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Abstract. This paper presents a hardware architecture for UNIX pass-
word cracking using Hellman’s time-memory trade-off; it is the first
hardware design for a key search machine based on the rainbow vari-
ant proposed by Oechslin. The implementation target is the Berkeley
BEE2 FPGA platform which can run at 400 million password calcula-
tions/second. Our design targets passwords of length 48 bits (out of 56).
This means that with one BEE2 module the precomputation for one salt
takes about 8 days, resulting in a storage of 56 Gigabyte. For the pre-
computation of all salts in one year we would need 92 BEE2 modules.
Recovering an individual password requires a few minutes on a Virtex-4
FPGA.

Keywords: cryptanalysis, hash-functions, time-memory trade-off, ex-
haustive key search, rainbow table, FPGA implementation.

1 Introduction

Symmetric-key cryptography deals with algorithms that use a secret key to pro-
vide confidentiality, identification and data authentication. A basic problem in
symmetric-key cryptology is the computation of preimages or inversion of one-
way functions. For example, a brute-force attack on a block cipher in a known
plaintext attack considers the mapping of the key to the ciphertext, which should
be a one-way function. If no shortcut method is known, and the function has
an n-bit result, there are two straightforward methods: first one can perform an
exhaustive search over an average of 2n−1 values until the target is reached. A
second solution is to precompute and store 2n input and output pairs in a table
(for a random function this will not result in different values – if the input space
is large enough, the coupon collector’s formula tells us that a space of about
n · 2n elements needs to be searched). If one then needs to invert a particular
value, one just looks up the preimage in the table, so inverting requires only a
single table lookup.
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The time-memory trade-off attack invented by Hellman in 1980 [7] proposes
a solution that lies in between the two solutions. The precomputation time is
still on the order of 2n, but the memory complexity is 22n/3 and the inversion
of a single value requires only 22n/3 function evaluations. In [6] Fiat and Naor
propose a more general and rigorous variant at the cost of extra workload and/or
memory. Kusuda and Matsumoto generalize the Hellman method in [8]; they
derive stricter bounds on the success probability and give relationships between
the memory complexity, processing complexity and success probability. Note that
for cryptanalyzing stream ciphers more complex time/memory/data trade-offs
are known – see for example Biryukov and Shamir [4].

Hellman’s basic idea was improved in 1982 by Rivest who suggested to use
distinguished points in order to reduce the number of memory accesses. This
idea was elaborated independently by Borst et al. [5] and Stern [13]. The first
FPGA design of this method was proposed by Quisquater et al. [12] for a 40-bit
DES variant; they also presented cost estimations for the cryptanalysis of a full
DES (with 56 bits). A detailed analysis for this platform was given in [15]. A
more generic full cost analysis of the time-memory trade-off with and without
distinguished points has been provided by Wiener in [16].

At Crypto 2003, Oechslin [10] suggested to use so-called rainbow tables for
precomputations; this method combines the advantage of the distinguished point
approach (reduced number of memory accesses) with the higher success proba-
bility and easier analysis of Hellman’s original method. He has developed further
details in [11].

In this paper we propose an FPGA platform for cryptanalysis of the UNIX
password hashing scheme [9] using the rainbow table approach. The implemen-
tation target is an existing FPGA platform called BEE2 (Berkeley Emulation
Engine 2) [1]. The paper is organized as follows. Section 2 provides the theoret-
ical background and some definitions as well as specifics related to our case. In
Sect. 3 the details of the proposed FPGA implementation are described together
with future improvements. More future work is depicted in Sect. 4 and Sect. 5
concludes the paper.

2 Theoretical Background

In this section we give some definitions that are used in the remainder of the
paper.

2.1 Time-Memory Trade-Off

Let E : {0, 1}n × {0, 1}k −→ {0, 1}n be a block cipher with block length n and
key length k. We will consider DES with n = 64 and k = 56, or rather a variant
of DES. The encryption is denoted as: C = EK(P ) where C, K and P are
respectively ciphertext, key and plaintext. For a fixed and known plaintext P ,
the mapping EK(P ) is a one-way function from the key to the ciphertext. For
a time-memory trade-off two functions are usually defined. The first one is g :
{0, 1}64 −→ {0, 1}56 that maps a ciphertext to a k-bit string, hence we can write:
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g(C) = g(C1, C2, . . . , C64) = (X1, X2, . . . , X56) . (1)

