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Abstract. In this study, a generative type probabilistic model is proposed for
object recognition. This model is trained by weakly labelled images and performs
classification and detection at the same time. When test on highly challenging
data sets, the model performs good for both tasks (classification and detection).

1 Introduction

In recent years object recognition is being approached using machine learning tech-
niques based on probability theory. From basic decision theory [2] we know that the
most complete characterization of the solution is expressed in terms of the set of pos-
terior probabilities p(k|X) where k is one of the classes and X is the vector which
describes the image. Once we know these probabilities it is straightforward to assign
the image X to a particular class to minimize the expected loss.

Since detailed hand-segmentation and labelling of images is very labour intensive,
learning object categories from ‘weakly labelled’ data is studied in recent years. Weakly
labelled data means that training images are labelled only according to the presence or
absence of each category of object. A major challenge presented by this problem is that
the foreground object is accompanied by widely varying background clutter, and the
system must learn to distinguish the foreground from the background without the aid of
labelled data.

A key issue in object recognition is the need for predictions to be invariant to a wide
variety of transformations of the input image. Any member of a category of objects
should be recognized in spite of wide variations in visual appearance due to variations
in the form and colour of the object, occlusions, geometrical transformations (such as
scaling and rotation), changes in illumination, and potentially non-rigid deformations of
the object itself. As a soltion to these variations, many of the current approaches rely on
the use of local features obtained from small patches of the image. Informative features
selected using some information criterion versus generic features were compared in
[11] and although the informative features used were shown to be superior to generic
features when used with a simple classification method, they are not invariant to scale
and orientation. By contrast, generic interest point operators such as saliency [6], DoG
(Difference of Gaussians) [8] and Harris-Laplace [9] detectors are invariant to location,
scale and orientation, and some are also affine invariant [8] [9] to some degree.

In the hierarchy of object recognition problems, one upper level is the localization
of the objects in the view. Most of the methods are good either in classification [3] or
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detection [7] but not both. In [7] an implicit shape model is provided for a given ob-
ject category and this model consists of a class specific alphabet of local appearances
that are prototypical for the object category and of a spatial probability distribution
which specifies where each codebook entry may be found on the object. Fergus et al.
[5] learn jointly the appearances and relative locations of a small set of parts. Since
their algorithm is very complex, the number of parts has to be kept small. [4] tried to
find out informative features (i.e. object features) without considering spatial relation-
ship between the features based on information criteria. However, in this supervised ap-
proach, hundreds of images were hand segmented. Finally, Xie and Perez [12] extended
the GMM based approach of [4] to a semi-supervised case. A multi-modal GMM was
trained to model foreground and background features where some uncluttered images
of foreground were used for the purpose of initialization.

In this study we will also follow a probabilistic approach for object classification
using weakly labelled data set and details of our model is given in Section 2. Our model
also has the ability to localize the objects in the image. We do not consider a spatial
model but we will label each feature as belonging to the object or background. We
will focus on the detection of objects within images by combining information from
a large number of patches of the image.In this study we will use DoG interest point
detectors, and at each interest point we extract a 128 dimensional SIFT feature vector
[8]. Following [1] we concatenate the SIFT features with additional colour features
comprising average and standard deviation of (R, G, B), (L, a, b) and (r = R/(R+G+
B), g = G/(R +G+ B)), which gives an overall 144 dimensional feature vector [10].
In Section 3 we will provide experiments we have performed and discuss our results.

2 The Generative Model

We used a probabilistic generative model and model the joint distribution of image label
and image p(t,X). Here X denotes the image and t denotes the image label vector with
independent components tk ∈ {0, 1} in which k = 1, . . .K labels the class. Each class
can be present or absent independently in an image. X denotes the observation for
image. X comprises a set of J patch vectors {xj} where j = 1, . . . , Jn. τj denotes the
patch label vector for patch j with components τjk ∈ {0, 1} denoting the class of the
patch. These are mutually exclusive, so that

∑K
k=1 τjk = 1.

