructs, explaining their meaning while illustrating how
they can be used to address the stated problems.

1 Introduction

Textbooks on program verification typically explain the notions of pre- and
postconditions, loop invariants, and so on for toy programming languages. The
goal of this paper is to explain some of the more advanced concepts that are
necessary in order to allow the formal modular verification of (sequential) pro-
grams written in a popular mainstream object-oriented language: Java. The Java
Modeling Language (JML) [BCC+05, LBR06, LPC+06], a Behavioral Interface
Specification Language (BISL) [Win90] for Java, will be our notation of choice
for expressing specifications.

The reader is assumed to be familiar with the basics of Design by Contract
(DBC) [Mey97] or Behavioral Interface Specifications (BISs) and the central
role played by assertions in these approaches. Readers without this background
may wish to consult one of several books or articles offering tutorials on the
subject [Hoa69, LG01, MM02, Mey92, Mey97, Mor94]. A tutorial that explains
these basic ideas using JML is also available [LC05].

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 342–363, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Beyond Assertions: Advanced Specification and Verification 343

1.1 Approaches to Verification

Tools useful for checking that JML annotated Java modules meet their specifi-
cations fall into two main categories:1

– runtime assertion checking (RAC) tools, and
– static verification (SV) tools.

These categories also represent two complementary forms of assertion checking,
the foundations of which were laid out before the 1950s in the pioneering work
of Goldstine, von Neumann and Turing [Jon03]. Runtime assertion checking
involves the testing of specifications during program execution; any violations
result in special errors being reported. The idea of checking contracts at runtime
was popularized by Eiffel [Mey97] as of the late 80s; other early work includes
Rosenblum’s APP annotation language for C [Ros92, Ros95]. The main RAC
tool for JML is jmlc [CL02]. RAC support for JML is also planned for the next
release of the Jass tool [BFMW01].

In static verification, logical techniques are used to prove, before runtime,
that no violations of specifications will take place at runtime. The adjective
static emphasizes that verification happens by means of a static analysis of the
code, i.e., without running it. Program verification tools supporting JML include
JACK [BRL03], KeY [ABB+05], Krakatoa [MPMU04], LOOP [BJ01], and Jive
[MPH00]. In this paper we will focus on ESC/Java2 [CK04], the main (extended)
static checker for JML.

RAC and SV tools have complementary strengths. Compared to runtime as-
sertion checking, static verification often provides stronger guarantees and it can
give them earlier. However, these advantages come at a price: SV tools generally
require fairly complete specifications not only for the module being checked, but
also for the modules and libraries that it depends on. Furthermore, in order to be
effective and keep false positives to a minimum, SV tools require specifications
to make use of some of the advanced features described in this paper.

1.2 Outline

The remainder of the paper is organized as follows. The basic notation used
in JML for method contracts and invariants is covered in Section 2. Section 3
explains frame properties, and Section 4 model fields. The treatment of behav-
ioral subtyping is given in Section 5. Section 6 explains ghost fields. Section 7
introduces the JML notations that deal with ownership and aliasing. Finally,
conclusions and related work are given in Section 8.

2 JML Basics: Pre- and Postconditions, and Invariants

This section examines the specification and implementation of various kinds of
clocks. In doing so, we review basic concepts such as method contracts and class
invariants and introduce their JML notation.
1 There are also several other kinds of tool available for use with JML [BCC+05].

344 P. Chalin et al.

2.1 Method Contracts

We begin with the specification of a TickTockClock as given in Fig. 1. This
specification illustrates basic method contracts formed by:

– preconditions (introduced by the requires keyword), and
– postconditions (ensures).

An example of such a contract is found in the specification of the method
getSecond() on lines 23–24. The JML specification for each method is writ-
ten in front of the method itself, and is found in stylized Java comments that
begin with an at-sign (‘@’).

A method contract without an explicit requires clause has an implicit pre-
condition of true. Thus, such a method imposes no requirements on its callers.
This default means that the requires clause written for getHour() could have
been omitted entirely. Similarly, the default postcondition when none is ex-
plicitly given in an ensures clause is also true, which says that the method
makes no guarantees to its caller. The constructor (on lines 12–15) and the
method getMinute() (on lines 21–22) are examples of class members with im-
plicit requires clauses.

Note that assertion expressions appearing in requires and ensures clauses
are written using a Java-like syntax. In postconditions of (non-void) methods,
\result can be used to refer to the value being returned by the method. The
only other JML specific operator used in this clock specification is the \old()
operator, which is used in an ensures clause of tick (on lines 29–31). The
expression \old(e) refers to the value of e in the method’s pre-state, i.e., the
state just before the method is executed.

Preconditions and postconditions are often split over multiple requires and
ensures clauses, as illustrated for the postcondition of getSecond() (on lines
23–24). Multiple ensures clauses, or multiple requires clauses, are equivalent
to a single clause consisting of the conjunction (&&) of their respective assertions.

Method contracts, like the contract of tick() on lines 27–37 of Fig. 1, are
written as one or more specification cases combined with the keyword also. Each
specification case is a “mini-contract” in itself, having a precondition and post-
condition (either explicit or implicit) as well as other clauses that are covered
below. Use of specification cases allows developers to structure their specifica-
tions and to (literally) break it up into (generally) distinct cases.

The contract for tick(), which is somewhat contrived for illustrative pur-
poses, highlights to clients that its behavior essentially has two cases of interest.
Either

– seconds are less than 59 and the seconds are incremented by one, or
– seconds are at 59 and they will be wrapped back to 0.

We note in passing that the specification of tick() is incomplete, as it might
be during the development of the TickTockClock class. Informal comments, like
the one on line 36, are useful for remembering what remains to be formalized
or to avoid formalization (e.g., if it is too costly), although they do not help in
verification.

Beyond Assertions: Advanced Specification and Verification 345

1 public class TickTockClock {
2 //@ public model JMLDataGroup _time_state;
3

4 //@ protected invariant 0 <= hour && hour <= 23;
5 protected int hour; //@ in _time_state;
6 //@ protected invariant 0 <= minute && minute <= 59;
7 protected int minute; //@ in _time_state;
8 //@ protected invariant 0 <= second && second <= 59;
9 protected int second; //@ in _time_state;

10

11 //@ ensures getHour() == 12 && getMinute() == 0 && getSecond() == 0;
12 public /*@ pure @*/ TickTockClock() {
13 hour = 12; minute = 0; second = 0;
14 }
15

16 //@ requires true;
17 //@ ensures 0 <= \result && \result <= 23;
18 public /*@ pure @*/ int getHour() { return hour; }
19

20 //@ ensures 0 <= \result && \result <= 59;
21 public /*@ pure @*/ int getMinute() { return minute; }
22

23 //@ ensures 0 <= \result;
24 //@ ensures \result <= 59;
25 public /*@ pure @*/ int getSecond() { return second; }
26

27 /*@ requires getSecond() < 59;
28 @ assignable hour, minute,second;// NB for expository purposes only
29 @ assignable _time_state;
30 @ ensures getSecond() == \old(getSecond() + 1) &&
31 @ getMinute() == \old(getMinute()) &&
32 @ getHour() == \old(getHour());
33 @ also
34 @ requires getSecond() == 59;
35 @ assignable _time_state;
36 @ ensures getSecond() == 0;
37 @ ensures (* hours and minutes are updated appropriately *);
38 @*/
39 public void tick() {
40 second++;
41 if (second == 60) { second = 0; minute++; }
42 if (minute == 60) { minute = 0; hour++; }
43 if (hour == 24) { hour = 0; }
44 }
45 }

Fig. 1. JML specification for TickTockClock. The datagroup time state, the associ-
ated assignable clauses and in clauses are explained later, in Section 3

346 P. Chalin et al.

2.2 Purity

In the DBC approach, only query methods can be used in assertion expressions
because they are required to be side-effect free [Mey97]. The corresponding con-
cept in JML is known as method purity; pure methods are not allowed to have
side effects, and pure constructors can only assign to the fields of the object
they are initializing. Purity is statically checked by the JML tools. The restric-
tion that only methods declared as pure can be used in assertion expressions is
also checked statically. E.g., since the method getSecond() is declared pure, it
is legal to make use of it in the postcondition of tick().

Notice that the TickTockClock constructor is declared as pure despite the
fact that it assigns to the fields hour, minute and second. Such instance field
assignments are permitted inside the bodies of constructors because they are
benevolent side-effects—i.e., that have no observable effect on clients. On the
other hand, a pure constructor would not be permitted to assign to a static
field. Purity, and particularly variants in the strength (restrictiveness) of its
definition are a subject of active research—e.g., a stronger notion of purity than
that of JML has been proposed by Darvas and Müller [DM05]. On the other
hand, purity is often too strong [LCC+05], and so a notion of “observational
purity” that permits benevolent side effects (such as updates to caches) is also
under consideration [BSS04, Nau05].

2.3 Lightweight vs. Heavyweight

JML actually has two kinds of specification cases: lightweight and heavyweight.
Lightweight specification cases are useful when giving partial specifications, and
in practice are often used with ESC/Java2. To convey that one is intending
to give a complete specification for some precondition, one would use a heavy-
weight specification case. Such heavyweight specification cases are often used
with runtime assertion checking.

The specification cases of the tick() method are lightweight. An example
use of heavyweight specification cases is found on the setTime() method of the
SettableClock class given in Fig. 2. A heavyweight specification case is easily
recognized by the use of a “behavior” keyword at the beginning of the case.
The contract of setTime() illustrates the two kinds of heavyweight specification
cases most often used. The first specification case uses the normal behavior
keyword and it describes the intended behavior of the method when it returns
normally. The second specification case uses the exceptional behavior key-
word and it describes the intended behavior of the method when the method
raises an exception. The latter case is described at greater length in Section 2.4.
Notice that the heavyweight specification cases of setTime() start with public.
This means that the specification cases are visible to clients, and hence, for ex-
ample, will be included as a part of client visible documentation generated using
JmlDoc [BCC+05]. It also means that these specification cases cannot refer to
private or protected fields.

Beyond Assertions: Advanced Specification and Verification 347

1 class SettableClock extends TickTockClock {
2

3 // ...
4

5 /*@ public normal_behavior
6 @ requires 0 <= hour && hour <= 23 &&
7 @ 0 <= minute && minute <= 59;
8 @ assignable _time_state;
9 @ ensures getHour() == hour &&

10 @ getMinute() == minute && getSecond() == 0;
11 @ also
12 @ public exceptional_behavior
13 @ requires !(0 <= hour && hour <= 23 &&
14 @ 0 <= minute && minute <= 59);
15 @ assignable \nothing;
16 @ signals (IllegalArgumentException e) true;
17 @ signals_only IllegalArgumentException;
18 @*/
19 public void setTime(int hour, int minute) {
20 if (!(0 <= hour & hour <= 23 & 0 <= minute & minute <= 59)) {
21 throw new IllegalArgumentException();
22 }
23 this.hour = hour;
24 this.minute = minute;
25 this.second = 0;
26 }
27 }

Fig. 2. JML specification for SettableClock

Contracts built from lightweight specification cases have fewer keywords and
mandatory clauses. In particular, the visibility of a lightweight specification case
cannot be given explicitly since, by definition, its visibility is the same as the vis-
ibility of the method it is attached to. The method contracts in TickTockClock
are all examples of lightweight method specifications.

2.4 Exceptions and Exceptional Postconditions

JML distinguishes two kinds of postcondition:

– normal postconditions, expressed by means of ensures clauses, that must
hold when a method terminates normally, and

– exceptional postconditions, expressed by means of signals clauses, that
must hold when a method terminates with an exception.

The exceptional specification case of SettableClock.setTime() is interpreted
as follows: if hour and minute are not within their valid ranges, then the method

348 P. Chalin et al.

will raise an IllegalArgumentException and the system state will be left un-
changed.

Notice that in the TickTockClock class there are no Java throws clauses.
Still, Java permits the constructor and any of the methods of this class to throw
a RuntimeException—one commonly raised runtime exception is NullPointer-
Exception. JML is more strict when it comes to declaring runtime exceptions:
whereas Java allows any constructor or method to throw a runtime exception,
JML only allows this if the exception is listed in the method’s throws clause,
or in the method contract’s signals only clause. SettableClock.setTime()
illustrates use of the latter. Therefore, constructors or methods without an
explicit throws clause have an implicit exceptional postcondition of signals
(Exception) false. So the specification in Fig. 1 rules out the generation of
any runtime exceptions, making the specification much stronger than it might
appear at first sight. However, JML, like Java, makes a distinction between ex-
ceptions and errors; since Java’s type Error is not a subtype of Exception, JML
specifications do not say anything about virtual machine errors, such as running
out of memory [PH97].

2.5 Instance and Static Invariants (and the Callback Problem)

A JML invariant clause declared with a static modifier is called a static
invariant. Static invariants express properties which must hold of the static at-
tributes of a class. An assertion that appears in a non-static invariant clause
is called a instance invariant or an object invariant. Note that while this ter-
minology is contrary to the literature, it is more accurate with respect to the
nomenclature of Java. In this paper, an unqualified use of the term “invariant”
will refer to an “object invariant.”

The semantics of object invariants is more involved than most specifiers ex-
pect, especially for newcomers to the field of object-oriented specification. Hence,
while this issue has been widely known for quite some time [Szy98], we believe
it is worth a brief explanation. Intuitively, an object invariant:

– has to be established by constructors—i.e., it is implicitly included in the
postcondition of constructors;

– can be assumed to hold on entry to methods, but methods must also re-
establish it on exit. Hence, the invariant is implicitly included in the precon-
ditions, and (normal and exceptional) postconditions of methods.

This intuition may suggest that the notion of object invariant is not re-
ally necessary, but rather that it just provides a convenient shorthand. This
idea is a common misconception, as there is more to the notion of invariant
than the intuitions summarized above. One difference is that invariants apply
to all subtypes through specification inheritance (Section 5), whereas predi-
cates that just happen to appear in all pre-and post conditions are not inher-
ited as part of the specification of any new methods that may be added in a
subtype.

Beyond Assertions: Advanced Specification and Verification 349

One other issue is related to callbacks. For example, suppose that the tick
method called another method at a program point where its invariant is broken,
such as the call to canvas.paint() in the following:

public void tick() {
second++;
// object invariant might no longer hold
canvas.paint();
/* ... */

}

It would then be reasonable for the canvas to invoke, e.g., the getSecond()
method of the current clock object, performing a so-called callback. However,
since the invariant of this clock object is broken, its behavior is unconstrained,
in particular because the preconditions of all methods (which implicitly include
the object invariant) are all false.

To avoid such problems, the invariant not only has to be re-established at
the end of each method, but also at those program points where a (non-helper)
method is invoked. These program points—i.e., all program points at which
a method invocation starts or ends—are called the visible states. The visible
state semantics for invariants says that all invariants of all objects must hold
at these visible states. This semantics is very strong and in many cases overly
restrictive. Less restrictive, but still sound, approaches are still a hot topic of
ongoing research. A more thorough discussion of this problem and a proposed
solution for JML is given in [MPHL05]; alternative solutions are explored else-
where [BDF+04, HK00, JLPS05, MHKL05].

3 Frame Properties

In traditional specifications that give pre- and postcondition for methods (or
procedures) one often uses the convention that any variables not mentioned in
the postcondition have not been changed. This approach is not workable for
realistic object-oriented programs. For example, consider the method tick() in
Fig. 1. This method may modify the three private fields second, minute and
hour, but these do not appear in the postcondition. Rewriting the specification
so it does mention these fields is clearly not what we would want, since in the
specification of this public method we do not want to refer to private fields.

A JML assignable clause is used in a method contract to specify which parts
of the system state may change as the result of the method execution. This is
the so-called frame property [BMR95]. Any location outside the frame property
is guaranteed to have the same value after the method has executed (called the
post-state) as it did before the method executed (in the pre-state). The notion
of datagroup [Lei98] allows us to abstract away from private implementation
details in frame properties and provides flexibility in specifications. This section
explains these notions and the need for them.

350 P. Chalin et al.

An assignable clause specifies that a method may change certain fields with-
out having to specify how they might change. So the specification of the method
tick() could include

assignable hour, minute, second;

to state that it may modify these three fields, without having to mention the
fields in the postcondition. If no assignable clause is given for a non-pure
method, then it has the default frame condition assignable \everything.
However, pure methods (Section 2.2) have a default frame of assignable
\nothing.

Object-oriented languages such as Java require some means for abstraction in
assignable clauses. E.g., the first assignable clause for tick() given above leaves
a lot to be desired. Firstly, it exposes implementation details, because it men-
tions the names of protected fields. Secondly, the specification is overly restrictive
for any future subclasses. By the principle of behavioral subtyping, discussed in
more detail in Section 5, the implementation of tick() in any future subclass of
TickTockClockhas to meet the specification given in TickTockClock.This means
that the method body can only assign to the three fields of TickTockClock,which
is far too restrictive in practice. To give a concrete example, suppose we intro-
duce a subclass TickTockClockWithDate of TickTockClock that, in addition to
keeping the time, also keeps track of the current date. Clearly such a subclass
will introduce additional fields to record the date and tick will have to modify
these fields when the end of a day is reached; however, the assignable clause
given above will not allow these fields to be changed, as they are not explicitly
listed.

Datagroups [Lei98] provide a solution to this problem. The idea is that a
datagroup is an abstract piece of an object’s state that may still be extended
by future subclasses. The specification in Fig. 1 declares a (public) datagroup
time state and declares that the three (private) fields belong to this datagroup.
This datagroup is (partially) used to specify tick(). This avoids exposing any
private implementation details, and subclasses of TickTockClock may extend
the datagroup with additional fields it introduces.

Datagroups may be nested by using the in clause to say that one datagroup
is part of another one. The JML specification for java.lang.Object declares a
datagroup named objectState. Since this datagroup is inherited by all other
classes, as a convention one can use objectState in any class to describe what
constitutes the ‘state’ of an object of that class. Had we followed this conven-
tion then, e.g., we would have declared the time state datagroup to be in
objectState.

Finally we note that, although assignable clauses are needed when doing pro-
gram verification, they are not currently used during runtime assertion checking.
(The RAC tool checks assignable clauses statically and does not check them
at runtime.)

Beyond Assertions: Advanced Specification and Verification 351

1 public class Clock {
2 //@ public model long _time;
3 //@ private represents _time = second + minute*60 + hour*60*60;
4

5 //@ public invariant _time == getSecond()+ getMinute()*60 + getHour()*60*60;
6 //@ public invariant 0 <= _time && _time < 24*60*60;
7

8 //@ private invariant 0 <= hour && hour <= 23;
9 private int hour; //@ in _time;

10 //@ private invariant 0 <= minute && minute <= 59;
11 private int minute; //@ in _time;
12 //@ private invariant 0 <= second && second <= 59;
13 private int second; //@ in _time;
14

15 //@ ensures _time == 12*60*60;
16 public /*@ pure @*/ Clock() { hour = 12; minute = 0; second = 0; }
17

18 //@ ensures 0 <= \result && \result <= 23;
19 public /*@ pure @*/ int getHour() { return hour; }
20

21 //@ ensures 0 <= \result && \result <= 59;
22 public /*@ pure @*/ int getMinute() { return minute; }
23

24 //@ ensures 0 <= \result && \result <= 59;
25 public /*@ pure @*/ int getSecond() { return second; }
26

27 /*@ requires 0 <= hour && hour <= 23;
28 @ requires 0 <= minute && minute <= 59;
29 @ assignable _time;
30 @ ensures _time == hour*60*60 + minute*60;
31 @*/
32 public void setTime(int hour, int minute) {
33 this.hour = hour; this.minute = minute; this.second = 0;
34 }
35

36 //@ assignable _time;
37 //@ ensures _time == \old(_time + 1) % 24*60*60;
38 public void tick() {
39 second++;
40 if (second == 60) { second = 0; minute++; }
41 if (minute == 60) { minute = 0; hour++; }
42 if (hour == 24) { hour = 0; }
43 }
44 }

Fig. 3. Example JML specification illustrating the use of model fields

352 P. Chalin et al.

4 Model Fields

Model fields [CLSE05] are closely related to the notion of data abstraction pro-
posed by Hoare [Hoa72]. A model field is a specification-only field that provides
an abstraction of (part of) the concrete state of an object. The specification in
Fig. 3 illustrates the use of a model field. It abstracts away from the particu-
lar concrete representation of time by using a model field time that represents
the number of seconds past midnight. Notice how this abstraction allows for a
brief but complete specification of the method tick(). The represents clause
of line 3 relates the model field to its concrete representation, in this case as a
function of hour, minute and second. Hence, the represents clause defines the
representation function of time. (In its most general form, JML also permits
represents clauses that are relational [LPC+06], but we do not discuss these
here.)

Note that the time model field is public, and hence visible to clients, though
its representation is not. The represents clause must be declared private, be-
cause it refers to private fields. For every model field there is an associated
datagroup, so that the model field can also be used in assignable clauses. In
fact, a field of type JMLDataGroup is a degenerate model field that holds no
information.

A difference between model fields for objects and the traditional notion of
abstract value for abstract data types is that an object can have several model
fields, providing abstractions of different aspects of the object. For instance, the
specification of AlarmClock (a subclass of Clock, given in Fig. 4) uses two model
fields, one for the current time, which it inherits from Clock, and one for the
alarm time.

Model fields are especially useful in the specification of Java interfaces, as
interfaces do not contain any concrete representation we can refer to in speci-
fications. We can declare model fields in a Java interface then every class that
implements the interface can define its own represents clause relating this
abstract field to its concrete representation. For a more extensive discussion
of model fields see [CLSE05]. Cok discusses how model fields are treated in
ESC/Java2 [Cok05], while Leino and Müller have recently worked on handling
model fields in the context of verification [LM06].

5 Behavioral Subtyping and Specification Inheritance

JML enforces behavioral subtyping [Ame90, DL96, LD00, LW95, LW94, Mey97]:
instances of a given type T must meet the specifications of each of type T ’s
supertypes. This ensures Liskov’s “substitution principle” [Lis88], i.e., it ensures
that using an object of a subclass in a place where an object of the superclass
is expected does not cause any surprises, ensuring that the introduction of new
subclasses does not break any existing code. This idea is also known as supertype
abstraction [Lea90, LW95].

Beyond Assertions: Advanced Specification and Verification 353

For example, consider the class AlarmClock in Fig. 4. Because AlarmClock
is a subtype of Clock, it inherits all the specifications of Clock, i.e., all invari-
ants specified for Clock also apply to AlarmClock, and any (overriding) method
in AlarmClock has to meet the specification for the corresponding method in
Clock. For example, the overriding AlarmClock method tick() has to meet
the specification given for it in Clock. Note that any methods which are not
overridden have to be re-verified, to ensure that they maintain any additional
invariants of the subclass. ([RL00] investigates ways to avoid some of this re-
verification.)

When it comes to method specifications, behavioral subtyping requires that
the specification of an overriding method m must refine that of its supertypes in
the sense that whenever a supertype’s precondition for m is satisfied, then the
supertype’s postcondition for m must hold. It follows that the preconditions of
an overriding method may only be weaker. Furthermore, whenever an overrid-
den method’s precondition is satisfied then the postcondition of the overriding
method must imply the postcondition of the overridden method. One way to
achieve this is would be to allow a subtype to give a new specification for a
method—effectively overriding the one in the supertype—and then prove the
necessary refinement relationship. Instead, JML uses the principle of specifica-
tion inheritance for method specifications [DL96]: all specification cases written
for an overriding method are “conjoined” (using also) with the specification
cases of the method(s) being overridden. Specification inheritance guarantees
that the overriding method obeys all the inherited specification cases and thus
that the method satisfies a refinement of the inherited specifications. This auto-
matically makes all subtypes behavioral subtypes and thus validates the principle
of supertype abstraction.

The meaning of specification cases conjoined by also can be a bit subtle.
However, it is easiest to just keep in mind that all specification cases of all in-
herited methods have to each be obeyed by a method. If, for a given method,
the subtype and supertypes all specify the same precondition and assignable
clause, then the conjoined specification will be equivalent to a single specifi-
cation case whose precondition and assignable clause are the same as in the
individual specification cases, and with a postcondition that is the conjunc-
tion of the postconditions in the individual specification cases. If different pre-
conditions are given in a sub- and supertype the meaning of the conjoined
specification cases is more involved: the precondition of the conjoined specifi-
cation will effectively be the disjunction of the preconditions from the individual
specification cases, and the postcondition of the conjoined specification will ef-
fectively be a conjunction of implications, where each precondition (wrapped
in \old()) implies the corresponding postcondition. This effective postcondi-
tion is slightly weaker than the conjunction of the postconditions, since each
postcondition only has to apply in case the corresponding precondition was
satisfied [DL96].