This function is usually called a mask function or a reduction function. There
are many possibilities to define this function; one often proposes to drop 8 bits
and to permute the other 56 ones, which results in more than 2280 choices. Other
options that are more suitable for hardware implementations include bit swaps,
xor functions, etc. We discuss these options in more detail in Sect. 3.1. Second,
we define a function f : {0, 1}56 −→ {0, 1}56 that maps the key space to itself:

f(K) = g(EK(P )) = g(C1, C2, . . . , C64) = g(C), ∀ K ∈ {0, 1}56 . (2)

This construction originates from Hellman [7]; it was generalized by Kusuda
and Matsumoto in [8]. By succession of ciphertexts with keys a chain can be
constructed:

Ki

EKi
(P )

−→ Ci
g(Ci)−→ Ki+1 ,

which can be written as a chain of keys

Ki
f−→ Ki+1

f−→ Ki+2 .

In the original algorithm of Hellman m chains of length t are created; one stores
only the first and the last element of each chain in a table. Given a ciphertext C
(with a known plaintext) one can try to find a key that was used to generate C
in the following way. Chains (up to some fixed length t) are searched until a key
that matches the last key of some chain is found. Using the first key, the chain
can be reconstructed and the right key is the one just before C. The typical para-
meter sizes for a k-bit key are t = m = 2k/3. If one uses r = 2k/3 tables, the total
precomputation time is 2k evaluations of f and one needs to store 22k/3 values
of 2k bits. Recovering a single key requires 22k/3 evaluations of f . The success
probability of this method depends on the number of repeated elements in the
chains; repetitions occur due to merging chains and due to chains that enter a
loop. For the typical parameter sizes t = m = r = 2k/3, with a precomputation
complexity of 2k, the success probability is around 0.55 [7].

The approach of distinguished points avoids a table lookup after every func-
tion computation, since an efficient implementation of a lookup in a large table
would be too expensive. A distinguished point is a key that has a property that
is easy to identify (for example the 20 most significant bits are zero); this means
that one only needs to check after each iteration whether or not a value is a
distinguished point. One creates chains starting and ending with a distinguished
point: this also allows to reduce the storage per chain and to check for some
merged chains (but throwing away such chains implies that one needs to in-
crease the precomputation time). However, in the distinguished point variant,
chains are of unequal length and will have a larger probability to merge (reducing
the success probability of the attack).

The rainbow tables approach proposed by Oechslin [10] uses a different func-
tion g in every iteration. More precisely, rainbow chains have a fixed length t
and use t different mask functions inside one chain: g1, . . . , gt. In order to re-
cover a key one first starts in the one but last column (1 application of gt); next
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one starts in the second but last column and one applies gt−1 and gt. In the
final iteration one applies g1 through gt; the total number of iterations is t(t−1)

2 .
This also allows to reduce the memory accesses, but at the same time it reduces
the probability of merging chains; indeed, two chains will only merge if the two
merging points are at the same position in a chain. Because of the reduced merge
probability, rainbow tables can be much larger; typically only a few tables are
needed [11]. The method has been implemented in software (a.o. for Windows
passwords), but we are not aware of any hardware implementations. This article
explores some options for hardware implementations of rainbow chains applied
to the UNIX password system.

2.2 UNIX Password Hashing

Here we consider the application of the time-memory trade-off to the UNIX
password system. In this case, 25 DES operations are performed where the ci-
phertext of one DES is used as the plaintext of the next DES. The plaintext
of the first DES consists of all zeros and the key to all DES functions is the
user password consisting of 8 ASCII characters. The ciphertext of the last DES
block is the hash-value of the password. To increase the security of the UNIX
password system, these 25 DES functions are modified based on a 12-bit salt;
this salt defines an extra permutation in the expansion function in each round.
The salt is a public value that is allocated to the user when she registers to the
system; it is stored together with the hash value. The salt is often derived from
the system clock. The black-box representation of this scheme is shown in Fig. 1.
Assuming password characters consisting of capitals, small letters, numbers and
two special characters “ \” and “.” every character contains only 6 bits of infor-
mation which results in a key space of 48 bits. The password salting results in
212 extra variations, hence the time-memory trade-off precomputation needs to
be repeated for all salts: both the storage and the precomputation time increase
with a factor 4096, but a single password can still be recovered with 248·2/3 = 232

function evaluations. Of course one can also choose to mount the attack for a
subset of salts.

