
Declarative Semantics of Production Rules
for Integrity Maintenance

Luciano Caroprese, Sergio Greco, Cristina Sirangelo, and Ester Zumpano

DEIS, Univ. della Calabria, 87030 Rende, Italy
{caroprese, greco, sirangelo, zumpano}@deis.unical.it

Abstract. This paper presents a declarative semantics for the mainte-
nance of integrity constraints expressed by means of production rules.
A production rule is a special form of active rule, called active integrity
constraint, whose body contains an integrity constraint (conjunction of
literals which must be false) and whose head contains a disjunction of up-
date atoms, i.e. actions to be performed if the corresponding constraint
is not satisfied (i.e. is true). The paper introduces i) a formal declarative
semantics allowing the computation of founded repairs, that is repairs
whose actions are specified and supported by active integrity constraint,
ii) an equivalent semantics obtained by rewriting production rules into
disjunctive logic rules, so that repairs can be derived from the answer
sets of the logic program and finally iii) a characterization of production
rules allowing a methodology for integrity maintenance.

1 Introduction

Integrity constraints are logical assertions on acceptable (or consistent) database
states, and specify properties of data that need to be satisfied by valid instances
of the database [1]. When constraints are violated, for example during or at the
end of the execution of a transaction, the repair of the database state is usu-
ally limited to fixed reversal actions, such as rolling back the current operation
or the entire transaction [6]. Moreover, since the presence of data inconsistent
with respect to integrity constraints is not unusual, its management plays a key
role in all the areas in which duplicate or conflicting information is likely to
occur, such as database integration, data warehousing and federated databases
[17,18,24]. Thus, an improved approach to constraints enforcement allows def-
inition of compensating actions that correct violation of constraints according
to a well-defined semantics (database repairs) or allows computing consistent
answers. Informally, the computation of repairs is based on the insertion and
deletion of tuples so that the resulting database satisfies all constraints, whereas
the computation of consistent answers is based on the identification of tuples
satisfying integrity constraints and matching the goal.

The following example shows a situation in which inconsistencies occur.

Example 1. Consider the relation schema mgr(Name, Dept, Salary) with the
functional dependency Dept → Name which can be defined through the first
order formula ∀(E1, E2, D, S1, S2) [mgr(E1, D, S1) ∧ mgr(E2, D, S2) ⊃ E1 = E2].

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, pp. 26–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Declarative Semantics of Production Rules for Integrity Maintenance 27

Consider now the inconsistent instance: DB = {mgr(john, cs, 1000), mgr
(frank, cs, 2000)}. A consistent (repaired) database can be obtained by
applying a minimal set of update operations; in particular it admits two re-
paired databases: DB1= {mgr(frank, cs, 2000)} obtained by applying the re-
pair R1 = {−mgr(john, cs, 1000)} (deleting the tuple mgr(john, cs, 1000)) and
DB2={mgr(john, cs, 1000)} obtained by applying the repair R2 = {−mgr
(frank, cs, 2000)} (deleting the tuple mgr(frank, cs, 2000)). �

The notion of integrity constraints and their automated maintenance has been
investigated for many years. Several works have proposed the updating of data
and knowledge bases through the use of active rules [6,7] and nonmonotonic
formalisms [2,5,19,20]. Some approaches use ECA (event-condition-action) rules
for checking and enforcing integrity constraints, whereas other approaches are
based on simpler forms of rules, called CA (condition-action) or production rules,
in which the event part is absent. Current DBMS languages offer the possibil-
ity of defining triggers, special ECA rules well-suited to automatically perform
actions, in response to events that are taking place inside (or even outside) the
database. However, the problem with active rules is the difficulty to understand
the behavior of multiple triggers acting together [21,23]. Although many diffe-
rent proposals have been introduced over the years, at the moment there is no
agreement on the integration of active functionalities with conventional database
systems. A different solution based on the derivation of logic rules with declara-
tive semantics has been recently proposed in several works. These proposals are
based on the automatic generation of Datalog rules and on the computation of
answer sets, from which repairs are derived [3,4,8,14,15,16,26]. All these work do
not take into account the possibility to indicate the update operations making
consistent the database.

This paper considers a special form of production rules called active integrity
constraints (AIC). Active integrity constraints, recently proposed in [11], are
special integrity constraints whose body consists of a conjunction of literals which
should be false (denial constraint) and whose head contains the actions which
should be performed if the body of the rule is true (i.e. the constraints defined
in the body is not satisfied). AIC rules allow specification of the actions which
should be performed to make the database consistent when integrity constraints
are violated.

Example 2. Consider the database of Example 1 and the active constraint:

∀(E1, E2, D, S1, S2)[mgr(E1, D, S1) ∧ mgr(E2, D, S2) ∧ S1 >S2 ⊃ −mgr(E1, D, S1)]
stating that in case of conflicting tuples it is preferred to delete the one with
greater salary. The constraint suggests to update the database by deleting the
tuple mgr(frank, cs, 2000). This action, in the specific case, leads to taking into
account only one of the two repairs, namely R2. �

Thus, active integrity constraints are production rules expressed by means of
first order logic with declarative semantics. AIC allow the computation of “pre-
ferred” repairs, that is repairs whose actions are specified explicitly and are also
supported.

