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Preface

The International Workshop on Reconfigurable Computing (ARC)1 started in
2005 in Algarve, Portugal. The major motivation was to create an event where
on-going research efforts as well as more elaborated, interesting and high-
quality work on applied reconfigurable computing could be presented and dis-
cussed.

Over the last couple of years reconfigurable computing has become a well-
known and established research area producing interesting as well as important
results in both general and embedded computing systems. It is also getting
more and more interest from industry which is attracted by the (design and
development) flexibility as well as the performance improvements that can be
expected from this technology. As reconfigurable computing has blurred the gap
between software and hardware, some even speak of a radical new programming
paradigm opening a new realm of unseen applications and opportunities.

The logo of the ARC workshop is the Nonius, a measurement instrument
used in the Portuguese period of discoveries that was invented by Pedro Nunes,
a Portuguese mathematician. As the logo suggests, the main motto of ARC is to
help to navigate the world of reconfigurable computing. Driven by this motto,
we hope ARC contributes to solid advances on reconfigurable computing.

The second edition of the International Workshop on Applied Reconfigurable
Computing (ARC2006) was held at Delft University of Technology, Delft, The
Netherlands, on March 1-3, 2006. More than 60 participants contributed to the
success of this second edition. It is also a clear sign that the need exists for a
high-level international forum to discuss and exchange ideas on reconfigurable
computing.

Ninety-four papers were submitted to the workshop from 22 countries. After
a careful review process, 22 papers were accepted as full papers (acceptance rate
of 23.4%) and 35 as short papers (global acceptance rate of 60.64%). There were
also keynote presentations by two invited, distinguished, international speakers.
Besides the keynotes, the workshop also had a panel discussing hot issues re-
lated to reconfigurable computing. The workshop talks were organized around a
number of themes, namely, applications, power, image processing, organization
and architecture, networks and telecommunications and security.

Several persons contributed to the success of the workshop. We would like
to acknowledge the support of the Program Committee members in review-
ing papers and giving valuable suggestions for the workshop. Special thanks
also to the auxiliary reviewers that contributed to the reviewing process, to all
the authors that submitted papers to the workshop, and to all the workshop
attendees.

1 http://www.arc-workshop.org



VI Preface

For the second time, improved versions of the best papers of the workshop
will be published in a special edition of the Journal of Electronics, a Taylor &
Francis journal.

We consider the accepted papers to constitute a representative overview of
ongoing research initiatives in this rapidly evolving field. We hope you have a
pleasant reading, as we had.

Delft, The Netherlands
March 2006

Koen Bertels
João Cardoso

Stamatis Vassiliadis
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Implementation of Realtime and Highspeed
Phase Detector on FPGA

Andre Guntoro1, Peter Zipf1, Oliver Soffke1,
Harald Klingbeil2, Martin Kumm2, and Manfred Glesner1

1 Institute of Microelectronic Systems
Darmstadt University of Technology, Germany

guntoro@mes.tu-darmstadt.de
2 Gesellschaft für Schwerionenforschung mbH

Darmstadt, Germany

Abstract. We describe the hardware implementation of a phase detec-
tor module which is used in a heavy ion accelerator for real-time digital
data processing. As this high-speed real-time signal processing currently
exceeds the performance of the available DSP processors, we are trying
to move some functionality into dedicated hardware. We implemented
the phase detection algorithm using a pipeline mechanism to process
one data value in every clock cycle. We used a pipelined division opera-
tion and implemented an optimized table-based arctan as the main core
to compute the phase information. As the result, we are able to process
the two 400 MHz incoming data streams with low latency and minimal
resource allocation.

1 Introduction

Control systems are now moved more into the digital domain since this provides
better pre-processing, filtering, regulating, and post-processing compared to the
analog domain [5,7]. Moreover, digital processing also provides a flexibility which
is very hard to achieve in the analog domain, where hardware re-designs are
necessary for each change.

Digital signal processors (DSP) are good candidates for those digital process-
ing tasks for which results must be provided in (near) real-time [7]. One major
problem in DSPs is that even though they provide special instruction sets which
are dedicated for digital signal processing [2,8], they are not able to process
data continuously like it is found in a specialized pipeline. Instead, junks of data
have to be handled individually. In most of the cases, data processing which
starts from pre-processing and ends at post-processing would not only bind a
high share of the DSP’s workload capacity, but possibly push the throughput
below the required rate. One solution is to drop information by subsampling the
incoming data so that it will not longer overload the DSP.

In certain applications, such as high-speed and real-time signal processing for
which resolution and accuracy are the key points to produce a better system re-
sponse and control results, subsampling can no longer be seen as a solution. One
alternative approach to subsampling is the implementation of some dedicated
hardware modules handling the critical tasks.

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 1–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Guntoro et al.

1.1 Background

One of the applications found in many signal control systems is the determination
of the phase difference between two signals [4]. The calculated results will be
used, for example, as a parameter to tune-up the oscillator of the second signal
source to match to the first signal source.

Detection of the phase difference between two signals is actually a straight-
forward task. But when looking at a specific application such as the heavy ion
acceleration control system, phase detection needs to be performed in a high
frequency domain and it must be done in real-time. A block diagram of such a
system is shown in Fig. 1. Implemented on a commercial DSP board, a field-
programmable gate array (FPGA) manages the interconnection between two
DSPs, a host computer, analog-to-digital (ADC) and digital-to-analog convert-
ers (DAC). In our case, DSP A handles the communication with the host and
also monitors the data, while DSP B processes the phase calculation.

D/A

A/D

DSP A

FPGA

DSP B

HOST

Fig. 1. The heavy ion acceleration control system

1.2 Problem Overview

Looking at both constraints, the high frequency data input and the need for real-
time processing in our heavy ion accelerator control system, we have developed a
dedicated hardware module on a FPGA to fulfill the performance requirements.
This step was taken since the DSPs could not satisfy the given constraints.

One necessary key to calculate the phase difference is to resolve the phase
information from the given discrete samples of each signal. The calculation of
the phase involves first the usage of a division operation of the quadrature and in-
phase components of the signal, and second the usage of the inverse trigonometry
function arctan to compute the phase itself [3].

Two major problems can directly be seen from the above steps. One is con-
cerning the division operation which obviously needs a lot of resources (both
time and hardware allocation), and the other one is concerning the arctan com-
putation, which is mainly implemented through iteration.

As our previous consideration is to follow the constraints but without ne-
glecting the resource utilization of the FPGA, we have implemented a robust
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phase detector module which provides one result of the calculated phase from
the continuous data stream in every clock cycle.

1.3 Paper Outline

The rest of this paper is organized as follows. Section 2 provides some back-
ground on how the computation of the phase detector is done. Section 3 dis-
cusses the hardware implementation of the phase detector. Section 4 describes
the optimization which can be done in order to minimize the logic resources, and
Section 5 discusses the result. Finally, Section 6 concludes the paper and points
out our future plans for further developments of the system.

2 Theory of Phase Detector

The phase detection between two signals is actually done in two steps. At the first
step, the phase information of every signal has to be resolved from the sampled
input signal. This phase information is calculated by using the following formula:

φX = f(x, y)

tan(φX) =
y

x
(1)

where y and x represent the in-phase and quadrature components and they are
defined as:

x = Q1 − Q2 (2)

y = I1 − I2 (3)

I1, Q1, I2, and Q2 themselves correspond to four subsequent samples of the input
signal. Keep in mind that the calculation of the phase information has to be
done for both input signals. Afterward, the output of the phase detector can be
computed by calculating the difference between two resolved phase informations.

φΔ = φ1 − φ2 (4)

3 Implementation

Due to the nature of the arctan function, the whole range of computation can
be divided into several quadrants which will then restrict the range needed for
calculation. This quadrant separation [6] can be formulated as:

φX =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(x, y) |y| ≤ |x|, x ≥ 0
+π + f(x, y) |y| ≤ |x|, x < 0, y ≥ 0
−π + f(x, y) |y| ≤ |x|, x < 0, y < 0
+π/2 − f(y, x) |y| > |x|, y ≥ 0
−π/2 − f(y, x) |y| > |x|, y < 0

(5)



4 A. Guntoro et al.

Fig. 2 illustrates the divided quadrants in in-phase and quadrature coordinate
axes. It concludes that now it is only necessary to provide the range between
−π/4 and +π/4 for the arctan computation.

y

x1

5

2

3

4

Fig. 2. Quadrant differentiation which is done in Equation 5

One of the important aspects of the phase detector application is that the
detection is always used in a continuous input process. In order to provide max-
imum performance of the phase detector, we have taken a pipeline approach to
implement this module. Thus, incoming subsequent samples can be processed
in every clock cycle and the results are also available in every clock cycle with
a minimal latency time, which is certainly needed in real-time data processing.
The block diagram of the module is shown in Fig. 3. Here, the controller manages
the data flow of every attached module. A FIFO (First In First Out) buffer is
introduced to buffer the incoming data (organized as 32×[2×16-bits] to incorpo-
rate the two input signals), whereas the phase calculation is realized in multiple
pipeline stages. In the end the subtraction unit computes the difference between
the two phases.

3.1 Stage 1 – Subtraction and Quadrant Determination

The first stage of the pipeline handles the preparation for the computation of the
phase information. Here, two operations take place: One is the calculation for x
and y, and the other is the determination of which quadrant should the result of
arctan function belong to. The quadrant determination is computed according
to the boundary condition given in Equation 5, where the input parameters are
taken from the values of x and y.

Unlike x and y which are directly used in the next stage (division), the result
of the quadrant determination will be used at the second and the last stages,
whereas at the third stage the value will just be passed.

In our application the input data are received from an ADC which is config-
ured to deliver 14-bits data width for each sample. As the register allocation, we
have taken 16-bits data width to store the results.
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STAGE1

STAGE2

STAGE3

STAGE4

FIFO

CONTROLLER

Division
y/x or x/y

Adjustment and Outputting

y = I1−I2
x = Q1−Q2

Subtraction and Quadrant Determination
STAGE1

STAGE2

STAGE3

STAGE4

ARCTAN

(a) Block Diagram (b) Pipeline

Fig. 3. (a) represents the block diagram of the phase detector; (b) shows the detailed
pipeline structure for calculating the phase information from the in-phase and quadra-
ture components

3.2 Stage 2 – Division

Based on the result of the quadrant determination and the values of x and y,
the second stage does the division. In case where the parameters are located in
quadrants 4 or 5 (see Figure 2), the divisor and dividend have to be exchanged.
Using this mechanism, we are restricting the range of the division result so that
arctan will reside between −π/4 and +π/4. Furthermore, by using the absolute
values of x and y as the inputs of this stage, the division result will confine in
range of 0 to π/4. The reason of doing this at this early step is to deliver an
easy optimization when designing the arctan function as hardware which will be
discussed later on.

One main difficult task in this stage is the implementation of the division unit
itself. Since a single cycle division algorithm would not allow us to operate the
module at the high frequency, we have considered to use a pipeline version of the
non-restoring division algorithm. Although it adds up to the latency, it will not
lower the operating frequency. As the result, the second stage is again pipelined
with an internal pipeline size which depends on the data width. Here, since we
use 32-bits/16-bits division, it consumes 18 clock cycles (16+2) for the division
stage itself.

3.3 Stage 3 – Arctan Calculation

At the third stage, the quotient of the division on the second stage is used as
parameter to calculate the arctan function. Instead of using a CORDIC (COor-
dinate Rotation DIgital Computer) algorithm [1] which requires several iteration
steps in order to increase accuracy of the result, we have developed a table-based
arctan function. The decision of taking this approach is that in our application
we only need to compute the arctan function. At the first sight, it seems that
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table-based will occupy more resources compared to the CORDIC algorithm, but
when it concerns only on one trigonometry function implementation, especially
arctan, optimization can comfortably be deduced due to its behavior. Advanta-
geously, the table-based approach requires only one clock cycle to compute the
arctan function.

The quotient of the division will be truncated and used as the address for
the generated table. The table itself represents the value between 0 and π/4
and is parameterized in order to provide a wide range of selections based on the
application’s requirement.

3.4 Stage 4 – Adjustment and Outputting

In the last stage, the result of the arctan computation is adjusted. Referring to
Equation 5 and by using the already computed quadrant determination from the
first stage, lookup table adjustment and addition take place here. The adjustment
recovers the calculated angle from the previous stage to −π/4 and +π/4 and the
addition extends the range to −π and +π.

4 Arctan Optimization

At the beginning of the previous section, we have mentioned that we only need
to compute arctan from −π/4 to +π/4. Since arctan is an asymmetric function,
we can easily simplify the calculation by first taking the absolute value and
afterwards do the conversion based on the trigonometry quadrant type. Thus
the swing value will be limited from 0 up to π/4.

Since we have taken a table-based approach, two cases have to be taken into
consideration in building this lookup table. One is concerning the bit width
selection and the other is about the length of the table itself. For the first case,
by taking 8-bits and 12-bits representations for these values, we are allowed to
provide the resolution of π/(4 · 256) = 0.1758◦ and π/(4 · 4096) = 0.0109◦. For
the last case, the determination of the table length can be adapted from the
application’s requirements. Three different table lengths for each table width
have been simulated and the difference between the accurate value and the table
is shown in Fig. 4. By increasing the table length, the data representation is
more condensed. For example, with a table length of 256 we can only represent
the data between 0 and 1 in 256 possibilities (resolution of 0.00391), whereas
with a table length of 512 we have a resolution of 0.00195. In each case, the
maximum error always leads to the same value since it depends on the table
width and not on the table length. Table 1 summarizes the mean absolute and
standard deviation of the error for each case.

5 Simulation and Synthesis

Inspecting the architecture presented in Section 3 and the lookup table opti-
mization, two sources of error are introduced here. Despite the quotient of the
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(f) Table 12-bits × 1024

Fig. 4. Rounding errors due to the selection of 8-bits and 12-bits table width for dif-
ferent table lengths
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Table 1. Mean absolute and standard deviation (all in degree unit) of the difference
between accurate and table-based values for each table size

Table Size ¯|x| σ

8-bits × 256 0.04665 0.05365
8-bits × 512 0.04428 0.05157
8-bits × 1024 0.04411 0.05101
12-bits × 256 0.00277 0.00317
12-bits × 512 0.00277 0.00318
12-bits × 1024 0.00273 0.00314

division from Stage 2 delivers 16-bits resolution, we have taken only higher sig-
nificant bits of the quotient as the input of the lookup table (depending on the
preffered table length). This truncating error adds up with the error introduced
by the 8-bits or 12-bits width arctan lookup table, leading to the total error
shown in Fig. 5. In this figure, six different table dimensions are simulated to
show the comparison of the overall performance for each different case. Table 2
summarizes the statistical results. As we can see, by increasing the length of the
table we are able to improve the performance. Nevertheless, without modifying
the table width we are not able to receive a significant improvement with respect
to the consumption of hardware resources itself.

Table 2. Maximum error, mean absolute and standard deviation (all in degree unit)
of the overall error from the division and table-base approach for every table width

Table Width max ¯|x| σ

8-bits × 256 0.36247 0.18079 0.19835
8-bits × 512 0.31842 0.13461 0.15109
8-bits × 1024 0.27455 0.11336 0.13063
12-bits × 256 0.22200 0.09787 0.11271
12-bits × 512 0.11337 0.05178 0.05883
12-bits × 1024 0.05983 0.02861 0.03196

All six different table implementations have been synthesized to give us in-
formation about the resource allocation of the FPGA. As the target device in
our design we have selected Xilinx Virtex2 XC2V2000. Table 3 describes the
device utilization summaries for each table dimension. Depending on the appli-
cation’s requirements and available resources, we can optimize the generation of
the arctan lookup table.

As in the prototyping the target device is clocked with 100MHz, we are able
to provide the calculation result with latency of 210ns (with respect to the total
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Fig. 5. Overall performance. Total error due to the usage of 8-bits width lookup arctan
table and truncating effect of the quotient in division for different table lengths.
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Table 3. Device utilization of the Virtex2 XC2V2000 for each different implementation
of the phase detector

Table Size Max Frequency Slices Flip Flops 4-input LUTs

Available 10752 21504 21504
8-bit × 256 173.989 MHz 500 (4.65%) 630 (2.93%) 547 (2.54%)
8-bit × 512 171.659 MHz 581 (5.40%) 718 (3.34%) 654 (3.04%)
8-bit × 1024 151.126 MHz 687 (6.39%) 811 (3.77%) 771 (3.59%)
12-bit × 256 169.190 MHz 569 (5.29%) 678 (3.15%) 626 (2.91%)
12-bit × 512 169.190 MHz 695 (6.46%) 797 (3.71%) 780 (3.63%)
12-bit × 1024 149.903 MHz 878 (8.16%) 910 (4.23%) 1026 (4.77%)

number of pipeline steps that is 21). Furthermore, as the phase detector processes
four samples for each input signal and we implemented only one module for com-
puting both input channels, the phase detector itself can process the data stream
at the speed of 200MHz. If higher frequency is demanded, by implementing two
modules to resolve the phase information, we can make the phase detector to
receive data as fast as 400MHz. For comparison, the phase calculation was also
programmed on the DSP (TMS320C6711; 100 MHz) and as the result the DSP
can only process the data stream at 1.5MHz.

6 Conclusions and Future Work

In this paper we have introduced the implementation of a phase detector on a
XC2V2000 FPGA. The objective is to make the real-time signal data processing
required by our application possible. Our solution to the problem is to implement
the critical task as a specialized hardware pipeline. Optimization and resource
allocation can be selected depending on the granularity of the application’s re-
quirements without consuming too many logic resources. We also have shown
that our dedicated hardware phase detector is capable to fulfill the constraint
of the high-speed signal processing by working on two 400MHz incoming data
streams, which is 266× faster than the DSP solution. The output has a latency
of only 210 ns which is excellent for the digital control system to provide a stable
control behavior and a quick system response time.

Thanks to the FPGA we are now able to deliver flexibility to the design.
By implementing a processor core inside the FPGA, we have the possibility
to extend the phase detector module so that it will be integrated within the
processor itself. Thus, additional pre- and post-processing can be done and con-
trol system algorithms can easily be programmed. Furthermore, moving some
more functionalities from the software algorithm to hardware helps to optimize
the whole system response, thus making this real-time signal processing a less
critical task.



Implementation of Realtime and Highspeed Phase Detector on FPGA 11

References

1. R. Andraka. A survey of CORDIC algorithms for FPGA based computers. FPGA
98 Monterey CA USA, 1998.

2. Introduction to DSP, 2004. http://www.bores.com/courses/intro/chips/.
3. A. Dhodapkar and J. Smith. Comparing Program Phase Detection Techniques. In

Proceedings of the 36th International Symposium on Microarchitecture, 2003.
4. M. Hind, V. Rajan, and P. Sweeney. Phase shift detection: a problem classification.

In IBM Research Report, 2003.
5. J. Iverson. Digital Control Technology Enhances Power System Reliability and

Performance. In Technical Information from Cummins Power Generation. Cummins
Power Generation, 2004.

6. H. Klingbeil. A Fast DSP-based Phase-detector for Closed-loop RF Control in
Synchrotrons. IEEE Transaction on Instrumentation and Measurement, 2004.

7. W. Steven. The Scientist and Engineering’s Guide to Digital Signal Processing.
California Technical Publishing, 1997.

8. DSP Tutorial, 2001. http://www.wave-report.com/tutorials/DSP.htm.



K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 12 – 17, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Case Study: Implementation of a Virtual Instrument 
on a Dynamically Reconfigurable Platform 

Gerd Van den Branden1,2, Geert Braeckman1, Abdellah Touhafi1,2, and Erik Dirkx2

1 Erasmushogeschool Brussel, Departement IWT, Nijverheidskaai 170,  
1070 Brussel, Belgium 

gerd.van.den.branden@ehb.be,
geert.braeckman@ehb.be, abdellah.touhafi@docent.ehb.be 

2 Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium 
efdirkx@info.vub.ac.be

Abstract. This paper discusses our experiences in porting a virtual instrumenta-
tion machine, which is a tool to create virtual instruments for the measurement 
of sound and vibrations to a dynamically reconfigurable platform. Hereby we 
follow a generic approach and we focus on maximizing reusability of elements 
that are available in the software based environment. Furthermore we analyze 
the final result and discuss the benefits and drawbacks of the reconfigurable 
platform with associated CAD tools we chose to use. 

1   Introduction 

Today there is a lot of interest in dynamic reconfiguration. However, there still isn’t 
much rumor of applications that really make use of this so called feature. Because 
dynamic reconfiguration is in fact a new design paradigm, we believe that there exists 
a great design productivity gap. In an effort to fill this gap we experimented with 
partial and dynamic reconfiguration in order to deduce a consistent design flow.  

This paper gives a clean overview on how an existing application, designed to run 
on a general purpose desktop PC environment, can be ported to a dynamically recon-
figurable platform. The objective is that this will result in a considerable decrease in 
execution time and even in a decrease in power consumption, without losing much 
flexibility or introducing much complexity. To achieve this goal we developed a 
framework which we will use to come to the final, generic, implementation.  

The rest of this paper is constructed as follows. In Section 2 we explain what is 
meant by a virtual instrumentation machine and how it can be used to create a custom 
measurement infrastructure, which we call a virtual instrument. We present a soft-
ware-environment where this can be done in an accurate and cost effective way. 
Finally, the benefits and drawbacks of this environment are discussed for a virtual 
instrument running on a Pentium IV desktop PC. In Section 3 we will outline the 
details of porting the virtual instrumentation machine towards a dynamically recon-
figurable platform. Then in Section 4 we discuss the implementation on an xc2vp30 
FPGA and an ML310 development board, both from Xilinx Inc. [1]. We outline some 
difficulties we encountered and propose possible solutions, if any. 
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2   A Virtual Instrumentation Machine   

A virtual instrumentation machine must be seen as a design environment that  
enables the creation of a custom measurement system. In this context, an example 
virtual instrument is depicted in Figure 1. It shows a tool that captures audio data 
and displays the energy spectrum. This is a simple straight forward example, but 
more complex constructions with split- and merge- points, are off course also  
possible. 

Fig. 1. A virtual instrument to display the frequency spectrum of audio data 

For the rapid implementation of virtual instruments we developed an automation 
tool. This software-environment allows one to define a virtual instrument by means of 
interconnectable multi-port operations (which we will call objects from here on), 
whereby the sources are data-acquisition elements and the sinks are storage elements. 
Furthermore it is possible to assign a number of parameters to each object.  

Once the user has completely defined the virtual instrument, an evaluation is exe-
cuted on it. First a numbered graph representation is created using an ASAP (as soon 
as possible) numbering strategy. Next a consistency checking is executed on the in-
strument. This includes a type checking, a port checking and a check to ensure that no 
infinite loops were created. When no errors are detected, a serialized file is generated 
that implements the virtual instrument. With this representation of the virtual instru-
ment, we can move on to the simulator. For more documentation about the details of 
this software environment and how to use it, we refer the interested reader to the pub-
lications and documentation that can be found on our web-site [2, 3]. 

The purpose of the virtual instrumentation machine was to provide a cheap alterna-
tive for measuring and analyzing sound and vibrations without the need of buying 
each time a specific and expensive measurement apparatus, and without loosing much 
accuracy compared with those state-of-the-art analyzers [4].  

However, there are some serious shortcomings when real-time measurements need 
to be done. For example, on a Pentium IV desktop environment (1.4 GHz), we are 
capable of analyzing one channel in real-time. But, when we define a multi-channel 
system (e.g. in a multi-sensor environment), we miss the real-time deadlines. It is 
clear that the equipment lacks the necessary computing power to provide correct re-
sults in such an environment. The reason is that every object is executed serially on a 
single general purpose Von-Neumann like processor, which offers greater flexibility 
and programmability at the cost of lower performance. 
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3   Migrating to Dynamic Reconfiguration: A Natural Evolution 

Migrating towards dynamic reconfiguration for this application is a natural choice 
because the objects that compose the virtual instrument lend themselves well to be 
executed in reconfigurable hardware. Partitioning is easy because the objects corre-
spond nicely to isolated operations. In addition, the scheduling problem can be recy-
cled from the numbered graph representation. Figure 2 shows the flow of how this is 
done.  

Define system

- construct virtual instrument
- adjust parameters

Evaluation

- consistency checking
- determination of execution order

Functional simulation 
of virtual instrument

Generate .c file 
containing data 

structure describing 
the instrument

Automatic generation 
of toplevel VHDL

serialized file

busmacro 
details

simulation
results

.c  .h  files .vhd

ISE & EDK
toolflow

file2array reconfiguration engine

busmacro driver

FPGA bitfiles

Fig. 2. General flow for the virtual instrumentation machine 

3.1   Composing the Virtual Instrument 

For the composing phase, we can reuse almost the entire front-end and GUI of the 
software environment we have available. When no errors are generated after the 
evaluation phase, all information is written to a serialized file. Unto this point, there is 
no difference with the flow outlined in section 2, and we can rigorously take advan-
tage of what has been done in the past. However, before we write the serialized file, 
we include some additional information to it compared with the original software 
based implementation. This extra information simply represents quantification infor-
mation about the number of reconfigurable modules that will be used in the final 
system and information about which off-chip peripherals interface with the platform 
we use (e.g. if the system will use external DDR SDRAM memory). This number is 
entered manually by the end-user of the tool. 

The simulation process is essential to ensure that the composed instrument behaves 
as supposed to. The simulator takes the serialized file which describes the virtual 
instrument, and uses this information to build a data structure preserving the circuit 
graph. For simulation purposes, each object has been mapped to a software simulation 
with the expected behavior. Simulation results are written to files on a module base, 
so we have one file for each instantiated object. 

On the FPGA, in a later phase, each object will eventually occupy a reconfigurable 
area.
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3.2   The Reconfiguration Engine 

The Reconfiguration Engine is implemented as a software program that will run on a 
microprocessor on the target platform. It is designed in a generic and scalable manner 
such that it can drive a number of modules varying from only one to as many as the 
FPGA can contain. In Section 4 we discuss this limit, and provide a general way to 
deduce it for an arbitrary system. 

When a reconfigurable area comes available, the engine reads and stores the data 
from that module and saves the state of the internal registers of the module. Thereafter 
it loads a new configuration and restores the state of the internal registers according to 
the new configuration. The computation data is then written to the module's memory 
and finally the module is activated.  

3.3   Generating the Hardware 

The reconfigurable system is composed of communicating modules with a unified 
interface. There are two types of modules: fixed and reconfigurable. The reconfigur-
able module makes sure that it produces the correct results before it alerts the fixed 
module that the results are available.  

Every object that corresponded to a computational operation in our original soft-
ware implementation will now be implemented by a reconfigurable module. The fixed 
module will run the reconfiguration engine, the global communication control be-
tween the implemented reconfigurable modules, the sources and the sinks, and the 
communication with “off chip” devices. 

 

Fig. 3. Black box representation of a generic reconfigurable module 

Figure 3 shows the interface of a reconfigurable module. The reconfigurable mod-
ules are available as VHDL descriptions in a library. They are described according to 
the principles of genericity and modularity as explained before. Automatic Generation 
of Toplevel VHDL. 

According to the information contained in the serialized, we are able to automati-
cally generate a VHDL description of the toplevel file for the dynamically reconfigur-
able system. The toplevel VHDL file of the system instantiates all reconfigurable 
modules and at least the interface with the fixed module. 
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3.4   Creating the Dynamically Reconfigurable System 

Now all elements are available to assemble the complete system and finalize the de-
sign phase. We do this according to the framework depicted in Figure 4. We devel-
oped and validated this framework to create partially and dynamically reconfigurable 
systems. We refer to [5] and to our website [2] for more detailed information about 
how to read and use the framework. 
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Fig. 4. The implementation phase of the final system is done according to this framework 

4   Results 

We implemented our virtual instrumentation machine on a Xilinx ML310 board. This 
board contains a Xilinx XC2VP30 Virtex-II Pro FPGA, 256 MB of external SDRAM 
and a RS232 connector. The SDRAM is reserved to store the different partial bitfiles 
and the source code that is executed on the on-chip PowerPC405 processor. The 
source code contains the reconfiguration engine, drivers for the customized communi-
cation structure, and the drivers for the ICAP primitive.  
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We experimented with dynamically reconfigurable systems that implement one 
fixed and one reconfigurable module and with systems with one fixed and two recon-
figurable modules. In our setup we had to deal with uncompressed partial bitfiles of 
about 100 kB. If we clock the ICAP at a rate of 50 MHz, reconfiguring a module 
takes about 2ms [1]. If we process data that comes at a rate of 48 kHz, a buffer with a 
depth of about 150 32-bit words is needed to ensure safe real time operation. For 
simplicity reasons we implemented buffers of 512 words. 

In this configuration, with a maximum of 64 communication lines (two 32-bit 
gpio_modules), the maximum number of reconfigurable modules is limited to six, 
because in our implementation there is a separate CS and comp_stop signal line for 
each individual module, while the other lines are shared among all modules (see Figure 
3). Our experience however, is to minimize the number of reconfigurable modules, and 
to maximize the area of the fixed module. The latter is useful to maximize the available 
BRAM memory in the fixed module that serves as a cache memory to pre-load recon-
figuration streams. The former is useful to master overall complexity and speed. 

Due to conflicting architectural constraints of the board and the device, the external 
storage capacity was not accessible. Therefore we were limited to creating dynami-
cally reconfigurable systems with one reconfigurable module, where the partial bit-
streams and a limited part of the source code are both contained in the internal BRAM 
memory of the fixed system. Tests with multiple reconfigurable modules are exe-
cuted, but without the use of dynamic reconfiguration. As a consequence, the entire 
reconfiguration engine is only simulated. However, we emphasize that we succeeded 
in dynamically reconfiguring the platform, initializing the module, starting its compu-
tation, collecting the results, and reading out and saving its state. 

We end this paper by stressing the importance of the completeness and accuracy of 
the architectural specifications of the dynamically reconfigurable component, as well 
as the target board. The relevance is illustrated clearly in the fact that those specifica-
tions serve as an input for the framework we proposed in Figure 4. Great up-front care 
is required in order to avoid obstructions at the final assembling phase of the design, 
and to master the engineering cost of the application. This paper contributes in this 
matter by providing a validated framework to fixate the flow, by reciting problems 
that can occur, and by relating design guidelines to them. 
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Abstract. This paper proposes a configurable embedded core for con-
trolling electro-mechanical systems for continuous periodical movements.
These are sub-systems that must operate and be controlled simultane-
ously with data or signal processing. The core integrates, for example, the
control loop of two practical systems for typical light deflection purposes.
An application is presented where the core is also applied for developing
a complete image projection system. Experimental results show that an
FPGA with modest resources, namely the SPARTAN-IIs300e, is able to
fulfill the basic requirements of these applications.

1 Introduction

The purpose of this paper relies on controlling mechanical systems which have
a continuous behavior, in a sense that its dynamic must not change, with the
use of configurable controllers. These systems can be generally actuated by DC
motors rotating at known angular speeds. Systems have to be modeled for be-
ing included in feedback control loops, for example by identifying its frequency
response characteristics.

Electro-Mechanical systems usually integrate several mechanical devices
which have to be controlled in a conjugated way. These are complex systems
which also require real-time data and information processing performed in the
digital domain. A unified architecture for simultaneously processing and con-
trolling may require configurable logic structures in order to fulfil specifications,
namely time restrictions, programmability and power consumption.

This paper proposes a configurable control core to be embedded in general
electro-mechanical systems. The core implements the feedback control linear
approach in Field Programmable Gate Arrays (FPGA). It can accommodate
nested loops as well as independent parallel control structures and it can be
attached to different processing units for specific applications. An example is
provided for implementing a specific video projection system, by combining the
specific core with a video processing unit.

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 18–23, 2006.
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2 Characteristics of Mechanical System and Control
Loop

By looking at a DC motor as a frequency oscillator, which generates a periodic
signal in its speed sensor with frequency proportional to its input, it can be
directly integrated in a Phase-Locked Loop (PLL) for speed control purpose [1].

The PLL scheme, presented in figure 1(a), is a non-linear loop that results
from multiplying the reference and the output signals, to obtain the phase error
of the two signals. The mean value of the error signal is the input of the Voltage
Controlled Oscillator (VCO), which is directly implemented by the motor itself.

In an incremental operating linear approach, (figure 1(b)) for the lock range,
the Phase Detector (PD) turns into a sum for phase error, so the behavior can
be specified with linear analysis, with the poles of the system defining the jitter
and the noise rejection. The DC motors frequency response can be approximated
to a first-order low-pass filter. The static gain becomes the ratio of rotation over
DC input and the pole the cutoff frequency of the overall mechanical system.

(a) General block diagram (b) Block diagram for linear operation

Fig. 1. Block diagram of a PLL

Let us consider, for example, two mechanical systems for light deflection pur-
poses, composed by mirrors with a continuous movement.

The first example is from a LASER printer (figure2(a)). Its a three-phase
Motor with rotation proportional to the voltage input. Its frequency response
was obtained by analyzing the sensor frequency signal to a voltage step input.
This signal, captured by the magnetic field effect of a magnet over a coil, was
registered by a sound card. The frequency response of the Motor integrated in
a PLL was analyzed with a Spectrum Analyzer is presented in figure 2(b). The
peak lobe represents the synchronism frequency and the side lobes the jitter.

The second mechanical system (see figure 2(c)) consists of a DC Motor with a
crank-shaft mechanic elevating a rectangular plate mirror. In this case, the sensor
signal frequency is very low, dozen of Hertz, due to the fact that one revolution
corresponds to one pulse of the magnetic sensor installed on the motor’s flywheel.
Thus, knowing the static gain of the system, a coarse grain approach in order to
estimate the frequency response is to simulate and adjust the system behavior
as a first-order low-pass filter with the same input. This system is actuated by
a Pulse Width Modulation (PWM) generator over the power supply of the DC
Motor for an operating frequency of 2.5kHz. A low-pass filter smoothly actuates
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(a) (b) (c) (d)

Fig. 2. a) and c) Mechanical systems of 1st and 2nd example respectively. b) and d)
sensor signals spectrums of 1st and 2nd example respectively.

the PWM output, adjusting the gain-pole of the loop [5], reaching synchronism,
as depicted in figure 2(d).

3 Embedded Control Core

The Control core was described in VHDL and was implemented in a Spartan-
II300e FPGA [2]. PLL units for controlling the motors are accomplished in this
configurable core, being the sensors signals sampled and the references signals
generated on it.

Referring to the first of the previous examples, the blocks needed are the ref-
erence generator and the tri-state PD, while for the second example a PWM
generator and a low-pass filter are also required. The use of configurable tech-
nology allows to have both loops operating at the same time. The maximum
operating frequency of the logic devices is high enough for this kind of control,
since it is known that the system’s bandwidth is limited by mechanical fac-
tors that result in a low cutoff frequency. So there is room for plenty of signal
processing during a time sampling.

3.1 Main Components of the Core

The reference generator is composed of two cascade counters: an inner counter
defines the time base while the outer one specifies half period of the square
reference cycle. The implemented PDs operate like the 4046 phase detector cir-
cuit [3]. The state machine can be implemented with two flip-flops and a reset
unit (see figure 3(a)). The flip-flops are set in the positive edge transitions of the
sensor signal or reference. The reset module operates in parallel with the flip-
flops, resetting them whenever simultaneously the ’1’-state occurs. Reset signal
has the shape of a pulse to allow in the next sample the set-state of the flip-flops.
The implemented filter has a Infinite Impulse Response (IIR) (see figure 3(b)).
Processing is implemented in 32 bit fixed-point arithmetic, but using the Q16
format (16 bits for the fractional part). The decision unit is used to implement
the three-state imposed by the phase detector. In high impedance situation, the
filter is turned off and the output remains with the value of the previous sample.

The PWM generator is implemented with a 11-bit counter. A constant is
used to define the number of clock cycles for the ’1’-state output, leaving
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(a) The phase detector truth table and
implementation

(b) Discrete Low-pass filter (fs = 1kHz)

Fig. 3. Diagram of the PD and the filter

’0’-state output when the count values are higher than the constant. This reso-
lution generates 2047 different pulse width signals.

3.2 Experimental Results

The control core, with all presented blocks, is described in VHDL and synthesized
for the Spartan-IIs300e by using the ISE 6.3. It can be observed in table 1 that
only about 14% of the total number of slices and 7% of the total number of Flip-
Flops (FFs) are required to implement the core realizing two nested control loops.
Moreover, it can be concluded that most of the hardware resources provided by
the FPGA is still available for data processing or other control loops.

4 Application of the Core to Implement a LASER Image
Projector System

A mechanical light deflection system, for two dimensional scanning of a Light
Amplification by Stimulated Emissions of Radiation (LASER) beam, was devel-
oped based on the proposed control core. The purpose of this system is the pro-
jection of images and video sequences [6], [7]. It uses the first mechanical system,
referred to in section 2, as the line scanning system, the other as the vertical

(a) LASER image projector (b) Some image projection results

Fig. 4. Developed prototype and results
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Table 1. Projection system synthesis report: Control units, processing unit for buffer-
ing the image data and a camera interface for a maximum operating frequency of
40MHz [4]

Resources Available Ref. Gen. PD LP Filter PWM Gen. Image Camera
Slices 3072 79 (3%) 9 (1%) 269 (9%) 24 (1%) 139(5%) 200(7%)
Slice 6144 70 (2%) 11 (1%) 132 (3%) 12 (1%) 214(2%) 266(5%)

LUTs: 6144 96 (2%) 16 (1%) 427 (7%) 44 (1%) 119(2%) 270(5%)
IOBs: 146 2 (2%) 3 (1%) 33 (23%) 33 (23%) 16(11%) 64(5%)

BRAMs: 16 - - - - 5(31%) 1(7%)

Fig. 5. Projection system block diagram

scanning system and a solid-state LASER diode with a 655nm light emission
wavelength and 50mW of optical power. The prototype of the developed system
(see figure 4(a)) uses the Spartan-II300e FPGA, not only for control but also
to process and store images (see figure 5). The proposed control core is embed-
ded with an additional control module for modeling the LASER beam intensity
and a processing unit. The processing unit is an aggregation of sub-units, corre-
sponding to the writing and reading memory process and the dual-port memory
buffer. The writing process performs the storage of a frame fed by an external
image supplier, which can be a Personal Computer (PC) for static images or
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a digital video camera (OV9650 with a maximum XVGA resolution) [4], into
a Block RAMs (BRAMs). The reading process reads the image pixel informa-
tion at a specified constant rate, according to the line pulse signal generated
by the horizontal scanning sub-system. This process generates the vertical scan-
ning system reference after reaching the counting of the image bottom’s lines.
The final result of the projection system is present in figure 3.2. These images
have 20×100 pixel resolution with a 8-bit of resolution per pixel, being originally
from gray-scaled bitmaps. This resolution was chosen only for prototyping and
it does not arise from any limit imposed by the hardware. Experimental results
are shown in table 1.

5 Conclusions

This paper proposes a configurable embedded core for controlling electro - me-
chanical systems. The core implements a configurable set of control loops based
on the digital PLL architecture. As it has been shown, the implementation only
requires a few hardware resources of a low cost FPGA and can be easily applied
for controlling simultaneous multiple mechanical devices control. The successful
implementation of a prototype for video projection shows the practical usefulness
of this core. This embedded core will be deployed in the future for developing
electro-mechanical applications.
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Abstract. In this paper, a locomotion algorithm designed for an eight
modules worm-like robot has been successfully tested on three different
FPGA-embedded processors: MicroBlaze, PowerPC and LEON2. The lo-
comotion of worm-like robots, composed of a chain of equal linked mod-
ules, is achieved by means of wave propagation that traverse the body of
the worm. The time the robot needs to generate a new motion wave, also
known as the gait recalculation time, is the key to achieve an autonomous
robot with real-time reactions. Algorithm execution time for four differ-
ent architectures, as a function of the total number of articulations of
the robot, are presented. The results show that a huge improvement of
the gait recalculation time can be achieved by using a float point unit.
The performance achieved using the LEON2 with FPU is 40 times better
than LEON2 without FPU, using only 6% of additional resources.

1 Introduction

Modular self-reconfigurable robots offer the promise of more versatility, robust-
ness and low cost[1]. They are composed of modules, capable of attach and
detach one to each other, changing the shape of the robot. In this context, the
word “reconfigurable” means the ability of the robot to change its form, not a
hardware reconfigurable system. In the last years, the number of robot following
this approach has growth substantially[2].

One of the most advanced systems is Polybot[1][3], designed at Palo Alto
Research Center (PARC). This robot has the capability to achieve different re-
configurations, such as moving as a wheel, using a rolling gait, then transforming
itself into a snake and finally becoming a spider. Currently, the third generation
of modules (G3) is being developed[4]. Each module has its own embedded Pow-
erPC 555 processor with a traditional processor architecture.

An additional step on versatility is the use of Field Programming Gate Ar-
ray (FPGA) technology instead of a conventional microprocessor chip. It gives
the designer the possibility of implementing new architectures, faster control al-
gorithms, or dynamically modify the hardware to adapt it to a new situation.
In summary, modular reconfigurable robot controlled by a FPGA are not just
able to change their shapes, but also their hardware and therefore, complete
versatility can be achieved.
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a) b)

Fig. 1. a) “Cube revolutions” worm-like robot, composed of eight similar linked mod-
ules, connected in phase. b) A CAD rendering of two unconnected Y1 modules.

As previous work, an implementation of a FPGA-based worm-like robot loco-
motion was successfully carried out[5]. The Xilinx MicroBlaze[6] soft-processor
was used for the algorithm execution and custom cores were added for servo
positioning.

In this paper the locomotion algorithm for an eight modules worm-like robot
(figure 1a) is evaluated in different FPGA embedded processors: MicroBlaze,
PowerPC[7] and LEON2[8]. The time this algorithm takes to complete the move-
ment generation is calculated as a function of the number of nodes of the robot,
giving information about the scalability. This experimental results will be used
in future work to select the architectures that fit best a particular application.

2 Locomotion Algorithm for Worm-Like Robots

The prototype of the worm-like robot, called “Cube Revolutions”, is shown in fig-
ure 1a. It is composed of 8 similar linked modules, connected in phase. Therefore
it can only move in a straight line, forward and backward. The first generation
of the modules created, named Y1 (1b), were made of PVC and contains only
one degree of freedom, actuated by a servo. Technical details and aditional in-
formation can be found in [5].

The locomotion of the robot is achieved by means of precalculated data ma-
trix, that store the position of all the articulations at different time slots. This
control data arrangement is denominated gait control table[1]) (GCT).

Each row of the table contains the position of the articulations at instant ti,
that is, the shape of the robot at ti. The whole matrix determines the evolution
of the shape of the robot in time.The robot will move correctly if the GCT is
well calculated. In order to achieve locomotion, the controller reads the table,
row by row, producing the pulse width modulations (PWM) signals that actuate
the servos.

The proposed locomotion algorithm generates well-constructed gait control
tables that allow the robot to move forward and backward. A wave propagation
model is used for its calculation, building the tables from the parameters of the
wave: amplitude, waveform, wavelength and frequency.
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Fig. 2. An example of the algorithm used to generate the control tables. The first two
rows of the gait control table are calculated.

Figure 2 shows an example of how the algorithm calculates the first and second
rows of the gait control table. It consist of two stages. First, the angles of the
articulations are calculated by “fitting the worm to the wave”. Then, the wave
is shifted (that is, the time is incremented) and the robot is fitted to the wave
again. These steps are repeated until the wave has move a distance equal to the
wavelength.

The algorithm has a geometric approach and is based on rotations of 2D
points, therefore, sine, cosine and arctan function are widely used.

3 Implementation on Embedded FPGA Processors

3.1 Algorithm Operation Analysis

The whole algorithm has been implemented in C language, using double precision
floating point. The profiling analysis of the algorithm shows that the 71.4% of the
execution time is spent in float point operations. The 21.23% is used for integers
operations and the final 7.37% for remainder operations, including trigonometric
ones. The profile suggests the use of a float point unit (FPU) for improving the
execution time.

3.2 Target Architectures

Table 1 shows the four architectures used for the evaluation of the algorithm.
Three FPGA-embedded processor has been tested: LEON2, Xilinx MicroBlaze
and a PowerPC core embedded in the Xilinx Virtex II Pro FPGA. The Pow-
erPC is the processor employed in PolyBot G3, the most advanced modular
reconfigurable robots designed at PARC.

The soft core processors (SCP) have been implemented using similar architec-
tural features: without hardware multiplier/divisor units and with similar data
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Table 1. Architectures used for the evaluation of the algorithm

Target architectures 1 2 3 4a 4b
Processor LEON LEON+ Meiko FPU MicroBlaze PowerPC
Frequency 25 Mhz 50MHz 50Mhz 100Mhz

FPGA Virtex XC2000E Virtex II Pro

and instruction caches. Architectures 1 comprises only one LEON2 SCP. Archi-
tecture 2 adds the Meiko FPU[8]. The third architecture is a Xilinx MicroBlaze
SCP. The final architecture consists of an embedded PowerPC core.

Architectures 1 to 3 have been evaluated in hardware on the RC1000 de-
velopment board from Celoxica that includes a Xilinx Virtex E FPGA. The
architecture 4 has been implemented on a Alpha Data ADM-XPL board in a
Virtex II Pro.

4 Results

Xilinx XST is used for the synthesis of MicroBlaze. Symplify Pro is used for the
synthesis of the LEON2 processor. The reason why Simplify Pro is not used for
the synthesis of the MicroBlaze processor is the fact that MicroBlaze processor
is distributed as a parametrizable netlist, i.e. it is already synthesized. PowerPC
implementation have been developed using the Xilinx Embedded Development
Kit.

4.1 Synthesis Results

The results are shown in table 2. Since MicroBlaze processor is highly opti-
mized for Xilinx FPGA circuit the resources used are lower than for the LEON2
processor. LEON2 is written not only for FPGA circuit so it is very difficult
for a synthesis tool to synthesize LEON2 with the same low FPGA resource
optimization as MicroBlaze. Also, as can be seen in table 1 the maximum clock
frequency achieved for MicroBlaze is 50Mhz, whereas LEON2 runs at 25Mhz in
the selected FPGA device.

The improved architecture LEON2 with FPU unit only suppose a 6% of ad-
ditional resources.

Table 2. Implementation results for architectures 1,2 and 3

Processor Slices BRAM
MicroBlaze 1321 (6%) 74 (46%)

LEON2 4883 (25%) 43 (26%)
LEON2+Meiko FPU 6064 (31%) 40 (25%)
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a) b)

Fig. 3. a) GRT comparison for the four architectures evaluated, as a function of the
number of articulations. b) Normalized results supposing a 50MHz system clock fre-
quency for all architectures.

4.2 Algorithm Execution Time

The algorithm has been compiled for the different architectures and it is loaded
from external memory and executed. The execution of the algorithm determines
the time the robot needs to generate a new kind of movement. This time is
called gait recalculation time (GRT). If a worm-like robot capable of having a
fast reaction is needed for a particular applications, a low GRT is required.

Figure 3a shows the GRT for the four architectures, as a function of the
numbers of articulations. Figure 3b compares the different architectures working
at 50MHz. Due to the limitations of the chosen architecture FPGA device, the
50Mhz data for the LEON2 processor has been estimated supposing a half cycle
time.

As it was expected, the GRT increases with the number of articulation of the
robot. Also, the PowerPC reaches a significantly better result than the other two
processors, because it is a hard core with specific hardware functional units.

The most outstanding result is obtained with architecture 2 (LEON + FPU).
For an 8 articulations worm-like robot, the performance achieved using the
LEON2 with FPU is 40 times better than LEON2 without FPU, using a 6%
additional resources. This performance is 6.5 times better than the obtained
with the 100Mhz PowerPC implementation.

5 Conclusion and Further Work

The worm like-robot locomotion can be realized by means of the propagation of
waves through the body of the robot. The algorithm generates the gait control
tables from the wave applied. The gait recalculation time is the key parameter
in order to achieve an autonomous robot with real-time reactions.

The algorithm has been successfully implemented and executed on three dif-
ferent embedded processors in FPGA: LEON2, MicroBlaze and PowerPC. The
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GRT has been measured in four architectures, as a function of n, the number
of total articulations. Results show that GRT can be drastically improved by
means of the use of an FPU unit. A 25MHz LEON2 with an Meiko FPU is al-
most one order of magnitude faster than an PowerPC working at 100Mhz. This
makes evident one of the advantages of the use of a FPGA instead of a tradi-
tional processor: designers and researchers can improve the robot by introduction
architectural changes and adding custom hardware cores.

The LEON2 with an FPU is a very good option when a low GRT is required.
In not critical applications the use of the MicroBlaze saves about the 75% of the
area, leaving this percentage free for the implementation of new hardware cores.

The current worm like-robot prototype, “Cube Revolutions”, can only move
on a straight line. The movement on a plane will be studied in further works.
The same locomotion algorithm will be used, but calculating two gait control
tables from two different waves: one for the articulations in the plane parallel to
the ground and the other in the perpendicular plane. The final locomotion will
be generated as a composition of the two waves.
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Abstract. This paper presents a novel partially reconfigurable FIR fil-
ter design that employs dynamic partial reconfiguration. Our scope is to
implement a low-power, area-efficient autonomously reconfigurable dig-
ital signal processing architecture that is tailored for the realization of
arbitrary response FIR filters using Xilinx FPGAs. The implementation
of design addresses area efficiency and flexibility allowing dynamically
inserting and/or removing the partial modules to implement the par-
tial reconfigurable FIR filters with various taps. This FIR filter design
method shows the configuration time improvement, good area efficiency
and flexibility by using the dynamic partial reconfiguration method.

1 Introduction

FIR filters are employed in the majority digital signal processing (DSP) based
electronic systems. The emergence of demanding applications (image, audio/
video processing and coding, sensor filtering, etc.) in terms of power, speed,
performance, system compatibility and reusability make it imperative to design
the reconfigurable architectures. This paper presents a partially reconfigurable
FIR filter design that targets to meet all the objectives(low-power consumption,
autonomous adaptability/reconfigurability, fault-tolerance, etc.) on the FPGA.
FPGAs are programmable logic devices that permit the implementation of dig-
ital systems. They provide an array of logic cells that can be configured to
perform a given functionality by means of a configuration bitstream. Many of
FPGA systems can only be statically configured. Static reconfiguration means
to completely configure the device before system execution. If a new reconfig-
uration is required, it is necessary to stop system execution and reconfigure
the device it over again. Some FPGAs allow performing partial reconfiguration,
where a reduced bitstream reconfigures only a given subset of internal compo-
nents. Dynamic Partial Reconfiguration (DPR) allows the part of FPGA device
be modified while the rest of the device (or system) continues to operate and
unaffected by the reprogramming [1]. Module-based partial reconfiguration was
proposed by Xilinx [3][4]. And now many researchers have been proposed many
partial reconfiguration methods (JBits, PARBIT, etc) [1][2]. The modular design
flow allows the designer to split the whole system into modules.
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2 Reconfigurable FIR Filter Design

The FIR filter computes an output from a set of input samples. The set of
input samples is multiplied by a set of coefficients and then added together to
produce the output as shown in Fig. 1. Implementation of FIR filters can be
undertaken in either hardware or software [5]. A software implementation will
require sequential execution of the filter functions. Hardware implementation of
FIR filters allows the filter functions to be executed in a parallel manner, which
makes improved filter processing speed possible but is less flexible for changes.
Thus, reconfigurable FIR filter offers both the flexibility of computer software,

Fig. 1. n-tap transposed FIR filter

Fig. 2. Block diagram of (a) partial reconfigurable m n order FIR filter, (b) reconfig-
urable multiply-accummulate (rMAC) modules
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and the ability to construct custom high performance computing circuits. Fig. 2
shows the partial reconfigurable m n order FIR filter, which consists of m n
order filter modules and right side module. These FIR filter is consisted of m
filter modules, which connected by bus macros on FPGA. And each filter module
consists of n/2 reconfigurable multiply-accumulate (rMAC) unit, which includes
the serial-to-parallel register to get coefficient inputs in serial.

3 Implementation

This section describes the implementation method of 20-tap FIR filter, which is
reconfigured partially from 12-tap FIR filter. The whole system is implemented
on a Xilinx Virtex2p30 FPGA device.

3.1 HDL Coding and Synthesis

This step is composed to following two phase:

Top Module Design: In this phase, designer must consider each sub-module
interconnection, area assignment and bus macro assignment.

Reconfigurable Sub-module Design: This phase is same to traditional HDL design
method. But designer must consider input and output assign rule for partial
reconfiguration.

3.2 Module-Based Design

Modular Design Implementation step comprises following three phase: 1) Initial
budget phase, 2) Active module implementation, 3) Final assembly.

Fig. 3. PAR map of (a) 12-tap and (b) 20-tap FIR filter using DPR
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Initial Budget: In this phase, the team leader assigns top-level constraints to the
top-level design. Top-level constraint needs to area constraint and bus-macro as-
signment. This step is as sequence of top module design. In this step, designer
must do bus macro manual setting, sub module area constraint by using floor-
planner and top module IOB assignment. Bus macro is limited by target size.
Through equation (1), designer can estimate maximum usable bus macro.

Active Module Implementation: In this phase, the team members implement
the reconfigurable modules. That is, partially reconfigurable sub-modules are
generated by top module and .ucf file. Each sub-module generates a partial
bitstream during this step. Fig. 3 shows a post-PAR (placement and routing)
diagram. Through n-order filter module1 is reconfigured to bypass module and
module2 is reconfigured to 4-tap module on 12-tap FIR filter while other module
is processing, 20-tap FIR filter is composed by partial reconfiguration of module1
showing Fig. 3(b).

Final Module Assmble: In the phase, designer assembles on system from partially
generated modules. All partial modules generated in active module implemen-
tation step are combined to the top-level module.

4 Experiment and Result

The partial reconfiguration of reconfigurable symmetric transposed FIR filters
was implemented on Xilinx Virtex2pro FPGA device using test environment
shown in Fig. 4[6]. XUPV2P FPGA test board and Agilent logic analyzer were
used for board level verification. And configuration bitstream download is op-
erated by Xilinx Platform Cable USB and IMPACT. For dynamic partial re-
configuration experiment, the partial reconfigurable module1 and module2 were
reconfigured bypass module and 4-tap module respectively while other areas of
modules remain operational. For verification, we have performed following two
methods. First, 12-tap and 20-tap FIR filters before/after partial reconfigura-
tion have been simulated to verify the output results on FPGA test board using
Xilinx ChipScope Pro Analyzer. Second, each module has been assigned by iden-
tification number such as bypass=00, 2-tap=01, 4-tap=10, 6-tap=11, and then
during the partial reconfiguration process the waveform of logic analyzer shows
the change of identification number to verify the partial reconfiguration of FIR
filter. Because most of modules are operating except reconfigured module, mod-
ule identification number is changed continuously. After completing DPR, the
waveform shows the output change from 3D(111101) to 31 (110001). This re-
sult shows that module2 is reconfigured partially from 6-tap module to bypass
module. And measured reconfiguration time shows about 112.5 ms. Otherwise,
the full reconfiguration is processed after FPGA reset. Measure reconfiguration
time is about 3.05 s. Thus the reconfiguration time of DPR FIR filter is reduced
about 1/30 compared to full reconfiguration of FIR filter. For performance com-
parison, we have implemented FIR filter using variable multipliers, multiplexer
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Fig. 4. Test Environment

Table 1. FPGA device utilization for several FIR filters (GF: General symmetric FIR
filter, MBF: Multiplexer-based reconfigurable FIR filter, DPR: Reconfigurable FIR fiter
using DPR)

GF MBF DPR
Slice 3,058 5,349 4,733
LUT 5,980 9,669 8,427

Equivalent N/A 76,024 68,063
Gate

based reconfigurable FIR filter and reconfigurable symmetric transposed FIR
filter. Table 1 shows the utilization of slice, LUT and equivalent gate count after
technology mapping. The reconfigurable symmetric transposed FIR filter using
DPR can save about 11.5% slice compared to the multiplexer based reconfig-
urable FIR filter. Compared to the general symmetric FIR filter, the number of
slice increased about 54% because of adding bus macro, serial-to-parallel register
and a little controller. But if we want to change one tap in general symmetric
FIR filter, we must do the full reconfiguration, which requires the slow configura-
tion time. However, reconfigurable symmetric transposed FIR filter using DPR
method requires the partial reconfiguration of about 1,499 slices for one coeffi-
cient tap that adds flexibility allowing dynamically inserting and/or removing
the coefficient taps.
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5 Conclusion

In this paper, we present a reconfigurable FIR filter design using dynamic par-
tial reconfiguration, which has area efficiency, flexibility and configuration time
advantage allowing dynamically inserting and/or removing the partial modules.
The proposed method produces a reduction in hardware cost and allows per-
forming partial reconfiguration, where a reduced bitstream reconfigures only a
given subset of internal components. In the future, self-reconfigurable hardware
platform using microcontroller unit and configuration memory will be promising
solution for automatic partial reconfiguration of digital circuit in the run-time
environment.
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Abstract. The efficient simulation of spiking neural networks (SNN) re-
mains as an open challenge. Current SNN computing engines are still far
away of being able to efficiently simulate systems of millions of neurons.
This contribution describes a computing scheme that takes full advantage
of the massive parallel processing resources available at FPGA devices.
The computing engine adopts an event-driven simulation scheme and an
efficient next-event-to-go searching method to achieve high performance.
We have designed a pipelined datapath in order to compute several events
in parallel avoiding idle computing resources. The system is able to com-
pute approximately 2.5 million spikes per second. The whole computing
machine is composed only by an FPGA device and five external memory
SRAM chips. Therefore the presented approach is of high interest for
simulation experiments that require embedded simulation engines (for
instance in robotic experiments with autonomous agents).

1 Introduction

The simulation of biologically plausible neural networks is a challenging task.
Several properties of the biological nervous systems must be taken into consid-
eration in order to build up an efficient computing scheme:

– Biological neural networks are composed by massive parallel computing re-
sources organized in very densely connected topologies.

– Most of the information exchanged between the different computing elements
(neurons) is encoded in spikes.

– The firing rate of biological neurons is low (with maximum rates of approx-
imately 100 Hz). Therefore, the global activity depends on the network size
and average neuron firing rate.

On the other hand the current technology has very different characteristics that
can be exploited adopting proper computing schemes:

– In general, digital circuits are able to work at very high clock rates (MHz or
even GHz).
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– The physical circuit connectivity is limited to 2-D patterns that consume
large device resources. Therefore densely connected topologies are impossible
to implement directly on VLSI technology.

Although there are hardware approaches that implement in FPGA efficient time-
driven simulation schemes [1, 2, 3, 4], the features enumerated above have mo-
tivated the development of event-driven processing schemes. This computing
scheme is usually implemented in software [5, 6, 7, 8 and 10], but has been also
adopted in hardware approaches [11, 12]. In event-driven simulation schemes,
the neuron state variables are updated when it fires or receives a spike. There-
fore, the simulation engine is able to jump from one spike to the next one. In
this way all the activity (spikes) of a network is queued in a chronological order
and processed sequentially. This scheme is very appropriate for sequential com-
puting platforms (such as conventional computers). On the other hand, since all
the events need to be processed in a chronological order this scheme is hardly
parallelizable.

In this work we present a specific purpose computing architecture to efficiently
simulate spiking neural networks adopting an event-driven scheme. The common
approach is based on a queue of events ordered chronologically. In this case, the
goal is to reduce the number of accesses required for the correct insertion of a
new spike in its correct position. Contrary to this approach, we use a disordered
event list, the processing scheme searches for the next-event-to-go before each
computing loop. For this purpose we implement a parallel searching strategy
that takes full advantage of the parallel processing resources available in FPGA
devices. We also implement a pipelined processing structure to further accelerate
the simulator but this requires the consideration of inter-spike dependency risks.
In this work we focus on processing speed as the main performance indicator,
therefore the goal is to design a system able to process the maximum number of
spikes per second.

2 Description of the Computing Scheme

The computing scheme is illustrated in Fig. 1. The event list is stored on embed-
ded memory resources in order to facilitate the insertion and searching processes.
On the other hand the neural state variables and the network topology are stored
on external memory SRAM.

2.1 Scalable Next-Event Selection: Pick-Up Strategy

In order to facilitate the insertion processes we use a disordered event list. In
this case each time we need to extract an event we search for the one with a
minimum time label. We implement a parallel searching strategy taking full ad-
vantage of the parallel computing resources of the FPGA devices. Each event
is characterized by four fields: time label, synapse identifier, source neuron and
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Fig. 1. Computing architecture schematic

target neuron. We distribute the storage of the time labels in different dual port
embedded memory blocks (EMBs) of 512x32 bits to allow parallel access to a
high number of elements. We implement parallel comparator circuits of 4 and 8
elements each. And we use distributed memory buffers to segment the searching
process in several comparator stages in a micro-pipelined structure (as shown in
Fig. 2).

The reconfigurability of the FPGA makes easy to change the amount of mem-
ory resources allocated for specific tasks. Therefore, depending of the global net-
work activity it may be convenient to use more or less embedded memory blocks
for the time labels of the spikes. We have implemented a pipelined searching
structure to efficiently handle event list of up to 214 spikes. The events are dis-
tributed in 128 dual port EMBs in order to allow reading 256 elements in parallel
to fill a buffer implemented in distributed memory. This allows these 256 elements
to access to 32 comparator circuits of 8 elements each producing 32 candidates
that are stored in the second buffer (on distributed memory). These 32 elements
access to 4 comparator circuits of 8 elements each producing 4 candidates that
are stored in the third buffer. Finally, a single comparator of 4 elements provides
the access to out of these primary 256 elements. After this is done, this winning
event is stored as the one with the minimum time label. This scheme is further
expanded sequentially in the following manner; the next event that goes out of
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Fig. 2. Parallel searching tree

this pipelined searching structure is compared with the one stored previously
Last-mim. In this way, with this last sequential comparator cycle we are able to
manage event lists of up to 214 elements consuming up to 69 clock cycles. Note
that in order to pipeline this processing datapath we need to store in buffers
(distributed memory) not only the time labels but also an index to identify the
original spike (in embedded memory block that is being processed). In fact, this
scheme can be further scaled up using external memory banks to manage larger
event list at the cost of reducing the searching speed significantly when all the
input memory resources are saturated. This is amply discussed in [13].

Nclk cycles searching = 4 +
⌈

TEMB

256

⌉
(1)

The number of clock cycles required in this searching structure (Nclk cycles search)
is illustrated follows expression (1). The expression (1) is the ceiling function
where TEMB denotes the number of spikes stored in all the EMBs used by the
searching module and �� denotes the function that produces the first entire above
theconsideredrealnumber.Theoffsetof4 isgivenbythenumberofcyclesconsumed
filling the pipeline structure.

Note that after the next-event-to-go is found all the data fields of this event
need to be retrieved which also consumers another 5 cycles.
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2.2 Pipelined Event-Processing Datapath

The computing strategy is outlined in the block diagram of Fig. 3. The differ-
ent stages are the following: S0) the next-event-to-go is searched (this is done
through a parallel searching tree as described in the previous section), S1) access
to memory to retrieve the source neuron state variables and the connection char-
acteristics, S2) load the target neuron state, S3) the next spike (if the remain
spike of the output connection tree to be processed) of this source neuron con-
nection tree is inserted in the event list, S4) the target neuron state is updated
(including learning), S5) the axon-hillock is processed (spike firing decision) and
S6) store the target neuron state and connection weight (updated in the learning
module).

When a neuron fires it produces multiple spikes that will reach different target
neurons according to the network topology. Each connection is characterized by a
weight and a synaptic delay. In order to restrict the number of spike insertions, in
each computation cycle we consult the output connection tree (ordered according
to the synaptic delays) of a neuron that has fired and we insert only the next-
event according to the synaptic delay. This keeps the event list at a manageable
size.

We have implemented a pipelined event-processing datapath consisting in the
7 stages outlined in Fig. 3. Note that for event list up to 2048 the next-event
searching structure consumes less than 13 clock cycles, therefore not degrading
the global processing performance. All the processing stages are quite balanced
being the limiting one the spike insertion process that requires 13 clock cycles.
This leads to a performance of more than 2.5 million of spikes per second with

Fig. 3. Pipeline datapath. Seven stages in the datapath.
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a system clock rate of 33 MHz and provided that the event list size is smaller
than 2048 elements.

The clock cycles consumption of each of the stages of the pipelined datapath
is included in Fig. 3. The stage S0 consumes between 10 and 69 cycles because
the number of the clock cycles depends of the size of the event list. But even
with the optimized stage, without a global coarse pipeline we obtain a data
throughput between 464000 and 272000 spikes per second. This has motivated
the pipelined processing structure that allows performances between 2.5 and
0.478 million spikes per second. We need to take into account that depending on
the network topology we will have up to 10% of performance degradation due to
inter-spike risks. This occurs, when S5 (Axon Hillock) puts a new event in the
event list with a time label which is bellow the one of the last spike that entered
the pipeline structure. In this case is necessary to reset the whole datapath to
keep the chronological processing order. The performance values on Fig. 5 have
been obtained with a circuit running at 33 Mhz.

2.3 Neural Model

The described general architecture is valid for multiple neuron models. In fact,
the neural state computation is a single processing stage that can be seen as a
black box.

The only restriction is that the neural model allows the neural state variables
to be updated discontinuously. Currently we are using the proposed platform to
test bio-inspired robotic control experiments [14] with the neural model illus-
trated in the Table 1.

Fig. 4 illustrates the neural model described in Table 1. Fig. 4.a represents
the spike time dependent plasticity (STDP) expressed in the first equation of
table 1. Fig. 4.b represents the passive decay term, it plots the time dependent

Table 1. Neural model characteristics. Vxdenotes the membrane potential and W
the connection weight. The weigth is uploaded according to the first expresion. The
conection betwen cells K and J is made stronger on weaker depending on the inter-spike
time betwen the events produced by the two neurons.
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Fig. 4. Neural model. (a) Spike-time dependent plasticity and (b) Membrane potential
passive decay term.

term that needs to be subtracted to the membrane potential according to the
second equation of table 1. We particularize different neural models with specific
values of τ (Purkinje cell model with a stronger passive decay term represented
in the upper trace and Granular cell model with weaker passive decay term in
the lower trace).

3 Simulation Performance and Hardware Resources

The complete processing datapath consumes 74 clock cycles (provided that the
event list has less than 1024 elements). But using a pipeline processing strategy
we process one spike each 13 clock cycles (provided that the interspike risks do
not affect significantly the system performance). Therefore, with a system clock
frequency of 33 MHz, the achieved performance is approximately 2.5 million
spikes per second. Comparing the performance with other approaches is difficult
since each of them use different neural models. Currently one of most efficient
event-driven software versions [5] is able to compute up to 0.8 Mspikes/second
using an AMD processor at 2.8 GHz. It is significant to note that through the
design of a specific purpose datapath working at a clock rate about 2 orders
of magnitude lower than conventional computers we are able to outperform in
more than a factor of 2 the processing performance. Other simpler spiking neu-
rons simulator we able to process higher rates [6, 7] but only including simplified
neural models network topologies. It is also remarkable that the exploration of
other neural models (even of higher complexity) would not significantly degrade
the system performance if the computation can be done in less than 13 indepen-
dent steps or split in several pipelined processing stages. The data throughput
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Fig. 5. Performance vs global network activity and network size

Table 2. Hardware resources consumption. Design compiled on a Virtex II 6000 [15].

(Dt) follows expression (2) which is independent on the network size and includes
a degradation term (Arisks) dependent on the inter-spike risks. This factor will
not be significant in realistic networks in which spikes of output connection trees
will be almost consecutively processed.

Dt =
fclk

Arisks + max [13, Nclk cycles search]
(2)

The performance follows rigorously the characterization expression outlined
above. The surface Fig.5 has been done using a network topology (all-to-all
connectivity with short synaptic delays). In this case the inter-spike risks do not
affect significantly the system performance. As it can be seen the performance
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does no depend of the network size, only of the global activity achieving a max-
imum performance of 2.5 millions spikes per second. The hardware resources
consumption is summarized in the table 2.

4 Discussion

The main innovation of the presented approach is the efficient use of the parallel
computing resources of FPGA devices for an event-driven processing scheme.
We have adopted a strategy that handles efficiently disordered event list which
is a completely novel approach. We have used extensively parallel computing in
the next-event-to-go searching structure that has been implemented with a finely
pipelined searching tree.

The whole computing scheme is also implemented in a coarse pipelined data-
path of 7 stages. Here is required to handle inter-spike risks, but they are not
significant in realistic networks in which spikes of specific output connection
trees will be processed almost consecutively. But, depending on the network
topology more pipelined stages may not be handled efficiently, since the effect
of inter-spike risks may become larger.

Although comparisons between different event driven approaches are difficult,
since different authors adopt different neural models and computing strategies,
the presented approach exhibits very promising performance results. It outper-
form in more than a factor of two a similar approach implemented in software [5].
This is very important also taking into account that the presented computing
scheme can embed more complex neural models without significantly degrad-
ing the system performance. In this sense, we call this approach scalable in the
neural model complexity.

Another important point is that since the described computing platform is
very general and can be easily adapted for different neural models, it is interest-
ing to explore different neural features in the framework of massive simulations
or real-time experiments requiring very short time responses.
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Abstract. We present the hardware implementation of partially
connected neural network that is defined as an extended of the Multi-
Layer Perceptron (MLP) model. We demonstrate that partially connec-
ted neural networks lead to a higher performance in terms of computing
speed (requiring less memory and computing resources). This work ad-
dresses a complete study that compares the hardware implementation
of MLP and a partially connected version (XMLP) in terms of comput-
ing speed, hardware resources and performance cost. Furthermore, we
study also different memory management strategies for the connectivity
patterns.

1 Introduction

The implementation of Artificial Neural Networks (ANNs) as embedded systems
using FPGA devices has become an interesting research field in the last years
[1,2,3,4,5]. The work presented here studies the implementation viability and
efficiency of ANNs into reconfigurable hardware (FPGA) for embedded systems,
such as portable real-time ASR (Automatic Speech Recognition) devices for
consumer applications, vehicle equipment (GPS navigator interface), toys, aids
for disabled persons, etc. The application chose has been the ASR and among
the different ANN models available used for ASR, we have focused on the Multi-
Layer Perceptron (MLP).

The hardware implementation of ANNs usually focuses on the conventional
software model and tries to parallelize the whole processing scheme. Nevertheless,
the optimization of the traditional ANN model towards a less densely connected
network leads to a significant improvement in the system computing speed (requir-
ing less memory and computing resources). In this way, the main innovation of this
contribution is the description of a modified version of the MLP called eXtended
Multi-Layer Perceptron (XMLP) [6] towards a less densely connected network.

The paper is organized as follows. Section 2 briefly describes the MLP and
XMLP models. Then we describe and evaluated the detailed hardware imple-
mentation strategies of the MLP and XMLP and we presents the discussion of
the results (Section 3). Finally, Section 4 summarizes the conclusions.
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2 MLP / XMLP

2.1 Multi-Layer Perceptron (MLP)

The MLP is an ANN with processing elements or neurons organized in a regular
structure with several layers: an input layer (that is simply an input vector),
some hidden layers and an output layer. For classification problems, only one
winning node of the output layer is active for each input pattern.

Each layer is fully connected with its adjacent layers. There are no connections
between non-adjacent layers and there are no recurrent connections. Each of
these connections is defined by an associated weight. Each neuron calculates the
weighted sum of its inputs and applies an activation function that forces the
neuron output to be high or low.

In this way, propagating the output of each layer, the MLP generates an out-
put vector from each input pattern. The synaptic weights are adjusted through
a supervised training algorithm called backpropagation [7].

The most frequently activation function used is the sigmoid, although there
are other choices such as a ramp function, a hyperbolic tangent, etc.

2.2 Extended Multi-Layer Perceptron (XMLP)

The XMLP is a feed-forward neural network with an input layer (without neu-
rons), a number of hidden layers selectable from zero to two, and an output layer.
In addition to the usual MLP connectivity, any layer can be two-dimensional and
partially connected to adjacent layers. As illustrated in Fig. 1, connections come
out from each layer in overlapped rectangular groups. The size of a layer l and
its partial connectivity pattern are defined by six parameters in the following
form: x(gx, sx)× y(gy, sy), where x and y are the sizes of the axes, and g and
s specify the size of a group of neurons and the step between two consecutive
groups, both in abscissas (gx, sx) and ordinates (gy, sy). A neuron i in the X-axis
at layer l+1 (the upper one in Fig. 1) is fed from all the neurons belonging to

Fig. 1. Structure of an XMLP layer and its connections to the next layer
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the i-the group in the Xaxis at layer l (the lower one). The same connectivity
definition is used in the Y-axis. When g and s are not specified for a particular
dimension, the connectivity assumed for that dimension is gx = x and sx = 0,
or gy = y and sy = 0. Thus, MLP is a particular case of XMLP where gx = x,
sx = 0, gy = y and sy = 0 for all layers.

3 Hardware Implementation: XMLP vs MLP

In order to illustrate the hardware implementation of the MLP and XMLP
systems, and address a complete comparative study of these ANNs, we have
chosen a specific speaker-independent isolated word recognition application [8].
Nevertheless, many other applications require embedded systems in portable
devices (low cost, low power and reduced physical size).

For our test bed application, we need an MLP / XMLP with 220 scalar data
in the input layer and 10 output nodes in the output layer. The network input
consists of 10 vectors of 22 components (10 cepstrum, 10 Δcepstrum, energy,
Δenergy) obtained after preprocessing the speech signal. The output nodes cor-
respond to 10 recognizable words extracted from a multi-speaker database [9].
After testing different architectures [6], the best classification results (96.83% of
correct classification rate in a speaker-independent scheme) have been obtained
using 24 nodes in a single hidden layer, with the connectivity of the XMLP
defined by 10(4,2)×22 in the input layer and 4×6 in the hidden layer.

For the MLP / XMLP implementations, we have chosen fix point compu-
tations with two’s complement representation and different bit depths for the
stored data (inputs, weights, activation function, outputs, etc). It is necessary
to limit the range of different variables: inputs to the MLP / XMLP and output
of the activation function (8 bits), weights (8 bits) and inputs to the activa-
tion function, which is defined by a Look-Up-Table (LUT) that stores the useful
values. After taking all these discretization simplifications the model achieves
similar classification results. The results of the hardware system differ in less
than 1% from the software full resolution results.

The systems have been designed and translated to EDIF files using DK Design
Suite tool from Celoxica [10]. Then, the designs have been placed and routed in
a Virtex-E 2000 FPGA using the development environment ISE Foundation 3.5i
from Xilinx [11].

We have evaluated the serial and parallel approaches. The serial version emu-
lates the software implementation, using only one processing unit that is multi-
plexed to compute all the neurons of the ANN. On the other hand, the parallel
version makes use of one processing unit per neuron at the hidden layer. In addi-
tion, we have implemented three different versions of approaches using different
memory resources: (A) using only distributed memory resources, (B) using dis-
tributed memory resources and embedded memory blocks and (C) using only
embedded memory blocks.

Tables 1 and 2 summarize the hardware implementation characteristics of the
MLP and XMLP respectively.
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Table 1. Implementation characteristics of the MLP designs. (A) Only distributed
RAM (B) Both EMBs RAM and distributed RAM. (C) Only EMBs RAM.

Hr Perf. Pc

MLP # # EMBs # sys. gates Max.Freq. # Dt Sg / Dt

design slices RAM (Sg) (MHz) cycles (data/s)
A: Serial 2582 0 245268 19.7 5588 3535 69.38
A: Parallel 6321 0 333828 17.2 282 60968 5.48
B: Serial 710 11 218712 16.1 5588 2671 81.86
B: Parallel 4411 24 518928 16.7 282 59326 8.75
C: Serial 547 14 248996 15.3 5588 2733 91.07
C: Parallel 4270 36 695380 15.4 282 54692 12.71

Table 2. Implementation characteristics of the XMLP designs. (A) Only distributed
RAM (B) Both EMBs RAM and distributed RAM. (C) Only EMBs RAM.

Hr Perf. Pc

XMLP # # EMBs # sys. gates Max.Freq. # Dt Sg / Dt

design slices RAM (Sg) (MHz) cycles (data/s)
A: Serial 2389 0 181858 22.3 2595 8592 21.17
A: Parallel 5754 0 258808 20.8 167 124844 2.07
B: Serial 1700 5 154806 14.0 2595 5384 28.75
B: Parallel 5032 96 1722376 15.6 167 93170 18.49
C: Serial 1608 10 202022 13.0 2595 4990 40.48
C: Parallel 4923 147 2526915 15.4 167 92365 27.36

The tables include the consumption of hardware resources of each approach in
terms of slices and embedded memory blocks (EMB). We also calculate a global
hardware resource indicator as the total number of equivalent system gates (Sg)
consumed by each implemented version. The gate counting used on Virtex-E
devices is consistent with the system gate counting used on the original Virtex
devices [11].

In order to evaluate the computing speed we include the maximum clock
frequency allowed by each implementation (this is given by the ISE Foundation
after the synthesization stage) and the number of clock cycles consumed to
evaluate a single input vector. We have also calculated a global performance
indicator as the data throughput (Dt) of the system, i.e. the number of input
vectors processed per second (note that each vector consist of 220 components).

Finally, to better illustrate the trade off between these two characteristics,
which can be adopted as a convenient design objective during the architecture
definition process, we have evaluated the performance cost (Pc) achieved by each
implementation as the ratio Pc = Sg / Dt. This feature indicates the hardware
resources required to achieve a data throughput of one. Therefore, we can com-
pare directly the hardware resources of the different approaches to achieve the
same performance. The comparative results are summarized in Fig 2.
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Fig. 2. XMLP vs. MLP in the serial (left) and parallel (right) approaches: a) Number
of equivalent system gates, Sg. b) Data throughput, Dt. c) Performance cost, Pc.

We can see that the XMLP significantly improves all the indicators—hardware
resources consumption (Sg), performance as data throughput (Dt) and perfor-
mance cost (Pc)—compared to MLP. In both, the serial and parallel version,
XMLP improves all the indicators by a factor of two approximately.

Among the three versions evaluated regarding the data storage strategy (A,
B and C), we see that the best approach is the one that only makes use of
distributed memory resources (A). This is so, because the network memory re-
quirements per neuron is small (220 input weights for each hidden neuron) com-
pared to the size of the embedded memory blocks (512 elements). Therefore, the
embedded memory resources are being used inefficiently (although this factor
depends on the network topology, mainly on the hidden neuron fan-in). This
is more dramatic in the XMLP where the number of inter-neuron connections
is greatly reduced. In this case, the use of only distributed memory is manda-
tory since the embedded memory blocks are very inefficiently used given the
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reduced number of weights that are stored in each of them, provided that the
parallel version needs to access in parallel to the weights of different hidden
neurons.

4 Conclusions

The main innovative idea of this contribution regarding hardware implementa-
tion of neural networks is that the final approach, can be highly improved if
the previous software simulations include the possibility of simplifying the net-
work topology (reducing the number of interneuron connections). Along this line
we have defined an extended multilayer perceptron that allows the definition of
networks of different interlayer topologies. This aspect has a great impact on
the neural network implementation on specific hardware as has been shown in
Section 3. Choosing between different topologies can be done in preliminary
software simulations applying for instance genetic algorithms to obtain the best
configuration before the hardware implementation is addressed.
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Abstract. The segmented bus is a power-efficient architecture for intra-
tile SoC communication, where energy is saved by switching off unused
bus segments cycle-by-cycle. We determine the pattern of switch control
bits and calculate the cost of transporting them. A test case indicates
that the cost is much lower than the gain obtained from the segmentation,
and that the prospects of segmented buses remain promising.

1 Trends in Communication Architecture: Software
Control, Heterogeneity and Parallelism

In embedded systems, minimal energy dissipation and fast performance are chal-
lenging targets, while flexibility is necessary for quick time-to-market.

Software control over the architecture is a definite trend in processor and
memory architecture design, addressing the need to reduce energy consumption.
It makes sense that the communication network is also controlled by software.
The drawback is the extra functionality required from the compiler and possibly
increased design complexity. Once the necessary design tools are developed these
drawbacks will be overcome.

A second trend in embedded system design is a move towards heterogeneous
architectures. Heterogeneity is a step towards power efficiency, since it allows
circuit activity to be confined to portions of an hierarchy, while non-utilized
portions of the hierarchy do not consume power. Also, to optimize energy con-
sumption, memory organizations are becoming multi-layered, with each layer

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 52–58, 2006.
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consisting of memories of different size and type, like in the TI C5510 [13] or
those designed according to the DTSE methodology described in [2].

Finally, hardware parallelism enables designers to either decrease an applica-
tion’s execution time or trade off execution time for lower energy consumption,
e.g. by decreasing the supply voltage. In both cases, the amount of data to be
transferred per cycle is high, since a number of parallel resources need to be kept
busy in order to achieve the expected volume. This implies that the communica-
tion network should provide large enough bandwidth. This should be achieved
by parallelism in communication, not by overclocking the network.

2 The Segmented Bus Architecture

In this paper we advocate the use of heavily segmented buses, which make a very
energy-efficient software-controlled architecture. Because of the scaling down
of technology, power lost to drive the capacitance of long lines will ultimately
outweigh the power lost in active circuits. Isolating those segments of a bus
that are not in use, cycle-by-cycle, can deliver important savings in the power
budget. This architecture is shown in Figure 1. To see the type of environment
where segmented buses become useful, Figure 2 shows a 14-bus system in the
context of a VLIW processor cluster. The energy gains achieved by segmenting
long bus interconnect wires have been reported in [3,11], but the energy needed
for steering the buses was neglected.

The control bits bits required are 4 per bus and per individual segmenta-
tion switch. The control bit format has been chosen for energy saving (frequent
changes require only one bit to change) but could still be improved upon if the
energy to transport the bits would turn out to be excessive.

We will call Eseg the total energy consumed on a segmented bus system.
Eunseg is the energy consumed on an equivalent bus which has no segmentation
switches. SG, the segmentation gain, consists of the energy consumed by all
segments that do not need to be driven, integrated over the duration of the
application. At first sight, it looks like SG = Eunseg −Eseg There is, however also

Mem Mem Mem

MemMem FU

S S
S

S

�����

����	�


S

Fig. 1. The architecture of the segmented buses communication network includes par-
allel buses, segmentation switches, control wires and a communication controller
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Fig. 2. VLIW processor cluster with a multiple segmented bus

a segmentation loss SL, which has two components: SL = SLtransport + SLgen

SL consists of the cost incurred to transport control bits from the source of
control to the switches, since this would not have to be done if the bus was non-
segmented, and the cost to generate the bits from memory addresses or from
the instruction flow. The cost of decoding the control bits is considered here as
negligible, as it is certainly in the limit when technology scales down: we only
need a small number of minimum-size gates, and in the limit their consumption
is much smaller than Eseg .

SLtransport does not depend on the method of generating the bits. The con-
troller can be implemented either as an address-based path decoder using a
memory-mapped look-up table or as a instruction-driven component which is
part of the program flow generated by the compiler: the required control bits for
the switches are inserted in the application code as separate network configura-
tion instructions. In either case, scheduling is done at compile time and can be
seen to be under software control.

With the first solution (path decoder), the routing need not be fully deter-
mined at compile-time, although the scheduling must have been done. The so-
lution is compatible with common register indirect addressing modes, where the
addresses at runtime are not necessarily known to the compiler at compile time.
The second solution (fully compiled control) requires a cost that the first does
not have: not only the schedule but also the actual path information must be
fetched from instruction memory. It offers more possibilities for power efficiency:
hierarchical activity clustering [7] is possible and distributed loop buffers can be
employed that bring instruction decoding costs down in data-intensive applica-
tions of the sort that we contemplate on SoCs.

We will not consider SLgen further in this paper. It is in fact the subject
of further work. We suspect that there is a scalability issue at work here. For
simple networks an address-based path decoder is probably optimal but it may
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well be that for complex networks instruction-driven switching is better. Suffice
it to say that at least for small networks SLgen scales well with technology, and
that for scalability with network complexity, SLtransport does not depend on it.

3 Method: Segmented Bus Analysis

When developing a method for segmented bus analysis, we perform tasks that are
part of design-time analysis or need to be done compile-time by the control-bit
emitting compiler. Since we have as yet no such compiler, we designed a program
that undertakes some of the extra tasks on a profiled run of the application.

We use an optimization toolset (Atomium/MA [1]) to allocate and assign the
memories for the application, i.e. to design the memory hierarchy for a given
application (or set of applications). The functional units are assigned from the
C code, in our experiments. Ultimately, this is of course also a task for the com-
piler. Storage bandwidth optimization is again done by the optimization toolset.
The methodology presented in [14] is used to define the number of parallel com-
munication resources needed to satisfy the application bandwidth requirements.
Based on high-level application mapping, the peak bandwidth is extracted and a
sufficient number of parallel buses is allocated. The bus connections are defined
based on the synthesis of the memory organization. The layouts are made ac-
cording to the practice of activity-aware floorplanning [7]. All segment lengths,
including control bit segments, are extracted from a commercial routing tool [10].

From the data obtained from the optimization tool, which includes profiling
together with floorplanning information, we recover the execution schedule for
each basic block, recover the memory assignment, reconstruct the access tree,
and collapse it into a per-cycle node tree of concurrent accesses. Then, for each
path through the bus geometry, we decide what the switch positions must be.
Walking in time sequence through the tree of cycles that the application consists
of, we resolve each transfer to a set of control bits to be emitted, and from the
dynamic behavior of the control bits calculate the energy required to transport
the information, taking into account the physical lengths involved.

In essence, then, our power figures are derived from the characteristic ca-
pacitances and resistances of the technology node employed (130nm CMOS in
our case), the activity of the segments as derived from the access schedule, and
the wire lengths from the floorplan. Achieving the figures is not automatic, but
comes from the fact that a physical design methodology optimized for low power
is followed throughout.

4 Application: Digital Audio Broadcast (DAB) Receiver

In order to estimate control power, we have made 4 different floorplans for a
DAB receiver. Each represents a different trade-off between power efficiency and
circuit area, resulting in a different on-chip memory count and complexity of the
bus structure. The DAB receiver has three functional units: a FFT subsystem,
a Viterbi decoder, and a deinterleaver.
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After data storage and bandwidth exploration (DTSE) analysis [2] of the
problem, 4 different sets of optimizations are chosen to set 4 alternative tasks
for the design process. The solutions all feature 3 parallel buses and an unequal
number of memories: 4, 8, 10 and 12. They all have an 8-bit bus, which in
some solutions is extended to include some 16-bit segments, and two 32-bit
buses.

5 Observations

When analyzing typical activity patterns
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from this design, observing local switch
activity would encourage us to seek for
clusters of switches, that can be efficiently
driven from loop buffers. We find that if
some two switches change data direction,
all switches in-between also change data
direction and show activity. This would in
general be bad for the locality of switching
activity. The effect is counteracted by the
factthatbecauseofpower-awarefloorplan-
ning, active connections will be short and
the number of switches in between them
will be few.

Using the switch control patterns and
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the segment and control bit line lengths,
we can calculate the energies. In Figure 3,
Eseg is compared with Eunseg , for all 4
design choices. The comparison confirms
the advantage of a segmented bus from
the standpoint of power efficiency. We see
that Eseg and Eunseg both reach a min-
imum which is not radically different be-
tween the 4 solutions. This would indi-
cate that segmentation does not impose
different optimization targets for physical
layout than a non-segmented solution.

In Figure 4, we compare SLtransport

with Eseg . It is of a lower order of mag-
nitude. Intuitively, this can be attributed to a good choice of the switch codes,
reducing the number of active control wires. Moreover, there are many more
active data and address lines than control bit lines. Also there is only limited
activity on some buses in some branches of the program, thanks to activity-
aware placement. We can observe from the test-case of the DAB receiver
that:
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– Eseg is 17-21% of Eunseg .
– SLtransport is much smaller than SG. It is in the range of 1.5-6% of Eseg .

So a further reduction of the SLtransport is not required1.
– Clustering the switches may make sense both locally and per bus. Often the

switches do not change state because the bus is not in use. At other times,
there are frequent patterns on a section of a bus because only short sections
are being used.

– For long periods, switching often occurs on every cycle. This follows from
what the storage bandwidth optimization considers to be a cycle: a period
through which accesses to external memory are scheduled. Consecutive cycles
during which only internal registers are accessed, are not counted. Only if the
access schedule would be completely the same for two cycles, w.r.t. sources
and sinks as well as data direction, would there not be any switching activity.
(Or else when the bus is simply not used.)

6 Related Work

Segmented buses are not novel as such, having been developed in the context
of super-computing, to speed up parallel computations in the mid 90’s; cfr, for
instance, Li [9]. Chen et al [3] have illustrated their potential for energy opti-
mization. They did not show how to program or control such an architecture.

Most research on communication architectures has been focused on inter-tile
communication. The architecture discussed in this paper is intended for intra-
tile communication and uses finer-grain segmentation and simpler control. In
this area, the literature is limited. Current industrial SoC implementations rely
on textbook [4] solutions such as point-to-point connections [5], shared buses [12]
and crossbars [8]. These are general purpose architectures, that do not provide
the energy-efficiency and scalability required for massively parallel processing [6].

The term “segmented bus” is at times used to refer to multiple inter-tile buses
interconnected by bridges. Our “segmented bus” is different, taking segmentation
to its logical consequence: not only are intra-tile and inter-tile buses decoupled,
but every segment of the intra-tile bus can be decoupled to save power.

7 Conclusions

We have discussed a software-controlled energy-efficient segmented bus com-
munication architecture for SoC designs, and compared the energy required to
distribute the switch control bits with the energy consumed by the segmented
bus itself, and also with the energy that would be consumed by the bus, were
it not segmented. From a test case design we found that the energy costs of
driving the switches are appreciably lower than the gain obtained. If we take
the viewpoint of control energy, the case for the segmented bus still stands. We
1 This is due to our judicious choice for software control. The picture would have been

quite different if we would have used a full hardware-based NoC routing solution.
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should not go for optimization of the transport component, but instead look for
the ways to optimize the energy cost of fetching the control information.

References

1. “The ATOMIUM tool suite”, http://www.imec.be/design/atomium/
2. F. Catthoor et al., “Custom memory management methodology exploration of

memory organization for embedded multimedia system design”, Kluwer, June 1998,
3. J.Y. Chen et al., “Segmented bus design for low-power systems”, IEEE VLSI, Mar

1999.
4. J. Duato et al., “Interconnection networks, an engineering approach”, IEEE Com-

puter Society, Jun 1997.
5. S. Dutta et al., “Viper: a multiprocessor SoC for advanced set-top box and digital

TV systems”, IEEE Design & Test, Sep 2001.
6. A. Gangwar et al., “Evaluation of bus based interconnect mechanisms in clustered

VLIW architectures”, DATE, 2005.
7. J. Guo et al., “Physical design implementation of segmented buses to reduce com-

munication energy”, ASP-DAC, 2006.
8. B. Khailany et al., “Imagine: media processing with streams”, IEEE Micro, Mar

2001.
9. Y. Li et al, “Prefix computation using a segmented bus”, Southeastern Symposium

on System Theory, Apr 1996.
10. “Blast Chip 4.0 User Guide Magma Design Automation, Cupertino, CA 95014,

pp.271-351”, http://www.magma-da.com
11. A.Papanikolaou et al., “Architectural and physical design optimizations for efficient

intra-tile communication”, Proc. Intnl SoC Symp., Finland, Nov 2005.
12. “TMS320VC5471 fixed-point digital signal processor data manual”,

http://focus.ti.com/docs/prod/folders/print/tms320vc5471.html
13. “TMS320VC5510/5510A Fixed-Point Digital Signal Processors”, http://focus.

ti.com/docs/prod/folders/print/tms320vc5510.html
14. T. Van Meeuwen et al., “System-level interconnect architecture exploration for

custom memory organisations”, ISSS, 2001.



Quality Driven Dynamic Low Power
Reconfiguration of Handhelds

Hiren Joshi1, S.S. Verma2, and G.K. Sharma3

1 M.L.V. Textile and Engineering College, Bhilwara, India
hiren@mlvti.ac.in

2 Flextronics Software Systems, Gurgaon, India
verma.shyam@flextronicssoftwaresystems.com

3 ABV-Indian Institute of Information Technology and Management, Gwalior, India
gksharma@iiitm.ac.in

Abstract. Run time reconfiguration of mobile devices to optimize
power according to user experience is a significant research challenge.
The paper investigates a novel technique of generating power-optimized
bitstream to be used for on-the-fly remote-reconfiguration of mobile de-
vices. The approach dynamically minimizes the bitwidths of variables of
applications residing in mobile and allows the user to tradeoff between
power and quality. Experimental results for MPEG2 decoder show that
the approach is able to reduce power consumption dynamically by 33.58%
for 25% PSNR degradation.

1 Introduction

To fulfill the user Requested QoS (RQoS), designers reserve extra resources that
lead to an inefficient design in terms of power. This penalty of power for getting
better quality starts creating problem when the user is out of power. Therefore,
the system needs to have real time properties and must adapt itself with respect
to changes in user requirement of QoS. When user feels that a device is run-
ning out-of-power, he can save power by requesting low quality of service. The
proposed well-structured framework presents a practical approach for run-time
optimization for power in mobile devices. This framework is experimented on
bitwidth optimization for MPEG-2 and results agreed with the practical impor-
tance of runtime and remote optimization of bitwidth for power saving.

For optimization of multimedia algorithms during high-level synthesis, lossless
bitwidth optimization is exposed greatly [1,2,3]. But lossy bitwidth optimization
has not been exposed very well. The root cause behind this is that the lossy
approach depends upon application. But the overall saving can be increased if
Quality driven lossy approach is adapted according to run-time requirements.
In lossy approach we reduce the bit width of different variables of algorithms
beyond the permissible limit and achieve significant power saving. Although the
application of lossy approaches results in a moderately degraded quality but
with this acceptance one can save significant amount of power.

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 59–64, 2006.
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2 Framework

The framework presents a practical approach for run-time high-level optimiza-
tion of power with user-desired compromise in quality. Framework supports series
of static and dynamic optimizations like loop unrolling, dynamic voltage scaling
etc. and generates bitstream for partial reconfiguration of mobile architecture. As
quality requirement changes dynamically, quality related optimizations must be
done dynamically while quality independent optimization must be applied stati-
cally. In this paper we focused on “Quality Independent Bitwidth Optimization”
(QIBO) and “Quality Dependent Bitwidth Optimization” (QDBO) and results
are verified for the practical importance of runtime and remote bitwidth opti-
mization for power saving.

Fig. 1. Processing at Remote Server

The framework as shown in fig. 1 explains the overall approach.Whenever
user(client) feels that the device is running out-of-power, and if one wishes to
save power, initiates the process by selecting the required level of QoS and send
it to remote server. Server calculates the new optimized design and extracts the
reconfiguration bit-stream, which when sent to the client, reconfigures the device
for reduced power consumption and compromised quality.

3 Bitwidth Analysis

The quality observable at the mobile device is a function of the accuracy and
therefore depends upon bitwidths used in representation of all intermediate vari-
ables in the algorithm.We have proposed a two fold scheme of saving in the
bitwidths of variables. First we find the bits in each variable, which are not af-
fecting the output quality. This normally includes the blank MSB bits (e.g. in
an integer variable which is assigned a value 4, the 29 MSB bits out of total
reserved 32 bits are blank) and some LSB bits.
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Input: Min Err
Output: msb saving, lsb saving

1: vector msb saving (1 to n) ← 0
2: vector lsb saving (1 to n) ← 0
3: vector variables(1 to n)
4: constant assigned bit width ← 32
5: for all i such that 0 ≤ i ≤ n do
6: for k = 0 to assigned bit width do
7: lsb saving(i) ← lsb saving(i) + 1
8: Calculate MSE with lsb saving in

bitwidth
9: if (MSE ≤ Min Err) then

10: continue
11: else
12: lsb saving(i) ← lsb saving(i) - 1
13: break
14: end if
15: end for
16: for k = 0 to assigned bit width do
17: msb saving(i) ← msb saving(i) +

1
18: Calculate MSE with msb saving

in bitwidth
19: if (MSE ≤ Min Err) then
20: continue
21: else
22: msb saving(i) ← msb saving(i) -

1
23: break
24: end if
25: end for
26: end for

Fig. 2. Algorithm of QIBO

Input : Req PSNR, lsb saving
Output : lsb saving, Error

1: Req MSE ←
255 ∗ 255/(10Req PSNR/10)

2: vector variables [1 to n]
3: var sel ← 0
4: while var sel �= −1 do
5: Error ← Req MSE
6: for all i such that 0 ≤ i ≤ n

do
7: lsb saving(i) ←

lsb saving(i) + 1
8: Calculate MSE with

lsb saving in bitwidth
9: if (MSE ≤ Error) then

10: Error ← MSE
11: var sel ← i
12: end if
13: lsb saving(var sel) ←

lsb saving(var sel) - 1
14: end for
15: Increment

lsb saving(var sel) by 1
16: Error = Calculate MSE with

new bitwidths specified by
lsb saving

17: end while

Fig. 3. Algorithm of QDBO: No. of
variable in function is n. lsb saving

are saving in variable from LSB side.
PSNR is Peak Signal to Noise Ra-
tio. MSE is New MSE each time
bitwidth changes.

This analysis can be done once, statically for an algorithm and is named as
Quality Independent Bitwidth Optimization (QIBO). The QIBO is lossless i.e.
bitwidth saving in this phase does not introduce error and thus does not affect the
output quality. Secondly bitwidths of all variables are gradually decreased from
LSB side till the degradation in quality up to acceptable level. For getting maxi-
mum saving with fewer penalties on quality we have proposed a greedy approach.
This phase is named as Quality Dependent Bitwidth Optimization (QDBO).

3.1 Quality Independent Bitwidth Optimization (QIBO)

For static analysis we have used a pseudo-simulation method, bitwidths are
varied from MSB as well from LSB side till the MSE remains less than threshold
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(MIN Err). MSE is calculated by adding difference i.e. error between all pixels
of original and new image as follows.

MSE =
1
n2

n−1∑
i=0

n−1∑
j=0

{f
′
(i, j) − f(i, j)}2

(1)

The QIBO phase generates two vectors lsb saving and msb saving. The vectors
are n-bit long. The ith bit, in msb saving vector represents the bit saving from
MSB side in the ith variable. Similarly ith bit in the lsb saving vector repre-
sents the bit saving from LSB side in the ith variable. The QIBO is done only
once for any algorithm and results are made available for the QDBO at remote
server.

3.2 Quality Dependent Bitwidth Optimization (QDBO)

The key idea over here is that once the user selects the required quality at
which he is comfortable the tolerable error is calculated for this quality-level.
Precision of all the variables are again fine-tuned and the narrowest bitwidth of
each variable is determined that retains the requested quality level.

The QDBO phase initiated at server every time after receiving the required
PSNR from the user and then acceptable MSE for the desired PSNR is calcu-
lated. The QDBO uses lsb saving vector as starting point and further increase
the bit saving at each position in the vector by one. The corresponding error is
each case is calculated and finally bit saving in the bit of lsb saving vector which
introduces minimum error, is only considered. The lsb saving vector is modified
by making increment in the corresponding bit, all other bits remain unchanged.
At the same time the bitwidth of the variable under consideration is reduced by
one from LSB side, see fig. 4. The process is repeated till the error introduced
remain lower then the MSE. The final bit saving in each variable is reflected by
the two vectors msb saving and lsb saving.

Fig. 4. Selection of Target Variable During QDBO
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4 Experiments and Result

For the validation of proposed methodology, the experiments were solely based
upon functionality of MPEG2decoder. What follows is the experiment on idc-
trow and idctcol, the compute-intensive functions of MPEG2decoder.The func-
tions contain 9 integer variables (x0 to x8) with a total bitwidth 32 ∗ 9 = 288
bits. We refine bitwidth of each of 9 variables firstly by applying QIBO and
then QDBO. Thus each variable is fine-tuned to contribute maximum in power
saving. We calculated these bitwidths for 40 dB to 26 dB PSNR which was cal-
culated with reference to the image obtained using standard implementation of
MPEG decoder. The framework supports every positive PSNR but our experi-
ments showed that the quality of image less than 26dB is degraded beyond the
acceptable range, thus presenting only the saving between 40dB to 26dB PSNR
(Table 1).

Table 1. Power consumption and bitwidth saving with PSNR: Here bit saving due to
dynamic analysis is shown. Power is reducing with decreasing PSNR. Average power
saving for idctrow and idctcol is 28.77% and 23.26%.

