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Preface

This volume contains the proceedings of the 22nd International Conference on
Logic Programming, ICLP 2006, held in Seattle, USA, during August 17–20, 2006.
The conference was collocated with seven pre- and post-conference workshops:

– International Workshop on Applications of Logic Programming in the
Semantic Web and Semantic Web Services (ALPSWS)

– Colloquium on Implementation of Constraint and LOgic Programming
Systems (CICLOPS)

– International Workshop on Software Verification and Validation (SVV)
– Preferences and Their Applications in Logic Programming Systems
– Search and Logic: Answer Set Programming and SAT
– Workshop on Logic-Based Programming Environments (WLPE)
– International Workshop on Multi-Valued Logic and Logic Programming

(MVLP)

ICLP 2006 and its workshops were part of the 4th Federated Logic Confer-
ence, FLoC 2006. This collocation offered ICLP 2006 attendees excellent op-
portunities to interact with researchers working in different but closely related
areas. Other conferences that formed the program of FLoC 2006 were:

– Conference on Computer-Aided Verification (CAV)
– International Joint Conference on Automated Reasoning (IJCAR)
– IEEE Symposium on Logic in Computer Science (LICS)
– Conference on Rewriting Techniques and Applications (RTA)
– International Conference on Theory and Applications of Satisfiability Testing

(SAT).

Since the first conference in Marseilles in 1982, ICLP has been the premiere
international conference for disseminating research results in logic programming.
The present edition of the conference received 83 submissions from 22 countries:
USA (13), Spain (6), UK (6), Belgium (5), Germany (5), Italy (5), and also Arab
Emirates, Australia, Brazil, Canada, China, Czech Republic, France, Hungary,
Ireland, Japan, Korea, Poland, Portugal, Russia, Turkey and Venezuela. The
Program Committee selected 27 papers for presentation and inclusion in the
proceedings: 20 technical papers, six application papers, and one special interest
paper. In addition, the program also included 17 poster presentations.

As in the past, the ICLP Program Committee selected the best paper and
the best student paper. The Best Paper Award went to Martin Gebser and
Torsten Schaub, for the paper “Tableaux Calculi for Answer Set Programming,”
while the Best Student Paper Award went to the paper “Declarative Semantics
of Production Rules for Integrity Maintenance,” by Luciano Caroprese, Sergio
Greco, Cristina Sirangelo and Ester Zumpano.



VI Preface

The highlights of ICLP 2006 included invited talks by Monica Lam on the
use of Datalog to analyze programs, and by Chris Welty on the Semantic Web.
The program also featured an invited tutorial by Brigitte Pientka on the use
of Logic Programming to design reliable software systems. Thanks to the FLoC
collocation, the participants of ICLP 2006 could also attend a FLoC plenary talk
by David Dill and a keynote address by David Harel.

ICLP 2006 was organized by the Association for Logic Programming (ALP),
in collaboration with the FLoC 2006 Organizing Committee and the Organiz-
ing Committees of other FLoC 2006 participating conferences. ICLP 2006 was
sponsored by the Association for Logic Programming, the University of Ken-
tucky, Logical Software Solutions, New Mexico State University and, indirectly,
by all sponsors of FLoC 2006: Cadence, IBM, Microsoft Research, NEC, and The
John von Neumann Minerva Center for the Development of Reactive Systems.
We greatly appreciate their generous support.

There are many people who contributed to the success of the conference and
to whom we owe our gratitude and thanks. PC members and several other exter-
nal referees provided timely and in-depth reviews of the submitted papers, and
worked hard to select the best papers and posters for the conference program.
Manuel Hermenegildo did a superb job representing ICLP 2006 on the FLoC
2006 Steering Committee. Christian Schulte, the Workshop Chair, and Enrico
Pontelli, the Doctoral Consortium Chair, helped to enrich significantly the pro-
gram of the conference. Alexander Serebrenik, the Publicity Chair, worked hard
to make sure the conference was broadly publicized. Bart Demoen ran again the
traditional and very successful Programming Contest. It goes without saying
that the broad logic programming community contributed the most by submit-
ting excellent technical and application papers and posters. Our special thanks
go to Lengning Liu, who helped us with the preparation of the proceedings, and
to developers of the EasyChair conference management system, which made our
job if not easy then definitely easier.

August 2006 Sandro Etalle and Miros�law Truszczyński
Program Committee Co-chairs

ICLP 2006
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Edison Mera, Pedro López-Garćıa, Germán Puebla, Manuel Carro,
Manuel Hermenegildo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Towards Region-Based Memory Management for Mercury Programs
Quan Phan, Gerda Janssens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Towards Structured Contexts and Modules
Salvador Abreu, Vı́tor Nogueira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Towards Temporal Contextual Logic Programming
Vı́tor Nogueira, Salvador Abreu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Semantic Property Grammars for Knowledge Extraction from
Biomedical Text

Veronica Dahl, Baohua Gu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Natural Language Processing Using Lexical and Logical Combinators
Juan Fernández Ortiz, Jørgen Villadsen . . . . . . . . . . . . . . . . . . . . . . . . . . 444



Table of Contents XIII

Learning Semantic Parsers: A Constraint Handling Rule Approach
Dulce Aguilar-Solis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

A Declarative Framework for Security: Secure Concurrent Constraint
Programming
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Camilo Rueda, Frank D. Valencia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Logic Programming in Knowledge Domains
Andrei Mantsivoda, Vladimir Lipovchenko,
Anton Malykh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Logtalk Processing of STEP Part 21 Files
Paulo Moura, Vincent Marchetti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Integrating Datalog with OWL: Exploring the AL-log Approach
Edna Ruckhaus, Vladimir Kolovski, Bijan Parsia,
Bernardo Cuenca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

LMNtal as a Unifying Declarative Language: Live Demonstration
Kazunori Ueda, Norio Kato, Koji Hara,
Ken Mizuno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Doctoral Consortium Presentations

Declarative Problem Solving Using Answer Set Semantics
Martin Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

The Design and Implementation of the YAP Compiler: An Optimizing
Compiler for Logic Programming Languages

Anderson Faustino da Silva, Vı́tor Santos Costa . . . . . . . . . . . . . . . . . . . 461

Description Logic Reasoning in Prolog
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Why Use Datalog to Analyze Programs?

Monica S. Lam

Computer Science Department
Stanford University
Stanford, CA 94305
lam@stanford.edu

We use Datalog because (1) we can write program analyses easier and (2) the
analyses in Datalog run faster!

As we turn to automatic program analysis to improve software reliability
and security, we find it necessary to perform more complex program analyses.
Specifically, if we wish to reason about heap objects, we must perform an in-
terprocedural pointer alias analysis that distinguishes between calling contexts.
This is challenging because a typical large program can have over 1014 calling
contexts, even if we collapse all recursive cycles.

We discovered that it is possible to represent the exponentially many context-
sensitive points-to relations succinctly using binary decision diagrams (BDDs).
However, it took us months to make just one analysis run at speed. We au-
tomated the optimization process and implemented a system called bddbddb
(BDD-Based Deductive DataBase), which uses active machine learning to trans-
late Datalog into efficient BDD operations.

A pointer alias analysis now takes just tens of lines of Datalog code rather
than thousands of lines of Java code. Pointer alias analysis by itself is not useful.
So, more importantly, we can use the results of pointer alias analysis to compute
the information of interest by writing a few more Datalog rules. For example,
we have used this approach to find numerous vulnerabilities in large C and Java
programs. The use of Datalog makes it possible for unsophisticated users to use
complex context-sensitive analysis to answer some of the hard questions about
their programs.

The research discussed in the talk was performed jointly with John Whaley,
Ben Livshits, Michael Martin, Dzintars Avots, Michael Carbin, and Christopher
Unkel. It is supported in part by the National Science Foundation under Grant
No. 0326227, NSF Graduate Student Fellowships, Stanford Graduate Fellow-
ships, and an Intel student fellowship.

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Semantic Web: The Story of the RIFt so Far

Christopher A. Welty

IBM Watson Research Center
19 Skyline Dr.

Hawthorne, NY 10532
cawelty@frontiernet.net

Abstract. The W3C has embarked on a new standardization effort: the
Rules Interchange Format (RIF). The goal of the effort has undergone
several changes from the initial idea of creating a standard ”rules” layer
for the semantic web, and its official mission is to provide a standard-
ized interchange for rules. This change, from creating a rule language
to an interchange standard, has been driven mainly by the large num-
ber of interests the effort is trying to satisfy, which make it seem im-
possible to settle on a single language and potentially more feasible to
design a method for interoperability. Even with this slightly less politi-
cally charged agenda, the number of interests are large, from ”Business
Rules”, ”Production Rules”, ”Reactive Rules”, etc., to query languages,
First-order logic, alethic and deontic modal logic, etc., to bayes nets,
fuzzy logic, etc., to programming languages themselves. Will anything
usable ever arise from this morass?

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Overcoming Performance Barriers:
Efficient Verification Techniques

for Logical Frameworks

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

bpientka@cs.mcgill.ca

Abstract. In recent years, logical frameworks which support formaliz-
ing language specifications together with their meta-theory have been
pervasively used in small and large-scale applications, from certifying
code [2] to advocating a general infrastructure for formalizing the meta-
theory and semantics of programming languages [5]. In particular, the
logical framework LF [9], based on the dependently typed lambda-
calculus, and light-weight variants of it like LFi [17] have played a ma-
jor role in these applications. While the acceptance of logical framework
technology has grown and they have matured, one of the most criticized
points is concerned with the run-time performance. In this tutorial we
give a brief introduction to logical frameworks, describe its state-of-the
art and present recent advances in addressing some of the existing per-
formance issues.

1 Introduction

Logical frameworks [9] provide an experimental platform to specify, and imple-
ment formal systems together with the proofs about them. One of its applications
lies in proof-carrying code, where it is successfully used to specify and verify for-
mal guarantees about the run-time behavior of programs. More generally, logical
frameworks provide an elegant language for encoding and mechanizing the meta-
theory and semantics of programming languages. This idea has recently found
strong advocates among programming languages researchers who proposed the
POPLmark challenge, a set of benchmarks to evaluate and compare tool support
to experiment with programming language design, and mechanize the reasoning
about programming languages [5].