28 L. Caroprese et al.

Contributions
The novelty of the approach here proposed consists in the definition of a formal
declarative semantics for active integrity constraints. The new semantics allows
identification, among the set of all possible repairs, of the subset of founded
repairs whose actions are specified in the head of rules and are “supported” by
the database or by other updates. The computation of founded repairs can be
done by checking whether for each repair all its update atoms are founded or by
rewriting the constraints into a Datalog program and then computing its stable
models; the founded repairs are obtained by selecting, for each stable model, the
set of “update atoms”.

The paper also studies the characteristic of AIC rules and show that for each
production rule r (consisting of a body defining the integrity constraint and a
head containing alternative actions which should be performed if the constraint
is not satisfied), update head atoms not making the conjunction of body literals,
defining an integrity constraint, false with respect to the repaired database (i.e.
such that the body integrity constraint is satisfied), are useless 1. This formal
result confirms the intuition that for integrity maintenance general (E)CA rules
are not necessary. Therefore, active integrity constraints can be thought as spe-
cial CA rules with declarative semantics whose aim is to repair the database
and to help consistently answering queries over inconsistent databases. As, in
the general case, the existence of founded repairs is not guaranteed the class of
universally quantified constraints under a different semantics in which actions
are interpreted as preference conditions on the set of possible repairs (“prefer-
able” semantics) is also investigated. Under such a semantics every database
with integrity constraints admits repairs and consistent answers.

Finally, the paper studies the computational complexity and shows that com-
puting founded and preferred repairs and answers is not harder than computing
“standard” repairs and answers.

2 Preliminaries

Familiarity with relational database theory, disjunctive logic programming and
computational complexity is assumed [1,9,13,22].

Disjunctive Databases. A (disjunctive Datalog) rule r is a clause of the form2

p∨

i=1

Ai ←
m∧

j=1

Bj ,

n∧

j=m+1

not Bj , ϕ p + m + n > 0 (1)

where A1, · · · , Ap, B1, · · · , Bn are atoms of the form p(t1, ..., th), p is a predicate
of arity h and the terms t1, ..., th are constants or variables, while ϕ is a con-
junction of built-in atoms of the form u θ v where u and v are terms and θ is a
comparison predicate.
1 Under the declarative semantics here proposed.
2 A literal can appear in a conjunction or in a disjunction at most once. The meaning

of the symbols ‘∧’ and ‘,’ is the same.

Declarative Semantics of Production Rules for Integrity Maintenance 29

An interpretation M for P is a model of P if M satisfies all rules in ground(P)
(the ground instantiation of P). The (model-theoretic) semantics for a positive
program P assigns to P the set of its minimal models MM(P), where a model
M for P is minimal, if no proper subset of M is a model for P . The more general
disjunctive stable model semantics also applies to programs with (unstratified)
negation [13]. Disjunctive stable model semantics generalizes stable model se-
mantics, previously defined for normal programs [12]. For any interpretation M,
denote with PM the ground positive program derived from ground(P) by 1)
removing all rules that contain a negative literal not A in the body and A ∈ M,
and 2) removing all negative literals from the remaining rules. An interpretation
M is a stable model of P if and only if M ∈ MM(PM). For general P, the
stable model semantics assigns to P the set SM(P) of its stable models. It is
well known that stable models are minimal models (i.e. SM(P) ⊆ MM(P)) and
that for negation free programs, minimal and stable model semantics coincide
(i.e. SM(P) = MM(P)). Observe that stable models are minimal models which
are “supported”, i.e. their atoms can be derived from the program.

Queries. Predicate symbols are partitioned into two distinct sets: base predi-
cates (also called EDB predicates) and derived predicates (also called IDB pred-
icates). Base predicates correspond to database relations defined over a given
domain and they do not appear in the head of any rule; derived predicates
are defined by means of rules. Given a database DB and a program P, PDB
denotes the program derived from the union of P with the facts in DB, i.e.
PDB = P ∪ DB. In the following a tuple t of a relation r will be also denoted
as a fact r(t). The semantics of PDB is given by the set of its stable models by
considering either their union (possibly semantics or brave reasoning) or their in-
tersection (certain semantics or cautious reasoning). A disjunctive Datalog query
Q is a pair (g, P) where g is a predicate symbol, called the query goal, and P
is a disjunctive Datalog program. The answer to a disjunctive Datalog query
Q = (g, P) over a database DB (denoted by Q(DB)), under the possibly (resp.
certain) semantics, is given by DB′(g) where DB′ =

⋃
M∈SM(PDB) M (resp.

DB′ =
⋂

M∈SM(PDB) M).

A disjunctive Datalog program P is said to be semi-positive if negation is only
applied to database atoms. For a semi-positive program P and a database DB,
the set of stable models coincides with the set of minimal models containing as
true database facts only those in DB (i.e. EDB database atoms not appearing in
DB are assumed to be false). A (relational) query can be expressed by means of
‘safe’ non recursive Datalog, even though alternative equivalent languages such
as relational algebra could be used as well [1,25].

3 Databases and Integrity Constraints

A database DB has an associated schema 〈DS, IC〉 defining the intentional pro-
perties of DB: DS denotes the structure of the relations, while IC denotes the
set of integrity constraints expressing semantic information over data.