Before closing this section we point out that the alarm field (line 13) and
alarm parameter (line 15) of the AlarmClock class are explicitly declared to be

354 P. Chalin et al.

1 class AlarmClock extends Clock {
2 //@ public model int _alarmTime;
3 //@ private represents _alarmTime = alarmMinute*60 + alarmHour*60*60;
4

5 //@ public ghost boolean _alarmOn = false; //@ in _time;
6

7 //@ private invariant 0 <= alarmHour && alarmHour <= 23;
8 private int alarmHour; //@ in _alarmTime;
9

10 //@ private invariant 0 <= alarmMinute && alarmMinute <= 59;
11 private int alarmMinute; //@ in _alarmTime;
12

13 private /*@ non_null @*/ AlarmInterface alarm;
14

15 public /*@ pure @*/ AlarmClock(/*@ non_null @*/ AlarmInterface alarm) {
16 this.alarm = alarm;
17 }
18

19 /*@ requires 0 <= hour && hour <= 23;
20 @ requires 0 <= minute && minute <= 59;
21 @ assignable _alarmTime;
22 @*/
23 public void setAlarmTime(int hour, int minute) {
24 alarmHour = hour;
25 alarmMinute = minute;
26 }
27

28 // spec inherited from superclass Clock
29 public void tick() {
30 super.tick();
31 if (getHour()== alarmHour & getMinute() == alarmMinute & getSecond()== 0){
32 alarm.on();
33 //@ set _alarmOn = true;
34 }
35 if ((getHour() == alarmHour & getMinute() == alarmMinute+1 & getSecond() == 0)||
36 (getHour() == alarmHour+1 & alarmMinute == 59 & getSecond()== 0)) {
37 alarm.off();
38 //@ set _alarmOn = false;
39 }
40 }
41 }

Fig. 4. Example JML specification illustrating the concepts of specification inheritance
and ghost fields

non-null instances of AlarmInterface. While this is unnecessary (since declara-
tions of reference types are non-null by default in JML [LCC+05, Cha06]), it is
also harmless and can in fact be helpful to JML newcomers. Though we will not
have the need in our examples, declarations that may be null must be annotated
with the nullable modifier.

Beyond Assertions: Advanced Specification and Verification 355

1 public interface AlarmInterface {
2 public void on();
3 public void off();
4 }

Fig. 5. Interface of the alarm used in AlarmClock

6 Ghost Fields

Like model fields, ghost fields are specification-only fields, so they cannot be
referred to by Java code. While a model field provides an abstraction of the
existing state, a ghost field can provide some additional state, which may—or
may not—be related to the existing state. Unlike a model field, a ghost field
can be assigned a value. This is done by a special set statement that must be
given in a JML annotation. Before we discuss the difference between model and
ghost fields in more detail, let us first look at an example of the use of a ghost
field.

Suppose that we want to convince ourselves that the implementation of
AlarmClock will not invoke the method alarm.on() twice in a row, or the
method alarm.off() twice in a row, but that it will always call alarm.on() and
alarm.off() alternately. (One could add JML contracts to AlarmInterface to
specify this requirement, but we will not consider that here.)

The state of an AlarmClock object does not record if the associated alarm is
ringing or not, nor does it record which method it has last invoked on alarm.
For the purpose of understanding the behavior of the AlarmClock, and possibly
capturing this understanding in additional JML annotations, it may be useful
to add an extra boolean field to the state that records if the associated alarm
is ringing. In Fig. 4, we have declared a boolean ghost field alarmRinging.
Two assignments to this field are included in the method tick(). The as-
signments ensure that the field is true when the alarm ringing and false oth-
erwise. A subtle issue here is that alarmRinging has to be included in the
datagroup associated with time. This is because—by the principle of specifi-
cation inheritance—the method tick() is only allowed to have side effects on
time. Since tick() assigns to alarmRinging, the field has to be included in
this datagroup. (As was mentioned in Section 3, we could have instead declared
time to be in objectState, and used objectState in the assignable clause of
tick(). It then would have been more natural to declare alarmRinging to be
in objectState.)

One can now try to capture the informal requirement that “the alarm will ring
for the minute that follows the specified alarm time,” by formulating invariants
relating the new ghost field alarmRinging to the ‘real’ state of the AlarmClock.
There are many ways to express such a relation, for instance using the following
as the invariant:

_alarmRinging <==> _alarmTime <= _time && _time < alarmTime + 60;

356 P. Chalin et al.

Verification by ESC/Java2 will immediately point out that these invariants may
be violated, namely by invocations of setTime and setAlarmTime. This high-
lights a potential weakness in the implementation: relying on the comparison of
the current time and the alarm time in the decision to turn the alarm off might
result in unwanted behavior. The alarm could be turned on twice in a row, or
turned off twice in a row. Also, the alarm could ring for longer than 60 seconds,
if one of these times is changed while the alarm is ringing.

An improvement in the implementation is to count down the number of sec-
onds left until the alarm is disabled and use this count as a basis for switching
off the alarm, rather than relying on a comparison of the current time and the
alarm time.

/** The number of seconds remaining to keep ringing the alarm.
* If zero, the alarm is silent (off). */

//@ private invariant 0 <= alarmSecondsRemaining &&
//@ alarmSecondsRemaining <= 60;

/*@ private invariant _alarmRinging
@ <==> alarmSecondsRemaining > 0; @*/

private int alarmSecondsRemaining = 0; //@ in _time;
...

public boolean tick() {
super.tick();
if (alarmSecondsRemaining > 0) {
alarmSecondsRemaining--;
if (alarmSecondsRemaining == 0) {

alarm.off();
//@ set _alarmRinging = false;

}
} else if (getHour() == alarmHour &

getMinute() == alarmMinute) {
alarm.on();
alarmSecondsRemaining = 60 - getSecond();
//@ set _alarmRinging = true;

}
}

Now that we have a close correspondence between the ghost field alarmRinging
and the field alarmSecondsRemaining, one could choose to replace the ghost
field by a model field:

/*@ public model boolean _alarmRinging; in _time;
@ private represents _alarmRinging
@ <- alarmSecondsRemaining > 0;
@*/

Beyond Assertions: Advanced Specification and Verification 357

Of course, one could also choose to turn the ghost field into a real field. This
would make the implementation simpler to understand.

Ghost vs. model fields. To recap, the crucial difference between a ghost and
a model field is that a ghost field extends the state of an object, whereas a model
field is an abstraction of the existing state of an object. A ghost field may be
assigned to in annotations using the special set keywords. A model field cannot
be assigned to, but changes value automatically whenever some of the state that
it depends on changes, as laid down by the representation relation.

Since ghost fields are only changed by set statements, they are only changed
under program control. Model fields, however, potentially change their values
whenever the concrete fields they depend on change. As Leino and Müller re-
cently noted [LM06], such instantaneous changes to model fields are not neces-
sarily sensible, because the computation of the model fields may assume that
various invariants hold.

7 Aliasing

The potential of aliasing is a major complication in program verification, and
indeed a major source of bugs in programs. To illustrate the issue, Fig. 6 shows
DigitalDisplayClock, which uses an integer array time of length 6 to rep-
resent time (line 13). For the correct functioning of the clock it will be im-
portant that this array is not aliased by a field outside of the class. If the
array is aliased, code outside of this class could alter time and break the in-
variants for the array [NVP98]. Indeed, the fact that the (private) invariants
depends on the array time already suggest that the field needs to be alias-
protected.

By inspecting the entire code of the class, it is easy to convince oneself that
references to this array are not leaked. However, this does not guarantee that a
subclass does not introduce ways to leak references to time. For example, the
subclass BrokenDigitalDisplayClock in Fig. 7 breaks the guarantee that time
will not be aliased.

There has been considerable work on extending programming languages with
some form of ownership (also known as confinement). JML includes support
for the universe type system [MPHL03] as a way to specify and enforce owner-
ship constraints. As is illustrated in Fig. 6 line 13, the time array is declared
as a rep-field2 hence forbidding time from being aliased outside the object.
The typechecker incorporated in the JML compiler will, e.g., warn that the
class BrokenDigitalDisplayClock in Fig. 7 is not well-typed because it breaks
the guarantee that time will not be aliased outside this class. Verification with
ESC/Java2 does not yet take universes into account and this is still the subject
of ongoing work.

2 rep is short for representation.

358 P. Chalin et al.

1 public class DigitalDisplayClock {
2 //@ public model long _time;
3 //@ private represents _time = getSecond()+getMinute()*60+getHour()*60*60;
4

5 //@ protected invariant time.length == 6;
6 //@ protected invariant 0 <= time[0] && time[0] <= 9; // sec
7 //@ protected invariant 0 <= time[1] && time[1] <= 5; // sec
8 //@ protected invariant 0 <= time[2] && time[2] <= 9; // min
9 //@ protected invariant 0 <= time[3] && time[3] <= 5; // min

10 //@ protected invariant 0 <= time[4] && time[4] <= 9; // hr
11 //@ protected invariant 0 <= time[5] && time[5] <= 2; // hr
12 //@ protected invariant time[5] == 2 ==> time[4] <= 3; // hr
13 protected /*@ non_null rep @*/ int[] time; // NB rep modifier
14 /*@ pure @*/ public DigitalDisplayClock() {
15 { time = new rep int [6]; } // NB rep modifier
16

17 //@ ensures 0 <= \result && \result <= 23;
18 public /*@ pure @*/ int getHour() { return time[5]*10 + time[4]; }
19

20 //@ ensures 0 <= \result && \result <= 59;
21 public /*@ pure @*/ int getMinute() { return time[3]*10 + time[2]; }
22

23 //@ ensures 0 <= \result && \result <= 59;
24 public /*@ pure @*/ int getSecond() { return time[1]*10 + time[0]; }
25

26 /*@ requires 0 <= hour && hour <= 23 && 0 <= minute && minute <= 59;
27 @ assignable _time;
28 @ ensures getHour()==hour && getMinute()==minute && getSecond()==0;
29 @*/
30 public void setTime(int hour, int minute) {
31 time[5] = hour / 10; time[4] = hour % 10;
32 time[3] = minute % 10; time[2] = minute % 10;
33 time[1] = 0 ; time[0] = 0;
34 }
35

36 //@ assignable _time;
37 //@ ensures _time == (\old(_time)+1) % 24*60*60;
38 public void tick() {
39 time[0]++;
40 if (time[0] == 10) { time[0] = 0; time[1]++; }
41 if (time[1] == 6) { time[1] = 0; time[2]++; } // minute passed
42 if (time[2] == 10) { time[2] = 0; time[3]++; }
43 if (time[3] == 6) { time[3] = 0; time[4]++; } // hour passed
44 if (time[4] == 10) { time[4] = 0; time[3]++; }
45 if (time[5] == 2 & time[4] == 4)
46 { time[5] = 0; time[4] = 0; } // day passed
47 }
48 }

Fig. 6. Clock implementation using an array and the universe type system to ensure
that references to this array are not leaked outside the current object

Beyond Assertions: Advanced Specification and Verification 359

1 class BrokenDigitalDisplayClock extends DigitalDisplayClock {
2 //@ requires time.length == 6;
3

4 public BrokenDigitalDisplayClock(/*@ non_null @*/ int[] time) {
5 this.time = time; // illegal!
6 }
7

8 public /*@ pure @*/ int[] expose() { return time; } // illegal!
9 }

Fig. 7. A subclass of DigitalDisplayClock which breaks encapsulation of the private
array time, both by its constructor, which imports a potentially aliased reference, and
the method expose, which exports a reference to time

8 Conclusions

Preconditions, postconditions and invariants alone are insufficient to accurately
specify object-oriented programs. This paper has illustrated some of the more ad-
vanced specification constructs of the JML specification language, notably: frame
conditions, datagroups, model and ghost fields, and support for alias control.

A language extension to C# that is similar in purpose and scope to JML is
the Spec# specification language [BLS04]. Like JML, Spec# enjoys tool sup-
port for runtime checking and static verification, the latter being provided by
the Boogie program verifier. Spec# and JML share similar basic and advanced
language constructs, although details vary. In particular, Spec# provides a novel
methodology to cope with object invariants [BDF+04].

As a final note, we point out that the question of which constructs are neces-
sary and sufficient for the specification of mainstream object-oriented programs
is far from settled. Even the semantics for some of the basic, let alone advanced,
features discussed in this paper are still the subject of active research as is clear
from the references given to very recent work.

Acknowledgments. Thanks to David Cok of Eastman Kodak Company for
his comments and feedback on this paper. The work of Joseph Kiniry and Erik
Poll is funded in part by the Information Society Technologies programme of
the European Commission, Future and Emerging Technologies under the IST-
2005-015905 MOBIUS project. The work of Gary Leavens was funded by the
US National Science Foundation under grants CCF-0428078 and CCF-0429567.
Patrice Chalin was funded in part by the Natural Sciences and Engineering
Research Council of Canada under grant 261573-03.

References

[ABB+05] W. Ahrendt, Th. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle,
W. Menzel, W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt.
The KeY tool. Software and System Modeling, 4:32–54, 2005.

360 P. Chalin et al.

[Ame90] P. America. Designing an object-oriented language with behavioural sub-
typing. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors,
Foundations of Object-Oriented Languages, number 489 in LNCS, pages
60–90. Springer-Verlag, 1990.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael Ernst, Joseph R.
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview
of JML tools and applications. International Journal on Software Tools
for Technology Transfer (STTT), 7(3):212–232, 2005.

[BDF+04] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Verification of object-oriented programs with in-
variants. Journal of Object Technology, 3(6):27–56, 2004.

[BFMW01] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass — Java
with assertions. In Workshop on Runtime Verification at CAV’01, 2001.
Published in ENTCS, K. Havelund and G. Rosu (eds.), 55(2), 2001.

[BJ01] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java
and JML. In T. Margaria and W. Yi, editors, TACAS’01, number 2031
in Lecture Notes in Computer Science, pages 299–312. Springer-Verlag,
2001.

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Construction and Analysis of Safe,
Secure and Interoperable Smart devices (CASSIS), volume 3362 of Lecture
Notes in Computer Science, pages 49–69. Springer-Verlag, 2004.

[BMR95] Alex Borgida, John Mylopoulos, and Raymond Reiter. On the frame
problem in procedure specifications. IEEE Transactions on Software En-
gineering, 21(10):785–798, October 1995.

[BRL03] Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. Java applet correct-
ness: A developer-oriented approach. In D. Mandrioli K. Araki, S. Gnesi,
editor, FME 2003, volume 2805 of Lecture Notes in Computer Science,
pages 422–439. Springer-Verlag, 2003.

[BSS04] Mike Barnett, David A. Naumann Wolfram Schulte, and Qi Sun.
99.44% pure: Useful abstractions in specification. In Formal Tech-
niques for Java-like Programs (FTfJP’2004), pages 11–19, May 2004.
http://www.cs.ru.nl/ftfjp/2004/Purity.pdf.

[Cha06] Patrice Chalin. Towards support for non-null types and non-null-by-
default in Java. In Formal Techniques for Java-like Programs (FTfJP),
2006. To appear.

[CK04] David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and
JML. Technical report, University of Nijmegen, 2004. NIII Technical
Report NIII-R0413.

[CL02] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for
the Java Modeling Language (JML). In Hamid R. Arabnia and Young-
song Mun, editors, the International Conference on Software Engineering
Research and Practice (SERP ’02), pages 322–328. CSREA Press, June
2002.

[CLSE05] Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and Stephen Ed-
wards. Model variables: Cleanly supporting abstraction in design by con-
tract. Software:Practice and Experience, 35(6):583–599, May 2005.

[Cok05] David R. Cok. Reasoning with specifications containing method calls in
JML. Journal of Object Technology, 4(8):77–103, 2005.

Beyond Assertions: Advanced Specification and Verification 361

[DL96] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyp-
ing through specification inheritance. In 18th International Conference
on Software Engineering, pages 258–267. IEEE Computer Society Press,
1996.

[DM05] Á. Darvas and P. Müller. Reasoning about method calls in JML Specifi-
cations. In Formal Techniques for Java-like Programs (FTfJP), 2005.

[HK00] K. Huizing and R. Kuiper. Verification of object-oriented programs us-
ing class invariants. In E. Maibaum, editor, Fundamental Approaches to
Software Engineering, volume 1783 of Lecture Notes in Computer Science,
pages 208–221. Springer-Verlag, 2000.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–583, October 1969.

[Hoa72] C.A.R. Hoare. Proof of correctness of data representations. Acta Infor-
matica, 1(4):271–281, 1972.

[JLPS05] Bart Jacobs, K. Rustan M. Leino, Frank Piessens, and Wolfram Schulte.
Safe concurrency for aggregate objects with invariants. In IEEE Interna-
tional Conference on Software Engineering (SEFM 2005), pages 137–147.
IEEE Computer Society, 2005.

[Jon03] Cliff B. Jones. The early search for tractable ways of reasoning about
programs. IEEE Annals of the History of Computing, 25(2):26–49, 2003.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. Technical
Report 98-06-rev29, Iowa State University, Department of Computer Sci-
ence, January 2006. To appear in ACM SIGSOFT Software Engineering
Notes.

[LC05] Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML.
Draft, available from jmlspecs.org., 2005.

[LCC+05] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and
David R. Cok. How the design of JML accommodates both runtime asser-
tion checking and formal verification. Science of Computer Programming,
55(1–3):185–208, March 2005.

[LD00] Gary T. Leavens and Krishna Kishore Dhara. Concepts of behav-
ioral subtyping and a sketch of their extension to component-based sys-
tems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, chapter 6, pages 113–135. Cambridge Uni-
versity Press, 2000.

[Lea90] Gary T. Leavens. Modular verification of object-oriented programs
with subtypes. Technical Report 90–09, Department of Computer Sci-
ence, Iowa State University, Ames, Iowa, 50011, July 1990. Available
by anonymous ftp from ftp.cs.iastate.edu, and by e-mail from al-
manac@cs.iastate.edu.

[Lei98] K. Rustan M. Leino. Data groups: Specifying the modification of extended
state. In OOPSLA ’98 Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 144–153. ACM, October 1998.

[LG01] Barbara Liskov and John Guttag. Program Development in Java. The
MIT Press, Cambridge, Mass., 2001.

[Lis88] Barbara Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices,
23(5):17–34, May 1988. Revised version of the keynote address given at
OOPSLA ’87.

362 P. Chalin et al.

[LM06] K. Rustan M. Leino and Peter Müller. A verification methodology
for model fields. In ESOP’2006, Lecture Notes in Computer Science.
Springer-Verlag, 2006. To appear.

[LPC+06] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David R. Cok, Peter Müller, Joseph R. Kiniry, and Patrice Chalin. JML
Reference Manual. Department of Computer Science, Iowa State Univer-
sity. Available from http://www.jmlspecs.org, January 2006.

[LW94] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems, 16(6):1811–
1841, November 1994.

[LW95] Gary T. Leavens and William E. Weihl. Specification and verification of
object-oriented programs using supertype abstraction. Acta Informatica,
32(8):705–778, November 1995.

[Mey92] Bertrand Meyer. Applying “Design by Contract”. Computer, 25(10):40–
51, October 1992.

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall,
New York, NY, second edition, 1997.

[MHKL05] Ronald Middelkoop, Cornelis Huizing, Ruurd Kuiper, and Erik Luit.
Cooperation-based invariants for OO languages. In Proceedings of
the International Workshop on Formal Aspects of Component Software
(FACS’05), 2005.

[MM02] Richard Mitchell and Jim McKim. Design by Contract by Example.
Addison-Wesley, Indianapolis, IN, 2002.

[Mor94] Carroll Morgan. Programming from Specifications: Second Edition. Pren-
tice Hall International, Hempstead, UK, 1994.

[MPH00] J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program
provers. In S. Graf and M. Schwartzbach, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 1785 of LNCS,
pages 63–77. Springer-Verlag, 2000.

[MPHL03] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular spec-
ification of frame properties in JML. Concurrency, Computation Practice
and Experience., 15:117–154, 2003.

[MPHL05] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular in-
variants for layered object structures. Technical Report 424, ETH Zurich,
March 2005.

[MPMU04] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for
certification of Java/JavaCard programs annotated in JML. Journal of
Logic and Algebraic Programming, 58(1–2):89–106, 2004.

[Nau05] David A. Naumann. Observational purity and encapsulation. In Fun-
damental Aspects of Software Engineering (FASE), 2005. Obtained from
the author.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In
Eric Jul, editor, ECOOP ’98 – Object-Oriented Programming, 12th Eu-
ropean Conference, Brussels, Belgium, volume 1445 of Lecture Notes in
Computer Science, pages 158–185. Springer-Verlag, July 1998.

[PH97] Arnd Poetzsch-Heffter. Specification and verification of object-oriented
programs. Habilitation thesis, Technical University of Munich, January
1997.

Beyond Assertions: Advanced Specification and Verification 363

[RL00] Clyde Ruby and Gary T. Leavens. Safely creating correct subclasses
without seeing superclass code. In OOPSLA 2000 Conference on Object-
Oriented Programming, Systems, Languages, and Applications, Min-
neapolis, Minnesota, volume 35(10) of ACM SIGPLAN Notices, pages
208–228, October 2000.

[Ros92] D. S. Rosenblum. Towards a method of programming with assertions. In
Proceedings of the 14th International Conference on Software Engineer-
ing, pages 92–104, May 1992.

[Ros95] David S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Transactions on Software Engineering, 21(1):19–31, January
1995.

[Szy98] C. Szyperski. Component Software. Addison-Wesley, 1998.
[Win90] Jeannette M. Wing. A specifier’s introduction to formal methods. Com-

puter, 23(9):8–24, September 1990.

Boogie: A Modular Reusable Verifier
for Object-Oriented Programs

Mike Barnett1 , Bor-Yuh Evan Chang2 , Robert DeLine1 ,
Bart Jacobs3 , and K. Rustan M. Leino1

1 Microsoft Research, Redmond, Washington, USA
{mbarnett, rdeline, leino}@microsoft.com

2 University of California, Berkeley, California, USA
bec@cs.berkeley.edu

3 Katholieke Universiteit Leuven, Belgium
bartj@cs.kuleuven.be

Abstract. A program verifier is a complex system that uses compiler
technology, program semantics, property inference, verification-condition
generation, automatic decision procedures, and a user interface. This
paper describes the architecture of a state-of-the-art program verifier for
object-oriented programs.

1 Introduction

A program verifier is built from a number of complex pieces of technology: a
source programming language, its usage rules and formal semantics, a logical
encoding suitable for automatic reasoning, abstract domains for program analy-
sis and property inference, decision procedures for discharging proof obligations,
and a user interface that lets a user understand the results of the verification
process. Dealing with these complexities, like other software engineering prob-
lems, requires a modular architecture with well established interface boundaries.

In this paper, we describe the architecture of Boogie, a state-of-the-art
program verifier for verifying Spec# programs in the object-oriented .NET
framework. Internally, Boogie is structured as a pipeline performing a series
of transformations from the source program to a verification condition (VC) to
an error report (see Fig. 1). The novel aspects of the Boogie architecture include
the following:

1. Design-Time Feedback. Boogie (together with the Spec# compiler) is inte-
grated with Microsoft Visual Studio to provide design-time feedback in the
form of red underlinings that highlight not only syntax and typing errors
but also semantic errors like precondition violations.

2. Distinct Proof Obligation Generation and Verification Phases. The Boogie
pipeline is centered around intermediate representations in BoogiePL [DL05],
a language tailored for expressing proof obligations and assumptions (Sec. 4).
BoogiePL serves a critical role in separating the generation of proof oblig-
ations from the semantic encoding of the source program and the proving

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 364–387, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 365

Fig. 1. The Boogie pipeline

of those obligations. This separation has been critical in the simultaneous
development of the object-oriented program verification methodology and
the core verification technology.

3. Abstract Interpretation and Verification Condition Generation. Boogie per-
forms loop-invariant inference using abstract interpretation (Sec. 6) and gen-
erates verification conditions to be passed (Sec. 7) to an automatic theorem
prover. This combination allows Boogie to utilize both the precision of verifi-
cation condition generation (that must necessarily be lost in an abstraction)
and the inductive invariant inference of abstract interpretation (that simply
cannot be obtained with a concrete model).

2 Overview

In this introductory section, we give an overview of Boogie’s architecture. The
rest of the paper provides more details of each architectural component.

Source Language. The Spec# language is a superset of C#, adding specifi-
cation features (i.e., contracts) such as pre- and postconditions and object in-
variants [BLS04]. Spec# prescribes static type checks beyond those prescribed
by C# and introduces dynamic checks for the specified contracts. The compiler
performs the static type checking and emits the dynamic checks as part of the
target code. Boogie makes use of the type properties enforced by the compiler
and attempts statically to prove that the dynamic checks will always succeed.
Boogie thus checks for error conditions defined by the virtual machine, such
as array bounds errors and type cast errors, and error conditions specified by
user supplied contracts, such as precondition violations. To ensure soundness of
the verification, Boogie additionally checks for error conditions defined by the
programming methodology [BDF+ 04, LM04, BN04, LM05, LM06].

As depicted in Fig. 1, Spec# programs are compiled into CIL, the executable
format of the .NET virtual machine. Boogie starts with an abstract syntax tree
(AST) for this CIL, which it either gets directly from the compiler or reconstructs
from reading a compiled .dll or .exe file. The latter is the more conventional
mode of a program verifier and allows batch processing. The former allows Boogie
to run as part of compilation, which enables a clean integration with Microsoft
Visual Studio to provide design time feedback. This feedback shows up as red
underlinings (fondly known as “red squigglies”) in the program text, and the
user can get further information by rolling the cursor over these underlinings,

366 M. Barnett et al.

Fig. 2. Design time feedback of verification errors within Microsoft Visual Studio 2005.
The red squiggly under the call to Substring indicates an error. The hover text shows
the error to be a precondition violation.

which brings up some hover text that explains the problem (as shown in Fig. 2).
To our knowledge, Boogie is the first program verifier to provide such interactive
design-time feedback.

