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The LNCS Journal on Data Semantics

Computerized information handling has changed its focus from centralized data
management systems to decentralized data exchange facilities. Modern distribu-
tion channels, such as high-speed Internet networks and wireless communication
infrastructure, provide reliable technical support for data distribution and data
access, materializing the new, popular idea that data may be available to any-
body, anywhere, anytime. However, providing huge amounts of data on request
often turns into a counterproductive service, making the data useless because
of poor relevance or inappropriate level of detail. Semantic knowledge is the es-
sential missing piece that allows the delivery of information that matches user
requirements. Semantic agreement, in particular, is essential to meaningful data
exchange.

Semantic issues have long been open issues in data and knowledge manage-
ment. However, the boom in semantically poor technologies, such as the Web and
XML, has boosted renewed interest in semantics. Conferences on the Semantic
Web, for instance, attract crowds of participants, while ontologies on their own
have become a hot and popular topic in the database and artificial intelligence
communities.

Springer’s LNCS Journal on Data Semantics (JoDS) aims at providing a
highly visible dissemination channel for most remarkable work that in one way
or another addresses research and development on issues related to the semantics
of data. The target domain ranges from theories supporting the formal definition
of semantic content to innovative domain-specific application of semantic knowl-
edge. This publication channel should be of highest interest to researchers and
advanced practitioners working on the Semantic Web, interoperability, mobile
information services, data warehousing, knowledge representation and reasoning,
conceptual database modeling, ontologies, and artificial intelligence.

Topics of relevance to this journal include:

• Semantic interoperability, semantic mediators
• Ontologies
• Ontology, schema and data integration, reconciliation and alignment
• Multiple representations, alternative representations
• Knowledge representation and reasoning
• Conceptualization and representation
• Multi-model and multi-paradigm approaches
• Mappings, transformations, reverse engineering
• Metadata
• Conceptual data modeling
• Integrity description and handling
• Evolution and change
• Web semantics and semi-structured data
• Semantic caching
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• Data warehousing and semantic data mining
• Spatial, temporal, multimedia and multimodal semantics
• Semantics in data visualization
• Semantic services for mobile users
• Supporting tools
• Applications of semantic-driven approaches

These topics are to be understood as specifically related to semantic issues.
Contributions submitted to the journal and dealing with semantics of data will
be considered even if they are not within the topics in the list.

While the physical appearance of the journal issues looks like the books from
the well-known Springer LNCS series, the mode of operation is that of a jour-
nal. Contributions can be freely submitted by authors and are reviewed by the
Editorial Board. Contributions may also be invited, and nevertheless carefully
reviewed, as in the case for issues that contain extended versions of best papers
from major conferences addressing data semantics issues. Special issues, focus-
ing on a specific topic, are coordinated by guest editors once the proposal for
a special issue is accepted by the Editorial Board. Finally, it is also possible
that a journal issue be devoted to a single text. The journal published its first
volume in 2003 (LNCS 2800), its second volume at the beginning of 2005 (LNCS
3360), and its third volume in Summer 2005 (LNCS 3534). Volumes I, II and
V are special issues composed of selected extended versions of best conference
papers. Volume III is a special issue on Semantic-Based Geographical Informa-
tion Systems, coordinated by guest editor Esteban Zimányi. The fourth volume
is the first “normal” volume, composed of spontaneous submissions on any of
the topics of interest to the journal. This volume is a special issue on Emergent
Semantics. The Editorial Board comprises one Editor-in-Chief (with overall re-
sponsibility) and several members. The Editor-in-Chief has a four-year mandate
to run the journal. Members of the board have a three-year mandate. Mandates
are renewable. More members may be added to the board as appropriate. We
are happy to welcome you to our readership and authorship, and hope we will
share this privileged contact for a long time.

Stefano Spaccapietra
Editor-in-Chief

http://lbdwww.epfl.ch/e/Springer/
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As Semantic Web technologies are attracting increasing attention, both from the
academic and industrial worlds, more and more voices are raising concerns about
the monolithic design principles of the original Semantic Web. Both foundational
(e.g., RDF/S) and more recent recommendations (e.g., OWL) were heavily influ-
enced by expert-systems and description logics, and in the view ofmany suffer from
their intrinsic complexity (e.g., open-world semantics) and lack of scalability. As a
reaction, some are currently suggesting much simpler formats based on XML like
microformats, while others are promoting social tagging mechanisms such as those
in place on Flickr1, del.icio.us2 or Google Co-op3. After a series of fruitful interac-
tions within the IFIP Working Group 2.6. on Databases4, we decided to promote a
middleway,whereend-user (imperfect) information is encodedusingSemanticWeb
standards, but where its organization is delegated to decentralized, self-organizing
processes. We refer to this paradigm using the term emergent semantics.

This special issue on emergent semantics starts with an invited paper enti-
tled “Viewpoints on Emergent Semantics” summarizing some of the discussions
held within the IFIP W.G. 2.6. and outlining emergent semantics principles and
some of their applications. The issue continues with eight peer-reviewed papers
(out of the original 19 submissions we received) authored by some of the fore-
most experts in domains related to the emergent semantics paradigm. The first
three papers tackle the problem of encoding or relating imperfect information in
logical frameworks. In “f-SWRL: A Fuzzy Extension of SWRL,” Jeff Z. Pan et
al. explore how to represent imprecise knowledge in SWRL, a highly expressive
language derived from a combination of OWL and Horn rules. In “Intensional
Semantics for P2P Data Integration,” Zoran Majkić proposes a logical frame-
work based on intensional logic to model weakly coupled information sources
in decentralized (Peer-to-Peer) settings. In “Integrating and Exchanging XML
Data using Ontologies,” Huiyong Xiao and Isabel F. Cruz deal with the problem
of integrating local and heterogeneous XML data sources using an RDF schema.

The last five papers concentrate on processes for organizing (imperfect) knowl-
edge in automated ways. In “Managing Uncertainty in Schema Matching with
Top-K Schema Mappings,” Avigdor Gal extends current practice in schema
matching by generating and examining K schema mappings simultaneously
to identify useful mappings automatically. In “Semantic Data Management in
Peer-to-Peer E-Commerce Applications,” Yosi Ben-Asher and Shlomo Berkovsky
propose to organize data objects in a multi-layered hypercube topology based on
an underspecified and customizable ontology. In “Interoperability through Emer-
gent Semantics. A semiotic Dynamics Approach,” Luc Steels and Peter Hanappe

1 http://www.flickr.com/
2 http://del.icio.us/
3 http://www.google.com/coop
4 http://wise.vub.ac.be/ifipwg26/
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advocate the use of mechanisms from natural language to foster semantic inter-
operability in an emergent and adaptive way. In “Emergent Semantics from
Folksonomies: A Quantitative Study,” Lei Zhang et al. show how global seman-
tics can be statically inferred from dynamic collections of user-defined tags (i.e.,
folksonomies). In “Emergent Semantics in Knowledge Sifter: An Evolutionary
Search Agent based on Semantic Web Services,” Larry Kerschberg et al. propose
an agent-based framework to discover emergent concepts and user preferences
in content retrieval systems using collaborative filtering.

Lastly, we would like to express our utmost gratitude to the reviewers, who
invested much of their time in careful analysis and evaluation of the submissions:

Harith Alani, University of Southampton, UK
Budak Arpinar, University of Georgia, USA
Joe Bigus, IBM T.J. Watson Research Center, USA
Boualem Benatallah, University of New South Wales, Australia
Klemens Böhm, University of Karlsruhe, Germany
Paolo Bouquet, University of Trento, Italy
Adriana Budura, EPFL, Switzerland
Hans Chalupsky, University of Southern California, USA
Philipp Cimiano, University of Karlsruhe, Germany
Anwitaman Datta, EPFL, Switzerland
Tharam Dillon, University of Technology Sydney, Australia
David W. Embley, Brigham Young University, USA
Cristina Feier, Digital Enterprise Research Institute (DERI), Ireland
Frederico Fonseca, Pennsylvania State University, USA
Doug Foxvog, Digital Enterprise Research Institute (DERI), Ireland
Enrico Franconi, Free University of Bozen-Bolzano, Italy
Sarunas Girdzijauskas, EPFL, Switzerland
Mohand-Säıd Hacid, University Claude Bernard Lyon, France
Yannis Kalfoglou, University of Southampton, UK
Vipul Kashyap, Partners HealthCare System, USA
Malte Kiesel, DFKI, Germany
Maurizio Lenzerini, University of Rome “La Sapienza,” Italy
Tim van Pelt, EPFL, Switzerland
Brigitte Safar, University of Paris Sud, France
Monica Scannapieco, University of Rome “La Sapienza,” Italy
Roman Schmidt, EPFL, Switzerland
Christoph Schmitz, University of Kassel, Germany
Michael Sheng, Australian National University, Australia
Amandeep S. Sidhu, University of Technology Sydney, Australia
Gleb Skobeltsyn, EPFL, Switzerland
Sergio Tessaris, Free University of Bozen-Bolzano, Italy
Guy De Tré, Ghent University, Belgium

Karl Aberer and Philippe Cudré-Mauroux
Guest Editors
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Abstract. We introduce a novel view on how to deal with the problems
of semantic interoperability in distributed systems. This view is based on
the concept of emergent semantics, which sees both the representation
of semantics and the discovery of the proper interpretation of symbols
as the result of a self-organizing process performed by distributed agents
exchanging symbols and having utilities dependent on the proper in-
terpretation of the symbols. This is a complex systems perspective on
the problem of dealing with semantics. We highlight some of the dis-
tinctive features of our vision and point out preliminary examples of its
application.

1 Introduction

In this paper, we introduce a novel view on how to deal with the problems of
semantic interoperability in distributed information systems. This view is based
on the concept of emergent semantics, which sees both the representation of
semantics and the discovery of the proper interpretation of symbols as the result
of a self-organizing process performed by distributed agents exchanging symbols
and having utilities dependent on the proper interpretation of the symbols. This
is a complex systems perspective on the problem of dealing with semantics.

We first introduce a step by step reasoning underlying the concept of emergent
semantics in Section 2. In the subsequent chapters, our goal is to identify current
works that manifest the ideas of emergent semantics more concretely, within
� Corresponding author.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VI, LNCS 4090, pp. 1–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 P. Cudré-Mauroux et al.

the scope of today’s research in areas such as distributed database systems, the
Semantic Web, peer-to-peer computing or agent-based systems. Also, we identify
when possible potential starting points for future applications of the concept.

This paper results from extensive discussions that have been taking place
within the IFIP WG 2.6. on databases over the last two years. Initial ideas
resulting from these discussions have been published in earlier invited publica-
tions [3,5]. With this article, we intend to move the discussion one step further by
connecting the general concept to concrete ongoing research efforts and existing
technologies.

2 The Notion of Emergent Semantics

2.1 The Notion of Semantics

Despite its wide usage in many contexts, the notion of semantics lacks a precise
definition. As a least common denominator, we can characterize semantics as a
relationship or mapping established between a syntactic structure and some do-
main. The syntactic structure is a set of symbols that can be combined following
specific rules. The possible domains these symbols are related through semantics
can vary widely.

Observation 1: The semantics of a syntactic structure is a relationship be-
tween a syntactic structure and some domain.

In mathematical logic, a semantic interpretation for a formal language is spec-
ified by defining mappings from the syntactic constructs of the language to an
appropriate mathematical model. Denotational semantics applies this idea to
programming languages. Natural language semantics classically concerns a tri-
adic structure comprising a symbol (how some idea is expressed), an idea (what
is abstracted from reality) and a referent (the particular object in reality) [64].

2.2 Semantics in Information Systems

Programs, database schemas, models, ontologies are unconscious artifacts and
have no capacity (yet?) to refer to reality. However, software agents have various
mechanisms at their disposal for establishing relationships between internal and
local symbols and external meaning.

In many cases, humans are responsible for providing software agents with
their initial semantics. In the simplest case, natural language vocabulary is used
for the local symbols while the associated relationship with the corresponding
explanation or definition of the notion concerned is very often left implicit. The
hidden assumption is that meaning exchange is achieved through human cogni-
tion [80]. This can lead to communication errors as natural language is not free
of ambiguity. In addition, it might happen that in a local community of practice
symbols acquire an additional meaning depending on the context, which is not
propagated as the exact definition is not explicitly provided.
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In the setting where humans provide semantics, relationships among sym-
bols, such as constraints in relational databases are means to express semantics.
Again, the assumption is that meaning exchange is achieved through human
cognition, e.g., during requirement analyses and testing, suffering some of the
same problems as with the use of natural language symbols.

In order to rectify some of the problems related to the implicit representation
of semantics relying on human cognition, some have proposed the approach of
using an explicit reference system for relating sets of symbols in a software sys-
tem. Ontologies serve this purpose: an ontology vocabulary consists in principle
of formal, explicit but partial definitions of the intended meaning for a domain of
discourse [34,35]. In addition, formal constraints (e.g., on the mandatoriness or
cardinality of relationships between concepts) are added to reduce the fuzziness
of the informal definitions. Specific formal languages (e.g., OWL) allow to define
complex notions and support inferencing capabilities (generative capacity).

Observation 2: Explicitly represented semantics of a syntactic structure in an
information system consists of a relationship between this syntactic structure
and some generally agreed-upon syntactic structure. Thus, the semantics is
represented itself by a syntactic structure.

2.3 Semantics in Distributed Systems

In a distributed environment of information agents such as in the Semantic Web
or peer-to-peer systems, the aim is to have the agents interoperate irrespective
of the source of their initial semantics. To that aim, an agent has to map its
vocabulary (carrying the meaning as initially defined in its base ontology) to
the vocabulary of other agents with which it wants to interoperate. In this way,
a relationship of the agents’ symbols to the domain consisting of other agents’
symbols is established. This relationship may be considered as another form of
semantics, independent of the initial semantics of the symbols.

Assuming that autonomous software agents have acquired their semantics
through relationships to other agents and that agents interact without human in-
tervention, the original human assigned semantics would loose its relevance; from
an agent’s perspective, new semantics would then result from the relationships to
its environment. We view this as a novel way of providing semantics to symbols
of autonomous agents relative to the symbols of other agents they are interacting
with. Typically, this type of semantic representation is distributed such that no
agent holds a complete representation of a generally agreed-upon semantics.

Observation 3: Explicitly represented semantics of an agent in a system of
distributed agents can be represented through the (distributed) ensemble of
relationships to other agents’ syntactic structures.

2.4 Processes Creating Semantics

With the classical notion of semantics in information systems, the process of
generating semantic interpretations, e.g., the generation of ontologies which
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reflect shared semantics, is somewhat left outside the operation of the informa-
tion systems proper. The process is assumed to rely on social interactions among
humans, possibly supported in their collaborative effort by some computational
and communicational tools.

Viewing semantics of information agents as a relationship to other agents
allows us to internalize the discovery process of those relationships to their op-
eration. We abandon the idea of a preexisting outside agency for forming se-
mantic agreements, but see those as a result of the interaction of autonomous,
self-interested agents. This is in line with the concept of expressing semantics
through internal relationships in a distributed system. By this approach, we aim
at consolidating the local semantics of autonomous information agents (respec-
tively information systems) into a global semantics that results from a continuous
interaction of the agents. The structures emerging from these continuous interac-
tions provide meaning to the local symbols. We consider semantics constructed
incrementally in this way as emergent semantics.

From a global perspective, considering a society of autonomous agents as one
system, we observe that the agents form a complex, self-referential, dynamic
system. It is well-accepted and known from many examples that such systems
result (often) in global states, which cannot be properly characterized at the level
of local components. This phenomenon is frequently characterized by the notion
of self-organization. Thus, emergent semantics is not only a local phenomenon,
where agents obtain interpretations locally through adaptive interactions with
other agents, but also a global phenomenon where a society of agents agree on
a common, global state as a representation of the current semantic agreement
among the agents. This view of semantics as the emergence of a distributed
structure from a dynamic process – or more specifically as an equilibrium state
of such a process – is in-line with the generally accepted definitions of emergence
and emergent structures in the complex systems literature.

Observation 4: Emergent semantics refers to distributed, emergent structures
for representing semantics in a distributed information system and results
from a dynamic process.

2.5 Assumptions for Enabling Emergent Semantics

The possibility to realize such an interaction process among autonomous and self-
interested agents relies on a set of assumptions, each of which is quite natural in
the context of distributed and autonomously operating software. First, the agents
have to be able to relate their local symbols to each other. This is nothing else
than the requirement of being able to communicate at a syntactic level. Then,
the agents have to be able to measure the quality of the outcome of an interaction
with another agent. Usually, such quality measures are encoded representations
of utility measures of (human) users of the software agents. Finally, the agents
have to be capable of adapting their relationships to other agents as a reaction to
the measurable outcomes of earlier interactions. This corresponds to providing a
certain level of autonomy to the agents in order to adapt their behavior, including
their relationships to other agents, in response to earlier actions.
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Observation 5: Emergent semantics is likely to occur in distributed informa-
tion systems since the underlying assumptions are frequently and naturally
satisfied.

2.6 Introducing Pragmatics

The careful reader will have noticed that by requiring the capability to qual-
itatively measure the outcomes of actions, we have introduced at this point
a further dimension into the discussion, the dimension of pragmatics. Without
pragmatics, it would be impossible to guide the process of constructing semantics
during interactions with other agents. We are thus adopting a semiotic approach,
jointly considering the dimensions of syntax, semantics and pragmatics. Syntax
is required for agents to interact with their environment, namely other agents,
semantics is required to formally describe the intended meaning of vocabularies,
and in this context pragmatics provides the decision mechanisms to guide future
actions based on the current interpretation of the agents state.

Observation 6: Pragmatics realized through self-interested agents that can
measure the quality of the semantic interpretation of their syntactic struc-
tures in terms of their utility is an inherent prerequisite for emergent
semantics.

In the following, we discuss some of the consequences we can derive from in-
troducing the general concept of emergent semantics. These concern functional
properties of emergent semantics, the potential of emergent semantics to bet-
ter address hard problems of semantic interoperability, and questions related to
applicability and acceptance of emergent semantics systems.

Semantic Interoperability in Information Systems. Relating information systems
created independently has a long history in computer science. Section 3 illus-
trates how techniques drawn from distributed databases and peer data man-
agement systems can be relevant in an emergent semantics scenario. Section 4
revisits classical ontology-based systems in a similar context.

Uncertainty. Dealing with semantics and pragmatics implies the ability to quan-
tify or measure properties of an agent’s state in order to support decision making.
In the case of emergent semantics, these measures are related to the proper inter-
pretation of the agent’s semantic structure. The better we understand the mean-
ing of symbols and the more we remove uncertainty from their interpretation, the
more beneficial the use of the symbols will be. Emergent semantics is based on in-
crementally reducing the uncertainty of symbols through exchanging information
with other agents. In many cases, it will therefore be necessary to have the ability
to represent uncertainty about symbols. Therefore, formalisms for representing
uncertain data are an essential ingredient for emergent semantics systems.

We discuss in Section 5 which formal approaches exist for this purpose, and
to what extent they are already in use in existing systems taking an emergent
semantics approach.
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Social Dimension. Emergent semantics systems are inherently social systems con-
sisting of self-interested agents. Many issues relevant in artificial or natural social
systems are relevant in emergent semantics systems. For example, the problem of
privacy, i.e., protecting one’s own information from others, leads to the inherent
problem of having conflicting goals. By not revealing information, an agent can
obtain an advantage in decision making whereas by revealing information it might
improve the interpretation of other symbols and thus increase its utility. Also, in-
formation and the trustworthiness of agents play a role for assessing the extent to
which information received from other agents is relevant for improving semantic
interpretations, that is to reducing the uncertainty on the semantics of symbols.

We discuss in Section 6 current approaches in these two areas and in which
ways they relate to emergent semantics.

Applicability of Emergent Semantics. The observation that emergent semantics
results from a self-organizing process has some interesting consequences on the
stability of emergent semantics structures. It is well-known that self-referential
dynamic systems may exhibit stable states. Even if the state space of a dynamic
systems is continuous, the space of stable states is discrete (Eigenstates) and sta-
ble states can be reached from many different initial states. Thus, the structure
of the dynamic system implies specific states, corresponding to emergent seman-
tics structures that we can interpret as the socially stable mutual interpretations
of local symbols of autonomous agents.

This opens interesting perspectives and promises to address some of the in-
herently hard problems of classical ways of providing semantics in information
systems. It is well known that ontologies are inherently unstable and ontology
evolution is a constant challenge. Here, emergent semantics provides a natural
solution as its definition is based on a process of finding stable agreements; con-
stant evolution is part of the model and stable states, provided they exist, are
autonomously detected. On the more speculative side, we see a further potential
for emergent semantics. On one hand, the syntactic structure of ontologies (and
other logic-based languages) is identical for local agents and for global semantic
agreements. On the other hand, the available state space for processes generating
emergent semantics structures might be more complexly structured and holds
the potential to express semantics in a non-standard, more expressive way.

In Section 7 we outline some application areas where we expect the emergent
semantics concept to be most applicable or where we can already find steps
leading to solutions based on ideas related to emergent semantics.

3 Semantics in Distributed Database Systems

Observation 3 expresses semantics as a distributed ensemble of relationships
to syntactic structures. Today, many distributed information systems can be
characterized in a similar way, due to the existence of many interrelated data
sources accessible over the Internet. Examples of such systems are among others
information integration systems, data sharing and exchange applications, cat-
alogs in e-business, and data annotation systems for scientific data. At a very
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abstract level, we can see all these systems as distributed systems of intercon-
nected nodes where nodes represent data sources.

The most well-known example of this class of systems is the mediator-wrapper
architecture [85]: a mediator defining the global schema and providing facilities
for answering queries on this schema is linked to all data sources which are encap-
sulated by wrappers. A more advanced case is a Peer Data Management System
(PDMS)where the peers (nodes) represent data sources providing query answering
functionalities [4,38]. Here, each peer is linked to some neighbor peers. The differ-
ence to the first case is that the PDMS approach does not require a dedicated cen-
tralized mediator node – instead, each peer can both ask and reformulate queries.

In both cases, the links between nodes are semantic links representing map-
pings. A mapping explains the meaning of an element (schema element or data
value) of a given node A in terms of concepts or elements of node B, which
we assume have a known meaning (at least from B’s point of view). Though
mappings are primary used for query rewriting on heterogeneous schemas, they
can also be seen as a way to capture semantics. Basically, we can distinguish two
different ways of representing mappings:

Direct mapping: a schema element of node A is mapped onto one or more
elements of B. Usually, these mappings are expressed as view definitions.
Here, different approaches exist [50]. In the global-as-view (GAV) approach,
the integrating schema is defined as a view on the local schema. In contrast,
in the local-as-view (LAV) approach, the local schemas are expressed on the
global schema defined by the integration node. The combination of both
solutions, the GLAV approach, combines the expressive power and allows
a more flexible mapping definition. For all these kinds of views, appropri-
ate rewriting techniques exist, e.g., query unfolding for GAV or the bucket
algorithm and the MiniCon algorithm for LAV [37].

Indirect mapping: here, a common conceptualization C, i.e., a taxonomy or
an ontology, is shared by all nodes. The meaning of the elements of each
node is defined in terms of concepts from C, e.g., by annotating (linking) the
elements with the concepts [78]. Based on these links one can either infer di-
rect mappings between the nodes or simply asking queries on the conceptual
level. This approach is conceptually related to the lexical approach described
in Section 4.

As observed above (Observation 4), emergent semantics refers to a dynamic
process. Distributed data management applications as introduced above are not
static: new nodes are added or deleted and mappings have to be adjusted due
to schema changes. Thus, the system evolves in a a distributed dynamic process
and new semantic structures are created implicitly or explicitly. So, the question
arises if and how we can feedback this new knowledge into the system. The most
obvious approach is repeating the initial steps of creating mappings by hand or
using schema matching techniques. A more interesting approach, closer to emer-
gent semantics concerns, is to do this incrementally and in a (semi)automatic
way. For this purpose, we distinguish in the following three kinds of system
dynamics and discuss their recent developments.
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3.1 Link Improvement

Mappings used for query reformulation and result translation are often not exact
due to several reasons, e.g., because some concepts are not supported by a source
or because of wrong decisions during mapping design. Such inaccuracies result in
information loss during query answering, i.e., incomplete results or irrelevant data.
This might occur both at schema level (missing attributes) as well as at data level
(missing data). In order to improve a mapping we have first to assess the mapping
quality. For this purpose, several quality criteria can be used, e.g., extensional and
intensional completeness and relevance. The quality indicators are not only useful
to choose the best source for a given query but also to try to adapt the mapping.

A first approach for determining information loss was proposed by
Mena et al. [57] in the context of a ontological mediator. In this work, infor-
mation loss is defined for the intensional level as the terminological difference
between a query and its translation. A difference exists if concepts which are
referenced in the query are not subsumed by concepts used in the translated
query. At the extensional level, the Information Retrieval measures precision
and recall are used and are computed based on the size of the extensions of the
queried concepts. A related approach is presented in [6]. Here, several similarity
measures for queries and their translations are introduced. At the intensional
level, syntactic similarity deals with attributes used in a query, which are lost
after transformation. Whereas this measure ignores the semantics of attributes,
semantic similarity measures take this into account using two mechanisms. First,
cycles in the network and therefore in the mappings are exploited to detect im-
plicit semantic agreements. The second mechanism is based on an analysis of the
query results and therefore addresses the extensional level. Another measure is
described in [7] which analyzes to which extent functional dependencies or other
integrity constraints are preserved after translation.

Based on mapping quality measures, we can decide if an improvement is nec-
essary. Basically, we could simply create a new mapping and asses its quality.
This ranking of candidate mappings is an important step in schema matching
and the search techniques used in these approaches can be applied directly (see
also Section 5). An alternative solution is an incremental adaptation. Several
approaches have been proposed for this problem, e.g., [82]. However, they are
primary intended for schema evolution. Hence, the adaption process is triggered
by predefined schema evolution primitives.

3.2 Deriving New Links

Very often in an environment with direct mappings, one needs to follow several
links, thus to compose series of mappings, in order to query a distant database.
The problem of mapping composition can be described as follows: given two
mappings MA→B and MB→C for three data sources A, B, C, the goal is to de-
rive a new but equivalent mapping MA→C , i.e., a mapping that produces for all
queries the same answers as the mappings MA→B and MB→C . A first approach
addressing this problem was described by Madhavan and Halevy [55]. This algo-
rithm is based on so-called query rewrite graphs (QRG) encoding the mapping
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formulas in the composition. In [87] another composition approach is proposed,
which addresses mapping adaptations when schemas evolve. The idea is to to
consider schema evolution itself as a mapping and – instead of performing a list
of incremental adaptations for each schema change – to derive a composition of
mappings which allows to obtain the adapted mapping through query rewriting.

Mapping composition addresses mainly the problem of deriving a shortcut for
a sequence of mappings. However, if several alternative paths exist, there are still
two questions: (i) which pair of nodes should be linked directly and (ii) which
path among a set of candidates should be chosen? The latter can be treated
as the shortest path problem in graphs where the weights of edges correspond
to the quality of the represented mapping. The first question is related to the
case of adding a new node. Here, we have to decide to which member node a
link should be established. Under the assumption that mapping quality is the
primary measure to be taken into account, this can be seen as a subproblem off
clustering where we try to create direct links between nodes which are seman-
tically close. Hence, standard (hierarchical) clustering algorithms (e.g., [11]) or
dedicated decentralized approaches, e.g., as proposed in [71], can be applied.

3.3 Adding New Nodes

Adding a new data source to the system might introduce new concepts as long
as they can be related to existing elements. Thus, the main task is to define a
mapping between the new node and a node already participating in the system.
This requires two steps: first to select an appropriate participant and second
to match the schemas of the two nodes in order to derive a mapping. The first
step can be supported by semantic clustering approaches described above, or
by graph-theoretic heuristics assessing the connectivity of the semantic network
(percolation theory) [25]. For the second step, several matching algorithms have
been proposed in the literature (see [74] for a comprehensive survey). Finally,
the new mapping can be further refined as already discussed.

4 Semantic Interoperability Through Linguistic
Resources in Ontological Systems

4.1 On Usability Perspectives

Ontologies can be seen as semantic axiomatizations, that is, formaldescriptions ac-
counting for the intended meaning of a vocabulary [36]. As noted in Section 2, how-
ever, these descriptions are usually neither complete nor unequivocal [66]. Same
semantics can be axiomatized in different ways, which usually reflect different us-
ability perspectives, such as granularity, scope boundaries, representation primi-
tives and constructs (i.e., epistemology), purpose/application/context, reasoning
or computational scenarios. In other words, local semantic axiomatizations are
substantially influenced by usability perspectives and application requirements at
hand. In the problem solving research community, such an issue is called the inter-
action problem. Bylander and Chandrasekaran argued in [21] that “representing



10 P. Cudré-Mauroux et al.

knowledge for the purpose of solving some problem is strongly affected by the na-
ture of the problem and the inference strategy to be applied to the problem”.

As undisputed and standard ontologies are only available for a few, specific
domains today, this argument leads to a fundamental challenge in ontological
systems: establishing formal semantic interoperability among different local se-
mantic axiomatizations fails mostly due to the diversity of usability perspectives,
although all axiomatizations might intuitively agree at the domain/knowledge
level (See [63] for the definition of knowledge level). In other words, in most
cases semantic interoperability might not be achieved between two agents be-
cause their semantics are formalized in different ways, rather than because these
systems do not agree on the factual/intuitive meaning in reality (also called
ontological semantics).

Some advocate the use of ontology alignments (see [40] for a recent survey) to
tackle this problem. Ontology alignments usually consist of formal descriptions
accounting for the relationships between heterogeneous ontologies. Analogously
to the Peer Data Management Systems paradigm described in the preceding
section, these alignments create semantically interoperable networks by linking
pairs of related ontologies directly or indirectly. In the following, we propose a
different, complementary approach to overcome semantic heterogeneity based on
linguistic resources.

4.2 An Attachment Law for Emergent Semantics

One may wonder whether ontological semantics exists, and/or whether the intu-
itive meaning of vocabularies can be found, even informally. Intuitive definitions
and agreements about the intended meaning of vocabularies are implicit assump-
tions shared among human cognitive agents. Informal definitions and agreements
can be found in linguistic resources (e.g., dictionaries, lexicons, glossaries, lexi-
cal databases, etc.) [41]. A linguistic resource renders the intended meaning of a
linguistic term – in a gloss – as it is commonly agreed. Such agreements are not
rigorous, of course, but are commonly accepted meanings. For example, when we
use the English word “book”, we actually refer to the set of implicit rules that
are common to English-speaking people for distinguishing “books” from other
objects. Such implicit rules (i.e., meaning) are learnt from the repeated use of
word-forms and their referents in the English literature. Usually, lexicographers
and lexicon developers investigate the repeated use of a word-form (e.g., based
on a comprehensive corpus) to determine its underlying concept(s).

Linking or rooting the vocabulary used in local axiomatizations with concepts
found in linguistic resources can help achieving basic semantic interoperabil-
ity between different axiomatizations. For example, by using (euro) WordNet
synsets [33] as a shared vocabulary space, autonomous semantic axiomatiza-
tions will be able to interoperate at least freely from language ambiguity and
multilingualism.

Using linguistic resources as shared vocabulary spaces could be seen as an
attachment law of emergent semantic networks; or, it could be advised in case of
failures or uncertain semantic interoperations.
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Linguistic resources can thus be seen as common, basic elements guiding the
distributed semantic agreement process in heterogeneous ontological systems.
Notice that for this purpose, not all linguistic resources can be adopted and
reused; the basic (or maybe the only) requirement for a linguistic resource to be
used as such is that it should provide (1) a discrimination of word meaning(s)
(2) in a machine-referable manner. Resources like WordNet provide a machine-
readable conceptual system for English words. Lexical resources that only list
vocabularies and their similarities or that mix meaning descriptions with mor-
phological issues are irrelevant to our purposes. Semantic or linguistic relation-
ships between word forms (such as hyponymy, meronymy, and synonymy) could
be significant but not essential in this regard. Our basic target is to enable emer-
gent semantics networks to communalize a large asset of common word senses
(i.e., concepts), independently of usability perspectives.

4.3 Axiomatization Perspectives in Two Existing Approaches

Dogma is an ontology engineering approach (see [42,43]) that allows knowledge
to be modeled and represented in a double-articulation manner (domain axiom-
atization versus application axiomatizations). Dogma uses the notion of ontology
base as a controlled vocabulary space shared between application axiomatiza-
tions. Such axiomatizations are called applications ontological commitments to
the ontology base. The ontology base is intended to capture domain vocabular-
ies, i.e., lexical rendering of domain concepts, similar to the knowledge level of
a linguistic resource. In this way, Dogma enables different application axiomati-
zations to coexist and interoperate regardless of the diversity of their usability
perspectives.

Similarly, MADS (see [16,68,69]) supports multiple perceptions of the same
real world approach, allowing each application/task to perceive and represent
real world facts according to its usability perspectives and requirements. This
multi-perception approach is motivated by the fact that each application/task
perceives and represents the factual meaning of a vocabulary according to its
usability perspectives and requirements at hand. In other words, applications
perceptions are (in most cases) different views of the same semantics. In this
approach, a multi-perception and multi-representation database model allows
designers to describe all the perceptions in the same database, and users to
access either a peculiar perception or several perceptions in the same query.
The multi-perception approach has been applied successfully in geographical
information systems, where different axiomatizations of the same maps are seen
as multiple perceptions of the same semantics.

5 Imperfect Information in Emergent Semantics

5.1 Representing Imperfection

Emergent semantics processes need ways of representing and assessing imper-
fection in order to dynamically refine semantic agreements. Imperfection may
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be in the form of imprecision, vagueness, uncertainty, incompleteness, inconsis-
tency, etc. Traditional database models and data management systems are not
equipped to cope effectively with information imperfection. However, emergent
semantics systems can benefit from several richer, more flexible database models
better equipped to handle imperfections, both at the modeling (design time) level
and at the querying (run-time) level. At design time, traditional database models
(e.g., the relational model) are enriched with an ability to quantitatively or qual-
itatively specify imperfection, using tools such as probability theory, Dempster-
Shafer theory, fuzzy logic, surprisal, and entropy. At run-time, flexible querying is
introduced, defining preferences inside queries [17]. This can be done at two lev-
els, namely intra-query and inter-query. Intra-query preferences allow to express
that some values are more adequate than others, whereas inter-query preferences
are used to associate different levels of importance with query conditions.

Over the years, several categorical classifications of the different types and
sources of imperfect information have been presented. In accordance with the
classifications of Bosc and Prade [18], Motro [60], and Parsons [70], imperfect
information can be categorized as follows:

Uncertain information: information for which it is not possible to determine
whether it is true or false.

Imprecise information: information which is not as specific as it should be.
Vague information: information that include elements (e.g., predicates or

quantifiers) that are inherently vague (in the common day-to-day sense of
the word cf. [60]).

Inconsistent information: information which contains two or more assertions
that cannot hold at the same time.

Incomplete information: information for which some data are missing.

Data management approaches dealing with uncertainty include the possibilis-
tic approaches and the probabilistic approaches. With possibilistic approaches,
possibility theory [89] is used, where a possibility distribution is used to model
the value of an attribute that is known to be uncertain. Each possible value for
the attribute is assigned a membership grade that is interpreted as the degree of
uncertainty [72]. Furthermore, possibility and necessity measures are attached
to each tuple in the result set of a query to express the possibility and necessity
of the result to be an answer to a query. Probabilistic approaches are based on
probability theory, where each result in the result set of a query is extended
with a probability, representing the probability of it belonging to the set [86].
Both approaches have their advantages and disadvantages. Probabilities repre-
sent the relative occurrence of an event and therefore provide more information
than possibilities. Possibilities, however, are easier to apply because they are not
restricted by a stringent normalization condition of probability theory.

Imprecision of data is mostly modeled with fuzzy set theory [88] and its
related possibility theory [89]. Fuzzy set theory is a generalization of regular set
theory in which it is assumed that there might be elements that only partially
belong to a set. Therefore, a so-called membership grade, denoting the extent to
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which the element belongs to the fuzzy set, is associated with each element of the
universe. Two main approaches can be distinguished when modeling imprecision.
First, similarity relations are used to model the extent to which the elements of
an attribute domain may be interchanged [20]. Second, possibility distributions
[72] are used, having the benefit of being suitable to cope with uncertainty (see
above) and vagueness.

The treatment of incomplete information in databases has been widely ad-
dressed in research. A survey that gives an overview of the field is presented in
[28]. The most commonly adopted technique is to model missing data with a
pseudo-description, called null, denoting missing information. A more recent ap-
proach, based on possibility theory, [81] provides an explicit distinction between
the cases of unknown data and inapplicable data.

5.2 Assessing Imperfection in Emergent Semantics Systems

Pragmatics realized through self-interested agents that can measure the degree of
imperfection of semantic interpretations is an inherent prerequisite for emergent
semantics (Observation 6). Modeling imperfection, however, is insufficient when
it comes to measuring it. Measuring imperfection often involves an iterative
process, in which initial assumptions are strengthened or discarded, and initial
measures of imperfection are being refined. Such an iterative process may involve
bringing together and relating information from several sources. Alternatively,
one may attempt accessing a user with well-defined questions that eventually
will minimize imperfection. In approaches based on possibility theory, refinement
can be done by composing all available fuzzy sets related to the same imperfect
data. Hereby, the intersection operators for fuzzy sets (t-norms) can be used as
composition operators [89].

Recently, specific approaches emerged for assessing and dealing with imper-
fection in schema or ontology mappings. OMEN [59] is a probabilistic ontology
mapping tool based on Bayesian Networks. Pan et. al [67] introduced ontology
mapping based on a probabilistic framework developed for modeling uncertainty
on the Semantic Web. Haase et al. [32] surveyed different approaches to han-
dling inconsistency in description logics based ontologies. Corpus-Based Schema
Matching [54] shows how a corpus of schemas and mappings can be used to
augment the evidence about the schemas being matched. Probabilistic Message
Passing [26] creates a probabilistic network to assess mapping qualities and route
queries in a peer data management system. In [11], the statistical method Latent
Class Analysis (LCA) is used to compute uncertainties of class memberships in
an integrated database. The estimation of the completeness criteria in integrated
sources is discussed in [62].

Finally, several papers appearing in this special issue deals with the problem
of handling imperfect information in semantic applications. In the paper titled
“Managing Uncertainty in Schema Matching with Top-K Schema Mappings”,
uncertainty is refined by a comparison of K schema mappings, each with its
own uncertainty measure (modeled as a fuzzy relation over the two schemata).
The process yields an improved schema mapping, with higher precision. In



14 P. Cudré-Mauroux et al.

“Intensional Semantics for P2P Data Integration”, a new logical framework
based on intensional logic is proposed to take into account the incomplete and
locally inconsistent information on the Semantic Web. In “f-SWRL: A Fuzzy
Extension of SWRL”, finally, Pan et al. propose f-SWRL, a highly expressive
language for the Semantic Web supporting fuzzy assertions and fuzzy rules.

6 Introduction on Social Aspects of Trust and Privacy

Emergent semantics systems are inherently social systems consisting of self-
interested agents. However, while in social networks there is some form of trust
among individuals belonging to the same social network, in emergent semantics
systems individual peers may have serious concerns about the extent to which
they may be unknowingly sharing private or personal information due to a pos-
sible inappropriate usage of these information by other peers.

This section mainly deals with the problems of sharing structures or data
to enable semantic emergence, when privacy constraints are taken into account
and specific agents play the role of trusted-parties whose structures are preferred
in the emergence process. Data publishing and exchange are dynamic processes
which are required in order for semantics to emerge: whereas private data need
to be exchanged, specific protocols should be devised. Trustworthiness it related
to the way local agents can build local semantics by selecting some (trustworthy)
structures.

6.1 Data Privacy in Data Publishing and Data Exchange

Preserving privacy of information owned by each peer/agent is a major challenge
of the emergent semantics paradigm. Peers joining a semantic community have
to disclose information in order to bootstrap the agreement process and accept
propositions [65]. Nevertheless, peers require privacy guarantees on data they
make available to the community, such as the protection of the identities of
individuals and entities. A peer can choose different forms for sharing data within
the semantic community:

Data Publishing: the peer can publish its own data so that they are available
to the whole community.

Data Exchange: the peer can choose to conduct data exchanges with some
peers of the community. This means that data querying capabilities must be
ensured, and, therefore appropriate data integration strategies (see Section 3)
must be adopted in order for the peers to communicate with each other.

In the following, we summarize the current strategies and techniques relevant to
privacy preservation in emergent semantics systems.

In data publishing, a major problem is to assess the risk of privacy viola-
tion, once properly disclosed data are published. Typically, anonimyzation does
not mean zero privacy risk. Therefore, more sophisticated techniques need to
be applied for properly dealing with privacy assurance. Among the techniques
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proposed in the literature, two major classes can be distinguished, namely:
perturbation-based techniques and suppression-based techniques. The former
techniques have been deeply investigated in the context of statistical databases
[9] and privacy preserving data mining [83]. We focus instead on some recent pro-
posals for suppression-based methods, namely for methods that either suppress
single data items in order for privacy to be preserved, or alter elementary data,
e.g., by means of attribute domain generalization. K-anonimity [77] is a tech-
nique that given a relation T , ensures that each record of T can be indistinctly
matched to at least k individuals. It is enforced by considering a subset of T ’s
attributes, called quasi-identifiers, and forcing the values that T ’s records have
on quasi-identifiers to appear with at least k occurrences. A recent technique [49]
considers the quantitative evaluation of the privacy risk in case anonymized data
are released. In this work, a database is modeled as a sequence of transactions,
and the frequency of an item x in the database is the fraction of transactions
that contain that item. An hypothetical attacker can have access to similar data
and use them in order to breach the privacy of disclosed data. The knowledge
of the attacker is modeled as a belief function that represents the guess that the
attacker can make on the actual frequencies of items in the database. In [58], the
authors provide an analysis of the query-view security problem. Given n views,
the problem is to check if the views disclose any information about a given secret
query. The query-view security problem is characterized by means of the notion
of critical tuple for a query Q, that considers a tuple t critical for Q if there are
some instances of the database for which dropping t makes a difference. In [58],
the authors demonstrate that a query Q is insecure w.r.t. a set of views if and
only if they share some common critical tuples.

In data exchange, proposed techniques investigate how to perform query pro-
cessing by revealing to the involved parties only a controlled, a-priori defined set
of data. More specifically, S1 and S2 being two data peers, and given a query Q
involving data at both peers, privacy preserving query answering ensures that
only the result of Q will be learnt by S1 and S2, without revealing any additional
information to either party.

Some of most interesting results in our context regard secure set intersection
protocols [61]. Secure set intersection protocols deal with performing intersection
between two lists with each party only learning the result of the intersection.
In an emergent semantics system, this may be used by two agents to discover
which elements they have in common. A work that specifically deals with pri-
vacy preserving query answering is Agrawal’s work [10] relying on commutative
encryption. In [30], aggregation operations are added to the intersection and
equijoin operations proposed by Agrawal, and computational costs due to en-
cryption/decription are reduced. In [52], several extension to Agrawal’s protocol
are proposed, and the notion of secure data ownership certificate is provided,
with purpose of attesting the proper ownership of data in a database.

Privacy preservation in both data publishing and data exchanges is a new
area that presents several interesting research challenges including: approximate
operations, e.g., secure approximate joins and secure record linkage; symmetric
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protocols that would be useful for emergent semantics contexts, in which there
is no distinction between sender and receiver in data exchanges; schema-level
privacy management, in which the rewriting of queries should be performed by
taking into account privacy requirements also on schema information.

6.2 Learning Metadata Trustworthiness

On the global Internet, information interchange within distributed communities
is mostly self-organizing: as community members interact, useful information is
published and exchanged more frequently, soon becoming widespread. Commu-
nity members often use metadata for creating and spreading their opinions about
content, quality, type, creation, and even spatial geo-location of the informa-
tion items they share. Research has widely acknowledged that sharing metadata
within communities makes information discovery easier and may reduce data
redundancy; but it is also important to remember that shared metadata are
subject to constant scrutiny and debate in the social interaction between com-
munity members. Even apparently innocuous assertions on class subsumption
(e.g., “Contemporary Music is a subset of Classical Music”) or instance clas-
sification (e.g., “Mussorgski’s “Pictures at-an-Exibition” suite belongs to Con-
temporary Music”) may turn out to be debatable or plainly wrong according to
the prevailing usability perspectives (see Section 4) in the community. In the
following, we describe how explicit representation of trust metadata can be a
source of emergent semantics. Our discussion is based on a recent research ap-
proach [23], which exploits user feedback for adapting metadata to the specific
contexts and belief systems where communities operate. The overall effect of a
community-wide trust management mechanism can be twofold:

Knowledge Quality Improvement obtained by keeping the community’s
overall body of knowledge under a continuous evolutionary pressure.

Knowledge Enrichment achieved by generating a layer of metadata express-
ing the evolution of users’ views on each other’s assertions. This procedural
knowledge can later be queried to monitor the community’s collective be-
havior, and even used to restructure the original metadata.

Trust management in decentralized (P2P) networks was first addressed by Aberer
[8]. A complete survey of trust and reputation management systems can be
found in [14]. More recently, the research focus shifted to secure algorithms
for reputation management in P2P environments, like the P2PRep algorithm
described in [27]. Unfortunately, the terminology used in the field is not always
consistent [14]; for the sake of clarity, we shall use the term trust to denote a
user p’s willingness to rely for some practical purpose on a metadata assertion a
stated by another user q (denoted as Ta(p, q)). The term reputation will be used
to quantitatively express p’s judgment about q’s trustworthiness, denoted by
R(p, q) and based on the latest assertion and/or on all metadata q has produced.
Indeed, one might be tempted to identify trust and reputation concepts, e.g.,
by writing R(p, q) = mina{Ta(p, q)}. However, in a community-based knowledge
sharing scenarios, trust (on an assertion) and reputation (of its source) do not
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always coincide. In real-world communities, reputation is only one among the
many factors determining mutual trust; at the very least, any model of trust and
reputation should take into account reputation aging, e.g., by writing Ta(p, q, t) =
R(p, q, t0)e−β(t−t0), for t > t0.

Based on users’ behavior, it is possible to generate and publish specific trust
assertions. For the sake of simplicity, we consider simple assertions of the form
Ta(p, q) = α, expressing the level of trust α of a peer p in the assertion a
put forward by peer q. These assertions are community-specific and provide
an interesting example of emergent semantics. For instance, suppose that an
assertion a put forward by a user q states that a resource r, a .mp3 file, belongs
to the class of CountrySongs. If after downloading r, user p stores it into a
local directory named CountryMusic, a trust assertion Ta(p, q) = α can be
automatically generated. Defining the semantics of trust values like α in terms of
belief in assertion a, in terms of a’s relevance to their purposes, is in itself an open
research problem, especially in a non-anonymous scenario. Another open issue is
defining the appropriate trust algebra for combining trust assertions in order to
create a Web of trust (an important although preliminary step toward a solution
was made in [75]). Here, we simply assume α ∈ [0, 1]. Trust assertions form an
independent, evolving metadata layer that can be stored at a central server or at
distributed peers. Emergent semantics hidden within the trust metadata layer
can be exploited to compute trusted views over the original metadata assertions,
e.g., by disregarding assertions whose community-wide trust level is below a
given threshold.

In this process, individual trust degrees have to be aggregated (in the simplest
case, by user and/or by resource). Some approaches [22] use Fuzzy
Cognitive Maps (FCM) to model the relevance of the trust inputs before their
aggregation, while the REGRET system [76] was an early attempt to use fuzzy
concepts for analyzing the impact on trust of social networks in electronic mar-
ketplaces. Multi-criteria compensative aggregators like the Ordered Weighted
Average (OWA) and the Weighted Ordered Weighted Average (WOWA)[31] are
computationally very efficient and appear to be well suited to the synthesis of
peer opinions in decentralized networks [13]. Hybrid approaches including ap-
proximate reasoning [79], where aggregated trust assertions are used as inputs
to an inference system, look more promising inasmuch they provide a high-level
symbolic representation of trust computation as an inference process, potentially
supporting full human understanding of trust degree levels.

7 Emergent Semantics Applications

Through the years, organizations and enterprises have developed data and in-
formation exchange systems that are now vital for their daily operations. Cur-
rently deployed solutions, however, are now facing a major challenge. On today’s
global information infrastructure, data semantics is more and more context and
time-dependent, and cannot be fixed once and for all at design time. Perhaps
more importantly, identifying emerging relationships among previously unrelated
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information items (e.g., during data exchange) may dramatically change their
business value. In this Section, we explore several applications trying to address
this challenge.

7.1 Communication of Agent-Based Data Systems

A recent trend has been developed toward enhancing the functionality of data
systems by appropriate data agents. A step forward in this scenario consists
in offering a real interoperation possibility among agents coming from indepen-
dently developed data systems, by making minor adaptations on them. By real
interoperation, we mean an interoperation based on the semantics of the commu-
nications (communication among agents is in general based on the interchange of
messages) which takes the matter far beyond the syntactic functionality provided
by exchange standards such as the widely spread XML [19] or, more specifically,
EDI standards [1] in the area of electronic commerce.

There are two ways in which agent-based data systems can interoperate among
themselves. First, through messages that are interchanged among the agents of
both systems, and second, using Web Services provided by each data system. We
consider here the first way, where agents typically have to be aware in advance
of the structure, language and semantics of the messages in order to deal with
them. In the following, we sketch an approach based on emergent semantics
to relax those constraints, enabling communication (total or partial) for agents
coming from different and independently developed systems.

In our opinion, real data systems interoperation will be possible only if there
exists some agreement on the classes of messages used by the agents and the
possibility of constructing new kinds of messages by composition or restriction
of already known classes. Furthermore, the interpretation of a message should be
made on the fly and adapted to the context where it appears. In that scenario,
we advocate for a proposal that favors the interoperation among agentized data
systems by allowing to send/receive suitable messages to/from agents of another
system without requiring the establishment of a common communication pattern
in advance. Our proposal (see [15] for details) is used as a basis for automating
the detection and resolution of conflicts that arise when dealing with messages
interchanged by agents from different systems.

In particular, we have developed a formal ontology we call CommOnt (Com-
munication acts Ontology), which is a key element in the proposal and acts
as an implicitly shared lexical resource (see Section 4). Agents commit to that
ontology if their observable actions are consistent with the definitions in the
ontology. The main part of CommOnt is constituted by terms related to the
messages interchanged by agents representing different data systems. If a data
system can deal with a particular class M of messages, then it can also deal with
any message of a subclass of M in the CommOnt ontology. We claim that the
CommOnt ontology provides interoperability support due to the recognition of
communication acts from one language as instances of communication acts in
another language. Sometimes, the translation will be incomplete, but correctly
modeled partial interoperability is a starting point for the emergent agreement



Viewpoints on Emergent Semantics 19

process (see Sections 3 and 5), and is most of the time more preferable to the
not understood answer given nowadays.

7.2 Self-organizing Hierarchical Structures in Trust-Based
Architectures

Current knowledge management systems classify resources of interest within hi-
erarchical structures. In this context, customization and evolution of categories
is a major issue, inasmuch there is no unique access structure that suits every
community. Traditionally, the approach to this problem involved human atten-
tion, valorizing the contribution of each community member in the knowledge
creation activity with his daily work [51,84]. As human attention is today con-
sidered as one of the scarcest resources, we propose below an approach based
on emergent semantics principles to derive hierarchical structures and create
customized categories semi-automatically.

We designed an architecture to be deployed in association with existing sys-
tems proposed by industrial research groups for bottom-up construction of cat-
egories. Specific examples of existing systems include the intelligent personal
hierarchy for information iPHI proposed by BT Exact [56] as well as the KIWI
knowledge sharing platform [24], later integrated within the Verity knowledge
organizer tool by IBM[73]. The idea behind iPHI is to auto-configure access to
multiple sources of information based on customized categories and fuzzy match-
ing of meta-data structure as well as content. Support for emerging trust enables
our architecture to validates existing hierarchies according to the views (usability
perspectives) of the user community and to discover new categories.

Generally speaking, we introduce a Trust Layer including a centralized Meta-
data Publication Center that acts as a Napster-style index, collecting and
displaying metadata assertions, possibly in different formats and coming from
different sources. Metadata are indexed by the Publication Center and anony-
mous users interact with them, providing an implicit or explicit evaluation of
metadata trustworthiness. Periodically, trust-based evaluations are forwarded by
the Publication Center to a Trust Manager module, in the form of signed asser-
tions built using the well-known technique of reification. This choice allows our
system to interact with heterogeneous formats, including Semantic-Web style
metadata and XML-based metadata like iPHI. In turn, our Trust Manager is
composed of two functional sub-modules: the Trust Evaluator examines meta-
data and evaluates their reliability while the Trust Aggregator aggregates all
inputs coming from the (possibly multiple) trust evaluators. This Trust Layer
can manage a large amount of assertions produced by heterogeneous sources, and
allows the emergence of metadata complying with specific community views.

7.3 Semantics for the Geospatial Web

Numerous efforts are currently active toward the development of the Geospatial
Semantic Web (GSW). The GSW, based on a sound spatial data infrastructure
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(SDI), aims to enable the discovery, access and utilization of dynamic, global
geographic data sets, web resources and services and to allow for their coher-
ent combination and management. Standardized spatial ontologies are at the
heart of the GSW and are proposed as means of handling problems of semantic
interoperability resulting from the ad-hoc use of geographic data and spatial
methods. Specification of such ontologies is the focus of the recently announced
Open Geospatial Consortium (OGC) Geospatial Semantic Web Interoperability
Experiment [53]. The intention is to develop means of expressing spatial queries
in a semantic manner (i.e., with an ontology) and to provide web services to
fulfill these queries. An architecture of ontologies is proposed [47], including a
base ontology, for capturing the spatial models underlying the geographic infor-
mation, a geospatial service ontology and domain ontologies. Also, place-name
ontologies have been shown to play a central role in supporting the development
of a spatially-aware search engines, allowing for geographic information retrieval
on the web [44].

The question of which semantics to encode in such ontologies is an active re-
search question [2,29,48]. There are inherent complexities associated with mod-
eling information in the geographic domain, firstly related to the nature of the
phenomena themselves, for example, with regards to handling multiple repre-
sentations and levels of generalization or accommodating levels of error in the
geometric locations, and secondly due to the variations in the ways we interpret
and use the data (usability perspectives), e.g., national, cultural and institutional
differences in the description of the data. The problem is non-trivial, as much of
the useful semantics of the data are implicit in their inherent spatial structure.
In particular, the multiple types of spatial relationships that exist between the
geographic phenomena are not normally explicitly derived or coded. In what
follows, some examples are given that employ emergent semantics methods for
discovering and self-organizing geospatial data.

Automatic extraction of metadata from geographic data sets has been de-
scribed in [39,46]. However, existing metadata standards facilitate the encoding
of only limited semantics of the data, related for example, to the date of cre-
ation, geo-referencing system used, total extent, etc. A large amount of useful
semantics is implicit and can be interpreted only by the identification of rela-
tionships between features, and characteristics of features such as their density,
distribution, etc. For example, the area designating a city centre on a map can be
identified by studying the types of buildings and roads, and their structure and
density. Similar studies can distinguish between small towns and large cities, etc.
Spatial data mining techniques are proposed in [39] to allow for the automatic
extraction of such semantics. One can envision that such a process of semantic
discovery and enrichment of metadata to be continuous and dynamic reflecting
data updates and evolving geo-ontologies.