30 L. Caroprese et al.

3.1 Integrity Constraints

Definition 1. A (universally quantified or full) integrity constraint is a formula
of the first order predicate calculus of the form:

(∀ X)[
m∧

j=1

bj(Xj), ϕ(X0) ⊃
n∨

j=m+1

bj(Xj)]

where bj (1 ≤ j ≤ n) is a predicate symbol, ϕ(X0) denotes a conjunction of built-
in atoms, X =

⋃m
j=1 Xj , Xi ⊆ X for i ∈ [0 . . n] and all existentially quantified

variables appear once. �

The reason for considering constraints of the above form is that we want to
consider range restricted constraints, i.e. constraints whose variables either take
values from finite domains only or the exact knowledge of their values is not
relevant [25]. Often our constraints will be written in a different form by mo-
ving literals from the right side to the left side and vice-versa. For instance, by
rewriting the above constraint as denial we obtain:

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj , Zj), ϕ(X0) ⊃].

In the following we assume that the set of integrity constraints IC is satisfiable,
that is there exists a database instance DB satisfying IC. For instance, by con-
sidering constraints of the above form with m > 0, the constraints are satisfied
by the empty database.

3.2 Repairing and Querying Inconsistent Databases

In this section the formal definition of consistent database and repair is first re-
called and, then, a computational mechanism is presented that ensures selecting
repairs and consistent answers for inconsistent databases.

An update atom is in the form +a(X) or −a(X). A ground atom +a(t)
states that a(t) will be inserted into the database, whereas a ground atom −a(t)
states that a(t) will be deleted from the database. Given an update atom +a(X)
(resp. −a(X)) we denote as Comp(+a(X)) (resp. Comp(−a(X))) the literal
not a(X) (resp. a(X)). Given a set U of ground update atoms we define the
sets U+ = {a(t) | + a(t) ∈ U}, U− = {a(t) | − a(t) ∈ U} and Comp(U) =
{Comp(±a(t)) | ± a(t) ∈ U}. We say that U is consistent if it does not contain
two update atom +a(t) and −a(t) (i.e. if U+ ∩ U− = ∅). Given a database
DB and a consistent set of update atoms U , we denote as U(DB) the updated
database DB ∪ U+ − U−.

Definition 2. Given a database DB and a set of integrity constraints IC, a
repair for 〈DB, IC〉 is a consistent set of update atoms R such that 1) R(DB) |=
IC, 2) there is no consistent set of update atoms U ⊂ R such that U(DB) |= IC.

Repaired databases are consistent databases, derived from the source database
by means of a minimal set of update operations. Given a database DB and a set

Declarative Semantics of Production Rules for Integrity Maintenance 31

of integrity constraints IC, the set of all possible repairs for 〈DB, IC〉 is denoted
as R(DB, IC). Observe that the set of possible repairs in the case of constraints
containing not range-restricted variables could be infinite.

Given a set of (universally quantified) constraints IC, an integrity constraint
r ∈ IC and a domain Dom, a ground instantiation of r with respect to Dom
can be obtained by replacing variables with constants of Dom and eliminating
the quantifier ∀. The set of ground instances of r is denoted by ground(r),
whereas ground(IC) =

⋃
r∈IC ground(r) denotes the set of ground instances of

constraints in IC. Clearly, for any set of universally quantified constraints IC,
the cardinality of ground(IC) is polynomial in the size of the database (and in
the size of Dom).

Theorem 1. Let DB be a database, IC a set of full integrity constraints and
R a repair for 〈DB, IC〉. For each ±a(t) ∈ R, let R′ = R − {±a(t)}, there
exists in ground(IC) a ground integrity constraint φ∧Comp(±a(t)) ⊃ such that
R′(DB) |=φ. �

The above theorem states that each update atom of a repair is necessary to
satisfy at least a ground integrity constraint.

Definition 3. Given a database DB and a set of integrity constraints IC, an
atom A is true (resp. false) with respect to IC if A belongs to all repaired
databases (resp. there is no repaired database containing A). The atoms which
are neither true nor false are undefined. �

Thus, true atoms appear in all repaired databases, whereas undefined atoms
appear in a non empty proper subset of repaired databases.

Definition 4. Given a database DB and a relational query Q = (g, P), the
consistent answer of the query Q on the database DB, denoted as Q(DB, IC),
gives three sets, denoted as Q(DB, IC)+, Q(DB, IC)− and Q(DB, IC)u. These
contain, respectively, the sets of g-tuples which are true (i.e. belonging to⋂

R∈R(DB,IC) Q(R(DB))), false (i.e. not belonging to
⋃

R∈R(DB,IC) Q(R(DB)))
and undefined (i.e. set of tuples which are neither true nor false). �

3.3 Repairing and Querying Through Stable Models

As shown in [15,16], a relational query over databases with standard constraints
can be rewritten into disjunctive query over the same database without con-
straints. More specifically, it is obtained from the union of the non recursive
Datalog query and the disjunctive rules derived from the constraints.

Given a database DB and a set of integrity constraints IC, the technique
derives from IC a disjunctive program DP(IC). The repairs for DB can be
derived from the stable models of DP(IC)∪DB, whereas the consistent answers
for a query (g, P) can be derived from the stable models of P ∪ DP(IC) ∪ DB.