In this tutorial, we consider the Twelf system [22], an implementation of the
logical framework LF [9]. Encodings in LF typically rely on ideas of higher-
order abstract syntax where object variables and binders are implemented by
variables and binders in the meta-language (i.e. logical framework). One of
the key benefits behind higher-order abstract syntax representations is that
one can avoid implementing common and tricky routines dealing with vari-
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ables, such as capture-avoiding substitution, renaming and fresh name gener-
ation. Moreover, specifications encoded in Twelf can be executed via a higher-
order logic programming language [19] thereby allowing the user to experiment
with the implemented formal specifications. Higher-order logic programming
as found in Twelf extends traditional first-order logic programming in three
ways: First, we have a rich type system based on dependent types, which al-
lows the user to define her own higher-order data-types and supports higher-
order abstract syntax[21]. Second, we not only have a static set of program
clauses, but assumptions may be introduced dynamically during proof search.
Third, we have an explicit notion of proof, i.e. the logic programming inter-
preter does not only return an answer substitution for the free variables in
the query, but the actual proof as a term in the dependently typed lambda-
calculus.

These features make Twelf an ideal framework for specifying properties about
programming languages and mechanizing the meta-theory about them. For this
reason several projects on proof-carrying code [6,7,4] have selected it as their
system of choice. The code size in the foundational proof-carrying code project
[1] at Princeton ranges between 70,000 and 100,000 lines of Twelf code, which
includes data-type definitions and proofs. The higher-order logic program, which
is used to execute safety policies, consists of over 5,000 lines of code, and over
600 – 700 clauses. Such large specifications have put to test implementations
of logical frameworks and exposed a wide range of new questions and problems.
For example, the size of safety proofs in logical frameworks may be unreasonably
large and validating them may take a long time. In addition, performance of log-
ical frameworks is inadequate for rapid prototyping and large-scale experiments
for two main reasons: redundant computation hampers the execution and many
optimizations known and well-understood in first-order reasoning are still poorly
understood in the higher-order setting.

In this tutorial, we give a brief introduction to logical frameworks and de-
scribe different algorithms to overcome some of the existing performance is-
sues and extend its expressive power. First, we describe the central ideas be-
hind optimizing unification in logical frameworks. In particular, we will con-
sider eliminating unnecessary occurs-checks [26] and eliminating redundancy of
some dependent type arguments [25]. Second we discuss higher-order term in-
dexing techniques [23] which are for example used in tabled higher-order logic
programming [24] to sustain performance in large-scale examples. All these al-
gorithms are described using contextual modal type theory [15] which provides
a simple clean foundation to justify and explain concisely complex higher-order
issues. We will also discuss experiments with our algorithms within the log-
ical framework Twelf which demonstrate that these optimizations taken to-
gether constitute a significant step toward exploring the full potential of log-
ical frameworks in practical applications. Although the main focus of this work
has been the logical framework Twelf, we believe the presented optimizations
are applicable to any higher-order reasoning system such as λProlog [13] or
Isabelle[18].
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2 Optimizing Higher-Order Pattern Unification

Unification lies at the heart of logic programming, theorem proving, and type-
reconstruction. Thus, its performance affects in a crucial way the global efficiency
of each of these applications. This need for efficient unification algorithms has led
to many investigations in the first-order setting. However, the efficient implemen-
tation of higher-order unification, especially for dependently typed λ-calculus, is
still poorly understood limiting the potential impact of higher-order reasoning
systems such as Twelf [22], Isabelle [18], or λProlog [13].

The most comprehensive study on efficient and robust implementation tech-
niques for higher-order unification so far has been carried out by Nadathur and
colleagues for the simply-typed λ-calculus in the programming language λProlog
[14]. Higher-order unification is implemented via Huet’s algorithm [10] and spe-
cial mechanisms are incorporated into the WAM instruction set to support
branching and postponing unification problems. To only perform an occurs-
check when necessary, the compiler distinguishes between the first occurrence
and subsequent occurrences of a variable and compiles them into different WAM
instructions. While for the first occurrence of a variable the occurs-check may
be omitted, full unification is used for all subsequent variables. This approach
seems to work well in the simply-typed setting, however it is not clear how to
generalize it to dependent types. In addition, it is well known, that Huet’s algo-
rithm is highly non-deterministic and requires backtracking. An important step
toward efficient implementations, has been the development of higher-order pat-
tern unification [12,20]. For this fragment, higher-order unification is decidable
and deterministic. As was shown in [11], most programs written in practice fall
into this fragment. Unfortunately, the complexity of this algorithm is still at best
linear [27] in the sum of the sizes of the terms being unified, which is impractical
for any useful programming language or practical framework.

In [26], the author and Pfenning present an abstract view of existential vari-
ables in the dependently typed lambda-calculus based on contextual modal type
theory. This allows us to distinguish between existential variables, which are rep-
resented as contextual modal variables, and bound variables, which are described
by ordinary variables. This leads to a simple clean framework which allows us
to explain a number of features of the current implementation of higher-order
unification in Twelf [22] and provides insight into several optimizations such
as lowering and raising. In particular, it explains one optimization called lin-
earization, which eliminates many unnecessary occurs-checks. Terms are com-
piled into linear higher-order patterns and some additional variable definitions.
Linear higher-order patterns restrict higher-order patterns in two ways: First, all
existential variables occur only once. Second, we impose some further syntactic
restrictions on existential variables, i.e. they must be applied to all distinct bound
variables. This is in contrast to higher-order patterns, which only require that
existential variables are applied to some bound variables. Linear higher-order
patterns can be solved with an assignment algorithm which resembles first-order
unification (without the occurs check) closely and is constant time. Experimental
results show that a large class of programs falls into the linear higher-order pat-
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tern fragment and can be handled with this algorithm. This leads to significant
performance improvement (up to a factor of 5) in many example applications
including those in the area of proof-carrying code.

Most recently, we have explored a different optimization to higher-order unifi-
cation where we skip some redundant implicit type arguments during unification
[25]. Unlike our prior optimization which is restricted to proof search, skipping
some redundant type arguments during unification is a general optimization
and hence impacts not only the proof search performance, but also any other
algorithm relying on unification such as type-reconstruction, coverage checking,
termination checking etc.

Our experimental results show that although the size of redundant arguments
is large and there is a substantial number of them, their impact on run-time per-
formance is surprisingly limited (roughly 20% improvement). Our experimental
results also demonstrate that optimizations such as eliminating the occurs checks
are more important than previously thought. These results provide interesting
insights into efficient implementations of dependently typed systems in general,
and can provide guidance for future implementations.

3 Higher-Order Term Indexing

Efficient data-structures and implementation techniques play a crucial role in
utilizing the full potential of a reasoning environment in real-world applications.
In logic programming, for example, we need to select all clauses from the program
which unify with the current goal. In tabled logic programming we memoize
intermediate goals in a table and reuse their results later in order to eliminate
redundant and infinite computation. Here we need to find all entries in the table
such that the current goal is a variant or an instance of the table entry and
re-use the associated answers. If there is no such table entry, we need to add the
current goal to the table.

To address this problem, different indexing techniques have been proposed for
first-order terms (see [28] for a survey), however term indexing techniques for
higher-order languages are essentially non-existent thereby limiting the applica-
tion and the potential impact of higher-order reasoning systems.

We have designed and implemented higher-order term indexing techniques
based on substitution trees [23]. Substitution tree indexing is a highly successful
technique in first-order theorem proving, which allows the sharing of common
sub-expressions via substitutions. This work extends first-order substitution tree
indexing [8] to the higher-order setting.

Consider specifying well-know equivalence preserving transformation in first-
order logic. In this example, we must represent formulas such as ∀x.(A(x) ∧ B)
or ∀x.(C ∧ D(x)). These formulas can be represented as terms using higher-
order abstract syntax. The first one corresponds to (all λx.(A x and B)) and
the second one to (all λx.(C and D x)). Inspecting the terms closely, we ob-
serve that they share a lot of structure which can be described by the following
skeleton: (all λx.(∗1 and ∗2)). We can obtain the first term by instantiating
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∗1 with the term (A x) and ∗2 with the term B. Similarly we can obtain the
second term by by instantiating ∗1 with the term C and ∗2 with the term (D x).
Note that ∗1 and ∗2 are instantiated with open terms which are allowed to refer
to the bound variable x. Our goal is to share subexpressions even in the pres-
ence of binders and instantiate holes denoted by ∗ by replacement. How could
this be done? Computing the skeleton of two terms relies on finding the most
specific generalization of two terms. However in the higher-order setting, the
most specific generalization of two terms may not exist in general. Moreover,
retrieving all terms, which unify or match, needs to be simple and efficient – but
higher-order unification is undecidable in general. Although, most specific gen-
eralizations exist for higher-order patterns and higher-order pattern unification
[12,20] is decidable, experience with these algorithms demonstrates that they
may not be efficient in practice [26]. Therefore, it is not obvious that they are
suitable for higher-order term indexing techniques.

Instead, we use linear higher-order patterns as a basis for higher-order term
indexing [26]. This allows us to reduce the problem of computing most specific
generalizations for higher-order terms to an algorithm which resembles closely
its first-order counterpart [23]. Contextual modal type theory provides a clean
theoretical framework to describe and reason about holes and instantiations with
open terms. This technique has been implemented to speed-up the execution of
the tabled higher-order logic programming engine in Twelf. Experimental results
demonstrate that higher-order term indexing leads to substantial performance
improvements (by up to a factor of 10), illustrating the importance of indexing
in general [23].

4 Conclusion

We have developed several important techniques using contextual modal type
theory as a uniform framework. This allows a clean concise theoretical descrip-
tion which clarifies many higher-order issues related to bound variable depen-
dencies. Moreover we have implemented and experimentally evaluated our tech-
niques within the logical framework Twelf. Our results show that the presented
techniques taken together considerably improve the performance of higher-order
reasoning systems. This a first step toward exploring the full potential of logical
frameworks in practice and apply it to new areas such as security and authen-
tication [3]. However, the presented techniques are just a first step toward nar-
rowing the performance gap between higher-order and first-order systems. There
are many more optimizations which have been already proven successful in the
first-order setting and we may be able to apply to higher-order languages.