Folksonomies have been proposed by Keating and Montoya [45] as a comple-
mentary method for metadata enrichment in geoportals. Data mining is used
to identify the interesting metadata from the collection of tags, annotations and
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comments provided by users. New semantics in the form of new concepts or clas-
sification hierarchies or relationships may emerge as a result of this process which
can then be reflected back in the underlying ontologies. Geo-semantics discovery
of the impreciseness in geographic place names has been demonstrated in the
works of Arampatzis et al. [12]. Many place names that are commonly employed
within web document and in search queries are vague. For example, terms such
as “Midwest” in the US and “Midlands” in the UK have no formal geometric
boundary and may be interpreted differently by different people. The method
proposed involved soliciting information about the spatial extent of the imprecise
region by identifying places that are contained inside it. The assumption is that
place names that co-occur in the same web document are related. Hence, web
documents are geo-parsed to detect related places, and techniques for isolating
places which are likely to be part of the target region are then employed. Bound-
aries of the contained crisp places are derived from the geo-ontology and the new
delineated boundary of the imprecise region is added to the geo-ontology. The
process is dynamic, as iterative refinement of the boundary of the region may
be envisaged when new web resources are found.

7.4 PicShark: Recontextualizing Structured Metadata in a
Distributed Photo-Sharing Application

Metadata have long been recognized as an efficient way to help manage data and
are today widely used by operating systems, personal information managers or
media libraries. The general idea is simple: adding a set of keywords or series of
attributes in order to facilitate information categorization and retrieval. What
is new is the recent focus on formats that let end-users freely define custom
metadata schemas befitting their annotation needs.

More and more applications take advantage of structured metadata to orga-
nize large amount of information such as picture collections. The problem we
want to tackle lies in the fact that none of these applications allows to meaning-
fully share structured metadata to enable global search capabilities in large scale
distributed settings. Exploiting structured metadata in distributed environments
is intrinsically difficult, given that the metadata have to be extracted from their
original context and integrated, i.e., recontextualized, into the distributed infras-
tructure. In the end, we are confronted with two fundamental hurdles preventing
photos annotated with local metadata from being shared:

Local Semantics: The classes and instances introduced by end-users to anno-
tate their photos locally might not make sense on a larger scale, and have
to be related to their counterparts in the distributed infrastructure.

Metadata scarceness: Realistically, a (potentially large) fraction of shared
photos will not be annotated by the user, leaving some (most) of the related
assertions incomplete. This lack of annotation hampers any system relying
on annotations to retrieve instances.



22 P. Cudré-Mauroux et al.

PicShark is a distributed, peer-to-peer system taking advantage of structured
metadata to meaningfully share annotated pictures in very large scale decentral-
ized environments. It provides a solution to both of the aforementioned prob-
lems in a self-organizing context where information entropy (in terms of missing
metadata and ontological heterogeneity) is gradually alleviated through user in-
teraction. PicShark indexes photos, low-level features extracted from the photos,
metadata and schemas in a distributed index structure. The system then tries
to find correspondences between pictures, metadata and schemas in order to
relate instances and schemas (through mappings, see Section 3), and to propa-
gate metadata from one photo to other related photos. Queries are forwarded
dynamically using Semantic Gossiping [7], and schema mappings self-organize
through Probabilistic Message Massing [26]. The overall system can be seen as a
decentralized emergent semantics application, where computationally expensive
operations are confined to the edge of the network and global processes rely on
a distributed hash table to ensure graceful scalability.

8 Conclusions

With the rapid emergence of social applications on the Web, self-organization
principles have once again proven their practicability and scalability: through
Technorati Ranking, Flickr Interestingness or del.icio.us recommendations, an
ever-increasing portion of the Web self-organizes around end-users semantic in-
put. The Semantic Web, with its rich heritage in logic, has so far little benefitted
from this trend. In this paper, we advocate a more decentralized, user-driven and
imperfect (in terms of soundness and completeness) Web of semantics that self-
organizes dynamically. We tried to highlight some of the distinctive features of
our vision as well as point out existing examples of its application.

One of the important remaining issues we did not tackle in this paper is the
necessary human trust that has to be given to the resulting emergent semantics
structure. Interpretations of precise formal structures, when they are concerned
with real world models, remain incomplete and ambiguous. The very rich and
varying experience of human beings allows many interpretations of formal models
and as a consequence acceptance of such models is usually only achieved after
extensive human experimentation and interpretation. Companies like Google
or eBay already have to face similar problems today, but this issue gets even
more sensitive in an emergent semantics scenario where data organization, data
description and data manipulation all depend on semi-automatically generated,
self-organizing structures.
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Abstract. Although the combination of OWL and Horn rules results
in the creation of a highly expressive language, i.e. SWRL, there are
still many occasions where this language fails to accurately represent
knowledge of our world. In particular, SWRL fails at representing vague
and imprecise knowledge and information. Such type of information is
apparent in many applications like multimedia processing and retrieval,
information fusion, etc. In this paper, we propose f-SWRL, a fuzzy ex-
tension to SWRL to include fuzzy assertions (such as ‘Mary is tall in the
degree of 0.9’) and fuzzy rules (such as ‘being healthy is more important
than being rich to determine if one is happy’).

1 Introduction

According to widely known proposals for a Semantic Web architecture, De-
scription Logics (DLs)-based ontologies will play a key role in the Semantic
Web [Pan04]. This has led to considerable efforts to developing a suitable on-
tology language, culminating in the design of the OWL Web Ontology Lan-
guage [BvHH+04b], which is now a W3C recommendation. Although OWL adds
considerable expressive power with respect to languages such as RDF, it does
have expressive limitations, particularly with respect to what can be said about
properties. E.g., there is no composition constructor, so it is impossible to cap-
ture relationships between a composite property and another (possibly com-
posite) property. One way to address this problem would be to extend OWL
with some form of “rules language” [HPS04]. One such proposed extension is
SWRL (Semantic Web Rule Language) [HPSB+04], which is a Horn clause rules
extension to OWL DL1 that overcomes many of these limitations.

∗ This is a revised and extended version of a paper with the same title that was pub-
lished in the International Conference on Artificial Neural Networks (ICANN 2005).
This work is supported by the FP6 Network of Excellence EU project Knowledge
Web (IST-2004-507842).

1 OWL DL is a key sub-language of OWL.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VI, LNCS 4090, pp. 28–46, 2006.
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Even though the combination of OWL and Horn rules results in the creation of
a highly expressive language, there are still many occasions where this language
fails to accurately represent knowledge of our world. In particular these languages
fail at representing vague and imprecise knowledge and information [Kif05]. Such
type of information is very useful in many applications like multimedia process-
ing and retrieval [SST+05, BvHH+04a], information fusion [Mat05], and many
more. Experience has shown that in many cases dealing with such type of in-
formation would yield more efficient and realistic applications [AL05, ZYZ+05].
Furthermore, in many applications, like ontology alignment and modularization,
the interconnection of disparate and distributed ontologies and modules is hardly
ever a true or false situation, but rather a matter of a confidence or relatedness
degree.

In order to capture imprecision in rules, we propose a fuzzy extension of
SWRL, called f-SWRL. In f-SWRL, fuzzy individual axioms can include a speci-
fication of the “degree” (a truth value between 0 and 1) of confidence with which
one can assert that an individual (resp. pair of individuals) is an instance of a
given class (resp. property); and atoms in f-SWRL rules can include a “weight”
(a truth value between 0 and 1) that represents the “importance” of the atom in
a rule. For example, the following fuzzy rule asserts that being healthy is more
important than being rich to determine if one is happy:

Rich(?p) ∗ 0.5 ∧ Healthy(?p) ∗ 0.9→ Happy(?p),

where Rich, Healthy and Happy are classes, and 0.5 and 0.9 are the weights for
the atoms Rich(?p) and Healthy(?p), respectively. Additionally, observe that the
classes Rich, Healthy and Happy are best represented by fuzzy classes, since the
degree to which someone is Rich is both subjective and non-crisp.

In this paper, we will present the formal syntax and semantics of f-SWRL. In
particular, we specify a set of key constraints of the desired semantics of f-SWRL.
These constraints provides a unified framework for model theoretic semantics of
f-SWRL based on fuzzy and weight operations. We will provide several examples
illustrate the features of f-SWRL. To the best of our knowledge, this is the first
effort on fuzzy extensions of the SWRL language.

2 Preliminaries

2.1 OWL

OWL is a standard (W3C recommendation) for expressing ontologies in the
Semantic Web. The OWL language facilitates greater machine understandabil-
ity of Web resources than that supported by RDFS by providing additional
constructors for building class and property descriptions (vocabulary) and new
axioms (constraints), along with a formal semantics. The OWL recommenda-
tion actually consists of three languages of increasing expressive power: OWL
Lite, OWL DL and OWL Full. OWL Lite and OWL DL are, like DAML+OIL,
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Table 1. OWL Class and Property Descriptions

Abstract Syntax DL Syntax Semantics
Class(A) A AI ⊆ ΔI

Class(owl:Thing) � �I =ΔI

Class(owl:Nothing) ⊥ ⊥I = ∅
intersectionOf(C1, C2, . . . ) C1 � C2 (C1 � C2)I = CI

1 ∩ CI
2

unionOf(C1, C2, . . . ) C1 � C2 (C1 � C2)I = CI
1 ∪ CI

2

complementOf(C) ¬C (¬C)I = ΔI \ CI

oneOf(o1, o2,. . . ) {o1}� {o2} ({o1}� {o2}) I ={o1
I ,o2

I}
restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(m)) � mR (� mR)I = {x | �{y.〈x, y〉 ∈ RI} ≥ m}
restriction(R maxCardinality(m)) � mR (� mR)I = {x | �{y.〈x, y〉 ∈ RI} ≤ m}
restriction(T someValuesFrom(u)) ∃T.u (∃T.u)I = {x | ∃t.〈x, t〉 ∈ T I ∧ t ∈ uD}
restriction(T allValuesFrom(u)) ∀T.u (∀T.u)I = {x | ∃t.〈x, t〉 ∈ T I → t ∈ uD}
restriction(T hasValue(w)) ∃T.{w} (∃T.{w})I = {x | 〈x, wD〉 ∈ T I}
restriction(T minCardinality(m)) � mT (� mT )I = {x | �{t | 〈x, t〉 ∈ T I} ≥ m}
restriction(T maxCardinality(m)) � mT (� mT )I = {x | �{t | 〈x, t〉 ∈ T I} ≤ m}
ObjectProperty(S) S SI ⊆ ΔI × ΔI

ObjectProperty(S′ inverseOf(S)) S− (S−)I ⊆ ΔI × ΔI

DatatypeProperty(T ) T T I ⊆ ΔI × ΔD

basically very expressive Description Logics (DLs); they are almost2 equivalent
to the SHIF(D+) and SHOIN (D+) DLs. OWL Full provides the same set
of constructors as OWL DL, but allows them to be used in an unconstrained
way (in the style of RDF). It is easy to show that OWL Full is undecidable, be-
cause it does not impose restrictions on the use of transitive properties [HST99];
therefore, when we mention OWL in this paper, we usually mean OWL DL.

Let C, RI, RD and I be the sets of URIrefs that can be used to denote classes,
individual-valued properties, data-valued properties and individuals respectively.
An OWL DL interpretation is a tuple I = (ΔI , ΔD, ·I) where the individ-
ual domain ΔI is a nonempty set of individuals, the datatype domain ΔD is a
nonempty set of data values, ·I is an individual interpretation function that maps

– each individual name a ∈ I to an element aI ∈ ΔI ,
– each class name CN ∈ C to a subset CNI ⊆ ΔI ,
– each individual-valued property name RN ∈ RI to a binary relation RNI ⊆

ΔI ×ΔI and
– each data-valued property name TN ∈ RD to a binary relation TNI ⊆

ΔI ×ΔD.

Let RN ∈ RI an individual-valued property URIref, R an individual-valued
property, TN ∈ RD a data-valued property URIref and T a data-valued prop-
erty. Valid OWL DL individual-valued properties are defined by the DL syntax:
R ::= RN | R−; valid OWL DL data-valued properties are defined by the DL

2 They also provide annotation properties, which Description Logics do not.
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syntax: T ::= TN. Let CN ∈ C be a class name, C, D class descriptions, o ∈ I
an individual, u an OWL datatype range and m ∈ N an integer. Valid OWL DL
class descriptions are defined by the DL syntax:

C ::= � | ⊥ | CN | ¬C | C 	D | C 
D | {o}
∃R.C | ∀R.C |� mR, |� mR
∃T .u | ∀T .u |� mT, |� mT

The individual interpretation function can be extended to give semantics to
class and property descriptions shown in Tables 2, where A ∈ C is a class URIref,
C, C1, . . . , Cn are class descriptions, S ∈ RI is an individual-valued property
URIref, R is an individual-valued property description and o, o1, o2 ∈ I are in-
dividual URIrefs, u is a data range, T ∈ RD is a data-valued property and �
denotes cardinality.

An OWL DL ontology can be seen as a DL knowledge base [HPSvH03], which
consists of a set of axioms, including class axioms, property axioms and individ-
ual axioms.3 A DL knowledge base consists of a TBox, an RBox and an ABox.
A TBox is a finite set of class inclusion axioms of the form C  D, where
C, D are L-classes. An interpretation I satisfies C  D if CI ⊆ DI . An RBox
is a finite set of role axioms, such as role inclusion axioms (R  S), func-
tional role axioms (Func(R)) and transitive role axioms (Trans(R)); the kinds
of role axioms that can appear in an RBox depend on the expressiveness of L.
An interpretation I satisfies R  S if RI ⊆ SI ; I satisfies Func(R) if, for all
x ∈ ΔI , �{y ∈ ΔI | 〈x, y〉 ∈ RI} ≤ 1 (� denotes cardinality); I satisfies Trans(R)
if, for all x, y, z ∈ ΔI , {〈x, y〉, 〈y, z〉} ⊆ RI → 〈x, z〉 ∈ RI . An ABox is a finite
set of individual axioms of the form a : C, called class assertions, or 〈a, b〉 : R,
called role assertions. An interpretation I satisfies a : C if aI ∈ CI , and it satis-
fies 〈a, b〉 : R if 〈aI , bI〉 ∈ RI . An interpretation I satisfies a knowledge base Σ
if it satisfies all the axioms in Σ. Σ is satisfiable (unsatisfiable) iff there exists
(does not exist) such an interpretation I that satisfies Σ. Let C, D be L-classes,
C is satisfiable w.r.t. Σ iff there exist an interpretation I of Σ s.t. CI �= ∅; C
subsumes D w.r.t. Σ iff for every interpretation I of Σ we have CI ⊆ DI .

2.2 SWRL

SWRL is proposed by the Joint US/EU ad hoc Agent Markup Language Com-
mittee.4 It extends OWL DL by introducing rule axioms, or simply rules, which
have the form:

antecedent→ consequent,

where both antecedent and consequent are conjunctions of atoms written a1 ∧
. . . ∧ an. Atoms in rules can be of the form C(x), P (x,y), Q(x,z), sameAs(x,y),
differentFrom(x,y) or builtIn(pred,z1, . . . , zn), where C is an OWL DL descrip-
tion, P is an OWL DL individual-valued property, Q is an OWL DL data-valued

3 Individual axioms are called facts in OWL.
4 See http://www.daml.org/committee/ for the members of the Joint Committee.
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property, pred is a datatype predicate URIref, x,y are either individual-valued
variables or OWL individuals, and z, z1, . . . , zn are either data-valued variables
or OWL data literals. An OWL data literal is either a typed literal or a plain
literal; see [BvHH+04b, PH05] for details. Variables are indicated using the stan-
dard convention of prefixing them with a question mark (e.g., ?x). For example,
the following rule asserts that one’s parents’ brothers are one’s uncles:

parent(?x, ?p) ∧ brother(?p, ?u)→ uncle(?x, ?u), (1)

where parent, brother and uncle are all individual-valued properties.
In SWRL, URI references (URIrefs) are used to identify ontology elements

such as classes, individual-valued properties and data-valued properties. A URI
reference (or URIref) is a URI, together with an optional fragment identifier
at the end. Uniform Resource Identifiers (URIs) are short strings that identify
Web resources [Gro01]. The reader is referred to [HPSB+04] for full details of
the model-theoretic semantics and abstract syntax of SWRL.

2.3 Fuzzy Sets

While in classical set theory any element belongs or not to a set, in fuzzy set
theory [Zad65] this is a matter of degree. More formally, let X be a collection of
elements (the universe of discourse) with cardinality m, i.e X = {x1, x2, . . . , xm}.
A fuzzy subset A of X, is defined by a membership function μA(x), or simply
A(x), x ∈ X . This membership function assigns any x ∈ X to a rational number
between 0 and 1 that represents the degree in which this element belongs to X.
The support, Supp(A), of A is the crisp set Supp(A) = {x ∈ X | A(x) �= 0}.

Using the above idea, the most important operations defined on crisp sets and
relations (complement, union, intersection) are extended in order to cover fuzzy
sets and fuzzy relations. These operations are now being performed by mathe-
matical functions over the unit interval. More precisely, the complement ¬A of
a fuzzy set A is given by (¬A)(x) = c(A(x)) for any x ∈ X , where the function
c : [0, 1]→ [0, 1] is called a fuzzy complement (or simply c-norm), which should
satisfy the boundary conditions, c(0) = 1 and c(1) = 0, and be monotonic de-
creasing, i.e. for a ≤ b, c(a) ≥ c(b). Examples of c-norms include the Lukasiewicz
negation c(a) = 1 − a, which additionally is continuous and involutive, i.e., for
each a ∈ [0, 1], c(c(a)) = a holds. The intersection of two fuzzy sets A and B
is given by (A ∩ B)(x) = t[A(x), B(x)], where the function t : [0, 1]2 → [0, 1]
is called a triangular norm (t-norm) that should satisfy boundary condition, i.e.
t(a, 1) = a, be monotonic increasing, commutative, i.e. t(a, b) = t(b, a), and as-
sociative, i.e., t(a, t(b, c)) = t(t(a, b), c). Examples of t-norms include the Gödel
t-norm t(a, b) = min(a, b), which additionally is idempotent, i.e. min(a, a) = a.
The union of two fuzzy sets A and B is given by (A ∪ B)(x) = u[A(x), B(x)],
where the function u : [0, 1]2 → [0, 1] is called a triangular conorm (or simply
s-norm, or u-norm), which should satisfy boundary condition, i.e. u(a, 0) = a,
be monotonic increasing, commutative and associative. Examples of u-norms in-
clude the Gödel u-norm u(a, b) = max(a, b), which additionally is idempotent.
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A binary fuzzy relation R over two countable crisp sets X and Y is a function
R : X × Y → [0, 1]. The composition of two fuzzy relation R1 : X × Y → [0, 1]
and R2 : Y ×Z → [0, 1] is given by [R1 ◦t R2]= supy∈Y t[R1(x, y), R2(y, z)]. Such
a type of composition is referred to as sup -t composition.

Another important operation in fuzzy logics is the fuzzy implication, which
gives a truth value to the predicate A⇒ B. A fuzzy implication is a function ω
of the form ω : [0, 1]2 → [0, 1], which is monotonic decreasing (increasing) on the
first (second) argument. In fuzzy logics, we are usually interested in two kinds
of fuzzy implications, i.e.,

– S-implication: ωu,c(a, b) = u(c(a), b),
– R-implication: ωt(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b},

where a, b are the truth values for A and B, respectively.
We now recall some properties of the above two fuzzy operations that we are

going to use in the investigation of the properties of the f-SWRL language.

Lemma 1. [KY95] For any a, b, c ∈ [0, 1], t a t-norm, ωt the respective R-
implication and ω an R or an S-implication, the following properties are satisfied:

1. t(a, b) ≤ c iff ωt(a, c) ≥ b,
2. ωt(a, b) = 1 iff a ≤ b,
3. ω(0, b) = 1, (dominance of falsity)
4. ω(1, b) = b (neutrality of truth)

The last two properties follow easily from the definitions of the fuzzy implications
and the boundary conditions of t-norms and u-norms.

The reader is referred to [KY95, Haj98] for details of fuzzy logics and their
applications.

3 A Motivating Use Case

In this section, we discuss a motivating use case from a casting company, which
has a knowledge base that consists of person-models. Advertisement companies
are using this knowledge base to look for models to be used in advertisements
or other activities. Each entry in the knowledge base contains a photo of the
model, personal information and some body and face characteristics. The casting
company has created a user interface for inserting the information of the models
as instances of a predefined ontology. It also provides a query engine to search
for models with specific characteristics. A user can query the knowledge base
providing high-level information about the models (such as the name, the height,
the type of the hair etc.).

Now we suppose that we have only information about the following two models
in the knowledge base:

– Mary has height 172cm and has weight 50kg.
– Susan has height 180cm and has weight 61kg.
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If an advertisement company requires a thin female model. Since thinness can
be regarded as a function of both the weight as well as the height of a person,
one can define thinness as follows.

– One is thin iff one is both tall and light.
– One is tall iff one’s height is larger than 175cm.
– One is light iff one’s weight is less than 60kg.

Under such definitions, it is obvious that there are no thin female models in
the knowledge base. Susan is over 175cm tall but is not under 60kg, while Mary
is under 60kg but not over 175cm. Although Mary fails to satisfy the height
requirement for only 3cm, which in fact is a rather small value, she satisfies the
weight condition; in fact, she is 10kg lighter than the required weight. In fact, the
advertisement company might classify her as a thin model if it regards weight a
more important factor than height in terms of thinness.

The above problems can be solved if we use a fuzzy knowledge representation,
instead of a crisp knowledge representation. In particular, we can define tall and
light in a fuzzy way, i.e., by using degrees of confidence. For instance, based
on the above data of the two models as well as the policy of the advertisement
company, we can have the following fuzzy assertions.

– Mary is tall with a degree no less than 0.65.
– Mary is light with a degree no less than 0.9.
– Susan is tall with a degree no less than 0.8.
– Susan is light with a degree no less than 0.6.

Note that the above membership degrees of the individuals Mary and Susan to
the fuzzy classes “tall” and “light” have resulted by providing a fuzzy partition
[KY95] of the space of the possible values that ones height and weight can obtain.
For example, the fuzzy partitions in our example can be depicted in Fig. 1.

In addition to the fuzzy assertion, we can also deduce “one is thin” in a fuzzy
way. For instance, we can introduce the following fuzzy rule about thinness: One
is thin if one is tall (with importance factor 0.7) and light (with importance
factor 0.8).

Fig. 1. The fuzzy partition of Height and Weight
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After introducing the syntax and semantics of f-SWRL, we will revisit this
use case in Section 4.

4 f-SWRL

Fuzzy rules are of the form antecedent→ consequent, where atoms in both the an-
tecedent and consequent can have weights (i.e., importance factors), i.e., numbers
between 0 and 1. More specifically, atoms can be of the forms C(x)∗w, P(x,y)∗w,
Q(x,z)∗w, sameAs(x,y)∗w, differentFrom(x,y)∗w or builtIn(pred,z1, . . . , zn),
where w ∈ [0, 1] is the weight of an atom, and omitting a weight is equivalent
to specifying a value of 1. For instance, the following fuzzy rule axiom, inspired
from the field of emotional analysis, asserts that if a man has his eyebrows raised
enough and his mouth open then he is happy, and that the condition that he
has his eyebrows raised is a bit more important than the condition that he has
his mouth open.

EyebrowsRaised(?a) ∗ 0.9 ∧MouthOpen(?a) ∗ 0.8→ Happy(?a), (2)

In this example, EyebrowsRaised, MouthOpen and Happy are class URIrefs, ?a
is a individual-valued variable, and 0.9 and 0.8 are the weights of the atoms
Eyebrows- Raised(?a) and MouthOpen(?a), respectively.

In this paper, we only consider atomic fuzzy rules, i.e., rules with only one
atom in the consequent. The weight of an atom in a consequent, therefore, can
be seen as indicating the weight that is given to the rule axiom in determining
the degree with which the consequent holds. Consider, for example, the following
two fuzzy rules:

parent(?x, ?p) ∧ Happy(?p)→ Happy(?x) ∗ 0.8 (3)

brother(?x, ?b) ∧ Happy(?b)→ Happy(?x) ∗ 0.4, (4)

which share Happy(?x) in the consequent. Since 0.8 > 0.4, more weight is given
to rule (3) than to rule (4) when determining the degree to which an individual
is Happy.

In what follows, we formally introduce the syntax and model-theoretic seman-
tics of fuzzy SWRL.

4.1 Syntax

In this section, we present the syntax of fuzzy SWRL. To make the presentation
simple and clear, we use DL syntax (see the following definition) instead of the
XML, RDF or abstract syntax of SWRL.

Definition 1. Let a,b be individual URIrefs, l a OWL data literal, C, D OWL
class descriptions, r, s OWL individual-valued property descriptions, r1, r2 indi-
vidual-valued property URIrefs, s, s1 data-valued property URIrefs, pred a
datatype predicate, w, w1, . . . , wn ∈ [0, 1],

⇀
v ,

⇀
v 1, . . . ,

⇀
v n are (unary or binary)
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tuples of variables and/or individual URIrefs, a1(
⇀
v1), . . . , an(

⇀
vn) and c(

⇀
v ) are

of the forms C(x), r(x, y), s(x, z), sameAs(x, y), differentF rom(x, y), m or
builtIn(pred, z1, . . . , zn), where x, y are individual-valued variables or individual
URIrefs, m is a truth constant, which is a rational number between 0 and 1, and
z, z1, . . . , zn are data-valued variables or OWL data literals.

An f-SWRL ontology can have the following kinds of axioms:

– class axioms: C  D (class inclusion axioms);
– property axioms: r  r1 ( individual-valued property inclusion axioms),

Func(r1) (functional individual-valued property axioms), Trans(r2) (tran-
sitive property axioms), s  s1 (data-valued property inclusion axioms),
Func(s1) (functional data-valued property axioms);

– individual axioms (facts): (a : C) ≥ m, (a : C) ≤ m (fuzzy class asser-
tions), (〈a,b〉 : r) ≥ m, (〈a,b〉 : r) ≤ m (fuzzy individual-valued property
assertions), (〈a,l〉 : r) ≥ m, (〈a,l〉 : r) ≤ m (fuzzy data-valued property as-
sertions), a = b (individual equality axioms) and a �= b (individual inequality
axioms);

– rule axioms: a1(
⇀
v1) ∗w1 ∧ · · · ∧ an(

⇀
vn) ∗wn → c(

⇀
v ) ∗w (fuzzy rule axioms).

Omitting a degree or a weight is equivalent to specifying the value of 1. ♦
According to the above definition, f-SWRL extends SWRL with fuzzy class as-
sertions, fuzzy property assertions and fuzzy rule axioms. We have some remarks
here. Firstly, in f-SWRL, there are two (i.e. ≥ and ≤) kinds of fuzzy assertions;
as first pointed out in [HKS02], we can simulate the form of (a : C) = m by
considering two assertions of the form (a : C) ≥ m and (a : C) ≤ m. Secondly,
although f-SWRL supports degrees in fuzzy assertions, it does not support de-
grees in fuzzy class axioms and fuzzy property axioms because it is not very
clear how to obtain degrees for them. Nevertheless, it is worth noting that fuzzy
class axioms and fuzzy property axioms have fuzzy interpretations instead of
crisp interpretations (see Section 4.3). Furthermore, we allow the use of truth
constants m [Pav79, Haj98] in the consequence of a fuzzy rule axiom. This could
enable us to simulate fuzzy assertions of the form (a : C) ≤ m with fuzzy rule
axioms (see Section 4.3).

4.2 Constraints on Semantics

In order to make the semantics of f-SWRL more intuitive, in this section we
briefly clarify the constraints of our desired semantics for f-SWRL. The pro-
posed constraints provide a unified framework for giving model theoretic seman-
tics for f-SWRL based on fuzzy intersections (t-norms), fuzzy union (u-norms),
fuzzy negations (c-norms), fuzzy implications (ω-norms) and weight operations
g(w, d) : [0, 1]2 → [0, 1], i.e. how to handle the degree d of an atom (in an-
tecedents) and its weight w.

Firstly, one of the most useful relationships which is used to manipulate ex-
pressions in propositional logic is the modus ponen, which states that A ∩ (A⇒
B) ⇒ B (if A is true and A implies B, then B is also true). This suggests the
following constraint on fuzzy implications.
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Constraint 1. The fuzzy implications used in the semantics of f-SWRL should
satisfy the modus ponen:

ω(t(a, ω(a, b)), b) = 1.

It is easy to verify that, e.g., the following two sets of fuzzy operations satisfy
the above constraint:

– {t(a, b) = min(a, b), ωt(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b}},
– {t(a, b) = a · b, ωt(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b}},

while the set of fuzzy operations {t(a, b) = min(a, b), u(a, b) = max(a, b), c(a) =
1 − a, ωu,c(a, b) = u(c(a), b)} does not (e.g., when a = 0.4, b = 0.5). In short,
R-implication satisfies Constraint 1, while S-implication does not.

Secondly, we require the weight operations g(w, d) in antecedents satisfy the
following properties.

Constraint 2. The weight operations g(w, d) used in the semantics of f-SWRL
should satisfy the following properties:

1. monotone in d: if d1 < d2 then g(w, d1) < g(w, d2),
2. g(0, d) = 1, g(1, d) = d.

The intuition of Property 1 is immediate. Property 2 ensures that the weight 0
would not affect the result of fuzzy intersections in the antecedent, and that the
full membership degree would participate in fuzzy intersections when the weight
is 1.

It is easy to verify that, e.g., the following two weight operations satisfy the
above constraint:

– g(a, b) =
{

a · b if a �= 0
1 if a = 0 ,

– g(a, b) = ωt(a, b),

while the weight operation g(a, b) = min(a, b) does not (e.g. when a = 0).
Thirdly, in order to enable the use of weights in the head atoms as the weights

of the rule axiom, we have the following constraint.

Constraint 3. Given a fuzzy rule A → c ∗ w, where A is the antecedent of
the rule and c is the consequent atom with weight w, the semantics of f-SWRL
should satisfy the following property:

ω(A(I), c(I)) ≥ w,

where A(I) and c(I) are interpretations of A and c, respectively.

Intuitively speaking, the above constraint requires that the degree of fuzzy impli-
cation should be no less than the weight. This constraint is inspired by Theorem
5 from [DP01], which shows an important property of the weighted rules of the

form A
θ→C, where θ is a weight of the rule.

Furthermore, individual axioms (or facts) are special forms of rule axioms in
SWRL. This suggests yet another constraint on the semantics of f-SWRL.
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Constraint 4. The semantics of f-SWRL should ensure that fuzzy individual
axioms (fuzzy facts) are special forms of fuzzy rule axioms.

It is worth noting that we do not require fuzzy class (or property) axioms be
special forms of fuzzy rule axioms. In some decidable sub-languages of SWRL,
such as the DL-safe SWRL [MSS04], class (or property) axioms are not special
forms of rule axioms.

4.3 Model-Theoretic Semantics

In this section, we give a model-theoretic semantics for fuzzy SWRL, based on
the constraints specified in the precious section. Although many f-SWRL axioms
share the same syntax as their counterparts in SWRL, such as class inclusion
axioms, they have different semantics because we use fuzzy interpretations in
the model-theoretic semantics of f-SWRL.

Before we provide a model-theoretic semantics for f-SWRL, we introduce the
notions of datatype predicates and datatype predicate maps.

Definition 2. (Datatype Predicate) A datatype predicate (or simply pred-
icate) p is characterised by an arity a(p), or a minimum arity amin(p) if p can
have multiple arities, and a predicate extension (or simply extension) E(p). ♦

For example, =int is a datatype predicate with arity a(=int) = 2 and exten-
sion E(=int) = {〈i1, i2〉 ∈ V (integer)2 | i1 = i2}, where V (integer) is the set
of all integers. Datatypes can be regarded as special predicates with arity 1
and predicate extensions equal to their value spaces; e.g., the datatype integer
can be seen as a predicate with arity a(integer) = 1 and predicate extension
E(integer) = V (integer).5

Definition 3. (Predicate Map) We consider a predicate map Mp that is a
partial mapping from predicate URI references to predicates. ♦

Intuitively, datatype predicates (resp. datatype predicate URIrefs) in Mp are
called built-in datatype predicates (resp. datatype predicate URIrefs) w.r.t. Mp.
Note that allowing the datatype predicate map to vary allows different imple-
mentations of f-SWRL to implement different datatype predicates.

Based on the constraints we specified in the previous section, we define the
semantics of f-SWRL as follows.

Definition 4. Let c, t, u be fuzzy negations, fuzzy intersections and fuzzy unions,
g weight operations that satisfy Constraints 2. Due to Constraint 1, we choose
the R-implication as the fuzzy implication. Given a datatype predicate map Mp, a
fuzzy interpretation is a triple I = 〈ΔI , ΔD, ·I〉, where the abstract domain ΔI is
a non-empty set, the datatype domain contains at least all the data values in the
extensions of built-in datatype predicates in Mp, and ·I is a fuzzy interpretation
function, which maps
5 See [Pan04] for detailed discussions on the relationship between datatypes and

datatype predicates.
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1. individual URIref and individual-valued variables to elements of ΔI ,
2. a class description C to a membership function CI : ΔI → [0, 1],
3. an individual-valued property URIref r to a membership function rI : ΔI ×

ΔI → [0, 1],
4. an data-valued property URIref q to a membership function qI : ΔI×ΔD →

[0, 1],
5. a truth constant m to itself: mI = m,
6. a built-in datatype predicate URIref pred to its extension predI =

E(Mp(pred)) ∈ (ΔD)n, where n = a(Mp(pred)), so that

builtInI(pred, z1, . . . , zn) =
{

1 if 〈zI1 , . . . , zIn〉 ∈ predI

0 otherwise,

7. the built-in property sameAs to a membership function

sameAsI(x, y) =
{

1 if xI = yI

0 otherwise,

8. the built-in property differentF rom to a membership function

differentF romI(x, y) =
{

1 if xI �= yI

0 otherwise.

The fuzzy interpretation function can be extended to give semantics for fuzzy
class descriptions listed in Table 2.

A fuzzy interpretation I satisfies a class inclusion axiom C  D, written
I |= C  D, if ∀o ∈ ΔI , CI(o) ≤ DI(o).

A fuzzy interpretation I satisfies an individual-valued property inclusion ax-
iom r  r1, written I |= r  r1, if ∀o, q ∈ ΔI , rI(o, q) ≤ rI1 (o, q). I satisfies
a functional individual-valued property axiom Func(r1), written I |= Func(r1),
if ∀o ∈ ΔI , infq1,q2∈ΔI u(c(rI1 (o, q1)), c(rI1 (o, q2))) ≥ 1. I satisfies a transitive
property axiom Trans(r2), written I |= Trans(r2), if ∀o, q ∈ ΔI , rI2 (o, q) =
supp∈ΔI t[rI2 (o, p), rI2 (p, q)], where t is a triangular norm. A fuzzy interpretation
I satisfies a data-valued property inclusion axiom s  s1, written I |= s  s1, if
∀〈o, l〉 ∈ ΔI ×ΔD, sI(o, l) ≤ sI1 (o, l). I satisfies a functional data-valued prop-
erty axiom Func(s1), written I |= Func(s1), if ∀o ∈ ΔI , inf l1,l2∈ΔD u(c(sI1 (o, l1)),
c(sI1 (o, l2))) ≥ 1.

A fuzzy interpretation I satisfies a fuzzy class assertion (a : C) ≥ m, written
I |= (a : C) ≥ m, if CI(a) ≥ m. I satisfies a fuzzy individual-valued property
assertion (〈a,b〉 : r) ≥ m2, written I |= (〈a,b〉 : r) ≥ m2, if rI(a,b) ≥ m2.
I satisfies a fuzzy data-valued property assertion (〈a, l〉 : s) ≥ m3, written
I |= (〈a, l〉 : s) ≥ m3, if sI(a, l) ≥ m3. The semantics of fuzzy assertions using
≤ are defined analogously. I satisfies an individual equality axiom a = b, written
I |= a = b, if aI = bI. I satisfies an individual inequality axiom a �= b, written
I |= a �= b, if aI �= bI .

A fuzzy interpretation I satisfies a fuzzy rule axiom a1(
⇀
v1) ∗w1 ∧ · · · ∧ an(

⇀
vn)

∗wn → c(
⇀
v ) ∗ w, written I |= a1(

⇀
v1) ∗ w1 ∧ · · · ∧ an(

⇀
vn) ∗ wn → c(

⇀
v ) ∗ w, if

t(g(w1, a
I
1 (

⇀
v1

I
)), . . . , g(wn, aI

n(
⇀
vn

I
))) ≤ ωt(w, cI(

⇀
v
I
)). ♦
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Table 2. Syntax and Semantics of Fuzzy Class and Property Descriptions

DL Syntax Semantics
A AI : ΔI → [0, 1]
� �I

(a) = 1
⊥ ⊥I(a) = 0

C1 � C2 (C � D)I(a) = t(CI(a),DI(a))
C1 � C2 (C � D)I(a) = u(CI(a), DI(a))

¬C (¬C)I(a) = c(CI(a))
{o1}� {o2} ({o1} � {o2})I(a) = 1 if a ∈{ oI

1, o
I
2}

({o1} � {o2})I(a) = 0 otherwise
∃r.C (∃r.C)I(a) = supb∈ΔI t(rI(a, b), CI(b))
∀r.C (∀r.C)I(a) = infb∈ΔI ωt(rI(a, b), CI(b))
∃r.{o} (∃(r.{o})I(a) = supb∈ΔI t(rI(a, b), {o}I(b))
� mr (� mr)I(a) = supb1,...,bm∈ΔI tm

i=1r
I(a, bi)

� mr (� mr)I(a) = infb1,...,bm+1∈ΔI um+1
i=1 c(rI(a, bi))

∃s.d (∃s.d)I(a) = supy∈ΔD
t(sI(a, y), y ∈ dI)

∀s.d (∀s.d)I(a) = infy∈ΔD ωt(sI(a, y), y ∈ dI)
� ms (� ms)I(a) = supy1,...,ym∈ΔD

tm
i=1s

I(a, yi)
� ms (� ms)I(a) = infy1,...,ym+1∈ΔD um+1

i=1 c(sI(a, yi))
R− (R−)I(a, b) = RI(b, a)

There are some remarks on the above definition. Firstly, as we have seen in
the previous section, only R-implication satisfies Constraint 1. Therefore, we
implicitly use R-implication for fuzzy rule axioms (see below). In fact, given a
fuzzy rule axiom A → C, Definition 4 asserts that an fuzzy interpretation I
satisfies A→ C if A(I) ≤ C(I), where A(I) and C(I) are interpretations of the
antecedent A and conclusion C, respectively. By applying Property 2 of Lemma
1, it follows that ωt(A(I), C(I)) = 1. One of the consequences of such semantics
is the support of chaining of rules. Suppose that we have two fuzzy rule axioms
A1 → C1, C1 → C2, if an fuzzy interpretation I satisfies both of them, i.e.
A1(I) ≤ C1(I) and C1(I) ≤ C2(I), it follows A1(I) ≤ C2(I). In other words, I
also satisfies the fuzzy rule axiom A1 → C2.

Secondly, there is more than one choice of semantics of fuzzy class descrip-
tions. The one we presented in Table 2 is simply a relatively straightforward
one out of many possible choices. For example, we decide to use R-implication
in value restriction (∀r.C) and datatype value restriction (∀s.d) because we use
R-implication in fuzzy rule axioms. The semantics of fuzzy number restrictions
were first presented in [Str05]. They are derived by the fuzzy version of the First-
Order formulae of classical number restrictions [Str05]. It is easy to see that the
fuzzy interpretation of (� 1r) is equivalent to that of (∃r.�).

Furthermore, the semantics of fuzzy functional role axioms is equivalent to
that of the fuzzy class inclusion axiom � ≤ 1r. Note that there are two ways to
encode fuzzy disjointness axioms. For example, to assert that C is disjoint with
D, one can encode it as the fuzzy class axiom C 	 D  ⊥ or C  ¬D, which
have different semantics. In this paper, we do not prejudge which approach is
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better and leave it to the users to choose, based on the modelling requirements
in their applications.

Let us conclude this section by showing that f-SWRL satisfies all the con-
straints presented in Section 4.2.

Lemma 2. Given a f-SWRL rule axiom A→ c∗w, where A is the antecedent of
the rule and c is the consequent atom with weight w, we have ωt(A(I), c(I)) ≥ w,
where A(I) and c(I) are interpretations of A and c, respectively.

Proof: According to the Definition 4, we have A(I) ≤ ωt(w, c(I)). Due to
Property 1 of Lemma 1, we have t(w, A(I)) ≤ c(I); i.e., t(A(I), w) ≤ c(I). Due
to Property 1 of Lemma 1 again, we have ωt(A(I), c(I)) ≥ w. 	


Lemma 3. In f-SWRL, fuzzy assertions are special forms of fuzzy rule axioms.

Proof: (a : C) ≥ m can be simulated by �(a) → C(a) ∗ m. According to
Definition 4, we have 1 ≤ ωt(m, CI(a)). Due to Property 2 of Lemma 1, we have
CI(a) ≥ m, which is the interpretation of (a : C) ≥ m.

(a : C) ≤ m can be simulated by C(a) → m, where m is a truth constant.
According to Definition 4, we have CI(a) ≤ ωt(1, m). Due to Property 4 of
Lemma 1, we have CI(a) ≤ m, which is the interpretation of (a : C) ≤ m.

Similarly, (〈a, b〉 : r) ≥ m can be simulated by �(a)∧�(b)→ r(a, b) ∗m, and
(〈a, b〉 : r) ≤ m can be simulated by r(a, b)→ m. 	

Based on Definition 4, Lemma 2 and Lemma 3, we have the following theorem.

Theorem 1. f-SWRL satisfies Constraints 1-4.

5 Examples

In this section, we use some examples to further illustrate the semantics of
f-SWRL. Firstly, let us revisit our motivating example presented in Section 3,
so as to show that the use of different fuzzy and weight operations could lead to
very different results.

Example 1. The corresponding f-SWRL knowledge base about models consists
of the following fuzzy axioms:

– Mary is Tall with a degree no less than 0.65: (Mary : Tall) ≥ 0.65.
– Mary is Light with a degree no less than 0.9: (Mary : Light) ≥ 0.9.
– Susan is Tall with a degree no less than 0.8: (Susan : Tall) ≥ 0.8.
– Susan is Light with a degree no less than 0.6: (Susan : Light) ≥ 0.6.
– One is Thin if one is Tall (with importance factor 0.7) and Light (with im-

portance factor 0.8):

Tall(?p) ∗ 0.7 ∧ Light(?p) ∗ 0.8→ Thin(?p).
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The interpretation of the above rule axiom is as follows.

t(g(0.7, TallI(?pI)), g(0.8, LightI(?pI))) ≤ ωt(1, ThinI(?pI)).

In this example, we first use the following operations: t(a, b) = min(a, b), ωt(a, b)

=
{

1 if a ≤ b
b if a > b

, g(a, b) =
{

a · b if a �= 0
1 if a = 0 . According to Definition 4, we have

ThinI(MaryI) ≥ min(0.7 · 0.65, 0.8 · 0.9) = min(0.455, 0.72) = 0.455, while
ThinI(SusanI) ≥ min(0.7 · 0.8, 0.8 · 0.6) = min(0.56, 0.48) = 0.48. As a result,
Susan seems to be thinner than Mary in this setting.

If we choose another set of operations, the conclusion, however, can be com-
pletely different.

For example, now we use the following operations: t(a, b) = a · b, ωt(a, b) ={
1 if a ≤ b
b/a if a > b

, g(a, b) = ωt(a, b). According to Definition 4, we have

ThinI(MaryI) ≥ ωt(0.7, 0.65) · ωt(0.8, 0.9) = 0.929 · 1 = 0.929, while
ThinI(SusanI) ≥ ωt(0.7, 0.8) · ωt(0.8, 0.6) = 1 · 0.75 = 0.75. As a result, Mary
seems to be quite thinner than Susan in this setting. ♦
The above example indicates that t-torm based weights give quite different mean-
ing than ωt based weights.

Secondly, we revisit rules (3) and (4) discussed at the beginning of Section 4.
Interestingly, this time the above two sets of operations lead to the agreeing
result.

Example 2. Suppose we have an f-SWRL knowledge base as follows:

– Tom is Happy with a degree no less than 0.7: (Tom : Happy) ≥ 0.7,
– Tom is a parent of Jane: 〈Jane, Tom〉 : parent,
– Tom is a brother of Kate: 〈Kate, Tom〉 : brother,
– if one’s parent is Happy, then one is Happy (with importance factor 0.8):

parent(?x, ?p) ∧ Happy(?p)→ Happy(?x) ∗ 0.8,

– if one’s brother is Happy, then one is Happy (with importance factor 0.4):

brother(?x, ?b) ∧ Happy(?b)→ Happy(?x) ∗ 0.4.

Let us use the two sets of operations in Example 1 with this knowledge base.
Firstly, we use the following operations: t(a, b) = min(a, b), ωt(a, b) ={
1 if a ≤ b
b if a > b

, g(a, b) =
{

a · b if a �= 0
1 if a = 0 . According to Definition 4, we have

ωt(0.8, HappyI(JaneI)) ≥ min(1 · 1, 1 · 0.7) = 0.7. Due to Property 1 of Lemma
1, we have HappyI(JaneI) ≥ 0.7. As for Kate, we have ωt(0.4, HappyI(KateI)) ≥
min(1 · 1, 1 · 0.7) = 0.7; hence, HappyI(KateI) ≥ 0.4. Hence, Jane seems to be
happier than Kate.

Now we use the following operations: t(a, b) = a ·b, ωt(a, b) =
{

1 if a ≤ b
b/a if a > b

,

g(a, b) = ωt(a, b). According to Definition 4, we have ωt(0.8, HappyI(JaneI)) ≥
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ωt(1, 1)·ωt(1, 0.7) = 0.7; hence, HappyI(JaneI) ≥ t(0.8, 0.7) = 0.56. As for Kate,
we have ωt(0.4, HappyI(KateI)) ≥ ωt(1, 1) · ωt(1, 0.7) = 0.7; hence,
HappyI(KateI) ≥ t(0.4, 0.7) = 0.28. Again, Jane seems to be happier than
Kate. ♦

So far we have only seen fuzzy assertions of the form (a : C) ≥ m; in the next
example, we will use fuzzy assertions of the form (a : C) ≤ m.

Example 3. Suppose we have a slightly different f-SWRL knowledge base from
that in the previous example.

– Jane is Happy with a degree no larger than 0.75: (Jane : Happy) ≤ 0.75,
– Kate is Happy with a degree no larger than 0.85: (Kate : Happy) ≤ 0.85,
– Tom is a parent of Jane: 〈Jane, Tom〉 : parent,
– Tom is a brother of Kate: 〈Kate, Tom〉 : brother,
– if one’s parent is Happy, then one is Happy (with importance factor 0.8):

parent(?x, ?p) ∧ Happy(?p)→ Happy(?x) ∗ 0.8 (5)

– if one’s brother is Happy, then one is Happy (with importance factor 0.4):

brother(?x, ?b) ∧ Happy(?b)→ Happy(?x) ∗ 0.4, (6)

Here we use the following operations: t(a, b)=min(a, b), ωt(a, b)=
{

1 if a ≤ b
b if a > b

,

g(a, b) =
{

a · b if a �= 0
1 if a = 0 . From (5), we have HappyI(TomI) ≤ ωt(0.8, HappyI

(JaneI)) ≤ ωt(0.8, 0.75) = 0.75. Hence, we have HappyI(TomI) ≤ 0.75. From
(6), we have ωt(0.4, HappyI(KateI)) ≥ HappyI (TomI). Due to Property 1 of
Lemma 1, we have HappyI(KateI) ≥ min(0.4, HappyI(TomI)).

It is easy to verify that we have the same results if we use the other set of
operations. ♦

6 Discussion

In this paper, we have proposed f-SWRL, a fuzzy extension to SWRL to include
fuzzy assertions and fuzzy rules. We have provided formal syntax and semantics
for f-SWRL, shown how weights of atoms in consequences of fuzzy rule can be
used as important factors of fuzzy rules, illustrated the features of f-SWRL with
several examples.

The main strength of the proposal is the openness of the use of fuzzy and
weight operations. As many theoretical and practical studies [Voj01] have
pointed out, the choice of these operations is usually context dependent. There-
fore, it is appropriate to simply specify some key constraints of the desired
semantics of f-SWRL and to allow the use of any of these operations as long as
they conform to the key constraints. Like in SWRL, in f-SWRL assertions are
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special forms of rules. Although class and property axioms are not associated
with any degrees or important factors, they have fuzzy interpretations instead
of crisp interpretations. We show that f-SWRL may be applied in many applica-
tions, such as multimedia processing and retrieval. To the best of our knowledge,
this is the first effort on fuzzy extensions of SWRL.

Several ways of extending Description Logics using the theory of fuzzy logic
have been proposed in the literature [Yen91, TM98, Str01, Str05, SST+05]. Fur-
thermore, in [Str04] an approach to extend Description Logic Programs (DLPs)
with uncertainty was provided, where DLP is extended with negation as failure.
DLPs are different from SWRL in that rules in DLPs are programs instead of
axioms; therefore, the semantics of rules in DLPs are based on Herbrand models
instead of model theoretic semantics. [Voj01] presents an approach to fuzzy logic
programs which is similar to ours. In that approach, interpretations of rules are
based on Herbrand models, instead of model theoretic semantics. The main dif-
ference from our work is that weights are only for the whole rules, not for rule
atoms. The semantics of weights, accordingly, are based on fuzzy aggregation
functions, such as linear aggregation or weighted sum.

Our future work includes further investigation of logical properties and compu-
tational aspect of f-SWRL. Another interesting direction is to extend f-SWRL to
support datatype groups [Pan04], which allows the use of customised datatypes
and datatype predicates in ontologies.
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Abstract. One of the main issue in formalizing the Peer-To-Peer (P2P) database
systems is the semantic characterization of P2P mappings. Each peer must be
robust enough in order to take in account the incomplete and locally inconsistent
information of its source databases, typical in Web applications. We consider a
peer as a local epistemic logic system with its own belief, independent from other
peers and their own beliefs. The traditional extensional semantics for mappings
between peers destroys such epistemic independence of peers: the beliefs of other
peers (also when change dynamically) are locally introduced into a given peer, so
that its own belief depends directly and automatically from other peers. Moreover,
the information that one peer provides to another peer may be inconsistent with
the information known by the later. This motivates the need of a new, alternative
semantic characterization of P2P mappings based not on the extension but on the
meaning of concepts used in the mappings. We present a novel proposal, based
on intensional logic, and show that it adequately models this weakly-coupled
framework and supports decidable query answering.

1 Introduction

In this paper, we study the key challenge in building the Semantic Web, that is, the
problem of definition of a semantics for P2P database mappings, and relative query-
answering issues. Given the de-centralized nature of the development of the Semantic
Web, there will be an explosion in the number of ontologies. Many of these ontologies
(that is, peers) will describe similar domains, but using different terminologies, and
others will have overlapping domains. To integrate data from disparate ontologies, we
must know the semantic correspondence between their elements [1]. Recently are given
a number of different architecture solutions [2,3,4,5,6,7,8].

Indeed, current P2P systems focus strictly on handling semantic-free, large-granularity
requests for objects by identifier (typically a name), which both limits their utility and
restricts the techniques that might be employed to distribute the data. These current
sharing systems are largely limited to applications in which objects are large, opaque,
and atomic, and whose content is well-described by their name. Moreover, they are lim-
ited to caching, prefetching, or pushing of content at the object level, and know nothing
of overlap between objects.

These limitations arise because the P2P world is lacking in the areas of semantics,
data transformation, and data relationships, yet these are some of the core strengths of
the data management community. Queries, views, and integrity constraints can be used
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to express relationships between existing objects. Let see some of these new approaches
to the P2P integration.

One of these new architectures is the Piazza system [2]: data origins serve original
content, peer nodes cooperate to store materialized views and answer queries, nodes are
connected by bandwidth-constrained links and advertise their materialized views and
belong to spheres of cooperation with which they share resources.In order to support
dynamic data as well as dynamic workloads, Piazza must refresh materialized views
when original data is updated. For scalability reasons, they have elected to use expira-
tion times on data items, rather than a coherence protocol. This reduces network traffic
but does not achieve the strong semantics of traditional databases.

The other, more semantic, approach is given in [3]. In that paper they introduce the
Local Relational Model (LRM) as a data model specifically designed for P2P applica-
tions. LRM assumes that the set of all data in P2P network consists of local (relational)
databases, each with a set of acquaintances, which define the P2P network topology. For
each acquaintance link, domain relations define translation rules between data items,
and coordination formulas define semantic dependencies between the two databases.

The LRM semantics is a variation of the semantic of distributed first-order logic,
which itself is an extension of the Local Models Semantics, proposed in [4] . The co-
ordination formulas that relate the contents of peer databases and define what it means
for a coordination formula to be satisfied (with respect to a relational space) are used as
deductive rules and define a global answer to a query with respect to a relational space.
The intuition is to compute the union of all the answers of the peer databases, taking
into account the information carried by domain relations. The Reiter [5] proves that any
partional database can be uniquely represented by a generalized relation theory: they
generalize this result by showing that a relational space is uniquely represented by a
new kind of formal system called multi-context system, consisting of a set of general-
ized relational theories (one per database) and a set of coordination rules.

The Peer-to-Peer (P2P) database systems offer an alternative to traditional client-
server systems for some application domains. A P2P system has no centralized schema
and no central administration. Instead, each peer is an autonomous information system,
and information integration is achieved by establishing P2P mappings among various
peers. Queries are posed to one peer, and the role of query processing is to exploit both
the data that are internal to the peer, and the mappings with other peers in the system.

An increasing amount of data is becoming available in the World-Wide Web, and
the data is managed under an increasing diversity of data model and access mecha-
nisms. Much of this data is semistructured. In what follows we will consider the reach
ontology of peer databases, formally expressed as a global schema of a Data Integra-
tion system. A Data Integration System (DIS) [9] is a triple Ii = (Gi,Si,Mi), where
Gi = (GTi , ΣTi) is a global schema (ontology),expressed in a language LO over an
alphabet AGi , ΣTi are the integrity constraints, Si is a source schema andMi is a set
of mappings between a global schema GTi and a source schema Si.

References: The article [10] is the first seminal work (referred also in [6]) which intro-
duces an autoepistemic semantics for decidable peer’s (conjunctive) query-answering
(it is known that the first-logic semantics for a query answering is undecidable). What
is needed here is:
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– a mechanism that is able, given any two peer databases, to define mappings between
them, without resorting to any unifying (global) conceptual structure.

– a completely decentralized network of database peers: each peer serves as entry
points for search, offering its relational schema in order to formalize user queries.

– We do not assume the existence of a single, common set of constants for denoting
the interpretation domain of all the peers. In real applications, this is a too strong
assumption, as the various peers are obviously autonomous in choosing the mech-
anisms for denoting the domain elements.

– query answering is based on interactions which are strictly local and guided by
locally defined mappings of a considered peer w.r.t. other peers in a network.

– we do not want to limit a-priori the topology of the mapping assertions between
peers in the system. In particular, we do not impose acyclicity of assertions.

– we seek for a semantic characterization that leads to setting where query answering
is decidable, and possibly, polynomially tractable (under arbitrary P2P interconnec-
tions, query answering under the first-order semantics is undecidable).

Consequently, we conceive a peer Pi as a software module, which encapsulates a DIS
Ii. The internal structure of a peer database is hidden to the user, encapsulated in the
way that only its logical relational schema GTi can be seen by users, and is able to
respond to the union of conjunctive queries by known answers (true in all models of a
peer-database).