PSNR
idctrow idctcol
Dynamic
Bit-Saving

Power
Consumption

Dynamic
Bit Saving

Power
Consumption

40 16 20.62 23 19.84
38 27 19.33 36 18.66
36 43 17.46 46 17.77
34 51 16.53 57 16.78
32 58 15.71 64 16.16
30 79 13.26 64 16.16
28 80 13.14 82 14.55
26 87 12.32 83 14.46

The power saving results were extracted using the tool Xpower of Xilinx Inc.
The code of idctrow and idctcol was firstly converted into equivalent VHDL code
and then synthesized using Xilinx synthesis tools for Virtex-II series FPGA. The
synthesized design was used to estimate power consumption in the above func-
tions using Xpower. The process was repeated for each PSNR ranging between
40dB to 26dB with the optimum bitwidth suggested by the present framework
(fig. 5(a),fig. 5(b)).

5 Conclusion

The methods presented here show the great potential of incorporating user ex-
perience of quality in power optimization in an inherent dynamic environment
of mobile systems. The framework explores the power saving capability of run-
time bitwidth optimization with acceptable compromise in quality of multimedia.
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(a) Power consumption with quality
specification

(b) Visual Image quality results with
decreasing PSNR

Fig. 5. Experimental Results Obtained for Mobile Device

Other high level optimization mixing with QoS may provide better and wider
ranging quality/energy tradeoffs, and are subject of our future work.
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Abstract. Up to the present, there have been many works to analyze
interconnects on timing aspects, while less works have been done on
power aspects. As resistance of interconnects and rise time of signals de-
crease, power dissipation associated with interconnects is ever-increasing.
Hence, an efficient method to compute power dissipation on interconnects
is necessary and in this paper we propose a simple yet accurate method
to estimate dynamic power dissipation on interconnects. We propose a
new reduced-order model to estimate power dissipation on large inter-
connects. Through the proposed model which is directly derived from
total capacitance and resistance of interconnects, we show that the dy-
namic power dissipation on whole interconnects can be approximated,
and propose an analytic method to compute the power dissipation. The
results of the proposed method applied to various RC networks show
that maximum relative error is within 7% in comparison with HSPICE
results.

1 Introduction

Owing to the process technology advances, the number of transistors that can
be accumulated in a single chip amounts to tens of millions, which allows the
realization of SoC (System-on-a-Chip) technology. Electric power dissipation is
one of the most important issues that limit the performance of circuits, and it
shows an increasing trend as the chip density increases. Hence the estimation of
power dissipation during design process and design of circuits that can reduce
power are very important. Until now, the analysis on dynamic power dissipa-
tion has been focused on gates since the portion of gate power dissipation has
been the most in chip. However, as the effect of interconnects may not be ne-
glected, it is evident now that the power dissipation on interconnects should
be accounted [1]-[3]. Especially, the increase in interconnect resistance through
UDSM (ultra deep submicron) process technology manifests the necessity. The
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increase in resistance means that more energy is dissipated on interconnect and
it is reported that about 30% of whole chip power is dissipated on interconnect
in some cases [1]-[3] . If the width of interconnect decreases due to the process
technology advances, which results in resistance increase, then this proportion
would grow. Also, the trend [4] that signal rise time shortens add to the increase
in interconnect power dissipation. As the signal rise time decreases, the power
dissipation of interconnect shows an increasing pattern.

So far, (1/2)CV 2 expression has been widely used in interconnect power analy-
sis [5] , assuming interconnect as a single capacitor model. Since the resistance of
interconnects can not be neglected, this model lacks in accuracy. Several meth-
ods to improve the accuracy of (1/2)CV 2 have been introduced [6], [7] , and
the method to analyze the power distribution on interconnects using poles and
residues has been proposed in [1] . It is shown in [1] that the power distribu-
tion analysis on interconnects is feasible in frequency domain using poles and
residues. However, high complexity is inevitable when calculating the power dis-
sipation of the whole interconnects since poles and residues of the current flowing
through each resistance have to be calculated. Therefore, this paper proposes an
algebraic method of estimating the power dissipation on the whole interconnects
based on a reduced model. This paper is composed as follows. Following this
introduction, reduced-order model for power dissipation analysis is proposed in
Section 2 and a simple algebraic expression to calculate power dissipation on
interconnects is derived in Section 3. Simulation results are given in Section 4 to
show that the power dissipation of whole interconnects can be estimated through
the proposed algebraic model. Finally, Section 5 gives a conclusion

2 Modeling of Interconnect for Power Dissipation
Analysis

In case of large (detailed) models, accuracy can be met while paying enormous
analysis time and time requirement can be met with a small (rough) model while
giving up some accuracy. Therefore, the purpose of this section is to propose a
model that can provide the convenience of analysis while preserving the accuracy
worthy of trusting. The proposed model has the advantage of being constructed
directly from the extracted variables without special reduction process, and still
yields fairly accurate results.

2.1 Reduced – Order Model for Power Dissipation Analysis

Considering both the operating speed of chips and necessity for a simple model,
a reduced-order model for power dissipation analysis of interconnects is proposed
in this section. Considering the trend of circuit designs, it is observed that the
operating frequency goes higher and resistance of interconnects increases, which
makes it feasible that total resistance of interconnects can not be ignored com-
pared to driver’s output resistance. That is, most of capacitance load is shielded
by interconnect resistance as seen from the driver side. Especially, the increase
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in interconnect resistance is important from the viewpoint of estimating power
dissipation on interconnects since more energy is now dissipated on intercon-
nects. To analyze the power dissipation on interconnects correctly, hence, we
need as many number of resistors as possible for the model. However, although
the accuracy of analysis improves if the order of the reduction model goes higher,
the efficiency of analysis decreases. Hence, we propose a second-order RC model
that can keep reasonable accuracy.

2.2 Modeling Method of the Proposed Second-Order RC Model

Various reduction techniques to analyze large circuits are introduced and applied
appropriately in many fields in [12] - [15]. A modeling method proposed in this
section can be composed directly by extracted resistance and capacitance values.
The admittance of interconnects from the driving point is given by (1), where, Rt
and Ct are the total resistance and capacitance of interconnect, respectively[8]

Y (s) =
√

sCt

Rt
tanh(
√

sCtRt) (1)

Also, the driving point admittance of the circuit is represented in (2),

Y (s) =
b0s + b1s

2

1 + a0s + a1s2 (2)

where a0 = R1C1 + R1C2 + R2C2, a1 = R1R2C1C2, b0 = C1 + C2, b1 = R2C1C2.
In the meantime, applying MacLaurin series to tanh(

√
sCtRt) in (1) and ar-

ranging it yields(3),

Y (s) =
√

sCt

Rt
tanh(
√

sCtRt)

= m1s + m2s
2 + m3s

3 + m4s
4 + .... (3)

where m1 = Ct, m2 = − 1
3RtC

2
t , m3 = 2

15R2
t C

3
t , m4 = − 17

315R3
t C

4
t . Applying

moment matching between (2) and (3), a0, a1, b0 and b1 can be represented
as (4).

a0 =
m3m4 − m2m3

m2
2 − m1m3

a1 =
m2

3 − m2m4

m2
2 − m1m3

(4)

b0 = m1

b1 = m2 + m1a0

Using (4), R and C values in the second-order reduced model can be obtained
from Rt and Ct values as shown in Fig.1.
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Fig. 1. Reduction of RC trees

3 Estimation of Dynamic Power Dissipation for Saturated
Ramp Input

Inputs to gates and interconnects in actual circuits are usually saturated ramp
signals that are characterized with finite rise times. Power dissipation on inter-
connects tends to increase as the signal rise time shortens. However, previous
analysis methods presented so far have addressed only step input case due to
the complexity reason, which corresponds to the maximum power dissipation [1],
[15]. Hence, an analysis method for ramp input case with finite signal rise time is
required in order to analyze power dissipation on interconnects accurately. In this
section we define ramp input in frequency domain and propose the estimation
method for power dissipation on interconnects using this definition.

3.1 Definition of Saturated Ramp Signal

A saturated ramp signal with a finite rise time can be represented as the addition
of two functions given by (5) in time domain [16]. tr and Vdd represents signal
rise time and input voltage,respectively, and U(t) denotes unit step.

Vramp(t) =
Vdd

tr
[tU(t) − (t − tr)U(t − tr)](t ≥ 0) (5)

Using Laplace transform, (5) can be transformed to (6) in frequency domain

Vramp(t) =
Vdd

tr

1
s2 (1 − e−str ) (6)

Expanding (1−e−str) in (6) using MacLaurin series and arranging it yields (7).

Vramp(s) =
Vdd

tr

1
s2 (1 − e−str ) (7)

=
Vdd

s
(1 − str

2
+

s2t2r
6

− s3t3r
24

+ ....)
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3.2 Estimation Method for Dynamic Power Dissipation

When an RC circuit is given, power dissipation happens only in resistance part of
the circuit, and power dissipation on interconnects can be estimated by summing
up all the contribution of power dissipated at each resistor of interconnect model.
That is, once RC tree model is composed for interconnect consisting of several
URC segments, then the RC tree model can be reduced using current moment
at the driving point as shown in Fig. 2. Sum of power dissipations in R1 and
R2 can be assumed as an approximation of sum of power dissipation in each
resistor of the RC tree circuit. During the transition period of input signal, the
power dissipation in a resistor can be given by (8), where I(t) denotes the current
flowing into resistor Ri

E = Ri

∫ ∞

0
I2(t)dt (8)

As shown in (8), we can calculate power dissipation in a resistor if the current
flowing into the resistor is known. Then, power dissipation for the reduced model
in Fig. 2 can be expressed as (9).

Fig. 2. Interconnect model for power dissipation analysis (I(s): current flowing into
resistor)

E = R1

∫ ∞

0
I2
1 (t)dt + R2

∫ ∞

0
I2
2 (t)dt (9)

I1(s) =
R2C1C2s + (C1 + C2)

R1R2C1C2s2 + (R1C1 + R1C2 + R2C2)s + 1
Vdd(1 − str

2
)

=
K1I1

s + P1
+

K2I1

s + P2
+ d (10)

I2(s) =
C2

R1R2C1C2s2 + (R1C1 + R1C2 + R2C2)s + 1
Vdd(1 − str

2
)

=
K1I1

s + P1
+

K2I1

s + P2
(11)
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P1 =
−(R1C1 + R1C2 + R2C2) + (R1C1 + R1C2 + R2C2)2 − 4(R1R2C1C2)

2R1R2C1C2
(12)

P2 =
−(R1C1 + R1C2 + R2C2) − (R1C1 + R1C2 + R2C2)2 − 4(R1R2C1C2)

2R1R2C1C2
(13)

Assuming that input signal is a saturated ramp given by (7), I1(s) and I2(s)
can be expressed in (10) and (11), where P1 and P2 denote the poles of I1(s)
and I2(s) and KiIj

denotes the residue of currents for each pole. Note that all
the terms after the second term in (7) are truncated and poles of I1(s) and I2(s)
are same as shown in (10) and (11), where d = −Vddtr

2R1

K1I1
=

VddP
2
1 P2(2R2C1C2 + (R2C1C2P1 + R2C1C2P2 − C1 − C2)tr)

2(P1 − P2)

− (C1 + C2)VddP1P2 + dP1P2

(P1 − P2)

K2I1
=

VddP
2
1 P2(2R2C1C2 + (R2C1C2P1 + R2C1C2P2 − C1 − C2)tr)

2
− K1I1

K1I2
=

−VddC2P1P2(trP1 + 2)
2(P1 − P2)

K2I2
=

−VddC2P1P2tr
2

− K1I2
(14)

∫ ∞

0
I2(t)dt =

q∑
i=0

KiI(−Pi) (15)

As explained in Section 2, values of R1, R2, C1, and C2 can calculated directly
from Rt and Ct and poles can be calculated by (12) and (13). Also, residues
of currents for each pole are given by (14). And,

∫∞
0 I2(t)dt in (9) can be rep-

resented as (15) using poles and residues [1], where Pi denotes poles and Ki

denotes the current residue associated with Pi. Applying (12), (13), (14) and
(15) to (9) yields (16), which estimates the dynamic energy dissipation on inter-
connects. As shown in the above, poles and residues of the second-order reduced
model are first calculated using R1, R2, C1, and C2 values of the reduced model,
and then the power dissipation on interconnects can be estimated by plugging
these poles and residues into the algebraic expression given in (16).
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E = R1

∫ ∞

0
I2(t)dt + R2

∫ ∞

0
I2
2 (t)dt

= R1(K1I1
(

K1I1

−P1 − P1
+

K2I1

−P1 − P2
)

+ K2I1
(

K1I1

−P2 − P1
+

K2I1

−P2 − P2
))

+ R2(K1I2
(

K1I2

−P1 − P1
+

K2I2

−P1 − P2
)

+ K2I2
(

K1I2

−P2 − P1
+

K2I2

−P2 − P2
)) (16)

4 Simulation Results

Simulation results for general tree structures of interconnects are presented in
this section to verify the validity of the proposed method. We assume a 2.5V
saturated ramp input is applied to interconnect circuits. Power estimation results
using the proposed method in this paper are compared with those of HSPICE
as the rise times of input signal varies

4.1 RC Tree Examples

We have simulated the tree-shaped interconnect consisting of several URC seg-
ments, shown in Fig. 3. The numbers in Fig. 3 denote the total resistance (Ω)
and capacitance (pF), respectively, for each URC segment. These URC segments
have been modeled using ladder circuits composed of RC cells, in which the num-
ber of cells, N, can be chosen from (17).

fmax ≤| 2N2

RtCt
(1 − cos

(2N − 1)π
2N

) | (17)

where fmax is the maximum frequency of interest [11]. Table 1 shows the com-
parison of power dissipation estimated by the proposed method and HSPICE, as
the signal rise time varies. It is shown in Table 1 that the errors of the proposed
method are within a 2% range when compared with HSPICE results.

Fig. 3. An RC tree example
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Table 1. Power dissipation (unit : J) and relative error of the proposed method com-
pared to HSPICE

Rising Time Proposed Method HSPICE Relative Errors
1.00E-11 3.9355E-11 3.8761E-11 +1.53%
1.00E-12 4.0161E-11 4.0152E-11 +0.02%
1.00E-13 4.0248E-11 4.0447E-11 -0.49%
1.00E-14 4.0257E-11 4.0477E-11 -0.54%
1.00E-15 4.0257E-11 4.0480E-11 -0.55%
1.00E-16 4.0257E-11 4.0480E-11 -0.55%
0(STEP) 4.0258E-11 4.0480E-11 -0.55%

4.2 General RC Network Example

Circuit that use in simulation includes all of RC network that it is no branch and
branch, and the size also is various. We have simulated various circuit examples
of many different sizes which include the both cases with and without branches.
Relative errors of the proposed method are tabularized in Table 2 against the
HSPICE results when signal rise time and number of nodes vary. It is noticed in
Table 2 that the accuracy of the proposed method is not compromised much.

Table 3 shows power dissipation comparison and relative errors when signal
rise time varies for two circuit examples. Although it is observed that the relative
errors grow bigger as signal rise time becomes slow, the proposed method will
still be a good estimator for power dissipation, considering that signal rise time
ever increases as the circuit technology advances.

Table 2. Relative errors of power dissipation [J] versus signal rise time in various
circuits

0p(Step) 1p
# of nodes HSPICE Our Method Error HSPICE Our Method Error

100 8.9250E-11 3.9375E-11 +0.1399% 8.9141E-11 8.9315E-11 +0.1951%
200 9.8125E-11 9.8137E-11 -0.0119% 9.8097E-11 9.8027E-11 +0.0712%
300 1.0594E-10 1.0606E-10 -0.1094% 1.0591E-10 1.0595E-10 -0.0347%
400 1.1406E-10 1.1399E-10 +0.0652% 1.1403E-10 1.1388E-10 +0.1348%
500 1.2219E-10 1.2202E-10 +0.1423% 1.2216E-10 1.2191E-10 +0.2074%

Maximum 0.1423% 0.2074%
10p 100p

# of nodes HSPICE Our Method Error HSPICE Our Method Error
100 8.8456E-11 8.8785E-11 +0.3715% 8.5608E-11 8.4164E-11 -1.6872%
200 9.7845E-11 9.7343E-11 +0.5160% 9.5468E-11 9.4495E-11 +1.0296%
300 1.0566E-10 1.0526E-10 +0.3777% 1.0329E-10 1.0241E-10 +0.8554%
400 1.1379E-10 1.1319E-10 +0.5285% 1.1142E-10 1.1034E-10 +0.9752%
500 1.2191E-10 1.2122E-10 +0.5671% 1.1956E-10 1.1837E-10 +1.0017%

Error 0.5671% 1.0017%
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Table 3. Power dissipation comparison and relative errors for various signal rise time

Circuit 1 Circuit 2
HSPICE Our Method Error HSPICE Our Method Error

1p 4.9589E-10 5.1243E-10 +3.3355% 2.5742E-10 2.5739E-10 -0.0109%
50p 4.9365E-10 5.0893E-10 +3.0961% 2.5432E-10 2.5205E-10 -0.8923%
100p 4.9166E-10 5.0553E-10 +2.8218% 2.5194E-10 2.4717E-10 -1.8939%
150p 4.8984E-10 5.0223E-10 +2.5298% 2.4995E-10 2.4276E-10 -2.8764%
200p 4.8816E-10 4.9901E-10 +2.2220% 2.4820E-10 2.3880E-10 -3.7881%
250p 4.8661E-10 4.9589E-10 +1.9069% 2.4663E-10 2.3532E-10 -4.5858%
300p 4.8516E-10 4.9287E-10 +1.5899% 2.4519E-10 2.3229E-10 -5.2606%
350p 4.8377E-10 4.8994E-10 +1.2747% 2.4385E-10 2.2972E-10 -5.7936%
400p 4.8246E-10 4.8710E-10 +0.9616% 2.4259E-10 2.2762E-10 -6.1725%
450p 4.8121E-10 4.8435E-10 +0.6535% 2.4141E-10 2.2598E-10 -6.3902%

5 Conclusion

The proposed method works on a reduced-order model to take the simple es-
timation by reducing the original interconnect into a second-order RC model.
This reduction process is directly achieved using total resistance and capacitance
values of interconnect segments. We have simulated various circuit examples of
many different sizes in which each node may or may not have branches. Simu-
lation results for various RC networks show that the maximum relative error is
within 7% in comparison with HSPICE results. The estimation method proposed
in this paper may provide an important measure in placement & routing(P&R)
phase of design process, for example, in a form of power dissipation-aware P&R.

Acknowledgements

This work was supported by grant No. R01-2005-000-11215-0(2005) from the
Basic Research Program of the Korea Science & Engineering Foundation and by
the Soongsil University Research Fund.

References

1. Y. Shin, T. Sakurai: Power Distribution Analysis of VLSI Interconnects Using
Model Order Reduction. IEEE Tran. Computer-Aided Design, vol 21, pp. 739-745,
June 2002

2. D. Lur, C. Sevensson: Power dissipation Estimation in CMOS VLSI Chips. IEEE
Journal of Solid-State Circuits, vol. 29, pp.663-670, June 1994

3. Micheal K. Gowan, Larry L. Biro, Daniel B. Jackson: Power Considerations in the
Design of the Alpha 21264 Microprocessor. in Proc. IEEE DAC, June 1998

4. M. Celik, L. T. Pileggi, A. Odabasioglu: IC Interconnect Analysis, Kluwer Acad-
emic Publishers, 2002

5. J. M. Rabaey: Digital Integrated Circuits, A Design Perspective, Prentice Hall,
Inc., New Jersey, 2003



74 J.-h. Park, B.-H. Sung, and S.-Y. Kim

6. T. Uchino, J. Cong: An Interconnect Energy Model Considering Coupling Effects.
in Proc. IEEE DAC, June 2001

7. P. Heydari, M. Pedram: Interconnect Energy Dissipation in High-Speed ULSI Cir-
cuit. in Proc. IEEE Int. Conf. VLSID, 2002

8. P. R. O’Brien, T. L. Savarino: Modeling the Driving-Point Characteristic of Resis-
tive Interconnect Accurate Delay Estimation. in Proc. IEEE ICCAD, 1989

9. S. Y. Kim, Modeling and Analysis of VLSI Interconnects, Sigma Press, 1999
10. H. B. Bakoglu, Circuit, Interconnections, and Packaging for VLSI, Addison Wesley,

1990.
11. N. Gopal: Fast Evaluation of VLSI Interconnect Structures Using Moment-

Matching Methods. Ph.D. Thesis, Univ of Texas at Austin, Dec. 1992
12. L. T. Pileggi, R. A. Rohrer: Asymptotic Waveform Evaluation for Timing Analysis.

IEEE Trans. Computer Aided Design, vol. 9, 1990
13. A. Odabasioglu, M. Celik, L. T. Pileggi: PRIMA: Passive Reduced Order Inter-

connect Macromodeling Algorithm. IEEE Tran. Computer Aided Design, vol. 18,
no 8, pp. 645-654, Aug. 1998

14. E. Acar, A. Odabasioglu, M. Celik, L. T. Pileggi: S2P: A Stable 2-pole RC Delay
and Coupling Noise Metric. in Proc. Great Laked Symposium VLSI, 1999

15. W. K. Kal, S. Y. Kim: An Analytical Calculation Method for Delay Time of RC-
class Interconnect. in Proc. IEEE ASP-DAC, 2000

16. A. B. Khang, Muddu: An Analytical Delay Model for VLSI Interconnects under
Ramp Input. in UCLA CS Dept. TR-960015, 1996



K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 75 – 86, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Highly Paralellized Architecture for Image Motion 
Estimation  

Javier Díaz1, Eduardo Ros1, Sonia Mota2, and Rafael Rodriguez-Gomez1 

1 Dep. Arquitectura y Tecnología de Computadores, Universidad de Granada, Spain 
2 Dep.Informática y Análisis Numérico, Universidad de Córdoba, Spain  

{eros, jdiaz, rrodriguez}@atc.ugr.es 
smota@uco.es 

Abstract. Optical flow computation is a well-known topic with a large number 
of contributions describing different models and their accuracies but real-time 
implementation of high frame-rate sequences remains as an open issue. The 
presented approach implements a novel superpipelined and fully parallelized 
architecture for optical flow processing with more than 70 pipelined stages that 
achieve a data throughput of one pixel per clock cycle. This customized DSP 
architecture is capable of processing up to 45 Mpixels/s arranged for example 
as 148 frames per second at VGA resolution (640x480 pixels). This is of 
extreme interest in order to use high frame-rate cameras for reliable motion 
processing. We justify the optical flow model chosen for the implementation, 
analyze the presented architecture and measure the system resource 
requirements. Finally, we evaluate the system comparing  its performance with 
other previous approaches. To the best of our knowledge, the obtained 
performance is more than one range of magnitude higher than any previous 
real-time approach described in the literature. 

1   Introduction 

Optical flow is a well known research field used to recover 2-D motion from image 
sequences. There are different approaches based on image block-matching, gradient 
constraints, phase conservation or energy models [1]. Until now, most of the 
comparative studies focused on the different estimation approaches and their 
accuracies [1], [2]. Nevertheless some of them also covered the implementation 
feasibility [3]. They show that best accuracy is achieved using phase-based and 
differential methods but, though these models work fine for low motion velocities, 
they fail when trying to estimate fast motion (their accuracies are significantly 
degraded due to the temporal aliasing) [4], [5]. The temporal aliasing problem is a 
complex topic where we can not isolate the temporal sampling rate and the image 
structure. The spatial frequency has significant importance to calculate the maximum 
speed which can be recovered from an image sequence according to the Nyquist-
Shannon theorem [4], [5]. 

Our approach focuses on the utilization of digital cameras of high frame-rate 
acquisition as a valid alternative to reduce temporal aliasing. Advances in imaging 
sensor technology make possible to acquire more than 1000 frames per second (fps) 
(see products from the web sites: http://www.coreco.com, http://www.hitachi-
service.net/, http://www.ims-chips.com/index.php3) prompting us to develop 
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processing architectures running at higher frame-rates than standard video at 30 fps. 
Though the 1000 fps is still far away from our processing capabilities, an over-
sampled factor of 4 or 5 dramatically reduces the motion aliasing presented in most 
common scenarios. The utilization of a high frame-rate cameras reduces the motion 
range presented at the video sequence, allowing gradient models to achieve an 
outstanding accuracy.  

In previous works, Lucas & Kanade (L&K) gradient based method [1], [6] is 
highlighted as a good candidate to be implemented on hardware with affordable 
hardware resources consumption [2], [3], [7], [8]. The comparison of L&K with other 
differential approaches [9], [10], (also of feasible hardware implementation as 
indicated in [11]), concludes that the L&K least-squares fitting approach achieves the 
best accuracy.  

In this work we present a novel superpipelined processing architecture capable of 
computing one pixel per clock cycle. This architecture significantly improves our 
previous works [7], [8] thanks to the new fine-grain pipeline, a nobel memory 
management unit which enable the utilization of FIR temporal filters and improved 
image differentiation technique. It allows real-time processing of oversampled frame-
rates, which opens the door to utilize the advanced image sensors to achieve high 
accuracy of optical flow. In the next sections we illustrate the superpipelined 
architecture, evaluate their performance, system resources consumption and we 
compare our results with other previous approaches. 

2   Gradient Model Parameters 

On the previous discussion we have presented the L&K model as a good candidate for 
real-time optical flow computation. The L&K algorithm belongs to gradient-based 
techniques which mean that the estimation of pixel velocities is based on image 
derivatives and the assumption of constant luminance over a temporal window is 
required. The velocities are computed as convolution with separable kernels which 
operate as discrete derivatives. L&K method constructs a flow estimation based on 
the first-order derivatives of the image. Using least-square fitting, the model extracts 
an estimation of pixel motion based on the hypothesis of velocity similarity on their 
neighbourhood For details, please see [1], [6]. 

Most of the literature works utilize the derivative kernels and model parameters 
presented in [1] but, as J. Brandt described in [12], they are suitable of significant 
improvement. We encourage the reading of that work for the correct understanding of 
such modifications. To summarize, the processing stages developed in our system are 
the following:  

1. Pre-filtering with a separable kernel of 3x3x3, P=[1, 2, 1]/4 The utilization of this 
small smoothing kernel allow high optical flow estimation density because it does 
not reject the high frequency terms and at the same time also contributes as anti-
aliasing filter.  

2. Complementary derivative kernels (2-D smoothing and 1-D derivation for each 
axe derivative) such as designed by Simoncelli [13]. These kernels increase the 
architecture complexity compared with previous approaches [7], [8], but 
significantly improve the accuracy of the system [12]. In terms of performance, 
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they represent a computation load increment of a factor of 3 but this is not a 
problem when designing customized hardware because it can be implemented in 
the pipeline structure without throughput degradation. 

3. The image derivatives Ix, Iy and It (subscript stands for axe direction derivative) 
are cross-multiplied to get the five products Ix·Ix, Iy·Iy, Ix·Iy, Ix·It, and Iy·It and then 
are locally weighted on a neighbourhood area . The weighing operation is 
implemented as separable convolution operations over the derivatives products 
using the 2-D spatial central-weighting separable kernel [0.0625, 0.25, 0.375, 
0.25, 0.0625]. 

4. Finally, the weighted image derivatives products are combined to get the pixel 
velocities estimation [1].  

The overall support of the system is 11x11x7 pixels using the parameters described 
above, thus just 7 images storage is required which is feasible on systems embedded 
on a single chip. In a previous implementation of the L&K model [7], [8], we used the 
Fleet et al. [14] IIR temporal filter which requires just 3 images storage. The 
drawback of such approach is that IIR filters produce lower accuracy in the estimated 
optical flow and need higher fixed-point bit-width to compute filter values.  

3   Hardware Architecture  

Nowadays, standard PC processors have significant computing performance thanks to 
the high system clock frequency and to the MMX and SSE instruction extensions 
which give them DSP capabilities. Nevertheless, although there are some optical flow 
approaches running on software in near real-time [15], the intensive computation 
required to process optical flow makes non viable to process oversampled sequences 
in real-time. DSP and multimedia processors are specifically suitable for embedded 
large processing [16] but their computing performances are still far from allowing 
real-time computing of optical flow at more than 30 fps. Therefore we consider 
reconfigurable hardware the best target technology.  

We use a pipelined architecture (Fig. 1). The basic computational stages represent 
the different steps of L&K algorithm briefly described on section 2. The system has 
been designed as an embedded processing platform which can be used on mobile 
applications and thus, user interface, hardware controller for memory, VGA 
visualization and input camera interface have been embedded on the same FPGA 
device. This strategy enables the utilization of the system combined with a high 
frame-rate camera as a smart sensor on diverse potential applications. The different 
elements that form the system are represented on Fig. 1. Note that the thin dotted line 
marks the optical flow processing core whose stages can be summarized as follows:  

a) S0. Gaussian-filter smoothing stage.  
b) S1. The FIR temporal filter computes the temporal derivative and space-time 

smoothed images.  
c) S2. Spatial derivatives and complementary Gaussian filtering operations.   
d) S3. Construction of least-square matrices for integration of neighborhood 

velocities estimations.  
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e) S4. Custom floating-point unit. Final velocity estimation requires the 
computation of a matrix inversion, which includes a division operation. At 
this stage the resolution of the incoming data bits is significant and expensive 
arithmetic operations are required. Thus fixed-point arithmetic becomes 
unaffordable, prompting us to design a customized floating-point unit. 

 

Fig. 1. Optical flow system structure. Thin dotted line marks the processing core. Light-colour 
blocks indicate hardware controllers inside the FPGA and external memories. The user 
interface consists on a LCD display plus mode-selection buttons. All the computation has been 
done inside the FPGA device.  

3.1   Superpipelined Architecture 

We have described the coarse pipelined system of 5 stages. Now we outline the 
number of parallel units used at each stage and the number of fine-grain pipeline 
stages per unit. In fact previous approaches used a coarse pipeline processing 
architecture able to process up to 41 Kpps (Kpps  kilo pixels per second) [7], [8]. 
The previous scheme, with a pipelined structure divided on 5 basic stages, would lead 
to high performance but still far from high frame-rate processing requirements. The 
main reason is that the coarse architecture in Fig. 1 utilizes a structure similar to DSP 
processor. There is a trade-off between pipeline length and system performance based 
on the dependence problems (in DSPs branch conditions often stop the pipeline which 
represents a significant time loss). Therefore, long pipelines are not presented on 
standard DSPs and microprocessors. On the other hand, we describe here a specific 
purpose processing architecture that highly benefits of a fine grain pipeline datapath. 
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According to [17], the best architecture should be a superscalar and superpipelined 
structure. This design strategy has been adopted in our approach and is one of our 
novel contributions compared with [7], [8]. Furthermore, this processing strategy 
leads to an outstanding processing performance. In Fig. 1 we present the global 
scheme. Each coarse stage has been finely pipelined leading to a processing datapath 
of more than 70 stages just for the optical flow computing core. The number of scalar 
units grows at stages in which L&K model requires to maintain the system 
throughput. This parallelism expansion represents: 

1. Stage S0 uses one scalar unit for spatial smoothing with 12 pipeline stages.  
2. Stage S1 uses two scalar units, one for temporal smoothing and another one for 

temporal differentiation. Each one requires 9 pipeline stages. 
3. Stage S2 uses 3 parallel scalars units of 12 pipeline stages; corresponding to the 3 

dimensions (Ix, Iy, and It) in which are computed the image derivatives.  
4. Provided that 5 cross-product (Ix·Ix, Iy·Iy, Ix·Iy, Ix·It, and Iy·It) are computed at stage 

S3, the systems uses 5 parallel units of 12 pipeline stages to comply this 
requeriment. These scalar units compute the weighted sum of these cross-products 
needed at the least-squares fitting.  

5. Finally, stage S4 uses one scalar unit of 25 pipeline stages to compute the final 
motion for each pixel but internally several parallel pathways drive the data 
process.  

Stage S4 is critical in terms of system frequency, resources and accuracy. The 
incoming data use fixed point representation of 18 bits and this stage requires the 
operations of multiplication, addition/subtraction and division without loosing 
accuracy. From our previous analysis [7], [8], we decide using floating point data 
which allows obtaining the required precision with reasonable resources consumption 
(as is shown on table 1). Fig. 2 presents the architecture of this stage, based again on a 
high pipelined and parallel datapaths to achieve a high system throughput. The whole 
stage requires 25 cycles. Data conversion, multiplication, addition and subtraction are 
computed in just one cycle but division requires 15 cycles. This is the stage limiting 
the system clock frequency and it could be even further pipelined to increase the 
clock frequency if necessary.   

Special consideration must be taken about the temporal filtering stages (smooth 
and derivation filters). The limited number of memory banks accessible on board 
constraints the available system parallelism (which translates in performance 
degradation) and increments the design complexity. Therefore an efficient memory 
management unit (MMU) becomes of great interest to abstract the sequential access 
inherent to this kind of devices. For this purpose we create Virtual memory ports 
(VMP) whose behavior emulates parallel independent real memory ports. High 
abstraction HDL makes feasible to describe systems at a high abstraction level but 
finally, low level hardware imposes strong constraints to the feasibility of the system. 
We have designed a shell to expand the parallelism of this sequential elements in such 
a way that the design process of the system can be done without taking care about this 
low level considerations. According to this strategy, algorithmic implementations as 
the one proposed here can be designed at a higher abstraction level. The main idea for 
this implementation is to combine the following concepts/properties: 
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a. Nowadays, long memory words (36 bits) make feasible to store up to four 9-
bit-width data at each memory address with more than 512Kaddress [18] (up 
to 5 images of 720x576 pixels per memory chip).  

b. A throughput of one pixel per cycle is possible using pipelined packing and 
unpacking circuits, which requires memory access only each 4 clock cycles.  

We have designed a MMU which benefits from the previous architectural 
descriptions. Depending on the number of VMPs required and packing/unpacking 
possibilities (provided by the memory word bit-width), a state machine is used to feed 
the VMP registers sequentially, achieving a final performance of one data per cycle. 
Furthermore, this architecture is scalable because an increment of N in the number of 
VMPs available on one memory only modifies the required access cycles on a factor 
of N. This can be further optimized by incrementing the MMU clock frequency by 
this factor with respect to the global system clock frequency. There is only one 
limitation, due to the packing and unpacking circuits, random access is limited to a 
multiple of 4 and for efficient data management they should be stored on memory in a 
consecutive packed way. 

The MMU architecture is illustrated on Fig. 3 for a four VMP case. Note that a 
VMP is composed by 4 addresses register (read or write type) plus a data-write 
register with packing circuits or by a data-read register with unpacking circuitry.  

The new high level abstraction provided by the MMU makes feasible the 
implementation of FIR temporal filters using a high abstraction level description. 
Previous implementation of L&K used IIR filters to reduce the memory access but the 
drawback was the accuracy degradation [7], [8], [14]. The presented architecture 
allows the easy management of a large number of read-write processes necessary for 
FIR temporal filters with a minimum FPGA logic which clearly justifies the design of 
the presented MMU architecture.  

 

Fig. 2. Architecture schematic of the floating-point unit. Pipeline stage S4. 
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Fig. 3. MMU schematics for a 4 VMPs expansion-case. VMPs are represented by one address 
register (type Read or Write) and a Data-Write or Data-Read register. Low level memory 
control manages the data and address signals as well as the SSRAM clock, read-no-write signal 
(R/NW), etc. The state machine feeds four VMPs sequentially and manages the low level 
memory access. Packing/unpacking circuits achieve a total throughput of one pixel per clock 
cycle. This architecture allows us to multiply by 4 the equivalent memory parallel access. 

4   System Resources and Performance 

The whole system has been successfully implemented and tested on a stand-alone 
board for image processing applications [19]. This board is provided with a Virtex II 
XC2V6000-4 Xilinx FPGA as processing element including also video input/output 
circuits and user interfaces/communication buses. Table 1 summarizes the estimation 
of the system resources consumption for each pipeline stage to determine the critical 
circuits in terms of frequency and resources cost.  

The computations use fixed point arithmetic on stages S0 to S3 and floating point 
on stage S4. We include the values of the requirements for pipeline stage S4 with 
different approaches. Rows number 5, 6 and 7 include an approach using a 
customized floating point representation. It uses one bit for the sign and customized 
bits for the mantissa and the exponent as indicated on Table 1. The final rows present 
an implementation using fixed point arithmetic. Because the input data to this stage 
uses 18 bits data, their implementation with fixed point arithmetic needs  at least 36 
bits to avoid loss of accuracy. It is clear that floating point representation fits better 
this stage provided that the dynamic range is larger, which is very important to 
represent small numbers after the division operation without requiring bits extension. 
Several bits configurations of the implementation floating point data have been 
implemented. The number of bits dedicated to the mantissa allows us to define the 
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accuracy vs. performance of the system. In the final version we have utilized a 
mantissa of 11 bits because, due to that optical flow is prone to noise, good results can 
be achieved only using the most significant bits of the data as can be seen from the 
illustrative results of Fig. 4. 

Table 1. Basic pipeline stages gates resources consumption (results taken from the DK 
synthesizer [19]). Non motion core indicates the logic associated to the MMU, Video input 
controller, VGA signal generation, user interface, etc. Last rows indicate the implementation of 
stage S4 with different parameters and data representation, where man stands for mantissa and 
exp for exponent. 

Pipelined stages 
NAND 
gates 

FFs 
Memory 

bits 
Max clock 

frequency (MHz) 

S0 Gaussian smoothing + 
Non motion core 

modules 
66213 2081 20208 45 

S1 FIR temporal filters 156266 529 73728 67 

S2 FIR spatial 
derivatives 

454087 639 221184 60 

S3 Construction of Least 
squares matrices 

478034 1873 221184 51 

S4 Floating point unit 
(11 man + 7 exp) 57167 3488 0 45 

S4 Floating point unit 
(17 man + 7 exp) 131193 4938 0 36 

S4 Floating point unit 
(23 man + 7 exp) 207428 7698 0 34 

S4 Fixed point unit 
( 36 bits) 

345981 1080 0 31 

Fig. 4.a corresponds to a diverging tree sequence produced by the simulated 
approaching of the camera to the tree. All the spurious deviations of the flow from a 
central expansion are artefacts produced in areas with low image structure. Fig. 4.b 
corresponds to a simulated flight over the Yosemite Valley. In this figure we have 
areas with fast motion components (clouds on the top, and closer rock on the bottom 
left of the image).  The optical flows obtained in these regions are noisier due to the 
model restrictions. In these areas oversampled sequences would lead to more reliable 
flow estimations. Nevertheless, the overall motion patterns are quite regular and 
accurate. We have tested the global accuracy of the flow using the configurations of 
S4 indicated in table 1 and they lead to similar results (using the benchmarking 
sequences of [1]). 
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(a) 

  
(b) 

Fig. 4. Optical flow processing results (11 bits for the mantissa in S4) for a coupled of 
sequences used in [1] and available at: ftp://ftp.vislist.com/SHAREWARE/CODE/OPTICAL-
FLOW/. (a) Diverging tree sequence. (b) Yosemite Fly-Through sequence. The flow is 
represented as vectors with module proportional to the motion speed. 

Finally, Table 2 shows the hardware costs of the whole designed system 
(processing motion core, MMUs, frame-grabber, VGA output and user-interface) and 
its performance. The image resolution can be selected according to image input 
camera standard or processing capabilities. This architecture is scalable being possible 
to reduce the system parallelism (and performance) to fit on a smaller device. 
Furthermore, the processing core can be replicated (more than 75% of system 
resources of a Virtex II XC2V6000 are available) and the frame-grabber can be easily 
modified (thanks to the MMU architecture) to split the image and send it to several 
processing units. This high level scalability allows multiplying the processing 
performance on this board but since the architecture already fulfils the requirements 
to compute in real-time sequences at a high frame-rate we have not addressed this 
issue. 
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Table 2. System resources required on a Virtex II XC2V6000-4. The system includes the 
optical flow processing unit, memory management unit, camera Frame-grabber, VGA signal 
output generation and user configuration interface. (Mpps: mega-pixels per second at the 
maximum system processing clock frequency, EMBS: embedded memory blocks). 

Slices / 
(%) 

EMBS / 
(%) 

Embedded 
multipliers 

/ (% ) 
Mpps 

Image 
Resolution 

Fps 

8250 
(24%) 

29 (20%) 12 (8%) 45.49 
640x480 

1280x960 
148 
37 

4.1   Performance Comparison with Other Approaches 

The implementation of the optical-flow algorithm with FPGAs has only been 
addressed by some authors in very recent years. In our previous work [7], [8], a basic 
implementation of L&K model was proposed and we presented a detailed study about 
the performance vs. system resources trade-off. These papers also cover the topic of 
system degradation related with the different stages bit-width. Although the 
performance was quite high (2857 Kpps), neither the image resolution or frame-rates 
perform the high frame-rate requirements addressed here. The iterative algorithm of 
Horn & Schunk (H&S) [20] has also been implemented by different authors. Martin 
et. al. [21] presented a system implementation that fits quite well the specification of a 
standard frame-rate optical flow system capable to process up to 3932 Kpps. The 
main disadvantage of that approach is that the model itself obtains poor accuracy as 
shown by Barron et al. [1]. Using the block-matching approach, the implementation 
described by Niitsuma & Maruyama [22] achieves 30 fps of image size 640x480 but 
with high hardware cost (90% slices of a XC2V6000 FPGA) and without sub-pixel 
accuracy. Finally, the model described here, running in software on an Intel Pentium 
4 HT, 3200 MHz, can compute 47.6 fps of 160x120 pixels (914 Kpps) and this can be 
further optimized using MMX and SSE instructions. The problem is that it consumes 
all the computing resources of the machine. 

Our system has been experimentally tested running up to 45 MHz and due to the 
fine-grain pipelined architecture; we have computed 45 Mpps which is more than one 
order of magnitude higher than previous approaches. Since the referenced works are 
very recent (some of then using the same evaluation devices), the outstanding 
performance of our approach is not provided by technology improvements but rather 
by a very efficient processing architecture that extensively uses the parallel resources 
of the FPGA device. 

5   Conclusions 

The presented system outperforms in more than one order of magnitude any previous 
approach, validating the proposed architecture. The necessity of a system for high 
frame-rate optical flow processing has been clearly motivated because of two main 
reasons: it decreases temporal aliasing and it better fits to the first order gradient 
constraint assumption. Current image sensors make possible very fast image 
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acquisition and simple gradient based optical flow approaches seem to be one of the 
most suitable alternatives for real-time processing system onto customized hardware. 

According to this we have implemented an improved version of the L&K model 
[12] which complements the capabilities of high frame-rate cameras providing real-
time image motion analysis.  

We have presented a novel architecture that addresses the real-time optical flow 
computation of high frame-rate and high resolution sequences using a FPGA device 
as processing element. We have described the architecture and illustrated how 
parallelism and superpipelined structures can be defined for image processing 
applications. We finally have evaluated the system resource consumption and 
performance of an implementation on a stand-alone platform which fulfils the high 
frame-rate optical flow requirements. The comparison with previous works clearly 
shows the outstanding performance of the system and opens the door to a wide range 
of application fields.  

Future works will cover the utilization of such systems on real-world applications 
using moving robotics platforms, such as robot navigation, tracking, as well as 
structure extraction from motion analysis.  
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Abstract. FPGA based implementation of embedded systems has many
attractive characteristics such as: flexibility, low cost, high integration,
embedded distributed memories and extensive parallelism. One applica-
tion where there is a significant possible potential for FPGA is for the
implementation of real-time video processing. In this paper we present
an analysis of a video pre-processor and how this affects the FPGA and
RAM resource usage and performance. From these results we indicate the
best space-time mapping of operations under different design constraints.
These results can be used as a decision base when implementing an FPGA
based video enabled display unit.

1 Introduction

The necessity for real-time video processing capabilities in embedded systems
is generally increasing with time. Many systems which have previously only
provided a simple graphical user interface are now required to support real-time
video processing. Real-time video processing is a very data intensive task when
compared to many of the normal tasks performed by embedded systems. Even
in simple real-time video operations where the algorithmic complexity of the
processing is very low, the mere transfer of image data may consume significant
system resources [1].

FPGAs provide an efficient alternative for implementing video processing ap-
plications. Modern FPGAs include resources such as embedded memories and
hardware multipliers which make them suitable for real time video applications.
Due to the possibility of parallelizing computationally intensive tasks, FPGAs
offer significantly higher performances than general purpose processors (GPP)
and digital signal processors (DSP)[2]. The increased performance provided by
an FPGA makes it possible to integrate the tasks performed by multiple GPPs
or DPSs in a single chip[3]. An FPGA based system also provides an advan-
tage regarding customizability allowing the designer to move computationally
intensive tasks to hardware.

The increased integration possibilities offered by FPGAs in turn leads to
added design challenges when attempting to achieve the maximum level of in-
tegration. The main challenge is often the sharing of the system’s memory re-
sources between the different components implemented in the FPGA [4,5]. The
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goal of this design exploration is to identify the best space-time mapping for an
FPGA based video pre-processor regarding memory requirements and memory
bandwidth.

The presentation of this work is organized as follows. Next section presents
an overview of a video pre-processor and a description of the design exploration,
followed by a formal description and analysis of the video pre-processor. Finnally
the results from the analysis is discussed and concluded.

2 Video Pre-processor Analysis

The purpose of the video pre-processor is to provide an effective co-processor
for the display of multiple video channels in an FPGA based system. The pre-
processor should, in real-time, perform horizontal mirroring, zoom in and zoom
out and cropping of the frame before displaying it, as depicted in Figure 1.

To extract the correct storage requirements and memory access rate we present
a formal description of all video processing operations shown in Figure 1. We
have chosen not to fully define the operations at frame borders in order for the
complexity of the formulae to be maintained at a reasonable level. A linear es-
timation of the neighborhood pixels located outside the frame is the standard
method used.

Fig. 1. Data flow for the video pre-processor functionality

The design exploration is done by altering the space-time mapping of the
operators used in the system. Space-time mapping is the process of placing the
order and schedule of the processes and operators, such that one or several
design constraints are fulfilled. Three different space time mapping alternatives
are evaluated for each operator: (1) Keep execution order and use registers and
external memory only, (2) Keep execution order and use registers and internal
memory, (3) Reorder execution order and use registers and internal memory.

Five different design metrics are analyzed in this section: (1) internal memory
usage, (2) external memory usage, (3) mean access rate, (4) peak access rate
and (5) the number of used DMA channels.

The required buffer size for each operator is analyzed such that the minimum
buffer size for each mapping of operations is derived. In the same way the memory
access rate is analyzed.

The bit width to an external memory is set at a constant of 32 bits. Only
relative memory activities are analyzed in this paper, thus access rates generated
by the display update and memory accesses from the processor are ignored in
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this analysis. The design exploration has been done using 18 bit color and a
frame resolution of 760×580.

The crop operation will not be included in the design exploration since the
crop operation does not require any buffers and thus will not generate any mem-
ory traffic for any type of configuration.

Let PRGB
frc ∈ R4 be a RGB color coded pixel at the spatio-temporal position

(f, r, c) ∈ Z3. A color frame FRGB
f at the temporal position f is denoted as,

FRGB
f =

{
PRGB

frc |1 ≤ r ≤ R ∧ 1 ≤ c ≤ C∧
0 ≤ PRGB

frc ≤ 2nc − 1

}
, (1)

where R and C are the number of rows and columns defined as R ∈ Z and
C ∈ Z. nc is the number of bits which represents each color component of RGB.

A color video stream is denoted as FRGB = {FRGB
f |f ∈ Z} and the sub frame

of FRGB
f is defined as:

FRGB
ϕ =

{
PRGB

ϕrc |1 ≤ ρ ≤ P ∧ 1 ≤ γ ≤ Γ∧
0 ≤ PRGB

ϕrc ≤ 2nc − 1

}
, (2)

where P and Γ are the number of rows and columns defined as P ∈ Z and
Γ ∈ Z.

Definition 1. The operation Crop performs both a horizontal and vertical crop
of each frame in the video stream and is the mapping MCROP

ϕ (ARGB
f ) from the

input color frame ARGB
f to the output color frame BRGB

ϕ and is defined as,

MCROP
ϕ (ARGB

f ) =

⎧⎨
⎩

ARGB
f → BRGB

ϕ |BRGB
ϕργ = ARGB

f(ρ+x)(γ+y)
s.t. ARGB

frc ∈ ARGB
f ∧ BRGB

ϕργ ∈ BRGB
f ∧

1 ≤ ρ ≤ P ∧ 1 ≤ γ ≤ Γ

⎫⎬
⎭ , (3)

where x and y are the start coordinates of the new frame within the old frame.
P and Γ represents the number of rows and columns.

Definition 2. The operation Mirror performs a horizontal mirroring of each
video frame and is the mapping MMIRROR

f (ARGB
f ) from one input color frame

ARGB
f to the output color frame BRGB

f and is defined as,

MMIR
f (ARGB

f ) =
{

ARGB
f → BRGB

f |BRGB
frc = ARGB

fr(C−c+1)
s.t. ARGB

frc ∈ ARGB
f ∧ BRGB

frc ∈ BRGB
f

}
. (4)

For ordered execution, i.e., pixels produced in the same order as they are con-
sumed, the minimum buffer size for the mirror operation is derived from Equa-
tion 4 as ΨMIR

order = nc(C + 1). If the pixel production is allowed to be reordered,
the required buffer size is reduced to ΨMIR = 0 . When the memory access rate
for the operator is derived for the configuration when the buffer is placed outside
the FPGA, this involves all pixels being read and written to the external mem-
ory through a DMA channel, as ΩMIR

mean,peak = 2CRBnc/nm. In this equation, B
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is the number of frames per second and nm is the external memory bit width.
Since reordering does not use any buffers, it will not add any memory accesses.
The access rate is expressed as additional memory accesses, which involves those
generated when video information is written to the video buffer and is added into
the design exploration phase. Using the resolutions and configurations defined
in the previous section the design metrics for the mirror operation are shown in
Table 1.

Definition 3. The operation Zoom In enlarges a selected are in a video stream
and is the mapping M IN

f (ARGB
f ) from one input color frame ARGB

f to the output
color frame BRGB

f and is denoted as,

M IN
f (ARGB

f ) =

⎧⎨
⎩

ARGB
f → BRGB

f |BRGB
frc = ARGB

f(r/W+x)(c/W+y)
s.t. ARGB

frc ∈ ARGB
f ∧ BRGB

frc ∈ BRGB
f ∧

1 ≤ x ≤ R/W ∧ 1 ≤ y ≤ R/W

⎫⎬
⎭ , (5)

where W is the degree of magnification, W ∈ Z.

For ordered execution the minimum buffer size for zoom in is calculated as
Ψ IN

order = NcRC(W−1)/W 2 where W is the degree of magnification, W ∈ [1, 2, 3].
For the reordered implementation of the operator, the memory requirement will
be reduced to Ψ IN

reorder = nc . The memory access rate using an external buffer
and ordered execution is derived as ΩIN

mean,peak = (W + 1)CRBnc/Nm. For re-
ordered execution the peak access rate can be derived as ΩIN

peak = CRBW 2nc/nm

for a buffer of size nc and ΩIN
peak = CRBWnc/nm for a buffer of size ncC/W .

The design metrics for the zoom in operator are labeled Zi in table 1. This is
an attempt to fully explore the effects that different internal buffer sizes have
on the system; this includes the two cases described above and are indicated as
a and b for case 3.

Definition 4. The operation Zoom Out scales down each frame in a video
stream and is the mapping MOUT

f (ARGB
f ) from one input color frame ARGB

f

to an output color frame BRGB
f and is denoted as,

MOUT
f (ARGB

f )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ARGB
f → BRGB

ϕ |BRGB
ϕργ = 2−W

W−1∑
x=0

W−1∑
y=0

ARGB
f(Wρ−x)(Wγ−y)

s.t. ARGB
kfrc ∈ ARGB

f ∧ BRGB
ϕrc ∈ BRGB

ϕ ∧
1 ≤ ρ ≤ P ∧ 1 ≤ γ ≤ Γ ∧ k ∈ DRGB

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(6)

where P = R/W, Γ = C/W and W is the degree of magnification, W ∈ Z.

The minimum buffer requirement for the zoom out operator, both ordered and
reordered execution, is derived as ΨOUT

order,reorder = ncC/W . Since both execution
styles will have the same memory access rate, it will be derived as ΩOUT

order,reorder =
CRBnc/nm for the external buffer configuration and as ΩOUT

mean,peak = 0 for the
internal.
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Table 1. Cost figures of the Mirror, Zoom In and Zoom Out operators

Allocated Memory Accesses/s DMA channels
Case:Operator Internal External Mean Peak

1:Mi 0 13 698 14 877 000 14 877 000 1
2:Mi 13 698 0 0 0 0
3:Mi 0 0 0 0 0
1:Zi 18 1 735 650 22 315 500 22 315 500 1
2:Zi 1 983 600 0 0 0 0
3a:Zi 18 0 0 119 016 000 0
3b:Zi 6 840 0 0 29 754 000 0
1:Zo 18 6 840 14 877 000 14 877 000 1

2-3:Zo 6 840 0 0 0 0

3 Discussion

From the results presented in the previous section, it is difficult to obtain an
overview regarding the best solution. It is necessary to firstly identify which of
the costs actually determine the final system’s cost.

For the external memory the maximum value is less than one Mbyte, which is
quite small and will only have a marginal effect on the cost of the final system.
The mean access rate is an indication of the average energy consumption rather
than a required speed when selecting RAM memory and FPGA. However, peak
access rate will determine the minimum speed required when selecting RAM
memory for the system. Internal RAM will affect the size of the selected FPGA
and the number of DMA channels will affect the scalability, since too many DMA
channels will cause difficulties with the bus scheduling.
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Thus, these three costs must be considered when selecting the implementation
style for the system. In Figure 2, all solutions are plotted as the peak memory
access rate vs. the required internal memory. Additionally, the size of the dot
indicating a solution is proportional to the number of DMA channels required
for the solution. Although this plot gives no information concerning the index
it does offer a good visualization of the design space. The internal memory size
is also indicated as the number of Xilinx Spartan 3 block RAMs. From this
plot, solution #18, as indicated in Figure 2, will offer the best implementation
configuration. Solution #18 will implement the zoom out using ordered execution
and the remainder using reordered execution. All buffers will be implemented
on the FPGA.

4 Conclusion

This paper analyzes the implementation costs of a pre-processor for the display
of video information in a FPGA based System on Chip. The analysis focuses on
the memory part of the system since this determines the real cost of the system.
We have found that the pre-processor can be implemented on a FPGA using
only one block RAM (18 kbits), with no extra external memory and only one
DMA channel. This solution has a reasonable peak memory access rate of 30
Maccesses/s. Hence, the low implementation cost and the reasonable memory
access rate makes the identified solution scalable. Thus it is possible for several
pre-processors to be placed in parallel in order to handle multiple video channels.
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Abstract. To fill the gap between increasing demand for reconfigurability and 
performance efficiency, CGRAs are seen to be an emerging platform. In this 
paper, a new architecture, QUKU, is described which uses a coarse-grained  
reconfigurable PE array (CGRA) overlaid on an FPGA. The low-speed recon-
figurability of the FPGA is used to optimize the CGRA for different applica-
tions, whilst the high-speed CGRA reconfiguration is used within an application 
for operator re-use. We will demonstrate the dynamic reconfigurability of 
QUKU by porting Sobel and Laplacian kernel for edge detection in an image 
frame. 

1   Introduction 

With the rapid emergence of multi-protocol standards, the need for a platform which 
is able to reconfigure itself rapidly and on the fly has grown tremendously. This situa-
tion demands a high level of flexibility, as seen in GPP (General Purpose Processor), 
performance and power efficiency. GPP has failed to show its mark in terms of proc-
essing efficiency. To fill the gap between flexibility and efficiency, several architec-
tures have been proposed. 

Generally, ASICs are seen as the only low-power solution which can meet this de-
mand for fast computational efficiency and high I/O bandwidth. However, the NRE 
cost of ASICs are a strong motivation for some sort of general purpose computing 
chip with better power efficiency than microprocessors. Recently, coarse grained 
reconfigurable architectures (CGRA) have been developed to bridge the gap between 
power-hungry microprocessors and single-purpose ASICs. Coarse-grained arrays 
have the advantages of power-efficiency for their intended application domain, and 
also they are designed with efficient implementation of dynamic reconfiguration sup-
ported in hardware and in design software. Furthermore, this dynamic reconfiguration 
can be very fast, since configuration codes are very short. But their use remains in 
question due to the lack of a well defined design flow and commercial availability. 
Traditionally, FPGAs have been thought of as a prototyping device for small scale 
digital systems. However current generation mega-gate FPGA chips have changed 
this perception. FPGAs can be reconfigured for an unlimited number of times to  
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implement any circuit. FPGAs have proved their usability in control intensive as well 
as computational intensive tasks. An attractive feature of FPGAs is the ability to par-
tially and dynamically reconfigure the FPGA function. 

The next section gives a short overview of FPGA based reconfigurable architec-
tures. Section 3 describes the QUKU architecture. Section 4 describes the run time 
reconfigurability of QUKU. Section 5 discusses the implementation results followed 
by conclusion. 

2   Related Work 

Some other systems consisting of MPU and FPGAs have been proposed in past [3, 4, 
5, 6, 7, 8]. Guccione [9] provides a detailed list of FPGA based reconfigurable archi-
tectures. YARDS [5] is a hybrid system of MPU connected with an array of FPGA 
and has been targeted for telecommunication applications. Spyder [7] consists of a 
processor with 3 reconfigurable execution units working in parallel. The configuration 
of the execution units is determined from the set of applications. DISC [6] is an 
FPGA based processor which loads application specific instruction from a library of 
image processing elements. It takes advantage of the partial reconfiguration feature of 
FPGA and implements a system analogous to memory paging in software. PRISM [8] 
is a reconfigurable architecture built using hardware-software co-design concepts. For 
each application, new instructions are compiled, synthesized and loaded. GARP [4] 
combines a MIPS processor with a reconfigurable array to achieve accelerated per-
formance in certain applications.  

3   QUKU Architecture 

QUKU [1, 2] is a merger of two technologies: CGRAs and FPGAs. Fig 1 shows the 
system level description of QUKU. It consists of a dynamically reconfigurable PE 
array, configuration controller and address controller for data and result memory 
along with a Microblaze based soft processor. QUKU is a coarse-grained PE matrix 
overlaid on a conventional FPGA. The aim is to develop a system which is based on 
commercially available and affordable technologies, but at the same time provides 
active support for fast and efficient dynamic reconfiguration. Our system is unique in 
that it provides two levels of application-specific reconfigurability. The operation of 
each PE, and the interconnections between PEs can be reconfigured on a cycle-by-
cycle basis, giving maximum reuse of arithmetic and logical operators without long 
reconfiguration delays. However, the CGRA does not suffer from the normal CGRA 
problem of trying to identify the optimal mix of operators for all present and future 
applications to be used on that array. Rather, the structure of the CGRA can be peri-
odically re-optimized for each new application at a cost of several milliseconds of 
FPGA reconfiguration time. 

A commonly perceived obstacle to provide algorithm speedup is the difficulty of 
designing custom hardware for each new algorithm. The QUKU architecture moves 
the design problem from a complex hardware design problem to a simpler problem of 
programming a PE array. QUKU compiles these PEs to a heterogeneous array, with 
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each PE optimized for just the range of operations it requires to implement for one 
application set. It is our conjecture that such a PE array has the potential to provide 
area and power efficiencies not normally associated with FPGAs, and this paper out-
lines some of our initial investigations into this potential. 

Configuration
BRAM

Address Manager Module

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Processor for reconfiguration control and also for running software application processes.

Configuration
controller

Configuration Contoller Module

 

Fig. 1. System level diagram of QUKU 

4   Run Time Reconfiguration 

In [2] we have described the design process and shown that QUKU performance is 
much better than a FPGA based soft processor implementation. In this section, we 
will describe the configuration memory organization to support run time reconfigura-
tion of whole or partial PE array.  

As shown in fig. 1, the configuration controller is responsible for the loading of 
different modules on the PE array. The configuration BRAM contains configuration 
codes for up to four modules. Fig 2 shows the address space of modules and the con-
figuration word structure. The first location of a module configuration space is re-
served for specifying the address of PEs involved in the module mapping. Address of 
PE is written in decoded form say, if a module is to be loaded on PE 0, 1, 2, 4, 7, 8 
and 10 then it is written in the address location as “0000010110010111”. This ensures 
that the corresponding PEs can be reset before they are loaded with the new configu-
ration. Actual PE configuration word starts after the PE reset information. A PE array 
consists of 16 PEs. Each PE may have three configuration layers: start, middle and 
end layer. Each configuration layer is programmed to run for a certain number of 
iterations as a 10 bit value in iteration counter. The iteration counter value is written 
with the configuration bits in odd numbered locations. The even numbered locations 
contain the address of PEs for which the configuration is valid. 

 



96 S. Shukla, N.W. Bergmann, and J. Becker 

'1' Reserved[30:16] PE address[15:0]

Configuration[31:16] Iteration Cntr[15:0]

'1' Reserved[30:16] PE address[15:0]

Configuration[31:16] Iteration Cntr[15:0]

'0' Reserved[30:16] PE address[15:0]

Module 3

Module 4

Module 2

Module 1

000000000

000000001

000000010

00XXXXXX1

00XXXXXX0

010000000

100000000

110000000

Address

 

Fig. 2. Configuration BRAM memory structure 

Depth of the address space is decided by the worst case in which no two PEs 
share the same configuration. For this worst case, each PE requires 3 configuration 
word (start, middle and end layer) and each configuration word along with address 
occupies two locations leading to a total of 96 (16X3X2) locations, plus one loca-
tion for the reset information. Hence a total of 97 locations are required. To keep 
the memory map simple, this depth is extended to the nearest power of 2, making it 
128. To mark the end of configuration, we have reserved bit 31 of the even num-
bered location. The last configuration word is indicated by a ‘0’ at bit 31 in the even 
numbered location. 

4.1   Run Time Reconfiguration for Image Processing Kernel 

In this section, we will be concentrating on edge detection algorithms that find wide-
spread application in image processing [10,11]. There are a lot of methods for edge 
detection. But most of them can be grouped into either gradient or Laplacian. Gradi-
ent method looks for finding out minima or maxima in the first derivative while 
Laplacian method looks for zero crossings in the second derivative. 

We have mapped Sobel and Laplace edge detection algorithms on QUKU. The So-
bel and Laplacian masks are shown in Fig. 3. Sobel edge detector uses a pair of 3X3 
convolution masks, one estimating the gradient in X direction and the other in Y di-
rection. The approximate gradient magnitude is then obtained by adding the X and Y 
gradients The Laplacian technique uses a 5X5 convoluted mask to approximate the 
second derivative in both X and Y directions. The idea of generating gradient from 
image frame, utilizes the concept of sliding window over the image frame. The mask 
is slid over an area of the input image. The new value is calculated for the middle 
pixel, then the mask is slid one pixel to the right. This continues from left to right and 
top to bottom. 
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Fig. 3. Sobel & Laplacian filter mask for edge detection in image frame 

5   Result Analysis 

For edge detection purpose, we have chosen an image with 336 rows and 341 col-
umns (fig. 4(a)) of pixels. Fig. 4(b) and 4(c) represents the image obtained after  
applying Laplacian and Sobel edge detection algorithms respectively. Initially, Lapla-
cian kernel was mapped followed by Sobel kernel. 

Table 1. Result comparison for Laplacian and Sobel kernel implementation on QUKU 

Application  Execution 
time/frame  

Configuration 
time 

Laplacian Kernel 33.5 ms 105 ns 
Sobel kernel 54.4 ms 105 ns 

a) Original Image c) Image filtered using Sobel algorithmb) Image filtered using Laplacian algorithm
 

Fig. 4. Original image and image after processing with Laplacian and Sobel filter 

6   Conclusion 

In this paper we showed how QUKU can be dynamically reconfigured at the applica-
tion level within a few clock cycles. The configuration time was found to be a very 
small fraction (10-7) of the execution time. The preliminary results support the fact 



98 S. Shukla, N.W. Bergmann, and J. Becker 

that QUKU can be used in real time image processing applications and can be dy-
namically reconfigured at a very fast speed to switch between different kernels 

Development of QUKU is still in progress. This first set of experiments is mostly 
to confirm the APEX design flow, and to establish performance and reconfigurability 
features. We are yet to develop a Microblaze based soft processor interface to QUKU 
for system and software control. 
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Abstract. We explore the application of Small-Scale Reconfigurability
(SSR) to graphics hardware. SSR is an architectural technique wherein
functionality common to multiple subunits is reused rather than repli-
cated, yielding high-performance reconfigurable hardware with reduced
area requirements. We show that SSR can be used effectively in pro-
grammable graphics architectures to allow double-precision computation
without affecting the performance of single-precision calculations and to
increase fragment shader performance with a minimal impact on chip
area.

1 Introduction

Every hardware system makes a tradeoff between performance and flexibility. At
one end of the spectrum, general purpose processors provide maximum flexibility
at the expense of performance, area, power consumption, and price. Custom
ASICs are the other extreme, providing maximum performance at a minimum
cost, albeit for only a very narrow set of applications.

Modern graphics hardware requires both high performance and flexibility,
placing it somewhere between these two extremes. Traditional intermediate hard-
ware solutions like FPGAs are inappropriate for graphics processors because of
their large size and low performance relative to their fixed-logic counterparts [1].
Small-scale reconfigurability (SSR) provides an attractive compromise; systems
that use SSR components can approach the high speed and small size of ASICs
while providing some specialized configurability. In this paper, we explore the
applicability of SSR to programmable graphics hardware.

The simplest example of a reconfigurable component is two fully functional
components connected with a multiplexer (see Fig. 1). Although these two com-
ponents are disjoint, in typical usage they will contain substantially similar re-
dundant substructures, which is precisely the situation in which SSR performs
best. Rather than replicate all of the redundant structure, one can instead reuse
common substructure within a single component.

A common SSR unit is the morphable multiplier. These multiplier-adders can
be reconfigured into a multiplier or an adder in a single cycle. When used to
� {kdale, jws9c, vv6v, luebke, humper, skadron}@virginia.edu
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A B

C D

A B

E F

MUX

(a) Näıve reconfigurable hardware

A B

C D E F

MUX

(b) A more efficient solution

Fig. 1. A näıve implementation of reconfigurable hardware can be built by simply
multiplexing between two distinct, unmodified units (a), but a more efficient design
would reuse common substructure to avoid replication (b)

create single-precision floating point units, morphable multipliers yield a nearly
17% reduction in total area when compared to the sum of the sizes of their
constituent parts [2].

Graphics processors, like specialized multimedia processors and DSPs, are a
particularly suitable target for SSR due to their vector-processor like opera-
tions. When the same operation is performed repeatedly in SIMD fashion, re-
configuration and its associated overhead is infrequently needed, and any cost
can be amortized over many instructions. Furthermore, SSR-based components
typically have lower static power requirements because less hardware goes un-
used.

2 Related Work

Dynamically reconfigurable hardware has been a popular topic in recent com-
puter architecture literature, especially in the FPGA and reconfigurable com-
puting communities. The configurability of these systems serves myriad design
goals, among them improved performance, power, area, and fault tolerance char-
acteristics.

Even et al. describe a dual mode IEEE multiplier—a pipelined unit capable
of producing one double-precision or two single-precision multiplications every
clock cycle with a three cycle latency [3]. The authors argue that the reuse of
substructure yields a cheap device that performs well for both precisions. They
further claim that the single precision mode is particularly useful for SIMD
applications, like graphics, because it is conducive to systems on which the same
operation is regularly repeated on large numbers of data points.
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Guerra et al. explore built-in-self-repair (BISR) and its application to fault
tolerance, manufacturability, and application-specific programmable processor
design [4]. Previous work in the area of dynamic repair had made use of spe-
cialized redundant units to replace damaged units; their paper describes the
synthesis of more general units that can replace any of several units on a chip
when damage is detected. The authors coin the term HBISR (heterogeneous
BISR) for the technique.

A morphable multiplier is a device capable of performing either a floating point
multiply or add using the same hardware structure [2]. Morphable multipliers
require less area than the sum of the area needed for a separate multiplier and
adder (in fact, they require only slightly more than a multiplier alone), while
imposing negligible performance penalties.

Metrics like area, performance, and power are easily quantified, but it is less
obvious how to measure the increasingly important metric of hardware flexibility.
Compton and Hauck have defined a testing method and quantification metric
for flexibility of reconfigurable hardware [5]. Other examples of relevant research
in reconfigurable hardware include Kim et al. [6] and Chiou et al. [7].

The work in this paper makes use of Brook [8], a stream-based program-
ming language which allows the programmer to write general-purpose applica-
tions for a GPU without worrying about the sometimes byzantine details of
GPU programming. Our experiments all use Chromium [9] to intercept and an-
alyze streams of graphics commands made by real applications. The primary
advantage of using Chromium is that we ensure that our workloads are not con-
trived. Although we use Brook and Chromium without modification, we have
enhanced the Qsilver graphics architectural simulator [10, 11] to model the nec-
essary aspects of the fragment pipeline. A detailed description of our modi-
fications to QSilver and our experimental setup are presented in Sect. 3 and
Sect. 4.

3 Simulation Setup

Qsilver is a simulation framework for graphics architectures that can simulate
low-level GPU activity for any existing OpenGL application [10]. Qsilver uses
Chromium [9] to intercept and transform an OpenGL application’s API calls
and create an annotated trace that encapsulates geometry, timing, and state
information. This trace serves as input to the Qsilver simulator core, which
performs an accurate timing simulation of the graphics hardware and produces
detailed statistics.

Qsilver is configured at runtime with a description of its pipeline. In these
experiments we simulate an NV4x-like architecture, with a pipeline configuration
similar to that of NVIDIA’s 6800 GT, so we configure Qsilver to model a system
with 6 vertex pipelines and 16 fragment pipelines. The fragments are tiled in
blocks of 2 × 2, so we effectively have 4 tile pipelines, each of which can process
4 fragments simultaneously. NV4x GPUs use a similar tiled configuration in the
fragment engine [12].
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To account for modifications to the fragment pipeline, we enhanced Qsil-
ver to track fragment shader activity. Our modified Qsilver simulator stores a
per-triangle identifier which uniquely specifies which, if any, fragment shader
was bound when that triangle was being rendered. We also store the text of
the fragment shaders so that they can be analyzed by the Qsilver simulator
core.

Both of the following experiments hold fixed the graphics pipeline described
above and focus on the programmable path of the fragment engine. While the
NV4x vertex engine follows a MIMD architecture, its fragment engine is truly
SIMD in nature. Additionally, in many modern games the majority of fragments
are shaded by fragment programs (see Fig. 5), so we focus our efforts on the
programmable path in the fragment engine.

Fragment processor

Stage 2

Stage 1 (+ Texture)

Branch Processor

Rasterizer

(a) Fragment processor

Crossbar

MULMULMULMUL

Texture Operations

SFU

(b) Stage 1

ADDADDADDADD

Crossbar

Crossbar

SFU

MULMULMULMUL

Crossbar

(c) Stage 2

Fig. 2. Baseline fragment units used for comparison. Stage 2 can take up to three
4-channel operands, one of which directly feeds the ADD units and whose data path
is represented here by dashed lines. Note the additional data paths that cascade the
ADD units; these allow for a single-pass dot product [13].

Our baseline fragment pipeline, depicted in Fig. 2, is similar to that found in
NV4x GPUs1. A single fragment unit contains two stages; four-channel fragments
(RGBA) reach stage 1 from either the rasterizer or fragment pipeline loopback.
Stage 2 can execute instructions in parallel with stage 1 in dual-issue mode
as well sequentially, taking its operands from the output of stage 1. Crossbars
route operands to the appropriate functional units, and Special Function Units
(SFUs) are used to perform special scalar operations like reciprocal square root.
The fragment units can also operate in co-issue mode, whereby a single 4-channel
data path functions as two distinct data paths, with independent instructions
executing in parallel, on the same unit, across these two data paths—e.g., a
3-vector and a scalar, or two 2-vectors [12].

1 Based on those details that have been made available to the public or indirectly
obtained via patents and extensive benchmark tests. For additional details, see [12]
and [13].
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4 Experiments and Results

In this section, we describe two experiments we performed to validate our hy-
pothesis that using SSR components in a modern GPU architecture can ben-
efit certain applications. We show improved performance in the recent game
Doom III with only a minimal impact on GPU die area and also demonstrate
that double-precision floating point capabilities can be added to the fragment
pipeline without affecting the performance of single-precision applications.

Crossbar

FACFACFACFAC

Texture Operations

SFU

(a) Stage 1

FACFACFACFAC

Crossbar

Crossbar

SFU

FACFACFACFAC

Crossbar

(b) Stage 2

Fig. 3. Proposed SSR fragment units for the first experiment. FAC modules are Flexible
Arithmetic Units, and they replace each of the ADD and MUL units in our baseline
architecture.

4.1 Increased Throughput

We first compared the simulated performance of the NV4x-like fragment pipeline
to that of an SSR fragment pipeline architecture, whose fragment units are
depicted in Fig. 3. The fragment units in our target SSR architecture are similar
to those in the baseline architecture; however, we replace both the multipliers and
adders in stages 1 and 2 with single-precision Flexible Arithmetic Units (FACs).
An FAC can be very quickly reconfigured to perform either a multiplication or
an addition and uses only slightly more gates than a multiplier. With current
technology, these FACs can produce a result every cycle and can be reconfigured
between cycles, assuming a 400 MHz clock and a two-stage pipeline [2]. Finally,
in the first set of FACs in our SSR architecture, we duplicate the accumulate
data paths from the baseline architecture’s ADD units. These data paths require
a trivial amount of additional area overhead.

In addition to supporting all the existing functionality of our baseline units,
the modified SSR units provide new scheduling opportunities beyond those of the
baseline. First, the baseline fragment pipe is only capable of performing a single
full-precision 4-vector addition per pass in stage 2 [13], while the SSR pipeline
is capable of performing three in one pass—one in stage 1 and two chained
additions in stage 2 (see Fig. 4a). Moreover, there is more freedom to schedule
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dot product and multiply-accumulate operations, both of which are extremely
common in fragment programs. For example, the SSR pipeline can execute a 32-
bit 3-channel dot product (DP3) and dependent scalar-vector multiplication—
e.g., the expression (A · B)C—in a single pass by computing the per-channel
multiply of A and B in stage 1, accumulating the channel products to obtain
A · B in the first set of FACs in stage 2, and performing a scalar-vector multiply
in its second set of FACs (Fig. 4b). Extending this scheduling approach to co-
issue configurations is straightforward.

(a) Single-pass configuration for
multiple 4-vector additions.

(b) Single-pass configuration to
compute (A · B)C .

Fig. 4. Two example configurations that provide additional scheduling opportunities
for the SSR fragment pipeline

Given these additional scheduling opportunities and the known scheduling
constraints of NV4x GPUs, we hand-scheduled fragment programs intercepted
from a 50-frame Doom III demo (see Fig. 5), which was then simulated un-
der Qsilver. We used NVShaderPerf 2—a utility that displays shader scheduling
information for NVIDIA hardware—to schedule programs for our baseline ar-
chitecture simulation. While NV4x GPUs have dedicated hardware for perform-
ing common half-precision operations in parallel with full-precision operations,
none of the fragment programs tested included any half-precision operations.
However, to be sure of a legitimate comparison of performance along the full-
precision path, we forced NVShaderPerf to schedule programs for our NV4x-like
architecture using the full-precision path only. We limited program schedules for
the SSR architecture to the full-precision path as well.

From the simulation of this data stream, we obtained a 4.27% speedup over the
entire graphics pipeline for the SSR architecture. Equally as important, based on
conservative inverter-equivalent gate count estimates3, each FAC requires 12,338
2 Unified compiler version 77.80.
3 All area estimates are given in terms of inverter-equivalent gate area unless otherwise

specified.
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(a) (b)

Fig. 5. Screen captures from Doom III. On the left, the color of each pixel is modulated
to indicate which fragment program generated it. The right image is the unmodified
rendering from the game. Notice that the majority of pixels are generated by program-
mable fragment shaders.

gates, only 710 more than a single-precision multiplier (11,628 gates). Replac-
ing the adders (7,782 gates) requires 4,556 additional gates. This additionally
requires the small overhead of a multiplexer to configure the FACs. Given these
gate estimates, with 16 fragment pipelines, the cost of our proposed use of SSR
is 382,464 gates, which is less than 0.2% of the total area of NVIDIA’s 6800 GT
(an estimated 222 million transistors[14]).

4.2 Dual-Mode IEEE Adders and Multipliers

The GPGPU and scientific computing communities would like to have the ability
to perform double-precision calculations on the GPU. Unfortunately for them,
the gaming industry drives the graphics hardware industry, and games do not
currently require double-precision. We present a method here that can satisfy
the demands of the scientific community without compromising the performance
of the single-precision path so crucial to video game performance.

A dual-mode floating point unit is a small-scale reconfigurable unit capable of
performing two simultaneous single-precision operations or one double-precision
operation. Dual-mode units can be fully pipelined to produce results every cycle.
Like other SSR units, dual-mode multipliers and adders require internal multi-
plexers for path selection. Additionally, they require a rounding unit capable of
flexible rounding modes. The total additional structure for this modification is
insignificant [3].

We simulate a pipeline in Qsilver that uses dual-mode multipliers and adders
in the fragment engine, where we replace pairs of single-precision FPUs in the
baseline architecture with a single corresponding dual-mode FPU. This effec-
tively gives us an 8-wide double-precision fragment engine with approximately
half the throughput of the single-precision configuration. Double-precision con-
figuration also requires that we retask pairs of 32-bit registers as single 64-bit
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registers. With half as many fragment pipelines, each double-precision pipe has
the same number of available 64-bit registers as each single-precision pipe has 32-
bit registers (four 32-bit registers per fragment in the case of NV4x GPUs [12]).
By a similar argument, the bandwidth requirements for the memory and regis-
ter bus systems in 8-wide double-precision mode should not exceed those of the
original 16-wide single-precision configuration.

We have conservative area estimates for a double-precision adder and multi-
plier of 13,456 gates and 37,056 gates, respectively. The real overhead here comes
from replacing each pair of single-precision FPUs with one dual-mode FPU, at
an approximate cost of 815,744 gates over the entire fragment engine, or 0.4%
of the 6800 GT’s total area. Note that we have modified only the multiplica-
tion and addition units, so additional precision is not available for specialized
operations such as logarithms or square roots. Although many scientific ap-
plications would benefit greatly from high precision addition and multiplication
alone, a full double-precision arithmetic engine would be ideal. Dual-mode recip-
rocal, square-root, logarithm, and other specialized units are a topic for future
exploration.

To validate our SSR-based graphics architecture capable of both single- and
double-precision, we traced four Brook demo programs through Qsilver:

1. bitonic sort, a parallel sorting network
2. image proc(25,25), an image convolution shader
3. particle cloth(5,10,15), a cloth simulation
4. volume division(100), a volume isosurface extractor.

The results are summarized in Table 1. This table lists the cycle counts for each
application in both single- and double-precision modes. Note that the double-
precision calculations never require more than twice as long as the corresponding
single-precision calculation. Because the timing results are identical for dual-
mode units configured in single-precision mode and dedicated single-precision
units, we have shown that by using SSR we can add double-precision addition and
multiplication to the graphics pipeline with only a modest increase in gate count
and without affecting the performance of the commonly-used single-precision
path.

5 Conclusions

We have extended Qsilver to record information on fragment program state in
its annotated trace. Our modified Qsilver core then uses this new information,
along with fragment program listings and timing information, to model the pro-
grammable fragment engine of an NV4x-like architecture. With this framework
in place, we have demonstrated the applicability of Small-Scale Reconfigurabil-
ity to graphics architectures. We have shown that it is possible to increase the
throughput of the fragment engine with only a small increase in die area. In ad-
dition, we have demonstrated that dual-mode multipliers and adders can provide
double-precision in the fragment engine to support scientific computing in the
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Table 1. Single- and double-precision GPGPU computations using SSR. Each appli-
cation comes with the Brook distribution. The 32-bit cycles row shows the GPU cycle
count for our NV4x-like architecture. Note that these timings are identical whether we
are using a dual-mode unit configured in single-precision mode or a dedicated single-
precision unit. The 64-bit cycles row shows the cycles required for double-precision
after reconfiguration. As expected, none of the programs takes more than twice as long
with double-precision than with single-precision.

GPGPU community with no detriment to the gamers who drive the market. The
vector-like operations performed on GPUs make them a particularly good target
for such techniques, since need for reconfiguration is rare in SIMD environments,
and since the cost of reconfiguration is amortized over many operations.

6 Future Work

The fragment engine is one of many elements of the graphics pipeline. Applica-
tions of SSR will likely yield similar performance improvements in other units
as well. Another area of exploration that is likely to be fruitful for SSR is power
consumption. Whenever portions of a chip are unused, they use no dynamic
power, but they leak static power. By their very nature, SSR components are
rarely idle, and should therefore leak a minimum of static power. Power leak-
age is currently a major issue with GPUs, and reducing leakage becomes crucial
as continuing improvements in chip manufacturing technology exacerbate this
problem [10].
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Abstract. This paper presents an embedded multi-camera system for
Simultaneous Localization and Mapping (SLAM) for mobile robots. The
multi-camera system has been designed and implemented as a SoC
(System-on-a-Chip), using reconfigurable computing technology. In this
system the images are captured in real-time by means of four CMOS
digital cameras. After some pre-processing steps, those images are sent
to an embedded softcore processor by a direct memory access (DMA)
channel. In this system, images are captured, pre-processed and sent to
the embedded processor at 30 frames per second in color mode and 60
frames per second in gray-scale mode. This paper also shows the main
advantages of using multi-cameras to implement SLAM based on the
Extended Kalman Filter.

1 Introduction

Robots have been used in industries since they were invented. Nowadays they
are still expanding and a new generation of service robots for personal use is
appearing. This category of robots is produced for a mass market and is used
mainly in the domestic environment (household). Besides the price represents
only a fraction of robots’ prices used for industrial purposes. Nowadays, there is
in a great quantity of robots to vacuum dust, to cut grass and to entertain on
the market. Other models of robots for surveillance, the elderly and child care
are also being introduced.

Recent technological advances in VLSI are making possible an entire range
of new applications embedded on chips. Mobile robots is an area of increasing
interest, either in the research community, or commercial ventures. However,
such robots require powerful underlying computing systems, often in the form
of dedicated hardware. Reconfigurable computing technology, specially FPGAs
(Field-Programmable Gate Arrays), are creating new opportunities for the im-
plementation of mobile robots [9]. For instance, its application in aerospace sci-
ence is a reality [13]: Xilinx’s FPGAs were used by robots recently sent to Mars
by NASA (National Aeronautics and Space Administration).

The use of FPGAs is a flexible alternative to implement complex models,
as the hardware functionality can be changed according to the task to be exe-
cuted [5]. It can also be argued that FPGAs are able to execute image processing
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algorithms with speed comparable to graphics processing custom chips [14]. Re-
lying on this technology, we present the implementation of a multi-camera for
SLAM (Simultaneous Localization and Mapping) algorithm [10] using four smart
cameras distributed along the robot perimeter. In general terms, a smart camera
system can be seen as a camera, which captures not only images, but also high-
level descriptions of a scene [12]. By doing so, other applications besides SLAM
could be enhanced by our system, such as surveillance, motion analysis, pattern
identification, virtual reality systems, and man-machine communication.

The multi-camera system described in this paper aims to improve the robust-
ness of the SLAM algorithms based only on vision. In addition, it also aims to
reduce the computational complexity of the SLAM implemented with Extended
Kalman Filter (EKF). This strategy of using multi-cameras for SLAM has been
discussed in [7], where two independent cameras are used to increase the EKF
convergency speed to reduce the computational complexity of this filter.

The remaining of this paper is organized as follows. Sect. 2 presents the multi-
camera system components. Sect. 3 explains the advantages of using this system,
followed by experimental results in Sect. 4. Finally, Sect. 5 concludes the article.

2 The Multi-camera System

The multi-camera system was designed to work as an accurate vision sensor for
SLAM algorithms based on EKF. The system is composed of four CMOS cameras
connect to the Nios-Stratix Development board [2]. This kind of reconfigurable
technology provides resources enough to implement complex system as a SoPC
(System-on-a-Programmable-Chip) [6].

2.1 Hardware Implementation

Most of SLAM systems are implemented in general purpose architecture, being
more specific, in personal computers, such as Desktops or Notebooks. The im-
plementation in this kind of architecture is easier than that on-a-chip, since the
system designers do not need to configure hardware implementation details, such
as the hardware/software codesign [11]. However, when the SLAM processing
architecture must be customized to an embedded system, for instance personal
robots, a general purpose architecture will probably not be suitable for it, since
this kind of system normally requires low power, small size, and low cost.

In Fig. 1 is presented the hardware integration of the smart cameras with the
Nios II softcore processor [1], which will run the SLAM algorithms. To connect
these components, the Avalon Switch Fabric bus with a direct memory access
(DMA) is being used to speed up the communication. The DMA reads data from
the smart cameras and send them to the SLAM processor memory.

2.2 Smart Camera

The functional structure of the smart camera system is shown in the block
diagram in Fig. 2. The structure consists of a pipeline of blocks for image
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pre-processing operations, which are implemented in hardware and executed in
parallel, and of a module for detecting natural landmarks, which is being imple-
mented in software. These landmarks are references used in the map generated
by the EKF SLAM algorithm [4]. Each of those blocks is responsible for a specific
image processing step, such as image capturing, RGB to HSI color conversion
and image filtering. These image pre-processing steps are described in [3].

3 Multi-cameras and EKF

The multi-camera system needs a lot of hardware resources to be implemented.
However, this amount of resource usage can be compensated, since the accuracy
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and convergency speed of the EKF increase with the quantity of sensors, as
can be seen in Fig. 3. In this demonstration, the signal accuracy is given by an
unidimensional gaussian density function. The EKF integrates the four sensor
information and generates the μ. With this result, we can notice that the μ data
is the most precise. The EKF equations used in this graphical demonstration
can be found in [8].
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Fig. 3. Accuracy gain of the EKF using four independent sensors. The horizontal axis
shows the data from four sensors (cameras) (z1,z2,z3,z4) and the vertical axis shows
the probability of this data to be correct.

4 Experimental Results

This section presents some experimental results related to the multi-camera sys-
tem described in this paper, in particular its performance, and hardware and
software resources employed. The development of a prototype system has been
done mainly using two Altera tools: Quartus II V4.2, and SOPC Builder. The
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hardware platform is composed of a Nios-Stratix development board, featuring
an EP1S10F780C6 FPGA. This reconfigurable device contains 10.570 logical el-
ements, and 920 Kbits of RAM memory. The processor used to implement the
detection of natural landmark is the Nios II softcore, which is synthesized as a
component into the FPGA board. The development board with the four smart
cameras will be embedded in a pioneer 3DX robot base, as shown in Fig. 4.

Front Vision

Rear Vision

Right Side Vision

Left Side Vision

Fig. 4. Multi-camera system embedded in the Pioneer 3DX robot base

The communication channel among the cameras and the Nios II processor,
where the SLAM algorithm will be implemented (see Fig. 1), achieved at least
30 frames per second in color mode and 60 frames per second in gray-scale mode.
The image resolution in both modes is 320x240 pixels. This integration was done
by the Avalon Switch Fabric bus provided by SOPC Builder tool, where an DMA
channel reads data from the smart-cameras and sends them to the memory data
of the Nios II processor. The resource usage to implement this multi-camera
system is 5,699 logic elements and 603KBits of memory from the P1S10F780C6
FPGA.

5 Conclusion

In this paper we have shown a multi-camera system for mobile robots, which
provides data to a SLAM algorithm based on EKF. This system is implemented
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as a SoPC using FPGA technology. The evaluation of a prototype implemen-
tation showed that the multi-camera system achieved a real-time performance.
At a resolution of 320x240 pixels, the system was able to process 30 frames per
second in color mode and 60 frames per second in gray-scale mode. It means
that the whole system can capture images from the image sensors, run the pre-
processing steps, and finally send the data to the SLAM processor in real-time.
In addition, as only 53% of the FPGA capacity is used, it should be possible to
add new image processing functions, if required by other applications.
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Abstract. The Dynamically Reconfigurable Processor (DRP) developed by NEC 
Electronics is a coarse grain reconfigurable processor with the capability of 
changing its hardware functionality within a clock cycle. While implementing an 
application on the DRP, designers face the task of selecting how to efficiently use 
resources in order to achieve particular goals such as to improve the perform-
ance, to reduce the power dissipation, or to minimize the resource use. To ana-
lyze the impact of trade-off selections on these aspects, the Discrete Cosine 
Transform (DCT) algorithm has been implemented exploiting various design 
policies. The evaluation result shows that the performance, cost and consuming 
power are influenced by the implementation method. For example, the execution 
time can reduce 17% in case of using the distributed memory against the register 
files; or up to 40% whether the embedded multipliers are used. 

1   Introduction 

Dynamically reconfigurable devices have the potential to provide high processing 
performance, flexibility and power efficiency especially for a wide range of stream and 
network processing applications. Recently, the development of dynamically recon-
figurable processors such as DRP [1], DAPDNA-2[2], XPP[3] and D-Fabrix[4] have 
been received much attention for their remarkable achievements. Such devices incor-
porate following characteristics: 

1. A dynamically reconfigurable processor consists of an array of coarse-grained 
processing elements (PEs), distributed memory modules and fi-
nite-state-machine-based sequencers. Execution circuits can be freely configured 
by programming the instruction set of the PEs and wiring between PEs. The chip 
achieves high performance using customized data path configurations comprised 
of arrays of PEs. 

2. An application can be implemented either as multi-task or time-division execu-
tion. A multi-context mechanism, which stores a number of configuration data for 
the same PE array, allows the capability of changing the hardware functionality of 
the on-chip circuit, often in one clock cycle.  

3. High-level design languages, automatic synthesis techniques and place-and-route 
tools are often applied to ease the development process. 
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While developing a certain application, there is often a trade-off to be made between 
improving the performance and reducing the cost. In order to quantitatively analyze the 
impact of resource usage on the performance and the power dissipation of a dynami-
cally reconfigurable processor, a typical task DCT used in JPE  codes is chosen to 
implement on the target device DRP-1 using different design policies. 

The rest of this paper is organized as follows. Section 2 describes the DRP archi-
tecture, which is the target device of this study. The evaluation results and analysis are 
illustrated in the Section 3. Finally, the conclusion of this research is mentioned in 
Section 4. 

2   DRP Overview 

DRP is a coarse-grain dynamically reconfigurable processor that was released by NEC 
Electronics in 2002 [1]. DRP-1 is the prototype chip fabricated with 0.18-um 8-metal 
layer CMOS processes. It consists of 8-tile DRP Core, eight 32-bit multipliers, an ex-
ternal SRAM controller, a PCI interface, and 256-bit I/Os. The structure of DRP-1 is 
shown on the Fig.1. 

 

 

Fig. 1. DRP-1 architecture 

 

Fig. 2. DRP tile architecture 

The primitive unit of DRP Core is called a `Tile', and the number of iles can be 
expandable, horizontally and vertically. The primitive modules of the Tile are proc-
essing elements (PEs), State Transition Controller (STC), 2-ported memories 
(VMEMs: Vertical MEMories), VMEM Controller (VMCtrl) and 1-ported memories 
(HMEMs: Horizontal MEMories). The structure of a Tile is shown in Fig. 2. Each has 
an 8-bit ALU, an 8-bit DMU, and an 8-bit x 16-word register file. These units are 
connected by programmable wires specified by instruction data. PE has 16-depth in-
struction memories and supports multiple context operation which can be changed with 
a clock cycle by an instruction pointer delivered from STC. 
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An integrated design environment, called Musketeer, is available for DRP-1. It in-
cludes a high level synthesis tool, a design mapper for DRP, simulators, and a layout 
viewer tool. Applications can be written in a C-like high level hardware description 
language called BDL, synthesized, and mapped directly onto the DRP-1. 

3   Trade-Off of the Design Policies 

This section presents quantitative evaluation results of different DCT implementations 
with following evaluation metrics. 

• Performance: The performance of an implementation can be expressed by its 
execution time for a given set of data. The execution time is computed as the product 
of the delay or the critical path and the number of execution clock cycles. 

• Power and energy consumption: The power consumption for an application can be 
estimated from the power profile based on the simulation. Here, the energy con-
sumption, which is defined as the product of the power consumption and the exe-
cution time, can be used as a general measure for evaluation. The energy consump-
tion is also the total energy necessary for executing a target application. Small 
energy consumption means the high degree of efficiency in the computation. 

• Required resource: The required resource of each implementation is the total 
number of PEs used for each context. It shows not only the PE usability, but also the 
parallel processing capability of the application. 

Following design policies are chosen and compared with each other in order to clarify 
the performance/cost trade-off. 

• Memory array vs. register array 
• Multiplier use vs. no-multiplier use 
• Optimum context sizes 

3.1   Memory Array vs. Register Array  

In BDL, an array variable can be assigned either to registers or to memory modules. 
The difference is that while a memory access requires a clock latency, data read out 
from a register file can be processed in the same clock.  

Table 1. DCT implementation using different types of array 

 VMEM HMEM Register 
Delay or critical path (ns) 72.512 75.264 104.112 
Execution time ( s) 8.05 8.35 9.68 
Power consumption (mW) 368.97 356.56 315.53 
Energy consumption ( sW)  2.97 2.98 3.05 
Clock cycles 111 111 93 

Table 1 shows the results of the DCT implementation when the input data block is 
stored in VMEMs, HMEMs and registers respectively. The DCT version using the 
VMEM has the best result in terms of the critical path, while the execution time of the 
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   Fig. 3. Required resource for Memory and Register-use policy 
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case of using register is the worst because of the large delay time by reading registers in 
the same clock cycle. However, the register-based design achieves the best result in 
terms of the number of clock cycles; and it also consumes small power consumption. 
Execution with low clock frequency but small number of steps can reduce power.  In 
terms of the execution time and the energy consumption, the VMEM use policy out-
performs the register use policy by about 17% and 3% respectively. Although the 
power of register based design is small, the total energy consumption is increased be-
cause of its long execution time. 

Fig. 3 illustrates the 
required resources 
where "PEs" denotes 
the number of required 
PEs in each context. 
From Fig. 3, it is easy 
to point out that al-
though the number of 
contexts is different the 
required number of PEs 
is well distributed into 
each context, while the 
PE usability in VMEM 
and HMEM cases is 
quite imbalanced. 
Since the total cost is 
depending on the 
maximum number of required PEs in all contexts, the register based design is advan-
tageous from the viewpoint of the cost. 

3.2   Multiplier Use vs. No-Multiplier Use 

The DRP supports two types of multiplication. If the multiplier factor is a constant, the 
multiplication is automatically transformed into shifts and additions by the DRP com-
piler. On the other hand, since the DRP has eight 32-bit multipliers distributed on the 
top and the bottom of the chip (Fig. 1), multiplications can be performed using these 
embedded multipliers. Using the multipliers has two limitations: their numbers are 
limited, and there is a delay of two clock cycles from the input of data until the result is 
available although pipelined operation is allowed. 

Table 2. DCT implementation using different strategies of multiplication 

Memory Register  
Multiplier No-multiplier Multiplier No-multiplier 

Delay or critical path (ns) 30.611 72.512 53.913 104.112 
Execution time ( s) 4.87 8.05 6.74 9.68 
Power consumption (mW) 768.95 368.97 500.66 315.53 
Energy consumption ( sW) 3.74 2.97 3.37 3.05 
Clock cycles 159 111 125 93 
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Table 2 shows the results of the DCT implementation in case multipliers are used or 
not for the memory-based design and the register-based design respectively. The results 
prove that although multipliers are located far from PEs and have certain limitations; 
their use could lead to satisfactory outcomes. Using the multipliers achieves the 
shortest critical path as well as the highest throughput. However, in terms of the power 
consumption and the number of clocks, using the multipliers does not outperform the 
case without them; especially, the design using multipliers dissipate almost double 
power as that without multipliers, although the power of multipliers itself is not counted 
in the value because of the problem of the profiler. The large power consumption, in 
this case, mainly comes from its high clock frequency. 

The energy consumption proves that, in general, the no-multiplier policy is more 
efficient than the multiplier-use policy as illustrated on the above table. In terms of the 
execution time, the multiplier-use with memory policy outperforms the no-multiplier 
policy by about 40%. Nonetheless, the no-multiplier with memory design consumes 
power about 53% less than the multiplier-use design; more importantly, the 
no-multiplier design proves to be more effective about 10% in term of the energy  
consumption. 

Fig.4 presents the resource required in the DCT implementation using the multipli-
ers for the memory-based design and the register-based design. The necessary  
resources when the 
multipliers are not used 
are shown in Fig.3. As 
expected, the use of 
multiplier reduces the 
resources dramatically.  

In general, the best 
version of the DCT im-
plementation is the case 
when using the multi-
pliers coupled with 
VMEM based design in 
terms of both the per-
formance and the re-
source usage. On the 
contrary, in terms of the 
power efficiency, the case when the multipliers are not used and data are stored in the 
registers is the best, although it is the worst from the viewpoint of the performance and 
the resource usage. 

3.3   Optimum Context Sizes 

Fig. 5 presents different parameters of the DCT implementation on the DRP against the 
context size. Evaluation results of performance show that execution time can be re-
duced with a large context size because of the parallel processing. On the other hand, 
 

Fig. 4. Required resource when using multipliers 
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the critical path tends to increase when the context size becomes large with some ex-
ceptions. Therefore, the performance improvement by increasing the context size faces 
a certain limitation. 

In contrast with the performance, the power consumption seems to increase with the 
larger context size. The reason is that the larger context size means the more number of 
PEs used to form computation circuits, which requires more power. Besides, as the 
context size becomes larger, additional wires are necessary to connect more PEs  
together, so the power dissipation tends to increase. Nevertheless, the energy con-
sumption reduces when the context size becomes large, since the execution time is 
reduced.  As a result, it is likely that the larger context size provides the better per-
formance/cost ratio for solving DCT. 

From Fig. 5, it is quite clear that there exists an optimum context size, where both the 
performance and the power dissipation are well balanced. In case of the DCT applica-
tion, when the context size is 6, the execution time, the power dissipation and the  
energy consumption are not much different from that of the maximum context size. 
More importantly, the energy consumption shows that the 6-tile case is the best case in 
terms of performance and the cost. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Critical path, Execution time, Power and Energy consumption vs. context size 

4   Conclusion 

This paper presents the performance/cost trade-off when designing applications on a 
dynamically reconfigurable processor based on implementations of the DCT algo-
rithm. Results show that implementation policies on the array data allocation and 
usage of multipliers influence the performance, cost and power consumption. The 
optimal context size also should be chosen. Based on the analysis, a tool for rapidly 
developing a prototype or a model of target applications to help the designers’  
decision is required. 
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Abstract. This work presents the custom-made design of a 32-bit fixed-point 
trigonometric computer based on the CORDIC (Coordinate Rotation Digital 
Computer) algorithm and embedded in an AT94K40 system-on-chip device. 
This platform –composed of a 8-bit MCU that handles the program flow and a 
dynamically reconfigurable FPGA that synthesizes an evolvable slave coproc-
essor to speed up the calculus– provides a balanced control-computing architec-
ture to efficiently process functions as sin(z), cos(z), atan(y/x) and sqrt(x2+y2). 
This approach reaches significant area-time optimizations over other traditional 
software-oriented solutions inspired on powerful stand-alone microprocessors. 

1   Introduction 

Nowadays trigonometric computing is present in a broad field of engineering applica-
tions: navigation systems that calculate trajectories in real-time (robotics) or image 
processing (fingerprint minutiae-oriented matching in biometrics) are some examples. 
An efficient technique for this computing is the CORDIC method. The development 
of FPGA-based systems emerged as a viable means of offsetting software-oriented 
alternatives in such kinds of compute-intensive applications. Also, CORDIC designs 
exhibit potential characteristics to exploit by flexible hardware: reconfigurable com-
puting technologies permit to improve the CORDIC implementation mainly by taking 
advantage of the high similarity between the different CORDIC operation modes. 

Next, section 2 summarizes the CORDIC concept. Section 3 covers the technical 
criteria followed to embed the trigonometric coprocessor in the AT94K40 device. 
Finally, experimental results and conclusions are presented in sections 4 and 5. 