By decomposing the joint distribution into p(t,X) = p(X|t)p(t) we model the two
factors separately. The prior probability p(t) is specified in terms of K parameters ψk

where 0 � ψk � 1 and k = 1, . . . , K:

p(t) =
K∏

k=1

ψtk

k (1 − ψk)1−tk . (1)

The ψk parameters can be taken directly as the real world frequencies.
The remainder of the model, p(X|t), is specified in terms of the conditional probabil-

ities p(X|t) = p(τ |t)p(X|τ ). The probability of generating a patch from a particular
class is governed by a set of parameters πk, one for each class, such that πk � 0,
constrained by the subset of classes actually present in the image. Thus
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p(τ |t) =

(
K∑

l=1

tlπl

)−1 K∏
k=1

(tkπk)τk (2)

Note that there is an overall undetermined scale to these parameters, which may be
removed by fixing one of them, e.g. π1 = 1.

For a given class, the distribution of patch feature vector x is governed by a separate
mixture of Gaussians which we denote by

p(x|τ ) =
K∏

k=1

φk(x; θk)τk (3)

where the model φk(x; θk) is given by

φk(x; θk) =
M∑

m=1

ρkmN (x|µkm, Σkm).

If we assume N independent images, and for image n we have Jn patches drawn
independently, then the joint distribution of patch labels and patch feature vectors is

N∏
n=1

p(t)
Jn∏
j=1

p(xnj |τnj)p(τnj |tn). (4)

Since the {τnj} are unobserved we use the EM algorithm. The expected complete-
data log likelihood is given by

N∑
n=1

Jn∑
j=1

{
K∑

k=1

〈τnjk〉 ln [tnkπkφk(xnj)] − ln

(
K∑

l=1

tnlπl

)}
. (5)

The expected values of τnkj are computed in the E-step using

〈τnjk〉 =
∑

{τ nj}
τnjkp(τnj |xnj , tn)

=

∑
{τ nj}

τnjkp(τnj ,xnj |tn)

∑
{τ nj}

p(τnj ,xnj |tn)

=
tnkπkφk(xnj)
K∑

l=1

tnlπlφl(xnj)

. (6)

Notice that the first factor on the right hand side of (2) has cancelled in the evaluation
of 〈τnjk〉.
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Setting the derivative with respect to one of the parameters equal to zero and re-
arranging the equality, the re-estimation equations are obtained and following the EM
algorithm all parameters are estimated. For details of the method please refer to [10].

This model can be viewed as a generalization of that presented in [12] in which
a parameter is learned for each mixture component representing the probability of that
component being foreground. This parameter is then used to select the most informative
N components in a similar approach to [4] and [11] where the number N is chosen
heuristically. In our case, however, the probability of each feature belonging to one of
the K classes is learned directly.

Given all patches X = {xj} from an image, for the inference of the patch labels, the
posterior probability of the label τ j for patch j can be found by marginalizing out all
other hidden variables

p (τ j |X) =
∑
t

∑
τ /τ j

p (τ ,X, t)

=
∑
t

p (t)
1(∑K

l=1 πltl

)J

K∏
k=1

(πktkφk (xj))
τjk

∏
i�=j

[
K∑

k=1

πktkφk (xi)

]
(7)

where τ = {τ j} denotes the set of all patch labels, and τ/τ j denotes this set with
τ j omitted. Note that the summation over all possible t values, which must be done
explicitly, is computationally expensive.

Inference of image label needs almost as much computation as patch label inference
where the posterior probability of image label t can be computed using

p (t|X) =
p (X|t) p (t)

p (X)
(8)

where p(t) is computed from the data set, p(X) is the normalization factor and p (X|t)
is calculated by integrating out patch labels

p (X|t) =
∑
τ

J∏
j=1

p (X, τ |t)

=
Jn∏
j=1

∑K
k=1 tkπkφk (xj)∑K

l=1 tlπl

. (9)

3 Results and Discussion

In this study, we have used four test sets (motorbikes, bicycles, people and cars) in
which the objects vary widely in terms of number, pose, size, colour and texture. Some
examples from each set are given in Figure 1. The sets are obtained from PASCAL
challenge1 and are formed by combining some other sets. We used ”train and valida-
tion” set for training and ”test” set for testing for each category. Test and train image

1 Detailed information can be reached at (http : //www.pascal − network.org/
challenges/V OC/).
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Fig. 1. Example images from test and training sets of motorbikes (first row), bicycles (second
row), people (third row) and cars (last row)

Table 1. Train and test set image numbers for each set

Set Train Test
Motorbikes 216 216

Bicycles 114 114
People 84 84
Cars 272 275

numbers are given in Table 1. As can be observed from the images, the sets are highly
challenging.