We consider a view definition qk(xk) as a conjunctive query head(qk)← body(qk)
where body(qk) is a sequence b1, b2, ..., bm, where each bj is an atom over a global
relation name of a peer Pi. The known answer to this conjunctive query corresponds
to true facts of the modal formula Kiqk(xk) where Ki is the local modal epistemic
operator of the epistemic logic of the peer Pi.

Comparative Analysis: The first introduction of an autoepistemic semantics for a peer-
database, specified as encapsulation of a DIS, with a decidable query answering, and
given in [10], is compared with other approaches in [6].

Such formal framework does not specify if and how the local epistemic knowledge
of any peer is influenced by the epistemic knowledge of other peer. In fact we are able to
individuate at least two extreme scenarios presented in the literature developed from the
initial article [10] followed in the Lenzerini’s approach for Data Integration Systems:
strongly-coupled [11,7,12] and weakly-coupled [13,14,8] P2P database systems. The
fundamental differences between the two approaches can be summarized as follows:

– The strongly-coupled semantics for peer mappings [11,7] is a direct extension of
extensionally based database mappings between views of peers [15] used for a
(strong) data integration systems: For any given peer its own knowledge is lo-
cally enlarged by extensional knowledge of other peers: any dynamic change of the
knowledge of other peers is directly reflected into the local knowledge of this peer.
As showed in [7], the added knowledge of other peers is seen as some kind of local
’source’ database of data-integration system of a given peer. We can paraphrase this
by taking two peers, ’Peter’ and ’John’ for example, and then imperatively assert
that ’John must know all facts about the Italian art in the 15’th century known by
Peter’ (also when ’Peter’ in his life cycle changes this part of its own knowledge).
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In this way, also when ’John’ does not know anything by himself about Italian art,
by such direct extensional mapping he will be able to answer to questions about
Italian art in the 15’th century as ’Peter’. Really, the relational schema of a peer
represents a global schema for the whole answering system able to provide com-
plete answer to queries: the data-integration system of a peer is composed by proper
source databases and ’source’ databases transferred by other peers to this particular
peer. So, we remain in the classical data-integration framework [9]. There is also
the query-answering problem for a given peer: he is able to guarantee for the quality
of known answers but not for the part of his answer composed by exported knowl-
edge from other peers, so that later answers can not be epistemically considered
certain as its own belief.

– The weakly-coupled semantics for peer mappings [13,14,8], where each peer is
completely independent entity with its own epistemic state, which has not to be
directly, externally, changed by the mutable knowledge of other independent peers,
needs other approach to the mapping between their local knowledge based on the
meaning of the mapped concepts.

First requirement is that the knowledge of other peers can not be directly trans-
ferred into the local knowledge of a given peer.
The second requirement is that, during the life time of a P2P system, any local
change of knowledge must be independent of the beliefs that can have other peers:
thus, we have not to constrain the extension of knowledge which may have different
peers about the same type of real-world concept.

In the example above, ’John’ can answer only for a part of knowledge that it
really has about Italian art, and not for a knowledge that ’Peter’ has. Thus, when
somebody (call him ’query-agent’) ask ’John’ about the Italian art in the 15’th
century, ’John’ is able to respond only by the facts known by himself ( i.e., certain
answers), and eventually indicate to query-agent that for such question, probably,
also ’Peter’ is able to give some answer. Thus, it is the task of the query-agent to
reformulate the request (w.r.t. the local language of ’Peter’) to ’Peter’ in order to
obtain some other possible answers.

We can paraphrase this by the kind of belief-sentence-mapping ’John believes
that also Peter knows something about Italian art in the 15’th century’. Such belief-
sentence has referential (i.e., extensional) opacity. In this case we do not specify
that the knowledge of ’John’ is included in the knowledge of ’Peter’ (or viceversa)
for the concept ’Italian art in the 15’th century’, but only that this concept, cJ , for
’John’ (expressed in a language of ’John’) implicitly corresponds to the ’equivalent’
concept, cP , for ’Peter’ (expressed in a language of ’Peter’). In [13,14] is presented
the formal framework for weakly-coupled P2P systems based on the consideration
of the incomplete and locally inconsistent information in Web, but it lacks of the
formal semantics for the ”equivalent” concepts contained in the local knowledge of
different peers.

Formally, the mappings between any two different peer-databases, Pi, Pk, can be de-
fined as follows: let qPi(x) and qPk

(x) be a two views (conjunctive queries) over Pi and
Pj respectively, with the same set of free variables x. Then,
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1. The strong (extensional) multi-modal mapping, introduced in [8], by a formula
KiqPi(x) ⇒ KkqPk

(x), where ′ ⇒′ is the logic implication, used in a single S5
modality [6,7,12], and very recently adopted in K45 multi-modality [12].

2. The weak (intensional) mapping is defined by
KiqPi(x) ≈in KkqPk

(x), where ′ ≈′
in is the intensional equivalence [8,13,14,16],

denoted also by qPi(x) ≈ qPk
(x) .

What is the fundamental difference of these two approaches?

1. First of all in the first ’strong’ mapping case, the instance database of any peer is
strictly dependent of current (in a given instance of time) instance databases of other
peers. That means that we can not encapsulate a peer as an independent ADT (Abstract
Data Type) and see it as a block module of data during query-answering processing.
More over we need a global logic for all peers in order to determine the exact extension
of one peer database. Thus, also if we do not provide any ’global schema’ of a P2P net-
work, semantically we must assume it: the way in which it is used for conjunctive-query
answering is explained in [7], where is used a recursive Datalog for this whole P2P
logic theory, in order to process a given conjunctive-query over a single peer-database.
This global P2P Datalog program returns with the union of conjunctive queries for each
peer database in considered P2P network. Such, query-rewriting approach, based on a
global P2P recursive Datalog logic theory, avoids to materialize the propagations of
facts between peer databases, caused by material implications, KiqPi(x)⇒ KkqPk

(x),
between peers: in Web applications such dynamic (and cyclic) transfer of ground facts
between peer databases practically can not be accepted, because so high traffic of data
in the internet would drastically slow-down the whole web system.

In the second approach we have not such problems: each logic theory of a single
peer database is completely independent from all other peers, and can be encapsulated
in a modular P2P structure as an ADT (as will be explained in what follows), so easily
implemented in a greed computation framework. Moreover, each peer is free to change
not only its data extension, but also its schema representation, without invalidating the
P2P mapping system.
2. The second problem is that in the first ’strong’ approach, the ’system’ has to know
the whole set of peer databases in the P2P network in any time, otherwise no one peer
database can know which are other peers which maps the data toward himself: thus,
must exist some centralized control. The addition of other peer databases must be ex-
plicitly communicated to this global system controller. This information is used by the
query-answering agent (consequently, every query-agent knows the global P2P database
schema, differently from the declared fact against any globalization) with above de-
scribed recursive Datalog program which contains the whole logic theory of a P2P
network. Otherwise, when any other peer, which was not considered in the actually
P2P network, makes one mapping (by the material implication defined above) toward
some existing peer database in a P2P network, if the ’system’ (basic part of any query-
answering agent) does not know for that, the query-answer is incomplete and can be
also unsound (in the case when this new mapping introduces the mutually inconsistent
information in the P2P network system).
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In the second, weak approach, there is no any concept explicitly or implicitly as-
sumed for a global P2P system. Differently from the first approach where the mappings
between peers are part of the underlying ’system’ (i.e., global logic theory of the whole
P2P network system), the mappings based on intensional equivalences are local compo-
nent of each peer: each peer define its belief set of the correspondent equivalent views
of other peers, and query agent can use these mappings only when it access to a partic-
ular peer. When the user query is generated over a schema (ontology) of a given peer,
the activated query-agent has no any global knowledge about the ’whole’ P2P network
system, but can only use the local mappings of the accessed peer to pass to other locally
mapped peers.
3. The third problem is the inconsistency tolerance. When we consider a peer database
as a single Data Integration system with GLAV (Global/local as views) mappings be-
tween the data sources and the global (virtual) peer database schema, the problem with
mutually-inconsistent information from different sources can be localized and resolved
inside the local peer database (its logic theory defined by the Data Integration Sys-
tem), by a kind of 2-valued, for example in [17,18], or many-valued belief revision, for
example 4-valued Belnap’s bilattice based belief revision [19]. Such approach for the
resolution of local inconsistency inside a particular peer database is valid, just because
it is local to a peer, and there is a team of developers which are responsible for a correct
implementation of this particular peer database. This handling of local inconsistency
of a peer database is common for both approaches to mapping semantics between dif-
ferent peers. What is problematic in the first ’strong’ approach is that also when each
peer database is consistent by himself (by handling its proper local consistency), the
externally mapped data from other peers into a particular peer database can generate
the inconsistency (in peer databases with integrity constraints) of this particular peer. In
the first approach such problem is addressed in [12] and have not an easy, also from a
theoretical point of view, solution: in that approach it is only partially resolved by the
very strong requirement to simply eliminate any external data coming from an other
single peer, which is potentially inconsistent with the information of this peer. But such
drastic approach, which lose a part of information (instead of considering the mutually
inconsistent information as ’possible’ versions of the same information) it does not re-
solve the problem: let us consider, for example, two different data which comes into the
same peer from two different peers, and each of these data, taken singularly, is consis-
tent with the local knowledge of a peer, but these two data are mutually inconsistent if
taken together (for example, the destination peer has a key constraint for the attribute
x of a relation Person(x,y) where x is name of a person and y is its age, and two
external data which come from two different peers are {John, 40} and {John, 41}).

In the weak mapping semantic instead, such problem do not exists, just because
there is not any correlation between extensions of concepts in different peers, but only
intensional mapping between them, based on belief sentences of each local peer. Dif-
ferently from the ’strong’ approach, where if we adopt the possibility of materialization
of consequences of material implications between peers, an interrogated peer can com-
pletely respond to the user query, in the ’weak’ approach it is not possible theoretically
also: each peer who has the knowledge about the user query has to respond by him-
self only to the (appropriately rewritten for it) user query: thus we make an epistemic
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difference between the certain answers of the peer interrogated directly by the user,
from the ’possible’ answers obtained from all other peers. We do not eliminate any in-
formation which comes from different peers, but the user who receives all answers will
take the appropriate for him actions to verify the part of information that he considers
mutually inconsistent.

It is easy to understand that the complexity of the ’weak’ approach, in a presence
of mutually inconsistent P2P information, is less than the complexity of the First order
multi-modal logic for the ’strong’ semantic mapping.

Motivation: In this paper we adopt the second, weakly-coupled semantics for P2P map-
pings, with the following motivation: What we argue is the full epistemic independency
of peer databases where there is no any forced transfer of a local knowledge of one peer
to other peers, but only their collaboration in order to answer to user queries. They can
change their ontology and/or extension of their knowledge independently from other
peers and without any communication to other peers. In this way we intend to obtain
very robust P2P systems, able to answer to user queries also when intended mappings
between peers do not feet with the modified ontologies (relational database schemas) of
peers, but also to have the possibility to map naturally P2P database systems into greed
computation: having fully independent peers, which as we will see can be represented as
ADTs (Abstract Data Types), it is enough to associate each pair (peer, query-formulae)
to a particular resource of greed computing, in order to obtain known answer from such
peer.

The Plan of this work is the following: In Section 2 we introduce the intensional
logic and the intensional equivalence, which will be used to define intensionally equiv-
alent views over two different peers. In Section 3 we define formally independent peer
databases as ADT (Abstract Data Types) which encapsulate the semantics of a Data Inte-
gration System. Finally, in Section 4 we define the query-answering semantics, context-
dependent, of the P2P system with intensional mapping semantics, which distinguish the
certain answers of interrogated peer from the possible answers of other peers.

2 Intensional Equivalence

Tarski’s elaboration of a semantics for formal languages, Kripke’s invention of a
possible-world semantics in connection with modal logic and Montague’s semantics for
Intensional logic provided powerful tools by means of which natural languages could
be analyzed rigorously. Indeed, between 1968 and 1970, Montague, a logician from
Tarski school, wrote three papers [20,21,22] the goal of which was to show that no im-
portant theoretical difference exist between natural languages and the formal languages
of logic. Montague’s research started where Davidson’s work on recursive semantics
left of [23].

Since ’meaning’ is not synonymous with ’truth’, a definition of truth is not neces-
sarily a definition of the meaning. The recursive semantics (dual to the recursive syntax
of the language) is to show how the meaning of a complex sentence depends upon the
meaning of the elementary sentences of which it is composed. Here, a major difficulty
appears: the meaning of a syntactic constituent which is not a sentence (a formula with-
out free variables, whereas formulae may contain also free occurrences of variables)
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cannot be identified to its truth conditions, because only sentences may be said to be
true or false. Tarski discovered how to overcome this difficulty: first, he recursively de-
fines a notion more general than that of truth, the notion of satisfaction, and, next, he
defines the notion of truth by way of the notion of satisfaction.

Montague’s intensional logic develops Frege’s distinction between sense and refer-
ence and Carnap’s distinction between intension and extension, to treat phenomenon
of referential opacity, pervasive in belief-sentences. Thus, in his semantic analysis of
meaning, Montague distinguishes two elements: intension (or sense) and extension (or
reference). The intension of a predicate is identified with the property it express; its ex-
tension is the class of objects which posses the property or which stand in the relation
expressed by the predicate. For instance, the extension of a sentence is its truth value;
its intension is the proposition it expresses whose extension can vary from one to other
possible world (i.e., it can be true in some possible world and false in some other pos-
sible world). So, the intension (meaning) is something which needs to be defined in all
possible worlds and not in some particular world: Motague defined the intension of a
sentence as a function from possible worlds to truth values.

The correspondence between syntactic and semantic rules which work in parallel
constitutes a formalization of Frege’s compositionality principle that can be stated as
follows: The meaning of a sentence is a function of the meaning of its parts and their
mode of combinations.

For instance, the denotation (or semantic value) of the expression ¬A in any possi-
ble world depends only on the denotation of A in the same world, i.e., [¬A] = [¬][A],
where [ ] denotes the extension (reference) of an expression ( [¬] is the set-complement
function). Sentences of the form ’Necessarily A’ (or �A) are a first example of a type
of sentence whose reference (extension), at a given world, cannot be described as a
function of the references of its parts (here � and A), i.e., [�A] �= [�][A]), but holds
[�A]in = [�]in[A]in (where [ ]in denotes the intension of an expression).

2.1 Montague’s Modal Logic Framework

In what follows we will use one simplified modal logic framework (we will not consider
the time as one independent parameter as in Montague’s original work) with a model
M = (W ,R, S, V ), where W is the set of possible worlds, R is the accessibility
relation between worlds (R ⊆ W×W), S is a non-empty domain of individuals, while
V is a function defined for the following two cases:

1. V :W×F → ⋃
n<ω SSn

, with F a set of functional symbols of the language, such
that for any world w ∈ W and a functional symbol f ∈ F , we obtain a function
V (w, f) : Sarity(f) → S.

2. V : W × P → ⋃
n<ω 2Sn

, with P a set of predicate symbols of the language
and 2 = {t, f} is the set of truth values (true and false, respectively), such that
for any world w ∈ W and a predicate symbol p ∈ P , we obtain a function
V (w, p) : Sarity(p) → 2, which defines the extension [p] = {a|a ∈ Sarity(p)

and V (w, p)(a) = t} of this predicate p in the world w.

The extension of an expression α, w.r.t. a modelM, a world w ∈W and assignment
g is denoted by [α]M,w,g. Thus, if c ∈ F

⋃
P then for a given world w∈W and the
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assignment function for variables g, [c]M,w,g = V (w, c), that is, for any set of terms
t1, .., tn, where n is the arity of c, we have [c(t1, .., tn)]M,w,g = V (w, c)([t1]M,w,g, ..,
[tn]M,w,g); with terms defined by:

1. All variables v ∈ V ar and the constants d ∈ S are terms;
2. If f ∈ F is a function symbol of arity n, and t1, .., tn are terms, then a functional

form f(t1, .., tn, ) is a term.

For any formula A, M �w,g A ≡ ([A]M,w,g = t), means ’A is true in the world w
of a modelM for assignment g’.

Montague defined the intension of an expression α as follows:

[α]M,g
in =def {w �→ [α]M,w,g | w ∈ W},

i.e., as graph of the function [α]M,g
in :W → ⋃

w∈WN
[α]M,w,g .

One thing that should be immediately clear is that intensions are more general that
extensions: if the intension of an expression is given, one can determine its extension
with respect to a particular world but not viceversa, i.e., [α]M,w,g = [α]M,g

in (w).
In particular, if c is a non-logical constant (individual constant or predicate symbol),

the definition of the extension of c is, [c]M,w,g =def V (w, c). Hence, the intensions of
the non-logical constants are the following functions: [c]M,g

in :W → ⋃
w∈W V (w, c).

The extension of variable is supplied by the value assignment g only, and thus does
not differ from one world to the other; if x is a variable we have [x]M,g

in = g(x).
Thus the intension of a variable will be a constant function on worlds which corre-

sponds to its extension.

2.2 Intensional Equivalence

Carnap suggested that the intension of an expression is nothing more than all the varying
extensions the expression can have. In the next we will take this definition in order
to define that two expressions (or concepts) α, β are intensionally equivalent, in the
following two cases: the basic flat-accumulation case where varying world-dependent
extensions are simply accumulated, and the world-correspondent case where we require
that for a given extension SE of the first expression in some possible world w there is
an other possible world w′ where the second expression has the same extension SE .

Definition 1. Any two expressions, α, β, are intensionally equivalent (in the flat- accu-
mulation or the world-correspondent case, respectively) denoted by α ≈in β, if and
only if:

1. flat-accumulation case: lubM,g(α) = lubM,g(β), where for a given expression
δ, its lub (Least Upper Bound) is defined by: lubM,g(δ) =def

⋃
w∈W [δ]M,g

in (w).
2. world-correspondent case: ∀w∃w′.([α]M,g

in (w) = [β]M,g
in (w′) ),

and viceversa, ∀w′∃w.([α]M,g
in (w) = [β]M,g

in (w′) ),
so that for any two conjunctive queries, qi(x), qj(x) over peers Pi, Pj respec-
tively, we define: qi(x) ≈ qj(x) if and only if Ki qi(x) ≈in Kj qj(x).

It is easy to verify that the world-correspondent case of intensional equivalence is
stronger then the flat-accumulation case (i.e., each world-correspondent intensional
equivalence is also a flat- correspondent intensional equivalence: so, as first approach
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we will use the basic flat-accumulation intensional equivalence. In the context of this
work we will consider each temporary instance (in a some time tk) of the P2P database
system as a particular possible world w: the dynamic changes of any local peer knowl-
edge will result in one other possible world.

3 Abstract Object Types for Peer Databases

The current World-Wide Web has well over billions pages, but the vast majority of
them are in human-readable format only (e-g., HTML). As a consequence software
agents cannot understand and process this information, and much of the potential of the
Web has so far remained untapped. In response, researches have created the vision of
the Semantic Web [24], where data has structure and ontologies describe the semantics
of the data. An ontology specifies a conceptualization of a domain in terms of con-
cepts, attributes, and relations [25], thus introduce the mediator schema for user queries,
and, consequently, Data Integration Systems. When data is marked up using mediator
schemas (ontologies) software query-agents can better understand the semantics and
therfore more intelligently locate and integrate data for a wide variety of tasks, [10,26].

Information integration is the problem of combining the data residing at different
sources, and providing the user with a unified view of these data, called global schema.

The global schema is therefore a reconciled view of the information, which can be
queried by the user. It can be thought of as a set of virtual relations, in the sense that
their extensions are not actually stored anywhere. A data integration system frees the
user from having to locate the sources relevant to a query, interact with each source in
isolation, and manually combine the data from different sources.

Two basic approaches have been used to specify the mapping between sources and
the global schema. The first approach, called query-centric or global-as-view (GAV), re-
quires that the global schema is expressed in terms of the data sources. More precisely,
to every concept of the global schema, a view over the data sources is associated, so
that its meaning is specified in terms of the data residing at the sources. The second
approach, called source-centric or local-as-view (LAV), requires the global schema to
be specified independently of the sources. The relationships between the global schema
and the sources are established by associating each element of the sources with a view
over the global schema. Thus, in the LAV approach, we specify the meaning of the
sources in terms of the concepts in the global schema.

The natural way to make more modular structure of a data-intensive Internet system,
and to open up the possibility of effective query answering techniques is to organize
a number of application-domain Data integration systems as a P2P system. The most
important advantage of organizing a peer as a Data integration system is that it enables
users to focus on specifying what they want, rather then thinking about how to obtain
the answers: so that we can see it as an Abstract Object Type (AOT) which hides inter-
nal integration structure with data sources, and offers to users only a mediator schema
with the standard query language in order to be able to formulate the questions in a
declarative way.
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As result, it frees the users from the tedious tasks of finding the relevant data sources,
interacting with each source in isolation using a particular interface, and combining data
from multiple sources.

The main characteristic distinguishing Data Integration systems from distributed and
parallel database systems is that data sources underlying the system are autonomous. In
particular, a data integration system provides access to pre-existing sources, which were
created independently.

The aim of the encapsulation of a Data Integration system into an Abstract Object
Type (AOT) is to hide the internal structure of such complex object and to offer to user
the rich ontology of the global (mediator) schema in order to focus on specifying what
they want, by ordinary conjunctive queries.

The main point is that every peer can be seen as an AOT (Abstract Object Type)
which acts at the same level, with no unifying structure above it: in order to respond
to the complex user queries (union of conjunctive queries). Thus we assume that ex-
pressive power of peers can be generally given by single-encapsulated Data Integration
Semantic. In this way considering the (incomplete) sources extracted by wrappers we
may enrich the peer database schema by integrity constraints in order to overcome in-
completeness of heterogenous Web information: we assume that each AOT peer has a
unique model or, otherwise, a canonical (universal) [27,28] global database, and that
responds to user queries by certain (i.e., known [29]) answers.

– Query reformulation: A user of an AOT poses queries in terms of the mediated
schema, rather than directly in the data sources which are encapsulated and hidden
by AOT. As a consequence, the AOT must contain a module that uses the source de-
scriptions in order to reformulate a user query that refers directly to the schemas of
the sources. Clearly, we would like the reformulation to be sound, (i.e., the answers
to the reformulated query should all be correct answers to the input query), and
complete (i.e., all the answers that can be extracted from the data sources should be
in the result of applying the reformulated query): the methods of this AOT which
satisfy these requirements give to users the known answers.

– Wrappers: The other layer of an AOT that does not exist in a traditional system is
the (hidden) wrapper layer. Unlike a traditional query execution engine that com-
municates with a local storage manager to fetch the data, the query execution plan in
the AOT must obtain data from remote sources. An encapsulated into AOT wrapper
is a program (method) which is specific to a data source, whose task is to translate
data from the source to a form that is usable by the query processor (agent) of the
system.

Dually to the theory of algebraic specifications where an Abstract Data Type (ADT) is
specified by a set of operations (constructors), the coagebraic specification of a class
of systems, i.e., Abstract Object Types (AOT), is characterized by a set of operations
(destructors) which tell us what can be observed out of a system-state (i.e., an element
of the carrier), and how can a state be transformed to successor state.

We start introducing the class of coalgebras for database query-answering systems.
They are presented in an algebraic style, by providing a co-signature. In particular,
sorts include one single ”hidden sort”, corresponding to the carrier of the coalgebra,
and other ”visible” sorts for inputs and outputs, which are given a fixed interpretation.
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Visible sorts will be interpreted as sets without any algebraic structure defined on them.
Coalgebraic terms, built only over destructors, have for us a precise interpretation as
the basic observations that one can make on the states of a coalgebra. Input sorts are
considered as the set LQ of modal conjunctive queries, Kiq(x), while output sorts are
”valuations”, that is, the set of a resulting ”views”, for each query q(x) over a database
A (considered as a carrier of the coalgebra).

Definition 2. A co-signature for Database query-answering system is a triple DΣ =
(S, OP, [ ]), where S, the sorts, OP, the operators, and [ ] the interpretation of visible
sorts are as follows:

1. S = (XA,LQ, Υ ), where XA is the hidden sort (a set of states of a database A),
LQ is an input sort (set of conjunctive queries), and Υ is an output sort (set of all
views of databases).

2. OP is set of operations: a method Nextq : XA × LQ → XA, which corresponds
to an execution of a next query q(x) ∈ LQ in a current state of a database A, such
that a database A pass to the next state; and OutQ : XA×LQ → Υ is an attribute
which returns with an obtained view of a database for a given query Kiq(x) ∈ LQ.

3. [ ] is a function mapping each visible sort to a non-empty set.

The Abstract Object Type (AOT) for a query-answering system is given by a coalgebra
< λNextQ, λOutQ >: XA → X

LQ

A ×ΥLQ , of the polynomial endofunctor ( )LQ×
ΥLQ : Set → Set, where λ denotes the lambda abstraction (Curring) for functions of
two variables into functions of one variable (ZY is a set of all functions from Y to Z).

In object-oriented terminology, the coalgebras just introduced are expressive enough to
specify parametric methods and attributes for a database (conjunctive) query answering
systems. In what follows , we conceive a peer Pi as a AOT software module character-
ized by a network ontology Gi expressed in a language LO over an alphabet AGi . The
internal structure of a peer database is hidden to the user, encapsulated in the way that
only its logical relational schema GTi can be seen by users, and is able to respond to the
union of conjunctive queries by known answers [9].

– Example: Let us consider the following scenario: a Data integration system, en-
capsulated into an AOT , be a triple [9] Ii = (Gi,Si,Mi), where Gi = (GTi , ΣTi).
The ΣTi are the integrity constraints, Si is a source schema and Mi is a set of
mappings between a global schema GTi and a source schema Si.

We can enrich the global schema GTi by a new unary predicate V al( ) such
that V al(c) is true if c ∈ dom is a constant of the local ontology of this peer.
User query qC(x), where x = x1, .., xk is a non empty set of variables, over the
global schema is a conjunctive query. The AOT module of a peer transforms every
original query qC(x) into a lifted query over the global schema, denoted by q, such
that q := qC(x) ∧ V al(x1) ∧ ... ∧ V al(xk).

The universal (canonical) database can(I,D), of the encapsulated Data integra-
tion system with the source database D , has the interesting property of faithfully
representing all legal databases (the construction of the canonical database is simi-
lar to the construction of the restricted chase of a database described in [30]).

Thus, theoretically, the lifted query will filter only known answers from
can(I,D). In practice we do not use this canonical database in order to give the
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answer to the query, and we use a query rewriting technics under constraints in
data integration systems (for example, a data integration systems with key and in-
clusion integrity constraints [27]) to submit the rewritten query directly to source
databases, extracted by wrappers from World-Wide Web.

P2P Network Definition
In order to be able to share the knowledge with other peer Pj in the network N , each
peer Pi has also an export-interface module Mij

EXP composed by groups of ordered
pairs of intensionally-equivalent logical views (conjunctive queries over peer’s ontolo-
gies), denoted by (qi, qj), or equivalently, by qi ≈ qj , that is, Kiqi(x) ≈in Kjqj(x).
Notice that (qi, qj) does not mean that qi logically implicates qj or vice versa, as in
extensional mapping definitions, based on material implication.

Definition 3. [8] The P2P network system N is composed by 2 ≤ N independent
peers, where each peer module Pi is defined as follows: Pi := 〈Oi,

⋃
i�=j∈N Mij

EXP 〉,
whereMij

EXP is a (possibly empty) interface to other peer Pj in the network, defined
as a group of intensionally-equivalent query-connections, denoted by (qij

1k, qij
2k) where

qij
1k is a conjunctive query defined over Oi, while qij

2k is a conjunctive query defined
over the ontologyOj of the connected peer Pj :

Mij
EXP = {(qij

1k, qij
2k) | 1 ≤ k ≤| ij |},

and | ij | is the total number of query-connections of the peer Pi toward a peer Pj .

Intuitively, when an user defines a conjunctive query over the ontology Oi of the peer
Pi, the intensionally equivalent concepts between this peer and other peers will be used
in order to obtain the answers from a P2P system.

They will be the ”bridge” which a query agent can use to rewrite the original user
query over a peer Pi into intensionally-equivalent query over other peer Pj which has
different (and independent) ontology from the peer Pi.

The answers of other peers will be epistemically considered as possible answers be-
cause they are based on the belief which has the peer Pi about the knowledge of a peer
Pj : this belief is formally represented by the supposition of a peer Pi that the pair of
queries (qij

1k, qij
2k) ∈Mij

EXP is intensionally-equivalent.

Example: Let us consider the acyclic P2P system in a Fig.1, with a peers:
Pi, with the ontology Oi and the interfaceMij

EXP = {(vim, vjm) | vim ≈ vjm, and
1 ≤ m ≤ k} toward the peer Pj , and the peer Pj , with the ontologyOj . We denote by
vim ≈ vjm the intensional equivalence .
The idea is the following: given a query qi(x) over a peer Pi, a query agent will rewrite
(if it is possible) the identical query Ψ(vi1, ..., vik) over the set of views
{vi1, ..., vik} of a peer Pi, then it will use the set of intensional equivalences vim ≈
vjm, 1 ≤ m ≤ k, to obtain the intensionally equivalent query Ψ(vj1, ..., vjk) over the
set of views {vj1, ..., vjk} of a peer Pj , and than it will rewrite this query into the iden-
tical query qj(x) over the ontologyOj of the peer Pj . The known answers of both peers
Pi, Pj to the queries qi(x) and qj(x) will constitute the subset of the global P2P answer
to the original user query; other possible answers to the same user query can be obtained
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Fig. 1. P2P query answering

by the similar method from the intensionally equivalent queries over a peer Pk obtained
from intensional mappings from Pi to Pk and from Pj to Pk respectively.

4 Query Answering with Intensional P2P Mappings

The intensional mapping between peers is given by couples of equivalent queries
(qi(x), qj(x)), denoted by qi(x) ≈ qj(x), where a conjunctive query qi(x) over a
peer Pi and a conjunctive query qj(x) over a peer Pj are intensionally equivalent, w.r.t.
the known answers from peers, that is, Kiqi(x) ≈in Kjqj(x). Notice that for any given
world w, both relationships
[Kiqi(x)]M,g

in (w) ⊆ [Kjqj(x)]M,g
in (w), and [Kjqj(x)]M,g

in (w) ⊆ [Kiqi(x)]M,g
in (w)

need not to be satisfied. Moreover, if �i and �j are local universes for a peer Pi and Pj

respectively (a local universe is the set of all the values that are elements of the domains
used in the local schema of a peer), we do not require that for any c ∈�i

⋂
�j , the

sentences Kiqi(c) and Kjqj(c) have the same truth value as required in [15].

Proposition 1. Let us consider the class of peers with the integrity constraints which
does not contain negative clauses of the form ¬A1 ∨ ... ∨ ¬Am, m ≥ 2. Then, the
intensional equivalence is preserved by conjunction logic operation, that is,
if ϕ ≡ (b1 ∧ ... ∧ bk), k ≥ 1, and bi ≈in ci, 1 ≤ i ≤ k, then ϕ ≈in ψ
where ≡ is a logic equivalence and ψ ≡ (c1 ∧ .... ∧ ck).

Proof: By structural induction on the number of conjuncts in the expression: it is
enough to prove for expression of two conjuncts. Let b1 be qi1(x, y) and b2 be qi2(y, z)
any two (virtual) predicates over a peer Pi, and to them intensionally equivalent, c1, c2,
(virtual) predicates qj1(x, y) and qj2(y, z) over a peer Pj .

We have to prove that lubM,g(ϕ(x, z)) = lubM,g(ψ(x, z)), where
ϕ(x, z) ≡ Ki(qi1(x, y) ∧ qi2(y, z)) and ψ(x, z) ≡ Kj(qj1(x, y) ∧ qj2(y, z)).
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From the facts that qi1(x, y) ≈H qj1(x, y) and qi2(y, z) ≈H qj2(y, z), we define the
set
SL = {(a, c) | ∃b.((a, b) ∈ lubM,g(Kiqi1(x, y)) ∧ (b, c) ∈ lubM,g(Kiqi2(y, z)))} =
{(a, c) | ∃b.((a, b) ∈ lubM,g(Kjqj1(x, y)) ∧ (b, c) ∈ lubM,g(Kjqj2(y, z)))}.

Let us prove that
lubM,g(ϕ(x, z)) =

⋃
w∈W{(a, c) | ∃b.((a, b) ∈ [Kiqi1(x, y)]M,g

in (w) ∧ (b, c) ∈
[Kiqi2(x, y)]M,g

in (w))} is equal to SL.
First, from [Kiqi2(x, y)]M,g

in (w) ⊆ lubM,g(Kiqi1(x, y) holds that lubM,g(ϕ(x, z))
⊆ SL. Let us prove, that also lubM,g(ϕ(x, z)) ⊇ SL, i.e. that for any (a, b) ∈ SL also
(a, b) ∈ lubM,g(ϕ(x, z)).

Let us suppose that there is one (a, c) such that (a, c) ∈ SL but (a, c) /∈ lubM,g

(ϕ(x, z)), i.e., that for all possible worlds for this P2P system, w ∈ W , holds that
π2([x = a ∧ Kiqi1(x, y)]M,g

in (w))
⋂

π1([z = c ∧ Kiqi2(y, z)]M,g
in (w)) = {}

(is empty), where π1, π2 are the first and the second projections. That is, the following
logic formula must hold ¬Kiqi1(a, y) ∨ ¬Kiqi2(y′, c) ∨ ¬(y = y′),
(which is equivalent to the formula ¬Ki(qi1(a, y) ∧ qi2(y′, c) ∧ y = y′), from the
fact that in a modal logic Ki(A∧B) is logically equivalent to KiA∧KiB and that for
built-in predicates (as ’=’) holds that KiA is logically equivalent to A).

But such constraint (negative clause) cannot exist in this class of peers, thus the sup-
position is false, and we conclude that SL = lubM,g(ϕ(x, z)).

By the same way we obtain that SL = lubM,g(ψ(x, z)), thus ϕ(x, z) ≈in ψ(x, z).
�

This proposition is very important in order to be able to define the semantics for
conjunctive-query answering in P2P database systems.

For example, all currently used integrity constraints (as the key and the foreign key
constraints) in a global schema are valid integrity constraints in order to use also inten-
sional semantics for the mapping between peer databases.

There is a number of different context-dependent scenarios for a query-answering
with intensional semantics, as in human society: for example, the confidential scenario
where an interviewer can interview a single person at time (we will denominate it as
a pure P2P context), or a conference scenario where an interviewer can interact with a
number of persons at time and possibly integrate partial knowledge of them in order to
obtain the answer.

Let us consider the simplest scenario: the pure P2P context. Informally, given a con-
junctive query ϕ(x) over a peer Pi, the answer to this query of the whole P2P system,
w.r.t. intensional semantics is the union of known answers from this peer, and (known)
answers of all other peers which have intensionally equivalent to ϕ(x) virtual predi-
cates. That corresponds to the query-answering paradigm in a society of individuals:
given a question ϕ(x) to some person Pi , and its beliefs about the knowledge of other
persons in this society, the interviewer can obtain the answer from Pi and from other
persons who know something about the same concept ϕ(x). In the real-world environ-
ment, the answer of other persons (in different languages) can be considered certain
also, but in the virtual P2P database framework their answer is mediated by the belief
of the Pi w.r.t. the knowledge of other peers, which may be imperfect, so the answers
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of other peers are epistemically different, i.e., they can be epistemically considered as
possible answers.

4.1 Context-Dependent Query Answering

Let us consider now the semantics of this intensional mapping between a given peer
Pi and other peers Pjk

, 1 ≤ k ≤ N, jk �= i, based on their intensionally equiva-
lent views. Let us denote such a view by a conjunctive query qi1(x) over peer Pi and,
intensionally-equivalent to it, the views (conjunctive queries) qjk

(x) over other peers,
so that Kiqi1(x) ≈in Kj1qj1(x) ≈in .. ≈in KjN qjN (x), where Ki, Kjk

are local
epistemic modal operators of the peers, such that the set [Kiqi1(x)]M,g

in (w) is the set of
known answers of a peer Pi to the conjunctive query qi1(x).

Definition 4. The P2P network system N is composed by 2 ≤ N independent peers.
Each peer is defined by
Pi := 〈Ii,

⋃
i�=j∈N Mij

EXP 〉 , where Ii is the encapsulated Data Integration Sys-

tem.Mij
EXP is a (possibly empty) interface to other peer Pj in the network, defined by

Mij
EXP = {(qij

1k, qij
2k) | qij

1k ≈ qij
2k, and 1 ≤ k ≤| ij |}, where qij

1k and qij
2k are the

conjunctive queries over the global schema of Pi and Pj , respectively; | ij | denotes
the total number of query-connections from Pi to Pj .

Let, for any conjunctive query qi1(x) over a peer Pi, the set of intensionally-
equivalent concepts be

Q(qi1(x)) = {Kj1qj1 (x), .., KjN qjN (x)}.
We can introduce a peer-context, C(Pi), for any given set of contextual views of a

peer Pi, V(Pi) = {qi1(x1), ..., qiM (xM )}, by the following set

C(Pi) = { (Kiqil
(xl), Q(qil

(xl))) | qil
(xl) ∈ V(Pi)}.

The context of a peer Pi represents the whole information contribution of other peers
to the local knowledge of this peer, and, consequently, can be used during the query-
answering: given a conjunctive query ϕ(y) over a peer Pi in a world w, first, we
compute the set of known answers [Kiϕ(x)]M,g

in (w), and after that also the set of
intensionally-possible answers obtained from the information contribution from other
peers, i.e., from the context C(Pi) of the considered peer: thus, the answer to a query
over a peer is context-dependent. By changing the context of a peer we will obtain dif-
ferent set of possible answers: the interface module of a peer is the syntax of a specifi-
cation for such context. Obviously, the aim of query-answering is to obtain the maximal
set of answers for a given context of one peer.

There are two modalities in order to obtain intensionally-possible answers:

– pure P2P query answering: the query-agent has to try to completely reformulate the
original query ϕ(y) (over a peer Pi) for any peer Pj which has some view in the
interface module of Pi. If it is possible then a peer Pj will be able to respond with
possible answers. In this case we define the context as follows:
C(Pi) = { (Kiqil

(xl), Kjqjl
(xl)) | (qil

(xl), qjl
(xl)) ∈ Mij

EXP }
– Data integration P2P query answering: we can consider partial answers from all

contextual peers of a given peer Pi, defined in its interface module. The query
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agent will assemble (join) the partial answers from them in order to obtain possible
answers.In this case we define the context as follows:
C(Pi) = { (Kiqil

(xl), { Kjqjl
(xl)) | (qil

(xl), qjl
(xl)) ∈ R}) | qil

(xl) ∈ π1(R)}
whereR =

⋃
1≤j≤NMij

EXP , and π1 is the first projection.

In [8] is presented an answering algorithm for the pure P2P scenario. We define the set
of contextual views as follows: V(Pi) = { qil

(xl) |Kiqil
(xl) ∈ π1(C(Pi))}.

Definition 5. Let φ(y) be a conjunctive query over a peer Pi in a world w, and ϕ(y) =
Frew(C(Pi), φ(y)) be its complete (otherwise ϕ(y) is empty formula) rewriting over
the set of contextual views V(Pi), with the body body(ϕ) a sequence b1, b2, ..., bm,
where each bj ∈ V(Pi) is a contextual view of Pi.

(the function Frew is taken from [31], where the extension of φ(y) does not need
necessarily to be contained in the extension of the set of views in V(Pi)).

Than, for any set of intensional equivalences bi ≈ ci, from the context of Pi, the
answer to the query ψ(x) , obtained from φ(x) by substitution of bk with ck (1 ≤ k ≤
m), is called ”the set of intensionally-possible answers for a query ϕ(y) over a peer Pi

in a world w”.
(from Prop.1 we have that ϕ(y) and ψ(x) are intensionally equivalent).

Let us consider now the problem of how to obtain such possible answers from a network
of peer databases: as first step we will define the kind of semantic mappings between
one peer Pi and the information contribution of other peers to the local knowledge of
this peer, by the usual first-order semantic modelling.

Definition 6. (Global semantics) LetN be a P2P system with Δ =
⊎

Pi∈N �i, where
each�i is a non empty set of constants of a peer Pi and ’

⊎
’ is the disjoint union oper-

ation. An interpretation of N over Δ is a N − tuple m =< m1, m2, ..., mN > where
each mi is a classical first-order logic interpretation of the data-integration system Ii

of a peer Pi on the local domain�i.
Let mi denote the ith element of m. A (global) model M for N , written M �global

N , is a non empty set of interpretations such that the model locally satisfies the condi-
tions of each database integration system Ii of a peer Pi, i.e., ∀m ∈M.(mi � Ii).

Now we can define a query answer in this global semantics for P2P system.

Definition 7. (Query answer) Let φ(y) be a local query over a peer Pi with free vari-
ables y = {y1, ..yn}. The answer to φ is the union of:

- known answer from Pi, obtained as the set of substitutions of x with local constants
c ∈ �i of a peer Pi, such that any model M of N satisfies the query φ(y), i.e.,
{{c1, .., cn} ∈ �n

i | ∀M.(M �global N → ∀m ∈M.(mi � φ(c1, .., cn)))},
that is, locally to the set of known answers of a peer Pi

{{c1, .., cn} ∈ �n
i | ∀m′ ∈ ⋃

m∈M , M�globalN mi.(m′ � φ(c1, .., cn))}.
- 1. In a pure scenario: possible answers from each peer Pj , j �= i, such that ψ(y) ≈
Frew(C(Pi), φ(y)) �= {}, obtained as the set of substitutions of y = {y1, ..yn}
with local constants d = {d1, .., dn} ∈ �n

j of a peer Pj , such that any model M
of N satisfies the query ψ(y), i.e., { d | ∀M.(M �global N → ∀m ∈ M.(mj �
ψ(d)))}, that is, locally to the set of known answers of a peer Pj

{d | ∀m′ ∈ ⋃
m∈M , M�globalN mj .(m′ � ψ(d))}.
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- 2. In a data-integration scenario: possible answers from other peers, to the query
ψ(y) which is intensionally equivalent to the expression Frew(C(Pi), φ(y)) �=
{}, obtained as the set of substitutions of y = {y1, ..yn} with constants d =
{d1, .., dn} ∈ �n, such that any model M ofN satisfies the query ψ(y), i.e.,
{d ∈ Δn | ∀M.(M �global N → ∀m ∈M.(m � ψ(d)))}.

Thus, in the case of an intensional-mapping semantics, the query answer to a given
query φ(y) over a peer Pi is the union of answers to the set of all intensionally equiv-
alent queries to φ(y), determined by peer-to-peer interfaces, with the epistemic dis-
tinction from the certain answer of the interrogated peer Pi and the possible answers
of other peers. This epistemic distinction comes from the fact that, when we design
the P2P intensional mappings and put the intensional equivalence qij

1k ≈ qij
2k of these

two views, of Pi and Pj respectively, we do not know if actually lubM,g(Kiq
ij
1k) =

lubM,g(Kjq
ij
2k), but we only believe that it has to be true. So that, while the answer

of the interrogated peer to a query defined over its proper ontology (global schema) is
semantically certain answer, the answer of other peers to the intensionally-equivalent
query, obtained by the given P2P mappings, theoretically may be inadequate, that is,
the possible (or plausible) answers.

5 Conclusion

We have presented a formal framework for representing interschema knowledge in
Peer-to-peer database systems based on intensional equivalence between concepts of
autoepistemic database peers. Such interschema mappings is not invasive w.r.t. the lo-
cal epistemic knowledge of any single peer: each database-peer knows only its local
extension of proper knowledge and is completely free to change its local knowledge. It
does not import the extensional knowledge from other peer-databases of a P2P infor-
mation system, but specify only which part of its own knowledge has the same meaning
as correspondent knowledge of other actors.

For any given conjunctive query (virtual concept) submitted to some database peer,
the query-agent obtains as answer the set of certain (known) answers from this inter-
rogated peer, and the set of possible answers from other peers which are able to define
the intensionally equivalent virtual concepts to the original user query. This query an-
swering is context sensitive, and can be modeled in different context scenarios for P2P
systems.We believe that the intensional mapping semantics presented in this paper con-
stitutes a sound basis for studying the various issues related to interschema knowledge
representation and reasoning, especially for P2P database systems in Web environment,
where the peers can be considered as complex database agents.
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Abstract. While providing a uniform syntax and a semistructured data model,
XML does not express semantics but only structure such as nesting information.
In this paper, we consider the problem of data integration and interoperation of
heterogeneous XML sources and use an ontology-based framework to address
this problem at a semantic level. Ontologies are extensively used for domain
knowledge representation, by virtue of their conceptualization of the domain,
which carries explicit semantics. In our approach, the global ontology is expressed
in RDF Schema (RDFS) and constructed using the global-as-view approach by
merging individual local ontologies, which represent XML source schemas. We
provide a formal model for the mappings between XML schemas and local RDFS
ontologies and those between local ontologies and the global RDFS ontology. We
consider two cases of query processing, specifically for data integration and for
data interoperation. In the first case, the user poses an RDF query on the global
ontology, which is answered using all the mapped XML sources. In the second
case, a query is posed on a single source and then is mapped to the XML sources
that are connected to that source. For each case, we discuss the problem of query
containment and present an equivalent query rewriting algorithm for queries ex-
pressed in two languages: conjunctive RDQL and conjunctive XQuery.

1 Introduction

1.1 Problem Description

Data integration is the problem of combining data residing at different sources, and
providing the user with a unified view of these data [25]. It is relevant to a number
of applications including data warehousing, enterprise information integration, geo-
graphic information systems, and e-commerce applications. Data integration systems
are usually characterized by an architecture based on a global schema, which provides
a reconciled and integrated view of the underlying sources. These systems are called
central data integration systems, and a large number of such systems have been pro-
posed [3,5,11,14,24,27,30,34,36].
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There are two key issues in central data integration, namely system modeling and
query processing. For modeling the relation between the sources and the global schema,
two basic approaches have been proposed [10,25,36]. The first approach, called Global-
as-View (GaV), expresses the global schema in terms of the data sources. The second
approach, called Local-as-View (LaV), requires the global schema to be specified in-
dependently from the sources, and the relationships between the global schema and the
sources are established by defining every source as a view over the global schema.

Query processing in central data integration may require a query reformulation step:
the query over the global schema has to be reformulated in terms of a set of queries over
the sources. In the GaV approach, every entity in the global schema is associated with a
view over the source local schema, therefore query processing in this case uses a simple
“unfolding” strategy [25]. In contrast, query processing in LaV can be complex, since
the local sources may contain incomplete information. In this sense, query processing in
LaV, called view-based query processing [1,12,18], is similar to query answering with
incomplete information [37]. It can also be the case that two data sources communicate in
a peer-to-peer (P2P) way either through the global schema or directly. Data exchange or
query processing may occur in this case, which requires data translation orquery rewriting
when heterogeneities are present between the communicating sources [16,23,27,30,32].

The heterogeneities between distributed data sources can be classified as syntactic,
schematic, and semantic heterogeneities [6]. Syntactic heterogeneity is caused by the
use of different models or languages (e.g., relational and XML). Schematic hetero-
geneity results from the different data organizations (e.g., aggregation or generalization
hierarchies). Semantic heterogeneity is caused by different meanings or interpretations
of data. All these heterogeneities have to be resolved, to achieve the goal of integration
or interoperation. In this paper, we consider the semantic integration of XML data and
data exchange between heterogeneous XML sources, using ontologies.

XML documents that represent data with similar semantics may conform to different
schemas. Therefore, a user must construct queries in accordance to the different XML
document’s structures even if to retrieve fragments of information that have the same
meaning. This fact makes the formulation of queries over heterogeneous XML sources
a nontrivial burden to the user. Furthermore, this shortcoming of XML impedes the
interoperation between XML sources since the reformulation of XML queries from
one source to another has to eliminate the structural differences of the queries while
presenting the same semantics. Let us illustrate this problem using a running example.

Example 1. Figure 1 shows two XML schemas (S1 and S2) with their instances
(i.e., XML documentsD1 and D2), which are represented as trees. It is obvious that S1
and S2 both represent a many-to-many relationship between two concepts: book and
author (equivalently denoted article and writer in S2). However, structurally
speaking, they are different: S1, which is a book-centric schema, has the author ele-
ment nested under the book element, whereas S2, which is an author-centric schema,
has the article element nested under the writer element. Suppose our query target
is “Find all the authors of the publication b2.” The XML path expressions that are used
to define the search patterns in the two schema trees can be respectively written as
/books/book[booktitle.text()="b2"]/author/name and /writers
/writer[article/title.text()="b2"]/fullname, where the contents in
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Fig. 1. Two XML sources with structural heterogeneities

the square brackets specify the constraints for the search patterns. We notice that
although the above two search patterns refer to semantically equivalent concepts, they
follow two distinct XML paths.

1.2 Semantic Integration of XML Documents

The structural diversity of conceptually equivalent XML schemas leads to the fact that
XML queries over different schemas may represent the same semantics even though
they are formulated using two different alphabets and structures. In comparison, the
schema languages used for conceptual modeling are structurally flat so that the user
can formulate a determined conceptual query without worrying about the structure of
the source. RDF Schema (RDFS) [26], DAML+OIL, and OWL are examples of lan-
guages used to create ontologies, which represent a shared, formal conceptualization
of the domain of knowledge [17]. There are currently many attempts to use conceptual
schemas (or ontologies) [3,4,16] or conceptual queries [14,15] to overcome the problem
of structural heterogeneities among XML sources.

In this paper, we propose an ontology-based approach for the integration of XML
sources. We use the GaV approach to model the mappings between the source schemas
and the global ontology, which is, therefore, an integrated view of the source schemas.
The global ontology is expressed in terms of RDFS, which is at the core of several
ontology languages (e.g., OWL and DAML+OIL). In order to facilitate the mappings
between the XML source schemas and the global RDFS ontology, their syntactic dis-
parity needs to be reconciled. To this end, we first transform the heterogeneous XML
sources into local RDFS ontologies (defined using the RDFS space [9]), which are then
merged into the global ontology. This transformation process encodes the mapping in-
formation between each concept in the local ontology and the corresponding element in
the XML source. The ontology merging process can be semi-automatically performed
(e.g., by using the PROMPT algorithm [29]). In addition to the global ontology, the
merging process also produces a mapping table, which contains the mapping infor-
mation between concepts in the global ontology and concepts in the local ontologies.
In our approach, we can translate a query posed against the global ontology into sub-
queries over the sources. We can also translate a query posed against an XML source
to an equivalent query against any other XML source. We call the query rewriting in
the first case global-to-local query rewriting and that in the second case local-to-local
query rewriting. Given that we choose a GaV approach, the global ontology is a view
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over the local ontologies, therefore the process of mapping a query over the global
ontology to queries over the local ontologies is straightforward.

1.3 Contributions

We make the following contributions in this paper:

– We propose an ontology-based approach to the integration of heterogeneous XML
sources. The global ontology takes into account both the XML nesting structure
and the domain structure, which are expressed in RDFS, so as to enable semantic
interoperation between the XML sources. This integration process is lossless with
respect to the nesting structure of the XML sources, so that XML structural queries
can be correctly rewritten.

– We extend the RDFS space by defining additional metadata, which enables the en-
coding of the nesting structure of the XML Schema in the RDF schema. We convert
each of the XML source schemas into a local RDFS ontology while preserving their
structure, so that they share a uniform representation with the global ontology.

– Finally, we refine the concepts of certain answers and of query containment, in two
querying modes: global-to-local query rewriting and local-to-local query rewriting.
Furthermore, a query rewriting algorithm that guarantees equivalence is provided
for each case of query rewriting.

The paper is organized as follows. Section 2 describes related work. Section 3 de-
scribes the framework for the integration of XML sources. Data integration and query
processing, which are the two key points in our approach, are discussed respectively in
Sections 4 and 5. We draw conclusions and discuss future work in Section 6.

2 Related Work

There are a number of approaches addressing the problem of data integration or inter-
operation among XML sources. We classify those approaches into three categories, de-
pending on their main focus, namely semantic integration, query languages, and query
rewriting.

2.1 Semantic Integration

High-Level Mediator. Amann et al. propose an ontology-based approach to the in-
tegration of heterogeneous XML Web resources in the C-Web project [3,4]. The
proposed approach is very similar to our approach except for the following dif-
ferences. The first difference is that they use a local-as-view (LaV) approach [10]
with a hypothetical global ontology that may be incomplete. The second difference
is that they do not retain the XML documents’ structures in their conceptual medi-
ator so they cannot deal with the reverse query translation (from the XML sources
to the mediator). Our previous work involved a layered approach for the interoper-
ation of heterogeneous web sources, but the nesting structure associated with XML
was lost in the mapping from XML data to RDF data [16].
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Direct Translation. Klein proposes a procedure to transform XML data directly into
RDF data by annotating the XML documents via external RDFS specifications [22].
The procedure makes the data in XML documents available for the Semantic Web.
However, since the proposed approach does not consider the document structure of
XML sources, it can not propagate queries from one XML source to another XML
source.

Semantics Encoding. The Yin/Yang Web approach proposed by Patel-Schneider and
Siméon address the problem of incorporating the XML and RDF paradigms [31].
They develop an integrated model for XML and RDF by integrating the semantics
and inferencing rules of RDF into XML, so that XML querying can benefit from
their RDF reasoner. But the Yin/Yang Web approach does not solve the problem
of query answering across heterogeneous sources, that is, sources with different
syntax or data models. It also cannot process higher-level queries such as RDQL.
Lakshmanan and Sadri also propose an infrastructure for interoperating over XML
data sources by semantically marking up the information contents of data sources
using application-specific common vocabularies [23]. However, the proposed ap-
proach relies on the availability of an application-specific standard ontology that
serves as the global schema. This global schema contains information necessary
for interoperation, such as key and cardinality information for predicates. This ap-
proach has the same problem as the Yin/Yang Web approach, that is, higher-level
queries can not be processed downward to XML queries.

2.2 Query Languages

CXQuery is a new XML query language proposed by Chen and Revesz, which borrows
features from both SQL and other XML query languages [15]. It overcomes the limita-
tions of the XQuery language by allowing the user to define views, explicitly specify the
schema of the query answers, and query through multiple XML documents. However,
CXQuery does not solve the issue of structural heterogeneities among XML sources.
The user has to be familiar with the document structure of each XML source to formu-
late queries. Heuser et al. also present a new language (CXPath) based on XPath for
querying XML sources at the conceptual level [14]. CXPath is used to write queries
over a conceptual schema that abstracts the semantic content of several XML sources.
However, they do not consider the situation of query translation from the XML sources
to the global conceptual schema.

2.3 Query Rewriting

Query rewriting is often a key issue for both mediator-based integration systems and
peer-to-peer systems. The Clio approach, which provides an example for the former
case, mainly addresses schema mapping and data transformation between nested
schemas and/or relational databases [32]. It focuses on how to take advantage of schema
semantics to generate the consistent translations from source to target by considering
the constraints and structure of the target schema. It uses queries to express the map-
pings from the data to the target schema. The Piazza system is a peer-to-peer system
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that aims to solve the problem of data interoperation between XML and RDF [19]. The
system achieves its interoperation in a low-level (syntactic) way, i.e., through the inter-
operation of XML and the XML serialization of RDF, whereas we aim to achieve the
same objective at the semantic level. For example, our approach supports a conceptual
view of XML sources (to facilitate the formulation of queries) and allows for conceptual
queries (e.g., RDF queries).

3 Framework

In this section, we present the framework for the integration of XML data sources and in
particular we describe the integration of XML source schemas and query processing in
the integrated system.