32 L. Caroprese et al.

Definition 5. Let c be a (range restricted) full integrity constraint of the form

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃] (2)

where X =
⋃m

j=1 Xj and Xi ⊆ X for i ∈ [0..n]. We denote as dj(c) the rule

m∨

j=1

−bj(Xj) ∨
n∨

j=m+1

+bj(Xj)←
m∧

j=1

(bj(Xj) ∨ +bj(Xj)),
n∧

j=m+1

(not bj(Xj) ∨ −bj(Xj)), ϕ(X0)

Given a set IC of full integrity constraints, we define DP(IC) = { dj(c) | c ∈
IC } ∪ {← −b(X), +b(X) | b is a predicate symbol}. �

In the above definition the variable X in the constraint ← −b(X), +b(X) denotes
a list of k distinct variables with k equal to the arity of b.

Given a database DB, a set of full integrity constraints IC and a stable model
M of DP(IC) ∪ DB, the set of update atoms R(M) = {±a(t) | ± a(t) ∈ M} is
a repair for DB.

Observe that, for every database DB, set of integrity constraints IC, query
Q = (g, P) and repaired database DB′ (i) each atom A ∈ Q(DB, IC)+ belongs
to each stable model of P ∪DB′ (soundness) and (ii) each atom A ∈ Q(DB, IC)−

does not belong to any stable model of P ∪ DB′ (completeness).

4 Active Integrity Constraints

This section presents an extension of integrity constraints that allows the speci-
fication for each constraint of the actions which can be performed to make the
database consistent. For simplicity of presentation we only consider universally
quantified variables, although the framework can be applied also to constraints
with existentially quantified variables appearing once in body literals.

4.1 Syntax and Semantics

Definition 6. A (universally quantified) Active Integrity Constraint (AIC) is
of the form

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃
p∨

i=1

±ai(Yi)] (3)

where X =
⋃m

j=1 Xj , Xi ⊆ X for i ∈ [0 . . n] and Yi ⊆ X for i ∈ [1 . . p]. �

In the above definition the conditions X =
⋃m

j=1 Xj, Xi ⊆ X for i ∈ [0 . . n] and
Yi ⊆ X for i ∈ [1 . . p] guarantee variables to be range restricted. Given an AIC
r = (∀X)[Φ ⊃ Ψ], Φ is called body of r (and is denoted by Body(r)), whereas Ψ
is called head of r (and is denoted by Head(r)).

Declarative Semantics of Production Rules for Integrity Maintenance 33

Example 3. Consider the relation manager mgr of Example 1. The active con-
straint of Example 2 states that in case of conflicting tuples (i.e. there are two
managers managing the same department) we prefer to repair the database by
deleting the one having a higher salary, whereas the constraint

∀(E1,E2,D,S1,S2)[mgr(E1,D,S1), mgr(E2,D,S2), E1�=E2 ⊃
−mgr(E1,D,S1) ∨ −mgr(E2,D,S2)]

states that between two different managers of the same department we do not
have any preference and, therefore, one of them, selected nondeterministically,
can be deleted. �

AICs are constraints specifying actions which can be performed to obtain repairs.
Given an AIC r of the form (3) St(r) denotes the standard constraint

(∀ X) [
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj (Xj), ϕ(X0) ⊃] (4)

derived from r by removing the head update atoms. Moreover, for a set of active
integrity constraints IC, St(IC) denotes the corresponding set of standard in-
tegrity constraints, i.e. St(IC) = {St(r) | r ∈ IC}.

Definition 7. A repair for a database DB and a set of AICs IC is any repair
for 〈DB, St(IC)〉. �

Note that not all repairs contain atoms which can be derived from the active
integrity constraints. Thus, we can identify a class of repairs, called founded,
whose actions can be “derived” from the active integrity constraints.

Example 4. Consider the database DB = {movie(Marshall, Chicago, 2002),
director(Stone)} and the constraint

∀(D, T, A) [movie(D, T, A) ∧ not director(D) ⊃ +director(D)]

There are two feasible repairs R1 = {−movie(Marshall, Chicago, 2002)} and
R2 = {+director(Marshall)}, but only R2 contains updates derived from the
active integrity constraint. �

In the following the definition concerning the truth value of ground atoms and
ground update atoms, with respect to a database DB,a consistent set of update
atoms U and a founded repair are provided.

Definition 8. Given a database DB and a consistent set of update atoms U ,
the truth value of
– a positive ground literal a(t) is true w.r.t. (DB, U) if a(t) ∈ U(DB),
– a negative ground literal not a(t) is true w.r.t. (DB, U) if a(t) �∈ U(DB),
– a ground update atom ±a(t) is true w.r.t. (DB, U) if ±a(t) ∈ U ,
– built-in atoms, conjunctions and disjunctions of literals is given in the stan-

dard way,
– a ground AIC φ ⊃ ψ is true w.r.t. (DB, U) if φ is false w.r.t. (DB, U). �

34 L. Caroprese et al.

Definition 9. Let DB be a database, IC a set of AICs and R a repair for
〈DB,IC〉.
– A ground update atom ±a(t) ∈ R is founded if there exists r ∈ ground(IC)

s.t. ±a(t) appears in Head(r) and Body(r) is true w.r.t. (DB, R−{±a(t)}).
We say that ±a(t) is supported by r.