2   CORDIC Algorithm 

The CORDIC concept allows the computing of elementary operations such as prod-
ucts, divisions and trigonometric/hyperbolic functions. It consists in performing a 
linear, circular or hyperbolic rotation of a 2-D vector a desired angle θ decomposing 
this into a sum of micro-rotations of predefined elementary angles θi expressed as 
values that depend on the i-th power of 2, thus left in a good place to be efficiently 
computed by hardware through simple shift-add operations, and where the result is 
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more and more accurate as the number of iterations n increases since the vector orien-
tation is successively closer to its target. When adapted to a circular rotation, 
CORDIC computes the functions sine-cosine and the magnitude-phase of the vector. 
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Fig. 1. Circular CORDIC rotation of a vector in a 2-D coordinate system 

The CORDIC algorithm for trigonometric computing [1] is defined by the equations: 
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where x and y are the coordinates of the vector, z is the angle accumulator that stores 
the effective rotation and s is the sign of rotation. Moreover, as depicted in Fig. 1, a 
CORDIC micro-rotation is not a pure rotation but a rotation with an intrinsic increase 
of the magnitude r of the vector quantified by the scale factor A: 
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The CORDIC algorithm can operate in two different modes: 

- In rotation mode, the initial coordinate components (x0,y0) of the vector and the 
desired rotation angle z0=θ are given in order to compute the new components after 
the rotation. For this, in each rotation step i, fixed angles θi= atan2-i are subtracted or 
added from/to the angle accumulator z so that this variable approaches to zero. This 
iterative decision rule relating to the direction of rotation is described next: 
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The functions cosθ (x data-path) and sinθ (y data-path) are obtained if z0 is initialized 
to θ and the initial vector is of magnitude 1/An and aligned with the abscissa. 
- In vectoring mode, given the components (x0,y0) of the vector, its magnitude and 
phase (cartesian-to-polar coordinates conversion) are computed by rotating the input 
vector until it is aligned with the X axis. If z0 is started to zero, after n iterations it will 
contain the effective rotated angle θ=atan(y0/x0). Apart, simultaneously, another re-
sult stored in x is the magnitude of the original vector scaled by An: 
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3   Hw/Sw Co-design and Dynamic Partial Reconfiguration  

The Hw/Sw co-design of CORDIC systems inspired on FPGA outperforms other 
software-only approaches based on DSP, CISC or RISC processors basically thanks 
to the customization of both shift-add mechanism –key aspect of this algorithm– and 
operands data width –which together with the number of iterations n constitute the 
two factors (data truncation error and angular error respectively) that determine the 
results accuracy [2]–. In addition, an outstanding feature emerges from section 2: the 
only difference between the calculus of sine/cosine and arctangent/magnitude is found 
in the sign criterion si since the CORDIC equations (1) remain invariable in both 
rotation and vectoring modes. This fact lets inspire the implementation on flexible 
hardware; our approach splits the computer into a static hardware skeleton and a re-
configurable part that evolves at run-time depending on the trigonometric function to 
compute. Like this, our CORDIC computer is embedded in a system-on-chip with 
dynamic partial reconfiguration performances. The chosen platform is the Atmel 
AT94K40 device especially thanks to its fine-grained architecture: the system is all 
integrated in a chip composed of an 8-bit AVR MCU and an AT40K40 FPGA where 
the entire device or select portions can be reconfigured at run-time through an internal 
configuration controller, while the remaining logic keeps active [3]. With regard to 
Hw/Sw partitioning, the presence of a FPGA makes possible to use a CPU of lower 
power; under a master-slave topology, the MCU handles the data while the FPGA 
computes elementary functions such as sin(z0), cos(z0), atan(y0/x0) and magn(y0,x0). 

    long sin(char);       long atan(char, char); 
    long cos(char);       long magn(char, char); 

Code 1. Prototypes of the trigonometric functions 

When the user application calls a function supported in hardware, as Code 1, the 
MCU reconfigures specific FPGA cores and the FPGA performs the calculus. For 
this, software is organized in a model of two layers: a low-level or hardware abstrac-
tion layer composed of the library of drivers that define the platform-dependant rou-
tines and a high-level or application layer that constitutes the code fully portable and 
transparent to any platform. Concerning hardware, many research efforts have been 
focused on CORDIC-based architectures for computing [4]. Our design makes use of 
an iterative bit-parallel CORDIC architecture, as depicted in Fig. 2. The system con-
sists of a CPU responsible for executing the program, an I/O interface to exchange the 
function arguments and results between MCU-FPGA, a CORDIC core that carries out 
the computing and, finally, three reconfigurable blocks that allow to optimize some 
distributed parts of this multipurpose computer to make it so much generic as possi-
ble. After reset, the bitstream composed of the basic CORDIC circuitry is automati-
cally loaded into the FPGA. From now on, only partial reconfigurations are required  
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Fig. 2. Block diagram of the AT94K40-based trigonometric CORDIC coprocessor 

to customize the coprocessor to the concrete function on demand or in progress. Like 
this, the MCU downloads the partial bitstream through the configuration controller 
interface of four 8-bit buses, FPGAX, FPGAY, FPGAZ and FPGAD. 

4   Performance Evaluation 

The coprocessor, described in C and VHDL, handles 8-bit integers as inputs and gives 
32-bit data in fixed-point representation of 6 decimal digits as result. The trigonomet-
ric calculus is carried out in 32 iterations. The hardware design comprises 1423 logic 
cells (61.8% of FPGA resources). Our interest is focused on the reconfigurable 4x1 or 
3x2 look-up table (LUT) present in each logic cell of the FPGA. The behavior of the 
system is made conditional on the three reconfigurable blocks: 

- KRECONF. The CORDIC results are affected by the gain factor An defined in Eqn. (2). 
Its inverse, Kn =1/An, in our design is a pre-calculated constant multiplied to the initial 
values x0 and y0 to compensate this amplifier effect. Furthermore, another constant is 
applied to the 8-bit integer z0 to scale the angle in degrees but in 6-digit fixed-point. 
Thus, two 24-bit constants K are assigned depending on the variable (X-Y or Z) to 
transfer from the MCU to the FPGA: instead of using a mux2x24 with its select lines 
controlled by a FSM, this multiplexing is achieved by reconfiguring an only logic cell 
of the FPGA. In fact, the MCU can reconfigure the LUT of a logic cell to negate or 
not its input and generate thus two outputs that are applied to the bits that differ from 
a constant to another, as depicted in Fig. 3. The input is permanently tied to ‘0’ and  
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Fig. 3. Multiplexing of KRECONF by dynamic partial reconfiguration  

the output switching takes place by reconfiguring the logic function. In this way, the 
routing of the design is fixed and only some logic resources change. 
- SIGNRECONF. In rotation mode, zi takes charge of the addition/subtraction decision 
shown in Eqn. (3) whereas in vectoring mode yi is the selection key in accordance 
with Eqn. (4). In this way, the sign controller can be implemented in an only logic cell 
through a LUT of 2 inputs, the signs of yi and zi. By solely reconfiguring the 8-bit 
truth table of that logic cell, one of both sign criteria is applied to the three ad-
der/subtract modules synthesized in the coprocessor of Fig. 2. 
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- DMUXRECONF. The result of 32-bit wide is located in one of the registers xi, yi or zi 

depending on the processed function and it is sequentially transferred to the MCU 
through an 8-bit data bus. A static mux4x8 selects each of the four bytes that com-
pound the 32-bit data whereas the choice of x, y or z is done by a dynamic multiplexer 
composed of 32 mux3x1, each of them performed in a reconfigurable LUT. 

Table 1. Comparison of different Hw/Sw implementations of the CORDIC algorithm 

Platform (Operating System) Time (ns) Development Tools 
Pentium 4 @ 2.66GHz (MS-WinXP)          5050 MS Visual C++ 6.0 (Win32) 
AMD K6-2 @ 450MHz (MS-DOS)        13200 Borland C++ 3.1 (MS-DOS) 
AT94K40 Coprocessor @ 12.5MHz * 5840/17040 Atmel System Designer/IAR  

* best/worst case depending on the number of hardware modules reconfigured 

The performance of our coprocessor has been compared with a software-based im-
plementation on different PC platforms. Taking in mind the working frequency, our 
prototype carries out the calculus in much less clock cycles than any software ap-
proach. In addition, reconfiguration allows to simplify the hardware design, improve 
the routing, reduce the critical path and merge both operation modes of the algorithm. 

Table 2. Experimental results of the reconfigurable coprocessor 

Hw Resources Data Execution Time (ns) Data Compute Error Data 
Flip-Flops 
Gates 
IO cells 
Total logic cells 

125 
1177 

33 
1423 

Data-Control I/O 
Reconf. Kmul 
Reconf. Sign 
Reconf. Dmux 

3920
960
640

10560

Sine 
Cosine 
Arctangent 
Magnitude 

≤ 10-6 
≤ 10-6 
≤ 10-6 

< 2·10-6 

5   Conclusions 

This work discusses the development of a CORDIC trigonometric computer based on 
dynamic partial reconfiguration and mapped on an AT94K40 device. The design 
pursues to optimize the routing and multiplexing of physical signals through a multi-
plexing strategy performed on-the-fly by reconfiguration techniques. The result is an 
area-saved embedded system that only just running at low frequencies computes sine, 
cosine, arctangent or square root operations at rates comparable to PC platforms. 
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Abstract. In the paper the authors present an implementation of the
algorithm of DV Decoder conformant to IEC-61834-2 standard in re-
programmable resources . A software implementation has been realized
and then transferred to the Handel-C language. By parallelization of the
algorithm and using language mechanisms in Handel-C the processing
efficiency has been increased 10 times with respect to the initial hard-
ware implementation. The implementation has been verified in hardware-
software environment with real data transmitted on-line from a DV cam-
corder.

Keywords: Parallel algorithm, high level languages, video decompres-
sion, field programmable gate array.

1 Introduction

Application of the latest production technologies for semiconductors stimulates
a great development dynamics in the field of reprogrammble devices and recon-
figurable systems. Although the general philosophy of reprogrammable devices
remains the same for years, the style and techniques of the design, the method
for algorithm allocation in the resources is continuously being developed. A very
interesting direction is the development of all manner of methods allowing the
designs of reprogrammable devices based on the widely known methods for algo-
rithm design. The required features of such tools include a user-friendly graphical
interface, possibly highest level of independence between the algorithm descrip-
tion tools and the implementation tools and generally high standards of software
quality. These criteria are met, among others, by the high level languages (HLL).

In the presented implementation the primary evaluation criterion for the ap-
plication will be the possibility of executing the requested operations in real
time. The starting point was a floating point version of the algorithm, realized
in “ANSI C”language. The goal of the study was the algorithm’s representation
in a fixed-point version, adapted to the capability of a reprogrammable system,
and then the construction of a parallelized implementation, working in real time
in the FPGA device. The whole algorithm has been split into a series of process-
ing stages and then each individual task has been optimized and highly parallel
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execution mode has been proposed. Effective execution of the algorithm written
in Handel-C language requires a proper approach and deep knowledge of the
mechanism offered by the language. In the paper the techniques applied in the
Handel-C implementations are described.

1.1 DV Decoding Algorithm

Figure 1 presents a schematic version of the algorithm implemented in the DV de-
coder. Proper implementation of the Inverse Discrete Cosine Transform (IDCT)
and Inverse Variable Length Coding is of fundamental importance for the quality
and efficiency of the decompression system.

INPUT
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VLC

data
pointer

DE-ZIGZAG

MACRO
BLOCK
BUFFER

INVERSE
QUANTIZATION

quantization number
class number
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88 / 248

OUTPUT
FRAME
BUFFER

DCT mode

Fig. 1. Image decompression scheme In the DV standard

The problem of implementation of video compression/decompression algo-
rithms in FPGA devices is a widely explored subject, because of the search
for solutions featuring both high effectiveness and low cost. The application of
FPGA devices in the acceleration process is an alternative to software implemen-
tations, consuming considerable part of the processor’s resources. Vast segment
of the low-end digital camcorder market is represented by devices employing the
DV compression, described in the [1] standard. The physical interface is provided
by the IEEE-1394 connection, conformant to the [2] standard, realizing the data
transfer from the camcorder in real time. The possibility of application of DV
standard in FPGA devices has been described in [3], however the realizations of
commercial DV decoders so far has been based on the ASIC decoders, sometimes
supported by reconfigurable devices [4], [5].

The DCT transform is a topic thoroughly discussed in literature [6]. Since
intra-frame based compression is used, there are two DCT modes in DV to cope
with the amount of picture movement in a frame. The 8-8-DCT mode and the
2-4-8-DCT mode.
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For calculation of 1D-8-IDCT an algorithm proposed by Loeffler [7] has been
applied, in the version slightly modified by Eijndhoven and Sijstermans [8]. The
algorithm enables the evaluation of 8-point IDCT be merely 14 multiplication
operations.

The second important operation is the inverse coding VLC. This stage, in var-
ious modifications and with various forms of the coding words table, is present in
almost all standards of the video signal compression. An example of architecture
of VLC decoders can be found in [9]. As the implementation in the FPGA de-
vice is considered, the VLC decoding process is the most complicated operation,
which also demands the highest amount of logical resources.

2 Handel-C Implementation

2.1 Initial Implementation

The video signal is transmitted sequentially, therefore it has been decided to
apply the medium grane pipeline, in which the processing elements are attributed
to the individual decompression stages. In each pipeline cycle a compressed video
block is requested from the external memory, which is subject to the decoding
process.

A well functioning pipeline should be decomposable into a set of operations,
which exhibit comparable execution times. It is a way to avoid bottlenecks in the
system. In the initial implementation (ver.1) the pipeline has not been properly
balanced.

In order to balance the pipeline in the first stage the decomposition of com-
pressed data transfer and inverse VLC operation has been redesigned (ver.2)
and to some extent the division and modulo operators have been eliminated. In
ver.1,2 in a single IDCT processing element the ICDT-p1 and ICDT-p2 opera-
tions have been executed in sequence. In ver.3 these two operations have been
separated and in the main pipeline two elements, working in parallel, have been
inserted. The next improvement was the introduction of an additional CLR op-
eration for clearing the table of decoded coefficients of DCT block (ver.4). One
more step was the replacing of multiplication operations by the multipierless mul-
tiplication (ver.5) [10]. The next iteration comprised the implementation of two
identical pipeline architectures for parallel processing of two video blocks (ver.6).
At the same time for improvement of efficiency and maximum clock frequency
the optimal constructions of software loops and other Handel-C mechanisms
have been also applied (ver.7).

2.2 IDCT Code Performance Improvement

Two-dimensional IDCT transform has been replaced by an equivalent two-stage
sequence of 1D IDCTs. For the 8-8 IDCT case two passes of one-dimensional
8-point IDCT (1D-8-IDCT) are carried out. For 2-4-8 IDCT in the first pass 1D
4-point IDCT (1D-2-4-IDCT) is calculated twice for the sums and differences of
sample values respectively, and then the result is treated by a 1D-8-IDCT.
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In the initial version of IDCT (ver.1,2) the first and second pass of 1D-IDCT
are executed in sequence. The number of Handel-C clock cycles required for
calculation of 2D-IDCT is therefore the sum of cycles required for execution
of two 1D-IDCT passages. In version 2 the access to the Block-RAM mem-
ory has been partially done in parallel with arithmetic operations, what has
resulted in execution of 1D-8-IDCT and 1D-4-8-IDCT in considerably lower
number of cycles. An essential efficiency improvement has been achieved in
version 3 due to parallelization of the first and second passage of 1D-IDCT.
In such a way two elements: IDCT-p1 and IDCT-p2 has been placed in the
pipeline. In addition in version 6 the time of 1D-IDCT calculation has been de-
creased by grouping of arithmetic operations and Block-RAM memory access
operations.

2.3 Final Implementation

The operation of processing elements has been organized in a pipelining scheme.
In the pipeline at the single block level the following processing elements are
employed: CLR, IVLC, IQNO, IWGHT, IDCT-p1, IDCT-p2. The pipeline at
the single block level is doubled, i.e. in the pipeline work period two video blocks
are always decompressed at the same time using two identical sets of processing
elements (ver 6,7).

Table 1. Number of Handel-C clock cycles for the implemented hardware modules

Operation Transfer CLR IVLC IQNQ IWGHT IDCT-p1 IDCT IDCT Transfer
from (8-8DCT) (2-4-8DCT) -p1 -p2 to

SRAM SRAM

Number 24 65 typic. 67 66 80 88 80 106
90-100

Realization times of individual operations for the final implementation are
presented in Table 1. The memory clearing operation CLR has been separated.
For the inverse multiplication in the IWGHT operation it can be noticed that
the number of clock cycles required for executing the operation for an individual
block has been reduced to 66.

Figure 2 presents the values of average decompression rate for consecutive
implementation versions. The initial implementations, although working with
high frequency, exhibited very low efficiency, about 2-5 fps, because of far from
optimal algorithm decomposition to the pipeline form. Although consecutive im-
plementations did not result in increasing the clock frequency, still the number
of frames processed per second was systematically growing, because of the re-
duction of the number of clock cycles for the critical stage in the pipeline. The
processing frequency was systematically, reaching the required number of 25fps,
and even exceeding it up to 30fps.
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Fig. 2. Average decompression rate changes during consecutive phases of the imple-
mentation

Table 2. Number of Handel-C clock cycles for the implemented hardware modules

Maximum clock frequency of FPGA 52 MHz

Frame rate for FPGA implementation Not less the 25 fps
Max: 30.13 fps

Frame rate for PC implementation
2 GHz 10-15 fps

PSNR[dB] Software/Hardware 48- 52
(Quality of HW implementation) (average 49)

PSNR[dB] DirectShow DV Video 42 - 52
Decoder/Hardware (average 47)
(Quality of implemented algorithm)

In Table 2 the final FPGA implementation and the PSNR quality factor are
compared for the software implementation and the final version of hardware
implementation.

3 Conclusions

The DV decoder described in the previous sections has been fully implemented
for the VirtexE, using Handel-C descriptions of modules and their synchroniza-
tion. The application of high-level allowed for realization of a properly function-
ing implementation of a complex system with relatively low amount of effort
and time. Using the methods described here approximately tenfold decoder ef-
ficiency increase has been achieved in relation to its initial hardware version,
what has resulted in its real time operation. The work on improvement of the
system functioning were of twofold nature. On one hand by parallelization the
number of clock cycles required for execution of individual operations has been
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reduced. On the other hand it was necessary to keep relatively high values of the
system clock frequency. The optimization of the arithmetic logic, consisting of
splitting the algorithm into eliminatory operations, and reduction of the depth of
asynchronous logic at the expense of increasing the number of synchronous logic
layers is a typical algorithm decomposition task for hardware implementations.

As can be seen from the present study the simultaneous analysis of both para-
meters is necessary: i.e. the number of clock cycles for the critical element of the
pipeline and the maximum clock frequency of the FPGA device. Improvement
of both aspects seems to be a way to reaching a solution close to optimal with
respect to time.
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Abstract. The increasing number of cores used on a single die in response to 
the power-computing applications tends to orient SoCs more and more toward 
communication-centric concept. Networks-on-chip (NoC) are good candidates 
providing both parallelism and flexibility. Nevertheless they imply to consider 
the notion of locality when distributing the computation among a set of cores. 
Defining an optimal placement at compile-time is difficult since other 
applications may temporarily make use of some of the processing resources. 
This paper explores the opportunity of dynamically mapping task graphs 
through using different placement algorithms, experiments and comparisons are 
conducted on a homogeneous coarse-grain reconfigurable architecture running 
JPEG applications. Results show that run-time task mapping is possible and 
brings interesting benefits over a random or static placement, especially when 
contention effects stemming from the communication medium are taken into 
account. 

1   Introduction 

The explosion of standards in 3G and more generally wireless systems goes along 
with a widening spectrum of applications that portable devices have to support. 
Designing a chip for every single device tends to become less feasible (SoC 
complexity, lifecycle of multimedia product, increasing NRE costs for deep-
submicron). 

A considered way to overcome these problems relies on flexibility, i.e. reusing a 
same chip for a range of products or even several generations of the same product. 
This approach allows sharing the NRE costs, and the design phase comes down to a 
software customization phase. Reconfigurable architectures provide this flexibility at 
the price of a silicon area overhead highly dependent on the level of flexibility. 
Dynamic reconfiguration allows decreasing this cost trough making better use of 
reconfigurable resources at run-time. FPGAs allow emulating any digital functionality 
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but also present some flaws when targeting a multi-applications system: since several 
applications have to be executed concurrently according to hardly predictable 
scenarios (e.g. set of algorithms executed concurrently at a given time) place and 
route phase (P&R) has to be executed at run-time. A means exist for overcoming that, 
which is grounded on a predefined floor-planning of the FPGA [4-8]. This approach 
whilst effective, does suffer from huge reconfiguration times, each core being made 
of several thousand gates.  

Coarse grained reconfigurable architecture is generally based on a array of 
processing elements (PEs) [10][11] operating at word-level.  Usually these 
architectures better support run-time reconfiguration and therefore for run-time 
placement manipulations. One serious limitation of these architectures for performing 
run-time placement lies in the often systolic organization of the PEs. This usually 
prevents from placing different tasks at a distance greater than one (fragmentation of 
the computation) which is often unavoidable if the task graphs are complex. This 
work aims at exploring scalable alternative principles enabling to dynamically map 
applications made of task graphs onto a homogeneous array of processing elements.  

This paper is organized as follows: 

Section 2 presents the APACHES architecture, the hardware testbed used for our 
experiments as well as the underlying principles of task mapping. Section 3 presents 
the targeted design flow for evaluating the task mapping on APACHES as well as the 
used algorithms. Section 4 presents the implementation results including detailed 
information regarding communication cost when deploying the computation among 
different PEs. Section 5 concludes on the performed experiments and draws some 
perspectives of this work and its applicability on different architectures.  

The main goal herein is not to target high computing performances, but just to 
show that run time tasks placement on multiple PE array is possible and allow to 
improve initial performances.  

1.1   Related Work and Context Approach 

Most platform implementations found in the literature [6][14][12] make use of 
heterogeneous elements. This type of solutions is often more efficient in terms of 
performance and power consumption (dedicated or typed cores likes DSPs). 
Nevertheless, this also limits the solution space for the task mapping concept because 
of the lack of support from certain PEs for some operations. SCORE [13] performs 
dynamic task mapping on a paged FPGA though virtualization of reconfigurable 
hardware. The cost of swapping pages is important, therefore top-level DFG (Data 
Flow Graph) are packed into clusters for limiting the reconfiguration cost. In [4-8] 
authors propose an interesting approach enabling to dynamically move tasks from 
software to reconfigurable hardware and the other way around under operating system 
control. The hardware partition relies on a run-time reconfigurable FPGA with a 
predefined floor planning (tiles); communications are handled by a packet-switching 
NoC. Among other possibilities, this allows to move some tiles for limiting physical 
link sharing and therefore improve performance. This approach whilst effective, does 
not allow adopting a new placement for each core each time a new task is mapped, 
because of the relatively huge FPGA reconfiguration times. To the best of our 
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knowledge, no investigation has yet been conducted in order to determine the 
opportunity of performing task mapping at run-time on homogeneous processing 
arrays but on coarse grained architectures where tasks are limited to simple 
operations. The work presented throughout this paper is considering a reconfigurable 
architecture made of tiny processing elements (microcontroller-like architecture) 
connected through a packet-switching Network-on-Chip (NoC). The experiments 
conducted aim at determining whether performing defragmentation (i.e. run-time 
task-mapping in our context) brings benefits when several applications are 
concurrently running on the same large array of processing elements. 

2   The Workbench: APACHES 

APACHES is an acronym of a Parallel Architecture Composed of Homogeneous 
Elements’ Set. 

2.1   Platform Description  

Our platform is composed of tiny homogeneous processing elements (PEs) 
communicating together through a packet-switching network on chip (NoC). The 
choice of the communication infrastructure has been done according to the 
considerations mentioned above; employing a 2D Mesh NoC allows to abstract 
communications and therefore eliminates the need to take care of routing at the 
application level. In our architecture data to be transmitted from a core to another one 
are split into packets. A packet is made of the destination address and a payload. 
Packet routing is fully handled by the NoC routers. The router architecture is depicted 
in figure 1; 2 ports (North and South) are represented for the sake of clarity. More 
generally, routers are composed of five incoming queue, one for each port (North, 
South, East, West and Local), an arbiter which handles the request from the buffers 
and a routing logic implementing the routing algorithm. 

 

Fig. 1. Schematic representation of the Hermes switch 
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The number of nodes in the platform is fully parameterizable. The version used in 
this article features 16 elements, grouped in cluster of configurable size (4 PES in fig 
2). The topology of the NoC utilized is a mesh and the chosen processing element is a 
very compact MIPS-like processor (Fig 2) with 16 Kbytes of local memory. The 
interfacing between a router and the attached PE is done using the OCP protocol [15]. 

Two different classes of processing elements are used in APACHES: 

-Processing nodes 
A processing node handles the computation of tasks and behaves as a slave receiving 
orders from master nodes.  

-Master nodes, or network controllers (NCs) 
Master nodes act as I/O controllers and also decide the placement of each task onto 
the processing array.  

Depending on the chosen array size, one or several masters are used; each one 
being responsible of the processing of a PEs cluster. They also handle the task 
placement algorithm according to the task graph to map onto the architecture, send 
tasks instruction code to each selected nodes and finally inject or collect the data of 
the platform. 

Router

RAM

GP

IT

FIFO

Wrapper OCP 

OCP Wrapper 

cluster

 

Fig. 2. Schematic representation of the platform APACHES 

The chosen NoC supports several routing algorithms, however only the simpler 
XY routing (data routed towards destination according to the X-axis, then Y-axis) 
technique is used (deadlock free)[3]. 

Task Placement 
In Figure 3 a global description of APACHES functioning is depicted. To ease the 
explanation a 3x3 platform has been selected. The node (0,4) and (2,0) (fig 3) are the 
network controllers, the remaining ones are processing elements. In figure 3.a, an 
application is running on the platform. When a new application has to be mapped on 
the grid the system performs sequentially the following tasks: 

1. A new placement is computed by the master node and that for all tasks of all 
applications. 

2. If the new placement implies to relocate some tasks of the already running 
applications, the master first moves those tasks to their new locations. This is 
done through issuing a ‘send code’ request to each concerned PE which 
specifies the new location of the task (fig 3.b). 
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Fig. 3. Task placement and data routing 

3. The task codes of the new application are sent to the PEs they have been 
assigned to (fig 3.c & fig 3.d). 

4. The system resumes execution of stalled tasks and starts processing of the 
newly assigned application (fig 3.e). 

Data routing 
In figure 3.f the two applications are now running on the platform according to the 
new placement given by the task mapping algorithm executed on the master (0,4) (fig 
3.a). Data are streamed from the master to the first PEs of the 2 applications’ task 
graphs, and communications between the different tasks are automatically established 
through the NoC. A routing table storing the addresses of all other tasks of the 
application is kept up-to-date in the network controller. This update is done when a 
new task placement is triggered during execution for ensuring that data keep being 
sent to the right PEs (new tasks placement).  
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Fig. 4. Hardware and Software layer of APACHES’ platform PE 
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Software layer 
Each PE runs a small footprint multitasking kernel enabling the capabilities detailed 
above. Figure 4 shows the memory layout for each PE. The multitasking support is 
implemented in a preemptive fashion; a programmable interrupt controller periodically 
generates interrupts for distributing PE time among running processes: on each 
interrupt, the kernel scheduler resumes execution of a previously stalled process. No 
hardware memory management unit (MMU) is present and therefore all task codes are 
compiled in PIC (Placement Independent Code) mode. Upon reception of a new task, 
the memory manager allocates a memory block of sufficient size and the task is put in 
the scheduler task list. The entire kernel occupies less than 2kbytes. 

2.2   Mapping Task on APACHES at Run-Time 

Applications are described as task graphs. A single task can be handled by each PE. 
No placement information is provided a priori; placement is mainly performed 
according to locality matters: physical links sharing is prevented for limiting as much 
as possible communication overheads. 

Task mapping concept 
Whenever a new application needs to be mapped onto the array a new placement is 
computed by one network controller thanks to the task mapping it executes. 
Depending on the used algorithm and current scenario (number, position and 
complexity of task graphs) the time required for computing a new placement varies. 
This time should ideally be negligible compared to the processing time of the task 
which has triggered a new mapping. The main advantage of re-performing a global 
placement each time a new application has to be mapped is to lower contentions 
within the array, and therefore increase performance.  

Task mapping algorithm 
The task mapping problem is to succeed to split an application in a given number of 
tasks in order to limit communications, synchronizations and well-balance 
computation load.  

In general, finding optimal solutions for mapping problems and the scheduling of 
inter-machine communications in Parallel Computing environments is NP-complete 
requiring the development of near-optimal heuristic techniques.  

Two placement algorithms were tested to perform dynamic task mapping: 
simulated annealing and force directed. The first one is based on the simulation of a 
physical phenomenon, which changes randomly the tasks position on the network, 
estimates the cost and accepts or rejects changes according to a “temperature” 
criterion. The second one calculates the tasks positioning taking into account the 
“resulting force” produced by the attraction between communicating tasks. This 
attraction force is proportional to the communication volume between the linked tasks. 

Force directed algorithm: This algorithm relies on a physically inspired phenomenon 
where system equilibrium is reached when the distance between weights (the tasks) 
connected together by strings (graph edges) is minimum.  The string stiffness is here 
proportional to communication volume (link throughput) therefore providing an 
increased priority to highly communicating tasks.  
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1. Place randomly the tasks in the network 
2. Choose one task 
3. Calculate the new placement using the equations: 
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Where Cxi is the coordinate x of the node i, Cyi is the coordinate y of the node i and Vij 
is the communication volume between node i and node j. 
4. If the position is not empty, search the nearest empty position. 

The procedure is repeated for each node until the tasks position in the network 
becomes stable. 

The advantage of this method is that an optimized solution is quickly obtained. The 
drawback is that the solution may, in some cases, fall in a local minimum. 

Simulated annealing: This well-known algorithm is a search technique where a single 
solution is randomly modified. An energy is defined which represents how good the 
solution is. The goal is to improve this solution by minimizing its energy. Changes 
which lead to a lower energy are always accepted; some of those which lead to an 
energy increase are accepted, this is determined by the probability law e- E/kT. Where 

E is the change in energy, k is a constant and T is the Temperature 

1. Place randomly the tasks in the network and initialize the temperature value 
according to the temperature curve (normalized). 

2. Evaluate the cost of the placement. 
3. Randomly change the position of two tasks in the network. 
4. Evaluate the new cost of the placement. 
5. If the new cost is lower than the previous one, accept changes; if the cost is higher 

than the previous one, then the probability of acceptance of the new value is given 
by the temperature curve. 

6. Update the temperature value. 

Repeat steps 2 to 6 until the temperature reaches a certain value. 
For each state of the system (i.e. the different positions of tasks set) the placement 

cost results from the weighting of path length between different cores by their 
communication volume. The cost function is summarized by the following equation: 
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Where Vij is the volume of communication between node i and node j and Lij is the 
path length on the network between node i and node j. 
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3   Results 

3.1   Experimental Protocol 

To test APACHES and the task mapping concept, a JPEG encoder and two others 
synthetic scenarios have been used.  

The implementation of the JPEG encoding uses two network controllers. The first 
one performs tasks mapping, instruction code dispatch and data injection. The other 
one simply acts as a sink. The application has been broken into 4 main functions and 
its tasks graph is represented in Fig 5. 

In this implementation, data are injected into the macro pipeline by one network 
controller (NC) and collected by the other one.  

NC RGB2YUV DCT QUANT VLC NC

 

Fig. 5. Example of a simple application graph: the JPEG encoder macro pipeline 

Two synthetic scenarios are created to test the execution time of the tasks mapping 
algorithm. The graph of the first synthetic application is composed of four macro 
pipelines of three tasks. The data are injected and collected by the same network 
controller element in each pipeline. The graph of the second synthetic application is 
also composed of 4 macro pipelines which unlike the first one count a different 
number of nodes. This kind of graphs used to appear in many streaming applications, 
which tend to be very regular and with a sequence of processing steps being applied 
over a data stream. 

3.2   Performance Results 

Table 1 presents the execution time of the tasks mapping algorithms considering 
different NoC sizes and graph sizes. The number of graph tasks has a greater influence 
than the NoC size on the time needed to execute the force directed algorithm. It’s the 
opposite for the simulated annealing algorithm. Therefore the first algorithm is then 
more scalable than the second one. Thus if a huge APACHES is used, a 10x10 for 
example, the process time for a given task graph will remain the same for the directed 
algorithm whereas it will dramatically increase for the simulated annealing.  

Table 1. Execution time for different algorithm (cycles) 

Algorithms, graph size and NoC Size Simulated Annealing Force Directed 
JPEG (8 nodes) 
APACHES4x4 

3771030 270741 

Synthetic 1 (12 nodes) APACHES4x4 6840670 470341 
Synthetic 2 (16 nodes) APACHES6x6 5716176 499721 

JPEG (8 nodes) 
APACHES4x4 

3771030 270741 

Synthetic 1 (12 nodes) APACHES4x4 6840670 470341 



142 A. Ngouanga et al. 

Table 2 presents the total length of the communication path (expressed in number of 
NoC links) between the tasks for all three approaches. Figure 6 depicts the placement 
yielded by respectively the simulated annealing and the force directed algorithms when 
running four JPEG dataflow. Both placements are optimal; link sharing is limited as 
much as possible and only affects network controllers (NCs) due to the used topology: 
a single physical link exists between each NC and the rest of the PE array.  
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Fig. 6. Force directed and simulated annealing task placement results for 4xJPEG(16 nodes)  

Table 2. Total length of the communication path between tasks in APACHES (hops) 

Algorithm,  graph size and NoC Size Simulated Annealing Force Directed 
JPEG (8 nodes) 
APACHES4x4 

6 6 

Synthetic 1 (12 nodes) APACHES4x4 21 23 
Synthetic 2 (16 nodes) APACHES6x6 19 18 

JPEG (8 nodes) - 4x4 6 6 
Synthetic 1 (12 nodes) APACHES4x4 21 23 

Table 3 shows the improvements achieved for the different scenarios (multiple 
JPEG streams and multiple synthetic scenarios). The second and the third columns 
refer respectively to a random and a force directed placement; the last to the speedup 
obtained. For the second and the third JPEG implementation presented in table 2 each 
stream uses respectively one and two NCs (fig 6). In this table only the time to 
process one block is considered (i.e. no macro-pipeline). 

Table 3. Random mapping versus run-time mapping considering a synchronized NoC (cycles) 

Algorithm,  graph size and NoC Size Initial execution time Optimized execution time speedup 
2 x JPEG (8 nodes)  4x4APACHES 40172 36512 9.1% 

4xJPEG 16nodes+1NC 
APACHES4x4 

43633 36536 16.2% 

4xJPEG 16nodes+2NC 
APACHES4x4 

42785 35851 16.2% 

Synthetic 1 (12 nodes) 
APACHES4x4 

13186 7745 41% 

Synthetic 2 (16 nodes) 
APACHES6x6 

17775 12491 29.7% 
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Table 4 presents different JPEG implementations on APACHES; one compact  
(1 PE) and two pipelined (2 PEs and 4 PEs). The process time, given in cycle, of 
each task of the JPEG algorithm is: RGB2YUV (5500), DCT (5397), Quantification 
(6509) and VLC (16281). As expected the pipelined implementations exhibit better 
performance than the single-PE one. The speedup achieved is around two. However 
there’s no significant difference between the two pipelined versions. This is 
essentially due to the VLC (critical path of the pipeline 16281 cycles) which slows 
down the whole pipeline and creates a major bottleneck. Duplicate this task is  
one explored way to speedup the stream (software level). Another one is to enhance 
the PE of the APACHES platform by adding to each of them a reconfigurable 
function unit [1] which will help them to process more efficiently data at a bit  
level. 

Table 4. Comparison between different jpeg implementations on APACHES 

Feq=50MHz 1 PE 2 PEs  pipelined 4 PEs  pipelined 
1000 blocs 
processing 

(cycles) 
34.505e6 18.096e6 16.973e6 

Throughput 
(kBytes/s) 

5.796 11.052 11.783 

speedup 1 1.9 2.1 

Table 5 presents detailed performance results when the communication architecture 
and the PE are using the same clock (50 MHz). Values between brackets are the 
execution time in cycles for the considered placement algorithm. The speedup 
achieved for the JPEG algorithm is around 2 for both placement algorithms. 

Table 5. Random mapping versus run-time mapping considering a synchronized NoC 

Feq=50Mhz 
Random placement 

4xJPEG 
16 nodes 

Simulated annealing placement 
4xJPEG 
16 nodes 

Force directed 
placement 
4xJPEG 
16 nodes 

First bloc latency 
(cycles) 

15363(0) 9132(6816413) 9299(508894) 

Throughput 
(kbytes/s) 

25 48.6 45 

speedup 1 1.944 1.8 

Table 6 presents the same set of results when the communication architecture uses 
a much slower clock (5MHz). As expected, this tends to increase contentions in the 
network and therefore increase the benefits of using an optimized placement for 
decreasing physical link sharing. In this case also, simulated annealing proves to yield 
a better result, achieving a speedup of 5.6x.  
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Table 6. Random mapping versus run-time mapping considering a desynchronized NoC 

 
feqprocessing =50Mhz 
feqcommunication=5Mhz 

 

Random placement 
4xJPEG 
16 nodes 

Simulated annealing placement 
4xJPEG 
16 nodes 

First bloc latency 
(cycles) 

77834 15529(6816413) 

Throughput 
(kbytes/s) 

8 44.862 

Speedup 1 5.60775 

4   Conclusion and Future Works 

A flexible homogeneous processing array supporting dynamic placement has been 
presented. First results show that relocating tasks at run time is feasible without a 
huge performance overhead. The achieved application speedup is highly dependent on 
the performance of the communication architecture. However, the time required for 
the placement algorithms to converge is quite high and using that approach is relevant 
only for applications which are running over a long period.  

Current work aims at implementing and validating that approach on several 
applications concurrently running on the architecture; but also to estimate the power 
consumption gain obtained using a desynchronized NoC. We’re also considering a 
decentralized version of the force directed algorithm, each PE running an OS service. 
Evaluating the force applied by each other tasks. When the resulting force exceeds a 
given threshold, task migration to the new location is triggered.  

Future work consists of exploring the opportunity of dynamically and 
automatically duplicating some tasks of the graph depending on system state (for 
instance battery level in embedded system) and requirements (performance).  But also 
to add to each PE of the APACHES platform a reconfigurable unit in order to speedup 
the process time of channel coding and cryptographic algorithms. 
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Abstract. In this paper, we proposed a new architecture of lifting
process for JPEG2000 and implemented it as an ASIC. It includes a
new cell-structure that executes a unit lifting calculation to satisfy the
property of lifting process of a repetitive arithmetic with a unit process.
After the operational sequence of lifting arithmetic was analyzed in detail
and the causality was imposed to implement in H/W, the unit cell was
optimized. A new simple lifting kernel was organized possible by repeat-
edly arranging the unit cells and a lifting processor was realized with
the kernel for Motion JPEG2000. From the comparison with previous
works, we could conclude that the proposed architecture shows excellent
properties in considering both the cost and the performance.

1 Introduction

As JPEG2000 [1] extends its application areas, research on 2DDWT (2Dimen-
sional DWT) has increased. Recent research on DWT has focused on a form of
lifting which shows excellent performance compared to the conventional convo-
lution method. A lifting method has advantages of lower memory requirement
and lower number of memory-accesses. Also it has the same arithmetic struc-
ture in forward and inverse transforms [2,3,4]. A block-based processing [2] and
its structure to interleave the data with a (5,3) filters [3] have been studied.
Also, a lifting structure for EZW (Embedded Zero tree Wavelet) algorithm [4]
and a structure to expand the unit operation of prediction-and-update to the
whole data [5] were proposed. For them to be applicable, the calculation unit
and related lifting structure must be designed to follow the various principles
of JPEG2000 [6]. In H/W, if the data-pass part doesn’t have a perfect pipeline
architecture, the critical path may show a large delay. If one tries to retain the
simplicity in the structure by direct mapping into a H/W, it may not perform
the continuous input of the data properly and may induce an unclear relation
between the lifting operation and internal memory [5,6]. A lifting operation with
an entire pipeline architecture and expandable H/W structure was introduced to
solve these problems [7]. Although it showed high-speed operation, it has defects
that it requires a lot of pipelining registers and cannot clearly show the line-based
lifting characteristics because of its direct mapping of lifting arithmetic to H/W.

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 146–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Proposed Lifting Architecture

In this chapter, we re-schedule the lifting arithmetic for H/W implementation
and propose a cell structure for the unit operation of lifting. With this cell in
H/W, we propose a lifting kernel to execute the horizontal and vertical lifting
operation.

2.1 Architecture of Line-Based Filtering Cell

The procedure of the lifting operation is expressed graphically as Figure 1. Lifting
consists of the same four steps of multiplication-and-addition with only different
coefficients.

Since lifting has the same horizontal operating structure, it can be replaced by
one line as the right-bottom of Figure 1. Even in a line, since the same operating
process is repeated, it can be constructed with one unit arithmetic as the left-
bottom one. This cell must satisfy the basic demand that the continuous data
inputting sequence must be processed without overlapping.

The timing sequence of lifting operation satisfying the requirement is depicted
in Figire 2, where ⊗ and ⊕ mean multiplication and addition, respectively. Each
operation is configured with one multiplier and one adder since the unit arith-
metic cannot execute both multiplication and addition simultaneously. The op-
eration method and the retained data in the required register and the data saved
in the register are shown in Figure 2 according to the order of clock sequencing.

We propose a VLSI architecture of a unit cell (Lifting-Based Filtering Cell,
LBFC) which can accept the input data continuously and accommodate both
(5,3) and (9,7) filters at the same time, which is in Figure 3(a). The architectures
are transformed by the re-scheduled operation code. The proposed H/W can have
five pipeline stages.

Fig. 1. Unit arithmetic of 1D lifting by structure mapping
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Fig. 2. Time rescheduling of lifting

Fig. 3. Architecture of LBFC. (a) horizontal (LBFC hor). (b) vertical (LBFC ver).

To use the line-based filtering for vertical DWT, each register in Figure 3(a)
should be substituted with a line buffer, the result of which is shown in Figure
3(b). Vertical LBFC has the same architecture as the horizontal one and the
coefficients in the four subbands in a level are sequentially processed (LLx,y →
LHx,y → HLx,y → HHx,y).

2.2 Proposed Architecture of Lifting Processor

LBFC performs the unit arithmetic of lifting, which is the fundamental for a
VLSI architecture. Horizontal or vertical LBFCs organize the corresponding
LFDWT (Lifting Filter for DWT), which performs the entire lifting. The VLSI
architecture of it is depicted in Figure 4. The (9,7) filter needs four LBFCs and
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twenty clocks of delay time since an LBFC has five steps of pipelining. While
only two LBFCs are needed for the (5,3) filter. Thus the throughput of a (5,3)
filter is twice of a (9,7) filter. As shown in Figure 4, the two LBFCs before the
MUX operate in parallel. The results are MUXed into the next two LBFCs that
operate in parallel, too. The lifting-based filtering is performed level by level.
Data from the previous level (LL data only) is inputted according to the clock
(frequency is f ) and the four calculated coefficients are outputted in series with
the same speed to the clock, which means input and output of this architecture
have the same data rate. IS and FS perform the inverse and forward scaling,
respectively.

Our architecture of the implemented lifting processor is shown in Figure 5. It
consists of A/D Interface to interface with an external A/D converter, SDRAM

Fig. 4. Architecture of Lifting Kernel with LFDWT

Fig. 5. Architecture of lifting processor
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Controller and SDRAM buffer for data access with external SDRAM, Lifting
Kernel to perform lifting operation, Programming Register for storing instruc-
tions, and Main controller to control overall operation. It accepts input data
directly through the “Data Input” port, from A/D converter, or through “Inter-
mediate Data” from SDRAM by SDRAM Controller and SDRAM buffer. The
overall operation sequence depends on the configuration of Programming Regis-
ter which is accessed and programmed by “I2C” port and is performed by Main
Controller.

3 Implementation and Experimental Results

After synthesis by Synopsys, the total gate count for Lifting Processor was
89,239, among which Lifting Kernel and SDRAM Controller occupies 83,798
and 5,439 gates respectively. Line Buffer in Lifting Kernel uses registers instead
of memory because it is configured with large number of 4×4 storage cells.
which needs relative smaller amount of H/W. If memory is used, SRAM or
DRAM supported by memory compiler of vendor needs relatively larger amount
of H/W. Using the registers for storage element of small size in Lifting Kernel
has an additional advantage of easiness in transplanting regardless of the ASIC
library.

Table 1. Resource usage of proposed H/W

Arch. Filter
Tile × +

Storage Output Operation Gate Control
Size Size Rate Frequency Count Complexity

Ferretti (9,7) 256×256 36 36 18.5Kbit f - - Simple
[5] (5,3) 36 36 17.5Kbit f - - Simple

Andra (5,3) 129×129 4 8 18.5Kbit f 200MHz 15,000 Simple
[6] (0.18μm)

Dillen (9,7)/
256×256 8 16 57.6Kbit f/2

110Mhz 2,363SL
Complex

[7] (5,3) (FPGA) (+3,449Reg)

Ours
(9,7)/

512×512 16 8 256Kbit f 150Mhz
32,262

simple
(5,3) (0.35μm)

As explained above, Lifting Kernel was implemented into both ASIC and
FPGA. Specific results and comparison results with the previous researches are
shown in Table 1, respectively. All items except the first row are related to the
lifting algorithm. As well known, the convolution-based method occupies large
H/W resource. By considering filter adaptability, storage size according to the
image size, the number of multiplier and adder for the same performance, and
the complexity of control, we concluded that the proposed lifting kernel has the
best characteristics.
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4 Conclusion

In this paper, we proposed a new architecture of the lifting method for JPEG2000
and developed an efficient hardware based on a unit arithmetic cell. Depending
on the time-sequenced input data, we re-adjusted the arithmetic order of the
lifting and implemented the cell-based architecture for DWT using the lifting
scheme. We also proposed an architecture that accommodates both the filters
of (5,3) and (9,7) for loss and lossless transform of JPEG2000 standard. We
simplified and optimized the architecture and its control for its operation and
implementation in H/W. Since the proposed hardware is based on the unit cell
of LFBC and LFDWT, and has the uniform architecture, the output ratio is
linearly increased as the number of operating cells. The proposed architecture
is implemented into both the ASIC and FPGA. After examining the results,
we concluded from comparing with the previous researches that the proposed
architecture has very excellent characteristics by considering the operational
speed, required H/W resources, control complexity, etc.
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Abstract. In this paper an architecture based on FPGA’s for real time
image processing is described. The system is composed of a high res-
olution (1280×1024) CMOS sensor connected to a FPGA that will be
in charge of acquiring images from the sensor and controlling it too. A
PC sends certain orders and parameters, configured by the user, to the
FPGA. The connexion between the PC and the FPGA is made through
the parallel port. On the other hand, the resolution of the captured im-
age, as well as the selection of a window of interest inside the image,
are configured by the user in the PC. Finally, a system to make the
convolution between the captured image and a nxn-mask is shown.

1 Introduction

One of the most important goals in vision-applications is the description of a
certain scene in an automatic way. Description is understood as the localization
and identification of the objects in the scene, depending on their features [1].
The main handicap in vision applications is the high computational cost that
the algorithms that extract those features of the scene it implies. Nowadays, the
large size images makes the number of operations needed increase considerably.
Moreover, if real time performing is desired, execution-time of algothim must be
as low as possible.

Usually, the platforms used to implement these algorithms are systems based
on sequential programs. These are not, however, the most suitable elements for
this kind of applications from the performance point of view, so, the search for
new image processing systems is justified. In this sense, most of the vision sys-
tems can be divided in three levels, attending to the computational features: low
level (such as filtered or convolutions), medium level (such as image segmenta-
tion) and high level (such as matching algorithms) [2].

It is, thus, important to select the necessary hardware platform depending on
the complexity of the processing tasks. Since a conventional PC cannot carry
out a bit operations concurrently, the system performance on a PC for image
processing would be very poor. However, an ad-hock hardware design platform
may overcome this problem. On the contrary, the kinds of operations to be done

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 152–157, 2006.
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keeping high performance are relatively simple (filtering, image decompression,
etc.). If it is desired to implement more complex algorithms, they must be re-
formulated in order to exploit the characteristics of the platform where they are
implemented.

In this work a platform based on a FPGA and intended for vision applica-
tions is presented. It will be in charge of: capturing images provided by a high
resolution sensor, applying a convolution with a mask over that image and fur-
ther transmission of that preprocessed image to a PC by USB bus. The whole
architecture is depicted in the figure 1.a).

The sensor chosen is the MT9M413, by Micron [3]. This monochrome sensor
has as best feature the high speed that it can reach: 500fps with a 1280x1024
pixel-resolution. Its internal architecture permits connection with an external
controller, allowing other operations to be carried out, as exposition-time con-
figuration or choosing the desired window, by means of a set of control-signals.

The rest of the chapter is organized as follows: chapters 2 and 3 describe
general remarks and a block diagram of the proposed design. Finally, a re-
sults section where time-relations and consumed resources inside the FPGA are
shown.

a) b)

Fig. 1. a) Block-diagram of the developed real-time image-processing system. b) Block-
diagram of the implemented system.

2 System Description

As it has been already said, one of the goals of this work has been the design of
a specific architecture for image processing. The whole system is controlled by a
FPGA of the Virtex II-Pro family, by Xilinx (XC2VP7) - aVirtex II Pro device
has been chosen because of its versatility. This FPGA is mainly in charge of:

PC-parallel port of communication: It is only used to configure some para-
meters of the CMOS sensor (exposition time, window selection, status, etc).
It is used used for this purpose due to its high speed and simplicity. Hence,
an interface or parallel-port controller has been implemented in the FPGA
which manages properly the data lines and the control lines of the paral-
lel port. A PC will communicate with the FPGA through the parallel port
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using a set of registers implemented in the FPGA. The global controller of
the FPGA (see Fig.1.b) will be in charge of handle the information from/to
each register.

Memory controller: The system includes 8 Mbytes of external SDRAM mem-
ory where captured images, and further processed ones, are stored. The main
feature of this kind of memories is the need of continuous refresh. Other
features of these memories are: data-bus width: 32 bits, maximum clock fre-
quency: 125MHz, memory internal configuration: 4 banks x 512K x 32bits
(8MB), manual refresh control and different access modes dependin g on the
data-burst size to be read and written. The memories have CAS, RAS and
WE control signals to manage the writing, reading and refreshing processes.
The memory controller has also been designed using VHDL.

USB controller: This other communication channel is used to transmit proce-
ssed images. The FPGA has been connected to an external USB-transceiver,
the GT3200 by SMSC, in order to send images at high speed. This solution
provides a simple communication channel between the FPGA and the PC.
The transceiver implements the USB 2.0 protocol so, the maximum data
transfer speed rate could reach 480Mbps (60MBps). The interface designed
in the FPGA has been developed from the one shown in www.opencores.org
[4]. The maximum speed supported by this bus permits transfering images
without any problems. For all these reasons, the use of this channel to send
processed images from the FPGA to the PC is suitable.

Image processing: In this case, a convolution with a squared nxn-elements
mask is made. The mask size is configurable in compilation time but its
values are assigned by the user at execution time. This block can be repli-
cated or made more complex as long as the process algorithms require or
the FPGA resources allow.

Image-capture and CMOS sensor controller: The sensor used has some
control signals that must be enabled from the FPGA. Besides, apart from
the image processing block, and depending on the desired image size, an
average or decimating of the captured image is made. Two solutions have
been designed for our proposal in case that the size of the desired window is
smaller than the maximum size:
a) The first one has been making a decimate (D) of value 8, 4, 2 or 1. This

option is the simplest one to realize as the system keeps only one row
and one pixel out of D rows and D pixels respectively. In this way, the
final size of the image is reduced by a DxD factor. However, this choice
presents the serious drawback of excessive aliasing.

b) The second option consists in implementing a module (binning block)
that averages the samples that are desired to be decimated. If this choice
is taken an average of all the decimated samples will be done so that a
result affected by less aliasing is obtained, in respect with the previous
case.

Both choices are selectable by the user. Its internal structure can be seen in
figure 2.a).
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a) b)

Fig. 2. a) Internal structure of the CMOS sensor controller and the image capturing
system of the developed system. b) Convolution process between an image and a 3x3
mask.

3 Image Processor

Once the image has been captured, and a decimate or an average has been carried
out, the image is processed. In this work, a system able to make a convolution
a mask formed by the coeffients of n × n elements has been developed. These
coefficients may be changed by the user through the parallel port. The maximum
convolution-mask size depends on the resources of the FPGA and it must be
specified during design time.

The new approach proposed is a block based on the use of some FIFO memo-
ries, which allows generating an output pixel at each clock cycle once the inicial
latency has passed (see Fig. 2.b). The block stores every complete row of the
image in a FIFO, so each pixel is ready to use when the calculation of the
convolution for each row takes place [5].

This way the latency of the system is minimized and at the same time the
use of the memory is optimized as data do not need to be stored to computed
the convolution. As it is shown in Fig. 2.b, once the last pixel of the image has
arrived multiplication by the last coefficient of the mask (Cm,m) is done, as well
as the sum (first term in the sum in (1)) with the accumulated rest from the
whole previous convolution operation (1).

Ri,j = Pm,m · Cm,m

M∑
k=1

m−1∑
l=1

Ck,l · Pi+k−m,j+l−m (1)

Where the second term in (1) is what it has been called accumulated result
of the MAC-operation. The lapse of time since the the camera delivers the last
pixel of the image, until the last convolution is performed generating the last
result, is call latency (Li), and is calculated as:

Li = (X · m + m + 1) × TCLK + W · TCLK (2)
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The first term corresponds to the time needed to process all the remaining
points after the last pixel has been captured, and W is the processing-system
depth. Here, the pixel capture-time, the multiplication and the sum are included.
Finally, TCLK is the period of the system clock-signal.

4 Results and Conclusions

In this section, an example of a captured and further processed image is shown,
as well as an analysis of the resources and the time consumed by the system.

A 1024x1024 size image has been taken and a 4x4 binning has been carried
out so that the final size becomes 256x256 pixels (see Fig. 3.a). Further, a con-
volution with an edge-detection specific mask is applied to the image (see Fig.
3.b). Thanks to the binning operation the image size can be efficiently reduced
without loosing too much resolution. In this case the mask C is the 3x3 Laplacian
operator, normalized to integer values. This mask is specially useful for image
edge-detection.

In table 2 the results form the point of view of the resources consumed for a
Virtex Pro (XC2VP7) with 4928 Slices are shown.

The maximum frequency allowed is over 100 MHz but, however, the global
clock of the system runs at 100 MHz, so the system has been tested for this
frequency. For this value the memory has 2 cycles latency.

Table 1. Consumed-resources summary of the binning-based design for a XC2VP7

Consumed slices 1084 slices (21 %)

Capture: 130 Slices
Binning: 344 Slices
Convolution: 444 Slices
Max. freq: 166,66 M:z
RAM blocks: 6 (3 FIFO’s)
Multipliers: 9 hardware multiplier

T = Tcapture + Ltotal , where Tcapture = 132 × 1024 × TCLKCAMARA (3)

Ltotal = Lcapture +Lbinning +Lconv = 10TCLK +4TCLK +(
n

B

2
+4)×TCLK (4)

Where LTOTAL is the total latency time, being TCLKCAMERA the camera clock-
period, n, the maximum square-matrix size (1024) TCLK the FPGA clock period
and B the binning factor. Hence, for B = 4 (256×256 size of the output image),
TCLK = 100 MHz and TCLKCAMERA = 10 MHz, the system spends about 3.5
ms, what implies a total processing speed of 74 frames/s.

As conclusions, we may note that the architecture presented in this work has
been designed to be used as base-platform for different artificial vision applica-
tions. The use of a high resolution and high frequency sensor, together with a
FPGA, allows this platform to be used for many different algorithms. Also, a
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very fast image-convolution system has been shown in this work. Finally, the
PCA (Principal Component Analysis) algorithm is currently being developed
based on this platform.

a) b)

Fig. 3. a) Image-size reduction by means of a 4×4 binning. b) Application of a 3×3
mask to the image on left side.
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Abstract. Low vision patients are subjects with very restricted visual fields or 
low contrast. There are different pathologies affecting this kind of patients. 
From a functional point of view the residual vision can be classified in three 
categories: low contrast vision, tunnel vision and peripheral vision. This 
contribution describes simple real-time image processing schemes that can help 
this kind of patients. The presented approaches have been implemented in 
specific hardware (FPGA device) to achieve real-time processing with low cost 
portable systems. This represents a very valid alternative to optical aids that are 
widely used in this field. 

1   Introduction 

There are several kinds of low vision patients suffering pathologies that reduce their 
visual fields. The pathologies can be classified in two types:   

• Degenerative: in this case the visual capability gets degraded progressively.  
• Post-traumatic: the visual field restriction has been produced by an accident, and 

the damage is permanent but stable. 

The residual vision can have different characteristics. There are patients that loose 
their peripheral vision (they suffer from tunnel vision). These patients are able to read 
and watch TV, because both tasks require a very small visual field (fovea vision). 
However, their capability to walk and navigate in an urban environment is very 
limited. Other patients loose their fovea vision (due to macular degeneration for 
instance); they suffer from peripheral vision. In this case, the subject loses his central 
visual field; they can walk easily and avoid objects but they can hardly read and 
watch TV. Finally, there are other pathologies (such as retinitis pigmentosa) that 
produce low resolution vision.  The prevalence of these different kinds of anomalies 
is very low (about 17 per thousand). Normally these patients use lenses based devices 
[1], [2] to partially compensate this restricted vision, although different research 
groups explore the possible use of electronic technology for real-time image 
processing in this field [3], [4], [5]. There are also commercial products [6] but they 
are video magnifiers, with low portability and only providing zooming capabilities.  
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The motivation of using reconfigurable hardware (FPGAs) in this application can 
be summarized in the following points: 

1. The population suffering these pathologies is reduced and very diverse. Each 
patient has his own requirements: tunnel vision, peripheral vision, low contrast, 
etc; furthermore each patient may suffer from a kind of limited vision in different 
degrees. Therefore, instead of developing a different platform for each of these 
visual restrictions, a single hardware platform can be customized for different 
image processing tasks.  

2. Temporal disease evolution. The systems need to be adapted to the pathology 
evolution in the degenerative cases. 

3. Portability. The image processing device needs to be carried by the patient in 
order to be used for walking and similar tasks. 

4. Low cost: these devices represent only aids, in the absence of a definitive solution 
to their limited vision. Each patient has different requirements, which make the 
system difficult to be used by different subjects without reconfiguring it.  

The complete system for low vision aids is shown in Fig. 1. It is composed of a 
camera (image acquisition), a FPGA device (for real-time image processing) and a 
portable display (HMD: Head Mounted Display) NOMAD ND2000 16 º HF. 

 

Fig. 1. Low vision aid composed of a camera, a FPGA prototyping board and a HMD 

In this work we describe the design and hardware resources cost of a real-time 
image processing device for this kind of application. We use a low cost FPGA 
prototyping platform (RC100 of Celoxica [7] shown in Fig. 1) that includes video 
input and VGA output. 

2   Real Time Image Processing 

We have focused on the implementation of three simple image processing algorithms 
that are useful for the described pathologies. In this way, a single board could be 
fabricated for the different pathologies. The medical specialist only needs to program 
the configuration EPROM with the proper file to adapt the device to a specific 
pathology and a restriction degree. 

The three developed applications are: Contrast enhancement. For patients with low 
contrast vision, edges multiplexing with the original image in the central visual field 
(useful for patients with tunnel vision) and digital zoom of the image for patients with 
peripheral vision. 
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2.1   Contrast Enhancement  

The contrast enhancement that we have implemented consists in extracting the edges 
and superimpose them with the original image at the same position with a polarity 
that depends on the context (this requires a not transparent HMD). That means that we 
redraw a black trace on a light background and a white trace on a dark background, as 
it can be seen in the marked area in Fig. 2.a. After testing different contrast 
enhancement algorithms we have chosen this approach due to its high quality and low 
computational requirements. The patient can control the relative intensity of the re-
drawn edges with two buttons.  

(a) 

 

(b) 

 

Fig. 2. (a) Contrast enhancement. (b) Global scene structure multiplexing (edges multiplexed in 
the central visual field). The bottom figure shows a detail of the patient’s visual field. 

2.2   Global Scene Structure Multiplexing 

The patients with tunnel vision have a very restricted central visual field but of high 
resolution. For these patients it is useful to have information of a wider visual field to 
be able to walk easily. For this purpose, as an alternative to wide angle lenses [8] 
other authors have proposed the possibility of drawing the edges of a wider visual 
field on the central visual area. In this case, the patient can focus his attention on the 
edges to walk and neglect them or even switch them off for other tasks. This kind of 
image processing is shown in Fig. 2.b. This application requires a see-through HMD 
as shown in Fig. 1. It is important to give the patient the possibility of controlling 
easily (with two buttons) the edges threshold. In this way, he controls the amount of 
information that is displayed on the top of the central visual field. 
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2.3   Digital Zoom 

The patients with peripheral vision have a wide visual field but with low resolution. 
Currently, telescopic devices (based on lenses) are being used as aids [9] to read. For 
this kind of pathology we have implemented a digital zoom, in this way the patient 
can control easily (with two buttons) the zoom used in each moment. 

 

(a) 

 

(b) 

 

(c) 

Fig. 3. Block diagrams of the different systems. (a) Contrast enhancement. (b) Global scene 
structure multiplexing. (c) Digital zoom. 
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3   Image Processing Implemented in Specific Hardware 

The three designs have been included in an EPROM memory on the RC100 
prototyping board shown in Fig. 1. In this way, the platform can be configured for 
each particular task For the three algorithms, the FPGA (Spartan-E 200K) of Xilinx 
[10] included in the board is configured with an embedded frame-grabber as front 
end, that receives the images from the camera. After this stage the image processing 
module depends on the algorithm, and finally the output stage generates a VGA 
format image. The FPGA includes 200K gates that are enough to implement the three 
described applications.  

Fig. 3 shows the block diagrams of the three processing schemes, which have been 
implemented in the circuits. Table 1 indicates the characteristics of the circuits 
designed for the image processing tasks described above. All of them include the 
input (frame grabber) and output (VGA signal generator) modules. The frame grabber 
has been used in the three designs and requires 757 slices (32% of the device).  

Table 1. Hardware resources cost using a FPGA Spartan-E 200K of Xilinx 

 Number of Slices Device use (%) Frames/sec 

Contrast enhancement 1319 56 25 

Edges multiplexing 2350 99 25 

Digital Zoom 948 40 25 

4   Discussion 

We have described an aid platform for low vision patients based on real-time image 
processing. Three simple image processing algorithms have been adopted for the three 
described pathologies: tunnel vision, peripheral vision and low contrast vision. The 
circuits implemented for these processing tasks have been described, and the 
implementation costs (in terms of the device usage) have been evaluated. Taking into 
account that we have used a very low cost FPGA, the results are very promising. The 
complete platform is composed of a camera, a processing board (with a FPGA device 
as processing chip) and a HMD. Currently the described platform is being evaluated 
with real patients in different tasks. A preliminary evaluation has produced promising 
results: a) we are able to expand the actual visual field of tunnel vision patients by a 
factor of 4.5 using the global scene structure multiplexing without significantly 
degrading the visual acuity, b) although their ability to walk in environments with 
obstacles experimentally remains constant, it increases considerably the users 
confidence, c) the visual acuity increases linearly using the digital zoom application 
with different augmentations (x2 steps) up to a level of 0.6 where it saturates towards a 
value of one [11], and d) the contrast enhancement application has been evaluated by 
[12]. We also have tested the system autonomy. The nomad HMD uses its own 
batteries with about 8 hours of autonomy. We measured the current consumption of the 
FPGA platform which is 410 mA (80 mA coming from the camera). We use a standard 
Ni-Mh battery of 2400 mA, providing a total system autonomy of five and half hours.  
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The main contribution of the presented work is the implementation of specific 
hardware for simple real-time processing tasks for specific visual pathologies. Other 
simple image processing tasks (image polarization inversion, contrast inversion) have 
already been implemented and are also being evaluated for different diseases. The 
great variability in the pathology affection levels and also the gradual evolution of the 
pathology makes reconfigurable hardware a very appropriate technology for this kind 
of applications. 
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Abstract. This paper describes a general purpose system based on el-
ementary motion and rigid-body detection that is able to efficiently seg-
ment moving objects using a sparse map of features from the visual field.
FPGA implementation allows real-time image processing on an embed-
ded system. The modular design allows to add other modules and to use
the system in very diverse applications.

1 Introduction

It is known that the detection and analysis of motion are achieved by neural
operations in biological systems, starting with registration of local motion sig-
nals, at low level processing stages, within restricted regions of the visual field,
and continuing with the integration of those local motion features into global
descriptions of the direction, speed and object motion, in higher level process-
ing stages. This bottom-up strategy is adopted in the proposed system and is
implemented in an FPGA device.

The system described uses the motion information to solve the segmentation
problem. In other words, firstly the system extracts the structure of the scene
that is mainly embodied in highly contrasted features (edges), as biological sys-
tems do when using specific cells (local contrast on-centre-off-surround and vice
versa) [1, 2, 3], the next point is to detect moving objects through a multiplica-
tive correlation detectors (Elementary Motion Detectors – EMD) described by
Reichardt [4], that emulate the dynamics of early visual stages in insects. Both
processes take place at low level processing stage.

In mid-level neural layer, that follows a competitive scheme, the system filters
the moving features; in other words, segment the moving objects using velocity
channels which define the motion of a rigid body [5].

The next sub-sections describe the low-level (Sobel based edge extraction [6]
and Reichardt based motion detection) to mid-level (integration of local signals)
neural processing scheme that adopts the presented hardware system, and the
evaluation results.

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 164–169, 2006.
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2 Hardware Implementation

A conventional monochrome CCD camera provides 30 frames per second of
640x480 pixels and 256 gray levels. These input frames are processed using a
Virtex-II FPGA (XC2V1000 device) [7] and 2 banks of ZBT SRAM.

The algorithm allows us to build a modular architecture that takes full advan-
tage of the parallelism and pipeline resources inherent to the FPGA platforms.
Each functional module adopts a micro-pipelined processing scheme that com-
putes one pixel per clock cycle, and the whole system follows the macro-pipelined
structure (both, macro- and micro- pipeline are shown in Fig. 1). The system
is structured in the following processing units: Frame-Grabber (S1); Memory
management modules; Edges extraction (S2); Direction selective pixel wise cor-
relation with different velocities (S3); Velocity estimation stage that follows a
Winner-takes-all structure to compute the maximum. (S4); Selection of domi-
nant moving features (S5).

Fig. 1. Pipelined structure of the system

Now we briefly summarize the main micro-pipeline characteristics of each
processing stage in the implemented design. The input image is received by the
frame-grabber (S1) that stores the data into a FIFO buffer, implemented on an
embedded memory block. This FIFO structure allows us to extract the spatial
edges (S2) of the image by convolution with a Sobel 3x3 mask. The edge pixels
are stored in the external SRAM bank 1. During correlation stage, each EMD
correlates the outputs from its two detector cells, which have a characteristic
temporal separation (Δt).

This behavior is emulated by hardware doing a correlation of the current
pixel with pixels from a different frame, and placed at different spatial positions.
This choice characterizes the set of different velocities of the collection of EMDs.
Hence, it is necessary to store, at least, the edges of one previous image, to
correlate them with the pixels from the current image. The system has one frame
of latency due to the correlation module requirements that do not represent a
problem for processing. This is a usual ‘limitation’ of systems that require a
temporal processing.
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The micro-pipeline structure in stage S3 works in the way that the edge
extraction module provides a pixel from the current image, this current pixel is
provided to the correlation stage and is also stored in the external memory bank.
The current pixel is correlated, in parallel, with different pixels of a previous
image that we have recovered from the memory bank.

During the S1 and S2 stages the pipeline structure is composed by a single
data path, but at the correlation stage the pipeline structure is composed by
different parallel data paths, one for each correlation, taking again advantage of
the parallelism of the FPGA device.

The current velocity of the processed pixel will be the maximum among the
correlation values. In order to compute the maximum as fast as possible (velocity
estimation stage) we have used the micro-pipelined winner-takes-all scheme (S4)
shown in Fig. 1. Each cube at C1 stage in Fig. 1 represents a correlation value.
All the correlations values are obtained in parallel at the same clock cycle. Then
we compare the correlation values by pairs in the same clock cycle to obtain local
maximums (C2). Finally, the velocity estimation (C3) is the maximum between
A and B. The micro-pipelined winner-takes-all scheme (S4) illustrated in Fig.
1 allows the global computation of one pixel per clock cycle, with a latency
that depends on the number of primary correlation values, i.e. the number of
velocities that we can compute. The advantage of this strategy is that we can
compute as many velocities as necessary if we have enough equivalent gates to
implement the parallel comparator-based structure. The output of the winner-
takes-all-stage (S4) is stored in the external memory bank to be filtered with the
results of the dominant features stage (S5).

The next stage (S5) segments the moving objects using more global motion
information. A first stage defines velocity channels in overlapping regions of the
image. Each velocity channel integrates the pixels that share the same velocity at
the window. Next, the pipeline follows a similar scheme as the velocity estimation
stage described above, i.e., the velocity channels compete among them, and the
winner (this that integrates the maximum number of features sharing the same
velocity) is the one that defines a moving object (we have define a rigid body
moving along the scene) in this window. The necessity of storing data in the
external SRAM banks forces us to design a module that allows the writing and
reading to/from the SRAM banks as many times as necessary. This process of
storing data consumes 2 cycles per pixel.

The pipeline structure of Fig. 1 consumes one cycle per stage due to the
parallelism used; therefore, the limitation of the system is in the external memory
banks access. In spite of this, the system is able to process images of 640x480
pixels at the speed of 512 frames per second, when the global clock is running
at 31.5 MHz. Table 1 summarizes the main performance and hardware cost
of the different parts of the system implemented and the whole system. The
Virtex-II FPGA has one million system gates, distributed in 5120 slices, and 40
embedded memory blocks of a total of 720 Kbits. The ISE environment provides
us the results in Table 1, which are rough estimations extracted from sub-designs
compilations. When the system is compiled as a whole many resources are shared.
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Note that the percentage of device occupation is 66%. This enables the possi-
bility of using other devices with less equivalent gates (i.e. lower cost), computing
higher resolution images with parallel processing units or adding other process-
ing blocks towards specific application tasks. The spare equivalent gates can
be employed in other processing stages, for example in a tracking process that
alerts the driver when an overtaking car is detected (an example of this scenario
is given in the next section). The circuit characterized in table 1 only includes
lateral motion detection based on vertical edges. This approach is well suited for
the goal real world application.

Table 1. Hardware cost of the different stages of the described system (estimated by
the ISE environment). The global clock of the design is running at 31.5 MHz, and the
image size is 640x480 pixels.

Pipeline stage Number of Slices % device occupation % on-chip memory
Frame-Grabber 904 17 3
Edges extraction 185 3 2
Correlation process 2,296 44 0
Dominant features 1,033 20 0
Total system 3,415 66 5

3 Evaluation

The presented evaluation uses two real sequences. The first sequence was taken
from the movie “Modern times” by C. Chaplin. The sequence shows two peo-
ple moving sideways (Chaplin is moving leftwards while the waitress is moving
rightwards) in front of a static camera. The system task is to segment both
people. The other sequence shows a real overtaking sequence. The camera is
onto the driver-mirror in a moving car. The scene shows an overtaking vehicle
approaching to the vehicle in which the camera is mounting on. This example
is a complex scenario, due to the ego-motion of the camera all the points are
moving through the scene, and the system task is to segment the overtaking
vehicle.

It is a difficult task to evaluate the segmentation quality of the algorithm using
real images since pixels are not labeled according to the object they belong
to. Therefore, we manually labeled the moving objects in the image, i.e. we
carefully mark the goal objects labeling each pixel belonging to them, and then,
we will compare the results of the automatic motion-driven segmentation with
the marked labels.

We define the segmentation rate as the ratio between the well classified fea-
tures in an object and the total number of moving features segmented that belong
to this object. Figure 2 shows the results of segmentation rate. They are always
above 85% when rigid body motion filtering is applied, these results improve the
segmentation without filtering stage, which are below 80% when a static camera
is used and below 70% when the camera has ego-motion.
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Fig. 2. Segmentation rate through different images of the: (a) Moving person to the
right on the Chaplin’s sequence; (b) Moving person to the left on the Chaplin’s se-
quence; (c) Overtaking vehicle on the car sequence

Fig. 3. Original images and motion-driven segmented objects

Fig. 3 shows the experimental results on real sequences. Rigid body motion
detection allows us to minimize the noisy patterns and to segment the two peo-
ple in Chaplin’s sequence (the waitress and Chaplin are segmented) and the
overtaking car in the overtaking sequence.

4 Conclusions

This contribution describes a general purpose segmentation system based on
motion detection. The front-end of the system are Reichardt motion detectors
(EMDs). We define filters based on motion patterns of the image that seem to
correspond to moving objects. These filters effectively clean noisy patterns (due
to the temporal aliasing) and help to segment the moving object (if present). This
filtering technique is a robust scheme because it is only based on a rigid body
motion rule. It detects areas with a population of features moving coherently
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(with the same speed and direction), being good candidates for a moving rigid
body. In this way, the moving features are processed in a competitive manner,
only patterns that activate a whole population of detectors with a similar velocity
pass through this dynamic filter stage.

The results with real sequences have been evaluated. The hardware cost of
the proposed system is low and allows the use of cheaper devices than other
vision based algorithms. The described real-time computing scheme in embedded
FPGA systems (portable) together with the very promising results obtained in
the general context posed, opens good application perspectives in diverse fields
(robot vision, automobile industry, surveillance, etc).

The system architecture based on independent processing units (modular ar-
chitecture), each of them working at one pixel per clock cycle, allows us to add
other units to the whole system. The new units could be connected to the whole
system to pre- or post- process the sequences to address different applications
or could constitute a parallel processing with a final information fusion. Some
of these schemes will be part of our future work.

The presented scheme is based on a sparse map of pixels (less of 15% of
the pixels in each frame have information different from 0). If we exploit this
characteristic adopting an event-driven computing scheme we can increment the
computing power of the system, the frame-rate of the camera, etc.

Acknowledgements. This work has been supported by the National Project DE-
PROVI (DPI2004-07032) and the European Project DRIVSCO.
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Abstract. We propose the multiple LUT cascade as a means to configure an n-
input LPM (Longest Prefix Match) address generator commonly used in routers
to determine the output port given an address. The LPM address generator accepts
n-bit addresses which it matches against k stored prefixes. We implement our
design on a Xilinx Spartan-3 FPGA for n = 32 and k = 504 ∼ 511. Also, we
compare our design to a Xilinx proprietary TCAM (ternary content-addressable
memory) design and to another design we propose as a likely solution to this
problem. Our best multiple LUT cascade implementation has 5.20 times more
throughput, 31.71 times more throughput/area and is 2.89 times more efficient
in terms of area-delay product than Xilinx’s proprietary design. Furthermore, its
area is only 19% of Xilinx’s design.

1 Introduction

The need for higher internet speeds is likely to be the subject of intense interest for
many years to come. A network’s speed is directly related to the speed with which a
node can switch a packet from an input port to an output port. This, in turn, depends
on how fast a packet’s address can be accessed in memory. The longest prefix match
(LPM) problem is one of determining the output port address from a list of prefix
vectors stored in memory. For example, if the prefix vector 01001**** is stored in
memory, then the packet address 010011111 matches this entry. That is, each bit in the
packet address matches exactly the corresponding digit in the prefix vector or there is
a * or don’t care in that digit. If other stored prefixes match the packet address, then
the prefix with the least don’t care values determines the output port address. That
is, the memory entry corresponding to the longest prefix match determines the output
port.

An ideal device for this application is a ternary content-addressable memory
(TCAM). The descriptor “ternary” refers to the three values stored, 0, 1, and *. Un-
fortunately, TCAM dissipates much more power than standard RAM [1].

Several authors have proposed the use of standard RAM in LPM design. Gupta,
Lin, and McKeown showed a mechanism to perform LPM every memory access [2].
Dharmapurikar, Krishnamurthy, and Taylor propose the use of Bloom filters to solve
the LPM problem [3]. Sasao and Butler have shown that a fast, power-efficient TCAM
realization using a look-up table (LUT) cascade [4].

In this paper, we propose an extension to the LUT cascade realization: a multiple
LUT cascade realization that consists of multiple LUT cascades connected to a special
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encoder. This offers even more efficient realizations in an architecture that is more easily
reconfigured when additional prefix vectors are placed in the prefix table.

We have implemented six types of LPM address generators on the Xilinx Spartan-
3 FPGA (XC3S4000-5): Four different realizations using multiple LUT cascades, one
using Xilinx’s TCAM realization based on the Xilinx IP core, and one using registers
and gates. In addition, we compare the six types of LPM address generators on the basis
of delay, delay-area product, throughput, throughput/area, and FPGA resources used.

The rest of the paper is organized as follows: Section 2 describes the multiple LUT
cascade. Section 3 shows other realizations for the LPM address generators. Section 4
presents the implementations of the LPM address generator using an FPGA. Section 5
shows the experimental results. Section 6 concludes the paper.

2 Multiple LUT Cascades

2.1 LPM Address Generators

A content-addressable memory (CAM) [5] stores 0’s and 1’s and produces the address
of the given data. A TCAM, unlike a CAM, stores 0’s, 1’s, and *’s, where * is a don’t
care value that matches both 0 and 1.

TCAMs are extensively used in routing tables for the internet. A routing table speci-
fies an interface identifier corresponding to the longest prefix that matches an incoming
packet, in a process called Longest Prefix Match (LPM). In the PLM table, the ternary
vectors have restricted patterns: the prefix consists of only 0’s and 1’s, and postfix con-
sist of only *’s (don’t cares). In this paper, this type of vector is called a prefix vector.

Definition 2.1. An n-input m-output k-entry LPM table stores k n-element prefix vec-
tors of the form V EC1 · V EC2, where V EC1 is a string of 0’s and 1’s, and V EC2
is a string of *’s. To assure that the longest prefix address is produced, TCAM entries
are stored in descending prefix length, and the first match determines the LPM table’s
output. An address is an m-element binary vector for m = �log2(k+1)�, where �a� de-
notes the smallest integer greater than or equal to a. The corresponding LPM function
is a logic function f : Bn → Bm, where f(

→
x) is the smallest address of an entry that is

identical to
→
x except possibly for don’t care values. If no such entry exists, f(

→
x) = 0m.

The LPM address generator is a circuit that realizes the LPM function.

Example 2.1. Table 1 shows an LPM table with 5 4-element prefix vectors. Table 2
shows the corresponding LPM function. It has 16 entries, one for each 4-bit input. The
output address is stored for each input corresponding to the address of the longest prefix
vector that matches it. (End of Example)

2.2 An LUT Cascade Realization of LPM Address Generators

An LPM function can be realized by a single memory. However, this often requires
prohibitively large memory size. We propose functional decomposition [6,7] to realize
the LPM function with lower storage requirements. For a given LPM function f(

→
x),

let
→
x be partitioned as (

→
xA,

→
xB). The decomposition chart of f is a table with 2nA
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Table 1. LPM table

Address Prefix Vector
1 1000
2 010*
3 01**
4 1***
5 0***

Table 2. LPM function

Input Output Address Input Output Address
0000 5 1000 1
0001 5 1001 4
0010 5 1010 4
0011 5 1011 4
0100 2 1100 4
0101 2 1101 4
0110 3 1110 4
0111 3 1111 4
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Fig. 1. Decomposition for the LPM function f
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Fig. 2. LUT cascade

columns and 2nB rows, where nA and nB are the number of variables in
→
xA and

→
xB ,

respectively. Each column and row is labeled by a binary number, and the corresponding
element in the table denotes the value of f . The column multiplicity, μ, is the number of
different column patterns of the decomposition chart. Then, using functional decompo-
sition, the function f can be decomposed as f(

→
xA,

→
xB) = G(H(

→
xA),

→
xB), as shown

in Fig. 1, where the number of rails (signal lines between two blocks H and G) is
�log2 μ�. By iterative functional decomposition, the given function can be realized by
an LUT cascade, as shown in Fig. 2 [8,9].

Theorem 2.1. [4] An n-input LPM address generator with k prefix vectors can be
realized by an LUT cascade, where each cell realizes a p-input, r-output combinational
logic function. Let s be the necessary number of levels or cells. Then,

s ≤ �n − r

p − r
�, (1)

where p > r and r = �log2(k + 1)�.

2.3 LPM Address Generators Using the Multiple LUT Cascade

A single LUT cascade realization of an LPM function often requires many levels. Since
the delay is proportional to the number of levels in a cascade, we wish to reduce the
number of levels. According to (1), if we increase p, the number of inputs to each cell,
then the number of levels s is reduced. For each increase by 1 of p, the memory needed
to realize the cell is doubled. However, as shown in Fig. 3, we can use the multiple LUT
cascade to reduce the number of levels s while keeping p fixed. For an n-input LPM
function with k prefix vectors, let the number of rails of each LUT cascade be r. First,
partition the set of prefix vectors into g groups of 2r − 1 vectors each, except the last
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Fig. 3. Architecture of the multiple LUT cascade

group, which has 2r − 1 or fewer vectors, where g = � k
2r−1�. For each group of prefix

vectors, form an independent LPM function. Next, partition the set of n inputs into s
groups. Then, realize each LPM function by an LUT cascade. Thus, we need a total
of g LUT cascades, and each LUT cascade consists of s cells. Finally, use a special
encoder to produce the LPM address. Let vi (i = 1, 2, ..., g) be the i-th input of the
special encoder, and let vout be the output value of the special encoder. That is, vi is
the output value of the i-th LUT cascade, where its binary output values are viewed as
a standard binary number. Similarly, vout is the output of the special encoder, where
its binary output values are viewed as a standard binary number. Then, we have the
relation:

vout =
{

vi + (i − 1)(2r − 1) if vi = 0 and vj = 0 for all 1 ≤ j ≤ i − 1
0 if vi = 0 for all 1 ≤ i ≤ g.

Note that vout is the position of a prefix vector v in the complete LPM table, while i is
the index to the LUT cascade storing v. (i − 1)(2r − 1) is the position in the LPM table
of the last entry of the previous (i − 1)-th LUT cascade or is 0 in the case of the first
LUT cascade. Adding vi to this yields the position of v in the complete LPM table.

Example 2.2. Consider an n-input LPM function with k prefix vectors. When k = 1000
and n = 32, by Theorem 2.1, we have r = 10. Let p = r + 1 = 11. When we use a
single LUT cascade to realize the function, by Theorem 2.1, we need �n−r

p−r � = 22
cells, and the number of levels of the LUT cascade is also 22. Since each cell has
11 address lines and 10 outputs, the total amount of memory needed to realize the
cascade is 211 × 10 × 22 = 450, 560 bits. Note that the memory size of each cell,
211 × 10 = 20, 480 bits, is too large to be realized by a single block RAM (BRAM) of
our FPGA, which stores 18, 432 bits.

However, if we use a multiple LUT cascade to realize the function, we can reduce
the number of levels and the total amount of memory. Also, the cells will fit into the
BRAMs in the FPGAs. Partition the set of vectors into two groups, and realize each
group independently; then, we need two LUT cascades. For each LUT cascade, the
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number of vectors is 500, so we have r = 9. Also, let p = r + 2 = 11. Then, we need
�n−r

p−r � = 12 cells in each cascade. Note that the number of levels of the LUT cascades
is 12, which is smaller than the 22 needed in the single LUT cascade realization. Since
each cell consists of a memory with 9 outputs and at most 11 address lines, the total
amount of memory is at most 211 × 9 × 12 × 2 = 442, 368 bits. Also, note that the size
of the memory for a single cell is 211 × 9 = 18, 432 bits. This fits exactly in the BRAMs
of the FPGAs.

Thus, the multiple LUT cascade not only reduces the number of levels and the total
amount of memory, but also adjusts the size of cells to fit into the available memory in
the FPGAs. (End of Example)

Fig. 3 shows the architecture of the multiple LUT cascade. The realization with this
architecture is the multiple LUT cascade realization. It consists of a group of LUT
cascades and a special encoder. The inputs of each LUT cascade are common with
other LUT cascades, while the outputs of each LUT cascade are connected to the spe-
cial encoder. Each LUT cascade realizes an LPM function, while the special encoder
generates the LPM address from the outputs of cascades.
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Fig. 4. Detailed design of the LUT cascade

For an n-input LPM function with k prefix vectors, the detailed design of the LUT
cascade is shown in Fig. 4, where

→
x i (i = 1, 2, ..., s) denotes the primary inputs to the

i-th cell,
→
d i (i = 1, 2, ..., s) denotes the data inputs to the i-th cell and provides the data

value to be written in the RAM of the i-th cell, r denotes the number of rails, where
r ≤ �log2(k +1)�,

→
c j (j = 2, 3, ..., s) denotes the additional inputs to the j-th cell and

is used to select the RAM location along with
→
x j for write access. Note that

→
c j and

→
d i

are represented by r bits. All RAMs except perhaps the last one have p address lines;
the last RAM has at most p address lines. When WE is high, the

→
c j is connected to the

RAM to write the data into the RAMs. When WE is low, the outputs of the RAMs are
connected to the inputs of the succeeding RAMs, and the circuit works as a cascade to
realize the LPM function. Note that the RAMs are synchronous RAMs. Therefore, the
LUT cascade resembles a shift register.
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Example 2.3. Table 3 shows a 6-input 3-output 6-entry LPM table, and the corre-
sponding LPM function is shown in Table 4. Note that the entries in the two tables
are similar. Table 4 is a compact truth table, showing only non-zero outputs. Its input
combinations are disjoint. Thus, the two tables are the same except for three entries.

Single Memory Realization: The number of address lines is 6, and the number of
outputs is 3. Thus, the total amount of memory is 26 × 3 = 192 bits.

Single LUT Cascade Realization: Since there are k = 6 prefix vectors of the func-
tion, by Theorem 2.1, the number of rails is r = �log2 (6 + 1)� = 3. Let the number
of address lines for the memory in a cell be p = 4. By partitioning the inputs into
three disjoint sets {x1, x2, x3, x4}, {x5}, and {x6}, we have the cascade in Fig. 5 (a),
where only the signal lines for cascade realization are shown, and other lines such as
for storing data are omitted for simplicity.

The total amount of memory is 24 × 3 × 3 = 144 bits, and the number of levels is
s = 3. Note that the single LUT cascade requires 75% of the memory needed in the
single memory realization.

Multiple LUT cascade Realization: Partition Table 3 into two parts, each with
three prefix vectors. The number of rails in the LUT cascades associated with each sep-
arate LPM table is �log2 (3 + 1)� = 2. Let the number of address lines for the memory
in a cell be p = 4. By partitioning the inputs into two disjoint sets {x1, x2, x3, x4} and

Table 3. 6-entry LPM table

Address Prefix Vector
1 100000
2 10010*
3 1010**

4 101***
5 10****
6 1*****

Table 4. Truth table for the corresponding LPM function

Input Output LUT
x1 x2 x3 x4 x5 x6 out2 out1 out0 Cascade
1 0 0 0 0 0 0 0 1 Upper
1 0 0 1 0 * 0 1 0 Cells 1
1 0 1 0 * * 0 1 1 and 2
1 0 1 1 * * 1 0 0 Lower
1 0 0 * * * 1 0 1 Cells 3
1 1 * * * * 1 1 0 and 4
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Table 5. Truth tables for the cells in the multiple LUT cascade realization

Cell 1 and Cell 2 (upper LUT cascade) Cell 3 and Cell 4 (lower LUT cascade)
x1 x2 x3 x4 y1 y2 x5 x6 z1 z2 v1 vout x1 x2 x3 x4 y3 y4 x5 x6 z3 z4 v2 vout

1 0 0 0 0 0 0 0 0 1 1 001 1 0 1 1 0 0 * * 0 1 1 100
1 0 0 1 0 1 0 * 1 0 2 010 1 0 0 * 0 1 * * 1 0 2 101
1 0 1 0 1 0 * * 1 1 3 011 1 1 * * 1 0 * * 1 1 3 110
Other values 1 1 * * 0 0 0 † Other values 1 1 * * 0 0 0 †

Other values 0 0 0 † Other values 0 0 0 †
† depends on values from the other LUT cascade

{x5, x6}, we obtain the realization in Fig. 5 (b). The upper LUT cascade realizes the
upper part of the Table 4, while the lower LUT cascade realizes the lower part of the
Table 4. The contents of each cell is shown in Table 5.

Let v1 be the output value of the upper LUT cascade, let v2 be the output value of
the lower LUT cascade, and let vout be the output value of the special encoder. Then,
in Table 5, (z1, z2) viewed as a standard binary number, has value v1, while (z3, z4)
viewed as a standard binary number, has value v2. The special encoder generates the
LPM address from the pair of outputs, (z1, z2) and (z3, z4) :

out2 = z̄1z̄2(z3 ∨ z4),
out1 = z1 ∨ z̄2z3z4,

out0 = z2 ∨ z̄1z3z̄4.

Note that (out2, out1, out0) viewed as a standard binary number, has value vout corre-
sponding to the address in Table 3. The total amount of memory is 24 × 2 × 4 = 128
bits, and the number of levels is 2. Note that the multiple LUT cascade realization re-
quires 89% of the memory and one fewer levels than the single LUT cascade realization.

(End of Example)

3 Other Realizations

3.1 Xilinx’s TCAM

Xilinx [10] provides a proprietary realization of a TCAM that is produced by the Xil-
inx CORE Generator tool [11]. Since a TCAM can directly realize an LPM address
generator, we compare our proposed multiple LUT cascade realization with Xilinx’s
TCAM. In the Xilinx CORE Generator 7.1i, we used the following parameters to pro-
duce TCAMs.

– SRL16 implementation.
– Standard Ternary Mode: Generate a standard ternary CAM.
– Depth- Number of words (vectors) stored in the TCAM: k.
– Data width- Width of the data word (vector) stored in the TCAM: n.
– Match Address Type- Three options: Binary Encoded, Single-match Unencoded,

and Multi-match Unencoded. We used the Binary Encoded option.
– Address Resolution- Lowest or Highest. We used the Lowest option.
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3.2 Registers and Gates

We also compare our proposed multiple LUT cascade realization with a direct realiza-
tion using registers and gates, as shown in Fig 6. We use a register pair (Reg. 1 and Reg.
0) to store each digit of a ternary vector. For example, if the digit is * (don’t care), the
register pair stores (1,1). Thus, for n bit data, we need a 2n-bit register. The comparison
circuit consists of an n-input AND gate and n 1-bit comparison circuits, each of which
produces a 1 if and only if the input bit matches the stored bit or the stored bit is don’t
care (* or 11).
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Fig. 6. Realize the address generator with registers and gates

For each prefix vector of an n-input LPM address generator, we need a 2n-bit reg-
ister, n copies of 1-bit comparison circuits, and an n-input AND gate. For an n-input
address generator with k registered prefix vectors, we need k copies of 2n-bit registers,
nk copies of 1-bit comparison circuits, and k copies of n-input AND gates. In addition,
we need a priority encoder with k inputs and �log2 (k + 1)� outputs to generate the
LPM address. If the n-input AND gate is realized as a cascade of 2-input AND gates,
this circuit can be considered as a special case of the multiple LUT cascade architec-
ture, where r = 1, p = 2, and g = k. Note that the output encoder circuit is a standard
priority encoder.

4 FPGA Implementations

We implemented the LPM address generators for 32 inputs and 504∼511 registered
prefix vectors on Xilinx Spartan-3 FPGAs (XC3S4000-5) [12] by using the multiple
LUT cascade, Xilinx CORE Generator 7.1i, and registers & gates. The FPGA device
XC3S4000-5 has 96 BRAMs and 27648 slices. Each BRAM contains 18K bits, and
each slice consists of two 4-input LUTs, two D-type flip-flops, and multiplexers. For
each implementation, we described the circuit by Verilog HDL, and then used Xilinx
ISE 7.1i to synthesize and to perform place and route.

First, we used the multiple LUT cascade to realize the LPM address generators. To
use the BRAMs in the FPGA efficiently, the memory size of a cell in the LUT cascade
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should not exceed the BRAM size. Let p be number of address lines of the memory in
the cell. Since each BRAM contains 211 ×9 bits, we have the relation: 2p · r ≤ 211 ×9,
where r is the number of rails. Thus, we have p = �log2 (9/r)�+ 11, where �a� denotes
the largest integer less than or equal to a.

We designed four kinds of LPM address generators r6p11, r7p11, r8p11, and r9p11,
as shown in Table 6, where the column Number of prefix vectors denotes the number
of registered prefix vectors, the column r denotes the number of rails, the column p
denotes the number of address lines of the RAM in a cell, the column Group denotes
the number of LUT cascades, and the column Level denotes the number of levels or
cells in the LUT cascade.

To explain Table 6, consider r8p11 which is shown in Fig 7. For r8p11, since the
number of rails is r = 8, the number of groups is � 510

28−1� = 2. Thus, we need two LUT
cascades. Since each LUT cascade consists of 8 cells, the number of levels of r8p11 is
8. To efficiently use BRAMs in the FPGA, the number of address lines of the RAM in
the cell is set to p = �log2 (9/8)�+ 11 = 11. Let v1 be the values of the outputs of the
upper LUT cascade, let v2 be the values of the outputs of the lower LUT cascade, and
let vout be the values of the outputs of the special encoder. Then, we have the relation:

vout =
{

v2 + 255 if v1 = 0 and v2 = 0,
v1 otherwise.

This expression requires 11 slices to implement on the FPGA. After synthesizing and
mapping, r8p11 required 16 BRAMs and 69 slices. From this table, we can see that
decreasing r, increases the number of groups, but decreases the number of levels.

Table 6. Four Multiple LUT Cascade Realizations

Design Number of prefix vectors r p Group Level
r6p11 504 6 11 8 6
r7p11 508 7 11 4 7
r8p11 510 8 11 2 8
r9p11 511 9 11 1 12
r: Number of rails
p: Number of address lines of the RAM in a cell
Group: Number of LUT cascades
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Next, we used the Xilinx CORE Generator 7.1i tool to produce Xilinx’s TCAM.
Since the Xilinx CORE Generator 7.1i does not support TCAMs with 32 inputs and
505∼511 registered prefix vectors, we designed a TCAM with 32 inputs and 504 reg-
istered prefix vectors. After synthesizing and mapping, the resulting TCAM required
8,590 slices. Note that Xilinx’s TCAM requires one clock cycle to find a match.

Finally, we designed the LPM address generator with n = 32 inputs and k = 511
registered prefix vectors using registers and gates, as shown in Fig 6. This design is
denoted Reg-Gates. Note that the number of inputs is 32 and the number of outputs is
9. After synthesizing and mapping, this design required 27,646 slices.

5 Performance and Comparisons

In Table 7, we show the performance of multiple LUT cascade realizations (i.e., r6p11,
r7p11, r8p11, and r9p11), and compare them with Xilinx’s TCAM and Reg-Gates. In
Table 7, the column Level denotes the number of levels or cells in the LUT cascade,
the column Slice denotes the number of occupied slices, the column Memory denotes
the amount of memory required, and the column F clk denotes the maximum clock
frequency. The column tco denotes maximum clock-to-output propagation delay. (It is
the maximum time required to obtain a valid output at output pin that is fed by a register
after a clock signal transition on an input pin that clocks the register). The column tpd
denotes the maximum propagation time from the inputs to the outputs. The column Th.
denotes the maximum throughput. Since the LPM address generator has 9 outputs, it is
calculated by:

Th. = 9 · F clk.

For Reg-Gates, Delay denotes the maximum delay from the input to the output and is
equal to tpd. For multiple LUT cascade realizations and Xilinx’s TCAM, Delay denotes
the total delay, and is calculated by:

Delay =
1000 · Level

F clk
+ tco,

where 1000 is a unit conversion factor.
Consider the area occupied by the various realizations. From the Spartan-3 family

architecture [12], we can see that the area of one BRAM is at least the area of 16 slices
(a slice consists of two “4-input LUTs”, two flip-flops, and miscellaneous multiplexers).

An alternative estimate shows that the area of one BRAM is equivalent to that of 96
slices, as follows. In the Xilinx Virtex-II FPGA, one “4-input LUT” occupies approxi-
mately the same area as 96 bits of BRAM (also containing 18K bits) [13]. Note that both
“4-input LUTs” and BRAMs of the Virtex-II FPGA are similar to those of the Spartan-3
FPGA. Thus, we can deduce that one BRAM of the Spartan-3 FPGA occupies about
the same area as 192 (= 18×1024/96) “4-input LUTs”. If we view one “4-input LUT”
as approximately one-half a slice according to our discussion in the previous paragraph,
we conclude that one BRAM has about the same area as 96 (= 192/2) slices. Thus,
estimates of the area for one BRAM vary between the area for 16 to 96 slices. For this
analysis a worst case of 96 slices/BRAM was used.
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Table 7. Comparisons of FPGA implementations of the LPM address generator

Design Level Slice Memory F clk tco/tpd Th. Area Th./Area Delay Area-Delay

(BRAM) (MHz) (ns) (Mbps) (slice) ( Mbps
slice ) (ns) (slice-ns)

r6p11 6 178 48 103.89 24.89 935 4786 0.195 82.64 395.53
(tco)

r7p11 7 116 28 113.77 23.46 1024 2804 0.365 84.99 238.31
(tco)

r8p11 8 69 16 139.93 20.91 1259 1605 0.785 79.57 127.71
(tco) (best)

r9p11 12 99 12 139.08 13.72 1252 1251 1.001 100.00 125.10
(tco) (best) (best) (best)

Xilinx’s 1 8590 22.52 13.48 203 8590 0.024 57.88 497.23
TCAM (tco) (best)
Reg- 27646 58.67 27646 58.67 1621.99
Gates (tpd)
Area: We assume that the area for one BRAM is equivalent to the area for 96 slices

In Table 7, the column Area denotes the equivalent utilized area, where the area for
one BRAM is equivalent to the area for 96 slices. The column Th./Area denotes the
efficiency of throughput per area for one slice. The column Area-Delay denotes the
area-delay product. The value denoted by best shows the best result.

Xilinx’s TCAM has the smallest delay, but requires many slices. Reg-Gates has al-
most the same delay as Xilinx’s TCAM, but requires about three times as many slices as
Xilinx’s TCAM. Note that Reg-Gates requires no clock pulses in the LPM address gen-
eration operation, while the others are sequential circuits that require clock pulses. Since
the delay of Reg-Gates is 58.67 ns, the equivalent throughput is (1000/58.67)×9 = 153
(Mbps), which is lower than all others.

All multiple LUT cascade realizations have higher throughput, smaller area, higher
throughput/area, and are more efficient in terms of area-delay than Xilinx’s TCAM.
r9p11 has the smallest area, the highest throughput/area, the most efficient in terms
of area-delay, but has the largest delay. r8p11 has the highest throughput, and has the
smallest delay among all multiple LUT cascade realizations. Furthermore, in terms of
area-delay, r8p11 has almost the same performance as r9p11. Thus, r8p11 is the best
multiple LUT cascade realization that has 5.20 times more throughput, 31.71 times
more throughput/area, and is 2.89 times more efficient in terms of area-delay product
than Xilinx’s TCAM, while the area is only 19% of Xilinx’s TCAM.

6 Conclusions

In this paper, we presented the multiple LUT cascade to realize LPM address generators.
Although we illustrated the design method for n = 32 and k = 504 ∼ 511, it can be
extended to any value of n and k.