Intermediate Language. The generation of verification conditions from source
code involves a great number of verifier design decisions. By staging this process
by first translating CIL into BoogiePL, the Boogie architecture separates the
concerns of deciding how to encode source language features and their usage
rules from the concerns of how to reason about control flow in the program.
BoogiePL provides assert statements that encode proof obligations stemming
from the source program, to be checked by the program verifier, and assume
statements that encode properties guaranteed by the source language and ver-
ification process, available for use in the proof by the program verifier. The
architectural layering of verification condition generation via an intermediate
program notation was used by ESC/Modula-3 [DLNS98] (cf. [Lei95]), which
made use of guarded commands whose semantics is given by weakest precondi-
tions [Dij76]. This architecture was sharpened by ESC/Java [FLL+ 02], which
defined and staged the translation further [LSS99].

Verification condition generation involves not just the executable program
statements in the source language, but also other declarations of the source
program and properties guaranteed by the source language. In the aforemen-
tioned ESC tools, the logical encoding of these additional properties, called the
background predicate, was produced separately from the intermediate program
notation and fed directly to the theorem prover. BoogiePL innovates further by

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 367

allowing the background predicate to be encoded as part of the intermediate pro-
gram. That is, BoogiePL includes declarations for mathematical functions and
axioms. Consequently, the translation of CIL culminates in a BoogiePL program
that encodes the entire proof task—in fact, properties of Spec# and the source
program are no longer used after this point in Boogie’s pipeline, except when
mapping errors back to line numbers in the source text.

Like other languages, BoogiePL can be printed as and parsed from a textual
representation. This feature has been the most important vehicle in debugging
and experimenting with our semantic encoding of Spec#. For example, it is
often convenient to manually perform small changes to the BoogiePL program
without having to modify the Spec# compiler and/or the bytecode translator.

This strong interface boundary between the bytecode translation and the rest
of Boogie’s pipeline also makes it possible for other program verifiers to reuse
Boogie’s VC generation, simply by encoding their proof obligations as BoogiePL
programs. As such, BoogiePL can also be viewed as a high-level front-end to a
theorem prover.

Inferred Properties. BoogiePL programs are turned into first-order verifica-
tion conditions, a process which requires loop invariants. While these can come
from the source programs, many loop invariants can be “boring” or “obvious” to
the programmer, in which case the task of manually supplying these is onerous
and having them as part of the source text provides more clutter than insight.
Sometimes, the loop invariants are even impossible to express in the source lan-
guage, as is the case when the invariant needs to refer to variables or functions
of the BoogiePL encoding of the source program. Therefore, Boogie includes a
framework for abstract interpretation [CC77], which can infer loop invariants of
the BoogiePL program. These inferred invariants are inserted as assume state-
ments into the loop heads of the BoogiePL program, so that they can be assumed
by the VC to hold at the start of each loop iteration.

To modularly combine abstract domains and to support the use of object
references that dereference the heap in the source program, Boogie innovates by
connecting its abstract domains to a special abstract domain that, essentially,
symbolically names locations in the heap, names that then are used by the other
abstract domains [CL05].

Verification Conditions. After generating loop invariants, Boogie generates
verification conditions from the resulting BoogiePL program. There are many
logically equivalent ways of expressing the verification conditions, and which
way is chosen can have a dramatic impact on the performance of the under-
lying theorem prover. Boogie performs a series of transformations on the pro-
gram, essentially producing one snippet of the verification condition from each
basic block of the BoogiePL procedure implementation being verified [BL05].
The verification condition is represented as a formula in first-order logic and
arithmetic. It is then passed to a first-order automated theorem prover to deter-
mine the validity of the verification condition (and thus the correctness of the
program).

368 M. Barnett et al.

public class Example {
int x ;
string! s;
invariant s.Length >= 12;

public Example(int y) requires y > 0; { . . . }
public static void M (int n) {

Example e= new Example(100/n);
int k = e.s.Length;
for (int i = 0; i < n; i++) { e.x+= i; }
assert k == e.s.Length;

}
}

Fig. 3. An example Spec# class. Its BoogiePL translation is shown in Fig. 4.

The verification conditions are encoded in such a way as to make it possible
to reconstruct from a failed proof an error trace (i.e., an execution path through
the procedure leading to a proof obligation that the theorem prover is unable
to establish [LMS05]). The bytecode translator performs enough bookkeeping
to map the BoogiePL error trace back into a Spec# error trace, much like
a compiler performs enough bookkeeping for a source-level debugger to operate
from compiled code. Typically, a failed proof indicates an error in the program or
some missing condition in a contract, but due to incompleteness in the theorem
prover, there is also the possibility of spurious error reports. If the theorem
prover runs out of some limited resource, such as the allotted time or space, that
event is reported.

Theorem Prover. Boogie can generate verification conditions for the off-the-
shelf theorem prover Simplify [DNS05], as well as for Zap [BLM05], a set of
decision procedures developed at Microsoft Research. At the moment, most of
our Boogie experience has been with Simplify, but we expect to shift our use
toward Zap. The Boogie architecture makes it fairly easy to retarget the final
step of the VC generation to a new theorem prover.

3 Spec#

Figure 3 shows a synthetic example pro-
gram to highlight some of the features
of Spec#; a more detailed introduc-
tion is found in the Spec# overview
paper [BLS04]. The example shows one
class, called Example , which contains
two fields, an object invariant, a con-
structor, and a method. The body of the method allocates a new Example
object. The actual argument to the constructor, 100/n , contains a potential

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 369

division-by-zero error. The loop repeatedly increments the x field of the newly
allocated object by various amounts. The code also saves the length of the string
e.s and later checks, using an assert statement, that it is unchanged by the loop.

Spec# incorporates a non-null type system [FL03]; the type string! means
the field s can never hold the value null . We have found this to be the most
common specification in object-oriented programming.

The Spec# compiler generates standard .NET assemblies. A .NET assembly
contains bytecode in the form of method bodies within type definitions and meta-
data for describing extra-runtime features of the types and their members. The
meta-data format allows custom attributes, which are arbitrary user-defined data
that we use to encode specifications. Due to the limitations of the meta-data for-
mat, we persist specifications as serialized ASTs. We use the same meta-data for-
mat to store out-of-band specifications. These are Spec# specifications for types
and methods that are already defined in third-party assemblies. For instance,
the Spec# distribution [Spe06] provides out-of-band contracts for the two most
central assemblies in the .NET Base Class Library (BCL), mscorlib.dll and
System.dll. Both the Spec# compiler and Boogie have the ability to weave to-
gether an assembly and its out-of-band specification so that it appears as if the
contracts were natively present in the original assembly. One of the key benefits
is that client code, which generally is heavily dependent on the BCL, receives
warnings/errors related to incorrect usage of the library APIs. This feature has
been critical in obtaining a usable development system with contracts.

4 BoogiePL

BoogiePL [DL05] is an effective intermediate language for verification condition
generation of object-oriented programs because it lacks the complexities of a full-
featured object-oriented programming language, while also introducing features
of the target logic. As a result, it distributes the complexity of verification con-
dition generation over two well-defined phases, each of which is significantly less
complex than the whole. Compared with Spec#, BoogiePL retains the following
features: procedures (but not methods), mutable variables, and pre- and postcon-
ditions. On the other hand, it lacks the following complications: expressions with
side effects, a heap with objects, classes and interfaces, call-by-reference parame-
ter passing, and structured control-flow. It introduces the following features for
modeling: constants, function symbols, axioms, non-deterministic control-flow,
and the notion of “going wrong”.

Figure 4 shows the translation of the Spec# example given in Fig. 3. While we
give details on how this translation is obtained in Sec. 5, we observe some salient
features of BoogiePL here. BoogiePL looks somewhat like a high-level assembly
language in that the control-flow is unstructured but the notions of statically-
scoped locals and procedural abstraction are retained; however, intraprocedural
control-flow is given by a non-deterministic goto . Also, observe that the heap
has been made explicit with the global variable Heap and similarly the implicit
receiver object of the method is now an explicit parameter this .

370 M. Barnett et al.

const System.Object : name;
const Example : name;
axiom Example <: System.Object;
function typeof(obj : ref) returns (class : name);

const allocated : name;
const Example.x : name;
const Example.s : name;

var Heap : [ref ,name]any;

function StringLength(s : ref) returns (len : int);

procedure Example..ctor(this : ref , y : int);
requires . . . ∧ y > 0; modifies Heap; ensures . . . ;

procedure Example.M(n : int);
requires . . . ; modifies Heap; ensures . . . ;

implementation Example.M(n : int)
{

var e : ref where e = null ∨ typeof(e) <: Example;
var k : int, i : int, tmp : int, PreLoopHeap : [ref ,name]any;

Start :
assert n �= 0;
tmp := 100/n;
havoc e;
assume e �= null ∧ typeof(e) = Example ∧ Heap[e, allocated] = false;
Heap[e, allocated] := true;
call Example..ctor(e, tmp);

assert e �= null; k := StringLength (cast(Heap[e,Example .s], ref));
i := 0;
PreLoopHeap := Heap;
goto LoopHead;

LoopHead :
goto LoopBody,AfterLoop :

LoopBody :
assume i < n;
assert e �= null;
Heap[e,Example.x] := cast(Heap[e,Example.x], int) + i;
i := i + 1;
goto LoopHead;

AfterLoop :
assume ¬(i < n);
assert e �= null; assert k = StringLength(cast(Heap[e,Example.s], ref));
return;

}

Fig. 4. A simplified version of the BoogiePL resulting from translation of the Example
class in Fig. 3. The Length property of strings is translated specially as a BoogiePL
function. The local variable PreLoopHeap , which stores a copy of the entire heap, is
later used by the invariant inference.

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 371

A BoogiePL program consists of a theory that is used to encode the semantics
of the source language, followed by an imperative part. We show the abstract
syntax for BoogiePL; for punctuation and other concrete details, see [DL05].

program ::= typedecl∗ symboldecl∗ axiom∗ vardeclstmt∗ proc∗ impl∗

We use the meta-level symbols ∗,+, ? to indicate a sequence, a nonempty se-
quence, and an optional syntactic entity, respectively, use | for alternatives, and
use 〈·〉 for grouping.

A theory consists of type declarations, symbol declarations, and axioms.

typedecl ::= type typename ;
symboldecl ::= constdecl | functiondecl
constdecl ::= const var : type ;
type ::= bool | int | ref | name | any | typename | arraytype
arraytype ::= [type , type] type
functiondecl ::= function function (type∗) returns (type) ;
axiom ::= axiom expr ;

BoogiePL has types and the type checker enforces that every expression is prop-
erly typed. However, all type information is erased during the translation into
verification conditions. The reason for having the types is to improve readability
by expressing intent and to catch simple errors. However, any expression may be
cast to type any and thence to any other type; just as types are erased in veri-
fication conditions, so are casts. In addition to built-in types like bool and int ,
BoogiePL supports user-defined types (typename) and arrays (arraytype). The
types used to index into arrays can be any types, not just integers (we might
therefore have called arrays maps). For brevity, we show only 2-dimensional
arrays.

BoogiePL’s expressions include boolean, reference, and integer literals and
arithmetic and first-order logical operators:

expr ::= literal | var | unop expr | expr binop expr | expr [expr , expr]
| funapp | quant | cast (expr , type) | old (expr)

literal ::= false | true | null | integer
binop ::= ⇔ | ⇒ | ∨ | ∧ | <: |
 | < | �= | = | + | − | ∗ | / | %
unop ::= − | ¬
funapp ::= function (expr∗)
quant ::= (∀ vardecl∗ trigger∗ • expr) | (∃ vardecl∗ trigger∗ • expr)
vardecl ::= var : type 〈where expr〉?
trigger ::= { expr+ }

For use in procedure postconditions and implementations, the expression old(E)
refers to the value of E in the procedure’s pre-state. The where clause in a
variable declaration postulates a unary constraint on the variable’s value (like a
type qualifier). Triggers are for use by the underlying theorem prover in deciding
how to instantiate universal quantifiers [DNS05].

372 M. Barnett et al.

The imperative part of a BoogiePL program consists of global variable dec-
larations, procedure headers (procedures), and procedure implementations (im-
plementations).

vardeclstmt ::= var vardecl∗ ;
proc ::= procedure procname (vardecl∗) 〈returns (vardecl∗)〉?
〈free? requires expr ;〉∗ 〈modifies var∗ ;〉∗ 〈free? ensures expr ;〉∗
implbody?

impl ::= implementation procname (vardecl∗) 〈returns (vardecl∗)〉?
implbody

block ::= label : cmd∗ transfercmd
implbody ::= { vardeclstmt block+ }

As a syntactic sugar, a procedure header can have an optional implementation
body, which has the same effect as an implementation declaration with the same
name. While many languages have named out-parameters and an anonymous
return value, BoogiePL simply allows multiple return values; they are all named
as out-parameters in the returns clause.

An implementation body consists of a sequence of local variable declarations,
followed by a sequence of blocks. An implementation starts at the block listed
first, in a state where the procedure’s preconditions hold and where global and
local variables and in-parameters have values that satisfy their respective where
clauses.

A block has a label and a sequence of commands, followed by a control transfer
command.

cmd ::= passive | assign | call
passive ::= assert expr ; | assume expr ;
assign ::= var 〈[expr , expr]〉? := expr ; | havoc var+ ;
call ::= call var∗ := procname (expr∗) ;
transfercmd ::= goto label+ ; | return ;

The assert and assume commands indicate conditions to be checked or used,
respectively, in the verification. If the given expression evaluates to true , then
each of these commands proceeds like a no-op. If the condition evaluates to false ,
the assert command goes wrong, which is a terminal failure. For the assume com-
mand, if the condition evaluates to false , one is freed of all subsequent proof
obligations, thus indicating a terminal success. The assume command, which is
known as a partial command [Nel89] or miracle (cf. [BvW98]), is a crucial ingre-
dient when encoding verification problems as programs (cf. [Lei95]). The havoc
command assigns an arbitrary value to each indicated variable; when present, the
variable’s where clause constrains this value. The goto command jumps non-
deterministically to one of the indicated blocks. The return command ends the
implementation. It goes wrong if the procedure’s non-free postconditions are
not satisfied; otherwise, the procedure implementation terminates successfully.

The call command is defined in terms of the specification of the procedure be-
ing called. It goes wrong if the procedure’s non-free preconditions do not hold.

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 373

Otherwise, the state after the call command satisfies the procedure’s postcon-
ditions and the where clauses of the procedure’s out-parameters. Specifically,
it is not assumed that the procedure implementation that gets executed is one
of the implementations declared in the program.

Free pre- and postconditions, like where clauses, are used for encoding prop-
erties guaranteed by the source language. For the most part, these features are
just for convenience, because they encapsulate the many assumptions that would
otherwise have to be sprinkled in many places. However, in the VC generation
for loops (see Sec. 7), where clauses are essential for maintaining enough infor-
mation about loop targets.

5 Translating CIL to BoogiePL Programs

In this section, we describe some key issues
and design choices for the bytecode translator.
These issues include encoding the heap, allocation,
and fields, axiomatizing the Spec# type system,
translating call-by-reference parameters, translat-
ing methods and method calls, and generating
frame conditions.

The bytecode translator first transforms a method body, consisting of CIL
instructions, into a normalized AST, which is essentially an enriched object
model that augments CIL with contract features: non-null type annotations,
assert and assume statements, loop invariants, method contracts, object in-
variants, and various custom attributes for the programming methodology. In a
normalized AST, as in CIL, a method body contains no structured programming
constructs such as if statements or while statements. Rather, a method body
contains a sequence of labeled blocks, each of which contains a sequence of state-
ments, some of which may be conditional or unconditional branch statements
that specify the label of the target block.

One of the differences between a normalized AST and BoogiePL is that
in the former, a statement may contain expressions that may have side ef-
fects and that may go wrong (such as method calls). For this reason, Boogie
transforms the normalized AST into a flattened AST, where the values of ex-
pressions are assigned to evaluation stack slots and only evaluation stack slots
appear as operands of expressions and statements. A flattened AST is suitable for
walking the sequence of statements and generating BoogiePL commands based
on the kind of statement, though we do need a dataflow analysis to provide
some flow-sensitive contextual information necessary for the translation of some
statements.

In addition to inferring the CIL type of each local variable and evaluation
stack slot, the analysis attempts to track the following information:

– managed pointers (i.e., reference parameters or arguments for reference pa-
rameters or the pointers used when dealing with structs)

– method pointers (which appear when creating a delegate instance)

374 M. Barnett et al.

– type tokens and System.Type objects (which appear when reflecting over
types)

– booleans (for which CIL code uses integers)

Encoding the Heap, Allocation, and Fields. Recall that BoogiePL has no
built-in notion of a heap, object allocation, or fields. The translation models the
heap as a BoogiePL global two-dimensional array, named Heap , that maps an
object reference o and a field name f to the current value of o.f (as shown
in Fig. 4) [Bur72]. Field names encountered during translation are emitted as
unique constants, whose names are qualified by the name of the declaring class.

We use a 2-dimensional heap [PH97] rather than one 1-dimensional “heap”
per field (cf. [DLNS98, Lei95]), because the encoding of our modular verification
methodology quantifies over field names (see frame conditions below).

Object allocation is modeled by adding an extra boolean field called allocated
to each object, which indicates whether the object has been allocated. Allocating
an object consists of choosing an object that has not yet been allocated and
setting its allocated bit, see Fig. 4 (cf. [HW73, DLNS98, Lei95]). In managed code
like Spec#, all objects reachable from the program are allocated. This property
is important for proving that newly allocated objects are distinct from previously
allocated objects, which is crucial for reasoning about object state updates.
Allocatedness information is emitted in the form of procedure preconditions,
frame conditions, and loop invariants, as well as axioms that state that objects
reachable from allocated objects are allocated (cf. [LN02]). This statement is
complicated somewhat by the fact that a path between two objects may pass
through one or more structs.

Static fields are stored in the heap, just like instance fields. In particular, fields
are translated as follows:

o.f translates to Heap[o,C f]
C.g translates to Heap[TypeObject(C),C g]

where fields f and g are declared by class C and o is an expression of type C .
A major advantage of storing static fields in the heap as opposed to, for example,
separate global variables, is that one frame condition can govern both static and
instance fields. It also allows a more uniform treatment of both kinds of fields
by the modular verification methodology.

Axiomatizing the Spec# Type System. In order to model the semantics
of Spec# type tests and typecasts, an axiomatization of the subtype relation on
reference types is required. This axiomatization additionally helps in deriving
object distinctness results, which reduces the number of inequalities that users
need to include in method contracts, object invariants, loop invariants, etc.

It turns out to be a challenge to author a type axiomatization that is queried
efficiently by our theorem prover, so we are considering adding a decision
procedure specifically for this purpose. Unfortunately, this choice would probably
require that BoogiePL be made aware of the Spec# type system.

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 375

Translating Call-By-Reference Parameters. Both C# and Spec# support
call-by-reference argument passing (reference parameters are marked ref). A
call-by-reference parameter of type T takes as an argument not a value of type
T but a pointer to a variable of type T . Accesses to the parameter are thus
dereferences of the pointer.

BoogiePL does not support call-by-reference parameters directly. Since it does
support both in- and out-parameters, we model reference parameters by perform-
ing copy-in/copy-out for the purposes of verification. In the Spec# program,
when a variable x is passed as an argument to a reference parameter p , then
in the BoogiePL program the value of x is passed as an argument to an in-
parameter. At the start of the body of the callee, the in-parameter is copied
into a local variable. Accesses to p in the Spec# program are translated into
accesses of the local variable in the BoogiePL program. When the procedure
completes, the local variable is copied into an out-parameter and at the call site
the out-parameter is copied back into x .

Translating from IL introduces a snag: accesses to reference parameters appear
as pointer dereferences, and the pointers being dereferenced are read from the
parameter in some preceding instruction. As a result, it is impossible to tell by
looking at the instruction itself which reference parameter is being referred to.
This problem is solved by the bytecode translator’s dataflow analysis mentioned
above.

Using copy-in/copy-out is sound only if there is no aliasing amongst the ac-
tual arguments for reference parameters. Therefore, we disallow such aliasing in
Spec#. (This is not yet implemented in the compiler, but we intend to impose
enough restrictions on actual arguments that a simple syntactic check suffices to
forbid such aliasing, cf. [Rey78].)

Translating Methods and Method Calls. For each declaration of a method
or method override, the bytecode translation generates a BoogiePL procedure.
For each method implementation, it also generates a BoogiePL implementation.
Having a separate procedure per override permits specification refinement in
subclasses.

For translating method calls, we distinguish two cases. When we can determine
the exact target of a call (that is, the call is statically bound, such as for a non-
virtual method or a base call), it is translated into a call to the associated
procedure. When the call is dynamically bound, we translate the call into a call
of an additional BoogiePL procedure that we generate for virtual methods. This
gives us the flexibility to use a slightly different specification for such calls, as
used by our methodology [BDF+ 04].

Method Framing. In BoogiePL, the effect of a procedure is framed by its
modifies clause. Specifically, a procedure may assign to a global variable only if
the variable appears in the procedure’s modifies clause. As mentioned above,
the Spec# heap is modeled in BoogiePL as a global variable (observe the
modifies clauses in Fig. 4 for Heap). Since almost all methods may potentially
modify the heap (by creating a new object or assigning to a field), the heap

376 M. Barnett et al.

appears in almost every procedure’s modifies clause. However, this is clearly
an overapproximation. Therefore, additional framing information is encoded in
the BoogiePL program in the form of an extra postcondition on the procedure.
This postcondition is known as the frame condition. The precise form of the
frame condition depends on the modular verification methodology used; for ex-
ample, for the original Boogie methodology [BDF+ 04], each procedure gets a
frame condition of the following form:

(∀o : ref , f : name •
(o, f) �∈W ∧ old(Heap[o, allocated] ∧ ¬Heap[o, committed])
⇒ Heap[o, f] = old(Heap[o, f]))

where W are the locations listed in the Spec# method’s modifies clause,
and Heap[o, committed] is a special field introduced by the modular verification
methodology related to an ownership model [BDF+ 04]. Essentially, the frame
condition says that unless a given location satisfies certain criteria, it is guaran-
teed not to incur a net modification by the method call.

The frame conditions generated by Boogie’s bytecode translation are more
complicated than the one we have shown here, but we lack the space to describe
them in further detail.

Loop Framing. In order to generate verification conditions [BL05] for a loop,
such as the following:

LoopHead : assert I; S; goto LoopHead ;

it must be transformed into acyclic control flow that abstracts the behaviors
of the loop (for soundness). Specifically, we transform the loop above into the
following sequence of statements:

x0
1 := x1; . . . x0

n := xn; assert I;
havoc x1, . . . , xn; assume I;
S; assert I; assume false;

where S is the loop body (which may include commands that jump out of the
loop) , x1, . . . , xn are the variables (global or local) updated by S , and x0

1, . . . , x
0
n

are fresh local variables. The predicate I serves as a loop invariant.
The transformation causes the loop body (as well as code paths that exit the

loop) to be verified in all possible states that satisfy the loop invariant. The
assume false; command indicates that a code path that does not exit the loop
can be considered to reach terminal success at the end of the loop body, provided
that the loop invariant has been re-established.

When the loop body updates the heap (which is the typical situation), the
heap is havoced (i.e., assigned an arbitrary value) on entry to a loop. This
abstraction results in a sound but gross overapproximation of the set of heap
locations that may be modified by loop body executions. Some of the lost pre-
cision must necessarily be recovered by inference (see Sec. 6), but we can also

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 377

emit loop frame conditions that increase the precision of the verification and are
guaranteed by the verification methodology. For example, one loop frame condi-
tion that is always added states that all objects that were allocated on entry to
the loop are still allocated at the start of the current iteration:

(∀o : ref • Heap0[o, allocated] ⇒ Heap[o, allocated])

6 Invariant Inference

Compared with other static analysis tech-
niques, verification-condition generation of-
fers a high degree of precision. However, a
well-known issue with producing first-order
verification conditions is the need for loop
invariants. Loop invariants may be specified by the user in BoogiePL or Spec#,
but while some loop invariants are key ideas in the verification of a program and
thus useful to incorporate in the source, others—in particular, those that state
which heap locations are left untouched by the loop body—are often boring or
unintuitive to the programmer. To mitigate the need for user-supplied loop in-
variants, we use abstract interpretation [CC77], which systematically computes
overapproximations of sets of reachable states, to infer some loop invariants be-
fore generating the verification condition.

Currently, the interaction between the abstract interpretation and the theo-
rem proving is exceedingly simple: the abstract interpreter instruments the input
BoogiePL program with the invariants it can infer using the selected abstract
domains and passes the instrumented BoogiePL program to the verification-
condition generator to produce a formula for the theorem prover. Particularly,
there is no feedback from the theorem prover to the abstract interpreter, though
we have some evidence that such an interaction may be beneficial [LL05].

In this section, we first discuss the design goals for our abstract interpretation
framework used in Boogie and then show how these goals are achieved. Finally,
we sketch the kinds of invariants that can be obtained and are particularly
important for Boogie to infer.

A Generic Abstract Interpretation Framework. Because we would like
to use the abstract interpretation in different settings and with varying config-
urations (e.g., to trade-off precision for efficiency), we heavily modularize the
abstract interpretation framework. In particular, when we design the abstract
domains, which capture the kind of invariants we can infer, we want to ignore
the following concerns:

1. Exploration Strategies. We want to separate out the efficiency concerns in
how the (abstract) state space is explored. As is standard, we use a generic
fixed point engine.

2. The Abstract Transition Relation. The abstract transition relation defines
how program statements affect abstract states; that is, given an abstract

378 M. Barnett et al.

state at the program point before a given statement, what are the abstract
successor states that conservatively approximate the effect of the statement.
We want to be agnostic to the input language when designing the abstract
domains, and we want to be able to define different abstract transition re-
lations over the same abstract domains easily (e.g., for both intra- and in-
terprocedural analyses). To achieve this goal, we fix some generic operators
on abstract domains that can be easily combined to define various abstract
transition relations.