– A ground rule r ∈ ground(IC) is applied w.r.t. (DB, R) if there exists
±a(t) ∈ R s.t. ±a(t) appears in Head(r) and Body(r) is true w.r.t. (DB, R−
{±a(t)}). We say that r supports ±a(t).

– R is founded if all its atoms are founded.
– R is unfounded if it is not founded. �

The set of founded update atoms in R with respect to 〈DB, IC〉 is de-
noted as Founded(R, DB, IC), whereas Unfounded(R, DB, IC) = R −
Founded(R, DB, IC). The set of applied rules in ground(IC) is denoted
as Applied(R, DB, IC), whereas Unapplied(R, DB, IC) = ground(IC) −
Applied(R, DB, IC). Thus, update atoms of founded repairs are inferable by
means of AICs. Given a database DB and a set of AICs IC, FR(DB, IC) de-
notes the set of founded repairs for 〈DB, IC〉. Clearly, the set of founded repairs
is contained in the set of repairs (FR(DB, IC) ⊆ R(DB, St(IC))).

Example 5. Consider the following set of AICs IC

∀(E,P, D)[mgr(E,P), prj(P, D), not emp(E,D) ⊃ +emp(E,D)]

∀(E,D1, D2)[emp(E,D1), emp(E,D2), D1 �= D2 ⊃ −emp(E,D1) ∨ −emp(E,D2)]

The first constraint states that every manager E of a project P carried out by a
department D must be an employee of D, whereas the second one says that every
employee must be in only one department. Consider now the database DB =
{mgr(e1, p1), prj(p1, d1), emp(e1, d2)}. There are three repairs for DB: R1 =
{−mgr(e1, p1)}, R2 = {−prj(p1, d1)} and R3 = {+emp(e1, d1), −emp(e1, d2)}.
R3 is the only founded repair as only the update atoms +emp(e1, d1) and
−emp(e1, d2) are derivable from IC. �

Theorem 2. Let DB be a database, IC a set of AICs and R a founded repair
for 〈DB, IC〉. For each ground AIC r = φ ⊃ ψ ∈ Applied(R, DB, IC), let U be
the set of ground update atoms appearing in ψ, then U(DB) �|= φ (i.e. U(DB) |=
St(r)). �

The above theorem states that for each ground applied constraint there must be
among the true update head atoms, at least one atom ±a(y) which makes the
body of the active constraint false with respect to the repaired database, i.e. the
body must contain a literal Comp(±a(y)). Observe that, if for each ground AIC
r = φ ⊃ ψ ∈ ground(IC) the set U of ground update atoms appearing in ψ is
such that U(DB) |= φ (i.e. U(DB) �|= St(r)), no founded repair exists.

Corollary 1. Given a database DB and a set of AICs IC, an update atom
±a(t) can belong to a founded repair only if there exists r ∈ ground(IC) such
that ±a(t) appears in Head(r) and Comp(±a(t)) appears in Body(r). �

Declarative Semantics of Production Rules for Integrity Maintenance 35

Definition 10. Given a ground AIC r = φ ⊃ ψ, Core(r) denotes the ground
AIC φ ⊃ ψ′, where ψ′ is obtained by deleting from ψ any update atom ±a(t) such
that Comp(±a(t)) does not appear in φ. Given a set IC of AICs, Core(IC) =
{Core(r) | r ∈ ground(IC)}. �

Theorem 3. Given a database DB and a set IC of AICs,

FR(DB, IC) = FR(DB, Core(IC)).

The above results (Theorem 2, Corollary 1 and Theorem 3) state that every
head update atom ±a(t) not repairing the body (i.e. such that the body does
not contain a literal Comp(±a(t))) is useless and can be deleted. This is an
important result suggesting that active rules (with the declarative semantics
here proposed), used to repair databases, should have a specific form: the head
update atoms must repair the database so that the body of the active constraint
is false (i.e. the constraint is satisfied).

Example 6. Consider the database DB = {a, b} and the set IC = {a ⊃ −b, b ⊃
−a} of AICs. The unique repair for 〈DB, IC〉 is R = {−a, −b}, but it is not
founded. Intuitively, if we apply a ⊃ −b, b is deleted from DB, so b ⊃ −a cannot
be applied. If we apply b ⊃ −a, a is deleted from DB, so a ⊃ −b cannot be
applied. �

From the previous results, in the following, only AICs in which for each head
update atom ±a(t), there exists in the body a corresponding complementary
literal Comp(±a(t)), are considered.

Theorem 4. Let DB be a database, IC a set of AICs and R a founded repair
for 〈DB, IC〉. For each ±a(t) ∈ R there exists a ground AIC ρ ∈ Core(IC) s.t.
±a(t) is the unique update atom in R supported by ρ. �

Next example shows how AICs can be used to express classical hard problems.

Example 7. Graph coloring. The following set of constraints IC checks if the
coloring of a (possibly partially colored) graph, defined by means of the relations
node and edge, can be completed by using only the two colors red and blue.