Finally, the application of logical frameworks to certified code raises new ques-
tion, which traditionally have not played a central role in logic programming.
One of the main ideas in certified code is not only to verify that a program is
safe, but also to efficiently transmit and then check the proof. In [16,29] the
authors explore the novel use of higher-order logic programming for checking
the correctness of a certificate. To reduce the proof size, the certificate encodes
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the non-deterministic choices of a higher-order logic programming interpreter
as a bit-string. To reconstruct and check the proof, we rerun a deterministic
higher-order logic programming interpreter guided by the certificate.

Last but not least, programming language researchers [5] have recently
strongly emphasized the need for formalizing and experimenting with program-
ming language designs. Higher-order logic programming environments are ideally
suited for this kind of endeavor, since they allow high-level declarative descrip-
tions and execution of formal specifications. Our community also has already
a lot of experience in verifying meta-properties such as determinism, termina-
tion, or totality which provide valuable insights into properties of these formal
specifications. Hence, we see exciting opportunities for encoding and experi-
menting with the meta-theory and semantics of programming languages within
higher-order logic programming environments and applying logic programming
technology to this domain.
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Tableau Calculi for Answer Set Programming
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Abstract. We introduce a formal proof system based on tableau methods for an-
alyzing computations made in Answer Set Programming (ASP). Our approach
furnishes declarative and fine-grained instruments for characterizing operations
as well as strategies of ASP-solvers. First, the granulation is detailed enough to
capture the variety of propagation and choice operations of algorithms used for
ASP; this also includes SAT-based approaches. Second, it is general enough to en-
compass the various strategies pursued by existing ASP-solvers. This provides us
with a uniform framework for identifying and comparing fundamental properties
of algorithms. Third, the approach allows us to investigate the proof complexity
of algorithms for ASP, depending on choice operations. We show that exponen-
tially different best-case computations can be obtained for different ASP-solvers.
Finally, our approach is flexible enough to integrate new inference patterns, so to
study their relation to existing ones. As a result, we obtain a novel approach to un-
founded set handling based on loops, being applicable to non-SAT-based solvers.
Furthermore, we identify backward propagation operations for unfounded sets.

1 Introduction

Answer Set Programming (ASP; [1]) is an appealing tool for knowledge representation
and reasoning. Its attractiveness is supported by the availability of efficient off-the-shelf
ASP-solvers that allow for computing answer sets of logic programs. However, in con-
trast to the related area of satisfiability checking (SAT), ASP lacks a formal framework
for describing inferences conducted by ASP-solvers, such as the resolution proof the-
ory in SAT-solving [2]. This deficiency led to a great heterogeneity in the description
of algorithms for ASP, ranging over procedural [3,4], fixpoint [5], and operational [6,7]
characterizations. On the one hand, this complicates identifying fundamental proper-
ties of algorithms, such as soundness and completeness. On the other hand, it almost
disables formal comparisons among them.

We address this deficiency by introducing a family of tableau calculi [8] for ASP.
This allows us to view answer set computations as derivations in an inference system:
A branch in a tableau corresponds to a successful or unsuccessful computation of an
answer set; an entire tableau represents a traversal of the search space. Our approach
furnishes declarative and fine-grained instruments for characterizing operations as well
as strategies of ASP-solvers. In fact, we relate the approaches of assat, cmodels, dlv,
nomore++, smodels, etc. [3,4,9,7,5] to appropriate tableau calculi, in the sense that com-
putations of an aforementioned solver comply with tableau proofs in a corresponding
calculus. This provides us with a uniform proof-theoretic framework for analyzing and
comparing different algorithms, which is the first of its kind for ASP.
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Based on proof-theoretic concepts, we are able to derive general results, which ap-
ply to whole classes of algorithms instead of only specific ASP-solvers. In particu-
lar, we investigate the proof complexity of different approaches, depending on choice
operations. It turns out that, regarding time complexity, exponentially different best-
case computations can be obtained for different ASP-solvers. Furthermore, our proof-
theoretic framework allows us to describe and study novel inference patterns, going be-
yond implemented systems. As a result, we obtain a loop-based approach to unfounded
set handling, which is not restricted to SAT-based solvers. Also we identify backward
propagation operations for unfounded sets.

Our work is motivated by the desire to converge the various heterogeneous charac-
terizations of current ASP-solvers, on the basis of a canonical specification of principles
underlying the respective algorithms. The classic example for this is DPLL [10,11], the
most widely used algorithm for SAT, which is based on resolution proof theory [2].
By developing proof-theoretic foundations for ASP and abstracting from implementa-
tion details, we want to enhance the understanding of solving approaches as such. The
proof-theoretic perspective also allows us to state results in a general way, rather than
in a solver-specific one, and to study inferences by their admissibility, rather than from
an implementation point of view.

Our work is inspired by the one of Järvisalo, Junttila, and Niemelä, who use tableau
methods in [12,13] for investigating Boolean circuit satisfiability checking in the con-
text of symbolic model checking. Although their target is different from ours, both
approaches have many aspects in common. First, both use tableau methods for charac-
terizing DPLL-type techniques. Second, using cut rules for characterizing DPLL-type
split operations is the key idea for analyzing the proof complexity of different infer-
ence strategies. General investigations in propositional proof complexity, in particular,
the one of satisfiability checking (SAT), can be found in [14]. From the perspective of
tableau systems, DPLL is very similar to the propositional version of the KE tableau
calculus; both are closely related to weak connection tableau with atomic cut (as pointed
out in [15]). Tableau-based characterizations of logic programming are elaborated upon
in [16]. Pearce, de Guzmán, and Valverde provide in [17] a tableau calculus for au-
tomated theorem proving in equilibrium logic, based on its 5-valued semantics. Other
tableau approaches to nonmonotonic logics are summarized in [18]. Bonatti describes
in [19] a resolution method for skeptical answer set programming. Operator-based char-
acterizations of propagation and choice operations in ASP can be found in [6,7,20].

2 Answer Set Programming

Given an alphabet P , a (normal) logic program is a finite set of rules of the form
p0 ← p1, . . . , pm,not pm+1, . . . ,not pn, where 0 ≤ m ≤ n and each pi ∈ P
(0 ≤ i ≤ n) is an atom. A literal is an atom p or its negation not p. For a rule r,
let head(r) = p0 be the head of r and body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn}
be the body of r; and let body+(r) = {p1, . . . , pm} and body−(r) = {pm+1, . . . , pn}.
The set of atoms occurring in a program Π is given by atom(Π). The set of bodies
in Π is body(Π) = {body(r) | r ∈ Π}. For regrouping rule bodies with the same
head p, let body(p) = {body(r) | r ∈ Π, head(r) = p}. A program Π is positive if
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body−(r) = ∅ for all r ∈ Π . Cn(Π) denotes the smallest set of atoms closed under
positive program Π . The reduct, ΠX , of Π relative to a set X of atoms is defined by
ΠX = {head(r) ← body+(r) | r ∈ Π, body−(r) ∩ X = ∅}. A set X of atoms is
an answer set of a logic program Π if Cn(ΠX) = X . As an example, consider Pro-
gram Π1 = {a ←; c ← not b, not d; d ← a, not c} and its two answer sets {a, c}
and {a, d}.

An assignment A is a partial mapping of objects in a program Π into {T , F }, in-
dicating whether a member of the domain of A, dom(A), is true or false, respectively.
In order to capture the whole spectrum of ASP-solving techniques, we fix dom(A) to
atom(Π) ∪ body(Π) in the sequel. We define AT = {v ∈ dom(A) | A(v) = T } and
AF = {v ∈ dom(A) | A(v) = F }. We also denote an assignment A by a set of signed
objects: {T v | v ∈ AT } ∪ {F v | v ∈ AF }. For instance with Π1, the assignment
mapping body ∅ of rule a ← to T and atom b to F is represented by {T∅, F b}; all
other atoms and bodies of Π1 remain undefined. Following up this notation, we call an
assignment empty if it leaves all objects undefined.

We define a set U of atoms as an unfounded set [21] of a program Π wrt a partial
assignment A, if, for every rule r ∈ Π such that head(r) ∈ U , either (body+(r)∩AF )∪
(body−(r) ∩ AT ) �= ∅ or body+(r) ∩ U �= ∅. The greatest unfounded set of Π wrt A,
denoted GUS(Π, A), is the union of all unfounded sets of Π wrt A. Loops are sets of
atoms that circularly depend upon one another in a program’s positive atom dependency
graph [3]. In analogy to external support [22] of loops, we define the external bodies of
a loop L in Π as EB(L) = {body(r) | r ∈ Π, head(r) ∈ L, body+(r) ∩ L = ∅}. We
denote the set of all loops in Π by loop(Π).

3 Tableau Calculi

We describe calculi for the construction of answer sets from logic programs. Such con-
structions are associated with binary trees called tableaux [8]. The nodes of the trees
are (mainly) signed propositions, that is, propositions preceded by either T or F , in-
dicating an assumed truth value for the proposition. A tableau for a logic program Π
and an initial assignment A is a binary tree such that the root node of the tree consists
of the rules in Π and all members of A. The other nodes in the tree are entries of the
form T v or F v, where v ∈ dom(A), generated by extending a tableau using the rules
in Figure 1 in the following standard way [8]: Given a tableau rule and a branch in the
tableau such that the prerequisites of the rule hold in the branch, the tableau can be
extended by adding new entries to the end of the branch as specified by the rule. If the
rule is the Cut rule in (m), then entries T v and F v are added as the left and the right
child to the end of the branch. For the other rules, the consequent of the rule is added
to the end of the branch. For convenience, the application of tableau rules makes use of
two conjugation functions, t and f . For a literal l, define:

tl =
{

T l if l ∈ P
F p if l = not p for a p ∈ P f l =

{
T p if l = not p for a p ∈ P
F l if l ∈ P

Some rule applications are subject to provisos. (§) stipulates that B1, . . . , Bm constitute
all bodies of rules with head p. (†) requires that p belongs to the greatest unfounded set
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p ← l1, . . . , ln
tl1, . . . , tln

T {l1, . . . , ln}

F {l1, . . . , li, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

(a) Forward True Body (FTB) (b) Backward False Body (BFB)

p ← l1, . . . , ln
T {l1, . . . , ln}

T p

p ← l1, . . . , ln
F p

F {l1, . . . , ln}
(c) Forward True Atom (FTA) (d) Backward False Atom (BFA)

p ← l1, . . . , li, . . . , ln
f li

F {l1, . . . , li, . . . , ln}
T {l1, . . . , li, . . . , ln}

tli

(e) Forward False Body (FFB) (f) Backward True Body (BTB)