3. Combining Abstract Domains. It is well-known that a combined analysis can
be more precise than the separate sub-analyses working independently. We
would like to design and implement logically separate abstract domains inde-
pendently but obtain the precision of the combined analysis easily. In other
words, we want an easy way to construct reduced product analyses [CC79].

Expressions. For goals 2 and 3 above, we fix a common language of expressions
for communicating with or among abstract domains. In implementation, this
language is defined using a Spec# interface hierarchy, which is implemented by
the BoogiePL AST classes. This setup makes it easy to use the abstract domains
with other tools, as one simply needs to implement the abstract interpretation
framework interfaces with the AST classes for the language of interest (instead
of writing translation routines).

Expressions are simply variables, λ-expressions (for variable binding), and
function symbols applied to expressions:

expressions Expr e, p ::= x | λx. e | f(e∗)
variables Var x, y, ...
function symbols FunSym f

A constraint is any boolean-valued expression, and the set of function symbols
include the usual operators from first-order logic: ¬ , ∧ , ∨ , ⇒ , ⇔ , ∀ , and ∃ .

Abstract Domains. An abstract domain must implement the signature shown
in Fig. 5. Each abstract domain defines a type Elt , which represent the elements

type Elt

val γ : Elt → Expr

val + : Elt
val ⊥ : Elt
val 0 : Elt× Elt → bool
val * : Elt× Elt → Elt
val � : Elt× Elt → Elt

val Constrain : Elt× Expr → Elt
val Eliminate : Elt× Var → Elt
val Rename : Elt× Var× Var → Elt

Fig. 5. Abstract domains

of the domain. The concretiza-
tion function γ yields the pred-
icate that corresponds to the
given element. (In the literature,
the concrete domain is usually
phrased in terms of sets of ma-
chine states, rather than state
predicates.) When analyzing a
program, we do not need to
evaluate the corresponding ab-
straction function α , so we have
omitted it from the signature.
As usual, we require a partial
ordering on domain elements, a

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 379

greatest element, and a least element, which are given by 0 , + , and ⊥ , re-
spectively; + is required to correspond to true and ⊥ to false . We also need
join * and widen � upper bound operators for the fixed point engine to handle
control-flow join points: * is usually the least upper bound operator and �
must have the stabilizing property.

The final three operations provide a generic interface for implementing ab-
stract transition relations. The Constrain operation adds (i.e., conjoins) a con-
straint to an element, Eliminate existentially quantifies (i.e., projects out) a
variable, and Rename renames a free variable. For example, we might define the
abstract transition relation on an assignment statement as follows:⏐⏐�A

x := e⏐⏐�Rename(Eliminate(Constrain(A, x′ = e), x), x′, x)
(for a fresh variable x′)

which says if A is the state before the assignment, the successor state is obtained
by constraining A with x′ = e for a fresh variable x′ , then eliminating the old
variable x , and finally renaming x′ to x .

Base Domains. Typically, the elements of an abstract domain can be viewed
as constraints of a particular form on a set of variables (that is, on independent
coordinates). For example, the polyhedra abstract domain [CH78] can represent
linear-arithmetic constraints like x+y
 z . We have implementations for a num-
ber of such standard abstract domains, which we call base domains. For inferring
linear-arithmetic constraints, we have an implementation of the polyhedra do-
main [CH78], though we do not currently have implementations of any cheaper
numerical domains (e.g., intervals or octagons [Min01]). We also have various
basic abstract domains for constant propagation and dynamic type analysis. Fi-
nally, we have an important base domain that tracks what parts of the heap are
preserved across updates (the heap succession domain) [CL05].

Combining Abstract Domains. Often, the constraints of interest involve
function and relation symbols that are not all supported by any single ab-
stract domain. For example, a constraint of possible interest in the analysis
of a Spec# program is sel(H, o, x)+k
 length(a) where H denotes the current
heap, sel(H, o, x) represents the value of the x field of an object o in the heap
H (written o.x in Spec# and written H [o, x] is our BoogiePL encoding), and
length(a) gives the length of an array a . A constraint like this cannot be rep-
resented directly in the polyhedra domain because the polyhedra domain does
not support the functions sel and length . Rather than building support for these
functions into polyhedra, our framework includes a coordinating abstract domain
that hides such alien expressions from base domains like polyhedra. This coordi-
nating abstract domain, called the congruence-closure domain, is parameterized
by the various base domains and tracks equalities and performs congruence-
closure in order transparently to extend the base domains to work with alien

380 M. Barnett et al.

expressions (i.e., expressions it does not understand and should be treated as
uninterpreted) [CL05]. Such a modularization is particularly important. For ex-
ample, including the heap succession domain as a base domain enables other
base domains to obtain more precise properties of fields that depend on knowing
that parts of the heap are preserved (without requiring the other base domains
to know anything about heap updates).

Inferred Invariants. To get an idea of the kinds of invariants inferred by Boo-
gie, consider again the example shown in Fig. 4. Using a standard polyhedra base
domain (or in fact an interval domain would suffice) with the congruence-closure
domain, we get the loop invariant 0
 i that gives the range of i . Using the heap
succession domain with the congruence-closure domain, we infer the following
important frame condition loop invariant (here shown in a simplified form):

(∀ o : ref , f : name •
(o �= this ∨ f �= Example.x) ⇒ Heap[o, f] = PreLoopHeap[o, f])

This loop invariant is not only “boring” to the user but cannot even be specified
at the source-level, since it quantifies over all objects and field names; however,
it is necessary to be able to verify the assertion at the end of the method body
in Fig. 3. The inferred loop invariants are inserted into the BoogiePL program
in Fig. 4 as assume statements at the beginning of block LoopHead .

7 Verification Condition Generation

A BoogiePL program encodes sets of pro-
gram traces and proof obligations in those
traces. Verification condition generation
turns those proof obligations into first-order
formulas. As already described, BoogiePL is
intentionally not a structured programming language. That is, a BoogiePL pro-
gram is a somewhat high-level way of specifying a control-flow graph whose nodes
are basic blocks. Since our verification conditions are computed using the stan-
dard weakest-precondition calculus [Dij76, Nel89], we had to develop a method
for computing first-order weakest preconditions of an unstructured program.

Our method, which we have described in detail elsewhere [BL05], produces
one VC for every BoogiePL procedure implementation. It starts by transforming
the implementation into some loop-free BoogiePL code that over-approximates
the loops in the original. It then performs a single assignment transformation
(cf. [CFR+ 91, FS01]), resulting in only passive code, that is, code without state
changes. Finally, to encode the unstructured nature of the control flow, we in-
troduce for every block A a boolean variable Aok , defined to be true if every
execution starting from A is correct (i.e., does not go wrong). For a block:

A: PassiveCommands ; goto B,C;

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 381

the block equation that defines Aok is:

Aok ⇐ wp(PassiveCommands , Bok ∧ Cok)

where wp computes the weakest precondition of PassiveCommands with respect
to the postcondition Bok ∧ Cok . The VC is then:

Axioms ∧ BlockEqs ⇒ Startok

where Axioms is the conjunction of the axioms in the BoogiePL program,
BlockEqs is the conjunction of block equations (which thus encode the seman-
tics of the passive BoogiePL code), and Start is the implementation’s start
block.

While translating the BoogiePL program into a verification condition, the
back-end phase builds up a table mapping labeled subformulas to BoogiePL
program elements. The back-end phase uses this table to translate the label
output from the theorem prover into an error message in terms of the BoogiePL
program [LMS05]. Similarly, the front-end bytecode translation creates a table
mapping BoogiePL program elements to Spec# program elements. This table
allows it to take an error message on a BoogiePL program and generate an
error message on the original Spec# program in terms that the programmer
can understand.

Currently, Boogie produces verification conditions for the Simplify theorem
prover [DNS05], which has a successful history of being used in program veri-
fiers, starting with ESC/Modula-3 [DLNS98] for which it was first developed. A
crucial ingredient in this success is the generation of VCs that allow the theo-
rem prover to find concise proofs, essentially. Simplify uses what it calls the goal
property heuristic [DNS05], which thrives on the kind of formulas generated by
ESC/Modula-3 and, especially, by ESC/Java [FS01, Lei05]. However, Boogie’s
VCs represent the program’s control flow in a different (and more compact) way
than was used in ESC/Java, which sometimes causes Simplify to be slower than
we would like. In addition, we have found that the formulas we use to axiomatize
the Spec# class and interface subtypes are unexpectedly causing the prover to
spend too much time in unfruitful ways. Finally, our heavy use of quantifiers
in expressing certain changes in the heap sometimes causes Simplify to run out
of steam (in particular, it reaches its “matching depth” [DNS05]). We are look-
ing forward to addressing these issues in the further use and development of
Zap [BLM05], but at present, Zap is not able to match the utility of Simplify.

8 Related Work

The body of previous work in program verification is enormous. In this section,
we mention some of the tools that are most closely related to Boogie.

Three static program verifiers for the object-oriented language Java are LOOP,
Jive, and KeY. LOOP [BJ01, JP03] takes Java plus contracts written in the
Java Modeling Language (JML) [LBR99, LBR03]. It uses the interactive theo-
rem prover PVS [ORR+96], for which it generates proof obligations that look

382 M. Barnett et al.

like Hoare triples [Hoa69, JP01]. It also provides some automation by a weakest-
precondition tactic [Jac04]. Jive [MMPH97] also uses a Hoare-like logic [PH97]
and its custom-built interactive theorem prover operates at the level of Hoare
triples (as opposed to first-order VCs generated from the programs). The KeY
tool [ABB+ 05] offers several specification notations, including JML and dy-
namic logic, and targets several proof engines. The main differences between
these three tools and Boogie are that they address a more limited subset of the
source language and that they are not automatic.

Program verification technology has also been used in tools that find some
program errors without promising to find all errors. These include the Ex-
tended Static Checkers for Modula-3 and Java [DLNS98, FLL+02, Lei00, KC04],
JACK [BRL03], Krakatoa [MPMU04], and Cadeuces [FM04]. The automation
in these tools rivals that of Boogie, and they all support the Simplify [DNS05]
theorem prover. In addition, JACK supports PVS and the interactive prover of
the Atelier B toolkit. Like Boogie, Krakatoa and Cadeuces generate verification
conditions via an intermediate language, called Why [Fil03]. Though developed
independently, Why and BoogiePL are more similar than they are different. The
Why tool currently supports six different theorem provers, both interactive and
automatic, but does not support property inference like Boogie’s.

A number of programming languages have built-in specifications or were de-
signed with verification in mind. Among these are Gypsy [AGB+ 77], Euclid
[LHL+ 81], APP [Ros95], and others mentioned in the Spec# overview pa-
per [BLS04]. The languages SPARK Ada [Bar03], B [Abr96], ACL2 [KMM00],
Perfect Developer [Esc06], and C0 [LPP05] include verifiers with interactive the-
orem provers. The Eiffel language [Mey92] is well known for its pioneering com-
bination of object-orientation and dynamically checked contracts, but it does
not yet offer static verification.

9 Conclusion

In summary, Boogie is an automatic program verifier for modern object-oriented
programs. Its architecture helps tame the complexity of the program verification
task. Providing design-time feedback, Boogie moves the program verifier closer
to the developer, while still hiding the theorem prover and other verification
machinery from the developer. Designed around an intermediate programming
notation, BoogiePL, it separates the semantic encoding of the source program
from the analysis of this encoding. Since Boogie can also read BoogiePL programs
directly, it offers the possibility for others to write program verifiers by encoding
their proof obligations in BoogiePL.

We have applied Boogie to a growing number of small (300–1500 lines) pro-
grams, and we are applying Boogie to parts of its own implementation (which
is written in Spec#). We also are supporting an experiment in using Boogie on
production code. This experience constantly demands support for more program-
ming idioms, more targeted default specifications, better explanations of error

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 383

messages (especially those having to do with violations of the ownership-based
alias-confinement regime), and higher performance.

Boogie can be run as part of compilation, where the compiler provides its
in-memory data structures to Boogie for verification. The verification results
of Boogie could be used by the compiler’s code optimizer to produce better
performing code (cf. [Van94, FKR+00]). However, this is not part of the current
Boogie architecture. The prospects of including this feedback in the architecture
seem promising, but also contains some research questions such as how and to
what degree to rely on specifications of code that may not have been verified.

The Spec# compiler produces both metadata and compiled code from Spec#
contracts like preconditions. Lately, we have considered the possibility of using
only stylized patterns of compiled code. Under such a design, Boogie would
reconstruct the contracts from the stylized patterns of CIL instructions, and
special method stubs would have to be created to support contracts on abstract
methods. The advantage of such a design would be to make it possible to write
contracts in .NET languages without contract features, by manually coding the
stylized precondition checks. Boogie could then be applied to other .NET lan-
guages, too.

In developing Boogie’s abstract interpretation framework, we found on nu-
merous occasions the need to determine whether or not a given predicate holds.
This functionality is readily available in the theorem prover, so we have wished
that the abstract interpreter and the theorem prover would be more closely
related. Indeed, there is already overlap between these two components. For ex-
ample, both deal with linear arithmetic, both deal with uninterpreted function
symbols, and both deal with the heap. Unlike the abstract interpreter, the the-
orem prover supports quantifiers and therefore provides a simple way to extend
its reasoning to special domains; and unlike the theorem prover, the abstract
interpreter computes fixpoints, rather than just answering boolean queries. We
see the combination of these two components as a possible improvement in the
Boogie architecture and as an exciting and important research area.

Acknowledgments. This work would not have been possible without the efforts of
the rest of the Spec# team: Manuel Fähndrich, Wolfram Schulte, and Herman
Venter. We are especially grateful for the persistence and patience that Herman
Venter has shown as he pioneers the use of Boogie in production code. We
thank Peter Müller and Arnd Poetzsch-Heffter for performing case studies and
diagnosing bugs in the system, and Francesco Logozzo for writing part of the
abstract interpretation code. We are indebted to the Spec# user community
and also to the anonymous reviewers.

References

[ABB+ 05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Mar-
tin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas
Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool. Software
and System Modeling, 4(1):32–54, February 2005.

384 M. Barnett et al.

[Abr96] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, August 1996.

[AGB+ 77] Allen L. Ambler, Donald I. Good, James C. Browne, Wilhelm F. Burger,
Richard M. Cohen, Charles G. Hoch, and Robert E. Wells. GYPSY:
A language for specification and implementation of verifiable programs.
SIGPLAN Notices, 12(3):1–10, March 1977.

[Bar03] John Barnes. High Integrity Software: The SPARK Approach to Safety
and Security. Addison Wesley, 2003.

[BDF+ 04] Michael Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Verification of object-oriented programs with in-
variants. Journal of Object Technology, 3(6):27–56, 2004.

[BJ01] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and
JML. In Tiziana Margaria and Wang Yi, editors, Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 2031 of
Lecture Notes in Computer Science, pages 299–312. Springer, 2001.

[BL05] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstruc-
tured programs. In Workshop on Program Analysis for Software Tools
and Engineering (PASTE), pages 82–87, 2005.

[BLM05] Thomas Ball, Shuvendu Lahiri, and Madanlal Musuvathi. Zap: Auto-
mated theorem proving for software analysis. Technical Report MSR-
TR-2005-137, Microsoft Research, October 2005.

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Construction and Analysis of Safe,
Secure, and Interoperable Smart devices (CASSIS), volume 3362 of Lecture
Notes in Computer Science, pages 49–60. Springer, 2004.

[BN04] Mike Barnett and David A. Naumann. Friends need a bit more: Maintain-
ing invariants over shared state. In Dexter Kozen and Carron Shankland,
editors, Mathematics of Program Construction (MPC), volume 3125 of
Lecture Notes in Computer Science, pages 54–84. Springer, 2004.

[BRL03] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: a
developer-oriented approach. In Keijiro Araki, Stefania Gnesi, and Dino
Mandrioli, editors, FME 2003: Formal Methods, International Symposium
of Formal Methods Europe, volume 2805 of Lecture Notes in Computer
Science, pages 422–439. Springer, September 2003.

[Bur72] Rod M. Burstall. Some techniques for proving correctness of programs
which alter data structures. Machine Intelligence, 7:23–50, 1972.

[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Science. Springer-
Verlag, 1998.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Fourth ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 238–252, January 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In Sixth ACM Symposium on Principles of Programming
Languages (POPL), pages 269–282, January 1979.

[CFR+ 91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 385

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Fifth ACM Symposium on Prin-
ciples of Programming Languages (POPL), pages 84–96, January 1978.

[CL05] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation
with alien expressions and heap structures. In Radhia Cousot, editor,
Verification, Model Checking, and Abstract Interpretation (VMCAI), vol-
ume 3385 of Lecture Notes in Computer Science, pages 147–163. Springer,
2005.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Engle-
wood Cliffs, NJ, 1976.

[DL05] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural
language for checking object-oriented programs. Technical Report MSR-
TR-2005-70, Microsoft Research, March 2005.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. Research Report 159, Compaq Systems Re-
search Center, December 1998.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. Journal of the ACM, 52(3):365–473, May
2005.

[Esc06] Escher Technologies. Perfect Developer. http://eschertech.com/, 2006.
[Fil03] Jean-Christophe Filliâtre. Verification of non-functional programs using

interpretations in type theory. The Journal of Functional Programming,
13(4):709–745, July 2003.

[FKR+ 00] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and
David Tarditi. Marmot: An Optimizing Compiler For Java. Software—
Practice and Experience, 30(3):199–232, 2000.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking
non-null types in an object-oriented language. In Ron Crocker and Guy
L. Steele Jr., editors, Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), pages 302–312. ACM, 2003.

[FLL+ 02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java. In
Programming Language Design and Implementation (PLDI), pages 234–
245, 2002.

[FM04] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification
of C programs. In Jim Davies, Wolfram Schulte, and Michael Barnett,
editors, Formal Engineering Methods (ICFEM), volume 3308 of Lecture
Notes in Computer Science, pages 15–29. Springer, 2004.

[FS01] Cormac Flanagan and James B. Saxe. Avoiding exponential explo-
sion: Generating compact verification conditions. In POPL 2001: The
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 193–205. ACM, January 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580,583, October 1969.

[HW73] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming
language PASCAL. Acta Informatica, 2(4):335–355, 1973.

[Jac04] Bart Jacobs. Weakest pre-condition reasoning for Java programs with
JML annotations. Journal of Logic and Algebraic Programming, 58(1–
2):61–88, January–March 2004.

386 M. Barnett et al.

[JP01] Bart Jacobs and Erik Poll. A logic for the Java Modeling Language JML.
In H. Hussmann, editor, Fundamental Approaches to Software Engineer-
ing (FASE), volume 2029 of Lecture Notes in Computer Science, pages
284–299. Springer, 2001.

[JP03] Bart Jacobs and Erik Poll. Java program verification at Nijmegen: Devel-
opments and perspective. In Software Security—Theories and Systems,
Second Mext-NSF-JSPS International Symposium, ISSS 2003, pages 134–
153, November 2003.

[KC04] Joseph R. Kiniry and David R. Cok. ESC/Java2: Uniting ESC/Java and
JML: Progress and issues in building and using ESC/Java2, including a
case study involving the use of the tool to verify portions of an Internet
voting tally system. In Construction and Analysis of Safe, Secure, and
Interoperable Smart devices (CASSIS), volume 3362 of Lecture Notes in
Computer Science, pages 108–128. Springer, 2004.

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publishers, June 2000.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for
detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,
editors, Behavioral Specifications of Businesses and Systems, pages 175–
188. Kluwer Academic Publishers, Boston, 1999.

[LBR03] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. Technical
Report 98-06u, Iowa State University, Department of Computer Science,
April 2003.

[Lei95] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis,
CalTech, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[Lei00] K. Rustan M. Leino. Extended static checking: A ten-year perspective. In
Reinhard Wilhelm, editor, Informatics—10 Years Back, 10 Years Ahead,
volume 2000 of Lecture Notes in Computer Science. Springer, 2000.

[Lei05] K. Rustan M. Leino. Efficient weakest preconditions. Information
Processing Letters, 93(6):281–288, March 2005.

[LHL+ 81] Butler W. Lampson, James J. Horning, Ralph L. London, James G.
Mitchell, and Gerald J. Popek. Report on the programming language
Euclid. Technical Report CSL-81-12, Xerox PARC, October 1981. An
earlier version of this report appeared as volume 12, number 2 in SIG-
PLAN Notices. ACM, February 1977.

[LL05] K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand.
In Kwangkeun Yi, editor, Asian Symposium on Programming Languages
and Systems (APLAS), volume 3780 of Lecture Notes in Computer Sci-
ence, pages 119–134. Springer, 2005.

[LM04] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic con-
texts. In Martin Odersky, editor, European Conference on Object-Oriented
Programming (ECOOP), volume 3086 of Lecture Notes in Computer Sci-
ence, pages 491–516. Springer-Verlag, 2004.

[LM05] K. Rustan M. Leino and Peter Müller. Modular verification of static
class invariants. In John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki,
editors, Symposium on Formal Methods Europe (FM), volume 3582 of
Lecture Notes in Computer Science, pages 26–42. Springer, 2005.

Boogie: A Modular Reusable Verifier for Object-Oriented Programs 387

[LM06] K. Rustan M. Leino and Peter Müller. A verification methodology for
model fields. In Peter Sestoft, editor, European Symposium on Program-
ming (ESOP), volume 3924 of Lecture Notes in Computer Science, pages
115–130. Springer, 2006.

[LMS05] K. Rustan M. Leino, Todd Millstein, and James B. Saxe. Generating error
traces from verification-condition counterexamples. Science of Computer
Programming, 55(1–3):209–226, March 2005.

[LN02] K. Rustan M. Leino and Greg Nelson. Data abstraction and informa-
tion hiding. ACM Transactions on Programming Languages and Systems,
24(5):491–553, September 2002.

[LPP05] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the for-
mal verification of a C0 compiler: Code generation and implementation
correctness. In Bernhard K. Aichernig and Bernhard Beckert, editors,
Third IEEE International Conference on Software Engineering and For-
mal Methods (SEFM 2005), pages 2–12. IEEE Computer Society, Sep-
tember 2005.

[LSS99] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java
programs via guarded commands. In Formal Techniques for Java Pro-
grams, Technical Report 251. Fernuniversität Hagen, May 1999. Also
available as Technical Note 1999-002, Compaq Systems Research Center.

[Mey92] Bertrand Meyer. Eiffel: The Language. Object-Oriented Series. Prentice
Hall, 1992.

[Min01] Antoine Miné. The octagon abstract domain. In Working Conference on
Reverse Engineering (WCRE), pages 310–319, 2001.

[MMPH97] Peter Müller, Jörg Meyer, and Arnd Poetzsch-Heffter. Programming and
interface specification language of Jive—specification and design ratio-
nale. Technical Report 223, Fernuniversität Hagen, 1997.

[MPMU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The
Krakatoa tool for certification of Java/JavaCard programs annotated
in JML. Journal of Logic and Algebraic Programming, 58(1–2):89–106,
January–March 2004.

[Nel89] Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions
on Programming Languages and Systems, 11(4):517–561, October 1989.

[ORR+96] Sam Owre, S. Rajan, John M. Rushby, Natarajan Shankar, and Man-
dayam K. Srivas. PVS: Combining specification, proof checking, and
model checking. In Rajeev Alur and Thomas A. Henzinger, editors,
Computer-Aided Verification (CAV), volume 1102 of Lecture Notes in
Computer Science, pages 411–414. Springer, 1996.

[PH97] Arnd Poetzsch-Heffter. Specification and verification of object-oriented
programs. Habilitationsschrift, Technische Universität München, 1997.

[Rey78] John C. Reynolds. Syntactic control of interference. In Fifth ACM Sym-
posium on Principles of Programming Languages (POPL), pages 39–46,
January 1978.

[Ros95] David S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Transactions on Software Engineering, 21(1):19–31, January
1995.

[Spe06] Spec# homepage. http://research.microsoft.com/specsharp, 2006.
[Van94] Mark T. Vandevoorde. Exploiting Specifications to Improve Program Per-

formance. PhD thesis, Massachusetts Institute of Technology, February
1994. Available as Technical Report MIT/LCS/TR-598.

On a Probabilistic Chemical Abstract Machine
and the Expressiveness of Linda Languages

Alessandra Di Pierro1, Chris Hankin2, and Herbert Wiklicky2

1 Dipartimento di Informatica, University of Pisa, Italy
2 Department of Computing, Imperial College London, UK

Abstract. The Chemical Abstract Machine (CHAM) of Berry and
Boudol provides a commonly accepted, uniform framework for describ-
ing the operational semantics of various process calculi and languages,
such as for example CCS, the π calculus and coordination languages
like Linda. In its original form the CHAM is purely non-deterministic
and thus only describes what reactions are possible but not how long
it will take (in the average) before a certain reaction takes place or its
probability. Such quantitative information is however often vital for “real
world” applications such as systems biology or performance analysis. We
propose a probabilistic version of the CHAM. We then define a linear
operator semantics for the probabilistic CHAM which exploits a tensor
product representation for distributions over possible solutions. Based
on this we propose a novel approach towards comparing the expressive
power of different calculi via their encoding in the probabilistic CHAM.
We illustrate our approach by comparing the expressiveness of various
Linda Languages.