∀(X)[node(X), not col(X, red), not col(X, blue), not col(X, yellow) ⊃
+col(X, red) ∨ +col(X, blue)]

∀(X, Y, C)[edge(X,Y), col(X, C), col(Y, C) ⊃ −col(X, C) ∨ −col(Y, C)]

The two constraints state that colored nodes can be (re-)colored with one of two
available colors. �

Observe that in the above example if the head update atoms are removed from
the second constraint, as colored nodes cannot be re-colored, the expressed pro-
blem consists in completing the coloring of the graph. Assuming that the input

36 L. Caroprese et al.

graph is not colored, the classical 3-coloring problem constraints can be defined
by the following constraints:

∀(X)[node(X), not col(X, red), not col(X, blue), not col(X, yellow) ⊃
+col(X, red) ∨+col(X, blue) ∨ +col(X, yellow)]

∀(X, Y, C)[edge(X,Y), col(X, C), col(Y, C) ⊃]

It is worth noting that the same problem cannot be expressed using not founded
repairs as a repair can also be obtained by deleting nodes from the input graph.
The problem with active integrity constraints is that the existence of founded
repairs, in the general case, is not guaranteed. Thus, Section 5 will present a
different semantics where founded repairs can be considered as repairs which
are preferable with respect to the not founded ones as they contain only actions
derived from the active constraints.

4.2 Rewriting into Logic Programs

The technique introduced in [15,16] cannot be applied to AICs. Consider for
instance the database DB = {a, b} and the set IC containing AICs a ⊃ −a
and a, b ⊃ −b. The database DB is inconsistent and the unique repairs is R =
{−a}. Moreover, the program DP(IC) consists of the rules −a ← (a ∨ +a) and
−b ← (a ∨ +a), (b ∨ +b). The program DP(IC) ∪ DB has a unique stable model
M = {−a, −b, a, b} from which we derive the set of updates R(M) = {−a, −b}
which is not a repair.

A different technique will now be shown which generalizes the one proposed
in [15,16] so that repairs can be produced by logic programs derived from rules
defining integrity constraints. It is worth noting that the presence of existentially
quantified variables in negated body literals, does not allow the generation of a
possibly infinite number of repairs as the logic rules derived from the rewriting
of constraints are safe [25].

Given a set {ic1, . . . , icr, . . . , ick} of ground AICs and a ground update atom
+a(t) (resp. −a(t)), we use the following notation:

– a+(t, r) (resp. a−(t, r)) means that the update +a(t) (resp. −a(t)) is per-
formed by icr. We call a+(t, r) (resp. a−(t, r)) a marked update atom.

– a+(t, r) (resp. a−(t, r)) means that the update +a(t) (resp. −a(t)) is per-
formed by a ground AIC different from icr.

Definition 11. Given a database DB, a set IC = {ic1, . . . , ick} of ground AICs,
and a founded repair R = {±a1(t1), . . . , ±an(tn)} for 〈DB, IC〉,

– a marked founded repair derived from R is a set of marked update atoms
MR = {a±

1 (t1, r1), . . . , a±
n (tn, rn)} s.t.

• ∀ a±
i (ti, rj) ∈ MR, ±ai(ti) is supported by icj,

• ri �= rj for i, j ∈ [1..n] and i �= j.
– the mapping between R and the set of marked founded repairs derived from

R is defined by means of a (multivalued) marking function γ. �

Declarative Semantics of Production Rules for Integrity Maintenance 37

Thus, γ(R) denotes the set of marked founded repairs derived from R (it is here
assumed that the database and the active integrity constraints are understood).
We define the set of marked founded repairs for 〈DB, IC〉: MFR(DB, IC) =⋃

R∈FR(DB,IC) γ(R).

Example 8. Consider the database DB = {a, b} and the set {ic1, ic2} = {a ⊃
−a, a ∧ b ⊃ −a} of AICs. There exists only the founded repair R = {−a}. As
the update atom −a is supported by both AICs, there are two possible marked
founded repairs derived from R: MR1 = {a−(1)} and MR2 = {a−(2)} stating,
respectively, that the deletion of the atom a is associated with the first and
second constraints. �

The existence of at least a marked founded repair for each founded repair is
guaranteed by the following corollary.

Corollary 2. Given a database DB and a set IC of ground AICs, for each
founded repair R, γ(R) �= ∅. �

The following definition shows how active integrity constraints are rewritten into
Datalog programs.

Definition 12. Let IC be a set of AICs and {ic1, . . . , icr, . . . , ick} its ground
version w.r.t. a database DB, where

icr =
m∧

j=1

bj(xj),
n∧

j=m+1

not bj(xj), ϕ(x0) ⊃
p∨

i=1

±ai(yi).

We define Rew(icr) = Rew0(icr) ∪ Rew1(icr) ∪ Rew2(icr), where Rew0(icr) is
the set of rules

r.1 :
∨p

i=1 a±
i (yi, r) ←

∧m
j=1 b̃j(xj , r),

∧n
j=m+1 not b̃j(xj , r), ϕ(x0)

r.2.j : b̃j(xj , r) ← (bj(xj), not b−
j (xj , r)) ∨ b+

j (xj , r) j ∈ [1..n]
r.3.i : a±

i (yi, l) ← a±
i (yi, r), 1 ≤ l ≤ k, r �= l i ∈ [1..p]

Rew1(icr) is the set of rules

r.4 : ←
∧m

j=1 b̂j(xj),
∧n

j=m+1 not b̂j(xj), ϕ(x0)
r.5.j : b̂j(xj) ← (bj(xj), not − bj(xj)) ∨ +bj(xj) j ∈ [1..n]

and Rew2(icr) is the set of rules

r.6.i : ±ai(yi) ← a±
i (yi, r) i ∈ [1..p]

r.7.i : ← +ai(yi), −ai(yi) i ∈ [1..p].