As shown in Figure 2, we generate for each local XML source a local RDFS ontol-
ogy, which represents the source schema. These local RDFS ontologies are then merged
into the global RDFS ontology, which provides an overview of all the local ontologies
and a mediation between each pair of XML sources. In this merging process, a mapping
table is also produced to contain all the mappings, which are correspondences between
the global ontology and local ontologies.

The ontology-based XML data integration framework I can be formalized as a
quadruple 〈G,S, μ,M〉, where

– G is the global ontology expressed in RDFS over the alphabet AG . The alphabet
comprises the name of the classes and properties of G.

– S is the XML source schema expressed in a language LS over the alphabet AS ,
which comprises the XML element names in S.

– μ is a schema transformation function, which generates a local RDFS ontologyR
for S, such thatR encodes the nesting structure specified by S.

– M is the mapping table consisting of a set of mappings between the global ontology
G and a set of n XML sources Si, where i ∈ [1..n]. Each entry inM is of the form
(g, s1, ..., sn), where g ∈ AG and si ∈ ASi ∪ {ε} for i ∈ [1..n]. Note that ε is used
when a source schema has no corresponding elements to an element of G.

Global RDFS
Ontology G

Mapping Table M

Local RDFS
Ontology R1

Local RDFS
Ontology R2

Local RDFS
Ontology Rn

. . .

Local XML
Source S1

Local XML
Source S2

Local XML
Source Sn

. . .

Ontology Integration

Global-to-local Query Rewriting

Local-to-local Query Rewriting

Fig. 2. The ontology-based framework for the integration of XML sources
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3.1 Integration of XML Source Schemas

The first task of the framework is the integration of the distributed and heterogeneous
XML sources. Here, we are mainly concerned with the issue of schematic heterogeneity,
that is, with the different schema structures among the sources. The process of data
integration contains two steps: schema transformation and ontology merging.

In the first step, we use a local RDFS ontology to represent each XML source schema
so as to achieve a uniform representation for the next step. In other words, the schema
transformation function μ takes as input the source schema S, and the output is the local
ontologyR. The key operation in this schema transformation is the preservation of the
nesting structure of S. To this end, we have to extend the RDFS space since it does not
have a property to encode the nesting structure between elements. In particular, we add
a new RDF property, contained, in the namespace of “http://www.example.org/rdf-
extension” (abbreviated as rdfx), The RDF/XML syntax for this property is described
below.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdfx="http://www.example.org/rdf-extension#">

<rdf:Property rdf:about=
"http://www.example.org/rdf-extension#contained">

<rdfs:isDefinedBy rdf:resource=
"http://www.example.org/rdf-extension#"/>

<rdfs:label>contained</rdfs:label>
<rdfs:comment> The containment between two classes.
</rdfs:comment>
<rdfs:range rdf:resource=

"http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:domain rdf:resource=

"http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Property>

The second step is the merging (or integration) of all local ontologies, which gener-
ates the global ontology as well as the mapping table. The merging is performed based
on the semantics of classes and properties from each of the local ontologies. In par-
ticular, the classes or properties that have similar or same (equivalent) semantics are
merged into a class or a property of the global ontology. Then, each of these correspon-
dences are recorded as an entry in the mapping table. Different kinds of mappings can
be established between two schemas or ontologies [38]. For this paper, however, we
consider only the equivalence type of mapping. We also do not consider the different
degrees to which two concepts may be equivalent. For instance, we simply take book
and article as equivalent concepts, although we could further refine such equiva-
lence. Additional domain-related knowledge (e.g., inheritance) may be considered. We
discuss these issues in more detail in Section 4.

It is worth mentioning that the global ontology in our system has two roles: (1) It
provides the user with access to the data with a uniform query interface to facilitate the
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formulation of a query on all the XML sources; (2) It serves as the mediation mecha-
nism for accessing the distributed data through any of the XML sources.

3.2 Query Processing

Our framework handles user queries using a query rewriting strategy. More specifically,
query processing in our framework may occur in the following two directions, as shown
in Figure 2:

Global-to-Local Query Rewriting. When the user poses a query q on the global on-
tology, the system rewrites q into the union q′ of subqueries, one for each XML
source. The subqueries are then executed over the XML sources to get the answers,
which are then integrated (by using union) to produce the answer to q.

Local-to-Local Query Rewriting. Given a query q posed on a local source, its an-
swers then include not only those retrieved from the local source, but also those
from all the other sources in the system. For the purpose of getting answers from
the other sources, it requires that q be rewritten (through the global ontology) into
a union q′ of queries, one on each of the other sources. Query rewriting in this
direction is performed similarly to that in peer-to-peer systems [33].

Query rewriting in both directions is based on the mapping information contained in
the mapping table. Each entry contains a element (RDF class or property) of the global
ontology and its corresponding elements in the local source schemas. Given that query
rewriting is from a query over one alphabet to that over another alphabet, the map-
ping table provides a convenient way to finding the mapping between alphabets, in both
rewriting directions. In addition, the query languages used to formulate the queries have
to be taken into consideration, since they may have different expressiveness. We con-
sider a subset of XQuery [7], called conjunctive XQuery (c-XQuery), for queries over
the XML sources and a subset of RDQL [20], namely conjunctive RDQL (c-RDQL),
for queries over the global RDFS ontology. We discuss in detail query processing and
related issues in Section 5.

4 Integrating Structure and Semantics

4.1 Local XML Schemas and Local RDFS Ontologies

To integrate heterogeneous XML data sources, we first transform the local XML schema
into a local RDFS ontology while preserving the XML document structure. By docu-
ment structure, we mean the structural relationship of objects specified in data-centric
documents [8] by a schema language (such as DTD, XML Schema, or RelaxNG1).
In this paper, we only focus on the nesting structure (i.e., hierarchy). Other structural
properties include order. A consequence of not including order in our framework is that
we cannot consider a query that involves the order of the subelements of an element.
However, this kind of query is of little interest in a framework where we are mostly
concerned with the semantics of the data.

1 http://relaxng.sourceforge.net
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Elements and attributes are the two basic building blocks of XML documents. Ele-
ments can be defined as simple types, which cannot have element content and cannot
carry attributes, or complex types, which allow elements in their content and/or con-
tain attributes. On the other hand, all attribute declarations must reference simple types
since attributes cannot contain other elements or other attributes. From the perspective
of XML Schema, these nesting relationships are defined in terms of datatypes (simple or
complex). An XML schema can be formalized as an edge-labeled tree, namely an XML
schema tree, as depicted in Figure 1. We overlook the distinction between XML ele-
ments and attributes by considering both of them as vertices in the XML schema tree.

Definition 1. An XML schema S over alphabet AS is an edge-labeled tree S =
(V, E, λ), where V is a set of vertices, E = {(vi, vj)|vi, vj ∈ V } is a set of edges,
and λ is a labeling function λ : E �→ AS .

Before we discuss schema transformation, let us look at the formalization of ontolo-
gies. Both the global ontology and local ontologies are actually RDF schemas defined
in the RDFS space, which is extended with the RDF property “rdfx:contained”.
An RDF schema can be formalized as a labeled graph, called RDF schema graph, as
defined in Definition 2. We do not elaborate on the data types of RDF properties and
assume that they are all of type literal. Also, we do not take into account the notion of
namespace in the definition of both XML and RDF schemas.

Definition 2. An RDF schema graphR over alphabet AR is a directed labeled graph
R = (V, E, λ), where V is a set of labeled vertices consisting of classes C, properties
P , and data types L, E = {(vi, vj)|vi, vj ∈ V } is a set of labeled edges, and λ is a
labeling function λ : V ∪E �→ AR, such that

– ∀ v ∈ P , we have domain(v) ∈ C, range(v) ∈ C ∪L, and λ((v, domain(v))) =
“rdfs:domain” and λ((v, range(v)))=“rdfs:range”;

– ∀ e = (vi, vj) ∈ E, we have λ(e)=“rdfs:subClassOf” (or “rdfx:contained”) if vi

and vj ∈ C, or λ(e) = “rdfs:subPropertyOf” if vi and vj ∈ P .

Now we are able to define the schema transformation function μ. Formally speaking, the
schema transformation function μ is a function μ : S �→ R, where S = (VS , ES , λS),
R = (VR, ER, λR), and VR = C ∪ P , such that ∀ eij = (vi, vj) ∈ ES , we have
μ(vj) ∈ VR, λR(μ(vj)) = λS(eij), and furthermore:

(1) if ∃(vj , vk) ∈ ES , then μ(vj) ∈ C, (μ(vj), μ(vi)) ∈ ER, and λR(μ(vj), μ(vi)) =
“rdfx:contained”;

(2) if �(vj , vk) ∈ ES , then μ(vj) ∈ P , (μ(vj), μ(vi)) ∈ ER, and λR(μ(vj), μ(vi)) =
“rdfs:domain”.

The transformations thus defined fall into two categories:

Element-Level Transformation. The element-level transformation converts from
XML complex-type elements to RDF classes and from XML simple-type elements
to properties. For example, for S1 in Example 1, we define the RDF classes Books,
Book, and Author, while taking booktitle and name as RDF properties of
Book and Author, respectively, as depicted in the resulting local RDFS ontology
of Figure 3.
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Structure-Level Transformation. The structure-level transformation encodes the
nesting structure of the XML schema into the local RDFS ontology. In partic-
ular, the nesting may occur between two complex-type elements or between a
complex-type element and its child (simple) element. Following the element-level
transformation, the nesting structure in the former case corresponds to a class-to-
class relationship between two RDFS classes, which are connected by the property
rdfx:contained, The first item that defines μ formalizes this case. In the latter
case, the XML nesting structure corresponds to the class-to-literal relationship in
the local ontology, with the class and the literal connected by the corresponding
property. The second item that defines μ formalizes this case.

By applying the schema transformation function to the two XML schemas in
Figure 1, we can get the resulting local ontologies as shown in Figure 3. We see that
rdfx:contained enables the representation of the nesting relationship. Specifically,
by following the edges of rdfx:contained from Books to Author inR1, we ac-
tually get the corresponding path /books/book/author in S1. In terms of the al-
phabets, the schema transformation function specifies a mapping between the alphabet
of the source schema and that of the local ontology. Table 1 lists the mapping between
the XML schema S1 and the local RDFS ontologyR1. For simplicity, we use XPath to
specify the XML elements. Also, the properties in the mapping table are in the form of
an RDF expression c.p, where c is the class associated with p.

Books

namebooktitle

rdfx:contained

propertyClassLegend

Local RDFS ontology

rdfs:domain

Author
rdfx:contained

Book Article

fullnametitle

rdfx:contained
Writers

rdfx:contained
Writer

Local RDFS ontologyR1 R2

Fig. 3. Local RDFS ontologies transformed from S1 and S2

Table 1. Mappings between S1 and R1

XPath expressions in S1 RDF expressions in R1

/books Books
/books/book Book
/books/book/booktitle Book.booktitle
/books/book/author Author
/books/book/author/name Author.name

4.2 Global RDFS Ontology

Now that the source schemas are represented by local RDFS ontologies, we are able
to merge them to construct the global RDFS ontology. In other words, the process of
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ontology merging takes as input the multiple local ontologies and returns a merged
ontology as the output [35].

Ontology merging and ontology alignment, which require the mapping of ontologies,
are widely pursued research topics. Readers can be referred to a thorough survey of the
state-of-the-art of ontology mapping [21]. In this paper we do not intend to introduce a
new technique for ontology merging. Instead, we utilize existing techniques to generate
the integrated ontology from the local ontologies. In particular, we use an approach
(such as PROMPT [29]) that provides the following functionalities:

– Merging of classes: Multiple conceptually equivalent classes of the local ontologies
are combined into one class in the global ontology.

– Merging of properties: Multiple conceptually equivalent properties of the equiva-
lent classes in the local ontologies are combined as one property of the combined
class in the global ontology.

– Merging relationships between classes: Given two conceptually equivalent rela-
tionships, e.g., p1 from a class c1 to another class c′1 and p2 from c2 to c′2, we
combine p1 and p2 into one relationship p between the combined class c (of c1 and
c2) and c′ (of c′1 and c′2).

– Copying a class or a property: If there does not exist a conceptually equivalent
class or property for a class c (or a property p of c), we simply copy c (or p, as a
property of the target class of c) into the global ontology.

– Generalizing semantically related classes into a superclass: The superclass can be
obtained by searching an existing knowledge domain (e.g., the DAML Ontology Li-
brary) or reasoning over a thesaurus such as WordNet.2 For example, we can find in
the semantic network of terms (consisting of terms and their semantic relations) that
two classes (Author and Writer) have the same hypernym (Person), which is
then taken as a superclass of both classes.

Figure 4 shows the global ontology that results from merging the two local RDF
ontologies of Figure 3. The greyed classes and properties are merged classes and prop-
erties from the original ontologies. For instance, Book in R1 and Article in R2
are merged into Book, whereas booktitle in R1 and title in R2 are merged
into title. The classes Book and Author are also respectively extended with the
superclasses Publication and Person.

Besides the global ontology, the process of ontology merging also yields as an out-
put the mapping table that contains the mappings between the local RDFS ontologies
and the global RDFS ontology. In general, if a class, property, or relationship between
classes p in the global ontology is the result of merging pi and pj from different local
ontologies, then a tuple of the form (p, pi, pj) is generated. If a class or property p in
the global ontology is only copied from pi in a local ontology, then a tuple (p, pi) is
produced. For instance, for the class Book.title (in the global ontology), which is
merged from Book.booktitle in R1 and Article.title inR2, we generate a
tuple in the mapping table: (Book.title,Book.booktitle,Article.title).
Table 2 lists all the mappings in our example.

2 http://wordnet.princeton.edu
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Table 2. Mapping table between the global ontology and local RDF ontologies

RDF expressions in the RDF expressions in R1 RDF expressions in R2

global ontology
Books Books -
Book Book Article
Book.title Book.booktitle Article.title
Authors - Writers
Author Author Writer
Author.name Author.name Writer.fullname

Table 3. Mapping table between the global ontology and XML source schemas

RDF expressions in the XPath expressions in S1 XPath expressions in S2

global ontology
Books /books -
Book /books/book /writers/writer/article
Book.title /books/book/booktitle /writers/writer/article/title
Authors - /writers
Author /books/book/author /writers/writer
Author.name /books/book/author/name /writers/writer/article/fullname

Now that we have the one-to-one mappingsM1 between the XML source schemas
and their local ontologies and the one-to-one mappingsM2 between the local ontolo-
gies and the global ontology, we can compose M1 and M2 to get the mappingsM
between the source schemas and the global ontology. Table 3 shows the results.

4.3 Data Integration Semantics

In this subsection, we discuss the semantics of the data integration in our proposed
framework including the semantics of the XML (local) databases, the mapping table,
and the RDFS (global) database. The discussion of the syntax and semantics of queries
is postponed until Section 5. In what follows, we refer to a fixed, finite set Γ of con-
stants, which is shared by all data sources. We also refer to a finite set U of URIs.

Books
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rdfx:contained
Author

rdfx:contained

Book Authors
rdfx:contained

Publication

propertyClass
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Person

rdfx:contained
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Fig. 4. The global ontology G that results from merging R1 and R2
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There are two types of databases in the framework, i.e., the local XML databases
and the global RDF database. An XML database is an XML instance tree, and an RDF
database is an RDF instance graph.

Definition 3 (XML instance tree). Given an XML schema S = (VS , ES , λS), an in-
stance of S is an XML instance tree G = (VG , EG , τ, λG), where VG is a set of vertices,
EG is a set of edges, and

(1) τ is a typing function τ : VG �→ VS , such that (a) ∀v ∈ VG , τ(v) ∈ VS , and (b)
∀(vi, vj) ∈ EG , (τ(vi), τ(vj)) ∈ ES .

(2) λG is a labeling function, such that (a) ∀v ∈ VG , λG(v) ∈ Γ ∪ {ε}, and (b)
∀(vi, vj) ∈ EG , λG((vi, vj)) = λS((τ(vi), τ(vj))).

Definition 4 (RDF instance graph). Given an RDF schema S = (VS , ES , λS), where
VS = C ∪ P , an instance of S is an RDF instance graph G = (VG , EG , τ, λG), where
VG is a set of vertices, EG is a set of edges, λG is a labeling function λG : VG ∪ EG �→
AS ∪ U ∪ Γ , and τ is a typing function τ : VG ∪ EG �→ VS ∪ {“rdf:Property”} ∪
{“rdfs:literal”}, such that ∀e = (vi, vj) ∈ EG , we have

(1) if τ(e)=“rdf:Property”, then λG(e)=“rdfx:contained” or “rdfs:subClassOf”,
λG(vi) and λG(vj) ∈ U , τ(vi) and τ(vj) ∈ C, and (τ(vi), τ(vj)) ∈ ES;

(2) if τ(e) ∈ P , then λG(e) = λS(τ(e)), λG(vi) ∈ U , τ(vi) ∈ C, λS((τ(e), τ(vi))) =
“rdfs:domain”, λS((τ(e), τ(vj )))=“rdfs:range”, and
• λG(vj) ∈ U , when τ(vj) ∈ C;
• λG(vj) ∈ Γ , when τ(vj)=“rdfs:literal”;

The semantics of the mappings depends on the assumptions adopted. In the view-based
approach, there are three assumptions for the inter-schema mappings, namely sound-
ness, completeness, and exactness [25]. In particular, given a database D, a set of view
definitions V over D, and view extensions E of V , we say the views V are sound if
VD ⊇ E , complete if VD ⊆ E , and exact if VD = E . It is common to use the soundness
assumption for view-based data integration [25]. Given that our framework adopts a
GaV approach, it is natural to assume an exact semantics, that is, the sources are com-
plete with respect to the global database. However, the definition for these assumptions
differs from our framework, where mappings are represented by element correspon-
dences in the mapping table.

Given an entry ti = (gi, si,1, ..., si,n) in the mapping tableM(G,S1, ...,Sn), where
gi ∈ G and si,j ∈ Sj (1 ≤ j ≤ n), the semantics of the mappings can be cap-
tured by the concept of valuation. Given the global database B of G and local databases
Dj of Sj (1 ≤ j ≤ n), a valuation of ti is a function σ, which maps ti to a tuple
(vi, vi,1, ..., vi,n), where vi ∈ B, and vi,j ∈ Dj (1 ≤ j ≤ n), such that τB(vi) = gi and
τDj (vi,j) = si,j for j ∈ [1..n]. Under the exact assumption, the semantics of the map-
ping tableM = {t1, ..., tm} is captured by a conjunction of all the equalities (between
the valuation of each global element and the union of the valuations of its mapped local
elements), that is:∧

1≤i≤m[σ(gi) = σ(si,1) ∪ ... ∪ σ(si,n)], such that for 1 ≤ k, l ≤ m,
(1) (gk, gl) ∈ EG ⇔ (σ(gk), σ(gl)) ∈ EB , and
(2) (sk,j , sk,l) ∈ ESk

⇔ (σ(sk,j), σ(sk,l)) ∈ EDk
, for each j ∈ [1..n].
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Fig. 5. The global database of G

The definition of the semantics of sound (or complete) mappings is the same as the
above definition, except for the substitution of = by⊇ (or⊆). For simplicity, we abbre-
viate the preceding assertion to σ(G) = σ(S1) ∪ ... ∪ σ(Sn). The global database B is
then any database such that σ(G) = σ(S1) ∪ ... ∪ σ(Sn) holds for the local databases
D1, ...,Dn. Figure 5 shows the global database (instances) for the data sources of
Example 1.

5 Query Processing

5.1 Query Languages

RDQL (RDF Data Query Language) uses an SQL-like syntax. More specifically, the
Select clause identifies the variables to be returned to the application. The From
clause specifies the RDF model using an URI. The Where clause specifies the graph
pattern as a list of triple patterns. The And clause specifies the Boolean expressions.
Finally, the Using clause provides a way to shorten the length of the URIs. By over-
looking the notion of namespace (i.e., URI) and the And clause, we get a conjunctive
RDQL (c-RDQL) expression, which can be expressed in a conjunctive formula:

ans(X) :- p1(X1), ..., pn(Xn).

where Xi = (xi, x
′
i) and pi is an RDF property of xi having the value x′

i.
XQuery is a typed functional language that has an FLWR (i.e., For, Let, Where,

Return) syntax. For simplification, we assume that the XML query posed by the user
is formulated only in the form of FLWR expressions [7]. In other words, we do not
consider nesting FLWR expressions, although they are allowed in XQuery. In particular,
a conjunctive XQuery (c-XQuery) is of the form:

ans(X) :- p1(X1), ..., pn(Xn).

where Xi = (xi, x
′
i) and pi is an XPath /e1/.../en connecting xi to x′

i. That is, each
predicate represents an expression xi/e1/.../en/x′

i, where ei(1 ≤ i ≤ n) is an edge
label along the path from xi to x′

i.
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In both query definitions, ans(X) is the head of the query, denoted headq, and the
remaining part is the body of the query, denoted bodyq. We say that the query is safe if
X ⊆X1 ∪ ... ∪Xn.

The answer qD to a query q over a database D is the result of evaluating q over
D. The query evaluation is based on the concept of valuation and depends on the data
model and the query language used. Informally, a valuation ρ over the variables var(q)
of a query q is a total function from var(q) to constants (or URIs for RDF queries) in
the domain Γ of the database, where q is evaluated [2], as follows:

– In the XML model: given a c-XQuery q of the form ans(X) :- p1(X1), ..., pn(Xn)
over an XML instance graph D, we have

qD = {ρ(X)|ρ is a valuation over var(q) and pi = (ρ(xi), ρ(x′
i)) is a fact in D,

for each Xi = (xi, x
′
i), where i ∈ [1..n]}.

– In the RDF model: given a c-RQL query q of the form ans(X) :- p1(X1), ...,
pn(Xn) over an RDF instance graph D, we have

qD = {ρ(X)|ρ is a valuation over var(q) and pi is a path connecting ρ(xi) and
ρ(x′

i) in D, for each Xi = (xi, x
′
i), where i ∈ [1..n]}.

Example 2. Consider two queries q1 and q2. In particular, q1 is expressed over the
global ontology G in c-RDQL, to retrieve all the (Author, Book) pairs. The c-XQuery
query q2 is issued on local XML source S1, to retrieve all (Author, Book) pairs.

q1: ans(x, y) :- name(u, x), title(v, y), contained(u, v).
q2: ans(x, y) :- /name(u, x), /booktitle(v, y), /author(v, u).

By evaluating q1 over the global database B (shown in Figure 5) and q2 over D1
(shown in Figure 1), we obtain the following answer sets to both queries.

qB1 = {(a1, b1), (a2, b2), (a3, b2), (w1, t1), (w2, t2), (w3, t2)},
qD1
2 = {(a1, b1), (a2, b2), (a3, b2)}.

We finally assume that all the concepts in the local ontologies are mapped to the
concepts in the global ontology during the ontology integration process. That is, the
mappings are total, one-to-one mappings from the local RDF ontologies to the global
ontology. However, it is possible that some concept c or property p in the global ontol-
ogy gets mapped to a local ontology but not to another local ontology. This may lead to
null values when a query involves c or p. However, we do not consider this case in our
discussion.

5.2 Certain Answers and Query Containment

The concept of certain answers has been introduced in view-based query processing to
represent the results of answering a global query (the query over the global schema) using
view extensions [1]. In our framework, where the mappings are correspondences between
elements of the global ontology and elements of the source schemas, the concept of cer-
tain answers is redefined. We call the query posed on the global ontology a global query,
and the query posed over a local data source a local query. As previously discussed, these
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two queries are processed in two different directions, i.e., the global-to-local direction
and the local-to-local direction. The certain answers to a global query are called global
certain answers, while those to a local query are called local certain answers.

Before we discuss the formalism for these two types of certain answers, we revisit
the concept of global database, from which we retrieve the global certain answers, and
we introduce the concept of retrieved database, where the local certain answers are
computed.

Given the local data sources D1, ...,Dn and the mapping tableM(G,S1, ...,Sn) be-
tween the global ontologyG and local source schemasS1, ...,Sn. The global databaseB
is such that σ(G) =

⋃
(1≤i≤n) σ(Si) holds onD1, ...,Dn. Likely, the retrieved database

Bk on a local source Sk w.r.t. all the other local sources is the one satisfying σ(Sk) =⋃
(1≤i≤n,i�=k) σ(Si), whereas, the retrieved database Bk,l on Sk w.r.t. a particular local

source Sl is the one satisfying σ(Sk) = σ(Sl) (refer to Section 4 for the semantics of σ).
Figure 6 shows an example of the retrieved database on S1 w.r.t. S2 (on the left side) and
the one on S2 w.r.t. S1 (on the right side), for S1 and S2 as presented in Figure 1.

Based on the concept of global database and that of retrieved database, we formally
define both types of certain answers next.

Definition 5 (Certain answers). Let G be the global ontology of n XML source
schemas S1, ...,Sn respectively with databases D1, ...,Dn, M be the mapping table,
q be a global query posed over G, and qk be a local query on Sk. The global certain
answers to q with respect toD1, ...,Dn based onM are the results of evaluating q over
the global database B, denoted certM(q) = qB. The local certain answers to qk with
respect toD1, ...,Dk−1,Dk+1, ...,Dn based onM are computed by evaluating qk over
the retrieved database Bk on Sk, denoted certM,k(qk) = qBk .

While the global certain answers constitute the answer to a global query, the answer to
a local query qk contains both the local certain answers and those retrieved from the
local database Dk, that is, ans(qk) = certM,k(qk) ∪ qDk .

Query containment is a fundamental problem in database research. In general, query
containment checks whether two queries are contained in each other. This problem has
been studied in the following three cases.

The first case is query containment in a single databaseD, over which the two queries
are posed, that is, D1 = D2 = D. Given a single database schema S over which q1
and q2 are posed, we say q1 is contained in q2, denoted q1 ⊆ q2, if they have the same
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output schema and qD1 ⊆ qD2 for every database D of S. The two queries q1 and q2 are
said to be equivalent, denoted q1 ≡ q2, if qD1 ⊆ qD2 and qD2 ⊆ qD1 [2].

The second case is query containment in data integration systems, where both queries
are posed over the global database. The data sources are usually homogeneous in the
sense that the same syntax is used. Given that the sources are expressed as views over
the global database, two queries are said to be equivalent relative to the same set of
data sources, if for any source databases they have the same set of certain answers. The
query containment problem in this case is called relative query containment [28].

The third case is also in homogeneous data integration systems, where data sources
are defined as views of the global schema, but the two queries are formulated in terms of
different alphabets. In particular, there are two kinds of queries, i.e., the queries qΣ over
the alphabet Σ of the global schema and the queries qV over the alphabet V of the view
definitions. The query containment in this case is called view-based containment and is
discussed for different situations such as containment between qΣ

1 and qΣ
2 , between qΣ

1
and qV2 , between qV1 and qΣ

2 , and between qV1 and qV2 [13].
In our case, we are interested in two kinds of containment, specifically the contain-

ment between a global query q and a union of local queries q1, ..., qn, and the contain-
ment between two local queries qk and ql. The first kind of containment, which we call
global query containment, is the same as the containment between qΣ

1 and qV2 . Whereas
the second kind differs from the containment between qV1 and qV2 , in the sense that qk

and ql refer to different alphabets but qV1 and qV2 are expressed over the same alphabet.
We call the containment between qk and ql P2P query containment, because of its like-
ness to query processing in a P2P system. Next we give the formal definitions for these
two containments in our framework.

Definition 6 (Global query containment). Let G be the global ontology over n XML
source schemas S1, ...,Sn, M be the mapping table, q be a global query posed over
G, and q′ be a union of local queries q1, ..., qn respectively over S1, ...,Sn. We say q is
globally contained in q′, denoted q ⊆M q′, if for any databases D1, ...,Dn, we have
certM(q) ⊆ qD1

1 ∪...∪qDn
n . We say q and q′ are globally equivalent, denoted q ≡M q′,

if q ⊆M q′ and q ⊇M q′.

Definition 7 (P2P query containment). Let G be the global ontology over n XML
source schemas S1, ...,Sn,M be the mapping table, qi be a local query posed over Si,
and qj be a local query over Sj . We say qi is P2P contained in qj , denoted qi ⊆M qj ,

if for any databases D1, ...,Dn, we have certM,i(qi) ∪ qDi

i ⊆ certM,j(qj) ∪ q
Dj

j . We
say q and q′ are P2P equivalent, denoted qi ≡M qj , if qi ⊆M qj and qi ⊇M qj .

Example 3. Consider the following three queries q, q1, and q2 respectively on the global
ontology G, local XML source S1, and local XML source S2. Also consider the map-
ping tableM shown in Table 3.

q: ans(x, y) :- name(u, x), title(v, y), contained(u, v).
q1: ans(x, y) :- /name(u, x), /booktitle(v, y), /author(v, u).
q2: ans(x, y) :- /fullname(u, x), /title(v, y), /article(u, v).

By executing q on the global database B, q1 on D1 and on the retrieved database B1,
and q2 on D2 and on the retrieved database B2, we obtain the following answers to the
three queries.
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certM(q) = qB: {(a1, b1), (a2, b2), (a3, b2), (w1, t1), (w2, t2), (w3, t2)}
qD1
1 : {(a1, b1), (a2, b2), (a3, b2)}

certM,1(q1) = qB1
1 : {(w1, t1), (w2, t2), (w3, t2)}

qD2
2 : {(w1, t1), (w2, t2), (w3, t2)}

certM,2(q2) = qB2
2 : {(a1, b1), (a2, b2), (a3, b2)}

Therefore, by Definition 6 and Definition 7, we have q ≡M (q1∪q2) and q1 ≡M q2.

5.3 Query Rewriting

In a data integration system where the sources are described as views over the global
schema, query processing is called view-based query processing, which has two ap-
proaches, i.e., view-based query answering and view-based query rewriting [12,18].
Likewise, there are two approaches to answering a query in our framework, where map-
pings are expressed by correspondences. The first approach utilizes the notion of (global
or local) certain answers, as previously discussed.

The alternative approach is by query rewriting. Specifically, to answer a global (or
local) query q, the query is rewritten into a union of the queries over all the sources, us-
ing the mappings. The integration of the answers retrieved from each source constitutes
the answer to q.

As mentioned before, there are two directions of query processing in our framework.
We expect that query rewriting in both directions is equivalent, in the sense that the
rewriting is globally (or P2P) equivalent to the original query. We present next two
query rewriting algorithms, i.e., GLREWRITING for global-to-local query rewriting and
LLREWRITING for local-to-local rewriting, which will ensure the equivalence of the
rewritten queries.

Algorithm GLREWRITING

Input:1. q1 over the global ontology G: ans(X) :- p1(X1), ..., pm(Xm);
2.M between the global ontology G and local XML schemas S1, ...,Sn.

Output: q2: Union of the c-XQueries over S1, ...,Sn.
1. q2 = null;
2. For i = 1 to n do
3. headq = headq1 ; bodyq = null;
4. For j = 1 to m do
5. (c1, c2) = name of the class/property bound to (x1, x2), for Xj = (x1, x2);
6. SearchM to find (d1, d2) such that {(c1, d1), (c2, d2)} ⊆ πG,Sj (M);
7. If a path p exists from d1 to d2 in Sj then
8. add p(x1, x2) to bodyq;
9. Else if a path p exists from d2 to d1 in Sj then
10. add p(x2, x1) to bodyq;
11. Else add p(x̂, x1) and p′(x̂, x2) to bodyq, where x̂ is a new variable bound to

the lowest ancestor d of d1 and d2, and p (p′) is the path from d to d1(d2);
12. q2 = q2 ∪ q;
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We see that the algorithm GLREWRITING adopts a strategy similar to the “unfold-
ing” strategy used by query processing in a GaV-based relational data integration system
[25]. However, instead of substituting the predicates in a query q with the correspond-
ing views, the substitution of predicates in GLREWRITING is guided by the correspon-
dences in the mapping tableM, as stated in Lines 5 to 11. The calculation of the class
or property (Line 5) bound to different variables in q1 is as follows. For each predicate
p(x1, x2): (1) if p is a property connecting two classes c1 and c2, we say that x1 is
bound to c1 and that x2 is bound to c2; (2) if p connects a class c to a value (or literal) v,
we say that x1 is bound to c and that x2 is bound to p. Also, we note that the algorithm
uses the relational algebra projection operator π (Line 6).

Example 4. Given a global query

q : ans(x, y) :- name(u, x), title(v, y), contained(u, v).

we use GLREWRITING to rewrite q into a union of subqueries, each on a local XML
source (refer to the mapping tableM of Table 3). For illustration, we only look at the
rewriting of q into a subquery q1 over the local source S1.

In particular, Line 5 computes the bound classes or properties of the variables
(u, v, x, y) as (Author, Book, Author.name, Book.title). By looking intoM,
we find the corresponding element sequence of (Author, Book, Author.name,
Book.title) in S1 to be (/books/book/author, /books/book, /books/
book/author/name,/books/book/booktitle). From Lines 7 to 11, we com-
pute the predicates in the body of q1 as follows.

q1: ans(x, y) :- /name(u, x), /booktitle(v, y) /author(v, u).
Note that for the predicate contained(u, v) in q, we generate in q1 a predicate/
author(v, u), where the order of the two variables is switched. This results from the
computation performed by Lines 9 and 10. In particular, u and v are respectively bound
to Author and Book, which respectively correspond to XML paths /books/book/
author and /books/book. From S1, we find that /author is the path from v to
u, not the path from u to v.

Example 5. We give one more example to illustrate query rewriting when Line 11 is
used. Consider the following setting, where a local XML schema S1 (on the right side)
is mapped to the global RDFS ontology G (on the left side), as indicated by the dashed
lines. The two classes Advisor and Student are respectively instantiated with the
name of faculty and the name of advisee, that is, the mapping table contains two
correspondences:

(Advisor, /faculty/f name)
(Student, /faculty/advisee/a name).
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Now we consider rewriting a global c-RDQL query q: ans(x, y) :- advises(x, y).
into a local c-XQuery query q′ over S1. It is apparent that x and y are bound to
Advisor and Student, thus corresponding to /faculty/f name and
/faculty/advisee/a name, respectively. Because /faculty/f name and
/faculty/ advisee/a name share the same ancestor/faculty, by using Line
11 we add two predicates /f name(u, x) and /advisee/a name(u, y) to the body of
q′, generating the following local c-XQuery query q′:

ans(x, y) :- /f name(u, x), /advisee/a name(u, y).

Algorithm LLREWRITING

Input:1. q1 over a local XML schema S1: ans(X) :- p1(X1), ..., pm(Xm);
2.M between the global ontology G and local XML schemas S1, ...,Sn.

Output: q: A query over local XML schema S2.
1. headq = ans(X); bodyq = null;
2. For j = 1 to m do
3. (c1, c2) = name of the element bound to (x1, x2), for Xj = (x1, x2);
4. SearchM to find (d1, d2) such that {(c1, d1), (c2, d2)} ⊆ πS1,S2(M);
5. If a path p exists from d1 to d2 in S2 then
6. add p(x1, x2) to bodyq;
7. Else if a path p exists from d2 to d1 in S2 then
8. add p(x2, x1) to bodyq;
9. Else add p(x̂, x1) and p′(x̂, x2) to bodyq , where x̂ is a new variable bound to

the lowest ancestor d of d1 and d2, and p (p′) is the path from d to d1(d2);

Algorithm LLREWRITING differs from GLREWRITING only in finding the elements
bound to the variables (Line 3) and in finding the corresponding elements from the map-
ping table (Line 4). Unlike in global-to-local rewriting, the result of using LLREWRIT-
ING is a single c-XQuery.

Taking into account the definitions of global and P2P query containment, we prove
below that the algorithms GLREWRITING and LLREWRITING yield equivalent queries.

Theorem 1. Given a global query q over the global ontology G, its rewriting q′ as
computed by GLREWRITING is globally equivalent to q, that is, q ≡M q′.

PROOF SKETCH. To prove q ≡M q′, where q′ = q1 ∪ ... ∪ qn, we will check whether
certM(q) = qD1

1 ∪ ... ∪ qDn
n , given the mapping tableM(G,S1, ...,Sn). Taking into

account the semantics ofM, given any sequence u of values from the global database
B, which makes bodyq true, we can always have a sequence v of values fromD1, ...,Dn,
since σ(G) = σ(S1) ∪ ... ∪ σ(Sn). By GLREWRITING, the sequence v is exactly the
one that makes bodyqi true, where i ∈ [1..n]. Therefore, we have qB ⊆ qD1

1 ∪ ...∪ qDn
n .

Similarly, we can show that qB ⊇ qD1
1 ∪ ...∪ qDn

n . By the definition of certain answers,
we conclude that certM(q) = qD1

1 ∪ ... ∪ qDn
n . �
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Similarly, we have:

Theorem 2. Given a local query q1 over a local XML source S1, its rewriting q2 over
the local XML source S2 computed by LLREWRITING is P2P equivalent to q1, that is,
q1 ≡M q2.

We discuss here an interesting property, namely reversibility, of the local-to-local query
rewriting. Informally, consider a local query q1, which is rewritten into another local
query q2. If q2 can be rewritten back to a query q′1 (on the same source as q1) such that
q1 ≡ q′1, we say q′1 is a reverse query of q1. In the case that q2 and q′1 are computed
using the same rewriting algorithm, we say that the algorithm is reversible, if every
query that is rewritable by the algorithm has a reverse rewriting.

More generally, we consider a P2P data integration system with a cyclic path of
P2P mappings, informally annotated as p1,M12, p2, ...,M(n−1)(n), pn,Mn1, p1, and
an equivalent query rewriting algorithm translating a query q1 (over p1) along this
path until it comes back to p1 with the resulting query q′1. In the spirit of equiva-
lent query rewriting, we expect that it is the case that q1 ≡ q′1, and furthermore,
(q1 ≡M q2), ..., (qn ≡M q′1)⇒ q1 ≡ q′1 and q1 ≡ q′1 ⇒ (q1 ≡M q2), ..., (qn ≡M q′1).
In other words, we expect that there exists a logical relationship between P2P query
containment/equivalence and a reversible rewriting algorithm.

6 Conclusions and Future Work

XML and its schema languages do not express semantics but rather the document struc-
ture, such as information about nesting. Therefore, semantically-equivalent documents
often present different document structures when they originate from different applica-
tions. In this paper, we provide an ontology-based framework that aims to make XML
documents interoperate at the semantic level while retaining their nesting structure. The
framework consists of two key aspects: data integration and query processing.

For data integration, a global RDFS ontology is generated by merging the local
RDFS ontologies that are generated from each of the XML documents. At the same
time, the mappings between the global ontology and local XML schemas are manu-
ally established. We extend RDFS by defining additional metadata that can encode the
nesting structure of an XML document. For query processing, we propose two query
rewriting algorithms: one algorithm translates an RDF query (posed on the global on-
tology) to an XML query; the other algorithm translates an XML query (posed on one
of the individual XML data sources) to another XML query (posed on a different XML
data source). In doing so, we discuss the problem of query containment for two query
languages, namely conjunctive RDQL (c-RDQL) and conjunctive XQuery (c-XQuery).
It is shown that both query rewriting algorithms are equivalent, in terms of both global
and P2P query equivalence.

In the future, we will extend query processing in our framework, by taking into ac-
count other data models, such as relational and RDF data sources. We will further study
query containment in the case of more expressive query languages, e.g., the complete
RDQL and XQuery. The concept of reversibility of query rewriting, especially in P2P
data integration systems, is also a direction for future research.
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Managing Uncertainty in Schema Matching
with Top-K Schema Mappings

Avigdor Gal

Technion – Israel Institute of Technology
Technion City, Haifa 32000, Israel

Abstract. In this paper, we propose to extend current practice in
schema matching with the simultaneous use of top-K schema mappings
rather than a single best mapping. This is a natural extension of existing
methods (which can be considered to fall into the top-1 category), taking
into account the imprecision inherent in the schema matching process.
The essence of this method is the simultaneous generation and examina-
tion of K best schema mappings to identify useful mappings. The paper
discusses efficient methods for generating top-K methods and propose a
generic methodology for the simultaneous utilization of top-K mappings.
We also propose a concrete heuristic that aims at improving precision at
the cost of recall. We have tested the heuristic on real as well as synthetic
data and anlyze the emricial results.

The novelty of this paper lies in the robust extension of existing meth-
ods for schema matching, one that can gracefully accommodate less-than-
perfect scenarios in which the exact mapping cannot be identified in a
single iteration. Our proposal represents a step forward in achieving fully
automated schema matching, which is currently semi-automated at best.

1 Introduction

Matching concepts describing the meaning of data in heterogeneous distributed
data sources (e.g., HTML form tags and database and XML schemata) is one
of the basic operations of data integration. Due to the cognitive complexity of
this matching process [8], it has traditionally been performed by human experts
(Web designers, database analysts, and even lay users, depending on the context
of the application) [32,20]. As data integration has been made more automated,
the ambiguity in concept interpretation, also known as semantic heterogeneity,
has become one of the main obstacles to this process. For obvious reasons, man-
ual concept reconciliation in dynamic environments (with or without computer-
aided tools) is inefficient to the point of being infeasible, and so cannot provide
a general solution. Introduction of the Semantic Web vision [4] and the shift to-
wards machine-understandable Web resources have underscored the importance
of automatic matching between sets of elements, also known as schema matching.

As a result, several tools for automated schema matching, such as GLUE [11]
and OntoBuilder [15], have been developed in recent years. Given two data
schemata (e.g., two sets of attributes), these tools output a single mapping from
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elements of one schema to elements of the other. The outputted mapping is
considered to be the best of all possible mappings between these schemata.

Although these tools comprise a significant step towards fulfilling the vision
of automated schema matching, it has become obvious that the user must ac-
cept a degree of imperfection in this process [14]. A prime reason for this is the
enormous ambiguity and heterogeneity of data description concepts: It is un-
realistic to expect a single mapping engine to identify the correct mapping for
any possible concept in a set. Another (and probably no less crucial) reason is
that “the syntactic representation of schemas and data do not completely convey
the semantics of different databases” [26]; i.e., the description of a concept in
a schema can be semantically misleading. Therefore, managing uncertainty in
schema matching has been recognized as the next issue on the research agenda
in the realm of data integration [24].

In this work, we offer an uncertainty management tool, using top-K map-
pings. We propose to extend current practice in schema matching by using top-K
schema mappings rather than a single best mapping. This is a natural extension
of existing methods (which can be considered to fall into the top-1 category),
taking into account the uncertainty described above. The essence of this method
is the simultaneous generation of K schema mappings and the use of heuristics
on them to improve the matching process. We demonstrate our approach using
a heuristic, dubbed stability analysis, to analyze top-K mappings. The useful-
ness of the heuristic is demonstrated through an empirical analysis of real-world
schemata as well as synthetic data.

1.1 Motivating Example

Figure 1 presents two Web sites that offer matchmaking services. In each of these
sites, one has to fill in personal information (e.g., name, country of residence,
and birthdate). We have applied a schema matcher called Combined, which is

Fig. 1. Motivating example
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Table 1. Best mapping of the motivating example

www.cybersuitors.com www.date.com
select: Country: (cboCountries) select: Select your Country (countrycode)
select: Birthday: (cboDays) select: Date of Birth (dob day)
select: Birthday: (cboMonths) select: Date of Birth (dob month)
select: Birthday: (cboYears) select: Date of Birth (dob year)
checkbox: (chkAgreement2) image: ()
checkbox: (chkAgreement1) checkbox: Date.com - Join Now for Free! (over18)
select: State (if in USA): (cboUSstates) select: I am a (i am)

part of the toolkit of OntoBuilder [15]. The matcher returned the best mapping,
containing a set of possible attribute mappings. We shall present a formal model
of the matching process in Section 2.

A list of these mappings appear in Table 1. Each column in the table contains
information about one field in a registration form in one of the Web sites. The
information consists of the type of field (e.g., select field and checkbox), the label
as appears at the Web site, and the name of the field, given here in parentheses
and hidden from the user. Each row in the table represents an attribute mapping,
as proposed by the matcher. The top part of the table contains four correct
mappings. The bottom part of the table contains three incorrect mappings.

Schema matchers face two obstacles in providing the best mapping. First, cor-
rect mappings should be identified and provided to the user. Second, incorrect
mappings should be avoided. These two tasks can be measured by the classical
IR metrics of recall and precision. The former judges how many correct mappings
the matcher identifies, while the latter measures how many incorrect mappings
the matcher has managed to avoid. Separating correct from incorrect mappings
is a hard task. One technique that is often used is that of a threshold. Using a
threshold, a matcher can discard attribute mappings that do not reach sufficient
similarity, assuming that those attribute mappings with low similarity measures
are less adequate than those with high similarity measure. By doing so, a schema
matcher (hopefully) increases precision, at the expense of recall. Using a thresh-
old, however, works only in clear-cut scenarios. Moreover, tuning the threshold
becomes an art in itself. As an example, consider the case study in Figure 1 and
Table 1. The four correct attribute mappings received similarity measures in the
range [0.49, 0.7] while the other similarity measures ranged from 0 to 0.5. Any ar-
bitrary apriori selection of a threshold may yield false negatives (if the threshold
is set above 0.49) or false positives, in case the threshold is set below 0.49.

Consider now an alternative, in which the matcher generates top-10 map-
pings, that is, the best 10 mappings between the two schemata, such that
mapping i differs from mappings 1, 2, ...i − 1 by at least one attribute map-
ping. For example, the second best mapping maps checkbox: (chkAgreement2)
with checkbox: Date.com - Join Now for Free! (over18) and checkbox:
(chkAgreement1) is mapped with image: () (this last attribute is actually a
button and has no associated label or field name). The method proposed in
this paper assumes that such a scenario represents a “shaky” confidence in this
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mapping to start with and removes it from the set of proposed attribute map-
pings (see Section 3.2). Simultaneous analysis of the top-10 mappings reveals
that the four correct attribute mappings did not change throughout the 10 map-
pings, while the other attributes were mapped with different attributes in differ-
ent mappings. Stability analysis, the heuristic proposed in this paper, suggests
that the four mappings, for which consistent attribute mappings were observed
in the top-10 mappings, should be proposed as the “best mapping,” yielding a
precision of 100% without adversely affecting recall.

1.2 Related Work

Schema matching has been an active field of study for many years now. In
this section, we review past research in two areas, heterogeneous databases and
ontology design.

Heterogeneous Databases. The evolution of organizational computing, from
“islands of automation” to enterprise-level systems, has created the need to ho-
mogenize heterogeneous databases. More than ever before, companies are seeking
integrated data that go well beyond a single organizational unit. In addition, a
high percentage of organizational data is now supplied by external resources (e.g.,
the Web and extranets). Data integration is thus becoming increasingly impor-
tant for decision support in enterprises [5]. This development also implies that
databases with heterogeneous schemata increasingly face the prospect that their
data integration process will not effectively manage semantic differences. This
may result, at least to some degree, in the mismatching of concepts. Hence, meth-
ods for schema matching should take into account a certain level of uncertainty.

Many matchers have been proposed over the past two decades, by researchers
in both academia and industry (e.g., [33,6,13,10,28,24]) to increase automation
of the matching process and reduce semantic mismatch problems. A useful clas-
sification of the various solutions can be found in [31]. A few other systems
(MOMIS [3] and Clio [27], to name a couple) aim at resolving semantic het-
erogeneity in heterogeneous databases using manual intervention. For example,
MOMIS input includes manual specification of concept semantic meaning and
context as a prerequisite to the matching process.

Several systems offer facilities for iteratively scanning the search space, which
can be considered an iterative variation of top-K. Clio presents the user with the
best mapping and revises it if the user rejects the mapping. LSD [10] exploits
domain constraints to produce the best mapping. A user then examines each
concept mapping in the best mapping. If a user specifies a concept mapping as
incorrect, it is fed to LSD as an additional constraint, and LSD then produces
the next best mapping. Other matchers, such as similarity flooding [25] can be
easily adapted to provide such top-K facilities. What is common to all these
works is the manual involvement in the iterative process. We aim, in this work,
at reducing manual involvement. Therefore, we suggest a heuristic for automatic
analysis of information that can be generated from simultaneous (rather than
iterative) analysis of top-K mappings.
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Another variation of top-K exists [25,19], in which the user is presented with
top-K (K = 3 as a default in [25]) concept level mappings. That is, for each
concept the user is presented with the best top-K concept mappings, out of
which it can choose the one that fits best its needs. While top-K here is simul-
taneous, there are two main differences with our work. First, it ignores concept
inter-relationships, and burdens the user with enforcing matching constraints
(such as cardinality constraints). Secondly, there is no automatic reasoning in-
volved in deciding which of the top-K is preferred.

There is sparse academic literature on the imprecision of automatic schema
matching. A study of representations and reasoning about mappings between
domain models was presented in [24]. The paper provides a model representation
and inference analysis. It recognizes managing uncertainty as the next step on
the research agenda in this area, and leaves this issue open for future research.
The research described in [14] fills this gap by providing a model that represents
uncertainty (as a measure of imprecision) in the matching process outcome. In
the current paper, we build on the results of [14] in extending the current “best
mapping” approach into one that considers top-K mappings as an uncertainty
management tool.

Ontology Design. The second body of literature concerned with schema
matching is that of ontology design. Ontologies have been widely accepted as
the model of choice for modeling heterogeneous data sources by various commu-
nities, including the areas of databases [11,21,15] and knowledge representation
[13], to name just two.

The realm of information science has produced an extensive body of literature
and practice in ontology construction, using tools such as thesauri, and in ter-
minology rationalization and matching of different ontologies (e.g., [1,35]). Else-
where, as in the DOGMA project [21,34], an engineering approach to ontology
management is taken. Finally, researchers in the area of knowledge representation
have studied ontology interoperability, resulting in systems such as Protégé [13].

The body of research aiming at matching schemata by using ontologies has tra-
ditionally focused on interactive methods requiring human intervention, massive
at times. However, the vision of the semantic Web makes it necessary to minimize
human intervention, replacing it with measures of syntactic similarity designed
to approximate semantic matching. Recent papers (e.g., [11,15]) have explored
the idea of automatic semantic reconciliation using ontologies. It was observed
previously that automatic matching is imperfect [26]. Our approach, focusing on
top-K mappings rather than the best mapping, handles this imperfection well.

The QOM (Quick Ontology Mapping) approach [12] is the closest we are aware
of to our proposed framework. In this work, an iterative matching process is pro-
posed, in which the mapping of a previous iteration is utilized in determining
(the equivalence of our top-K) ontology elements to consider in the next iteration
(note the difference of this approach from other iterative approaches, e.g., simi-
larity flooding, in which there is no selectivity between iterations). The decision
is either manual (with the support of a user) or by using a threshold. As already
discussed, both methods have disadvantages. In this work, we generalize this
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approach. One other limitation of QOM is that its top-K is computed per con-
cept, as in [25,19], ignoring overall ontology constraints (such as 1 : 1 mapping).

1.3 Contributions and Outline

The specific contributions of this paper are as follows:

– We formalize the notion of top-K schema mappings within the framework
of schema matching.

– We provide a classification of top-K matchers according to cardinality con-
straints.

– We demonstrate that there exists a correlation between patterns in top-K
mappings and the correctness of the mapping, which makes the case for the
need for top-K mapping analysis.

– We present a heuristic that makes use of simultaneous top-K mappings to
improve mapping precision.

– We show experimental results to substantiate the usefulness of top-K map-
pings in improving precision and evaluate the trade-offs of applying methods
based on top-K mappings.

The rest of the paper is organized as follows. Section 2 presents a model for
schema matching as a basis for the formal introduction of top-K mappings.
Next, we provide a generic heuristic for using top-K mappings (verification)
and instantiate it into a concrete heuristic (Section 3). Section 4 outlines our
experiments with the verification heuristic. We conclude in Section 5.

2 The Model

This section introduces formally the concept of top-K mappings in the context
of schema matching. A model for schema matching is presented in Section 2.1,
followed by the modeling of top-K in Section 2.2.

2.1 A Model for Schema Matching

As a basis for this work we next layout a model for schema matching and ex-
plicitly specify the set of assumptions we shall use throughout the paper. Let
S1 and S2 be two schemata, defined using some data model (e.g., relational
or ontological), with n1 and n2 attributes, respectively. Attributes can be joint
into elements, sets of attributes. The process of schema matching yields schema
mapping(s), in which elements of S1 are mapped onto elements of S2.

Generally speaking, the process of schema matching is performed in two steps
[9]. First, a degree of similarity is computed automatically for all element pairs
(one element from each schema in each pair), using such methods as name match-
ing, domain matching, and structure (such as XML hierarchical representation)
matching. Recall that an element may consist of more than a single attribute.
For illustration purposes, consider Table 3 (Section 2.2) to be described in de-
tails later. Each entry in the table represents a degree of similarity of a single
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element pair. The degree of similarity is typically defined on a [0, 1] scale, where
0 represents no similarity and 1 represents fully similar elements.

As a second step, a single mapping is chosen to be the best mapping. The
best mapping is a mapping that optimizes some target function F , subject to
matching constraints. For example, many schema matching tools aim at maxi-
mizing the sum (or average) of pair-wise weights of the selected elements. When
deciding on a best mapping, a matcher should decide which elements from one
schema are to be mapped with elements of another schema. Also, the matcher
may decide that some elements do not satisfy some matching constraints (e.g.,
minimal degree of similarity) and cannot be mapped. For further illustration,
consider Table 3 once more. The bold-face entries in the table (jointly) represent
the best mapping.

COMA [9], OntoBuilder, Cupid, and other schema matching tools apply vari-
ations of this model in their matching process. Others (such as Prompt and
similarity flooding) also apply this two step methodology, yet do not support
a mode that provides the user with all pairwise element mappings. However, it
can be expected that making their internal representation of attribute similarity
measures available for generating top-K mappings is feasible.

A convenient data structure for modeling the matching problem is to view it
as an undirected bipartite graph, G = (X, Y, E), with a node set V = X

⋃
Y

representing elements, where X and Y denote the sides of the graph (each side
representing one schema), and an edge set E. Weights w : E → R+ are assigned
with edges, representing the degree of similarity between elements. G does not
have to be a complete graph. Threshold constraints may result in the elimina-
tion of some edges. Also, some matchers (e.g., similarity flooding) present only
partial pairwise similarity measures. Again, such constraints are interpreted as
an incomplete graph.

A mapping in G is a subset of pair-wise edges of E. We denote a mapping by
M ⊆ E. F (M) represents the target function value of M . Each edge e ∈ M is
an element mapping.

Using the proposed data structure, the matching problem becomes a problem
of selecting an optimal mapping (i.e., a subset of E that optimizes F ). Given
a matching problem and a set of matching constraints, we denote by Abest the
best known algorithm for solving the bipartite graph matching problem, given
the matching constraints. We denote by C (Abest) the complexity of Abest.

Typical classification of matching constraints partitions matching problems
into either 1 : 1 matching, 1 : n matching, n : 1 matching, and general (n : m)
matching [31]. We now discuss three special cases within this classification and
the methods for solving the matching problem in these cases, using an undirected
bipartite graph as the underlying data structure. Henceforth, we shall assume
that F (M) =

∑
e∈M kew (e), a weighted average where ke is a parameter that

can represent the relative importance of an edge e. The study of top-K using
other target functions is left for future research.

1 : 1 Matching. When constraining the mapping to be 1 : 1, the node set rep-
resents individual attributes, where the X node set contains all attributes
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of one schema (|X | = n1) and the Y node set contains all attributes of the
other schema (|Y | = n2). A mapping in G is a subset of pair-wise disjoint
edges of E. An efficient algorithm for identifying the best mapping in this
case is given as a variation of the weighted bipartite graph matching problem
[16]. Such an algorithm has a complexity of C (Abest) = O

(
n3

)
[23],1 where

n = max(n1, n2).