25DES

plaintext

salt

key ciphertext

Fig. 1. Black-box of one UNIX password hashing



Time-Memory Trade-Off Attack on FPGA Platforms 327

2.3 Bounds and Parameters

We now introduce some notation. Let t be the length of the chains, let m denote
the number of chains in each table and r the number of tables. These parameters
can be varied in order to tune the success rate as the time-memory trade-off is
a probabilistic method. The schematics of one chain and the total structure are
shown in Fig. 2 and Fig. 3. The bounds on the memory M (used to store the
precomputation tables) and the time T (required to find the password starting
from the hash) are as follows:

M = m · r · m0
T = t · r · t0

Here, m0 is the amount of memory required to store each chain i.e. its start
and end point. In our case m0 is 14 bytes. Likewise, t0 is the time in which one
password hash is generated.

g1 g2 gt25DES 25DES 25DES 25DES EPSP

64 zeros

salt

Fig. 2. Schematics of one rainbow chain. The inputs and outputs of one hash function
are depicted in Fig. 1. SP = start point, EP = end point.

The success rate of a single rainbow table can be estimated as follows [10]:

P = 1 −
t∏

i=1

(1 − mi

N
) ,

where
m1 = m, mn+1 = N(1 − e−

mn
N ) .

In Fig. 4 the success rate is shown as a function of the length of the chains t.
It is obvious that the probability grows fast at the beginning with the length of
the chains. After a length of around 102400 (≈ 216.64) the probability is almost
stagnating.

By taking the direct approach from the original paper of Hellman we derived
the following lower bound. By approximating mt2 ≈ N the lower bound can be
estimated to be 0.75, which is similar to the result of Standaert et al. [15]:

P ≥ mt

N

[
1 − mt2

4N
+

(mt2)2

18N
− (mt2)3

96N
+

(mt2)4

600N
− · · ·

]
(3)
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Fig. 3. Schematics and parameters of the complete structure

The success rate for multiple tables can be calculated from

P ≥ 1 − (1 − Pone table)r . (4)

Here we consider only one rainbow table, which can be justified by the result
of Oechslin. In his work the best cryptanalysis results were achieved using only
five tables.

3 Hardware Implementation Options and Results

We now elaborate on the implementation of the precomputation in hardware.
We describe the FPGA design and give performance estimates.

3.1 Our FPGA Solution

The first crucial choice is related to the mask functions. The mask function is
actually a reduction function that maps a ciphertext to a key. There exist various
options among which we mention:

– permutations i.e. S-boxes
– xor functions
– bit swaps

As we are interested in hardware implementations, it is important to choose
mask functions with a low hardware complexity. From this point of view, all
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Fig. 4. Success rate as a function of the length of the chains

three suggested options are suitable. However, for rainbow tables a chain contains
many different mask functions which implies that the overhead in control logic
should also be minimized. With respect to this, xor-ing with a register containing
a variable value is the best solution. Moreover, in our case permutations may
not even offer enough choices for different masks. Since the complexity of our
key space is 248 we chose to throw away the last 16 bits and to xor with a 48-bit
counter. In this way, we can use just one generic mask function which is varied by
different states of the counter resulting in a total of 248 different mask functions.
Finally, the 48-bit output of the xor function passes through some logic gates to
obtain a 56-bit result which is a valid 56-bit key (containing only capitals, small
letters, numbers and the characters “ \” and “.”).

Fig. 5 depicts the architecture of our design. To construct a chain, an alternat-
ing sequence of block cipher computations and mask functions is applied. This
is done using a feedback loop.

The generation of start points is implemented in hardware in order to con-
tribute to a more efficient precomputation. More precisely, loading start points
of chains from outside of the FPGA would create an overhead in communica-
tion time. Namely, because of pipelining, the design has to deal with many start
points at the same time. For this reason, we implemented a counter to generate
the start points. The value of the counter in the mask functions, padded with 8
zeros, can be re-used for this purpose.

Next a buffer design needs to be developed to take into account the variable
output rate of the rainbow algorithm. The start point-end point pairs are stored
in a hash table with the end point as the index. After sorting the table entries,



330 N. Mentens et al.

25DES

ig

SP

EP

password

hash

counter
bit−wise

XOR

48
−

bi
t c

ou
nt

er

56−bit image

64−bit hash

logic

DES

DES

DES

round1

round2

round16

Fig. 5. Pipelined architecture for performing the rainbow chains

the on-line part has to be performed. It looks up the values output by the FPGA
until the targeted key is found. Recovering an individual password in a rainbow
chain takes t(t−1)

2 function evaluations. This part can be done in software or,
to make it faster, on an FPGA. Using a XC4VLX200 Virtex-4, a non-pipelined
version of the Unix password system can find the key in less than an hour. A
pipelined key search on this FPGA can be done in a few minutes.