F B1, . . . , F Bm
(§)F p

T p
F B1, . . . , F Bi−1, F Bi+1, . . . , F Bm

(§)T Bi

(g) Forward False Atom (FFA) (h) Backward True Atom (BTA)

F B1, . . . , F Bm
(†)F p

T p
F B1, . . . , F Bi−1, F Bi+1, . . . , F Bm

(†)T Bi

(i) Well-Founded Negation (WFN) (j) Well-Founded Justification (WFJ)

F B1, . . . , F Bm
(‡)F p

T p
F B1, . . . , F Bi−1, F Bi+1, . . . , F Bm

(‡)T Bi

(k) Forward Loop (FL) (l) Backward Loop (BL)

(�[X])T v | F v

(m) Cut (Cut[X])

(§) : body(p) = {B1, . . . , Bm}
(†) : {B1, . . . , Bm} ⊆ body(Π), p ∈ GUS({r ∈ Π | body(r) �∈ {B1, . . . , Bm}}, ∅)
(‡) : p ∈ L, L ∈ loop(Π), EB(L) = {B1, . . . , Bm}

(�[X]) : v ∈ X

Fig. 1. Tableau rules for answer set programming
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a ←
c ← not b, not d

d ← a, not c
T ∅ (a)
T a (c)
F b (g)

T c F c
T {not b, not d} (h) F {not b, not d} (d)

F d (f) T d (b)
F {a, not c} (e) T {a, not c} (a)

(Cut [atom(Π)])

Fig. 2. Tableau of Tsmodels for Π1 and the empty assignment

induced by the rules whose bodies are not among B1, . . . , Bm. (‡) makes sure that p
belongs to a loop whose external bodies are B1, . . . , Bm. Finally, (�[X ]) guides the ap-
plication of the Cut rule by restricting cut objects to members of X .1 Different tableau
calculi are obtained from different rule sets. When needed, this is made precise by enu-
merating the tableau rules. The following tableau calculi are of particular interest:

Tcomp = {(a)-(h), Cut[atom(Π) ∪ body(Π)]} (1)

Tsmodels = {(a)-(i), Cut[atom(Π)]} (2)

TnoMoRe = {(a)-(i), Cut[body(Π)]} (3)

Tnomore++ = {(a)-(i), Cut[atom(Π) ∪ body(Π)]} (4)

An exemplary tableau of Tsmodels is given in Figure 2, where rule applications are
indicated by either letters or rule names, like (a) or (Cut [atom(Π)]). Both branches
comprise Π1 along with a total assignment for atom(Π1) ∪ body(Π1); the left one
represents answer set {a, c}, the right one gives answer set {a, d}.

A branch in a tableau is contradictory, if it contains both entries T v and F v for
some v ∈ dom(A). A branch is complete, if it is contradictory, or if the branch contains
either the entry T v or F v for each v ∈ dom(A) and is closed under all rules in a given
calculus, except for the Cut rule in (m). For instance, both branches in Figure 2 are
non-contradictory and complete.

For each v ∈ dom(A), we say that entry T v (or F v) can be deduced by a set R of
tableau rules in a branch, if the entry T v (or F v) can be generated from nodes in the
branch by applying rules in R only. Note that every branch corresponds to a pair (Π, A)
consisting of a program Π and an assignment A, and vice versa;2 we draw on this rela-
tionship for identifying branches in the sequel. Accordingly, we let DR(Π, A) denote
the set of all entries deducible by rule set R in branch (Π, A). Moreover, D∗

R(Π, A)
represents the set of all entries in the smallest branch extending (Π, A) and being
closed under R. When dealing with tableau calculi, like T , we slightly abuse notation
and write DT (Π, A) (or D∗

T (Π, A)) instead of DT \{(m)}(Π, A) (or D∗
T \{(m)}(Π, A)),

1 The Cut rule ((m) in Figure 1) may, in principle, introduce more general entries; this would
however necessitate additional decomposition rules, leading to extended tableau calculi.

2 Given a branch (Π,A) in a tableau for Π and initial assignment A0, we have A0 ⊆ A.
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thus ignoring Cut. We mention that D∗
{(a),(c),(e),(g)}(Π, A) corresponds to Fitting’s op-

erator [23]. Similarly, we detail in the subsequent sections that D∗
{(a)-(h)}(Π, A) coin-

cides with unit propagation on a program’s completion [24,25], D∗
{(a),(c),(e),(g),(i)}(Π, A)

amounts to propagation via well-founded semantics [21], and D∗
{(a)-(i)}(Π, A) captures

smodels’ propagation [5], that is, well-founded semantics enhanced by backward prop-
agation. Note that all deterministic rules in Figure 1 are answer set preserving; this also
applies to the Cut rule when considering both resulting branches.

A tableau is complete, if all its branches are complete. A complete tableau for a
program and the empty assignment such that all branches are contradictory is called a
refutation for the program; it means that the program has no answer set, as exemplarily
shown next for smodels-type tableaux.

Theorem 1. Let Π be a logic program and let ∅ denote the empty assignment. Then,
the following holds for tableau calculus Tsmodels:

1. Π has no answer set iff every complete tableau for Π and ∅ is a refutation.
2. If Π has an answer set X , then every complete tableau for Π and ∅ has a unique
non-contradictory branch (Π, A) such that X = AT ∩ atom(Π).
3. If a tableau for Π and ∅ has a non-contradictory complete branch (Π, A), then
AT ∩ atom(Π) is an answer set of Π .

The same results are obtained for other tableau calculi, like TnoMoRe and Tnomore++, all of
which are sound and complete for ASP.

4 Characterizing Existing ASP-Solvers

In this section, we discuss the relation between the tableau rules in Figure 1 and well-
known ASP-solvers. As it turns out, our tableau rules are well-suited for describing
the approaches of a wide variety of ASP-solvers. In particular, we cover all leading
approaches to answer set computation for (normal) logic programs. We start with SAT-
based solvers assat and cmodels, then go on with atom-based solvers smodels and dlv,
and finally turn to hybrid solvers, like nomore++, working on atoms as well as bodies.

SAT-based solvers. The basic idea of SAT-based solvers is to use some SAT-solver
as model generator and to afterwards check whether a generated model contains an
unfounded loop. Lin and Zhao show in [3] that the answer sets of a logic program Π
coincide with the models of the completion of Π and the set of all loop formulas of Π .
The respective propositional logic translation is Comp(Π) ∪ LF (Π), where:3

Comp(Π) = {p ≡ (
∨

k=1...m

∧
l∈Bk

l) | p ∈ atom(Π), body(p) = {B1, . . . , Bm}}
LF (Π) = {¬(

∨
k=1...m

∧
l∈Bk

l) →
∧

p∈L ¬p |
L ∈ loop(Π),EB(L) = {B1, . . . , Bm}}

This translation constitutes the backbone of SAT-based solvers assat [3] and cmod-
els [4]. However, loop formulas LF (Π) require exponential space in the worst
case [26]. Thus, assat adds loop formulas from LF (Π) incrementally to Comp(Π),

3 Note that a negative default literal not p is translated as ¬p.
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whenever some model of Comp(Π) not corresponding to an answer set has been gen-
erated by the underlying SAT-solver.4 The approach of cmodels avoids storing loop for-
mulas by exploiting the SAT-solver’s inner backtracking and learning scheme. Despite
the differences between assat and cmodels, we can uniformly characterize their model
generation and verification steps. We first describe tableaux capturing the proceeding
of the underlying SAT-solver and then go on with unfounded set checks.

In analogy to Theorem 1, models of Comp(Π) correspond to tableaux of Tcomp.

Theorem 2. Let Π be a logic program. Then, M is a model of Comp(Π) iff every
complete tableau of Tcomp for Π and ∅ has a unique non-contradictory branch (Π, A)
such that M = AT ∩ atom(Π).

Intuitively, tableau rules (a)-(h) describe unit propagation on a program’s completion,
represented in CNF as required by most SAT-solvers. Note that assat and cmodels in-
troduce propositional variables for bodies in order to obtain a polynomially-sized set
of clauses equivalent to a program’s completion [28]. Due to the fact that atoms and
bodies are represented as propositional variables, allowing both of them as branching
variables in Tcomp (via Cut [atom(Π) ∪ body(Π)]; cf. (1)) makes sense.

Once a model of Comp(Π) has been generated by the underlying SAT-solver, assat
and cmodels apply an unfounded set check for deciding whether the model is an answer
set. If it fails, unfounded loops whose atoms are true (so-called terminating loops [3])
are determined. Their loop formulas are used to eliminate the generated model. Un-
founded set checks, as performed by assat and cmodels, can be captured by tableau
rules FFB and FL ((e) and (k) in Figure 1) as follows.

Theorem 3. Let Π be a logic program, let M be a model of Comp(Π), and let A =
{Tp | p ∈ M} ∪ {F p | p ∈ atom(Π) \ M}.

Then, M is an answer set of Π iff M ∩ (D{FL}(Π, D{FFB}(Π, A)))F = ∅.

With SAT-based approaches, sophisticated unfounded set checks, able to detect un-
founded loops, are applied only to non-contradictory complete branches in tableaux
of Tcomp . Unfortunately, programs may yield exponentially many loops [26]. This can
lead to exponentially many models of a program’s completion that turn out to be no an-
swer sets [29]. In view of Theorem 3, it means that exponentially many branches may
have to be completed by final unfounded set checks.

Atom-based solvers. We now describe the relation between smodels [5] and dlv [9] on
the one side and our tableau rules on the other side. We first concentrate on character-
izing smodels and then sketch how our characterization applies to dlv.

Given that only literals are explicitly represented in smodels’ assignments, whereas
truth and falsity of bodies are determined implicitly, one might consider rewriting
tableau rules to work on literals only, thereby, restricting the domain of assignments
to atoms. For instance, tableau rule FFA ((g) in Figure 1) would then turn into:

f l1, . . . ,f lm
F p

({r ∈ Π | head(r) = p, body(r) ∩ {l1, . . . , lm} = ∅} = ∅)

4 Note that every answer set of Π is a model of Comp(Π), but not vice versa [27].
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Observe that, in such a reformulation, one again refers to bodies by determining their
values in the proviso associated with the inference rule. Reformulating tableau rules to
work on literals only thus complicates provisos and does not substantially facilitate the
description.5 In [29], additional variables for bodies, one for each rule of a program, are
even explicitly introduced for comparing smodels with DPLL. Given that propagation,
even within atom-based solvers, has to consider the truth status of rules’ bodies, the
only saving in the computation of answer sets is limiting branching to atoms, which is
expressed by Cut [atom(Π)] in Tsmodels (cf. (2)).