We implemented four kinds of LPM address generators (i.e. r6p11, r7p11, r8p11,
and r9p11) on the Xilinx Spartan-3 FPGA (XC3S4000-5) by using the multiple LUT
cascade. For comparison, we also implemented Xilinx’s proprietary TCAM, and
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Reg-Gates by using registers and gates on the same type of FPGA. Xilinx’s TCAM
has the smallest delay, but requires many slices. Reg-Gates has almost the same delay
as Xilinx’s TCAM, but requires the largest area and requires about three times as many
slices as Xilinx’s TCAM. All multiple LUT cascade realizations have higher through-
put, smaller area, higher throughput/area and more efficient in terms of area-delay prod-
uct than Xilinx’s TCAM.
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Abstract. In this paper, we present a new kind of reconfigurable soft
core processor based on the concept of Explicitly Parallel Instruction
Computing (EPIC). The implementation targets a dynamic System-on-
a-Chip utilizing Field Programmable Gate Arrays. In contrast to estab-
lished EPIC cores, the number of functional units is adjusted at run-
time and depends only on the available resources of the FPGA. Thus,
our EPIC core dynamically trades space versus processing performance.
Since we employ only standard functional units, we can use off-the-shelf
EPIC compilers for efficient code generation.

1 Introduction

The capacity of Field Programmable Gate Arrays (FPGA) is constantly growing
and thus, Systems-on-a-Programmable-Chip (SoPC) are becoming increasingly
popular. Soft core processors, i.e. processors implemented with a Hardware De-
scription Language (HDL) and subsequently configured on a FPGA fabric, are
widespread in SoPCs, because of the advantages discussed in [14]. Major benefits
are, that a higher level of design reuse, a reduced obsolescence risk, a simplified
design update or change and increased design implementation options through
design modularization can be achieved easily.

Challenging designs, however, require a lot of resources on the FPGA. With
the use of partial run-time reconfiguration (pRTR) it is becoming harder to
predict the exact chip area that is utilized by the SoPC. This complicates the
task of choosing the right soft core, matching the requirements of the specific
system. A high-performance core uses a lot of chip space, while a small core
might not always reach the computing power required by the application.

2 Background

Several soft core processors are readily available. Beside commercial intellectual
property cores like Altera’s Nios [4], Xilinx’ Microblaze [5] and Actel’s ARM7-
based CoreMP7 [9] open source cores, such as [8] emerged in recent years. Most of
these computing engines offer an interface for core extensions with user defined
instructions. This mechanism enables users to design and synthesize custom
instructions for the processor core to take advantage of hardware parallelism.
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Clearly, loops, recurring groups of instructions, and other time consuming op-
erations can be sped up significantly. Beside all these advantages, existing cores
predominantly execute instructions serially, not exploiting instruction level par-
allelism.

Explicitly Parallel Instruction Computing (EPIC) can resolve these issues.
EPIC is a computing paradigm fostering the exploitation of instruction level
parallelism (ILP)[3]. Parallel executable instructions are hereby grouped in a
flexible manner. In contrast to very long instruction word (VLIW) architectures,
grouped instructions are independent of the number of functional units (FU) in
the processor. In the EPIC approach, one can distinguish three types of FUs:
integer, floating point and branch units. Additional features encompass static
scheduling by the compiler as well as control- and data speculation. The most
prominent EPIC processors are the processors in Intel’s Itanium family [12],
based on Intel’s and HP’s IA64 architecture [13].

As a baseline for this research, two approaches, the Adaptive EPIC (AEPIC)
[1] and the customisable EPIC [2], require attention.

The AEPIC combines the EPIC paradigm with reconfigurable logic. Here the
source code is partitioned into pieces executed on the EPIC core and entities, that
are synthesized to so-called configurable functional units (CFU). These CFUs
are then reconfigured during run-time. CFU loading and execution is initiated by
special EPIC-style instructions, thus complex and highly specialized compilers
are required.

Another approach dealing with EPIC and configurable logic are the customis-
able EPIC processors . Here, the number of functional units, the instructions and
the number of registers is determined at compile time. The execution parame-
ters depend on the program to be run. Like this an optimized EPIC core for
a special application is generated. As the AEPIC does, the customisable EPIC
also requires specialized compilers. In contrast to the Adaptive EPIC concept,
this approach is not only limited to configurable logic.

3 Self Reconfiguring EPIC Soft Core Processors

Based on the EPIC paradigm explained above, we develop a novel EPIC Core,
that benefits from run-time reconfigurable hardware and operates with machine
code generated by existing EPIC compilers. One of our main objectives is to ease
the use of our processor core by providing well-engineered development software.
For this reason, the adopted compiler will most likely be based on the Trimaran
framework [11], a complete framework for building EPIC compilers, that offers
the ability to exploit ILP.

3.1 Functional Units

Since the EPIC machine code is designed independently from the number of
functional units and targets instruction level parallelism, it is possible to utilize
the number of available functional units. Based on this, the main aspect of
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our EPIC Soft Core will be the ability to change the number and nature (i.e.
integer, floating point or branch unit) of its functional units at run-time. The
number of configured FUs depends only on the usable space on the FPGA while
their characteristic depends on the operations to be executed. A scheduling unit
distributes the instructions.

3.2 Registers

Another advantage of the Self Reconfiguring EPIC Soft Core is the ability to
adapt its number of registers during run-time. Using this mechanism, context
switching can be accelerated if there is enough space on the FPGA. If possible,
another preconfigured set of registers is used instead of pushing all registers onto
the stack. Only the connecting wires to the registers are parametrized to access
an other register set. As a result, performance and chip space is dynamically
traded-off.

3.3 Example for an Operating EPIC Soft Core

The EPIC Soft Core , as depicted in Fig. 1, consists of an instruction-queue,
an unit for dispatching and scheduling of instructions and a varying number of
floating point or integer units and registers. In the initial state, the core oper-
ates with a floating point and an integer unit. When a large number of integer
operations needs to be computed, an initial reconfiguration step is performed. In
this step, an integer unit is added to speed up integer calculations. If no floating
point operations are foreseeable but numerous integer operations waiting, the
floating point unit is replaced by another integer unit as shown in step 2. In
step 3, a call to a subroutines is realized by adding another register set.

3.4 Prototype

Our current EPIC Soft Core implementation is realized on an RC200 [15] devel-
opment platform from Celoxica. The prototyper hosts a Xilinx Virtex II FPGA
[6]. For the programming and configuration of the self reconfiguring EPIC we
exclusively use the Xilinx ISE [7] tool suite. For building the first prototype we
have chosen the Oregano 8051 IP core [16] as a baseline, because of its clear
structure and good documentation. In our work, we modified the core’s con-
trol unit such that either one or two integer FUs can be chosen. For additional
flexibility, the FUs are dynamically reconfigurable.

In the initial research, several experiments have successfully been conducted.
In our first implementation, the principle of operation was validated by manual
initiation of the reconfiguration via a JTAG interface during run-time.

Current work targets to reconfigure the FUs via Xilinx’ ICAP Port [10], trig-
gered automatically by an on-chip decision unit. Here, the control unit will be
expanded to deal with a larger number of ALUs. In our upcoming version,
the instruction set will be enlarged to execute code produced by off-the-shelf
compilers.
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Fig. 1. A typical reconfiguration flow of the EPIC Soft Core

4 Summary and Conclusions

In this short contribution, we introduce a new type of a soft core processor. By
its way of exploiting parallelism, the self reconfiguring EPIC soft core is able to
trade off dynamically between chip area and computing performance. Due to its
support of standard compilers, the opportunities of this kind of core are obvious.

In future work, we will improve the prototype based on the given concepts
and provide benchmark results. These results will lead to further improvements
in the architecture. Additional benefits are expected from:

– reducing the instruction set of the FUs,
– scheduling reconfiguration by the compiler,
– enforcing more parallel source code by augmenting the used high level lan-

guage with explicit parallel instructions,
– allowing custom instructions, which compute more complex functions in

hardware.

First experiments have shown, that our core may run on much lower clock rates
compared to traditional soft cores when sufficient reprogrammable resources
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are available. We believe this results in much lower power consumption but
still provides the same computing performance compared to other soft cores.
Depending on the comparison we will discover, if our architecture enables a
trade-off between chip space and power consumption as well.
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Abstract. This paper presents a constant complexity and fast algo-
rithm for the management of run-time reconfigurable resources by an op-
erating system with extended hardware multitasking functionality. Our
algorithm manages a two dimensional reconfigurable device by dividing
the resource area into four partitions with different sizes. Each partition
has an associated queue where the hardware manager places each ar-
riving task depending on its size, shape, deadline requirements and the
state of queues. It is possible to merge partitions for tasks not fitting
any partition. The sizes of the partitions may be adapted to different
circumstances.

1 Introduction

The size and density of present FPGA devices together with features such as
partial run-time reconfiguration make them very suitable for a variety of appli-
cations with an inherent parallelism [1,2]. Reconfigurable HW can be viewed as
a large two-dimensional processing area which holds a set of tasks previously
compiled to a relocatable HW bitmap, loaded for execution at a free section of
the FPGA. Each HW task can enter or leave the FPGA without affecting the
other executing tasks. This HW multitasking should be managed by the same
Operating System (OS) that manages SW resources[3]. This new functionality
poses several problems such as deciding which parts of the application should
be executed in the HW device or where to locate tasks in it.

There are several works about this topic: [4,5] deal with the problems derived
of dynamically managing 2D Run Time Reconfigurable (RTR) resources. All of
them propose complex algorithms to keep the information of the available FPGA
area. However, [6] simplifies the algorithm by dividing the FPGA area in four
partitions of equal area. Excessive area is wasted when the tasks are too small
for the partitions, and bigger tasks have to be discarded. [7] have presented an
algorithm in which they split the FPGA in several blocks with different sizes,
but they have applied this only to 1D FPGAs.
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the research grant TEC2005-04752/MIC.

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 187–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



188 S. Román et al.

Our O(1) algorithm makes fast decisions about allocation and scheduling for
incoming tasks, does not need complex data structures and the different sizes
of the partitions provide enough flexibility to achieve a good use of the FPGA
area. Other features allow taking run-time decisions to solve punctual overload-
ing problems and the possibility of adapting partitions’ sizes to different distri-
butions of workloads. Although we present a version of our algorithm for 2D
FPGAs, the algorithm is easily translated to 1D management for an existing
reconfigurable device such as Virtex II.

2 System Architecture

Our system model is shown in fig.1(left). Tasks may be initially executed in SW
or HW, depending on the task time constraints, and the available SW and HW
resources. Traditional OS functionality has been extended with the RTR HW
manager, that decides where and when to place each arriving task. Fast decision
making is decisive in this type of environment.

Fig. 1. System model

FPGA and task models are shown in fig.1(right). The FPGA is a 2D grid
of identical cells. We reserve a peripheral bus that guarantees tasks’ I/O access
around a rectangular core of W x H cells used for task execution. The core
is divided into four partitions with different sizes that execute one task at a
time. Core partitions are defined by two dividing lines: x = wp and y = hp. We
then have P0, P1, P2 and P3. The exact values of wp and hp (and thus the
relative size of the partitions) may be changed during run-time according to the
profile of the task set being processed. Tasks are rectangles which include all
the necessary processing and internal routing resources. Each task comes as a
tuple: Ti = {wi, hi, tarri, texi, tmaxi}, where wi is the task width, hi its height,
tarri the clock cycle in which it arrives, texi the execution time for the task and
tmaxi the time constraint for the task. They are always placed at the selected
partition at the outer corner, in order to guarantee access to the bus. Tasks may
be rotated.

The main features of the management algorithm are shown in fig.2. Each
partition Pi has an associated queue Qi that keeps pending tasks allocated to it.
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Each of the queues has a waiting time, wti, which is the sum of the execution
times of the tasks in it plus the remaining time for the task in the partition to
finish execution. As each new task arrives, the Scheduling-Allocating Unit (SAU)
examines its size and time constraints, and writes the task into the queue where
it fits better, determining the location and time for the task execution on the
FPGA. The Execution Unit works in parallel with the SAU. It reads tasks from
the queues and sends them to the FPGA every time one or more tasks finish
execution. The Dynamic Adjustment Unit (DAU) examines the performance of
the algorithm and decides what changes are needed and when to apply them. If
the algorithm performance decreases, it may change some of the decision taking
parameters or the configuration of the partitions.

 

Fig. 2. HW manager structure

We have carried out several tests in order to prove that our O(1) complexity
algorithm may compete in performance with other common algorithms such as
First Fit (FF), of O(n4) for the 2D allocation problem (n is the dimension of a
square FPGA). They have been published in [8].

3 Partition Merging

There may be some tasks that do not fit any partition. In this case two (or the
four) free partitions may be used jointly in order to allocate them. This partition
merging is a temporary solution for such tasks. The possible combinations of
partitions are: P0+P1, P0+P2, P1+P3, P2+P3 or P0+P1+P2+P3. The SAU
examines which is the best possible combination of partitions to allocate the task.
It first looks for the two smallest possible partitions that may be merged. Then
it examines if waiting for both partitions to be free at the same time complies
with the time restrictions of the task. If it does not, it continues looking for other
combinations of partitions until it finds one that does.

The merging process leads to the appearance of gaps in the scheduling of
tasks due to the necessity of waiting for the partitions to become free at the
same time. Once there is a gap in any of the queues, the SAU will always try
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to fill them with as many as possible tasks. The gaps are marks placed at the
queues’ parameters and need not be written into a separate ”gap queue” thus
not increasing our algorithm’s complexity (with the cost of having only one gap
per queue).

4 Dynamic Adjusting to Task Profile Variations

Our algorithm works well enough when the tasks are of different and varied
sizes, which we call a heterogeneous task set. For such task profile, the statistical
distribution of sizes is in accordance with the FPGA distribution of area into
partitions. Natural queue balance of workload is attained by writing each arriving
task into the queue where it best fits in terms of less area wasted (approximate
25% of tasks are written into each queue). If the tasks arriving are very similar
in size and shape, the queue balance is disturbed and one of the queues appears
much more loaded than the rest, resulting in a low use of FPGA area and
excessive execution delay for the tasks arriving.

We have tested several types of reactions of our algorithm to different changes
in task profiles. We have seen that different types of actions are needed depending
on the situation:

1. Peak: a high number of tasks of the same size arrive in a short lapse of time.
This causes a temporary overloading of one of the queues. The solution
consists in forcing queue balance by relocating one task from the overloaded
queue.

2. Long peak: a peak that exceeds a certain threshold. The solution is to make
a change in the queue selection criterium.

3. Profile change: the number of tasks of similar size arriving may be considered
a permanent change in the task profile. In this case we can choose between
two policies: clustering tasks into the same partition or re-arranging the size
of the partitions. We now analyse the suitable strategies for different task
profiles.

Small task profile: the size of the partitions needs to be changed so that many
tasks currently being classified as small may be classified as medium (sent to Q1
and Q2 instead of Q0) and therefore some tasks going to Q1 and Q2 will go to
Q3. This is achieved by reducing hp and/or wp so that the size of P0 decreases.
The mean area used increases significantly when the size of the partitions is
well adjusted to the task profile features, but is still too low for a satisfactory
performance. In this case, the only possible solution is to execute more than four
tasks on the FPGA at the same time by means of task clustering.

Medium task profile: if the majority of tasks are being sent to Q1 and Q2,
the way to better adjust partitions size to task profile is to increase the size of
P0 and therefore to reduce P3.

Large task profile: this is one of the toughest problems to solve by any algo-
rithm, as having a majority of large tasks (we are calling large any task that is
over 25% of FPGA size) in a very saturated environment may mean that the
device has become insufficient. Here we need to distinguish between two cases:
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1. Tasks are too big for P0, P1 or P2 but of a size around 25% of FPGA
size, so we may execute four of them simultaneously. They are not requiring
partition merging. The solution is to set FPGA partitions to very similar
sizes, to decrease P3 and to increase P1, P2 and P0.

2. Tasks are of such large size, more than 25% of FPGA size, that only one of
them may be executed in the FPGA at a time. They are requiring partition
merging frequently, and the solution is to increase P3 to a size large enough
to avoid frequent merging.

 If queue unbalance triggers the alarm: 
  force queue balance by moving one task from queue 
  set timer T1 and calculate % area used 

 if T1 expires without another alarm: 
  do nothing  /* this was a peak */ 

 else   /* this is a long peak */ 
  change queue selection to force queue balance 
  set timer T2 and calculate % area used 
  when T2 expires: 

reset queue selection to minimum area waste 
          if % area used during T2> % area used during T1: 

  do nothing 
          else  /* this is a profile change */ 

  change the size and/or symmetry of partitions 

Fig. 3. HW manager structure

Before a new task is written into the queues, the DAU examines how it affects
queue balance and is responsible for triggering an alarm when the workload in
the queues is going in a too unbalanced direction. The criterium we are using to
detect queue unbalance (QUB) is to compare the difference between the maxi-
mum waiting time of any of the queues with the minimum waiting time of the
queues relative to the mean execution time of tasks. The DAU triggers the alarm
when QUB exceeds a certain threshold. The algorithm that the DAU uses for
the alarm management at run-time is shown in fig.3.

5 Experimental Results

We have simulated the possible situations the DAU may encounter during ex-
ecution by means of task sets consisting of 200 tasks each. The baseline is a
completely heterogeneous task set in which the three different types of situa-
tions have been reproduced. We have simulated the three different reactions of
our algorithm and the performance results. We are using the mean percentage
of FPGA area and the number of time units used for the execution of the whole
task set as performance metrics and we are comparing the algorithm perfor-
mance when the alarm system is disabled and enabled. We have also simulated
a long peak of medium tasks and a change in the task profile. Results in table 1
show how the performance of the algorithm is improved when the DAU is active
and solves the problems caused by variations in task profile.
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Table 1. Performance comparison results obtained

Event Simulation Time units % area used

Small peak Alarm disabled 275 61.5
Small peak Alarm enabled 266 63.6

Long peak Alarm disabled 277 61.2
Long peak Alarm enabled 266 63.7

Profile change Alarm disabled 229 50.0
Profile change Alarm enabled 187 61.2

6 Conclusions

Our O(1) algorithm is fast in scheduling and allocating incoming tasks in a
heavily loaded environment and may compete in performance with other high
complexity algorithms such as First Fit. The performance of the algorithm is
optimum for heterogeneous task sets and good enough in situations where the
workload is unbalanced in relation to partitions, as we have seen it is capable
of absorbing peaks of homogeneous workloads. It also guarantees execution of
tasks not fitting any partition and may adapt the partitions’ sizes to the features
of the task set.
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Abstract. The design of electronic systems in a System-on-Chip (SoC)
depends on the reliable and efficient interconnection of many different
components. The Network-on-Chip (NoC) has emerged as a scalable
communication infrastructure with high bandwidth able to tackle the
communication needs of future SoC. In this paper, we present a generic
NoC architecture that can be customized to the specific communication
needs of an application in order to reduce the area with minimal degra-
dation of the latency of the system.

1 Introduction

The constant increase of gate capacity and performance of single chips made
it possible to implement complex systems in a single chip (System-on-Chip -
SoC) able to tackle the demanding requirements of many embedded systems.
An approach to the design of such systems in a single hardware chip is to reuse
hardware/software IP cores, resulting in a considerable number of autonomous
interconnected cores.

Traditional interconnection architectures, such as a single shared bus or a hier-
archy of buses, are no longer a solution to support the increasing interconnection
complexity and bandwidth demands of such hardware/software platforms due
to their poor scalability and shared bandwidth. It is expected that in the future
the aggregate communication bandwidth between cores will scale up to values
much larger than the Gbytes/s range for many video applications [1].

To overcome these problems, the Network-on-Chip (NoC) has been introduced
as a new interconnection paradigm able to integrate a number of IP cores while
keeping a high communication bandwidth between them [2][3]. A NoC is made
of a set of similar components designated routers interconnected to each other
to forward data through the interconnection structure.

Routers introduce a relative area overhead and increase the average commu-
nication latency. Therefore, in the design process it is important to consider
mechanisms to reduce the area and the average latency of the NoC infrastruc-
ture. Some approaches have already been proposed to minimize the average com-
munication delay and the area overhead of NoC. In [4], Murali and DeMicheli
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presented a mapping algorithm aiming to minimize the average communication
delay. Lei et al. [5] use a two step genetic algorithm to map tasks looking to max-
imize timing performances. In [6], Kreutz et al. proposed three different routers
with different performance, energy and area occupation and an algorithm to find
the best combination of routers. All these approaches are mainly concerned with
average latency reduction, except the work of Kreutz, which also considers area.

In this paper, we propose a generic NoC architecture that can be customized
to the specific communication needs of an application in order to reduce the
area with minimal degradation of the latency of the system. We have developed
a generic router that can have from 1 to 4 local connections to IP cores allowing
neighbor routers to communicate through a single router, which will potentially
reduce the average latency communication. Our generic router has been charac-
terized and a set of NoC instances have been implemented to demonstrate the
area improvement that can be attained with our generic architectures.

2 Network-on-Chip Architecture

A NoC consists of a set of routers interconnected according to a certain topology.
A router is used to route messages along the topology. In a typical NoC, a router
is connected to at most four neighbor routers and to a local core. Among the
many interconnection topologies, the most used is a mesh topology because
a 2D network fits naturally in a 2-dimensional chip. Each core connects to the
communication infrastructure through only one router, and links between routers
have the same bandwidth (see example in figure 1).
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Fig. 1. Typical NoC Architecture

Homogeneous interconnection architectures are easily scaled up and facilitate
modular design, but are not tailored to the application characteristics. They are
probably the best choice for general-purpose computing. However, systems devel-
oped for a particular class of applications can benefit from a more heterogeneous
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communication infrastructure that provides high bandwidth in a localized fash-
ion where it is needed to eliminate bottlenecks [7]. The traditional NoC structure
does not take advantage of this property in spite of the physical proximity of the
cores. To obtain NoC solutions with lower area overhead and average communi-
cation latency, we propose the design of a NoC based on the generic architecture
of figure 2.
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Fig. 2. Generic NoC Architecture

In the generic NoC architecture, a router can have up to four local connections
with neighbor cores. Therefore, neighbors can exchange data through a single
router, reducing communication latency. The generic architecture also considers
the adjustment of the bandwidth between routers to accommodate the expected
traffic at a specific link. Link bandwidth is adjustable by changing the number
of wires.

The careful customization of the NoC structure with the most appropriate
number and type of routers and the proper number of connections and bandwidth
will lead us to a communication structure that uses less area and exhibits lower
average communication latency than the typical NoC structure.

3 Router Design

After receiving a data packet, the router reads the packet destination address
and forwards it to the correct output port. To attain this, a router has several
input and output ports connected to neighbor routers and to local IP cores,
a switch that establishes a connection between any pair of input and output
ports, a routing policy to determine through which output port a packet should
be forward and a set of arbiters to control the simultaneous accesses to output
ports. The communication ports include buffers to temporarily store packets (see
a router with four ports in figure 3).

The routing policy is implemented in each input port using the route block.
Our implementation uses the simple XY routing algorithm. Having determined
the destination port, the routing block sends a request to the arbiter associated
with the destination output port.
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Fig. 3. Router architecture with four input and four output ports

Since the arbiter may receive more than one request from different input ports,
it uses an arbitration policy to choose among the requesting input ports. The
arbiter of our router uses a round-robin technique. The packet is finally switched
from the input port to the output port through the switch, which is nothing more
than a set of multiplexers, as represented in figure 3.

The switching policy of our router is a trade-off between wormhole routing
and store-and-forwarding routing, which we designate n-flit wormhole routing.
In this algorithm, the router receives n-flits before forwarding them. For each
group of n-flits, only the first one contains the destination address. A router only
receives a packet if it has enough buffer space available to store the n-flits. This
way, it avoids leaving flits along the path, like in wormhole, and reduces the
latency of store-and-forward by reducing the number of stored flits before being
forwarded. The only disadvantage is that each group of n-flits must include a flit
with the routing information. In our approach, we are using n = 4.

We have described our generic router in VHDL and than implemented it in
an XC2V6000 FPGA. From the implementation, we concluded that in the worst
case it can operate at a frequency around 100 MHz. Since the switch of the router
is fully connected, the router is able to forward n packets at a time, where n is
the number of ports. It means that it has a total bandwidth of b x n, where b is
the bandwidth of a single port. For example, a router with six ports, a datawidth
of 16 bits operating at 100MHz has a total bandwidth of 9,6 Gbps.

The areas occupied by routers are resumed in table 1.

Table 1. Area of router (slices)

Num of Ports 8 bits 16 bits
5 232 284
6 380 459

Table 1 contains the number of slices used to implement routers with different
number of ports and bitwidths, and FIFOs with a depth of 16 words. These
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routers support a SoC with up to 256 cores. The block of the router using more
area is the switch. A switch with 6 ports consumes 192 slices for 16 bit words.

4 NoC Area/Performance Evaluation

To get an idea of the total area reduction and the influence over the latency that
is attainable if we use different NoC topologies, we have conducted the analysis
of two different NoC topologies with 6 x 6 nodes for two different traffic patterns.

One topology is the typical one previously illustrated in figure 1 where a router
have 5 ports including a local port (5-router topology). The other NoC topology
consists of a mesh of routers with two local ports, where routers have 6 ports,
allowing the connection of two cores to a single router (6-router topology) (see
figure 4).
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Fig. 4. Second network topology pattern used in the experiments

The traffic patterns used were the complement traffic pattern (type 1) and
the local neighbor traffic (type 2).

The 5-router topology uses 7248 slices and the 6-router uses 5702 slices, which
is about 31% lower than the former topology. This happens because it has half
the routers and a router with six ports is smaller than two routers with five ports.
However, the 5-router topology has 252 links and the 6-router topology has just
192. Therefore, the average bandwidth used per link is higher in the second
topology, which may potentially create more hot spots of traffic congestion.

We have also analyzed the influence of NoC configurations over the average
latency communication (see figure 5).

From the graphics, we conclude that for traffic type 1, the 6-ports router
topology has lower average communication latency for injection rates over 40%.
One explanation for this fact is that this topology has on average fewer routers
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Fig. 5. NoC average latency for traffic type 1 and type 2

in the communication paths. For traffic type 2, the 6-ports router topology has
obtained very good results (almost 25% reduction in average latency) because it
is tailored to local traffic patterns.

5 Conclusion

The generic architecture proposed in this work allows the improvement of the
total area and performance of a NoC structure. Our approach has obtained good
results when tested with some topologies and traffic patterns. We are implement-
ing a design space exploration tool for the design of NoC-based systems-on-chip
that includes our generic NoC architecture and configurable router.
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Abstract. Most digital signal processing (DSP) algorithms for multimedia and 
communication applications require multiplication and addition operations. Es-
pecially matrix-matrix or matrix-vector multiplication are frequently used in 
DSP algorithms needs inner product arithmetic which takes most processing 
time.  Also multiplications for the DSP algorithms have different input bit-
widths. Therefore, the multiplications for inner product need to be sufficiently 
flexible in terms of bitwidths to utilize the multiplication resources efficiently. 
This paper proposes a novel reconfigurable inner product architecture thas is us-
ing a pipelined adder array, which features increased flexibility in bitwidths of 
input arrays. The proposed architecture consists of sixteen 4x4 multipliers and a 
pipelined adder array and can compute the inner product of input arrays with 
any combination of multiples of 4 bitwidths such as  4x4, 4x8, 4x12, ...16x16. 
Experimental results show that the proposed architecture has latency of maxi-
mum 9 clock cycles and the throughput of 1 clock cycle for inner product of 
various bitwidths of input arrays. When TSMC 0.18 um libraries are used, the 
chip area and power dissipation of the proposed architecture are 332162 (nand 
gates) and 3.46 mW, respectively. The proposed architecture can be applied to a 
reconfigurable arithmetic engine for real-time DSP applications. 

1   Introduction 

Reconfigurable hardware architecture which processes various DSP algorithms in one 
hardware resource have been increasing studied recently. To achieve real time proc-
essing of multimedia and communication signal processing algorithms, the efficient 
reconfigurable computational elements for addition, multiplication, and inner product 
operations are needed. Especially matrix-matrix or matrix-vector multiplication fre-
quently used in DSP algorithms needs inner product arithmetic which takes most 
processing time. Also multiplications for the DSP algorithms have different input 
bitwidths (e.g. 4x4, 4x8, 4x16, 8x8 …). Multiplications and inner product operations 
require complex arithmetic and large hardware resources. Therefore the multiplica-
tions for inner product need to be sufficiently flexible in terms of bitwidths to utilize 
multiplication resources efficiently. 
                                                           
* Corresponding author. 
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Many researches have been performed to improve the performance of the multi-
plier and the inner product architecture. Dedicated multipliers for faster multiplication 
have been studied [1], [2], [3], [4]. These dedicated multipliers lead to high perform-
ance. Similar to this, inner product researches have been studied [5], [6], [7], [8]. All 
the existing multipliers and inner product architectures have tried to improve the proc-
essing speed. However, the bitwidths of the input data or input arrays of the existing 
architectures are fixed or less flexible for dynamic processing various DSP algorithms 
which usually have different bitwidths of input data to be processed.  

This paper proposes a novel reconfigurable inner product architecture using a par-
allel 4x4 multiplier array and a pipelined adder array, which features increased flexi-
bility in bitwidths of input arrays (any combination of multiples of 4 bitwidths such as 
4x4, 4x8, 4x12, ...16x16). The proposed inner product architecture uses 4x4 multipli-
ers to compute the partial products of inner product and then the partial products are 
fed into a parallel and pipelined adder tree to compute the final inner product result. 

2   Proposed Reconfigurable Pipelined Inner Product Architecture 

The proposed reconfigurable inner product architecture has two functional blocks, 
parallel 4x4 multiplier array and pipelined 4-bit adder array. The functional block 
diagram of the proposed architecture is shown in Fig. 1. Parallel 4x4 multiplier array 
generates the partial product of 4n x 4m multiplication and the pipelined 4-bit adder 
array computes additions for inner products. Bitwidths signal controls the input bit-
widths of both multiplicand and multiplier. 

 

Fig. 1. Functional block diagram of the proposed reconfigurable inner product architecture 

2.1   Parallel 4x4 Multiplier Array 

Parallel 4x4 multiplier array consists of sixteen 4x4 multipliers, output register which 
stores the 16 4x4 multiplier’s result which is fed into the pipelined adder array. The 
multiplicand and the multiplier are the input data of the parallel multipliers. The bit-
widths of input data are determined by Bitwidths control signal. (e.g. 4x4, 4x8, 4x12 
… 16x16). Fig. 2 shows the architecture of the parallel 4x4 multiplier array. 
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Fig. 2. Parallel 4x4 multiplier array and 4x4 multiplier 

2.2   Pipelined Adder Array 

Pipelined adder array is used for the summation of partial products to reduce the criti-
cal path in the adder tree. We modify Dadda algorithm [6] for additions of the partial 
products by grouping 4-bit data. Fig. 3 shows the examples of the partial product 
additions with different bitwidths of input data. 

4bit

4bit
X

4bit

          

X

       

X

 

(a) 8 x 4 = 12bit       (b) 12 x 4 = 16bit         (c) 16 x 4 = 20bit    

Fig. 3. Examples of the partial product addition with different bitwidths 

A configuration example of pipelined adder array is shown in Fig. 4. In multiplier 
array block, each output of the 4x4 multiplier has the size of 8-bit results. Thus the 
parallel sixteen 4x4 multipliers lead to 128-bit (=16x8 bits) output. This result is fed 
into input data of the pipelined adder array. At the first stage, the adder array accumu-
lates the 4 bits of LSB. At the second stage, the adder array accumulates the 4 bits of 
MSB. The carry-out generated during addition of the 4 LSB bits, is used for carry-in 
during addition of the 4 MSB bits. The carry-outs generated during addition of the 4 
MSB bits, can be computed by two 7:3 counters. In this way, we can reduce the pipe-
line stage. Therefore, we get maximum 12-bit inner product result: 4 bits (2 counter’s 
result) + 4 bits (addition result of 4 MSB bits) + 4 bits (addition result of 4 LSB bits).  

Table 1 shows the analysis results of hardware resource utilization for inner prod-
ucts with various configurations. For 4n x 12 multiplication (n=1, 2, 3, 4), there are 
unused multipliers. These unused multipliers may consume power dissipation. Thus, 
the unused multipliers or counters can be turned-off for low-power applications. 
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Fig. 4. Configuration example of inner product for sixteen 4x4 elements 

Table 1. Utilization of hardware resources 

Multipli-
cation 

Needed # 
of 4x4 

multipliers 

Unused 4x4 
multipliers 

# of partial 
products 

Bitwidths of  
a partial product

Inner product result 

4x4 1 0 16 8 bits  8 bits x 24 = 12 bits 
4x8 2 0 8 12 bits 12 bits x 23 = 15 bits 
4x12 3 4 4 16 bits 16 bits x 22 = 18 bits 
4x16 4 0 4 20 bits 20 bits x 22 = 22 bits 
8x8 4 0 4 16 bits 16 bits x 22 = 18 bits 
8x12 6 4 2 20 bits 20 bits x 21 = 21 bits 
8x16 8 0 2 24 bits 24 bits x 21 = 25bits 
12x12 9 7 1 24 bits 24 bits x 20 = 24 bits 
12x16 12 4 1 28 bits 28 bits x 20 = 28 bits 
16x16 16 0 1 32 bits 32 bits x 20 = 32 bits 

Compared the proposed architecture to the multiplication and multiplication-
accumulation architecture of Chin-Long Wey and Jin-Fu Li [4], the proposed archi-
tecture is more flexible  in terms of the bitwidths of input data than Chin-Long Wey 
and Jin-Fu Li’s n x n input bitwidths (n is multiples of 8). Also, the Chin-Long Wey 
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and Jin-Fu Li’s architecture has an amount of unused hardware resources to produce 
multiplication and multiplication-accumulation with bitwidths of nonmultiple of 8. 

3   Experimental Result 

Fig. 5 show the functional simulation result of the proposed multiplier. In the simula-
tion, the multiplicand and multiplier A and B are set all ‘1’. Therefore the partial 
product result of parallel 4x4 multiplier array is 11100001(E1 Hex). When the 4x4 
inner product scheme is selected, this partial product output E1(Hex) is fed to the 
input data of pipelined adder array. Therefore the inner product result is the addition 
of the sixteen E1 (16 x 225 = 3600). The latency and throughput of the proposed 
reconfigurable inner product architecture are 9 clock cycles and 1 clock cycle, respec-
tively. Also, we can confirm the results are correct when inputs of A and B are 
changed every clock. 

 

Fig. 5. Functional simulation result 

The proposed inner product architecture was synthesized by using Synopsys Design 
Vision and placed and routed by using Synopsys Astro. TSMC 0.18um CMOS librar-
ies were used in this experiment. Table 2 shows chip area of the proposed multiplier. 
The chip area of parallel multiply array block and the pipelined adder array block are 
160506 (nand gates) and 171655 (nand gates), respectively. Since the proposed archi-
tecture performs inner products with various reconfigurable bitwidths, the parallel 
adder array block requires larger chip area. And the critical path is 0.19ns at adder 
array block. Table 3 shows the power dissipation measured by using Design vision. 

Table 2. Chip area of the proposed multiplier (unit: nand gate) 

Parallel multiply array Pipelined adder array Total 
160506 171655 332162 

Table 3. Power dissipation of the proposed multiplier 

Cell internal power Net switching power Total dynamic power Cell leakage power 
2.748 mW 708.747 uW 3.457 mW 1.970 uW 
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4   Conclusion 

In this paper, we proposed reconfigurable inner product architecture for the multime-
dia and communication processing applications. The proposed architecture utilizes 
parallelism and pipelining for reconfigurable high-speed inner product arithmetic with 
various bitwidths of input array. Experimental results show that the proposed archi-
tecture generates the inner product output of various bitwidths of input arrays every 
clock and can compute the inner product of input arrays with any combination of 
multiples of 4 bitwidths such as 4x4, 4x8, 4x12,...,16x16. The proposed architecture 
has advantages over existing architectures in terms of flexibility and the processing 
speed. Therefore, the proposed architecture can be applied to a reconfigurable arith-
metic engine for real-time DSP applications. 
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Abstract. Memory accesses contribute sunstantially to aggregate sys-
tem delays. It is critical for designers to ensure that the memory sub-
system is designed efficiently, and much work has been done on the ex-
ploitation of data re-use for algorithms that exhibit static memory ac-
cess patterns in FPGAs. The proposed scheme enables the exploitation
of data re-use for both static and non-static parallel memory access pat-
terns through the use of a multi-port cache, where parameters can be
determined at compile time and matched to the statistical properties of
the application, and where sub-cache contentions are arbitrated with a
semaphore-based system. A complete hardware implementation demon-
strates that, for a motion vector estimation benchmark, the proposed
caching scheme results in a cycle count reduction of 51% and execution
time reduction of up to 24%, using a Xilinx XC2V6000 FPGA on a Celox-
ica RC300 board. Hardware resource usage and clock frequency penalties
are analyzed while varying the number of ports and cache size. Conse-
quently, it is demonstrated how the optimum cache size and number of
ports may be established for a given datapath.

1 Introduction

FPGAs have become natural platforms for design implementation or prototyp-
ing due to their re-programmability and comparatively short design cycle. One
of the main advantages that FPGAs have over traditional processors is the mas-
sive amount of available parallelism. External memory bandwidth available for
reconfigurable logic, however, has not developed at the same rate, limiting the
effective amount of achievable parallelism. Hence, it is critical to account for the
memory subsystem during the design process.

Much work has been done in the development of scratchpad memories (SPM)
[1,2,3] for algorithms with static memory access patterns. However, algorithms
such as the Huffman decoder and some motion vector estimation approaches [4]
exhibit data dependent memory access patterns, and as a result, the memory
accesses cannot be predicted at compile time.

In this work, a flexible multi-port caching scheme is presented. Besides the
exploitation of data re-use inherent in an algorithm, this scheme allows accesses
for an arbitrarily parallelized data path and so may be transparently used along-
side an existing hardware design. Parallel cache-system accesses are detected and
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arbitrated if they are contending for the same sub-cache. A significant speed-up
of up to 24% in execution time and a cycle count reduction of up to 51% is ob-
served for a cache size that is approximately 3% of image size for a benchmark
application involving motion vector estimation. The contributions of this work
are as follows:

1. A novel parameterisable cache design, based on a semaphore-style arbitration
scheme, is developed to allow user transparency and parallel accesses to
multiple sub-caches.

2. A complete implementation of the caching scheme, including the quantifica-
tion of clock period degradation and area overhead.

3. FPGA-based in situ hardware profiling to determine the trade-off between
resource usage and performance benchmark algorithm.

This paper is organized as follows: in Section 2, work related to this paper
will be discussed and an overview of the multi-port caching system is given in
Section 3. The architecture of the caching system will be discussed in Section 4.
In Section 5, implementation details and experimental results for a motion vec-
tor estimation algorithm are presented and analyzed and finally, the paper is
concluded in Section 6.

2 Related Work

Caches are widely used to exploit data re-use within algorithms. A large volume
of work has been done on the improvement of cache performance for software
applications [5]. These include techniques to optimize data placement and reduce
cache misses [6,7], as well as to reduce the number of tag and way accesses [8].

In [9], a dynamic scheme is used for the allocation of variables to scratchpad
memory (SPM) which is implemented using block RAMs. Profiling and loop
transformation are carried out by the compiler. Based on this profile, the vari-
ables are allocated to the SPM for the exploitation of data re-use. However,
this approach only considers static memory access patterns. Another compiler
that is capable of detecting data re-use is [10]. Smart buffers are inserted at
the input and output of the datapath and these in turn interface with external
memory. These buffers store windows of data that are re-used within the loop
body such that external memory accesses are reduced. Similarly, this technique
only accounts for static memory access patterns.

Some papers have been published on multi-port caches: in [11], a multi-port
cache is implemented using interleaved cache banks targeting the MIPS 2000
instruction set. This work targets superscalar processors, enabling multiple in-
structions to be carried out in parallel. The cache bandwidth, however, is limited
by the maximum number of instructions that can be issued, restricting the de-
sign space that can be explored. In [12], a multi-port cache is implemented by
cache duplication. This requires the updating of multiple cache locations in the
event of cache misses. The number of ports is restricted to two on the particular
platform so the trade off between resources and parallelism is not explored.
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This work is targeted at FPGAs. Consequently, cache parameters have to
be chosen to match well with the underlying device granularity. The user can
determine the number of ports to access cache contents, providing greater lever-
age over total execution time and resource usage. By taking advantage of the
reconfigurability of FPGAs, profiling is carried out in situ, on a hardware plat-
form. This allows a wide range of designs to be explored quickly and accurately
compared to software modelling. Most importantly, this scheme allows the ex-
ploitation of data re-use for non-static memory access patterns.

3 Overview of Multi-port Caching System

Memory accesses can be categorized into different types. During compile time, it
might be impossible to determine the exact cycle that main memory is accessed
due to data-dependent control. This type of access has dynamic timing. Accesses
with non-dynamic timing are referred to as static. Statically timed memory ac-
cesses can have either static or dynamic addresses sequences (dynamic address
sequences occur as a result of data dependency). Three major points distinguish
this work from others:

1. Previous schemes [9,10] for FPGAs are capable of handling accesses with
static timing and address sequence. The proposed caching scheme on the
other hand is able to handle dynamic accesses. Therefore, it is potentially
more effective for data dependent algorithms.

2. Memory-based optimizations often involve substantial changes to the code
[10]. The proposed caching scheme optimizes memory accesses with mini-
mal changes to the high-level code. Further, it does not require the user to
sequentialize external memory accesses manually.

3. Multi-ported caches [11] have been explored before. However, our work tar-
gets FPGAs where the design space is often larger but permits more rapid
and accurate exploration.

In Figure 1(a), the datapath and the proposed caching system are illustrated.
Data items are retrieved from external main memory through the cache. N sub-
caches are used to provide the parallel accesses required by the datapath, and
each of the sub-caches is a variant of a direct-mapped cache.

There are two levels of connectivity in this system. The first level connects
the datapath to the cache. M ports allow communication between the caching
system and the datapath. Specifically, the datapath can access any of the N
sub-caches using any of the given ports. A crossbar switch is therefore necessary
to realize this functionality. Given that addresses presented at these ports could
contend for the same sub-cache, there is a need for an arbiter to sequentialize
accesses should this situation occur. The second level connects the sub-caches to
external main memory, which it is assumed has only one port. Since more than
one sub-cache might wish to access main memory, the interface to main memory
again needs to be able to sequentialize accesses in that situation.
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Fig. 1. Proposed multi-port cache: (a) Top-level diagram of caching system. (b) Ad-
dress mapping scheme.

The address mapping scheme has a transparent address interface; this is shown
in Figure 1(b). The address is split into three components: the most significant
log2 T bits make up the tag of the address, the middle log2 L bits are used
to determine the correct line within the cache, and the least significant log2 P
bits are used to determine the sub-cache that is currently targeted. The compo-
nents are arranged in this order to allow spatial locality of memory accesses to
be exploited. Indeed, consecutive sub-caches will store items from consecutive
addresses of main memory because the address bits that determine the target
sub-cache are the least significant bits.

4 Usage and Arbitration Scheme

This caching scheme is designed in a completely user-transparent way, using a
semaphore-based system. An example usage of the cache is shown in Figure 2.
Figure 2(a) shows the original source code containing a function stub func. The
input parameters of the function, address0 and address1, which may not be
known at compile time, are used in the retrieval of data items data0 and data1
from a common external memory. The result of the computation is then returned
to register O. To make use of the cache, the external memory access macros
are replaced with cache access macros as shown in Figure 2(b). Parallel cache
accesses are made possible through the use of the crossbar switch and arbitration
logic. It is important to note that in Figure 2(a), assuming only one port of
access, the user has to ensure that multiple external memory accesses have to
take place in different cycles or the data retrieved will be incorrect, whereas this
is transparently ensured by the cache access macros in Figure 2(b).

In Figure 2(b), sub-cache contention may occur. This type of access has static
timing but dynamic addressing since the addresses are data-dependent, whereas
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void main(void)
{
  par
  {
      {// Loop 0
      while(!con)
       {
        datadep0(&con);
       }
       // After Loop 0 terminates
      cacheaccess(address[0], &output[0]);}

       {// Loop 1
       while(!con1)
        {
         datadep1(&con1);
        }
       // After Loop 1 terminates
       cacheaccess(address[1], &output[1]);}
   }
}

int func(address0,address1)
{
  //Retrieve data0.
  externalmemread(address0, &data0);

  //Retrieve data1.
  externalmemread(address1, &data1);

  //Computation.
  O = somecomputation(data0,data1);

  return(O);

}

     

     

int func(address0,address1)
{
  //Retrieve data0 and data1.
 par
 {
    cacheaccess(address0, &data0);
    cacheaccess(address1, &data1);
 }

  //Computation.
  O = somecomputation(data0,data1);

  return(O);
}

         

                     
(a) (b) (c)

Fig. 2. Cache usage: (a) Original code. (b) Cache substitution. (c) Indeterminate mem-
ory access. Note: construct par indicates that statements encapsulated within its braces
are carried out in parallel.

in the latter example, an example of a memory access with dynamic timing is
seen in Figure 2(c). Two concurrent loops are running in parallel and two data
dependent functions: datadep0 and datadep1 determine when the loops termi-
nate; cache access takes place after loop termination. If con and con1 are asserted
in the same cycle, then concurrent cache accesses will take place. If the two ac-
cesses are targeting different sub-caches, accesses will take place concurrently.
However, under the proposed scheme, these accesses will be sequentialized if the
same sub-cache is targeted.

In the proposed scheme, semaphores are used for the architecture of the ar-
biters at both levels of connectivity to automatically ensure sequential access
to the sub-caches as well as external memory when there are multiple requests,
facilitating user transparency. The architecture of the arbitration scheme is de-
tailed in the rest of this section.

In [13], algorithms described in a high-level language are translated into hard-
ware by complementing the data path with a token-based control path: a state-
ment is executed when it captures a token; the statement releases this token
only upon completion of the task specified by the statement. The token may be
duplicated and passed to mutiple statements meant to be carried out in parallel.
Upon completion of the task, the token belonging to the statement that con-
sumes the largest number of cycles will be transferred to the next statement in
sequence. The proposed arbitration architecture uses such a token-based control
scheme. Figure 3(a) shows the block diagram of the semaphore-based system.
Token Ix, 1 ≤ x ≤ N , is captured by the request block when an assertion
is detected. Subsequently, a request for the semaphore guarding the resource
is submited using a trysema statement; up to N trysema statements poten-
tially compete for the semaphore but only one is allowed access to the resource.
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Equivalently, only one token, Sx may be granted such that only one statement, x
is allowed access to that resource at a time. The semaphore is released when to-
ken Ry, 1 ≤ y ≤ M , is captured by the Sema state block, which in turn activates
the releasesema statement, making the semaphore available to other requests.
Signal State is asserted if the semaphore is captured.

Specifically, the function of individual blocks is described by Boolean equa-
tions in Figure 3(b). If Ix is asserted, the corresponding Request block is used to
check if the resource is currently occupied. If the resource is free, Qx is asserted.
Otherwise, Qx is not asserted, but the request is remembered by asserting in-
put of register, P+

x for consecutive cycles until the resource is eventually free
as shown in line 2 of Figure 3(b). P+

x will also be asserted if the semaphore is
free but the request is over-ridden by other statements, such that Sx = 0. If the
semaphore is free, the Priority encoder block is used to determine the statement
that is allowed access to this resource. Among the asserted Qx values, it chooses
one with the smallest value of x resulting in lines 3 to 4. If any Sx = 1, then
Captured = 1. The state of the semaphore in the next cycle, State+, determined
by the Sema State block will be asserted if Captured = 1, or if the resource is
currently busy and none of the releasesema statements have been asserted as
shown in line 5. For this system, the area and delay growth are O(N2) and
O(log N + log M) respectively.

// Request block
1. Qx  =  (Ix + Px).State'
2. Px

+ = State.(Ix + Px) + Qx.Sx
'

// Priority encoder block
3. Sx = Qx.(Sx-1'. ... .S1')
4. Captured = S1 + ... + SN

// Sema state block
5. State+ = (R1 + ... + RM)'.State
                    + Captured

(a)

I1

IN

S1

SN

CapturedState

Q1

QN

S[N..1]

R1           ... ... ...          RM

Request

Request

.

.

.

.

.

.
.
.
.

Sema state
(b)

Priority
encoder

Legend:
X': not(X), X.Y: and(X,Y), X+Y: or(X,Y)

Fig. 3. Architecture of a semaphore-based system: (a) Block diagram. (b) Boolean
equations for individual blocks.

5 Implementation and Results

The effectiveness of the caching system is shown in the following sections. The
cache is expected to reduce the cycle count. However, degradation in clock speed
as well as greater resource utilization will also occur. The experimental setup
used to investigate this caching scheme and the performance-resource usage
trade-offs in practice will be presented in the following sections.

5.1 Experimental Setup

A memory intensive variant of motion vector estimation [14] is used as a bench-
mark circuit to test the effectiveness of the caching system. This algorithm and
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the proposed multi-port cache are implemented using the Handel-C [15] lan-
guage, which includes semaphores as a built-in construct.

The RC300 board [16] from Celoxica containing a Xilinx Virtex XC2V6000
FPGA is used for this experiment. The FPGA contains 33792 slices and 144 block
RAMs [17]. Two external synchronous SRAMs (SSRAM) are used to store image
frames. Only one port of access exists for each SSRAM and each access requires
two cycles [18]. On-chip block RAMs are used for the implementation of the
cache. The access time for block RAM access is one cycle, but logic overheads
prolong access time to two cycles for the semaphore-based system which is the
same as external memory access time. Therefore, a reduction in overall cycle
count comes only by parallelizing accesses to the sub-caches.

Two experiments were conducted. For both experiments, each design is in-
dicated by S X Y Z in Sections 5.2 and 5.3, where X indicates the number of
ports, Y indicates the logarithm of the number of cache lines (base 2) within 1
sub-cache, and Z represents the search window size. Two motion vector search
window sizes, 7 and 15 pels, are used where a pel indicates a block region in
an image frame of size of 16 by 16 pixels. The number of pels represents the
distance of the search center from the boundary of a square search area. In Ex-
periment 1, execution time and resource usage are monitored while the number
of ports is varied. The number of data items in the cache is held constant at
211 (approximately 3% of frame size). These designs are compared with a ref-
erence design where no cache is included. Intuitively, execution time will fall
with the increasing parallelism afforded by the increasing memory bandwidth.
At the same time, the extent to which spatial locality is exploited increases under
the mapping scheme described in Section 3, implying an increased incidence of
cache hits. However, degradation in clock speed and resource usage are expected
because of logic resources used in the implementation of increasing numbers of
semaphores as well as the size of the crossbar switch. In the experiment, the
optimum number of ports is established empirically.

In Experiment 2, for each window size, the execution time and resource usage
is monitored while the number of cache lines is varied for a constant number of
ports, which are found to give the minimum execution time in Experiment 1.
With an increase in the number of cache lines, the number of cache hits should in-
crease resulting in execution time reduction. However, more storage and routing
resources are needed to accommodate the extra cache lines, leading to degrada-
tion in clock speed. Therefore, an optimum trade-off point is again expected.

5.2 Experiment 1

In Table 1, Baseline Z indicates the design where no cache is added and external
memory accesses are sequentialized by hand; Z represents the search window size.
The performance columns are partitioned into two sub-columns. The left column
corresponds to values for a search window size of 7 pels and the right column
corresponds to 15 pels. A significant reduction of up to 50.6% in cycle count
is seen for both S 16 7 7 and S 16 7 15. However, due to degradation in the
clock period, the execution time is reduced by at most 23.6% (S 4 9 15) for 15
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pels. The maximum reduction in execution time for 7 pels S 2 10 15 is 14.7%,
for design S 2 10 7. Given that the number of cycles required to access data
items in the cache is the same as the number of cycles used to access external
memory, no significant benefit is observed in a cache with a single port. Indeed,
designs S 1 11 7 and S 1 11 15 have larger cycle counts compared to Baseline 7
and Baseline 15 respectively because each cache miss results in an access time
of 3 cycles (the additional cycle consumed over normal external memory access
is due to the overhead of tag checking). It can be seen that a reduction in
execution time can, however be obtained by parallelizing cache accesses. Also,
there is an increase of approximately 52.8% in execution time, comparing the
lowest execution time of both 7 and 15 pels, with an increase of search area by
76.5% for each reference block. This increase in resource usage and execution
time represents a trade-off between motion vector quality and search window
size. The resource usage for both window sizes is the same because they have
the same data paths.

Table 1. Table of timing and resource usage for a fixed cache size for window sizes of
7 and 15 pels

Design
Period Cycle Count Execution time Slice Block
/ns /108 /sec per frame Count RAMs
Z/pels Z/pels Z/pels

7 15 7 15 7 15
Baseline Z 29.5 29.7 5.78 13.5 17.0 40.2 1166 4
S 1 11 Z 32.8 35.8 5.93 13.9 19.4 49.7 1224 7
S 2 10 Z 34.1 30.4 4.31 10.1 14.7 30.7 1539 8
S 4 9 Z 41.9 43.9 3.47 8.13 14.5 35.7 2363 12
S 8 8 Z 51.4 52.1 3.06 7.15 15.7 37.3 4650 20
S 16 7 Z 62.5 62.9 2.85 6.67 17.8 41.9 10927 36

For the cache design, the number of trysema statements, N is equal to the
number of releasesema statements, M. The slice count increases superlinearly
with the number of ports, in line with the O(N2) prediction of section 4.

A Pareto-optimum trade-off curve between execution time and resource usage
is shown in Figure 4. Resource usage is obtained by taking the larger of the
proportions of block RAM and slice usage [19] as seen in (1). Note that each
point on the graph represents a fully placed and routed design. The leftmost
point of the trade-off curve shows the Baseline design and the number of ports
increase from the left to the right. For 7 pels, beyond a port count of 4, there is an
increase in execution time even when more resources are used due to clock period
degradation, indicating that the designs are sub-optimal. For 15 pels, S 4 9 15
does not lie on the Pareto-optimum curve because of the comparatively smaller
clock period of S 2 10 15.

Resource usage = max
(

B

TB
,

S

TS

)
(1)
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Fig. 4. Graph of execution time versus resource usage for different number of ports on
a Xilinx XC2V6000 chip

B = Number of block RAMs used in the design
TB = Total number of block RAMs on-chip

S = Number of slices used in the design
TS = Total number of slices on-chip

5.3 Experiment 2

In Table 2, the timing and resource usage information with varying number of
cache lines are shown for a fixed port count of 4 and 2, for window sizes of 7
and 15 pels respectively. The number of cache lines is not extended beyond 214

because the number of items in the cache exceeds the size of the image beyond
that point. An optimum point is seen in the execution time where number of
cache lines is 210. A block RAM is able to hold 211 pixels, so no reduction of
block RAM usage is seen below 211 cache lines. However, a reduction of slice
count still occurs. The number of data block RAMs for 15 pels is the same for
29 and 210 cache lines for the same reason, but two additional block RAMs are
required for 211 cache lines to hold the tag and valid bits because of the fixed
number of wordlength formats allowed in block RAMs.

The Pareto-optimum curve is shown in Figure 5. The number of cache lines
increases with resource usage from the left to the right; For 7 pels, aside from
Baseline 7 and S 4 11 7, all other designs are clearly sub-optimal. S 4 9 7 and
S 4 10 7 are sub-optimal because, by employing design S 4 11 7, execution time
can be reduced without additional resource usage. This behaviour is attributed
to the granularity of the FPGA platform; a block RAM has a storage capacity
of 211 pixels so that further reductions in the number of cache lines will still
employ one block RAM. Further, designs not lying on the Pareto-optimum curve
require more resources but require longer execution times because of clock period
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Table 2. Table of timing and resource usage for fixed number of ports (Z refers to the
window size in pels and X refers to the number of ports)

Design

Period Cycle Count Execution time Slice Block
/ns /108 /sec per frame Count RAMs
X=4, X=2, X=4, X=2, X=4, X=2, X=4, X=2, X=4, X=2,
Z=7 Z=15 Z=7 Z=15 Z=7 Z=15 Z=7 Z=15 Z=7 Z=15

S X 9 Z 41.9 32.3 3.47 10.2 14.5 33.1 2363 1531 12 8
S X 10 Z 42.3 30.4 3.31 10.1 14.0 30.7 2374 1539 12 8
S X 11 Z 40.8 33.2 3.28 9.68 13.4 32.1 2370 1544 12 10
S X 12 Z 44.6 37.6 3.28 9.64 14.6 36.3 2386 1552 20 14
S X 13 Z 49.0 37.3 3.28 9.62 16.1 35.9 2399 1556 36 18
S X 14 Z 47.4 43.5 3.28 9.62 15.5 41.9 2404 1536 48 28
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Fig. 5. Graph of execution time versus resource usage for different cache sizes on a
Xilinx XC2V6000 chip

degradation. For a window size of 15 pels, the trade-off characteristic is similar.
However, Baseline 15 and S 2 10 15 are optimal.

6 Conclusion

In this work, a novel multi-port caching scheme for circuits with parallel data-
paths has been described. This scheme detects parallel accesses to cache contents
dynamically and uses a semaphore-based system to sequentialize these accesses if
they are targeted at the same sub-cache. This scheme requires minimal changes
to the algorithm description. Significant savings of up to 51% and up to 24% in
cycle count and execution time are seen, respectively, for a benchmark applica-
tion. Further, it was verified in hardware that parallel sub-cache accesses were
responsible for the cycle count reduction. However, degradation in clock speed
reduces the extent of these gains. Due to the varying degree of clock degradation,
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the savings are different for different window sizes. A 24% reduction in execution
time is seen for a window size of 15 pels compared to 15% for 7 pels. In addi-
tion, beyond a specific number of ports and cache size, this degradation negates
further reductions in cycle count, leading to an increase in execution time. Fi-
nally, the trade-off between resource usage and execution time were shown via
hardware profiling. It has been explicitly shown that in the process of selecting
Pareto-optimal designs, it is important to account for clock speed degradation.
Indeed, considering cycle count reduction and resource usage alone are insufficent
in the selection process.

Current and future work includes the investigation of the trade-off between
energy consumption and resource usage. Also, trade-offs between dynamic and
static memory accesses will be explored in greater detail. Potentially, more work
could be done to tune the cache parameters during run-time to exploit trade-
offs between resource usage and execution time to cater to statistical properties
of the algorithm. However, re-configuration overheads have to be considered in
determining the benefit and timing of re-configuration.
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Abstract. A previously proposed Reconfigurable Instruction Set Pro-
cessor (RISP) architecture, which tightly couples a coarse-grain Recon-
figurable Functional Unit (RFU) to a RISC processor, is considered. Two
architectural enhancements, namely partial predicated execution and vir-
tual opcode are presented. An automated development framework for the
introduced architecture is proposed. In order to evaluate both the archi-
tecture and the development framework a complete MPEG-2 encoder
application is used. The efficiency of the predicated execution is proved
and impressive speedup of the application is produced. Also, the use of
virtual opcode to alleviate the opcode space explosion is demonstrated.

1 Introduction

Modern applications, implemented in embedded systems, are characterized by
diversity of algorithms, rapid evolution of standards, and high-performance de-
mands. To amortize cost over high production volumes, embedded systems must
exhibit high levels of flexibility and adaptation to achieve fast time-to-market and
increased reusability. An appealing option -broadly referred to as reconfigurable
computing- is to couple a standard processor with reconfigurable hardware com-
bining this way the advantages of both resources [1]. The processor can serve
as the bulk of the flexibility that can be used to implement any algorithm. On
the other hand, the incorporation of the Reconfigurable Hardware (RH) features
potentially infinite dynamic instruction set extensions offering the adaptation of
the system to the targeted application.

In this paper, we target at a dynamic RISP architecture [2], which consists
of a RISC processor extended by a coarse-grain RFU. We present two enhance-
ments performed to the architecture to increase its efficiency. The first, which
aims to increase performance, supports partial predicated execution [3]. It is
used to remove control dependencies and expose larger clusters of operations as
candidates for execution in the RFU. The second enhancement, namely ”vir-
tual opcode”, attempts to alleviate the opcode space explosion. This is achieved
by assigning the same opcode to different operations across the application space.
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Specifically, a natural opcode accompanied with information regarding the
region of the application where it is used forms a virtual opcode. Thus, a virtu-
ally almost arbitrary number of reconfigurable instruction set extensions can be
supported.

Furthermore, in order to program and evaluate the introduced architecture a
development framework is presented. The framework is fully automated in the
sense that it hides all RH related issues requiring no interaction with the user
other than that of a traditional compiler flow. Using this framework a complete
MPEG-2 encoder application is implemented and evaluated. Results indicate
that an x2.9 speedup is obtained. Finally, we demonstrate how performance
can be traded-off with opcode space and configuration memory size, using the
proposed virtual opcode technique.

2 Related Work

Based on the coupling type between the processor and the reconfigurable hard-
ware, the overwhelming majority of the proposed reconfigurable systems fall into
two main categories which are: 1) the reconfigurable hardware is a co-processor
communicating with the main processor and 2) the reconfigurable hardware is
a functional unit of the processor pipeline (we will state this category as RFU
from now on).

The first category includes, Garp, NAPA, Molen, REMARC, and PipeRench
[4,5,6,7,8]. In this case, the coupling between the processor and the RH is loosely;
communication is performed implicitly using special instructions to move data
and control directives to and from the RH. To hide the overhead introduced by
this type of communication, the number of clock cycles for each use of the RH
must be high. Furthermore, the RH usually has direct connection to memory and
features state registers, while can operate in parallel with the processor. In this
way, the allowed performance improvements are significant. However, only parts
of the code weakly interacting with the rest of the code can be mapped to the
RH to exploit this performance gain. These parts of the code must be identified
and replaced with the appropriate special instructions. Garp and Molen features
automation of this process but only for loop bodies and complete functions,
respectively. For NAPA and PipeRench this process is performed manually.

Examples of the second category are systems such as PRISC, Chimaera, and
XiRisc [9,10,11]. Here, the coupling is tightly and communication is performed
explicitly. Data is read and written directly to and from the processor’s register
file, while the RH is treated as another functional unit of the processor. This
makes control logic simple, while the communication overhead is eliminated.
However, the explicit communication can cause an opcode space explosion, a
drawback of this approach. In this case, parts of the code implemented in the
RH are smaller and can be seen as dynamic extensions of the processor’s instruc-
tion set. Fully automated compilers are not reported in the literature neither for
this category. For example, in XiRisc the identification of the extracted compu-
tational kernel is performed manually, while PRISC and Chimaera feature no
selection process for the identified instructions.



Enhancing a RISP with Partial Predication and Virtual Opcode Support 219

CONTROL 
LOGIC
(Core & 

Coupling)

REGISTER FILE

ALU

M
UX

PIPELINE REGISTER

PIPELINE REGISTER

PIPELINE REGISTER

PIPELINE REGISTER

MUL

<< DATA
MEM

CORE / RFU INTERFACE

PROCESSING & INTERCONNECT LAYERSCONFIGURATION 
LAYER

WRITE BACK 
DATA

CONTROL 
SIGNALS

I_DATA_INBUS

OPERANDS

1ST STAGE 
RESULT

2ND STAGE 
RESULT

R OpCode

STATUS 
SIGNALS CONFIGURATION 

BITS

Fig. 1. Target RISP Architecture

Our approach falls in the second category, since it tightly couples an RFU to
the processor core. The implicit communication offers the possibility to consider
for acceleration the whole application and not just kernels, which is usually the
case for the co-processor approach. Even though smaller speedups are achieved
for the kernels compared to the co-processor approach, they are achieved in all
application’s space. Thus, the average speedup is preserved as it is proven in the
following.

3 Target Architecture

The target architecture, which is shown in Figure 1, is a RISP processor described
in [2]. The processor is based on standard 32-bit, single-issue, five-stage pipeline
RISC architecture that has been extended to support the following features:

– Extended ISA to support three types of operations performed by the RFU,
namely: 1) complex computations, 2) complex addressing modes, and 3)
complex control transfer operations.

– An interface supporting the tightly couple of an RFU to the processor
pipeline.

– An RFU array of Processing Elements (PEs).

On each execution cycle an instruction is fetched from the Instruction Mem-
ory. If the instruction is identified as reconfigurable its opcode and four operands
from the register file are forwarded to the RFU. In addition, the opcode is
decoded and produces the necessary control signals to drive the interface and
pipeline. At the same time the RFU is appropriately configured by downloading
the necessary configuration bits from a local configuration memory.

The processing of the reconfigurable instruction is initiated in the execution
pipeline stage. If the instruction has been identified as addressing mode or con-
trol transfer then its result is delivered back to the execution pipeline stage to
access the data memory or the branch unit, respectively. Otherwise, the next
pipeline is also used in order to execute longer chains of operations and to im-
prove performance. Since instructions are issued and completed in-order, while
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Fig. 2. If-then-else statement implementation using partial predicated execution

all hazards are resolved in hardware, the architecture is totally synchronized and
does not require any special attention by the compiler.

The RFU consists of a 1-Dimension array of PEs. The array features an in-
terconnection network that allows connection of all PEs to each other (fully
connected). The granularity of PEs is 32-bit allowing the execution of the same
word-level operations with the processor’s datapath. Furthermore, each PE can
be configured to provide its unregistered or registered result. In the first case,
spatial computation is exploited (in addition to parallel execution) by executing
chains of operations in the same clock cycle. When the delay of a chain exceeds
the clock cycle, the registered output is used to exploit temporal computation
by providing the value to the next pipeline stage for further computation.

In the following, a description of partial predicated execution and virtual
opcode architectural enhancements, performed to the RISP architecture are
presented.

3.1 Support for Partial Predicated Execution

Predicated execution [3] provides an effective mean to eliminate branches from
an instruction stream. It is referred to the conditional execution of an instruction
based on the value of a Boolean source operand, called the predicate. Typically,
it is utilized by the compiler and/or hardware to remove control dependences and
expose Instruction Level Parallelism (ILP) in superscalar and VLIW processors.

In our approach, partial predicate execution is supported to eliminate the
branch in an if-then-else statement. Figure 2 presents an implementation exam-
ple of such a statement. The two alternative paths of the statement are exe-
cuted unconditionally and the final result is selected using a special three source
operand SELECT operation. The SELECT operation can be implemented with
a multiplexer as shown in Figure 2. Furthermore, the two alternative paths in-
cluding the comparison path can include a large number of operations forming
a complex reconfigurable instruction. This type of instructions, implemented in
the RFU, offer the possibility for high performance improvement.

Figure 3 illustrates the modifications (marked with gray) performed in the
RFU to support predicated execution. As detailed presented in [2], the RFU
features an output network responsible to select the appropriate PE result. The
selection is performed based on the corresponding configuration bits. Two mul-
tiplexers controlled by two new configuration bits are added to control each
stage result. In this way, the configuration that will drive the output network
is selected between the standard configuration bits and hardwired comparison
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results, for predicated execution. The comparison results are provided by the
PEs that already support comparison operations.

3.2 Virtual Opcode Support

As previously mentioned, the explicit communication between the processor and
the RFU involves the direct encoding of reconfigurable instructions to the opcode
of the instruction word. This fact limits the number of reconfigurable instructions
that can be supported, leaving unutilized available performance improvements.
On the other hand, the decision to increase the opcode space requires hardware
and software modifications. Such modifications can be in general unacceptable.
This is also the case for our approach since our intention is to extend a conven-
tional RISC processor with reconfigurable instruction set extensions with small
architectural and design modifications. Virtual opcode assists to increase the
available opcodes without increasing the size of the opcode bits or modify the
instruction’s word format.

Each virtual opcode consists of two parts. The fist is the natural opcode
contained in the instruction word that has been fetched for execution in the
RFU. The second is a value indicating the region of the application in which this
instruction word has been fetched. Thus, different operations can be assigned to
the same natural opcode across different regions of the application featuring a
virtually ”unlimited” number of reconfigurable instructions.

Figure 4 presents the new organization of the local configuration memory in
order to support virtual opcodes. The original organization has been presented
in [2] and is capable to provide at each cycle the appropriate configuration bits
to the RFU based on the reconfigurable instruction opcode. The extended con-
figuration memory is characterized by two levels. The first one, with size of K
instructions, stores the configuration bits assigned to each one of the natural
opcodes. The second, with size of L contexts, indicates the different copies of
the natural opcodes each one assigned in a different region of the application.
Therefore the size of the local configuration memory equals to KxLxN (where N
is the number of configuration bits required for each reconfigurable instruction).
Each time only one of the L contexts can be active and the configuration bits
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assigned to a natural opcode of this specific context are driven to the output. A
special instruction is used to set active the appropriate context. This instruction
is issued by the processor when the control flow of the application is entering a
specific region. The compiler is responsible to identify these regions, create the
virtual opcodes, and issue the activation of the correct context.

4 Development Framework

Our approach of compiling for the target architecture involves primarily the
transparent to the user incorporation of compiler extensions to support the re-
configurable instruction set extensions. Under this demand, we developed an
automated development framework for the target RISP architecture, whose or-
ganization is depicted in Figure 5. The complete flow is divided in five distinct
stages, namely: 1) Front-End, 2) Profiling, 3) Instruction Generation, 4) Instruc-
tion Selection and 5) Back-End. Each stage of the flow is presented below.

Front-End: The framework supports C/C++ codes that are firstly fed to the
front-end. MachSUIF [12] is used to generate the Control and Data Flow Graph
(CDFG) of the application using the SUIFvm Intermediate Representation (IR).
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A MachSUIF pass that performs if-conversion [15] is used to support partial
predicated execution. The pass eliminates branch instructions by introducing
conditional SELECT instructions, which can be implemented in the RFU as
previously described. The output of this stage is an optimized IR in the form of
a CDFG.

Profiling: A MachSUIF pass which instruments the CDFG with profiling an-
notations marking the entrances and exits of basic blocks (we will state DFGs
as basic blocks from now on), has been developed. A modified m2c pass (the
original is supplied with the MachSUIF) translates the CDFG to equivalent C
code, while the annotations regarding the basic blocks are converted to program
counters. Compiling and executing the generated code, profiling information for
the execution frequency of the basic blocks is collected.

Instruction Generation: The instruction generation stage is divided in two
steps. The goal of the first step (pattern generation) is the identification of
complex patterns of primitive operations (e.g. SUIFvm operations) that can
be merged into one reconfigurable instruction. Pattern generation is performed
using an in-house framework for automated extension of embedded processors
described in [13]. The patterns generation engine is based on the MaxMISO
(maximal multiple-input single-output) algorithm [14].

In the second step, the mapping of the previously identified patterns in the
RFU is performed and the actual candidate reconfigurable instruction set exten-
sions are generated. A mapper for the target RFU has been developed for this
reason. The steps performed by the mapper are:

1. Calculate the latency of each operation in the pattern. This latency includes
the accumulated latencies of the operation’s presidencies in the pattern’s
chains. The latency is calculated using user parameters defining the delay of
the modules of the RFU (PEs, interconnection etc.).

2. Place each operation in a PE and appropriately configure its functionality.
3. Put the PE for execution in the appropriate pipeline stage based on the

calculated latency and the type of the pattern (e.g. computation, addressing,
and control). This is performed by selecting the registered or the unregistered
output of the PE (see [2] for more details).

4. Configure the multiplexers of the 1-D array for appropriate interconnection
of the PEs.

5. Report the reconfigurable instruction set semantics (e.g. latency, type, re-
sources etc.).

Instruction Selection: In this stage, the final instruction set extensions are
selected. Firstly, the static speed-up of each instruction is calculated. This is
accomplished by considering the software versus the hardware (RFU) execution
cycles of the instruction. The software execution cycles are equal to the number
of operations of which the instruction consists, while the hardware cycles have
been reported by the mapper in the previously stage. The static speed-ups are
multiplied by the execution frequency of the basic block (derived at profiling
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stage) and the dynamic speed-ups are calculated. Finally, we perform pair-wise
graph isomorphism on the set of instructions. A set of isomorphic instructions
defines a group for which the offered speed-up is calculated by summing the
dynamic speed-ups of the group members.

The instructions/groups are then ranked based on the dynamic speed-ups
that they can produce. This ranking can be performed in two different modes
regarding the support of virtual opcodes. When such support is not consider,
the instructions are ranked unified across all the application’s space. The best
K instructions (where K is the maximum number of available opcode space) are
selected to be included as reconfigurable instruction set extensions.

In the case where virtual opcode technique is used, the application is parti-
tioned in regions. Currently, the framework is capable to consider only function
bodies as different regions. This time, the ranking of the candidate instructions
is performed partial for each function. Furthermore, the possible overhead intro-
duced by the requirement to set each time active the specific region context is
considered. This information is provided by the profiling stage. The regions are
then ranked based on their available speed-up. The first L regions, (where L is
the number of the available contexts) are considered and the first K instructions
of each region are selected.

Back-End: The back-end of the framework flow is the only stage that has not
yet been fully implemented. However, since reconfigurable instructions do not
require any special manipulation for the communication and synchronization
between processor and RFU, the back-end is much like any traditional processor
back-end performing tasks like scheduling, register allocation etc.

5 Experimental Results

To evaluate the architecture and the development framework, we used an MPEG-
2 encoding application. The source code of the application was taken by the
MediaBench suite [16]. As input data a video sequence consisting of 12 frames
with resolution of 144x176 pixels was considered. Since no Operating System
(OS) support is currently available for our architecture, all OS calls (like printf,
fopen etc.) was omitted. Therefore, it was considered that all data were initially
available in the data memory and results of the application were delivered back to
the same memory. Speedups have been calculated by comparing the instruction
count of the base RISC processor of the architecture with and without support
of the RFU unit.

The following experimental results are divided in two sections. In the first,
we consider the architecture without virtual opcodes support and present the
achieved speedups for the MPEG-2 encoder application. We analyze the speedup
over the whole application space and quantify the benefits by the incorporation
of the partial predicated execution support. In the second section, we demon-
strate the usage of virtual opcodes to achieve speedups with limited opcode
space.
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5.1 MPEG-2 Encoder Application Speedup Analysis

Table 1 presents instruction counts for the most timing consuming functions of
the MPEG-2 encoder application. Results are presented for both execution on
the core processor alone (No RFU) and with RFU support. The experiments were
performed considering the initial version of the target architecture [2], where 64
different reconfigurable instructions are supported. All instructions were con-
sider available in the local configuration memory requiring no cycle penalty to
use them. The third column contains speedups achieved for the specific part
of the application. Fourth column holds incremental speedups achieved when
the specific function including those before it are considered for acceleration.
The SAD operation is actually contained in the dist1 function and results are
presented to help in the following discuss.

Table 1. Instruction Counts for the most timing consuming functions, without (No
RFU) and with RFU support (RFU)

Instr. Counts Instr. Counts SpeedUp SpeedUp
(NoRFU) (RFU) (Incremental)

(106) (106)

SAD 589.0 89.0 6.6 1.5
dist1 1206.0 375.0 3.4 2.3

fullsearch 73.5 35.0 2.0 2.5
bdist1 18.0 9.0 2.0 2.5
putbits 16.3 7.0 2.3 2.6

fdct 15.6 6.8 2.3 2.6
quant non intra 13.1 5.1 2.6 2.7

idctcol 11.4 4.8 2.4 2.7
dct type estimation 10.4 4.5 2.3 2.7

pred comp 10.1 5.4 1.9 2.7
iquant non intra 9.9 5.6 1.8 2.8

add pred 8.0 4.1 2.0 2.8
bdist2 7.3 4.1 1.8 2.8
idctrow 7.0 3.2 2.2 2.8

putnonintrablk 6.9 4.0 1.8 2.8
sub pred 6.6 3.7 1.8 2.9
Overall 1448.7 499.6 2.9 2.9

Regarding the profiling of the application it is observed that the most timing
consuming part is the dist1 function. As Table 1 shows, this part of the code
accounts for the 83% of the total execution time and it is speeded-up by 3.4.
If only this part were considered for acceleration, x2.3 speedup for the whole
application is produced. Moreover, this is the part of the code where the well
known computation intensive Sum-of-Absolute-Difference (SAD) is located. The
SAD function consumes 41% of the total application execution time. Table 1
actually demonstrates what was expected based on the well-known Amdahl’s
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using partial predicated execution

law. That is, attempting to accelerate only the hot-spots of the application by a
factor S, produces an overall application speedup that is only a fraction of S. As
Table 1 indicates, our approach attempts to accelerate all the spectrum of the
application achieving an overall speedup x2.9 for the entire MPEG-2 encoder
application.

Finally, in order to evaluate the limitation of the opcode space, we perform
again the same experiments assuming an infinite number of available opcodes.
The speedup in this case is x3.1. Thus, in our case we are able to utilize the 94%
of the available performance improvements.

Evaluation of partial predicated execution support: Although the Mach-
SUIF pass that performs if-conversion was available in [15], partial predicated
execution is not yet fully integrated in our framework. Therefore, we had to
manually identify and exploit this type of operations. To reduce complexity we
target only the most time consuming part of the code which is function dist1
as already mention. Specifically, we target the computation intensive SAD op-
eration which is part of the dist1 function. Three instructions were selected
for implementation in the RFU, which are presented in Figure 6. The third
one was partitioned in two distinct instructions to resolve inputs and delay
constraints.

These instructions are capable to deliver significant performance improve-
ments. Specifically, when partial predicated execution is not used the achieved
speedup for the dist1 function drops from x6.6 to x1.7, resulting in a reduction
in the overall speedup from x2.9 to x1.7. Clearly, there are significant benefits
by the incorporation of partial predicated execution technique that we expect
to be increased by fully incorporation of the technique in our framework.

5.2 Experimental Results with Virtual Opcode Support

As previously stated, opcode explosion is a limitation of the explicit communi-
cation between the core processor and the RFU. To provide opcode space for the
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encoding of the reconfigurable operations, modifications to the base processor
are required. Such modifications include redesign of the instruction format and
the instruction decoder of the base processor. In fact, this is the case for our
architecture in order to support 64 different reconfigurable instructions [2]. In
the following we demonstrate the use of virtual opcode to exploit any available
opcodes without modifying the design of the base processor.

Experiments were re-performed with the virtual opcode support in the in-
struction selection stage of the development framework enabled. The experiments
were performed for different number of contexts and instructions per context.
The overhead to set each time active the appropriate context was taken into ac-
count. Figure 7 presents the speedups achieved for a number of contexts varied
from 2 to 16. For comparisons purposes the speedups without virtual opcode
support (Unified) are included. The number of instructions per context varied
from 4 to 64.

As it is observed virtual opcode can be employed when targeting a base proces-
sor with limited opcode space, to increase achievable speedups. Thus, in the case
when 4 or 8 instructions per contexts are available, speedups of x1.7 and x2.0,
respectively, can be achieved by utilizing 8 contexts. This way the 55% and 65%,
respectively, of the maximum speedup (that is x3.1) is utilized. Although this is
a moderate fraction of the available speedup, it is clearly well above the one with
no virtual opcode support (Unified). The configuration memory requirements in
this case are 0.5KB and 1.1KB for 4 and 8 instructions, respectively. Memory
requirements are calculated by the expression KxLxN as described in 3.2 section
(N=136 configuration bits per instruction).

In the case where more opcodes are becoming available, virtual opcode be-
comes more efficient. Thus, with 16 instructions x2.8 speedup is possible with
12 contexts. The memory requirement in this case is 3.2KB. Furthermore, when
32 instructions are becoming available, results indicate that actually all per-
formance is utilized without the need for more opcode space. The maximum
memory requirement in this case is 8.7KB and they can produce x3 speedup for
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the complete MPEG-2 encoder application. In general, the overhead in memory
requirements can be characterized as reasonable.

6 Conclusions

In this paper, a previously proposed RISP architecture was considered and was
enhanced with partial predicated execution to improve performance and vir-
tual opcode to relax opcode space pressure. Using an automated development
framework a complete MPEG-2 encoder application was implemented. Experi-
mental results present an impressive x2.9 speedup for the application. Speedup is
achieved by accelerating the whole space of the application with efficient recon-
figurable instruction set extensions. This fact is in contrast with the co-processor
approach were usually only the heavily executed kernels of the application are
considered.
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Abstract. Adaptive processors can exploit the different characteristics
exhibited by program phases better than a fixed hardware. However, they
may significantly degrade performance and/or energy consumption. In
this paper, we describe a reconfigurable cache memory, which is effi-
ciently applied to the L1 data cache of an embedded general-purpose
processor. A realistic hardware/software methodology of run-time tun-
ing and reconfiguration of the cache is also proposed, which is based
on a pattern-matching algorithm. It is used to identify the cache con-
figuration and processor frequency when the programs data working-
set changes. Considering a design scenario driven by the best product
execution time×energy consumption, we show that power dissipation
and energy consumption of a two-level cache hierarchy and the product
time×energy can be reduced on average by 39%, 38% and 37% respec-
tively, when compared with a non-adaptive embedded microarchitecture.

1 Introduction

Programs and their execution phases exhibit different efficiencies when fixed
processor hardware is adopted [12]. Adaptive processors can exploit this phe-
nomenon to provide higher efficiency than fixed hardware systems [14]. These
processors activate the reconfiguration of its microarchitecture under architec-
tural criteria: highest performance, lowest energy consumption, etc. Hardware
reconfigurability is a more general concept related to physical resources needed
to modify the hardware organization after chip fabrication. Some reconfigurable
cache memories have been proposed to improve the performance or power dis-
sipation of general-purpose processors ([1], [7], [9]). However, improvements are
limited by the level of reconfigurability, which has been forced to not degrade
the operating frequency of processor. We have observed that if the clock speed
of the reconfigurable system is allowed to be slightly slower, higher performance
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and reduced power dissipation can be achieved at the same time compared with
non-reconfigurable hardware systems.

In this paper, we propose the microarchitecture of the Field-Programmable
Cache Array (FPCA). FPCA is a specialized reconfigurable circuit for the cache
memory of a general-purpose processor. In comparison with a conventional cache,
the clock speed is only slightly slower. The temporal and power overheads are
low because programs exhibit large execution phases and reconfigurations are
only sporadically activated. The additional hardware is also small because the
circuit is specialized in memory caches. Our field-programmable cache memory
is similar to others reconfigurable caches in that they try to obtain the highest
performance or the lowest energy consumption by selecting the best configuration
at critical runtime points ([1], [7], [9]). However, their range of configurations is
fixed at design-time and is not scalable to different chip area budgets. In these
cases, we have observed that it can be possible that a single cache configuration
is selected for the majority of applications. The FPCA cache can be used in
scalable designs with different initial budgets for the processor development,
each of them can adopt a distinct FPCA.

Some control algorithms for adaptive caches spend long times in the tuning
process because they explore all the configurations for picking the best cache
configuration ([1], [4]). Then, the temporal and energy overheads are higher
as the number of tuneable cache configurations increases. The large number of
cache configurations that can be implemented with a FPCA cache would damage
the potential of FPCA for achieving improvements. We also propose an on-line
control algorithm called Cache Matching Algorithm for instantaneously tuning
a FPCA-based L1 data cache with accuracy, minimal hardware cost, and an
overhead that is independent of the number of tuneable configurations.

Section 2 contains discussion of related work. Section 3 presents the internal
organization of the reconfigurable FPCA circuit, and the parameters required for
architectural simulations. Section 4 describes the control algorithm to reconfigure
a FPCA in adaptive processors and its hardware implementation. In Section 5,
we describe the simulation methodology employed to evaluate our proposals.
Section 6 evaluates our control methodology for real processors with a FPCA-
based L1 data cache. Section 7 contains concluding remarks and future work.

2 Related Work

Two aspects of the reconfigurable systems that are integrated into a general-
purpose processor are needed to be determined in the design process: the hard-
ware organization, and its control methodology. Both aspects are reviewed next.

Some sections of a general-purpose processor have been proposed to be re-
configurable: the ALU functional unit ([5], [14]), the clock generator and power
supply [10], the cache memory ([1], [7], [9], [15]). Our proposal of reconfigurable
cache memory differentiates from these systems in the following ways. (1) The
number of possible cache configurations can be two orders of magnitude higher
than other adaptive caches, with approximately a 10% increase in chip area.
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Depending on each application, some configurations are used to provide the
highest performance and other configurations are used to provide the lowest
power dissipation. (2) The operating frequency of the processor/cache system
and cache hit latency can be independently varied. A wide range of frequen-
cies and chip areas can be used in different scenarios, from low-cost processors
to high-performance processors. (3) The configuration bitstream is sufficiently
small to not significantly impact performance and energy consumption.

The control algorithm is used to determine the hardware configuration that
best suits the characteristics of a given program or execution phase. Depending
on the dynamic or static system behaviour, two groups of control methodologies
can be identified: on-line and off-line control. Methodologies for on-line control
take clues from the processor hardware to infer characteristics of programs. Dif-
ferent hardware events have been used: branch frequency [1], cache misses [7],
cache hits [7], utilization of the issue queues [10], and the invocation of subrou-
tines [6]. Work on this subject has explored three basic properties of algorithms
([1], [4]): (a) efficiency on detecting a phase boundary, (b) the tuning overhead,
and (c) the reconfiguration overhead. Additionally, we have observed that the
set of tuneable configurations is required to be analyzed. Our on-line control
algorithm differentiates from other methods in the following ways: (1) We do
not use the same tuneable cache configurations for all programs; (2) We propose
a methodology based on basic block vectors to know the most efficient config-
urations for each program; (3) The tuning and reconfiguration overheads are
relatively low and independent of the number of tuneable configurations, as we
do not prove all the possible cache configurations each time a program phase
change is detected; (4) Most of the adaptive techniques that have been pro-
posed for energy saving in cache memory reduce the energy or the time×energy
product but also reduce performance [1]. On the other hand, prior adaptive
systems proposed for performance improvement increase energy consumption
([1], [10]). For the programs in which the effect of L1 misses dominates, our
proposal can improve performance and reduce energy consumption at the same
time.

Off-line compiling, profiling and instrumentation of the application can be
used to alternatively implement the adaptation control ([6], [15]). Our FPCA
cache can be exclusively managed by a software procedure. We have observed
that a high percentage of the performance improvement and energy saving
demonstrated by on-line adaptation is achieved. This approach decreases the
chip area by avoiding the use of a hardware coprocessor [2].

3 The Field-Programmable Cache Array

In this section, we describe a specialized reconfigurable circuit for cache memo-
ries called Field-Programmable Cache Array (FPCA), which is based on Field-
Program-mable Gate Array technology. The FPCA circuit can be integrated
into conventional processors, from high-performance to low-cost processors. The
FPCA circuit is organized into an array of reconfigurable cells called



A Reconfigurable Data Cache for Adaptive Processors 233

Fig. 1. Block diagram of the Field-Programmable Cache Array (FPCA)

Configurable Cache Blocks (CCB), which are selectively connected by a power-
on configuration bit (called Vcc). Fig. 1 shows a block diagram of the FPCA
where four CCBs can be identified.

A CCB is based on the classical organization of CMOS memories, and its
design was guided by results of the architectural study of the cache adaptation
shown in Section 6. Each CCB consists of eight complete cache memories called
T-D, each of them consists of 128 sets with 20 bits for tags and 8 bytes for data
(T and D respectively in Fig. 1). Some tag bits can be selectively activated,
depending on the cache configuration. The overall capacity of each CCB is 8
Kbytes, and the reconfigurability of CCBs allows up to three degrees of set-
associativity: 2-way, 4-way and 8-way, and up to four line sizes: 8, 16, 32, 64
bytes. A FPCA includes 10 additional configuration bits which are shared by all
CCBs. When a different cache organization is required, the FPCA can implement
it by changing the configuration area.

Reconfigurability requires additional hardware resources: SL, OE, and RC. SL
represents the selection logic that selects the index bits which are the same for
all CCBs. This module uses four configuration bits to select the appropriate bits
from the variable sections of the address called Tag/Index and Index/Block (see
Fig. 1). OE represents the hardware module that selects the output data, which
uses other four configuration bits and the block bits of the address (fixed block
and variable index/block in Fig. 1). RC represents the reconfigurable comparator
where the information read from the tag array T is compared to the tag bits of
the address (fixed tag and variable index/tag in Fig. 1).

The range of configurations that can be implemented with FPCA has the
following constrains: the number of sets has to be higher than or equal to 128,
8-way set-associativity is the highest allowed associativity, the cache lines can
store data from 8 to 64 bytes, and the biggest size depends on the number of
CCBs, which is related with the chip area devoted to FPCA. Therefore, FPCA
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allows different cache configurations to be implemented, in which capacity, as-
sociativity and line size can be varied independently. The hit latency (in cycles)
can also be variable and depends on the operating frequency. Supposing that
the critical path of the processor is determined by the L1 data cache, we have
observed that better performance can be achieved when the operating frequency
is reduced slightly in order to maintain a minimal hit latency in cycles of FPCA
accesses. This is the reason why we do not fix the operating frequency, which is
supposed to be limited by the maximum frequency allowed by the L1 data cache
of a non-reconfigurable processor which is taken as reference system.

3.1 Architectural Model

An architectural model of the FPCA circuit is required for detailed cycle-by-cycle
simulations of complete processors. We modified the analytical model used by
CACTI tool [13], which predicts the access time, power dissipation and chip area
of conventional CMOS cache memories. Our modification was guided by PSPICE
simulations of the FPCA circuit and provided the following average results: (a)
The conventional paths that are affected by the specialized reconfigurable archi-
tecture are the address decoder, comparator, multiplexer driver, and wire lines
of the input address and output data (see dotted line in Fig. 1). The access time
and cycle time of a FPCA cache configuration on average was 20% longer than
provided by original CACTI for the same CMOS technology; (b) Each FPCA
has more transistors than the equivalent non-reconfigurable cache memory. So,
the power consumption of a memory access is on average 10% higher; (c) The
reconfiguration time is a temporal overhead which is proportional to the number
of configuration bits. For the FPCA shown in Fig. 1, its four CCBs has 14 config-
uration bits, which are loaded when a change of cache organization is activated.
Supposing that these bits are serially loaded with a 100 MHz configuration clock
signal, the reconfiguration time of FPCA is 0.14 ms. During this reconfiguration
phase, we suppose that FPCA can not be accessed, and the previous content
of the cache is discarded; (d) The FPCA was 10% larger in chip area than the
equivalent non-reconfigurable memory cache.

4 Run-Time Adaptation

In this section, we show how Basic Block Vectors (BBV) obtained from dynamic
program traces can be used to determine changes in some characteristics of
the data working-set accessed by an instruction interval. Then, we explain how
a hardware algorithm called Cache Matching Algorithm collects BBV vectors
during program run-time for reconfiguring a L1 data cache implemented with a
FPCA circuit in order to adapt to changes in the data working-set.

4.1 Predictor of the Data Working-Set

The size of a Basic Block (BB) is determined from the instruction count between
branches. A BBV vector is gathered for each instruction interval during the
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program execution. Each component of a BBV collects the frequency of basic
blocks with a determined size. Up until now, BBV-based techniques have been
used for accelerating simulation time of general-purpose processors [11].

A program phase is characterized by a large number of consecutive instruction
intervals with similar data working-sets. We propose a method for adapting a re-
configurable data cache, which consists in using a unique BBV vector to recognize
instruction intervals with recurring data working-sets. Working-set representa-
tions have the advantage that they can be used to estimate the working-set size
directly [4]. They are useful in cases where performance and/or power consump-
tion of a hardware unit is directly related to the working-set characteristics. In
our reconfigurable system, the detection of one of these BBVs can predict the
volume and characteristics of accessed data. So, a cache configuration accommo-
dated to the data working-set can be activated when a BBV vector is recognized
during program execution.

4.2 Reconfiguration Algorithm

We use a pattern-matching algorithm called Cache Matching Algorithm (CMA)
to associate each unique BBV with a distinct cache configuration. It dynamically
detects changes of data working-set to reconfigure an FPCA-based L1 data cache.
Three stages are required: Learning, Recognition, and Actuation.

Learning Stage. The Learning Stage is used to identify patterns/phases of
recurring data working-sets, and associates each pattern with a configuration of
the reconfigurable FPCA cache. This task is performed by software and is divided
into three major steps. In the first learning step, a BBV vector is read from some
hardware registers. Every BBV vector may have thousands of components. A
feature extraction method called Decision Boundary Feature Extraction was
used to calculate the optimal transformation to a three dimensional space [8].
Thus, for each instruction interval, three BB sensors (counters) in the processor
core hold the components of a three-dimensional BBV vector (called 3-D BBV).
The BB sensors collect the number of all executed basic blocks whose sizes are in
three ranges, which were identified during this research for each program. BBV
vectors that are close together represent instruction intervals with similar data
working-sets, i.e. a recurring program pattern/phase.

In the second learning step, the K-means clustering algorithm [11] runs it-
eratively on 3-D BBV vectors collected from the execution of a relatively large
number of 100,000 instruction intervals. So, the 3-D BBV vectors are grouped
into a set of K clusters called “SimPoint (SP) Classes”, where each SP class
represents a different program pattern/phase. Finally, the 3-D representation
space is partitioned into hypercubes; each of them encloses the 3-D BBV vectors
assigned to an SP class.

In the last learning stage, associating each SP class with an optimal cache
configuration involves executing several instructions intervals for every tuneable
configuration, and monitoring the respective SP classes and products “execution
time × energy consumption (t×E)”. After picking all configurations, each SP
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class is assigned to the cache configuration which exhibits the highest t×E in
most of the instruction intervals assigned to that SP class. Since we are assuming
that the best cache configuration is the same for all the intervals belonging to
the same SP class, a single program execution will suffice. In fact, learning time
can be reduced by testing configurations on-the-fly, as the program is run for the
first time. Since an SP class should be composed of many intervals, the learning
time is negligible in comparison with the total execution time.

A Representation Space Table is used to store the SP class assigned to each
3-D BBV. Another Pattern Table contains the association between an SP class
and the cache configuration ID with the highest t×E (see Fig. 2). Both tables
are implemented in hardware for a fast look-up, and are set-up by software after
the last learning step.

Fig. 2. Microarchitecture of the adaptive processor with Field-Programmable Data
Cache (FPCA) and hardware support (COPRO) for the Cache Matching Algorithm

Recognition and Actuation Stages. The Recognition stage tunes the cache
configuration for optimum performance and energy consumption. It detects if
the current cache configuration does not provide the highest t×E for the run-
ning program pattern/phase, and determines what different cache configuration
should be used instead. A hardware coprocessor performs this task by firstly
reading the 3-D BBV vector from the BB sensors after each execution interval
(see Fig. 2). Next, the vector position in the Representation Space Table allows
the SP class of the interval to be recognized. If the activated cache configuration
does not match with the configuration associated with this SP class, which is
stored in the Pattern Table, it means that the instruction interval was not effi-
ciently executed. The tuning task can be executed in parallel with the instruction
flow and does not modify the critical path of instruction execution.

The Actuation stage is activated by the coprocessor when the SP classes of
three consecutive instruction intervals are assigned in the Pattern Table to the
same cache configuration (identified by a Cache ID) and this is different from the
currently activated configuration. When the actuation stage starts, the instruc-
tion flow is stalled and a Configuration Table is read to obtain the bitstream
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required for the reconfiguration process, including the operating frequency (see
Fig. 2). After reconfiguring the hardware, the cache content is lost and the in-
struction flow and recognition process are restarted. Before running a different
program, the Representation Space Table, Pattern Table and Configuration Ta-
ble are loaded with the information derived from the respective Learning Stage.

In summary, the association of a cache configuration with a program phase
is learned once, stored, and used each time the program phase is recognized.
Therefore, the runtime overhead is independent of the number of configurations.

4.3 Reconfiguration Controller

Supposing intervals of 105 instructions, three 17-bit counters measure the num-
ber of executed instructions in BBs with three different ranges of sizes. The three
more significant bits from each counter builds one of the components of the 3-D
BBV vectors. Six 12-bit registers load the upper and lower limits of the three
ranges of BB sizes before running the program. Another 17-bit counter regis-
ters the clock cycles for each instruction interval, and a pair of 16-bit counters
measures hits and misses in the cache.

The hardware coprocessor required for the Recognition and Actuation stages
contains three small tables (see Fig. 2). The Representation Space Table provides
for each 3-D BBV the respective SimPoint Class. Since each BBV component
has three bits and 16 is an appropriate number of SP classes, its size is 29×4
bits. The Pattern Table contains the association between SP Class and cache
configuration (identified by a Cache ID). Supposing that the maximum number
of different configurations is 256, its size is 24×8 bits. The Configuration Table
stores for each Cache ID the configuration bits needed for reconfiguring the
FPCA data cache (14 bits), including the operating frequency and the hit and
miss latencies. Its size is 50 bytes.

A FIFO memory is used to store the Cache ID of the last three instruction in-
tervals, and a single register stores the current FPCA configuration ID. Another
hardware module provides the activation signal of the Actuation stage when the
four IDs are the same. Additionally, a small circuit is needed to read the Config-
uration Table and configure the FPCA in the Actuation stage. Supposing eight
instructions/cycle, 100,000 instructions are executed in 12,500 clock cycles. It
is enough for reading the Representation Space and Pattern tables, and for the
glue logic to activate the Actuation Stage.

5 Experimental Methodology

We have used the Simplescalar tool set [3] to generate the dynamic trace of the
first 2 billion instructions for 20 SPEC programs (Alpha ISA, cc DEC 5.9, O4):
applu, gcc, apsi, gzip, art, ijpeg, bzip, mcf, eon, mesa, equake, parser, facerec,
perlmbk, fma3d, sixtrack, galgel, vpr, gap, wupwise. They were chosen to demon-
strate how our proposed hardware/software methodology can outperform both
highly efficient non-adaptive approaches on SPEC benchmarks, and additionally,
because they represent different program domains (Integer, FP, Multimedia).
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Accurate cycle-by-cycle simulation was performed using a superscalar CPU
simulator based on Simplescalar [3], to subsequently calculate for each tuneable
L1 data cache configuration the execution time, energy consumption, power dis-
sipation, and product “execution time × energy consumption”. The parameters
used for the simulated out-of-order microarchitecture are: up to 8 instructions
renamed, dispatched, issued and retired per cycle; Fetch Queue of 16 instruc-
tions; a perfect Branch Predictor; Issue Queue of 48 instructions; Reorder Buffer
of 256 instructions; Operation latencies like Pentium 4; Load/Store Queues of
64/32 instructions; perfect I-Cache with 2-cycle load-use latency; a perfect L2-
Cache with 4.6 ns access time; and a 16GB/s L1-L2 interface. The simulated
configurations for the Reconfigurable L1 Data Cache were: Size: 1KB, ..., 32KB;
Set-Associativity: 2-way, 4-way, 8-way; Line Size: 8, ..., 64 Bytes; Load-use La-
tency: 1 clock cycle; 2 read/write ports. All simulations considered in this paper
included the following penalizations for the reconfigurable cache with respect to
the same cache configuration built with fixed hardware: CPU stall time during
cache reconfiguration (1 μs), energy consumption during cache reconfiguration
(5 μJ), cache content is lost after reconfiguration.

Benchmarks were simulated using intervals of 105 instructions per 1 billion
instructions executed, after a warming-up of 1 billion instructions. The whole
analysis interval was divided into two equal intervals of 0.5 billion instructions.
The first one was used for learning, and the second one for recognition/actuation.

The standard SimPoint Toolkit [11] was used to extract basic block vectors
(BBV) from the dynamic execution of benchmarks during the analysis interval.
As previously described in Section 4.2, each instruction interval provides a 3-D
BBV vector. The BBVs of the learning interval were classified into SP classes,
which determined the content of the Representation Space Table. Our CPU
simulator takes 3-D BBV vectors obtained from the recognition interval and
associates each of them with the FPCA configuration of the respective SP class,
which was assigned in the Learning Stage.

We used a modified version of CACTI 3.2 [13] to estimate the access time,
energy consumed in each memory access, and chip area of each FPCA config-
uration, for a CMOS technology with λ = 100 nm. Our experiments used the
original CACTI tool to characterize the reference configuration: 32 Kbytes, 8-
way set-associative, and line size of 32 bytes. This reference cache is very popular
among current embedded processors [15]. We supposed that the operating fre-
quency of the reference processor (fbase) and the maximum operating frequency
of the adaptive processor (flimit) are determined by the L1 data cache of the
reference processor, with a hit latency of 1 cycle. This means that fbase=flimit=
1.0 GHz. Additionally, the chip area of the reconfigurable cache is limited by the
chip area of the reference L1 data cache: Alimit= 1.5 mm2.

This paper reports results for three architectural metrics: execution time, sta-
tic and dynamic energy consumption and power dissipation of the L1 data cache
and unified L2 cache, and execution time × energy product. As CACTI only
provides estimates of dynamic energy, we calculate static energy as described in
[15], with k static = 50%, i.e. static energy is 50% of the total energy. In the
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experiments, we have supposed that in each reconfiguration of the FPCA cache
the instruction flow is stalled during 1 ms and the contents of the L1 data cache
is discarded. The energy consumed by sensors was not considered since they
are very small. In each cache reconfiguration, the additional energy consumed
by FPCA and coprocessor is 5 μJ. When reconfiguration is not activated, the
energy consumed by coprocessor is negligible because the activated hardware is
also small: Representation Space Table, Pattern Table and glue logic.

