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Abstract. Determining faults is a challenging task in complex systems. A 
discrete event system (DES) or a fuzzy discrete event system (FDES) approach 
with a fuzzy rule-base may resolve the ambiguity in a fault diagnosis problem 
especially in the case of multiple faults. In this study, an FDES approach with a 
fuzzy rule-base is used as a means of indicating the degree and priority of faults, 
especially in the case of multiple faults. The fuzzy rule-base is constructed using 
event-fault relations. Fuzzy events occurring any time with different membership 
degrees are obtained using k-means clustering algorithm. The fuzzy sub-event 
sequences are used to construct super events. The study is concluded by giving 
some examples about the distinguishability of fault types (parameter, actuator) in 
an unmanned small helicopter. 

1   Introduction 

Today, fault detection and diagnosis are very important tasks in complex systems. 
There are two main approaches to a fault detection and diagnosis (FDD) problem: 
model based [1], [2], [17] and knowledge based [3]. A summary of these approaches 
is given in Willsky [1] and their developments are summarized by Isermann [2]. The 
extension of knowledge-based approaches (i.e., neural networks, adaptive neural 
networks, neuro-fuzzy systems and hybrid neuro-fuzzy systems) and design methodo-
logies can be seen in [3], [18] and [19].  

The chosen diagnosis method is important to isolate multiple faults in complex 
systems. If no information is available on the fault-event relation, classification 
methods (i.e., fuzzy clustering, artificial neural network and probabilistic methods) 
can be used for fault diagnosis. If more information about event-fault relations is 
available, different methods of reasoning (i.e., probabilistic reasoning, probabilistic 
reasoning with fuzzy logic and reasoning with artificial intelligence [21], [22], [24]) 
can be applied. When fuzzy reasoning is utilized, it is possible to present the results in 
the form of possibility of faults and their sizes [23]. The adaptive neuro-fuzzy systems 
can be used in order to improve the rule-base further [3], [18].  
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Conventional DES approaches [7], [16] are used to model systems that cannot be 
described by differential equations or difference equations, but must be described by 
sequences of events that record significant qualitative changes in the state of the 
system. Although they have been applied in many engineering fields, they may not 
be adequate for fault diagnosis applications, in which the state (e.g., a component 
health status) is somewhat uncertain (e.g., degree of fault) and vague even in a 
deterministic sense [18], [19]. Furthermore, the determination of the faulty 
component’s set could be too restrictive since users may want to identify different 
levels of faults. Usually, the state (healthy or unhealthy) of components, obtained 
from measurements, expert experience, or analysis using probabilistic schemes 
cannot be determined accurately. The research on the diagnostic problem for such 
systems with fuzziness is interesting and important. Furthermore, the transition from 
one state to another is also vague. It is hard to say how exactly an actuator’s 
condition has changed from “good” to “bad”.  

Recently, the failure diagnosis problem has been investigated via DES approach 
[7]. Two basic practices for this purpose are automata theory and Petri nets. Some 
modeling practices using the above theories can be found in [7] and [8]. Sometimes 
one may need to model systems that cannot be modeled by the current DES modeling 
methods due to the vagueness in the definitions of the states and/or events. In order to 
overcome these difficulties, the concepts of fuzzy state and fuzzy event can be used 
[9], [10]. Lin and Ying [12] initiated the study of FDES by combining fuzzy set 
theory with DES to solve problems, which are not possible to be solved by 
conventional DES. They then applied their results about FDES on HIV/AIDS 
treatment planning problem [25].  

In this study to solve the fault diagnosis problem, an FDES approach based on 
fuzzy rule-base (i.e., same other fuzzy reasoning methods) is proposed. The proposed 
approach then has been applied to a failure diagnosis problem in an unmanned small 
helicopter. In literature one can find many fault diagnosis methods about helicopters. 
Among them [5], [13], [20] are focused on detecting and identifying helicopter (CH-
46) gearbox faults. Signal analysis techniques with pattern classification (Kalman 
filter approach [6], decision trees, learning vector quantization, multi-layer 
perceptrons, fuzzy ARTMAP, and Gaussian mixtures [20]) are used to diagnose 
helicopter gearbox faults. Feature vectors used to isolate helicopter faults are based on 
neuro-fuzzy system, reasoning [15] and signal processing approaches [13], [20] 
(Mean square RMS, kurtosis maximization). Two studies related to the actuator fault 
compensation and actuator and sensor faults in a helicopter can be seen in [14] and 
[6], respectively. Multiple faults also may occur in a helicopter at the same time. 
Hence, the FDES concept is more convenient in the investigation of this problem. It 
also allows one to first build each component model separately. Moreover, to 
construct features (events-fault relations) the k-means classification algorithm can be 
used since it is simple. In the literature there are a few FDD applications employing 
DES [7] but no FDES based application, so far. 