We define Rewu(IC) =
⋃k

i=1 Rewu(ici), with u ∈ {0, 1, 2}, and Rew(IC) =⋃k
i=1 Rew(ici). �

The rules in Rew0(IC) are used to compute stable models corresponding to
sets of updates, whereas the rules in Rew1(IC) and in Rew2(IC) check that
the stable models of Rew0(IC) define (consistent) database repairs. Intuitively,

38 L. Caroprese et al.

the atom b̃j(xj , r) states that the atom bj(xj) is present in the database if icr

doesn’t perform any update actions, whereas the atom b̂j(xj) expresses the fact
that the atom bj(xj) is present in the database after all update action have been
performed. Rule r.1 declares that if the constraint St(icr) is violated before any
update actions is performed by icr, icr has to perform an update action. The
denial r.4 (the original integrity constraint defined over the updated database)
is added in order to guarantee that the updated database satisfies icr.

Proposition 1. Given a database DB, a set IC of AICs, a model M of DB ∪
Rew(IC) and an atom a±(t, r) ∈ M, M does not contain any atom a±(t, l) with
r �= l. �

Definition 13. Given an interpretation M, we denote as UpdateAtoms(M) the
set of update atoms in M and as MarkedUpdateAtoms(M) the set of marked up-
date atoms in M. Given a set S of interpretations, we define UpdateAtoms(S) =
{UpdateAtoms(M) | M ∈ S} and MarkedUpdateAtoms(S) =
{MarkedUpdateAtoms(M) | M ∈ S}. �

Next theorem shows the equivalence between (marked) founded repairs and sta-
ble models, restricted to (marked) update atoms.

Theorem 5. Given a database DB and a set IC of AICs
1. MFR(DB, IC) = MarkedUpdateAtoms(SM(Rew(IC) ∪ DB)),
2. FR(DB, IC) = UpdateAtoms(SM(Rew(IC) ∪ DB)). �

It is worth noting that given a stable model M of Rew(IC) ∪ DB and a marked
update atom a±(t, r) ∈ M, M does not contain any other atom b±(v, r) different
from a±(t, r). In fact, a±(t, r) and b±(v, r) can be inferred only by the rule r.1,
and M is not minimal if it contains both atoms. From this observation it follows
that rule r.1 can be rewritten using exclusive disjunction in the head, i.e.

r.1 :
p⊕

i=1

a±
i (yi, r) ←

m∧

j=1

b̃j(xj , r),
n∧

j=m+1

not b̃j(xj , r), ϕ(x0)

Data Complexity

Theorem 6. Let DB be a database and IC a set of active integrity constraints. The
problem of checking if there exists a founded repair R for DB is Σp

2 -complete. �

The consistent founded answer to a relational query Q = (g, P) over a database
DB with active constraints IC (denoted by Q(DB, IC)), is obtained by first
computing the set FR(DB, IC) of founded repairs for DB and, then, considering
the intersection

⋂
R∈FR(DB,IC) Q(R(DB)).

Theorem 7. Let DB be a database and IC a set of active integrity constraints.
The problem of checking whether a ground atom g belongs to all repaired
databases obtained by means of founded repairs is Πp

2 -complete. �

For single head active integrity constraints the complexity is in the first level of
the polynomial hierarchy.

Declarative Semantics of Production Rules for Integrity Maintenance 39

5 Preferred Repairs and Answers
In this section we define an approach that always permits us to obtain a con-
sistent repaired database. In particular, we interpret the actions in the head of
constraints as indication of the operations the user prefers to perform to make
the database consistent.

Definition 14. Let DB be a database, IC a set of active integrity constraints
and R1, R2 two repairs for DB. Then, R1 is preferable to R2 (R1 � R2) w.r.t.
IC, if Unfounded(R1, DB, IC) ⊂ Unfounded(R2, DB, IC). Moreover, R1 � R2
if R1 � R2 and R2 �� R1. A repair R is said to be preferred w.r.t. IC if there is
no repair R′ such that R′ � R. �

Example 9. Consider the integrity constraint of Example 2 with the database
DB = {mgr(john, b, 1000), mgr(frank, b, 2000), mgr(mary, c, 1000), mgr(rosy,
c, 2000)}. There are four repairs R1 = {−mgr(john, b, 1000), −mgr(mary, c,
1000)}, R2 = {−mgr(john, b, 1000), −mgr(rosy, c, 2000)}, R3 ={−mgr(frank,
b, 2000), −mgr(mary, c, 1000)} and R4 = {−mgr(frank, b, 2000), −mgr(rosy,
c, 2000)}. The order relation is R2 � R1, R3 � R1, R4 � R2 and R4 � R3.
Therefore, we have only one preferred model which is also founded (namely R4).
Assume now to also have the constraint

not mgr(rosy, c, 2000) ⊃
declaring that the tuple mgr(rosy, c, 2000) must be in DB. In such a case we
have only the two repairs R1 and R3 and the preferred one is R3 which is not
founded. �

The relation � is a partial order as it is irreflexive, asymmetric and transitive.
The set of preferred repairs for a database DB and a set of active integrity
constraints IC is denoted by PR(DB, IC). Clearly, the relation between pre-
ferred, founded and standard repairs is as follows: FR(DB, IC) ⊆ PR(DB,
IC) ⊆ R(DB, IC). The next theorem states the precise relation between pre-
ferred, founded and general repairs.