Propagation in smodels is accomplished by two functions, called atleast and
atmost [5].6 The former computes deterministic consequences by applying completion-
based forward and backward propagation ((a)-(h) in Figure 1); the latter falsifies great-
est unfounded sets (WFN ; (i) in Figure 1).

The following result captures propagation via atleast in terms of Tcomp.

Theorem 4. Let Π be a logic program and let A be an assignment such that AT ∪
AF ⊆ atom(Π). Let AS = atleast(Π, A) and AT = D∗

Tcomp
(Π, A).

If AT
S ∩ AF

S �= ∅, then AT
T ∩ AF

T �= ∅; otherwise, we have AS ⊆ AT .

This result shows that anything derived by atleast can also be derived by Tcomp (with-
out Cut). In fact, if atleast detects an inconsistency (AT

S ∩ AF
S �= ∅), then Tcomp can

derive it as well (AT
T ∩ AF

T �= ∅). Otherwise, Tcomp can derive at least as much as
atleast (AS ⊆ AT ). This subsumption does not only originate from the (different) do-
mains of assignments, that is, only atoms for atleast but also bodies for Tcomp . Rather,
it is the redundant representation of rules’ bodies within smodels that inhibits possible
derivations obtained with Tcomp . To see this, consider rules a ← c, d and b ← c, d
and an assignment A that contains F a but leaves atoms c and d undefined. For such an
A, atleast can only determine that rule a ← c, d must not be applied, but it does not
recognize that rule b ← c, d, sharing body {c, d}, is inapplicable as well. If b ← c, d is
the only rule with head atom b in the underlying program, then Tcomp can, in contrast
to atleast , derive F b via FFA ((g) in Figure 1). A one-to-one correspondence between
atleast and Tcomp on derived atoms could be obtained by distinguishing different oc-
currences of the same body. However, for each derivation of atleast , there is a corre-
sponding one in Tcomp . That is, every propagation done by atleast can be described
with Tcomp .

Function atmost returns the maximal set of potentially true atoms, that is,
atom(Π) \ (GUS(Π, A) ∪ AF ) for a program Π and an assignment A. Atoms in
the complement of atmost , that is, the greatest unfounded set GUS (Π, A) augmented
with AF , must be false. This can be described by tableau rules FFB and WFN ((e)
and (i) in Figure 1).

Theorem 5. Let Π be a logic program and let A be an assignment such that AT ∪
AF ⊆ atom(Π).

We have atom(Π) \ atmost(Π, A) = (D{WFN}(Π, D{FFB}(Π, A)))F ∪ AF .

5 Restricting the domain of assignments to atoms would also disable the analysis of different
Cut variants in Section 5.

6 Here, atleast and atmost are taken as defined on signed propositions instead of literals [5].
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Note that smodels adds literals {F p | p ∈ atom(Π) \ atmost(Π, A)} to an assign-
ment A. If this leads to an inconsistency, so does D{WFN}(Π, D{FFB}(Π, A)).

We have seen that smodels’ propagation functions, atleast and atmost , can be de-
scribed by tableau rules (a)-(i). By adding Cut [atom(Π)], we thus get tableau cal-
culus Tsmodels (cf. (2)). Note that lookahead [5] can also be described by means of
Cut [atom(Π)]: If smodels’ lookahead derives some literal tl, a respective branch can
be extended by Cut applied to the atom involved in l. The subbranch containing f l
becomes contradictory by closing it under Tsmodels. Also, if smodels’ propagation de-
tects an inconsistency on tl, then both subbranches created by Cut , f l and tl, become
contradictory by closing them; the subtableau under consideration becomes complete.

After having discussed smodels, we briefly turn to dlv: In contrast to smodels’
atmost , greatest unfounded set detection is restricted to strongly connected compo-
nents of programs’ atom dependency graphs [20]. Hence, tableau rule WFN has to be
adjusted to work on such components.7 In the other aspects, propagation within dlv [6]
is (on normal logic programs) similar to smodels’ atleast . Thus, tableau calculus Tsmodels

also characterizes dlv very closely.

Hybrid solvers. Finally, we discuss similarities and differences between atom-based
ASP-solvers, smodels and dlv, and hybrid solvers, working on bodies in addition to
atoms. Let us first mention that SAT-based solvers, assat and cmodels, are in a sense
hybrid, since the CNF representation of a program’s completion contains variables
for bodies. Thus, underlying SAT-solvers can branch on both atoms and bodies (via
Cut [atom(Π) ∪ body(Π)] in Tcomp). The only genuine ASP-solver (we know of) ex-
plicitly assigning truth values to bodies, in addition to atoms, is nomore++ [7].8

In [7], propagation rules applied by nomore++ are described in terms of operators:
P for forward propagation, B for backward propagation, U for falsifying greatest un-
founded sets, and L for lookahead. Similar to our tableau rules, these operators apply to
both atoms and bodies. We can thus show direct correspondences between tableau rules
(a), (c), (e), (g) and P , (b), (d), (f), (h) and B, and (i) and U . Similar to smodels’ looka-
head, derivations of L can be described by means of Cut [atom(Π) ∪ body(Π)]. So by
replacing Cut [atom(Π)] with Cut [atom(Π) ∪ body(Π)], we obtain tableau calculus
Tnomore++ (cf. (4)) from Tsmodels. In the next section, we show that this subtle difference,
also observed on SAT-based solvers, may have a great impact on proof complexity.

5 Proof Complexity

We have seen that genuine ASP-solvers largely coincide on their propagation rules
and differ primarily in the usage of Cut . In this section, we analyze the relative effi-
ciency of tableau calculi with different Cut rules. Thereby, we take Tsmodels, TnoMoRe,
and Tnomore++ into account, all using tableau rules (a)-(i) in Figure 1 but applying the
Cut rule either to atom(Π), body(Π), or both of them (cf. (2–4)). These three calculi
are of particular interest: On the one hand, they can be used to describe the strategies
of ASP-solvers, as shown in the previous section; on the other hand, they also represent

7 However, iterated application of such a WFN variant leads to the same result as (i) in Figure 1.
8 Complementing atom-based solvers, the noMoRe system [30] is rule-based (cf. TnoMoRe in (3)).
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different paradigms, either atom-based, rule-based, or hybrid. So by considering these
particular calculi, we obtain results that, on the one hand, are of practical relevance and
that, on the other hand, apply to different approaches in general.

For comparing different tableau calculi, we use well-known concepts from proof
complexity [14,12]. Accordingly, we measure the complexity of unsatisfiable logic pro-
grams, that is, programs without answer sets, in terms of minimal refutations. The size
of a tableau is determined in the standard way as the number of nodes in it. A tableau
calculus T is not polynomially simulated [14,12] by another tableau calculus T ′, if
there is an infinite (witnessing) family {Πn} of unsatisfiable logic programs such that
minimal refutations of T ′ for Π are asymptotically exponential in the size of minimal
refutations of T for Π . A tableau calculus T is exponentially stronger than a tableau
calculus T ′, if T polynomially simulates T ′, but not vice versa. Two tableau calculi
are efficiency-incomparable, if neither one polynomially simulates the other. Note that
proof complexity says nothing about how difficult it is to find a minimal refutation.
Rather, it provides a lower bound on the run-time of proof-finding algorithms (in our
context, ASP-solvers), independent from heuristic influences.

In what follows, we provide families of unsatisfiable logic programs witnessing that
neither Tsmodels polynomially simulates TnoMoRe nor vice versa. This means that, on cer-
tain instances, restricting the Cut rule to either only atoms or bodies leads to exponen-
tially greater minimal run-times of either atom- or rule-based solvers in comparison to
their counterparts, no matter which heuristic is applied.

Lemma 1. There is an infinite family {Πn} of logic programs such that

1. the size of minimal refutations of TnoMoRe is linear in n and
2. the size of minimal refutations of Tsmodels is exponential in n.

Lemma 2. There is an infinite family {Πn} of logic programs such that

1. the size of minimal refutations of Tsmodels is linear in n and
2. the size of minimal refutations of TnoMoRe is exponential in n.

Family {Πn
a ∪ Πn

c } witnesses Lemma 1 and {Πn
b ∪ Πn

c } witnesses Lemma 2:

Πn
a =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ← not x
x ← a1, b1

...
x ← an, bn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ Πn

b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ← c1, . . . , cn, not x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ Πn

c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 ← not b1
b1 ← not a1...
an ← not bn

bn ← not an

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The next result follows immediately from Lemma 1 and 2.

Theorem 6. Tsmodels and TnoMoRe are efficiency-incomparable.

Given that any refutations of Tsmodels and TnoMoRe are as well refutations of Tnomore++, we
have that Tnomore++ polynomially simulates both Tsmodels and TnoMoRe. So the following
is an immediate consequence of Theorem 6.

Corollary 1. Tnomore++ is exponentially stronger than both Tsmodels and TnoMoRe.
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The major implication of Corollary 1 is that, on certain logic programs, a priori restrict-
ing the Cut rule to either only atoms or bodies necessitates the traversal of an expo-
nentially greater search space than with unrestricted Cut . Note that the phenomenon of
exponentially worse proof complexity in comparison to Tnomore++ does not, depending
on the program family, apply to one of Tsmodels or TnoMoRe alone. Rather, families {Πn

a },
{Πn

b }, and {Πn
c } can be combined such that both Tsmodels and TnoMoRe are exponentially

worse than Tnomore++. For certain logic programs, the unrestricted Cut rule is thus the
only way to have at least the chance of finding a short refutation. Empirical evidence
for the exponentially different behavior is given in [31].