6 Results

This section evaluates the potential of our reconfigurable FPCA cache memory
for embedded processors. We simulate the Learning Stage as described in Sec-
tion 4.2 by taking into account intervals of 100,000 instructions and prioritizing
the product time × energy. Once the Learning Stage has provided the contents
of the coprocessors tables, the Recognition and Actuation Stages of the adap-
tive L1 data cache can be simulated. After each instruction interval, the BBV
vector provided by the hardware sensors and the contents of the representation
table are used to find the corresponding SP class. A reconfiguration is activated
only when three consecutive instruction intervals are assigned to the same SP
class, and this SP class is assigned in the pattern table to a cache configura-
tion that is different from the currently activated. We assume that each cache
reconfiguration additionally introduces an overhead delay of 1 μs and consumes
5 μJ, which includes the overheads of the Actuation Stage and the update of
L2 memory. The number of reconfigurations performed during the experiments
(flimit= 1.0 GHz, Alimit= 1.5 mm2, 5,000 instruction intervals) oscillated from 0
(eon) to 423 (gzip) with an average of 139 reconfigurations per interval, i.e. less
than 3%. These results indicate that the program phases exhibit high temporal
locality, which reduces the performance and energy overheads due to hardware
reconfiguration.

Results of the evaluation of the adaptive processor with reconfigurable FPCA
data cache are shown in Fig. 3. As can be seen, FPCA adaptation achieves a

Fig. 3. Reduction of execution time, power dissipation, energy consumption and
time×energy for the adaptive processor with respect to the reference system
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39% mean reduction of power dissipation of the cache hierarchy, a 38% mean
reduction of energy consumption of the cache hierarchy, and a 37% mean re-
duction of time×energy. Performance is only degraded on average by 2%. These
results are presented relative to the same reference machine mentioned earlier.

This phenomenon is mainly due to the frequent selection of FPCA configura-
tions with lower energy cost per memory access than the reference configuration,
while the operating frequency of the adaptive processor is close to the maximum
frequency (flimit). We have observed that it is better to reduce the operating
frequency of the adaptive processor in order to maintain the same hit latency
as the reference configuration than increasing the frequency to the maximum
and adding one clock cycle to the hit latency of the adaptive L1 data cache.
This would increase the average CPI (cycles per retired instruction), which is
not compensated by the increase in operating frequency.

The maximum improvement of energy, time×energy, and performance was
achieved by art (43%, 67%, and 35% respectively). This and other three programs
(facerec, galgel, mcf) show no degradation in all four architectural metrics. This
is due to the high miss rate for the L1 data cache. For these programs, the miss
rates of the reference cache configuration range from 20% for facerec to 49% for
art. Then, the L1 miss latency provides a significant delay. The non-adaptive
L2 cache requires a different miss penalty for each FPCA cache configuration,
since the operating frequency depends on the FPCA access time. A tunable L1
cache configuration with lower frequency and lower energy per memory access
allows the L1 miss latency and energy consumption to be reduced. Therefore, in
programs with high L1 miss rate, the saving in L1 miss penalty can compensate
the reduction in operating frequency, while achieving higher performance and
power saving at the same time.

The maximum saving of power dissipation was 45% for equake. In this case,
the L1 miss rate is very low (0.03% with the reference configuration). The picked
FPCA cache configurations can double this L1 miss rate, which is also very low.
However, the respective energy per access can be halved. At the same time, the
operating frequency is only slightly lower than reference system, and so, the
execution time is also slightly lower than reference system. Therefore, power
dissipation (energy / execution time) can be significantly reduced by using the
reconfigurable FPCA cache. Note that, after finalizing the learning phase, the
selection during run-time of a cache configuration does not require previous
tuning of all available configurations before the selection of the preferred cache,
as proposed in [1] and [10]. Therefore, our adaptation control method requires
lower overhead for the determination of the stable state of the L1 data cache
configuration than previously reported methods.

7 Conclusions and Future Work

We have proposed and evaluated the performance, power dissipation, and en-
ergy consumption of a reconfigurable L1 data cache, which is based on field-
programmable technology and managed by a hardware/software algorithm. With
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this proposal, a high efficiency of use of the data cache of an embedded proces-
sor can be achieved by using a specialized reconfigurable circuit. The main con-
tributions of the paper are the following. The reconfigurable data cache (1)
provides a change mechanism with low reconfiguration overhead, (2) is charac-
terized by access times only slightly larger than similar non-adaptive circuits,
(3) uses a learning mechanism applied to reduce tuning overhead, (4) improves
energy consumption and power dissipation of the cache hierarchy and the prod-
uct time × energy at the same time. We additionally (5) proposed a predictor
mechanism of the data working-set of a program, and discovered that (6) en-
ergy and power saving can be achieved with minimal performance degradation
when for each program, the set of preferred cache configurations is accurately
determined, which justifies the existence of a reconfigurable cache. The efficiency
provided by the reconfigurable FPCA cache that is presented in this paper can
be exploited in other cache levels. This is one of our research goals in the near
future.

References

1. R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S. Dwarkadas: A Dynami-
cally Tunable Memory Hierarchy. IEEE Tran. Computers, 52(10):1243-1257, 2003

2. D. Benitez, J.C. Moure, D.I. Rexachs, E. Luque: Performance and Power Evalua-
tion of an Intelligently Adaptive Data Cache. Springer LNCS, Vol. 3769

3. D. Burger, T.M. Austin: The SimpleScalar Toolset, Ver. 2.0. Computer Architec-
ture News, 25(3):13-25, 1997

4. A.S. Dhodapkar, J.E. Smith: Managing Multi-Configuration Hardware via Dy-
namic Working Set Analysis. Proc. 29th Intl. Symp. Computer Architecture, IEEE
Computer Society (2002) 233–244

5. M. Epalza, P. Ienne, D. Mlynek: Adding limited reconfigurability to superscalar
processors. Proc. 13th Intl. Conf. on PACT, pp.53-62, 2004

6. M. C. Huang, J. Renau, J. Torrellas: Positional Adaptation of Processors: Appli-
cation to Energy Reduction. Proc. 30th Intl. Symp. Computer Architecture, IEEE
Computer Society (2003) 157–168

7. C. Kim, D. Burger, S.W. Keckler: An Adaptive, Non-Uniform Cache Structure
for Wire-Delay Dominated On-Chip Caches. Proc. 10th Intl. Conf. Architectural
Support for Program. Languages and Operating Syst., ACM Press (2002) 211–222

8. C. Lee, D.A. Landgrebe: Feature Extraction Based On Decision Boundaries. IEEE
Tran. Pattern Analysis and Machine Intelligence, 15(4)388-400, 1993

9. P. Ranganathan, S. Adve, N.P. Jouppi: Reconfigurable Caches and their Applica-
tion to Media Processing. Proc. 27th Intl. Symp. Computer Architecture, ACM
Press (2000) 214–224

10. G.Semeraro et al: Energy-Efficient Processor Design Using Multiple Clock Domains
with Dynamic Voltage and Frequency Scaling. Proc. 8th Symp. High Performance
Computer Architecture, IEEE Computer Society (2002) 29–40

11. T. Sherwood, E. Perelman, G. Hamerly, B. Calder: Automatically Characterizing
Large Scale Programs. Proc. Intl. Conf. on ASPLOS, ACM Press (2002)45–57

12. T. Sherwood, S. Sair, B. Calder: Phase Tracking and Prediction. Proc. 30th Intl.
Symp. Computer Architecture. ACM Press (2003) 336–349



242 D. Benitez et al.

13. P.Shivakumar, N.P. Jouppi CACTI 3.0: An Integrated Cache Timing, Power, and
Area Model. Compact WRL Technical Report 2001/2, 2001

14. S. Vassiliadis, S. Wong, S. Cotofana: The MOLEN coded processor. Springer-Verlag
LNCS, Vol. 2147 (2001) 275–285

15. C. Zhang, F. Vahid, W. Najjar: A Highly Configurable Cache Architecture for
Embedded Systems. Proc. Int. Symp. Computer Architecture, pp.136-146, 2003



The Emergence of Non-von Neumann Processors
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Abstract. The von Neumann processor has been the foundation of
computing from the start. Today’s instruction processors are powerful
and scale to thousands to yield large compute power, but a small frac-
tion of the peak. The ASIC chip technology that implementations the
fixed design microprocessor is placing significant constraints on the de-
sign of processors. At the same time reconfigurable Processors based
upon FPGA chip technology are growing in capability and performance
using a nontraditional processor architecture without instructions (the
non-von Neumann architecture). Both processor types are trending to a
common design point. This paper explores these trends and explains the
technology of the emerging non-von Neumann processor and presents an
example implementation.

1 Introduction

The von Neumann instruction processor has been with us since ENIAC at the
University of Pennsylvania’s Moore School [1] and has led to the creation of
powerful computers that scale from single processor to thousands of intercon-
nected processors. Applications are consuming as much compute power as can be
delivered. At the same time processor designers in their search for even greater
performance levels are reaching limits in complexity, power and cooling in the
chips from which new processors are created. Costs and time to market are in-
creasing while the delivered performance of processor chips is failing to keep up
with the Moore’s law growth in transistor count per chip. The traditional in-
struction processor is going through dramatic changes, all dealing with reducing
complexity and power consumption, while increasing delivered performance.

The Moore’s law gains in transistor count have also benefited other chip type
besides the traditional processor chip. Field Programmable Gate Array (FPGA)
chips, which can be configured with logic, have dramatically increased in capacity
and clock rate. FPGAs are now practical to be used in creating application spe-
cific processors that best the traditional processor in performance with reduced
power consumption. The evolving changes in current processor design are really
just the early indications of the need for non-von Neumann reconfigurable proces-
sors. A logical transition is underway. That transition and a projection of the path
the technology will support is presented. The trend toward simpler processors and
greater parallelism logically extends to the emergence of non-von Neumann proces-
sors implemented as reconfigurable computers using FPGA chip technology.

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 243–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



244 D.S. Poznanovic

2 The Evolving von Neumann Processor

The tradition processor for today’s systems is based on instruction processor
architecture, the von Neumann architecture. This processor type has been very
successful and has allowed the creation of large high performance systems. How-
ever, in recent years the requirement for ever increasing performance has clashed
with the need for reasonable development times, and cost of ownership. Ever
greater complexity and greater power consumption has caused a reassessment of
the basic design of the microprocessor. Addressing these problems has started a
move to simpler and more power aware designs. Clock rates have hit a limit or
are being reduced, simpler processors are being designed and multiple processors
per chip emerging. Several prominent processor designs will be reviewed and the
trend analyzed.

2.1 IBM Cell Processor

The Cell processor, joint development by IBM, Sony and Toshiba [2][3][4], is
being developed with the objective of orders of magnitude performance gain
over the Playstation2, Real time responsiveness, wide applicability and rapid
design and introduction. To accomplish these objectives the architecture of this
new processor is built upon the Power Architecture while enhanced it with co-
operative offload processors called synergistic processor elements (SPEs). The
Cell processor combines a Power Processing Element with eight SPEs, an on-
chip memory controller, and a configurable I/O interface. Both the PPE and
associated SPEs include SIMD instructions.

The SPE is the interesting new component in this architecture. Its goal is to
offload processing from the PPE. It has a simple structure with multiple parallel
execution units, and with simple sequential instruction issue. Data movement
is through multiple explicit DMAs, and there is no cache. Multiple PPEs can
chain their computation results to one another with the objective of creating
long pipelines of computation and thus achieving significant parallelism.

Through simplification of the processor and elimination of cache, both perfor-
mance increase is seen as well as reduced power requirements. The cache and its
management overhead is eliminated by introducing explicit data management
through program controlled DMAs. This form of data access permits overlap of
compute with data movement, another addition to parallelism in the processor.
The PPE and SPEs are all resident on a single chip and thus reducing synchro-
nization overhead.

Programming the Cell processor requires awareness of the local memory and
use of the SIMD functional units. Performance is gained only when the SPEs are
fully used. The architecture supports a number of programming models: function
offload, computational accelerator, streaming, share memory, and asymmetric
thread models [2]. The referenced paper contains details on all of these. The
significant characteristic of these models is that the programmer has much mode
explicit control that in the traditional microprocessor.
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2.2 IBM Blue Gene/L

The Blue Gene/L system from IBM [5][6][7][8] was designed with the goal of
exceptional cost/performance while approaching the performance of application
specific processors. The system is designed around high level integration of a
moderate frequency in system on a chip (SOC) technology. Performance/watt is
the measure of performance for this system. The simplicity of the building block
of BG/L is desired; since the system is intended to be built up to 65,536 nodes
through an efficient interconnect.

Through use of a lower performing processor and SOC technology the system
is able to provide all of the functionality of a node on a single chip, and to allow
aggregation of a large numbers of high performance/watt nodes. The result is a
high aggregate performance system.

2.3 Intel Multi-core Processors

Intel has realigned its focus from pure high GHz clock rate processors to the
multi-core architecture [9][10]. This means focusing on greater parallelism and
more work done per clock cycle. This change of focus arises from the recognition
that Moore’s Law advances are no longer delivering the performance to the
application at the same rate that the transistor count is growing. A lower clock
frequency brings with it lower power consumption, as well as a simpler processor
to design. Multi-core architecture simply means more processors on a chip, and
simpler inter-processor coordination. Intel has not however followed the Cell
processor direction of vastly simplified processors. The multiprocessor on a chip
provides more support for threaded applications and therefore more parallel
work. The parallelism is however, at a high granularity. Within each processor
there is also support for SIMD instructions and the pipelines that they supports.
This style of streaming processing also provides functional units parallelism.

2.4 Imagine-Stream Processor

Streams processors [11][12][13] are signal and image processors that provide
ASIC performance and programmability. A stream program can be represented
as a data flow graph with data flow between computational nodes. A stream
processor exploits parallelism at the functional unit level and producer-consumer
data locality eliminating the memory load/store overhead. Explicit data man-
agement is accomplished through the use of a large Stream Register File (SRF).
The stream processor is both an instruction processor and a data flow processor.
It is programmable, however it is not reconfigurable. The processor is composed
of a fixed number and type of functional unit, but has through the SRF a flexible
interconnect between functional units.

The Imagine stream processor is a prototype that contains eight arithmetic
clusters each with six 32 bit pipelined floating point arithmetic units. Each
functional unit has its own register file. Each cluster is controlled through a
wide VLIW instruction.
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2.5 The von Neumann Processor Trend

Though there continues to be microprocessors with severe complexity (Itanium),
the trend in microprocessor designs is toward:

– simplicity
– reduced power consumption
– greater parallelism
– slower clocks
– application specific functionality
– more on chip parallelism with less complexity
– explicit control

These trends are driven by the reality of cost and time to market. They also are
tending to bring the instruction processor architecture closer to that of the non-
instruction reconfigurable processor. The following sections will explore these
ideas.

3 The Emerging Non-von Neumann Processor

The previous section explored the trends of some prominent microprocessors
whose implementation is based on fixed function dense logic devices (ASICs).
Processors based upon reconfigurable chip technology have also been evolving.
In particular FPGA chip technology is evolving to allow ever greater amounts of
logic and higher clock rates. The FPGA-based Reconfigurable Processor is com-
ing of age. Technology trends have enabled the creation of a high performance
processor that is not based upon the traditional von Neumann architecture.
These trends have enabled the creation of a competitive processor today and
will continue to drive this new processor to the computing forefront. FPGA
technology, its future and the Reconfigurable Processor architecture that is en-
abled is discussed next. The trends seen in microprocessor and the reconfigurable
processors are leading to a common point which is giving greater importance to
the FPGA based non-von Neumann architectures.

3.1 Field Programmable Gate Array Chips

Field Programmable Gate Arrays (FPGA) are commodity chips composed of
SRAM memory cells used to define a configuration for the chip. FPGAs contain
logic gates, flip-flops, RAMs, arithmetic cores, clocks, and configurable wires to
provide interconnection. FPGAs can be configured to implement any arbitrary
logic function, and can therefore be used to create custom processors that can
be optimized to an application. The chip has a simple and regular structure.
Circuits can be built up from the logic gates of the chip. Specific functionality
can then be built up from the lower level circuits. Data paths connecting the
logic can be configured using routing and switch resources. In this way FPGAs
can be configured to implement any arbitrary logic function, and can therefore
be used to create chips with any desired functionality.
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FPGAs can be configured to create arbitrary circuits. So an FPGA could
be configured as a simple interface chip or a complex microprocessor. So, a
collection of FPGAs could be configured to be a MIPS, or SPARC, PowerPC,
or Xeon processor, as well as a processor of one’s own design. Integrating the
FPGA with memory and chips providing I/O could then yield an instruction
processor capable of being programmed with instructions.

3.2 Direct Execution Logic Processor

Other processor types could be implemented with FPGAs. In fact a proces-
sor need not even be an instruction processor. It could be a Direct Execution
Logic (DEL) processor which contains only computational logic requiring no
instructions to define the algorithm. Specific functional units, such as adders,
multipliers, dividers, and logic functions can be instantiated in an FPGA with
data paths configured to connect the functional units in such a way as to com-
pute an expression. What is important to application developers is that today’s
reconfigurable chips have a clock rate and capacity that make it practical to do
large scale computing with RC hardware.

DEL processors hold great potential for high performance. A DEL proces-
sor can be created with exactly the resources required to perform a specific
algorithm. Traditional instruction processors have fixed resources, adders, mul-
tipliers, registers, cache memory, and require significant chip real estate and
processing power to implement overhead operations such as instruction decode
and sequencing, and cache management.

Why should one care that a DEL processor can be created dynamically for
an application, and that it uses its chips more effectively than a microprocessor?
The answer is simple: PERFORMANCE and POWER EFFICIENCY. A DEL
RC processor can be created with all of the parallelism that exists within an
algorithm without the overhead present in a microprocessor. For the remainder
of this article RC processors will be assumed implemented using FPGAs in order
to be more specific in the discussion.

3.3 Performance in DEL Processors

Performance in RC processors comes from parallel execution of logic. RC proces-
sor are completely parallel. In fact the task of constructing the logic for a given
algorithm is to coordinate the parallel execution such that intermediate results
are created, communicated and retained at the proper instants in time.

A DEL processor is constructed as a network of functional units connected
with data paths and control signals. Each computational element in the network
becomes active with each clock pulse. Even though a microprocessor can operate
at a clock frequency of 3 GHz and the FPGA chips operate in the 100 to 300
MHz frequency range the parallelism and internal bandwidth on a DEL processor
can out perform the microprocessor by orders of magnitude better delivered
performance. Parallel execution of exactly the required number of functional
units, high internal bandwidth, elimination of instruction processing overhead,
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and load/store elimination all contribute to overcoming the 30X difference in
clock frequency between the DEL processor and the Intel microprocessor.

3.4 FPGA Technology - The Future

Figures 1 and 2 present a summary of the performance expected in FPGAs over
the next few years [14]. Performance gains can be seen on two fronts: paral-
lelism and clock rate, with the resulting gain to application performance being
multiplicative. Additional logic capacity of the chips results in additional paral-
lelism. FPGA chip geometry and growing density results in increased clock rates.
The basic chip technology that has lead to microprocessor performance advances
also produces higher performing FPGAs. However, the performance gains seen in
FPGA based processors is more readily delivered to the application, because of

Fig. 1. Performance Advances in FPGAs

Fig. 2. Floating Point Performance Advances in FPGAs
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the application specific processing that takes place. The overhead in the FPGA
can be kept to an absolute minimum when compared to a typical microprocessor.
So the bottom line is that the Moore’s Law gains in transistor count is turned
into application level performance at a greater rate than microprocessors.

Raw FPGA clock rate and gate density is not likely to exceed the ASIC
implementation of microprocessor chips. Since FPGAs are reconfigurable and
implement functionality through configurable lookup tables and route signals
through configurable levels of switches, a hardware level of indirection is intro-
duced. However, in the long run, the high degree of available parallelism and
reduced overhead available through Direct Execution Logic and the resulting
application specific processors overcomes any deficit in clock rate.

A new generation of FPGAs is partially eliminating the indirect routing slow-
down by introducing hard cores into the FPGA fabric. These hard cores are
essentially ASIC implementations of processors or functional units. They range
from integer multipliers, to double precision IEEE floating point units, to DSP
processors. The introduction of hard core functional units that provide dense
real estate and low latency compute while retaining the flexible routing of sig-
nals in and out of the unit is a big performance step forward. It is also a step
toward the traditional microprocessor ASIC implementation. The combination
of soft core and hard core functional units on a flexible routing fabric provides
high performance while maintaining the flexibility of routing that gives a Direct
Execution Logic processor its efficiency.

4 A New High Performance Architecture

Previous sections of this paper discuss Reconfigurable Processors in general. This
section presents a specific implementation of a systems based on both von Neu-
mann and non-von Neumann processors. SRC Computers, Inc. [15] has created
systems that are composed of DEL processors and microprocessors. SRC systems
runs Linux as the OS, provide a programming environment called CarteTM for
creating applications composed of both microprocessor instructions and DEL,
and support microprocessor and DEL processor hardware in a single system.
SRC’s hardware and software implementation is next presented to illustrate an
current implementation of the previously discussed Reconfigurable Computing
technology.

4.1 The DEL Processor - MAP R©

The MAP processor is SRC’s high performance DEL processor. MAP uses re-
configurable components to accomplish control and user-defined compute, data
prefetch, and data access functions. This compute capability is teamed with
very high on and off-board interconnect bandwidth. MAP’s multiple banks of
On-Board Memory provides 24 GBs/sec of local memory bandwidth. MAP is
equipped with separate input and output ports with each port sustaining a data
payload bandwidth of 3.6 GB/sec or 14.4 GB/s total bandwidth. Each MAP
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Fig. 3. SRC MAP

also has two general purpose I/O (GPIO) ports sustaining an additional data
payload 10.3 GB/sec for direct MAP-to-MAP connections or data source input.
Figure 3 presents the block diagram of the MAP processor.

4.2 Microprocessor with SNAPTM

The Dense Logic Devices (DLDs) used in these products is the dual processor
Intel IA-32 line of microprocessors. These third party commodity boards are
then equipped with the SRC developed SNAP interface. SNAP allows commod-
ity microprocessor boards to connect to, and share memory with, MAPs and
Common Memory nodes that make up the rest of the SRC system.

The SNAP interface is designed to plug directly into the microprocessors’
memory subsystem, instead of its I/O subsystem, allowing SRC systems to sus-
tain significantly higher interconnect bandwidths. SNAP uses separate input and
output ports with each port currently sustaining a data payload bandwidth of
3.6 GB/sec.

The intelligent DMA controller on SNAP is capable of performing complex
DMA prefetch and data access functions such as data packing, strided access and
scatter/gather, to maximize the efficient use of the system interconnect band-
width. Interconnect efficiencies more than 10 times greater than a cache-based
microprocessor using the same interconnect are common for these operations.

SNAP can either connect directly to a single MAP or to SRC’s Hi-Bar R©
switch for system-wide access to multiple MAPs, microprocessors or Common
Memory.
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4.3 SRC System Level Architectural Implementation

System level configurations implement either a cluster of MAPstationsTM, or a
crossbar switch-based topology. Cluster-based systems utilize the microprocessor
and DEL processor previously discussed in a direct connected configuration.
While this topology does have a microprocessor-DEL processor affinity, it also
has the benefit of using standards-based clustering technology to create very
large systems.

When more flexibility is desired, Hi-Bar switch-based systems can be
employed. Hi-Bar is SRC’s proprietary scalable, high-bandwidth, low-latency
switch. Each Hi-Bar supports 64-bit addressing and has 16 input and 16 output
ports to connect to 16 nodes. Microprocessors, MAPs and Common Memory
nodes can all be connected to Hi-Bar in any configuration as shown in Figure
4. Each input or output port sustains a yielded data payload of 3.6 GB/sec
for an aggregate yielded bisection data bandwidth of 9.2 TB/sec per 16 ports.
Port-to-port latency is 180 ns with Single Error Correction and Double Error
Detection (SECDED) implemented on each port. Hi-Bar switches can also be
interconnected in multi-tier configurations, allowing two tiers to support 256
nodes. Each Hi-Bar switch is housed in a 2U-high, 19-inch wide rack mountable
chassis, along with its power supplies and cooling solution, for easy inclusion
into rack-based servers.

SRC servers that use the Hi-Bar crossbar switch interconnect can incorporate
Common Memory nodes in addition to microprocessors and MAPs. Each of these
Common Memory nodes contains an intelligent DMA controller and up to 8 GBs
of DDR SDRAM. The SRC-7 MAPs, SNAPs, and Common Memory node (CM)
support 64 bit virtual addressing of all memory in the system, allowing a single
flat address space to be used within applications. Each node sustains memory
reads and writes with 3.6 GB/sec of yielded data payload bandwidth.

Fig. 4. SRC-7 Hi-Bar System
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The CM’s intelligent DMA controller is capable of performing complex DMA
functions such as data packing, strided access, and scatter/gather to maximize
the efficient use of the system interconnect bandwidth. Interconnect efficiencies
more than 10 times greater than a cache-based microprocessor using the same
interconnect are common for these operations.

In addition, the SRC system have dedicated semaphore circuitry that is also
accessible by all MAP processors and microprocessors for synchronization.

5 Programming Model for Reconfigurable Computing

Traditionally the programming model for RC has been one of hardware design.
Given that the tools required for the underlying FPGA technology of RC are all
logic design tools from the Electronic Design Automation industry, there really
has not been a programming environment recognizable to a software developer.
The tools have supported Hardware Definition Languages (HDL) such as Verilog,
VHDL, and Schematic Capture.

With the introduction of system on a chip (SOC) technology and the complex-
ity associated with hardware definition of such complexity, high level languages
have begun to be available. Java and C-like languages are becoming more com-
mon for use in programming RC chips. This is a significant step forward, but
continues to require quite a leap by application programmers.

The SRC programming model is the traditional software development model
where C and Fortran are used to program the MAP processor, and any language
capable of linking with the run time libraries (written in C) can be compiled
and run on the microprocessor portion of the system.

5.1 Carte Programming Environment

The SRC Carte programming environment was created with the design assump-
tion that application programmers would be writing and porting applications to
the RC platform. Therefore the standard development strategies, of design, code
in high level languages (HLLs), compile, debug via standard debugger, edit code,
re-compile, and so on, until correct, are used to develop for the SRC-7 system.
Only when the application runs correctly in a microprocessor environment, is
the application recompiled and targeted for the DEL processor, MAP.

Compiling to hardware in a RC system requires two compilation steps that
are quite foreign to programming for an instruction processor. The output of the
HLL compiler must be a hardware definition language. In Carte the output is ei-
ther Verilog or Electronic Design Interchange Format (EDIF). EDIF files are the
hardware definition object files that define the circuits that will be implemented
in the RC chips. If Verilog is generated, then that HDL must be synthesized to
EDIF using a Verilog compiler such as Synplify from Synplicity.

A final step, place and route, takes the collection of EDIF files and creates the
physical layout of the circuits on the RC chip. The output files for this process is
a configuration bitstream which can be loaded into an FPGA to create the hard-
ware representation of the algorithm being programming into the RC processor.
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The Carte programming environment performs the compilation from C or
FORTRAN to bitstream for the FPGA without programmer involvement. It
further compiles the codes targeted to microprocessors into objects modules. The
final step for Carte is the creation of a Unified Executable which incorporates
the microprocessor object modules, the MAP bitstreams, and all of the required
run time libraries into a single Linux executable file.

6 Conclusions

This paper has discussed the trends in recent microprocessor, and in the FPGA
based reconfigurable processors. These widely dissimilar architectures are actu-
ally on a path of convergence driven by the approaching limits of technology for
the microprocessor and by the advances in the FPGA technology seen by the RC
processors. Microprocessors are achieving higher performance via parallelism of
simpler multi-cores with slower clock rates and efficiency through explicit con-
trol. Simplicity of designs and power efficiency are now important processor deign
goals. The FPGA based non-von Neumann processor are achieving performance
through harnessing parallelism of data-flow processing, utilizing multi-core fixed
logic techology, increasing chip capacity and higher clock rates, and delivering
power efficient performance. Both the instruction based processors and the data-
flow procesors can now be programmed using high level programming languages.

Both processor types have a place in computing. However, if the technology
trends continue, the nontraditional (non-von Neumann) processor has a good
chance of becoming the dominant processor, while the traditional fixed design
microprocessor (von Neumann) processor moves to be the support processor of
a computing system.
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Abstract. Reconfigurable computing based on hybrid architectures,
comprising general purpose processor (CPU) and Field Programmable
Gate Array (FPGA), is very attractive because it can provide high com-
putational performance as well as flexibility to support today’s embedded
systems requirements. However, the relative high reconfiguration costs
often represent an obstacle when using such architectures for run-time
reconfigurable systems. In order to overcome this barrier the used real-
time operating system must explicitly respect the reconfiguration time.
In such systems, the reconfiguration activities need to be carried out dur-
ing run-time without causing the application tasks to miss their dead-
lines. In this paper, we show how we model these activities as aperiodic
jobs. Therefore, we apply the server-based method from the real-time
schedule theory to the scheduling of aperiodic activities.

1 Introduction

In currently available Field Programmable Gate Arrays (FPGAs), the availabil-
ity of a general purpose processor (GPP) surrounded by a large field of reconfig-
urable hardware offers the possibility for a sophisticated System-on-Chip (SoC)
concept. Moreover, the capability of such devices to be on-the-fly partially repro-
grammed allows to dynamically adapt the software and hardware to the current
system requirements, performing a Reconfigurable SoC (RSoC). The resulting
system is one which can provide higher performance by implementing custom
hardware functions in FPGA, and still be flexible by reprogramming the FPGA
and/or using a microprocessor (hybrid architecture).

In the scope of our ongoing research we are developing a runtime reconfig-
urable Real-Time Operating System (RTOS). In the proposed framework, the
RTOS is able to adapt itself to the current application requirements, tailoring
its components for this purpose. Therefore, the system continuously analysis
the application requirements deciding on-the-fly which RTOS components are
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needed and also to which execution environment (CPU or FPGA) they will be
assigned. Thus, techniques for a deterministic system reconfiguration need to be
used in order to avoid that a running application will miss its deadlines.

In this paper, we will focus on the mechanisms used to handle the recon-
figuration activities in a deterministic way, applying, therefore, techniques from
real-time schedule theory. More precisely, our proposal consists of modeling these
activities as aperiodic jobs, which will be scheduled together with the running
tasks in order to keep the time correctness of the system.

The remainder of the paper is organizes as follows. After summarizing related
work, we specify the problem and its model. We then show that reconfiguration
activities can be considered as aperiodic jobs (Section 4) and explain how the
server is applied (Section 5). The schedulability analysis in Section 6 sums up and
proves the applicability of our server. Finally, we conclude and give an outlook.

2 Related Work

The hardware/software allocation of applications tasks to dynamically reconfig-
urable embedded systems (by means of task migration) allows the customization
of their resources during run-time to meet the demands of executing applica-
tions, as can be seen in [1]. Another example is the Operating System (OS) for
a heterogeneous RSoC [2], which reallocates on-the-fly the tasks over a hybrid
architecture, depending on the Quality of Service expected from the application.
Nevertheless, the RTOS itself is still static and reconfiguration and migration
costs are not a big issue in the design.

The works presented in [3], [4] and [5] are some examples of RTOS services
to support the (re)location, scheduling and placement of application tasks on an
architecture composed by FPGA with or without a CPU.

In our work we expand and adapt the existing concepts to the RTOS level.
Therefore, technics to take the reconfiguration costs into consideration in order
to achieve a deterministic execution environment is here proposed.

3 Problem Statement and Modeling

The target architecture is composed of one CPU, FPGA, memory and a bus
connecting the components. Most of these elements are provided on a single die,
such as the Virtex II Pro, from Xilinx company. The RTOS services that are
able to be reconfigured are stored on an external SDRAM chip in two different
implementations: as software object and as FPGA configuration bitstream.

Abstractly, the system concept is based on the microkernel approach of
DReaMs RTOS [6]. Only absolutely essential core OS functions are provided
by the kernel (which is fixed and can not be reconfigured). The other functional-
ities (services) are provided by components dynamically attached to the kernel.

The RTOS is composed of a set of services that may run either on the CPU or
on the FPGA. In our system, only application critical tasks use FPGA resources.
The allocation of the currently required RTOS services is decided by an algorithm
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presented in [7]. This algorithm decides where to place each RTOS service taking
into consideration its current cost and available resources (limited FPGA area:
Amax and limited CPU processor utilization: Umax).

Due to the application dynamism, the allocation decision needs to be checked
continuously. Whenever the specified constraints are no longer fulfilled, a system
reconfiguration takes place. This implies that a set of RTOS components need
to be relocated (reconfigurated) by means of migration. However, this activity
must not compromise the correctness of the running application, which under
real-time system means also the respecting of time-constraints.

In typical embedded real-time systems the application may be modeled as a
set of periodic activities. Even sporadic tasks can be modeled as periodic ones
through the assumptions that their minimum interarrival time being the period.
Therefore, we consider the application and the RTOS services as a set of peri-
odic tasks. However, without dependencies among tasks. From the point of view
of the microkernel level, the application as well as RTOS activities are tasks
that compete for system resources. Hence, to schedule the reconfiguration activ-
ities, it is enough to consider the whole system as a single set of periodic tasks.
Let us define a set S of tasks that will suffer a reconfiguration: S = {s1, ..., sm}.
Each task si ∈ S is characterized by the parameters shown in the following table:

Parameter Description

Esw,i; Ehw,i Execution time of a task i in software and in hardware
Pi; Di Period and Relative deadline of a task i
ai; si; fi Arrival, Starting and Finishing time of a task i

RPsw,i; RPhw,i Time to program a task i in software and in hardware
RMshw,i Time to migrate a task i between software and hardware

Additionally, every task i running in software utilizes some processor, which
is defined to be: Ui = Esw,i

Pi
. Similarly, for every task i running in hardware,

some amount of FPGA area is used: Ai.
The notations RP and RM are used to represent the times needed to program

a task in its new execution environment and to actually migrate it, respectively.
When a task is placed in hardware, RP represents the time needed to partially
program the FPGA with its related bitstream. Likewise, RP represents the ac-
tivity to link the object code of a task in the software CPU.

Once having the FPGA programmed with the task’s bitstream, or the CPU
software linked with the task’s object code, the effective migration of the task
can start: RM . This phase represents the activity to read the internal data of
the task and to write it to the new execution environment, including also the
translation of this data between the two different execution environments. After
finishing the RM phase, the next task instance will start in its new execution
environment. Based on our current implementation status, we consider the RM
time as being the same for a task migrating from software or from hardware.

Although there are some methods that allow the preemption of hardware
tasks, (as readback, scan-path methods and etc., e.g. [8]), we do not consider
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that a task may be preempted in FPGA and resumed at CPU (or vice-versa).
In our approach, each hardware periodic task saves its internal data onto a
particular set of registers after every finishing of its execution instance. These
registers are made available to the CPU in order to perform the data migration.

4 Scheduling Reconfiguration Activities

Due to the application dynamism, the task set S and its arrival time is not known
a priory. Thus, this scenario can be seen as a set of aperiodic jobs arriving into
a running system. In real-time schedule theory, when real-time periodic tasks
and non (or firm) aperiodic jobs need to be scheduled together, a server for
aperiodic jobs is generally used. The basic idea of this approach is to include
a new periodic task to the system which will be responsible to carry out the
aperiodic jobs without causing a periodic task to miss its deadline. A more
comprehensive and detailed explanation of this idea is given in [9].

Among different types of server, we focus our analysis on the Total Bandwidth
Server (TBS) due to the following reasons:

– We are currently using Earliest Deadline First (EDF) as our schedule policy;
– This server presents a high performance/cost ratio [10];
– Limiting the complexity, TBS allows the improvement of the response time.

The TBS assigns the deadline di for an aperiodic job i arriving to the system
at time ai: di = max(ai, di−1) + Ci

Us
. Where di−1 represents the deadline of

the aperiodic job arrived before task i, Us is the server capacity and Ci is the
execution time requested by the job i. Deadline di−1 is 0 if task i is the first one,
or if all pending aperiodic jobs arrived before i has been already finished.

5 Applying TB Server

The activity of the phase RPi from a task i, either in software or in hardware,
does not imply an extra synchronization with the running task i. This activity
may even be preempted by task i without causing a data consistency problem.
Thus, its execution is carried out during the server activation time and does not
impose any extra constraint (the server appliance is straightforward). Differently,
the RMi phase must completely execute between two consecutive instances of a
task i. The Figure 1 illustrate the scenario where a RM phase of a periodic task
i is schedule between two consecutive instances (k and k + 1) of this task.

To ensure that RMi will not start before task si,k, we free the RMi only when
si,k has finished: aRM,i ≥ fi,k. In order to give more time to the server to execute
the RMi job, one may think that the optimal arrival time (a∗

RM,i) is in the specific
instance k∗ where the lateness of task i is minimal: a∗

RM,i = fi,k∗ |(di,k∗ −fi,k∗) =
mink(di,k −fi,k) (see Figure 1(a). However, to find the instance that provides the
minimum lateness when periodic task set is scheduled under EDF is not easy.
This would increase the complexity of our algorithms. Moreover, a non wanted
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(a) Optimal arrival time (b) Worst-case consideration

Fig. 1. Scenario where a task migrates from software to hardware

delay in the complete reconfiguration time may be included due to shifting of
aRM,i from fi,k to fi,k∗ (depending on the hyperperiod).

The Figure 1(b) shows a pessimistic scenario where the arrival of the job
RMi occurs at the arrival time of the next instance ai,k+1. This scenario covers
also the worst-case where a task i finishes exactly in its deadline (when relative
deadline is equal to period). Under EDF schedule, the running task is always the
one which has the smallest absolute deadline among the ready tasks. Thus, we
can ensure that RMi will not be preempted by si,k+1, making dRM,i ≤ di,k+1.

As we free the RM phase only after RP has been finished, the deadline
assigned to RMi (dRM,i), using TBS and respecting the conditions explained
above is shown in Equation 1. Noting that di,k+1 = ai,k+1+Pi and ai,k+1 = aRM,i

and knowing that Ui = Esw,i

Pi
, the Equation 1 can be rewritten in terms of the

processor utilization factor (Equation 2).

dRM,i = aRM,i +
RMshw,i

Us
≤ di,k+1 (1) Us ≥ RMshw,i

Esw,i
Ui (2)

The Equation 2 shows that the required server capacity, to migrate a task from
software to hardware, can even be smaller than the task processor utilization of
the correspondent task if the RM phase takes less time than the execution time
of the task in software. In addition, if under all tasks that will migrate from
software to hardware the condition expressed in Equation 2 is fulfilled, we can
guarantee that the precedence conditions defined in this section will be satisfied
when EDF and TBS are used. Another condition implicity assumed during this
analysis, is that the execution time of a task in hardware is smaller (at maximum
equal) than its execution in software (which is true in most of the cases).

Similar analysis can be applied on the scenario where tasks are migrating
from hardware to software. Due to the true parallelism capability offered by the
hardware execution environment, the finishing time of a task can be calculated
more precisely. Thus, the deadline assigned to RM by TBS is given by Equa-
tion 3. Noting that ai,k+1 = ai,k + Pi and knowing that Ui = Esw,i

Pi
, we derive

the minimum server capacity required (Equation 4).

dRM,i = ai,k +Ehw,i +
RMshw,i

Us
≤ di,k+1 (3) Us ≥ RMshw,i

2Pi − Ehw,i
(4)
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The Equation 4 give us the minimal server capacity that is necessary to
migrate a task from hardware to software under the precedence constraints ex-
plained in the beginning of the Section 5.

6 Schedulability Analysis

All analysis made in the sections before were based on the proper assignment
of arrival time of aperiodic reconfiguration activities and the establishment of
conditions for the definition of the server capacity. These analysis were made in
order to proper represent the precedence constraints imposed in our scenario to
achieve a consistent data transfer during task migration. Thus, a schedulability
analysis is necessary. As we are restricting ourself to a scenario were periodic
tasks do not have dependency, a simple schedulability analysis can be made.
As long as the sum of the processor utilization from all periodic tasks (even
those ones that do not suffer a migration) together with the server capacity
does not exceed a maximum (Umax) the feasibility of the schedule is guaranteed.
Therefore, after every task migration, the processor utilization cannot be greater
than Umax. Furthermore, after every task migration to FPGA, the remaining
area needs to be enough to receive a new possible task.

7 Conclusion and Future Work

In this work, we have introduced the use of a server to carry out the reconfigu-
ration activities of a reconfigurable RTOS in a deterministic way. The concept
proposed explicitly respects the reconfiguration time and migration costs and de-
rives, by analytical analysis, the minimal server capacity knowing the execution
times and reconfiguration costs of every task.

In the future, we will investigate the scenario where tasks are scheduled under
fixed priority schedule. Additionally, we want to derive an analysis that will
be able to determine the amount of time necessary to migrate/reconfigure the
complete set S of tasks, using also less pessimistic assumptions.
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Abstract. Fragmentation on dynamically reconfigurable FPGAs is a
major obstacle to the efficient management of the logic space in recon-
figurable systems. When resource allocation decisions have to be made at
run-time a rearrangement may be necessary to release enough contiguous
resources to implement incoming functions. The feasibility of run-time
relocation depends on the processing time required to set up rearrange-
ments. Moreover, the performance of the relocated functions should not
be affected by this process or otherwise the whole system performance,
and even its operation, may be at risk.

Relocation should take into account not only specific functional issues,
but also the FPGA architecture, since these two aspects are normally
intertwined. A simple and fast method to assess performance degradation
of a function during relocation and to speed up the defragmentation
process, based on previous function labelling and on the application of
the Euclidian distance concept, is proposed in this paper.

1 Introduction

Field Programmable Gate Arrays (FPGAs) experienced a considerable evolution
in the last two decades. Shorter reconfiguration times and the new features intro-
duced recently, such as run-time partial reconfiguration and self-reconfiguration,
made possible the implementation of the concept of virtual hardware defined in
the early 1990s: the hardware resources are supposed to be unlimited and im-
plementations that oversize the reconfigurable logic space available are resolved
by temporal partitioning [1].

Generally, an application comprises a set of functions that are predominantly
executed in sequence, or with a low degree of parallelism, in which case their
� This work is supported by an FCT program under contract POSC/EEA-
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simultaneous availability is not required. Functions may be swapped in real time,
becoming operational only when needed and being substituted if their availability
is no longer required. However, when the logic space of an FPGA is shared among
several functions belonging to a number of different applications, each with its
own requirements in spatial and temporal terms, fragmentation of the logic space
may occur [2]. The solution to this problem is to consolidate unused areas within
the FPGA without halting the operation of currently running functions. If a
new function cannot be allocated immediately due to lack of contiguous free
resources, a suitable rearrangement of a subset of the executing functions must
be implemented to overcome the problem.

In general, there is a tendency to model the FPGA as a regular array struc-
ture and to regard defragmentation as a strictly packing problem [3, 4, 5]. While
in the first generations of FPGAs this assertion was true regarding the CLBs
position inside the array, it was inaccurate when other resources were consid-
ered. The presence of dedicated routing resources available to enhance specific
applications (like counters and adders), which have a tremendous impact on
function performance, were mainly responsible for this inaccuracy. The problem
was aggravated in more recent generations by the introduction of memory blocks
and of dedicated Digital Signal Processing (DSP) blocks distributed among the
FPGA array.

In an FPGA, the access to the reconfiguration mechanism is independent from
the operation of the running functions. Therefore, defragmentation may be im-
plemented as a background process, running concurrently with the operation of
currently implemented functions, without disturbing or impairing them, instead
of just when a new incoming function is claiming area to be implemented. As a re-
sult, waiting times will be reduced and the overall system performance improved.
A metric to determine when to perform defragmentation is proposed in [6].

2 Labelling Functions

To enhance the performance of specific types of functions, FPGA architectures
present some special features, like dedicated carry lines to increase speed of arith-
metic functions (e.g. counters or adders). In the architecture of Virtex FPGAs
from Xilinx, which were used during the experimental phase of this research
work, these lines span the FPGA vertically, enabling only the interconnection
of vertically adjacent CLBs. The use of dedicated carry lines, with very low
propagation delays (in the order of a few picoseconds), enabled us to achieve an
operating frequency of circa 145 MHz for a 24-bit binary counter implemented
on an XCV200, and 450 MHz in the case of an XC4VFX12.

However, the maximum frequency of operation decreased dramatically if one
or more of these dedicated carry lines were substituted by generic interconnec-
tion resources. Figure 1 shows how the maximum frequency of operation of the
24-bit counter decreases, in percentage terms, for both FPGAs, as a function of
the number of dedicated carry lines that are broken. Notice that despite belong-
ing to different FPGA generations, the counter exhibited a similar behavior in
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both cases. From this simple example it becomes obvious that it is mandatory
for any defragmentation procedure to take into account both architectural and
functional aspects, before making any function relocation decisions.
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Fig. 1. Performance degradation

If this function is active, i. e. if the function is currently being used by an
application, dynamic relocation techniques, as those described in [2], must be
applied during the defragmentation procedure, otherwise the function operation
will be temporarily halted, which may consequently disrupt the operation of
the whole system. Moreover, relocation must be performed keeping as much as
possible the vertical orientation of the function placement. Besides, no more
than one of the dedicated carry lines linking vertically adjacent CLBs should be
broken. This means that only one adjacent CLB may be relocated at a time and
that vertical adjacency must not be lost.

These two pieces of information, verticality and adjacency, are essential to
enable an efficient defragmentation and should be attached as a label to the
function configuration file.

To evaluate the influence of changes in shape and in relative position of CLBs
in different functions, the same type of experiments were performed over a sub-
set of the ITC’99 benchmark circuits [7]. The objective was to determine which
parameters are involved in the performance degradation of particular functions
so as to be able to formulate a simple set of rules to support logic space manage-
ment. The experiments consisted of displacing vertically and horizontally each
one of the functions and changing its relative shape, from a square-like shape
to a rectangular one and rotating it 90◦. These stressing conditions helped to
bring into evidence which parameters are mostly responsible for performance
degradation, when functions are moved around. The results of the experiments
are summarised in table 1. It is evident that circuits B04, B05, B07, B11, B13
and B14 experienced considerable performance degradation when the relocation
of the whole function was carried out horizontally, since all these functions use
dedicated carry lines on their implementation. This conclusion confirmed the
extremely high importance of keeping intact dedicated carry lines.

Some functions, like B11, comprise hundreds of gates but have a reduced num-
ber of carry lines. In this case, it is necessary to have a simple method to quickly
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Table 1. Evaluation of function performance degradation due to reshaping

Circuit reference
Number of

occupied CLBs

Variation in the maximum
frequency of operation (%)
Vertical

relocation
Horizontal
relocation

B01 6 −5.5 0.0
B02 1 0.0 0.0
B03 11 −1.9 −4.9
B04 54 −6.1 −29.3
B05 103 −17.3 −36.9
B06 5 −2.7 0.0
B07 31 −23.6 −37.8
B08 17 −5.8 −5.8
B09 12 −1.8 −4.9
B10 20 −7.5 −7.6
B11 39 −10.5 −36.0
B12 119 0.0 −1.2
B13 37 −4.3 −42.8
B14 333 −13.5 −47.8

identify the columns that contain these lines. Otherwise, the ability to reshape
the function during defragmentation will be heavily constrained. The label at-
tached to the function configuration file must indicate the relative position inside
the function of the column that must be left as it is.

3 Proximity Vectors

The first circuit on the list, B01, exhibits a different behaviour when compared
to those previously observed. Horizontal relocations do not degrade its perfor-
mance, most probably because it uses no carry lines. However, vertical reloca-
tions decrease its maximum frequency of operation.

The most noticeable aspect of its implementation was the great number of
high fanout signals that leave the CLBs located in the central column. To reduce
propagation delays these CLBs were strategically positioned by the design tools
in the centre of the function floorplan. If the circuit is shifted horizontally, the
relative position of the central CLBs is not affected. However, if the central
location of these two CLBs is changed, propagation delays will increase and the
maximum frequency of operation of this function will decrease. This hypothesis
was confirmed by rotating the function 90◦ and relocating it in only one CLB
column.

The CLBs with output signals that drive a large number of inputs, despite
keeping their central location, are now, on average, far from their destination
inputs than they were before. This means an increase on the propagation delay
not only due to an increase in the length of interconnection lines, whose im-
pact is minor, but mainly because each line has to cross a greater number of
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Programmable Interconnect Points (PIPs). The small distance that signals have
to cross means that small segments linking adjacent routing arrays are used to
route them. Therefore, if a new segment has to be added, a new PIP has also
to be used, which leads to a noticeable increase in the propagation delay. The
other benchmark circuits exhibited a similar behaviour.

A systematic analysis of this problem led to the development of a new method
to assess the impact of relocating CLBs whose output signals drive a large num-
ber of inputs: the application of the concept of proximity vectors, a vector associ-
ated to each interconnection and linking the CLB source to the CLB destination.

The length of each vector, called proximity factor, is expressed in CLB units
and calculated as the modulus of the distance between the CLB source and the
CLB destination:

|fpx| =
√

r2 + c2 (1)

where:

r=CLB destination row - CLB source row
r=CLB destination column - CLB source column

If the sum of all proximity vectors of one CLB output is minimised (eq. 2), the
proximity factor associated to that output will also be minimised. This corre-
sponds, in terms of the propagation delay of a given output, to the best position
of that CLB inside the function.

|fpox| = min
∑

d

(fp1, fp2, ..., fpd) (2)

When relocating the CLB, if the proximity factor Fpox increases, then perfor-
mance degradation of the function will occur. Generically, we can say that min-
imising each output proximity factor of a function results in the minimisation
of its global proximity factor, which corresponds to the best performance (max-
imum frequency of operation). The application of this concept to the remaining
circuits showed a consistent reproduction of results, confirming the initial hy-
pothesis.

The concept of proximity vectors is based on the application of the Euclidian
distance measurement to each net. Since routing is constrained to horizontal and
vertical wires, it seems, at first, that the use of the Manhattan distance mea-
surement would be more reasonable. However, a series of experiments performed
to compare the use of the two distance measurement methodologies showed a
greater correlation between maximum frequency of operation and the Euclidian
distance measurement.

The main advantages of this approach are as follows:

1. It can be easily automated and integrated in existing design tools;
2. The computation time of the proximity vectors is extremely low when com-

pared to previous proposed approaches, since only the nets that will be
affected by relocation need to have their proximity factor (before and after
the relocation) calculated;
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3. There is no need to perform a complete analysis of the function performance
after each CLB relocation, since, if the minimisation of the global proxim-
ity factor of the CLB was assured, the minimisation of the global proximity
factor of the overall function is assured, and therefore, no performance degra-
dation occurs.

All these factors enable this method to be used at run time to quickly and
reliably assess the strategy used to manage the defragmentation procedure.

4 Conclusions

This paper presents a new approach to assess the performance degradation intro-
duced by the relocation of functions during defragmentation procedures applied
to dynamically reconfigurable FPGAs. The proposed approach is able to guide
the defragmentation procedure in a reliable and fast way enabling the run-time
relocation of running functions, timely releasing enough contiguous space for
new incoming ones while avoiding performance degradation.

Current work is aimed at evaluating the influence of other array hetero-
geneities (that are present in more recent generations of FPGAs), namely mem-
ory blocks and dedicated DSP blocks. The influence of hardware embedded
processors and the rule they may play in the implementation of defragmen-
tation strategies on run time reconfigurable systems will also be addressed in
the future.
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Abstract. A Zero-Overhead Dynamic Optically Reconfigurable Gate Array
(ZO-DORGA), based on a concept using junction capacitance of photodiodes
and load capacitance of gates constructing a gate array as configuration mem-
ory, has been proposed to realize a single instruction set computer that requires
zero-overhead fast reconfiguration. To date, although the concept and architec-
ture have been proposed and some simulation results of designs have been pre-
sented, a ZO-ORGA VLSI chip has never been fabricated. In this paper, the
first 1,632 gate-count zero-overhead VLSI chip fabricated using 0.35 um CMOS
process technology is presented. The 1,632 ZO-DORGA-VLSI is not only the
first prototype VLSI chip; it is also the largest gate-count ORGA. Such a large
gate count ORGA had never been fabricated until this study. The performance of
ZO-DORGA-VLSI is clarified and discussed using experimental results.

1 Introduction

In recent years, high-speed reconfigurable processors have been developed: DAP/ DNA
chips [1][2][3] and DRP chips [4][5]. However, the reconfiguration contexts of currently
available multi-context devices, for example, those of DAP/DNA and DRP chips, are
limited quantitatively to 4-16 as a result of die-size limitations that depend on cost.
Therefore, rapid reconfiguration capability is achievable, but achievement of contin-
uous reconfiguration is difficult. On the other hand, a field programmable gate array
(FPGA) [6,7] architecture in which context memory and gate arrays are situated sepa-
rately onto different chips renders it difficult to realize rapid reconfiguration. Therefore,
conventional electrical techniques are insufficient to realize a high-speed reconfigurable
device with many reconfiguration contexts.

In recent years, optically programmable gate arrays (OPGAs) [8][9][10] have been
proposed, in which an optical holographic memory is introduced and connected directly
to the gate array part of a VLSI circuit. These devices can provide rapid reconfigura-
tion and numerous reconfiguration contexts. Currently, OPGAs have achieved over a
hundred reconfiguration contexts and a 16–20 us reconfiguration period. However, the
OPGAs have a problem: the gate density of the VLSI part is very low. As one ex-
ample, a previously fabricated OPGA-VLSI had only 80 gates because an optical re-
ceiver array and memory array, which are necessary to temporarily store one context
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of a gate array, occupy two-thirds of the implementation area of the gate array VLSI.V
Furthermore, a second problem exists: the 16–20 us reconfiguration speed cannot sup-
port clock-by-clock reconfiguration. Moreover, the reconfiguration period can engender
large overhead in any dynamically reconfigurable applications because the gate array
cannot function during reconfiguration in the OPGAs.

For those reasons, a Zero-Overhead Dynamic Optically Reconfigurable Gate Ar-
ray (ZO-DORGA) has been proposed, which has removed static memory function to
temporarily store one context of a gate array and has decreased the reconfiguration
overhead by using load capacitance of gates constructing a gate array as configura-
tion memory. The ZO-DORGA presents two advantages: the ZO-DORGA can achieve
a large gate count and the reconfiguration speed can reach nanoseconds without any
overhead.

In this paper, the first 1,632 gate-count zero-overhead VLSI chip fabricated using
0.35 um CMOS process technology is presented. The 1,632 ZO-DORGA-VLSI is not
only the first prototype VLSI chip. It is also the largest gate-count ORGA. Such a large
gate count ORGA was fabricated for the first time in this study. The performance of
ZO-DORGA-VLSI is clarified and discussed using experimental results.

2 Zero-Overhead Dynamic Optical Reconfiguration Circuit

A conventional ORGA necessitates the same architecture as FPGAs and has many pro-
gramming elements, similar to FPGAs. Therefore, reducing the size of each optical
reconfiguration circuit corresponding to the configuration memory of FPGAs is very
important. A single-bit optical reconfiguration circuit in conventional ORGAs com-
prises: a photodiode; a static memory function such as a latch, a flip-flop or a bit of
memory; and some transistors. However, the static memory function requires a large
implementation area, which strictly prohibits the realization of high gate-count OR-
GAs. To date, the gate counts of fabricated ORGAs with static memory functions have
remained limited to 68-476 gates.

Furthermore, the VLSI component of previously proposed OPGAs has remained in-
capable of keeping pace with clock-by-clock high-frequency reconfiguration. The 16-
20 us slow reconfiguration capability of OPGAs is attributable to its architecture, which
uses serial transfer between optical receiver arrays and gate arrays. For example, in a
five-input look-up table (LUT) of an OPGA, a serial transfer between a 32 bit-optical
receiver array with a 32-bit latch and a five-input LUT with a 32-bit SRAM requires
16-20 μs. However, for clock-by-clock reconfiguration of a gate array, the 16–20 μs re-
configuration period is too long and the reconfiguration operation consumes 99% of the
entire operation time when implementation circuits with a 10 ns operation period are
reconfigured at every clock cycle. Therefore, because the optical reconfiguration proce-
dure of the VLSI part can occupy large overhead for the circuit execution, improvement
is also important.

Therefore, to improve those two issues, a ZO-DORGA has been developed. The
optical reconfiguration circuits of a ZO-DORGA are based on a concept using junction
capacitance of photodiodes and load capacitance for constructing a gate array as config-
uration memory. The state of the gate array is maintained using load capacitance of the
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Fig. 1. A schematic diagram of a zero-overhead dynamic optical reconfiguration circuit

Fig. 2. Timing diagram of the zero-overhead dynamic optical reconfiguration circuit

gates that comprise the gate array during reconfiguration. Therefore, the zero-overhead
dynamic optical reconfiguration circuit allows parallel execution of the reconfiguration
operation and circuit operation implemented on the gate array.

The zero-overhead dynamic optical reconfiguration circuit consists of a refresh tran-
sistor, an inverter, a photodiode, and a pass transistor, as shown in Fig. 1. This zero-
overhead dynamic optical reconfiguration circuit uses a pass transistor to exploit the
load of gates comprising the gate array as a memory function. Each load of inverter
gates, transmission gates, and so on composing the gate array is sufficient to maintain
the gate array state during the gate-array reconfiguration. The additional pass transistor
realizes a function to block off the connection between the gate array and dynamic opti-
cal reconfiguration circuit during reconfiguration. Because they are blocked, the load of
gates that compose the gate array can retain their states during the next reconfiguration.

Figure 2 shows a timing diagram. One reconfiguration procedure is initiated by acti-
vating a refresh signal (nREF) with a certain pulse width ΔREF to charge the junction
capacitance of photodiodes. Then, the context light is illuminated using an optical mem-
ory with a laser light that has a certain pulse width ΔLight. Finally, the gate-array state
can be changed by activation of the Configuration Enable signal (CE) with a certain
pulse width ΔCE . Therefore, the reconfiguration period ΔRPeriod of ZO-DORGA can
be calculated through summation of ΔREF , ΔLight, and ΔCE as

ΔRPeriod = ΔREF + ΔLIGHT + ΔCE. (1)
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3 VLSI Design

A new 1,632-gate-count DORGA-VLSI chip was designed and fabricated using a 0.35
μm standard CMOS process technology. Voltages of core and I/O cells were designed
identically using 3.3 V. The acceptance surface size of the photodiode and photodiode-
cell size, including an optical reconfiguration circuit, are, respectively, 9.5 μm × 8.8
μm and 25.5 μm × 16.5 μm. The photodiodes were constructed between N+ diffusion
and the P-substrate. Photodiode cells are arranged at 34.5 μm horizontal intervals and
at 33.0 μm vertical intervals. This design incorporates 6,213 photodiodes. The average
aperture ratio of the overall VLSI is 4.24%. In this design, considering the resolution of
optical components and simplified justification of the positioning between a VLSI part
and an optical part, photodiodes and their spacing were designed to be large. The top
metal layer was used for guarding transistors from light irradiation; the other two layers
were used for wiring.

The gate array of the DORGA-VLSI uses an island style. In all, 48 optically recon-
figurable logic blocks (ORLBs) including two 4 input - 1 output LUTs, 63 optically
reconfigurable switching matrices (ORSMs), and 24 optically reconfigurable I/O bits
(ORIOBs) were implemented in the gate array. The ORLBs, ORSMs, and ORIOBs are
programmable block-by-block respectively through 59, 49, 49 optical connections.

4 Experimental Results and Discussion

This section presents some experimental results using a fabricated ZO-DORGA-VLSI
chip. The merits and demerits of the ZO-DORGA architecture are discussed using ex-
perimental results. Figure 3 shows a photograph of a fabricated ZO-DORGA-VLSI
chip. The optical experimental system with a liquid crystal television panel and a 633
nm, 20 mW He-Ne laser was constructed to measure the optical reconfiguration perfor-
mance of the ZO-DORGA-VLSI chip. Firstly, the reconfiguration speed of the

Fig. 3. CAD layout and chip photograph of a fabricated DORGA chip using 0.35 μm standard
CMOS process
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ZO-DORGA-VLSI chip was measured using the experimental system. Experimental
results showed that the photodiode response time is less than 10.0 ns. In this experimen-
tal board, because all timing signals are generated using a 48 MHz clock, the pulse-wide
of a refresh signal to charge the junction capacitance of photodiodes and CE pulse-wide
are all equal: 20.8 ns. Therefore, 62.4 ns optical reconfiguration was confirmed exper-
imentally. However, we have also confirmed that the minimum pulse width extracted
from HSPICE simulation results is less than 1 ns. Therefore, if a DORGA-VLSI chip
has a short pulse generator in the own chip, the reconfiguration cycle is estimated as
less than 12 ns. In addition, the retention time of the load capacitance of gate array in
ZO-DORGA has been measured as longer than 100 us.

In the case of previously proposed DORGA-VLSI, because the reconfiguration con-
texts are stored only in junction capacitances, the retention time depends on the con-
trast and background light noise of a holographic memory and lasers. Therefore, partial
reconfiguration is extremely difficult because the diffraction light of the other partial
reconfiguration reduces the electrical charge of the junction capacitance, which must be
retained. However, this ZO-DORGA architecture allows partial reconfiguration because
the reconfiguration light never affects the gate-array load capacitances. Fast reconfig-
uration, partial reconfiguration, and numerous reconfiguration context capabilities are
the salient advantages of ZO-DORGA-VLSI.

5 Conclusion

In this paper, the first prototype chip of ZO-DORGA-VLSI was presented. The ZO-
DORGA architecture described herein was capable of achieving a high gate-count and
rapid reconfiguration without any overhead. Now, the 1,632 gate count is the largest
gate count ORGA. The ZO-DORGA performance was measured using the fabricated
chip and an experimental optical system. Its 62.4 ns optical reconfiguration performance
was confirmed experimentally. Furthermore, this paper showed that the reconfiguration
cycle can be reduced to less than 12 ns using a short pulse generator inside the chip. In
addition, the retention time for partial reconfiguration was confirmed 100 us. We con-
clude that ZO-DORGA architecture with a holographic memory enables clock-by-clock
reconfiguration without overhead, overall reconfiguration, and partial reconfiguration.
The ZO-DORGA architecture is suitable for the next generation of clock-by-clock
reconfigurable single instruction set computers.

Finally, using 14.2 mm by 14.2 mm 0.35 um CMOS process chip and the ORLB,
ORSM and ORIOB designs, we have confirmed that a 29,172 gate count VLSI can be
achieved. The virtual gate count will reach 29,172,000 if a holographic memory can
store a thousand reconfiguration contexts. That huge virtual gate count emphasizes the
great advantages of the ORGA architecture.
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Abstract. We introduce a new paradigm in the computer architecture
referred to as Polymorphic Instruction Set Computers (PISC). This new
paradigm, in difference to RISC/CISC, introduces hardware extended
functionality on demand without the need of ISA extensions. We mo-
tivate the necessity of PISCs through an example, which arises several
research problems unsolvable by traditional architectures and fixed hard-
ware designs. More specifically, we address a new framework for tools,
supporting reconfigurability; new architectural and microarchitectural
concepts; new programming paradigm allowing hardware and software
to coexist in a program; and new spacial compilation techniques. The
paper illustrates the theoretical performance boundaries and efficiency
of the proposed paradigm utilizing established evaluation metrics such
as potential zero execution (PZE) and the Amdahl’s law. Overall, the
PISC paradigm allows designers to ride the Amdahl’s curve easily by
considering the specific features of the reconfigurable technology and the
general purpose processors in the context of application specific execu-
tion scenarios.

1 Introduction

Overall performance measurements in terms of Millions Instructions Per Cycle
(MIPS) or cycles per instruction (CPI) depend greatly on the CPU implemen-
tation. Potential performance improvements due to the parallel/concurrent ex-
ecution of instructions, independent of technology or implementations, can be
measured by the number of instructions which may be executed in zero time,
denoted by PZE (potential zero-cycle execution) [1]. The rationale behind this
measurement, as described in [1] for compound instruction sets is:

“If one instruction in a compound instruction pair executes in n cycles and
the other instruction executes in m ≤ n cycles, the instruction taking m cycles
to execute appears to execute in zero time. Because factors such as cache size
and branch prediction accuracy vary from one implementation to the next, PZE
measures the potential, not the actual, rate of zero-cycle execution. Additionally,
note that zero-cycle instruction execution does not translate directly to cycles
per instruction (CPI) because all instructions do not require the same number

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 274–286, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of cycles for their execution. The PZE measure simply indicates the number
of instructions that potentially have been removed from the instruction stream
during the execution of a program.”

Consequently, PZE is a measurement that indicates maximum speedup at-
tainable when parallelism/concurrency mechanisms are applied. The main ad-
vantage of PZE is that given a base machine design the benefits of proposed
mechanisms can be measured and compared. We can thus evaluate the effi-
ciency of a real design expressed as a percentage of the potentially maximum
attainable speedup indicated by PZE. An example is illustrated in Figure 1.
Four instructions, executing in a pipelined machine are considered. The instruc-
tions from the example are parallelized applying different techniques, such as
instruction level parallelism (ILP), pipelining, technological advances, etc., as
depicted in Figure 1. Timewise, the result is that the execution of 4 instructions
is equivalent to the execution of 2 instructions, which corresponds to a seeming
code reduction by 50%, i.e., 2 out of 4 instructions potentially have been re-
moved from the instruction stream during the program execution. It means that
the maximum theoretically attainable speedup (i.e., again potentially) in such a
scenario is a factor of 2. In the particular example from Figure 1, the execution
cycles count for 4 instructions is reduced from 8 to 6 cycles, allowing 1.33 times
speedup, which compared to the maximum speedup of 2, suggests efficiency of
65%. The above example suggests that PZE allows to measure the efficiency
of a real machine implementation by comparing to a theoretical base machine,
i.e., PZE gives an indication of how close a practical implementation performs
to the theoretically attainable best performance boundaries. These theoretical
boundaries are described by Amdahl’s law [2].

BB

Timewise we execute two
instructions

(50% code elimination)

Techniques:
 ILP
 pipeline
 technology

Reduced 8 cycles to 6;
Speedup: 1.33;

Max speedup: 2.0;
Efficiency: 65%

Fig. 1. PZE example

Amdahl’s law and the new polymorphic paradigm. The maximum theoretically
attainable (i.e., the potentially maximum) speedup, considered for the PZE,
with respect to the parallelizable portion of the program code, is determined by
Amdahl’s law. Amdahl’s curve, graphically illustrated in Figure 2, suggests that
if, say half of an application program is parallelized and that its entire parallel
fraction is assumingly executed in zero time, the speedup would potentially be 2.
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Moreover, the Amdahl’s curve suggests that to achieve an order of magnitude
speedup, a designer should parallelize over 90% of the application execution. In
such cases, when over 90% of the application workload is considered for paral-
lelization, it is practical to create an ASIC, rather than utilizing programmable
GPP. The design cycle of an ASIC, however, is extremely inflexible and very
expensive. Therefore, ASICs may not appear to be an efficient solution when
we consider smaller portions (i.e., less than 90%) of an algorithm for hardware
acceleration. Obviously, there exist potentials for new hardware proposals that
perform better than GPPs and are more flexible alternative to design and oper-
ate than ASICs.
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Fig. 2. The Amdahl’s curve and PISC

In this paper, we introduce a new architectural paradigm targeting the exist-
ing gap between GPPs and ASICs in terms of flexibility and performance. This
new paradigm exploits specific features of the reconfigurable hardware technolo-
gies. In consistence with the classical RISC and CISC paradigms [3,4], we refer to
the new architectural paradigm as to a Polymorphic Instruction Set Computer
(PISC). The practically significant scope of PISC covers between 50% and 90%
application parallelization illustrated with the Amdahl’s curve in Figure 2. This
interval provides a designer with potentials to benefit from the best of two worlds,
i.e., with a synergism between purely programmable solutions on GPPs and re-
configurable hardware. That is, the infinite flexibility of the programmable GPPs
combined with reconfigurable accelerators results into a PISC - a programmable
system that substantially outperforms GPP. Therefore, we believe that the gap
between GPP and ASIC, illustrated in Figure 2, belongs to PISC. More specif-
ically, we address the following research areas related to the PISC paradigm:

– New HW/SW co-design tools
– Processor architecture and microarchitecture
– Programming paradigm
– Compilation for the new programming paradigm
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The remainder of this paper is organized as follows. In Section 2, we present
a motivating example and derive key research questions. Section 3 describes the
general approach to solve these research questions. The polymorphic architec-
tural extension is presented in Section 4. Section 5 introduces some compiler
considerations targeting the new architectural paradigm. Finally, the paper is
concluded in Section 6.

2 Motivating Example and Research Questions

To illustrate the necessity of the PISC computing paradigm, we present a mo-
tivating example based on the Portable Network Graphics (PNG) standard [5].
PNG is a popular standard for image compression and decompression, it is a
native standard for the graphics implemented in Microsoft Office as well as in
a number of other applications. We consider the piece of C-code presented in
Figure 3, which is extracted from an implementation of the PNG standard. This
code fragment implements an important stage of the PNG coding process. It
computes the Paeth prediction for each pixel d of the current row, starting from
the second pixel. The Paeth prediction scheme, illustrated in Figure 4, selects
from the 3 neighboring pixels a, b, and c, that surround d, the pixel that differs
the least from the value p = a+ b− c (which is called the initial prediction). The
selected pixel is called the Paeth prediction for d. If the pixel rows contained
length + 1 elements, length prediction values are produced. This prediction

void Paeth predict row(char *prev row, char *curr row, char *predict row, int length)
{char *bptr, *dptr, *predptr;
char a, b, c, d;
short p, pa, pb, pc;

bptr = prev row+1;
dptr = curr row+1;
predptr= predict row+1;

for(i=1; i<length; i++)
{c = *(bptr-1); b = *bptr;
a = *(dptr-1); d = *dptr;
p = a + b - c; /* this is the initial prediction */
pa = abs( p - a ); /* distance of each member */
pb = abs( p - b ); /* to the */
pc = abs( p - c ); /* initial estimate */
if ((pa≤pb)&&(pa≤pc) *predptr = a;
else if (pb≤pc) *predptr = b;
else *predptr = c;

bptr++; dptr++; predptr++; } }

Fig. 3. The Paeth prediction routine according to PNG specification [5]
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Fig. 4. The Paeth prediction scheme

scheme is used during the image filtering stage of the image coding and decod-
ing. Figure 5 presents an implementation of the code fragment in pseudocode
derived from the AltiVec assembly. In this figure, the general-purpose register
GPRi of the underlying ISA is denoted by ri, vri denotes the i-th vector register
of AltiVec.

Analysis of the motivating example presented above suggests the following.
If the Paeth predictor must be computed for a row of 1024 pixels, the complete
AltiVec code presented in Figure 5 will result in a dynamic instruction count of
8(prologue) + 64 · [3(load) + 6(unpack) + 76(compute) + 1(pack) + 1(store) +
2(miscellaneous) + 3(pointerupdate) + 3(loopcontrol)] = 8 + 6464 · 95 = 6088
instructions. This high instruction count, which limits the performance, is caused
by the following features of the short-vector media extensions. First, if the main
operation to be performed is relatively complex, it requires multiple instructions.
Second, the overhead tasks associated with stream sectioning, loading, storing,
packing, unpacking, and data rearrangement require separate instructions.

Considering Figure 5, we can substitute all loop iterations in the Paeth code
with a single instruction and add only a few instructions to interface with the re-
mainder of the program code. In such a case, we can expect considerable decrease
of the instructions count and execution time improvements. The Paeth loop is
transformed now in a single instruction [6] that takes 5 cycles to complete1 and
requires 20 setup instructions. The improvement attained is nearly two orders
of magnitude reduction of the instructions count and two orders of magnitude
reduction of the execution time. Obviously, the scale of these improvements de-
pends on the implementability of the Paeth coding into hardware as a single
instruction. An efficient Paeth hardware implementation comprises 24 32-bit
adders allowing a throughput of 16 pixels/cycle (i.e., 6 8-bit adders per pixel).

1 One cycle is the duration of a single ALU operation.
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Altivec code What it doesAltivec code What it does

load

unpackunpack

processprocess

pack

storestore

Looping 

initialize

load

unpackunpack

processprocess

pack

storestore

Looping 

initializeli      r5, 0 
….totally 6 instructions

loop:   
lvx    vr03, r1                      # load c's       
lvx    vr04, r2                      # load a's       
vsidoi  vr05, vr01, vr03, 1 # load b's   

vmrghb        vr07, vr03, vr00  # unpack
vmrglb        vr08, vr03, vr00   # unpack

…totally 6 instructions
#Compute

vadduhs         vr15, vr09, vr11   #  a+b        
vadduhs        vr16, vr10, vr12   #  
vsubshs        vr15, vr15, vr07    #
vsubshs         vr16, vr16, vr08    #
..totally 76 instructions

#Pack:
vpkshus         vr28, vr28, 29       # pack

#Store:
stvx            vr28, r3, 0   #store

#Loop control
addi           r1, r1, 16       

……..
bneq            r7, r0, loop   # Loop

Fig. 5. AltiVec code for the Paeth predict kernel

Research Questions. The Paeth encoding is just one computationally demand-
ing kernel identified in a particular program. To implement an entire application
efficiently, however, it is very likely that a number of such kernels should be
identified within a single program execution context and each of them should be
implemented in hardware. Therefore, traditional approaches, which introduce
a new instruction for each portion of the application considered for hardware
implementation, are restricted by the unused opcode space of the core proces-
sor architecture. Moreover, due to the large number of candidate kernels for
hardware implementation, it may appear that their fixed hardware realization
is impossible within limited silicon resources. The latter problem can be over-
come, if the hardware can change its functionality at the designer’s wish, i.e.,
using reconfigurable hardware. For many traditional reconfigurable approaches,
however, the above problems become even more dramatic if an arbitrary number
of new operations should be considered for hardware implementation [7,8]. In
such scenarios,the traditional design methods can not be employed. The above
observations arise the following research questions:

1. How to identify the code for hardware implementation?
2. How to implement “arbitrary” code?
3. How to avoid adding new instructions per kernel?
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4. How to substitute the hardwired code with SW/HW descriptions say at
source level?

5. How to generate the “transformed” program automatically?

With respect to the above questions, in this paper we address the following
research topics:

1. New kind of tools.
2. Microarchitecture design.
3. Processor architecture (behavior and logical structure).
4. New programming paradigm allowing HW and SW to coexist in a program.
5. New compilation techniques.

3 General Approach

To solve the research questions stated in the previous section, we propose a syner-
gism between a general-purpose processor (GPP) and a reconfigurable processor
(RP) referred to as the Molen ρμ-coded processor. In the discussion to follow,
we present the general concept of transforming an existing program to one that
can be executed on the reconfigurable computing platform we propose and hints
to the new mechanisms, intended to improve existing approaches.

Fig. 6. Program transformation example

The conceptual view of how program P (intended to execute only on the
general-purpose processor (GPP) core) is transformed into program P’ (exe-
cuting on both the GPP core and the reconfigurable hardware) is depicted in
Figure 6. The purpose is to obtain a functionally equivalent program P’ from
program P which (using specialized instructions) can initiate both the configura-
tion and execution processes on the reconfigurable hardware. The steps involved
in this transformation are the following:

1. identify code “α” in program P to be mapped in reconfigurable hardware.
2. show that “α” can be implemented in hardware in an existing technology,

e.g., FPGA, and map “α” onto reconfigurable hardware (RH).
3. eliminate the identified code “α” and add “equivalent” code (A) assuming

that A “calls” the hardware with functionality “α”. The code A comprises
the following:
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– Repair code inserted to communicate parameters and results to/from
the reconfigurable hardware from/to the general-purpose processor core.

– “HDL”-like hardware code and emulation code inserted to configure the
reconfigurable hardware and to perform the functionality that is initial-
ized by the “execute code”.

4. compile and execute program P’ with original code plus code having func-
tionality A (equivalent to functionality “α”) on the GPP/reconfigurable
processor.

The mentioned steps illustrate the need for a new programming paradigm
in which both software and hardware descriptions are present in the same pro-
gram. It should also be noted that the only constraint on “α” is implementability,
which possibly implies complex hardware. Consequently, the microarchitecture
may have to support emulation [9] via microcode. We have termed this reconfig-
urable microcode (ρμ-code) as it is different from the traditional microcode. The
difference is that such microcode does not execute on fixed hardware facilities.
It operates on facilities that the ρμ-code itself “designs” to operate upon. We
refer to such facilities as to configurable computing units (CCU). A processor
supporting ρμ-code is referred to as a ρμ-coded processor and we also call it a
Molen processor. More details on the Molen machine organization are presented
in [11,12].

The methodology of the transformation described previously for the reconfig-
urable computing platform is depicted in Figure 7. First, the code to be executed
on the reconfigurable hardware must be determined. This is achieved by high-
level to high-level instrumentation and benchmarking. This results in several

YES

NO
Critical ?

Code

int fact(int n)
{
if(n<1) return n
else
return(n*fact(n-1));
}

f(.)

Human 
Directives
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AUTO MATIC

HARDWARE 

GENERATO R

Re-
targeted
Compiler

Binary
Code

call f (.) HDL

Architecture

GPP

Feedback

MANUAL
HW
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Fig. 7. Program transformation methodology for reconfigurable computing



282 S. Vassiliadis et al.

candidate pieces of code. Second, we must determine which piece of code is
suitable for implementation on the reconfigurable hardware. The suitability is
solely determined by whether the piece of code is implementable (i.e., “fits in
hardware”). Those parts can then be mapped into hardware via a hardware de-
scription language (HDL). In case the HDL corresponds to “critical” hardware
in terms of, for instance, area, performance, memory and power consumption,
the translation will be done manually. Otherwise, the translation can be done
automatically or extracted from a library [13].

4 The Polymorphic ISA

In order to target the ρμ-code processor, we propose a sequential consistency
programming paradigm [10]. The paradigm allows for parallel and concurrent
hardware execution and requires only a one-time architectural extension of few
instructions to provide a large user reconfigurable operation space. The complete
list of the eight required instructions, denoted as polymorphic (πoλνμoρφικó)
Instruction Set Architecture (πISA), is as follows:

– Six instructions are required for controlling the reconfigurable hardware,
namely:

• Two set instructions: these instructions initiate the configurations of the
CCU. Two instructions are added for partial reconfiguration:

∗ the partial set (p-set <address>) instruction performs those con-
figurations that cover common parts of multiple functions and/or
frequently used functions.

∗ the complete set (c-set <address>) instruction performs the con-
figurations of the remaining blocks of the CCU (not covered by the
p-set) to complete the CCU functionality.

• execute <address>: controls the execution of the operations imple-
mented on the CCU. These implementations are configured onto the
CCU by the set instructions.

• set prefetch <address>: prefetches the needed microcode responsible
for CCU reconfigurations into a local on-chip storage facility (the ρμ-
code unit) in order to possibly diminish microcode loading times.

• execute prefetch <address>: the same reasoning as for the set
prefetch instruction holds, but now relating to microcode responsible
for CCU executions.

• break: facilitates the parallel execution of both the reconfigurable
processor and the core processor. It is utilized as a synchronization mech-
anism to complete the parallel execution.

– Two move instructions for passing values between the register file and ex-
change registers (XREGs):

• movtx XREGa ← Rb: (move to XREG) used to move the content of
general-purpose register Rb to XREGa.

• movfx Ra ← XREGb: (move from XREG) used to move the content of
exchange register XREGb to general-purpose register Ra.
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The <address> field in the instructions introduced above denotes the location
of the reconfigurable microcode responsible for the configuration and execution
processes. The parameters are passed via the exchange registers (XREGs). In
order to maintain correct program semantics, the code is annotated. It is not im-
perative to include all instructions when implementing the Molen organization.
The programmer/implementor can opt for different ISA extensions depending on
the performance that needs to be achieved and the available technology. There
are basically three distinctive πISA possibilities with respect to the Molen in-
structions introduced earlier - the minimal, the preferred and the complete πISA
extension:

– The minimal πISA: This is essentially the smallest set of Molen instruc-
tions needed to provide a working scenario. The four basic instructions
needed are set (more specifically: c-set), execute, movtx and movfx.

– The preferred πISA: In order to address reconfiguration latencies both p-
set and c-set instructions are utilized. The two prefetch instructions (set
prefetch and execute prefetch) provide a way to diminish the microcode
loading times by scheduling them well ahead of the moment that the mi-
crocode is needed.

– The complete πISA: This scenario involves all πISA instructions includ-
ing the break instruction. The break instruction provides a mechanism to
synchronize the parallel execution of instructions by halting the execution
of instructions following the break instruction.

Parallel execution. Parallel execution, for all πISA modifications is initiated by
a set/execute instruction. For both minimal and preferred πISA, a parallel ex-
ecution is ended by a general-purpose instruction as described in Figure 8(a).
When a complete πISA is implemented and a sequence of instructions is per-
formed in parallel, the end of the parallel execution is marked by the break
instruction. It indicates where the parallel execution stops (see Figure 8 (b)).

synchronizationBreak

π(the complete     ISA)

EXECUTE op2
EXECUTE op3
GPP Instructions

EXECUTE op1
GPP instruction

in parallel

work in parallel 
b) synchronization when GPP and FPGA 

synchronization

π(the preferred     ISA)

EXECUTE instructions are performed               

in parallel
EXECUTE op1
EXECUTE op2
EXECUTE op3

EXECUTE op4
GPP Instructions

GPP Instruction

in parallel and GPP is stalled

a)  synchronization when consecutive                                     

Fig. 8. Parallel execution and models of synchronization

Microarchitecture and its implementation. An example of a PISC is the Molen
ρμ-coded processor introduced in [11]. More details on the Molen microarchi-
tecture have been published in [12]. We have implemented a prototype design
of a Molen processor using the Xilinx Virtex II Pro technology [14], which
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demonstrates many advantages of the PISCs and can be utilized for real-life
application implementations. The core processor of the Molen prototype from
[14] is the PowerPC hardcore embedded in the Xilinx virtex II Pro FPGAs.

5 Compiler

The specific PISC compiling techniques will be illustrated with examples from
the Molen compiler [15]. Currently, the Molen compiler relies on the Stanford
SUIF2 [16] (Stanford University Intermediate Format) Compiler Infrastructure
for the front-end and for the back-end on the Harvard Machine SUIF [17] frame-
work. The following essential features for a compiler targeting custom computing
machines (CCM) have currently been implemented:

– Code identification: for the identification of the code mapped on the recon-
figurable hardware, we added a special pass in the SUIF front-end. This
identification is based on code annotation with special pragma directives
(similar to [18]). In this pass, all the calls of the recognized functions are
marked for further modification.

– Instruction set extension: the compiler takes into account the instruction
set extension and inserts the appropriate set/ execute instructions both
at the medium intermediate representation level and at low intermediate
representation (LIR) level.

– Register file extension: the register file set has been extended with the ex-
change registers. The register allocation algorithm allocates the XREGs in
a distinct pass applied before the register allocation; it is introduced in Ma-
chine SUIF, at LIR level. The conventions introduced for the XREGs are
implemented in this pass.

– Code generation: code generation for the reconfigurable hardware (as pre-
viously presented) is performed when translating SUIF to Machine SUIF
intermediate representation, and affects the function calls marked in the
front-end. The code generation schedules the set instructions to hide the
reconfiguration latency and to guarantee that the functions can be mapped
on the available area [19].

An example of the code generated by the extended compiler for the Molen
programming paradigm is presented in Figure 9. On the left, the C code is de-
picted. The function implemented in reconfigurable hardware is annotated with
a pragma directive named call fpga. It has incorporated the operation name, op1
as specified in the hardware description file. In the middle, the code generated
by the original compiler for the C code is depicted. The pragma annotation is
ignored and a normal function call is included. On the right, the code generated
by the compiler extended for the Molen programming paradigm is depicted; the
function call is replaced with the appropriate instructions for sending parameters
to the reconfigurable hardware in XREGs, hardware reconfiguration, preparing
the fixed XREG for the microcode of the execute instruction, execution of the
operation and the transfer of the result back to the general-purpose register file.
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c=0;
for(i=0; i<b; i++)
   c = c + a<<i + i;
c = c>>b;
return c;
}
void main(){
int x,z;
z=5;

}
x= ; f(z, 7)

#pragma call_fpga op1

int c,i;
int f(int a, int b){

movtx $vr1.s32(XR) < $vr2.s32

mrk      2, 14
mov     $vr2.s32 < main.z

ldc        $vr4.s32 < 7

set        address_op1_SET

movtx $vr3.s32(XR) < $vr4.s32

main:
     

mov main.x < $vr1.s32

.text_end main

mrk  2,13
ldc    $vr0.s32  < 5
mov  main.z < $vr0.s32

mrk  2, 14
ldc    $vr2.s32 < 7

mrk  2, 15
ldc    $vr3.s32 < 0
ret    $vr3.s32

C code Original medium intermediate
representation code

Medium intermediate representation 
code extended with instructions for 
FPGA

mov     main.x < $vr8.s32
movfx $vr8.s32 < $vr5.s32(XR)

movtx $vr7.s32(XR) < vr6.s32

exec     address_op1_EXEC

ldc       $vr6.s32(XR) < 0cal  $vr1.s32 < f(main.z, $vr2.s32)

Fig. 9. Medium intermediate representation code

The presented code is at medium intermediate representation level in which the
register allocation pass has not been applied yet.

The compiler extracts from a hardware description file the information about
the target architecture such as the microcode address of the set and execute
instructions for each operation implemented in the reconfigurable hardware, the
number of XREGs, the fixed XREG associated with each operation, etc. The
compiler may also decide not to use a reconfigurable hardware function and to
include a pure software based execution.

6 Conclusions

We presented a new paradigm in computer architecture referred to as Polymor-
phic Instruction Set Computer (PISC). This new computing paradigm allows
general purpose programming code and reconfigurable hardware descriptions to
coexist within the same application program. We showed that a one-time instruc-
tion set extension of minimum 4 and maximum 8 polymorphic instructions is suf-
ficient to implement an arbitrary number of application specific functionalities.
Additional architectural features such as exchange registers and shared mem-
ory allow performance efficient communications, parameter and data exchange.
We also presented the programming paradigm, supporting the polymorphic ar-
chitectural extension and sketched some compiling considerations. Overall, we
conclude that the PISC paradigm allows the designers to ride easily the Am-
dahl’s curve towards the invention of more flexible and performance efficient
computing machines.
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Abstract. The emergence of the Network on chip (NoC) as a com-
munication backbone for System on chip (SoC) based designs requires
standardized interfaces for integrating IP (Intellectual Property) cores
with diverse communication requirements. These interfaces have to be
simple and generic for rapid plug and play implementation with min-
imal overhead. In this paper we describe the design and implementa-
tion of a programmable fabric based Network interface architecture. We
have mapped the JPEG compression application on our architecture to
demonstrate the feasibility of our design. The network interfaces seam-
lessly connect existing IP modules (Processor core, JPEG core, Memory
core and UART core) to the NoC. The network, IP cores and the network
interfaces are implemented on an FPGA device.

1 Introduction and Prior Work

Recent advances in VLSI and fabrication technology have given designers the
ability to create System on a Chip (SoC) based architecture using several IP
blocks and embedded memories. The SoC concept facilitates the reuse of IP
cores in a plug and play manner.This reduces the time involved in design of the
new system. The IP cores are connected by on-chip interconnects like a system
bus, ad-hoc global wiring structures and more recently Networks on Chip. The
concept of a Network on a chip (NoC) has gained popularity due to the fact that
as technology scales, device sizes reduce, chip density increases and problems
associated with interconnects arise [1] . The key ingredient in a plug and play
architecture is the decoupling of computation from communication. This requires
that the interfaces that connect the IP cores to the communication network
are well defined and hide the implementation details of the interconnect [2].
Although much work has been carried out in designing the routing architecture
and protocols for NoCs [3,4,5], little research has been done on the architectural
design and implementation of interfaces required to connect standard IP cores
to an NoC.

The definition of standard interfaces also facilitates the deployment of reusable
system components without the need for different controllers for each compo-
nent. However, the variety of cores necessitates the need for a certain amount of
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customization in the interfaces. Prior work in designing network interfaces pri-
marily involves interfacing standard buses to NoCs [6,7]. In [7] a design of an
interface to the On-chip Peripheral Bus (OPB) has been prototyped. However,
in this architecture the bulk of the interface functionality (packetization and
depacketization) lies with the core specific part of the interface. This increases
the amount of redesign required to attach a new core. In [8] a design for a dual
layered network interface along with a router has been synthesised. We propose a
novel architecture in which most of the interfacing functionality is incorporated
in the generic part of the interface to which different cores can be attached with
minimum redesign of the specific interfaces. The generic network interface is uni-
versal and can incorporate mixed signal and mixed technology cores. The focus
of our work is the implementation of generic network interfaces that allow any
core to be attached to the NoC using core specific wrappers. To demonstrate the
feasibility of the interface architecture we have implemented JPEG compression
using a variety of IP cores (Processor, JPEG, Memory and UART) . Apart from
the generic network interfaces, application specific core specific wrappers have
been developed to allow cores to be interfaced without making any modifications
to the cores and the Network Interfaces. This preserves the generic nature of the
Network Interface.

The rest of the paper is organized as follows. Section 2 provides the architec-
tural description of the generic network interface. This is followed by a section
which outlines the data flow through the interface. The next section describes
the architecture of the communication network used in the design. Section 5
gives a brief overview of the experimental framework in which we have proved
the feasibility of our architecture. Section 6 discusses the results of our imple-
mentation. We conclude with a summary of the work presented in this paper
and a brief description of future work.

2 Network Interface Architecture

The Network Interface translates packet-based communication of the network
into a form that is required by the IP cores. In general, the tasks performed by
network interface are:

– Abstraction of the network communication protocol from the core so that the
latter can be developed independently of the communication infrastructure.
This allows any core to be connected to the Network interface.

– Allowing the core specific wrapper to interface with any NoC protocol or
topology. Since the size of all the fields in the protocol are parameterized,
the network interface is generic with respect to the Network. The network
interface provides a field to hold the routing information bits to route the
data packets and this can be interpreted by the router as required by the
network topology.

– Data packetization and depacketization for relaying and receiving signals
over the NoC.
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We split the design of the Network Interface into the following parts: the Generic
Core Interface, the Packet Maker and Disassembler along with their respective
memories and the Asynchronous FIFOs as shown in the Figure 1.

Data Path

Control Path

Application Core

Core Specific Wrapper

Generic Core Interface

PM Memory PD MemoryRead Module

Header DecoderHeader Encoder

Write Module

Async FIFOAsync FIFO

Router

PM FIFO Controller PD FIFO Controller

Packet Disassembler (PD)Packet Maker (PM)

Network Interface

Fig. 1. The Network Interface Architecture

2.1 Generic Core Interface (GCI) Architecture

The GCI lies between the network and the Core Specific Wrapper. This unit
forms the foundation of the generic nature of the architecture as it prevents
the wrapper from directly interacting with the rest of the Network interface.
The GCI abstracts the packet information from the core specific wrapper, and
provides it with the actual data/control information only.

Any core specific wrapper can interface with the GCI with simple prede-
fined handshaking signals. When a core needs to communicate with another
core on the network, the trigger signals (start read ,start write) to initiate pack-
etization, the number of words to be read/written and the destination address
are passed between the specific wrapper and GCI. When the core is reading
from/writing to the Network Interface memory, perform read/perform write,
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read complete/write complete signals are exchanged between GCI and core spe-
cific wrapper. In our design, various core specific wrappers share similar hand-
shaking signals with the GCI. For a few cores some signals are not required,
however the GCI includes support for these signals to preserve its generic na-
ture. E.g, Processor and JPEG engine have processing start and processing done
signals, which are really not needed for memory core. If a new core is added to
the system, only the core specific wrapper has to be designed without modify-
ing the GCI or network interface. Hence, the Core Specific Wrapper views the
network interface as a black box.

2.2 Packet Maker (PM)

This unit functions at the source core (core from which packets originate in the
network) and performs the following critical tasks that maintain data integrity:

1. Creates the Packet Header with correct routing and control information
required by the routers and the destination core.

2. Ensures that the entire block of data is broken down into packets with the
correct payload size (size of the actual data to be processed).

3. Writes the packet into the packet maker (PM) memory to provide for in-
order packet routing by the network.

4. Converts the data stored in the PM memory (Figure 1) into flits (the small-
est data transfer unit) before queuing them in the asynchronous FIFO.

The Packet Maker is divided into three main units, the Header Encoder, the
Write Module and the FIFO controller. The Header Encoder unit forms the
packet header based on the information provided by the GCI. It includes the ad-
dress of the destination core and control information which depends on the type
of operation the core is requesting for, and the core it is communicating with.
The encoder breaks down the entire data according to the maximum payload
size and keeps count of the number of packets to be sent. The Header Encoder
also contains a parameterized lookup table which provides the destination ad-
dress. The Write Module exercises control over the address and read/write line
of the PM memory. It decides whether the Header Encoder (when the header
is written into the memory) or the Specific Core Wrapper (when the payload is
written into memory) has access to the PM memory. Once the entire packet is
written, the Write Module transfers control to the FIFO Controller. The func-
tion of Packet Maker FIFO Controller(PMFC) is to convert the data written
into the PM shared memory into flits and dispatch them to the network through
the asynchronous FIFO. It may sometimes be necessary to break a packet into
many flits.The PMFC sets the end of packet (EOP) field in the flit to 1 when it
transmits the last flit to the FIFO.

2.3 Packet Disassembler (PD) Architecture

This unit functions at the destination core. It performs the tasks of reading data
from the incoming asynchronous FIFO, decoding the Packet Header, extracting



Generic Network Interfaces for Plug and Play NoC Based Architecture 291

the control information required by the core and obtaining the total message
size if the message is split into many packets. The Packet Disassembler includes
the Packet Disassembler FIFO controller, the Read Module and the Header
Decoder. The Packet Disassembler FIFO controller (PDFC) reads flits from the
Async FIFO and writes them into the Packet Disassembler (PD) Memory. After
writing a complete packet it triggers the Read Module to initiate further transfer.
The Read Module controls the address bus and control line to the PD memory.
The read module gives control of the PD memory data bus to the Header Decoder
to obtain the header bytes. It then transfers the control to the Core Wrapper,
to read the payload. The Header Decoder extracts information from the packet
header and passes it to the GCI. Each field of the header set by the encoder of
the source core is decoded to obtain information for the destination core such as
the operation to be performed, the total number of words to be written into the
destination core, the number of words to be read from the destination core and
the address of the source core in case packets are to be sent back to the source.
The next section explains the flow of data for read and write operations.

3 Data Flow

The core specific wrapper performs read and write operations. As the initiating
core specific wrapper, it can perform the following:

1. Initiate a write operation: The source core sends data over the network to
the destination core. In this case the Packet Maker sends data packets with
a header and payload.

2. Initiate a Read operation: This operation initiates a read from the destina-
tion core. The packet maker sends a single control packet (header only).

In response to the above operations the reciprocating core performs the following:

1. Reads data sent over the network: The reciprocating core reads the data
from its PD memory and processes it.

2. Reciprocating core sends data over the network: In response to the source
core’s read request, the reciprocating core sends data through its PM memory
and the network back to the source.

4 Communication Architecture

Communication among the IP cores is handled by a parameterized NoC. Since
the focus of this research is on developing generic interfaces to support a plug
and play architecture, a simple mesh based NoC architecture has been used for
this project. As shown in Figure 2 the NoC consists of a grid of routers that are
connected to the network interfaces through asynchronous FIFOs. The buffer
sizes in the routers and asynchronous FIFOs as well as the data line width in
the communication network are parameterized according to the requirements of
the application. The network of routers has been designed to allow simultaneous
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Fig. 2. JPEG Mapped on NoC

communication among cores. Each router has four input and four output ports
with one pair connected to the network interface that it serves. In addition it
also has a switch controller to coordinate the transfer of flits among the routers.
An internal buffer is used to store flits inside the router in case of any congestion.

4.1 Packet Header Structure

Information between routers is sent through packets. There are two types of
packets, a control packet containing only the header, and a data packet con-
taining both the header and payload. In this architecture, the parameterized
packet header is 48 bits. The packet header structure is depicted in figure 3.
The field sizes are chosen to ensure scalability. The Source address field repre-
sents the address of each core. The read/write bit specifies the type of the data
transfer operation. If memory is one of the IP cores then the Base address field
indicates the address of the memory for read/write operations. The 8 bits are
interpreted as the higher order bits of the address, hence the number of addresses
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Fig. 3. Packet header Structure
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are not restricted to 256. The total payload size field gives the size of the data
transmitted in each packet with a maximum value of 32767 bits. This size ensures
that a significant amount of data can be packed into one packet. For instance,
one pixel is 3 bytes and to pack an image of 16x16 just one packet is needed.
The field No-of-packets/No-of-words indicates the number of packets for a write
operation or the number of words for a read operation. An asserted EOM (end
of message) bit indicates the end of the message. The XY bits denote the rout-
ing information. Each packet is transmitted as more than one flit. A flit is the
smallest unit of data transfer. The size of a flit is parameterized and we have
chosen a size of 16-bits in our implementation.

4.2 Communication Protocol

Data packets are routed through the network using a wormhole routing scheme.
This has low latency and requires less routing resources. A simple X-Y routing [9]
scheme has been adopted to eliminate the need for lookups at the router level.
In our protocol, the first flit that is transmitted is the header flit that contains
the routing information in the first 8 bits. To transmit a data packet across the
router, the payload and the encapsulating header are divided into flits. The se-
quence of flits is brought from the PM memory into the asynchronous FIFO con-
nected to the router. The router transmits the flits according the to the XY rout-
ing information specified in the header flit. At the destination router, the flits are
reassembled by the Packet Disassembler and delivered to the core. The latency of
the header flit depends on the number of hops through the network. For the flits
that follow, the latency is independent of the number of hops as the entire oper-
ation is pipelined. This is also verified by the experimental results in section 7.

5 Experimental Framework

In order to demonstrate the feasibility of our proposed Network Interface archi-
tecture we have mapped a JPEG compression application using four cores. These
cores are placed around the network and exchange data using packet based com-
munication. The uncompressed image is initially stored in the global memory
of the system. The processor sends a read request packet for the image to the
global memory. On receiving the packet, global memory sends the uncompressed
RGB image to the processor via the network. Once the image is converted to
the YUV format, it is sent to the JPEG engine for compression. JPEG engine
compresses the BMP image to JPG format and sends it to the UART core to be
transmitted to the terminal. Below is a description of each core and the specific
application wrapper attached to it.

5.1 Processor

YACC, the processor used in this implementation, is an open source 32 bit, 5
stage pipelined RISC processor based on the MIPS I intruction set. The processor
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is a soft core in which the Instruction and the Data Memory are configurable
according to the application requirement (image size). The processor follows the
Von-Neumann architecture which limits the number of ports available to the
external hardware for Direct Memory Access (DMA) of data memory. Therefore
we have added a local memory to the processor as an additional hardware unit.
This is mapped to the processor’s address space. This local memory is accessed
by the processor using memory mapped General Purpose Input Output (GPIO).
In our experimental setup, YACC converts gamma corrected RGB image to YUV
( Y Cb Cr ) format for compression.

PROCESSOR
    (YACC)MEMORY

   LOCAL

MEMORY
 

NETWORK INTERFACE  GENERIC APPLICATION INTERFACE

       PROCESSOR SPECIFIC WRAPPER

DATA PATH

CONTROL PATH
  PM / PD

Fig. 4. Processor with Specific Wrapper

Processor Specific Wrapper. The Processor Specific Wrapper provides the
interface between the processor core and Network Interface through the Generic
Core Interface. Figure 4 shows the flow of control signals and data. The wrapper
sends a request for image to be processed along with information such as the
address of the destination core and the amount of data needed (image size)
to the Generic Core Interface. Once the image arrives in the Shared Memory,
the wrapper dumps the RGB image into the Local Memory of the processor.
The processor converts the image into YUV format and simultaneously writes it
into the Local Memory. The wrapper moves the processed image from the Local
Memory to the Shared Memory to route it to the next core for further processing.