1 Introduction

The chemical reaction metaphor was introduced in [1]. Gamma is a declarative
programming language that supports massive parallelism. A Gamma program
consists of a shared data space – a multiset – and a collection of conditional rewrite
rules. The chemical metaphor is of molecules reacting in a solution under physical
laws; the condition in a Gamma rule is normally referred to as the reaction con-
dition, whilst the non-conditional part of the rule is referred to as the action. A
major principle in Gamma is that of local action: rules consume a small number of
elements from the multiset and produce a small number of elements into the mul-
tiset; the conditional application of rules is determined by predicates over the con-
sumed elements – there is no global state. Rules potentially compete for elements
from the multiset. The “program” terminates when no further rules are enabled.
This process is described in [2] in the following way: computation is “the global
result of the successive applications of local, independent, atomic reactions”.

One motivation for the model was that the standard data types used in declar-
ative languages, for example the ubiquitous list, were over-constraining for par-
allel systems. For example, a Gamma rule for computing primes is:

x, y → x⇐ multiple(x, y)

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 388–407, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On a Probabilistic CHAM and the Expressiveness of Linda Languages 389

where multiple is a predicate which is true whenever y is a multiple of x (the
reader should compare this with the usual sieve solution). When this rule is
combined with the solution {|2, 3, 4, 5, 6, 7, 8|}, the program will terminate with
{|2, 3, 5, 7|}. There are a number of different reduction sequences that lead to this
result; for example, one sequence might include the parallel execution of:

2, 4 → 2 and 3, 6 → 3

There have been a number of later developments of Gamma; for example to
introduce more structure to the multiset but without constraining the execution
[3] and to add higher-order features [4]. The shared data space concept has proved
to be a powerful principle in coordination programming [5]. More importantly
from the perspective of this paper, Gamma provided inspiration for Berry and
Boudol’s Chemical Abstract Machine [6].

The CHAM was introduced to provide an abstract machine-based operational
semantics for process calculi. It has been used for a variety of calculi includ-
ing CCS, π-calculus and Linda-based coordination languages. The solution in a
CHAM is again a multiset which may be structured using the notion of mem-
branes – to encapsulate a sub-multiset – and airlocks – to expose part of a
sub-multiset for interaction with the rest of the solution. A CHAM specification
is then a collection of rules. Rules are either specific or general. Specific rules are
similar to our primes example from above; however, the CHAM rules generally
rely on sophisticated pattern matching rather than reaction conditions – this
is sufficient to match input channels and output channels in the typical syn-
chronous communication of CCS. The general rules provide for the “compatible
closure” of the specific rules – allowing computation inside membranes and also
in the presence of other elements in the solution.

The main contributions of this paper are twofold:

– to adapt the CHAM model to allow probabilistic computation; we believe
this to be important not only to provide a formal semantics for the burgeon-
ing number of probabilistic process calculi but also because probabilities
will be essential for the more advanced modelling of biological and chemical
systems.

– to use the structure of particular CHAMs to compare the expressiveness of
different calculi.

The rest of this paper is structured as follows: in Section 2 we introduce
the probabilistic CHAM; we then present a linear operator semantics for the
pCHAM in Section 3; Section 4 presents a number of properties of the pCHAM;
we describe the process of encoding various calculi in the pCHAM in Section 5
— this is relatively straightforward and follows the classical CHAM encodings;
Section 6 concerns expressiveness; and we conclude in Section 7.

2 A Probabilistic CHAM

The idea of the probabilistic CHAM (pCHAM) is to “quantify” the likelihood
or probability of executing an applicable rule. This allows us to resolve any

390 A. Di Pierro, C. Hankin, and H. Wiklicky

non-deterministic choice in a reaction (sequence) probabilistically. We define the
semantics of the pCHAM in terms of a Probabilistic Transition System (PTS)
where the state space is represented by multisets of molecules. We recall the
general definition of a (labelled) PTS as given in [7, Def 2].

Definition 1. A probabilistic transition system is a tuple (S,A,−→, π0), where:

– S is a non-empty, countable set of states,
– A is a non-empty, finite set of actions,
– −→ ⊆ S ×A×Dist(S) is a transition relation, and
– π0 ∈ Dist(S) is an initial distribution on S.

A PTS (S,A,−→, π0) is called generative if the transition relation is a partial
function −→: S ↪→ Dist(S ×A).

The semantics of a pCHAM is defined by a generative unlabelled PTS, i.e.
a PTS with a single, anonymous label τ ∈ A (which we simply omit). We will
concentrate on finite state spaces S, although we will occasionally also remark
on the general countable case.

2.1 State Space

The probabilistic CHAM has the same basic state space as the classical CHAM,
namely solutions, i.e. multisets of molecules. We denote by T the set of possible
molecules, i.e. terms in some formal algebra or language, and by M = M(T)
the set of multisets of molecules in T , i.e. functions of the form S : T → N for
which we will usually use the common notation {| . . . |}.

We will assume a finite set of possible molecules in T = {m1, . . . ,mt}, i.e.
t = |T | < ∞ and a finite (strict) upper bound s for the multiplicity of any
molecule, i.e. maxmi∈T S(mi) < s < ∞. We will denote the set of possible
multiplicities by N = {1, . . . , s − 1} ⊆ N. These finiteness conditions can be
relaxed relatively easily. However, they allow us for the time being a clearer
presentation of the basic elements of the pCHAM; we can, for example, work
with distributions in place of general measures, etc.

We will refer to distributions over solutions, i.e. overM = M(T), as ensembles
of molecules in T and denote them by:

μ = {〈{|m11, . . . ,m1i1 |}, p1〉 , . . . ,
〈
{|mj1, . . . ,mjij |}, pj

〉
}

where ik is the cardinality and pk the probability of the multiset {|mk1, . . . ,mkik
|}.

For the sake of simplicity of notation we use mji instead of the the more correct
notation mji . Moreover, in order to make the representation of ensembles more
compact, we do not list multisets with zero probability.

A pCHAM with molecules in T and with an initial solution S0 ∈ M(T) defines
a probabilistic transition system (M,=⇒p, μ0) with the point distribution μ0 =
{〈S0, 1〉}.

On a Probabilistic CHAM and the Expressiveness of Linda Languages 391

2.2 Specific Rules

The transition relation =⇒p for the PTS (M,=⇒p, μ0) representing a pCHAM
is specified via a certain set R of specific rules or — as with the non-deterministic
CHAM in order to avoid “multiset matching” — by rule schemata. These rules
are expressions of the form:

mi1, . . . ,mik −→p mj1, . . . ,mjl

where mi′j′ are molecules (or variables, cf [6]). These rules specify an individual
pCHAM by describing possible rewriting steps together with a probability p.

It is important (in the context of the pCHAM) to distinguish between rules,
for which we use the notation −→p, and the probabilistic transition relation on
M which defines the multiset rewriting and for which we use the notation =⇒p.

Probabilities are associated with rules not molecules. However, the rules of a
specific pCHAM can exploit information contained in the molecules in order to
obtain the intended probability p.

Example 2. We can also introduce probabilistic information as part of a mole-
cule, e.g. m′

i = pi : mi, i.e. we can annotate standard molecules by providing
information about their “reactiveness”. Rules like m1,m2 −→ m3 then would
become, for example, something like:

p1 : m1, p2 : m2 −→p1·p2 max(p1, p2) : m3

Example 3. Another possibility could be to provide “position information” and
make the reaction probability of two molecules proportional to their “spatial”
closeness, e.g.:

m1@(x1, y1),m2@(x2, y2) −→d(m1,m2) m3@((x1 + x2)/2, (y1 + y2)/2)

with d(m1,m2) =
√

(x1 − x2)2 + (y1 − y2)2 the “Euclidean distance” between
m1 and m2.

Example 4. The “spatial” information can also be generalised to “allocation en-
vironments” — similar to the notion in KLAIM [8], i.e. we can specify a sub-
(multi)set {|m1, . . . ,mk|} of molecules a given molecule m0 can react with, i.e.
the (multi)set of its “neighbours”.

A further generalisation could introduce “probabilistic allocation environ-
ments” which specifies not just the possibility of reactions between certain mole-
cules, but also their probability. Allocation environments can be used to simulate
membranes of sub-solutions and probabilistic allocation environments allow the
introduction of “soft membranes”.

Example 5. Any non-deterministic CHAM can be lifted to a pCHAM by re-
placing the specific rule mi1, . . . ,mik −→ mj1, . . . ,mjl by mi1, . . . ,mik −→1
mj1, . . . ,mjl. The ‘standard probability’ p = 1 will be renormalised (see below)

392 A. Di Pierro, C. Hankin, and H. Wiklicky

to obtain a uniform distribution over all possible transformations of a multi-
set. Note that this is only one of the many possible ways a nondeterministic
specific rule can be implemented as a probabilistic rule in order to specify an
individual pCHAM. We will make the relationship between non-deterministic
and probabilistic CHAM more precise in Section 4.2.

2.3 General Laws

A concrete pCHAM is defined by specifying its set of possible molecules T ,
specific rules R and (optionally) an initial solution S0 ∈ M. The rules of the
pCHAM can be extended and translated into the transition relation =⇒p of the
corresponding probabilistic transition system (M,=⇒p, μ0), with μ0 = {〈S0, 1〉},
via four general laws which are straightforward generalisations of the laws of the
non-deterministic CHAM, cf [6, Sect 3].

Reaction Law. This provides the essential mechanism which translates or lifts
specific pCHAM rules to multiset rewritings. It also renormalises the (intended)
transition probabilities p such that the probabilities associated to the transitions
from any given multiset add up to one.

mi1, . . . ,mik −→p mj1, . . . ,mjl

{|mi1, . . . ,mik|} =⇒p̃ {|mj1, . . . ,mjl|}

where p̃ is the normalised probability p̃ = p
P with P the sum over all possible

rewritings of {|mi1, . . . ,mik|}.
This law is non-local as the normalisation has to take into account all the other

transitions which could be applied to a given multiset/solution. However, as we
will see later, we can actually avoid normalisation until we reach, for example,
a terminal solution.

Chemical Law. The remaining general laws of the pCHAM extend the specific
rules. The Chemical Law allows us to apply a rule in any context:

mi1, . . . ,mik −→p mj1, . . . ,mjl

mi1, . . . ,mik,m′
1, . . . ,m

′
n −→p mj1, . . . ,mjl,m′

1, . . . ,m
′
n

where m′
1, . . . ,m

′
n is any (maybe empty) collection of molecules.

This means that if we state a specific rule like mi1, . . . ,mik −→p mj1, . . . ,mjl

for a pCHAM we also can use rules like mi1, . . . ,mik,m0 −→p mj1, . . . ,mjl,m0,
and mi1, . . . ,mik,m0,m3 −→p mj1, . . . ,mjl,m0,m3, etc.

Membrane Law. For solutions with solutions as molecules we extend the set of
specific rules such that a sub-solution can develop on its own.

mi1, . . . ,mik −→p mj1, . . . ,mjl

m′
1, . . . ,m

′
n, {|mi1, . . . ,mik|} −→p m′

1, . . . ,m
′
n, {|mj1, . . . ,mjl|}

On a Probabilistic CHAM and the Expressiveness of Linda Languages 393

If we define a context C[] as usual as a multiset with a “hole”, i.e. as a multiset
{|m1, . . . ,mn, []|} with a distinguished “hole” molecule [] which can be replaced
by any multiset S then we obtain the corresponding law of the general CHAM:

{|mi1, . . . ,mik|} =⇒p {|mj1, . . . ,mjl|}
{|m′

1, . . . ,m
′
n, {|mi1, . . . ,mik|}|} =⇒p̃ {|m′

1, . . . ,m
′
n, {|mj1, . . . ,mjl|}|}

or more concisely:
S =⇒p S

′

{|C[S]|} =⇒p̃ {|C[S′]|}
where p̃ is obtained by (re)normalising p.

Airlock Law. The “partial activation” of a sub-solution providing an ‘airlock’ to
the surrounding solution is realised via:

m,m1, . . . ,mn −→h(T) m # {|m1, . . . ,mn|}
m # {|m1, . . . ,mn|} −→f(T) m,m1, . . . ,mn

The probabilities h(T) and f(T) specify the chances of “heating” up or “freez-
ing” down airlocks. It could be the case that h(T) = f(T), i.e. that the two
rewritings happen with the same probability, but it could also be that one hap-
pens more frequently. Furthermore, it is also possible to change the probabilities
depending on a control parameter T (temperature).

Considering the multiset rewrites which this universal rule justifies we get the
following “probabilistic version” of the corresponding classical law:

{|m|} � S =⇒h̃(T) {|m # S|} and {|m # S|} =⇒f̃(T) {|m|} � S.

2.4 An Example

Consider (a finite version) of a CHAM which implements the well known sieve
method for finding prime numbers. The initial solution is in this case the set of
natural numbers {2, 3, . . . , n} or in general a multiset of numbers. The specific
reaction rules are as follows:

If i and j are in solution such that there exists a k �= 1 such that j = i ·k
then eliminate j from solution.

or as a simple rule schemata:

i, j −→ j iff ∃k �= 1.ik = j

An execution of this CHAM leads, for example, to the following reductions:

{|2, 3, 4, 5, 6, 7, 8, 9|} −→ {|2, 3, 5, 6, 7, 8, 9|}
−→ {|2, 3, 5, 7, 8, 9|}
−→ {|2, 3, 5, 7, 8|}
−→ {|2, 3, 5, 7|}

394 A. Di Pierro, C. Hankin, and H. Wiklicky

It is easy to see that we will always end up with the (multi)set of primes up to
n. However, it is left open how fast we will reach this state, or how long it will
take in the average until a certain non-prime number is eliminated.

A probabilistic version of the CHAM in this example needs to specify the
probabilities for rule applications. A rather simple, maybe somewhat uninspired,
way to this is to assume each rule will fire with the same probability, i.e.

i, j −→1 j iff ∃k �= 1.ik = j

One possible sequence of reductions for this pCHAM is then:

{|2, 3, 4, 5, 6, 7, 8, 9|} =⇒ 1
6
{|2, 3, 5, 6, 7, 8, 9|}

=⇒ 1
4
{|2, 3, 5, 7, 8, 9|}

=⇒ 1
2
{|2, 3, 5, 7, 8|}

=⇒1 {|2, 3, 5, 7|}

Again, it is easy to see that this pCHAM will always end up with a multiset con-
taining only primes. However, (despite the uniform distribution of probabilities
to rules) we observe certain execution paths or traces with different probabilities,
e.g. the one above with probability 1

6
1
4

1
2 = 1

48 .

3 Linear Operator Semantics of the pCHAM

As in the theory of stochastic processes, in particular of Markov Chains, we
encode the probabilistic transition relation =⇒p as a linear operator T on the
vector spaces V(M). Suppose we have an enumeration of the solutions in M. The
fact that Si =⇒pij Sj will then be reflected by the fact that the entry Tij = pij .
The advantage of the linear operator semantics is that it not only encodes the
probability of transitions between solutions but also canonically extends to a
relation between ensembles, i.e. distributions over solutions.

3.1 State Space

The first question we have to address is how many possible solutions are there in
M; this means that we have to determine the reachable set, i.e. the state space
of possible configurations of the pCHAM. Unfortunately, the general situation
requires an exponentially growing space to represent it: Assume that we have t
different types of molecules and that their multiplicity is restricted by s, i.e. a
given molecule/term type can appear with multiplicities 0 (not at all), 1, 2, etc.
up to s− 1.

A finite multiset representing such a solution can be defined as a map from
the set of all possible molecules T = {m1,m2, . . . ,mt} to the set of multiplicities
N = {0, 1, . . . , s−1}. The cardinality of the set of all maps T → N is |N ||T | = st.

On a Probabilistic CHAM and the Expressiveness of Linda Languages 395

Ensembles correspond to particular vectors in the vector space of (formal)
linear combinations of multisets:

V(M) =

{∑
i

xiSi | xi ∈ R and Si ∈ M
}

which, concentrating on the coordinates xi, we can also identify with the space of
tuples in R

|M|. A distribution over solutions of the pCHAM is a positive vector
with 1-norm one, i.e. xi ≥ 0 for all i and

∑
i |xi| = 1. The vector space containing

all ensembles thus is unfortunately extremely large: V(M(T)) = R
st

.

3.2 Tensor Product Representations

The state space of size st is prohibitively large but at the same time unavoidable;
a priori we cannot exclude any of the st possible molecular solutions and in
principle it is possible that rules governing the dynamics of the pCHAM specify
transitions from any of the st configurations to any other.

However, we can exploit the “structure” of the state space. If we consider
for the moment only a single type of molecules, i.e. t = 1, then we have only to
consider the bounding multiplicity s. The state space of this type of pCHAM has
s1 = s possible states; ensembles thus are vectors in R

s = V({0, . . . , s − 1}) =
V(N). Considering two types of molecules, i.e. t = 2, requires that we keep
track of the multiplicity of each of the two types of molecules. We thus get the
state space of possible solutions as the Cartesian product N ×N . The possible
ensembles, i.e. distributions of this space, are then elements of the tensor product:
V(N ×N) = V(N) ⊗ V(N).

As an example, let us consider an ensemble on T = {m1,m2,m3} which is
given by {

〈
S1,

1
3

〉
,
〈
S2,

2
3

〉
} with S1 = {|m1,m1,m3|} and S2 = {|m1,m2|}. The

two multisets are represented by the vectors (taking as bound s = 2 for the
multiplicities) in R

33
= (R3)⊗3 = R

27: (0, 0, 1) ⊗ (1, 0, 0) ⊗ (0, 1, 0) — which
specifies the multiplicity of m1 to be 2, the one for m2 as 0 and of m3 to be 1 —
and (0, 1, 0)⊗(0, 1, 0)⊗(1, 0, 0) — which expresses the fact that moleculesm1 and
m2 have a multiplicity one, while m3 does not appear — and which we denote
by μ1 and μ2. For both solution the three factors in the tensor product describe
the multiplicity of each of the three molecules m1, m2 and m3; the entries in
these factors (p0, p1, p2) specify that the molecule is missing with probability p0,
that there is one copy with probability p1, and that its multiplicity is two with
probability p2. The original ensemble is represented by the weighted vector sum

1
3
μ1 +

2
3
μ2 =

1
3
(0, 0, 1)⊗ (1, 0, 0)⊗ (0, 1, 0) +

2
3
(0, 1, 0) ⊗ (0, 1, 0)⊗ (1, 0, 0).

Generalising this construction gives us an alternative description of the state-
space of a pCHAM with t types of molecules and bounding multiplicity s:

V(N t) = V(N)⊗t = (Rs)⊗t = R
st

where V⊗t denotes the t-fold tensor product of V , i.e. V ⊗ V ⊗ . . .⊗ V .

396 A. Di Pierro, C. Hankin, and H. Wiklicky

Although this representation (obviously) does not reduce the dimension of the
state space of the pCHAM it “partitions” it in a certain way which will allow us
to describe “local” rules in a more efficient way.

3.3 Representation of Rules

The encoding of a specific rule of a concrete pCHAM is straightforward and
purely syntax-directed. Given a rule of the form:

mi1 , . . . ,mik
−→p mj1 , . . . ,mjl

we can translate it into a linear operator on the ensemble space V(M) = (Rs)⊗t.
We first need to consider a creation operator C = Cs and a destruction opera-

tor D = Ds on each tensor component of V(M), i.e. on V(N) = R
s represented

by the following matrices which increase or decrease the multiplicity of certain
molecules, i.e.

(C)ij =
{

1 for j = i+ 1
0 otherwise and (D)ij =

{
1 for j = i− 1
0 otherwise

These creation and destruction operators link the semantics of the pCHAM
closely to so-called “Birth-and-Death processes” in probability theory, cf.
e.g. [10].

Using these operators we can increase and decrease the multiplicity of every
molecule mk in a solution. To increase, for example, the multiplicity of the
molecule m2 by two in a solution made up of (at most) four different molecules
we have to apply (I⊗C⊗ I⊗ I) · (I⊗C⊗ I⊗ I) = (I⊗CC⊗ I⊗ I) with I the
identity operator/matrix on V(N), to the vector representing a given solution.
In general, we can define the following two operators on M:

Gk =
k−1⊗
i=1

I ⊗ C⊗
t⊗

i=k+1

I and Kk =
k−1⊗
i=1

I⊗ D ⊗
t⊗

i=k+1

I

which increase (generate) or decrease (kill) the multiplicity of the molecule mk.
The last thing we need in order to define the encoding of rules is a test operator

which checks whether there exists a certain molecule in the current solution. The
local version of this existence operator E and its obvious extension E≥min are
given by:

(E)ij =
{

1 for i = j ≥ 1
0 otherwise and (E≥min)ij =

{
1 for i = j ≥ min
0 otherwise

Note that En �= E≥n. Using these local tests we can construct a global one:

Ek =
k−1⊗
i=1

I⊗ E⊗
t⊗

i=k+1

I and E≥min
k =

k−1⊗
i=1

I ⊗ E≥min ⊗
t⊗

i=k+1

I

On a Probabilistic CHAM and the Expressiveness of Linda Languages 397

A specific rule of a pCHAMmi1 , . . . ,mik
−→p mj1 , . . . ,mjl

is now represented
by the operator product:

E
≥S(mi1)
i1

· · ·E≥S(mik
)

ik
· KS(mi1)

i1
· · ·KS(mik

)
ik

· GS(mj1)
j1

· · ·GS(mjl
)

jl

where S(mk) is the multiplicity of each molecule on the left and right-hand side
of the rule. The encoding simply tests if enough molecules are present such that
the rule can be applied, then it destroys the molecules mentioned on the left-
hand side of the rule, and finally it generates all molecules on the right-hand
side. Of course, one can think of optimising the encoding by only destroying
molecules which do not re-appear on the right-hand side, etc.

3.4 Representation of pCHAMs

After we have represented all specific rules we finally can present the encoding
of a concrete pCHAM (M,R, μ0). We first have to construct the operators Ri

of all specific rules in R together with all the extended rules we obtain by the
Chemical, Membrane and Airlock Laws. We denote the extended set of rules
by R′. Each of these rules comes with a probability pi (either inherited from a
more specific version if the Chemical, Membrane or Airlock Law was involved
or directly from the specification of the specific rules).

The execution of the pCHAM now simply corresponds to choosing one of the
applicable rule operators with the corresponding probability and applying it to
the vector representing the current solution or more generally ensemble. This is
achieved by considering the operator:

T = N
(∑

Ri∈R′
piRi

)
where the normalisation operation N is defined by:

N (T)ij =

⎧⎨⎩
Tij

Tj
if Tj =

∑
i Tij �= 0

1 if Tj =
∑

i Tij = 0 and i = j
0 otherwise.

The test operators E in the definitions of the Ris “filter” out all those rules
which are not applicable, the pi’s weight the chances of each reaction according
to the specific rules, and the normalisation N computes the correct probabilities
p̃i. If a solution is inactive, normalisation adds a one on the diagonal which
preserves the current solution without changing anything.

The linear operator T encodes the probabilistic transition relation =⇒p of the
probabilistic transition system (M,=⇒p, μ0) defining the operational semantics
of the pCHAM (M,R, μ0) as stated by the following proposition.

Proposition 6. Given a pCHAM (M,R, μ0), let =⇒p be the probabilistic tran-
sition relation on M of the associated probabilistic transition system, and let T
be the linear operator on V(M) associated to R. Then, for all Si, Sj ∈ M

Si =⇒p Sj iff Tij = p.

398 A. Di Pierro, C. Hankin, and H. Wiklicky

In order to implement the execution of a pCHAM (M,R, μ0) we have only
to compute the iterated applications of the operator to the vector representing
the initial ensemble, i.e. Tn(μ0), which realises a discrete time Markov Chain.
Depending on the questions we are interested in we can investigate, for example,
the long run average of this Markov Chain, or other features commonly studied
in the theory of stochastic processes.

4 Properties of the pCHAM

Let us next discuss some of the properties and aspects of the pCHAM and its
linear operator semantics. This is not an exhaustive study but merely attempts
to address some of the more interesting features.

4.1 Completeness of the Linear Operator Semantics

In the previous section we have shown that the linear operator semantics allows
us to encode any transformation of ensembles of a set of molecules T, that is
any pCHAM. The following proposition shows that the reverse also holds.

Proposition 7. For every linear operator T on a finite-dimensional vector
space V there exists a set of molecules T with |T | = t and multiplicity bounded
by s and a pCHAM (M,R, μ0) over T , such that V = V(M(T)), i.e. the ten-
sor product (Rs)⊗t, and T is represented by a linear combination of the rule
operators Ri.

Proof. It is sufficient to show that all matrix units Bij , i.e. matrices with a single
1 at row i and column j and all other entries 0, for each tensor factor V(N) can
be represented as E≥max ·Dn · Cm.

One can show that Bij = E≥iDi−1Cj . Operationally this corresponds to
filtering out all situations where the multiplicity of a molecule is too small, then
by destroying all additional copies and then creating the needed j copies.

Any element in V(N)⊗t can then be represented by a linear combination of
matrix units in V(N)⊗t which in turn are represented as the tensor product of
certain matrix units in each V(N).)*

This result proves that any Markov Chain on V(M(T)) can be represented by a
pCHAM, i.e. whatever (memoryless, discrete time) random process one chooses,
it is always possible to define the rules of a particular pCHAM which implements
this behaviour.

It is interesting to note that the proof of this fact is not by giving an explicit
construction of this pCHAM but by arguing that the dimension of the space
generated by the “rule operators” is as large, i.e. has the same dimension, as
L(V(M(T))) — where L(V) denotes the set of all linear operators on V —
and that we therefore can construct a representation of any possible random
“behaviour” as a linear combination of the basic operators C, D and E. We
will utilise a similar reasoning when we compare the expressiveness of calculi in
Section 6.