Finally, note that our proof complexity results are robust. That is, they apply to any
possible ASP-solver whose proceeding can be described by corresponding tableaux.
For instance, any computation of smodels can be associated with a tableau of Tsmodels

(cf. Section 4). A computation of smodels thus requires time proportional to the size
of the corresponding tableau; in particular, the magnitude of a minimal tableau consti-
tutes a lower bound on the run-time of smodels. This correlation is independent from
whether an assignment contains only atoms or also bodies of a program: The size of any
branch (not containing duplicate entries) is tightly bound by the size of a logic program.
Therefore, exponential growth of minimal refutations is, for polynomially growing pro-
gram families as the ones above, exclusively caused by the increase of necessary Cut
applications, introducing an exponential number of branches.

6 Unfounded Sets

We have analyzed propagation techniques and proof complexity of existing approaches
to ASP-solving. We have seen that all approaches exploit propagation techniques
amounting to inferences from program completion ((a)-(h) in Figure 1). In particu-
lar, SAT-based and genuine ASP-solvers differ only in the treatment of unfounded sets:
While the former apply (loop-detecting) unfounded set checks to total assignments only,
the latter incorporate (greatest) unfounded set falsification (WFN ; (i) in Figure 1) into
their propagation. However, tableau rule WFN , as it is currently applied by genuine
ASP-solvers, has several peculiarities:

A. WFN is partly redundant, that is, it overlaps with completion-based tableau rule
FFA ((g) in Figure 1), which falsifies atoms belonging to singleton unfounded sets.

B. WFN deals with greatest unfounded sets, which can be (too) exhaustive.
C. WFN is asymmetrically applied, that is, solvers apply no backward counterpart.

In what follows, we thus propose and discuss alternative approaches to unfounded set
handling, motivated by SAT-based solvers and results in [3]. Before we start, let us
briefly introduce some vocabulary. Given two sets of tableau rules, R1 and R2, we say
that R1 is at least as effective as R2, if, for any branch (Π, A), we have D∗

R2
(Π, A) ⊆

D∗
R1

(Π, A). We say that R1 is more effective than R2, if R1 is at least as effective
as R2, but not vice versa. If R1 is at least as effective as R2 and vice versa, then R1
and R2 are equally effective. Finally, R1 and R2 are orthogonal, if they are not equally
effective and neither one is more effective than the other. A correspondence between
two rule sets R1 ∪ R and R2 ∪ R means that the correspondence between R1 and R2
holds when D∗ takes auxiliary rules R into account as well.
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We start with analyzing the relation between WFN and FFA, both falsifying un-
founded atoms in forward direction. The role of FFB ((e) in Figure 1) is to falsify
bodies that positively rely on falsified atoms. Intuitively, this allows for capturing it-
erated applications of WFN and FFA, respectively, in which FFB behaves neutrally.
Taking up item A above, we have the following result.

Proposition 1. Set of rules {WFN ,FFB} is more effective than {FFA,FFB}.

This tells us that FFA is actually redundant in the presence of WFN . However, all
genuine ASP-solvers apply FFA as a sort of “local” negation (e.g. atleast of smodels
and operator P of nomore++) and separately WFN as “global” negation (e.g. atmost
of smodels and operator U of nomore++). Certainly, applying FFA is reasonable as
applicability is easy to determine. (Thus, SAT-based solvers apply FFA, but not WFN .)
But with FFA at hand, Proposition 1 also tells us that greatest unfounded sets are too
unfocused to describe the sort of unfounded sets that truly require a dedicated treatment:
The respective tableau rule, WFN , subsumes a simpler one, FFA.

A characterization of WFN ’s effect, not built upon greatest unfounded sets, is ob-
tained by putting results in [3] into the context of partial assignments.

Theorem 7. Sets of rules {WFN ,FFB} and {FFA,FL,FFB} are equally effective.

Hence, one may safely substitute WFN by FFA and FL ((k) in Figure 1), without
forfeiting atoms that must be false due to the lack of (non-circular) support. Thereby,
FFA concentrates on single atoms and FL on unfounded loops. Since both tableau rules
have different scopes, they do not overlap but complement each other.

Proposition 2. Sets of rules {FFA,FFB} and {FL,FFB} are orthogonal.

SAT-based approaches provide an explanation why concentrating on cyclic structures,
namely loops, besides single atoms is sufficient: When falsity of unfounded atoms does
not follow from a program’s completion or FFA, then there is a loop all of whose ex-
ternal bodies are false. Such a loop (called terminating loop in [3]) is a subset of the
greatest unfounded set. So in view of item B above, loop-oriented approaches allow for
focusing unfounded set computations on the intrinsically necessary parts. In fact, the
more sophisticated unfounded set techniques applied by genuine ASP-solvers aim at
circular structures induced by loops. That is, both smodels’ approach, based on “source
pointers” [32], as well as dlv’s approach, based on strongly connected components of
programs’ atom dependency graphs [20], can be seen as restrictions of WFN to struc-
tures induced by loops. However, neither of them takes loops as such into account.

Having considered forward propagation for unfounded sets, we come to backward
propagation, that is, BTA, WFJ , and BL ((h), (j), and (l) in Figure 1). Although no
genuine ASP-solver currently integrates propagation techniques corresponding to WFJ
or BL, as mentioned in item C above, both rules are answer set preserving.

Proposition 3. Let Π be a logic program and let A be an assignment. Let B ∈
body(Π) such that TB ∈ D{WFJ}(Π, A) (or TB ∈ D{BL}(Π, A), respectively).

Then, branch (Π, A∪D{WFN }(Π, A∪{F B})) (or (Π, A∪D{FL}(Π, A∪{F B})),
respectively) is contradictory.
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Both WFJ and BL ensure that falsifying some body does not lead to an inconsistency
due to applying their forward counterparts. In fact, WFJ and BL are contrapositives of
WFN and FL, respectively, in the same way as simpler rule BTA is for FFA.

A particularity of supporting true atoms by backward propagation is that “global”
rule WFJ is more effective than “local” ones, BTA and BL. Even adding tableau rule
BTB ((f) in Figure 1), for enabling iterated application of backward rules setting bodies
to true, does not compensate for the global character of WFJ .

Proposition 4. Set of rules {WFJ ,BTB} is more effective than {BTA,BL,BTB}.

We conclude by discussing different approaches to unfounded set handling. Both SAT-
based and genuine ASP-solvers apply tableau rules FFA and BTA, both focusing on
single atoms. In addition, genuine ASP-solvers apply WFN to falsify more complex
unfounded sets. However, WFN gives an overestimation of the parts of unfounded
sets that need a dedicated treatment: SAT-based approaches show that concentrating
on loops, via FL, is sufficient. However, the latter apply loop-detecting unfounded set
checks only to total assignments or use loop formulas recorded in reaction to previ-
ously failed unfounded set checks. Such a recorded loop formula is then exploited by
propagation within SAT-based solvers in both forward and backward direction, which
amounts to applying FL and BL. A similar kind of backward propagation, by either
WFJ or BL, is not exploited by genuine ASP-solvers, so unfounded set treatment is
asymmetric. We however believe that bridging the gap between SAT-based and gen-
uine ASP-solvers is possible by putting the concept of loops into the context of partial
assignments. For instance, a loop-oriented unfounded set algorithm is described in [33].

7 Discussion

In contrast to the area of SAT, where the proof-theoretic foundations of SAT-solvers are
well-understood [2,14], the literature on ASP-solvers is generally too specific in terms
of algorithms or solvers; existing characterizations are rather heterogeneous and often
lack declarativeness. We address this deficiency by proposing a tableau proof system
that provides a formal framework for analyzing computations of ASP-solvers. To our
knowledge, this approach is the first uniform proof-theoretic account for computational
techniques in ASP. Our tableau framework allows to abstract away implementation de-
tails and to identify valid inferences; hence, soundness and completeness results are
easily obtained. This is accomplished by associating specific tableau calculi with the
approaches of ASP-solvers, rather than with their solving algorithms.

The explicit integration of bodies into assignments has several benefits. First, it al-
lows us to capture completion-based and hybrid approaches in a closer fashion. Second,
it allows us to reveal exponentially different proof complexities of ASP-solvers. Finally,
even inferences in atom-based systems, like smodels and dlv, are twofold insofar as
they must take program rules into account for propagation (cf. Section 4). This feature
is simulated in our framework through the corresponding bodies. Although this simula-
tion is sufficient for establishing formal results, it is worth noting that dealing with rules
bears more redundancy than dealing with their bodies. Related to this, we have seen that
rule-wise consideration of bodies, as for instance done in smodels’ atleast , can forfeit
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derivations that are easily obtained based on non-duplicated bodies (cf. paragraph below
Theorem 4). The tableau rules underlying atom-based and hybrid systems also reveal
that the only major difference lies in the selection of program objects to branch upon.

The branching rule, Cut , has a major influence on proof complexity. It is well-known
that an uncontrolled application of Cut is prone to inefficiency. The restriction of ap-
plying Cut to (sub)formulae occurring in the input showed to be an effective way to
“tame” the cut [8]. We followed this by investigating Cut applications to atoms and
bodies occurring in a program. The proof complexity results in Section 5 tell us that the
minimal number of required Cut applications may vary exponentially when restricting
Cut to either only atoms or bodies. For not a priori degrading an ASP-solving approach,
the Cut rule must thus not be restricted to either only atoms or bodies. Note that these
results hold for any ASP-solver (or algorithm) whose proceeding can be described by
tableaux of a corresponding calculus (cf. end of Section 5).

Regarding the relation between SAT-based and genuine ASP-solvers, we have seen
in Section 6 that unfounded set handling constitutes the major difference. Though both
approaches, as practiced by solvers, appear to be quite different, the aims and effects
of underlying tableau rules are very similar. We expect that this observation will lead
to convergence of SAT-based and genuine ASP-solvers, in the sense that the next gen-
eration of genuine ASP-solvers will directly incorporate the same powerful reasoning
strategies that are already exploited in the area of SAT [2].
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Abstract. This paper presents a declarative semantics for the mainte-
nance of integrity constraints expressed by means of production rules.
A production rule is a special form of active rule, called active integrity
constraint, whose body contains an integrity constraint (conjunction of
literals which must be false) and whose head contains a disjunction of up-
date atoms, i.e. actions to be performed if the corresponding constraint
is not satisfied (i.e. is true). The paper introduces i) a formal declarative
semantics allowing the computation of founded repairs, that is repairs
whose actions are specified and supported by active integrity constraint,
ii) an equivalent semantics obtained by rewriting production rules into
disjunctive logic rules, so that repairs can be derived from the answer
sets of the logic program and finally iii) a characterization of production
rules allowing a methodology for integrity maintenance.