Theorem 8. Let DB be a database and IC a set of active integrity constraints,
then

PR(DB, IC)
{

= FR(DB, IC) if FR(DB, IC) �= ∅
⊆ R(DB, IC) if FR(DB, IC) = ∅ �

Obviously, as the existence of repairs is guaranteed, the existence of a preferred
repair is guaranteed too. We conclude by presenting a result on the computa-
tional complexity of computing preferred repairs and answers.

Theorem 9. Let DB be a database and IC a set of active integrity constraints

1. checking if there exists a preferred founded repair R for DB is Σp
2 -complete;

2. checking whether a ground atom belongs to all preferred repairs is Πp
2 -

complete. �

The above theorem states that computing preferred repairs and answers is not
harder than computing standard or founded repairs and answers.

40 L. Caroprese et al.

References

1. Abiteboul S., Hull R., and Vianu V., Foundations of Databases. Addison-Wesley,
1994.

2. Alferes J. J., J. A. Leite, Pereira L. M., Przymusinska H., and Przymusinski T.C.,
Dynamic updates of non-monotonic knowledge bases. JLP, 45(1-3), 43–70, 2000.

3. Arenas M., Bertossi L., and Chomicki J., Consistent query answers in inconsistent
databases. Proc. PODS, 68–79, 1999.

4. Arenas M., Bertossi L., and Chomicki J., Specifying and querying database repairs
using logic programs with exceptions. Proc. FQAS, 27–41, 2000.

5. Baral C., Embedding revision programs in logic programming situation calculus.
Journal of Logic Programming, 30(1), 83–97, 1997.

6. Ceri S., Widom J., Deriving Production Rules for Constraint Maintenance, VLDB,
566-577, 1990.

7. Chomicki J., Lobo J., and Naqvi S. A., Conflict resolution using logic programming.
IEEE TKDE, 15(1), 244–249, 2003.

8. Chomicki J., Marcinkowski J., Minimal-change integrity maintenance using tuple
deletions. Information & Computation, 197(1-2), 90-121, 2005.

9. Eiter T., Gottlob G., and Mannila H., Disjunctive datalog. ACM TODS, 22(3),
364–418, 1997.

10. Flesca, S., Greco, S., Declarative semantics for active rules, TPLP, 1(1), 43-69,
2001.

11. Flesca S., Greco S., Zumpano E., Active integrity constraints. PPDP, 98-107, 2004.
12. Gelfond M. and Lifschitz V. The stable model semantics for logic programming.

Proc. ICLPS, 1070–1080, 1988.
13. Gelfond M. and Lifschitz V. Classical negation in logic programs and disjunctive

databases. New generation Computing, 9(3/4), 365–385, 1991.
14. Grant J. and Subrahmanian V. S., Reasoning in inconsistent knowledge bases.

IEEE TKDE, 7(1), 177–189, 1995.
15. Greco S., and Zumpano E., Querying Inconsistent Databases. LPAR, 2000.
16. Greco G., Greco S., and Zumpano E., A Logical Framework for Querying and

Repairing Inconsistent Databases. IEEE TKDE, 15(6), 1389-1408, 2003.
17. Kifer M. and Li A., On the semantics of rule-based expert systems with uncertainty.

Proc. ICDT, 102–117, 1988.
18. Lin J., A semantics for reasoning consistently in the presence of inconsistency.

Artificial Intelligence, 86(1), 75–95, 1996.
19. Marek V. W., Pivkina I., and Truszczynski M., Revision programming = logic

programming + integrity constraints. In Computer Science Logic, 73–98, 1998.
20. Marek V. W. and Truszczynski M., Revision programming. TCS, 190(2), 241–277,

1998.
21. May W., Ludascher B., Understanding the Global Semantics of Referential Actions

using Logic Rules, ACM TODS 27(4), 343-397, 2002.
22. Papadimitriou, C. H., Computational Complexity. Addison-Wesley, 1994.
23. Paton N. W., Diaz O., Active Database Systems, ACM Computing Surveys, 31(1),

63-103, 1999
24. Subrahmanian V. S., Amalgamating knowledge bases. ACM TKDE, 19(2), 291–

331, 1994.
25. Ullman J. K., Principles of Database and Knowledge-Base Systems. Computer

Science Press, 1998.
26. Wijsen J., Condensed representation of database repairs for consistent query an-

swering. ICDT, 378–393, 2003.

	Introduction
	Preliminaries
	Databases and Integrity Constraints
	Integrity Constraints
	Repairing and Querying Inconsistent Databases
	Repairing and Querying Through Stable Models

	Active Integrity Constraints
	Syntax and Semantics
	Rewriting into Logic Programs

	Preferred Repairs and Answers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