5.2 JPEG Engine

The JPEG ENGINE is a standard Baseline DCT compressor (JFIF header)
with 2:1:1 sub sampling [10]. It takes a YUV image as input and outputs a
compressed JPEG image.

At the input to the JPEG encoder, source image samples are grouped into
8x8 blocks and are fed into the Forward DCT (FDCT) block. After output from
the FDCT, each of the 64 DCT coefficients is uniformly quantized in conjunc-
tion with a 64-element quantization table, which is specified as an input to the
encoder. After quantization, the DC coefficient is treated separately from the 63
AC coefficients and is encoded as the difference from the DC term of the previ-
ous block in the encoding order. The final DCT-based encoder processing step
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is entropy coding. Here we achieve additional compression in a lossless manner by
encoding the quantized DCT coefficients more compactly through Huffman
coding.

MEMORY
 

NETWORK INTERFACE  GENERIC APPLICATION INTERFACE

    

DATA PATH

CONTROL PATH

   
MEMORY
   LOCAL  QUANTISER    FDCT   ENTROPY

 ENCODER

           JPEG SPECIFIC WRAPPER

  PM / PD

       JPEG ENGINE

Fig. 5. JPEG Engine with Specific Wrapper

JPEG Specific Wrapper. Similar to the Processor Specific Wrapper, the
JPEG Specific Wrapper provides the interface between the JPEG core and Net-
work Interface through Generic Core Interface. Figure 5 shows the flow of con-
trol signals and data in the JPEG engine and wrapper. The JPEG core sends
a request for YUV Image to be compressed along with the information such
as address of destination core (Processor) and the amount of data needed (Im-
age size) to the Generic Core Interface. Once the image arrives in the Shared
Memory of the Network Interface, the wrapper dumps the YUV image in Local
Memory of the core. The JPEG engine compresses the image and places it back
into the Local Memory. The wrapper transfers the com-pressed image from the
Local Memory to the Shared Memory, from where the image is routed via the
network to UART core to display on the terminal.

5.3 Universal Aysnchronous Receiver Transmitter(UART)

The UART core comprises of 3 modules: a finite state machine, a buffer and
a transmit module. The finite state machine generates the handshaking signals
between the modules. The buffer stores the data received from the other cores
through the network. The transmit module receives a byte of data at a time,
serializes it, attaches the start and the stop bits and transmits it to the RS 232
port at proper time intervals. The transmit module is parameterized with re-
spect to the transmission speeds that it can handle. The UART specific wrapper
that interfaces the UART core with the Generic Core Interface coordinates the
transfer of data packets from the shared memory in Network Interface to the
buffer in the UART transmitter core. The wrapper also converts the data into
8 bit words to make it compatible with the UART transmitter core.
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5.4 Global Memory

The Global Memory core is a dual port RAM of a parameterized size. The
wrapper is a finite state machine that includes the functionality of a memory
controller while interacting with the network interface. The wrapper handles
variations in word size between the memory and the network interface and con-
tention in memory access.

6 Application Mapping and Testing

The interfaces, communication network and the cores were implemented on
the Xilinx FPGA (XC2VP30). Post place and route simulation was used to
find out how the architecture responds to real time data communication be-
tween independ-ently developed cores which are connected using the on-chip
network.

For the purpose of analysis, we evaluate the case where the processor retrieves
the image from the shared memory, processes it and sends it to the JPEG en-
gine for compression. Table 1 gives the latency in terms of clock cycles between
modules for different image sizes.

As can be seen from the table, the Processor has a larger computational
latency compared to the JPEG engine. Therefore, the percentage overhead in
latency incurred due to the network interface is much lower. Hence, it can be
inferred that the network interfaces do not significantly degrade the performance
of computationally intensive cores.

Table 1. Latency (in clock cycles) from Processor to JPEG engine

Source Module Destination Module 16x16 img 32x32 img 64x64 img 128x128 img
NI Shared memory1 Proc Local memory 2651 10600 42378 169546
Processor latency Processor latency 85926 309043 1111509 3890283
Proc Local memory NI Shared memory2 2651 10600 42378 169546
NI Shared memory2 NI Shared memory1 8318 32475 129105 515264
NI Shared memory1 JPEG Engine 1536 6141 24564 98256
JPEG latency JPEG latency 3882 16054 65098 259412
JPEG Engine NI Shared memory2 1656 6258 25032 100128

Table 2. Latency(in clock cycles) of Network Interface and Router Network

Source Module Destination Module 16x16 img 32x32 img 64x64 img 128x128 img
NI Shared memory1 NI Shared memory2 8318 32475 129405 515624
NI Shared memory1 NI Router1 8073 31677 126095 511567
Router1 Router2 8219 32202 128142 511896
Router2 NI shared memory1 8283 32475 129105 515264
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Table 2 shows the latencies incurred during the transfer of data packets be-
tween the two network interfaces across the routing network. We observe that
the latencies of packet transfer remain approximately the same at every stage of
communication. This behavior can be attributed to the pipelined architecture of
the interface and the routing network.

Figure 6 shows the degradation of the maximum operating frequency of the
different cores. It can be seen that the degradation is reasonably low and uniform
with increasing image size. Thus it can be stated that the degradation effect of
the application specific wrapper is not substantial even with large data sizes.

The effect of the core specific wrappers on the device utilization is shown
in figure 7. The percentage overhead is uniformally low. Therefore attaching a
wrapper to a core does not significantly increase resource requirements.

7 Conclusions

In this paper we proposed a comprehensive interface architecture that can seam-
lessly integrate different IP cores to a communication fabric. We tested the
functionality and robustness of our design by mapping a JPEG compression
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algorithm on our architecture. We used a variety of IP cores to evaluate the per-
formance of the interfaces under a variety of traffic conditions. After extensive
testing we found that for computationally intensive cores, the overhead of the
interfaces is not substantial. The generic characteristic of the interface facilitates
IP core reuse as only the core specific wrapper needs minor modification. It is the
authors’ belief that an NoC approach driven by generic interfaces will change the
way SoCs are designed in the years to come. Our future exploration in this area
would be in the direction of designing better communication architectures and
refining the layered structure of the network interface. Our ultimate goal would
be to develop an Application Specific Integrated Circuit of the communication
network and the generic interfaces for performance driven applications.
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Abstract. Virtual channel reservation is a simple approach for provid-
ing guaranteed throughput services in a virtual channel network-on-chip.
However, its performance is limited by the number of virtual channels per
physical channels. In this paper we explore the limits of the approach and
investigate how these limits depend on the routing algorithm, the traffic
locality, the network topology and the network size. The results show the
the approach can be applied in a network of size 10-by-10 nodes with
four virtual channels per physical channel. The traffic locality has strong
influence on the performance limits of the approach and can also help in
reducing the communication energy cost by 50% to 70%. The type of the
routing algorithm does not practically influence the performance limits.

1 Introduction

Multiprocessor System-on-Chip (MPSoC) is an emerging platform for the future
mobile devices, e.g. PDAs, media players, mobile phones etc. To meet the func-
tional requirements of these devices, such a platform should provide flexibility
together with high performance and low power consumption. A promising ap-
proach for satisfying these contradicting requirements is though reconfigurable
domain-specific computing. The work presented in this paper is performed as
a part of the Gecko project which addresses architectural and design issues in
low-power dynamically reconfigurable multimedia systems. The platform we en-
vision for these devices is a MPSoC consisting of a large array of coarse grain
reconfigurable processing elements (PEs) and distributed memories. The PEs
are heterogeneous and domain specific, performing efficient high performance
computation for specific application domains. One of the major issues in such a
system is the communication between the PEs. The traditional system bus is not
a solution because it is not scalable and cannot sustain the increasing bandwidth
demands. The bus easy becomes a bottleneck and hence in the future MPSoC it
is replaced by a light weighted communication network built on-chip, also known
as Network-on-Chip (NoC) [1]. In this paper we discuss the NoC we propose for
our MPSoC.

The network we consider is constructed in the following way. The PEs in our
system are arranger in a two-dimensional array. Each PE is equipped with a
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network router it uses for inter processor communication. The network routers
are connected in a grid by full-duplex channels build by two unidirectional chan-
nels - one in each direction. The unidirectional channels are referred to as physical
channels. In our system we use a virtual channel network [2]. In a virtual channel
network, on each physical channel there are several virtual channels (VCs). Data
in the network is transported over the VCs.

The system we envision is dynamic and reconfigurable at run-time. The ap-
plications that will run in the system are not known in advance, but are decided
at run-time. A central system authority starts and terminates applications at
run-time. When an application is started, the central authority allocates and
configures PEs for the application and reserves communication channels in the
NoC to carry the data streams between the PEs. When the application is ter-
minated the resources it uses are freed.

Since many of the applications in mobile multimedia devices are real-time,
predictable system communications are important. Predictable communications
in our network are provided by means of guaranteed throughput (GT) services.
The network can provide connections with a guaranteed minimal throughput
bound. To guarantee the bound we use a virtual channel reservation - the VCs
traversed by a connection are reserved and not used by other communications.
Such approach is simple, but its potential is limited by the number of VCs in
the network. Since there are finite number of VCs on each physical channel, the
number of connections that can traverse a physical channel is limited and thus
is limited the number of connections that can be opened simultaneously in the
network. The number of VCs cannot be increased arbitrary, because it has a
strong impact on the router area.

In this paper we explore the limits of the virtual channel reservation approach
in a network of size 10-by-10 PEs with four VCs per physical channel. Consider-
ing the available chip area and the size of the processing elements this network
size is feasible for the today and near future systems. The number of VCs is
chosen such that the routers have reasonable size. We also investigate how the
limits of the virtual channel reservation approach depend on the network routing
algorithm, the network traffic locality and the network topology.

The paper is organized as follows. Section 2 discusses related work. The net-
work is presented in Section 3. Section 4 discusses how the GT traffic is routed
in the network and what algorithms are used for that. In Section 5 a model of
the GT traffic in the network is constructed. Section 6 describes the performed
experiments and Section 7 discussed the simulation results.

2 Related Work

In this section we briefly review the QoS solutions in NoCs. In the Ethereal
network-on-chip [3] guaranteed services are based on time-division multiplexing
(TDM). The communications on the physical channels are globally scheduled in
time slots. A TDM approach is used also in the Nostrum network [4]. Although
simple from implementation point of view, the TDM approach is static and not
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flexible enough for a dynamic system. Small changes in the network configuration
may require complete recomputation of the schedule. The distribution of the
new schedule requires reconfiguration of all the routers along the changed paths.
Furthermore, the global schedule requires a global notion of time in the system
which may become a disadvantage in the near future when systems are expected
to be Globally Asynchronous Locally Synchronous (GALS) [5].

A circuit switching NoC is another solution for providing guaranteed services.
It benefits from small size and low energy consumption but is restrictive in
the number of circuits that can be established. Wolkotte et al [6] overcome the
problem by providing more than one physical channel between the neighbour
routers. However, an additional network is needed for handling the best effort
traffic in the system and for network configuration. The time for establishing a
circuit cannot be neglected because all the switches along the circuit have to be
reconfigured.

Another approach for providing guaranteed services in a network-on-chip is
by introducing priorities. Such an approach is used by Felicijan et al [7] to pro-
vide guarantees in a virtual channel network. The VCs over a physical channel
have statically assigned priorities. The high priority VCs are used for guaran-
teed traffic and the low priority VCs are used for best effort traffic. While this
approach can guarantee better services for the traffic using higher priority VCs
it cannot give exact bound on the provided services.

3 Network Operation

Here we briefly present the on-chip network we propose for interconnecting the
PEs in the system. It is a packet switching virtual channel network that provides
GT as well as Best Effort (BE) services [8]. The network consists of a grid of
routers interconnected by physical channels. Each router is connected to a PE
which serves as a source and sink of data. On each physical channel there are
4 VCs , this number being motivated by the trade-off between performance and
area of a virtual channel router studied by Dally [2]. The VCs time-share the
physical channel but are separately buffered at the router input. The physical
channel is shared on a cycle-by-cycle basis in a round-robin fashion, but cycles
are only used by the VCs that transmit data; the idle VCs do not use cycles.
Since sharing is done in a round-robin fashion, the VCs equally share the physical
channel bandwidth. If on a physical channel of bandwidth b there are v VCs cur-
rently transmitting data, then each of these v VCs is guaranteed a throughput of

THmin =
b

v
(1)

This is the worst case throughput the traffic on the v VCs can experience.
Whatever traffic load is applied to the v VCs their throughput will never go
below THmin. Therefore, guarantees on the throughput bound of a VC can
be given by restricting the number of VCs used on the same physical channel.
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If a minimal throughput bound THR is requested for a VC, then according to
Eq. (1) the number v of VCs used on the same physical channel should be

v ≤
⌊

b

THmin

⌋
(2)

With four VCs per physical channel in our network we can guarantee through-
put of b, b/2, b/3 or b/4.

In traditional virtual channel networks VCs are allocated to packets dynam-
ically by the routers [2]. In such a network the number of currently occupied
VCs depends on the current traffic and cannot be determined. Therefore no
throughput guarantees can be given for a VC. In contrast, in our network VCs
are statically allocated. We use a source routing, which is a technique where
the packet destination address describes the exact route in terms of VCs that
the packet takes to the destination. The addresses are generated by the cen-
tral authority and given to the PEs during their configuration. Knowing the
routes already in use, the central authority can determine which VCs are used.
Therefor, it can predict their throughput and give guarantees.

In our network GT services are provides on a connection basis. A route is
found between the source and the destination node and the VCs the route tra-
verses are reserved and not used for other communications. Such a route is called
connection. The throughput of the connection is determined by the VC with min-
imal throughput among the traversed. If Eq. (2) holds for all VCs the connection
traverses then it guarantees minimal throughput bound of THR.

Routes for connections are provided by the central authority using a rout-
ing function. The routing function searches for a route traversing only VCs
that can satisfy the connection throughput request THR according to Eq. (2).
Thus, the routing function is in charge of providing GT connections for the
application.

4 Routing Function

The task of the routing function is to find routes for the GT connections in
the network. The function has the form R(S,D,THR). It takes as input a of a
connection description and returns as a result a description of network route.
The connection description consists of a source node S, a destination node D
and a requested throughput THR. The route description is an ordered sequence
<vc1, vc2, , vcn> of the virtual channels vci traversed by the route. The re-
quested throughput can be a real number but according to Eq. (2) the guaran-
teed throughput bound is always discrete and takes values b, b/2, b/3 and b/4.

To guarantee the specified throughput the routing function looks for a route
traversing only VCs for which Eq. (2) holds. To find such a route, the routing
function needs to know the current state of all VCs in the network. The state of
a VC is represented by one integer set to 0 when the VC is not used or indicating
the throughput that is guaranteed when the VC is used. The states of all VCs
form the network state. When searching for a route, the routing function checks
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the network state and uses only free VCs that satisfy the following two GT
routing criteria: i) the VC can guarantee the requested throughput according
Eq. (2), ii) the use of the VC will not violate the throughput guarantees already
given (if any) by the other VCs on the same physical channel (Eq. (2) will
still hold for them). After the route has been constructed, the routing function
updates the state of the used VCs. When the route is not needed anymore, e.g.
the application using it has terminated, the VCs constructing the route are freed
and their state is updated.

Finding a route in a network is equivalent to finding a path between two nodes
in a graph - the network topology is represented as a graph and a path search-
ing algorithm is run on it. Among all possible paths the shortest is preferable,
because shorter network routes result in less network traffic and less energy for
communication. Therefore, the routing function is based on an algorithm for the
shortest path search in graphs. However, our routing function runs on a sub-
graph I=(N,C) of the full network graph, derived by deleting all channels that
do not satisfy the two GT routing criteria. Here N represent the set of network
nodes and C represent the set on channels.

The routing function is used at run-time and therefore has to be as fast and
simple as possible. But a simple algorithm may lead to poor network utiliza-
tion generating congestions at some parts of the network while other parts stay
unutilized. To examine the influence of the routing algorithm, we experiment
with two shortest path search algorithms [9]: Breadth-first search and Dijkstra’s
algorithm.

Breadth-first search (BFS) is the simplest possible shortest path search algo-
rithm. It works on non-weighted graphs and finds a shortest path in terms of the
number of edges. It routes without taking into account the network condition -
weakly and heavy loaded physical channels are equally preferred. The compu-
tational complexity of the algorithm is O(N). The memory complexity of the
algorithm is also linear in the number of network nodes.

Dijkstra’s algorithm (DA) is more complex and allows the routing decision
to adapt according the current network conditions. The algorithm works on
weighted, directed graphs, where all edge weights are nonnegative. It finds short-
est paths in terms of the minimal weighted sum. In our network, the weight
assigned to an edge is proportional to the load of the corresponding physical
channel. The weight equals the number of occupied VCs on the corresponding
physical channel plus one, as one stands for a unit physical distance. Thus, if no
virtual channel is occupied the weight is one and if all four VCs are occupied
the weight is 5. One is added to avoid zero weight and thus to provide that the
algorithm always prefers shorter paths. Every time a connection is routed the
state of the reserved VCs is changed which increases the weights of the physi-
cal channels traversed by the connection. When the connection is deleted, the
VCs are released and the weights are reduced. Hence, the weights reflect the
current network state and the routing algorithm adapt its decision according to
this state. The computational complexity of Dijkstra’s algorithm is O(N2). The
memory complexity of the algorithm is linear in the number of vertices.
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BFS and DA have the same memory complexity but DA has a higher compu-
tational complexity than BFS. We examine how the routing algorithm influences
the performance of the routing function and whether it is profitable to use DA
instead of the simpler BFS.

5 Traffic Model

In this section we construct a model of the GT traffic in the network. The model
is later used for evaluation of the routing function. We model only the spatial
aspects of the traffic, like communication pattern and communication distances,
and not the timing aspects. The timing aspects, like data generation rate or
data inter arrival time are entirely hidden behind the requested throughput
THR. The traffic spatial characteristics are determined by two factors - topology
of the application graphs and strategy for mapping of the application graphs
on the multiprocessor architecture. The application is represented as a graph
GA = (VA, EA). The graph vertices VA represent processes to run on the PEs
and the graph edges EA represent the communication between the processes.
To run an application, the vertices of the application graph are mapped on PEs
in the system. After the mapping the edges between the processes define the
communications between the PEs to be handled by the network.

GT traffic in the system is generated by streaming applications which typically
have application graphs with simple pipeline structure [10][11]. At a certain
moment in time a number of streaming applications are running simultaneously
in the system, hence there are number of pipeline graphs scattered over the
PEs. To model such traffic conditions we use a large graph of ring topology
which nodes are scatter over the PEs. A large ring graph can be seen as a serial
connection of many short pipeline graphs. The number of nodes in the ring
graph is equal to the number of PEs in the system and every node is mapped on
a separate PE. Thus, we model a system where every PE generates and consumes
a data stream.

The mapping decides the actual PEs where the application processes will run
and therefore it has a strong influence on the communication locality. To model
the effect of traffic locality we use three different strategies for mapping the
ring topology graph. The three strategies produce mappings that approximate
respectively the best, the average and the worst case of traffic locality. The three
mapping strategies use the same algorithm for choosing the PEs, but differ in a
parameter given to the algorithm. The algorithm operates on the ring graph as
follows. The graph nodes are mapped sequentially in the order they appear in
the graph. For every next node a PE is chosen randomly among those which are
at distance less than or equal d hops from the PE where the previous graph node
was mapped. Here d is a parameter of the algorithm that sets a diameter for the
preferred network distance. If there is no free PE within that distance, then a PE
is chosen randomly among all free PEs. The three mappings strategies differ only
in the value they set the parameter d to. The first strategy tries to maximize the
traffic locality; it sets the parameter d to 1 and approximates best case locality.
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The second strategy sets d to 4 and approximates some average case locality.
The third strategy approximates worst case locality. It sets the parameter d to
the diameter of the network (the longest network distance). Hence, the mapping
algorithm uniformly scatters the vertices of the ring graph over the PEs and no
locality should be expected.

6 Simulation Experiments

To explore the performance limits of the routing function and hence of the virtual
channel reservation approach, we perform a number of simulation experiments
using the traffic model from Section 5. In an simulation experiment a ring graph
of 100 nodes is mapped on a network of size 10-by-10 nodes. The mapping is
randomized but generated with specific locality characteristics (worst, average,
best case locality). After the mapping, a routing function provides GT connec-
tions for the communication channels defined by the edges of the ring graph,
all with the same requested throughput THR. Thus, 100 GT connections fol-
lowing a ring communication pattern are routed. The routing is considered to
be successful when all the 100 GT connections are routed. When routes cannot
be found for all connections, the routing is considered to fail. If a routing is
successful, information is collected about the network distances of the routed
GT connections and the utilization of the VCs in the network. Experiments are
performed for the three traffic locality conditions (worst, average, best case local-
ity), with two network topologies (mesh and torus), with two routing functions
based respectively on the BFS and DA algorithms and with four values for the
requested throughput THR (b, b/2, b/3 and b/4). All 24 combinations of these
factors are explored. To asses the average performance of the routing function,
for each of the 24 combinations we perform 1000 experiments, each experiment
setting a sample in the space of the possible traffic patterns. The number 1000
was chosen empirically such that to provide enough samples for representative
average results in acceptable simulation time. Thus in total 24x1000 samples are
collected.

7 Simulation Results

In this section we present and discuss the results of the conducted experiments.
We compare how the different factors influence the performance of the virtual
channel reservation approach in order to decide which of them are of importance
and can be used to improve the performance of the approach and which can be
neglected.

7.1 Number of Successful Samples

Figure 1 shows how many of the 1000 samples taken in each of the 24 combination
of factors are successful . The three graphs correspond to the three cases of
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traffic locality, each graph presenting the results for mesh and torus topology.
Of interest for us are the cases for which all 1000 samples are successful. We
assume that in these cases the requested GT connections can always be provided;
therefore, the virtual channel reservation approach can be safely applied. In the
cases when not all samples are successful the routing function cannot always
provide all the requested GT connections and the virtual channel reservation
approach performs insufficiently for these requirements.
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Fig. 1. Number of successfully routed mappings

Figure 1 we see that for worst case traffic locality the virtual channel reserva-
tion approach can be safely applied if the requested throughput THR is restricted
to b/4 for mesh topology and up to b/3 for torus topology. The torus topology
helps improving the performance in such traffic conditions by increasing the
throughput limit from b/4 to b/3. When locality is introduced the performance
is improved by increasing the limits on the THR to b/2 and b. But for local
traffic the improvement achieved by replacing mesh with torus topology is not
significant. The routing algorithms do not change the performance of the ap-
proach for any traffic conditions. Among the three factors - locality, topology
and routing function - the traffic locality has the strongest influence on the per-
formance limits of the virtual channel reservation approach while the routing
algorithm does not influence it significantly. The results show also that four VCs
per physical channel provide enough network resource for applying the virtual
channel reservation in a 10-by-10 network; in all the cases, if THR is restricted,
the approach can be applied . Restriction on THR restricts the maximal through-
put guaranteed to a connection to some fraction of the capacity b of the physical
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channel. Thus, at network design time an appropriate b has to be chosen (e.g. by
choosing the operation frequency of the network and the width of the physical
channel).

7.2 Detour Cost

The routing function tries to route the requested connections using minimal
distance routes, but this is not always possible because some VCs along the
minimal distance routes might be occupied. In such a case the routing function
takes a detour - a route which is not minimal. Detour cost is defined as the
difference between the real route distance and the minimal distance. The real
distances are the result of the routing, while the minimal distances are idealistic,
assuming there is no other traffic in the network. The better routing algorithms
manage to route the traffic using shorter paths and therefore with less detour
cost.
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The detour cost is shown in Figure 2. The presented figures give the sum of
the detour cost of all 100 connections in the ring graph. In most of the cases
the sum detour cost is less than ten hops, which is negligible compared to the
sum distances of the 100 connection (at least 100 hops). The detour cost exceeds
10 hops only when the requested GT connection cannot always be provided,
therefore the approach cannot be used.
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7.3 Communication Energy Cost

Wolkotte et al [12] performs power analysis of our virtual channel router and
derives a energy model of the network. An energy model of a circuit switching
network is also derived. We use the two energy models to estimate and compare
the average communication energy cost in the proposed virtual channel network
and in the circuit switching network proposed by Wolkotte. The energy models
estimate the energy cost in [pJ/bit] for transporting a bit in the network

Eps = ER(Nhop + 1) + (0.39 + 0.12lwire)Nhop (3)

Here lwire is the length of a physical channel in mm. Nhop is the network distance
in number of hops. ER stands for the energy cost for traversing a router; for the
packet-switching and the circuit-switching network ER takes values ER PS =
0.98 and ER CS = 0.37. The second term in the energy model estimates the
energy for traversing the wires between two routers (a physical channel). The
model captures only the dynamic energy cost for transporting a bit.
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Fig. 3. Average communication energy cost in a packet switching and in a circuit
switching network

The energy cost is estimated for three topologies - mesh, torus, and folded
torus. A folded torus has the same graph structure as torus, but its nodes are
reshuffled in the plane such that the torus wraparound channels are avoided in
expense of regular channels with doubled length [13]. We assume that the size of
a PE is 1.5x1.5 mm or 2.25 mm2 [14]. Thus, the length of the physical channels
and therefore of lwire in mesh is 1.5 mm. In the torus topology the wraparound
channels cross the entire array of 10-by-10 PEs and hence are 15 mm long. In
the folded torus the channels in the middle of the network cross two PEs and
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are 3 mm long. The network distance Nhop in Eq. (3) is substituted with the
mean communication distances calculated from the simulation results. To take
into account that the wraparound channels in torus has different length, Eq. (3)
is modified to contain two terms that capture the wires energy contribution -
one term for the regular channels and one for the wraparound channels. During
the experiments information is collected about the utilization of the single hop
channels and the wraparound channels. This information is used to weight the
number of hops Nhop in the two terms.

Figure 3 presents the results for the communication energy cost in our vir-
tual channel network (packet switching) and in the circuit switching network
proposed by Wolkotte. The results show that by exploiting the communication
locality the average communication energy cost can be reduced by 50% to 70%
for the different topologies. For worst case locality traffic, the torus topology
reduces the communication energy cost compared to mesh because of its smaller
network diameter. But since the traffic locality reduces the communication dis-
tances, for local traffic the smaller diameter of the torus is not advantageous. The
routing algorithm can influence the communication energy cost by the detour
cost - higher detour cost entails more energy for communication. But as we saw,
the detour cost is negligibly small, which explains the insignificant influence of
the routing algorithm on the communication energy.

The energy cost results for the circuit switching network is reduced compared
to the results for the packet switching network. This is due to the smaller energy
cost for traversing a router in the circuit-switching network - a clear advantage
of this approach. Unfortunately, the circuit switching solution is less flexible - it
requires external configuration, cannot handle best effort traffic.

8 Conclusion

In this paper we explored the possibility to provide guaranteed throughput ser-
vices in a virtual channel network by virtual channel reservation. We test the
limits of the virtual channel reservation approach for variety of traffic conditions.
The results show that the approach is feasible and can be used for providing
throughput guarantees in a 10-by-10 network in worst case traffic conditions.
For this network size a mesh topology and four virtual channels per physical
channel provide enough connectivity for predictable system operation. Amongst
the considered factors that influence the performance limits of the approach, the
communication locality has the strongest influence. By exploiting communica-
tion locality the network performance is improved and, at a certain extend, made
independent of the network size. Furthermore, exploiting the locality the com-
munication energy cost can be reduced by 50% to 70%. The routing algorithms,
based respectively on the simple Breath-first search algorithm and the more
complex Dijkstra’s algorithm, do not show noticeable performance difference.
Therefore the Breath-first search is preferred because of its lower computational
complexity.
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Abstract. Adaptive filters are used in many applications of digital sig-
nal processing. Digital communications and digital video broadcasting
are just two examples. This paper deals with floating-point-like imple-
mentation of LMS and NLMS algorithms using FPGA hardware. We
present an optimized cores for both algorithms, built using logarithmic
arithmetic which provides very low cost multiplication and division. The
designs are crafted to make efficient use of the pipelined logarithmic ad-
dition/subtraction units. The resulting cores can be clocked at more than
80 MHz on the one million gate Xilinx XC2V1000-4 FPGA performing
295 MFLOPS. They can be used to implement adaptive filters of orders
20 to 1022 with a sampling rate exceeding 70 kHz.

1 Motivation

Adaptive filters are widely used in digital signal processing (DSP) for countless
applications in telecommunications, digital broadcasting, etc. Adaptive filtering
algorithms are often suitable for FPGA implementation, because they involve
very regular computations with very fine-grain parallelism capabilities.

A wide variety of adaptive filtering algorithms have been proposed with var-
ious trade-offs in the filtering properties (convergence, etc.) and computational
requirements. Perhaps the simplest is the least means squares (LMS) [1] algo-
rithm, which has very low computational requirements and is thus widely used
in resource-constrained embedded systems. The LMS performs large numbers of
addition and multiplication operations and requires no other functional units.
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More sophisticated algorithm with better convergence properties is the normal-
ized LMS (NLMS) [1] but it requires divison.

The LMS algorithm can be described as

wk = wk−1 + μuk

(
dk − uT

k wk−1
)

where wk is the coefficient vector of length L (which is referred to as the filter
order), uk is the excitation signal vector consisting of the delayed sequence of L
input samples, dk denotes desired signal sample, and the index k denotes discrete
time. The symbol μ is step-size parameter. The NLMS differs from LMS by
using (time-variable) power normalized step-size μ̄ = μ

δ+uT
k uk

where parameter
δ prevents overflow. The time complexity of both algorithms is O (2N) multiply-
accumulate (MACC) operations.

2 Logarithmic Arithmetic

In order to maintain accuracy of the algorithms in the FPGA implementation, we
decided to implement the computations using a floating-point-like logarithmic
arithmetic. The parameters of the library are briefly presented in this section.

The logarithmic number system (LNS) was chosen in order to reduce resource
requirements and to achieve short latency as compared to other floating-point
solutions. Logarithmic multiplication and division require only very simple logic.
Although addition and subtraction are more complex in LNS, recent advances
have made them feasible in small FPGA devices. We use the High Speed Loga-
rithmic Arithmetic (HSLA) cores, described in [2].

Table 1 shows the parameters of our LNS units in comparison to Under-
wood’s [3] highly-optimized IEEE single-precision floating-point (FLP) units.
The major disadvantage of LNS arithmetic is the number of Block RAMs used
by the ADD/SUB unit for storing the look-up tables. These units are always in-
stantiated in pairs. While the resource requirements for a pair of LNS ADD/SUB
pipes is significantly higher than for a pair of the FLP cores, LNS multiplier units
need a small fraction of the size of the FLP multipliers. The most common op-
erations in many matrix algorithms are multiplication and addition. When we
sum the resources required by two multiply-add pipes, we see that the LNS units
require fewer resources (except for Block RAMs). Since many DSP algorithms
require division and/or square root the advantage of LNS is evident.

Table 1. Comparison of single-precision floating-point and 32-bit LNS units

ADD 2-pipe ADD MUL DIV SQRT
FLP LNS FLP LNS FLP LNS FLP LNS FLP LNS

Slice Flip Flops 696 — 1,392 1,702 821 35 2,476 35 — 35
4 input LUTs 611 — 1,222 2,135 722 139 2,220 145 — 42
Occupied Slices 496 — 992 1,648 598 83 1,929 82 — 28
Block RAMs 0 — 0 28 0 0 0 0 — 0
MULT18X18s 0 — 0 8 4 0 0 0 — 0
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Another important issue is the clock speed and latencies. Underwood’s adder
can be clocked at up to 165 MHz on the XC2V6000-5 FPGA, with a latency of
up to 13 cycles, the multiplier at 125 MHz with a latency of 16 cycles, whereas
the divider at 105 MHz, but with a latency of 37 cycles. In contrast, the latencies
of the LNS adder, multiplier and divider are 8, 1, and 1 cycles respectively, at
clock rates over 80 MHz (add/sub) and 200 MHz (mul, div, and sqrt) on the
XC2V6000-4 FPGA. From this we can conclude that if latency is important, the
LNS cores can give considerable advantage.

3 Architecture

In this section we briefly present architecture of our cores. The mapping of the
(N)LMS algorithm onto the LNS arithmetic units as well as of data structures to
Block RAMs is described. The algorithmic description of the NLMS algorithm
is given in Fig. 1(a). The top-level architecture of the NLMS core is depicted in
Fig. 1(b). The blocks in the diagram correspond to individual steps in the algo-
rithm. The LMS algorithm employs one LNS addition/subtraction (ADD/SUB
A and B—two separate, parallel pipelines) unit and two LNS multipliers (MUL
A, B). The NLMS algorithm uses one LNS divider (DIV A). Non-scalar data
structures are stored in Virtex-2 Block RAMs.

The L+1 most recent input signal samples is stored in the Block RAM referred
to as UX (vector). To avoid shifting each time a new input signal is sampled,
the UX vector storage is implemented as a circular buffer. The filter coefficient
vector w is split into two parts which are stored in separate Block RAMs WW0
and WW1.

/* Inputs:     u_k   ... excitation signal
 *             d_k   ... desired signal
 * Outputs:    y_k   ... filter output
 *             e_k   ... estimation error
 * Parameters: L     ... filter order
 *             mu    ... step−size
 *             delta ... regularization
 * Init:       UX[0] to UX[L] = 0;
 *             WW[0] to WW[L−1] = 0;
 *             pow = delta;
 */

  /* One iteration of the NLMS */

  /* Acquire u_k and d_k */
  /* Update UX using u_k  */
  /* Calculate y_k */
  y_k = 0;
  for (i = 0; i < L; i++) {
    y_k += WW[i] * UX[i];
  }
  /* Calculate y_k */
  e_k = d_k − y_k;
  /* Update power */
  pow += UX[0] * UX[0] − UX[L] * UX[L];
  /* Update filter coefficients */
  mmue = e_k * (mu / pow);
  for (i = 0; i < L; i++) {
    WW[i] += mmue * UX[i];
  }

(a)

NLMS Scheme
k

updateUX

Update pow

ek μ / pow*

u T
k wk−1

Dot product

WW[0,1] update

ky

ek

dk

u

(b)

Fig. 1. Algorithmic description of the NLMS algorithm (a) and block diagram and
data dependencies of top-level architecture of the NLMS core (b)
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Fig. 2. Architecture schematics of the calculation of the filter output uT
k wk−1 (a) and

of the update of the coefficient vector w stored in the Block RAMs WW[0,1] (b)

First, the filter output yk = uT
k wk−1 is calculated. We use two parallel

multiply-accumulate (MACC) pipelines, each operating on one half of the vec-
tors u and w. The hardware structure of this step is schematically depicted in
Fig. 2(a). The “Dot product” module denoted as A uses the ADD/SUB A and
the MUL A units; the same is for the module B. The operation is fully pipelined
except for the stage of the final summation.

The next step of the algorithms is to compute the estimation error ek, which
requires a single subtraction also performed on the ADD/SUB B unit. Subse-
quently, μek is calculated using MUL B unit. This is the only step which is differ-
ent for the LMS and NLMS algorithms. In the NLMS algorithm, μ is divided by
the signal power which is calculated recursively as pk = pk−1+ukuk−uk−Luk−L,
where p0 = δ and values uk and uk−L are retrieved from the Block RAM UX,
rather than calculating pk = δ + uT

k uk. The ADD/SUB A, MUL A, and DIV
A units are employed to normalize the step size μ.

Finally, the vector w is updated. The hardware structure of this stage is shown
in Fig. 2(b). The data bandwidth to w is limited by the number of ports on the
Block RAM, so we split the vector w into two vectors as mentioned above. This
allows us to use two independent pipelines to update both halves of w in parallel
as depicted in the figure. This stage utilizes both pipelines of the ADD/SUB unit
and the MUL A and B units. At the end of this step one (N)LMS iteration is
complete and the core is ready to acquire new data samples.

4 Experimental Results and Discussion

We created separate cores for LNS 32- and 19-bit precision. The parameters of
all cores are fully configurable. It is possible to vary filter order L for values
20 ≤ L ≤ 1022, and filter parameters μ and δ. For the experiments in this
section, we fixed the length of the filter as L = 1000 to demonstrate performance.
In this configuration, a full iteration of the LMS algorithm takes 1083 cycles and
performs 4003 logarithmic operations (3.69 ops/cycle). With the corresponding
filter parameters, the NLMS algorithm can perform a full iteration in 1088 clock
cycles, and performs 4008 logarithmic operations (3.68 ops/cycle).
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Table 2. Resource utilization of the 32-bit and 19-bit LNS LMS cores

LNS 32-bit LNS 19-bit
XC2V1000-4 XC2V6000-4 XC2V1000-4 XC2V6000-4

Slice Flip Flops 4,261 41% 3,922 5% 2,931 28% 2,751 4%
4 input LUTs 4,674 45% 4,683 6% 3,197 31% 3,246 4%
Occupied Slices 4,302 84% 4,006 11% 2,857 55% 2,703 7%
Tbufs 1,280 50% 1,280 7% 192 7% 192 1%
Block RAMs 32 80% 32 22% 10 25% 10 6%
MULT18X18s 8 20% 8 5% 8 20% 8 5%
Clock rate 80.013 MHz 80.090 MHz 80.887 MHz 80.038 MHz
Total Power 731 mW 822 mW 509 mW 618 mW

Table 3. Resource utilization of the 32-bit and 19-bit LNS NLMS cores

LNS 32-bit LNS 19-bit
XC2V1000-4 XC2V6000-4 XC2V1000-4 XC2V6000-4

Slice Flip Flops 4,408 43% 4,069 6% 3,026 29% 2,846 4%
4 input LUTs 4,834 47% 4,831 7% 3,301 32% 3,369 4%
Occupied Slices 4,473 87% 4,160 12% 2,973 58% 2,820 8%
Tbufs 1,280 50% 1,280 7% 192 7% 192 1%
Block RAMs 32 80% 32 22% 10 25% 10 6%
MULT18X18s 8 20% 8 5% 8 20% 8 5%
Clock rate 80.051 MHz 80.058 MHz 80.652 MHz 80.483 MHz
Total Power 732 mW 839 mW 512 mW 594 mW

Our cores were developed on a Xilinx XC2V6000-4 (6-million gate, speed
grade 4) FPGA and on a much smaller Xilinx XC2V1000-4 (1-million gate,
speed grade 4) device. Tables 2 and 3 show parameters of developed cores. All
designs can be clocked at a little over 80 MHz. This is very close to the maximum
clock rate of the LNS cores, indicating that our architecture is not the limiting
factor on clock speed. At this clock speed the designs are performing around 295
million logarithmic operations per second which is equivalent to 295 MFLOPS
and can operate on signals at a sampling rate of around 73 kHz.

Both LMS and NLMS 32-bit LNS cores occupy only a small fraction (11% and
12%) of the 6-million gate XC2V6000-4 device. On the 1-million gate XC2V1000-
4, it uses quite large percentage of available resources—in particular, LMS occu-
pies 84% and NLMS 87% of slices; both employ 80% of Block RAMs. For 19-bit
LNS implementations, the figures show that the cores occupy a little bit over a
half of available slices and 25% of Block RAMs. It can clearly be seen that for
all cores there is a potential for implementing other logic on the same chip using
the free resources.

As presented in Section 3, both LMS and NLMS modules use one 2-pipe LNS
addition/subtraction unit and two LNS multiplication units to reduce overall la-
tency of the cores. In order to perform normalization, the NLMS module needs
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a divider. When using the 32-bit LNS divider the NLMS core is only about 4%
bigger than the LMS core. Considering the size of two multiply-add pipelines
which is 1814 slices for LNS and 2188 for floating-point units, one can argue
that there is little difference in slice counts between using either LNS or floating-
point. Floating-point might be more convenient because it does not require Block
RAMs, and there is no need to convert values to LNS. Nevertheless, the advan-
tages are minor because Block RAMs are not usually a limiting resource for LNS
in current FPGAs and the conversions [4] to/from LNS can be done easily.

However, when implementing NLMS, the need for a divider tips the balance
decidedly in the favour of log arithmetic, because the LNS divider is both tiny
and extremely fast. Summing the resources required by two multiply-add pipes
and a divider we find that the floating-point units alone would occupy around
80% (4117 of 5120 slices) of the XC2V1000 device whereas the LNS units use
only 37% (1896 of 5120 slices) of the same chip. These facts clearly demonstrate
the advantages of using logarithmic arithmetic instead of standard floating-point
arithmetic, particularly in applications where division or square root operations
are required, and even for such simple algorithms as (N)LMS.

5 Conclusions and Future Work

This paper describes work-in-progress on using the unique features of LNS
arithmetic to create highly-optimized implementations of adaptive filtering al-
gorithms in FPGAs. We show that although LNS addition is resource expen-
sive, the low resource requirements of LNS multiplication offsets this cost. We
describe implementations of two algorithms: LMS and NLMS. NLMS has signif-
icantly better adaptive properties, but may be expensive to implement because
it requires a divider. We present IP cores for both algorithms that achieve clock
speeds of over 80 MHz on an XC2V1000-4 (1-million gate, speed grade 4) device,
and perform around 295 MFLOPS. Our log implementation of NLMS requires
only slightly more (84% versus 80%) occupied slices than our LMS implementa-
tion, due to the low cost of LNS division unit. The cores can be used to implement
adaptive filters of orders 20 to 1022 with a sampling rate exceeding 70 kHz.

Our future work will concentrate on two areas: implementation of more so-
phisticated algorithms with greater complexity and resource requirements; and
better comparisons with other number representations, such as floating-point.
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Abstract. An implementation of reconfigurable architecture for MIMO
V-BLAST (Vertical Bell Laboratories Layered Space-Time) detection
based on the square root algorithm is proposed in this paper. This re-
configurable square root decoder supports MIMO system with various
number of antennas, different throughputs and different signal constella-
tions. The decoder architecture is based on various number of operators
CORDIC (COordinate Rotation DIgital Computer). The system proto-
type of the decoder reaches 600Mbit/s data rate on an Xilinx Virtex-II
FPGA for a 2 antennas system with a QPSK signal constellation.

1 Introduction

Multiple-Input Multiple-Output (MIMO) is an attractive technology for future
wireless systems because of their huge bandwidth capacity. It is well known that
an extraordinary spectral efficiency can be achieved in MIMO system [1]. The
MIMO technology is a promising technology to increase performance in future
wireless system. For example, it will be adopted in the next phase of the 3GPP
(3rd Generation Partnership Project) standards in order to further increase the
HSDPA (High-Speed Downlink Packet Access) system capacity and enhance the
quality of Internet and multimedia services. The MIMO system is also the can-
didate to answer the high performance expected in 4G broadband wireless for
future mobile services [2]. In order to be used in these wireless standards, future
MIMO systems will need to support multiple air-interfaces and modulation for-
mats. These are the reasons for the recent interest in reconfigurable architectures
to MIMO system.

In various MIMO detection algorithms, the complexity of the optimal ML
(maximum likelihood) detector is too huge to be implemented for a system with
a large number of antennas and a large signal constellation size. The sphere detec-
tor has more complexity than the V-BLAST square root detector [5]. The linear
detector like MMSE (Minimum Mean Squared Error) and ZF (Zero-Forcing) is
poor in BER (bit error rate) performance. Hence the square root detector is an
attractive solution to obtain a high performance with reasonable complexity.
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DSP (Digital Signal Processing) processors and ASIC (Application-Specific
Integrated Circuit) are the traditional architecture solutions for MIMO wireless
system. But DSP processors cannot achieve high performance on throughput in
highly parallel 3G/4G applications. ASIC implementations are the most com-
putationally efficient system, but its implementations are not flexible enough
to the wide diversity of the future systems. FPGAs are widely used in signal
processing because of their reconfigurability and support of parallelism. An im-
plementation of square root algorithm is realized by Z.Guo in [5], which is not
adaptable to different requirements of the future system. We will propose here
a FPGA implementation of the square root algorithm for V-BLAST detection
which is based on various number of operators CORDIC. We will show that
this square root detector is reconfigurable to be adapted to a various number of
antennas, different signal constellations and throughputs.

In this paper we will first overview the MIMO detection techniques in Sec-
tion 2. The square root algorithm is briefly described in section 3. The re-
configurable architecture for square root decoder is detailed in section 4. The
experimental results and performance analysis are provided in Section 5. The
conclusions will be stated in section 6.

2 Overview of MIMO Detection

The multiple antennas system with M transmits antennas and N ≥ M receive
antennas is modeled in baseband by following relation:

r = Hs + v . (1)

In the relation(1), s =[s1,s2,. . . ,sM ]T is the transmitted symbol vector, in which
each component si is independently drawn from a complex constellation. The
total transmit power is normalized to unity. The vector r =[r1,r2,. . . ,rN ]T is the
received symbol vector and v =[v1,v2,. . . ,vN ]T is an independently identically
distributed (i.i.d) complex zero-mean Gaussian noise vector with variance σ2

per dimension. The channel matrix H is considered in a block-fading and rich-
scattering channel model[1]. The elements hij represent complex channel gain
between the j-th transmit antenna and the i-th receive antenna. Each channel
gain is assumed to be i.i.d complex zero-mean Gaussian with unit variance.
The channel matrix is assumed to be perfectly known to the receiver in this
paper.

3 Decoding Algorithm

The V-BLAST square root algorithm is proposed in [4], which successfully avoids
the repeated pseudo-inverse and matrix inverse computations by using unitary
transformations. The computational cost is reduced effectively from O(M4) to
O(M3) without degradation in BER performance, where M is the number of
transmit antennas. The whole algorithm is described in the following steps:
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A) Compute P 1/2 and Qa : for i= 1, 2,. . . ,N:
⎡
⎢⎣

1 H 1×M
i Pi−1

1/2M×M

0M×1 Pi−1
1/2M×M

−eN×1
i QN×M

i−1

⎤
⎥⎦Θi =

⎡
⎣× 0 1×M

× Pi
1/2M×M

× QN×M
i

⎤
⎦ (2)

In this relation, P
1/2
0 = β I , Q0= 0N×M , ei is the i-th unit vector of dimension

N, Θi is any unitary transformation that block lower triangularizes the pre-array
and × is the result ignored. After N steps, we obtain: P 1/2= P

1/2
N and Qα= QN .

B) Determine the optimal ordering and nulling vectors: for i=M, M-1,. . . ,1:
B1)Find the minimum length row of P 1/2 and permute it to be the last (Mth)

row. Permute s accordingly.
B2) Find a unitary Σ to block upper triangularize P 1/2:

Pi
1/2Σi =

[
Pi−1

1/2 ×i−1×1

0 pi

]
(3)

B3)Update Qa to QaΣi, the nulling vector for the i-th signal is given by

wi = piq∗
α,i (4)

where q∗α,i is the i-th column of Qa
∗.

B4)Compute yi= wir, and then the i-th transmitted signal in s is detected as
the closest point in the signal constellation.

B5) Cancel the interferences of the detected signal in the remaining received
signal s:

r = r − si(H )i (5)

B6) Go back to the step B1, but now with P
1/2
i−1 and Qα,i−1 (the first i-1

columns of Qa).

4 Architecture

The architecture of the MIMO square root decoder is illustrated in figure 1. It
consists of 6 processing modules. The values of matrix channel H and messages
r are assumed to have been pre-calculated. The three first modules(M1,M2,M3)
use unitary transformations to compute P 1/2(Step A), Qa(Step A), pi(Step B2)
and q∗a,i(Step B3) by employing various numbers of CORDIC. The following
module(M4) calculates the optimal ordering and nulling vectors wi. Module M5
compute the transmitted symbol vector.The last module(M6) performs interfer-
ences cancellation.

The three unitary transformation modules have the similar architecture, as
shown in figure 2. In these modules, unitary transformations are used instead of
the conventional QR triangular array which employs too high number of proces-
sors [6]. Unitary transformations are performed by a sequence of numerically
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stable complex Givens rotations which is suitable for implementation because
the hardware elementary is based on CORDIC in which only shifters and adder
are involved [3]. It reduces the computational complexity significantly. In the
module M1, the elements of equation (2) are passed by column to operator
CORDIC which performes Givens rotations. Then the products are stocked in
the buffer waiting to be passed to operator CORDIC again. This complets an
iteration. After N iterations, the module output becomes P 1/2 and Qa.

We propose a structure in which the number of CORDIC is adaptable depend-
ing on the throughput required and the number of antennas. A total parallel
structure may lead to a waste of computational capabilities, since the channel
data changes slower than the received symbol data. Therefore several operators
CORDIC are used iteratively to optimize the resources. We take an example,
the calculation of P 1/2(first iteration), to show how to use different number
of operators CORDIC. Ten CORDIC operations required are illusted in fig-
ure 2. The angles(θ1, θ2, φ1, φ2) for the CORDIC are given by the elements of
equation(2).

We compare here two architecture A1(2 parallel CORDIC) and A2(4 parallel
CORDIC). The organization of calculations is showed in the figure 3. Five cycles
are required to complete the computation by A1. But the same computation can
be performed in three cycles by A2. The throughput is increased 1.6 times. In
contrary, A2 takes more surface of FPGA architecture than A1. The detecting
throughput can be improved further by increasing the number of CORDIC. On
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the other hand, if the throughput requirement is not crucial, the number of
CORDIC can be decreased by a single CORDIC. Because there is no place to
explain the internal details of CORDIC, the reader can see the reference [3].
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Fig. 3. Different number of parallel CORDIC for different throughput

The throughput of square root decoder for a MIMO system with M transmit
and N receive antennas is determined as:

Throughput = (Freq × N × b) × (
NCused

NCrequired
) (6)

In the equation(6), Freq represents the clock frequency, b is the bit per sym-
bol, NCused is the number of parallel CORDIC used, NCrequired=f(M,N) is the
number of CORDIC required which depends on the number of transmit and
receive antennas.

The last three modules(M4,M5,M6) are based on PE(Processor Elementary).
Every PE unit consists of a multiplier-accumulation unit, a adder-subtractor and
a buffer. The module can improve the throughput by paralleling several modules.

5 Experimental Results

The decoder for 2 antennas system with QPSK signal constellation is designed
in VHDL, simulated with Modelsim. The decoder is implemented and tested on
a Virtex-II from Xilinx. Table 1 shows synthesis results of different architectures
with various number of CORDIC. It can operate at 148.6 MHz when prototyped
on Virtex-II from Xilinx.

Table 1. Synthesis results of MIMO square root decoder

Target FPGA
Xilinx Virtex Number of slices Max.Freq (MHz) Throughput (Mbits/s)

50 CORDIC 29036 148.6 600
16 CORDIC 14380 148.6 600
8 CORDIC 9936 148.6 300
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The first architecture have a total parallel structure which wastes some op-
erators to compute the same channel matrix. The optimal number of CORDIC
for this application is 16. When the number of CORDIC is reduced to 8, the
throughput is reduced 2 times smaller than the second one. But the number of
slices in FPGA architecture is not reduced proportionally to number of CORDIC,
because the size of controller becomes important, when the number of parallel
operators CORDIC is decreased. The throughput obtained is widely superior to
the requirements of current standards. For instant, the emerging IEEE 802.11n
standard requires a data rate of 150 Mbits/s. In that case the number of operator
CORDIC can be still reduced.

6 Conclusion and Future Work

A reconfigurable MIMO square root decoder has been designed and imple-
mented. It is attractive for the future wireless applications, supporting differ-
ent antenna sizes, different modulation and throughputs. Comparing with the
architecture of GUO, this decoder has less performance on throughput, but it
is more adaptable for the different requirements by using different number of
operators CORDIC. The operator CORDIC can be also used like a common op-
erator for the SDR applications [7]. The architectures of all modules are defined
synthesized individually by Xilinx software tool [8]. Future works will carry on
managing dynamic reconfiguration of this decoder.
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Abstract. This paper presents a hardware architecture for UNIX pass-
word cracking using Hellman’s time-memory trade-off; it is the first
hardware design for a key search machine based on the rainbow vari-
ant proposed by Oechslin. The implementation target is the Berkeley
BEE2 FPGA platform which can run at 400 million password calcula-
tions/second. Our design targets passwords of length 48 bits (out of 56).
This means that with one BEE2 module the precomputation for one salt
takes about 8 days, resulting in a storage of 56 Gigabyte. For the pre-
computation of all salts in one year we would need 92 BEE2 modules.
Recovering an individual password requires a few minutes on a Virtex-4
FPGA.

Keywords: cryptanalysis, hash-functions, time-memory trade-off, ex-
haustive key search, rainbow table, FPGA implementation.

1 Introduction

Symmetric-key cryptography deals with algorithms that use a secret key to pro-
vide confidentiality, identification and data authentication. A basic problem in
symmetric-key cryptology is the computation of preimages or inversion of one-
way functions. For example, a brute-force attack on a block cipher in a known
plaintext attack considers the mapping of the key to the ciphertext, which should
be a one-way function. If no shortcut method is known, and the function has
an n-bit result, there are two straightforward methods: first one can perform an
exhaustive search over an average of 2n−1 values until the target is reached. A
second solution is to precompute and store 2n input and output pairs in a table
(for a random function this will not result in different values – if the input space
is large enough, the coupon collector’s formula tells us that a space of about
n · 2n elements needs to be searched). If one then needs to invert a particular
value, one just looks up the preimage in the table, so inverting requires only a
single table lookup.
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The time-memory trade-off attack invented by Hellman in 1980 [7] proposes
a solution that lies in between the two solutions. The precomputation time is
still on the order of 2n, but the memory complexity is 22n/3 and the inversion
of a single value requires only 22n/3 function evaluations. In [6] Fiat and Naor
propose a more general and rigorous variant at the cost of extra workload and/or
memory. Kusuda and Matsumoto generalize the Hellman method in [8]; they
derive stricter bounds on the success probability and give relationships between
the memory complexity, processing complexity and success probability. Note that
for cryptanalyzing stream ciphers more complex time/memory/data trade-offs
are known – see for example Biryukov and Shamir [4].

Hellman’s basic idea was improved in 1982 by Rivest who suggested to use
distinguished points in order to reduce the number of memory accesses. This
idea was elaborated independently by Borst et al. [5] and Stern [13]. The first
FPGA design of this method was proposed by Quisquater et al. [12] for a 40-bit
DES variant; they also presented cost estimations for the cryptanalysis of a full
DES (with 56 bits). A detailed analysis for this platform was given in [15]. A
more generic full cost analysis of the time-memory trade-off with and without
distinguished points has been provided by Wiener in [16].

At Crypto 2003, Oechslin [10] suggested to use so-called rainbow tables for
precomputations; this method combines the advantage of the distinguished point
approach (reduced number of memory accesses) with the higher success proba-
bility and easier analysis of Hellman’s original method. He has developed further
details in [11].

In this paper we propose an FPGA platform for cryptanalysis of the UNIX
password hashing scheme [9] using the rainbow table approach. The implemen-
tation target is an existing FPGA platform called BEE2 (Berkeley Emulation
Engine 2) [1]. The paper is organized as follows. Section 2 provides the theoret-
ical background and some definitions as well as specifics related to our case. In
Sect. 3 the details of the proposed FPGA implementation are described together
with future improvements. More future work is depicted in Sect. 4 and Sect. 5
concludes the paper.

2 Theoretical Background

In this section we give some definitions that are used in the remainder of the
paper.

2.1 Time-Memory Trade-Off

Let E : {0, 1}n × {0, 1}k −→ {0, 1}n be a block cipher with block length n and
key length k. We will consider DES with n = 64 and k = 56, or rather a variant
of DES. The encryption is denoted as: C = EK(P ) where C, K and P are
respectively ciphertext, key and plaintext. For a fixed and known plaintext P ,
the mapping EK(P ) is a one-way function from the key to the ciphertext. For
a time-memory trade-off two functions are usually defined. The first one is g :
{0, 1}64 −→ {0, 1}56 that maps a ciphertext to a k-bit string, hence we can write:
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g(C) = g(C1, C2, . . . , C64) = (X1, X2, . . . , X56) . (1)

This function is usually called a mask function or a reduction function. There
are many possibilities to define this function; one often proposes to drop 8 bits
and to permute the other 56 ones, which results in more than 2280 choices. Other
options that are more suitable for hardware implementations include bit swaps,
xor functions, etc. We discuss these options in more detail in Sect. 3.1. Second,
we define a function f : {0, 1}56 −→ {0, 1}56 that maps the key space to itself:

f(K) = g(EK(P )) = g(C1, C2, . . . , C64) = g(C), ∀ K ∈ {0, 1}56 . (2)

This construction originates from Hellman [7]; it was generalized by Kusuda
and Matsumoto in [8]. By succession of ciphertexts with keys a chain can be
constructed:

Ki

EKi
(P )−→ Ci

g(Ci)−→ Ki+1 ,

which can be written as a chain of keys

Ki
f−→ Ki+1

f−→ Ki+2 .

In the original algorithm of Hellman m chains of length t are created; one stores
only the first and the last element of each chain in a table. Given a ciphertext C
(with a known plaintext) one can try to find a key that was used to generate C
in the following way. Chains (up to some fixed length t) are searched until a key
that matches the last key of some chain is found. Using the first key, the chain
can be reconstructed and the right key is the one just before C. The typical para-
meter sizes for a k-bit key are t = m = 2k/3. If one uses r = 2k/3 tables, the total
precomputation time is 2k evaluations of f and one needs to store 22k/3 values
of 2k bits. Recovering a single key requires 22k/3 evaluations of f . The success
probability of this method depends on the number of repeated elements in the
chains; repetitions occur due to merging chains and due to chains that enter a
loop. For the typical parameter sizes t = m = r = 2k/3, with a precomputation
complexity of 2k, the success probability is around 0.55 [7].

The approach of distinguished points avoids a table lookup after every func-
tion computation, since an efficient implementation of a lookup in a large table
would be too expensive. A distinguished point is a key that has a property that
is easy to identify (for example the 20 most significant bits are zero); this means
that one only needs to check after each iteration whether or not a value is a
distinguished point. One creates chains starting and ending with a distinguished
point: this also allows to reduce the storage per chain and to check for some
merged chains (but throwing away such chains implies that one needs to in-
crease the precomputation time). However, in the distinguished point variant,
chains are of unequal length and will have a larger probability to merge (reducing
the success probability of the attack).

The rainbow tables approach proposed by Oechslin [10] uses a different func-
tion g in every iteration. More precisely, rainbow chains have a fixed length t
and use t different mask functions inside one chain: g1, . . . , gt. In order to re-
cover a key one first starts in the one but last column (1 application of gt); next
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one starts in the second but last column and one applies gt−1 and gt. In the
final iteration one applies g1 through gt; the total number of iterations is t(t−1)

2 .
This also allows to reduce the memory accesses, but at the same time it reduces
the probability of merging chains; indeed, two chains will only merge if the two
merging points are at the same position in a chain. Because of the reduced merge
probability, rainbow tables can be much larger; typically only a few tables are
needed [11]. The method has been implemented in software (a.o. for Windows
passwords), but we are not aware of any hardware implementations. This article
explores some options for hardware implementations of rainbow chains applied
to the UNIX password system.

2.2 UNIX Password Hashing

Here we consider the application of the time-memory trade-off to the UNIX
password system. In this case, 25 DES operations are performed where the ci-
phertext of one DES is used as the plaintext of the next DES. The plaintext
of the first DES consists of all zeros and the key to all DES functions is the
user password consisting of 8 ASCII characters. The ciphertext of the last DES
block is the hash-value of the password. To increase the security of the UNIX
password system, these 25 DES functions are modified based on a 12-bit salt;
this salt defines an extra permutation in the expansion function in each round.
The salt is a public value that is allocated to the user when she registers to the
system; it is stored together with the hash value. The salt is often derived from
the system clock. The black-box representation of this scheme is shown in Fig. 1.
Assuming password characters consisting of capitals, small letters, numbers and
two special characters “ \” and “.” every character contains only 6 bits of infor-
mation which results in a key space of 48 bits. The password salting results in
212 extra variations, hence the time-memory trade-off precomputation needs to
be repeated for all salts: both the storage and the precomputation time increase
with a factor 4096, but a single password can still be recovered with 248·2/3 = 232

function evaluations. Of course one can also choose to mount the attack for a
subset of salts.

25DES

plaintext

salt

key ciphertext

Fig. 1. Black-box of one UNIX password hashing
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2.3 Bounds and Parameters

We now introduce some notation. Let t be the length of the chains, let m denote
the number of chains in each table and r the number of tables. These parameters
can be varied in order to tune the success rate as the time-memory trade-off is
a probabilistic method. The schematics of one chain and the total structure are
shown in Fig. 2 and Fig. 3. The bounds on the memory M (used to store the
precomputation tables) and the time T (required to find the password starting
from the hash) are as follows:

M = m · r · m0
T = t · r · t0

Here, m0 is the amount of memory required to store each chain i.e. its start
and end point. In our case m0 is 14 bytes. Likewise, t0 is the time in which one
password hash is generated.

g1 g2 gt25DES 25DES 25DES 25DES EPSP

64 zeros

salt

Fig. 2. Schematics of one rainbow chain. The inputs and outputs of one hash function
are depicted in Fig. 1. SP = start point, EP = end point.

The success rate of a single rainbow table can be estimated as follows [10]:

P = 1 −
t∏

i=1

(1 − mi

N
) ,

where
m1 = m, mn+1 = N(1 − e−

mn
N ) .

In Fig. 4 the success rate is shown as a function of the length of the chains t.
It is obvious that the probability grows fast at the beginning with the length of
the chains. After a length of around 102400 (≈ 216.64) the probability is almost
stagnating.

By taking the direct approach from the original paper of Hellman we derived
the following lower bound. By approximating mt2 ≈ N the lower bound can be
estimated to be 0.75, which is similar to the result of Standaert et al. [15]:

P ≥ mt

N

[
1 − mt2

4N
+

(mt2)2

18N
− (mt2)3

96N
+

(mt2)4

600N
− · · ·
]

(3)
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Fig. 3. Schematics and parameters of the complete structure

The success rate for multiple tables can be calculated from

P ≥ 1 − (1 − Pone table)r . (4)

Here we consider only one rainbow table, which can be justified by the result
of Oechslin. In his work the best cryptanalysis results were achieved using only
five tables.

3 Hardware Implementation Options and Results

We now elaborate on the implementation of the precomputation in hardware.
We describe the FPGA design and give performance estimates.

3.1 Our FPGA Solution

The first crucial choice is related to the mask functions. The mask function is
actually a reduction function that maps a ciphertext to a key. There exist various
options among which we mention:

– permutations i.e. S-boxes
– xor functions
– bit swaps

As we are interested in hardware implementations, it is important to choose
mask functions with a low hardware complexity. From this point of view, all
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Fig. 4. Success rate as a function of the length of the chains

three suggested options are suitable. However, for rainbow tables a chain contains
many different mask functions which implies that the overhead in control logic
should also be minimized. With respect to this, xor-ing with a register containing
a variable value is the best solution. Moreover, in our case permutations may
not even offer enough choices for different masks. Since the complexity of our
key space is 248 we chose to throw away the last 16 bits and to xor with a 48-bit
counter. In this way, we can use just one generic mask function which is varied by
different states of the counter resulting in a total of 248 different mask functions.
Finally, the 48-bit output of the xor function passes through some logic gates to
obtain a 56-bit result which is a valid 56-bit key (containing only capitals, small
letters, numbers and the characters “ \” and “.”).

Fig. 5 depicts the architecture of our design. To construct a chain, an alternat-
ing sequence of block cipher computations and mask functions is applied. This
is done using a feedback loop.

The generation of start points is implemented in hardware in order to con-
tribute to a more efficient precomputation. More precisely, loading start points
of chains from outside of the FPGA would create an overhead in communica-
tion time. Namely, because of pipelining, the design has to deal with many start
points at the same time. For this reason, we implemented a counter to generate
the start points. The value of the counter in the mask functions, padded with 8
zeros, can be re-used for this purpose.

Next a buffer design needs to be developed to take into account the variable
output rate of the rainbow algorithm. The start point-end point pairs are stored
in a hash table with the end point as the index. After sorting the table entries,
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Fig. 5. Pipelined architecture for performing the rainbow chains

the on-line part has to be performed. It looks up the values output by the FPGA
until the targeted key is found. Recovering an individual password in a rainbow
chain takes t(t−1)

2 function evaluations. This part can be done in software or,
to make it faster, on an FPGA. Using a XC4VLX200 Virtex-4, a non-pipelined
version of the Unix password system can find the key in less than an hour. A
pipelined key search on this FPGA can be done in a few minutes.

There are two cases when finding an end point does not lead to the correct
key; these are usually referred to as false alarms. First, the key may be a part
of a chain with the same end point but which is not in the table. The second
false alarm situation occurs when a key is in a chain which merges with another
chain in the table. For rainbow chains, the merging will occur only if the collision
happens at the same position in two chains. For chains of length t, the probability
that a collision is a merge is only 1

t . As noted in [10], it is possible to generate
tables without any merging. However, this solves only some false alarm situations
and it remains a problem to create tables that cover the key space as much as
possible.

3.2 Hardware Precomputation Platform and Results

We chose an existing platform to perform the precomputation part: the Berkeley
Emulation Engine 2 (BEE2) [1]. One BEE2 module consists of 5 Xilinx Virtex-
2Pro70 FPGAs of which 4 can be used to implement digital circuits and one
to take care of global routing and control logic. The floorplan of one module
is depicted in Fig. 6. The Virtex-2Pro70 is a high performance FPGA which
comes at a cost of approximately US$ 1500. The BEE2 platform is designed
for high-speed applications with a communication bandwidth up to 360 Gbit/s.
Every module contains a 20 GB DDR-RAM and a 10 Gbit/s ethernet connector.
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However, our application only requires a 14-byte value to be written in the RAM
after every 216 hash operations, which comes down to a write speed of 85 449
bytes/s for one BEE2 module. This is achievable by a hard disk supplemented
with 500 MB or 1 GB of RAM. Furthermore, for recovering one key, we need
approximately 232 7-byte table lookups in a 56 GB memory. Assuming it takes
2 minutes to perform the on-line computations, this comes down to 36 million
read operations per second at a bandwidth to the memory of 250 MB/s. This
means that for the on-line part it is also not required to have a bandwidth of
360 Gbit/s nor a 20 GB RAM. Hence, a dedicated design with a slower memory
access rate could reduce the full cost.

Fig. 6. Floorplan of one BEE2 module

Synthesis results show that one precomputation unit uses almost 200% of the
slices of a Virtex-2Pro70 (33 088 slices). That is why we use one BEE2 module
to implement two precomputation units. Each pipelined architecture in Fig. 5
can compute 200 million password hashes per second at a frequency of 200 MHz.
Targeting 48-bit passwords using one BEE2 module, this would mean a precom-
putation time of 8 days. The upper bound on the storage for one salt is 232×
14 Bytes, resulting in 56 GB of memory. To make the precomputation for all
salts in one year, we need 92 BEE2 modules. Figures 7 and 8 depict the precom-
putation time as a function of the number of BEE2 modules used in parallel.
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Fig. 7. Precomputation time for one salt as a function of the number of BEE2 modules

Fig. 8. Precomputation time for half of the salts and for all salts as a function of the
number of BEE2 modules

Table 1 compares our results with other hardware as well as software solutions.
The only known hardware solution is [12] which attacked one 40-bit DES while
our target was 25 56-bit DES blocks. The other are software options dedicated
to cracking 56-bit DES.
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Table 1. Comparison of implementation results for symmetric key cryptanalysis

platform algorithm speed (enc/s)
[2] 64-bit Alpha computer 56-bit DES 2 M
[12] Virtex1000 40-bit DES 66 M
[10] P4, 1.5 GHz, 500 MB RAM 56-bit DES 0.7 M

this work BEE2 25 x 56-bit modified DES 400 M

4 Future Work

The results described in this paper can be further optimized by considering the
work of Biryukov et al. [3], in which time-memory-data trade-off attacks show
an improvement of a factor 2 to 3.

Another standard for computing UNIX password hashes is based on the MD5
algorithm [14]. The feasibility of attacking these kinds of UNIX password systems
should be investigated.

5 Conclusions

In this paper we presented an FPGA architecture for cracking UNIX passwords
using the rainbow tables approach from Oechslin. The attack targets passwords
consisting of capitals, small letters, numbers and a few special characters, i.e.
48-bit passwords. The implementation platform consists of BEE2 modules devel-
oped at UC Berkeley. We give the implementation results for one BEE2 module
precomputing the rainbow tables for one salt. Furthermore, we estimate the
number of modules needed for the precomputation of all salts in one year.
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Abstract. This paper reports on the security of cryptographic algo-
rithms implemented on FPGAs against power analysis attacks. We first
present some improved experiments against these reconfigurable devices,
due to an improved measurement process. Although it is usually believed
that FPGAs are noisy targets for such attacks, it is shown that simple
power consumption models can nearly perfectly correlate with actual
measurements. Then, we evaluate how these correlation values depend
on the resources used in the FPGAs. Finally, we investigate the possibil-
ity to counteract these attacks by using random pre-charges in the de-
vices and determine how this technique allows a designer to increase the
security of an implementation. These results confirm that side-channel
attacks present a serious threat for most microelectronic devices, includ-
ing FPGAs. To conclude, we discuss the security vs. efficiency tradeoffs.

1 Introduction

Hardware designs are usually evaluated within an area-time implementation
space. However, in the context of cryptographic implementations, the efficiency
is not the only metric by which one can measure an implementation’s quality.
In particular, the physical security of microelectronic circuits has recently at-
tracted a lot of attention. While originally applied to small devices like smart
cards, certain attacks have recently been shown quite efficient to defeat FPGA
implementations as well (e.g. [10,14]). As an illustration, in this paper, we con-
sider the resistance of FPGA implementations against power analysis attacks
and update certain assumptions on their actual security.

In these attacks, an adversary uses a hypothetical model of a target device
in order to predict its power consumption. The predictions are then compared
to the real, measured power consumption in order to recover secret information.
Therefore, the better a power consumption model can correlate with actual mea-
surements, the more efficient the resulting attack is. In this context, previously
published results against FPGA devices suggested that these are challenging
components to target with power analysis. Assumed reasons for this notably
were (1) the difficulty of obtaining good power consumption measurements for
FPGAs, (2) the possibility to perform parallel computing within these devices.
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In this paper, we first suggest that, as far as the quality of the measurements
is concerned, FPGAs do not significantly differ from small devices like smart
cards. In particular, even very simple power consumption models based on the
prediction of the number of bit transitions within a device can nearly perfectly
correlate with actual measurements, if some simple signal processing is applied.
In practice, we perform and evaluate some improved experimental correlation
attacks against FPGA implementations of cryptographic algorithms. We also
discuss how these attacks depend on the resources used in the devices.

In a second part of the paper, we investigate the possibility to counteract
these attacks by using random pre-charges in the FPGAs and evaluate how this
technique allows to increase the security of an implementation. In particular,
as already observed in the context of smart cards, such a proposal makes it
impossible to predict bit transitions. This is because one every two consecutive
values in a device is then random and unknown. As a consequence, targeting such
designs requires the use of more complex power consumption models (e.g. based
on distinguishing 0 → 1 from 1 → 0 bit transitions), for which the correlations
obtained are lower. We evaluate these correlation values in the paper.

The rest of the paper is structured as follows. Section 2 describes the principles
of power analysis attacks. Section 3 evaluates the correlation obtained between
a simple power consumption model based on the switching activity within an
FPGA and actual measurements. Section 4 illustrates how these correlations
depend on the resources used by a target design. Section 5 performs the same
experiments if random prcharges are used within the FPGA. Section 6 discusses
the resulting security vs. efficiency tradeoff and our conclusions are in Section 7.

2 Correlation Power Analysis Attacks

Power analysis attacks [6] generally require a hypothetical model of the device
under attack to predict its power consumption. For example, FPGAs are usually
made of CMOS gates, for which it is reasonable to assume that the main com-
ponent of the power consumption is due to the switching activity. For a single
CMOS gate, we can express it as follows [12]:

PS = CLV 2
DDP0→1f (1)

where CL is the gate load capacitance, VDD the supply voltage, P0→1 the prob-
ability of a 0 → 1 output transition and f the clock frequency. Equation (1)
specifies that the power consumption of CMOS circuits is data-dependent. An
attacker may consequently estimate a device power consumption at time t by
the number of bit transitions inside the device at this time. Based on this simple
observation, power analysis attacks have been applied to numerous algorithms
and devices, including smart cards, ASICs and FPGAs. In practice, the use of
secret key information in cryptographic designs only allows us to predict a part
of the bit transitions, but it is sufficient to correlate with actual measurements
of the power consumption.
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We illustrate the attack principle (e.g. see [2]) with the simple encryption
network of Figure 1, which contains the same basic elements as most present
block ciphers e.g. the DES [7] and AES Rijndael [8]. That is, the plaintext is
XORed with a secret key, then goes through a layer of relatively small substitu-
tion boxes and is finally sent to a larger permutation (e.g. a linear diffusion layer
for the AES Rijndael). The same operations are iterated a number of times. For
the purposes of this paper, it is not necessary to know more details on these
algorithms. The attack proceeds as follows.

Target
S-box

S-box S-box S-box S-box S-box

Permutation

S-box S-box S-box S-box S-box S-box

Permutation

K0[0..23]

K1[0..23]

Fig. 1. A simple encryption network

Let the adversary target the 4 key bits entering the left S-box of Figure 1,
denoted as K0[0..3]. Then, for N different plaintexts, he first predicts the number
of transitions at the S-box output, for every possible value of K0[0..3]. The result
of this prediction is a N × 24 selected prediction matrix P, containing numbers
between 0 and 4. For simulation purposes, it is also interesting to produce the
global prediction matrix G that contains the number of bit transitions inside
the whole design. This can of course not be computed by an actual adversary,
but can be done if the secret key is known (i.e. when evaluating the attacks).

In the second part of the attack, the adversary let the circuit encrypt the
same N plaintexts with a fixed key (the same as during the predictions if G
was computed, a secret one in case of real attacks) and he measures the power
consumption of the device while the chip is operating the targeted operation.
This results in a N × 1 measurement vector M.

Finally, the attacker computes the correlation between the measurement vec-
tor and all the columns of the selected prediction matrix (corresponding to all
the possible key guesses). If the attack is successful, it is expected that only
one value, corresponding to the correct key bits, leads to a high correlation. An
efficient way to compute the correlation is to use the Pearson coefficient that
can be expressed as follows:

C(M,P) =
μ(M.P) − μ(M).μ(P)√

σ2(M).σ2(P)
(2)
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In this expression, μ(M) denotes the mean of the set of measurements M and
σ2(M) its variance. For a more detailed explanation of the power analysis attack
principles, we refer to previous publications, e.g. [2,14]. We note that different
statistical tools could be considered to mount power analysis attacks and the
use of the correlation coefficient is not optimal with this respect. For example,
maximum likelihood techniques [4] may yield better results. However, with the
simple power consumption models considered here, correlation attacks provide
good results and are extremely easy to manipulate (e.g. they do not require any
estimation of the noise in the target devices).

Finally, let us recall two simple formulas, proven in [15]. Firstly, the correlation
coefficient we are interested in during an attack is the one between the selected
predictions and the measurements. It can be rewritten as:

C(P,M) = C(P,G) × C(G,M) (3)

In this equation, the coefficient C(G,M) only relates to the quality of the mea-
surement and for example, is independent of the FPGA design considered. On
the contrary, the coefficient C(P,G) is specifically related to the implementation
under attack and depends on the number of bit transitions that can actually be
predicted. In our previous example, we did only predict the transitions of one
target S-box, out of the 12 S-boxes in Figure 1. Secondly, the number of gen-
erated plaintexts N required to have a successful correlation attack is worth:

N = c × 1
C(P,M)2

, (4)

where c is a small constant value. In the following sections, we would like to
answer the question: “How precisely can we correlate our simple power con-
sumption models with actual measurements of the power consumption?”

3 Correlations Measurements and Consequences

Target Designs: For all our experiments, we used the four target designs repre-
sented in Figure 2. They are again made of XOR operations, substitution boxes
and diffusion layers. The three first designs loop on one iteration while the fourth
one loops on two iterations. These designs also differ by their various number
of pipeline stages. For simplicity purposes, we forced all the operations to be
performed by one single layer of look up tables (LUTs) in the FPGA (e.g. we
used the 4-bit substitution boxes of the Khazad block cipher [1] that perfectly
fit to these constraints). Also, the potential leaking points, corresponding to the
points in the design for which the transitions consume power, are denoted as
a,b,c and d (and further letters for the fourth design). All the architectures are
128-bit wide. When the values a,b,c,d,... are stored in registers, and according
to the terminology introduced in [14], the dark gray registers are full (meaning
that their bit transitions are strongly correlated to the key values) while the
light gray ones are empty (meaning the opposite). Also, the small black boxes
suggest that a part of the register can actually be predicted by an adversary,
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because it does only depend on a limited number of key bits. On the opposite,
registers without black boxes cannot be predicted. This is typically the case of
the registers after the diffusion layer.
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Fig. 2. Target designs

Our measurements were performed on a Xilinx Spartan-2 device. Although
the building of a good measurement setup is an important step in side-channel
attacks, the technical description of such a setup is out of the scope of this work.
We simply note that our approach was to use a dedicated board in order to isolate
the FPGA from any other component, representing potential noise sources in the
observations. It is important to have in mind that the following results highly
depend on our measurement capabilities and the context considered. For exam-
ple, targeting an FPGA on a prototyping board including various processors,
memories, ... would be more challenging. On the other hand, the measurement
process itself could still be improved and is under progress. Again, the objective
of this paper is to suggest that basic methods can already yield good results.

Our initial strategy to evaluate the correlation coefficient C(G,M) was the
following. We considered the third design of Figure 2, with four pipeline stages.
Then, we assumed that the leaking points a,b,c,d (all of them being stored in
registers) contributed for a similar part of the power consumption and predicted
the bit transitions in these registers. On a power trace like the one in the left
part of Figure 3, we finally observed the peaks occurring at the rising edges of
the clock signal and evaluated how the values of these peaks were correlated
with the total number of bit transitions predicted.

Two simple signal processing steps were applied. First, the spectrum of the
power traces was observed (partially represented in Figure 3) and we identified
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Fig. 3. A single power trace: time and frequency domains

a number of parasitic signals that were filtered with their harmonics. Second, we
performed a small averaging on the filtered traces.

The correlations between our predictions and a single FPGA power trace,
filtered or not, are represented in the left part of Figure 4, for different numbers
of generated plaintexts. The correlations after averaging are in the right part of
the figure. Roughly, we observe that a single trace allows to reach a correlation
of up to 75% while a small averaging increases this value behind 90%. As a
comparison, previously published results, e.g. [14] suggested correlation values
of around 45%, roughly corresponding to our single non-filtered trace experiment.
Therefore, referring to Equation 4, the number of required plaintexts to perform
a successful attack would be divided by 4.

Fig. 4. Correlation between our predictions and actual power consumption measure-
ments for the design (3), without random pre-charges: single trace and averaged traces

4 Resources Dependencies

In the previous experiment, we correlated the total number of bit transitions in
the device registers with actual power consumption measurements. As already
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mentioned, this involves the important assumption that all the leaking points
contribute identically to the power consumption. Obviously, this may not be
formally correct and the aim of this section is to evaluate how relevant is this
assumption for practical applications. In particular, we would like to answer two
questions: (1) do the use of registers in a design influence its power consumption?
(2) how do the various FPGA resources contribute to the power consumption?

In order to answer the first question, we implemented the designs (1),(2) and
(3) of Figure 2. Since they only differ in their number of pipeline stages, they
actually require (roughly) the same number of LUTs and slices. The only differ-
ence is in their number of flip flops. Then, we measured the power consumption
of these three architectures when feeded with the same inputs. We could not
distinguish any significant difference between the power consumption patterns.
The assumed reason for this observation is that the overall power consumed by
an FPGA mainly depends on the amount of resources (e.g. the slices) used by a
design, that is roughly the same in the three experiments.

To answer the second question, we used again the designs (1), (2) and (3) and
evaluated separately the correlations between their power consumption measure-
ments and the bit transitions for the leaking points a,b,c,d. It is illustrated for
the design (1) in the left part of Figure 5 where we can clearly observe that the
leaking points do not correlate the same way and therefore do not contribute for
equal parts to the global power consumption. Then, to obtain better results, we
used a weighted sum of the predictions of the different leaking points. It is rep-
resented in the right part of the figure where it is compared with a non-weighted
sum (as we used in the previous section).

Fig. 5. Resource dependent correlations without random pre-charges

These results confirm the experiments performed in [13] where it is shown
that the dynamic power consumption in FPGAs actually depends on the ef-
fective capacitances of the resources used. For example, it is shown that the
effective capacitances of signals within a slice are much lower than the ones of
long connection wires. This could explain that the correlations with certain bit
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transitions appear to be much higher than others. It is also interesting to ob-
serve that filtering the trace can again yield an even better correlation. This
could be easily understood since filtering reduces the noise due to parasitic fre-
quencies within the signal while the use of weighted predictions increases the
quality of our leakage model. That is, both techniques relate to different noise
sources.

From a practical point of view, it is important to have in mind that the use
of weighted predictions involves a different attack context, usually denoted as
template attacks [4]. Indeed, in the most general setting, an actual adversary will
not be able to determine precisely which transitions in a design contribute the
most to the power consumption. Therefore, the naive strategy (without attribut-
ing weights to the bit transitions) is the only one applicable. On the opposite,
if the adversary can use a programmable device to build a better power con-
sumption model (i.e. in the template attack context), improved strategies as
the one presented in this section are applicable. Note that, in our example, we
only used four different weights (i.e. for the a,b,c,d leaking points), although it
would be possible to further improve the process by considering more different
weights.

To further analyze these observations, we use the following lemma, also applied
in [15]: the correlation coefficient between the sum of n arbitrary independent
identically distributed random variables and the sum of the first m < n of these
equals

√
m/n. If we assume that various bit transitions in a design contribute

additively to the global power consumption, it means that the four correlations
in the left part of Figure 5 respectively correspond to 0.22 � 4%, 0.252 � 6%,
0.452 � 20% and 0.52 � 25% of the total power consumption. That is a sum
of 55%. Such a prediction should allow a correlation of

√
0.55 � 74% which is

close to the one observed in the right part of the figure, for the (non-filtered)
weighted sum experiment. This re-confirms that a significant part of the power
consumption is not predicted, which may be caused by various noise sources
and/or parasitic signals. Those could be removed by filtering (as the right part
of Figure 5 suggests) or averaging as the previous section underlined.

To conclude this section, we note that although the knowledge of a design’s
details may allow to improve correlation analysis attacks, a basic side-channel
adversary will probably be limited to simple strategies, e.g. assuming all the bit
transitions to contribute equally to the power consumption. It must be observed
that, if the leaking points targeted by an adversary are connected to low effective
capacitances within a FPGA, the actual attack may become more challenging.
Another remark is that, due to their high diffusion properties, encryption algo-
rithms usually require the use of long connection wires, which probably increases
their power consumption compared to other designs. Finally, we reproduced the
attack against an FPGA implementation of the AES Rijndael performed in [14]
with the improved measurement process corresponding to the right part of Fig-
ure 4. It is represented in the left part of Figure 6 where we observe that the
attack is successful after 300 generated plaintexts. Compared with the results in
[14], it confirms our expectations that this number is roughly divided by 4.
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Fig. 6. An attack against the AES Rijndael, 0 → 1 and 1 → 0 bit transition differences

5 Random Pre-charges and Consequences

A common countermeasure used in the smart card industry to counteract side-
channel analysis is to pre-charge the buses with random values. Such a solution
can be straightforwardly transposed in the context of FPGA implementations
at the cost of a reduction of the throughput. Indeed, if one every two inputs
of the encryption design is a random number generated within the FPGA1, an
adversary will not be able to predict the transitions within the implementation
anymore (of course, the resulting ciphertext should not be outputted from the
device). As suggested in [11], the only solution is then to distinguish 0 → 1 from
1 → 0 bit transitions through the leakages. In the latter case, one can predict
the number of 0’s and 1’s in the device at some time, rather than predicting the
number of bit transitions at this time. That is, we use a model based on the
Hamming weight of the data manipulated rather than on its Hamming distance.
To confirm that such a model is applicable, we performed a preliminary exper-
iment, pictured on the right part of Figure 6. We observed the power traces of
large bit-vectors switching between “all zeroes” or “all ones” patterns. Typically,
this experiment suggested power consumption differences of about 10%.

The correlations between Hamming weight-based predictions and a single
FPGA power trace (using the design (3) of Figure 2, as in Section 3), filtered or
not, are represented in the left part of Figure 7, for different numbers of generated
plaintexts. The correlations after averaging are in the right part of the figure.
Roughly, we observe that a single trace allows to reach a correlation of up to 15%
while a small averaging increases this value behind 20%. One can conclude that,
although the correlations obtained are significantly lower (due to a much higher
model matching noise), they are still sufficient to perform the attacks. This is
specially true when considering that the measurement process is still likely to
be improved and that other side-channel information could be used to increase
these correlations, e.g. the electromagnetic radiation. On the other hand, if com-
1 E.g. [5] could be used to produce the initial seeds of a pseudo-random number

generator which will consequently generate the pre-charges.
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bined with other countermeasures, such random pre-charges may increase the
difficulty of performing the attacks at a relatively low implementation cost.

Let us finally remark that the differences between 0 → 1 and 1 → 0 bit transi-
tions could also be used to slightly improve our power consumption model of the
previous sections, again using different weights for these different transitions.

Fig. 7. Correlation between our predictions and actual power consumption measure-
ments, with random pre-charges: single trace and averaged traces

6 Security vs. Efficiency Tradeoffs

The previous considerations can be summarized in order to easily determine the
number of plaintexts required to have a successful attack [15]:

N = c × 1
C(P,G)2 × C(G,M)2

(5)

In this expression:

1. C (G,M) is the expected correlation obtained between the power consump-
tion model and the actual measurements (investigated in this paper). Our
results suggest that reasonable values for this parameter are:
– 0.50 < C (G,M) < 0.95 if no random pre-charges are used (we observed

values in this range). The better the correlation is, the more efficient the
resulting attack is.

– 0.10 < C (G,M) < 0.50 if random pre-charges are used. Our results
suggest no more than 0.25 but could possibly be improved. Therefore, a
small security margin is reasonable.

2. C (P,G) relates to the number of bits for which the power consumption can
be predicted in the attack. If npred is this number of predictable bits and ntot

is the total number of bits in the design, we roughly2 have C (P,G)=
√

npred

ntot
.

2 More precisely, if npf is the number of predictable and full bits, npe the number of
predictable and empty bits and nu the number of unpredictable bits, with ntot =
npf + npe + nu, the correlation we are interested in is npf

ntot−npe
= npf

npf+nu
.
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3. c is a small constant value depending on the number of key bits targeted dur-
ing the attack. For example, it could be estimated once for 8-bit substitution
boxes (like the ones of the AES Rijndael) as follows. Knowing that:
– the attack of Figure 6 is using C (G,M)� 0.9,

– the ratio of predictable registers (from [14]) is worth
√

48
1536 � 0.18,

– the attack of Figure 6 is successful after 300 plaintexts,

we find that a reasonable value (including a small security margin) is c � 10.

From Equation 5, it is now extremely simple to evaluate the security of our dif-
ferent implementations in Figure 2. For example, let us consider a correlation
attack against implementation (3), without random pre-charges. First, we as-
sume a reasonable value for C (G,M)� 0.8. Then, we know that we have a total
of 4 × 128 = 512 bits in the design, among which 3 × 8 = 24 are predictable.

This yields C (P,G)=
√

24
512 . Finally, we find: N � 333. Now, let us consider the

fourth design for which the total number of bits is 8 × 128 = 1024 and we still
have npred = 32. It yields N � 666. If we additionally consider random pre-
charges in the same fourth design, we could have C (G,M)� 0.25 (at the cost
of a throughput reduction) and therefore N � 6882. That is, any possible sim-
ilar hardware architecture could be analyzed. As already frequently discussed,
we observe that the attacks efficiencies depend on the implementation size and
therefore involve a security vs. efficiency tradeoff. Note that in addition to the
use of random pre-charges, various combinations of repetition codes (e.g. sending
one true plaintexts for x random ones, in variable orders to the encryption de-
vice) could be considered. Also, as suggested in [9], such countermeasures could
be particularly interesting in the context of feedback implementations, where
pipelining cannot be used for increasing the performances, but possibly for fault
detection or improved side-channel resistance.

We finally mention that in all our experiments, we only considered the peak
values of the power traces occurring at the rising edges of the clock. It is reason-
able (and verified in our experiments) to assume that these values give a good
image of the power consumption because of the inherently synchronous behavior
of RAM-based FPGAs. However, this could not be the case for other devices.

7 Conclusion

The correlation between the power consumption measurements of an isolated
FPGA implementation of a cryptographic algorithm and a simple prediction
based on the number of bit transitions within the devices can be up to 90%. Using
random pre-charges in the FPGA allows to decrease these correlation values (our
experiments suggest 25%) but is not sufficient to counteract the attacks. We
provide simple techniques for estimating the number of measurements required
to defeat one particular implementation. The latter estimations suggest that
most FPGA implementations of symmetric-key block ciphers can be defeated in
a low (e.g. a few hundred) number of power traces.
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Abstract. This paper presents a reconfigurable hardware architecture
for Public-key cryptosystems. By changing the connections of coarse
grain Carry-Save Adders (CSAs), the datapath provides a high perfor-
mance for both RSA and Elliptic Curve Cryptography (ECC). In addi-
tion, we introduce another reconfigurability for the flip-flops in order to
make the best of hardware resources. The results of FPGA implemen-
tation show that better performance is obtained for ECC on the same
hardware platform.

Keywords:Public-Key Cryptography (PKC), RSA,Elliptic Curve Cryp-
tography (ECC), FPGA implementation, Reconfigurable architecture.

1 Introduction

Diffie and Hellman introduced the idea of public-key cryptography [4] in the
mid 70’s. They showed that one can eliminate the need for prior agreement of
a key in order to exchange some confidential data. Public-key cryptosystems
also enable digital signatures. The best-known and most commonly used public-
key cryptosystems are RSA and Elliptic Curve Cryptography (ECC). The RSA
public-key cryptosystem is named after its inventors Rivest, Shamir and Adel-
man [11]. ECC, which was proposed in the mid 80’s by Miller [9] and Koblitz [5],
is based on a different algebraic structure. In the case of ECC, the group used
is the group of points on an elliptic curve. It is important to point out that
ECC offer equivalent security as RSA for much smaller key sizes. Other benefits
include higher speed, lower power consumption and smaller certificates which
is especially useful in constrained environments (smart cards, mobile phones,
PDAs, etc.).

The security of the RSA cryptosystem is based on the difficulty of the RSA
problem. It is still the most popular cryptosystem, especially for high-end de-
vices that are typically used in e-commerce and Virtual Private Network (VPN)
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servers. RSA, still the most popular public key cryptosystem, has at its root the
modular exponentiation operation. Modular exponentiation consists of repeated
modular multiplications, which is also the basic operation for ECC.

Our contribution deals with an FPGA implementation of RSA and ECC over
a field of a prime characteristic. We used a reconfigurable datapath to achieve
arbitrary precision in bits, hence easily bridging the gap between the bit-lengths
for ECC from 160 bits to 2,048 bit long moduli for RSA. We use modular ex-
ponentiation based on Montgomery’s method without any modular reduction
which is also beneficial for side-channel attacks.

The results show that the proposed reconfigurable datapath is indeed a suitable
solution for high-performance public-key cryptosystems such as RSA and ECC.
Comparing the two with the same hardware resources and with corresponding
bit-lengths that provide the similar security, we found that ECC-256p allows a
better performance than RSA-2048. This research is of interest because due to a
constant progress in cryptographyand security applications an alternative solution
for public-key services such as signatures, key-distribution etc. is needed.

This paper is organized as follows. Sect. 2 lists some relevant previous work.
In Sect. 3 the details of our architecture are given. The main contribution of our
work i.e. the reconfigurable datapath is explained in Sect. 4. The details of two
cryptosystems that are implemented and the results are given in Sect. 5. Sect. 6
concludes the paper.

2 Related Work

This section reviews some of the most relevant previous work in hardware im-
plementations for RSA and ECC. To consider both RSA and ECC on the same
platform has only recently became more popular, since ECC have proven to be
a mature technology. Some of the work is done on FPGAs and only very few
implementations are presenting an ASIC implementation of ECC in the field of
prime characteristic.

More recent work on hardware implementation of RSA includes the work by
McIvor et al. [7]. They use Carry Save Adders (CSAs) to perform the large word
length additions required for MMM. The obtained performance for one 1024 bit
RSA decryption on the Xilinx Virtex2 board was 2.63 msec. The work of Crowe
et al. [3] also proposed a unique architecture for RSA and ECC. A hardware
optimized version of MMM is used for modular multiplication. The so-called
dual processor could operate in parallel for ECC or in a pipelined series for RSA.

The contribution presented in [1] is combining a systolic array architecture
with a Montgomery based RSA implementation, achieving the notion of scala-
bility as introduced originally in the work by Tenca and Koç [12]. The optimal
bound for Montgomery’s parameter R is achieved which, with some savings in
hardware, omits completely all reduction steps that are presumed to be vulnera-
ble to side-channel attacks. By using the optimal scheduling for the architecture
the authors have obtained a substantial speed-up for ECC when compared with
RSA implementation on the same platform.
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3 Modular Arithmetic Logic Unit

3.1 Datapath of the MALU

The proposed architecture is a Montgomery modular multiplier with digit-serial
multiplications (Algorithm 1). Four-to-two (4-2) CSAs (Fig.1-a) are used in the
hardware implementation because they are considered as one of the most optimal
solutions for a multi-operand addition including Algorithm 1.
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Fig. 1. Configuration of the MALU with 4-2 CSAs

The cell, a column of the datapath of the MALU uses d sets of 4-2 CSAs
(Fig.1-b), i.e., the inputs and outputs of the cell are presented in 2-bit CS-form
during the operation. Therefore, the cell needs 2d sets of FAs. The critical path
of the datapath is estimated with the critical path delay of the cell as follows.

T4−2CSAs = 2dTFA . (1)
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Here, we assumed that the delay for the sum and carry calculations are the same.
The propagation of si,j goes through d sets of the cell and uses two FAs in every
cell. The right-most cell, cell(i,0) provides mi vector for the rest of cells. As
expressed in Eq.(2), the path for generating a bit of mi only consists of 3-input
XOR in the right-most cell.

mi[0] = vsi,0 ⊕ vci,0 ⊕ xi[0]y0

mi[1] = si,0[1] ⊕ c0next[0] ⊕ xi[1]y0

...
mi[d − 1] = si,0[d − 1] ⊕ c0next[d − 1] ⊕ xi[d − 1]y0 .

(2)

In the worst combination of the paths through the logic generating mi, it takes:

dTmi + dTFA . (3)

This path delay is assumed to be equivalent to or shorter than T4−2CSAs.
As can been seen from the hardware configuration and the delay calculations,

the datapath of the MALU has an area and delay that can be adapted with
the size of d. In this way the propagation can be tuned to the speed of the
system. The proposed array is flexible regarding the size of d: it can be decided
by exploring the best combination of performance and cost.

3.2 Functionality of the MALU

Before explaining the general case, the main functionality of the MALU is ex-
plained with the case that d = 1. In this configuration, each cell is composed of
one 4-2 CSA (Fig1-a). The 4-2 CSA sums up the four-bit inputs xy, mn, s and c
and outputs two bits in the redundant CS-form whose value is 2(cnext) + snext

where s and c are the virtual sum and carries. The bit multiplications xy and
mn are main inputs for computing the bit level of Montgomery multiplication
in Algorithm 1, i.e. (T + xy + mn)/2.

Simply thinking, a multiplication can be computed with (k + α)2 times 4-2
CSA operations if the multiplicand and multiplier have (k + α) bit. However,
considering that there are no carry propagations in the j-direction shown on
Fig.1, it is natural to allocate (k + α) sets of cells in the j-direction to take
the speed merit. This CSA array is defined as the minimal configuration of
our proposed MALU. The connection of the CSA arrays in the i-direction are
determined by the bit weights of the CSA’s outputs (numbers in parenthesis in
Fig.1-a,b) and the division of the bit-level Montgomery algorithm (1-bit right-
shift). The connection is latched with (2k + 2α − 1) sets of F/Fs for virtual
carries.

The explanation of the MALU for a general d is given as follows. As illus-
trated in Fig.1-c, the introduced MALU with 4-2 CSAs has four types of input
vectors, X = (xg · · · x1x0)2d , Y = (yk+1 · · · y1y0)2, N = (nk−1 · · ·n1n0)2, and
S = (sh,k+α−1 · · · s1,k+α−1s0,k+α−1)2d where g = �(k + 1)/d� and h = �k/d�.
Here, X is the multiplier, Y is the multiplicands, and N is the modulus. The
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Algorithm 1. Algorithm for d-digit serial Montgomery Modular Multiplication
over GF(p) without final subtraction
Require: N = (nk−1 · · · n1n0)2, X = (xk · · · x1x0)2, Y = (yk · · · y1y0)2

with x, y ∈ [0, 2N − 1], R = 2k+2, gcd(N, 2) = 1
Ensure: T = XY R−1 mod 2N

1. T ← 0
2. for i from 0 to k + 1 do
3. mi ← t0 ⊕ xiy0

4. T ← (T + xiy + miN)/2 // addition stage
5. mi+1 ← t0 ⊕ xi+1y0

6. T ← (T + xi+1y + mi+1N)/2 // addition stage
...

1+2d. mi+d−1 ← t0 ⊕ xi+d−1y0

2+2d. T ← (T + xi+d−1y + mi+d−1N)/2 // addition stage
3+2d. end for
4+2d. Return T

augend vector S is provided to the MALU by d bits in every cycle and even-
tually added to the result of the modular multiplication of X and Y (modulo
N). The intermediate results are stored in V S = (vsi,k+α−1 · · · vsi,1vsi,0)2 and
V C = (vci,k+α−1 · · · vci,1vci,0)2. They are reset to zero when a modular mul-
tiplication starts to execute (i = 0). After finishing a Montgomery multiplica-
tion, the result is output from the right-most cell by d bits in every cycle as
Sout = (soutg · · · sout1sout0)2d .

The MALU has two independent stages for GF(p) operation. One is the Carry-
Save(CS)-stage that implements the Montgomery algorithm in a CS-form. An-
other converts the CS-form integer into a normal integer by propagating carries,
namely the Carry-Propagate(CP)-stage. Moreover the CP-stage is capable of
adding/subtracting S to/from the result of the CS-stage. When subtracting S
from XY , we use the 2’s complement of S. More precisely, each bit of S is in-
verted in setting a register for S and 2N + 1 is provided from inputs of mn at
the first cycle of the CP stage. For reducing the hardware cost and the critical
path delay, the CP calculations are executed in the same datapath of the MALU
as the CS-calculations. The operation of the MALU is explained in Eq.(4).

MALUN (XR, Y R, SR) =(XY ± S)R mod N . (4)

Here R is selected as R = 2k+α where k is the bit-length of the secret key and
α is a value determined so that the final reductions can be avoided. In our case,
we chose α = 4. The details are explained by the following Lemma [2].

Lemma 1. If the Montgomery parameter R satisfies the following inequality
R > 16N , then for inputs X, Y < 4N and S < 2N the result T will satisfy:
T < 4N (as required).
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Proof: The Montgomery multiplication as implemented in the MALU calculates
the following:

T = MALUN (X, Y, S) =
XY + MN

R
+ S

<
4N · 4N

16N
+ N + 2N ≤ 4N .

(5)

While the reduction step was needed in the original notation of Montgomery’s
algorithm, we use a method which does not require the reduction. For conve-
nience of repeating usage of Eq.(4), the so-called Montgomery form is applied
because the output is in the Montgomery form as well. The latency to calculate
a MALUN needs 2·�(k + α)/d� cycles in total.

4 Reconfigurable Datapath

In order to obtain high-performance modular operations, we should allocate k +
α−1 cells for the datapath of the MALU. For instance, the case of ECC-256p and
RSA-2048 need 260 and 2,052 cells, respectively. Since we target a platform which
supports both ECC-256p and RSA-2048, we introduce a coarse grain datapath
of the MALU260×1 (k = 256 and d = 1) and allocate its clones. For the general
case (K×D sets of MALUk×d ) the block diagram of the reconfigurable datapath
is illustrated in Fig.2.