1 Introduction

Integrity constraints are logical assertions on acceptable (or consistent) database
states, and specify properties of data that need to be satisfied by valid instances
of the database [1]. When constraints are violated, for example during or at the
end of the execution of a transaction, the repair of the database state is usu-
ally limited to fixed reversal actions, such as rolling back the current operation
or the entire transaction [6]. Moreover, since the presence of data inconsistent
with respect to integrity constraints is not unusual, its management plays a key
role in all the areas in which duplicate or conflicting information is likely to
occur, such as database integration, data warehousing and federated databases
[17,18,24]. Thus, an improved approach to constraints enforcement allows def-
inition of compensating actions that correct violation of constraints according
to a well-defined semantics (database repairs) or allows computing consistent
answers. Informally, the computation of repairs is based on the insertion and
deletion of tuples so that the resulting database satisfies all constraints, whereas
the computation of consistent answers is based on the identification of tuples
satisfying integrity constraints and matching the goal.

The following example shows a situation in which inconsistencies occur.

Example 1. Consider the relation schema mgr(Name, Dept, Salary) with the
functional dependency Dept → Name which can be defined through the first
order formula ∀(E1, E2, D, S1, S2) [mgr(E1, D, S1) ∧ mgr(E2, D, S2) ⊃ E1 = E2].

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, pp. 26–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Consider now the inconsistent instance: DB = {mgr(john, cs, 1000), mgr
(frank, cs, 2000)}. A consistent (repaired) database can be obtained by
applying a minimal set of update operations; in particular it admits two re-
paired databases: DB1= {mgr(frank, cs, 2000)} obtained by applying the re-
pair R1 = {−mgr(john, cs, 1000)} (deleting the tuple mgr(john, cs, 1000)) and
DB2={mgr(john, cs, 1000)} obtained by applying the repair R2 = {−mgr
(frank, cs, 2000)} (deleting the tuple mgr(frank, cs, 2000)). �

The notion of integrity constraints and their automated maintenance has been
investigated for many years. Several works have proposed the updating of data
and knowledge bases through the use of active rules [6,7] and nonmonotonic
formalisms [2,5,19,20]. Some approaches use ECA (event-condition-action) rules
for checking and enforcing integrity constraints, whereas other approaches are
based on simpler forms of rules, called CA (condition-action) or production rules,
in which the event part is absent. Current DBMS languages offer the possibil-
ity of defining triggers, special ECA rules well-suited to automatically perform
actions, in response to events that are taking place inside (or even outside) the
database. However, the problem with active rules is the difficulty to understand
the behavior of multiple triggers acting together [21,23]. Although many diffe-
rent proposals have been introduced over the years, at the moment there is no
agreement on the integration of active functionalities with conventional database
systems. A different solution based on the derivation of logic rules with declara-
tive semantics has been recently proposed in several works. These proposals are
based on the automatic generation of Datalog rules and on the computation of
answer sets, from which repairs are derived [3,4,8,14,15,16,26]. All these work do
not take into account the possibility to indicate the update operations making
consistent the database.

This paper considers a special form of production rules called active integrity
constraints (AIC). Active integrity constraints, recently proposed in [11], are
special integrity constraints whose body consists of a conjunction of literals which
should be false (denial constraint) and whose head contains the actions which
should be performed if the body of the rule is true (i.e. the constraints defined
in the body is not satisfied). AIC rules allow specification of the actions which
should be performed to make the database consistent when integrity constraints
are violated.

Example 2. Consider the database of Example 1 and the active constraint:

∀(E1, E2, D, S1, S2)[mgr(E1, D, S1) ∧ mgr(E2, D, S2) ∧ S1 >S2 ⊃ −mgr(E1, D, S1)]
stating that in case of conflicting tuples it is preferred to delete the one with
greater salary. The constraint suggests to update the database by deleting the
tuple mgr(frank, cs, 2000). This action, in the specific case, leads to taking into
account only one of the two repairs, namely R2. �

Thus, active integrity constraints are production rules expressed by means of
first order logic with declarative semantics. AIC allow the computation of “pre-
ferred” repairs, that is repairs whose actions are specified explicitly and are also
supported.
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Contributions
The novelty of the approach here proposed consists in the definition of a formal
declarative semantics for active integrity constraints. The new semantics allows
identification, among the set of all possible repairs, of the subset of founded
repairs whose actions are specified in the head of rules and are “supported” by
the database or by other updates. The computation of founded repairs can be
done by checking whether for each repair all its update atoms are founded or by
rewriting the constraints into a Datalog program and then computing its stable
models; the founded repairs are obtained by selecting, for each stable model, the
set of “update atoms”.

The paper also studies the characteristic of AIC rules and show that for each
production rule r (consisting of a body defining the integrity constraint and a
head containing alternative actions which should be performed if the constraint
is not satisfied), update head atoms not making the conjunction of body literals,
defining an integrity constraint, false with respect to the repaired database (i.e.
such that the body integrity constraint is satisfied), are useless 1. This formal
result confirms the intuition that for integrity maintenance general (E)CA rules
are not necessary. Therefore, active integrity constraints can be thought as spe-
cial CA rules with declarative semantics whose aim is to repair the database
and to help consistently answering queries over inconsistent databases. As, in
the general case, the existence of founded repairs is not guaranteed the class of
universally quantified constraints under a different semantics in which actions
are interpreted as preference conditions on the set of possible repairs (“prefer-
able” semantics) is also investigated. Under such a semantics every database
with integrity constraints admits repairs and consistent answers.

Finally, the paper studies the computational complexity and shows that com-
puting founded and preferred repairs and answers is not harder than computing
“standard” repairs and answers.

2 Preliminaries

Familiarity with relational database theory, disjunctive logic programming and
computational complexity is assumed [1,9,13,22].

Disjunctive Databases. A (disjunctive Datalog) rule r is a clause of the form2

p∨
i=1

Ai ←
m∧

j=1

Bj ,

n∧
j=m+1

not Bj , ϕ p + m + n > 0 (1)

where A1, · · · , Ap, B1, · · · , Bn are atoms of the form p(t1, ..., th), p is a predicate
of arity h and the terms t1, ..., th are constants or variables, while ϕ is a con-
junction of built-in atoms of the form u θ v where u and v are terms and θ is a
comparison predicate.
1 Under the declarative semantics here proposed.
2 A literal can appear in a conjunction or in a disjunction at most once. The meaning

of the symbols ‘∧’ and ‘,’ is the same.
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An interpretation M for P is a model of P if M satisfies all rules in ground(P)
(the ground instantiation of P). The (model-theoretic) semantics for a positive
program P assigns to P the set of its minimal models MM(P), where a model
M for P is minimal, if no proper subset of M is a model for P . The more general
disjunctive stable model semantics also applies to programs with (unstratified)
negation [13]. Disjunctive stable model semantics generalizes stable model se-
mantics, previously defined for normal programs [12]. For any interpretation M,
denote with PM the ground positive program derived from ground(P) by 1)
removing all rules that contain a negative literal not A in the body and A ∈ M,
and 2) removing all negative literals from the remaining rules. An interpretation
M is a stable model of P if and only if M ∈ MM(PM). For general P, the
stable model semantics assigns to P the set SM(P) of its stable models. It is
well known that stable models are minimal models (i.e. SM(P) ⊆ MM(P)) and
that for negation free programs, minimal and stable model semantics coincide
(i.e. SM(P) = MM(P)). Observe that stable models are minimal models which
are “supported”, i.e. their atoms can be derived from the program.

Queries. Predicate symbols are partitioned into two distinct sets: base predi-
cates (also called EDB predicates) and derived predicates (also called IDB pred-
icates). Base predicates correspond to database relations defined over a given
domain and they do not appear in the head of any rule; derived predicates
are defined by means of rules. Given a database DB and a program P, PDB
denotes the program derived from the union of P with the facts in DB, i.e.
PDB = P ∪ DB. In the following a tuple t of a relation r will be also denoted
as a fact r(t). The semantics of PDB is given by the set of its stable models by
considering either their union (possibly semantics or brave reasoning) or their in-
tersection (certain semantics or cautious reasoning). A disjunctive Datalog query
Q is a pair (g, P) where g is a predicate symbol, called the query goal, and P
is a disjunctive Datalog program. The answer to a disjunctive Datalog query
Q = (g, P) over a database DB (denoted by Q(DB)), under the possibly (resp.
certain) semantics, is given by DB′(g) where DB′ =

⋃
M∈SM(PDB) M (resp.

DB′ =
⋂

M∈SM(PDB) M).

A disjunctive Datalog program P is said to be semi-positive if negation is only
applied to database atoms. For a semi-positive program P and a database DB,
the set of stable models coincides with the set of minimal models containing as
true database facts only those in DB (i.e. EDB database atoms not appearing in
DB are assumed to be false). A (relational) query can be expressed by means of
‘safe’ non recursive Datalog, even though alternative equivalent languages such
as relational algebra could be used as well [1,25].

3 Databases and Integrity Constraints

A database DB has an associated schema 〈DS, IC〉 defining the intentional pro-
perties of DB: DS denotes the structure of the relations, while IC denotes the
set of integrity constraints expressing semantic information over data.
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3.1 Integrity Constraints

Definition 1. A (universally quantified or full) integrity constraint is a formula
of the first order predicate calculus of the form:

(∀ X)[
m∧

j=1

bj(Xj), ϕ(X0) ⊃
n∨

j=m+1

bj(Xj) ]

where bj (1 ≤ j ≤ n) is a predicate symbol, ϕ(X0) denotes a conjunction of built-
in atoms, X =

⋃m
j=1 Xj , Xi ⊆ X for i ∈ [0 . . n] and all existentially quantified

variables appear once. �

The reason for considering constraints of the above form is that we want to
consider range restricted constraints, i.e. constraints whose variables either take
values from finite domains only or the exact knowledge of their values is not
relevant [25]. Often our constraints will be written in a different form by mo-
ving literals from the right side to the left side and vice-versa. For instance, by
rewriting the above constraint as denial we obtain:

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj , Zj), ϕ(X0) ⊃ ].

In the following we assume that the set of integrity constraints IC is satisfiable,
that is there exists a database instance DB satisfying IC. For instance, by con-
sidering constraints of the above form with m > 0, the constraints are satisfied
by the empty database.