There are two cases when finding an end point does not lead to the correct
key; these are usually referred to as false alarms. First, the key may be a part
of a chain with the same end point but which is not in the table. The second
false alarm situation occurs when a key is in a chain which merges with another
chain in the table. For rainbow chains, the merging will occur only if the collision
happens at the same position in two chains. For chains of length t, the probability
that a collision is a merge is only 1

t . As noted in [10], it is possible to generate
tables without any merging. However, this solves only some false alarm situations
and it remains a problem to create tables that cover the key space as much as
possible.

3.2 Hardware Precomputation Platform and Results

We chose an existing platform to perform the precomputation part: the Berkeley
Emulation Engine 2 (BEE2) [1]. One BEE2 module consists of 5 Xilinx Virtex-
2Pro70 FPGAs of which 4 can be used to implement digital circuits and one
to take care of global routing and control logic. The floorplan of one module
is depicted in Fig. 6. The Virtex-2Pro70 is a high performance FPGA which
comes at a cost of approximately US$ 1500. The BEE2 platform is designed
for high-speed applications with a communication bandwidth up to 360 Gbit/s.
Every module contains a 20 GB DDR-RAM and a 10 Gbit/s ethernet connector.
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However, our application only requires a 14-byte value to be written in the RAM
after every 216 hash operations, which comes down to a write speed of 85 449
bytes/s for one BEE2 module. This is achievable by a hard disk supplemented
with 500 MB or 1 GB of RAM. Furthermore, for recovering one key, we need
approximately 232 7-byte table lookups in a 56 GB memory. Assuming it takes
2 minutes to perform the on-line computations, this comes down to 36 million
read operations per second at a bandwidth to the memory of 250 MB/s. This
means that for the on-line part it is also not required to have a bandwidth of
360 Gbit/s nor a 20 GB RAM. Hence, a dedicated design with a slower memory
access rate could reduce the full cost.

Fig. 6. Floorplan of one BEE2 module

Synthesis results show that one precomputation unit uses almost 200% of the
slices of a Virtex-2Pro70 (33 088 slices). That is why we use one BEE2 module
to implement two precomputation units. Each pipelined architecture in Fig. 5
can compute 200 million password hashes per second at a frequency of 200 MHz.
Targeting 48-bit passwords using one BEE2 module, this would mean a precom-
putation time of 8 days. The upper bound on the storage for one salt is 232×
14 Bytes, resulting in 56 GB of memory. To make the precomputation for all
salts in one year, we need 92 BEE2 modules. Figures 7 and 8 depict the precom-
putation time as a function of the number of BEE2 modules used in parallel.
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Fig. 7. Precomputation time for one salt as a function of the number of BEE2 modules

Fig. 8. Precomputation time for half of the salts and for all salts as a function of the
number of BEE2 modules

Table 1 compares our results with other hardware as well as software solutions.
The only known hardware solution is [12] which attacked one 40-bit DES while
our target was 25 56-bit DES blocks. The other are software options dedicated
to cracking 56-bit DES.
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Table 1. Comparison of implementation results for symmetric key cryptanalysis

platform algorithm speed (enc/s)
[2] 64-bit Alpha computer 56-bit DES 2 M
[12] Virtex1000 40-bit DES 66 M
[10] P4, 1.5 GHz, 500 MB RAM 56-bit DES 0.7 M

this work BEE2 25 x 56-bit modified DES 400 M

4 Future Work

The results described in this paper can be further optimized by considering the
work of Biryukov et al. [3], in which time-memory-data trade-off attacks show
an improvement of a factor 2 to 3.

Another standard for computing UNIX password hashes is based on the MD5
algorithm [14]. The feasibility of attacking these kinds of UNIX password systems
should be investigated.

5 Conclusions

In this paper we presented an FPGA architecture for cracking UNIX passwords
using the rainbow tables approach from Oechslin. The attack targets passwords
consisting of capitals, small letters, numbers and a few special characters, i.e.
48-bit passwords. The implementation platform consists of BEE2 modules devel-
oped at UC Berkeley. We give the implementation results for one BEE2 module
precomputing the rainbow tables for one salt. Furthermore, we estimate the
number of modules needed for the precomputation of all salts in one year.
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