The rest of the paper is organized as follows. In section 2, DES and FDES concepts 
are given. In section 3, a case study is introduced. In section 4, the results obtained are 
presented. Finally, in the last section, a summary of the present work and some 
conclusions and future studies are indicated. 
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2   Fuzzy Discrete Event Systems 

State, event and event transition function values are crisp in a DES. Before an FDES 
structure is modelled, let’s recall a model for a DES structure first. 

Definition 1: Discrete event systems can be modeled by a five-tuple 

)0,,,,( qhfQG Σ=  [11], where 

• Q is the set of states,  
• Σ is the set of events containing detectable (i.e., an event is detectable if it 

produces a measurable change in the output) and undetectable events, which are 
generally fired asynchronously, 

• QQf →Σ x :  is the state transition function, 

• ∑→∑× ˆ : Qh  is the output equation, where Σ̂  is a set of detectable events, 

∑⊆∑̂ , 
• q0 is a 1×n (n: the number of places) initial state vector, whose elements are 

zero or 1. 

In order to generalize a DES structure into an FDES structure, the concepts of fuzzy 
state and event are proposed in this study. We combine fuzzy set theory with (crisp) 
DES structure in which events and states have crisp values. In an FDES structure, 
events and state transition functions are fuzzy vectors whose components take values 
between zero and 1. All the events in FDES occur continuously at the same time with 
different membership degrees (i.e., events firing at the same time with different 
degrees); hence the system can be in many places (states) at a given instant.  

If we reformulate the crisp DES into fuzzy DES we may write below the definition 
for FDES as given in [12]. 

Definition 2: Fuzzy discrete event systems can be modeled by a five-tuple 

)0,,,,( qhfQG ∑=  where, 

• Q is the set of states )...1( nqq , which occur continuously with different 

membership degree ( )()...(
1

t
nqtq μμ ) at an instant of time, where n is the 

number of states, 

• ∑  is the set of events ( )mee ...1  containing detectable and undetectable events,  

all events occurs continuously with different membership degrees, 

( )()...(
1

t
mete μμ ) at an instant of time, where m is the number of events, 

• QTTQf →∑ ],0[ x ],0[:  is the state transition function ,  

• ∑→∑× ˆ : Qh  is the output equation, where Σ̂  is a set of detectable events, 

∑⊆∑̂  

• 0q  is the initial state vector showing the initial membership degrees of a system 

states. 
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In definition 2, the state transition function can be defined as a matrix called the state 
transition matrix whose components take values between zero and 1. Moreover, the 
number of the state transition matrices is equal to the number of events considered in 
a system.  

3   Fault Detection and Identification (FDI) Method 

The FDES approach is applied to detect and diagnose multiple faults in an unmanned 
small helicopter. The continuous-time 6 degrees of freedom linear model of a 
helicopter can be described by the following dynamical state equations [4], [14]: 

)()()(

)()()(

tDutCxty

tButAxtx

+=
+=

⋅
         (1) 

The state variable vector x (dimension 9) is defined as: 

[ ]Trqpwvux ψθϕ=         (2) 

where u, v and w represents the longitudinal, lateral and vertical velocity (ft/sec), 
respectively; p, q and r represents the roll, pitch and yaw rates (rad/sec) respectively; 

,ϕ θ  represent the roll and pitch attitude (rad); and ψ is the heading (rad). There are 

five control inputs i.e., [ ]Tuuuuuu 54321=  where u1 is the lateral stick 

(inch), u2 is the longitudinal stick (inch), u3 is the collective stick (inch), u4 is the 
pedal position (inch) and u5 is the horizontal tail incidence (degree). 

3.1   Fuzzy FDI Method 

In order to perform fuzzy FDI method in an efficient way we should take into account 
all possible fault types occurring in an unmanned small helicopter, which means that 
the database to be constructed will (hopefully) contain all possible fault types (i.e., 
those faults that will not prevent the helicopter to continue its execution). The 
proposed FDI method consists of 2 stages: off-line rule extraction and on-line fault 
detection and identification. 

3.1.1   Off-Line Rule Extraction  
Fig. 1 shows off-line rule extraction procedure. The system’s fault model (i.e., system 
model including faults) and healthy model is used together to generate residuals. The 
k-means algorithm is applied to classify the residuals (the system parameters or some 
variables related to stick or percentage actuator faults are changed in a simulation 
program within 1 second time interval). 