On a Probabilistic CHAM and the Expressiveness of Linda Languages 399

4.2 Non-deterministic vs Probabilistic CHAMs

An obvious issue concerns the relation between the classical CHAM and its
probabilistic version. In order to clarify this relation it may help to discuss the
role non-determinism plays in a specification as opposed to the role of probability.
The following example illustrates the difference.

Example 8. Consider two types of molecules: a and d. We think of the first one
as “active” elements which can spontaneously produce a d molecule or turn itself
into a d molecule; the other one is “dead”, i.e. it decays immediately.

The specification of such a behaviour via a non-deterministic CHAM can be
given using the following specific rules.

a −→ a, d a −→ d d −→

A concrete pCHAM with the same behaviour might have the following rules:

a −→ 1
2
a, d a −→ 1

2
d d −→1

or a general specification of pCHAMs with this behaviour could utilise ‘unspec-
ified’ probabilities, i.e. with p ∈ [0, 1]:

a −→p a, d a −→1−p d d −→1

If we assume fairness in the CHAM case and p ∈ (0, 1), i.e. p �= 0 and p �= 1
then we could expect that we get the same long time behaviour if we start with
{|a|} in the case of the CHAM and pCHAM formulation.

It is easy to see that in the case of the CHAM it is possible to obtain after
n steps the solution {|a|} as well as {|a, d, . . . , d|} = {|a, dk|} for k ≤ n, as well as
the empty solution {||}. However, in the case of the pCHAM, we will — after n
steps — quite likely have the empty solution. More precisely, the probability of
obtaining {|a, dk|} tends to vanish for increasing n.

In some sense the probabilistic specification reflects more closely than the
non-deterministic specification the real situation as it discards the most unlikely
solution. As the classical example of the Gambler’s Ruin (cf. e.g. [9]) shows: In
real life it is not enough to state that it is possible that one will win the lottery;
we need to say how probable this is.

Essentially we can simulate a non-deterministic CHAM by a pCHAM by “for-
getting” about the concrete probabilities which describe the ensembles Tn(μ).

Given a non-deterministic CHAM (M,R, μ0) we can construct a correspond-
ing pCHAM (M,R′, μ0) by attaching to each classical rule in R some non-zero
probability in order to obtain the set of probabilistic rules R′. Vice versa we can
also construct a non-deterministic CHAM for every given pCHAM by dropping
the probabilities related to the rules. A pCHAM gives rise to a unique CHAM,
but there are several pCHAM which correspond to any given CHAM.

Proposition 9. Given a CHAM (M,R, S0) and a corresponding pCHAM rep-
resented by the operator T on V(M(T)) = V(M)⊗t, a solution S ∈ M is reach-
able in n reaction steps in (M,R, S0) if and only if Tn({〈S0, 1〉} has a non-zero
component corresponding to S.

400 A. Di Pierro, C. Hankin, and H. Wiklicky

4.3 Locality of Rules of the pCHAM

Several people have argued that the need for normalisation imposes a severe
non-locality constraint on probabilistic models of computations. This is only
partly true as one can postpone the normalisation under certain circumstances.
More precisely, if we start with a point distribution μ, i.e. if we know exactly
with which chemical solution we start, then instead of normalising T we can
normalise the T(μ) — extending the normalisation to positive vectors in the
obvious way by dividing them by their 1-norm ‖.‖1, i.e. the sum of all their
coordinates.

Proposition 10. Given a pCHAM (M,R, μ0) and its operator T = N (T′)
with T′ =

∑
i piRi on V(M(T)) = V(N)⊗t and an ensemble μ = {〈μ, 1〉} then

we have:

T(μ) =
{
N (T′(μ)) if N (T′(μ)) �= o
μ otherwise with N (μ) =

{ μ
‖μ‖1

if ‖μ‖1 �= 0
μ otherwise.

We have for a single step and a point-ensemble essentially that T′ and N com-
mute, i.e. N (T′)(μ) = N (T′(μ)) — only in the case of “blocked” solutions,
which result in the zero vector o, we have to complicate things by ‘re-producing’
the original vector.

In other words, if we consider the probabilities along a certain execution path
we do not need to normalise the complete operator T′. We can start with a
point-ensemble, compute the probabilities of its successors in the above way by
N (T′(μ)), pick a single successor ensemble and repeat the application of the
non-normalised T′. Non-locality problems only arise when we consider Tn(μ).
The reason for this is that in this case we do not compute (the probabilities of)
a single computational path but of all possible paths at the same time. This
obviously implies the need to “distribute” the available probability non-locally
between them by normalising T′.

The operator T′ encodes the rules −→p while T = N (T′) represents the
rewrite steps =⇒p. The possibility to postpone normalisation has also impor-
tant consequences for the Linear Operator Semantics and its tensor product
representation which can be treated in a “lazy” fashion. The only time we have
to compute the tensor product effectively is when we normalise T′, as long as we
work with the original T′ we can apply it component-wise to a given vector as for
a distribution μ =

∑
i xiμi with μi =

⊗
j μij the application of T =

∑
k pkRk

with Rk =
⊗

j Rkj is obtained as:

T(μ) =
∑

k

pk

∑
i

(
⊗

j

Rkj)(
⊗

j

μij) =
∑

k

pk

∑
i

⊗
j

Rkj(μij)

4.4 Finite vs Infinite pCHAMs

In the foregoing sections we have assumed that the multiplicity of molecules is
bounded. However we can drop this finiteness condition and work instead with

On a Probabilistic CHAM and the Expressiveness of Linda Languages 401

infinite matrices E, C and D. These correspond to so called projections (E), and
shift operators (C and D).

We can consider instead of V(N) the (Banach) space of infinite sequences
with bounded p-norm, i.e.

�p(M) =

{ ∞∑
i=0

xiSi | xi ∈ R, Si ∈ M, (
∞∑

i=0

|xi|p)
1
p <∞

}
⊆ V(N)

The infinite matrices E, C and D represent bounded (and therefore continuous)
operators. In particular, we can take the Hilbert space �2(M) and directly re-
cast our finite-dimensional framework in this setting. To a certain degree this
framework is even more convenient than the finite-dimensional one; for example
we have CD = I, which is not the case in finite dimensions.

The construction of T follows the same recipe as before. We also observe that
if we start with any initial solution μ0 which can be represented by a vector in
�2(M) — which is obviously the case for a point distribution — we can guarantee
that the iterations Tn(μ) will stay in �2(M).

5 Encoding Probabilistic Linda Languages

The CHAM model can be used to describe the operational semantics of various
calculi like CCS, the π-calculus, and the Linda calculus which is at the base of
several coordination languages, see e.g. [2]. Probabilistic versions of such calculi
can be modelled via the pCHAM. We will concentrate here on the encoding of
probabilistic Linda-like languages which we will then use as a base for demon-
strating our approach to define and measure language expressiveness.

We consider a family of languages L(X) which differ from one another for
the set X of communication primitives used. These primitives correspond to the
basic Linda primitives for adding a token to a shared data-space, getting it from
the data-space, and checking for its presence or absence in the data-space. The
languages L(X) also include standard prefix and a probabilistic choice operator.

The syntax of L(X) is formally defined by the following grammar:

P ::= stop | C.P | P | P | P +p P

C ::= ask(t) | tell(t) | get(t)

where t is a generic element called token in a denumerable set D, P is a process
and C a communication action (or prefix); we denote by P the set of all processes.
The parameter X defining a Linda-like language L(X) is a subset of the primi-
tives defined by C.

A program in L(X) is therefore either an inactive, trivial program stop, or a
sequential composition C.P or a probabilistic choice P +p P . As usual we omit
a trailing stop if it is prefixed by a non-empty sequence of basic actions C.

A pCHAM encoding for L(X) is defined by specifying the set of molecules as
D∪P and the following molecule transformation, i.e. specific rules (cf also [11]):

402 A. Di Pierro, C. Hankin, and H. Wiklicky

(i) P1 | P2 −→1 P1, P2
(ii) P1, P2 −→1 P1 | P2
(iii) P1 +p P2 −→p P1
(iv) P1 +p P2 −→1−p P2

(v) stop −→1 stop
(vi) tell(t).P −→1 P, t
(vii) ask(t).P, s −→1 P, s if t = s
(viii) get(t).P, s −→1 P if t = s

As with any pCHAM these rules give rise to a set of rule operators Ri. All
possible executions of L(X) programs are choices between or sequential applica-
tion of these rules. In other words, all possible “behaviours” of L(X) programs
are linear combinations and products of the rule operators Ri. The possibilities
of programs in a language L(X) are thus reflected in the structure of the alge-
bra A(X) which is generated by (linear combinations and products of) the rule
operators Ri of the pCHAM for L(X).

Example 11. To illustrate this let us construct the algebra A(tell, ask,get) for
a “bounded” version version of the language L(tell, ask,get). We will allow only
one type of token t, i.e. D = {t}, which appears only with multiplicity 0, 1 or 2.

The linear operator semantics of this language is given by operators on V(P)⊗
V({{||}, {|t|}, {|t, t|}}). To keep things as simple as possible we will concentrate only
on the behaviour of the store, i.e. the possible transformations on V({{||}, {|t|},
{|t, t|}}) and ignore how the processes themselves change.

The operators corresponding to the rules for tell and get and the guard in
the ask rule are given by:

T =

⎛⎝0 1 0
0 0 1
0 0 1

⎞⎠ G =

⎛⎝1 0 0
1 0 0
0 1 0

⎞⎠ A =

⎛⎝0 0 0
0 1 0
0 0 1

⎞⎠
The stop rule is implemented by the identity matrix I. The other four rules do
not directly influence the store component. However, they allow the combination
of basic operators via linear combination (the choice rules) and product (via the
parallel rules). The possible “behaviours” are therefore linear combination and
products of these basic operators, i.e. we have to look at the algebras generated
by some subset of {A,G,T, I}.

We can show that {A,G,T, I} generate the full 3 × 3 matrix algebra M(3).
To do this it is sufficient to show that we can construct all matrix units (cf. proof
of Proposition 7) in M(3) using the basic matrices A, G, T and I. Any other
matrix in M(3) is then a linear combination of the matrices Enm. For example
one can easily check that the following holds:

B11 = I − A, B12 = (I − A)T, B13 = (I − A)TT
B21 = (I − G)ATGG, B22 = (I − G)ATG, B23 = (I − G)AT
B31 = GAG, B32 = GA, B33 = GAT

It might be worth noting that we extensively used the negative of A, i.e. the
testing for the absence of the token. One might therefore argue that the algebra
A(X) contains not only the effective behaviours of programs in L(X) but also
artificial ones. However, for the method for comparison of the expressiveness of
languages we introduce in the next section, A(X) is a useful approximation.

On a Probabilistic CHAM and the Expressiveness of Linda Languages 403

6 Expressiveness

The pCHAM provides a uniform encoding for several probabilistic languages
and calculi, in that it is a common abstract semantics on the base of which the
observable behaviour of programs/processes in different languages/calculi can
be specified. It is therefore reasonable to utilise such an encoding to compare
the expressive power of one language relative to another. The idea is similar
to the notion of embedding introduced in [12] and later refined in [13]: given
two probabilistic languages Γ1 and Γ2 we first define their associated pCHAMs
and then we compare them by checking whether or not one can “simulate” the
other. The difference with the original notion of embedding is that we do not
need to specify any particular observation criteria nor to compile a program in a
language into a program in the other language; rather we encode both languages
into the same kind of abstract semantics and compare “how many” computations
can be performed by the first abstract machine which cannot be performed by
the second. In fact, the linear operator semantics of the pCHAM also allows us
to determine the “size” of the space of “behaviours” generated by a certain set
of specific rules and thus provide obstructions which prevents the embedding or
simulation of one pCHAM into another without constructing a counter-example.

This approach can also be adopted to compare the expressive power of non-
probabilistic languages: we just need to consider the restriction of our linear
operators to point distributions.

Example 12. Assume a finite set of molecules {m1, . . . ,mt} without a bound on
the multiplicity s. If the specific rules of a (p)CHAM are of the form:

mi1, . . . ,mik −→ mj1, . . . ,mjl or mi1, . . . ,mik −→p mj1, . . . ,mjl

such that l > k it is immediately clear that in each reaction the size of the solu-
tion is monotonically increasing. Such a (p)CHAM therefore is unable to, for ex-
ample, purge a solution from all multiples of a certain molecule {|m1,m1,m1|} =⇒
{|m1|}. It is also unable to embed a (p)CHAM whose specific rules include a rule
like m2,m4 −→ m2.

Let Γ be a probabilistic calculus and consider an operational semantics for Γ
defined via a set of states C(Γ) and a transition relation →p on C(Γ). By an
encoding e of Γ into a pCHAM pCHAM(Γ) = (M,R, μ0) we mean a (total)
function:

e : C(Γ) → M
which associates to every state of Γ a solution of pCHAM(Γ) such that tran-
sitions in Γ correspond to transitions in pCHAM(Γ), i.e. C1 →p C2 implies
e(C1) =⇒p e(C2). We omit a more formal definition (which might impose addi-
tional constraints and correctness conditions on e) as we will consider here only
the encoding of the Linda-like languages we presented in Section 5.

In order to compare the expressiveness of languages we could, on one hand,
introduce a notion of an embedding of languages following directly Shapiro’s ap-
proach [12,13]. Our idea, on the other hand, is to compare languages on the base

404 A. Di Pierro, C. Hankin, and H. Wiklicky

of the possible behaviours of their associated pCHAMs. In order to do this one
could develop a general notion of pCHAM embeddings, or a bit more concretely,
address the question when pCHAMs, which are the result of the encoding of
calculi or programming languages, can simulate each others behaviour. How-
ever, we will go one step further and base our notion of embedding not on the
pCHAMs themselves but instead on the linear operator semantics. Our notion
of embedding is illustrated by the following diagram:

Γ1
e1 �� pCHAM(Γ1) ������ ������ A(Γ1)

Γ2 e2
�� pCHAM(Γ2) ������ ������ A(Γ2)

N

��

where e1 and e2 are the pCHAM encodings of Γ2 and Γ1 respectively, A(Γ1)
and A(Γ2) are the linear algebras generated from the rules in pCHAM(Γ1)
and pCHAM(Γ2) respectively, and N is a map N : A(Γ2) → A(Γ1) which
implements the embedding.

In principle this embedding could be as complicated as one wants. If the two
pCHAMs in question encode Turing complete calculi then it is always possible to
encode one in the other in some way. However, we will consider only “reasonable”
encodings which respect the structure of the calculi and their pCHAMs, i.e.
encodings which are somehow compositional (on the molecular level). We will
therefore concentrate our attention only on particular linear maps N between
A(Γ2) and A(Γ1).

Definition 13. A linear embedding of a linear algebra A1 into a linear algebra
A2 is an injective algebra homomorphism, i.e. a linear and product preserving
map N : A1 → A2.

A linear embedding of a calculus Γ1 into another one Γ2 is given by a linear
embedding of the corresponding algebras A(Γ1) into A(Γ2).

There are further restrictions one could impose, e.g. that the pCHAMs and
their algebras reflect the structure of the calculi in a particular way, etc. A
particular situation is the comparison of sub-calculi of a given calculus; in this
case e1 and e2 are the same function.

Example 14. A language L(X) can be embedded into a language L(Y) iff A(X)
can be embedded in A(Y), cf also [14]. A simple property of the algebras A(X)
and A(Y) like their dimension can give us a criterion to decide whether A(X)
can be embedded into A(Y): if dim(A(X)) > dim(A(Y)) then it is impossible to
embed A(X) into A(Y). However, it is not correct to conclude the opposite, i.e.
dim(A(X)) ≤ dim(A(Y)) does not necessarily imply that there is a “reasonable”
embedding of L(X) into L(Y).

Considering the Linda-like languages from the previous section we can show,
for example, that dim(A(tell,ask)) > dim(A(tell)) and dim(A(tell,get)) >
dim(A(tell)) which means that it is impossible to embed either L(tell,get)

On a Probabilistic CHAM and the Expressiveness of Linda Languages 405

nor L(tell,ask) in L(tell). More concretely, one can show that L(tell,ask)
generates only the sub-algebra of upper triangular 3 × 3 matrices U(3). We
can embed this sub-algebra into the full matrix algebra M(3) by taking N the
identity restricted to the sub-algebra U(3), but not vice versa. An obstruction
against the embeddability of M(3) into U(3) is the fact that the dimensions are
incompatible, i.e. dim(M(3)) = 9 while dim(U(3)) = 6.

This is consistent with the hierarchy of languages in, e.g., [14]:

L(tell)

������������

���
��

��
��

��
��

��
��

��
��

L(tell,ask)

�� ����������������������

L(tell,get) �� �� L(tell, ask,get)

7 Conclusions

We presented a probabilistic version of the Chemical Abstract Machine. The
CHAM and its probabilistic version pCHAM provide a basic and simple frame-
work for comparing various probabilistic (or quantitative) calculi. The pCHAM
model is based on a particular, discrete time Markov Chain (DTMC) model in
which a scheduler decides at each time step on the probability that any of the
applicable rules or reactions gets executed.

It will be interesting to investigate different, perhaps more general execution
models for a pCHAM: For example, one could allow the scheduler to execute at
each time step not only a single rule but any number of rules as long as they are
not in “conflict”; this makes it necessary to develop a probabilistic mechanism
for resolving such conflicts. Another line of further work will be devoted to the
formulation of a continuous time Markov Chain (CTMC) model which we can
define via so-called Q matrices which themselves generate transition matrices as
Tt = exp(tQ); in this model the chance that any two rules “fire” simultaneously
is zero and conflicts between rules are therefore not a problem.

Finally, we plan a closer investigation of the relation between (general) discrete
and continuous time models and of expressiveness issues regarding the pCHAM
encodings of synchronous versus asynchronous calculi, see e.g. [15].

References

1. Banâtre, J.P., Le Métayer, D.: The gamma model and its discipline of program-
ming. Science of Computer Programming 15 (1990) 55–77

2. Banâtre, J.P., Fradet, P., Le Métayer, D.: Gamma and the chemical reaction model:
Fifteen years after. In Calude, C., ed.: Multiset Processing. Volume 2235 of Lecture
Notes in Computer Science., Springer Verlag (2001) 17–44

406 A. Di Pierro, C. Hankin, and H. Wiklicky

3. Fradet, P., Le Métayer, D.: Structured gamma. Science of Computer Programming
31 (1998) 263–289

4. Le Métayer, D.: Higher-order multiset programming. In: DIMACS workshop on
specifications of parallel algorithms. Volume 18 of Dimacs series in Discrete Math-
ematics., American Mathematical Society (1994)

5. Andreoli, J.M., Hankin, C., Le Métayer, D.: Coordination Programming. Imperial
College Press, London (1996)

6. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer
Science 96 (1992) 217–248

7. Jonsson, B., Yi, W., Larsen, K.: 11. In: Probabilistic Extensions of Process Alge-
bras. Elsevier Science, Amsterdam (2001) 685–710 see [16].

8. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24 (1998)
315–330

9. Grimmett, G., Stirzaker, D.: Probability and Random Processes. second edn.
Clarendon Press, Oxford (1992)

10. Parzen, E.: Stochastic Processes. second edn. Classics in Applied Mathematics.
SIAM (1999)

11. Ciancarini, P., Jensen, K., Yankelevich, D.: On the operational semantics of a coor-
dination language. In Ciancarini, P., Nierstrasz, O., Yonezawa, A., eds.: ECOOP
Workshop. Volume 924 of Lecture Notes in Computer Science., Springer Verlag
(1995) 77–106

12. Shapiro, E.: Embeddings among concurrent programming languages. In Cleave-
land, W.R., ed.: Proceedings CONCUR 92, Stony Brook, NY, USA. Volume 630
of Lecture Notes in Computer Science., Springer-Verlag (1992) 486–503

13. de Boer, F.S., Palamidessi, C.: Embedding as a tool for language comparison.
Information and Computation 108 (1994) 128–157

14. Brogi, A., Di Pierro, A., Wiklicky, H.: Linear embedding for a quantitative compar-
ison of language expressiveness. In: QAPL’01 — ACM Workshop on Quantitative
Aspects of Programming Languages. Volume 59:3 of ENTCS., Elsevier (2002)

15. Palamidessi, C.: Comparing the expressive power of the synchronous and the
asynchronous pi-calculus. Mathematical Structures in Computer Science 13 (2003)
685–719

16. Bergstra, J., Ponse, A., Smolka, S., eds.: Handbook of Process Algebra. Elsevier
Science, Amsterdam (2001)

17. Palmer, T.: Banach Algebras and The General Theory of ∗-Algebras – Volume I:
Algebras and Banach Algebras. Volume 49 of Encyclopedia of Mathematics and
Its Applications. Cambridge University Press, Cambridge – New York (1994)

18. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras:
Volume I — Elementary Theory. Volume 15 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, Rhode Island (1997) reprint from
Academic Press edition 1983.

19. Fillmore, P.A.: A User’s Guide to Operator Algebras. John Wiley & Sons, New
York — Chicester (1996)

20. Wegge-Olsen, N.: K-Theory and C∗-Algebras — A Friendly Approach. Oxford
University Press, Oxford (1993)

On a Probabilistic CHAM and the Expressiveness of Linda Languages 407

A Tensor Products

The tensor product plays a central role in our discussion. For the convenience
of the reader we therefore recall some of the important facts about the tensor
product of vectors, (Hilbert) spaces, operators, etc.

Let V1, V2, . . . , Vn and W be linear spaces. A map f : V1 × V2 × . . .× Vn →
W is called multi-linear if f is linear in each of its arguments. We denote by
L(V1,V2, . . . ,Vn;W) the set of multi-linear maps. The algebraic tensor product
of vector spaces is defined via a universal property as follows (see e.g. Definition
1.10.1 in [17]).

Definition 15. The algebraic tensor product of vector spaces V1, V2, . . . , Vn is
given by a vector space

⊗n
i=1 Vi and a map p = ⊗n

i=1∈L(V1,V2, . . . ,Vn;
⊗n

i=1 Vi)
such that if W is any vector space and f ∈ L(V1,V2, . . . ,Vn;W) then there exists
a unique map h :

⊗n
i=1 Vi → W satisfying f = h ◦ p.

This algebraic construction is sufficient for finite dimensional vector spaces.
It is easy to show that in the finite dimensional case we have: V(X × X) ∼=
V(X) ⊗ V(X). In the infinite dimensional case one has to consider also topo-
logical aspects; for example, the algebraic tensor product of Hilbert spaces does
not form in general a Hilbert space. Without going into the details — see for
example [18], [19] or Appendix T in [20] — it is however possible to construct
from the algebraic tensor product of Hilbert spaces H1, H2, . . . , Hn, a Hilbert
space which is the tensor product

⊗n
i=1 Hi.

The following results summarise important properties of the tensor product:

Proposition 16. If H1, . . . ,Hn are Hilbert spaces and Ai ∈ B(Hi) with i =
1, . . . , n bounded linear operators, then there exists a unique bounded linear op-
erator A ∈ B(H1 ⊗ . . .⊗Hn) such that:

A(x1 ⊗ . . .⊗ xn) = A1(x1) ⊗ . . .⊗ An(xn).

for all xi ∈ Hi and we write A = A1 ⊗ . . .⊗ An.

Proposition 17. The tensor product of (bounded) linear operators A1, A2, . . . ,
An (on Hilbert spaces) is associative and has the following properties:

(i) (A1 ⊗ . . .⊗ An)(B1 ⊗ . . .⊗ Bn) = (A1B1 ⊗ . . .⊗ AnBn)
(ii) A1 ⊗ . . .⊗ (αAi) ⊗ . . .⊗ An = α(A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)
(iii) A1 ⊗ . . .⊗ (Ai + Bi) ⊗ . . .⊗An = A1 ⊗ . . .⊗Ai ⊗ . . .⊗An + A1 ⊗ . . .⊗

Bi ⊗ . . .⊗ An

(iv) (A1 ⊗ . . .⊗ An)∗ = A∗
1 ⊗ . . .⊗ A∗

n

(v) ‖A1 ⊗ . . .⊗ An‖ = ‖A1‖ . . . ‖An‖

For a proof of these properties see e.g. discussions and remarks following Propo-
sition 2.6.12 in [18].

Partial Order Reduction for Markov Decision
Processes: A Survey

Marcus Groesser� and Christel Baier��

Institut für Informatik I
Römerstrasse 164

53117 Bonn
groesser@cs.uni-bonn.de
baier@cs.uni-bonn.de

Abstract. In the past, several model checking algorithms have been
proposed to verify probabilistic reactive systems. In contrast to the non-
probabilistic setting where various techniques have been suggested and
successfully applied to combat the state space-explosion problem in the
context of model checking the techniques used for probabilistic systems
have mainly concentrated on symbolic methods with variants of decision
diagrams or abstraction methods. Only recently results have been pub-
lished that give criteria on applying partial order reduction for verifying
quantitative linear time properties as well as branching time properties
for probabilistic systems. This paper summarizes the results that have
been established so far about partial order reduction for Markov decision
processes. We present the different reduction conditions and provide a
comparison of the corresponding results.