The datapath can be configured by changing the interconnection of the
MALUd×k that is determined by the three multiplexors (Fig.3) and two- or
three-bit registers for selecting them. The sel1 and sel2 are used for configuring
the datapath, and the sel3 is used for configuring the flip-flops. Those multi-
plexors and flip-flops for the configuration are considered as the area overhead
(denoted as AO) introduced by the reconfigurable feature. It is approximately
estimated as follows:

AObase = DK(AMUX(sel1) + AMUX(sel2) + AMUX(sel3) + AFF (config))
= {(6d + k)DK − 2dK} · A2−1MUX + {3DK − K} · AFF .

(6)

Here, we ignored the area increase caused by the complexity of the wiring. In ad-
dition to the AObase, some more flip-flops are not used depending on the config-
uration. As an example, we consider the case of using eight clones of MALU260×1
(K = 2 and D = 4). When supporting RSA-2048, the datapath is configured as
MALU2080×1. In this configuration, the horizontal connections of the MALUs
are not re-timed by flip-flops for S and R (REGS and REGR). Therefore, the
total area overhead becomes as follows:

AORSA−2048 = AObase + 14AFF

= 11, 448A2−1MUX + 36AFF .
(7)

Likewise, for RSA-2048 with CRT (Chinese Remainder Theorem) [10], the data-
path is configured to have two sets of MALU1040×1. Therefore, the area overhead
for RSA-2048 with CRT is estimated as follows:
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Fig. 2. Reconfigurable Datapath using D × K sets of MALUd×k

AORSA−2048(CRT ) = AObase + 12AFF

= 11, 448A2−1MUX + 34AFF .
(8)

For ECC-256p, we configure the datapath so that two sets of MALU260×4 can
be used in parallel. This configuration uses vertical series of MALU260×1. The
intermediate values, the virtual carry and sum, are stored in the flip-flops for
V S and V C only at the bottom of Fig.2. In this configuration, only one-fourth
of of REGX , REGY and REGN are used in each MALU260×1. Therefore, the
total area of the overhead becomes as follows:

AOECC−256p = AObase + (260 × 12 + 260 × 24 × 3/4)AFF

= 11, 448A2−1MUX + 7, 822AFF .
(9)

In the case of the RSA configuration, we can utilize the flip-flops with almost
no waste, while the configuration of ECC can not use them effectively. In order
to exploit the unused flip-flops, we introduce another reconfigurability. Different
from RSA, ECC needs to store the intermediate variables during point opera-
tions. For the purpose, two sets of 14 words of 260-bit RAM (28×260-bit RAM)
can be configured with the unused flip-flops. In this case, the area overhead
becomes as follows:

AOECC−256p = 11, 448A2−1MUX + 542AFF . (10)
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Thus, we can make the best use of the hardware resources also for the ECC
configuration. For the critical path delay for each configuration, we have different
delays as follows:

TRSA−2048 = TRSA−2048(CRT ) =2TFA + 2T2−1MUX + TFF + Twiring

TECC−256p =8TFA + 4T2−1MUX + TFF + 4Twiring .
(11)

We assumed that the wiring delay in the critical path of ECC is four times
longer than that of RSA. As seen from the Eq.(11), the critical path delay of
ECC is about four times longer than RSA. Therefore, we need to assume a
circumstance where we can use two different clock frequency, e.g., providing a
divided clock in the ECC configuration, in order to facilitate a high performance
for both configurations.

5 Performance Comparison

5.1 RSA

The main operation in the RSA algorithm is a modular exponentiation [11]. The
two most straightforward algorithms to implement this are given in Algorithm 2,
where G is a finite abelian group and e is a positive integer. The basic operations
in both algorithms are multiplications and squarings. To be able to use the same
datapath for both operations and also for side-channel issues [6] the squarings are
not performed on a dedicated squarer, but on the multiplier. Taking into account
an expected value of n

2 ones in e, the total number of multiplications in both
algorithms is 3n

2 . In the left-to-right algorithm the multiplications have to be
performed consecutively requiring one memory location for intermediate values.
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Algorithm 2. Algorithms for left-to-right and right-to-left binary exponentiation
Require: g ∈ G, e = (en−1en−2 · · · e1e0)2
Ensure: ge

1: A ← 1
2: for i from n − 1 downto 0 do
3: A ← A · A
4: if ei = 1 then
5: A ← A · g
6: end if
7: end for
8: Return A

Require: g ∈ G, e = (1 en−2 · · · e1e0)2
Ensure: ge

A ← 1, S ← g
for i from 0 to n − 1 do

if ei = 1 then
A ← A · S

end if
S ← S · S

end for
Return A

In the right-to-left algorithm the multiplications can be parallelized, which dou-
bles the speed. However, the right-to-left algorithm uses two memory locations
for intermediate values.

5.2 ECC

In ECC, the equivalent operation of the modular exponentiation in RSA is a
point multiplication, which multiplies a point on the elliptic curve with a scalar,
resulting in another point on the curve. Similar to the left-to-right and right-to-
left binary algorithms for modular exponentiation, a point multiplication can be
performed using Algorithm 3 [8], where P is a point on the elliptic curve and k
is a positive integer. The point at infinity O is the identity element for elliptic
curve operations. Similar to modular the modular exponentiation algorithms,
the left-to-right algorithm will be used when the storage of intermediate values
is the bottleneck, while the right-to-left algorithm will be used for higher speed
when the datapath allows parallelism.

The point operations in Algorithm 3 are point additions and point doublings.
In our case a point addition and a point doubling respectively consist of 14 and 21
multiply/add operations by the MALU in the underlying finite field. Therefore
the total number of multiplications for point multiplication is estimated as 49l

2 .

Algorithm 3. Algorithm for left-to-right and right-to-left binary point
multiplication
Require: P = (x, y), k = (kl−1kl−2 · · · k0)2
Ensure: Q = (x′, y′) = kP
1: Q ← O
2: for i from l − 1 downto 0 do
3: Q ← 2Q
4: if ki = 1 then
5: Q ← Q + P
6: end if
7: end for
8: Return Q

Require: P = (x, y), k = (1 kl−2 · · · k0)2
Ensure: Q = (x′, y′) = kP

Q ← O, S ← P
for i from 0 to l − 1 do

if ki = 1 then
Q ← Q + S

end if
S ← 2S

end for
Return Q
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However, as we allocate two MALUs for the ECC case, the number becomes 21l
by processing point additions and doublings in parallel.

5.3 Performance Estimation for RSA and ECC from FPGA
Implementation

We implemented the proposed datapath on a Xilinx FPGA (Spartan 3). The
place-and-route result is shown in Table 1. The design is set as the ECC con-
figuration and the critical path delay for the RSA configuration is estimated by
the result of STA (Static Timing Analysis).

Table 1. Implementation result of the proposed datapath

Target Number Critical Path [nsec]
Platform of Slices RSA config. ECC config.
xc3s5000 27,597 10.6 25.3

Based on the required number of multiplications for RSA and ECC, we esti-
mate the performance and compare them with each other. The result is summa-
rized in Table 2. For the ECC case, the latency of point multiplication is used for
the performance, and the latency of modular exponentiation is estimated for the
RSA case. As seen from the result, the performance of modular exponentiation
for RSA-2048 is slower than ECC by a factor of 7 approximately. Even when ap-
plying CRT for RSA-2048, the performance is almost half of that of ECC-256p.
Moreover, ECC-256p offers stronger security than RSA-2048.

Table 2. Performance comparison of RSA-2048, RSA-2048 with CRT, and ECC-256p

Type of MALU Max. Clock Performance
PKC Config. Freq. [MHz] [msec]

RSA-2048 MALU2048×1 95 133.1
RSA-2048(CRT) 2× MALU1024×1 95 33.3

ECC-256p 2× MALU260×4 40 17.7

6 Conclusions

We presented a new reconfigurable datapath that enables modular operations for
different bit-widths. In addition, the flip-flops are also reconfigured depending on
the configuration in order to use hardware resources effectively. The estimated
performance based on an FPGA implementation is shown as a case study of
RSA-2048 (with and without CRT) and ECC-256p. The results prove that our
proposed datapath is suitable for a high-performance cryptosystem supporting
both RSA and ECC over GF(p). Especially in our case, ECC-256p shows a better
performance than RSA-2048 on the same amount of hardware resources.
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Abstract. This paper presents a hardware implementation of a dual
mode Tate pairing/elliptic curve processor over fields of characteristic 2.
The architecture can be reconfigured for different underlying field sizes
and hence can support different security levels. The processor also per-
forms elliptic curve point scalar multiplication. The performance of the
architecture implemented on an FPGA is evaluated for various security
levels.

1 Introduction

Pairing based cryptography has recently generated a significant amount of re-
search interest due to its potential for the construction of many new and interest-
ing cryptosystems [1]. An example of a pairing based system is Identity Based
Encryption [2], which has many applications from securing emails to ad-hoc
networks. Pairings also find a use in securing Internet protocols [3].

Pairing based cryptography is based on mathematical operations known as
bilinear pairings. In practice, a bilinear pairing is a map which takes as inputs
two points on an elliptic curve defined over a finite field GF (pm) and outputs an
element of the extension field GF (pkm). The Tate pairing is used in practice as
it can be efficiently computed using Miller’s Algorithm and its variants [4,5,6,7].
For elliptic curves over fields of characteristic p = 2 the security multiplier k
takes a maximum value of k = 4 [4,5].

For security comparable to 1024-bit RSA it is desirable to have km > 1000,
i.e. k ≤ 4 when p = 2 [4,5] so m > 250, and m prime. The underlying arithmetic
over such field sizes is computationally intensive and can require significant com-
putation time on a general purpose serial processor. Varying the underlying field
size m allows the security of the system to be changed, resulting in a trade-off
between security level and speed.

Dedicated hardware can potentially provide much faster Tate pairing compu-
tation times. It is noted that many pairing based cryptosystems require elliptic
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curve point scalar multiplication [1]. Therefore it is desirable that this operation
also be accelerated in hardware.

This work details a dual mode Tate pairing accelerator architecture, which is
also capable of performing elliptic curve point scalar multiplication. The archi-
tecture can be reconfigured to support different security levels by changing the
underlying field size m. The architecture was prototyped on a Xilinx Virtex II
FPGA and fully implemented in hardware on an RC2000 development board
from Celoxica [8].

2 Related Work

Two efficient methods for calculating the Tate pairing based on the elliptic curve
group law and line function evaluation have appeared in the literature [4,5].
These are the BKLS and GHS methods respectively. More recently a number
of newer algorithms Duursma − Lee, η and ηT have appeared, which decouple
the Tate pairing calculation from elliptic curve point scalar multiplication [6,7].
An advantage of the BKLS/GHS approach from a hardware perspective is that
the same hardware can be used for point scalar multiplication and Tate pairing
evaluation

Although the algorithms for computing pairings are well studied in the lit-
erature, their hardware implementation is less so. A hardware implementation
of the BKLS/GHS algorithm for fields of characteristic 3 was reported in [9].
A hardware implementation of the η pairing over fields of characteristic 2 has
been reported in [10] but this is based on hyperelliptic curves. To the best of
the authors knowledge this is the first hardware implementation of a pairing on
elliptic curves over fields of characteristic 2.

3 Elliptic Curves and the Tate Pairing

A supersingular elliptic curve over the field GF (2m) is defined by the equation:

E(GF (2m)) : y2 + y = x3 + x + b, b ∈ {0, 1} (1)

The set of points on E(GF (2m)) is defined as the set of all (x, y) ∈ GF (2m)
which satisfy Eq.(1) and a special point ϕ, known as the point at infinity. Addi-
tion and doubling of elliptic curve points is defined by Eq.(2) and Eq.(3), where
Pi = (xi, yi). The underlying operations are Galois Field addition, multiplica-
tion, squaring and division. The equation of the line function d(x, y), where d is
the line between P0 and P1, is defined in Eq.(4).

P2 = P0 + P1

λ = y0+y1
x0+x1

x2 = λ2 + x1 + x0
y2 = λ(x0 + x2) + y0 + 1

(2)

P2 = [2]P0 = P0 + P0
λ = xo

2 + 1
x2 = λ2

y2 = x4
0 + y4

0

(3)

d(x, y) = y + y0 + λ(x + x0) (4)
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Algorithm 1. BKLS/GHS Algorithm

Input: P ∈ E(GF (2m)), Q ∈ E(GF (24m)), l = t−1
i=0 li2i

Output: tl(P, Q)
Initialise: 1. f = 1; V = P
Run: 2. for i = t − 1 downto 0 do

3. V = 2V /* Point Double */
4. f = f2.d(Q) /* GF (24m) Multiplication */
5. if(li = 1) then
6. V = V + P /* Point Addition */
7. f = f.d(Q) /* GF (24m) Multiplication */
8. end if
9. end for

Return: 10. tl = fεl /* GF (24m) Exponentiation */

The order of the curve is the total number of points on E(GF (2m)) and
it dictates the computational complexity of the Tate pairing. It is denoted
#E(GF (2m)) and is given by Eq.(5) for the curve defined in Eq.(1). The curve
order can be broken into two factors n = h.l, where l is a large prime and the
cofactor h is small compared to l. In some cases the curve order itself may be
prime in which case h = 1. For good security it is necessary to ensure that l
is approximately 160 bits [5]. For this work Eq.(1) with b = 1 was used as the
underlying curve.

#E(GF (2m)) = n =
{

2m + 1 + (−1)b2(m+1)/2, m ≡ 1, 7 mod 8
2m + 1 − (−1)b2(m+1)/2, m ≡ 3, 5 mod 8

(5)

Point scalar multiplication of an elliptic curve point, R by a scalar k is computed
using repeated point additions i.e. T = [k]R = R+R+ . . .+R. An elliptic curve
point P is said to have order l if l is the smallest number such that [l]P = ϕ. The
set of all points of order l on the curve E(GF (2m)) is denoted by E(GF (2m))[l].

Let E be the curve given in Eq.(1). The lth-order Tate pairing maps two points,
P ∈ E(GF (2m))[l] and Q ∈ E(GF (24m))[l], to an element of the multiplicative
group GF (24m)∗. It is defined as:

tl(P, Q) = fP (Q)εl (6)

The Tate pairing is raised to the power εl = 24m−1
l to obtain a unique value for

cryptographic applications. The BKLS/GHS algorithm presented in Algorithm
1 is an optimised version of Miller’s algorithm for computing the Tate pairing
where Q = φ(R), R ∈ E(GF (2m)), Q ∈ E(GF (24m)) for some suitable dis-
tortion map φ(x, y) as described in [4]. The final exponentiation stage of the
algorithm can be performed using the binary square and multiply method as
described in [11].

The Tate pairing can also be computed in terms of the curve order n. This
is the nth-order Tate pairing and is denoted tn(P, Q) where P ∈ E(GF (2m))[l]
and Q ∈ E(GF (24m))[l]. The final exponentiation in this case is to the power
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Table 1. Example Secure Field Sizes for Pairing Based Cryptography

m km hw(n) Bits in l hw(l)
251 1004 3 154 76
283 1132 3 284 3

Algorithm 1a. Point Scalar Multiplication

Input: P ∈ E(GF (2m)), k = t−1
i=0 ki2i

Output: [k]P
Initialise: 1. V = P
Run: 2. for i = t − 1 downto 0 do

3. V = 2V /* Point Double */
4. if(ki = 1) then
5. V = V + P /* Point Addition */
6. end if
7. end for

Return: 8. V = [k]P

εn = 24m−1
n . Algorithm 1 can be used to compute the nth-order Tate pairing by

replacing the binary expansion of l with the binary expansion of n and perform-
ing the final exponentiation to εn. From [7] it is known that tn(P, Q) = tl(P, Q).

It can be seen that the run time of Algorithm 1 will depend heavily on the
Hamming weight of l or n depending on which order Tate pairing is computed.
The Hamming weight of n is given by Eq.(7) (see Appendix A for proof). Choos-
ing the field size m such that m ≡ 3, 5 mod 8 and computing the nth-order Tate
pairing will result in a fast computation time due to the low Hamming weight
of n.

hw(n) =
{

m+1
2 , m ≡ 1, 7 mod 8

3, m ≡ 3, 5 mod 8 (7)

In choosing the field size however it is necessary to also consider the prime order
l of the group of points on the curve . Two field sizes suitable for use in pairing
based cryptosystems and their associated parameters are presented in Table 1.
For m = 251 it can be seen that hw(n) << hw(l) therefore the nth-order Tate
pairing is more efficiently computable using Algorithm 1. For m = 283 a special
case is seen where the cofactor is 1 and both n and l have the same Hamming
weight. Therefore either order Tate pairing is optimal.

It is noted that the BKLS/GHS algorithm is a modified version of the binary
algorithm for elliptic curve point scalar multiplication. Therefore if steps 4, 7
and 10 are omitted from the algorithm it can be used to perform point scalar
multiplication i.e. computing [k]P . This is given in Algorithm 1a. This is ad-
vantageous from a hardware implementation point of view as it means that the
same architecture can perform both operations.
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4 Hardware Architecture

4.1 GF (2m) Components

The underlying arithmetic in Algorithm 1 is performed over GF (2m). Addition
is simply bitwise XOR of the two elements to be added with the result available
after one XOR gate delay. Therefore it is considered virtually free from both a
time and area perspective in hardware, in comparison to the other operations.
Multiplication is implemented using a Digit-Serial multiplier architecture as de-
scribed in [12]. This computes the result in n = �m

D � clock cycles, where D is
the digit size of the multiplier. Varying D allows an area/speed trade-off to be
explored. Squaring is a special case of multiplication which can be implemented
in hardware using a Bit-Parallel architecture which computes the result in one
clock cycle. Division is provided by the architecture described by Shantz in [13].
It computes the result in 2m clock cycles.

4.2 GF (24m) Multiplier

A multiplier architecture based on the Karatsuba-Ofman algorithm [14] was
used for the extension field multiplication. The architecture, shown in Figure 1,
computes c(x) = a(x)b(x) mod f(x), a(x), b(x), c(x) ∈ GF (24m). A full descrip-
tion of the architecture is given in [15]. The architecture features nine parallel
GF (2m) Digit-Serial multipliers and performs the extension field multiplication
in the time taken for one GF (2m) multiplication i.e. n = �m

D � clock cycles. This
architecture also allows an area/speed trade-off to be explored by varying D.

9
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Fig. 1. GF (24m) Karatsuba Multiplication Architecture
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4.3 GF (24m) Squarer

It is desired to compute c(x) = a2(x) mod f(x), a(x), c(x) ∈ GF (24m). The
square is given simply by a2(x) = a2

3x
6 + a2

2x
4 + a2

1x
2 + a2

0 and the polynomial
modular reduction is performed using matrix multiplication as described in [15].
This leads to the closed equations for c(x) given in Eq.(8). These can be imple-
mented in hardware using four GF (2m) squarers and two GF (2m) adders. The
GF (24m) squaring is performed in three clock cycles.

c3 = a2
3

c2 = a2
1 + a2

3
c1 = a2

2
c0 = a2

0 + a2
2

(8)

4.4 Line Function Evaluator

This block must compute d(Q) = d(xQ, yQ) ∈ GF (24m) as per Eq.(4) where
x0, y0, λ ∈ GF (2m) and xQ, yQ ∈ GF (24m). On each iteration of the algorithm
the values (x0, y0) correspond to the coordinates of V before it is updated. Using
xQ(x) = xQ3x

3 +xQ2x
2 +xQ1x+xQ0 , yQ(x) = yQ3x

3 + yQ2x
2 + yQ1x+ yQ0 and

(x0, y0) = (xV , yV ) the following expressions for d(Q) can be obtained:

di = yQi + λxQi , i = 1, 2, 3
d0 = yQ0 + yV + λ(xQ0 + xV ) (9)

where λ is computed using either Eq.(2) or Eq.(3). For maximum speed, four
GF (2m) multipliers are used in parallel along with six GF (2m) adders. The
computation time of the block is equal to the time taken for one GF (2m) mul-
tiplication i.e. Nline = n clock cycles.

4.5 Elliptic Curve Processor

This block implements elliptic curve point additions and doublings as per Eq.(2)
and Eq.(3). The processor takes four m-bit inputs (x0, y0), (x1, y1) and outputs
(x2, y2) = (x0, y0) + (x1, y1) or (x2, y2) = 2(x0, y0) depending on whether the
double/add input is 0 or 1.

Elliptic curve point addition is performed using Eq.(2). For implementation
the equation for y2 is rearranged to y2 = λ(λ2 + x1) + y0 + 1, which saves one
addition in the critical path. It is implemented in hardware using six adders, a
squarer, a divider and a multiplier as shown in Figure 2. The critical path through
the design is 3A + D + S + M . Therefore the number of clock cycles required
to perform a point addition is Nadd = n + 2m, neglecting the additions and the
squaring. It is noted however that λ is available once the division is complete
i.e. after 2m clock cycles. A doubling block implements Eq.(3). It computes λ in
2 clock cycles and (x2, y2) in 3 clock cycles.

The elliptic curve processor consists of an adder block and a doubling block
as shown in Figure 3. The processor has two done pins, one to indicated that
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λ is ready and one to indicate that (x2, y2) is ready. This means that in the
evaluation of Algorithm 1 the line function block can begin computing d(Q)
once λ is available.

4.6 Bus Interface

The overall architecture utilises an m-bit data bus. Each component to be used
in the Tate pairing architecture has multiple m-bit inputs and outputs, and
therefore requires an interface to this bus. The bus interface consists of an m-bit
data bus, an address bus, a read/write pin and a load pin. Each m-bit input
and output has its own register, which is assigned an address. To write m-bits of
data read/write is set to low, the appropriate address is selected (enabling the
appropriate register) and then load is asserted. To read the outputs read/write
is asserted, which allows the component to drive the data bus. The individual
output registers are then read by setting the appropriate address. Each compo-
nent also has a done pin, used to indicate to the control circuitry that it has
completed a calculation.
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4.7 Dual Mode Tate Pairing Processor

The Tate pairing processor architecture is illustrated in Figure 4. The mode
input selects between the two modes of operation. With mode low the architec-
ture takes four input values: P = (xp, yp), Q = (xq, yq), j, εj . It then computes
tj(P, Q) using Algorithm 1 (j = n or l depending on which order Tate pairing is
to be computed). With mode high the architecture takes as input P = (xp, yp), k
and computes [k]P using Algorithm 1a.
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Fig. 4. Dual Mode Tate Pairing Processor Architecture

The controller is based on a 32-bit wide ROM which stores a set of instructions
for controlling the bus interfaces of the individual components in the design.
In Tate pairing mode a state machine addresses the ROM in the appropriate
sequence to perform Algorithm 1. A second state machine is used to perform
Algorithm 1a when mode is high. Tri-state buffers enabled by the mode input
are used to control which state machine is in control and addressing the ROM.

The register bank contains the memory necessary to store the inputs and f, tj
which are the outputs of Algorithm 1. Shift registers within the register bank
are used to store j and εj with their shift enable (se) and msb’s being direct
inputs and outputs of the register bank. The other variables require 18 m-bit
registers. The FPGA block RAM resources are used for this purpose.

Figure 5 illustrates the schedule of operations (excluding data transfers) for
the point addition stage of Algorithm 1 i.e. lines 6 and 7. From this graph
it is seen that the point addition stage requires Nadd = 2m + 2n + 81 clock
cycles including those for data transfer. It is noted that d(Q) does not need
to be evaluated on the last iteration of Algorithm 1, leading to a special point
addition stage with a reduced cost Nadd2 = n+41. Similarly Ndouble = 2n+95.
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The exponentiation operation also has two stages, namely squaring and mul-
tiplying. Their cost is given by Nsquare = 3+31 and Nmult = n+36. At the start
of Algorithm 1 and before the exponentiation there are Nsetup = 57 clock cycles
in total required to setup the architecture for the calculation. The exponent is
stored in four cascaded m-bit shift registers, however it will generally be less
than 4m bits. Therefore it will be shifted s times at the start of the exponentia-
tion stage to ensure that the msb output is 1. The total cost of the Tate pairing
calculation including all data transfer clock cycle overheads is given by Eq.(10).

Ntate = Nsetup + mNdouble + (hw(l) − 1)Nadd + Nadd2
+s + (4m − s)Nsquare + hw(ε)Nmult

(10)

This cost can be further split into control clock cycles (Ncontrol) and calculation
clock cycles (Ncalc) as given by Eq.(11) and Eq.(12). The control clock cycles
include the cycles required for the setup stages and all the data transfers across
the data bus of the architecture. The number of calculation clock cycles is a
measure of the latency of the components performing calculations.

Ncontrol = 17 + 219m + 81hw(l) − 30s + 36hw(ε) (11)

Ncalc = (2m + hw(ε) + 1)n + (hw(l) − 1)(2m + 2n) + (4m − s)3 (12)

When in point multiplication mode the clock cycles required for each stage of
Algorithm 1a are NPsetup = 9, NPdouble = 22 and NPadd = n + 2m + 19. The
number of clock cycles required to perform a point scalar multiplication [k]P
depends on the Hamming weight of the scalar k and is given by Eq.(13).

NPmult = NPsetup + mNPdouble + hw(k)NPadd (13)

5 Results

The processor architecture of Figure 4 was prototyped on a Xilinx Virtex 2
xc2v6000 − 4 device using Xilinx ISE. The design was implemented on an
RC2000 development board from Celoxica [8] and the maximum clock frequency
determined.

Tables 2 and 3 give the implementation results of the architecture for 1004 and
1132 bit finite fields respectively. The post synthesis (PS) and actual implemen-
tation (RC2000) clock frequencies are reported along with the area requirement
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Table 2. Dual Mode Processor Results, m = 251, km = 1004

D CLK freq. (MHz) area Ttate Tmult
Ncontrol

Ncalc

PS RC2000 (slices) (ms) (ms)
1 72.4 50.0 16621 (49%) 6.44 2.06 0.26
6 72.4 43.0 21955 (64%) 2.58 1.78 1.44
10 72.4 40.0 27725 (82%) 2.37 1.86 2.22

Table 3. Dual Mode Processor Results, m = 283, km = 1132

D CLK freq. (MHz) area Ttate Tmult
Ncontrol

Ncalc

PS RC2000 (slices) (ms) (ms)
1 71.2 50.0 18599 (55%) 7.98 2.59 0.23
4 71.2 49.0 22636 (66%) 3.23 2.03 0.87
6 71.2 47.0 24655 (72%) 2.81 2.05 1.23

Fig. 6. Performance of the architecture
presented in this paper compared with
other implementations

Fig. 7. Illustration of Tfloor for m = 283

for various different digit sizes D of the underlying GF (2m) multipliers. Tate
pairing and average point multiplication times are given based on the actual
RC2000 implementation clock frequency and Eq.(10) and Eq.(13) (an average
Hamming weight of (m + 1)/2 was assumed for k).

These results provide significant acceleration over the software result of 23ms
reported in [4] for a Tate pairing calculation over GF (2271) on a 1GHz Pen-
tium III processor. This architecture is smaller and faster than the GF (3m)
BKLS/GHS architecture reported in [9]. This reports a fastest BKLS/GHS Tate
pairing computation time of 5.92ms over GF (397) with an area of 50286 slices.
As can be seen from Table 3 the architecture detailed in this paper gives a faster
Tate pairing computation time with a 50% reduction in area for D = 6. The
area time product of this architecture for m = 283, D = 6 is 70 slice.secs which
is a significant improvement over the area time product of 298 slice.secs for the
GF (397) design reported in [9]. It is noted that GF (2283) provides a compara-
ble level of security to GF (397). A comparison of the various results is given in
Figure 6.
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The final column of Tables 2 and 3 gives the ratio of control clock cycles to
calculation clock cycles. For a small digit size the ratio is quiet low. This means
that most of the Tate pairing calculation time comes from waiting for the under-
lying components to perform a calculation. However, as the digit size increases
the ratio becomes larger and the Tate pairing calculation time is dominated by
the control i.e. data transfers between the components in the architecture and
the setup time for each. Figure 7 illustrates this effect for m = 283. Neglecting
the area requirements and assuming a constant clock frequency of 40MHz it
can be seen that the Tate pairing computation time approaches a “floor” of 2ms
as the digit size is increased to its maximum value of 283.

6 Conclusions

A dual mode architecture to perform the Tate pairing or elliptic curve point
scalar multiplication over GF (2m) is presented in this paper. The architecture
was implemented on an FPGA for two different security levels and various digit
sizes of the underlying multiplier. The Tate pairing computation time of the
architecture provides significant speed-ups compared to recent software imple-
mentations of the same algorithm. It also outperformed an implementation of
the same algorithm over GF (3m) reported in the literature.

The advantage of this hardware architecture is that it can be reconfigured to
suit different security levels by varying the underlying field size m. The digit
size of the underlying multiplier can also be varied to obtain an area/speed
trade-off to suit the particular application. It is also advantageous from an area
perspective that the same architecture can be used to accelerate elliptic curve
point scalar multiplication.
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A Determining the Hamming Weight of n

In deciding which order Tate pairing to compute for minimum computation
time it is desirable to know the Hamming weight of the curve order n as given
in Eq.(5). Assuming b = 1 Eq.(5) simplifies to

#E(GF (2m)) = n =
{

2m + 1 − 2(m+1)/2, m ≡ 1, 7 mod 8
2m + 1 + 2(m+1)/2, m ≡ 3, 5 mod 8

(14)

When m ≡ 3, 5 mod 8 the Hamming weight is trivially hw(n) = 3.
When m ≡ 1, 7 mod 8 a closed equation for the Hamming weight of 2m +1−

2(m+1)/2 represented using (m + 1) bits can be deduced as follows.
Consider some number 2j . It is known that hw(2j) = 1. Now consider the

(m + 1)-bit binary representation of 2j = 000...010...000, where the 1 is in bit
position j. Two’s complement representation can be used to represent −2j in
binary. To convert 2j to −2j all the bits are inverted and 1 is added. This gives
−2j = 111...110...000. This has 1’s in all the bit positions between the jth bit
and the mth bit. Therefore hw(−2j) = m − j + 1.

Next consider the number 2m−2j+1. Firstly 2m−2j = 011...110...000 i.e. only
the msb changes. Adding 2m to 2j reduces its hamming weight by 1. Secondly
2m − 2j + 1 = 011...110...001 i.e. only the lsb changes. Adding 1 to 2m − 2j

increases its hamming weight by 1. Therefore the addition of 2m and 1 to −2j

have no effect on the hamming weight of the number as they cancel each other
out. Therefore hw(2m − 2j + 1) = m − j + 1.

With j = (m+1)
2 this yields hw(n) = m+1

2 for m ≡ 1, 7 mod 8.
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Abstract. Public key cryptography is a concept used by many useful
functionalities such as digital signature, encryption, key agreements, ...
For those needs, elliptic curve cryptography is an attractive solution.

Cryptosystems based on elliptic curve need a costly modular division.
Depending on the choice of coordinates, this operation is requested at
each step of algorithms, during a precomputation phase or at the end
of the whole computation. As a result, efficient modular division imple-
mentations are useful for both area constrained designs working in affine
coordinates and high-speed processors.

For that purpose, this work highlights the most efficient iterative mod-
ular division algorithm and explores different time and area tradeoffs
on FPGA. First, thanks to a novel algorithm, the computational time
is divided by two with an area increase of one half. Second, using the
Single-Instruction Multiple-Data feature of the selected algorithm, the
area is divided by two with a doubling of the computational time.

To the best of our knowledge, it is the first report about an iterative
digit-serial modular division algorithm, the first area and time tradeoff
analysis of an iterative algorithm and the best result among the very few
implementations on FPGA.

1 Introduction

With the advent of public key cryptography, many useful functionalities ap-
peared such as digital signature, public key encryption, key agreements, ... For
those needs, elliptic curve cryptography (ECC) is an attractive solution. Co-
invented by V. Miller [16] and N. Koblitz [15] in 1985, it provides one of the
highest security per bit of known public key scheme. This means highly wanted
properties like less processing power, storage, bandwidth and power consump-
tion. For a thorough description of the topic, the reader is referred to [4] for
mathematical background and to [12] for implementation issues.

As the underlying operations of public key cryptosystems are computer-
intensive, hardware processor or co-processor are often needed to speed up the
computation. As a result, efficient algorithms and specific implementations of
the critical arithmetic operations are needed.
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The main operation of ECC is the scalar point multiplication. The underlying
modular arithmetic operations are addition, squaring, multiplication and the
costly division. Depending on the choice of coordinates, a modular division is
needed for each point addition and point doubling or only at the end of the
scalar multiplication. With precomputation strategy, it could also be used to
precompute points in affine coordinates in order to enable mixed coordinates
addition [18]. As a result, a cost-effective modular division is useful for area
constrained designs based on affine coordinates (e.g. [1]). High-speed processors
using projective coordinates require also efficient modular division to handle the
conversion of the final result back to affine representation (e.g. [10]). Indeed, this
operation must not constrain the area and working frequency of the processor.

One of the aims of this paper is to emphasize the most efficient iterative
modular division algorithm over GF(2m). On this basis, different time and area
tradeoffs are analyzed on Xilinx Virtex FPGAs.

First, a novel algorithm processing simultaneously two bits is presented. Com-
pared to the serial design, the computational time is divided by two and the
optimized implementation needs only an area increase of one half. To the best of
our knowledge, it is the first proposal of an iterative digit-serial algorithm. This
method could be further exploited to carry out algorithms processing more than
two bits (with an exponential complexity), but it is not the topic of this paper.

Second, using the Single-Instruction Multiple-Data (SIMD) feature of the se-
lected algorithm, the division is processed in two different phases with the same
hardware. As a result, the area is halved at the expense of the doubling of the
computational time.

The joint utilization of the novel algorithm and the SIMD feature leads to
another tradeoff: the throughput of the serial algorithm is reduced by one third
while improving the area by one seventh. This is unexpected since the serial
implementation seemed to be area-optimal.

This paper is structured as follows: Sect. 2 introduces the previous works on
modular division over GF(2m) and emphasizes the most efficient one. Sect. 3
displays the selected algorithm and presents the novel digit-serial modular divi-
sion. The optimized designs for the selected platform stands in Sect. 4. Then,
those implementations modified with the SIMD feature are reported in Sect. 5.
The results are discussed in Sect. 6 and finally, conclusions are in Sect. 7.

2 Previous Works

There are three main methods to perform the modular division X/Y overGF(2m):

– Little Fermat’s theorem, computed as X · Y 2m−2 mod p(x) [14].
– Solution of a system of m linear equations over GF(2) using Gaussian elim-

ination [13].
– Iterative transformations of the gcd (greatest common divisor) function

based on Euclid or Stein [19] algorithms.

The latter exhibits the best area-time complexity [20]. Therefore, this paper
focusses on gcd based algorithms and especially on the binary versions of Stein.
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In the literature, this kind of algorithms are usually considered as very slow
(e.g. [8]). One reason is that modular divisions using the basic Euclid and Stein
algorithms are not favorable to efficient implementations. They need degree com-
parisons at each step, increasing the area-time complexity and thwarting digit-
serial techniques. A method replacing this comparison by a much more simple
counter has been described as early as in the mid 80’s by Brent and Kung [3].

Exploiting this counter idea, Brunner et al. [2] presented an efficient binary
shift-left algorithm. Recently, Wu et al. [20]1 and Kim et al. [7] presented two
very similar serial binary shift-right algorithms. The authors show that this
modification leads to an even better area-time complexity.

The next step was to adapt this algorithm to a digit-serial version, favorable
to an iterative design. For an m-degree irreducible polynomial p(x), the aim of
the digit-serial technique is to divide the 2m−1 steps required by the algorithm
by the digit size d. The complexity of the circuit increase with d, but small d
can already achieve an interesting improvement on the latency.

It should be emphasized here that the proposed method is different from a
“multi bit-shift” technique. As shown by Gutub [11], it saves at most 15% of the
2m − 1 step instead of 50% with a digit size of 2 for example.

A systolic digit-serial algorithm has already been presented in [9], but the
atomic piece of circuits needs more than one cycle to process the data. As a
result, it is not suitable for an iterative implementation. Moreover, they do not
provide an explicit algorithm: the digit-serial feature is obtained by domain
partition of a systolic dependence graph. Therefore, they do not benefit from
algorithmic optimization.

3 Modular Division Algorithms

Let p(x) ∈ GF (2)[x] be an irreducible polynomial of degree m generating the
field GF(2m). Let X and Y be two polynomials with coefficient in GF(2) repre-
sented by X = (xm−1, . . . , x1, x0) and Y = (ym−1, . . . , y1, y0). Only the polyno-
mial basis is considered.

Algorithm 1 is equivalent to the binary shift-right algorithm of Wu et al. and
Kim et al. It is used to process the division X/Y mod p(x) and it needs 2m − 1
iterations to compute the result.

The following notations are used: p stands for the irreducible polynomial p(x).
The addition, a bitwise xor operation, is written ⊕. The bit IsPos is used to store
the sign of the unsigned counter D. It is equal to 1 when the counter represents a
positive value. Finally, the operations between brackets are performed in parallel.

One adjustment has also been made to ease the implementations covered by
the Section 4 and 5: for D, a simple unsigned arithmetic counter is used instead
of a one-hot counter. It has been chosen in order to reduce the chip area while
keeping good working frequency.

1 Notice that, because their r and s variables converge towards zero, they should
reduce the size of their systolic array design in a triangular shape.
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Algorithm 1. Serial modular division over GF(2m), X/Y mod p

U ← Y, V ← p, R ← X, S ← 0, k ← 2m − 2, D ← 1, IsPos ← 0
while k ≥ 0 do

if u0 = 0 then U ← U/x, R ← R/x (mod p)
if IsPos = 0 then D ← D + 1
else if D = 0 then D ← D + 1, IsPos ← 0 else D ← D − 1

else if IsPos = 1 then U ← U/x ⊕ V/x, R ← R/x ⊕ S/x (mod p)
if D = 0 then D ← D + 1, IsPos ← 0 else D ← D − 1

else D ← D − 1, IsPos ← 1
{U ← U/x ⊕ V/x, V ← U}, {R ← R/x ⊕ S/x (mod p), S ← R}

k ← k − 1
return S

Algorithm 2. 2-bit Digit-serial modular division over GF(2m), X/Y mod p

U ← 2Y, V ← p, R ← 2X, S ← 0, k ← m − 1, D ← 1, IsPos ← 0
while k ≥ 0 do

if u1 = 0 then
if u2 = 0 then U ← U/x2, R ← R/x2 (mod p)

if IsPos = 0 then D ← D + 1
else if D = 1 then IsPos ← 0 else D ← D − 1

else if IsPos = 1 then U ← U/x2 ⊕ V, R ← R/x2 ⊕ S (mod p)
if D = 1 then IsPos ← 0 else D ← D − 1

else IsPos ← 1, {U ← U/x2 ⊕ V, V ← U/x2},
{R ← R/x2 ⊕ S (mod p), S ← R/x2 (mod p)}

else if IsPos = 1 then
if u2 ⊕ v1 = 0 then

U ← U/x2 ⊕ V/x, R ← R/x2 ⊕ S/x (mod p)
else U ← U/x2 ⊕ V/x ⊕ V, R ← R/x2 ⊕ S/x ⊕ S (mod p)
if D = 1 then IsPos ← 0 else D ← D − 1

else
if u2 ⊕ v1 = 0 then {U ← U/x2 ⊕ V/x, V ← U/x},

{R ← R/x2 ⊕ S/x (mod p), S ← R/x (mod p)}
else {U ← U/x2 ⊕ V/x ⊕ U/x, V ← U/x},

{R ← R/x2 ⊕ S/x ⊕ R/x (mod p), S ← R/x (mod p)}
if D 	= 1 then D ← D − 1, IsPos ← 1

k ← k − 1
return S

For the division by the polynomial root (a right shift), U/x≡(0, um−1, . . . , u1),
the degree of the polynomials decreases by one. If the division must be performed
modulo the irreducible polynomial, the degree zero of the divided polynomial
must be used: R/x (mod p) ≡ (r0, rm−1 ⊕ r0pm−1, . . . , r1 ⊕ r0p1) (using the fact
that coefficients of the degree m and zero of p(x) always equal one).

The Algorithm 2 is the proposed digit-serial division with a digit size of 2.
To improve readability, this algorithm is renamed as “2-bit digit”. It needs m
iterations to compute the result. The notations used for the Algorithm 1 are
kept and the same choice for the counter is applied. Furthermore, the variables
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U and R are loaded with a left shift of the operands Y and X . The bits u1 and
u2 must therefore be used for the control instead of u0 and u1.

In the building process of the 2-bit digit algorithm, two successive steps of the
serial algorithm are concatenated. As the body of the serial algorithm is split in
three different cases, with the set of three operations {shift, shift-add, shift-add
& swap}, the 2-bit digit could be expected to need nine cases. Fortunately, the
two operations (shift-add – shift-add & swap) and (shift-add & swap – shift-add
& swap) never happen and the complexity is reduced.

As two steps are processed at each iteration, the D′ counter would never be
incremented or decremented by 1 but only by 2. So, it has been modified to
D = D′/2 to only handle increment and decrement of 1. Moreover, the counter
D′ is initialized with an odd value, so D never reaches zero. It is important to
take care of the counter to ensure an optimal implementation: it is an essential
element of the control logic and its performances have a non negligible impact
on the working frequency.

4 Hardware Implementations

This Section presents the hardware implementations of the two algorithms from
Section 3. In order to exhibit the best performances, the designs have been
optimized for the selected hardware platform: the Virtex family of Xilinx FPGA.
Their basic building block will therefore be reminded.

The three extension degrees covered are: 163, 193 and 233. For each degree,
two different kinds of irreducible polynomials are handled. First, the polynomials
recommended by the NIST [17] and the SECG [5] are used: p(x) = x163 + x7 +
x6+x3+1, p(x) = x193+x15+1 and p(x) = x233+x74+1. They are hardwired in
the circuit. Secondly, arbitrary polynomials are considered. Nevertheless, it has
been decided that only 10% of their monomials, located in the lowest degrees,
may have a variable coefficient. The other monomials are hardwired to zero.
For applications, another choice for the kind of irreducible polynomial is very
unlikely because random irreducible polynomials thwart many improvements (as
illustrated in [10]).

For the operative circuits of the two implementations, the register-to-register
combinational logic needs few serially connected look-up tables. As a result, the
control circuits will dominate the critical path. More precisely, the D counter
and its different operations are the most time consuming elements of the con-
trol part. To guarantee a high working frequency for each design, the D counter
has been optimized with precomputation of the different test flags and
commands.

4.1 Targeted Platform

As the implementations have been optimized in order to map the resources of
Xilinx Virtex FPGAs in the best possible way, it is important to remind their
basic building block. For that purpose, Fig. 1 illustrates the half of a Virtex
slice.



Iterative Modular Division over GF(2m) 375

This logic cell includes a 4-input look-up table (LUT), carry logic and a storage
element. Only those basic features are used in the implementations. Among other
functionalities, this logic cell can also provide a 16-bit shift register.

4.2 Serial Modular Division

The implementation of Alg. 1 is illustrated in Fig. 2. In order to consume as few
resources as possible, the design takes into account the basic structure of the
FPGA. Therefore, when it is possible, each register storing the bits of U ,V ,R
and S variables is driven by a 4-input combinational circuit.

The main optimization is the splitting into two phases of the loading step. To
save one input in the logic driving the U and R registers, the operands 2Y and
2X are loaded in the registers V and S. Then, using the available wires of the
circuit, the content of V and S is moved to the appropriate U and R registers
(with a shift right operation).

For hardwired irreducible polynomials, each bit of the U ,V ,R and S variables
is dynamically specified by four inputs. With m-degree polynomials, this circuit
will consume only 2m slices. For arbitrary polynomials, 10% of m additional
slices are required to handle the low-degree monomials of p(x).

LUT

D

A1

A4
A3
A2

Cout1

Cin

0 1

Fig. 1. Basic half of a Virtex slice

ResU R

U»1c0 V»1 R»1 p»1c3 S»1 c0

EnV S

c2
c1

U R2Y 2Xp 0

Fig. 2. Serial modular divider

As this algorithm needs four registers, an area of 4m half slices seems optimal.
Nevertheless, this can be improved as explained in Section 5.

4.3 Digit-Serial Modular Division

The implementation presented in Fig. 3 is based on the proposed digit-serial
algorithm (Alg. 2). The same design principles as the serial algorithm are followed
and another feature of the FPGA is exploited: the xor gate of the dedicated carry
chain is used in order to extend the number of available inputs. As a result, the
slices are equivalent to a combinational function with 2 ∗ 4 + 1 inputs, and 2
outputs. Indeed, if the carry input is embezzled2, it is shared for the whole slice.
The design is then constrained to use the two xor gates and to use them with
the same input (otherwise half of the slice is wasted).

For hardwired irreducible polynomials, this circuit will consume only 3m slices
plus a few additional slices for the gates driven by c8 and c9 (due to the sparse

2 To achieve this optimization, constraints have to be added for the mapping tool.
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Fig. 3. Digit-serial modular divider with a digit size of 2

p(x)). For arbitrary polynomials, 10% of m additional slices are required for
the logic driving the V and S registers. Another 10% of m additional slices are
needed for the R register.

5 Exploiting the SIMD Feature

With the use of the digit-serial algorithm, computational time has been saved at
the cost of extra area. In this section, the serial and digit-serial implementations
are modified in order to save area at the cost of more computational time [6].

In the selected algorithm, the set of three different operations (Sect. 3) are
executed on two groups of variables: (U – V ) and (R – S). This SIMD feature can
therefore be used to process both groups of variables at a different time. Since
almost the same hardware is required for both groups, area saving is expected.

Two different techniques are analyzed. The first interleaves the processing
of both groups of variables. This approach is easier because the command sig-
nals are computed and directly used during two cycles. Nevertheless, during the
processing of the first group of variables, registers are needed to store the sec-
ond group. The second technique processes both groups of variables entirely at
a different time. The extra registers are no longer required but the sequence of
operations must be recorded for the processing of the second group. Fortunately,
this recording will consume only a little area since the Virtex slices can be used
as 32-bit shift registers.

5.1 Interleaved Processing

Serial Modular Divider. The design of the interleaved serial modular divider
is presented in Fig. 4. From the implementation of Fig. 2, the operative part
of the R and S registers are used. Two registers are also added to store the
temporary variables. Nevertheless, some modifications are made compared with
the serial implementation. In order to exploit the LUTs before the UR registers,
the regular loading operation is used instead of the two phases. The reset signal



Iterative Modular Division over GF(2m) 377

is therefore no longer needed. The LUTs before the V S registers must also be
used for the loading operation since a multiplexor has been added before the
SV registers. In the previous implementation, this multiplexor was not required
thanks to the hold capability of the V and S registers. The enable signal of the
V S registers is used to hold the final result.

Unfortunately, the required amount of resources is the same as the serial
implementation. This design is therefore useless.

URRU

UR»1

p»1 c3 VS»1c0

En
VS

SV

c2
c1

UR

0 p
IN

c1

VS

RU

c4
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Fig. 4. Interleaved serial divider
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Fig. 5. Interleaved 2-bit digit divider

Digit-Serial Modular Divider. The design of the interleaved 2-bit digit mod-
ular divider is presented in Fig. 5. It is quite different from the implementation
of Fig. 3. The regular loading operation is used and a reset signal for the V S
registers is added to perform the loading of the S variable. Unfortunately, the
carry chain is not usable anymore. This is also a consequence of the loss of the
hold capability of the V and S registers. The enable signal of the V S registers
is also used to hold the final result.

This design requires roughly 2.5m slices. Compared to the 3m slices needed
by the 2-bit digit design, the improvement begins to be interesting.

5.2 Non-interleaved Processing

Serial Modular Divider. For the recording of the sequence of operations,
only one bit is required for each cycle. Indeed, with the use of the D counter
while replaying the sequence, the successive u0 bits are enough to perform the
processing on the R and S variables. Thanks to the specific shift registers of the
FPGA, a complete sequence holds in around ten slices only.

The design of the non-interleaved serial modular divider, presented in Fig. 6,
is derived from the operative part of the R and S registers of Fig. 2. The only
difference is the loading capability of both 0 and p in the V S registers. This design
requires roughly the half of the slices needed by the serial modular divider. It is
therefore useful for applications demanding a small throughput.

Digit-Serial Modular Divider. For the recording of the sequence of opera-
tions, only two bits are required for each cycle. Indeed, with the use of the D
counter, the successive u1 bits are needed. Then if the bit u1 equals zero, the
u2 bit is stored; otherwise, the u2 ⊕ v1 bit is stored. This information is enough
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to perform the processing on the R and S variables. A complete sequence holds
also in around ten slices only.

The design of the non-interleaved 2-bit digit modular divider, shown in Fig. 7,
is also derived from the operative part of the R and S registers of Fig. 3. The
loading capability of p in the V S registers is extended through the added reset
signal.

Reset UR

UR»1

p»1 c3 VS»1c0

Enable VS

c2
c1

UR 2IN 0p

Fig. 6. Non-interleaved serial
modular divider
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c8 c9p»1 p
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»1

Fig. 7. Non-interleaved 2-bit digit modular divider

This design requires also roughly half of the slices needed by the 2-bit digit
modular divider. It is therefore interesting for applications demanding a regu-
lar throughput. Compared with the serial modular divider, the required amount
of resources decreases by about a seventh whit a computational time increase
of one third. The seeming area-optimality of the serial divider is therefore
improved.

6 Results

The designs of the serial modular divider and the 2-bit digit modular divider,
with and without the non-interleaved modification, have been implemented on
a last generation Xilinx Virtex4 XC4VLX15-12sf363 and a small and low-cost
Xilinx Spartan33 XC3S200-4ft256. The performances of the designs based on
the interleaved modification are not reported since the improvements are much
smaller than the non-interleaved modification. The VHDL synthesis and place
& route have been achieved on Xilinx ISE 7.1.03i with the best speed effort. In
order to evaluate the chip area and the working frequency of the four modular
divider cores, shift registers have been added for the inputs and the outputs.
These resources are not considered for the area count.

The performances of the two dividers together with the two kinds of ir-
reducible polynomials p(x) are reported in table 1. The results of the non-
interleaved implementations are shown in table 2. The throughput of the serial,
the 2-bit digit and their non-interleaved versions are respectively computed with
a latency of 2m, m+1, 4m+2 and 2m+2 cycles (considering the 2 cycles needed
by the load operation).

3 Spartan3 devices have a Virtex structure.
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For the throughput enhancement in table 1, the serial and the 2-bit digit
implementations are compared for each extension field degree and p(x). For
the area saving (LUTs) in table 2, the left value is the comparison between
both algorithms, with and without the non-interleaved modification. The right
value evaluates the area sparing between the non-interleaved 2-bit digit modular
divider and the serial divider. The same analysis is done for the throughput
decrease in the next column. The 4-input LUTs count is reported and used for
comparisons because the mapping tool of ISE gives priority to combining the
related logic. As a result, when the constraint on the working frequency is strong,
many slices of the digit-serial design are half empty (but are still available for
other purposes).

Table 1. Implementation results on Virtex4 and Spartan3

Designs Frequency Area Area Throughput Throughput
[Mhz] [Slices] [LUTs] [Mbit/s] enhancemement

163 NIST
Serial 480 210 504 552 716 712 240 105

2-bit digit 325 177 699 648 1124 1093 323 146 35% 39%
163 arbit.

Serial 451 193 543 562 747 742 225 96
2-bit digit 326 137 695 675 1154 1144 324 136 44% 42%
193 SECG

Serial 457 178 641 622 837 832 228 89
2-bit digit 324 141 858 751 1298 1277 322 140 41% 57%
193 arbit.

Serial 446 167 675 629 873 869 223 83
2-bit digit 324 133 910 798 1359 1337 322 133 44% 60%
233 NIST

Serial 446 173 753 789 999 998 223 86
2-bit digit 324 140 982 877 1526 1520 322 139 44% 61%
233 arbit.

Serial 436 167 798 791 1043 1043 218 83
2-bit digit 322 133 1055 950 1648 1597 321 132 38% 59%

As expected, the working frequency of the digit-serial divider decreases com-
pared with the serial divider. Nevertheless, the throughput enhancement shows
that the improved latency overtakes this diminution. For each design, the re-
ported area count follows the estimation of Section 4. Due to the best speed
effort constraint, the area is slightly augmented by the logic replication of the
control circuit. An important point is that the 2-bit digit designs appear to have
a reasonable increase of complexity: only 55 % of additional LUTs are required.
This is far from the 100 % increase expected with the simple concatenation of
two serial circuits.

For the non-interleaved implementations, the working frequency decreases due
to a stronger complexity of the finite state machine. As a result, the throughput
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decrease slightly exceeds 50 %. Nevertheless, the area improvement is close to
50 % as expected. Comparing the serial divider and the joint use of the 2-bit
digit algorithm and the SIMD feature, the resultant throughput is decreased by
35 % due to a higher complexity. However, the required amount of resources is
reduced by 15 %.

Comparing the performances between implementations based on the recom-
mended irreducible polynomials (NIST, SECG) and the chosen arbitrary poly-
nomials, the differences are non significative. This follows also the predictions.

The performances of the modular divider are usually not reported in the dif-
ferent implementations of elliptic curve cryptosystems. The only found FPGA
implementation of an equivalent serial modular divider is presented in [10]. While
their performances are much less interesting, the comparison is not really fair:
they use completely arbitrary polynomials and they do not try to exceed a work-
ing frequency of 66 Mhz. The frequency result of [7] are not really comparable
since they used the very small field GF(28).

Table 2. Non-interleaved results on Virtex4 and Spartan3

Designs Frequency Area Area Throughput
[Mhz] [LUTs] saving decrease

163 NIST
Serial 418 195 403 408 44% 43% 57% 53%

2-bit digit 278 131 628 618 44% 12% 43% 13% 57% 42% 55% 38%
163 arbit

Serial 394 185 434 439 42% 41% 56% 52%
2-bit digit 272 127 657 675 43% 12% 41% 9% 58% 40% 54% 35%
193 SECG

Serial 425 195 463 468 45% 44% 54% 45%
2-bit digit 275 132 717 707 45% 14% 45% 15% 57% 40% 53% 26%
193 arbit.

Serial 395 187 501 505 43% 42% 56% 44%
2-bit digit 272 126 798 780 41% 9% 42% 10% 58% 39% 53% 25%
233 NIST

Serial 418 195 543 548 46% 45% 53% 46%
2-bit digit 277 128 849 834 44% 15% 45% 17% 57% 38% 54% 26%
233 SECG

Serial 394 187 588 564 44% 46% 55% 44%
2-bit digit 272 126 936 925 43% 10% 42% 11% 58% 38% 52% 25%

7 Conclusion

A full set of time and area tradeoffs for the modular division over GF(2m) has
been proposed. First, an iterative digit-serial algorithm has been introduced to
decrease the computational time at the expense of more area. The presented
2-bit digit algorithm reduces the latency by a factor two and is well suited for
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hardware implementations. Second, using the SIMD feature of the selected al-
gorithm, non-interleaved implementations of both modular dividers have been
carried out to decrease the required resources at the cost of more computational
time. These two techniques have then been jointly used to provide another inter-
esting tradeoff. Among other fields of applications, the novel algorithm and the
different implementations are particularly interesting for elliptic curve cryptogra-
phy and more precisely for area constrained designs working in affine coordinates
and high-speed processors.

The different techniques have been implemented on FPGA of the Xilinx Virtex
family, with different kinds of irreducible polynomials and extension field degrees.
The designs have been optimized for this platform and resulting performances
exhibit a high working frequency and small area requirements.

The 2-bit digit implementation appears to have a throughput improvement
between 35 % and 60 % compared with the serial implementation while only 55 %
of additional area is required. It can therefore be used when a higher throughput
is requested, with a better area efficiency. The non-interleaved implementations
exhibit an area improvement of 45 % with a latency increase of 55 %. They
can therefore be used to save area when a smaller throughput is needed. For
applications demanding an intermediate throughput, both techniques can be
jointly used to even further optimize the resource requirements.
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Abstract. This paper describes a BioAPI compatible Architecture for mobile 
biometric fingerprint identification and verification, based on a XML Web Ser-
vice and a Field Programmable Gate Array (FPGA). We present a client-server 
system that uses a Personal Digital Assistant (PDA) with a built-in fingerprint 
sensor and wireless LAN (WLAN) connectivity as a mobile client, and a Bio-
metric Service Provider (BSP) running as a BioAPI compatible XML Web Ser-
vice on the server side. BioAPI high level functions enrolment, identification 
and verification are implemented using BSP primitives, capture, process, cre-
atetemplate, verifymatch, and identifymatch that are partially hardware imple-
mented using Handel-C and the Celoxica RC1000-PP platform. 

1   Introduction 

Biometric authentication is the verification of a user's identity by means of a physical 
trait or behavioural characteristic that can't easily be changed. Examples of physical 
characteristics include fingerprints, eye retinas and irises and patterns, while examples 
of behavioural characteristics include signature, gait and typing patterns. Fingerprint-
based identification is the oldest method which has been successfully used in numer-
ous applications. 

New handheld computers and smart phones can be provided with biometric finger-
print sensors. These devices can be used with wireless LAN and mobile technologies 
for the development of biometric applications that allow easy and quick identification 
of an individual in public or open spaces, like airports, schools, parks, etc. 

These devices have computational and storage limitations, so we need a client-
server architecture to achieve fast and reliable authentication on one individual fin-
gerprint among a large population, 1:N identification. 

On other hand, XML Web Services provides a simple and flexible model based on 
neutral Web technologies for publishing software services. Web Services are shown 
to be the natural evolution of distributed application architectures on Internet [1]. Web 
Services allow mobile clients the use, on-demand, of a FPGA implementing the 
primitives of a BSP, reducing the cost of dedicated reconfigurable hardware. 

Finally, FPGA-based systems have been used with success in pattern matching al-
gorithms, digital image processing and different security and biometric applications, 
all with high computational complexity [5]. 
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According to these considerations, we present the design and implementation of a 
BioAPI compatible architecture, which allows wireless and mobile identifica-
tion/verification of biometric fingerprints, using a hardware-accelerated BSP. The key 
ideas for this work are: 

- To present the basis of fingerprint biometry and the BioAPI standard, section 2. 
- To identify the different elements of the proposed architecture, section 3. 
- To define the functions and components of mobile client software, section 4. 
- Finally, to implement the XML Web Service and the hardware accelerated BSP 

primitives, section 5. 

2   Biometric Identification Based on Fingerprints. BioAPI 

A fingerprint is made of a series of ridges and valleys on the surface of the finger. The 
uniqueness of a fingerprint can be determined by the pattern of ridges and valleys 
called minutiae. Minutiae points are local characteristics that occur at either a ridge 
bifurcation or a ridge ending [2]. 

 

Fig. 1. Scanned fingerprint (left-up) and example of ridge bifurcation and ridge ending (left-
down). BioAPI layered architecture (right). 

The BioAPI Specification provides a high-level generic biometric authentication 
model. BioAPI has been defined to allow the biometric developer the maximum free-
dom in the placement of the processing involved, and allows the processing to be 
shared between the client and a server. BioAPI specification also defines the Biomet-
ric Service Provider (BSP) Interface. Theoretically, BSPs supplied by vendors con-
forming to this interface specification could then be used within any application de-
veloped to this BioAPI. There are three principal high-level abstraction functions in 
the API, Enroll, Verify and Identify [3]. 

3   System Architecture  

The design of the system is based on the tier architecture showed in the figure 2. We 
use a client-server scheme over an IP network, to support the access using wireless 



 Mobile Fingerprint Identification Using a Hardware Accelerated BSP 385 

networks (WiFi and Internet/Intranet). We use standard web technology to connect 
the client application with the server. The main components are: 

- The Client application, it’s based on a web browser and its extensions. This is the 
interface of the biometric application. 

- The Application server and the BSP, it’s a XML Web Service with the software 
and hardware extensions needed to implement the primitive functions proposed in 
the BioAPI specification. The designed BSP implements a subset of its functions 
using reconfigurable hardware. The reconfigurable logic device used is a Xillinx 
Virtex FPGA with a Celoxica platform RC1000. 

- The Database, it’s compliant with the ISO CBEFF (NISTIR 6529) standard. 

 

Fig. 2. Main components of the proposed architecture 

Using a client-server architecture and standard Internet technologies, has two main 
advantages, the design of the client hardware and software is independent of the ac-
cess medium (WiFi, Ethernet, Bluetooth or GPRS/UMTS), and the client application 
maintenance and distribution can be automated using Web technologies. 

4   Client Application 

To develop the client application we study two choices: 

- A Java Applet running in a Java Virtual Machine (JVM) enabled Web browser. With 
this choice, we take advantage of the interoperability between Operative Systems 
(OS) and platforms. On the other hand, the execution of this choice is slower than na-
tive code and there’s less support and drivers to access to biometric hardware. 

- An ActiveX Control running in Internet Explorer. In this case, the native execution 
mode is faster and there are several developing tools. On the contrary, the interop-
erability between operative systems is limited to Windows or a compatible plug-in 
is required. 

4.1   Prototype of Client Application 

For the client device we choose the Hewlett-Packard Ipaq H5550 PDA, with an Intel 
PXA225 400MHz microprocessor, wireless Bluetooth/WLAN 802.11b, and a biomet-
ric sensor. The PDA software version is Pocket PC 2003 and Windows CE 4.20. 



386 D. Rodríguez, J.M. Sánchez, and A. Duran 

                      

Fig. 3. Ipaq H5550 requesting the user authenticate to begin the session (left). Client applica-
tion running in Internet Explorer. 

The IPaq H5550 biometric sensor (AT77C101B) is developed by Atmel Corpora-
tion, its main features are: 

- CMOS thermal sensor. 
- Scanning resolution 0,4 mm x 14 mm. 
- Image array 8 x 280 = 2240 pixels 
- Pixel size 50 μm x 50 μm = 500 dpi 

Finally, we implement the client application using an ActiveX control. This control 
is hosted by the Internet Explorer for Pocket PC Web browser. We have to install the 
following libraries into the PDA to support the biometric application. 

- HP Ipaq Biometric Toolkit. 
- BioAPI Consortium Framework. 
- Microsoft .Net Compact Framework 

5   XML Web Service for Biometric Identification  

The RC1000_BIOAPI Web Service implements and supports remote clients connec-
tivity, allowing the access to high level BioAPI functions enrolment, identification 
and verification.  

When a remote client invokes a high level API function, this is translated into a se-
quence of primitives implemented by the BSPs in the client side (capture) or server 
side (process, match and create_template). The server side BSP partially implements 
these primitives using a VIRTEX FPGA and Handel-C. 

Web Services can be used by mobile clients in two different modes, as shown in 
Fig. 4: 

1) Using an Application Server, that acts as a Proxy between the remote clients and 
the BSP. In this scenario the XML Web Service methods are invoked using dy-
namic Web pages with .aspx extension. The Application Server must control the 
access to BSP and may perform pay-per-use billing functions. The used protocols 
are HTTP for the interchange between the Web Client and Application Server and 
XML-SOAP between the Proxy class and the Web Service. 
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2) Using ASP.NET asmx pages, this option allows to remote clients direct access to 
XML Web Services. The Web Service can be implemented using a C#, Visual 
Basic .Net or C++ class. Namespace, classes, properties, and methods of the Web 
Service are defined in this class, which is referenced in the asmx page. Remote 
clients can use different protocols and applications to access the XML Web  
Services. 

 

Fig. 4. Architecture, protocols and devices used in the prototype 

5.1   Hardware Accelerated BSP 

We have tested the proposed architecture, by programming the BSP process primitive 
using Handel-C. The process function provides the image preprocessing and minutiae 
extraction. This function takes as input a scanned fingerprint image acquired by the 
biometric client sensor. 

The implementation of process primitive involves programming digital image proc-
essing algorithms as convolution filters, threshold, skeleton and morphological opera-
tors. Previous works have successfully implemented these algorithms using Handel-C 
and RC1000 platform [4]. Pattern matching algorithms [6] are usually used for the 
implementation of verifymatch and identifymatch functions. These algorithms are eas-
ily parallelizable and can be implemented using Handel-C parallel sentences [7]. 

The access to the hardware application is carried out using the RC1000PP platform 
libraries (pp1000.lib) and the PCI board drivers as shown in Fig. 4.  

6   Conclusions and Acknowledgements 

We have described a BioAPI compatible architecture based on XML Web Services 
and reconfigurable hardware. The main goal of this work is present standard Web 
technologies and commercial hardware-software platforms for the design, program-
ming and execution of the proposed Architecture. These decisions make very easy the 
implementation of this Architecture in a real scenario. 

The present and future work includes programming the Java version of the client, and 
the full implementation of the BSP primitives using the Celoxica RC2000 platform. 

This work has been partially supported by the project OPLINK TIN2005-08818-
C04-03. 
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Abstract. Current software implementations of network intrusion
detection reach a maximum network connection speed of about 1Gbps
(Gigabits per second). This paper analyses the Snort software network
intrusion detection system to highlight the bottlenecks of such systems.
It proposes a novel packet processing engine called UNITE that deploys
a uniform hardware architecture to perform both header classification
and payload signature extraction utilising a Content Addressable Mem-
ory (CAM) which is optimised by techniques based on Binary Decision
Diagrams (BDDs). The proposed design has been implemented on an
XC2VP30 FPGA, and we achieve an operating frequency of 350MHz
and a processing speed in excess of 2.8Gbps. The area resource usage for
UNITE is also shown to be efficient, with a Look Up Tables (LUTs) per
character ratio of 0.82 for a rule set of approximately 20,000 characters.

1 Introduction

Many mechanisms have been developed which aim to address and enhance net-
work security, of which firewalls and NIDS are the two most common examples.
Many of these mechanisms have initially been developed through software im-
plementation, but there is increasing interest in transforming these mechanisms
into hardware-based implementations to obtain improved speed performance.
One hardware platform for such implementations is Field Programmable Gate
Arrays (FPGAs).

Network speed and flexibility are the two major concerns for network man-
agers; networks must be adaptable enough to accommodate the enhancement of
invasive technology, without allowing the financial and performance costs of net-
work security to spiral out of control. Contemporary networks enable extremely
high data rates, and any security measures used in such networks must be ca-
pable of equal or higher data rates if they are not to degrade overall network
performance. In a ‘Denial of Service’ (DoS) attack, network security counter-
measures must process packets faster than the attacker can deliver them, but
current software-based security systems cannot operate at the data rates of the
networks they protect.

Attackers on network security are notorious for their ability to adapt, evolve
and innovate. This requires network security to be equally, or even more, adapt-
able in order to effectively deal with the attacks that are thrown at it. In the
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case of new attacks, existing systems must be able to use emerging information
about the new attack to update the system to cope with the current and future
such attacks. This means a system capable of almost limitless adaptability is
vital, but this should not be obtained at the cost of network performance. The
software implementation of network security measures provides a high level of
flexibility, but cannot offer performance even approaching the speed required
by networks. An alternative hardware implementation using Application Spe-
cific Integrated Circuits (ASICs), is capable of providing much faster processing
speeds, but ASICs are generally inflexible and not cost effective. The aim of this
project is to develop an NIDS for deployment on an FPGA platform, with the
following contributions:

– The study and profiling of Snort NIDS, demonstrating that the decoding and
detection phase of Snort are the best candidates for further optimisation.

– A pipelined packet processing engine called UNITE (for Uniform hardware-
based Network Intrusion deTection Engine) that employs a uniform architec-
ture to perform both header classification and payload signature extraction
utilising a Content Addressable Memory (CAM) which is optimised a Binary
Decision Diagram (BDD) technique.

– The implementation of UNITE is shown to be capable of achieving a high
processing speed. The results show that it is capable of handling in excess
of 3Gbps traffic.

2 Network Intrusion Detection Systems

Existing research into NIDS techniques explores two different directions: header
classification and payload matching. The header classification of a packet has
been researched for the longest period and is well-established in theory and prac-
tise, with a focus on efficient software implementation. The payload matching
of the packet is more recent, and here research concentrates more on hardware
implementation. This has lead to a split between the development of these two
fundamental parts of NIDS solutions: although individual research for each part
may yield promising results, the final result may not be as promising when at-
tempting to integrate different parts to develop a “complete” NIDS. This is
because some techniques applied to header classification may not be directly ap-
plicable to payload matching and vice versa. There is currently limited research
into the area of complete hardware NIDS, that is, those that can integrate both
header and packet filtering [10,11]. In this paper, therefore, we aim to develop
a complete NIDS using a uniform technique which will strengthen and improve
integration.

2.1 Profiling of Network Intrusion Detection Systems

Earlier security measures were mainly concentrated on the packet header clas-
sification, but as technology has developed, such security measures, if employed
on their own, are not enough to guard against evolved attacks.
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Current security systems have now extended to allow the examination of
packet payload content as an extra precaution, and this allows recognised pat-
terns or attack signatures, of intrusions to be easily detected. The attack sig-
natures are represented as strings, and are used to match against the packet
payload content by the NIDS.

In this section, a study is carried out for two NIDS: one for software and one for
hardware. The motivation behind this study is to strengthen the understanding
of NIDS and to aid its development. Further, this study should prove that it is
necessary to develop NIDS in hardware, rather than software, for performance
considerations.

Software NIDS. Snort is one of the most popular software-based NIDS sys-
tems, deployed as a security measure on many real-world networks [1]. It is
Open-Source Software (OSS) so its source code is freely available, allowing any
interested party to study, modify and improve its methods. Snort is supplied
with a database of the attack signatures of many known attacks, and matches
the payload of incoming packets against this database: packets with payloads
that match those of malicious packets will be rejected.

Hardware NIDS. Although the performance of a hardware implementation
will, in general, exceed that of software, there are still many constraints that
must be taken into account when designing an NIDS. The main constraint within
hardware (FPGA) is its area resource.

Hardware NIDS has been implemented through several stages [9], starting
with the Snort signature list, and culminating in a compact representation of
the signatures. The implementation runs at a rate of approximately 2.5 Gbps.
The entire SNORT rule set was implemented on the FPGA platform with around
12% of the area on a Xilinx XC2V8000 FPGA. Although the design in runs at
high speed, it does not perform header classification.

It has been shown how FPGA based multiprocessors can be used to increase
the performance of network applications [10]. The system was demonstrated per-
forming rule processing in reconfigurable hardware. They achieved a processing
rate of 2.5 Gbps, with a suggestion that 10 Gbps is also possible with the most
recent FPGA chips, such as the Virtex4.

Another design [11] combines and optimises the TCAM and Bit Vector algo-
rithms for packet header classification in NIDS. The throughput of the design
is also approximately 2.5 Gbps, with a combination of Block RAMs (BRAMs)
and FPGA logic used for the implementation.

2.2 Snort

Snort is profiled using a Linux-based profiling tool called GProf[3]. Snort was
compiled and linked with optimisations, and profiling enabled, in order to profile
it with GProf. Then the execution of Snort is carried out as a normal execution,
and GProf collects the data and outputs it at the end of execution. The result
of most interest to us is the call graph, which provides the number of times a
function in the program is called. Snort 2.4.0 was executed in NID mode with
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several different tcpdump data sets; some of these data sets were obtained from
[14] and contained packets of a malicious nature.

The Snort system can be divided into five parts which carry out the main
functions. Here we focus mainly on the Packet Decode and Detection Engine;
interested readers can consult [1] for more details.

Packet Decoder. The Packet Decoder decodes the captured packets and iden-
tifies set pointers to all the different parts of information needed for the detection
phase. The packet decoder decodes the packet through the protocol stack, from
the Data Link layer up through to the Application layer. The decoding routine
is to decode the Data Link frame (the medium that the packet came from, i.e.
ethernet), then it decodes the IP protocol, and it also decodes the TCP/UDP
packet left at the end.

Detection Engine. The detection engine takes the packet data from the packet
decoder and preprocessor, and performs the detection process. The match of
signature to packet is done on the transport and application layers. The matching
on the transport layer is generally for checking the source and destination IP
addresses and ports, or even the flags if it is TCP protocol. The application layer
is for matching the payload in the packet to the attack signatures; this matching
process employs the Boyer-Moore Search Algorithm [6].

Results. Table 1 shows the results of Snort analysis of several different tcp-
dump data sets. These data sets contain packets with activity ranging from a
distributed denial of service attack run by a novice attacker (LLDOS 1.0) and a
second more stealthy DDOS attack (LLDOS 2.0.2), inside sniffing (2000 Inside)
and outside sniffing (2000 Outside)[14]. There is also a data set with no mali-
cious packets (Pack100000 & Pack1000000), were captured on a student machine
connected to the ethernet network in the Department of Computing at Imperial
College.

Table 1. Processing Speed of Snort

Dataset Processing Speed (Mbps)
1998 DARPA 105
2000 Inside 60
2000 Outside 57
LLS(DDoS) 1.0 DMZ 38
LLS(DDoS) 1.0 Inside 21
LLS(DDoS) 2.0.2 DMZ 45
LLS(DDoS) 2.0.2 Inside 44
Pack100000 22
Pack1000000 44

There is a small variation in the processing speed of Snort, as with the different
data sets, there are different characteristics, and so the behaviour of Snort in
each execution is quite different. The processing speed of snort is generally below
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Table 2. Result for profiling of Snort

Operation Percentage of Execution Time
Alert/logging 8
Decode Frame, Packet 25
Payload matching 51
Miscellaneous 4
Preparation for rules and pattern 4
Preprocessing of packet 8

100Mbps, regardless of whether or not the data set contains malicious packets.
The average processing speed of Snort reported is approximately 48Mbps.

Table 2 shows the percentage of the total execution time for each phase in
Snort. The phase that uses up most of the execution time is the payload matching
phase. The decoding phase uses the second most execution time, but only half the
time of the payload matching process. The preprocessing phase and alert/logging
phase both took approximately 8% of the execution time, and preparation for
rules/patterns and miscellaneous items took approximately 4%.

The high execution time for decoding is a result of decoding every packet
received, unlike other phases. The payload matching is not necessarily performed
on all packets, but rather depends on the result of the decoding phase. The result
of this profiling shows that the decoding and payload matching phases of Snort
are ideal for optimisation, as the execution times are longer than other phases.
In a hardware implementation, the decoding phase would be eliminated and its
function would be integrated into the detection or payload matching phase.

3 A Uniform Hardware NIDS

This section presents the UNITE architecture. It adopts a uniform way of com-
puting both header classification and payload signature detection utilising a
Content Addressable Memory (CAM), which is optimised by techniques based
on Binary Decision Diagrams (BDDs).

3.1 Design

In NIDS, some rules are often specified in terms of both header and payload. In
the header section, it defines which IP source/destination address and port, and
protocol to match against the packet’s header. In the payload section, it defines
the pattern that this rule is looking for in the packet’s payload.

In the case of the header, the required fields will be located at the beginning of
the IP packet and will be the same in every packet that arrives, with the fields of
a fixed length. However, the signature being searched for in the payload will not
always be in the same position, nor will it be of a fixed sized. Due to these differ-
ences, most research focuses on either header classification or payload matching.

Figure 1 shows a block diagram of the construction of the UNITE struc-
ture. The process, consisting of 5 stages, performs both header classification and
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Fig. 1. An overview of our UNITE device

payload signature extraction utilising a Content Addressable Memory (CAM)
which is optimised by techniques based on Binary Decision Diagrams (BDDs).

Stage 1. This stage, takes the intrusion detection (in this case Snort) signature
list and parses the header and payload security requirements into a simple list
of strings for the matching engine. The wildcard (or don’t cares) option in the
header section of the rules is a characteristic that can result in large BDDs.
To combat this explosion in the BDD, we perform a preprocessing step on the
rules. This preprocessing step groups the rules into smaller groups that exhibit
the wildcards in the same field of the rules. In this way, the resulting BDDs with
the wildcard options are shared between as many rules as possible, minimizing
their impact on the overall hardware size.

Stage 2. This stage, corresponding to the second block in Figure 1, converts
the strings into a boolean expression, from which a reduced ordered binary de-
cision diagram is generated. The string is converted to boolean expression by
taking the ASCII value of each character as a parameter, then constructing an
BDD representation. After all string has been converted to BDDs, the com-
mon and non-common bits of all the BDD are extracted, which are then used to
build smaller BDD structures, consequently achieving a more compact hardware
implementation.

Stage 3. This stage (third block in Figure 1) uses look up tables to implement
an CAM. The circuits that are to be implemented are based on the common and
non-common tree structures extracted from the second stage above.

Stage 4. This stage uses additional BDD manipulations on the non-common
BDDs obtained in Stage 2 to further reduce the logic required in the hardware
implementation. This is achieved by manipulating the two branches separately
and further finding common and non-common bits within each branch to further
reduce the size of the BDD structure of each branch. This stage and stage 5,
both correspond to fourth block in Figure 1.

Stage 5. This final stage logically connects all sub circuits built in previous
stages in order to generate an BDD-based CAM structure, which then is im-
plemented in hardware in a highly condensed form, resulting in a much smaller
area resource consumption.

Figure 2 shows the BDD representation of the non-common bits of a sim-
ple rule set (Figure 2(a)) and the corresponding LUT-based architecture
(Figure 2(b)). This design results from applying stages 1 to 3 and stage 5 to
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the original BDD representation of the rule set. Figure 3 illustrates a typical end
result of applying all five stages to the simple rule set. The labels High Branch
and Low Branch relate to the optimisation phase in stage 2. In Figure 2(a), each
node in the BDD leads to another node or two different nodes, and in the case
where a node, x (node 3 in Figure 2) leads to two different nodes, y and z (the
two node 6 in Figure 2), a logic ’0’ (the Low Branch) from node x leads to node
y, and a logic ’1’ (High Branch) from node y leads to node z. Therefore, the two
branches stem from the further optimisation of the non-common BDD stated
in stage 4. Note that since we adopt a uniform way in optimising header clas-
sification and payload matching, we obtain better results than using different
methods in optimising them.
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Fig. 2. Optimisation of BDD representation

For the technique to work, we only need to shift the payload section of the
rules, but keep the header fields fixed. To achieve this, we developed an interface
(shown in Figure 4) to the UNITE device which we use to keep the header section
fixed, while still shifting the payload.

3.2 Implementation

We develop a system capable of both header classification and payload matching,
using a combination of software and hardware.

The board used is the Xilinx University Program (XUP) board[15] with a
XC2VP30 [2] FPGA chip, and it consists of multiple cores which are used in
this project. The cores of most interest are: PowerPC (PPC) processor [2],
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Ethernet controller [13], and the FPGA chip. Figure 5 illustrates the communi-
cation between the different components of the system.

The main use of the PPC processor is to run programs, written in C, to access
and utilise both the FPGA logic and the ethernet controller. The PPC processor
is used to receive ethernet frames from the ethernet port through the use of the
EMAC core, and then to disassemble the ethernet frame and extract different
fields from the frames (source/destination address and port, and protocol). These
fields are of particular importance because they will be used as input to the
UNITE device. The payload is then identified and extracted, and also used as
input to the UNITE device.

The Xilinx library functions provide a set of functions which allow the user
to manipulate the EMAC core. These functions include the ability to:

– start and stop the device,
– set the MAC address of the device,
– collect statistics of the device,
– set the receiving mode of the device(e.g broadcast, unicast).
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4 Performance Evaluation

In this section, we present the results for both area resource and timing of the
UNITE device.

Testing Methods. The testing framework provides methods for the user to run
various tests on the device. For testing, a user may wish to use “real” packet
data to test the NIDS rather than reading in made up data in memory as input.

The testing framework uses a Linux program called Packit[12] to create the
input data for testing. Packit is an ethernet frame construction and injection
tool, and is capable of creating an ethernet frame and inject/send it down the
physical ethernet interface. Packit can construct the packet from the data link
layer through the network layer to the transport layer. The network layer and
the transport layer are of most interest to us because network layer contains the
IP addresses and the transport layer contains the source and destination ports.
Users can specifies the IP addresses and ports to be the value they required as
long as the value for the IP addresses and ports are of valid value within the
protocol. The user can also specify the payload content for the packet to send.

One drawback of Packit is that it does not provide a function to create random
payload. To overcome this drawback, a script was written to generate random or
user-defined payload content for the packets and then pass the payload generated
to Packit. The script can also be used for stress testing, and this is done by using
loops to repeatedly generate random or user-defined packets and then send them
to the NIDS using Packit. The user can specify how often the script sends user-
defined packets to the UNITE device in between randomly generated packets.
The user can also specify the interval between sending each packet to the UNITE
device and also the total number of packets sent to the UNITE device.

Area. The UNITE implementation was compiled for a number of rule sets pro-
vided by Snort. The result for area resource usage is on average 0.82 Lut/Byte.
This is in contrast to the 0.6 Lut/Byte ratio achieved in [9], an increase of 0.22.
This is acceptable, since [9] does not perform header classification. The area re-
source usage in [10,11] is not comparable to UNITE as their implementation uses
a combination multiple FPGA and BRAMs in order to perform the complete
NIDS detection, but our UNITE only makes use of one FPGA platform.

Speed. In order to process the entire payload, it is shifted and passed to the
device to perform matching again. The shifting and matching phase is repeated
until the end of payload, or when the payload has an exact match to the rule
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Table 3. Area result for UNITE implementation

Snort Number of Total Number Number of Luts/Byte
rule set Rules of Byte of LUTs
Finger 13 203 132 0.65
ICMP 11 488 507 1.03
Oracle 22 547 498 0.91
Porn 26 595 521 0.88
X11 2 54 34 0.63

Table 4. Result for profiling of UNITE device

Operation Average Number of Percentage of
Clock Cycles Execution Time

Frame Capture 3311 66
Frame Decoding 1147 23
Data Transfer through Bus 336 7
Packet Matching 182 4

Table 5. Comparison between different designs of NIDS

Header & Payload Area Throughput
(Logic/Byte) (Gbps)

UNITE Both 0.82 2.85
BCAM[9] Payload only 0.6 2.5

WashU Rule Processor[10] Both 3.16 2.5
TCAM & BV[11] Both 2.16 2.5

Snort[1] Both - <1

set. The implementation of the UNITE device is pipelined, so this shifting and
matching process will only increase the execution time by 1 clock cycle per 1
byte shifted.

An example UNITE device was implemented for the rule set of ICMP. The
size of the header information is 12 bytes and the shortest payload pattern to
match is 8 bytes of payload, hence needing 1455 shift operations if the 8 bytes
pattern is at the very end of the maximum payload size, resulting in a total
execution time of 1455 clock cycles. The clock rate for the implementation is
356MHz, and the processing speed of the device is 2.848Gbps.

Table 4 shows the results of profiling UNITE. However, only the packet cap-
ture and detection phase has been implemented in hardware, with software being
used as an aid to provide the extraction of the header fields and the payload to
the UNITE device.

The packet matching phase only used up 4% of the total execution time; this is
a very good result because it shows that the hardware element of the system uses
much less time than other software phases. This provides a major motivation in
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migrating the design for other software parts into hardware implementation. The
migration of software parts to hardware implementation will not only improve
the speed of execution, but will also eliminate some of the communication phase,
e.g. data transfer through bus, between hardware and software if all software
elements are eliminated. In Table 5, we show the merits between different designs
of NIDS.

5 Conclusion

This paper describes UNITE, a novel network intrusion detection engine which
adopts a uniform hardware architecture to perform both header classification
and payload and payload signature extraction. Both CAM and BDD techniques
are used in optimising the sharing of resources in this architecture.

UNITE achieves higher processing speeds than Snort, and also shows compa-
rable performance to the designs in [10,11], which also support header classifi-
cation and payload matching. However, UNITE is developed on a single FPGA,
whereas the designs in[10,11] uses multiple FPGAs and BRAMs for their impl-
mentation.

We have shown that the UNITE architecture, with its simplicity and scala-
bility, has significant potential. Its performance can be further enhanced by two
means: first, arranging for multiple engines to process packets in parallel, since
currently each engine only takes around 10% on an advanced FPGA; second, to
migrate functions currently implemented on the processor to the FPGA, so that
both the software processing speed and the hardware/software interface will no
longer have an impact on performance for the UNITE approach.
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Abstract. Loop unrolling is the main compiler technique that allows
reconfigurable architectures achieve large degrees of parallelism. How-
ever, loop unrolling increases the area and can potentially have a neg-
ative impact on clock cycle time. In most embedded applications, the
critical parameter is the throughput. Loop unrolling can therefore have
contradictory effects on the throughput. As a consequence there exists,
in general, a degree of unrolling that maximizes the throughput per unit
area.

This paper studies the effect of loop unrolling on the area, clock speed
and throughput within the ROCCC, C to VHDL compilation framework.
Our results indicate that due to the unique design of the ROCCC com-
pilation framework, FPGA area either shrinks or increases at a very low
rate for the first few times the loops are unrolled. This reduced area
causes the clock cycle time to decrease and thus a great gain in through-
put. Our results also show that there are different optimal unrolling
factors for different programs.

1 Introduction

Loop unrolling is the main compiler technique that allows reconfigurable ar-
chitectures achieve large degrees of parallelism. Loops that do not carry de-
pendencies from earlier iterations can theoretically be fully unrolled to achieve
maximum parallelism. However due to the adverse impact of loop unrolling on
clock cycle time, there exists, in general, a degree of unrolling that maximizes
the throughput per unit area. Since in most embedded systems, the critical pa-
rameter is the throughput, this implies that there should be different optimal
unrolling factors for different programs.

This paper studies the effect of loop unrolling on the FPGA area, clock speed
and throughput within the ROCCC C to VHDL compiler framework. Our results
indicate that the consumed FPGA area either shrinks or grows at a very low
rate for the first few times the loops are unrolled. In most cases, decrease in area
leads to a decrease in the clock cycle time thus a great gain in throughput. Such
results indicate that a design space exploration in the loop-unrolling factor vs.
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performance would indicate an optimal number of times to unroll for maximum
throughput.

The impact of loop unrolling on FPGA area has been reported in [1] and
[2]. Crowe et. al. [1] implements a AES symmetric key cryptosystem, SHA-512
secure hashing algorithm and a public key cryptography algorithm on a single
FPGA. The area increases from no unrolling to an unrolling factor of 2 by 15%
and to an unrolling factor of 4 by 75%. Park et. al. [2] implements binary image
correlation on an FPGA which is used in template matching computations in
image processing systems. Binary image correlation operates a window over a 2D
array. This study reports FPGA areas for unrolling factors of 2x16, 4x16, 8x16
and 16x16. The overall area increases less than 50% and the area of the datapath
shrinks, when the design is moved from no unrolling to an unrolling factor of 2.
For unrolling factor 4x16, the area increases by little over 50% compared to no
unrolling and their datapath area increases around 25%.

Both of the above studies did not report generating their VHDL from high-
level languages, whereas in our work the VHDL is generated using our ROCCC,
C to VHDL compiler system. Both [1][2] included the areas of the entire data-
path, the controller logic and the memory interface area in their results. Our work
reasons about the advantages of our ROCCC system that lead to the shrinkage
of area on the FPGA. We give a breakdown of the area as the loops are unrolled
and how the FPGA real estate is allocated between two main components of our
design: 1) the datapath & the controller and 2) the smart buffer, which helps
maximize data reuse across iterations.

This paper is organized as follows. Next section describes the ROCCC sys-
tem. Section 3 talks about the experimental setup and results. Section 4 talks
about other existing HLL to HDL compilers. Finally, Section 5 concludes the
paper.

Fig. 1. ROCCC system overview

2 The ROCCC System

ROCCC is a compiler system built on top of the SUIF2 [3] and MACHSUIF [4][7]
compiler infrastructures. The ROCCC system, shown in a diagram in Figure 1,
is composed of two main components: a front-end that applies the high-level
transformations and a back-end that handles the low-end optimizations as well
as the VHDL code generation. The objectives of the ROCCC optimizations are
threefold:
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1. Parallelism. Maximize the throughput by exploiting the largest amount of
loop and instruction level parallelism within the resource constraints of the
FPGA.

2. Storage. Optimize the use of on-chip storage by effecting smart re-use of
data and minimizing the accesses to memory.

3. Pipelining. Generate an efficient, pipelined datapath within the resource
constraints in order to minimize clock cycle time.

Among the main strengths of the ROCCC system is the number of loop-level
transformations it implements. The ROCCC system currently performs the fol-
lowing loop transformations: Invariant code motion, partial and full loop un-
rolling, loop peeling, loop un-switching, loop tiling, strip-mining and loop fusion.
At the procedure level ROCCC performs the following optimizations: Constant
propagation of scalars and constant array masks, constant folding, elimination
of algebraic identities, copy propagation, dead and unreachable code elimina-
tion, code hoisting, code sinking, scalar renaming and division by constant ap-
proximation using shifts and additions. ROCCC also generates reduction on
scalars that accumulate values through associative and commutative operations
on themselves. Although some of the above analysis/passes exists inside the
SUIF2 framework, we wrote our own passes to be able to easily gather and
annotate the IR with all the ROCCC specific information. Our analysis and op-
timization passes use the high-level IR in SUIF2, where all the control structures
and arithmetic expressions are preserved as close to their format in the original
source code as possible.

Once the above passes are executed, the optimizer output is then analyzed
and prepared to generate the data-path and controller information. There are
few passes that ROCCC runs on the optimizer output to extract and format the
datapath of the loop bodies. These passes are as follows:

– Scalar I/O detection: This pass marks all scalar variables that are com-
puted or updated with in the loop body and referenced by the rest of the
code once the loop completes execution.

– Scalar replacement: This pass decouples array accesses from computation.
Figure-2(b) shows the moving filter code after the scalar replacement pass.
The middle code block is isolated from memory accesses and is used to
form the datapath. The top array read and bottom array write chunks are
analyzed to form the smart buffer [18], address generation and the controller
circuits.

– Feedback variable detection: This pass annotates the scalar variables,
which are dependent upon their values from the loop’s previous iteration.

The extracted datapath code is then transferred to Machine-SUIF IR, where
most of the instruction level parallelism is brought up and pipelines are formed.
We modified Machine-SUIF’s virtual machine (SUIFvm) IR to build our data
flow. All arithmetic opcodes in SUIFvm have corresponding functionality in
IEEE 1076.3 VHDL with the exception of division. Machine-SUIF’s existing
passes, like the Control Flow Graph (CFG) library [8], Data Flow Analysis li-
brary [9] and Static Single Assignment library [10] provide useful optimization
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void main(){
int sum_of_9, i;
int A[256], X[256];
for(i = 0; i < 247; i=i+1) {

sum_of_9 = A[i] + A[i+1] + A[i+2] + A[i+3] + A[i+4] +
A[i+5] + A[i+6] + A[i+7] + A[i+8];

X[i] = sum_of_9 / 9;
}

}

(a) 9-tab Moving filter

for(i = 0; i < 246; i = 2+i) {
A0 = A[i]; A1 = A[1+i]; A2 = A[2+i]; A3= A[3+i]; A4 = A[4+i];
A5 = A[5+i]; A6 = A[6+i]; A7 = A[7+i]; A8 = A[8+i]; A9 = A[9+i];

sum_of_9 = A0+A1+A2+A3+A4+A5+A6+A7+A8;
TO = (sum_of_9>> 12)+(sum_of_9>> 11) +(sum_of_9>> 10)+

(sum_of_9>> 6)+(sum_of_9>> 5) +(sum_of_9>>4);
sum_of_9 = A1+A2+A3+A4+A5+A6+A7+A8+A9;
T1 = (sum_of_9>> 12)+(sum_of_9>> 11) +(sum_of_9>> 10)+

(sum_of_9>> 6)+(sum_of_9>> 5)+(sum_of_9>> 4);

X[i] = T0;
X[1+i] = T1;

}

(b) Moving filter loop after being unrolled twice, and applied the
constant folding, division by constant elimination and scalar

replacement transformations

Fig. 2. Moving filter code before and after ROCCC transformations

and analysis tools for our compilation system. Our compiler at this level auto-
matically places latches in the data flow graph to pipeline the datapath.

ROCCC analyzes the array accesses at the SUIF2 level and generates the
smart buffer, which is a storage mechanism that helps minimize the accesses to
off-chip memory bandwidth for programs that operates on windows sliding over
arrays such as signal/image processing applications. The smart buffer stores the
input data for future iterations and removes old data to save room for new input
data.

The controllers generated by ROCCC include address generators, which ex-
port a series of memory addresses according to the memory access pattern of the
loop, and a higher-level controller, which controls the address generators. They
are all implemented as pre-existing parameterized FSMs (finite state machine)
in a VHDL library.
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3 Experimental Evaluation

3.1 Experimental Set-Up

We used Xilinx ISE 6.2.03i to synthesize and place-and-route the generated
VHDL code. Our target was the Xilinx Virtex-II xc2v8000-5 FPGA. We used
five benchmarks to collect our data. fir5 and fir15 are 5-tap and 15-tap constant-
coefficient finite-impulse-response filters and mf9 is a 9-tap moving average filter.
fir5, fir15 and mf9 all operate on one-dimensional arrays. dwt (Discrete Wavelet
Transform) is part of the JPEG 2000 compression standard. It is a doubly nested
loop operating on a 5x3 block of pixels. mvc computes the first step of the three
step Moravec corner detection algorithm, which computes the variance of the
center pixel within a 3x3 window of 9 pixels. Being image-processing kernels,
both dwt and mvc operate on 2D arrays.

fir5, fir15, mf9, dwt and mvc are all kernel loops. The source codes are di-
rectly read into the SUIF2 intermediate format and the ROCCC optimizations
described in the previous section are applied. Further, we assumed that the I/O
bandwidth between the datapath and the on-chip memory is sufficient, when
performing unrolling, since the required data bus width increases with unrolling.
The 1-D benchmarks are unrolled for 2, 4, 8 and 16 times. mvc is unrolled for
2x2 and 4x4 times. Finally, the dwt code is unrolled at different unrolling factor
combinations ranging from 1 to 8 in powers of 2 in either dimension. un1, un2,
un4 and un8, un16 labels on the figures indicate the unrolling factors of none,
2, 4, 8 and 16 for benchmarks operating on one dimensional arrays and unxXy
labels indicate an unrolling factor of x applied to the outer loop and an unrolling
factor of y to the inner loop respectively. We collected data for 8-bit data size.
The reported area and clock frequency results are place-and-route results.

3.2 Area

Figure three displays our area results for our benchmarks that execute on one-
dimensional arrays. The area results on these figures show the combined areas
of the datapath, the controller and smart buffers. As the results indicate, the
overall area shrinks from the original version to un2, even un4 for some cases
such as that of mf9. In figure three (b) and (c) the not unrolled cases are not the
minimal area points. This fact shows that there exist optimal times to unroll.

Figure four (a) shows the results of unrolling a dwt code. Note that an un-
rolling of 8x8 means that the 5x3 block is replicated eight times in each direction.
In other words 64 windows of 5x3 are operated simultaneously. From no unrolling
to 64 concurrent loops the area grows by 12 while the throughput grows by 16
in spite of the clock cycle time being about twice as long. Here also it seems that
the 1x2, 2x2, 2x4, 4x4 and 4x8 unrolling factors achieve a better throughput per
area. Note that the 8x8 unrolling achieves a throughput of 240 MegaPixels/sec,
which is more than twice the rate necessary for high-definition TV.

Moravec’s pixel variance computation kernel results indicate an almost linear
increase in area. However, for this example the operator has a doubly nested
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(a)

(b)

(c)

Fig. 3. Area, clock frequency and throughput for (a)fir5, (b)fir15 and (c)mf9
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(a)

(b)

Fig. 4. Area, clock frequency and throughput for (a)dwt and (b)mvc

loop, as does the DWT code. Thus, the unrolled version operates not just on
one more set of input data as it would be over a 1-D array, but three more sets
of input data since it is twice unrolled towards both directions over a 2-D array.

3.3 Breakdown of the FPGA Area

Table-1 shows the slice and percentage breakdown of the FPGA area into data-
path, smart buffer and controllers. To produce the table, we first mapped the
entire circuit on to the FPGA, which gave us the results in figures three and four.
Since place and route merges the circuits to use the FPGA area as efficiently
as possible, it is not possible to distinguish which slices on the FPGA belonged
to which component of the design. Thus to be able to obtain an estimate of
the area breakdown, we separately mapped the datapath and the smart buffer
circuits on to the FPGA, through which we obtained areas of the datapath and
smart buffers. Then, to obtain the controller area we summed up the datapath
and the smart buffer results and subtracted it from the total area shown in
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the figures. Obviously, this procedure would not give a correct area estimate of
the area occupied by the control logic - the subtraction operation resulted in
negative computed area values in some cases as in the case of fir15 -, however
it adequately shows where the reduction in area came from. We did not see it
necessary to map the controllers separately, since the areas of the controllers
stay around the same due to the fact that the controllers are all implemented as
pre-existing parameterized FSMs in a VHDL library, whose size does not depend
on the unrolling factor.

Table 1. The Area Breakdown (8-bit)

Datapath Smart Buffer Control Logic Total
slices % slices % slices % slices

Fir5

un1 42 17.8 172 72.9 22 9.3 236
un2 80 29.5 164 60.5 27 10.0 271
un4 159 40.2 201 50.8 36 9.1 396
un8 317 51.2 250 40.4 52 8.4 619
un16 769 54.6 483 34.3 157 11.1 1409

Fir15

un1 168 13.7 1086 88.9 -32 -2.6 1222
un2 310 28.6 721 66.5 54 5.0 1085
un4 604 49.9 528 43.6 79 6.5 1211
un8 1186 66.9 490 27.7 96 5.4 1772
un16 2358 74.2 566 17.8 254 8.0 3178

Mf9

un1 45 6.5 620 89.5 28 4.0 693
un2 83 16.1 406 78.5 28 5.4 517
un4 166 31.6 324 61.6 36 6.8 526
un8 332 42.5 399 51.0 51 6.5 782
un16 662 49.7 513 38.5 156 11.7 1331

Moravec
un1x1 33 7.0 181 38.3 258 54.7 472
un2x2 133 17.1 368 47.4 275 35.4 776
un4x4 532 33.3 714 44.7 352 22.0 1598

DWT 5x3

un1x1 205 23.7 425 49.1 235 27.2 865
un2x1 351 31.1 496 43.9 283 25.0 1130
un1x2 338 31.9 515 48.5 208 19.6 1061
un2x2 590 40.4 618 42.3 252 17.3 1460
un2x4 1068 49.3 750 34.6 347 16.0 2165
un4x4 2003 57.5 996 28.6 487 14.0 3486
un8x4 3875 63.1 1498 24.4 767 12.5 6140

We could not collect the smart buffer’s place and route data, for the case of
DWT unrolled 8x8 times, due to the fact that the smart buffer’s ports exceeded
the chip I/O capacity. When the smart buffers are mapped together with the
datapath and the controllers, smart buffers’ I/O ports become just on-chip wires
connected to the datapath and the controllers.

According to the figures in Table-1, the circuit area of the datapath increased
almost at a linear rate, although it is known that loop unrolling introduces more
opportunities for optimizations especially on the datapath. The reason for the
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Fig. 5. 5-tap-FIR in C

Fig. 6. Windows No.0, No.1 and No.6 in the smart buffer for the not unrolled 5-tap-FIR
(left) and the windows No.0, No.1 and No.4 in the smart buffer for the twice-unrolled
5-tap-FIR (right)

linear increase is that all the data path codes are mapped after being decoupled
from all memory accesses, all address computation code, and being applied an
extensive set of procedure level optimizations.

The gain in area on the FPGA comes mainly from the shrinkage of the circuit
size of the smart buffers due to its unique design. Smart buffer organizes the
data that is received from the memory in windows. Each window has its own
control logic enabling when and which sets of windows are to be exported to the
datapath. For the un1 case, the number of windows in the smart buffer is large,
although anytime only one of the windows is active. When we unroll the loop,
the buffer size increases to hold more loops of input data, however the control
logic cost decreases since the number of windows decreases due to the increase
in the window size. Window size represents the amount of data that has to be
dispatched to the datapath per clock cycle. Since the control logic size diminishes,
the overall area for the smart buffer decreases.

To illustrate, if the not unrolled 5-tap-FIR in Figure-5 has a smart buffer
whose size is seven words (Figure 6), then every five words constitutes a window,
since the loop stride is one. Thus, this seven-word smart buffer contains seven
windows. In Figure 6-left (a), (b) and (c) shows the No. zero, No. one and No.
six windows. However, at any clock cycle at most one window’s data is valid.
The inactive words in the smart buffer could be receiving new data while the
active window is sending its data to the datapath. To illustrate better, Figure
6-right shows smart buffer for the twice unrolled 5-tap-FIR. If we say the smart
buffer size is two-word larger than the not-unrolled one, then, since and the loop
stride is two, the size of each window is now six-word. Therefore inside the buffer
in Figure 6-right, there are only five windows in total. Although the buffer size
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increased a bit, the number of windows decreases and so does the control logic.
As a result, the overall area shrinks due to the control logic shrinkage.