Before moving on to the next two cases, we would like to offer a refined catego-
rization of matching constraints. Consider, for example, a 1 : n constraint. Such
a constraint may indicate that a single attribute in one schema can be replicated
to more than a single attribute in another schema (e.g., a Password attribute
in one schema vs. Type Password and Retype Password in another schema).
Alternatively, such a constraint may indicate that an attribute in one schema is
decomposed into several attributes in another schema (e.g., Name in one schema
is decomposed into Given Name and Surname in another schema). We denote
the former a replication constraint and the latter a decomposition constraint.

When a replication constraint is applied, matching decisions of individual
attributes are independent of one another. Therefore, matching Password with
Type Password is independent of the matching of Password with Retype
Password. However, a decomposition constraint cannot be evaluated by some
aggregation of matching of individual attributes. For example, consider the at-
tribute Name and the attribute pair Given Name and Surname. Machine learning
techniques are likely to rate the comparison of concatenation of values from
Given Name and Surname against Name, higher than comparing each of the at-
tributes independently. Therefore, decomposition constraints require the evalu-
ation of elements as well as individual attributes.

The bipartite graph can support the provision of such comparison by adding
feasible attribute sets as elements (nodes) in the graph. Such enhancement en-
tails, in many cases, higher complexity of the matching process. For example,
if the matching constraint allows a single attribute in S1 to be matched with
up to 2 attributes in S2, one needs to consider all possible pairs in a schema.

Therefore, n1 elements of S1 are matched with
(

n2
2

)
= 1

2n2 (n2 − 1) elements

of S2, which increases the number of nodes in G to |V | = O (
n2

)
. This compu-

tation can be generalized to any (sufficiently small) constant c, constraining the
number of attributes in an element. The complexity in this case is of O (nc).

1 : n matching with replications. Using the bipartite graph as a data struc-
ture, the following simple algorithm can be devised. Consider a matching
constraint that allows an attribute in one schema to be replicated several
times in another schema. Therefore, nodes on one side of the bipartite graph
(say, the Y nodes) cannot have more than a single incidenting edge. Such a

1 Here we consider the complexity of the best sequential algorithm for finding a max-
imum weight mapping in a bipartite graph. Likewise, an alternative algorithm for
this problem is presented in [17], and its time complexity is O(n2.5 log (nW )), where
W stands for the highest edge weight in the graph.
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constraint does not apply to the other side of the graph (X nodes). There-
fore, all one has to do is to identify the best edge incidenting upon each node
that requires unique mapping. Let v ∈ Y be a node in the graph and ve be
the set of all edges incident on v. The following simple algorithm can thus be
applied, where argmaxvew(e) stands for the edge of ve that maximizes w.

Algorithm 1
Se ← ∅

For each v ∈ Y do

Se ← Se ∪ {argmaxvew(e)}
Return Se

The complexity of Algorithm 1 is C (Abest) = O (|E|) = O
(
(nc)2

)
= O (

n2c
)
.

n : m Matching with Decomposition. When replacing single attributes
with elements, traditional algorithms for solving matching problems in bi-
partite graphs can no longer ensure unique attribute selection. Therefore,
two elements that contain the same attribute A can be chosen as part of a
mapping, which means that A no longer has a unique mapping. Neverthe-
less, certain n : m constraints can be supported by the bipartite graph data
structure. As an example, consider a constraint enforcing each attribute in
one schema to be mapped uniquely to a single combination of attributes.
Therefore, if Name in S1 is mapped to the combination of Given Name and
Surname in S2, no other attribute in S1 can be mapped to this combination
(although a different combination of Surname and OfficeNumber in S2 may
be the appropriate combination for InitialPassword in S1). This special
case can fall into the category of 1 : 1 global cardinality and n : m local
cardinality, according to the classification of [31].

Such a constraint is mapped into the data structure in the following way.
The X set of nodes represent individual attributes of one schema. The Y set
of nodes represent all legal elements of the other schema. We can then apply
an algorithm for solving the weighted bipartite graph matching problem in
this graph. The complexity of this algorithm can be defined in terms of
attributes as followed.

C (Abest) = O
(
|V |3

)
= O

(
(nc)3

)
= O (

n3c
)

2.2 Modeling Top-K Mappings

Let G = (X, Y, E) be an undirected bipartite graph with edges representing
the degree of similarity between elements. Top-K can be defined recursively
as follows. For K = 1, the K-th best mapping M∗

1 is any maximum weight
mapping in G. Let M∗

i denote the i-th best mapping, for any i > 0. Then,
given the best i− 1 mappings M∗

1 , M∗
2 , . . . , M∗

i−1, the i-th best mapping M∗
i is

defined as a mapping of maximum weight over mappings that differ from each of
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Table 2. Running example attributes

cybersuitors.com date.com
101. select: Country: (cboCountries) 201. select: Select your Country (countrycode)
102. select: Birthday: (cboYears) 202. select: Date of Birth (dob year)
103. select: Birthday: (cboMonths) 203. select: Date of Birth (dob month)
104. .select: Birthday: (cboDays) 204. select: Date of Birth (dob day)
105. checkbox: (chkAgreement1)
106. checkbox: (chkAgreement2)
107. text: Last name: (txtLastName)
108. text: First name: (txtFirstName)
109. text: Use this name instead of my
first name: (cboPenName)
110. text: Your city town village: (txtPlace)
111. select: State (if in USA): (cboUSstates)
112. password: Please choose a password
This ... (txtPassword)
113. password: Re-enter password: (txtPassword2)
114. text: Your email address: (txtEmail)
115. text: Please retype your email address
to confirm it: (txtEmail2)

205. image: ()
206. checkbox: Date.com - Join Now for Free! (over18)
207. select: I am a (i am)

M∗
1 , M∗

2 , . . . , M∗
i−1. Therefore, given top-K mappings, any mapping M ⊆ E such

that M /∈ {M∗
1 , M∗

2 , . . . , M∗
K} satisfies F (M) ≤ min1≤j≤k F (M∗

j ) = F (M∗
k ).

To illustrate the notion of top-K mappings, consider the following example.

Example 1 (Running example schemata). Table 2 is an extension of Table 1, pre-
senting attributes of two schemata, cybersuitors.com and date.com. Matching
attributes are presented in the same row.

Attribute names were extracted from the labels as appear on the Web site and
the field names (in parentheses) of the form entries. Field names are used for
matching the values returned by the client to the server’s database schema, hence
the condensed form. Attribute names are preceded by field type (e.g., select,
checkbox, etc.), also used to enhance the matching process. The field image:
() is an image field, used as a submit button, that is not associated with name
or label. We refer the interested reader to [15] for a detailed description of the
extraction process. Henceforth, we number vertices rather than using attribute
names, for the sake of clarity.

The edge weights of the bipartite graph of the example are given in Table 3, as
computed automatically by OntoBuilder. We refer the interested reader to [15]
for a detailed description of OntoBuilder matching techniques. In this example,
we constrain the matching process to result in 1 : 1 mappings.

The exact mapping (as determined by a human observer) is: {e101,201, e102,202,
e103,203, e104,204}, while the outcome of Abest for the bipartite graph is the best
mapping M∗ = {e101,201, e102,202, e103,203, e104,204, e105,205, e106,206, e111,207}.
M∗ contains the exact mapping, with additional three attribute mappings. As
discussed in Section 1.1, the exact mapping cannot be found by setting a
threshold. �



100 A. Gal

Table 3. Edge weights in the example

↓ cybersuitors.com/ date.com→ 201 202 203 204 205 206 207
101 0.5937 0.0597 0.0639 0.0597 0 0.0597 0.0542
102 0.0575 0.4944 0.184 0.184 0 0.0618 0.0625
103 0.0620 0.1833 0.6847 0.1833 0 0.0611 0.0618
104 0.0620 0.2516 0.2507 0.7042 0 0.0627 0.0634
105 0.05774 0.0538 0.0577 0.0538 0.4 0.5038 0.0538
106 0.0577 0.0538 0.0577 0.0538 0.4 0.5038 0.0538
107 0.0075 0.0101 0.0101 0.0101 0 0.0473 0.0216
108 0.0071 0.0153 0.0153 0.0153 0 0.0469 0.0194
109 0.0085 0.009 0.009 0.009 0 0.034 0.014
110 0.051 0.0089 0.0089 0.0089 0 0.0115 0.0089
111 0.0649 0.0712 0.0712 0.0712 0 0.0629 0.1101

112 0.013 0.0052 0.0052 0.0052 0 0.0124 0.0124
113 0.01 0.0108 0.0108 0.0108 0 0.0125 0.0075
114 0.0563 0.0094 0.0094 0.0094 0 0.0118 0.0094
115 0.0599 0.0083 0.0083 0.0083 0 0.0083 0.0319

To motivate our research, we now offer an intuitive interpretation of top-K
mappings. Suppose an edge weight represents the belief of a matcher in the
correctness of an element mapping. A higher weight indicates a higher confidence
in the element mapping correctness. When switching from the i-th best mapping
to the (i + 1) best mapping, the matcher is forced to give up at least one element
mapping, while maintaining an overall high confidence in a schema mapping.
To do so, the matcher cedes an element mapping in which it is less confident.
Therefore, generating top-K mappings can be observed as a process in which a
matcher iteratively abandons element mappings in which it is less confident.

We substantiate this intuitive interpretation with an empirical analysis, based
on experiments with real world data. The details of the experiments are provided
in Section 4, together with a thorough empirical analysis. Here, we provide an
initial motivation to our work. Figure 2 provides an analysis of the attribute map-
ping stability. K is given at the x axis. For each K, we measure the percentage
of correct (incorrect) attribute mappings that were not changed throughout the
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Fig. 3. Similarity measures distribution according to imprecision levels

K mappings. That is, those attribute pairs that appear in all top-K mappings.
Figure 2(a) illustrates the results for correct attribute mappings. Figure 2(b)
illustrates the results for incorrect mappings. It is easy to observe that correct
attribute mappings were less subject to change (less than 16%) with K then
incorrect attribute mappings (dropping 60%). Therefore, by analyzing top-K
mappings, it is likely that correct attribute mappings will remain stable, while
incorrect attribute mappings will keep on changing.

It can be argued that top-K mappings are not different from any K mappings.
Therefore, by choosing any K mappings (and not necessarily the top ones), one
can derive useful information on the quality of the schema matching process. We
justify the decision to use top-K mappings in an earlier research [14]. A class
of schema matchers (termed monotonic) was defined in [14], for which a higher
similarity measure is an indication of a more precise mapping. For complete-
ness sake, we now provide an illustrative example of one form of monotonicity,
dubbed statistical monotonicity in [14]. Figure 3 presents a pictorial illustration
of a distribution of similarity measure values of all possible mappings between
two schemata, according to precision levels. These results are based on sim-
ilarity measure, as assigned by the Combined matcher, already mentioned in
Section 1.1. At each precision level, similarity measures seem to be normally dis-
tributed with a decreasing mean. Therefore, the higher the precision of a map-
ping is, the higher would be the similarity measure assigned by the matcher.
In the absence of any variance, one would expect the top-1 mapping to be the
exact mapping. However, as shown in [14] and illustrated here, the variance in
each precision level allows mappings within any given precision level to overlap
in their similarity measure with other precision levels. Therefore, monotonicity
ensures that the top-K mappings are sufficiently “close” to the exact mapping.

The analysis in [14] shows that due to the uncertainty inherent in the match-
ing process, no matcher can be expected to identify the exact mapping as the
best mapping at all times. If a matcher were required to iterate over all possible
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permutations, the search would become infeasible. However, if the top-K map-
pings contain sufficient information to predict most of the correct mappings and
K can be determined to be sufficiently small, precision may be increased at a
negligible cost.

Based on the observations of this section, and the empirical analysis we have
conducted, a reasonable approach involves a simultaneous analysis of possible
mappings to determine the best mapping. This approach is in contrast to cur-
rent practice, in which a system seeks the best mapping and resorts to manual
intervention for additional input whenever using the best mapping fails. The
most prominent drawback of the current approach has to do with the reliance
on manual intervention. We aim at minimizing such intervention, and therefore
we propose to enhance automatic reasoning on top-K mappings.

3 Schema Matching Verification

To overcome the uncertainty in mapping results, we propose the following generic
methodology. Let S1 and S2 be two schemata. The methodology contains five
steps as follows:

1. Computing: G = (X, Y, E) =Generate similarity graph.
2. Matching: {M∗

1 , M∗
2 , . . . , M∗

K} =Generate top-K mappings, using G.
3. Verifying: A = {(a, a′)} =Analyze {M∗

1 , M∗
2 , . . . , M∗

K}.
4. Recomputing: G′ = (X, Y, E′) =compute w(a, a′) for each (a, a′) ∈ A.
5. Rematching: M∗ =Generate top-1 mapping, using G′.

According to this generic methodology, a similarity graph is generated and top-K
mappings are generated and analyzed to identify element pairs that are worthy
of further consideration (i.e., verification). It then recomputes the similarity
measures and generates the best mapping.

Three main differences exist between the proposed methodology and exist-
ing practice in schema matching. First, most of current methods do not use
top-K mappings. For those who use top-K mappings (e.g., [25,12]), it is done
locally, on an attribute-based cases. Therefore, it can capture only local similari-
ties, while ignoring global constraints, such as cardinality constraints, and global
phenomenon, such as accumulation of elements from one schema around a sin-
gle element from another schema. The reasoning behind local top-K mappings
brings us to the second difference. Current methods assume the assistance of a
user in the process, by refuting certain mappings, or setting new constraints.
Clearly, cognitive limitations of users make it much harder to compare whole
schemata, while attribute-based comparison is a much easier task. In contrast,
our approach is aimed at fully-automatic schema matching, recognizing the in-
herent uncertainty in such a process. With humans outside the loop, there is
no reason to simplify the task at the expanse of accuracy, whenever it can be
avoided. Finally, the verification step analyzes all top-K mappings simultane-
ously, rather the iteratively, as was proposed in approaches such as Clio [27].
This difference can also be attributed to the presence of a user in the loop
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in current practice. In user presence, iterations provide an opportunity for in-
cremental improvement, a process that fits human cognitive capabilities. With
automatic matching, on the other hand, no feedback is given, and the use of
simultaneous analysis can provide insights that are not necessarily evident with
pairwise comparison. One final comment has to do with machine learning meth-
ods for schema matching. Such methods allow a training period on annotated
data, to be followed by matching schemata, unknown beforehand. Feedback is
only given during the learning phase. Therefore, the proposed approach can serve
as a complementary method once the learning phase is completed.

The first step is beyond the scope of this paper. As discussed in Section 1.2,
many worthy methods and heuristics have been proposed in generating G, and
any that satisfy the monotonicity condition, as set in [14], would suffice. The
last step has also been extensively discussed in the literature. In Section 2.1 we
have discussed the use of bipartite graphs in representing the schema matching
problem, and solving the top-1 problem.

In the rest of this paper we focus on steps 3-4. For completeness sake, we next
introduce an analysis of existing algorithms for step 2, finding top-2 mappings
and top-K mappings.

3.1 Algorithms for Finding Top-K Mappings

The assignment ranking problem involves the enumeration of K assignments
with least cost. The first algorithm of O(K |V |4) for ranking assignments was
suggested by Murty in 1968 [29], where |V | is the number of nodes in the as-
signment graph. In 1985/6, Hamachar and Queyranne proposed an alternative
general algorithm for ranking solutions of combinatorial problems [18]. This al-
gorithm was later specialized for bipartite matchings [7], inO(K |V |3), using flow
networks. In [30], another O(K |V |3) algorithm was presented, using a specific
order of analyzing assignments.

In [7] it was shown that finding the second best assignment is equivalent to
finding the shortest cycle in a residual network relatively to the best assignment.
This demands solving at most n shortest path problems, and therefore solving
the top-2 problem is of O(|V |3) complexity. Therefore, the top-2 problem can
be solved for the case of 1 : 1 mapping in O(n3). The case of m : n with
decomposition is also reduced to 1 : 1 mapping (see Section 2.1), yielding a
solution to the top-2 problem in O(n3c).

For the case of 1 : n with replication, an efficient algorithm for generating
top-K mappings can be devised as follows, summarized in Algorithm 2 as a
pseudo-code. Let G = (X, Y, E) be the matching bipartite graph. First, for each
node v ∈ Y , a sorted list of all edges {(u, v) |u ∈ X } in a decreasing order of
similarity is generated (Line 2). In the next step, we compute for each node
v ∈ Y the weight difference between the edge (u, v) with maximum similarity
and the next edge in the list (Line 3). These values are then inserted into a
minimum heap (Line 4). Lines 5-7 generate the best mapping. At an iteration i,
we remove an edge (u, v) from M∗

i−1 such that its weight difference is minimal
(Line 9) and replace it by an edge (u′, v), which precedes it in the sorted list of
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v (lines 10 and 11). The weight difference between (u′, v) and the next edge in
the sorted list of v is then inserted into the heap (Line 12).

Algorithm 2

1 For each v ∈ Y do

2 vsorted =create a sorted list of {u ∈ X} in a decreasing order of w(u, v)
3 Δvmax = w(u(1), v) − w(u(2), v)
4 H =Build-Min-Heap(

{(
u(1), v

)
, Δvmax |v ∈ Y

}
)

5 M∗
1 = max vsorted , v |v ∈ Y

6 For each v ∈ Y do

7 vsorted =vsorted\max
{
vsorted

}
8 For i = 2 to k do

9 (u(l), v),Δv=Heap-Extract-Min(H)

10 M∗
i = M∗

i−1\
{
(u(1), v)

} ∪ (
max

{
vsorted

}
, v

)
11 vsorted =vsorted\max

{
vsorted

}
12 Min-Heap-Insert H, (u(l+1), v), w(u(l+1), v) − w(u(l+2), v)

13 Return {M∗
i }ki=1

Sorting the edge weights for each node takes O (n lg n). Therefore, the overall
sorting takes O (

n2 lg n
)
. Building the heap is O (n) and the generation of the

best mapping takes O (n). Each additional mapping requires O (lg n), due to the
heap operations. Therefore, the overall complexity is O (

n2 lg n + K lg n
)
.

An adaptation of Murty’s algorithm for top-K and Chegireddy’s and
Hamacher’s algorithm for top-2 to the schema matching world is detailed in
[2]. We have implemented the algorithms and embedded them in OntoBuilder
[15], which was used for experimenting with the heuristic proposed in this paper.

3.2 Stability Analysis

We are now ready to introduce a concrete heuristic, instantiating the generic
verification methodology presented earlier. Let S1 and S2 be two schemata and
let G = (X, Y, E) be a bipartite graph, modeling the matching alternatives be-
tween S1 and S2. Given a set {M∗

1 , M∗
2 , . . . , M∗

K} of K top mappings, and a user
threshold t ∈ [0, 1], the analysis step of the stability analysis heuristic first com-
putes for each edge e ∈ E the number of times it appears in {M∗

1 , M∗
2 , . . . , M∗

K},
dubbed ι (e). It is worth noting that 0 ≤ ι (e) ≤ K. Then, it generates a set of
edges A = {(a, a′)} such that (a, a′) ∈ A iff ι(e)

K ≤ t. That is, the set A contains
all edges that do not appear a sufficient number of times in the top-K mappings,
{M∗

1 , M∗
2 , . . . , M∗

K}. The recomputation phase revises G by setting w(a, a′) = 0
for each (a, a′) ∈ A.

Example 2 (Stability analysis example). Consider Example 1. Table 4 provides
ι(e)
K values of all edges whose count in the top-10 mappings is non-zero, in a

decreasing order. For t > 0.6, the only non-zero edges will be those of the exact
mapping. �
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Table 4. Stability analysis of the motivating example

www.cybersuitors.com www.date.com ι(e)
K

101 201 1.0
102 202 1.0
103 203 1.0
104 204 1.0
111 207 0.6
105 205 0.5
106 205 0.5
107 206 0.4
108 206 0.4
115 207 0.4
109 206 0.2

For the stability analysis to work, a schema matcher should be monotonic [14].
Therefore, our underlying assumption is that stable attribute mappings represent
those mappings that are part of the exact mapping. Our empirical analysis show
that this heuristic indeed works better for a matcher which was shown to be
monotonic in [14].

4 Experiments

We now present an empirical evaluation of stability analysis, to support our
hypothesis that simultaneous analysis of top-K mappings improves the quality
of mapping. We report in details on our experimental setup (Section 4.1), the
data that was used (Section 4.2), and the evaluation methodology (Section 4.3).
We then present in Section 4.4 the experiment results and provide an empirical
analysis of these results.

4.1 Experiment Setup

We have implemented several top-K algorithms (including Murty’s, Chegireddy
and Hamacher’s, and our version of 1 : n mappings with replication) as part of
the development of OntoBuilder. OntoBuilder runs under the Java 2 JDK version
1.4 or greater and is downloadable from http://ie.technion.ac.il/OntoBuilder. We
chose for Abest (whenever 1 : 1 mapping is applicable) the maximum weighted
bipartite algorithm implementation suggested in LEDA ([22], pp. 132-150). The
Abest algorithm was implemented in Java, and plugged in for use within our top-K
algorithms. We have also generated a demo presentation showing execution of the
top-K mappings. Figure 4 provides the visual output of the algorithm,with K = 3.

OntoBuilder specializes in extracting ontologies from Web forms, a feature we
have used in our experiments. OntoBuilder accepts two ontologies as input, a
candidate ontology and a target ontology. It attempts to match each attribute
in the target ontology with an attribute in the candidate ontology. OntoBuilder
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Fig. 4. Demo snapshots

supports an array of matching and filtering algorithms and can be used as a
framework for developing new schema matchers which can be plugged-in and
used via GUI or as an API. In our experiments we have used the following four
matchers (detailed description of which can be found in [15]):

Term: A term is a combination of a label and a name. Term matching com-
pares labels and names to identify syntactically similar terms. To achieve
better performance, terms are preprocessed using several techniques origi-
nating in IR research. Term matching is based on either complete word or
string comparison.

Value: Value matching utilizes domain constraints (e.g., drop lists, check
boxes, and radio buttons) to compute similarity measure among terms. The
availability of constrained value-sets becomes valuable when comparing two
terms that do not exactly match through their labels.
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Composition: A composite term is composed of other terms (either atomic
or composite). Composition can be translated into a hierarchy. This schema
matcher assigns similarity to terms, based on the similarity of their
neighbors.

Precedence: The precedence relationship is unique to OntoBuilder and there-
fore worth of a lengthier discussion. In any interactive process, the order in
which data are provided may be important. In particular, data given at an
earlier stage may restrict the availability of options for a later entry. For
example, a car rental site may determine which car groups are available for
a given session, using the information given regarding the pick-up location
and time. Therefore, once those entries are filled in, the information is sent
back to the server and the next form is brought up. Such precedence rela-
tionships can usually be identified by the activation of a script, such as (but
not limited to) the one associated with a SUBMIT button. Precedence can
be translated into a precedence graph. The matching algorithm is based on
a technique we dub graph pivoting, as follows. When matching two terms, we
consider each of them to be a pivot within its own ontology, thus partitioning
the graph into semantically related subgraphs. The semantics of pivoting is
taken from the ontological analysis, and in the case of precedence the graph
it partitioned into a subgraph of all preceding terms and all succeding terms.
By comparing preceding subgraphs and succeding subgraphs, we determine
the confidence strength of the pivot terms.

4.2 Data

For our experiments with stability analysis, we have selected 86 Web forms from
different domains, such as dating and matchmaking, job hunting, Web mail, hotel
reservation, news, and cosmetics. We extracted each Web form ontology using
OntoBuilder. We have matched the Web forms in pairs, where pairs were taken
from the same domain. The ontologies vary in size, from 5 to 64 attributes with
about half of the ontologies have between 10 and 20 attributes. They also vary in
the proportion of number of attribute pairs in the exact mapping relative to the
target ontology. This proportion ranges from 16.6% to 94.7%; the proportion
in about half of the ontologies is more than 60%. Another dimension is the
size difference between matched ontologies, ranging from equal size ontologies
to about 3 times difference between ontologies. In about half of the pairs, the
difference was less than 30% of the target ontology size. Finally, the best mapping
precision results range from 5% to 100%, with about half the ontology pairs were
mapped by both matchers (see below) with precision of more than 40%.

In addition to the real data, we generated 50 synthetic ontology pairs,
as follows. We have selected the ontology pair taut.securesites.com and
www1522.boca15-verio.com. Both ontologies are of medium size (18 and 19
attributes, respectively), strongly similar (the exact mapping contains 18 at-
tributes), and close in size. The best mapping of the Combined matcher is the
exact mapping. Based on the similarity matrix of these ontologies we have gener-
ated 50 similarity matrices, for which each value val is replaced with val+val∗f
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and f is randomly taken from [−v, v]. v ∈ {0.1, 0.2, 0.3, 0.4, 0.5} (10 matrices for
each v value).

We ran two schema matchers, namely Term and Combined, to generate the top-
10 mappings. The Combined matcher aggregates the results of the four matchers,
detailed in Section 4.1, using weighted average. We ran a total of 1860 experiments
(93 ontology pairs, 2 schema matchers, and 10 best mappings). Note that in our
experiments, generating top-1, top-2, etc. can be performed in one pass.

4.3 Evaluation Methodology

In order to evaluate the stability analysis heuristic, we measured its performance
using two main metrics, namely precision and recall. Precision is computed as
the ratio of correct element mappings, with respect to some exact mapping,
out of the total number of element mappings suggested by a heuristic. Recall is
computed as the ratio of correct element mappings, out of the total number of
element mappings in the exact mapping. Both recall and precision are measured
on a [0, 1] scale. An optimal schema matching results in both precision and recall
equal to 1. Lower precision means more false positives, while lower recall suggests
more false negatives.

The independent variables of the experiments were K, the number of simul-
taneous mappings, and t, the threshold.

4.4 Results and Analysis

In our first experiment we have measured precision and recall for a fixed K ∈
{1, 2, ..., 10}, varying the threshold t. Figure 5 presents the average change to
precision and recall for different thresholds over all 43 real data pairs. K was
set to 10. Figure 5(left) illustrates the results for the Term matcher and Figure
5(right) illustrates the results for the Combined matcher. In both cases, preci-
sion increases (in general) up to t = 0.9 with the increased threshold. Recall
demonstrates a monotonic decrease with the increased threshold. Such a phe-
nomenon accords with our initial intuition and is expected for monotonic match-
ers. In [14] we have shown that both the Term and the Combined matchers are
monotonic.

A closer look at the amount of improvements reveals that the precision of the
Term matcher increases by up to 15.4% (with t = 0.9). The Combined matcher
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Fig. 5. Precision and Recall for Stability analysis with K = 10
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provides an increase of 25.6% (again with t = 0.9). As for recall, it decreases to a
maximum of 11.9% for the Term matcher and by a smaller 8% for the Combined
matcher (for t = 1). Therefore, stability analysis works better for the Combined
matcher than for the Term matcher. This conclusion can be aligned with the
discussion in [14], where the exact mapping was found, on average, at K = 7 for
the Combined matcher and for K > 100 for the Term matcher.

Looking at the shape of the graphs, it seems that with both matchers, the
improvements (in terms of precision) levels off at about t = 0.9. We hypothesize
that, in general, the increased demand of a higher threshold benefit the heuristic
up to a point, from which it will become impossible for the top-K algorithm
to keep even its stronger attribute mappings. We believe that the “break-even
point” depends to a great extent on the size of the ontology, some evidence to
which is given below. The Term matcher has a more wiggly precision result, with
some decreases in precision for t = 0.1, 0.6, and 0.7. Therefore, the performance
of the Term matcher is less predicted (although the difference is not statisti-
cally significant) than that of the Combined matcher. This conclusions was also
reached in [14].

Next, we have partitioned the ontologies into two groups, based on ontology
similarity. We define an ontology pair for which 60% or more of the terms in the
target ontology can be matched to terms in the target ontology to be strongly
similar. 22 pairs out of the 43 pairs were strongly similar, with similarity ranging
from 60% to 94.7%. Table 5 summarizes the analysis for this and following
partitions. Again, K was set to 10. The results show improvement over the
whole group in the precision level, with smaller decrease in the recall level.
The precision of the Term matcher increases by up to 19.8% (with t = 1). The
Combined matcher provides an increase of 28.5% (again with t = 1). As for
recall, it decreases by 10.1% for the Term matcher and by a smaller 5.8% for
the Combined matcher. The main conclusion for this experiment is that stability
analysis works better for strongly similar ontologies.

We also partitioned the ontologies based on size. We define an ontology to be
big (relative to ontology sizes we have in our data set) if it has more than 20

Table 5. Stability analysis of ontology classes

Term Combined
Ontology precision recall precision recall

class max increase t max decrease t max increase t max decrease t
strongly similar 19.8% 1.0 10.1% 1.0 28.5% 1.0 5.8% 1.0
weekly similar 12.1% 0.9 13.7% 1.0 23.3% 0.9 10.3% 1.0
big 7.6% 1.0 8.5% 1.0 16.7% 1.0 3.6% 1.0
small 20.7% 1.0 14.3% 1.0 29.5% 1.0 11.1% 1.0
similar 8.9% 0.9 11.3% 1.0 19.9% 0.9 7% 1.0
disimilar 24.1% 1.0 12.6% 1.0 32.3 0.9 9% 1.0
low initial precision 11.4% 0.9 16.9% 1.0 27.6% 0.9 11.6% 1.0
high initial precision 19.2% 1.0 7.1% 1.0 24.5% 1.0 4.7% 1.0
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attributes. There were 18 big target ontologies. The results show less improve-
ment in the precision level for bigger ontologies, yet with smaller decrease in the
recall level. The precision of the Term matcher increases by up to 7.6% (with
t = 1). The Combined matcher provides an increase of 16.7% (again with t = 1).
As for recall, it decreases by 8.5% for the Term matcher and by 3.6% for the
Combined matcher. The smaller gain in precision and the smaller reduction in
recall for bigger ontologies can be justified by the smaller marginal impact a
single attribute has on the overall performance. Generally speaking, however, it
seems that stability analysis is better suited for smaller ontologies.

We next experimented with ontologies that differ in size. Ontology pairs were
considered similar if the difference between the number of attributes of the can-
didate and target ontologies was less then 30% of the target ontology (there
were 23 such pairs). The results show less improvement in the precision level
for similar-size ontologies. The precision of the Term matcher increases by up to
8.9% (with t = 0.9). The Combined matcher provides an increase of 19.9% (again
with t = 0.9). As for recall, it decreases by 11.3% for the Term matcher and by
7% for the Combined matcher. We found no clear explanation to the phenomenon
in which stability analysis is better suited for ontologies that differ in size.

The last partitioning is based on the best mapping precision level. Out of the
43 pairs, 21 pairs (20 pairs for the Combined schema matcher) had a precision
level of less than 0.4 for the best mapping. Here, our analysis show different
results for the Term matcher and the Combined matcher. The stability analysis
heuristic using the Term matcher seem to be more effective for pairs which had
high initial precision, increasing the precision by an average of 19.2%. Using
the Combined matcher, the difference between the two groups is much smaller,
showing slightly better performance (27.6% vs. 24.5%) for the ontology pairs with
low initial precision. Recall, for both matchers, was significantly less affected by
for ontologies with high initial precision.

Our final experiment was aimed at analyzing the impact of noise in schema
matcher similarity measures. We have generated top-K mappings for the syn-
thetic matrices (see Section 4.2), applied the stability analysis heuristic and
measured precision and recall as before. Figure 6 illustrates the change of pre-
cision and recall, partitioned according to the various v (maximum deviation)
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values. We present the results for the Combined matcher only since the results
for the Term matcher share the same trends. The synthetic data demonstrates
the same trends as the real data, increase of precision as the threshold increases,
leveling off at around t = 0.9. Somewhat surprising, the heuristic becomes more
effective, in terms of precision, as v increases. Clearly, the good starting point
of the original mapping serves in the good performance, even with increased
noise. When we applied the heuristic to randomly generated matrices (in which
each attribute pair got a uniformly distributed value in [0, 1]) the result was
a complete chaos, and the heuristic was practically useless. Recall deterioration
(Figure 6(right)) serves as an indication to the impact of noise. With more noise,
the heuristic throws out more attribute mappings, including good ones. There-
fore, with v = 0.5, the matcher lost 26% in its recall level for t = 10 (compare
this with an average of 12% recall loss for real data).

5 Discussion and Conclusion

In this paper, we have investigated a major shortcoming of standard methods
for automatic semantic reconciliation: namely, that they commit to the best
mapping, typically chosen as that which maximizes the sum (or average) of
pair-wise similarities under certain constraints (e.g., 1:1 mapping). The problem
is that, due to uncertainty in concept interpretation, the best mapping chosen by
the matcher can actually be an unsuccessful choice. To alleviate this shortcoming,
we propose that instead of using just the best mapping, a set of top-K mappings
should be generated and examined iteratively until a good mapping is found.
Using this approach, the exact mapping is likely to be identified if the matcher
ranks it sufficiently high (but not necessarily as the best).

We have proposed a generic framework for the simultaneous utilization of
top-K mapping and provide a concrete heuristic, termed stability analysis, to
utilize top-K mappings in improving mapping precision (at the cost of recall).
Stability analysis was shown empirically to provide good results for monotonic
schema matchers.

An ongoing research involves the investigation of efficient methods for utiliz-
ing input from multiple schema matchers. Choosing among the current variety
of schema matchers is far from being trivial. First, the number of heuristics is
continuously growing, and this diversity by itself complicates our decision mak-
ing. Second, as one would expect, recent empirical analysis shows that there is
no (and may never be) a single dominant schema matcher that performs best,
regardless of the data model and application domain [14]. Bearing these obser-
vations in mind, we believe that customers of schema matching would expect
some degree of robustness, despite the biases and shortcomings of individual
heuristics. Therefore, tools for determining the best “cocktail” of schema match-
ers would seem to be the next natural step in schema matching research. Future
work involves the identification of additional heuristics for top-K utilization.
Such heuristics may be based on the separation of matchers into groups. For
example, matchers can be partitioned into costly vs. cheap matchers. Cheap
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matchers are utilized in identifying potential points of failures and more costly
matchers will be applied to this problem subset, thus reducing the overall cost
of the matching process (hopefully) without hurting its accuracy.
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Abstract. Weakly organized structure of Peer-to-Peer systems may cause  
severe data management problems and high communication overheads. We par-
tially resolve these problems by developing a novel semantic approach to effi-
ciently create, search and organize data objects in E-Commerce Peer-to-Peer 
applications. The approach is based on the notion of Unspecified Ontology 
(UNSO). Unlike many existing systems using a global predefined ontology, 
UNSO approach assumes that the ontology is not fully defined, leaving some 
parts of it to be dynamically specified by the users. The data objects inserted to 
the system organize a multi-layered hypercube graph topology, providing a  
stable infrastructure for efficient semantic search and routing operations. The 
proposed method has a potential of becoming a practical infrastructure for Peer-
to-Peer data management applications. 

Keywords: Peer-to-Peer Systems, Data Management, Ontology, E-Commerce. 

1   Introduction 

Peer-to-Peer (P2P) [21] technology offers a solid alternative to the traditional Client-
Server model of computing. While Client-Server model typically bases on a single or 
small number of servers, in P2P systems every user (peer) acts as both the client and 
the server at the same time, and provides a portion of the system capability. Thus, P2P 
technology allows a dynamic set of users to efficiently share resources without any 
centralized management. The shared resources are computing power (e.g., in distrib-
uted computation), data (e.g., in large-scale file sharing), bandwidth (e.g., data trans-
fer from multiple sources) and others. As a result, the advantages of P2P technology 
over the Client-Server model include roughly unlimited scalability, high privacy and 
anonymity of the users, and low costs. Sharing and aggregation of the resources guar-
antees robustness and high availability of P2P systems. 

In this work we examine the issue of developing a P2P infrastructure supporting a 
dynamic semantic management (i.e., insertion and search) of general-purpose  
E-Commerce advertisements (in short, ads). The infrastructure is capable of manag-
ing E-Commerce ads of both supply and demand types. Supply ads are ads, where the 
users offer a product or a service in exchange for a payment, whereas in demand ads 
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the users seek for a product or for a service provided by other users. The main func-
tionality of the proposed system is to identify matching between appropriate demand 
and supply ads. This is further referred as publish-locate functionality. Note that we 
do not aim at performing higher functions, such as selecting the best offer, conducting 
public auctions or implementing market clearing (see [9] and [20] for a discussion on 
distributed systems performing these tasks).  

In the state-of-the-art E-Commerce systems, a user publishing or searching an ad, 
is usually required to fill-in a predefined form describing the matter of the ad. For 
example, CarSmart (http://www.carsmart.com) users searching for a car are asked to 
fill-in a form containing the following fields: manufacturer name, geographical loca-
tion, and price range. On the contrary, in another cars site, Motocar 
(http://www.motocar.co.il), the users are asked to fill-in a more complicated form, 
containing the following fields: producer name, model, range of production years, 
gearbox type, engine volume and number of previous owners. Although both sites 
refer to the same type of products, the forms (and even the names or parallel fields in 
the form) are different, such that a search query launched by the user in one site, is 
incompatible to the other.  

This approach, exploiting predefined forms containing a set of attributes describing 
the objects, is further referred as ontology-based approach. According to [13], ontol-
ogy is a formal explicit specification of a domain. Thus, the set of attributes, describ-
ing the objects from a particular domain, is considered as the ontology of a domain, 
whereas the attributes are the slots of the ontology. 

HyperCuP [32] proposed a flexible ontology-based hypercube topology for P2P 
data management. It used a single predefined ontology to classify users as providers 
of particular information associated with the ontology slots. This classification deter-
mined the position of the user in the underlying hypercube and allowed location of 
any desired information in a bounded number of steps through a semantic routing (see 
[27] and [5] for a discussions on semantic routing in P2P systems). Thus, HyperCup 
formed an alternative to distributed hashing [29], [33], [26], network flooding [3], 
local routing tables [10], gossiping [2], and others fundamental search techniques in 
P2P systems. Additionally, HyperCuP proposed decentralized algorithms, capable of 
constructing and maintaining highly-connected hypercube graph, stable to dynamic 
joins and departures of users.  

However, HyperCuP approach, requiring a single predefined ontology, is applica-
ble only to a limited set of domains and is inappropriate for general-purpose  
E-Commerce systems, implying dynamic and a-priori unknown set of objects. A pos-
sible solution might be allowing users to add new types of ontological forms. How-
ever, this will flood the system with multiple (partially similar and overlapping)  
ontologies.  As a negative example, consider a setting, where a user publishing an 
object and a user looking for the same object, are using slightly different ontologies. 
Another solution might be developing a global comprehensive ontology, comprising 
as many domain ontologies as possible. However, projecting this ontology on the 
underlying hypercube will result in a huge, sparse and barely manageable structure. 
Moreover, sharing of the single ontology by all the users will obstruct it from being 
expanded.  

All these restrictions contradict the decentralized spirit of P2P networks and raise 
an issue of developing a flexible mechanism for managing a dynamic set of  
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ontologies. Recent researches, e.g., [23] and [34], aim at resolving the ontologies 
management issue through integrating local ontologies used by various systems. 
These works try to overcome the autonomous nature of P2P systems and the resulted 
heterogeneity of the ontologies by developing semantic mappings between the on-
tologies. The mappings exploit semantic knowledge about the ontology slots for the 
purposes of identifying commonalities between the ontologies and matching differ-
ent terms describing similar underlying data. 

Conversely, in this work we developed a novel approach of an UNSpecified Ontol-
ogy (UNSO) for the management of E-Commerce ads. Instead of trying to identify the 
matching between the ontologies, UNSO presumes that the ontology is not fully de-
fined, and parts of it can be dynamically specified by the users. This broader notion of 
ontology allows UNSO to be exploited in different application domains, rather than 
just in the domains defined a-priori by the ontology experts. 

To maintain the semantic routing, UNSO extends the original hypercube graph of 
HyperCuP to a Multi-Layered Hypercube (MLH). MLH can be schematically de-
picted as a hypercube where each node is recursively constructed of another hyper-
cube.  Hashing mechanism is used to deal with the unspecified nature of the ontology, 
and with the variety of terms mentioned in the ads. Besides that, hashing uniformly 
distributes the ads among the MLH to guarantee equivalent load partitioning.  

The generated structure facilitates the semantic routing, similar to the routing of 
HyperCuP. To eliminate ambiguity and enhance the precision, the terms mentioned in 
the ads undergo simple semantic standardization using WordNet [11]. In summary, 
UNSO expands the traditional notion of ontological data management and provides a 
novel technique for a decentralized management of a dynamic set of ontology-based 
ads, while keeping the essential publish-locate functionality. The fact that the users 
are not forced to share any predefined ontology simplifies the use of the system by 
inexperienced users and increases the chance of successful searches.  

The rest of the paper is organized as follows. In section 2 we review the research 
efforts in P2P computing, the major classes of P2P applications, their advantages and 
shortcomings. Section 3 discusses the works in the area of ontology-based manage-
ment in P2P systems and particularly HyperCuP [32]. Section 4 presents the notion of 
unspecified ontology, and discusses the generalization of a fixed ontology to UNSO. 
Section 5 discusses the details of UNSO implementation. In section 6 we present the 
experimental results, showing the performance of UNSO. Finally, section 7 concludes 
the work and discusses the directions of further research. 

2   Peer-to-Peer Data Management 

P2P computing refers to a subclass of distributed computing, where the system func-
tionality is achieved in a decentralized way by unifying a set of distributed resources, 
such as computing power, data and network traffic. P2P systems usually lack a desig-
nated centralized management, rather depending on the voluntary contribution of 
resources by the users. These systems are usually characterized by one or more of the 
following advantages: cost sharing/reduction, improved scalability/reliability, re-
source aggregation and operability, increased autonomy, dynamism, anonym-
ity/privacy and ad-hoc communication and collaboration [21]. 
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The first generation of P2P systems was based on three classical architectures: me-
diated P2P architecture (e.g., [30]), pure P2P architecture (e.g., [10] and [26]), and 
hybrid architecture (e.g., [38] and [22]). An elaborate comparison, advantages and 
shortcomings of the above architectures, and discussion on the typical applications of 
each architecture can be found in [6].  

Basically, they all were designed for a large-scale data sharing. Applications, such 
as Napster [30], Freenet [10] and Gnutella [3], allowed users to download data 
(mainly multimedia files), shared by other users. Performance of these systems suf-
fered from severe problems. For example, in Napster a cluster of central servers, 
called super-peers maintained the indices of the files shared by the users. Flooding 
search algorithm of Gnutella limited the scalability of the system and did not allow 
proper functioning over a heterogeneous set of users. Freenet, despite being fully 
decentralized and employing efficient routing algorithms, could not guarantee reliable 
data location. This led to a development of content-addressable P2P systems. 

A number of similar fully decentralized content-addressable P2P systems, such as 
CAN [26], Pastry [29], Chord [33] and some others, are referred as the second genera-
tion of P2P systems. They implement highly scalable self-organizing infrastructure 
for a fault-tolerant routing over distributed hashing data management mechanism 
(DHT). In these systems, the users and the data objects are assigned unique identifiers 
(respectively, user-ids and keys) from a sparse space. Data objects are inserted and 
located through put(key,user-id) and get(key) primitives in a bounded number of rout-
ing network hops. An elaborate description of and survey of P2P content-addressable 
distribution technologies can be found in [4]. 

In Pastry [29], user-ids and keys are 128 bit vectors. Routing tables of the con-
nected users contain O(logN) rows and 16 columns, where N is the total number of 
users. The entries in the row n of the routing tables refer to the logical neighbors, 
whose user-ids share the first n digits with the user-id of the current users, whereas 
the digit (n+1) of the user-id in column m of the row n is m. Unlike Pastry, Chord 
[33] uses a one-dimensional circular 160-bit space and instead of the prefix-based 
neighbors table, Chord users maintain a finger table, containing user-ids and ad-
dresses of the other connected users. Entry number i in the table of a user n refers to 
another user with the smallest user-id, clockwise from n+2i-1. The first entry in the 
table points to the direct successor of user n, whereas the following entries point to 
the users at repeatedly doubling distances from n. CAN [26] is operated over  
d-dimensional toroidal space, where each user is associated with a hypercubal zone of 
the space, and its neighbors are the other users managing the adjacent hypercube 
zones. 

The routing algorithm of content-addressable systems is based on Plaxton routing 
algorithm, developed in [25]. Plaxton algorithm was not designed for P2P systems, 
rather for graphs with a static nodes’ population. The main idea of Plaxton algorithm 
is correcting a single digit of address in every routing step. Consider the following 
example. User 1234 receives a message, addressed to user 1278 (note that the first 
two digits of the address already match). The message is forwarded to user 1275 
(since there the first three digits will match). To support this routing, each user main-
tains a data structure of logical neighbors that match i-digits length prefix of its own 
user-id, but differ in the (i+1)th digit. To maintain a connected system with N users, 
each user is connected to O(logN) neighbors. Since a single digit of address is  
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corrected each time the message is routed, the total length of the routing path is 
O(logN) hops.  

In P2P implementations of Plaxton routing algorithm, the routed message is con-
tinuously forwarded to the user, whose user-id is closer to the user-id of the addressee 
than the current user. Although each one of the above DHT-based systems (Pastry, 
CAN, and Chord) employs slightly different variant of Plaxton routing algorithm, 
they all outperform the routing algorithms used in the first generation of P2P systems. 
Their communication overhead is significantly lower due to the fact that the messages 
are routed to the relevant users only. 

However, DHT-based system rely on the hashing primitives of put(key,user-id) and 
get(key). Thus, one of their major limitations is their support in exact-match searches 
only. For example, consider two similar, but not identical keys: key1 and key2. The 
results of their insertions into the system through hashing-based put primitive will 
usually be absolutely different. Therefore, only the searches, specifying the exact key 
that was used when the key was inserted, will succeed to find it, and an approximated 
search can not be operated. 

Possible solutions for this issue are discussed in [15]. The paper compares various 
approaches facilitating complex range queries in DHT-based P2P networks. An archi-
tecture for relational data sharing in Chord-based systems was proposed in [14]. It 
exploits hashing mechanisms on the possible values within a given range to facilitate 
answering range queries. Solution for range queries problem in CAN-based systems 
are proposed in [30]. In this work, CAN space is partitioned to zones, in a way that 
allows the peers managing the zones to store information regarding the range of val-
ues that are mapped to this zone, as well as to the neighbor zones. This facilitates 
resolving range queries through their iterative forwarding to the zone that is managing 
the requested range of values. 

Basically, the above approaches focus on constructing search indices enabling to 
perform database-like queries using operators such as selection, join, aggregation and 
others. These indices can help only in domains where the terminology of the keys 
names is agreed between the users, e.g., in music files, where the songs names are 
known. However, in domains with no well-defined naming standards, particularly in 
general-purpose E-Commerce applications, different users might use different terms 
to describe the same (or highly similar) object. Thus, in order to develop a generic 
infrastructure facilitating matching of similar E-Commerce ads, the ads should be 
preprocessed to a semi-structured form of attributes (slots) and their respective values. 
To achieve that, there is an emergent need for more complex type of P2P systems, 
built upon users that explicitly use semantic structures to describe the matters of their 
ads. This approach is further referred as ontology-based approach.  

3   Ontology-Based Data Management 

One of the basic concepts in the semantic data management is ontology (according to 
the Wikipedia, it is “the study of existence and the basic categories thereof”). Practi-
cally, it provides both human-understandable and machine-processable mechanisms, 
allowing enterprises and application systems to collaborate in a smart way. According 
to [13], ontology is a formal shared conceptualization of a particular domain. It is 
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used to describe structurally heterogeneous and distributed information sources, such 
as those found on the Web, and acts as a standardized reference model, providing a 
stable baseline for shared understanding of the domain knowledge. 

Ontological metadata facilitates a standardized access to the domain knowledge. 
Existing approaches of ontology-based data management assume a setting where the 
data sources share a single ontology allowing the access to the data. This technique of 
shared ontology was implemented in HyperCuP [32] that proposed a set of dynamic 
P2P algorithms for maintenance of ontology-based hypercube-like graph topology 
supporting semantic search and broadcast operations. 

HyperCup developed a flexible ontology-based P2P platform generating a hyper-
cube-like graph of users, where each user is treated as a data provider. HyperCup 
needs predefined domain ontology to be exploited, such that the dimensions of the 
hypercube will match the ontology slots, i.e., a set of attributes characterizing the 
domain objects. According to the above ontology, each user is categorized as a pro-
vider of particular data. This categorization determines the location of the user within 
the hypercube. Thus, the hypercube is virtually constructed of the connected users, 
whereas each user maintains a data structure of its respective neighbors. For example, 
in 3-dimensional hypercube, a node located in coordinates (x,y,z) will be connected to 
6 logical neighbors: (x+1,y,z), (x-1,y, z), (x,y+1,z), (x,y-1,z), (x,y,z+1) and (x,y,z-1). 
The user providing multiple data objects from the same domain, or data objects from 
multiple domains, will maintain a set of hypercube locations, such that a separate data 
structure of neighbors will reflect each location. 

The hypercube-like P2P structure was chosen due to its logarithmic diameter, in-
creased fault tolerance and the symmetry that guarantees equal load of the users. The 
hypercube dimension d and the range of possible values in the dimensions (further 
referred as the coordinates range) k determine the maximal number of users con-
nected to the hypercube. A complete hypercube contains at most Nmax=kd users, where 
every user is connected to two logical neighbors in each dimension, resulting in 
Nn=2d neighbors. This topology generates a symmetric structure where the load of the 
connected users in the system is similar, as each user holds roughly equal functional-
ity in terms of routing load. 

Any edge in the hypercube, connecting a pair of adjacent users X and Y, is assigned 
a numeric value, referred as rank. When user Y is a neighbor of user X over a dimen-
sion i, the rank of the edge, connecting X and Y, is i. Thus, the edges rank ranges from 
0 to d-1. Any user T in the hypercube can act as an initiator of search or broadcast 
operation, which is performed as follows. The message, jointly with the rank of the 
connecting edge, is sent to all the neighbors of the initiating user T. Upon receiving a 
message, other users forward it only over the edges, whose ranks are higher than the 
rank of the edge the message was received from. This guarantees that each user in the 
graph will receive the message exactly once, and also that any connected user will be 
reached in O(d) routing hops. 

Consider the following example hypercube with a dimension d=3 and the coordi-
nates range k=2 (figure 1a). Eight users, numbered from 1 to 8, are connected and 
form a complete hypercube. Each user is connected to exactly d=3 logical neighbors, 
and the ranks of the connecting edges are 0, 1, or 2. For example, in respect to user 8, 
user 1 is regarded as 0-neghbor, user 3 is 1-neighbor, and user 4 is 2-neighbor. Let  
 



 Semantic Data Management in Peer-to-Peer E-Commerce Applications 121 

 
 

 

Fig. 1. HyperCuP Example (a) 3-dimensional HyperCuP structure with 8 connected users;  
(b) Broadcast procedure stages over the example HyperCuP structure 

user 8 be the initiator of the broadcast operation. The messages are sent to the 
neighbors, i.e., users 1, 3 and 4. Upon receiving a message over 0-rank edge, user 1 
forwards it to 1- and 2-neghbors, i.e., users 2 and 5. User 3 forwards it to 2-neighbor, 
user 6, and this broadcast through “higher-rank forwards” continues until all the nodes 
in the hypercube are covered (figure 1b). Obviously, no node receives the broadcasted 
message more than once, and the longest path in the hypercube is d=3 hops long. 

HyperCuP also proposes a dynamic P2P algorithm for hypercube construction and 
maintenance. The algorithm is based on the idea that a user can manage not only a 
single node, but also a number of nodes in the hypercube graph. This is required in 
order to simulate the missing users in the topology of the next complete hypercube, 
which is implicitly maintained in any topology state. For example, consider node 4 
simulating three missing nodes of the hypercube (figure 2a). The simulated nodes are 
schematically illustrated by the dashed edges 1-4, 2-4 and 3-4, as node 4 acts as a 
logical neighbor of nodes 1, 2 and 3. 

When a new user connects the network, he takes his place (according to the data 
provided) in the next complete hypercube, releases the user that previously managed 
that node and starts functioning as a real hypercube node. For example, if a new user, 
which should be positioned in node 5, is connected, he is routed to one of the existing 
logical neighbors of node 5, i.e., either to the user maintaining node 1 or to the user 
maintaining node 4. As node 5 is practically simulated by the user maintaining node 
4, the new user contacts the user of node 4, builds a real edge between them and takes 
 

 

Fig. 2. (a) Implicitly preserved topology of the next complete hypercube; (b) Join of a new 
node 
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part of its functionality, i.e., builds a real edge with node 1 and starts simulating the 
neighbor of node 2 (fig. 2b). 

When a user disconnects, one of the remaining logical neighbors takes the respon-
sibility for the node, previously managed by the leaving user. Since the next complete 
hypercube is constantly maintained, previously discussed broadcast and search  
operations are not affected by sporadic joins and departures of users. An elaborate 
description of the way the HyperCuP topology is maintained, and examples of such 
departures and joins, can be found in [32]. 

As already stated, users are classified as providers of particular contents. A single 
predefined ontology defining the domain semantics, inherently organizes the users 
providing the same or similar contents, in concept clusters using the above construc-
tion and maintenance algorithm. Note that the similarity of users within a cluster is 
significantly higher that the similarity of arbitrarily chosen users. This facilitates que-
rying the generated topology and efficiently routing the queries only to the clusters 
(and users) that can potentially answer it.  

For example, consider the following simple ontology of cars domain, used to con-
struct a 3-dimensional HyperCuP (figure 1a): dimension 0 distinguishes between 
manual(0) and automatic(1) gearbox, dimension 1 stands for USA(0) or non-USA(1) 
produced cars, and dimension 2 for metallic(0) or non-metallic (0) color of the car. 
Clearly, a query for automatic cars produced in the USA is routed to nodes 1 and 5, as 
only these nodes store the requested type of cars. 

However, the predefined ontology constitutes one of the main drawbacks of Hy-
perCuP approach. If used in a general-purpose E-Commerce application capable of 
supporting various types of transactions and objects, HyperCuP would require global 
all-inclusive ontology to be exploited. This is a severe limitation, as the state-of-the-
art ontologies are usually limited to a single application domain, and even ontologies 
from the same domain can be highly heterogeneous due to existence of different views 
on the domain data.  

Earlier research efforts, such as [16] and [12], focus on the issue of merging on-
tologies and generating a global ontology. To create a unified view enabling to inte-
grate data originated by different ontologies, their semantic reconciliation is required. 
Merging two ontologies means creating a new ontology comprising the slots of both 
ontologies. Merging process is mainly based on recognizing relationships and com-
monalities between the slots of the ontologies. The ontology, generated as a result of 
merging, matches both merged ontologies.  

However, the issue of constructing all-inclusive ontology is a controversial issue 
(see [35] for an elaborate discussion). Besides the philosophical question of creating a 
universal ontology, it leads to a setting where updates of the ontology are conducted 
through a central point of management, unacceptable in pure P2P networks. More-
over, existence of this global ontology forces all the users to use it, contradicting the 
decentralized free spirit of P2P networks.  