1 Introduction

Model checking is a technique that allows for the fully automatic verification of
a property (often specified in a temporal logic) against a given system (e.g. mod-
elled as a Kripke-structure (a labelled directed graph)). It supports the analysis
of qualitative properties such as “every request is eventually answered”. As the
systems get very large (the so-called state space-explosion problem), a variety of
techniques have been developed to tackle this problem. These include symbolic
model checking with binary decision diagrams, partial order reduction, abstrac-
tion techniques and reasoning with symmetries, see e.g. [10] for an overview.
The partial order reduction [39,32,19,34] is based on the observation that the
execution order of concurrent operations does not necessarily change the validity
of a property. Therefore, fixing one particular order of interleaving operations
(without generating the others) helps to reduce the number of states and transi-
tions that need to be explored while preserving the properties of interest. Over

� Supported by the DFG-NWO-Project “VOSS II” and the DFG-Project “SYANCO”.
�� Supported by the DFG-NWO-Project “VOSS II” and the DFG-Projects “PROB-

POR” and “SYANCO”.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 408–427, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Partial Order Reduction for Markov Decision Processes: A Survey 409

the years model checking has been extended to probabilistic system, such as la-
belled Markov chains and labelled Markov decision processes (MDPs). The latter
arise as natural operational models for e.g. randomized distributed algorithms
and communication or security protocols, where the nondeterminism is used to
model the interleaving of concurrent activities, the interaction with an uncertain
environment (e.g. a user) or for abstraction purposes, whereas the probabilism
serves to model e.g. coin tossing actions. The properties to be verified are of the
kind “with probability 1, every request will eventually be granted” or “access is
granted with a probability of at least 97%”. Verification of such properties relies
not only on graph algorithms (to explore the state space) but also on numer-
ical methods to solve linear equation systems or linear programming problems
[43,44,11,35,12,15]. Thus the state space-explosion problem is at least as rele-
vant (or even more) than in the non-probabilistic setting. In the probabilistic
setting, research on methods that combat the state space-explosion problem has
mainly concentrated on symbolic techniques with variants of decision diagrams
[22,2,8,23,31,29]. Moreover there is a range of results about state-aggregation
with (formula-independent) bisimulation-like equivalences [4,9] and various ab-
straction techniques [13,26,27,18]. Only recently results have been published on
partial order reduction for MDPs [5,14,3]. All of those publications extend a
particular instance of partial order reduction, the so-called ample-set-method to
MPDs. This paper gives a summary and comparison of those results.

Organization of the paper. Section 2 briefly summarizes the preliminaries
concerning our model (Markov decision processes) and partial order reduction.
In Section 3 the basic schema of the ample-set-method for linear time properties
and non-probabilistic systems is presented. Section 4 provides the various results
for partial order reduction on Markov decision processes. In Section 5, we explain
the connections between the several reduction criteria and process equivalences.
The paper ends with a brief conclusion in Section 6.

2 Preliminaries

In an MDP any state s might have several outgoing action-labeled transitions,
each of them is associated with a probability distribution which yields the proba-
bilities for the successor states. As in [36,30,15] we assume here that for any state
s, the outgoing transitions of s have different action labels. (This corresponds to
the so-called reactive model in the classification of [42].) In addition we assume
here a labelling function that attaches to any state s a set of atomic propositions
that are assumed to be fulfilled in state s. The atomic propositions will serve as
atoms to formulate the desired properties in a temporal logical framework.

Definition 1. (Probability distribution) Given a set T , a probability distri-
bution on T is a function

μ : T −→ [0, 1]

such that
∑

t∈T μ(t) = 1. The support of μ is denoted by supp(μ) = {t ∈ T :
μ(t) > 0} and the set of probability distributions on T is denoted by Distr(T).
Given t ∈ T , μt denotes the Dirac distribution that assigns probability 1 to t. �

410 M. Groesser and C. Baier

Definition 2. (Markov decision process (MDP), e.g. [36]) An MDP is a
tuple M = (S, Act, P, sinit,AP, L), where

– S is a finite set of states,
– Act is a finite set of actions,
– P : (S × Act × S) → [0, 1] is the probability matrix,
– sinit ∈ S is the initial state,
– AP is a finite set of atomic propositions and
– L : S → 2AP is a labeling function.

Act(s) denotes the set of actions that are enabled in state s, i.e. the set of
actions α ∈ Act such that P(s, α, t) > 0 for some state t ∈ S. For any state
s ∈ S, we require that Act(s) �= ∅ and

∑
s′∈S P(s, α, s′) = 1 for any action

α ∈ Act(s), that is P(s, α, .) is a probabilitiy distribution over S. (In particular,
we assume that M does not have terminal states.) �

The intuitive operational behavior of an MDP is as follows. If s is the current
state then first one of the actions α ∈ Act(s) is chosen non-deterministically.
Afterwards action α is executed leading to state t with probability P(s, α, t).

We refer to t as an α-successor of s if P(s, α, t) > 0. Action α is called a
probabilistic action if it has a random effect, i.e., if there is at least one state
s where α is enabled and that has two or more α-successors. Otherwise α is
called non-probabilistic. In particular, if all actions in Act are non-probabilistic
then our notion of an MDP reduces to an ordinary transition system with at
most one outgoing α-transition per state and action α. When modelling realistic
systems, most actions α will be non-probabilistic in the sense that they yield
unique successor states.

Paths. An infinite path in an MDP is a sequence

ς = s0, α1, s1, α2, . . . ∈ (S × Act)ω

such that αi ∈ Act(si−1) and P(si−1, αi, si) > 0 for any i ≥ 1. We write paths
in the form

ς = s0
α1−→ s1

α2−→ s2
α3−→ . . .

first(ς) = s0 denotes the starting state of ς and trace(ς) = L(s0), L(s1), L(s2), . . .
the word over the alphabet 2AP obtained by the projection of ς to the state
labels. Finite paths (denoted by the greek letter σ) are finite prefixes of infinite
paths that end in a state. We use the notations first(σ) and trace(σ) as for infinite
paths, last(σ) for the last state of σ and |σ| for the length (number of actions).

Schedulers. A scheduler denotes an instance that resolves the nondeterminism
in the states, and thus yields a Markov chain and a probability measure on
the paths. We consider here history dependent, randomized schedulers (briefly
called schedulers) which are given by a function D that assigns to any finite
path σ a probability distribution over Act(last(σ)). For a formal definition see

Partial Order Reduction for Markov Decision Processes: A Survey 411

[36,5]. Intuitively a scheduler takes as input the “history” of a computation
(formalized by a finite path σ) and chooses the next action α randomly, according
to the probabilities specified by the distribution D(σ). Given a scheduler D, the
behavior of M under D can be formalized by a (possibly infinite-state) Markov
chain. We write PrD,s or simply PrD to denote the standard probability measure
on the Borel field of the infinite paths ς with first(ς) = s.

In Section 4 we will need the notion of end components which can be seen
as the MDP-counterpart to terminal strongly connected components in Markov
chains. An end component consists of a state-set T ⊆ S and an action-set A(t)
for each state t ∈ T such that, once T is entered and only actions in A(t) are
chosen, T will not be left and any state of T can be visited from any other state
in T .

End Components [15,16]. Formally, an end component of M is a pair (T,A)
consisting of a state-set T ⊆ S and a function A : T → 2Act such that :

(1) ∅ �= A(t) ⊆ Act(t) for all states t ∈ T
(2)

∑
t′∈T P(t, α, t′) = 1 for all α ∈ A(t) and t ∈ T

(3) The directed graph (T,−→A) is strongly connected.

Here, −→A denotes the edge-relation induced by A, i.e., t −→A t′ iff P(t, α, t′) >
0 for some action α ∈ A(t).

The observation [15,16] that under each scheduler D almost all paths “end”
in an end component can be formalized as follows:

PrD
{
ς ∈ Paths(s) : Limit(ς) is an end component

}
= 1

Here, for an infinite path ς = s0
α1−→ s1

α2−→ . . ., Limit(ς) is the pair (T,A) where
T is the set of states t that occur infinitely often in ς and A(t) the set of actions
α ∈ Act(t) such that si = t and αi+1 = α for infinitely many indices i.

The correctness of partial order reduction criteria w.r.t temporal properties
is typically formulated by means of an equivalence that identifies those paths
whose traces (i.e., words obtained from the paths by projection on the state
labels) agree up to stuttering. In this context stuttering refers to the repetition
of the same state-labels.

Stutter equivalence. Two infinite words θ1 and θ2 over the alphabet 2AP are
called stutter equivalent,

θ1 ≡st θ2

iff there is an infinite word �1, �2, . . . over the alphabet 2AP such that

θ1 = �k1
1 , �

k2
2 , . . . and θ2 = �n1

1 , �n2
2 , . . . ,

where ki, ni ≥ 1. Two infinite paths ς1 and ς2 in a MDP are called stutter equiv-
alent iff the induced words trace(ς1) and trace(ς2) over 2AP are stutter equivalent.

For the partial order reduction we shall need the concept of stutter actions,
i.e., actions that have no effect on the state-labels, no matter in which state they
are taken.

412 M. Groesser and C. Baier

Stutter actions. Formally action α of an MDP M is called a stutter action iff
for all states s, t ∈ S we have:

P(s, α, t) > 0 implies L(s) = L(t).

We refer to s
β−→ t as a non-probabilistic stutter step if β ∈ Act(s) is a non-

probabilistic stutter action and t the unique β-successor of s.
The main ingredient of any partial order reduction technique in the proba-

bilistic or non-probabilistic setting is an adequate notion for the independence
of actions. The rough idea is a formalization of actions belonging to different
processes that are executed in parallel and do not affect each other, e.g. as they
only refer to local variables and do not require any kind of synchronization.

Independence of actions. The formal definition for the independence of ac-
tions α and β in the composed transition system (which captures the semantics
of the parallel composition of all processes that run in parallel) relies on recover-
ing the interleaving diamonds. In non-probabilistic systems independence of two
actions α and β means that for any state s where both α and β are enabled the
execution of α does not affect the enabledness of β (i.e., the α-successor of s has
an outgoing β-transition), and vice versa, and in addition the action sequences
αβ and βα lead to the same state. In the probabilistic setting the additional
requirement that αβ and βα have the same probabilistic effect is made:

Definition 3. (Independence of actions, cf. [14,5]) Two actions α, β with
α �= β are called independent (in M) iff for all states s ∈ S with {α, β} ⊆ Act(s):

(1) P(s, α, t) > 0 implies β ∈ Act(t),
(2) P(s, β, u) > 0 implies α ∈ Act(u)
(3) for all states w ∈ S:

∑
t∈S P(s, α, t)·P(t, β, w) =

∑
u∈S P(s, β, u)·P(u, α,w)

Two different actions α and β are called dependent iff α and β are not inde-
pendent. If A ⊆ Act and α ∈ Act \ A then α is called independent from A iff
for all actions β ∈ A, α and β are independent. Otherwise α is called dependent
on A. �

Applying the above definition to non-probabilistic actions α and β (i.e., where
P(s, α, t), P(s, β, t) ∈ {0, 1} for all states s, t) yields the standard definition of
independence of actions in ordinary transition systems.

Example 1. Fig. 1 shows a fragment of an MDP M1 representing the parallel
execution of independent actions α and β. For example, α might stand for the
outcome of the experiment of tossing a “one” with a dice, while β stands for
tossing a fair coin. In general, whenever α and β stand for stochastic experiments
that are independent in the classical sense then α and β viewed as actions of
an MDP are independent. However, there are also other situations where two
actions can be independent that do not have a fixed probabilistic branching
pattern. E.g., actions α and β in the MDP M2 in Fig. 1 are independent. First
notice that only in state s both α and β are enabled. The α-successors t, s of

Partial Order Reduction for Markov Decision Processes: A Survey 413

s

βα
1
6 5

6

αα
β

β
1
6 1

6

5
6

5
6

s

β
1
2

α

β

1
2

α

M1 : M2 :

t u

1
2

1
2

1
2

1
2

1
21

2

Fig. 1. Examples for independent actions

s have a β-transition to state u, while the β-successor u has a α-transition to
itself. The effect under the action sequences αβ and βα is the same as in either
case state u is reached with probability 1. �

Weight functions [28]. Let S, S′ be finite sets and R ⊆ S × S′. If μ and μ′

are probability distributions on S and S′ respectively then a weight function for
(μ, μ′) with respect to R denotes a function w : S × S′ → [0, 1] such that

– w(s, s′) > 0 implies (s, s′) ∈ R,
–
∑

s′∈S′ w(s, s′) = μ(s) for all s ∈ S and
∑

s∈S w(s, s′) = μ′(s′) for all s′ ∈ S′.

We write μ 0R μ′ to denote the existence of a weight function for (μ, μ′) w.r.t. R
and refer to 0R as the lifting of R to distributions.

3 Partial Order Reduction: The Ample Set Method

Several partial order reduction techniques have been developed from 1990 to
1995, [20,21,25,32,33,34,39,40,41]. In this paper we concentrate on one instance
of partial order reduction techniques, the so-called ample set method which was
developed by Doron Peled [32,33].

Given a transition system T , either non-probabilistic (Kripke-structure) or
probabilistic (MDP), the rough idea of the ample set method is to assign to any
reachable state s of T an action-set ample(s) ⊆ Act(s) and to construct a reduced
system T̂ that results by using the action-sets ample(s) instead of Act(s). The
reduced system should be equivalent to the original system in some sense

T̂ ≡ T ,

e.g. simulation equivalent or bisimulation equivalent, etc. Depending on the de-
sired equivalence the defined ample-sets have to fulfill certain conditions. In the
remainder of this chapter we will explain the conditions that Doron Peled [33]

414 M. Groesser and C. Baier

proposed to ensure stutter equivalence for a given non-probabilistic system T
and its reduced system T̂ .

In Section 4 we will show how these conditions can be extended to ensure

– stutter equivalence,
– simulation equivalence, resp.
– bisimulation equivalence

for a given MDP M and the reduced MDP M̂ and suitable notions of simulation
and bisimulation.

We will now give the formal definition of the reduced system. As a non-
probabilistic system T can be seen as a MDP with P(s, α, t) ∈ {0, 1} for all
states s, t and actions α, we restrict our definition to the general case of an
MDP.

Reduced system. Given an MDP M = (S,Act,P, sinit,AP, L) and given a func-
tion ample : S → 2Act with ample(s) ⊆ Act(s) for all states s, the state space of
the reduced MDP

M̂ = (Ŝ,Act, P̂, sinit,AP, L̂)

induced by ample is the smallest set Ŝ ⊆ S that contains sinit and any state t
where P(s, α, t) > 0 for some s ∈ Ŝ and α ∈ ample(s). The labeling function
L̂ : Ŝ → 2AP is the restriction of the original labeling function L to the state-set
Ŝ. The transition probability matrix of M̂ is given by:

P̂(s, α, t) = P(s, α, t)

if α ∈ ample(s) and 0 otherwise. State s is called fully expanded if ample(s) =
Act(s).

How is stutter equivalence between transition systems defined in the non-prob-
abilistic setting? It means, that given a path from one of the systems, the other
system must be able to produce a stutter equivalent path, where two paths are
called stutter equivalent, if and only if their traces are stutter equivalent words
over 2AP.

Stutter equivalence. Given two non-probabilistic systems

Ti = (Si,Acti,Pi, s
i
init,APi, Li)1, i = 1, 2

we call T1 and T2 stutter equivalent,

T1 ≡st T2,

if and only if for each path ς1 = s1init
α1−→ s11

α2−→ s12
α3−→ . . . of T1 there exists

a path ς2 = s2init

β1−→ s21
β2−→ s22

β3−→ . . . of T2 such that trace(ς2) ≡st trace(ς1)
and vice versa.
1 Pi(si, αi, ti) ∈ {0, 1} for all states si, ti ∈ Si and all actions αi ∈ Acti.

Partial Order Reduction for Markov Decision Processes: A Survey 415

(A0) (Nonemptiness-condition) For all states s ∈ S, ∅ �= ample(s) ⊆ Act(s).
(A1) (Stutter-condition) If s ∈ Ŝ and ample(s) �= Act(s) then all actions α ∈

ample(s) are stutter actions.
(A2) (Dependence-condition) For each path σ = s

α1−→ s1
α2−→ . . .

αn−→ sn
γ−→

. . . in M where s ∈ Ŝ and γ is dependent on ample(s) there exists an index
i ∈ {1, . . . , n} such that αi ∈ ample(s).

(A3) (Cycle-condition) On each cycle s
α1−→ s1

α2−→ . . .
αn−→ sn = s in M̂ there

exists a state si which is fully expanded, i.e., ample(si) = Act(si).

Fig. 2. Conditions for the ample-sets

Note that given a stutter insensitive linear time property E, it holds that

T1 |= E if and only if T2 |= E.2

Here, by stutter insensitive we mean a linear time property which can not dis-
tinguish between stutter equivalent paths, that is given two stutter equivalent
paths ς1 and ς2, it holds that

trace(ς1) ∈ E if and only if trace(ς2) ∈ E.

A particular type of stutter insensitive linear time properties are specifications
which are described by a formula of the Next Step free fragment of Linear Time
Logic (LTL\X). Thus given a LTL\X formula ϕ and two stutter equivalent sys-
tems T1 and T2 it holds that

T1 |= ϕ if and only if T2 |= ϕ.

Criteria for stutter equivalence. To gain stutter equivalence between the
given non-probabilistic system T and the reduced system T̂ (and therefore
to preserve stutter insensitive linear time properties) the conditions shown in
Figure 2 have been proposed in [33] where the following result has been
shown :

Given a system T = (S,Act,P, sinit,AP, L) and a function ample : S → Act
that satisfies the conditions (A0)-(A3) in Figure 2, it holds that

T ≡st T̂ .

In the following we will explain each of the conditions which will roughly sketch
the proof.

(A0) Condition (A0) ensures that the reduced system is a sub-MDP of the
original one and has no terminal states (as the original one).

2 T |= E means that for all paths ς of T , trace(ς) ∈ E.

416 M. Groesser and C. Baier

Thus each path of T̂ is also a path of T . We now have to show that for any path
ς of T there is a stutter equivalent path ς̂ of T̂ . Let

ς = s
α1−→ s1

α2−→ s2
α3−→ . . .

be a path of T . We explain how to construct a stutter equivalent path ς1 starting
in s such that its first action is an ample action of s. If α1 ∈ ample(s), let ς1
be ς. If α1 /∈ ample(s), let n be the smallest number such that αn ∈ ample(s)3.
Assume that n is finite.

(A1) As s is not fully expanded and αn ∈ ample(s), (A1) ensures that αn

is a stutter action.
(A2) As αn is the first ample-action of s that occurs along ς, (A2) ensures
that αn is independent from {α1, . . . , αn−1}.

·····α1 α2 αn−2 αn−1

αn

s s1 s2 sn−3 sn−2 sn−1

sn

αn

tn−1

αn

tn−2

αn

t3

αn

t2

αn

t1 α1 α2 αn−2 αn−1····· ···
Hence we may replace the action sequence α1 . . . αn−1αn by the action sequence
αnα1 . . . αn−1 to obtain a path

ς1 = s
αn−→ t1

α1−→ . . .
αn−2−→ tn−1

αn−1−→ sn
αn+1−→ sn+1

αn+2−→ . . .

which is stutter equivalent to ς.
If n = ∞, by similar arguments one can replace ς by a stutter equivalent path

ς1 with the same starting state first(ς) and the action sequence βα1α2 . . . where
β is an arbitrary action in ample(first(ς)).

In either case we obtain a path ς1 that starts with a transition in the reduced
system T̂ . We now may apply the same technique to the path ς1 (more precisely,
to the suffix of ς1 that starts in the second state) to obtain a stutter equivalent
path ς2 whose first two transitions are transitions in T̂ . We continue in this way
until the path ς of T is “transformed” into a path ς̂ in T̂ . Although conditions
(A0)-(A2) are sufficient to guarantee the stutter equivalence of ς and the paths
ς1, ς2, . . ., the cycle condition (A3) is needed to ensure the stutter equivalence
of ς and ς̂.

4 The Ample Set Method for MDPs

We have just explained how the conditions (A0)-(A3) work to establish a stutter
equivalence between the given system T and the reduced system T̂ . Given a path
ς of T with the underlying action sequence α1, α2, . . . where α1 /∈ ample(first(ς)),
the main idea is to permute the first ample action of first(ς) to the front of

3 If none of the αi is an ample-action of s, let n be ∞.

Partial Order Reduction for Markov Decision Processes: A Survey 417

the action sequence. We gain a new stutter equivalent path ς1 and repeat this
procedure ad infinitum.

When dealing with MDPs, a problem arises. A scheduler for a given MDP M
might schedule a non-ample action of the starting state. As this action can be
probabilistic there might be several successors. For each of those the scheduler
is able to schedule different ample actions of the starting state. Which of those
should be choosen to be permuted to the front? In fact, a scenario as above must
be forbidden. That is why in the probabilistic setting, we need an additional
branching condition (A4) to make the ample set method work.

4.1 Establishing a Probabilistic Stutter Equivalence

In this paragraph we present the results of [5] which show how the ample set
conditions can be extended to gain stutter equivalence between a given MDP
M and the reduced MDP M̂.

First of all, we give the definition of stutter equivalence for MDPs.

Stutter equivalence for MDPs. Given two MDPs

Mi = (Si,Acti,Pi, s
i
init,APi, Li), i = 1, 2

we call M1 and M2 stutter equivalent (M1 ≡st M2), if and only if for each
measurable, stutter insensitive linear time property E and each scheduler D1 of
M1 there is a scheduler D2 of M2 such that

PrD1
s1

init
({ς path of M1 : trace(ς) ∈ E}) = PrD2

s2
init

({ς path of M2 : trace(ς) ∈ E})

and vice versa. As already mentioned in section 3, a formula of the Next Step
free fragment of LTL (Linear Time Logic) specifies a stutter insensitive linear
time property. Thus given a LTL\X formula ϕ and a probability bound p ∈ [0, 1],
the following holds for stutter equivalent MDPs M1 and M2 :

M1 |= (ϕ, &# p) if and only if M2 |= (ϕ, &# p), 4

where &#∈ {<, ≤, >, ≥} is a comparison operator.
That means that given a qualitative LTL\X specification, it suffices to model

check M̂ instead of M if we can garantuee the stutter equivalence between a
given MDP and the reduced system. As M̂ is in general smaller than M this
yields a possible speedup of the analysis. Of course the algorithmic construc-
tion of appropriate ample sets together with the construction and analysis of M̂
should be more efficient than model checking the full system M. As you will see
in the following, the partial order reduction criteria for the probabilistic setting
are rather strong and might often lead to a minor savings of states. Neverthe-
less even a reduction that cannot shrink the state space of an MDP but only

4 M |= (ϕ, �� p) holds, if and only if under each scheduler of M, the set of paths
satisfying ϕ has measure �� p.

418 M. Groesser and C. Baier

s

s1

s2 t2

t1

α α α

β γ

β γ

β γ

tu

u1

u2

..

....

..

s

t2

t1

α α
β γ

tu

u1

u2

..

....

..

M M̂

τ

τ

τ

τ

τ

τ

τ

τ

2
3

1
3

2
3

1
3

2
3

1
3

2
3

1
3

2
3

1
3

τ

τ

τ

τ

τ

τ

τ

τ

Fig. 3. (A0)-(A3) and (A4’) do not establish stutter equivalence

the number of transitions can increase the efficiency of the probabilistic model
checking procedure. The latter relies on solving linear programs where the num-
ber of linear (in)equalities for any state s is given by the number of outgoing
transitions from s. Thus removing certain transitions via efficient reduction algo-
rithms that e.g. operate on syntactic descriptions of the processes simplifies the
linear program to be solved, and can therefore yield a speed-up of the analysis.

Why is it that conditions (A0)-(A3) can not ensure the stutter equivalence
of a given MDP M and its reduced MDP M̂. A counterexample is depicted in
Figure 3, which shows a MDP M5 and its reduced MDP for the following ample
sets: ample(s) = {β, γ} and ample(s′) = Act(s′) for all other states s′. It is easy
to see that conditions (A0)-(A3) are satisfied (we assume that the labeling is
given by ���

� � and ���� �). But

M̂ �≡st M,

as the maximum probability of eventually reaching ���
� � in M is 1 (by choosing first

α and then β in state s1 and γ in state s2). It is instead 2
3 in M̂. The problem

that arises is the following. The scheduler of M schedules a probabilistic non-
ample action of the starting state s. Depending on the outcome (moving to state
s1 or s2), the scheduler chooses different ample actions (of s). Thus choosing α
first postpones the real nondeterministic decision between the ample actions β
and γ. The reduced system M̂ is not able to mimic such a behaviour as it has to
decide for a particular ample action of s in its first step (before the outcome of α
is known). This decision is fixed from then on. It is exactly this behaviour that
one has to forbid to gain stutter equivalence between the given system M and
its reduced sytem. That means that if the system can branch probabilistically
with non-ample actions (w.r.t. the starting state) then there should be only one
ample action of the starting state.

The auhors of [5] proposed condition

(A4’) (Branching-condition à la [5]) If σ = s
α1−→ s1

α2−→ . . .
αn−→ sn

γ−→
. . . is a path in M where s ∈ Ŝ, α1, . . . , αn, γ /∈ ample(s) and γ is
probabilistic then |ample(s)| = 1.

5 Note that α is the only probabilistic action of M.

Partial Order Reduction for Markov Decision Processes: A Survey 419

and showed that given a MDP M and ample sets that satisfy conditions (A0)-
(A3) and (A4’), then

M̂ ≡st M.

Remark

– One should notice that condition (A4’) is irrelevant for non-probabilistic
systems. Thus the extended ample set method falls back to the original one,
if applied to non-probabilistic systems.