An image is labelled by the objects present in the image and also the bounding boxes
of the objects in the image are given. In this study, we aim to learn the object categories
from weakly labelled images so we do not intend to use bounding box information. The
bounding box information is used to test the localization success of the model.

Our model can handle multiple categories to be present in the same image. However,
since the train sets (but not the test sets) we used in this study have objects from a single
category only, we construct a model for each category. Each model has a separate Gaus-
sian mixture for foreground object and background, each of which has 10 components
with diagonal covariance matrices.

Initial results showed that with random initialization of the mixture model parame-
ters it is incapable of learning a satisfactory solution. We conjectured that this is due to
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the problem of multiple local maxima in the likelihood function (a similar effect was
found by [12]). Thus we used one-tenth of training images with their bounding box
information for initialization purposes. Feautures inside the bounding box in an image
are labelled as foreground and other features are labelled as background. Features be-
longing to each class were clustered using the K-means algorithm and the component
centers of a class mixture model were assigned to cluster centers of the respective class.
The mixing coefficients were set to the number of points in the corresponding clus-
ter divided by the total number of points in that class. Also, covariance matrixes were
computed using the data points assigned to the respective center.

After training a model for each category, we test it for classification and detection. By
classification we mean predicting presence/absence of an example of that class in the
test image as been defined by The PASCAL Visual Object Classes Challenge 2005. The
classifier produces a real valued output which is actually the probability of image being
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Fig. 2. ROC curves for motorbikes, bicycles, people and cars

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Motorbikes
Bicycles
People
Cars

Fig. 3. Precision recall curves for motorbikes, bicycles, people and cars
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Fig. 4. Example images from test and training sets of motorbikes (first row), bicycles (second
row), people (third row) and cars (last row).

labelled as belonging to the category for which the model was trained. By applying
different threshold values an ROC curve (true positive versus false positive curves) is
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plotted for each category. In Figure 2 ROC curves for all categories are plotted. The
equal error rates are 70, 75, 65 and 68% for motorbikes, bicycles, people and cars sets
respectively.

By detection we mean predicting the bounding box and label of each object from
four target classes in the test image as been defined by The PASCAL Visual Object
Classes Challenge 2005. Our model produces a label for each patch as foreground or
background. We construct a bounding box as a rectangle which contains all the patches
labelled as foreground. Note that in this case we did not consider multiple objects in an
image although we have many such images in the test sets. To be considered a correct
detection, the area of overlap between the predicted bounding box and ground truth
bounding box must exceed 50%. The results of detection are given as precision (true
positive over false positive and true positive) recall (true positive over allpositives in the
database) curves in Figure 3.

Our model does not have the best classification and detection performances. How-
ever, for these challenging sets the model performs well for both localization and clas-
sification at the same time.

Both classification and detection are based on patch labelling. Thus patch labelling
performance defines the classification and detection performances. In our model, the
number of components of Gaussian Mixtures has to be kept small and diagonal matrix
instead of full covariance matrix has to be used due to computational problems. Us-
ing full covariance matrix brings a very high computational load for 144 dimensional
feature vector. Thus we have to use 10 components for each mixture and a diagonal co-
variance matrix for each component which limit the success of the model. Some patch
labelling results for different categories are given in Figure 4. Here patches are shown
with squares and each patch centre includes a coloured circle which denotes patch label
(white for foreground and black for background). Each row is for a different category
(motorbikes, bicycles, people, cars starting from top to bottom). The images in the
left column show some good detections whereas right column is for bad detections. A
bounding box is shown with a rectangle in each image.

Poor detection is because of our bounding box definition for which we do not con-
sider spatial relationship between patches. All foreground patches are included into the
bounding box to give the object location. Any wrong labelled background patch causes
wrong detection. For example, the image in the fourth row and right column has a single
patch which is labelled as car although it is a background patch. Since this patch is far
away from other foreground patches, it causes wrong bounding box placement. Thus
bounding box construction should be improved by including spatial relationship be-
tween the patches. Also the generative model can be improved by including the spatial
relations between the patches.
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