Many simulations have been performed to decide the number of the class centers. 
After examining the relation between the obtained cost value and used class centers in 
the k-means classification algorithm, 101 centers (classes) are chosen. These centers are 
called sub-events and used as rules’ antecedent parts. To fuzzify sub-events, triangular 
and trapezoidal  membership  functions  (or  others) are  used.  Rules’  antecedent   parts 
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Fig. 1. Off-line rule extraction procedure 

contain 20 sub-events (an event sequence). These event sequences are called feature 
vectors (super events). These super events are related to single, double and triple 
faults. The rule-base consists of 118 rules (the data base employed includes 118 
different fault types). Super event table will not be presented here. 

3.1.2  Off-Line Rule Extraction  
Fig.2 shows on-line FDES based FDI procedure. There are 6 sensors that measure 
helicopter body speeds (u, v, and w) and angular velocities (p, q, and r) on real time. 
We used these sensor outputs to obtain residuals. In this study, two types of actuator 
faults called percentage and stuck actuator faults are created and used in the FDI 
algorithm. In our approach all events occur at the same time with different 
membership degrees. The sub-events membership degrees are calculated using 
Euclidean distance measure (the distance of measurement vectors to the 
predetermined class centers). Next, those, which are too small, are set to zero 
membership degree. The remaining sub-events are normalized among themselves. 
The super event generator labels residuals as sub-events and create a super event (an 
event sequence) by taking past 20 sub-events in time period. The membership degrees 
of super events are also calculated in this part.  Super event membership degrees are 
calculated as follows: first, the last 20 (length is the same as super events) sub-event 
(taking place in the related super events) membership degrees are multiplied with 
each other. Next, those, which are too small, are set to zero membership degree. The 
remaining super events are normalized among themselves. The super events have a 
 

 

Fig. 2. On-line FDI procedure 
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dynamic structure; their membership degrees change at any time. These events are 
applied to the FDES diagnoser as inputs. The FDES diagnoser is constructed 
containing 12 fuzzy places (places show the system’s faulty components related to 4 
different parameters and actuators) based on rules derived using k means 
classification technique in off-line stage. They isolate faults and also give information 
about the percentage of the occurred fault types. The rule structure is given by 

Ri: IF et…et-N is Ai
1 THEN (q1 is Ci

1,…,qm is Ci
m  ), i=1,2,…,n                (3) 

Here, N is the integer related to the model order and, et…et-N denote the past input 
vector related to the sub-events, q1…qm, show states Ai

1 and Ci
1…Ci

m are linguistic 
values (labels) represented as fuzzy subsets of the respective universes of discourse. 
The diagnoser outputs are degrees of failure (fault percentage) related to the faulty 
components. This is accomplished by using the COA defuzzification.  

4   Simulation Results 

There are many system parameters in a helicopter but we dealt with only four of 
them. These parameters are numbered as 1, 2, 3 and 4. The parameters 1 and 2 are 
related to the helicopter wings and 3 and 4 are related to the helicopter main rotor and 
tail rotor blade. Parameter faults are restricted to percentage faults. 

There are four actuators in the helicopter. All of the actuators are taken into 
account for fault diagnosis. There are two types of faults in the actuators. The first one 
is percentage fault and the other is stuck fault. Both of these fault types are considered 
for fault diagnosis.  

 

Fig. 3. Results obtained for the fault scenario I 

The overall FDES based FDD method is tested on two different scenarios using a 
simulation program. In the first scenario, we created abrupt faults. There is no fault 
between 0 and 0.02 second. 50 % abrupt faults in parameters 3 and 4 (i.e paramaters 
related to the helicopter main rotor blades) are created at time 0.02 second. Figure 3 
shows simulation result obtained by using the FDES diagnoser. 
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In the second scenario, again multiple faults are created. There is no fault between 
0 and 0.02 seconds. 50 % abrupt faults in parameters 3 and 4, and 50 % stuck fault in 
actuator 1 (i.e., actuator begins to work normally, at the instant t; it sticks and remains 
at working condition of time t) are created at time 0.02 second. Figure 4 shows 
simulation result obtained by using the FDES diagnoser. 

 

Fig. 4. Results obtained for the fault scenario II 

5   Conclusion and Future Work 

In this paper, a fuzzy rule based FDES approach to solve FDI problem is introduced 
and used in a logical way towards distinguishing multiple faults in an unmanned small 
helicopter. The fuzzy rule-base employed is constructed using event-fault relations. 
The fuzzy events are obtained using k-means clustering algorithm. Actually, the 
dynamic aspects of the fault diagnosis depends on the definition of “fault” events; if 
those events are based on time histories, then the resultant FDES is automatically a 
dynamical system. We are planning to tune the membership function parameters 
using a performance function with a genetic algorithm to improve FDI algorithm 
performance (fault isolation capability). Additionally, more advanced or complicated 
event definitions are being investigated to distinguish faults better. We believe that 
the approach introduced in this study will show researchers a new way to cope with 
the FDI problem in complex systems.  
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