In P2P, we rather face a situation, where individual users maintain their own views 
of the domain ontology. However, since data sharing is one of the primary motiva-
tions behind the state-of-the-art P2P systems, we need to find a way to distributively 
manage multiple dynamic ontologies escribing the domain data objects. The task of 
sharing heterogeneous ontological data became an important research direction in P2P 
community. It is referred in the literature as the Data Integration problem [8]. 
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Traditional data integration approaches adapted from the distributed databases 
community [36], assume a central unified representation of the data objects, which 
contradicts the decentralized nature of P2P systems and suffers from scalability prob-
lem. In addition to the lack of central point of management, P2P data integration tech-
niques have to cope with multiple (sometimes ambiguous and overlapping) and highly 
dynamic ontologies representing the data. Most of the techniques achieve the goal of 
sharing and integrating data through developing semantic mapping mechanisms, de-
scribing the relationships between the slots of the ontologies [19].  

Automatic approaches for ontology (or schema) mapping in P2P systems do not 
require central ontology, but perform the mapping at one of three levels:  

• Pair mapping – the mappings are performed between the relevant peers only [7]. 
In this setting, one of the peers involved in the mapping process, defines specific 
translation and coordination rules allowing to relate the slots of his ontology to the 
ontology of the other peer.  

• Peer-mediated mapping – a generalization of pair mapping, where one of the peers 
defines a mapping that relates to a number of peers. This approach was imple-
mented in [34] through machine learning technique that exploited various evi-
dences of semantic similarity of the ontology slots. In [23], the authors used  
Information Retrieval techniques for extracting descriptive keywords, which were 
exploited later for identifying appropriate slots in the ontologies. The mappings 
are generated ‘on-the-fly’, whenever they are needed for the integration of data. 

• Super-peer mediating mapping – semi-centralized approach, where the mappings 
are performed at the super-peers level. In this setting, super-peers is responsible 
for managing the mappings for the ontologies of the underlying peers, whereas 
super-peer to super-peer mappings facilitate data sharing between any peers. This 
approach was implemented in Edutella [22], RDF-based P2P platform for educa-
tional data sharing. 

Most of the state-of-the-art P2P systems refer to the semantic heterogeneity be-
tween the underlying ontologies. However, they assume that the mappings between 
the ontologies can be constructed. Although we do not negate the possibility of con-
structing such mappings, we highlight an observation that the process of creating 
these mappings might be one of the most challenging tasks in a heterogeneous and 
highly dynamic P2P realm. Alternatively, in this work we propose another way to 
overcome the issue of semantic heterogeneity in P2P data integration. We developed 
the approach of Unspecified Ontologies (UNSO) that instead of providing mapping 
mechanisms between various ontologies, inherently supports dynamic organization of 
users (as providers of particular data objects) in a HyperCuP-like graph structure. The 
following section discusses the details of UNSO and the stages of generalizing the 
regular notion of ontologies to UNSO. 

4   Generalization of Ontology to an Unspecified Ontology 

In this work we propose a novel approach to resolve the issue of global ontology that 
should from one hand grow dynamically with no limited range, from other hand to be 
used and updated in a fully distributive way. Initially, let us characterize the structure 
of ontologies and their usage in semantic routing.  
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As a data structure, each ontology is considered as a vector, whose slots corre-
spond to the attributes of the objects being described. As such, the range of values for 
each slot is the set of possible values of the respective attribute. For example, consider 
a simple ontology for cars domain, where the objects are described by a vector con-
taining three slots only: [manufacturer | engine_volume | year_of_production]. Let us 
consider each slot having the following range of predefined values [manufac-
turer={Ford, Mercedes, Jaguar} | engine_volume={1000-1500, 1500-2000, 2000-
2500} | year_of_production={new, 2000+, 1990+}]. Clearly, semantic P2P system 
based on this ontology will generate a hypercube containing at most 27 nodes, each 
having up to 6 logical neighbors.  

A generalization of a fixed ontology to the Unspecified Ontology is performed at 
the following levels (referring to the above example of cars ontology): 

• The set and the range of possible values is made unlimited by operating on them a 
fixed-length hashing instead of defining a set of predefined values.  For example, 
in the above ontology we use hashing to a range of size three, mapping new values 
to their corresponding positions. For example, object [manufacturer:BMW | en-
gine_volume:3000 | year_of_production:1987] is mapped to [hash(BMW) | 
hash(3000) | hash(1987)]. Therefore, the same 3-dimensional cube is now used to 
hold the objects, whose values were not anticipated by the slots of the predefined 
ontology. Moreover, the users can independently insert new objects in a fully dis-
tributed way, using the hashing above mechanism. 

• More than one vector is used in the ontological description of an object, obtaining 
a multi-layered ontology that is hierarchical instead of using one flat vector. Hier-
archical ontology produces a hypercube, whose nodes are recursively constructed 
of another hypercubes. This structure is further referred as a multi-layered hyper-
cube (MLH). For example, consider a 3-layered ontology with three vectors [attr11 
| attr12 | attr13] + [attr21 | attr22 | attr23] + [attr31 | attr32 | attr33] (where attrij refers 
to slot number j in ontological layer number i) with two possible values for each 
slot. Such ontology generates a hypercube with 8 nodes, where each node recur-
sively contains another hypercube (figure 3). This structure should be compared to 
 

 

Fig. 3. Multi-Layered Hypercube (MLH) 



 Semantic Data Management in Peer-to-Peer E-Commerce Applications 125 

      a 512-nodes hypercube, had we used one flat vector for the whole ontology. Ob-
viously, hierarchical representation of the ontological vectors results in smaller 
and denser hypercubes, alleviating the connectivity maintenance of the hypercubes 
in pure decentralized P2P environment. 

• The vector can dynamically grow by letting the users to add new levels to the 
ontology. An unspecified vector (ontology-based description) is formed by attrib-
ute:value pairs. Two different hashing functions are used to map the unspecified 
vector to the MLH. The first maps the attributes to the respective ontology slots, 
while the second maps the values to the numeric values of the slots. Thus, 
hash1(attribute) determines the dimension of the MLH, while hash2(value) deter-
mines the numeric value in this dimension. For example, consider the following 
description [manufacturer:ford | engine_volume:1600]. It is mapped to the under-
lying MLH by applying hash1(manufacturer) and hash1(engine_volume) to obtain 
the slot numbers (MLH dimensions), and  hash2(ford) and hash2(1600) to deter-
mine the numeric values in these dimensions.  

• The users can specify a different number of unspecified slots. When an unspeci-
fied vector is mapped to an existing MLH, its slots are extended to the dimension 
of the MLH. For example, unspecified vector [manufacturer:ford] is extended to 
[manufacturer:ford | engine_volume:1600], when inserted to an MLH of dimen-
sion 2 from the above example. If the inserted object contains more slots than the 
number of dimensions in the current MLH, the vectors in the relevant hypercube 
are updated to accordingly contain more slots. We assume that upon long enough 
period of time and large enough number of object descriptions accumulated in the 
system, these updates will not be frequent, thus, they will be feasible. Note that 
exploiting two different hashing functions allows ignoring the order of the attrib-
utes in the unspecified descriptions. 

• To distinguish between different objects having the same attributes (e.g., both cars 
and bicycles have attributes such as color, wheels_type, number_of_gears and so 
on), we require the ontological descriptions to contain so-called universal, or 
specified slots. A slot is referred as universal if it can be applied to as many ob-
jects as possible, and its values form a meaningful separation between the objects. 
For example, a universal attribute useful to separate between many objects is size, 
reflecting the size of the object comparing to a well-known standard. This allows 
distinguishing between the descriptions of cars and bicycles having the same at-
tributes. It should be stated that we rely on a common sense and common patterns 
of thinking in specifying the values of the universal slots.  

• The last attributei:valuei pair in description must be a discriminative attribute, i.e., 
its should be unique for any given object. For example, consider an IP address of 
the user, or an ID number of the ad as such discriminative attributes. This allows 
two ads (either identical, or distinct, but accidentally mapped to the same node) to 
be separated according to the value of the discriminative attribute. 

One of the heaviest steps in the management of the hypercube-like graph structure 
is the extension of the hypercube and the stored vectors as a result of a new slot men-
tioned in the ontological description of an object. Although these extensions are theo-
retically possible at any point of time, we conjecture that they mostly occur at the 
initial stages of graph construction. This is explained by the observation that large 
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number of new slots will be introduced during the initial insertions of objects, while at 
the latter stages the probability of introducing a new slot (unless introduced mali-
ciously) that was not encountered yet, will decrease. As a result, the hypercube-like 
graph will stabilize at the initial stages of objects insertions and the extensions will be 
infrequent. This behavior is well-known in information search studies, where “as a 
user obtains more information…, the probability of soliciting information from an 
additional source is likely to decrease” [18]. Our conjecture regarding the similar 
behavior of UNSO slots is verified in the experimental part. 

The above steps of extending a fixed specified ontology to the Unspecified Ontol-
ogy are illustrated in figure 4. Predefined attributes and values of a fixed ontology are 
mapped to the underlying hypercube graph. On the contrary, in UNSO the number of 
<attributei:valuei> pairs in the unspecified description is unlimited. Thus, UNSO 
dynamically generates a hypercube-like graph structure, where each node is recur-
sively constructed of another hypercube.  

The generated MLH acts as a convenient infrastructure for the operations proposed 
in HyperCuP. When an object is inserted by a user to the MLH, it is forwarded to-
wards its proper position. There, the user connects to its logical neighbors and starts 
functioning as an MLH node. Disconnection of a user causes another user to take the 
responsibility for the node of the disconnected user. Semantic routing in the MLH 
consists of a series of routings to the appropriate node in the current-layer hypercube 
 

 

Fig. 4. Generalization of the Fixed Ontology to the Unspecified Ontology 
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and deepenings to the appropriate next-layer hypercube. Note that in the MLH the 
routing is performed according to Plaxton routing algorithm, i.e., every network hop 
corrects one digit of the address. 

Important property of UNSO data structure is a property of implicit locality (basi-
cally, inherited from HyperCup). Both in HyperCup and in UNSO, the location of a 
user in the underlying MLH is determined according to the contents provided by the 
user. For example, consider two users providing similar (but not identical) data  
objects, described by the respective unspecified vectors: <attribute1:value1, attrib-
ute2:value2, attribute3:value3> and <attribute1:value1, attribute2:value2, attrib-
ute3:value4>. Clearly, mapping of both vectors to the underlying MLH will produce 
identical numeric coordinates within the dimensions corresponding to attribute1 and 
attribute2, whereas the coordinates within the dimension of attribute3 will be differ-
ent. As a result, the distance between the above pair of data objects will be lower than 
the distance between arbitrarily chosen pair of data objects. This can be explained by 
the observation that the distance between the locations of objects, whose descriptions 
overlap in a subset of <attributei:valuei> pairs, will be lower than the distance be-
tween the locations of objects with non-overlapping descriptions. We refer to this 
property of UNSO as implicit locality, since providers of similar contents are mapped 
to close locations in the underlying MLH graph. 

Although the implicit locality property seems to contradict the load balancing 
property of hashing mechanism, this is not exactly the case. The insertion of the data 
objects into the MLH is performed through the mapping of <attributei:valuei> pairs, 
such that attributei is mapped to one of the MLH dimensions, and valuei to the nu-
meric value (coordinate) within the dimension. Since UNSO exploits hashing-based 
mapping mechanisms, the distribution of values among any given MLH dimension 
will be uniform, and the load of MLH nodes will be similar. Although implicit local-
ity property might lead to high-populated regions of the MLH, the number of real (not 
simulated) nodes in these regions will be also higher, and they will keep proper func-
tionality under the conditions of higher load. 

Another issue deals with the mapping of values from continuous domain to the 
MLH dimensions’ coordinates. Although hashing-based mapping is suitable for map-
ping the values of discrete or non-enumerable attributes (e.g., color, manufacturer, or 
model), it is inappropriate for the values of continuous attributes (e.g., 
year_of_production, price, or engine_volume) since hashing-based mapping of con-
tinuous attributes loose their original inherent order relation. To resolve this issue, we 
replaced the hashing-based mapping of continuous attributes with a simple bucketing 
of the values. For example, consider a mapping of price attribute, whose values range 
between 0 and 100,000 to a dimension with 10 possible numeric values. In this case, 
prices between 0 and 10,000 will be mapped to numeric value 0 within the coordinate, 
prices between 10,000 and 20,000 – to 1, and so forth. By doing so, we facilitate an-
swering range and approximate queries over the continuous coordinates, since close 
values are mapped to the same (or neighbor) buckets, and the order relation of values 
between the buckets is also kept. 

In summary, we would like to stress the main advantages of the Unspecified On-
tologies mechanism and the underlying MLH graph of UNSO over the approach pro-
posed by HyperCuP: 
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• Lack of centralized ontology – the mapping of an object to its position in the MLH 
is performed through hashing-based mechanism, instead of using a fixed prede-
fined ontology. 

• Contents flexibility – new types of objects and attributes can be easily added to the 
system, not requiring any updates of the ontology. 

• Unlimited range of attributes and values – the unspecified part of the ontology 
allows the users to mention relatively free list of attributes and values in the onto-
logical descriptions of the objects. 

• Insignificant order of attributes – the unspecified part of the ontology does not 
require any order of the mentioned attributes, allowing high flexibility in further 
search of the data objects. 

• Implicit locality – similar descriptions (i.e., similar objects), are mapped to adja-
cent positions within the MLH. Thus, similar objects are autonomously clustered 
without any explicit clustering mechanism. 

• Approximated search – property of implicit locality in UNSO allows employing 
approximated searches, finding the objects similar (but not identical) to the object 
being searched. 

• Partial searches – a search, containing a subset of the required object attributes can 
be conducted, finding a wider range of relatively similar objects. 

• Multi-layered structure – increases the independence of the data management, as 
an update a particular hypercube layer does not affect the rest of the layers. 

Compared to the existing DHT-based systems, UNSO proposes functionalities that 
were not supported earlier. Hashing mechanism of DHT systems is based on a single 
key. As a result, successful search in DHT-based systems requires exact matching of 
the keys. This is unreasonable when the key is a natural language description of an 
object. Conversely, UNSO handles keys represented by a list of attributes and their 
respective values. Thus, UNSO facilitates partial search of a subset of object  
attributes, whereas the order of the specified attributes is insignificant. Hence, data 
management and search mechanisms of UNSO are more flexible, than the parallel 
mechanisms of DHT-based systems.  

Comparing UNSO to HyperCuP [32] yields another important advantage of 
UNSO. HyperCuP is based on a fixed predefined ontology that must be explicitly 
used by all the users. This is a severe limitation, as the users are forced to share and 
use it when describing their objects. On the contrary, UNSO allows the users to pro-
vide relatively free description of objects in form of attributei:valuei pairs list. As 
well, new objects and attributes can be easily added to UNSO, not requiring update of 
the ontology and the update distribution to maintain consistency. Multi-layered struc-
ture of UNSO provides an efficient mean to resolve hashing collisions, since the at-
tributes and their values are used to distinguish between objects from different  
domains. 

5   UNSO Implementation Details 

This section discusses the details of UNSO implementation. A multi-layered UNSO 
model, similar to the model, described in the previous section, was implemented. The 
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primary layer of UNSO contains the hypercube constructed by the specified part of 
the ontological descriptions of objects. The secondary MLHs are originated by the 
unspecified parts of the data objects’ descriptions. 

The specified part of UNSO is the subset of object attributes that should by explic-
itly mentioned by the users when describing the object. As the target application ob-
jects are general-purpose E-Commerce ads, the slots of the specified part should be 
applicable to as wide as possible range of objects. Clearly, these attributes are the 
universal attributes of the objects, such as size, weight, price, material and so forth. 
Note that here we refer to real-life tradable objects only, such as cars, apartments, 
books, tickets and others, which are the matter of E-Commerce ads. 

The following set of the universal attributes was chosen to serve as the slots of the 
specified part of the ontology: 

• Product – the name of the object, i.e., a noun describing the class of objects the 
described object belongs to. For example, car, book, telephone and so forth. 

• Relative size – the size of the object. Since the size is a relative concept, we pro-
vide a standard size, such that the size of the described object is measured with re-
spect to it. The standard is chosen to be an average size of a human being, and the 
objects are graded from ‘very small’ to ‘very big’ in comparison to it. For exam-
ple, pen or mobile phone are ‘very small’, while house or truck are ‘very big’. 

• Usage range – the physical distance from the current location of the user, where 
the object is operated. As this concept is also a relative one, a standard for the pos-
sible values is provided. The usage distance is defined as ‘very close’, if the object 
is operated “at arm’s reach” (i.e., in the room or indoor), and ‘very far’ if the dis-
tance of operation is roughly unlimited. Thus, housewares or furniture are ‘very 
close’ objects, while cars or optical equipment are ‘very far’. 

• Price – the price of the object, i.e., the sum the seller expects to get, or the sum the 
buyer is ready to pay for it. Price is also a universal attribute as it separates be-
tween different types of objects, such as houses and cars (although it may fail to 
separate books from CDs). 

The attribute:value pairs mentioned by the user in the ontological description of an 
object, determine its position in the underlying MLH. The dimension of the primary 
hypercube equals to the number of slots in the specified part of the ontology. Thus, 
the above four slots generate a 4-dimensional primary hypercube. The number of 
dimensions in the secondary MLHs is theoretically unlimited. Practically, a number of 
attributes mentioned by the users in the unspecified part of ontological descriptions is 
limited and quickly converges to its upper bound. Therefore, HyperCuP approach, 
where the connected users simulate the missing nodes, allows to maintain connec-
tivity in the generated MLH. 

In HyperCuP, the mapping of objects to the hypercube was performed according to 
the values of the ontology slots. On the contrary, in UNSO, the mapping is performed 
through a set of simple hashing functions operating with the numeric codes of the 
characters used in the values of ontology attributes. Although smarter hashing mecha-
nisms could provide better distribution [28] and keep the locality and order relations 
between the values [17], in this implementation we chose a simple hash functions 
only to validate the applicability of the proposed approach. 
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Thus, the range of possible values (further referred as the coordinates range) k in 
the specified slots product and price is determined by the range of the hashing func-
tions. Since for relative size and usage range slots the set of values is restricted to 
{very small, small, medium, big, very big}, the total number of nodes in the primary 
hypercube is practically limited by 25k2, where k is the coordinates range.  

One of the advantages of hashing-based mapping mechanism is in a uniform distri-
bution of ads among the MLH allowing to uniformly partition the load of the users. 
For example, for k=17, an ad [product:car | relative_size:very big | usage_distance: 
very far | price:45000] is mapped to [0 | 4 | 4 | 13] in the primary hypercube, while an 
ad [product:television | relative_size:medium | usage_distance:very close | price:400] 
is mapped to [15 | 2 | 0 | 2]. However, for k=11 the same ads are mapped to other 
locations, respectively [7 | 4 | 4 | 8] and [6 | 2 | 0 | 1]. 

As for the unspecified part of the ontology, the format is a list of attribute:value 
pairs, where neither the attributes, nor the values are limited by any predefined ontol-
ogy. For example, consider the following ontological (both specified and unspecified) 
description of a car: [product:car | relative_size:very big | usage_distance: very_far | 
price:45000] + [manufacturer:BMW | color:red | mileage:5000]. The unspecified part 
[manufacturer:BMW | color:red | mileage:5000] is mapped to a position (5, 8, 4) if 
the attribute ‘manufacturer’ is mapped to the coordinate number 1 and the value 
‘BMW’ is mapped to the value 5, ‘color’ is mapped to coordinate 2 and ‘red’ to value 
8, and respectively ‘mileage’ is mapped to coordinate 3 and ‘5000’ to value 4.  

Note that two different ads are mapped to the same node either if their ontological 
vectors are identical, or the mappings of their attributes and values completely over-
lap. In this case the IP address of the user inserting the ad is chosen to act as the dis-
criminative attribute distinguishing between the ads. Since the IP address is not a real 
attribute of the described object, it acts as a discriminative attribute only and is disre-
garded when displaying the search results.  

Every new attribute, mentioned in the ads from a particular domain, increases the 
total dimension of the respective MLH. For example, consider the domain of car ads 
with a single ad [product:car | relative_size:very big | usage_distance: very_far | 
price:45000] + [manufacturer:BMW | color:red | mileage:5000] from previous  
example. Inserting a new ad, mentioning two unspecified attributes that were not 
mentioned yet (e.g., gear and number_of_doors), causes the secondary hypercube to 
expand to a 5-dimensional hypercube. So, the original ad is remapped to (5, 8, 4, *,*). 
However, analyzing relatively large corpus of car ads shows that the inserted ads 
contain in total 12 different attributes only, while most of the ads contained only 3-4 
pairs of attributes and values. Thus, most of the hypercube expansions occur during 
the initial phases of the MLH construction. In this stage the MLH still contains rela-
tively low number of ads and therefore the update is not expensive. Conversely, in a 
hypercube containing many ads, the updates are infrequent. 

A possible drawback of the proposed idea is unclarity and ambiguity in supplying 
the values of the ontology slots. For instance, one user might define a car as big, while 
the other one might search it as very big. In this case the search is mapped to a differ-
ent position in the hypercube, and the matching can not be identified. We conjecture 
that most of the users use similar patterns of thinking while describing the objects. If 
this is true, most of the ads describing the same objects are mapped to the same posi-
tion in the primary hypercube, forming clusters of similar ads (figure 5). 
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Fig. 5. Cluster of Ads in a 3-Dimensional Primary Hypercube 

To resolve the issue of semantic heterogeneity, i.e., different terms with the same 
semantic meaning in the descriptions of objects, values of the ontological slots are 
standardized using WordNet [11]. In WordNet, English nouns, verbs, adjectives and 
adverbs are organized into synonyms sets, each representing a single semantic con-
cept. For each concept, the synonyms’ set is sorted according to the usage frequency. 
In our implementation, we employed a simple semantic standardization, replacing the 
original term, mentioned in object description, with its most frequent synonym. Thus, 
similar but not identical terms mentioned by the users, are replaced with a single rep-
resenting term. For example, terms such as “automobile”, “machine”, or “motorcar”, 
are replaced with their most frequent synonym “car”. 

Another practical issue leading to the semantic heterogeneity might be the use of 
hyponyms or hypernyms (respectively, terms that are more specific, or more generic 
than popular, standard term implied by most of the users) in the descriptions of ob-
jects. For example, a user might use ‘sport car’ or ‘coupe’ hyponyms or ‘motor vehi-
cle’ hypernym while describing the above mentioned red BMW car. Although current 
implementation of UNSO can not handle such standardization, it can be easily ac-
complished through hyponym and hypernym links of the WordNet. This will allow 
the standardization process to scan child and parent nodes in addition to currently 
scanned sibling nodes of WordNet graph of nouns, and therefore will improve the 
retrieval capabilities of UNSO. 

To balance the communication load across the system, a modified variant of Plax-
ton routing algorithm [25] is implemented. Plaxton algorithm routes a message by 
correcting each time a single digit of the address. In the original algorithm the order 
of address digits corrections is known, i.e., the most significant digit of the address is 
corrected first, and the least significant digit is corrected last. Simultaneous routing of 
multiple messages to/from the same area (cluster) might lead to a communication 
bottleneck. To resolve this issue, we randomized the order of address digits correc-
tions. This is further referred as a randomized Plaxton routing. 

Over the hypercube-like graph topology (which is a subclass of expander graphs 
[24]), Plaxton routing algorithm corrects one digit of the address at each network hop. 
Since the bits of HyperCuP neighbor nodes differ in exactly one digit of the address, 
and each correction modifies only a single digit of the address, the order of the digit 
corrections can be shuffled. For example, consider correcting an address of length 
logN, where N is the maximal number of users in the hypercube. The number of  
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possible correction orders that can be applied, i.e., the number of possible routes, is 
(logN)!. This number allows high routing flexibility in the hypercube-like expander 
graph topology and improves the communication load balancing. 

On the first view, Plaxton routing algorithm seems to be very inefficient form of 
routing, since correcting a multi-dimensional address in a MLH of total dimension d 
with coordinates range k will require O(kd) network hops. However, this observation 
will not hold in practical P2P systems which will be highly sparse, i.e., the number of 
real connected nodes will be significantly lower than the number of possible locations 
in the underlying MLH. Due to the sparsity of the MLH, a number of nodes will be 
simulated by a single user and as a result, the number of network hops required for the 
query routing will be significantly decreased. In any case, the above randomized Plax-
ton routing allows to better distribute the communication load among the connected 
users.  

The system prototype implementation includes Graphical User Interface (GUI) 
enabling the users to launch search queries (figure 6). The GUI contains fields for 
inserting the values of the specified slots, textual fields for the unspecified attributes 
and values, and textual area for displaying query results. 

In a typical search scenario, the user starts from filling-in the values of the speci-
fied slots of the ontology. Assuming common patterns of thinking, the system finds a 
node in the primary hypercube, which stores the ads from the relevant domain. For a 
large enough corpus of ads, the number of the matching ads might be too high. Thus, 
 

 
 

Fig. 6. Typical Search Scenario (a) Only the slots of the fixed part of the ontology are  
specified; (b) In addition, two unspecified slots are specified 
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 the user needs to refine the query by mentioning the unspecified attributes and their 
values. As a result, the system filters out the irrelevant ads and displays to the user a 
shorter list of ads.  

Consider the search scenario, illustrated in figure 6. In the first query (figure 6a), 
the specified slots [product:car | relative_size:very_big | usage_distance:very_far | 
price:50000] only are filled-in. The query is mapped to a node [7 | 4 | 4 | 8] of the 
primary hypercube (for k=11). As no unspecified attributes are mentioned, the num-
ber of returned ads is 16 (out of 34 matching ads in the corpus), which is relatively 
high. In the second query, the user expands the description using two unspecified 
attributes: manufacturer and color. The search for [product:car | relative_size: very_ 
big | usage_distance:very_far | price:50000] + [manufacturer:BMW | color:black] is 
mapped to [7 | 4 | 4 | 8] + [7 | 3 | * | * | *]. Note that since the secondary MLH con-
sists of a single 5-dimensional hypercube, the system automatically expands the ad-
dress through inserting wildcards instead of the attributes that are not mentioned in 
the search. The use of unspecified attributes filters the irrelevant ads, returning a 
smaller set of 4 matching ads only (figure 6b).  

6   Experimental Results 

To conduct the experiments, a corpus of both supply and demand E-Commerce ads 
was downloaded from http://www.recycler.com. The corpus of supply ads contains 
1272 ads from 14 different categories. Before inserting the ads into the system, they 
were manually converted to the form of ontological descriptions. For example, the 
following ad “Philips 50FD995 50" plasma television, brand new, $4800” was con-
verted to the following unspecified ontological description [product:television | rela-
tive_size:medium | usage_distance: very_close | price:4800] + [manufacturer:Philips 
| model: 50FD995 | size:50" | material:plasma | condition:brand new]. The conver-
sions were done as close as possible to the original contents of the ads, to mimic the 
insertions by naïve users. Corpus of 136 demand ads was automatically built by modi-
fying a subset of the attributes and values mentioned in the supply ads. 

The following experiments were conducted. Initially, we evaluate the Information 
Retrieval metrics of precision and recall [37] through launching queries for the ob-
jects from the demand ads. Then we validate the property of locality, namely the 
distance between similar and dissimilar ads in UNSO.  Finally, we measure the scal-
ability and stability of UNSO through evaluating the performance of the system for 
gradually increasing number of ads in the system. The results of the experiments are 
presented in the following sub-sections. 

6.1   Information Retrieval Metrics 

This experiment was designed to evaluate two traditional Information Retrieval accu-
racy metrics: precision and recall [37]. In context of publish-locate application, preci-
sion is computed as the number of relevant ads in a node divided by the total number 
of ads there. Similarly, recall is computed as the number of relevant ads in a node 
divided by the total number of relevant ads in the system. For example, consider 100 
cars ads inserted to the system. User looking for a car launches a query, and receives 
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80 ads. 60 out of them are cars ads, while the rest are ads from other application do-
mains. In this case the precision is 60/80=0.75, and the recall is 60/100=0.6. 

An ad might be included in a query results due to two reasons: it might either be an 
ad that really satisfies the constraints posed by the query, i.e., mentions the terms that 
were searched in the query, or it might be irrelevant ad that was accidentally mapped 
to the same node. To accurately measure the values of precision and recall, relevance 
metrics should be explicitly defined. In this work, the relevance of the returned ads is 
automatically determined through comparing the attributes and the values mentioned 
in the query with attributes and values mentioned in the ads returned by the system. 

The values of precision and recall are measured for different coordinate ranges k 
(hashing function range) of the UNSO slots, varying from 1 to 100. For each value of 
k we compute the average recall and precision among launching the 136 demand 
queries. Recall and precision are computed through computing the number of relevant 
ads and the total number of ads in the nodes the queries are mapped to, and the total 
number of ads relevant from the given domain.  

The chart in figure 7 shows the average values of precision and recall as a function 
of the coordinates range k. The dashed curves show the precision values, while the 
continuous curves stand for the recall. Both the precision and the recall are measured 
twice: for the original terms specified in the ads (the brighter curves), and after stan-
dardizing the values of the ontology slots with WordNet (the darker curves). 

In general, both the probability of hashing collisions and the number of irrelevant ads, 
accidentally mapped to a node, decrease with the increase of k. Thus, the precision in-
creases with the coordinates range k. It can be clearly seen from the chart that the stan-
dardized results outperform the original results. This holds for any coordinates range k, 
and the standardized precision values asymptotically converge to 1 (maximal precision, 
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Fig. 7. Recall and Precision as a Function of the Coordinates Range k 
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if all the ads returned by a search are relevant) starting from relatively low values of k 
(k>30). The observation that the standardized precision values are higher is reason-
able, since WordNet replaces similar terms mentioned in the ads with a single repre-
senting term. Thus, the number of different attributes and in particular the number of 
ads accidentally mapped to a node monotonically decreases with k, whereas the preci-
sion monotonically increases. 

The original recall values of the system are relatively low, approximately 0.29. This 
is explained by the observation that without the WordNet standardization the users 
mention different terms to describe the same semantic concepts. Consequently, the 
searches succeed in finding only the ads that mentioned the appropriate term (or the ads 
that were accidentally mapped to the same position). Using WordNet, the recall values 
are significantly higher, roughly 0.8. Note that initially the recall values decrease when 
the coordinates range k increases. This happens due to the fact that the probability of 
similar ads mentioning different terms to be accidentally mapped to the same node is 
relatively high for low values of the coordinates range k. For example, for k=1 all the 
ads are mapped to the same location, as the MLH basically consists of a single node. 

Obviously, there is a clear trade-off between the coordinates range k and the accu-
racy (in terms of recall and precision) of the system. From one hand the chart shows 
that a linear combination of recall and precision improves for higher values of k, as 
the recall converges starting from relatively low values of k, and the precision in-
creases. However, practical maintenance of large enough MLHs is complicated for a 
low number of connected users, due to the sparsity causing the connected users to 
simulate high number of ‘missing’ nodes.  

For example, let us compare two possible coordinate ranges: k=30 and k=80. The 
values of recall and precision for these values of k are close: the precision is respec-
tively 0.89 and 0.97, while the recall roughly remains unchanged, 0.81. But, the esti-
mated size of the primary hypercube only increases from 22,500 to 160,000 nodes. 
Thus, every connected user is forced to simulate about 7 times more nodes, resulting 
in a significantly higher communication loads and maintenance overheads of the con-
nected users. Therefore, we conjecture that the optimal value of k for a moderate 
number of connected users and inserted ads is between 20 and 30. For such values of 
k, both precision and recall values are above 0.8, while the size of the primary hyper-
cube remains reasonably small. 

6.2   Locality 

An important metric of quality of a system using semantic routing is locality, i.e., 
mapping of similar ads to close positions in the underlying MLH. To verify this prop-
erty, a subset of 128 supply ads was randomly chosen. For each chosen ad X, we de-
note by X’j a modified ad, where the values of j attributes are changed. Both X and X’j 
are inserted into the system and the distance d between their positions is computed.  

The distance d between the positions of two ads X and X’j is defined as a sum of 
their distances (i.e., differences in the numeric coordinates) in each one of the dimen-
sions. For example, the distance between the positions (1, 3, 5, 7) and (8, 6, 4, 2) in a 
4-dimensional hypercube is |(1-8)|+|(3-6)|+|(5-4)|+|(7-2)|=16. In the MLH topology, 
distance between two positions is the sum of the distances in each one of the layers. 
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Fig. 8. Average Distance as a Function of a Number of Changes (j) for Different Values of the 
Coordinates Range k 

The chart in figure 8 shows the average distance d over the chosen 128 ads as a func-
tion of j, computed for the coordinates range k varying from 1 to 100. 

Each quadruplet of bars in the chart shows the average distance between the ads for 
j=1, 2, 3 and 4 (the leftmost column stands for one change, and the rightmost for four 
changes). It can be clearly seen that for any value of the coordinates range k, the dis-
tance increases with the number of changes inserted to the ads. For example, for k=55, 
the distance for one change is 12.8, while for four changes it is 45.4. The results show 
that the property of locality holds in UNSO and the average distance between two 
similar ads (small number of changed values) is lower than the average distance be-
tween two different ads (higher number of changed values). 

The chart also shows that the distance d for a given j increases with the increase of 
the coordinates range k. The higher is the value of k, the wider is the range of possible 
coordinates the ad can be mapped to, and the higher is the distance. However, the 
growth of the average distance is linear with k. This observation holds for all the val-
ues of j, i.e., it is true for different magnitudes of the distance.  

In the discussion on precision, we concluded that the best precision is achieved for 
high values of k. The linear growth rate of the distance shows that precision im-
provement will not negatively affect the distance and the property of locality will hold 
for different values of coordinates range k. 

6.3   Scalability 

Scalability is one of the most important properties of P2P systems, and certainly one of 
their biggest advantages of P2P over the Client-Server approach. We define it as an 
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indicator of a system’s ability to maintain quality performance under an increased load. 
In UNSO, “maintenance of quality performance” means reasonable MLH data man-
agement and efficient query routing under conditions of heavy load. The meaning of 
“heavy load” can be interpreted in a few ways. It can be referred as a high number of 
ads in the system, communication overload, high rate of users’ joins and disconnections, 
and so on. This experiment was designed to evaluate the scalability of UNSO under 
conditions of high communication overload in a particular area of the MLH. 

To create a high number of routing operations in a particular area, we insert into 
the system two sets of ads (about 120 ads in each one): housewares ads and tele-
phones ads. These sets generate two clusters, further denoted as P and Q. We gradu-
ally increase the number of ads in each cluster and simulate the communication  
overload by simultaneously routing queries from P to Q and from Q to P. For each ad 
in P (and in Q) we randomly select an ad in Q (and respectively in P), and simulate a 
routing operation between the positions of the ads. In the experiments we measure the 
maximal number of queries routed through a single node. The measures are conducted 
for a number of coordinates ranges k, such as k=13, 17, 23, 29, and 37. As the ran-
domized Plaxton routing is not deterministic, the experiments are repeated 1000 
times. The chart in figure 9 shows the average results. 

The chart shows that starting from approximately 36 ads (30% of the maximal size 
of the sets) in P and Q, increasing the number of ads does not affect the maximal 
traffic in the system, i.e., the number of simultaneous routings increases without any 
significant change in the traffic load. This observation is explained by a relatively 
high connectivity of the underlying MLH structure (as a subclass of expander graph) 
and by the randomized variant of Plaxton routing algorithm that is exploited in 
 

 

Fig. 9. Maximal Load in the Network Under Conditions of High Number of Simultaneous 
Routing Operations 
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UNSO. Note that this observation holds for different values of the coordinates range 
k. Moreover, the maximal load in the system decreases with the increase of k, as for 
high values of k the number of possible routing paths is higher and the communica-
tion overload of each node is lower.  

This allows us to conclude that UNSO is scalable with respect to its functionality 
under conditions of communication overload resulting in a high number of concurrent 
routings. Thus, the proposed UNSO approach implemented over the MLH topology 
can work-out and function efficiently as a large-scale general-purpose E-Commerce 
application (e.g., launched over the Web). 

6.4   Stability 

In this experiment was designed to measure the “average size” of the generated struc-
ture as a function of the number of inserted ads. One of the key metrics for evaluating 
the size of the network is the characteristic path length. For two given nodes A and B 
in the MLH, a path length between their positions in the hypercube is defined as a 
minimal number of Plaxton corrections needed in order to reach B starting from A. 
The characteristic path length is defined as the average path lengths over all pairs of 
nodes in the system. In this experiment we gradually increase the number of ads in-
serted into the system and compute the characteristic path length. Since the ads  
inserted into the system are chosen randomly from the corpus of 1272 supply ads, for 
each number of ads in the system the experiment is repeated 1000 times. The average 
values of the characteristic path length are shown in figure 10. 

The chart shows that the initial insertions of ads increase the characteristic path 
length by increasing the number of dimensions in the MLHs. However, starting from 
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Fig. 10. Characteristic Path Length as a Function of the Corpus Size 
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approximately 20% of the maximal corpus size, inserting ads has roughly no effect on 
the characteristic path length. This validates our assumption that the total cardinality 
of the set of attributes used for describing an object is final and bounded. Moreover, 
most of the attributes are used in the first descriptions that are inserted, while the rest 
of the descriptions contribute very few new attributes. Therefore, the proposed algo-
rithm of the MLH expansion during the insertion of higher-dimensional ads does not 
lead to a significant overhead due to the expansion. 

7   Conclusions and Future Work 

In this work we proposed and evaluated a novel notion of Unspecified Ontology 
(UNSO). This concept refers to a non-fixed variant of ontological descriptions of the 
data objects. In comparison to the fixed predefined ontologies, UNSO facilitates more 
flexible way to describe the objects. Multi-layered hypercube graph (MLH) topology, 
supporting efficient semantic routing, is constructed based on UNSO. We designate 
the MLH to be used as an infrastructure for general-purpose E-Commerce applica-
tions over Peer-to-Peer network. This work focuses on the basic functionality of 
E-Commerce systems, i.e., publishing and locating the objects. It allows the users to 
publish their objects using ontological description, while other users are able to easily 
locate them.  

Note, that using UNSO does not force the users to share or to use any single ex-
plicit ontology. The users can provide relatively free ontological descriptions of their 
data object by specifying the object attributes and their respective values. Instead of 
using a predefined ontological mapping, hashing-based mechanism is used to map the 
ads to their positions in the underlying MLH. Thus, the order of the attributes, men-
tioned by the user is insignificant, and if the attributes are properly recognized, they 
are mapped to the same hypercube coordinates. 

Experimental results show that the performance of UNSO with respect to the In-
formation Retrieval metrics is good. The precision of the system is high, and it in-
creases with the increase of the MLH coordinates range. Although the recall values 
are moderate, they become very high as a result of performing a simple standardiza-
tion with WordNet. Note that UNSO, unlike traditional Information Retrieval systems 
and search engines, demonstrates high values of both recall and precision at the same 
time. Smart semantic standardization tools and dynamic hashing mechanisms, uni-
formly distributing the ads among the MLH nodes, will assist in achieving a better 
performance with respect to the Information Retrieval metrics. 

Performance of UNSO with respect to the P2P metrics is also good. As can be seen 
form the results of scalability experiments, the proposed system is highly scalable. 
For a relatively low number of concurrent routings, the system reaches its maximal 
communication load, and further routings do not increase it. This leads to a  
conclusion, that when implemented and launched as a large-scale data sharing P2P 
application, e.g., over the Web, UNSO-based systems will keep proper functioning 
under conditions of heavy load. Thus, we believe UNSO can serve as efficient infra-
structure for real-life Web applications and it has the potential of opening Web 
E-Commerce activities to a larger community of P2P users. 
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The following directions of further research, based on the developed UNSO con-
cepts, are of particular interest: 

• Developing a statistical model for hierarchical management of the MLHs. It will 
simplify the maintenance of the MLH, shorten the characteristic path length, en-
sure semantic homogeneity in every level and inherently introduce smart error-
correction mechanism. In addition, it will protect the hypercube-like graph against 
organized attacks, maliciously introducing new ontology slots. 

• Improving the proposed simple standardization mechanism through integrating 
more sophisticated Natural Language Processing (NLP) tools recognizing the 
terms context during the semantic standardization. This will improve the Informa-
tion Retrieval performance of UNSO.  

• Discovering the importance (weights) of attributes and the distances between the 
different values of the same attribute. This will allow more accurate assessment of 
the distance between two nodes in the hypercube-like graph and will facilitate 
more accurate ranking of the results displayed to the user.  

• Developing a smarter routing algorithm, dynamically generating the optimal rout-
ing path between two MLH nodes as a function of the changing workloads of the 
connected users. 

• Adding other E-Commerce functionalities to the system. For example, real-life 
E-Commerce systems usually support sophisticated functionalities (e.g., public 
auctions and market clearings) rather then simple publish-subscribe functionality. 
We intend to investigate exploiting UNSO for supporting such functionalities. 

• Implementing distributed P2P UNSO client, launching it over the Web and creat-
ing hypercube-like graph of real-life users, and performing large-scale experi-
ments with large number of E-Commerce ads. 

In summary, we believe that the unspecified and flexible nature of UNSO, jointly 
with its good data management capabilities, will facilitate UNSO usage not only for 
E-Commerce applications, but for any kind of publish-locate services.  
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Abstract. We study the exchange of information in collective informa-
tion systems mediated by information agents, focusing specifically on
the problem of semantic interoperability. We advocate the use of mecha-
nisms inspired from natural language, that enable each agent to develop
a repertoire of grounded categories and labels for these categories and
negotiate their use with other agents. The communication system as well
as its semantics is hence emergent and adaptive instead of predefined.
It is the result of a self-organised semiotic dynamics where relations be-
tween data, labels for the data, and the categories associated with the
labels undergo constant evolution.

1 Introduction

Many interactive information systems such as web browsers typically allow a
user to taxonomically structure data and associate tags with this taxonomy.
In the case of web browsers, the data consists of URLs to web pages, the tax-
onomy is the hierarchy of bookmark folders, and tags are names that users as-
sociate with folders and sub-folders. We call the taxonomy created and main-
tained by a user the “owner taxonomy” and its tags the “owner tags”. The
taxonomy implies a particular way of categorising the data so that there is in
fact a semiotic relation between data, tags, and categories, forming a semiotic
triad (see figure 1). The semantics of the tags (i.e. the meaning of the cate-
gories) is usually not explicitly defined. We could either do this by defining
the logical dependencies between categories (formal semantics), or by defining
classifiers, i.e. computable functions capable of deciding whether the category
applies to a data item or not (grounded semantics).

Categorisations and tagging by users is based on cognitive processes which are
not accessible to information systems, and may not even be consciously known
by the users themselves. For example, a user may decide to put all the songs he
likes in one folder and the ones he does not like in another. This categorisation is
completely subjective and can never be automated nor emulated by a machine.
Similarly user tags often use natural language words but this is only suggestive
and not necessarily accurate nor rational. For example, a user may have a folder
tagged ’New York’ but it could contain pictures of New York, pictures taken in
New York, pictures taken while living in New York, etc.
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Fig. 1. Data, tags, and categories associated with tags form a semiotic relation. The
paper proposes a system whereby agents autonomously establish such relations and
coordinate them with others.

The taxonomies and tags of a user are usually local and private and this is
unproblematic as long as there is no exchange between them. But there is now
a rapidly growing number of collective information systems where users want
to exchange data with each other, and they are therefore necessarily confronted
with the problem that the taxonomy and tags imposed by one user are not
necessarily the same as those of another. Moreover the information systems
may be heterogeneous in the sense that the conceptual schemata used by one
information system for storing data and meta-data may be quite different from
those used by another information system.

One type of collective information system are peer-to-peer systems which
allow direct information exchange between peers without the need to go through
a central server. Well-known examples for music file sharing are systems like
Gnutella, Kazaa, or eMule that are used by millions of people today. Similar
sharing networks are growing for movies or game software. Also in the domain
of scientific data or educational materials, there are growing networks of peer-
to-peer shared systems [8]. Another type of collective information systems form
websites which encourage social sharing of data by allowing users to upload
data and introduce tags for these data. Examples include www.flickr.com for
exchanging pictures, www.citeulike.com for exchanging scientific papers, and
del.icio.us for exchanging information about websites. Although these systems
are not peer-to-peer in the strict sense, because they are managed from central
servers, they nevertheless are highly distributed and the taxonomy is not imposed
in a top-down manner. Users can at any time add or delete data, introduce or
change their own tags, and thus impose taxonomies on their data.

The distributed creation of taxonomies and tags and the multiplicity of con-
ceptual schemata generate the well known problem of semantic interoperability.
One solution is to standardise. The different users of a collective information
system could all agree a priori to use the same taxonomies to structure their
data and to use the same conceptual schemata for their data and meta-data.
The tags in the owner taxonomies can then act as a shared communication pro-
tocol between peers. For example, all users of web browsers could agree to use
the taxonomies of Yahoo for organising their data, and adopt the labels used by
Yahoo (possibly with translations into different languages). Unfortunately such
a standardisation approach is unlikely to work for truly open-ended collective
information systems in rapidly changing domains like music file sharing, picture
exchange, medical imaging, scientific papers, etc. New topics and new kinds of
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data come up all the time, styles shift, and interests of users diverge, so it is very
hard to capture all this once and for all in a static taxonomy. Another issue is
that taxonomies and conceptual schemata may be linked to specific proprietary
software that others may not want to use.

Alternatively, it is possible that each peer has its own local taxonomy, but that
these are translated into a (more) global taxonomy which is used for querying
and information exchange and thus acts as an interlingua between peers. The
translation to conceptual schemata of each peer could be aided by mediators [19]
and achieved through automated schema matching based on finding structural
similarities between schemas (see the survey in [9]). A promising recent vari-
ant of automated schema matching is based on ostensive interactions, in which
agents send each other examples of the instances of schema elements so that the
mapping can be made [16]. The difficulty with this approach is that a one-to-one
mapping of taxonomies or conceptual schemata is not always possible. In these
cases data semantics must be taken into account.

The first approach which is trying to do this is currently being explored by
the Semantic Web initiative [4] and by advocates of CYC or Wordnet [7]. The
data is associated with descriptions with a formal semantics, defined in terms of
ontologies [5]. This approach is clearly highly valuable for closed domains, but
there are known limitations when applied to open-ended information systems
[1], [12], [11]. The ontologies do not capture the grounded semantics, they only
constrain inference. Moreover the semantic web requires standardisation based
on universal (or at least domain-wide) ontologies. But it is hard to imagine that
a world-wide consensus is reachable and enforceable in every domain of human
activity for which information systems are currently in use. Even in restricted
domains this is hard because of an increasingly interconnected global world.
Human activity and the information systems built for them are open systems.
They cannot be defined once and for all but must be adaptable to new needs.

In this paper, we also take a semantics approach but pursue grounded as op-
posed to formal semantics. We view semantic interoperability as a coordination
problem between the world, information systems, and human users, and propose
to set up a semiotic dynamics that achieves this coordination. Rather than trying
to map owner taxonomies or conceptual schemata directly onto each other, we pro-
pose that each information systemhas anassociatedagent.Theagents self-organise
an interlingua with labels whose underlying categories are grounded in the actual
data and meta-data. The interlingua is not universal but coordinated among those
agents that need to cooperate. The semiotic dynamics is user-driven in the sense
that users continuously stimulate the formation of new labels and categories and
steer the grounding of the categories by giving examples and counter examples.

Our proposal has two components. On the one hand we try to orchestrate
the same sort of semiotic dynamics that we see happening in natural languages
or in social exchange websites like www.flickr.com, namely there is an emergent
system of labels whose use is coordinated among the agents without central
coordination. Second we try to achieve grounded semantics by programming the
agents so that they can develop operational classifiers grounding these labels.
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The semantics is emergent in the sense that it is derived by the system itself
and it is dynamic because it continuously tracks the re-categorisations that users
inevitably carry out as they organise and reorganise their data.

Our proposals are strongly related to other approaches for achieving ’emergent
semantics’, notably [2], which also emphasises user orientation, and [10], which
explores grounded semantics. Similar to [3] we focus on orchestrating a user-
driven semiotic dynamics in information agents.

The work reported here relies on a decade of research into the origins and evo-
lution of communication systems for robot-robot and robot-human communica-
tion [12], [14]. We have applied these ideas to the semantic interoperability prob-
lem and performed a case study in the domain of music file sharing. The develop-
ment of classifiers can be done in many different ways but for this case study we
have relied on recent work in the automatic construction of classifiers inspired by
methods from genetic programming [18]. In the present paper, we use however a
simpler example to explain the proposed mechanisms and study their behaviour.

We are well aware of important limitations of the proposals discussed in this
paper, and therefore see it as a first exploration rather than the final solu-
tion to semantic interoperability (if that ever could be found). More specifically,
grounded semantics is only possible in domains where the meaning of a taxon-
omy can be grounded, which is only the case in well-delineated domains. For
example, although it would be straightforward to develop a classifier for the
tag ‘black-and-white’ (which would also work for ‘bw’, ‘noir-et-blanc’, etc.), it is
quite impossible to develop a grounded semantics for ‘New York’ as the range of
images where this tag might be applicable is vast and strongly varied. However
it is only by defining and exploring the kinds of systems discussed in this paper
that progress on the issues can be made.

The first part of the paper defines some of the terminology that we will use
later. Then we describe the behaviours of the information agents, particularly
as they pertain to the negotiation of a shared repertoire of labels and classifiers
that constitute the meaning of the labels. Next we give example interactions
from our implementation in the music domain.

2 Definitions

We assume that the information systems handle sets of data. The data can be
files (text, music, movie, or image files) or any data stored by other means. For
simplification, only one type of data is assumed (for example, only music files).
Furthermore, we assume that every datum has a unique identifier that can be
communicated between peers. The identifiers can be a URL that indicates where
the data (or meta-data) can be found, or it can be an index into a database that
is accessible to everyone1. In the exchanges between agents, the identifiers are

1 For music files, the MusicBrainz database could be used (http://www.
musicbrainz.org); for movies, the Internet Movie Database (http://www.imdb.com);
for scientific papers, Citeseer (http://citeseer.ist.psu.edu).
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sent instead of the data. In the worst case, when no identifiers are available, the
data itself will be transmitted. We will use D to indicate the set of all data.

We will use also tags and labels. Both are character strings. The tags are used
by the owners in their taxonomy. The labels are used by the information agents.
The set of all labels will be denoted by L, and the set of all tags N . Agents have
also access to classifiers which are computable functions over data items. They
are used to give grounded semantics to the labels.

2.1 Classifiers

Definition 1. Classifier
A classifier is a function, c : D → {0, 1}, that, given a data element d, returns
1 or 0, depending on whether d belongs to a particular class (category) c or not.
The set of classifiers is denoted by C.

For example, there might be a classifier that is able to detect whether a song
sample contains a female voice or not, or whether a song was performed by The
Beatles. Classifiers use data and meta-data to decide what data belongs to the
category and what not (see also Section 4.6)

Agents need the ability to discriminate a data set D1 from another set D2. For
example, songswhich have a female voice and those which do not. For this purpose,
we introduce two functions, the scope and the discriminative success of a classifier.

Definition 2. Scope of a classifier
The scope of a classifier c for a set of data D, σ(D, c), is the fraction of elements
in D for which c returns 1:

σ(D, c) =
∑

d∈D c(d)
|D|

Definition 3. Discriminative success of a classifier
The discriminative success of a classifier c measures how well c can discriminate
between two data sets D1 and D2:

δ(D1, D2, c) = σ(D1, c)− σ(D2, c)

The categorisation process consists of finding the classifier with the highest dis-
criminative success, given two data sets D1 and D2.

Definition 4. Categorise
Let D1 and D2 be two sets of data and C a set of classifiers. We can order
the classifiers c ∈ C in descending order based on their discriminative success:
[〈c1, p1〉, ..., 〈cm, pm〉] with ci ∈ C, and pi = δ(D1, D2, ci), and pi, pi+1 → pi ≥
pi+1. Clearly the better ci distinguishes the elements in D1 from the elements in
D2, the greater δ(D1, D2, ci) will be and hence by taking the first element of the
sequence above, we find the most discriminating category: categorise(C, D1, D2)
= f irst([〈c1, p1〉, ..., 〈cm, pm〉]).
In the case where several classifiers ci, . . . , cn have a maximum discriminative
success, additional heuristics could be used in choosing the best classifier. For
example, one may choose the classifier that has been used most successfully
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in previous exchanges with other agents. Classifiers will not only be used to
distinguish between two sets but also to filter an existing data set, based on the
following definition:

Definition 5. Filter

f ilter(D, c) = {d | d ∈ D and c(d) = 1}

2.2 Dictionaries

The association of labels with classifiers and vice versa is stored in a dictionary.

Definition 6. Dictionary
A dictionary W is a two-way mapping from a set of labels L to a set of classi-
fiers C. Each association between a classifier and a label has a certain strength
γ ∈ [0.0, 1.0]. More formally: W ⊂ L× C × [0.0, 1.0].

For example, there could be a label ’female-voice’ which is associated with the
classifier able to decide whether a song contains a female voice or not.

Given a classifier c and a dictionary W , we can construct the list of possible
labels for a classifier c as an ordered set based on the strength γ of the relation
between c and a label l:

labels(c, W ) = ((l1, γ1), ..., (ln, γn)) with (c, li, γi) ∈ W and γi ≥ γi+1

Definition 7. Coding of a classifier
The label coding a classifier c is the first label from this set: code(c, W ) =
f irst(labels(c, W )).

The inverse operation, decode, is defined similarly. Given a label l and a dictio-
nary W , we construct the list of possible classifiers as an ordered set based on
the strength γ of the relation between l and a classifier c:

cats(l, W ) = ((c1, γ1), ..., (cn, γn)) with (ci, l, γi) ∈ W and γi ≥ γi+1

Definition 8. Decoding of a label
The decoded classifier is the first classifier from the ordered set: decode(l, W ) =
f irst(cats(l, W )).

This process can be easily extended to coding or decoding conjunctions (i.e. sets)
of classifiers. Coding should seek the minimal number of words that cover the
set of classifiers resulting from discrimination and decoding should reconstruct
the minimal set of classifiers that are associated with each of the words.

2.3 Peer Information System

Definition 9. Peer information system
A peer information system a, at time t, is defined as PIa,t = 〈ISa,t, O, IAa,t〉,
with:
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– ISa,t = 〈Da,t, Na,t, Ma,t, MD〉 an information system which consists of a
set of data D, a set of tags N and a mapping M : N → P(D) mapping tags
to subsets of D by an extensional definition, and a set of meta-data MD.

– O a (human) owner.
– IAa,t = 〈La,t, Ca,t, Wa,t〉 an information agent with a set of labels L, a set

of classifiers C and a dictionary W .

Definition 10. Collective information network A collective information system
IN consists of a set of information systems: IN = {PI1, ...P In}.
When the owner of one information system queries another information system,
we call the information system of the querying peer the caller (or client) and the
system providing information the callee (or server).

3 Agent Behaviours

3.1 Interaction

We assume that the (human) owner of the caller initiates a query by identi-
fying a set Gc ⊆ Dc of data elements that are considered to be good exam-
ples of the kind of elements the owner is requesting from the callee. The owner
can do this by using the tags of the owner taxonomy that remains fully under
his control, or by explicitly identifying in some other way a subset of the ex-
amples in the information system’s data set. We assume furthermore that the

Fig. 2. The different entities and relations involved in collective information exchange
and the items that are exchanged between the two. To the left are components of a
caller and to the right those of a callee.
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query is formulated within a specific context Kc ⊆ Dc, which consists of other
data elements against which Gc is to be distinguished (counter-examples). The
counter-examples should not overlap with the examples, i.e. Gc ∩Kc = ∅.