3.4 Clock Cycle and Throughput

A circuit’s clock rate is affected by many factors. The smaller a design is, the
easier it is for the synthesis tool chain to generate a faster circuit for it. The
data points on the figures where clock frequency increases are the points where
the design area shrinks. However, the overall decrease in clock speed for higher
unroll factors should not be taken as that the overall throughput is decreasing.
The number of parallel iterations generated by high unroll factors imply that the
number of outputs generated per clock cycle on a pipelined datapath increases.
Thus, the effect of the clock rate decrease with increased unrolling is overcome
with the increased parallelism in the unrolled codes.

4 Related Work

Many projects have worked on translating high-level languages into hardware
using various approaches. SystemC [12] is designed to provide roughly the same
expressive functionality of VHDL or Verilog and is suitable to designing software-
hardware synchronized systems. Handel-C [13], a low level hardware/software
construction language with C syntax, supports behavioral descriptions and uses
a CSP-style (Communicating Sequential Processes) communication model.

SA-C [14] is a single-assignment, high-level, synthesizable language. Because of
special constructs specific to SA-C (such as window constructs) and its functional
nature, its compiler can easily exploit data reuse for window operations. SA-C
does not support while-loops. ROCCC compiler transforms the IR into single-
assignment form at back-end. Users are not required to write algorithms in a
single-assignment fashion.

Streams-C [15] relies on the CSP model for communication between processes,
both hardware and software. Streams-C can meet relatively high-density control
requirements. The compiler generates both the pipelined datapath and the cor-
responding state machine to sequence the basic and pipeline blocks of the data-
path. ROCCC supports two-dimensional array access and performs input data
reuse analysis on array accesses to reduce the memory bandwidth requirement.
Streams-C does not handle 2D arrays.

The DEFACTO [16] system takes C as input and generates VHDL code. It
allows arbitrary memory accesses within the datapath. The memory channel
architecture has its FIFO queue and a memory-scheduling controller. ROCCC
has abundant loop transformations to increase parallelism and performs data
reuse using the smart buffer.

GARP’s [17] compiler is designed for the GARP reconfigurable architecture.
The compiler generates a GARP configuration file instead of standard VHDL.
GARP’s memory interface consists of three configurable queues. The starting
and ending addresses of the queues are configurable. The queues’ reading actions
can be stalled. The GARP-C compiler is specific to the GARP reconfigurable
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architecture while ROCCC targets commercial available configurable devices and
generates synthesizable VHDL. GARP does not handle 2D arrays.

SPARK [11] is another C to VHDL compiler. Its optimizations include code
motion, variable renaming and loop unrolling. The transformations implemented
in SPARK reduce the number of states in the controller FSM and the cycles on
the longest path. SPARK does not perform optimizations on input data reuse.
Thus, ROCCC explores more parallelism than SPARK. ROCCC performs loop
pipelining if there are no loop carried dependencies. SPARK handles 2D arrays
by converting them into a one-dimensional array and computes memory ad-
dresses on the datapath, however ROCCC decouples computation from address
calculation using scalar replacement.

CASH [19] is a C to Verilog compiler that generates a hardware dataflow ma-
chine that directly executes the input program. It targets asynchronous ASIC
implementations. Catapult C [20] is a C++ to RTL compiler that generates hard-
ware for ASICs/FPGAs. The compiler performs loop unrolling, loop pipelining
and bit-width resizing. ROCCC harnesses its smart buffer architecture to in-
crease the throughput by reusing input data.

Compared to previous efforts in translating C to HDLs, ROCCC’s distinguish-
ing features are its emphasis on maximizing parallelism via loop transformations,
maximizing clock speed via pipelining and minimizing area and memory accesses,
a feature unique to ROCCC. ROCCC handles 2D arrays and can optimize mem-
ory accesses for window operations. On an image processing code operating over
an image using a 3x3 window, unrolling and reusing of already fetched data
from the smart buffers reduces the memory re-fetches from 800% (without any
optimizations) down to 6.25% (when the unrolling factor is 32x32).

5 Conclusions

Compilers for reconfigurable architectures achieve parallelism through unrolling
and optimizing the kernel loops inside source codes. This paper studied the effect
of loop unrolling on the FPGA area within the ROCCC compiler system. Our
results indicate that the relation between the unrolling factor and the overall area
growth on the FPGA is non-linear for the ROCCC, C to HDL compiler. This
indicates that for systems where area is a constraint, using ROCCC’s technology
designers can gain more throughout with less area applying loop unrolling. We
observed that overall FPGA area either shrinks or increases at a very low rate
for the first few times the loops are unrolled. This shows that there are different
optimal times to unroll for different programs.
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Abstract. Virus detection at the router level is rapidly gaining in importance. 
Hardware-based implementations have the advantage of speed and hence can 
support a large throughput. In this paper we describe an FPGA-based 
implementation of the Bloom filter virus detection code that is compiled from 
the native C to VHDL and mapped onto a Virtex XC2V8000 FPGA. Our results 
show that a single engine tailored for handling virus signatures of length eight 
bytes can achieve a throughput of 18.6 Gbps  while occupying only 8% of the 
FPGA area. 

1   Introduction 

Studies on economic impact of computer viruses have shown that global businesses 
incurred an estimated $55 billion in damages during the year of 2003 [12]. The report 
also estimates that the monetary losses due to viruses could further increase in the 
forthcoming years. Therefore, containing new virus outbreaks is one of the greatest 
challenges facing networks and organizations. One way to control virus outbreaks is 
to scan for viruses at the router/interconnection points. Packets generated from 
infected files contain signatures, which are strings that uniquely identify the presence 
of malicious code in an incoming packet. Signatures could be distributed anywhere 
within a packet or across packets. By accurately identifying signatures in incoming 
packets, malicious packets could be blocked at the router level, thereby making the 
networks more secure. 

Speed is the greatest concern while handling packets at the routers and hence, any 
router-level signature detection mechanism should be capable of identifying 
signatures accurately at high throughputs. This could be accomplished by a dedicated 
hardware (ASIC or FPGA) that inspects packets in parallel to detect signatures. 
Advances in high density FPGAs have provided designers with a viable commercial 
alternative to ASICs. Unlike ASICs, FPGAs do not require a prohibitively high cost 
of mask production. 

In this paper, we present ROCC, a C to native VHDL compiler framework. We 
demonstrate this tool by using it to generate hardware for Bloom-filter based virus 
detection. Our compiler framework can be easily adapted to accommodate new 
algorithms for virus detection and our generated hardware achieves multi-gigabit 
throughputs. Our contributions in this paper can be summarized as follows. This 
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paper presents the first work in which a Bloom-filter based virus detection system is 
automatically generated from C code. We illustrate that automatic code generation is 
a feasible option in terms of the performance and area utilization of the FPGA. Our 8-
byte Bloom filter code delivers a throughput of 18.6 Gbps while occupying a modest 
chip area of 8%.  
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optimizations 

User-input C

Operation-level analyses, 
transformations and 

optimizations 

Intermediate C

Front-end 

Synthesizable 
VHDL 

Back-end 
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Fig. 1.  ROCC compiler framework 

2   Overview of the ROCC C to VHDL Compiler  

ROCC [15] is built on the SUIF2 [13] and Machine-SUIF [14] platforms.Figure 1 
shows ROCC’s system overview. It compiles code written in C/C++ or Fortran to 
VHDL code for mapping onto the FPGA fabric of a CSoC device. In the execution 
model underlying ROCC, sequential computations are carried out on the 
microprocessor in the CSoC, while the compute intensive code segments are mapped 
onto the FPGA. These typically consist of loop nests, most often parallel loops, 
operating on large arrays or streams of data. Therefore, most loop level analysis and 
optimizations are done at this level. Most of the information needed to design high-
level components, such as controllers and address generators, is extracted from this 
level’s IRs.  

The front-end of ROCC performs a very extensive set of loop analysis and 
transformations aiming at maximizing parallelism and minimizing the area. The 
transformations include loop unrolling and strip-mining, loop fusion and common 
sub-expression elimination across multiple loop iterations. . The work reported in [7] 
shows that in less than one millisecond and within 5% accuracy compile time area 
estimation can be achieved. Information to generate high-level units, such as 
controllers and buffers, is also extracted from SUIF IRs. The restrictions on the C 
code that can be accepted by the ROCC compiler, for mapping on an FPGA fabric, 
include no recursion, no usage of pointers that cannot be statically unaliased. Function 
calls will either be inlined or whenever feasible made into a lookup table. In the 
following section, we explain the operation of a Bloom filter for virus detection. 

3   Bloom Filters 

A Bloom filter [3] s a space-efficient data structure used to test the set membership of 
an element. An empty Bloom filter is described by an array of m bits, initially all set 
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to 0. A Bloom filter uses K independent hash functions h1….hk with range {0… m-1}. 
Each of these hash functions map an incoming item to a number in the range of  
{0 …m-1}.During insertion, hash functions h1….hk are applied to the input item. Each 
return value from the hash function is used as an index to the Bloom filter (array of m 
bits) and the appropriate bit position is set to 1. A location can be set to 1 multiple 
times, but only the first change has an effect.  

 
 

 

Fig. 2. The Bloom filter detects malicious 
packets at the network layer. The output of 
the Signature Processing Engine (SPE) is 
fed to the False Positive Eliminator (FPE). 

 

Fig. 3. Bloom filter code for identifying 
signatures of width 8 bytes each in a stream of 
size 256 bytes. The packet size is assumed to be 
64 bytes. The data structure bit array is a 
Bloom filter of size 256 entries. 

During a search operation, the locations returned by the hash functions are checked 
to see if they are already set to ‘1’. If bit values in all the return locations are set, then 
the Bloom filter is said to contain the pattern else it is a miss. An item x belongs to the 
set S with some probability if all hi(x) are set to 1 for 1<i<k. .If not, then x is not a 
member of S. A Bloom filter may yield a false positive when it suggests that an element 
x belongs to S even though it does not. The probability of a false positive is given by 
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Where, k,m and n denote the number of hash functions, number of bits in the bloom 
filter array and the number of elements currently inserted into the bloom filter, 
respectively. In the event of a match in the Bloom filter, a detailed string matching is 
performed using a RAM to ensure that the hit was not a false positive.  

A functional prototype of the Bloom-filter based intrusion detection system has 
been implemented. We used a Bloom filter of length 256 bytes to detect patterns of 
length 8 bytes. Figure 2 shows the block diagram for a bloom-filter based virus 
detection system. Figure 3 shows a Bloom filter code that uses four hash functions on 
a 256 entry Bloom filter array. The hash functions are implemented as a simple XOR 
operation. The result of each hash operation sets a location in the Bloom filter. The 
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compiler unrolls the inner most loop to compare the 8-byte patterns in parallel. We 
used the rule sets contained in bleeding snort database [11]. Each rule consists of two 
parts: a header and a rule option. The header is mainly used for packet classification 
and contains information like the protocol, source IP, source port, destination IP and 
the destination port. The rule option contains the signatures to be used in intrusion 
detection.   

Figure 5 shows the frequency of the signature width of all rules in the bleeding snort 
database. As evident from the figure, most of the rules present in the bleeding snort 
database have a signature width of less than 30 bytes. In the following section, we 
present the generation of datapath and throughput evaluation for the Bloom filter code. 

4   Datapath Generation and Throughput Analysis  

Figure 4 shows the three-stage pipeline for the generated Bloom filter circuit. The 
XOR operation shown in the figure represents each byte of the input being XOR ed 
with one byte of the hashing function. The location returned by the hashing function 
is looked up and if all four hashing function lookups return a value of ‘1’, then the 
circuit reports the current input pattern as malicious.  

The compiler groups the instructions in each node into different execution levels to 
exploit instruction (operation) level parallelism. Instructions at the same level are 
executed simultaneously. Every level of the dataflow graph corresponds to the 
instantiation of one loop iteration. ROCC automatically places latches in the data-path 
for pipelining. Every latched level corresponds to one pipeline stage, and has a delay 
of one cycle.  

 
 

 

Fig. 4. Three-stage pipeline for the Bloom 
filter signature code. Each box in the XOR 
filed represents a byte of the input being XOR 
ed with one byte of the hashing function. 
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Fig. 5. Histogram of signature width for all 
rules in the snort database. The most 
frequently occurring signatures have a width 
of around 32 bytes. 

Our Bloom filter code does not have loop-carried-dependency and the compiler 
fully pipelines the data-path. Therefore, the generated data-path can be fed with new 
set of input every clock cycle and the throughput is one iteration per cycle. We 
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process 8 bytes during each iteration. When we do loop unrolling, we assume that the 
memory-bus width also scales up with unrolling.  

The clock frequency of the FPGA was found to be 73 MHz.   The system uses a 
total of 4692 slices, which accounts for 8% of the total FPGA area. The BRAM on 
our target FPGA (XC2V8000) can process 256 bits (32 bytes) per cycle. Hence, the 
BRAM can support eight such hardware instances during each cycle. The total 
throughput of our hardware is given by 

Throughput = bits per cycle * clock frequency  
T= 8 *32* 73* 10 6 bits/ sec. = 18.6  Gbps. 

The throughput shown above is for a system that detects multiple signatures of a 
single width. When multiple instances for each signature width are instantiated, the 
overall circuit area would also increase proportionately.  Synthesis tools tend to 
produce slower circuits when the design size increases.  However, with increase in 
area, the compiler produces more parallel iterations and hence, the performance loss 
due to decrease in clock speed is overcome by the increase in parallelism.  In order to 
provide a better insight into our estimated throughput values, we examine the 
throughput achieved by previously published works.  

5   Related Work 

Hashmem [9] combines memory and hashing effectively to achieve exact matching of 
intrusion signatures at throughputs of up to 3.7Gbps while using nearly 0.15 logic 
cells per character. Baker and Prasanna [2] use automatic compilation to synthesize 
FPGA architectures that perform deep packet inspection at 10Gbps. Clark et al.[5] use 
NFAs with predecoded inputs to achieve excellent area and throughput performance. 
Lockwood et. al.[8] used the Field Programmable Port extender (FPX) platform for 
expression matching. Their synthesized circuit achieved clock speeds of 37MHz on a 
virtex XCV2000E FPGA.  

Gokhale et.al [6] used CAM to implement snort rules on a virtex XCV1000E 
FPGA. Their hardware delivered a throughput of 2.2Gbps. Cho et. al [4] generated 
structural VHDL for deep packet filtering on an FPGA. Their design runs at 90MHz 
on an Altera EP20K device and achieves a throughput of 2.88Gbps. Attig et. al..[1] 
have implemented a Bloom filter circuit on a Virtex E2000 FPGA. Their circuit 
operates at 62.8MHz and provides a throughput of 502Mbps. This paper presents the 
first reported work that automatically generates native VHDL for Bloom filter based 
intrusion detection code written in C.  

6   Conclusion 

In this paper, we have described using ROCC, a C to VHDL compiler, to generate 
Bloom-filter based virus detection system on FPGAs. Ours is the first work that 
automatically generates VHDL for Bloom filter code written in C. We evaluate the 
performance and area of the synthesized hardware and prove that automatic 
compilation to hardware is a feasible design option. Our synthesized hardware runs at 
73 MHz and delivers a throughput of 18.6 Gbps while occupying a modest FPGA real 
estate of 8%. 
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Abstract. Synchronous Transfer Architecture (STA) is a coarse-grain
reconfigurable hardware. It is modelled by using a common machine de-
scription that is suitable for both compiler and core generator. STA is
a Very Long Instruction Word (VLIW) architecture and in addition it
uses a non-orthogonal Instruction Set Architecture (ISA). Generating ef-
ficient code for such ISA needs highly optimizing techniques. This paper
presents a basic data routing Integer Linear Programming (ILP) model
for STA code generation. We will also show in this paper, the execution
time of the assembly code can be dramatically reduced. The code gen-
eration can be accomplished in acceptable time and it can even be real
time by reducing the degree of optimality.

1 Introduction

Integer Linear Programming (ILP) has a long tradition as a method for investi-
gating scheduling problem. Daniel Kästner et al. [1] [2] built two well-structured
ILP formulations for global phase-coupled code optimization of irregular archi-
tectures. Kent Wilken et al. developed instruction scheduling [3] and precise reg-
ister allocation for irregular architectures [4]. Besides using some of their ideas,
our ILP model is specially designed for the architectural features of STA. Our
model requires that operations can be explicitly assigned to functional units. The
amount of STA modules, instruction latency and data type can be reconfigured
in our model according to the machine description.

This paper is organized as follows: Sec. 2 gives an overview of the STA features
and explains why a new model is developed for STA code generation. Sec. 3 shows
the basic ILP model about data routing. Sec. 4 gives the experimental results,
followed by a conclusion and discussion on future work in sec. 5.

2 Synchronous Transfer Architecture (STA)

Figure 1 gives an overview over the STA concept. STA [5] processors are built
up from modules, each with a set of input and output ports. The output ports
are buffered. The buffer at the output holds the result of the last operation, until
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the next operation of the belonging module is executed. The data at an input
port is selected from a set of connected output ports by a multiplexer. Thus, data
can be obtained directly from an output register of connected Functional Unit
(FU), which lowers the requirement for additional register strongly. This kind of
data routing will be called direct data routing (DDR) in the rest of this paper.
Direct data routing can dramatically reduce the number of required registers in
a register file.
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Fig. 1. STA modules

If results of calculations will be kept in output registers of used FUs (direct
data routing), a fewer amount of FUs will be available in the following cycles.
This will lead to a decrease of instruction level parallelism. Writing the data
always back to register files (register access) would increase the time to read the
data and hence is not optimal for this architecture. Finding an optimal tradeoff
bases on the question ”When will the result be used again?”. At the scheduling
time of the instructions the answer to this question is still unknown because the
scheduling of the following instructions is not finished.

3 Basic Idea of Integer Linear Programming (ILP) Model

The developed ILP model is restricted to basic blocks [6]. First we did global
data flow analysis [6] to find the original IN and OUT data for each basic block.
Here, IN is the set of definitions that come from other basic blocks or from the
last iteration of this block and reach the beginning of each basic block. OUT is
the set of definitions that reach the end of basic block and is passed to other
basic blocks or to the next iteration of this block.

After the IN and OUT are found according to our definition, all the registers
are divided into two groups: group I is used for IN and OUT data, group II is
used for the temporary results which appear only in one basic block. We did
experiments with our ILP model, we found data direct routing is often used in
optimal scheduling and the amount of registers used for saving temporary results
is very small.
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We assigned 80% registers to group I and the remaining 20% to group II.
If the amount of registers in group I is not enough, memory spill code will be
generated in our Medium-Level Intermediate Representation (MIR). Otherwise,
the remaining registers in addition to the registers of group II will be used for
determining an optimal tradeoff between direct data routing and register access
in each basic block. In the following paper, we will only show how to find this
optimal tradeoff in our model.

3.1 Definitions

Before we explain how to model the direct data routing and register access, we
need to do the following definitions:
– C: Maximal number of the clock cycles for one basic block
– J: Set of all the clock cycles 1..C.
– set I: All the MIR instructions in the basic block
– set DDR U: Instruction iu and iv are in the same basic block of MIR, and

iv uses the result of iu (possible to be used for data direct routing of STA)
– NFUi: The amount of ith different type of Functional Units
– Nwrite: The amount of register write ports
– Nread: The amount of register read ports

3.2 Data Routing (Direct Data Routing or Register Access)

We assume there are always a pair of virtual register read r(u, v, j) and write
w(u, v, j) between each pair of instructions (iu, iv) ∈ DDR U and the execution
time of all the instructions is one clock cycle, there are two cases which may take
place in our model:
1. the write instruction wu,v appears before the read instruction ru,v

2. the read instruction ru,v appears before the write instruction wu,v

The first one is considered as real, which means register write and read oper-
ations are really used between a DDR pair (iu, iv). The second case is defined
as unreal, where the related register operations are physically infeasible and the
result of iu is transferred to iv with direct data routing. In our model, it is explic-
itly modelled that the corresponding read and write instructions cannot appear
in the same cycle.

3.3 Modelling Constraints

We define a series of binary variables x(u, j), j ∈ J. The value of x(u, j) is 1 when
iu begins to be scheduled in cycle j, otherwise 0. Equation (1) guarantees that
each instruction iu must be started and can be only started once. In the same
way, we define the corresponding binary variables x(v, j), j ∈ J and r(u, v, j),
w(u, v, j), (iu, iv) ∈ DDR U, j ∈ J.

C∑
j=1

x(u, j) = 1, ∀iu ∈ I (1)

Observing a DDR pair (iu, iv), (iu, iv) ∈ DDR U as shown in Figure 2.
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Fig. 2. The sequence of the virtual read and write instructions

Firstly, the write instruction wu,v must appear after instruction iu. The equa-
tion (2) describes this constraint.

C∑
j=1

x(u, j) ∗ j + 1 ≤
C∑

j=1

w(u, v, j) ∗ j, (iu, iv) ∈ DDR U (2)

Secondly, the read instruction ru,v should be placed exactly one cycle before
instruction iv. If a true register write instruction exists, a new read instruction is
generated directly before each instruction which uses iu’s result in our compiler.
Read instructions can be only executed on the read port. If the data is stored in
the register’s read port until last use, this read port cannot perform other read
instructions for many clocks. If the data is always read before it will be used,
this read port is free for some time slots. The free time slots can be available to
the other read instructions, they may improve the instruction level parallelism
without increasing the cost of read port. Equation (3) is used to describe this
constraint.

C∑
j=1

r(u, v, j) ∗ j + 1 =
C∑

j=1

x(v, j) ∗ j, (iu, iv) ∈ DDR U (3)

Thirdly, in a DDR pair (iu, iv), if wu,v is scheduled before ru,v, then the case is
considered as real (Fig. 2.a) and register is used to transfer the result of iu to iv.
Otherwise, if wu,v is scheduled after ru,v, it is considered as unreal (Fig. 2.b) and
direct data routing is used. We further define that the read instruction can appear
at most one cycle before the corresponding write instruction. Equation (4) is
used to represent this constraint. An additional equation (5) is the constraint
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that the read and write operation cannot take place in the same cycle. Thus, the
virtual instructions in fig. 2.c and fig. 2.d are excluded in our model.

C∑
j=1

w(u, v, j) ∗ j − 1 ≤
C∑

j=1

r(u, v, j) ∗ j, (iu, iv) ∈ DDR U (4)

w(u, v, j) + r(u, v, j) ≤ 1, (iu, iv) ∈ DDR U, ∀j ∈ J (5)

Under these two constraints, the unreal case is reduced to just one situation:
ru,v appears one cycle before wu,v. Remember that ru,v appears also one cycle
before iv, so wu,v and iv must be in the same cycle as shown in Fig. 2.b. In
our model, this case represents the direct data routing for data transferring. The
FU used by the instruction iu must be kept (i.e. not to be used by the other
instructions so that the data in the output register of the FU is not changed),
until the cycle in which iv is scheduled. Then, it is equivalent to count from the
cycle of iu to the cycle of wu,v. This period is illustrated by K2 in Fig. 2.b.

In the real case, the FU should also be kept from the cycle of iu to that of
wu,v as shown by K1 in Fig. 2.a. Thus, the occupation of FU can be uniformly
expressed for both cases by very concise ILP equations. The Reg in Fig. 2.a
indicates that a data unit should take a register space during the period.

4 Experimental Results

We tested the completed model with one user licence of ILOG CPLEX (9.1
version) on one CPU. Table 1 shows the execution time (cycles) of the assembly
code for same input data. Column 2 is cycles of the assembly code generated
by traditional compiler. The instruction scheduling of this compiler uses some
heuristic algorithm for STA [8].

Column 3, 6 and 9 show the cycles of the code generated by our ILP based
compiler. P10, P15, P20 mean that each basic block includes maximal 10, 15 and

Table 1. Performance comparison between ILP and traditional code generator

1 2 3 4 5 6 7 8 9 10 11
benchmark trad. P10 D T(s) P15 D T(s) P20 D T(s)
firparallel 175 114 65.1% 1.44 90 51.4% 2.9 82 46.9% 87.8
iirparallel 196 133 67.9% 1.73 105 53.6% 2.4 89 45.4% 19
firserial 117 75 64.1% 0.94 60 51.3% 2.5 55 47% 3.7
iirserial 113 62 54.9% 0.66 49 43.4% 5.1 43 38.1% 5.9

lmsparallel 1204 1079 89.6% 19.7 904 75.1% 63.5 779 64.7% 842.1
lmsserial 295 149 50.5% 2.1 129 43.7% 7.9 103 34.9% 45
fft648 1269 922 72.7% 29.7 723 56.9% 330.5 681 53.7% 1558.8
fft1288 1439 1125 78.2% 35.1 890 61.8% 481.8 828 57.5% 1890.6
fft2568 1781 1292 72.5% 44.3 1022 57.4% 555.8 951 53.4% 2092.1
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20 instructions. Column 4, 7, 10 are the results of (ILP cycles/trad cycles*100%).
Column 5, 8 and 11 show the solving and proving time of CPLEX (in seconds).

The assembly code generated by our code generator uses much less memory
than the former code. ILP-based code generator uses the output buffers of FUs
very efficiently, that leads to less necessary registers and much less memory spill
code.

5 Conclusion and Future Work

The limitation of such ILP-based code generator is that it can optimize the code
in a small area. The advantage of this work is that it can reduce the execution
time of the assembly code with block partition in acceptable time. Our code
generator can not only be used for the real time application, but also as a
reference to the heuristic algorithms. As the future work, we will make better
block partition for our code generator, then some heuristic algorithms will also
be implemented.
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Abstract. Until recently, only a compiler and a high-level simulator of
the reconfigurable architecture ADRES existed. This paper focuses on
the problems that needed to be solved when moving from a software-only
view on the architecture to a real hardware implementation, as well as
on the verification process of all involved tools.

1 Introduction

A new class of programmable processor architectures for embedded applications
is emerging: coarse-grained reconfigurable architectures (CGRAs) [3]. Due to
difficult programming models and a vast overuse of resources compared to DSP
processors, none of them have yet been widely adopted. ADRES (Architecture
for Dynamically Reconfigurable Embedded Systems) and DRESC (Dynamically
Reconfigurable Embedded System Compiler) try to overcome these issues [6,5].

An ADRES instance consists of an array of basic components, including
FUs, register files (RFs) and routing resources (wires, muxes and busses), of
which the top row can operate in a VLIW processor mode. This mode shares
the central RF with the second mode, the array mode, in which all entities of
the architecture operate in parallel. By providing two functional views on the
same physical resources, ADRES tightly couples a VLIW processor, which of-
fers an (on other published CGRAs absent) easy path for mapping complex
code, and a coarse-grained array that offers unprecedented loop acceleration.
The shared central RF minimizes communication and mode-switching costs and
enables the compiler to seamlessly generate code for both modes, including data
transfers.

In array mode, a loop is executed that consists of the instructions between
two configuration memory addresses. To remove control flow from loops, the
FUs support predicated execution. The result of each FU can be written to local
RFs, which are smaller and have less ports than the shared RF, or routed directly
to the inputs of other FUs. The multiplexers in the array are used for routing
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data from different sources. The configuration memory stores the configuration
contexts, from which a single context is loaded onto the FUs and muxes on a
cycle-by-cycle basis, thus in effect reconfiguring them every single cycle.

ADRES is programmed in ANSI C. Our tool chain until recently consisted of
three tools. First, the IMPACT C compiler front-end parses C code, optimizes it
and generates assembly code in the Lcode instruction format. Next, our DRESC
compiler takes an ADRES instance description and maps the loop kernels onto
the array [5]. The generated schedules are then simulated with the simulator.

ADRES was designed from a compiler perspective to achieve high-performance,
low-power computing with automated C compilation. Until recently, however,
ADRES was a virtual architecture for which only the compiler and the high-level
simulator existed. Here, we take an important step as we now have a full tool chain
that compiles C code and generates binary configuration files that can be executed
on a hardware implementation inVHDL. In concreto, we have compiled anMPEG2
decoder written in C and we have executed it on an FPGA-based demonstrator,
thus proving the concept of ADRES. This short paper focuses on the efforts needed
to move from a software-only perspective to a hardware implementation and a full
tool chain. Performance results are discussed in other work [5,6]. For a discussion
of related work, we refer to Bingfeng Mei’s thesis [4].

2 Hardware-Software Interface Issues

Instruction Set. To execute an MPEG decoder on an FPGA implementation
of ADRES, without writing a full compiler, the instruction set architecture (ISA)
needs to meet three requirements. (1) The VLIW ISA needs to be dense enough
to store the program on the limited amount of FPGA memory. (2) For prov-
ing to be a potential low-power solution, the decoding of the instructions needs
to be simple. (3) The ISA should be close enough to that of the intermediate
code representation generated by Lcode representation of the IMPACT com-
piler. Unfortunately, however, Lcode is much too expressive to be dense. First,
Lcode supports a wide range of predicate generating instructions, as available
on Intel’s EPIC architecture. Most of them are rarely used, so supporting all of
them implies a large code size overhead. Secondly, Lcode allows all operands of
instructions to be 32-bit immediates. Clearly, this is not feasible in any real ISA.

As a temporary solution, we decided to support only the most common type
of unconditional predicates [1]. Our tool detects when other types are present in
the Lcode, and informs the programmer that he must rewrite his code to avoid
the use of that predicate. For rather simple applications, such as an MPEG2
decoder, this solution proved to be satisfactory. To support more complex code,
however, such as the H.264 codec, adapting the compiler to generate only the
supported predicates is the only feasible solution. Furthermore, ADRES VLIW
instructions can have only one immediate operand. When Lcode instructions
have more of them, our assembler inserts instructions that first put them in free
registers. Because the insertion of additional instructions happens after the code
is scheduled, the final schedules are sometimes far from optimal. In a production
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tool chain, this workaround solution will need to be replaced by a better instruc-
tion selector and post-pass scheduler. Furthermore, our assembler cannot insert
instructions in array schedules, because these are too complex to change in a
post-pass tool. Instead, we again notify the programmer to change his source
code in such a way that constants occurring in CGA-mode loops are first put in
temporary variables, and hence in registers instead of in immediate operands.
This required only modest source code transformations. Future versions of our
tool chain will perform this rather trivial transformation automatically.

Compiler Perspective. We encountered several unexpected problems dur-
ing the combined development of both the VHDL specification and the binary
code format of our architecture. Most often, these problems surfaced because
the compiler developers that developed the compiler-supported architecture, ap-
proached it from the software perspective, and not from a hardware perspective.
In the former, undefined behavior is non-existent in the sense that only spec-
ified computations are performed. For example, a nop instruction executed on
some FU is supposed not to change the processor state, and is hence given lit-
tle consideration. In hardware, by contrast, all signals that can influence the
program state need to be specified correctly. This impedance mismatch between
the two perspectives became apparent when different simulators were developed.
Until recently, the only available simulator was a compiled simulator that basi-
cally is an RTL-level implementation of the program in C. This C code is then
compiled with a standard C compiler, and executed to simulate the program’s
execution on ADRES. One of the main differences between real hardware, and
the compiled simulator, is that the simulator operates on virtual registers that
are modeled through variables. Rotating registers are implemented with simple
copy operations on the live variables. Consider the following loop on the left
hand side:

i_2 = 0;
while (cont = (i_2<10) || epilogue_is_running) {

for (i=0;i<10;i++) { if (cont) i_1 = i_2 + 1 ;
... // loop body ... // software-pipelined loop body

} i_2 = i_1; // register rotation
}

As the loop index is a loop-carried variable, it is allocated to (virtual) rotating
registers, as depicted on the right hand side above. The variable cont models the
loop continuation predicate, which becomes false during the final iteration of
the loop, thus informing the processor that the array mode needs to be exited.
Because loops are software pipelined, it might still be necessary to continue
the loop execution for some cycles, however, in order to finish the execution of
the ongoing iterations in the loop epilogue. Until recently, we assumed that the
continuation predicate could be set during any stage of the loop: the value of
cont in the above fragment only depends on the initial value in i 2.

During the verification of the hardware, we noted that the above assumption
on the cont predicate was in fact invalid. In real hardware, not only the live
registers rotate, but the other ones do so as well, as shown in the following
fragment, that contains two copy statements to mimic register rotation.
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i_2 = 0; cont = true;
while ((cont && cont = i_2<10) || epilogue_still_running) {

if (cont) i_1 = i_2 + 1 ; // loop body
...
i_2 = i_1; i_1 = i_0; // register rotation

}

During the normal operation of the loop, the undefined value of i 0 that is
rotated into i 1 is overwritten by the guarded increment operation. During the
epilogue, however, this is no longer the case, and hence the undefined value in
i 0 is not only copied into i 1, but one iteration later also into i 2. As a result,
cont becomes true again, and the loop keeps executing.

When we discovered that our assumption was wrong, we were too close to
our deadline to start changing the compiler and to not rely on the incorrect
assumption. Instead, we opted for slightly adapting the way we used the loop
continuation predicate. In the adapted C-code, the continuation predicate is only
evaluated as long as it has been true, as can be seen from the while statement in
the above fragment. In later versions of our tool chain we will of course adapt the
compiler to generate the continuation predicate only at correct schedule times.

While the loop continuation problem is only one issue that arose during this
design project, it is very typical for our approach from a compiler perspective.
While this approach guaranteed from the start that a full-fledged C-compiler will
exist for ADRES, it also resulted in a number of unanticipated problems, like
the above one. Consequently, the specification of the architecture needed several
updates during its implementation in hardware, because of which a significant
amount of time was lost. The lesson we learned is that the hardware and software
people involved should learn to speak the same language upfront, and that they
should understand the issues involved on both sides of the system.

3 Verification

Several components of our now complete tool chain and hardware implemen-
tation needed verification. While the compiler and the compiled simulator had
been used and tested for a long period, these tools were largely developed by
one PhD. student. [4]. It was expected that there would be hidden assumptions
about the compiler in the simulator and vice versa that might need to be reeval-
uated. Furthermore, the assembler and the linker, that map the assembly-like
program representation generated by DRESC onto binary object code, needed to
be validated. Finally, the VHDL implementation needed verification. To support
these verification needs, a number of tracing tools were developed or extended.

Symbolic Tracing. First, the compiled simulator was extended with tracing
capabilities to dump traces containing in and outputs of FUs, RFs and memory
accesses. It should be understood that this compiled simulator is just a simple
implementation in C of the RTL-like ADRES operations that where generated
by the DRESC compiler. In this implementation, local variables of the original
program have been replaced by variables that model virtual registers at the RTL
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level. Data structures that reside in memory in the original program still reside
in memory in the compiled simulator. In fact, the data structure declarations
are simply copied from the original program to the compiled simulator. As such,
the memory accesses on the compiled program all happen in the address space
of the compiled simulator on the host system, and not in the memory space of
the binary ADRES program as it would be assembled and linked. In practice,
this means that all addresses occurring the RF and FU traces not only depend
on the actual program being traces, but also on how the simulator was compiled.
After every change to the simulator, the addresses change.

Cycle-Accurate Tracing. Secondly, we developed a cycle-accurate μ-arch sim-
ulator by means of Esterel [2]. This simulator simulates binary ADRES executa-
bles at the RTL-level at a lower level of abstraction than the compiled simulator.
This cycle-accurate simulator thus offers the same tracing capabilities as the
compiled simulator, but it’s traces are closer to the actual hardware.

The main goal of the cycle-accurate tracing is the verification of the com-
piler back-end and of the correct operation of the whole ADRES concept. For
that purpose, its traces could be compared to those produced with the trusted
compiled simulator, thus inheriting the thrust from it. Unlike the compiled sim-
ulator, however, the μ-arch simulator runs the program in the ADRES address
space. Hence addresses occurring in the traces of both simulators are different,
which complicates the comparison of their traces.

A first workaround involves eliminating addresses from the traces. This can
be done by only tracing instructions that do not usually operate on absolute
addresses, such as multiplications, shifting, or the loading/storing of bytes and
words. An alternative is to use two versions of the compiled simulator that
executes on different addresses. Then we can first compare the traces of those
versions, and detect (and later neglect) the values that are in fact addresses,
as these are exactly those values that are different in the two versions. A final
alternative is the replacement of addresses in traces by symbol names. This can
only be done for data whose symbol information is available in the compiled
code, however, and hence it is only applicable for statically-allocated data, of
which the Linux tool objdump gives us the symbol mapping.

VHDL Tracing. Instead of having the VHDL simulation dump traces, and
then verifying the correctness of them, we decided to let the VHDL code verify
itself. To that extent, the VHDL implementation reads the FU traces from the
cycle-accurate simulation, and then raises assertions when the values observed
during the VHDL simulation differ from them. After having validated the cycle-
accurate simulator, this on-the-fly trace comparison would allow us to debug, and
eventually validate, the VHDL code. Unfortunately, the trace comparison is not
without problems. Because these two simulators operate at different abstraction
levels, defined behavior in one simulator can correspond to undefined behavior
in another, in which cases false-positive assertions are raised.

As a workaround, the cycle-accurate simulator tags the values in a trace with
tags that indicate whether a value is defined or not. The addition of the correct



430 B. De Sutter et al.

tags was a time-consuming process, largely guided by trial and error. We feel this
cannot be avoided however, as the goal of having an RTL-level cycle-accurate
μ-arch simulator is precisely to enable the verification at a more abstract level.

Furthermore, when loops are mapped onto the array mode, many instructions
are executed speculatively to shorten the critical code paths. This again implies
that some operations are executed on undefined operands. To detect those during
the verification of the tool chain, all possible operands are initialized to easily
detectable values in the compiled and in the cycle-accurate μ-arch simulator. For
example, the value 0xdeadcafe is well suited because the human eye spots it
easily in traces. In hardware, these values do not occur of course, and hence they
were replaced by zeroes to generate traces for automated trace comparisons.

4 Conclusion

The ADRES CGRA was developed from a compiler perspective to ensure that
C-code could be mapped onto it automatically. This paper presented some of the
issues that were dealt with during the development of a hardware implementation
and a concrete instruction set, and the verification of all (new) back-end tools
and code. All issues were resolved in relatively simple ways, without imposing
impractical or unrealistic constraints on either the source code or on the ISA.
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Abstract. We describe a new approach for creating hardware descrip-
tion language (HDL) specifications for custom instructions, to form part
of the instruction-set architecture (ISA) of an application specific in-
struction set processor (ASIP). Our approach integrates fully into the
traditional C development process, binding tightly with software source
code and simplifying the ASIP optimisation process. Our tool is also free
software, facilitating its use in future research.

1 Introduction

Increasing system efficiency by extending processors with application specific
instructions has been considered widely, with many commercial products avail-
able [10,5,3]. However, existing commercial and research solutions separate the
description of custom instructions from the actual software using these instruc-
tions. This paper proposes an integrated approach, allowing the user to specify
custom instructions within the software source code itself.

This approach simplifies build processes by integrating into industry-standard
compilation tools, permits easy testing of custom hardware, and makes full use of
existing compiler optimisations. C programmers will need little specialist hard-
ware design knowledge to make use of our approach. No new language needs to
be learnt, the tool flow is the same as that used in most Unix make files, and
separate compilation is fully supported.

Application-specific instruction set processor (ASIP) tools [10,5] generate
ASIP cores. [15] gives a good overview of ASIP design methodologies. Today,
ASIPs are usually soft processor cores, intended for use as part of an FPGA
design. Typical ASIP tools permit rapid optimisation of a hardware platform to
a particular application. The processor can be tuned to developer requirements,
such as reducing power consumption or increasing speed.

But the tools either do not attempt to integrate software and hardware devel-
opment [8], or do so only within a graphical integrated development environment
(IDE) [4,2,23], which constrains development options to those foreseen by the
tool vendor. Additionally, the tools are closed, inextensible software, generally
operating on secret ASIP cores. This reduces their utility to researchers, who
are unable to adapt the tools for experimental purposes. Some adaptations of
ASIP technology, such as the introduction of reconfigurable functional units
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(RFUs) [26,25], are currently impossible without either a manual implementa-
tion or a new tool.

In this paper, Sect. 2 examines the state of the art in ASIP tools and research.
Section 3 discusses our approach and the implementation of our tool. Section 4
deals with our evaluation process and Sect. 5 concludes.

2 Existing ASIP Tools

2.1 General Overview

ASIP tools allow an existing “base” processor core to be customised to an appli-
cation, by providing instruction set customisation (add or remove instructions),
architectural customisation (add or remove execution, control or storage ele-
ments), and interface customisation (alteration of bus size and type).

Figure 1 illustrates a typical use of instruction set customisation. Software
code is replaced by a custom instruction. Instruction fetches and clock cycles
are saved. Overall, this approach may permit a smaller processor to be used,
or slower, cheaper hardware may become usable. The cost, size and/or power
consumption of the entire system may be reduced. Correct choice of code is
essential [22,7], but outside the scope of this paper. The typical approach involves
profiling the application to find the most frequently executed code [4].

unsigned byteswap ( unsigned x )
{

}

(a)

x = (( x & 0xff00ff00 ) >> 8 )

return x ;

  | (( x & 0x00ff00ff ) << 8 ) ;

  | (( x & 0x0000ffff ) << 16 ) ;
x = (( x & 0xffff0000 ) >> 16 )

byteswap : process ( input ) is
begin

end process byteswap ;

(b)

output <= input ( 7 downto 0 )

 

     & input ( 15 downto 8 )

     & input ( 31 downto 24 )
     & input ( 23 downto 16 )

inline unsigned byteswap
                 ( unsigned x )

}

(c)

return x ;

asm ( "custom %0,%0\n" :

    "=&r"(x) :
    "0"(x) ) ;

{

Fig. 1. Acceleration of C function (a) through dedicated hardware (b), accessed by a
special opcode (c)

2.2 Commercial Tools

Tensilica Corporation [23] sells ASIP cores and tools under the trade name
“Xtensa”[10]. The “Xplorer” IDE is used to modify the Xtensa cores. Custom in-
structions are described using the Tensilica Instruction Extension (TIE) [24,7], a
proprietary Verilog-like HDL. Architectural and interface customisation are also
available: for example, multiplier execution units can be added if the application
requires them. ARC Corporation [3] makes a similar set of tools for their own
ASIP cores, including the “ARCitect” and “Metaware” IDEs, for building ASIP
cores and software to execute on them.

ASIP Meister [5] provides an IDE for defining ASIP core features, but lacks
features for software development. ASIP Meister permits a higher level of cus-
tomisation than ARCitect and Xplorer - it is possible to change instruction
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encoding and processor microcode, even to the extent of implementing other
processors [18].

Coware sells the LISATek tool [8], a general purpose processor definition
tool based on the Language for Instruction Set Architectures (LISA). Coware’s
tools generate a compiler, simulator and VHDL processor model from a LISA
description.

2.3 Development Using an ASIP Tool

Tensilica tools make use of the TIE [24] language for instruction specification.
ASIP Meister allows custom instructions to be specified in a GUI. Other tools
follow one of these two models: hardware is specified separately from software,
and then used from the software in some way (e.g. compiler macros, in the case of
Tensilica). This has the advantage that changes to the software are independent
of the custom instructions. Changes to software alone will not force the ASIP to
be rebuilt.

However, it has the disadvantage that the two descriptions are kept separate.
This forces poor programming practice - functionally related items are in sep-
arate files, making the program harder to understand, debug, change and test.
Programmers should aim to keep interfaces between modules to a minimum, but
the TIE and ASIP Meister methodologies force an inter-module link for every
custom instruction.

2.4 ASIP Research

ASIP technology predates the use of FPGAs. The term was first introduced to
describe any processor designed for a particular application, not just a soft core
to which instructions could be added.

ASIPs in today’s form are a development of research into classic co-design, a
methodology discussed in [13,19]. Co-design tools are enhanced compilers that
produce both a hardware description and a software binary for a particular ap-
plication, with the intention of producing a faster implementation than software
alone. This is done by migrating code fragments between hardware and software
implementations: partitioning the program.

ASIP researchers initially attempted to derive the best ASIP instruction set
for a program in its entirety [1], echoing the work of co-design researchers. Later
work took a different direction, starting with a base instruction set and adding
new instructions where necessary. This was more effective, as common instruc-
tions are always needed. Some ASIP tools try to automatically derive the par-
tition [6,22,7,11], but this is by no means essential. The automatic ASIP design
problem has the same limitation as classic co-design: an exponential number of
possible partitions.

All ASIP tools allow the developer to define the partition by hand, making
use of the developer’s understanding of the problem as a guide to partition-
ing. The developer may also directly define the hardware for each custom in-
struction. This avoids the suboptimal nature of automatic software hardware to
translation [12].
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2.5 ASIPs as a Basis for Research

Generally, existing ASIP tools are a good basis for research provided that they
can be used as intended. Tensilica’s Xtensa tools have formed the basis for some
academic work, for example [22,7]. [22] cites the flexibility of Xtensa as the reason
for its choice. The work required both a processor with an extensible instruction
set, and tools that provided easy access to the extensions. Xtensa provides both
of these. Similarly, [21] chose LISATek over ASIP Meister as it provides direct
access to the underlying processor definition language.

However, existing ASIP tools were not useful during the development of Chi-
maera [26], in which hard-wired custom instruction units are replaced by a run-
time reconfigurable unit. No existing tools have support for such designs, and
since existing tools are not open technology, they are not sufficiently extensible
to act as a basis for fundamentally new designs. Thus, the Chimaera researchers
were forced to start from scratch.

2.6 A Free ASIP: OpenRISC

The OpenRISC processor [16] is a freely available soft processor core, with a
MIPS-like architecture and a five-stage single issue pipeline. OpenRISC already
has ASIP features, but lacks ASIP tools.

Space is available within the instruction set for extensions to be added, and
stubs exist within the Verilog source to allow custom execution units to be im-
plemented. Additionally, some OpenRISC features can be “switched on” using
definitions in a configuration file, allowing architectural customisation. Open-
RISC also has a complete GCC tool chain, and similar performance to other
32-bit RISC soft cores.

3 Our Approach

3.1 Design Choices

Section 2.1 described the common features of ASIP tools. Of these, we consider
instruction set customisation to be the most important, as it has a high potential
for improvements that are easily quantifiable [22,11]. It is this feature that our
tool provides.

We have based our approach and tool on the C language and the free GNU C
Compiler [9]. Despite its many shortcomings, C remains a widely-used language
for embedded system development, and it is thus a good starting point. We
chose not to define a new hardware description language, as Tensilica did with
TIE, instead making extensions to C and allowing hardware descriptions to be
specified using a C subset. The subset is restricted: for example, at present, only
single clock cycle operations are supported (see Sect. 3.4).

Noting that custom instructions are often only a small part of an application’s
software, and that functionally-related lines of code should be close together, our
approach requires the programmer to specify hardware within software. Figures
2 and 3 illustrate our tool flow.
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Syntax Tree
Symbol Data

C Code
C Code

minus hardware
plus hardware

Embedded hardware descriptions

Object code with
embedded hardware descriptions

C Code

Preprocessor

(standard cpp)

Parser

Inline Assembly Generator

Intermediate Code Generator

C Compiler

(standard gcc)

C Source Code Object File

cicc (replaces conventional C compiler)

Fig. 2. Tool flow (a): The Custom Instruction C Compiler (cicc) is used in place of
the regular C compiler. Note that both the hardware and software for each C module
are placed in the same object file.

Extract embedded

hardware descriptions instruction numbers

Patch executable with

Instruction number assignment

HDL generator VHDL

ExecutableExecutable

cipostlink (replaces conventional linker)

Fig. 3. Tool flow (b): After object files are linked in the usual way, the Custom Instruc-
tion Post-linker (cipostlink) extracts hardware descriptions from the executable, and
then patches the executable to assign custom instruction numbers

The traditional Unix make development process is used in place of an IDE.
However, a generic IDE may be used. Our approach is fully modular, never
requiring a compiler rebuild, and only forcing a processor rebuild if a custom
instruction definition changes.

3.2 Data Paths

In a typical RISC architecture, only two input and one output bus are linked
to an execution unit. The OpenRISC custom instruction unit is subject to this
limitation, which is adequate for all RISC instructions, but not necessarily for
custom instructions.

For example, an encryption operation will typically require both plain text
and key inputs. Access to more than two registers is required. One solution to this
problem is to provide access to all CPU registers. However, this requires register
assignments to be fixed at the time of custom instruction generation, making
the register file non-orthogonal, as it now includes special purpose registers. In
this environment, optimisations are less effective.

Local registers within the custom unit are a better solution. These are single-
purpose registers, programmed with appropriate data as required. This approach
does not break GCC optimisations, but it does force the programmer to consider
thread safety, as the local registers cannot be saved during context switches.
Despite this, it is a simple and effective solution.

3.3 Describing Custom Instructions

Suppose that we wish to write a custom instruction that replaces C code:
x = ( a + b + 4 ) & b ;
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This would be written in Tensilica’s TIE [24] language as:

operation Op ( out int x , in int a , in int b ) {
assign x = ( a + b + 4 ) & b ;

}

The TIE code will be in a separate file, called from the main program using a
generated Op macro: x = Op ( a , b ). The Op macro will expand to an appropriate
instruction within the C file, in the form of inline assembly code. Meanwhile,
the TIE code will be compiled separately into Verilog or VHDL, for inclusion in
the basic ASIP core provided by Tensilica.

In our approach, the custom instruction would be described in the C source
itself. The meaning of the operation is no longer hidden in a separate file. Here
is the same example:

hardware {
x = ( a + b + 4 ) & b ;

}

hardware marks the statement following it as a custom instruction. hardware
statements are extracted automatically by our pre-compiler cicc (Fig. 2), which
carries out the work of TIE. cicc is used in place of the regular C compiler
(GCC): it is intended to be used as a drop-in replacement.

Pre-compilation is the process of extracting hardware statements and gen-
erating hardware descriptions and inline assembly for each. cicc does this by
analysing the source file, building a complete symbol table, and then converting
each hardware statement into a syntax tree, which is then converted into an
intermediate hardware description language.

The pre-compilation step ends with the generation of inline assembly code,
to call the generated hardware, and a new .hardware section within the gener-
ated object files, to contain the hardware description. This description may be
compiled for simulation, or synthesised as hardware. Links are maintained be-
tween inline assembly and the associated hardware description using relocatable
symbols. The post-linker, cipostlink, is run on the final executable to extract
intermediate code and emit a description of the custom unit as VHDL (Fig. 3).

3.4 Custom Instruction Language

hardware blocks may contain a subset of C. The subset includes most expres-
sions, but no loops. Loops cannot be permitted as all operations within a single
hardware block must complete within a single clock cycle. Memory accesses are
not permitted at present, as a modification to the OpenRISC processor would
be required to support them.

The permitted statements are all arithmetic and logical expressions, except
division and modulo, conditionals (if/else and x?y:z), assignments, and vari-
able declarations and type casts. Accepted variable types are also restricted to
char (8 bit), short (16 bit), int (32 bit) and long long (64 bit).

Variables may cross the interface between a hardware block and the sur-
rounding C code, but at most two different external variables can be read from
with the block, and at most one external variable can be written (see Data
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Paths, Sect. 3.2). This restriction is offset by local registers, declared using the
localregister keyword, and temporary variables (declared in the local scope).
These variables may be accessed without limitation.

4 Test and Evaluation Process

Evaluation of our free ASIP tool was carried out in two distinct areas: a test for
correct operation, and a cost/benefit evaluation against other approaches.

4.1 Test Platform

To test correctness and efficiency, a variety of benchmark programs were set up
to run on our target platform, a Xilinx Spartan-2E FPGA with 512Kb of 32-bit
SRAM and a serial port attached. The platform is clocked at 12.5MHz. The
FPGA holds an OpenRISC processor with a hardware multiplier, in addition
to a boot ROM, drivers for the serial port and memory, timer, and hardware
profiler. A Linux PC is able to download bitfiles to the FPGA via a parallel
interface, then download software and obtain results via the serial port.

On the test platform, the OpenRISC version of the RTEMS [20] operating sys-
tem is used as the host for the various benchmark programs. Although RTEMS
adds a significant memory overhead (160Kb of code), it does not reduce execu-
tion speed when used in single-task mode. The Unix-like API of RTEMS makes
it easy to compile the benchmark programs.

On the Linux PC, our cicc and cipostlink tools are installed in addition
to the OpenRISC cross-compiler (GCC 3.2.3) and the Xilinx FPGA build tools
(Xilinx ISE 7.1). Scripts were written to control the build process: each bench-
mark program can be built in “normal” mode, in which only standard Open-
RISC instructions are used, or in “custom” mode, in which custom instructions
are generated, built into the OpenRISC core, and then used.

The “normal” mode program is code from either the MiBench [14] or Medi-
aBench [17] suite. We chose applications from these benchmark suites as rep-
resentatives of the real applications that ASIPs are used in. Each benchmark
was minimally modified to run on RTEMS/OpenRISC, with no change in the
test data used, and support for our hardware profiler and timer was added.
These features allowed the time taken by the benchmark to be examined and
improvements to be evaluated.

The “custom” mode program is almost the same as the “normal” mode pro-
gram, but preprocessor directives (#ifdef, etc.) are used to substitute custom
instructions for normal code in appropriate places. All other source is unchanged,
and the same optimisation settings are used.

Our scripts are able to run an automated test cycle, in which benchmarks
are built, downloaded onto the FPGA and tested. Table 1 lists the benchmarks
used.

Having run each benchmark in “normal” mode, we examined the profile data
from the built-in profiler to find the correct places to add custom instructions.
The profiler identified a clear candidate in every case, such as:
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– The quan() function in g721,
– the core of the CRC routine in crc32,
– 64-bit multiplier code in fft and basicmath, and
– fixed-point multiplier code in mad.

Each of these candidates was replaced by a small number of custom instructions,
resulting in speed-ups at the cost of extra hardware, as shown in Table 1.

Table 1. The benchmarks that were used, and the relative efficiencies of their “normal”
and “custom” implementations

Benchmark Clock cycles, Clock cycles, Total hw Extra hw Max clock Speedup
name normal mode custom mode (LUTs) (LUTs) freq (MHz) factor

basicmath 1456m 1449m 5958 1312 28.4 1.01
crc32 13m 11m 4840 194 30.9 1.23

dijkstra 772m 636m 4785 139 30.9 1.21
fft 192m 191m 5958 1312 28.4 1.01

g721 886m 446m 4672 26 30.9 1.99
jpeg 25m 19m 6069 1423 21.8 1.31
mad 129m 123m 5329 683 28.8 1.05

4.2 Operational Testing

Built-In Testing. A simple extension to cicc provides testing support. As the
syntax of each custom instruction is a subset of C, it is possible to automatically
add a test harness during the pre-compilation step. The step compares the result
of the operation carried out in hardware with the result from software. In the
event of a mismatch, a failure function is called with information about the
location of the error. This test approach was used for every example, which
ensures that the generated hardware matches the original specification.

Checksum Testing. All of the benchmarks produce some output. Checksums
were used to ensure that the output of each benchmark did not change between
the unmodified benchmark code, the “normal” mode benchmark, and the “cus-
tom” mode benchmark.

Functional Verification. It is important that each feature that can be placed
within a hardware block works correctly. Fortunately, due to the support for
built-in testing, this is easily arranged. Across all the benchmarks, all the avail-
able features of the hardware block were used, and therefore tested.

4.3 Cost/Benefit Evaluation

Efficiency. Table 1 indicates the improvement gained in each benchmark, plus
the additional hardware cost in look-up tables (LUTs) and the change in max-
imum clock frequency. On our hardware, OpenRISC and associated hardware
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drivers run at up to 31.0 MHz, and take up 4646 LUTs. Each custom instruc-
tion will require some additional LUTs. The maximum clock frequency may also
be affected by some custom instructions, if a new critical path is added. Our jpeg
benchmark includes a custom instruction with a new critical path: its presence
reduces the maximum clock frequency.

It is clear from this data that the tool can provide speed-ups for the vari-
ous benchmarks. However, its efficiency in comparison to other ASIP tools is
not obvious, and cannot be evaluated without access to those tools, which is
not available for cost reasons. As comparisons with vendor-supplied benchmarks
are only useful if all variables can be standardised, we decided to evaluate effi-
ciency by comparison to the best possible case - direct manual implementation
on hardware.

Manual implementation is far more laborious than any ASIP approach. There
is no tool assistance: the developer must modify the processor directly. However,
the developer may optimise the hardware directly to match the application re-
quirements. There is no intermediate layer, as with our C subset, or Tensilica’s
TIE language. Greater efficiency is possible at the cost of developer time.

Table 2 illustrates the difference between a manual implementation and a
tool-driven implementation for some of our test cases. The same interface into
the processor was used for all implementations. As can be seen, the two im-
plementations are very similar in each case, although manual implementations
generally require less hardware.

Table 2. Comparison of manually implemented custom units and automatically gen-
erated ones

Benchmark Extra hw using Extra hw, by Max clock freq Max clock freq,
name tool (LUTs) hand (LUTs) using tool (MHz) by hand (MHz)

crc32 194 169 30.9 30.9
dijkstra 139 105 30.9 31.0

g721 26 23 30.9 31.0
jpeg 1423 1265 21.8 23.8
mad 683 644 28.8 31.5

Expressiveness of Our Language. As our language is a subset of C, it is
easily used by any C programmer. The concepts required to use it are sim-
ple enough that C programmers will become custom instruction designers with
very little effort. In this respect, it improves upon Tensilica’s TIE language,
which is really a language for hardware engineers, being based upon the Verilog
language.

However, TIE is more expressive than our language. Firstly, TIE allows for
direct bit manipulation: every variable is an array of bits, as in Verilog. Our
language only permits bit manipulation indirectly through the standard C bit
operators. It is our intention that the use of these operators will be optimised
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out and replaced with direct bit manipulation during synthesis, but we cannot
guarantee that this will always happen.

Secondly, TIE allows instructions to take several clock cycles. This feature is
not available in our language at present.

Improvements on Other ASIP Tools. Our approach permits ASIP pro-
grams to be built in several stages. This is useful if ASIP instructions are
required within the C library, operating system, or other supporting libraries.
Conventional software engineering processes do not compile these parts together -
rather, the operating system and libraries are built into a software development
kit first, and the applications are added later. But other ASIP tools force them
to be compiled together if customisations are made.

Our approach also permits recompilation of single code modules. Even mod-
ules that use ASIP features can be changed: a rebuild of the ASIP itself is only
required if the ASIP features change. The approach tightly binds hardware de-
scriptions with the code that uses them, making code more maintainable and
well structured. Despite this, the separation between hardware and software is
explicit and controlled by the programmer. Nothing is inferred or guessed “in-
telligently” by our system, so nothing can be guessed wrongly.

Although our approach only works for the OpenRISC processor at present,
the interfaces could be adapted for most soft core processors for which HDL is
available.

Our approach may appear to permit each custom instruction to be used once.
However, this is not the case. Identical custom instructions are merged by the
cipostlink program, permitting custom instructions to be replicated explicitly
(by macros and inline functions) and implicitly (by GCC optimisations).

Disadvantages of Our Tool. We do not consider the additional pre-compi-
lation and post-linking steps to be a disadvantage, as they integrate into tradi-
tional make files and take very little time.

However, a serious disadvantage of our tool is the single clock cycle limita-
tion. Loops must involve several instructions, and complex operations cannot be
pipelined within a single instruction. The Tensilica ASIP tools are not subject
to this limitation, so more complex custom instructions can be written in the
TIE language without adverse effects on the clock frequency.

The tool also limits the data types that are usable from a custom instruction.
Floating point is not available, and nor is integer division.

The tool does not yet try to merge hardware within the custom unit, when
it can be shared between two or more instructions. This results in some in-
structions requiring far more hardware than strictly necessary. We rely on the
synthesis tool to optimise the custom unit, but that tool does not have ac-
cess to all of the available information about the function of each instruction.
Thus, the tool could do a better job of optimisation with an instruction merging
extension.
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5 Conclusion

We have described a new approach for the generation of ASIPs, in which hard-
ware descriptions for ASIP custom units are specified within the software code
that makes use of them. Our approach is intended to integrate well into tradi-
tional development tool flows, permitting separate compilation and acting as a
plug-in replacement for GCC. This allows ASIP features to be used within large
projects.

We have also demonstrated our approach using a prototype tool, and showed
its effectiveness using a series of benchmarks. Topics for future work will include
the implementation of an optimiser for the custom unit inside cipostlink, the
possible addition of code to permit multi-cycle instructions, and support for
RFUs.
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Abstract. In this paper an architecture description for reconfigurable
architectures is introduced which is not limited on a special architecture
or a parameterisable template. The main objective is to adapt a compiler
from it to cover different reconfigurable architectures. By means of two
examples we will illustrate the applicability of our concept.

1 Introduction

Prospectively coarse-grained, dynamically reconfigurable architectures will be
provided in terms of IP cores for SoC and multicore systems. But important
for the success at this marked is the availability of development tools, especially
compilers, targeting them. According to different derivatives and families of the
reconfigurable IP cores an adaptation of the compilers is indispensable. One
possibility is to use a formal description of the architecture in terms of a archi-
tecture description language (ADL) to extract the instruction set and retarget
the compiler as used for SoCs in some cases [1].

Basically compiling an application for reconfigurable systems1 is a Place &
Route problem. The structure of an algorithm – the data and control flow – has
to be mapped to the processing elements (PEs) and the routing resources. The
possibility to change the behaviour of the hardware at run-time adds another
dimension to this problem. Hence instruction set descriptions typically provided
by compiler-oriented ADLs are not suitable. Rather there is a need for a mix of
behavioural and structural descriptions.

In this paper we propose an architecture description for reconfigurable sys-
tems. In contrast to other work we are not limited to a special architecture or a
parameterisable template but cover a whole class of architectures which is defined
by dedicated computational resources (processing elements), routing resources
as well as configuration contexts specified at compile-time (but interchangeable
at run-time). The work is still in progress so no final results are presented here.

1 In this paper we are only focusing on coarse-grain reconfigurable architectures, even
if we do not state this explicitly.
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2 Reconfigurable Architecture Description

The fundamental idea behind our modelling concept for reconfigurable archi-
tectures is derived from the concept of virtualised hardware. Thus the archi-
tecture description is not a representation of the real hardware, rather the
virtual resources provided by reconfiguration are modelled. Transfered to vir-
tual memory, our model represents the addressable memory, not the physical
cells. From the compilers point of view and for the considered class of archi-
tectures the real hardware realisation of the virtual resources plays a tangential
role.

The architecture description is built up hierarchically. More complex compo-
nents can be composed of less complex components or basic elements. A reuse of
already defined components is supported by instantiation. The basis description
elements, we are using in our prototypic implementation based on XML, are
explained in the following.

Operations. The smallest possible items to specify the behaviour of a reconfig-
urable system are operations. They are predefined and correspond to the nodes
of the CDFGs of the compilers intermediate representation. For each operation
source and destination operands are defined. Typically the set of operations
contains arithmetic and logical functions and data movements (memory access
or register copy). By putting operations together and connecting the according
operands DFGs can be built, which represents a dedicated configuration of a
computational resource. To define different configurations, e.g. of a processing
element, a number of single configurations are put together sharing the source
and destination operands as shown in figure 1. During the mapping, the compiler
selects the corresponding datapaths from the set of alternatives for each source
and destination and forms one continuous DFG.

Components. Two different kinds of components are defined: basic components
and compound components. Both have a real hardware counterpart.

The basic components again are split into three different classes: a processing
element class which models the computational resources, a component class
representing the interconnects between the PEs as well as a component class
modelling the behaviour of memory. From these three classes representations of
the real hardware components can be built.

The processing elements are defined by a set of configurations (see above).
They are connected with the world outside via input and output ports. In con-
trast to the term port used in HDLs or other ADLs a port in our case does not
transfer signals but connects two or more subgraphs of a DFG.

The data flow between the particular PEs is implemented by interconnect
components. Dedicated ports are defined to connect them with other components
when building compound components. Inside the interconnects only routing of
the data flow is specified. For this purpose two different types of routings are
defined: broadcast and cross connection. Broadcast routing transfers data from
one input port to all specified output ports. The routes between the ports are not
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configuration
Selected

Sources

Configurations

Destination

datapaths
Alternative

(a)

<pe name=”PE” b i t s i z e=”16”
lat ency=”1”>

<por ts>
<port name=” s1” type=”IN”/>
<port name=” s2” type=”IN”/>
<port name=” s3” type=”IN”/>
<port name=”d” type=”OUT”/>

</ port s>
<co n f i g s>

<co n f i g name=”add”>
<baseop name=”ADD”>

<s r c name=”s1”/>
<s r c name=”s2”/>
<dst name=”d”/>

</baseop>
</ con f i g>

<c on f i g name=”muladd”>
<baseop name=”MUL”>

<s r c name=” s1”/>
<s r c name=” s2”/>
<dst name=” t ”/>

</baseop>
<baseop name=”ADD”>

<s r c name=” s3”/>
<s r c name=” t ”/>
<dst name=”dst ”/>

</baseop>
</ c on f i g>
. . .

(b)

Fig. 1. Defining a PE using configurations (a) Alternative datapaths through configu-
rations (b) Fragmentary XML based PE description

configurable. For configurable routing full cross connects are used. The routes
between the input and output ports are configurable but only one route to a
particular output port can be active at the same time.

The behaviour of memory is modelled by data movement operations (load /
store). They will be connected to other components by ports too.

Instances of basic components will be composed to more complex compound
components e.g. a configurable unit. Compound components define the data
paths between the particular basic components as point to point connections of
their input and output ports. These connections are not configurable.

Configuration Contexts. Configurations for a single processing element where
already introduced. They are part of the configuration contexts.

In our architecture description configuration contexts are described explicitly.
They look like a compound component but they do not have a real hardware
counterpart. Rather they represent virtual resources. Contexts are derived from
a previously defined configurable unit which is not necessarily an one to one
relation.

As a result, a context contains all DFGs as well as the alternatives built by
configurations of all included basic components. The actual task of the compiler
is to find a mapping of the applications CDFG by selecting from the alternatives
and build one connected dataflow.

Each context specification is parameterised by a latency, the time needed to
switch between two contexts and the number of different configurations between
one can be switched. From one configurable unit more than one contexts can
be derived. Thus different load latencies, e.g caused by a configuration memory
hierarchy, can be modelled.

Contexts may contain special data paths to transfer data between two consec-
utive contexts. These intercontext connections are realised by connecting every
pair of input and output ports of the same or different basic components in-
cluded in the context. They are implicitly buffered so no data is lost during a
context switch.
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3 Interpreting the Model

As mentioned above the prototype of the architecture description is realised using
XML. An XML parser transforms the file into an internal graph representation.
The generated graph is typed and directed and comprises all possible data paths
through the configurable units within the defined contexts as well as back edges
to model the intercontext connections.

The nodes of the graph represent the operations, the edges the data paths
between them. The edges are attributed by the latencies of the source operation.
We distinguish between three different types of edges.

Routing edges: Fixed data paths which are not configurable.
Configurable edges: Alternative data paths. From a set of configurable edges

either outgoing from or ingoing to one node exactly one edge can be selected
contemporaneously to be a routing edge.

Intercontext edges: Virtual but fixed data paths connecting two contexts.
They appears as back edges and insert cycles into the graph. A intercontext
edge has a latency of at least one.

The implementation of the model based compiler is still work in progress, so
the details are not discussed in this paper. However a few remarks on the key
concepts should be made.

As mentioned before the intermediate representation of the compiler is based
on a CDFG. For mapping parts of an application the CDFG is split into sub-
graphs which are purely DFGs. The nodes of these DFGs, which are intermediate
operations, correspond to the available operation nodes of the model graph. So a
mapping function can be defined to map portions of the DFGs to the virtualised
reconfigurable hardware. Therefore different strategies are possible, e.g. simu-
lated annealing, or graph matching algorithms. To cope with the cycles caused
by the intercontext connections, subgraphs inside a context are duplicated and
joined together in a sequential manner, comparable to unrolling loops. This can
be done as often as contexts are available, but identical contexts might be reused.

4 Examples

The concept of modelling virtualised hardware is illustrated by two examples.
Figure 2(a) shows the realisation of a pipeline reconfigurable architecture

similar to the PipeRench [2]. The PipeRench is composed of several pipeline
stages, called virtual stripes. A virtual stripe is nothing else than a dedicated
context for a physical stripe. A physical stripe can be reconfigured within one
cycle while the other stripes are in execution. Thus a large pipeline can be
built by reconfiguring physical stripes again and again. The old state of the
stripe is saved before the replacement takes place. From the compilers point of
view, a large number of pipeline stages are available, which can be filled with
operations without having to worry about the real number of physical stripes.
Thus our architecture model does contain only one stripe which is embedded
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Fig. 2. Examples: (a) Simplified pipeline reconfigurable architecture (derived from
PipeRench [2]), (b) Reconfigurable array with registers assigned to the PEs

into a context element. The pipelined reconfiguration can be easily realised by
intercontext connections as described above.

With the second example (fig. 2(b)) the realisation of a reconfigurable array
is illustrated. Similar to the reconfigurable ALU of the ARRIVE architecture
[3] the array consists of processing elements arranged line-by-line. Between the
lines a switched routing network transfers the data horizontally. For vertical data
movements the processing elements are responsible. The array can be reconfig-
ured cycle-by cycle. Results from the preceding configuration context have to be
stored explicitly in a register file before they can be fed into to the succeeding
configurations (due to limited space this is not pictured in figure 2(b)). So in-
tercontext connections must not be used in the model. Our example differs from
the original ARRIVE by the fact that registers are assigned to each process-
ing element. Some other reconfigurable architectures, e.g. ADRES [4], use these
registers to route data between consecutive configuration contexts. Because the
data stored in these registers may not be lost, the registers must not be part of
the context element.

5 Related Work

Architecture description languages (ADLs) are widely used for SoC or embedded
processor design. In the field of reconfigurable architectures they are often used
to define the hardware realisation, e.g. structure of the PEs, or interconnect
network. However the virtualisation of hardware is not covered by them.

The ADL EXPRESSION [5] is used to describe the microarchitecture of
PEs of a dynamically reconfigurable ALU array (DRAA) [6]. However EX-
PRESSION is not designed to meet the special requirements of reconfigurable
architectures.
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A specialised XML based description is used to define an instance of the
ADRES architecture template [4]. The definition comprises the topology
of the interconnect network, the operation sets of the configurable functional
units, the timing and availability of the particular resources as well as the in-
ternal structure of the reconfigurable cells. Due to the fact that the ADRES
architecture appears as a VLIW processor from the compilers point of view,
explicit modelling of configuration techniques are not necessary.

The ADL presented in [7] is designed with special support for reconfigurable
architectures. In contrast to the others the ADL does not target on a specific
architecture. To cope with dynamic reconfiguration dynamic instruction sets can
be defined.

6 Conclusion and Further Work

In this paper we have presented an architecture description for coarse-grained
reconfigurable systems which is aimed to retarget a compiler. In contrast to other
work we are not limited to a special architecture or a parameterisable template.
By means of two examples we have illustrated the applicability of the description
to model different architectures.

The implementation of the compiler is still work in progress. Different tech-
niques will be examined to map portions of algorithms to the reconfigurable
hardware. Further it is planed to build a graphical editor on top of the architec-
ture description for a better usability.

References

1. Tomiyama, H., Halambi, A., Grun, P., Dutt, N., Nicolau, A.: Architecture Descrip-
tion Languages for Systems-on-Chip Design. In: Proceedings of 6th Asia Pacific
Conference on Chip Design Languages. (1999) 109–116

2. Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., Taylor, R.R.:
PipeRench: A Reconfigurable Architecture and Compiler. Computer 33 (2000)
70–77
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Abstract. As Moore’s law is loosing steam, one already sees the phe-
nomenon of clock frequency reduction caused by the excessive power
dissipation. New technologies that will completely or partially replace
silicon are arising, and new architectural alternatives are necessary. Re-
configurable fabric appears to be one of these solutions, and has shown
speed ups of critical parts of several data stream programs. However, its
wide spread use is still withhold by the need of special tools and compil-
ers, which clearly preclude software portability. Based on all these facts,
in this work we propose a coarse-grain dynamic reconfigurable array,
tightly coupled to a traditional RISC machine. Besides taking advan-
tage of using combinational logic to speed up the execution, we imple-
ment dynamic analysis of the code at run time to reconfigure the array,
maintaining full software compatibility. Using the Simplescalar Toolset
together with the embedded benchmark suite MIBench, we show perfor-
mance improvements until 2 times, thanks to the implementation of the
proposed approach.

1 Introduction

Moore’s law as known will no longer exist in a near future, and one can already
see the phenomenon of reduction of clock frequency due to excessive power dissi-
pation. The reason is very simple: physical limits of silicon, since it is not possible
to shrink atoms.

Additionally, traditional high performance architectures as the diffused super-
scalar machine are also achieving their limits, and recent increases in performance
occurred mainly thanks to boosts in clock frequency. As an example, the clock
frequency of Intel’s Pentium 4 processor only increased from 3.06 to 3.2 GHz
between 2002 and 2003 [1]. This way, the frequency increase reduction together
with the foreseen slow technologies are new architectural challenges to be dealt
with.

Reconfigurable fabric appears to be one of these solutions, and has shown
speed ups of critical parts of several data stream programs. Using the same idea
of instruction reuse, by translating a sequence of operations into a combinational
circuit performing the same computation, one could speed up the system and
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reduce energy consumption at the obvious price of extra area. Dataflow archi-
tectures put this concept to the edge, achieving huge speedups.

Nevertheless, one must be very careful when proposing new possibilities, since
there is a clear need to keep software compatibility and traditional programming
paradigms. These are key factors to reduce the design cycle allowing one to
deploy the product as soon as possible on the market. And that is precisely
the major problem precluding the usage of the reconfigurable fabric today:
one needs special tools and compilers, which clearly do not sustain software
portability.

Keeping all the above restrictions in the mind, one solution already proposed
is the dynamic reuse, in someway, of instructions or its dependence analysis [2].
This approach has several advantages. At the same time that it sustains software
compatibility and traditional models of computation, it does not require repeated
parallelism analysis when executing the same set of instructions. The latter, in
turn, is an advantage over superscalar architectures, which repeat exactly the
same job again and again on the same set of instructions, discovering every time
what they had already discovered.

Concerning the reconfigurable fabric and instruction reuse, recent work has
already proposed dynamic analysis of the code to reconfigure an array at run-
time [3]. However, this proposal uses a fine-grain array in a FPGA that, besides
being dependent on just one technology, results in a huge control overhead that
increases the complexity of dynamic detection and the reconfiguration as well,
thus requiring a large cache size to store the configurations of the array. As a
consequence, just critical parts of the software, like the most executed loops, with
some restrictions, are optimized. This way, gains are achieved just in algorithms
where the kernel is very distinct from the rest of the software, as filters. Algo-
rithms with more control flow parts or a mixed behavior can not take advantage
of such technique.

On the other hand, our work proposes the use of a coarse-grain reconfigurable
array composed by simple functional units and multiplexers that, besides being
technology independent, is not limited to the complexity of fine-grain config-
urations. We coupled this coarse-grain array with a technique called Dynamic
Instruction Merging, which is used to detect potential sequences of instructions
at run time to be executed on the array. Transforming in combinational logic
any sequence of instructions, not being limited to critical parts of the software,
speedups are obtained even in control-flow algorithms or algorithms that do not
present a high level of parallelism. It is exactly the coarse grain nature of the
array that makes this possible: the algorithm for the dynamic detection and
configuration of the array becomes simpler, and less memory to store these con-
figurations is necessary.

Thus, in this work we show first results of the potential of using such technique.
Using the Simplescalar tool [4] and a subset of the MIBench benchmark [5], our
approach has a mean acceleration of 2 times, just optimizing instructions inside
Basic Blocks.
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2 The Reconfigurable Array

The reconfigurable array is tightly coupled to the processor. It is implemented
as an ordinary functional unit in the execution stage, using the same approach
of Chimaera [7]. This way, no new instructions or external accesses to the array
are necessary (which in turn could increase the delay and power consumption).

The unit is a bidimensional array composed by lines and columns. Each in-
struction is allocated in a column. If two instructions do not have data depen-
dence, they can be executed in parallel, in the same line. The columns are divided
in groups, where each group takes a determined number of cycles to be executed.
In the example, observed in the Figure 1b, the first group of columns is composed
by simple operations, such as arithmetic and logic functions (Figure 1a). Each
vertical sequence of three of these columns takes one cycle to be executed. The
second group is for the loads execution, which takes one cycle to be executed,
and the third group is for the multiplier that takes 3 cycles. The reconfigurable
array can not afford floating point or division operations. Note that in the first
group supports until four simple instructions to be executed in parallel, while in
the second group two loads are allowed and in the third group just one multiply
instruction can be executed per time.

A separated unit is responsible for analyzing the instructions at the same time
that the main processor fetches them. When this unit realizes that there are a
certain number of instructions which are worth to be executed in the array, the
configuration for this sequence is saved in a reconfiguration cache.

For each incoming instruction, the first thing done is the verification about
RAW (read after write) dependences. The source operands are compared to a
bitmap of target registers of each line (Figure 1d). If the current line and all
above do not have that target register equal to one of the source operands of the
current instruction, this instruction can be allocated in that line, in a column as
left as possible, depending on the group, as explained before.

When this is instruction is allocated in that line, the bitmap of target registers
is updated. This way, for each instruction just one bitmap per line is necessary
to be analyzed. Indirectly, such technique increases the size of the window of
instructions, which is one of major limiting factors of ILP, exactly because the
number of comparators that is necessary [6].

For each line there is also the information about what registers can be written
back or saved to the memory. This way, it is possible to write results back
that will not be used anymore in the array in parallel to the execution of other
operations (Figure 1c).

After that, these data are saved in the reconfiguration cache, indexed by the
PC (Program Counter) register, with the necessary information for future re-
configurations in the array.

As explained before, the array is reconfigured using the data of the cache
designed specially for it. While the program executes, when an address of a
reconfigurable instruction group is found, the reconfigurable unit detector sends
a information to the main processor. Then, its control unit configures the array
as the active functional unit, stops the rest of the processor while the array
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Fig. 1. The structure of the reconfigurable array

is performing it functions, and upgrades the Program Counter with the new
address, in order to continue the normal operation after the execution of the
array.

As the detection for the address that will be used in the reconfiguration is
done in the first stage of the pipeline, and the reconfigurable array is in the
fifth stage, there are 4 cycles available between the detection and the use of
the array. As one cycle is necessary to find the cache line that has the array
configuration, three cycles are available for the reconfiguration, which involves
the load of the values of all registers that will be used by that configuration, the
load of immediate values, the configuration for the multiplexers and functional
units and so on.

During the execution of the operations in the array, one issue is the load
instructions. They stay in a special group in the array as showed before, and the
number of columns of this group depends on the number of read ports available in
the memory (which means the number of loads that can occur simultaneously).
Operations that depend on the result of a load have already allocated in the
array during the detection phase considering a cache hit as load delay. If a miss
occurs, the whole array stops until it is resolved.

Finally, the results that need to be written back either in the memory or in
the local registers are allocated in a buffer. The values will be written back just
when they are not used anymore for that configuration in the array. For instance,
if there are two writes in the same register in a determined configuration, just
the last one will be performed, since the first one was already consumed inside
the array by other instructions.

It is important to point out that both the reconfigurable array and the ad-
ditional hardware to detect the sequence of instructions work parallel to the
processor, bringing no delay overhead in its pipeline structure.
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3 Results

In this section we show the potential of using Dynamic Instruction Merging with
the reconfigurable array. Our approach was implemented using the Simplescalar
ToolSet [4] running the PISA architecture, executing a subset of the MiBench [5].

We considered a memory where it is possible to make two reads and one
write per cycle and a latency of one cycle to fetch values from the cache. This
assumption is in somehow very pessimistic. For instance, in [2] was considered for
trace reuse the capability to perform 16 reads+writes per cycle, including register
and memory values. Developed architectures such as the Alpha 21264 [6] can
perform until 14 reads+writes per cycle (8 register reads, 4 register writes and
2 memory references). Therefore, our configuration could be easily implemented
in nowadays memory systems.

Figure 2 shows the percentage of performance improvement, where the Y axis
is the relative time spent by the algorithm conforming the size of the reconfigura-
tion cache, showed in the X axis (where zero means not using the reconfigurable
array).

Analyzing the figure, one could notice that depending on the algorithm a
small number of cache positions is enough. As the cache replacement policy
implemented for initial analysis was FIFO (First In, First Out), this cache must
be large enough to support all the basic blocks that are being executed inside a
determined period of time in order to allow their reuse. For instance, consider
that an algorithm is composed by a main loop and inside this loop there are
five basic blocks. If we have four slots available in the cache, the first time the
first basic block will be reused (in the second iteration of the loop), it will not
be anymore in the cache and all the detection process should be done again.
Therefore, in this case, no optimization would be achieved.

Fig. 2. The structure of the reconfigurable array

Finally, it is important to stand out that we are not exploring beyond basic
blocks. However, it is common sense that in order to achieve higher performance
improvements this exploration should be done, and that is way the overspread
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superscalar processors use aggressive speculation to increase even more the in-
struction level parallelism. Even not taking advantage of such approach, good
results are achieved. Depending on the size of the reconfiguration cache, the
algorithms can be executed in almost half the original time.

4 Conclusions and Future Work

In this work we presented the potential of replacing the traditional execution flow
for combinational logic. Employing similar techniques used by well known data-
flow architectures, but maintaining software compatibility, good performance
improvements were achieved, even when not exploring beyond basic blocks.

For future work, we intend explore the relation among basic blocks. This
way, more parallelism can be achieved and the delay caused by branch instruc-
tions avoided. Moreover, other benchmarks such as SPEC will be evaluated, and
studies about the area overhead (size of array and number of configurations) and
cache replacement policies will be done.

References

1. Flynn, M.J., Hung, P.: Microprocessor design issues: thoughts on the road ahead.
IEEE Micro, Vol. 25, Issue 3, May-June (2005) 16 - 31
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Abstract. Recently, SPARK parallelizing high-level synthesis software
tool has been developed. It takes a behavioral ANSI-C code as an in-
put, schedules it using speculative code motions and loop transforma-
tions, generates a finite state machine for the scheduled design graph,
and then finally outputs a synthesizable RTL VHDL code. To handle
loop algorithm, SPARK employs various loop transformations such as
loop invariant code motion, loop unrolling, loop index variable elimi-
nation and loop shifting. In loop synthesis, however, SPARK does not
produce circuit description whose quality can compete with manual de-
signs. With the objective of improving the quality of high-level synthesis
results for designs with loops, this paper shows an upgrade of SPARK
through transforming nested loops into a 2-D systolic array to increase
parallelism. The C-to-VHDL loop synthesis in this paper achieves syn-
thesis results that are better than those achieved from a current version
of SPARK for matrix-matrix multiplication and FIR filter, and can be
incorporated into SPARK parallelizing high-level synthesis framework.

1 Introduction

High-level synthesis [1][2] has received significant attention over the past decade.
Early work focused mainly on scheduling heuristics as well as algebra and re-
timing optimization for data flow design. Current work has presented scheduling
heuristics for mixed control data flow designs, many of which apply speculative
code motions [3][4]. Several high-level synthesis tools have been released over the
past decade [5][6][7], with adoptions being limited.

Recently, SPARK parallelizing high-level synthesis software tool [2][8] has
been developed. It is a high-level synthesis methodology that incorporates par-
allelizing compiler and compiler transformation into a traditional high-level syn-
thesis framework, both during pre-synthesis phase and scheduling phase. To
handle loop algorithm, SPARK employs various transformations such as loop
invariant code motion, loop unrolling, loop index variable elimination and loop
shifting. In practice, however, SPARK does not produce circuit description whose
quality can compete with manual designs in term of circuit complexity and execu-
tion time. Our work has been motivated by an enhancement of SPARK through
synthesizing a loop construct onto a systolic array.

A systolic array [9][10] formed by interconnecting a set of identical data
processing cells in a uniform manner is a combination of an algorithm and a
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circuit that implements it, and is closely related conceptually to arithmetic
pipeline. The underlying principle of systolic array is to achieve massive par-
allelism with a minimum communication overhead, and generally speaking, a
systolic array is easy to implement because of its regularity and easy to recon-
figure because of its modularity. Most algorithms of signal processing and other
engineering application require the use of a massively parallel computing struc-
ture, that is, systolic array structure, to achieve acceptable performance. The
transformation of a loop into a systolic array structure is an interesting and
challenging problem, which has been extensively studied so far [9][11]. Previous
research on the implementation of algorithm with nested loops on 2-D mesh-
connected systolic array by Moldovan [11] contributed to and is quoted in this
paper, providing a necessary rationale.

This paper shows an upgrade of SPARK by transforming loops into a 2-D
systolic array to improve the quality of high-level synthesis results for design with
nested loops. The C-to-VHDL synthesis in this paper achieves synthesis results
that are better than those achieved from a current version of SPARK for matrix-
matrix multiplication and FIR filter from the viewpoint of hardware complexity
and execution speed, and can be incorporated into SPARK parallelizing high-
level synthesis framework.

2 Mapping Nested Loops onto 2-D Systolic Array

This section is on implementation of behavioral description with nested loop on
a mesh-connected systolic array processor. Our work is based on the previous
research by Moldovan [11], however, the presented method outperforms the one
in [11] when it comes to execution time of algorithm and hardware complexity
of implementation without decreasing total running time of the derived systolic
array, since it reduces the time required to find valid transformation by sim-
plifying neighbor interconnections, considering sufficient conditions of a systolic
array, and utilizing minimum number of cells required by transformation.

We assume that the computational structure consists of a 2-D mesh connected
systolic array processor. Each cell in a 2-D systolic array can be indexed 2-tuple
in 2 coordinates as shown in Fig. 1. We show only 4 by 4 cells for the purpose of
simplicity. In this structure, each cell can only be connected to its neighbor. The
structure of Moldovan consists of 9 interconnections between cells, but we use
at most 5 communication directions, 4-neighbor bidirectional connections and a
connection within the cell. The diagonal links of Moldovan’s mesh structure can
be deleted without violating the dependence mapping. In addition, it has been
shown that most of the circuit area is occupied by local and global interconnec-
tions, and the delay of interconnections is responsible for about 40-50% or more
of the total delay associated with a circuit. The interconnections between cells
are described by the difference vectors between the coordinates of adjacent cells,
and can be represented by matrix of interconnection as shown in expression (1).

P =
[
p1 p2 p3 p4 p5

]
=
[
0 0 1 0 −1
0 1 0 −1 0

] [
j1
j2

]
(1)
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Fig. 1. Structure of 2-D Systolic array

The structural details of the PEs, I/O, execution time, and communication is
determined after mapping loops onto systolic array processor. Throughout this
paper we are interested in algorithms that are regular in terms of the computa-
tional patterns, and we focus on algorithms which have the form of the nested
FOR-loop structure with uniform data dependencies. When extracting paral-
lelism from a nested loop, the first step is to trace for relation between variables
belonging to different instances of the nested loop. The relation is defined as dif-
ference vectors of index points where a variable is used and where that variable
is generated [11].

Two steps are involved in mapping a loop algorithm into systolic array [9].
The first step is a scheduling. Once the scheduling is fixed, the second step is
process assignment. Scheduling specifies the sequence of operation in all the cells.
A schedule function represents a mapping from the N -dimensional index space
onto a 1-D schedule (time) space. A linear schedule is based on a set of parallel
and uniformly spaced hyperplanes. These hyperplanes are called equitemporial
hyperplanes, all the nodes on the same hyperplane must be processed at the
same time. Mathematically, the schedule can be represented by a schedule vector
S, pointing to the normal direction of the hyperplane. Processor assignment
maps each node of DG into a systolic array cell. It is common to use linear
projection for processor assignment. Mathematically, linear projection is often
represented by projection vector N . The main idea behind Moldovan’s method
is the transformation of an algorithm A = (Jn, D) to another A′ = (J ′n, D′)
with less total execution time, which is equivalent to A.

To map loops into systolic array mathematically, we search for the transfor-
mation matrix defined below.

M =
[

S
R

]
=

⎡
⎣ t11 t12 t13

t21 t22 t23
t31 t32 t33

⎤
⎦ (2)
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Where mapping S and R are defined as S : Jn → J1 and R : Jn → Jn−1. M is
n by n matrix since we consider only linear transform in this paper. Algorithm
dependencies D are transformed into D′ = MD. The mapping S is selected such
that the transformed data dependencies matrix D′ has positive entry in the first
row. This means that a causality should be enforced in a permissible schedule.

A transformation algorithm of Moldovan considers only minimizing parallel
execution time with the exception of hardware complexity, However, our ap-
proach calculates the minimum makespan for the time schedule and then we
establish minimum number of systolic cells required by specific schedule. The
final object also contributes to reduce the time finding mapping R. In the case
of Moldovan, the complexity of an algorithm finding R is 9m, where m is the
number of dependence vectors. It may not be applied to find out solutions in
real problems due to its complexity. Here our motivation is to reduce the time
finding mappings R by simplifying neighbor interconnections from 9 to 5, con-
sidering sufficient conditions such as spatial locality [9] of a systolic array and
utilizing minimum number of cell required to implement it. If the number of
dependence vector of different variables a and b is two, then the 8 mappings
shown in Fig. 2 are considered to be valid among 52 possible mappings because
only thesis mappings satisfy the spatial locality of a systolic array. As a result,
our approach finding mappings R (m ≥ 2) considers the candidate mappings to
be valid among 5m possible mappings if the mapping is belongs to one of 8 in
Fig. 2 for at least arbitrary two pi’s.

During finding valid mappings R among 5m possible mappings by consider-
ing sufficient condition of a systolic array, we also try to find mapping R which
minimizes the number of cells. If the mapping R satisfies the sufficient condition
of a systolic arrays and then we calculate the number of cells required by corre-
sponding mapping R. If the number of cells is the same as makespan we select
it as the best mapping to fit our needs and stop the search.

After mapping loop algorithms into systolic array processor, a backend code
generation pass outputs RTL VHDL which is synthesizable using Synopsys de-
sign compiler. The length of the register is easily identified from algorithm code.
The computational elements (multiplier, adder and comparator etc) are selected
from a set of computation C and designed using simply component instantiation
of Synopsys design ware. Timing and data communication captured by trans-
formed data dependencies give crucial information on generating VHDL code
for data path of each cell and intercommunication between cells. The generated
VHDL output is structural description, because it determines the exact of the
systolic architecture through mapping methodology and leaves no freedom to
the CAD tool to reconstruct it.

3 Synthesis Results

To compare the results from transforming loops into a 2-D systolic array men-
tioned in this paper and those from SPARK, each of the generated VHDL code
for matrix-matrix multiplication and FIR filter are synthesized using Synopsys
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Table 1. Synthesis results of matrix-matrix multiplication

Description SPARK The proposed methodology

The size of each matrix 4 by 4 4 by 4
The length of each element(bit) 4 4
Total cell area(2-NAND) 17086 3951
Worst clock cycle(ns) 22.53 13.04
The number of clock cycle 20 10
Total execution time(ns) 450.6 130.4

Table 2. Synthesis results of FIR filter

Description SPARK The proposed methodology

The number of taps 4 4
The length of data(bit) 4 4
Total cell area(2-NAND) 6386 957
Worst clock cycle(ns) 20.08 11.19
The number of clock cycle 64 10
Total execution time(ns) 1285.12 111.9

design compiler based on Hynix 0.35μm cell library. Table 1 and Table 2 list the
synthesis results of matrix-matrix multiplication and FIR filter, respectively.

Only 1-D array type is used in the program code for SPARK description,
since SPARK does not currently support multi-dimensional array. To fully un-
roll a loop, loop unrolling and pipelining parameters of SPARK are set to a
maximum number of the iteration of loops. The number of hardware resources
allocated to schedule the design is set equal to that of resources required by
systolic arrays.
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As shown in Table 1 and Table 2, the proposed C-to-VHDL loop synthesis
achieves results that are better than those achieved from a current version of
SPARK. Compared to SPARK, our approach achieves up to 77% reduction in
the hardware complexity and up to 70% speed up in the execution time for two
designs.

4 Conclusions

This paper shows an upgrade of SPARK through transforming nested loop con-
structs into a 2-D systolic array with the objective of improving the quality of
high-level synthesis results by increasing parallelism. The proposed approach re-
sults in about 70% reduction in both area and execution time for two designs, and
can be incorporated into SPARK parallelizing high-level synthesis framework.
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Abstract. FPGAs have become a critical part of every system design.
However, they lag far behind ASICs because of the speed of designs which
can be accommodated. Systolic array is an ideal for ASICs because of its
massive parallelism with minimum communication overhead, regularity
and modularity, but most of commercial FPGAs cannot handle systolic
structure with fast sampling rate for their general-purpose architecture
nature. Recently, a super-systolic array-based PLD architecture has been
proposed. This paper proposes a new PLD architecture targeting a su-
per semi-systolic array — a derivative from a super-systolic array — for
application-specific arithmetic operations such as MAC. The proposed
super semi-systolic array-based PLD architecture achieves implementa-
tion results that are better than those achieved on the super-systolic
array-based PLD in terms of hardware complexity and P&R time as
well as existing FPGAs in terms of hardware complexity, P&R time and
clock speed.

1 Introduction

A systolic array [1][2] formed by interconnecting a set of identical data processing
cells in a uniform manner is a combination of an algorithm and a circuit that
implements it. In order to raise the cell utility it is needed to reorganize the cell
of a systolic array itself as another systolic array, that is, a super-systolic array
[3]. In a systolic array, there should be at least one latch sharing the same clock
signal between cells. This constraint can be relaxed by modifying the structure of
a systolic array to adapt itself to the PLD architecture. The implementation of a
systolic array on a PLD with horizontal and vertical channel can be transformed
to a semi-systolic design through retiming [1] using PLD channels because global
data transfer of semi-systolic design is easily accepted through the horizontal
and/or vertical channels around the logic units, eliminating the need for latches.

Most commercial FPGAs [4][5][6] cannot handle designs with very fast sam-
pling rate for their general purpose architecture nature. Recently a super-systolic
array-based PLD architecture which combines the performance of a ASIC with
the flexibility of a PLD has been proposed in [7].

This paper proposes a new PLD architecture targeting a super semi-systolic
design which combines the signal broadcasting capability of horizontal and verti-
cal channel in a PLD and the operation concurrency of the pipelined implementa-
tion of a super-systolic array. Compared with existing super-systolic array-based
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PLD architecture, the proposed super semi-systolic array-based PLD architec-
ture offers improvements in hardware complexity and P&R time without degen-
erating performance, and improvement in hardware complexity, P&R time and
clock speed compared with existing FPGAs.

2 Super Semi-systolic Array

For coefficient sequence of four M -bit integers, f (n), the bit-level super semi-
systolic array for FIR filter with semi-systolic multiplier and internal structure
of its cell are shown in Fig. 1(a) and Fig. 1(b), respectively.

As shown in Fig. 1, the cell of semi-systolic array for FIR filter contains the
bit-serial semi-systolic multiplier, making the FIR filter a super semi-systolic
array and the cell of FIR filter a super-cell [3]. Note that the critical path of the
proposed a super semi-systolic FIR filter is limited only by one AND gate and
one full adder as shown in Fig. 1(c).

- - - x(1)0 0 - - - 0 x(0)n-1 - - - x(0)0

f(3)
M+N+K-bit
shift register

f(2)

shift register

f(1)

shift register

f(0) - - -  y(0) 2  y(0)1  y(0)0

(a)

M+N+K

f(1)
M-1

f(1)
0

Bit-serial Semi-Systolic Multiplier

(b)

0

M+N+K-bit M+N+K-bit

0

FA

f(1)
M-2

f(1)
1

(c)

f(1)M-2

FA

Fig. 1. (a) A super semi-systolic FIR filter (b) Structure of a super-cell (c) Structure
of the cell of semi-systolic multiplier

3 Application-Specific PLD Architecture

A proposed PLD architecture targeting a super semi-systolic array for arithmetic
operations is similar to that in [7]. The architecture consists of configurable Logic
Modules(LMs), configurable I/O Blocks, and programmable interconnections to
route signals.

3.1 Logic Module (LM)

Each LM is made up of a Logic Block(LB) which consists of five Logic Units(LUs)
and an Array Block(AB) as shown in Fig. 2. There are three kinds of
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Fig. 3. (a) Structure of a Logic Unit (b) Structure of a PSFG in [7]

programmable interconnections [7]: global interconnection, inter-LM connection
and intra-LM connection. The routing channel in Fig. 2 is set up with the aim
of implementing arithmetic and signal processing operations such as matrix-
matrix multiplication and FIR filter. Each LB which can efficiently implement
4-bit ripple carry adder or 4-bit bit-serial semi-systolic multiplier is based on
the super-cell of a super semi-systolic array shown in Fig. 1(b). A ripple carry
adder of any length including 8, 16, 32 and 64-bit, and a bit-serial semi-systolic
multiplier can efficiently be implemented by cascading the LBs.
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Fig. 4. (a) Structure of a Logic Unit (b) Structure of a PSFG proposed in this paper

3.2 Logic Unit (LU)

The fundamental logic cell, LU, in the proposed PLD is based on PSFG [7] and
builds semi-systolic array especially while that of existing FPGAs such as Xilinx
is based on multiplier and look-up table without any preference for computa-
tional structure. Compared with LU in [7], the proposed LU in this paper is
area efficient for its simpler data flows as shown in Fig. 3 and Fig. 4. The LU
in Fig. 4(a) is programmed as a systolic multiplier. In Fig. 4(b), one PSFG slice
implements both sum and carry of a 1-bit full adder. Symmetric function with
more than three inputs can be implemented as a cascade of 3-variable PSFG
through EXOR-based Davio expansion [7].

Shift Register

Shift Register
Shift Register

(a) (b)

Fig. 5. (a) Structure of an AB in [7] (b) Structure of an AB proposed in this paper
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3.3 Array Block (AB)

The AB is introduced to synchronize the bit dataflow between LBs to guarantee
the generation and summation of the intermediate results according to recurrence
relation of the applications. Fig. 5(a) shows AB proposed in [7], and Fig. 5(b)
shows AB proposed in this paper. As shown Fig. 5(a) and Fig. 5(b) the AB
proposed in this paper consumes less area than that in [7]. The improvement
of hardware complexity is achieved by transforming designs from super-systolic
array to super semi-systolic array because global data transfer of semi-systolic
design is easily accepted through the horizontal and/or vertical channels around
the logic units, eliminating the need for latches.

4 Performance Evaluation

To show the advantage of the PLD architecture proposed in this paper to the
existing FPGA architecture and the PLD architecture proposed in [7], super
semi-systolic array for matrix-matrix multiplication and super semi-systolic FIR
filter are implemented onto a Xilinx FPGA [8]. Table 1 and Table 2 show that
our proposed architecture does much better in speed for two designs under test.

Table 1. Implementation results of a super semi-systolic matrix-matrix multiplier

Description XCV200 The proposed PLD

The size of matrix 3 by 3 3 by 3
The length of each element(bit) 4 4
Hardware complexity 47 SLICEs 45 LUs
P&R time(second) 2 0.5
Worst clock cycle(ns) 5.152 1.25
System clock(MHz) 194.1 800

Table 2. Implementation results of a super semi-systolic FIR filter

Description XCV200 The proposed PLD

The number of taps 4 4
The length of data(bit) 4 4
Hardware complexity 67 SLICEs 20 LUs / 3 ABs
P&R time(second) 2 0.5
Worst clock cycle(ns) 4.857 1.25
System clock(MHz) 205.89 800

5 Conclusions

This paper proposes a new application-specific PLD architecture targeting a
super semi-systolic array for arithmetic operations with recurrence relation. The
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proposed PLD can achieve implementation results that are better than those
achieved on the PLD proposed in [7] in terms of hardware complexity and P&R
time as well as existing FPGAs in terms of hardware complexity, P&R time and
clock speed, and can easily implement basic arithmetic operations and signal
processing algorithms such as ripple carry adder, bit-serial multiplier, matrix-
matrix multiplication, FIR filter, IIR filter, 2D convolution, and FFT according
to the property that the recurrence relation of such an algorithm is efficiently
mapped onto a semi-systolic structure.
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De Sutter, Bjorn 425
de Toro, F. 164
Debosschere, Koen 52
Dı́az, Javier 36, 46, 75, 158, 164
Dirkx, Erik 12
Dittmann, Florian 255
Dupont, Steven 425
Duran, Arturo 383

Ferreira, José M. 262
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