– The authors of [5] were actually able to replace condition (A3) by a weaker
condition
(A3’) (End component-condition) In each end component (T,A) in M̂

there exists a state s ∈ T which is fully expanded, i.e., ample(s) =
Act(s).

that uses the concept of de Alfaro’s end components [15,16]. Again, if applied
to non-probabilistic systems, condition (A3’) is equivalent to condition (A3).
However condition (A3’) also allows for certain cycles violating the cycle-
condition (A3). For instance, for the MDP M2 in Fig. 1, (A3’) allows to
choose ample(s) = {α} (provided that α is a stutter-action), as state s is not
contained in an end component.

4.2 Establishing a Simulation Equivalence

In this paragraph we present the results of [14] which show how the ample set
condition (A4’) can be strengthened to gain some kind of simulation equivalence
between a given MDP M and the reduced MDP M̂.

D’Argenio and Niebert noted in [14] that “the interplay between nondetermin-
ism and probabilism is comparable to that of existential and universal quantifi-
cation.” Thus they followed the approach by Gerth et al [19] to ensure CTL\X

(the Next Step free fragment of computation tree logic) equivalence between
a given non-probabilistic system T and its reduced system T̂ . They proposed
condition

(A4”) (Branching-condition à la [14]) For any state s in Ŝ : ample(s) =
Act(s) or ample(s) is a singleton.

to ensure that the interplay between nondeterministic and probabilistic choices is
preserved : either the unique nondeterministic choice is safe (hence |ample(s)| =
1) or all branching is preserved (ample(s) = Act(s)).

Before we present the results of [14] the reader should notice that [14] required
a stronger underlying structure for the given MDP. They assumed each action
to have a fixed probabilistic branching pattern, i.e. if α ∈ Act(s) and there are
numbers x1, . . . , xn ∈ (0, 1] and mutual distinct successor states s1, . . . , sn such

that P(s, α, si) = xi and
n∑

i=1
xi = 1 then for all states t such that α ∈ Act(t) there

exist mutual distinct states t1, . . . , tn such that P(t, α, ti) = xi, i = 1, . . . , n.
[14] established a (probabilistic weak) complete forward simulation equiva-

lence between a given MDP M and the reduced MDP M̂. There a state of M

420 M. Groesser and C. Baier

is not simulated by one state of M̂, but by a probability distribution over the
states of M̂.

To define this simulation we need the notion of probabilistic weak transitions
which is given below.

Probabilistic weak transition

α ∈ Act(s)

s
α=⇒ P(s, α, .)

β∈Act(s),β stutter action and

∀r ∈ supp(P(s, β, .)) : r α=⇒ μr

s
α=⇒
∑

r∈supp(P(s,β,.)) P(s, β, r) · μr

Thus there is a probabilistic weak transition s α=⇒ μ, if there is a probabilistic
directed tree starting in s, such that μ is the probability of reaching its leaves
and only stutter actions occur in this tree except for the last action (leading to
a leave), which must be α. Then let

s
α̂=⇒ μ iff s

α=⇒ μ or (α is a stutter action and μ = μs
6).

Complete forward simulation (cfs)
Given two MDPs M = (S,Act,P, sinit,AP, L) and M′ = (S′,Act′,P′, s′init,AP, L′)
with the same set of atomic propositions and a binary relation R ⊆ S×Distr(S′).
Then R is called a complete forward simulation for M and M′, if (sinit, μs′

init) ∈ R
and for any pair (s, μ) in R the following two conditions are fulfilled.

(1) L(s) = L′(s′) ∀s′ ∈ supp(μ)
(2) For any action α ∈ Act(s) it holds that :

(2.1) ∀r ∈ supp(μ) ∃μr : r α̂=⇒ μr and
(2.2) ∃ν ∈ Distr(Distr(M′)) such that P(s, α, .) 0R ν and∑

r∈supp(μ) μ(r) · μr =
∑

μ′∈supp(ν) ν(μ
′) · μ′

We call M and M′ complete forward simulation equivalent if there are complete
forward simulations for M and M′ as well as for M′ and M. We write M ≈cfs
M′ iff M and M′ are complete forward simulation equivalent.

The authors of [14] showed that given a MDP M and ample sets satisfying
conditions (A0)-(A3) and (A4”) then

M̂ ≈cfs M.

As complete forward simulation is stronger than forward simulation which is
known to preserve trace distribution [38], the authors of [14] argue that a given
MDP M and its reduced MDP M̂ are trace distribution equivalent if condi-
tions (A0)-(A3) and (A4”) are satisfied. Therefore the reduction preserves the
maximum probability of reaching a particular set of states.

We will now give an example for a complete forward simulation. Consider the
MDPs M and M̂ in Figure 4 (α and β are stutter actions). Starting with the

6 Recall that μs denotes the Dirac distribution that assigns probability 1 to the state s.

Partial Order Reduction for Markov Decision Processes: A Survey 421

s

s1

s2 t2

t1

α α α

β

β

tu

u1

u2

..

....

..

M M̂

τ

τ

τ

τ

2
3

1
3

2
3

1
3

2
3

1
3

τ

τ

τ

τ
β

3
4 1

4

3
4

1
4

3
4

1
4

ŝ

t̂2

t̂1

α α

β

t̂û

û1

û2

..

....

..τ

τ

τ

τ

2
3

1
3

2
3

1
3

τ

τ

τ

τ

3
4

1
4

Fig. 4. Example for complete forward simulation

MDP M and choosing ample(s) = {β}, we obtain that (A0)-(A3) and (A4”) are
satisfied and M̂ is the reduced MDP. Then action α in state s has no “direct”
match in state ŝ. But M̂ can execute first β and then α. How are the states s1
and s2 related to states of M̂? The state s1 is simulated by the distribution μ1
and s2 is simulated by the distribution μ2, where

μ1(û1) =
3
4
, μ1(t̂1) =

1
4

and μ2(û2) =
3
4
, μ2(t̂2) =

1
4
.

If M performs action β in state s1 then M̂ does not perform any action, but
matches the action of M with offering states û1 and t̂1 with the needed prob-
abilities. Thus μ1 and μ2 “record” probabilistic choices that have already been
made in M̂, but not yet in M (in this case, this is the execution of β).

Remark: Conditions (A0)-(A3) together with (A4”) are exactly the conditions
that Gerth et al[19] proposed to ensure CTL\X (the Next Step free fragment of
computation tree logic) equivalence between a given non-probabilistic system T
and its reduced system T̂ . In contrast to this both [14] as well as [5] mention that
conditions (A0)-(A3) and (A4”) are not sufficient to gain PCTL\X [7] (the Next
Step free fragment of probabilistic computation tree logic) equivalence between
a given MDP M and the reduced MDP M̂ as the example in Figure 5 shows.
In Figure 5, a and b are atomic propositions. As β is a stutter action which is
independent from α, conditions (A0)-(A3) and (A4”) are satisfied when choosing
the singleton ample set {β} in the initial state. However, the PCTL\X-formula

P=1
[
�
(
(a ∧ ¬b) → (P=1[♦b] ∨ P=1[♦¬a])

)]
holds for M̂, but not for M (where � stands for “always”, ♦ stands for “even-
tually” and P=1[ϕ] requires that under all schedulers the set of paths satisfying
ϕ has measure 1).

Note that in a probabilistic forward simulation, state s of M would be simu-
lated by a uniform distribution over the “a” states of M̂.

422 M. Groesser and C. Baier

α

β

τ

1
2

a,b

a

a,b

τ

τ τ

α

α

β
1
2

1
2

1
2

M M̂

α

β

τ

1
2

τ

τ τ

α

1
2

a

a,b a a,b a,b

a,b

a

a,ba,b

a

state s

Fig. 5. (A0)-(A3), (A4”) are not sufficient for PCTL\X

4.3 Establishing a Bisimulation Equivalence

Why is it that conditions (A0)-(A3) and (A4”) are not enough for PCTL\X

equivalence. To gain CTL\X equivalence for a non-probabilistic system T and
its reduced system T̂ one has to eliminate the possibility that a state of the
reduced system can reach (in one step) several, but not all of its successors of
the original system. This is done by condition (A4”) stating that each state in
the reduced system T̂ is either fully expanded, or its ample set is a singleton.
This suffices to preserve branching properties. Dealing with MDPs condition
(A4”) is not enough, as if a state s is not fully expanded and its ample set
ample(s) = {α} is a singleton then α might be probabilistic. This means that
the set of successors of s in M̂ can be a proper subset of the set of successor
of s in M and contains more than a single state (see Figure 5, the example in
Figure 5 is a probabilistic variant of the counterexample given in [19]). Thus a
stronger condition is needed to ensure that a state which is not fully expanded
has only one successor.

In this paragraph we present the results of [3] which show how the ample set
condition (A4”) can be strengthened to gain bisimulation equivalence between
a given MDP M and the reduced MDP M̂. The notion of bisimulation is that
of probabilistic visible bisimulation which is defined in the following.

Probabilistic visible bisimulation (pvb)
Given two MDPs M = (S,Act,P, sinit,AP, L) and M′ = (S′,Act′,P′, s′init,AP, L′)
with the same set of atomic propositions and a binary relation R ⊆ S×S′. Then
R is called a probabilistic visible simulation if (sinit, s

′
init) ∈ R and for any pair

(s, s′) in R the following three conditions are fulfilled.

(1) L(s) = L′(s′)
(2) For any action α ∈ Act(s) at least one of the following two conditions holds:

(2.1) α is a non-probabilistic stutter action such that (t, s′) ∈ R for the
unique α-successor t of s,

Partial Order Reduction for Markov Decision Processes: A Survey 423

(2.2) There is a finite path σ′ of the form σ′ = s′0
β0−→ s′1 . . .

βn−1−−−→ s′n in M′

s.t.7

– β0, . . . , βn−1 are non-probabilistic stutter actions,
– (s, s′i) ∈ R for 1 ≤ i ≤ n,
– α ∈ Act′(s′n) and P(s, α, ·) 0R P′(s′n, α, ·) 8.

(3) If there is an infinite path ς of the form ς = t0
β0−→ t1

β1−→ t2
β2−→ t3

β3−→ . . .
in M consisting of non-probabilistic stutter actions β0, β1, β2, . . . and such
that (ti, s′) ∈ R, i = 0, 1, 2, . . . then there is a finite path σ′ of the form σ′ =
t′0

γ0−→ t′1
γ1−→ . . .

γj−1−−→ t′j
γj−→ t′j+1 in M′ such that (s, t′i) ∈ R, i = 0, 1, . . . , j,

(t1, t′j+1) ∈ R, and γ0, γ1, . . . , γj−1, γj are non-probabilistic stutter actions.

R is called a probabilistic visible bisimulation for (M,M′) if R is a probabilistic
visible simulation for (M,M′) and R−1 is a probabilistic visible simulation for
(M′,M). We write M ≈pvb M′ iff there exists a probabilistic visible bisimula-
tion for (M,M′).

[3] argue that two probabilistic visible bisimilar MDPs M and M′ satisfy the
same PCTL∗

\X state formulas. As already mentioned above, to gain PCTL∗
\X

equivalence between a MDP M and its reduced MDP M̂, we have to forbid
that a state which is not fully expanded has more than a single successor. Thus
[3] proposed condition

A4”’ (Branching-condition à la [3]) For any state s in Ŝ : ample(s) =
Act(s) or ample(s) = {α}, where α is a non-probabilistic action

and showed that given a MDP M and ample sets satisfying conditions (A0)-(A3)
and (A4”’) then

M̂ ≈pvb M.

Remark

– One should notice that condition (A4”’) is equivalent to (A4”) if applied to
non-probabilistic system. Thus (A4”’) is a conservative adaption of condi-
tion (A4”) suggested by Gerth et al. [19] to establish a visible bisimulation
between a given non-probabilistic system T and its reduced system T̂ .

– To handle branching time properties, the cycle-condition (A3) could also be
replaced with the weaker end component condition (A3’). However, in com-
bination with (A4”’), conditions (A3’) and (A3) are equivalent. This follows
from the fact that for any end component in M̂ where none of its states is
fully expanded, the ample-sets of all its states are singletons consisting of a
non-probabilistic action. Thus the end component under consideration is a
cycle.

7 The case n = 0, i.e., σ′ = s′, is allowed.
8 Note, that P (s,α, ·) �R P ′(s′

n, α, ·) denotes the existence of a weight function for
(P (s,α, ·), P ′(s′

n, α, ·)) w.r.t. R (as introduced in section 2).

424 M. Groesser and C. Baier

5 Partial Order Reduction Versus Process Equivalences

In this section we give a brief summary of the results presented in Section 4. With
suitable notions of stutter equivalence, simulation and bisimulation equivalence
we obtain:

(a) If conditions (A0)-(A3) and (A4’) hold then M and M̂ are stutter equivalent
(see Section 4.1), but in general M̂ does not simulate M.

(b) If conditions (A0)-(A3) and (A4”) hold then M and M̂ are simulation equiv-
alent (see Section 4.2), but in general not bisimilar.

(c) If conditions (A0)-(A3) and (A4”’) hold then M and M̂ are probabilistic
visible bisimilar (see Section 4.3).

In particular, stutter equivalent MDPs satisfy the same quantitative LTL\X

properties and probabilistic visible bisimilar MDPs satisfy the same PCTL∗
\X

properties.
We will now give examples for the statements in (a) and (b). Figure 6 illus-

trates a reduction satisfying (A0)-(A3) and (A4’) where M̂ does not simulate
M (as stated in (a)). Here M and M̂ do not contain probabilistic actions, and
hence can be viewed as ordinary transition systems. The intuitive argument why
M̂ does not simulate M is that there is no possibility to mimic the nondetermin-
istic choice in state t via a probabilistic choice over the two a-states in M̂. Note
that the schedulers for M in the upper a-state t might choose β and γ (and thus
combine the two lower a-states) with arbitrary probabilities while probabilistic
forward simulation would require a fixed probability distribution over the two
lower a-states to mimic the possible behaviors of t (which is not possible).

α

β

τ

a

a,b

τ

τ τ

α

α

β

M M̂

α

β

τ τ

τ τ

α

a

a a,b

a

a,b

a

a,b

a

γ γ

γ
a,b

a,b

a,ba,b

state t

a,b

Fig. 6. (A0)-(A3) and (A4’) hold, but M̂ does not simulate M

For the example in Figure 5, M and M̂ are simulation equivalent. The in-
tuitive argument why M̂ can simulate M is that state s is simulated by the
probability distribution that assigns probability 1/2 to the two a-states in M̂.
But in Figure 5, M and M̂ are not bisimilar because there is no state in M̂ that

Partial Order Reduction for Markov Decision Processes: A Survey 425

corresponds to state s in M. Thus Figure 5 yields an example for a reduction
satisfying (A0)-(A3) and (A4”) where M and M̂ are not bisimilar (as stated
in (b)).

6 Conclusion

In this paper we gave an overview of results for partial order reduction with re-
spect to Markov decision processes. This includes partial order criteria proposed
by [5] that preserve quantitative linear time properties (see Section 4.1) as well as
criteria proposed by [3] that preserve probabilistic branching time properties (see
Section 4.3). It is worth noting that these criteria are the natural extension of
the known reduction criteria for non-probabilistic systems and linear time prop-
erties, resp. branching time properties. Moreover in Section 4.2 we presented the
criteria of [14] which establish a simulation equivalence between the given sys-
tem and the reduced system. We are not aware of any theoretical consideration
of partial order reduction criteria for MDPs other than [5,14,3], but we expect
that more work will be done in this area in the future. Further directions include
an investigation of other partial order techniques such as Valmari’s stubborn sets
[39,41] and Godefroid’s persistent sets [20].

On the practical side our group is currently implementing the forthcoming
model checker LiQuor [1] for quantitative LTL where the partial order criteria
presented in Section 4.2 are implemented. Although these criteria are rather
strong, first experimental results are promising as good reductions can be ob-
tained. Moreover, while model checking probabilistic systems, even minor savings
of states and transitions are desirable as the probabilistic model checking proce-
dure relies not only on graph exploring algorithms (as in the non-probabilistic
case), but also on solving linear programs where the number of linear inequalities
for any state s is given by the number of outgoing transitions from s.

References

1. C. Baier, F. Ciesinski, and M. Groesser. Quantitative analysis of distributed ran-
domized protocols. In Proc. of the tenth International Workshop on Formal Meth-
ods for Industrial Critical Systems (FMICS 05), 2005.

2. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. In Proc. International Collo-
qium on Automata, Languages and Programming (ICALP), volume 1256 of Lecture
Notes in Computer Science, pages 430–440, 1997.

3. C. Baier, P. D’Argenio, and M. Größer. Partial order reduction for probabilistic
branching time. In Proc. QAPL, 2005.

4. C. Baier, B. Engelen, and M. Majster-Cederbaum. Deciding bisimularity and simi-
larity for probabilistic processes. Jounal of Computer and System Sciences, 60:187–
231, 2000.

5. C. Baier, M. Größer, and F. Ciesinski. Partial order reduction for probabilistic
systems. In QEST 2004 [37], pages 230–239.

426 M. Groesser and C. Baier

6. C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors. Vali-
dation of Stochastic Systems, volume 2925 of Lecture Notes in Computer Science,
2003.

7. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proc. Foundations of Software Technology and Theoretical Computer
Science (FST & TCS), volume 1026 of Lecture Notes in Computer Science, pages
499–513, 1995.

8. M. Bozga and O. Maler. On the Representation of Probabilities over Structured Do-
mains. In Proc. International Conference on Computer Aided Verification (CAV),
volume 1633 of Lecture Notes in Computer Science, pages 261–273, 1999.

9. S. Cattani and R. Segala. Decision algorithms for probabilistic bisimulation. In
Proc. International Conference on Concurrency Theory (CONCUR), volume 2421
of Lecture Notes in Computer Science, pages 371–385, 2002.

10. E. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 1999.
11. C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events

(extended abstract). In Proc. 17th on International Colloquium Automata, Lan-
guages and Programming (ICALP), volume 443 of Lecture Notes in Computer Sci-
ence, pages 336–349, 1990.

12. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

13. P. d’ Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In [17], pages 57–76, 2001.

14. P.R. D’Argenio and P. Niebert. Partial order reduction on concurrent probabilistic
programs. In QEST 2004 [37], pages 240–249.

15. L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, Department of Computer Science, 1997.

16. L. de Alfaro. Stochastic transition systems. In Proc. 9th International Conference
on Concurrency Theory (CONCUR), volume 1466 of Lecture Notes in Computer
Science, pages 423–438, 1998.

17. L. de Alfaro and S. Gilmore, editors. Proc. 1st Joint Int. Workshop Process Al-
gebra and Probabilistic Methods, Performance Modeling and Verification (PAPM-
PROBMIV), volume 2399 of Lecture Notes in Computer Science. Springer, 2001.

18. H. Fecher, M. Leuker, and V. Wolf. Don’t know in probabilistic systems. In
Proceedings of 13th International SPIN Workshop on Model Checking of Software
(SPIN’06), 2006.

19. R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to
branching time logic model checking. In Proc. 3rd Israel Symposium on the Theory
of Computing Systems (ISTCS’95), pages 130–139. IEEE Press, 1995.

20. P. Godefroid. Partial Order Methods for the Verification of Concurrent Systems:
An Approach to the State Explosion Problem, volume 1032 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

21. P. Godefroid, D. Peled, and M. Staskauskas. Using partial-order methods in the
formal validation of industrial concurrent programs. In Proc. International Sym-
posium on Software Testing and Analysis, pages 261–269. ACM Press, 1996.

22. G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Probabilistic Analysis of Large
Finite State Machines. In 31st ACM/IEEE Design Automation Conference (DAC).
San Diego Convention Center, 1994.

23. H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On the use of
MTBDDs for performability analysis and verification of stochastic systems. Journal
of Logic and Algebraic Programming: Special Issue on Probabilistic Techniques for
the Design and Analysis of Systems, 56:23–67, 2003.

Partial Order Reduction for Markov Decision Processes: A Survey 427

24. H. Hermanns and R. Segala, editors. Proc. 2nd Joint Int. Workshop Process Al-
gebra and Probabilistic Methods, Performance Modeling and Verification (PAPM-
PROBMIV), volume 2399 of Lecture Notes in Computer Science. Springer, 2002.

25. G. Holzmann and D. Peled. An improvement in formal verification. In Proc.
Formal Description Techniques, FORTE94, pages 197–211, Berne, Switzerland,
October 1994. Chapman & Hall.

26. M. Huth. Possibilistic and probabilistic abstraction-based model checking. In [24],
pages 115–134, 2002.

27. M. Huth. Abstraction and probabilities for hybrid logics. In Proc. 2nd workshop
on Quantitative Aspects of Programming Languages, 2004.

28. B. Jonsson and K. Larsen. Specification and refinement of probabilistic processes.
In Proc. LICS, pages 266–277. IEEE CS Press, 1991.

29. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. International Journal on Software Tools for
Technology Transfer (STTT),, 2004.

30. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991.

31. A. Miner and D. Parker. Symbolic representations and analysis of large probabilis-
tic systems. In [6], 2003.

32. D. Peled. All from one, one for all: On model checking using representatives. In
Proc. 5th International Computer Aided Verification Conference (CAV), volume
697 of Lecture Notes in Computer Science, pages 409–423, 1993.

33. D. Peled. Partial order reduction: Linear and branching time logics and process
algebras. In [34], pages 79–88, 1996.

34. D. Peled, V. Pratt, and G. Holzmann, editors. Partial Order Methods in Verifica-
tion, volume 29(10) of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, 1997.

35. A. Pnueli and L. D. Zuck. Probabilistic verification. Information and Computation,
103(1):1–29, 1993.

36. M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, 1994.

37. Proceedings of the 1st International Conference on Quantitative Evaluation of Sys-
Tems (QEST 2004). Enschede, the Netherlands. IEEE Computer Society Press,
2004.

38. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.

39. A. Valmari. A stubborn attack on state explosion. Formal Methods in System
Design, 1:297–322, 1992.

40. A. Valmari. State of the art report: Stubborn sets. Petri-Net Newsletters, 46:6–14,
1994.

41. A. Valmari. Stubborn set methods for process algebras. In [34], pages 79–88, 1996.
42. R. van Glabbeek, S. Smolka, B. Steffen, and C. Tofts. Reactive, generative, and

stratified models of probabilistic processes. In Proc. 5th Annual Symposium on
Logic in Computer Science (LICS), pages 130–141. IEEE Computer Society Press,
1990.

43. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proc. 26th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 327–338, 1985.

44. M. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In Proc. 1st Annual Symposium on Logic in
Computer Science (LICS), pages 332–344. IEEE Computer Society Press, 1986.

Author Index

Baier, Christel 408
Barnat, Jǐŕı 259
Barnett, Mike 364
Berdine, Josh 115
Brim, Luboš 259

Calcagno, Cristiano 115
Černá, Ivana 259
Chalin, Patrice 342
Chang, Bor-Yuh Evan 364
Clarke, Edmund 243

Dams, Dennis R. 138
DeLine, Robert 364
de Wind, Paulien 195
Di Pierro, Alessandra 388
Distefano, Dino 280

Ferrari, Gian Luigi 22
Fokkink, Wan 195

Groesser, Marcus 408
Grumberg, Orna 219

Hankin, Chris 388
Haugen, Øystein 88
Hirsch, Dan 22

Jacobs, Bart 364
Jürjens, Jan 64

Katoen, Joost-Pieter 280
Kiniry, Joseph R. 342
Kobro Runde, Ragnhild 88
Komenda, Jan 44

Lanese, Ivan 22
Lau, Kung-Kiu 1
Leavens, Gary T. 342
Leino, K. Rustan M. 364

Montanari, Ugo 22

Namjoshi, Kedar S. 138

O’Hearn, Peter W. 115
Ornaghi, Mario 1

Palamidessi, Catuscia 172
Phillips, Iain 172
Poetzsch-Heffter, Arnd 313
Poll, Erik 342

Rensink, Arend 280

Sangiorgi, Davide 161
Schäfer, Jan 313
Sharygina, Natasha 243
Sinha, Nishant 243
Stølen, Ketil 88

Tuosto, Emilio 22

van Glabbeek, Rob 195
van Schuppen, Jan H. 44
Vigliotti, Maria Grazia 172

Wang, Zheng 1
Wiklicky, Herbert 388

	Frontmatter
	Component and Service Oriented Computing
	A Software Component Model and Its Preliminary Formalisation
	Synchronised Hyperedge Replacement as a Model for Service Oriented Computing

	System Design
	Control of Modular and Distributed Discrete-Event Systems
	Model-Based Security Engineering with UML: Introducing Security Aspects
	The Pragmatics of STAIRS

	Tools
	Smallfoot: Modular Automatic Assertion Checking with Separation Logic
	Orion: High-Precision Methods for Static Error Analysis of C and C++ Programs

	Algebraic Methods
	Beyond Bisimulation: The ``up-to'' Techniques
	Separation Results Via Leader Election Problems
	Divide and Congruence: From Decomposition of Modalities to Preservation of Branching Bisimulation

	Model Checking
	Abstraction and Refinement in Model Checking
	Program Compatibility Approaches
	Cluster-Based LTL Model Checking of Large Systems
	Safety and Liveness in Concurrent Pointer Programs

	Assertional Methods
	Modular Specification of Encapsulated Object-Oriented Components
	Beyond Assertions: Advanced Specification and Verification with JML and ESC/Java2
	Boogie: A Modular Reusable Verifier for Object-Oriented Programs

	Quantitative Analysis
	On a Probabilistic Chemical Abstract Machine and the Expressiveness of Linda Languages
	Partial Order Reduction for Markov Decision Processes: A Survey

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