For example, the owner could choose a number of tags (like ’jazz’, ’female-
voice’, ’piano’) yielding a set of possible data elements based on the tagging sys-
tem. If this is the user’s first interaction, these data elements are viewed against
the set of all other music files in his information system. We expect the informa-
tion agent to come up with the best classifier for distinguishing the data elements
against the context and then querying other peers to find the data that are the
most compatible. Agents do not exchange the music files themselves, neither the
classifiers directly (as different peers may use different libraries or programming
languages for their classifiers), but rather labels that are progressively negotiated.

Five types of situations may occur and they are defined in the following sub-
sections. In section 5, we give specific examples for each of these situations in
the context of a music application.

3.2 Successful Interaction

The following script gives an overview of the interaction in case of a successful
query. The left side details the actions on the caller side and the right side the
actions on the callee side. In the middle we show the items that are exchanged
between caller and callee.

1. Caller owner chooses Gc ⊂ Dc

with Kc as context
2. Caller IA categorises Gc, Kc

as catc
3. Caller IA codes catc as l

−→ l −→
1. Callee IA decodes l as cats
2. Callee IA filters

R = f ilter(Ds, cats)
←− R ←−

4. Caller owner selects F ⊆ R
as relevant data

5. Caller inserts F in Dc

and updates Wc

→ success →
3. Callee updates Ws

If the interaction succeeds completely, the feedback F provided by the caller’s
owner is positive, in other words he received mainly good examples. This implies
that the label l naming catc, as used by the caller, was compatible with the
interpretation of this label by the callee as cats and compatible with the desires
of the user. In this case, both caller and callee update their mappings from labels
to categories so that the use of the label l for the categories catc and cats is re-
enforced in the future. This is done by increasing the relation between the used
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label and the used classifier with a quantity Δinc, and diminishing competing
relations. Competitors are relations that either use another label for the same
classifier, in which case they are decreased with Δn−inh, or that have associated
another classifier with the same label, in which they are decreased with Δo−inh.
More formally, UpdateCaller(Wc,t, l, catc) is defined as:

Wc,t+1 = {ri|ri = (ci, li, γi) ∈ Wc,t with ci �= catc and li �= l} ∪
{(catc, l, γi + Δinc) for wc = (catc, l, γi) ∈Wc,t} ∪
{rj |rj = (catc, lj, γi + Δn−inh) with lj �= l} ∪
{rj |rj = (catj , l, γi + Δo−inh) with catj �= catc}

Similarly, UpdateCallee(Ws,t, l, cats) is defined as:

Ws,t+1 = {ri|ri = (ci, li, γi) ∈ Ws,t with ci �= cats and li �= l} ∪
{(cats, l, γi + Δinc) for ws = (cats, l, γi) ∈ Ws,t} ∪
{rj |rj = (cats, lj, γi + Δn−inh) with lj �= l} ∪
{rj |rj = (catj , l, γi + Δo−inh) with catj �= cats}

3.3 The Information Agent Fails to Categorise

Consider next the situation in which the caller does not have a classifier to
discriminate Gc from Kc (caller step 2 fails). In that case, the caller performs
two steps:

1. The caller constructs a new classifier catn that distinguishes the elements in
Gc from those in Kc.

2. The caller invents a new label ln (a random string drawn from a sufficiently
large alphabet) and extends W with a new relation between ln and catn with
an initial value for the strength being γinit: W ′

c = Wc ∪ {(ln, catn, γinit)}.
The interaction between caller and callee can now continue as before with the

transmission of ln as new label.
An important issue arises when the random string was already used by an-

other agent for another classifier. This issue (known as homonymy: one label
having different meanings) is dealt with by the dynamics of the system as pre-
sented here, but it can be minimised by using a technique that guarantees unique
symbols even if generated in a distributed fashion, such as the universally unique
identifiers (UUID) [6].

3.4 The Callee Does Not Know the Label

The callee does not have the label l that was transmitted by the caller (callee
step 1 fails). In that case, the callee signals failure to the caller. It then receives
Gc and Kc as examples of what the caller is looking for and then goes through
the following steps:

1. Callee IA categorises Gc as distinctive from the context Kc with the classifier
cats. When this fails, the callee IA creates a new classifier (further called
cats) and adds it to its categorial repertoire.
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2. Callee IA extends Ws with a relation between cats, the label l, and an initial
strength γinit: W ′

s = Ws ∪ {(l, cats, γinit)}.

Then the callee continues the game as before. The interaction is summarised
as follows:

1. Caller owner chooses Gc

with Kc as context
2. Caller IA categorises Gc, Kc

as catc
3. Caller IA codes catc as l

−→ l −→
1. Callee IA fails to decode l

← failure ←
4. Caller IA transmits Gc, Kc

→ l, Gc, Kc →
2b. Callee IA categorises Gc, Kc

as cats
2c. Callee IA stores (cats, l, γinit)
3. Callee IA filters

R = f ilter(Ds, cats)
←− R ←−

5. Caller owner selects F ⊆ R
6. Caller inserts F in Dc

and updates Wc

→ success →
4. Callee updates Ws

3.5 Handling Partial Success

The next case occurs when the results given by the callee to the caller is deemed
to be partly irrelevant by the (owner of the) caller. A score can be computed
which is simply the percentage of elements that was deemed appropriate by the
owner. A percentage below θfail signals the failure. There are two causes for this
problem: (1) The classifier used by the caller is not precise enough to capture the
distinction that was intended by the user, or (2) the classifier associated with
the transmitted label by the caller is different from the classifier associated with
the same label by the callee.

The distinction between the two cases is done as follows. After the evaluation
of the results by the owner, the calling agent is in possession of two sets of good
examples (Gc and F ) and two sets of counter-examples (Kc and B). With the
extra information available, the agent can now try to find a classifier that has a
higher discriminative success than the initially chosen classifier. If such a classifier
can be found, the agent concludes that it has misinterpreted the intentions of
its owner. If such a classifier cannot be found, it signal a communication failure,
indicating that the callee has a different interpretation of the label that does not
match with its own. The next two sections detail the interactions in both cases.
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3.6 The Caller Has Misinterpreted the Owner’s Request

In case the calling agent can find a new classifier cat′c with a higher discriminative
success between the new sets Gc ∪ F and Kc ∪ B, the interaction proceeds as
before using cat′c instead of catc. The classifier cat′c can either be an existing
classifier or it can be a classifier that is newly created. The classifier cat′c is
coded as label l′.

1. Caller owner chooses Gc

with Kc as context
2. Caller IA categorises Gc, Kc

as catc
3. Caller IA codes catc as l

−→ l −→
1. Callee IA categorises

Gc, Kc as cats
2. Callee IA filters

R = f ilter(Ds, cats)
←− R ←−

4. Caller owner selects F ⊆ R
as relevant data

5. Caller inserts F in Dc

6. The result score is too low
6a. Caller IA categorises

Gc ∪ F, Kc ∪B as cat′c
6b. Caller IA codes cat′c as l′

−→ l′ −→
2. Callee IA decodes l′ as cat′s
3. Callee IA filters

R = f ilter(Ds, cat′s)
←− R′ ←−

4. Caller owner selects F ′ ⊆ R′

as relevant data
5. Caller inserts F ′ in Dc

and updates Wc

→ success →
3. Callee updates Ws

The second query can fail for the same reasons as the first invocation. For ex-
ample, the callee may not know the label l′ and signal a failure. In that particular
case, the interaction falls back to the situation discussed in section 3.4.

3.7 The Caller and Callee Interpret the Label Differently

In this case caller and callee should try to coordinate their categories and labels
so that exchange becomes possible or fruitful in the future. Actions are necessary
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both on the side of the caller and of the callee. First of all the strength of the
labels they used in the failed communication are to be diminished:

1. Caller IA diminishes the association strength between catc and l in Wc by a
factor Δdec. This will decrease the chance that the relation is coded in the
future with this particular label.

2. Callee IA diminishes the association strength between cats and l in Ws by
a factor Δdec. This will decrease the chance that l is decoded in the future
with this relation.

If the caller was not able to come up with a better classifier than the one
used in the first transaction, the caller IA can send examples of the objects of
interest Gc∪F and the context Kc∪B so that the callee can attempt to acquire
the right meaning by finding a distinctive classifier and by adding an association
between this classifier and the label l. This case then becomes identical to the
one discussed earlier (section 3.4, “the callee does not know the label”).

1. Caller owner chooses Gc

with Kc as context
2. Caller IA categorises Gc, Kc

as catc
3. Caller IA codes catc as l

−→ l −→
1. Callee IA categorises

Gc, Kc as cats
2. Callee IA filters

R=f ilter(Ds, cats)
←− R ←−

4. Caller owner selects F ⊆ R
as relevant data

5. Caller inserts F in Dc

6. The result score is too low
6a. Caller IA fails to

categorise Gc ∪ F, Kc ∪B
6b. fails to create a

better classifier
7. Caller updates Wc

and signals failure
→ failure →

3. Callee IA updates Ws

8. Caller IA transmits
l, Gc ∪ F, Kc ∪B

→ l, Gc∪F, Kc ∪B →
4a. Callee IA categorises

Gc∪F, Kc∪B as cat′s
4b. Callee IA stores

(cat′s, l, γinit)
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3.8 Parameters

In summary, we find the following main parameters for the agent’s adaptive
mechanisms. Each time we give values for these parameters that have proven to
yield adequate performance in large-scale tests of the system.

1. γinit is the initial strength with which a new relation enters into the dictio-
nary L of the agents. γinit = 0.5.

2. Δinc is the increase of γ in the relation used, in case there is success. Δinc =
0.1. [ENFORCEMENT]

3. Δn−inh is the decrease of relations with the same label (but different cate-
gories) in case of success. Δn−inh = −0.2.

4. Δo−inh is the decrease of relations with the same classifier (but different
labels) in case of success. Δo−inh = −0.1. [LATERAL INHIBITION]

5. Δdec is the decrease of γ in the relation used, in case when there is failure.
Δdec = −0.1. [DAMPING]

6. θdisc is the threshold used in the categorisation. θdisc = 0.5
7. θfail is the threshold used to signal a failed exchange. θfail = 0.5

There is some leeway with the exact value of these parameters. It is even
possible to make all of them 0 (accept γinit) but then all labels ever invented by
any agent will propagate in the population and so we get a very large dictionary.
If they are non-zero, then obviously Δinc > 0 and Δn−inh < 0, Δo−inh < 0. Also
Δdec < 0 because otherwise a relation that is not successful would increase in
strength. The importance of the parameters is summarised in figure 3, taken from
simulation experiments. Adoption means that new labels propagate, enforcement

Fig. 3. The evolution in average dictionary size for labelling 10 objects in a population
of 10 agents. Enforcement combined with lateral inhibition and damping leads to the
most efficient dictionary, in which only 10 labels are used for 10 objects.
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means that the strength is increased in case of success, damping means that the
strength is decreased in case of failure, and lateral inhibition means that the
strength of competitors is decreased in case of success.

4 An Example: Music Sharing

We now illustrate the interactions described in the previous sections for the case
of music sharing. The example is drawn from our experimental implementation.
We introduce three users and their respective information agents. Each peer has
local meta-data, displayed in Fig. 4. We make the assumption that all songs
have a unique identification number that is common to all agents. In practice,
this ID can be a URL or an index of a public database. However, to make
the examples more readable we will use the title of the songs instead of their
ID’s.

All agents know the name of the artists, but, as can be seen in the tables
below, these names are formatted differently for every agent. The other meta-
data are specific to every agent. Agent0’s database contains a genre and a BPM
(beats per minute) column. Agent1 stores the year in which the recording was
released and Agent2 has information on the global energy of the songs. The peers
thus have different meta-data and different databases schemas.

We also assume that owners have imposed a taxonomy on their data in the
form of a directory structure, as shown in Fig. 5. These taxonomies are mainly
used to facilitate the organisation and selection of a set of music files by the
users.

The example details four interactions. The agents start from a zero state in
which their dictionaries are still empty and have no labels nor categories.

Fig. 4. On the left, the list of available music files. On the right, the meta-data of all
the files available to each information agent.
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Fig. 5. The user-defined taxonomies for the three agents

4.1 Query 1: Agent 0 Asks Agent 1 for More “Beatles”

In the first query, user0 selects the folder “beatles” and asks its agent to seek
similar songs. Since the user explicitly selects “beatles” and not “stones”, the
agent interprets the request as: “find more beatles, not stones”. The search query
then proceeds as follows.

Agent0 start by categorising the owner’s request. It checks whether it has a
category in its dictionary that discriminates between the set of examples and
the set of counter-examples. Because the dictionary is empty, agent0 fails to
find a classifier and, therefore, constructs the new one, defined as: Artist(The
Beatles). The new category does not have any label associated with it. Agent0
constructs a new label randomly2 (in this case, the label is 6365915a) and binds
it to the classifier with a default strength of γinit = 0.5. This corresponds to the
situation described in Sec. 3.3, “The information agent fails to categorise”.

Agent0 then queries agent1 using the label 6365915a. Agent1 fails to decode
the label because its dictionary is empty and returns a failure message to agent0
to indicate this fact. In response, Agent0 transmits the examples and counter-
examples of 6365915a: the identifiers of “beatles” songs on the one hand, and the
“stones” songs on the other. With these two sets of data, agent1 can now create a
new classifier, Nom(Beatles, The), and associate it to the label 6365915a with
a default strength of 0.5 (see Sec. 3.4, “The callee does not know the label”).

Agent0 sends the query again and agent1 now successfully decodes the label
6365915a. It uses the associated category Nom(Beatles, The) to filter its data
collection which results in the following list of songs: [And I Love Her], [Twist
And Shout], [I’m Down].

When agent0’s owner evaluates the results, all songs are considered good
and the query is a success. Both agent0 and agent1 updates their dictionaries
and increase the strength of the binding between the label 6365915a and their
respective categories with Δinc = 0.1. This corresponds to the UpdateCaller
and UpdateCallee functions described in Sec. 3.2.

2 We use randomly generated labels based on the UUID algorithm.



158 L. Steels and P. Hanappe

The following listing shows the same query in a more compact form. We will
use this form of presentation in the remainder of the text.

- [0, Agent0]: search examples: [Across The Universe][I Feel
Fine][Norwegian Wood][Helter Skelter][You Know My Name][Eleanor
Rigby][Blackbird], counter-examples: [Let’s Spend the Night
Together][Ruby Tuesday]

- [1, Agent0]: categorisation failed
- [2, Agent0]: creates Category<Artist(The Beatles)>
- [3, Agent0]: binds 6365915a to Category<Artist(The Beatles)>
- [4, Agent1]: query for 6365915a
- [5, Agent1]: fails to decode 6365915a
- [6, Agent0]: transmits examples and count-examples of 6365915a
- [7, Agent1]: categorisation failed
- [8, Agent1]: creates Category<Nom(Beatles, The)>
- [9, Agent1]: binds 6365915a to Category<Nom(Beatles, The)>
- [10, Agent1]: query for 6365915a
- [11, Agent1]: decodes 6365915a as Category<Nom(Beatles, The)>
- [12, Agent1]: filter data: results: [I’m Down][And I Love Her]
[Twist And Shout]

- [13, Agent0]: owner evaluation: good (3 out of 3): [Twist And
Shout][I’m Down][And I Love Her]

- [14, Agent0]: search sucessful
- [15, Agent0]: update dictionary
- [16, Agent1]: update dictionary

The first query shows how both agent0 and agent1 boostrap their dictionaries.
Agent0 creates a new category and label to describe the owner’s request and
agent1 learns the new label from agent0. Once the new categories and labels are
introduced, the interaction proceeds successfully.

The dictionaries of the two agents after the first query are displayed in Fig. 6.
The succession of operations that form the core of the exchange are depicted in
Fig. 7.

Fig. 6. The dictionaries of agent 0 & 1 after the first query

4.2 Query 2: Agent 1 Asks Agent 0 for More “Sixties”

In the second query, user1 select the folder “sixties” and requests for more songs
like these. Agent1 interprets the request as “find more sixties, not seventies nor
eighties” and chooses to ask agent0 whether it has more music files.
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Fig. 7. The figure shows the main operations that form a successful interaction. It uses
query 1 as an example.

The query start as follows. In step 1, agent1 categorises the set of examples
and counter-examples as Nom(Beatles, The). This is a reasonable choice be-
cause three out of four of the examples are indeed Beatles songs. It uses the
existing label, 6365915a, to describe this category and query agent0. This last
one knows the label from the previous interaction. Because there is only one cat-
egory associated with this label, namely Artist(The Beatles), the decoding
of the label is unambiguous and agent0 returns all the identifiers of the Beatles
songs owned by its user. The beginning of the interaction is shown below:

- [0, Agent1]: search examples: [Twist And Shout][Paint It Black]
[I’m Down][And I Love Her], counter-examples: [Billie Jean]
[Smoke on the Water][True Blue][Let’s Spend the Night Together]

- [1, Agent1]: uses Category<Nom(Beatles, The)>
- [2, Agent1]: codes Category<Nom(Beatles, The)> as 6365915a
- [3, Agent0]: query for 6365915a
- [4, Agent0]: decodes 6365915a as Category<Artist(The Beatles)>
- [5, Agent0]: filter data: results: [Blackbird][Eleanor Rigby]
[Norwegian Wood][Across The Universe][You Know My Name][And
I Love Her][Helter Skelter][I Feel Fine][Twist And Shout]
[I’m Down]

- [6, Agent1]: owner evaluation: good (4 out of 10): [Twist And
Shout][I Feel Fine][I’m Down][And I Love Her], bad (6 out
of 10): [Across The Universe][Norwegian Wood][Helter Skelter]
[You Know My Name][Eleanor Rigby][Blackbird]

When owner1 evaluates the results in step 6, only four out of ten songs are
retained. The other Beatles songs are not considered “sixties” by the user (even
though, strictly speaking, they are recorded at the end of the sixties). We are
in the case described in Sec. 3.6: either agent1 misinterpreted its owner’s re-
quest, or agent0 misunderstood the label 6365915a. To distinguish between the
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two cases, agent1 takes the set of all the positive examples (the “sixties” songs
and the good results from the query) and compares them against all the nega-
tive examples (the “seventies” and “eighties” songs and the bad results). Using
those two sets, it is clear that the category selected by agent1 to describe the
request, Nom(Beatles, The), does not satisfy. Agent1 concludes that it has mis-
interpreted the request of the owner. It corrects its mistake and creates a new
classifier, Année(from 1963 to 1966), that better reflects the request. A new
label is introduced (5f6a1a0c) and bound to the classifier. The search is then
repeated using the new label. Because agent0 does not know the new label, the
examples and counter-examples are transmitted along with the label to indi-
cate its meaning. Agent0 categorises these examples as Genre(Rock ’n Roll)
and uses the new category, Genre(Rock ’n Roll), to filters its data set. This is
summarised below:

- [7, Agent1]: owner request misinterpreted, uses new
Category<Annee(from 1963.0 to 1966.0)> instead.

- [8, Agent1]: binds 5f6a1a0c to Category<Annee(from 1963.0
to 1966.0)>

- [9, Agent1]: transmits examples and count-examples of 5f6a1a0c
- [10, Agent0]: categorisation failed
- [11, Agent0]: creates Category<Genre(Rock ’n Roll)>
- [12, Agent0]: binds 5f6a1a0c to Category<Genre(Rock ’n Roll)>
- [13, Agent0]: query for 5f6a1a0c
- [14, Agent0]: decodes 5f6a1a0c as Category<Genre(Rock ’n Roll)>
- [15, Agent0]: filter data: results: [And I Love Her][I Feel
Fine][I’m Down][Twist And Shout]

- [16, Agent1]: owner evaluation: good (4 out of 4): [Twist And
Shout][I Feel Fine][I’m Down][And I Love Her]

- [17, Agent1]: search sucessful
- [18, Agent1]: update dictionary
- [19, Agent0]: update dictionary

The results of the query are all considered useful by owner1 and the inter-
action ends successfully. Note that the agents were able to have an effective
communication although they use different categories and meta-data. The up-
dated dictionaries of agents 0 and 1 are displayed in Fig. 8.

Fig. 8. The dictionary of agent 0 and 1 after the second query
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4.3 Query 3: Agent 2 Asks Agent 0 for More “Party Music”

In the third query, owner2 is looking for more “party music”. The request will be
directed to agent0. This is agent2’s first query and it’s dictionary is still empty.
To describe the request it introduces a new category, Band(beatles), and a new
label, 8b85235d (see Sec. 3.3, “The information agent fails to categorise”). In
this query, there are no counter-examples for the selected “party music” because
the owner has no folders from which to distinguish them. The summary of the
interaction starts as follows:

- [0, Agent2]: search examples: [Twist And Shout][I’m Down],
counter-examples: none

- [1, Agent2]: categorisation failed
- [2, Agent2]: creates Category<Band(beatles)>
- [3, Agent2]: binds 8b85235d to Category<Band(beatles)>

Because agent0 does not know the new label, it signal a failure to agent2
which, in turn, sends over the identifiers of the examples to explain the mean-
ing of the label. Agent0 reuses the existing category Category<Artist(The
Beatles)> to describe the songs and binds the new label to it (cfr. Sec. 3.4,
“The callee does not know the label”). It then uses this category to filter its
data set and return the results of the query. This is shown below:

- [4, Agent0]: query for 8b85235d
- [5, Agent0]: fails to decode 8b85235d
- [6, Agent2]: transmits examples and count-examples of 8b85235d
- [7, Agent0]: uses Category<Artist(The Beatles)>
- [8, Agent0]: binds 8b85235d to Category<Artist(The Beatles)>
- [9, Agent0]: query for 8b85235d
- [10, Agent0]: decodes 8b85235d as Category<Artist(The Beatles)>
- [11, Agent0]: filter data: results: [Twist And Shout][And I Love
Her][Norwegian Wood][Helter Skelter][I’m Down][Blackbird][You
Know My Name][Across The Universe][I Feel Fine][Eleanor Rigby]

Agent2 presents the results to the user for evaluation. The user selects only
4 out of 10 results, which is deemed too low to be successful. As in the pre-
vious query, the information agent re-analyses all the positive examples and
negative examples in its possession and concludes it has misinterpreted the se-
lection of the owner. It tries to create a better category than the one used and
introduces the classifier Energy(from 0.523 to 0.745) together with the label
f5af0ee6. The label and the examples and counter-examples are transmitted to
its peer. Agent0 finds that the existing classifier Genre(Rock ’n Roll) fits the
description well and binds the new label to it. This is summarised below:

- [12, Agent2]: owner evaluation: good (4 out of 10): [Twist And
Shout][I Feel Fine][Helter Skelter][I’m Down], bad (6 out of
10): [Across The Universe][Norwegian Wood][You Know My Name]
[Eleanor Rigby][Blackbird][And I Love Her]
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- [13, Agent2]: owner request misinterpreted, uses new
Category<Energy(from 0.523 to 0.745)> instead.

- [14, Agent2]: binds f5af0ee6 to Category<Energy(from 0.523
to 0.745)>

- [15, Agent2]: transmits examples and count-examples of f5af0ee6
- [16, Agent0]: uses Category<Genre(Rock ’n Roll)>
- [17, Agent0]: binds f5af0ee6 to Category<Genre(Rock ’n Roll)>

Agent2 queries agent0 again. Both agents are able to code/decode the label
and the songs that fit the classifier Genre(Rock ’n Roll) are sent to agent2.
Three out of four results are deemed relevant to owner2 and the query is con-
sidered a success.

- [18, Agent0]: query for f5af0ee6
- [19, Agent0]: decodes f5af0ee6 as Category<Genre(Rock ’n Roll)>
- [20, Agent0]: filter data: results: [And I Love Her][I’m Down]
[Twist And Shout][I Feel Fine]

- [21, Agent2]: owner evaluation: good (3 out of 4): [Twist And
Shout][I Feel Fine][I’m Down], bad (1 out of 4):
[And I Love Her]

- [22, Agent2]: search sucessful
- [23, Agent2]: update dictionary
- [24, Agent0]: update dictionary

When agent0 updates its dictionary, it strengthens the tie between the label
f5af0ee6 and the category Genre(Rock ’n Roll) and reduces those of compet-
ing bindings. In this case, one other label is associated with the category, specifi-
cally, the label 5f6a1a0c. The weight of this binding is reduced by Δn−inh from
0.6 to 0.5 (Δn−inh = 0.1). The states of the dictionaries after the third query
are shown in Fig. 9.

Fig. 9. The dictionaries of the agents after the third query

4.4 Owner 0 Makes Changes to His Taxonomy

After the third query, owner0 edits his data set. The owners of the information
systems can intervene at any moment in the organisation of the music files, as it
is under their control, and the information agents must be able to cope with these
changes gracefully. In this example, owner0 adds a new folder, named “elvis”.
The new directory structure is shown in Fig. 10.
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Fig. 10. Owner0 adds the directory “elvis” to its data organisation. The folders also
contains the music files obtained in query 1.

4.5 Query 4: Agent 2 Asks Agent 0 for More “Party Music”

The last query start similarly as the previous one. This time again, agent2 is
seeking more “party music” from agent0. The initial request of the owner is
suitably categorised as Energy(from 0.523 to 0.745) and the same label as
in query 3 is reused. Agent0 decodes the label as Genre(Rock ’n Roll) and
uses this classifier to filter its data set:

- [0, Agent2]: search examples: [Billie Jean][Twist And Shout]
[I Feel Fine][Helter Skelter][True Blue][I’m Down],
counter-examples: none

- [1, Agent2]: uses Category<Energy(from 0.523 to 0.745)>
- [2, Agent2]: codes Category<Energy(from 0.523 to 0.745)> as
f5af0ee6

- [3, Agent0]: query for f5af0ee6
- [4, Agent0]: decodes f5af0ee6 as Category<Genre(Rock ’n Roll)>
- [5, Agent0]: filter data: results: [And I Love Her][I Feel
Fine][Amazing Grace][Twist And Shout][I’m Down][Are You Lonesome
Tonight][Love Me Tender]

Unlike the previous query, a large number of the result are considered unrel-
evant to the owner. The Elvis’ songs that were added since the previous query
are not retained by owner2 and the query is deemed unsuccessful. When agent2
evaluates the set of all the positive example (all the “party music” songs plus all
the good results) and the set of all the negative example (in this case, the bad
results), it finds that the category chosen to code the request was valid. Agent2
concludes that the failing communication is due to a misinterpretation of the
label by agent0. We are in the situation described in Sec. 3.7, “The caller and
callee interpret the label differently”.

The label is therefore considered unreliable and the strength of its binding to
the selected classifier is decreased by both agents. Agent2 then explains the use of
the label by pointing agent0 to the set of examples and counter-examples. Agent0
concludes that the classifier Genre(Rock ’n Roll) unsufficiently discriminates
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between both sets and, as a result, introduced a new classifier BPM(from 119.0
to 180.0). This is shown next:

- [6, Agent2]: owner evaluation: good (3 out of 7): [Twist And
Shout][I Feel Fine][I’m Down], bad (4 out of 7): [Are You
Lonesome Tonight][Amazing Grace][Love Me Tender][And I Love Her]

- [7, Agent2]: search failed
- [8, Agent2]: decreasing binding strength
[f5af0ee6,Category<Energy(from 0.523 to 0.745)>,0.5]

- [9, Agent0]: decreasing binding strength
[f5af0ee6,Category<Genre(Rock ’n Roll)>,0.4]

- [10, Agent2]: transmits examples and count-examples of f5af0ee6
- [11, Agent0]: categorisation failed
- [12, Agent0]: creates Category<BPM(from 119.0 to 180.0)>
- [13, Agent0]: binds f5af0ee6 to Category<BPM(from 119.0
to 180.0)>

Now that the confusion over the label is reduced, the query can proceed and
ends successfully. Note that, once again, the categories used by both agents is dif-
ferent using different meta-data (BPM versus Energy). The query ends as follows:

- [14, Agent0]: query for f5af0ee6
- [15, Agent0]: decodes f5af0ee6 as Category<BPM(from 119.0
to 180.0)>

- [16, Agent0]: filter data: results: [I’m Down][I Feel Fine]
[Let’s Spend the Night Together][Eleanor Rigby][Twist And Shout]
[Helter Skelter]

- [17, Agent2]: owner evaluation: good (5 out of 6): [Twist And
Shout][I Feel Fine][Helter Skelter][Let’s Spend the Night
Together][I’m Down], bad (1 out of 6): [Eleanor Rigby]

- [18, Agent2]: search sucessful
- [19, Agent2]: update dictionary
- [20, Agent0]: update dictionary

The states of the dictionaries at the end of the four queries are shown in
Fig. 11.

This example is limited to only four queries. In subsequent interactions the
dictionaries will continue to evolve. As a results of successful and failed queries,

Fig. 11. The dictionaries of the agents after the fourth query
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the weights of the bindings between labels and categories will be adapted, and
new words will be introduced to disambiguate existing ones. The environments
of the agents also changes as the owners make modify the folder structures,
new music files are inserted into the system, and the user’s tastes evolve. The
dynamics of such open-ended communication systems have been studied before
[12,14] but more simulations are required that take into account the specificities
of the current proposition.

4.6 Categorisation

In the example, the agents introduce new categories to discriminate between sets
of data. We assumed that each agent has a table of meta-data and that the cate-
gories are described as a predicate over this meta-data. The construction of clas-
sifiers is a well-documented problem in the field of Machine Learning and is not
the topic of this paper. From the point of view of the agent, the component that
constructs the categories is a black box that can be called upon when needed.

Although the algorithms discussed in this paper are independent of the im-
plementation of the classifiers, the discriminative qualities of the latter have an
impact on the success of the communication between the agents and, thus, of
the evolution of the dictionaries. The influence of the precision of the categories,
the threshold used in the categorisation (θdisc), and the threshold used in the
owner evaluation (θfail) on the convergence and size of the dictionaries remains
to be studied, however.

5 Conclusions

This paper considered the question of semantic interoperability in collective in-
formation exchange. We advocated the creation of a semiotic dynamics whereby
information agents coordinate the use of labels, similar to the way this is now
done by human users in social exchange websites, and they develop an emer-
gent grounded semantics for these labels in terms of classifiers that are functions
over data or meta-data. We illustrated this for the domain of electronic music
distribution.

On the positive side, the examples in section 5 show how the agents “boot-
strap” their dictionaries. The only data exchanged between the agents are the
unique identifiers of the data and the labels of the query. No meta-data is
exchanged nor any indication of the owner’s data organisation. This makes it
possible for the taxonomies and the meta-data to be completely local to each
information system. We have seen cases of successful communication but also
how failure is handled in two situations: when the calling agent misunderstands
the request of its owner, and when the called agent misinterprets the label of the
query. Agents are not using the tags of the folders in the interpretation of the
owner’s request. So there is no attempt to do taxonomy or schema matching.
In fact, the owner’s taxonomy plays only a marginal role, it was mainly used to
define the initial set and the context for the query. The definitions of classifiers
does not depend on them.
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The idea of bootstrapping semantic interoperability from local interactions in
a bottom-up fashion is not new (see in particular [2]). The novelty of the pre-
sented work resides in the fact that the peers do not exchange the organisation
of their meta-data (or database schema’s) and that no direct mapping is built
between these schema’s. Instead, the peers locally maintain a bi-directional map-
ping between classifiers and tags. In addition, the classifiers nor the mapping are
established by human experts but are introduced by the agents through the ex-
change of examples and counter-examples. The system is continuously adapting
based on the validity of the results. This validation is not done automatically,
as has been proposed in the literature, but by the user. The input from the end
user, not necessarily an expert, remains a key element of the system.

Although we believe that the approach advocated in this paper provides an in-
teresting alternative to information exchange without semantics or the semantic
web, we want to stress the limits of the approach. It will not always be possible
to have a grounded semantics, partly because user behaviour may be too erratic
and subjective to construct classifiers, and partly because the building blocks
available for grounding (such as the signal processing primitives in the case of
music) or the machine learning methods (in this case genetic programming) may
not be effective enough to achieve an adequate grounded semantics. We therefore
see the grounding and negotiation of labels for classifiers as one of the building
blocks to achieve emergent semantics. Other building blocks consist of exploiting
the co-occurrence of tags (as displayed by tag clouds), which establish associa-
tive relations that narrow down the set of data elements corresponding to a tag,
or the query path of a user that establishes additional context [10].
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Abstract. Defining and using ontology to annotate web resources with
semantic markups is generally perceived as the primary way to imple-
ment the vision of the Semantic Web. The ontology provides a shared
and machine understandable semantics for web resources that agents
and applications can utilize. This top-down approach (in the sense that
an ontology is defined first on top of existing web resources and then
used later to markup them), however, has a high barrier to entry and
is difficult to scale up. In this paper, we investigate using a bottom-up
approach for semantically annotating web resources as supported by the
now widely popular social bookmarks services on the web where users
can annotate and categorize web resources using “tags” freely choosen
by the user without any pre-existing global semantic model. This kind
of informal social categories is coined as “folksonomies”. We show how
global semantics can be statistically inferred from the folksonomies to se-
mantically annotate the web resources. The global semantic model also
disambiguate the tags and group synonymous tags together. Finally, we
show that there indeed are hierarchical relations among the emerged con-
cepts in the folksonomy and it is plausible to further identify them if we
use more advanced probabilistic models.

1 Introduction

Semantic Web is a vision that web resources are made not only for humans to
read but also for machines to understand and automatically process [1]. This re-
quires that web resources be annotated with machine understandable metadata.
Currently, the primary approach to achieve this is to firstly define an ontology
and then use the ontology to add semantic markups for web resources. These
semantic markups are written in standard languages such as RDF [2] and OWL
[3] and the semantics is provided by the ontology that is shared among different
web agents and applications. We refer to this approach as the top-down approach
because an global semantic model (i.e., the ontology) is defined and imposed on
top of web resources before we actually use the semantic model to annotate these
resources.

The top-down approach has several drawbacks. Firstly, establishing an ontol-
ogy as a semantic backbone for a large number of distributed web resources is

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VI, LNCS 4090, pp. 168–186, 2006.
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not easy. Different people/applications may have different views on what exists
in these web resources and this leads to the difficulty of the establishment of
and commitment to a common ontology. Even if the consensus of a common
ontology can be achieved, it may not be able to catch the fast pace of change of
the targeted web resources. A lot of work has been done on developing ontology
engineering tools to help people create ontologies, such as Protégé [4], OilEd
[5], WebODE [6], Orient [7] and SWOOP [8]. While these tools facilitate the
actual construction of ontologies, they generally do not help much in forming
the required consensus for ontolgy building in a distributed environment. Us-
ing these tools also requires some level of expertise in ontology engineering or
knowledge engineering, which put a high barrier to entry for the mass developers
and users. Studies on ontology evolution, such as [9,10], focus on how changes
of ontologies are tracked [11,12], versioned [13,14] and managed [15] but does
not provide mechanisms to automatically and actively change the ontology ac-
cording to the changes of web resources it intends to cover. Secondly, even if we
have successfully built an ontology, using it to make semantic annotations in an
automatic and scalable manner is still a challenging task. Usually, the semantic
annotations are made manually [16,17] or semi-automatically [18,19,20,21]. Al-
though this helps create high quality semantic annotations, it is hard to scale
up. Till now, only very little work has been done on large-scale fully automatic
semantic annotations of web reseources [22,23,24].

The above shortcomings of the top-down approach have actually already been
identified in the “emergent semantics” research [25,26] in which semantics is treated
as an agreement that is achieved in a bottom-up and incremental manner with-
out relying on pre-existing global semantic models. In this paper, we investigate
whether and how the semantic annotation problem can be attacked in this bottom-
up emergent semantics way. Our work is enabled and supported by the now widely
popular social bookmarks services on the web, like Delicious1, Furl2 and Yahoo
My Web 2.03. These services allow web users to annotate and categorize web re-
sources using “tags” that are freely chosen by the user without any “a-priori” dic-
tionary, taxonomy, or ontology to conform to. Thus, the tags can be any strings
that the user deems appropriate for the web resource. The name “folksonomy”
has been coined for this kind of informal social categorization of web resources.
In our view, this is also a massive bottom-up annotation of web resources that di-
rectly complements the traditional top-down approach of semantic annotation. If
emergent semantics can be derived from these free-style bottom-up annotations,
it will remedy the headache of top-down approach to semantic annotations. It re-
moves the high barrier to entry because web users can annotate web resources
easily and freely without using or even knowing taxonomies or ontologies. It di-
rectly reflects the dynamics of the vocabularies of the users and thus evolves with
the users. It also decomposes the burden of annotating the entire web to the an-
notating of interested web resources by each individual web users.

1 http://del.icio.us
2 http://www.furl.net
3 http://myweb2.search.yahoo.com
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Apparently, without a shared taxonomy or ontology, the folksonomy suffers the
usual problem of ambiguity of semantics. The same tag may mean different things
for different people and two seemingly different tags may bear the same meaning.
Without a clear semantics, these bottom-up annotations won’t be much useful for
web agents and applications on the Semantic Web. In this paper, we propose to
use a probabilistic generative model to model the user’s annotation behavior and
to automatically derive the emergent semantics of the tags. Synonymous tags are
grouped together and highly ambiguous tags are identified and separated. Finally,
we show that we can use more advanced probabilistic models to discover the hier-
archical relations among the emerged concepts in the folksonomy.

2 Folksonomy

The idea of a bottom-up approach to the semantic annotation is enlightened and
enabled by the now widely popular social bookmarks services on the web. These
services provide easy-to-use user interfaces for web users to annotate and catego-
rize web resources, and furthermore, enable them to share the annotations and
categories on the web. For example, the Delicious (http://del.icio.us) service
allows you to easily add sites you like to your personal collection of links, to cat-
egorize those sites with keywords, and to share your collection not only between
your own browsers and machines, but also with others. There are many book-
marks manager tools available [27,28]. What’s special about the social bookmarks
services like Delicious is their use of keywords called “tags” as a fundamental con-
struct for users to annotate and categorize web resources. These tags are freely
chosen by the user without a pre-defined taxonomy or ontology. Some example
tags are “blog”, “mp3”, “photography”, “todo” etc. The tags page4 of the Deli-
cious web site lists most popular tags among the users and their relative frequency
of use. These user-created categories using unlimited tags and vocabularies was
coined a name “folksonomy” by Thomas Vander Wal in a discussion on informa-
tion architecture5. The name is a combination of “folk” and “taxonomy”.

As pointed out in [29], folksonomy is a kind of user creation of metadata
which is very different from the professional creation of metadata (e.g. created by
librarians) and author creation of metadata (e.g. created by a web page author).
Without a tight control on the tags to use and some expertise in taxonomy
building, the system soon runs into problems caused by ambiguity and synonymy.
[29] cited some examples of ambiguous tags and synonymous tags in Delicious.
For example, the tag “ANT” is used by many users to annotate web resources
about Apache Ant, a building tool for Java. One user, however, uses it to tag
web resources about “Actor Network Theory”. Synonymous tags, like “mac” and
“macintosh”, “blog” and “weblog” are also widely used. What’s more important
about folksonomies is that the tags are all in a flat namespace without hierarchy
or any parent-child relationships.
4 http://del.icio.us/tag/,accessedatNovember2005.
5 http://atomiq.org/archives/2004/08/folksonomy social classification.

html,accessed at November 2005.
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Despite of the seemingly chaos of unrestricted use of tags, social bookmarks
services still attract a lot of web users and provide a viable and effective mech-
anism for them to organize web resources. [29] contributes the success to the
following reasons.

– Low barriers to entry
– Feedback and asymmetric communications
– Individual and community aspects

Unlike the professional creation of metadata or the top-down approach of the
semantic annotation, folksonomy does not need sophisticated knowledge about
taxonomy or ontology to do annotation and categorization. This significantly
lowers the barrier to entry. In addition, because these annotations are shared
among all users in a social bookmark service, there is an immediate feedback
when a user tags a web resource. The user can immediately see other web re-
sources tagged by other users using the same tag. These web resources may not
be what the user expected. In that case, the user can adapt to the group norm,
keep the tag in a bid to influence the group norm, or both [30]. Thus, the users of
folksonomy are negotiating the meaning of the terms in an implicit asymmetric
communication. This local negotiation, from the emergent semantics perspec-
tive, is the basis that leads to the incremental establishment of a common global
semantic model. [31] made a good analogy with the “desire lines”. Desire lines
are the foot-worn paths that sometimes appear in a landscape over time. The
emergent semantics is like the desire lines. It emerges from the actual use of the
tags and web resources and directly reflects the user’s vocabulary and can be
used back immediately to serve the users that created them. In the following
of the paper, we quantitatively analyze the folksonomy and show that emergent
semantics indeed can be inferred statistically from it.

3 The Data of Social Bookmarks

Social bookmark services can provide many functionalities for end users. Dif-
ferent services may have different functions. Some allow users to give a short
description of each bookmark. Some allow users to rate each bookmark for its
quality. These different functions acquire different kind of data from end users
for web bookmarks. In this paper, we focus on the most important data that
are common to most social bookmarks. The core function of a social bookmark
service is to let users bookmark URLs and assign tags to URLs. Tags are words
or phrases that are freely chosen by users. This core function is common to most
social bookmark services. Hence, in this paper, we focus on this core function
and the data asscoicated with it, namely the user, the URL and the tag.

3.1 Co-occurrence Data Model

We abstract the data in social bookmarks services as a set of quadruples

(user, URL, tag, time)
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which means that a user tags a URL with a specific tag at a specific time.
In this paper, we focus more on what URL gets what tags and ignore the
user and time information in the quadruple. What interests us is thus the co-
occurrence of tags and URLs. Let’s denote the set X = {x1, x2, . . . , xN} and
Y = {y1, y2, . . . , yM} to be the set of URLs and the set of tags in the collected
folksonomy data respectively. Each quadruple then translates to a co-occurence
of a URL and a tag. The set of quadruples then translates to the co-occurrence set
S = {(xi(r), yj(r), r) : 1 ≤ r ≤ L}. L is the total number of co-occurrences/pairs
in S. xi(r) corresponds to the URL in X which appears in the rth pair. yj(r) cor-
responds to the tag in Y which appears in the rth pair. nij = |{(xi, yj , r) ∈ S}|
measures the frequency of co-occurrence of URL xi and tag yj .

We have collected a sample of Delicious data by crawling its web site during
March 2005. The data set consists of 2,879,614 taggings made by 10,109 different
users on 690,482 different URLs with 126,304 different tags. The co-occurrence
data can be easily computed from the raw dataset. The following paper will use
the dataset for experiments.

3.2 Social Aspects: The Power Law

The biggest difference between a set of personal bookmarks and a social book-
marks service is the implicit social interactions enabled by the latter. Typically,
users of a socical bookmarks service can see other users’ public bookmarks and
tags. For a given tag (or a set of tags), users can see what URLs other users have
tagged using the same tag(s). This function is very valuable for the users because
it enables them to discover potentially high-quality web resources collected by
other users of the same topic. When the user bookmarks a URL, tags used by
other users for the same URL can also be seen. This may influence the user on
what tag(s) to use for bookmarking the URL. Because these functions of the
social bookmarks service are both very valuable and interesting, users of the ser-
vice frequently use these functions, which is actually implicit social interactions.
As we have analyzed in section 2, through these implicit social interactions, users
are negotiating the meanings and uses of tags on URLs. These local negotiations,
from the emergent semantics perspective, enable the incremental establishment
of a common global semantic model.

When a lot of users are involved in the implicit social interactions, interesting
phenomenons emerge. If an URL is bookmarked by many users, it has more
chance to be seen by other users. The more chance to be seen by other users, the
more the URL may be bookmarked. This positive loop will lead to an exponential
growth of the number of the times an URL being bookmarked. Tags have the
similar situation. If a common tag is used by many people for tagging many
URLs, it has more chance to be seen by other users. The more chance for the
tag to be seen, the more it may be used by users to tag more URLs. This is
also a self-rewarding positive loop. Similar situations also occur on the web. If
a web page is linked by many other pages, it has more chance to be seen by
users. The more chance to be seen by users, the more chance it may be linked by
more web pages. On the web, this phenomenon is reflected in the distribution



Emergent Semantics from Folksonomies: A Quantitative Study 173

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000  1e+06

nu
m

be
r 

of
 ta

gg
in

gs

URLs

URLs

Fig. 1. The distribution of the taggins
of URLs

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000  100000  1e+06

nu
m

be
r 

of
 u

se
s

tags

Tags

Fig. 2. The distribution of the uses of
tags

of the in-bound links of web pages. Only very few pages have very large amount
of in-bound links and most web pages only have a few in-bound links. Study
showes that the growth of the web follows the Power Law [32], meaning that
the probability of attaining a certain size x is proportional to 1/x to a power β,
where β is greater than or equal to 1.

We expect that the social bookmarks data also has the Power Law distribu-
tion. To verify this, using the Delicious data set we collected, we computed the
distribution of the number of taggings of URLs and the number of uses of tags.
More precisely, for every URL xi ∈ X , we computed the number of taggings
users have made on it: nxi = |{(xi, y, r) ∈ S}|. For every tag yj ∈ Y , we com-
puted the number of uses of the tag by all the users: nyj = |{(x, yj , r) ∈ S}|.
Fig.1 and Fig.2 show the results of the two computed distributions respectively6.
Since both the axes of the figures are in log-scale, the figures clearly show Power
Law distributions. This reflects the implicit social interactions inherent in the
social bookmarks service.

4 Deriving Emergent Semantics

4.1 Probabilistic Generative Model

The co-occurrences of URLs and tags is not a random phenomenon. It reflects
the underlying semantics that users has assigned to these URLs and tags. We
propose use the following probabilistic generative model to model the user’s
behavior in assigning a tag to a URL. The model assumes the exist of a set of
concepts C = {c1, c2, . . . , cK}.
1. User randomly encounters a URL xi on the web with probability pi .
2. The URL makes the user thinking of a concept cα with probability pα|i .
3. The concept cα trigers the user to use tag yj with probability pj|α .

Here, both pα|i and pj|α are conditional probabilities. pα|i is the probability of
thinking of concept cα given the URL xi. pj|α is the probability of using tag
yj given the concept cα. This probabilistic generative model can be visually
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Fig. 3. Probabilistic generative model

depicted as Fig.3 The model makes a simplified independence assumption that
once a concept is thought by a user, the tag to use is only determined by the
concept and is indenpendent of the URL that trigers the concept. Note that
the set of concepts is actually the underlying semantics that controls the co-
occurrences of URLs and tags. The problem is then how to get the set of concepts
and their probability relations with the tags and URLs. Directly estimates the
probabilities is very difficult. The set of URLs X is potentially very large because
of the overwhelming size of the web . The set of tags Y could also be very large
because folksonomy has no control on the use of tags. Any string could be a tag.
Thus, the frequency of a pair (xi, yj) may be very very low and this creates the
data sparseness problem for model parameter estimation. However, the introduce
of the concept set C remedies the problem. Hofmann and Puzicha [33] proposed
a EM algorithm for estimating the parameters. The above model corresponds to
the asymmetric SMM model for co-occurrence data in [33].

Hofmann and Puzicha showed [33] that the asymmetric SMM model is equiv-
alent to its symmetric version: the SMM model which is easier to compute and
can handle larger dataset. In our case, the SMM model can be explained as the
following probabilistic model:

1. The user randomly thought of a concept cα with probability πα .
2. A URL xi is selected by the user for the concept cα with probability pi|α .
3. A tag yj is selected by the user for the concept cα with probability qj|α

Thexi andyj areconditionally independentgiventheconceptcα andthe jointprob-
ability distribution of the SMM is a mixture of separable component distributions
(hence the name, Separable Mixture Model) which can be parameterized by

pij = P (xi, yj) =
K∑

α=1

παP (xi, yj|cα) =
K∑

α=1

παpi|αqj|α

Following the EM approach, to optimally fit the SMM model to the observation
of co-occurrences set S, and estimate the parameters, the log-likelihood of each
pair co-occurrences probability

(
p

nij

ij

)
for all pairs

6 In order to reduce the size of the figures’ EPS file, only 1/100 data points are drawn.
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L =
N∑

i=1

M∑
j=1

nij log

(
K∑

α=1

παpi|αqj|α

)

should be maximized. As a standard method for EM algorithm for mixture mod-
els, a hidden variable Rrα is introduced which denotes the probability that the
observation

(
xi(r), yj(r), r

)
is generated from the concept cα. The EM method

leads to the

E-Step

〈Rrα〉(t+1) =
π̂

(t)
α p̂

(t)
i(r)|αq̂

(t)
j(r)|α∑K

v=1 π̂
(t)
v p̂

(t)
i(r)|v q̂

(t)
j(r)|v

M-Step

π̂(t)
α =

1
L

L∑
r=1

〈Rrα〉(t)

p̂
(t)
i|α =

1

Lπ̂
(t)
α

L∑
r:i(r)=i

〈Rrα〉(t)

q̂
(t)
j|α =

1

Lπ̂
(t)
α

L∑
r:j(r)=j

〈Rrα〉(t)

Iterating the E-Step and M-Step, the parameters converge to a maximum of the
likelihood. Our collected raw Delicious data is very large for the EM algorithm.
We made a random sample of the collected Delicious data. The sample has
17,707 URLs, 7,238 tags and 300,869 co-occurrences in total. We set the number
of concepts to 50 and run through the EM algorithm of the SMM model. After
computation, the parameter qj|α gives the conditional distribution of tags over
the 50 concepts. We selected the top 10 concepts and for each concept the first
five tags that have the highest qj|α value. The result is shown in Table 1. We
can see that tags that have the same semantics are effectively grouped together
in one concept. The concepts thus can be seen as a “classes” in an ontolgy or
“synsets” in WordNet [34].

4.2 Emergent Semantics

Using the results obtained by the probability generative model, we can derive
and represent the emergent semantics of URLs and tags. For a given URL, its
semantics should be represented by the concepts the URL is related to. Let’s use
pα|i to denote the conditional probability that a concept cα is thought of by the
user given an URL xi. For a given URL xi, the pα|i values for all concepts cα

actually represents a discrete probability distribution on all the concepts. This
distribution describes in detail the concepts that the URL relates to and the
strength of the relatedness. We thus use this distribution as the representation
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Table 1. Concepts and Tags

Concept Top 5 tags in the concept
1 technology Google Search Internet future
2 Php PHP webdev mysql code
3 programming development Programming cs toread
4 del.icio.us delicioius bookmarks tags folksonomy
5 humor fun humour Funny ukquake
6 software windows tools Software freeware
7 books book library literature copyright
8 bittorrent p2p torrents BitTorrent P2P
9 comics comic humor webcomic Comics
10 security wordpress hack wifi Security

of the semantics of the URL. Since it is a discrete distribution, we can represent
it as a vector. The semantics of a URL xi is thus represented as

−−−−−−−−−−→
semantics(xi) =

〈
pα|i | α = 1, 2, . . . , K

〉
where pα|i can be computed as follows using Bayesian theorem:

pα|i =
pi|απα

p(xi)
=

pi|απα∑K
α=1 pi|απα

πα and pα|i have been obtained via the EM algorithm in the probabilistic gen-
erative model. Therefore, the representation of the semantics of a URL can be
computed.

Using the previous experiment data, we calculated the semantic representa-
tions of all URLs in the data. Fig.4 to Fig.7 show the concept distributions
of four URLs. URL-1 is a special URL used by the Delicious service for re-
placing all ill-formated URLs users have bookmarked. Since there is a great
variety of different ill-formated URLs and their tags, this special URL has no
prominent concepts associated with it. This is also reflected in its concept dis-
tribution in Fig.4 where the URL is related to almost all concepts in very low
strength (< 0.07). In contrast, the other three URLs all have prominent concepts.
URL-2 to URL-4 are http://www.yahoo.com, http://jakarta.apache.org
and http://www.filelist.org respectively. Their concept distributions all
have spikes that have strong relatedness to the URL (> 0.6).

Similar to the representation of the semantics of an URL, we can define the
representation of the semantics of a tag yj as:

−−−−−−−−−−→
semantics(yj) =

〈
qα|j | α = 1, 2, . . . , K

〉
where qα|j is the conditional probability that a concept cα is generated given the
tag yj . This probability can be computed as

qα|j =
qj|απα

p(yj)
=

qj|απα∑K
α=1 qj|απα
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Fig. 4. Distributions of URL-1
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Fig. 5. Distributions of URL-2

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Concept

P
ro

ba
bi

lit
y

Fig. 6. Distributions of URL-3
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Fig. 7. Distributions of URL-4
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Fig. 8. Distribution of “todo”
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Fig. 9. Distribution of “xp”

where both qj|α and πα have been obtained in the probabilistic generative model.
Therefore we can also compute the semantic representation of a tag. Using the
previous experiment data, we calculated four tags’ semantic representations. The
result is shown in Fig.8 to Fig.11.
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Fig. 10. Distribution of “google”

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

concept

Fig. 11. Distribution of “cooking”

The tags “todo” and “cooking” are two extreme cases. Because what to do
next is vastly different for different people, the tag “todo” is used to mark a
lot of different URLs for different meanings of what to do next. This makes
the “todo” tag very ambiguous. This is reflected in its concept distribution in
Fig.8. On the contrary, the tag “cooking” is used very unambiguously in our
experiment data set. Thus, its concept distribution as shown in Fig.11 only has
one very big spike. The other two tags, “xp” and “google”, are between the two
extreme cases. For tag “xp”, it is mainly used for the meanings of “windows xp”
or “extrem programming”. Likewise, the tag “google” is mostly used together
with “search” or “gmail” for the meaning of internet search or google gmail.
The two tags’ concept distributions (as in Fig.9 and Fig.10) therefore has two
or more spikes.

The above examples have shown the clear difference between ambiguous
tags/URLs and unambiguous ones. Their concept distributions (or equivalently,
their semantic representations) have very different characteristics. The concept
distributions of ambiguous tags/URLs are more evenly distributed while those of
unambiguous ones usually have very prominent spikes. This leads us to the idea
of quantitatively measure the ambiguousness of a tag/URL using the entropy of
its concept distribution. The ambiguousness of a tag/URL thus can be seen as a
function of its semantic representation. More precisely, we define the ambiguity
of a URL xi and/or a tag yj as follows:

ambiguity(xi) = −
K∑

α=1

pα|i log pα|i

ambiguity(yj) = −
K∑

α=1

qα|j log qα|j

where pα|i and qα|j are exactly the dimension value within the vectors−−−−−−−−−−→
semantics(xi) and

−−−−−−−−−−→
semantics(yj). Using this definition, we calculated the ambi-

guity of all tags in the experiment data set and the result is shown in Table 2. The
table shows the top 10 tags with the largest and smallest ambiguity
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Table 2. Tags and their entropy

NO. Tags Ambiguity Tags Ambiguity
1 todo 3.24 cooking 0
2 viapopular 3.19 webmail 0
3 .imported 3.18 Deutsch 0
4 temp 3.08 netlabel 0
5 linklog 3.07 OWL 0
6 new 3.05 ttf 0
7 resources 3.04 vegetarian 0
8 from/furl 3.03 Sudan 0
9 resource 3.02 dictionary 0
10 [en] 3.00 rgb 0

values in column two and four respectively. In addition to “todo”, we noticed
that the tags “viapopular”, “.imported”, and “from/furl” are also very ambigu-
ous. These tags are used to mark URLs imported from other bookmarks, which
basically does not restrict the meaning of the tags to any specific concept. Gen-
eral tags, like “new”, “resource” and “[en]” also appears ambiguous because they
are too general to mean any particular concept. Note that the ambiguous word
“OWL” appears very unambiguously in the list because the Delicious commu-
nity is mostly concerned with IT technology. Thus, “OWL” in Delicious does
not mean the bird of night but the web ontology language OWL. Hence, this tag
appears very unambiguously.

In this subsection, we have defined the representation of the semantics of a
tag/URL as a concept vector that corresponds to a discrete concept distribution
of the tag/URL. We’d like to emphasize that this semantic representation is very
different from the ontology-based top-down approach to semantic annotation. In
the top-down approach, ontology is built beforehand whereas in our bottom-up
approach the set of concepts is dynamically determined from the data set via a
probabilistic model. Traditional semantic annotation is basically a binary judge-
ment. An object is either an instance of a concept or not. However, in our model,
the semantics of a tag/URL is not a binary classification but a discrete probabil-
ity distribution over all the concepts. Compared with binary classification, this
representation can better accommodate the inaccuracy, fuzziness and ambiguity
of semantics. We have shown how ambiguity can be computed from the seman-
tic representation. This semantic representation is also a computational result of
the data set, that is, it is emerged rather than assigned. In the above example,
the “OWL” tag is currently unambiguous in the data. When users are going
to use “OWL” to mean more and more about other things, e.g. the night bird,
its computed semantic representation from the data will change accordingly to
accommodate new meanings. This is the real power of the emergent semantics.
It dynamically reflects the current state of the system and evolves with it.

Compared to the top-down approach of semantics, what we currently lack-
ing is a hierarchy structure of the emerged concepts. Well-organized hierar-
chy structures of concepts is a strong point of the top-down approach. In the
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following subsection, using a more refined probabilistical model, we show that
there indeed are hierarchical relations among the emerged concepts.

4.3 Hierarchical Concept Relations

In order to find a hierarchy of all the concepts hidden in the tags, we utilized
the HACM model in [33]. HACM is a hierarchy clustering model. Fig.12 from
[33] shows the schema for data generation in HACM model. The rectangle at the

I    = 1i

xi

C

V    = 1
r

(x ,y ,r)i j

A

Fig. 12. Schema for data generation in HACM

bottom represents the concepts like in the SMM model. Triangle nodes denote
inner nodes of a hierarchy. In the folksonomy scenario, the users’ tagging behavior
can be explained using the HACM model as follows:

1. The user encounters some URL xi with probability pi.
2. The URL makes the user think of one concept cα in the bottom of the

hierarchy. A hidden binary variable Iiα is used to denote which concept is
chosen for the URL.

3. The user selects a generalization level v for the concept. This generalization
level determines an inner node in the path from the concept cα at the bottom
to the root node at the top. A hidden binary variable Vrv is introduced to
encode the resolution level Av for the rth co-occurrence observation.

4. A tag yj is chosen given the inner node Av with probability qj|α.

Note that the major difference with previous generative models is that the user
has to select a generalization level before generate the tag from the assigned
concept. Here, we omit the mathematical details and the EM algorithm of the
HACM model. Interested readers are referred to [33] for further reading.

We experimented using HACM model to automatically generate hierarchy
structures from the Delicious data we collected. In the experiment, we assumed
a complete binary tree structure. We are well aware that this is a radical sim-
plification and bold assumption because concept hierarchies need not to be so.
The concept hierarchy can even not be a tree but be a lattice. The purpose
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Fig. 13. Automatically generated taxonomy

Fig. 14. The distribution of the tag
“programming”

Fig. 15. The distribution of the tag “xml”

of this experiment, thus, is not to prove the correctness or robustness of the
method to derive concept hierarchies but to quantitatively study whether there
are narrower-broader relationships among the emerged concepts. We randomly
sampled the raw data to get a small test data with 1642 URLs and 1121 tags
co-occurred for 37,124 times to speed up this experiment. Fig.13 shows one of
the results of the experiments. The depth of the taxonomy is set to 5. The last
two rows of Fig.13 are actually at the same height 4 but are wrapped to fit the
page size. The numbers at the right size of the tags is the probability of the tag
generated at that generalization level. In order to assess the generated structure
and demonstrate the ability of the HACM model to identify abstraction levels in
the hierarchy, we have visualized the probabilisty distribution involving the tag
“programming” and “xml” in Fig.14 and Fig.15 respectively. We can see that
the “programming” tag is mostly used as a very general term. Hence the root
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node contains the majority of its probability mass. The tag is also used with “mi-
crosoft” and “regex” for its narrower sense of MS programming and programming
with regular expressions. This is reflected in the lower-left corner of the Fig.14.
On the contrary, the tag “xml” is used mostly as a very specific sense as in “xml
programming”. It thus appears large at the bottom of the hierarchy. It, however,
also used in a more general sense as a data format as in discussion with “atom”
and “feed” in height 2. These examples are only spotlights, but they showes that
there indeed are hierarchical relations among the emerged concepts and it is pos-
sible to discover them using more refined probabilistic models. The discovered
hierarchy can be used as a basis for further manual refinement for a taxonomy.

The advantage of such a generated taxonomy is that it is dynamically gen-
erated from free-style bottom-up annotations and it directly reflects the users’
vocabularies. The taxonomy thus can be effectively understood and utilized by
the community users. This avoids the drawbacks of the top-down approach to
semantic annotation in which the ontology is built before its actual use and
therefore may have missmatch with the requirements of its applications and
may out-of-sync with the resources the ontology intends to cover. Needless to
say, the bottom-up annotation removes the high barrier to entry in top-down
semantic annotations because the users need not to have sophiscated knowledge
about taxonomy or ontology to make the annotation.

5 Related Work

Semantic annotation is a key problem in the Semantic Web area. A lot of work
has been done about the topic. Early work like [16,17] mainly uses an ontol-
ogy engineering tool to build an ontology first and then manually annotate web
resources in the tool. In order to help automate the manual process, many tech-
niques has been proposed and evaluated. [22] learns from a small amount of
training examples and then automatically tags concept instances on the web.
The work has been tested on a very large-scale basis and achieves impressive
precision. [20] helps users annotate documents by automatically generate nat-
ural language sentences according to the ontology and let users interact with
these sentences to incrementally formalize them. Annother interesting approach
is proposed by [21] that utilizes the web itself as a disambiguation source. Most
annotations can be disambiguated purely by the number of hits returned by web
search engines on the web. [24] improves the method using more sophisticated
statistical analysis. Given that many web pages nowadays are generated from
a backend database, [19] proposes to automatically produce semantic annota-
tions from the database for the web pages. Information extraction techniques
are employed by [23] to automatically extract instances of concepts of a given
ontology from web pages. However, these work on semantic annotation follows
the traditional top-down approach to semantic annotation which assumes that
an ontology is built before the annotation process.

Our work of automatic taxonomy generation from folksonomy can be seen
as a method for ontology learning [35] which has lot of related work. [36] gives
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a comprehensive review of the state-of-the-art ontology learning methods and
places them in a framework for comparision. Most ontology learning methods
learn ontology from structured data (e.g. database schema), semi-structured data
on the web (e.g. HTML, XML and DTDs) and unstructured data (i.e. text). Very
few work exploits the social bookmarks for ontology learning. [37] learns ontology
from bookmarks, but the bookmarks used are those personal bookmarks stored
on personal PCs that are not shared. Our work learns a taxonomy from the
shared social bookmarks.

Much work has been done to help users manage their bookmarks on the
(semantic) web such as [27]. [28] gives a good review of the social bookmarks
tools available. These tools help make the social bookmarking easy to use but
lacks capabilities to derive emergent semantics from the social bookmarks.

Work on emergent semantics [25,26] has appeared recently, for example
[38,39,40]. [39] proposes an emergent semantics framework for large scale dis-
tributed systems and gives a good example of the framework. It shows how the
spreading of simple ontology mappings among adjacent peers can be utilized to
incremently achieve a global consensus of the ontology mapping. [40] described
how to incrementally obtain a unified data schema from the users of a large
collection of heterogeneous data sources. [38] is more related to our work. It
proposes that the semantics of a web page should not and can not be decided
alone by the author. The semantics of a web page is also determined by how
the users use the web page. This idea is similar to our thought. In our work,
a URL’s semantics is determined from the users’ tags. However, our method of
achieving emergent semantics is different from [38]. We use a probabilistic gen-
erative model to analyze user tags while [38] uses common sub-paths of users’
web navigation path.

6 Conclusion and Future Work

Traditional top-down approach to semantic annotation in the Semantic Web area
has a high barrier to entry and is difficult to scale up. In this paper, we propose a
bottom-up approach to semantic annotation of the web resources by exploiting
the now popular social bookmarking efforts on the web. The informal social
tags and categories in these social bookmarks is coined a name “folksonomy”.
We quantitatively studied a data set of the Delicious folksonomy and found
that power law distributions exist in the data set. This serves as one possible
evidence of the implicit social interactions embeded in the folksonomies. Using
a probabilistic generative model to interpret the data set, we derived emergent
semantics from the folksonomy data. The semantics of URLs and tags can be
represented using discrete probability distributions on derived concepts. The
ambiguity of the semantics can be quantitatively measured using entropy values
of the distributions. Finally, we show that there indeed are hierarchical relations
among the emergent concepts and it is plausible to further identify them if we
use more refined probabilistic models. In summary, compared to the top-down
approach, the bottom-up approach does not depend on a pre-defined semantic
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model to assign semantics to resources but rather derives them from the real
usage data. This entitles the approach several advantages such as the low barrier
to entry and the tight connection to user vacabularies.

As our work done in this paper is mainly quantitative, future work needs be
done more theoretically. We have several topics in our mind that need further
exploration. The first one is how the top-down approach and the bottom-up
approach may be combined together to leverage both advantages to solve the
challenging problem of semantic annotation. This requires innovative thinking
and deep insights. An accompanying question about what is the relationship
between the representations of semantics in the bottom-up approach and the
formal representations in the top-down approach and how we may link them
together is also intriguring. Comparing the bottom-up approach in this paper
with other probabilistic methods such as LSI [41] and conducting a formal rigor-
ous evaluation is another future topic. Finally, automatically obtaining concept
hierarchies from folksonomies is an open, difficult and challenging problem that
worth a great effort to attack.
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Abstract. This paper addresses the various facets of emergent semantics in 
content retrieval systems such as Knowledge Sifter, an architecture and system 
based on the use of specialized agents to coordinate the search for knowledge in 
heterogeneous sources, including the Web, semi-structured data, relational data 
and the Semantic Web. The goal is to provide just-in-time knowledge to users 
based on their decision-making needs. There are three important factors that can 
assist in focusing the search: 1) the user’s profile, consisting user preferences, 
biases, and query history, 2) the user’s context to focus on the current activity, 
and 3) the user’s information space, in which he may receive the information on 
specialized hardware with limited bandwidth, implying that the knowledge 
must be filtered and tailored to the presentation medium.  

Emergent semantics in the context of Knowledge Sifter allow for evolutionary 
adaptive behavior. We present a meta-model that captures the agent operation and 
interactions, as well as the artifacts that are created and consumed during system 
operation. These are stored in a repository, and a collection of emergence agents 
are presented that perform emergence functions such as: data mining for patterns; 
concept discovery and evolution; user preferences tracking; collaborative filtering 
of user profiles; results ranking; and data source reputation and trust. 

1   Introduction 

The emergence of the Internet and World Wide Web have made it possible to 
represent semantics about people, places and events via the Web. The evolving 
Semantic Web allows the Web to be treated as a distributed data-, information- and 
knowledge space.  

The advent of Internet Protocol Version 6 will allow virtually every object to have 
a fixed IP-address, thereby making it available on the Internet.  New technologies 
such as RFID allow objects to be tracked through complex supply chains.  Hand-held 
devices now incorporate digital cameras, phones, e-mail, Web browsers, PDAs, GPS, 
smart cards, and other capabilities to allow users to conduct business transactions 
using these devices.  We are literally immersed in a ubiquitous information space, and 
the key to managing the infoglut is to have effective tools to find, filter, aggregate and 
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present information in a timely fashion for humans, and their proxies, to make 
informed decisions.  This paper addresses the problem of intelligent search services to 
provide timely, focused and precise knowledge to users just in time.  We also show 
how emergent semantics and emergent behavior play an important role in supporting 
the evolution of knowledge to improve the intelligent search agent, which we call 
Knowledge Sifter. 

The concept of just-in-time knowledge management (JIT-KM) [17, 26] is 
appealing in that the goal is to provide the right information, to the right people, at the 
right time – just in time – so they can take action based on that information.  While 
the just-in-time concept originated with Toyota in its drive to improve its 
manufacturing processes, the concept can also be applied to the timely delivery of 
information.  There are a number of inter-related current trends that impact our study 
of JIT-KM.  They are: On Demand Computing, On Demand Business, On Demand 
Retail, and On Demand Organizations.   

On Demand Computing allows users to treat the computing infrastructure as an 
information utility, which can marshal the required resources (computers, storage,etc.) 
and charge based on usage. Users do not have to be aware of where the computers and 
storage facilities reside – they are virtual.  On Demand Organizations, or Virtual 
Organizations, can be configured on the fly from existing Web services offered by 
vendors. The goal is to dynamically configure a collection of Web services by searching 
for candidates, negotiating with service providers for quality-of-service agreements, 
vetting the selected services, composing them, orchestrating their workflow and 
managing the virtual organization life-cycle [10, 11]. 

Both On Demand Computing and On Demand Organizations are based on the 
virtualization of resources and services that are then managed on behalf of users to 
deliver the desired functions.  They are both related to the notions of GRID 
computing [7] and Semantic Web Services [23, 32].  The amount of meta-data [15, 
34] required to manage these virtual environments is considerable.   

On Demand Business integrates the enterprise with its suppliers by optimizing 
business processes and the supply chain to reduce inventories.  On Demand Retail 
treats stores shelves as space to be managed by suppliers who are paid when 
customers actually purchase the merchandise. The main concept is the integration and 
interoperation of information among business partners and suppliers to achieve a high 
degree of transparency and efficiency among their business processes.  

In a recent New York Times article [8], Wal-Mart, the world’s largest retailer, was 
using its 460-terrabyte data warehouse to monitor worldwide operations in near real-
time.  They have created an extranet called Retail Link that allows suppliers to see 
how well their products are selling.  Eventually, Wal-Mart will have the capability the 
conduct scan-based trading in which the supplier will own the product until it is 
scanned for purchase.  This will reduce inventory costs for Wal-Mart. Wal-Mart will 
be requiring its major suppliers to use RFID tags on its shipments, in order to keep 
track of inventory as it enters the warehouses.  

This example indicates that Wal-Mart is providing virtual shelf space for its 
suppliers; they are responsible for stocking those shelves and maintaining their 
inventories in a just-in-time fashion. Wal-Mart collects and uses massive amounts of 
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data to obtain an up-to-the-minute picture of world-wide operations and can make 
command decisions based on their analysis of the data.  

The above trends inform the concept of Just-in-Time Knowledge Management, 
which might also be called On Demand Knowledge Management. The sheer volume 
of data and information available to us make it imperative that we be able to sift and 
winnow through the mountains of data to find those knowledge nuggets so crucial to 
effective decision-making. The Wal-Mart case study motivates another aspect of the 
data/knowledge space, namely that large collections of data can be mined for patterns, 
rules and constraints.  Clearly, these mined patterns are examples of emergent 
semantics that can be used to improve the knowledge delivered to users.  In this paper 
we wish to explore the notions of just-in-time knowledge management and emergent 
semantics in the context of a meta-search agent called Knowledge Sifter (KS).  

Our goal is to combine the notions of just-in-time knowledge management with 
emergent semantics [1-3] so as to: 1) improve the semantic formulation of queries 
posed to KS; 2) retrieve more precise information from heterogeneous sources; 3) 
store KS artifacts in a knowledge repository that can be mined for emergent concepts 
and patterns; 4) use collaborative filtering and machine learning techniques to look 
for community-wide emergence for recommendation during query formulation and 
results rating; and 5) compose patterns into larger fragments that can be used to tailor 
KS performance for certain types of queries. 

This paper is organized as follows.  Section 2 deals with issues associated with 
requirements and technologies for JIT-KM.  Section 3 presents Knowledge Sifter, 
which is an agent-based search tool based on Semantic Web Services. Section 4 
presents a meta-model for Knowledge Sifter that can be used to populate a repository 
with artifacts such as user preferences, user queries, associated results and user 
feedback.  We also introduce the concept of data-DNA as a metaphor for emergent-, 
learned- or compiled fragments. Emergence Agents mine emergent concepts and 
patterns from the repository of Knowledge Sifter artifacts.  Also presented are some 
results related to collaborative filtering and user preference tracking. Section 5 
presents our conclusions. 

2   Just-in-Time Knowledge Management 

The notion of Just-in-Time Knowledge Management (JIT-KM) is that the right 
information should be available to decision-makers at the right time and in the right 
place, just in time.  This simple concept has very widespread implications for the 
systems needed to support it.  First, how do we determine what is the right 
information?  How do we know who should receive that information?  What is the 
right format of the information based on the decision-maker’s location, context, and 
type of presentation device?  How can we capture and represent the user’s 
preferences, bias, context, and most importantly, his or her information requirements?   

We explore these issues within the context of a research project called Knowledge 
Sifter, which is being conducted at George Mason University’s E-Center for E-
Business.  We show how the Knowledge Sifter architecture can be used for JIT-KM. 
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2.1   Requirements for JIT-Knowledge Management 

In order to deliver JIT-information, we must ensure that the information is timely, 
authentic, trusted and tailored to the decision-maker’s needs. These knowledge nuggets
are pieces of information that make a quantifiable difference in the decision-making 
process.  Timeliness is important in that out-of-date (stale) information can be 
irrelevant to the current context and task.  Authenticity and trust are related in that the 
decision-maker should have confidence in the information and the sources that 
provided it.  Finally, there are the issues of data lineage and data provenance, that is, 
how was the data processed to derive the information? What is the quality of the 
original and derived data, and how reliable is the source of the data? These issues are 
all crucial for the decision-makers to have confidence in the information products, how 
they were derived, and the assessment of the quality and reliability of the data provider. 

The technical requirements for JIT-Knowledge Management (JIT-KM) involve the 
customization of JIT-KM delivery to users based on a User Profile that captures a 
user’s preferences, context, bias, goals and decision-making rules.  In addition, the 
user query, posed to existing search engines and sources, should be semantically 
enhanced to incorporate elements of the User Profile so as to obtain more precise and 
relevant results.  These results may be ranked by Knowledge Sifter and presented to 
the user for feedback as to their relevance to the decision problem. This addresses the 
notion of a pull scenario in which information is pulled from multiple heterogeneous 
sources; this is what Knowledge Sifter has been designed for. 

Another type of scenario, a push-scenario, receives massive amounts of data from 
these sources and must filter the data to find information and knowledge relevant to 
the user’s task. In order to deal with this information, it would be ideal if it were 
tagged appropriately using Semantic Web ontologies.   

2.2   Technologies for JIT-Knowledge Management 

The JIT-information requirements suggest that active technologies are needed to 
support the timely delivery of JIT services.  These include pull scenarios in which ad-
hoc and standing queries are posed to heterogeneous sources — both internal to the 
enterprise and external — such as the Internet and World Wide Web.  These queries 
represent items of interest to the decision-maker and evidence substantiating an 
existing decision scenario would help him to take action.   

Alternatively, push scenarios deliver content to users via active subscription 
services. These services may include: a) standing queries; b) just-in-time alerts (rule-
based monitoring of events); c) real-time filtered media news feeds; d) dynamic 
scenario (hypothesis) specification, tracking and revision (reasoning about evolving 
evidence); e) ranking and integrating search results (information integration from 
multiple heterogeneous sources); f) collaborative filtering (viewing the work of other 
users related to common tasks) and g) collaborating with other analysts in creating 
and annotating knowledge products that can be stored in a knowledge base.  

An important component of JIT-KM is the use of meta-data — data about data — 
to model and manage the JIT services.  Metadata is important in capturing data 
lineage as information objects are processed throughout the various phases of the 
activity life cycle.  This may include the evolution of user preferences; historical 
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information regarding the results of standing- and ad-hoc queries; the ranking of 
search results; the authoritativeness of data sources; and the user’s perceptions 
regarding the quality and timeliness of information provided.  We now address these 
issues in the context of the Knowledge Sifter research. 

3   The Knowledge Sifter Architecture 

The Knowledge Sifter project, underway at George Mason University (Mason), has as 
its primary goals: 1) to allow users to perform ontology-guided semantic searches for 
relevant information, both in-house and open-source, 2) to refine searches based on 
user feedback, and 3) to access heterogeneous data sources via agent-based know-
ledge services. Increasingly, users seek information outside of their own communities 
to open sources such as the Web, XML-databases, and the emerging Semantic Web.  

The Knowledge Sifter project also wishes to use open standards for both ontology 
construction and for searching heterogeneous data sources.  For this reason we have 
chosen to implement our specifications and data interchange using the Web Ontology 
Language (OWL) [5, 37], and Web Services [4] for communication among agents and 
information sources.  Each Knowledge Sifter agent is implemented as a Web service, 
and some data sources provide a Web service interface (API) to retrieve data. 

3.1   Knowledge Sifter Agent-Based Web Services Framework 

The rationale for using agents to implement intelligent search and retrieval systems is 
that agents can be viewed as autonomous and proactive.  Each agent is endowed with 
certain responsibilities and communicates using an Agent Communication Language 
[6].  Recently, Huhns [12] has noted that agents can be thought of a Web services, and 
this is the approach we have taken to implement the agent community comprising 
Knowledge Sifter.  The family of agents presented here is a subset of those incorpo-
rated into the large vision for Knowledge Sifter.  This work is motivated by earlier 
research into Knowledge Rovers [13, 14] performed at Mason. This research is also 
informed by our previous work on WebSifter, [18-20] a meta-search engine that 
gathers information from traditional search engines, and ranks the results based on 
user-specified preferences and a multi-faceted ranking criterion involving static, 
semantic, categorical and popularity measures. 

The Knowledge Sifter architecture [15, 16] may be considered a service-oriented 
architecture consisting of a collection of cooperating agents.  The application domain 
we are considering is that of Image Analysis.  The Knowledge Sifter conceptual 
architecture is depicted in Figure 1.  The architecture has three layers: User Layer, 
Knowledge Management Layer and Data Layer.  Specialized agents reside at the 
various layers and perform well-defined functions. This collection of cooperating 
agents supports interactive query specification and refinement, query decomposition, 
query processing, as well as result ranking and presentation. The Knowledge Sifter 
architecture is general and modular so that new ontologies and new information 
resources can be easily incorporated [27].  The various agents and services are 
described below. 
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Fig. 1. The Knowledge Sifter Agent-Based Web Services Architecture 

3.1.1   User and Preferences Agents 
The User Agent interacts with the user to elicit user preferences that are managed by 
the Preferences Agent.  These preferences include the relative importance attributed 
to terms used to pose queries, the perceived authoritativeness of Web search engine 
results, and other preferences to be used by the Ranking Agent. The Preferences 
Agent can also learn the user’s preference based on experience and feedback related 
to previous queries. 

3.1.2   Ontology Agent  
The Ontology Agent accesses an imagery domain model, which is specified in the 
Web Ontology Language (OWL). In addition, there are two authoritative name 
services: Princeton University’s WordNet [25] and the US Geological Survey’s GNIS 
[35].  They allow the Ontology Agent to use terms provided by the name services to 
suggest query enhancements such as generalization, specialization and synonyms.   

For example, WordNet can provide a collection of synonyms for a term, while 
GNIS translates a physical place in the US into latitude and longitude coordinates that 
are required by a data source such as TerraServer. Other appropriate name and 
translation services can be added in a modular fashion, and the domain model could  
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Fig. 2. Ontology Schema in the Unified Modeling Language Notation 

be updated to accommodate new concepts and relationships. We now discuss the 
various sources used by the Ontology Agent. 

Ontologies play a major role in Knowledge Sifter in that they represent semantic 
concepts that can be used to identify persons, places, things, and events of interest to a 
user.  Users may have their own ontologies, in addition to ones supplied by a system 
such as Knowledge Sifter.  Wouters et al [38, 39] present techniques to extract a user-
oriented sub-ontology from a base ontology while preserving consistency and 
independence.  Volz et al [36] argue that data independence principles can be applied 
to heterogeneous ontologies by creating ontological views which are constructed 
using RDF graphs and queried using the RQL language.  

3.1.3   Imagery Domain Model and Schema 
The principal ontology used by Knowledge Sifter is the Imagery Domain Model, 
specified using the Web Ontology Language, OWL.  A UML-like diagram of the 
ontology is provided in Figure 2. 

The class Image is defined as having source, content, and file descriptive features.
Subcategories of content are person, thing, and place. Since we are primarily 
interested in satellite and geographic images, the class place has two general 
attributes, name and theme, together with the subclasses region and address. The 
Region is meant to uniquely identify the portion of the Earth’s surface where the 
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place is located, either by a rectangle or a circle. In the case of a rectangle we need 
two latitude values (north and south) and two longitude values (east and west), while 
to specify a circle we need the latitude and longitude of its center point, and a radius.
The address of our location is identified by country, state, city, zip code and street. 
Each image belongs to a specific online source, the server, and has URI-1 as a unique 
identifier, together with a secondary URI-2 for a thumbnail (if any). Some qualitative 
and quantitative attributes are also modeled as subclasses of the general class features,
namely resolution (in square meters per pixel), projection and datum (for future GIS 
utilizations), a date range, and image size (with height and width expressed in pixels). 

3.1.4   Authoritative Name Services 
The two name services are WordNet, developed at Princeton University, which is a 
lexical database for the English language. When the initial query instance, specifying 
a person, place, or thing, is sent to the Ontology Agent, it then consults WordNet to 
retrieve synonyms. The synonyms are provided to the Query Formulation Agent  
to request that the user select one or more synonyms. The decision is communicated 
to the Ontology Agent which then updates the appropriate attribute in the instantiated 
version of the OWL schema.  If the attribute value is the name of a class of type place
then the Ontology Agent passes the instance to the USGS GNIS. 

The second name service is the USGS Geographic Names Information System 
(GNIS) which is a database of geographic names within the United States and its 
territories [35]. GNIS was developed by the USGS and the U.S. Board on Geographic 
Names to meet major national needs regarding geographic names and their stan-
dardization and dissemination. It is an integration of three separate databases, the 
National Geographic Names Data Base, the USGS Topographic Map Names Data Base, 
and the Reference Data Base. Records within the database contain feature name, state, 
county, geographic coordinates, USGS Geographic Map name, and others. Other 
specialized name and translation services can be integrated into Knowledge Sifter and 
linked to the Domain Model. 

3.1.5   Query Formulation Agent 
The User Agent poses an initial query to the Query Formulation Agent.  This agent, in 
turn, consults the Ontology Agent to refine or generalize the query based on the 
semantic mediation provided by the available ontology services.  Once a query has 
been specified by means of interactions among the User Agent and the Ontology 
Agent, the Query Formulation Agent decomposes the query into subqueries targeted 
for the appropriate data sources.  This involves semantic mediation of terminology 
used in the domain model ontology and name services with those used by the local 
sources.  Also, query translation is needed to retrieve data from the intended 
heterogeneous sources. 

For example, if the user specifies the domain of his search as place, Lycos and 
TerraServer will be chosen. In cases of person and thing, only Lycos will be chosen.  
In the case of person and thing, the user is asked to choose a specific meaning from 
the list retrieved from WordNet, and then the synonym set and hypernym set 
regarding that particular meaning are retrieved. Synonyms can be chosen as alternate 
names. Hypernyms can be used to generalize the user’s concept. The terms chosen by 
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the user are used to query Lycos. For example, if the user specifies the concept 
‘Rushmore’ the following synonym set is returned by WordNet: 

Rushmore, Mount Rushmore, Mt. Rushmore – (a mountain in the Black 
Hills of South Dakota; the likenesses of Washington and Jefferson and 
Lincoln and Roosevelt are carved on it) 

In this case, the synonym set {Rushmore, Mount Rushmore, Mt. Rushmore} and the 
hypernym set {Mountain Peak} are retrieved from WordNet. If user chooses “Mount 
Rushmore” and “Mountain Peak”, two different queries, “Mount AND Rushmore” 
and “Mountain AND Peak” are posed to Lycos, because the Lycos image search 
doesn’t support the logical connector “OR” in search terms.  

In the case of place, the user-selected synonym set and hypernym set are requested 
from the GNIS server using a similar approach, that is, the queries (“Mount AND 
Rushmore” and “Mountain AND Peak”) are posed to the GNIS server in order to 
collect a list of locations from which the user can choose.  The user can specify a state 
to restrict the GNIS results. After the user chooses one specific location, the name of 
the location is also used to submit queries to the Lycos server. Concurrently, a query 
is sent to TerraServer Web service with the appropriate latitude and longitude for the 
selected place. 

In our future research, we will endow the Query Formulation Agent with more 
rules and policies to help it to make more intelligent decisions about query 
specification and query optimization.  For example, in the case of image databases, a 
strategy might be to query the image metadata, retrieve and view thumbnails, and then 
request the collection of selected images. In addition, Knowledge Sifter will have a 
repository of processed queries, instantiated and annotated according to the OWL 
schema.  This information will be used by the Query Formulation Agent as a Case 
Base that can be searched and the results reused.  For example, a user query might be 
specified in stages, and the Case Base could be used to retrieve a relevant query 
processing strategy, send a request to the Web Services Agent and the results returned 
for user consideration.  If needed, the Ontology Agent could assist in query 
enhancement as described above.   

3.1.6   Web Services Agent 
The main role of the Web Services Agent is to accept a user query that has been 
refined by consulting the Ontology Agent, and decomposed by the Query Formulation 
Agent.  The Web Service Agent is responsible for the choreography and dispatch of 
subqueries to appropriate data sources, taking into consideration such facets as: user 
preference of sites; site authoritativeness and reputation; service-level agreements; 
size estimates of subquery responses; and quality-of-service measures of network 
traffic and dynamic site workload [24].  

The Web Services Agent transforms the subqueries to XML Protocol (SOAP) 
requests to the respective local databases and open Web sources (TerraServer or 
Lycos) that have Web Service published interfaces; this is the case for the 
TerraServer, while Lycos provides an HTTP interface.  
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3.1.7   Ranking Agent 
The Ranking Agent is responsible for compiling the sub-query results from the 
various sources, ranking them according to user preferences, as supplied by the 
Preferences Agent, for such attributes as: 1) the authoritativeness of a source which is 
indicated by a weight – a number between 0 and 10 – assigned to that source, or 2) the 
weight associated with a term comprising a query.  

3.1.8   Data Sources and Web Services 
At present, Knowledge Sifter consults two data sources: Lycos Images and the 
TerraServer. The Lycos server supports keyword-based image search via the web 
page http://multimedia.lycos.com. It makes use of both an image server and external 
data sources such as web pages for the image search. For a Lycos image search, no 
advanced search is supported and only conjunctions of terms are used. Therefore, the 
user cannot specify the image metadata such as size or resolution, so the results of 
search are limited. To address these problems the Query Formulation Agent generates 
a collection of conjunctive and disjunctive queries, while the evaluation and ranking 
process is left to the Ranking Agent.   

The TerraServer is a technology demonstration for Microsoft. There is a Web 
Service API for TerraServer.  TerraServer is an online database of digital aerial 
photographs (DOQs – Digital Orthophoto Quadrangles) and topographic maps (DRGs 
– Digital Raster Graphics). Both data products are supplied by the U.S. Geological 
Survey (USGS). The images are supplied as small tiles and these can be made into a 
larger image by creating a mosaic of tiles. The demonstrator at terraserver-usa.com 
uses a mosaic of 2x3 tiles. 

Our purpose is to take the ontology-enhanced query and generate specific sub-
queries for the TerraServer metadata. The resulting image identifiers and their 
metadata are wrapped into an instance of our image ontology. And an array of these is 
returned to the Web Service Agent to compile with other results. 

3.2   Knowledge Sifter End-to-End Scenario 

Consider the following scenario in which a user wishes to search for the term 
‘Rushmore’.  This scenario shows how the various agents, name services, and data 
sources interact in handling a user query. 

1. The user provides the User Agent with a keyword query: ‘Rushmore’. 
2. The user identifies the term as being a person, place or thing via radio buttons in 

the query form. The user has chosen ‘Place’. 
3. The User Agent passes the query to Query Formulation Agent. 
4. The Query Formulation Agent invokes the Ontology Agent to instantiate an 

OWL schema for the ‘Place’ with Name = ‘Rushmore’. 
5. The Ontology Agent chooses a service agent based on the initial query.  In this 

case, it requests from WordNet a list of concepts for ‘Rushmore’. WordNet then 
passes the results back to the Ontology Agent which then passes the results to the 
User Agent via the Query Formulation Agent for the user decision.  

6. The user chooses the ‘Mount Rushmore’ concept, which has three synonyms 
(‘Rushmore’, ‘Mt. Rushmore’, and ‘Mount Rushmore’).  
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7. The Ontology Agent then submits the synonym set to the USGS Geographic 
Name Information Server and receives a list of candidate geographic coordinates. 

8. The list of candidate coordinates is sent to the Query Formulation Agent and the 
user chooses the desired location.   

9. The Ontology Agent then updates the OWL schema instance with the chosen 
latitude and longitude.   

10. The Query Formulation Agent then passes the fully-specified query to the Web 
Service Agent.  

11. The Web Services Agent forwards appropriate sub-queries to both Lycos and 
TerraServer. The TerraServer and Lycos data sources are queried, and the results 
are sent back to the Web Services Agent. The results are compiled into new OWL 
instances that describe image metadata.   

12. All results are combined and sent to the Query Formulation Agent. 
13. The Query Formulation Agent sends the result sets and the original query to the 

Ranking Agent for ranking. 
14. Within the Ranking Agent the image metadata for each returned item is ranked 

using the weights and preferences provided by the Preferences Agent. The 
Preferences Agent maintains the user preferences.  

15. The Ranking Agent generates a score for each image result, and returns the 
scored list to the User Agent.   

16. The User Agent then sorts the results by ranking and presents them to the user. 
17. The user can then select an item from the list to download and view the image.  

We have implemented a proof-of-concept prototype of Knowledge Sifter and this was 
reported in [15, 16]. 

4   Emergent Semantics in Knowledge Sifter 

Our approach to Emergent Semantics (ES) in Knowledge Sifter (KS) is to collect, 
organize and store significant artifacts created during the end-to-end scenarios for KS 
such as in Section 3.2.  In addition, it is important to collect lineage and provenance 
information regarding agent interactions among themselves and with external sources.  
We specify a meta-model for Knowledge Sifter, KSMM, represented in UML and as 
a Protégé ontology that can be exported to the Web Ontology Language (OWL).  
Sections 4.1 through 4.2 present this material in detail. 

Emergent semantics processing is performed by agents specializing in different 
types of semantics associated with Knowledge Sifter.  They access the KS Repository 
that contains data-DNA fragments and create emergent artifacts that are also stored in 
the KS Repository. This is discussed in Sections 4.3 and 4.4. 

4.1   Knowledge Sifter Meta-model 

The previous sections have described how the cooperative agents and web services 
support the search for relevant knowledge from both local and open-source data 
sources.  The end-to-end scenario shows how the various agents and sources interact. 
The OWL schema is instantiated with information regarding a query and its various 
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Fig. 3. The Knowledge Sifter Meta-schema 

transformations into the final ranked results.  In this section we elaborate on this 
concept by presenting a meta-model of the Knowledge Sifter framework so that 
relevant information can be captured regarding the lineage and provenance of all 
aspects of the search process, from query specification, to query reformulation, web 
service decomposition, results ranking and recommendation presentation.  This 
includes information on the various Knowledge Sifter activities (managed by agents), 
the outcomes of those activities, the quality of the ranked results, measures of Web 
service performance, and the authoritativeness and reliability of data sources. 

This meta-model is then used to capture and store both KS data and metadata for 
future analysis, filtering and mining for emergent properties related to the use of 
Knowledge Sifter resources. By stepping back and abstracting the agents, classes, their 
relationships and properties, we can construct the Knowledge Sifter Meta-Model 
(KSMM) [30].  Figure 3 depicts the UML Static Model for the KSMM.  At the top is the 
Class Agent, which is specialized to those agents in the KS framework, specifically the 
UserAgent, PreferencesAgent, OntologyAgent, QueryFormulationAgent, RankingAgent 
and WebServicesAgent. These agents manage their respective object classes, process 
specifications, and WebServices. For example, the UserAgent manages the User Class, 
the UserInterfaceScenario, the User PatternMiningAlgorithm, and the WebServices.  The 
User specifies User Preferences that can be specialized to Search Preferences and Source 
Preferences.  The User poses UserQuery that has several QueryConcept, which in turn  
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Fig. 4. The Knowledge Sifter Meta-Model (KSMM) in Protégé 

relates to an OntologyConcept.  The Ontology Agent manages both the UserQuery and 
the OntologyConcept that is provided by an OntologySource.  Both OntologySource and 
DataSource are specializations of Source.  Source is managed by the WebServicesAgent 
and has attributes such as provenance, coverage, access protocol and history.  DataSource 
has attributes such as Quality-of-Service Service-Level-Agreements (QoS-SLAS) and 
Certificate. 

A UserQuery consists of several RefinedQuery, each of which is posed to several 
DataSource. DataSource provides one-or-more DataItem in response to a RefinedQuery 
as the QueryResult. Based on the returned QueryResult, the User may provide Feedback 
as to the result relevance and other comments.  These may impact the evolution of 
metadata associated with UserPreference, query formulation, data source usage and 
result ranking.  A KSMM has been specified by a Protégé ontology [28] and a screen 
shot of the main panel is shown in Figure 4.  

The KS meta-classes correspond to those of the UML diagram in Figure 3.  The 
Protégé KSMM can also be exported to a Web Ontology Language (OWL) 
specification.  This specification can be consulted via a namespace hyper-link, thus 
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making the agents, which are implemented as Web Services, portable and able to 
reside on different computers. 

4.2   Data/Knowledge Lineage for Emergence Adaptation 

The notion of data/knowledge lineage is crucial to the emergence adaptation.  The 
Knowledge Sifter Meta-Model provides a specification of the object classes, their 
properties, relationships and constraints.  It can also specify workflow processes 
among the agents that handle user requests and the processing of those requests.  This 
concept can be extended to dynamically configure semantic web services for virtual 
organizations [10, 11].  In this discussion we focus on how the KSMM can address 
the just-in-time and emergent semantic issues for Knowledge Sifter. 

By creating the KSMM we can now capture metadata for the overall search 
process, from the user’s initial query specification, to its refinement with semantic 
ontological concepts, to its processing and ranking.  In addition, we can capture agent 
attributes, measures of agent interaction to determine overall KS performance. 

User feedback and KS performance measures and metrics can be used to evolve the 
system in several ways that affect emergence.  For example, User feedback allows the 
User Preference Agent to adjust the preferences profile to reflect evolving preferences 
and biases, to adjust the sources that he prefers and deems to be both of high quality 
and authoritative.  Moreover, as user profiles and preferences are aggregated, we can 
use data mining and collaborative filtering techniques to discover patterns among 
groups of users. These learning approaches can be used to make Knowledge Sifter 
more active in taking advantage of emergent semantics.   

Each Knowledge Sifter Agent can adapt to changing query and web services 
behavior patterns.  For example the User Agent can inform the Web Services and 
Ranking Agents that a particular user’s search and ranking preferences have changed, 
and that sites such as Google and Yahoo! have emerged as favorites and that their 
results should receive extra support in the rankings.  In addition, the Web Services 
Agent can monitor network traffic and the response times of data sources to determine 
whether certain sites will not be able to deliver their results in a timely fashion, in 
which case partial results would be provided in JIT-fashion to the user, until the full 
results could be assembled.  In order to refine these concepts, the following section 
introduces the notion of data-DNA; these are fragments or snippets of data/knowledge 
that can be composed into larger fragments.  

The notions of lineage, provenance and trust are important components of our 
emergence research.  Consider for example the case of an intelligence analyst who 
has developed an hypothesis, represented as an and-or goal tree in which each node 
represents a subtask for which evidence is needed to verify that task.  Knowledge 
Sifter can be used to search for the required evidence.  The analyst can create a data-
DNA fragment from the relevant evidence, annotate the fragment, associate it with 
the subtask it supports, and store it for later use.  The lineage and provenance of this 
fragment provide time stamps as to when the evidence was collected, from which 
sources, and an assessment of the analyst’s trust in that evidence.  The data-DNA 
fragments can also be shared with others for collaborative intelligence assessment.  
One could also model the analyst’s preferred work style and process model, store it in 
the User Profile and use it to guide Knowledge Sifter’s search process.  A goal of our 
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research is to have Knowledge Sifter learn this model using emergent semantic and 
Semantic Web Services techniques. 

4.3   Data-DNA and Emergent Behavior 

The concept of data-DNA provides for self-describing meta-data for objects in the 
context of emergent semantics in Knowledge Sifter.  The idea is to capture, store and 
annotate with lineage metadata about every artifact, created or used during the course of 
Knowledge Sifter’s operation, so as to be able to recreate and analyze the end-to-end 
processing of a user’s query.   

The KSMM provides the domain model, i.e., the meta-model, by which tagging and 
indexing can be accomplished.  Thus, individual artifacts such as a user query, a 
semantically enhanced query, results obtained by Web services, and the ranking of 
results can all be stored, indexed, and annotated. The artifacts, or data-DNA fragments,
can be composed into larger fragments representing scenarios. The scenarios could be 
developed off-line and stored in the KS repository, or alternatively, they could be 
obtained by mining the collection artifacts stored during Knowledge Sifter’s normal 
operation for a collection of users and their queries.  

For example, a user might be driving in South Dakota on a family outing 
(vacation) and would like to visit Mount Rushmore, as per our previous example in 
section 3.2.  He uses his advanced PDA to start the Knowledge Sifter search service.  
The first request is to find images of Mount Rushmore, and then view a topographical 
map of the area.  Then KS retrieves data-DNA fragments corresponding to the user’s 
context which is family outing (vacation) and proposes one of the following actions 
according to the workflow contained in the fragments:  1) Driving instructions with 
autoload into the car’s GPS, 2) hotel reservations within a 15 mile radius at a Hilton 
Hotel chain (15 mile radius and Hilton Hotels in the user’s preferences), reservations 
for dinner for four (from a list of restaurants in the preferences), and tickets for 
tonight’s Rushmore Sound-and-Light Show. 

The collection and assembly of relevant data-DNA fragments, and their associated 
scenarios, would be managed by the Ontology Agent using the KSMM Ontology. The 
Ontology Agent would handle both the Imagery Domain Model and the data-DNA 
fragments stored in the KS repository.  The user model, consisting of intent, 
preferences and context information, would be used to retrieve, assemble and mange 
the fragments.  The Ontology Agent cooperates with the Query Formulation Agent to 
instantiate the data-DNA fragments with user-specific data for presentation to the 
Web Services Agent for processing. The Web Services Agent then dispatches the 
instantiated fragments to appropriate Web services.  The Web Services Agent also 
coordinates the workflow involved in processing the requests.  Given the 
decentralized and distributed nature of these services, we envision that agents will 
search for external data-DNA fragments via a negotiation process.  For example, a 
task might involve a business process whose provider subscribes to an ebXML 
protocol [29].  In that case the agent would negotiate the fragment, instantiate it with 
user data and add it to that user’s instantiated data-DNA. 

In our family outing example, there are opportunities for parallel execution of 
transaction fragments. For example, the GPS coordinates of the family can be 
determined from the cell phone GPS and then loaded into the car’s GPS. Concurrently,  
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Fig. 5. Knowledge Sifter Emergence Framework 

the restaurant and Sound-and-Light Show reservations can be made, provided that 
first the hotel reservation has been obtained and guaranteed.   

Figure 5 depicts the Knowledge Sifter Emergence Framework with the KS agent 
architecture on the left, the KS repository in the middle, and the Emergence Agents on 
the right.  During the normal operation of KS, artifacts will be created in response to 
user requests. These artifacts are stored in the KS repository according to the KS Meta-
Model shown in Figures 3 and 4. The Emergence Agents access the KS Repository and 
perform emergence functions suggested by their names; these new emergent concept, 
called data-DNA are stored in the KS Repository and can be used to evolve KS at 
various levels.  The data-DNA can be used to: 1) improve the operation of the KS 
agents by adapting the algorithms that govern their behavior, 2) enhance the ontological 
concepts known to the Ontology Agent, 3) provide collaboratively-filtered recom-
mendations to users in query formulation, results selection, and user preference 
evolution.  

In the following sections, we focus on the agents involved in collaborative filtering 
for emergent ontological concept learning, and emergent user preferences.  The other 
emergence agents are a focus of ongoing research within the Knowledge Sifter 
project. 

4.4   Collaborative Filtering for KS Emergent Concepts 

Recommendation systems provide the right information to the right user by using 
both content-based filtering and collaborative filtering. One of the best-known 
information recommendation systems is the search engine. Most search engines such 
as Yahoo and AltaVista use only content-based filtering to provide web data related to 
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user queries, and therefore they have limitations in providing information that 
incorporates both the user’s preferences and an assessment of the quality of the data.  
One reason for Google’s success and popularity is that is combines content-based 
filtering and collaborative filtering in the PageRank algorithm [31].   

In this section we present some results pertaining to the use of collaborative 
filtering to find emergent concepts, user preferences and recommendations.  New 
concepts from an object retrieved by a particular user query could emerge by mining 
the explicit and/or implicit user feedback for that object. The user query would be 
analyzed for the emergent concept of the object. This would increase both the recall 
and precision of KS search by discovering the new concept and providing user 
feedback for that concept. Thus, one could combine content-based filtering and 
collaborative filtering in the KS search process, and then show ordered results by the 
overall similarity of the ranking. 

Assume that we have following statistical values of similarities between user 
queries and query results from the KS Repository in Figure 5.  Actually, KS evaluates 
result similarity based not only on user queries but also on user preferences.  
However, we ignore the user preferences for the following data set, in order to obtain 
new emergent concepts over the entire user community. 

(Query, Result, Similarity) 
(q1, r1, 0.7) 
(q1, r2, 0.2) 
(q2, r1, 0.9) 
(q3, r1, 0.1) 
(q3, r2, 0.8) 

The following formula calculates collaborative similarity between a new query and 
result. 
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For j ∈ {qj | sim (qi, qj) > θq} where j is in qjs that are only related with rk, and simcol

and sim stand for collaborative similarity and overall similarity, respectively. We 
could use the above collaborative similarity (query, result) to compensate for 
determining the overall similarity (query, result) with measured similarity by the KS 
Rating Agent. The following formula represents the overall similarity. The θq

represent the threshold for the query similarity to determine how similar queries 
would be used for calculating collaborative similarity with reducing noises, e.g., one 
history that has high similarity between a result and a query having low similarity 
with the new query. The θs represents the threshold for determining whether the 
instance is a positive or negative one. The following formula represents the overall 
similarity. 

( , ) (1 ) ( , ) ( , )con col
i k i k i ksim q r sim q r sim q rα α= − ⋅ + ⋅ (2)

where α represents a weight for collaborative similarity to determine overall similarity 
and the simcon represents content-based similarity, i.e., KS evaluates similarity in terms 
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of the subject of the target object by using various ontologies such as WordNet and 
GNIS. Therefore, the content-based similarity between the query and result could be 
measured by ontology mapping between the query concept ontology and data resource 
ontology. The similarity between two queries could be measured in same way as the 
content-based similarity between query and result is measured. 

One of the novel approaches in the above algorithm framework is that the initial 
overall similarity (sim (q, r)) is a combination of both content-based similarity and 
collaborative similarity, which is based on user feedback. Therefore, the final overall 
similarity can be considered as a mediated similarity accounting for the difference 
between the KS-measured similarity and user-rated similarity. This would compen-
sate for implicit errors in KS measurement and user ratings for the similarities 
between queries and results. If user feedback does not exist in a certain association 
between query and result, we can regard the KS-measured similarity as the initial 
overall similarity. 

4.5   Collaborative Filtering for Emergent User Preferences 

Collaborative filtering enables us to suggest recommendations to users using 
statistical analysis of user patterns. Applying this concept to user profile mining 
would allow KS to use emergent knowledge to provide the right information to the 
right user, i.e., to customize knowledge for a particular user.  There are two 
approaches to the problem: 1) determine user preferences by analyzing user profiles 
and 2) determine user preferences by analyzing user ratings of query data results. 

In general, collaborative filtering recommendation systems filter out items by using 
only the statistical analysis of human assessments (user ratings) [9, 22], i.e., the 
systems use implicit correlation between the user ratings and user taste for the 
recommendations in a given domain of discourse.  On the other hand, users could 
pose content-based queries to find objects they want to a content-based search engine 
such as Knowledge Sifter.  Furthermore, KS allows users to define their preferences 
in terms of some features for a domain object based on the domain ontology.  
Therefore, we also need to be concerned about the influence between the user queries 
and their preferences, and to use this additional information for the recommendation 
process.  If we only consider user relationships between preferences and results in KS, 
it might cause the system to determine biased, or distorted, preferences because the 
preferences could be different over the queries, i.e., the preferences could be 
dependent on the objects that the user wants. To overcome this problem, we use 
combinations of user preferences and queries to recommend relevant results based on 
user queries and given user preferences. 

This approach is using the methods in mining a new concept related to a certain 
object by using user queries as explained in equation 1 above. Assume that we have 
the following statistical values of similarities between three major factors in KS such 
as user preferences, user queries, and query results. Unlike the examples in equation1, 
we need to also incorporate the preference because our goal is to recommend related 
results based on user queries for given user preferences. Therefore, we use a 
combination of user preferences and queries to evaluate the similarity between the 
data results. 
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Consider the table of preference, query result and similarity measures: 
(Preference, Query, Result, Similarity) 

(p1, q1, r1, 0.7) 
(p1, q1, r2, 0.2) 
(p2, q2, r1, 0.3) 
(p2, q3, r2, 0.8) 
(p3, q4, r1, 0.8) 

The collaborative similarity between a result and a query that is posed by a user 
having preference would be calculated from following formula: 
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For j ∈ {pj | sim (pi, pj) > θp}, b ∈ {qb | sim (qa, qb) > θq } 

where j is in qjs that are only posed by a user having preference pi and contains result 
r1 in their result set.  The sim(pi,qj,rk) represents the overall similarity between the 
query qj at given pi and the result rk. The θp and θq represent the threshold for the 
preference similarity and the query similarity respectively to determine the similar 
preferences and queries for calculating collaborative similarity. This prevents KS 
from doing a biased evaluation by eliminating possibility of including pointless 
instances, e.g., one that has high similarity between a result and query having low 
preference and query similarity. The θs represents the threshold that determines 
whether the instance would be positive or negative one.  

The following formula represents the overall similarity. 

( , , ) (1 ) ( , , ) ( , , )con col
i j k i j k i j ksim p q r sim p q r sim p q rβ β= − ⋅ + ⋅ (4)

where β represents a weight for collaborative similarity to determine overall similarity 
in this situation. 

In order to calculate the similarity between two preferences, we need to consider 
two kinds of preferences, which are weight preferences and weighted value 
preferences for each preference criterion because a KS user could define weight 
preferences for name and location queries evaluation and weighted value preferences 
for other criteria associated with image data. The weight preferences enable KS to 
determine which criteria the user considers more important between rating results data 
and the value preferences represent what value of certain feature user prefers.  

The following formula represents the overall similarity between the two preferences. 

( , ) (1 ) ( , ) ( , )v w
i j i j i jsim p p sim p p sim p pγ γ= − + (5)

where γ represents the weight for weight preferences, and simv and simw represent the 
similarity between two preferences for the value preferences and the weight 
preferences, respectively. 
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The similarity between two weight preferences set could be calculated from 
following formula, which uses the well-known Euclidean distance function. 
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where c represents the criterion of preference, and wc represents the weight for the 
criterion c. Then, Pi(wc) denotes the weight value for a criterion c in a preference i and 
n(c) represents the number of criteria in the preferences. The similarity between two 
preferences has 1, if the two preferences are identical. But the distance should be 0 in 
the case of the two preferences being identical, therefore we inverse them. Note that 
the weight value is normalized one having 0 to 1.  

The similarity between two value preferences could be calculated from following 
formula, which uses weighted Euclidean distance function for each preference 
criterion. This formula is derived from multipoint queries shown in Mars [33] and 
Falcon [40], i.e., the value preferences in KS could be treated as the multidimensional 
queries. 
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where vc represents the value for the criterion c. The pi(vc) represents the value of the 
criterion c at a preference pi. Using Max and Min value for each criterion makes the 
normalization over the criterion value differences, e.g. size and time criteria in KS 
preferences for image domain use different measure and range, therefore, we couldn’t 
numerate and normalize the distances not referencing the Max and Min values in 
collaborative user preferences.  In our ongoing research we are extending the concept 
of the user preference and results ranking to include multiple attributes and their 
corresponding weights, similar to our work on WebSifter II [19-21].  

5   Conclusions 

Knowledge Sifter is an agent-based ontology-driven search engine based on Semantic 
Web services.  We have motivated the need for delivery of timely, focused and 
accurate information to users in a just-in-time fashion.  We have discussed the KS 
architecture and the important role the semantics plays in all aspects of KS’s 
operation. The KS agents accept a user’s initial query, consult the User Preferences 
Agent, reformulate the query based on user preferences and ontological concepts, 
decompose it into subqueries handled by the Web Services Agent, and rank the query 
results according to user preferences, biases and context. 

In order to incorporate emergence and evolution into the KS architecture, we 
develop the KS Meta-Model (KSMM) that allows us to capture, store and mine the 
artifacts produced and consumed during normal Knowledge Sifter operation. The 
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KSMM is a specification of the agents, activities, and communications of the 
system’s operation.  This has been specified in both in UML and Protégé, which 
automatically generates an OWL specification that can be shared with other services 
via a namespace. The KSMM schema can be instantiated with actual user queries, 
their reformulations, query decomposition and processing strategies, Web Services 
invocations, query result sets, results rankings, and user feedback regarding the 
relevance of the results to the task at hand. 

The Knowledge Sifter Emergence Framework has been presented for discovering, 
mining and compiling emergent concepts, emergent user preferences, emergent 
collaborative recommendations, etc.  We term these emergent objects as data-DNA 
and discuss how these can be combined into larger data-DNA fragments.  

We focus on Emergence Agents involved in collaborative filtering for emergent 
ontological concept learning, and emergent user preferences and discuss a novel 
approach to calculating emergence of content that incorporates both KS-computed 
similarity and user-rated similarity. 

In our work on the precursor to Knowledge Sifter, called WebSifter II [20], we 
presented a neural network model for learning user preferences and automatically 
updating those preferences.  We plan to incorporate underlying concepts of the neural 
network model into the Knowledge Sifter Emergence Framework.  
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Majkić, Zoran 47
Meersman, Robert 1

Neuhold, Erich J. 1

Pan, Jeff Z. 28
Parent, Christine 1

Sattler, Kai-Uwe 1
Scannapieco, Monica 1
Spaccapietra, Stefano 1
Spyns, Peter 1
Stamou, Giorgos 28
Steels, Luc 143
Stoilos, Giorgos 28

Tzouvaras, Vassilis 28

Wu, Xian 168

Xiao, Huiyong 67

Yu, Yong 168

Zhang, Lei 168


	Frontmatter
	Emergent Semantics
	Viewpoints on Emergent Semantics
	f-SWRL: A Fuzzy Extension of SWRL
	Intensional Semantics for P2P Data Integration
	Integrating and Exchanging XML Data Using Ontologies
	Managing Uncertainty in Schema Matching with Top-K Schema Mappings
	Semantic Data Management in Peer-to-Peer E-Commerce Applications
	Interoperability Through Emergent Semantics A Semiotic Dynamics Approach
	Emergent Semantics from Folksonomies: A Quantitative Study
	Emergent Semantics in Knowledge Sifter: An Evolutionary Search Agent Based on Semantic Web Services

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