3.2 Repairing and Querying Inconsistent Databases

In this section the formal definition of consistent database and repair is first re-
called and, then, a computational mechanism is presented that ensures selecting
repairs and consistent answers for inconsistent databases.

An update atom is in the form +a(X) or −a(X). A ground atom +a(t)
states that a(t) will be inserted into the database, whereas a ground atom −a(t)
states that a(t) will be deleted from the database. Given an update atom +a(X)
(resp. −a(X)) we denote as Comp(+a(X)) (resp. Comp(−a(X))) the literal
not a(X) (resp. a(X)). Given a set U of ground update atoms we define the
sets U+ = {a(t) | + a(t) ∈ U}, U− = {a(t) | − a(t) ∈ U} and Comp(U) =
{Comp(±a(t)) | ± a(t) ∈ U}. We say that U is consistent if it does not contain
two update atom +a(t) and −a(t) (i.e. if U+ ∩ U− = ∅). Given a database
DB and a consistent set of update atoms U , we denote as U(DB) the updated
database DB ∪ U+ − U−.

Definition 2. Given a database DB and a set of integrity constraints IC, a
repair for 〈DB, IC〉 is a consistent set of update atoms R such that 1) R(DB) |=
IC, 2) there is no consistent set of update atoms U ⊂ R such that U(DB) |= IC.

Repaired databases are consistent databases, derived from the source database
by means of a minimal set of update operations. Given a database DB and a set
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of integrity constraints IC, the set of all possible repairs for 〈DB, IC〉 is denoted
as R(DB, IC). Observe that the set of possible repairs in the case of constraints
containing not range-restricted variables could be infinite.

Given a set of (universally quantified) constraints IC, an integrity constraint
r ∈ IC and a domain Dom, a ground instantiation of r with respect to Dom
can be obtained by replacing variables with constants of Dom and eliminating
the quantifier ∀. The set of ground instances of r is denoted by ground(r),
whereas ground(IC) =

⋃
r∈IC ground(r) denotes the set of ground instances of

constraints in IC. Clearly, for any set of universally quantified constraints IC,
the cardinality of ground(IC) is polynomial in the size of the database (and in
the size of Dom).

Theorem 1. Let DB be a database, IC a set of full integrity constraints and
R a repair for 〈DB, IC〉. For each ±a(t) ∈ R, let R′ = R − {±a(t)}, there
exists in ground(IC) a ground integrity constraint φ∧Comp(±a(t)) ⊃ such that
R′(DB) |=φ. �

The above theorem states that each update atom of a repair is necessary to
satisfy at least a ground integrity constraint.

Definition 3. Given a database DB and a set of integrity constraints IC, an
atom A is true (resp. false) with respect to IC if A belongs to all repaired
databases (resp. there is no repaired database containing A). The atoms which
are neither true nor false are undefined. �

Thus, true atoms appear in all repaired databases, whereas undefined atoms
appear in a non empty proper subset of repaired databases.

Definition 4. Given a database DB and a relational query Q = (g, P), the
consistent answer of the query Q on the database DB, denoted as Q(DB, IC),
gives three sets, denoted as Q(DB, IC)+, Q(DB, IC)− and Q(DB, IC)u. These
contain, respectively, the sets of g-tuples which are true (i.e. belonging to⋂

R∈R(DB,IC) Q(R(DB))), false (i.e. not belonging to
⋃

R∈R(DB,IC) Q(R(DB)))
and undefined (i.e. set of tuples which are neither true nor false). �

3.3 Repairing and Querying Through Stable Models

As shown in [15,16], a relational query over databases with standard constraints
can be rewritten into disjunctive query over the same database without con-
straints. More specifically, it is obtained from the union of the non recursive
Datalog query and the disjunctive rules derived from the constraints.

Given a database DB and a set of integrity constraints IC, the technique
derives from IC a disjunctive program DP(IC). The repairs for DB can be
derived from the stable models of DP(IC)∪DB, whereas the consistent answers
for a query (g, P) can be derived from the stable models of P ∪ DP(IC) ∪ DB.
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Definition 5. Let c be a (range restricted) full integrity constraint of the form

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃ ] (2)

where X =
⋃m

j=1 Xj and Xi ⊆ X for i ∈ [0..n]. We denote as dj(c) the rule

m∨
j=1

−bj(Xj) ∨
n∨

j=m+1

+bj(Xj)←
m∧

j=1

(bj(Xj) ∨ +bj(Xj)),
n∧

j=m+1

(not bj(Xj) ∨ −bj(Xj)), ϕ(X0)

Given a set IC of full integrity constraints, we define DP(IC) = { dj(c) | c ∈
IC } ∪ {← −b(X), +b(X) | b is a predicate symbol}. �

In the above definition the variable X in the constraint ← −b(X), +b(X) denotes
a list of k distinct variables with k equal to the arity of b.

Given a database DB, a set of full integrity constraints IC and a stable model
M of DP(IC) ∪ DB, the set of update atoms R(M) = {±a(t) | ± a(t) ∈ M} is
a repair for DB.

Observe that, for every database DB, set of integrity constraints IC, query
Q = (g, P) and repaired database DB′ (i) each atom A ∈ Q(DB, IC)+ belongs
to each stable model of P ∪DB′ (soundness) and (ii) each atom A ∈ Q(DB, IC)−

does not belong to any stable model of P ∪ DB′ (completeness).

4 Active Integrity Constraints

This section presents an extension of integrity constraints that allows the speci-
fication for each constraint of the actions which can be performed to make the
database consistent. For simplicity of presentation we only consider universally
quantified variables, although the framework can be applied also to constraints
with existentially quantified variables appearing once in body literals.

4.1 Syntax and Semantics

Definition 6. A (universally quantified) Active Integrity Constraint (AIC ) is
of the form

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃
p∨

i=1

±ai(Yi) ] (3)

where X =
⋃m

j=1 Xj , Xi ⊆ X for i ∈ [0 . . n] and Yi ⊆ X for i ∈ [1 . . p]. �

In the above definition the conditions X =
⋃m

j=1 Xj, Xi ⊆ X for i ∈ [0 . . n] and
Yi ⊆ X for i ∈ [1 . . p] guarantee variables to be range restricted. Given an AIC
r = (∀X)[Φ ⊃ Ψ ], Φ is called body of r (and is denoted by Body(r)), whereas Ψ
is called head of r (and is denoted by Head(r)).
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Example 3. Consider the relation manager mgr of Example 1. The active con-
straint of Example 2 states that in case of conflicting tuples (i.e. there are two
managers managing the same department) we prefer to repair the database by
deleting the one having a higher salary, whereas the constraint

∀(E1,E2,D,S1,S2)[mgr(E1,D,S1), mgr(E2,D,S2), E1�=E2 ⊃
−mgr(E1,D,S1) ∨ −mgr(E2,D,S2)]

states that between two different managers of the same department we do not
have any preference and, therefore, one of them, selected nondeterministically,
can be deleted. �

AICs are constraints specifying actions which can be performed to obtain repairs.
Given an AIC r of the form (3) St(r) denotes the standard constraint

(∀ X) [
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj (Xj ), ϕ(X0 ) ⊃ ] (4)

derived from r by removing the head update atoms. Moreover, for a set of active
integrity constraints IC, St(IC) denotes the corresponding set of standard in-
tegrity constraints, i.e. St(IC) = {St(r) | r ∈ IC}.

Definition 7. A repair for a database DB and a set of AICs IC is any repair
for 〈DB, St(IC)〉. �

Note that not all repairs contain atoms which can be derived from the active
integrity constraints. Thus, we can identify a class of repairs, called founded,
whose actions can be “derived” from the active integrity constraints.

Example 4. Consider the database DB = {movie(Marshall, Chicago, 2002),
director(Stone)} and the constraint

∀(D, T, A) [ movie(D, T, A) ∧ not director(D) ⊃ +director(D) ]

There are two feasible repairs R1 = {−movie(Marshall, Chicago, 2002)} and
R2 = {+director(Marshall)}, but only R2 contains updates derived from the
active integrity constraint. �

In the following the definition concerning the truth value of ground atoms and
ground update atoms, with respect to a database DB,a consistent set of update
atoms U and a founded repair are provided.

Definition 8. Given a database DB and a consistent set of update atoms U ,
the truth value of
– a positive ground literal a(t) is true w.r.t. (DB, U) if a(t) ∈ U(DB),
– a negative ground literal not a(t) is true w.r.t. (DB, U) if a(t) �∈ U(DB),
– a ground update atom ±a(t) is true w.r.t. (DB, U) if ±a(t) ∈ U ,
– built-in atoms, conjunctions and disjunctions of literals is given in the stan-

dard way,
– a ground AIC φ ⊃ ψ is true w.r.t. (DB, U) if φ is false w.r.t. (DB, U). �
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Definition 9. Let DB be a database, IC a set of AICs and R a repair for
〈DB,IC〉.
– A ground update atom ±a(t) ∈ R is founded if there exists r ∈ ground(IC)

s.t. ±a(t) appears in Head(r) and Body(r) is true w.r.t. (DB, R−{±a(t)}).
We say that ±a(t) is supported by r.

– A ground rule r ∈ ground(IC) is applied w.r.t. (DB, R) if there exists
±a(t) ∈ R s.t. ±a(t) appears in Head(r) and Body(r) is true w.r.t. (DB, R−
{±a(t)}). We say that r supports ±a(t).

– R is founded if all its atoms are founded.
– R is unfounded if it is not founded. �

The set of founded update atoms in R with respect to 〈DB, IC〉 is de-
noted as Founded(R, DB, IC), whereas Unfounded(R, DB, IC) = R −
Founded(R, DB, IC). The set of applied rules in ground(IC) is denoted
as Applied(R, DB, IC), whereas Unapplied(R, DB, IC) = ground(IC) −
Applied(R, DB, IC). Thus, update atoms of founded repairs are inferable by
means of AICs. Given a database DB and a set of AICs IC, FR(DB, IC) de-
notes the set of founded repairs for 〈DB, IC〉. Clearly, the set of founded repairs
is contained in the set of repairs ( FR(DB, IC) ⊆ R(DB, St(IC)) ).

Example 5. Consider the following set of AICs IC

∀(E,P, D)[ mgr(E,P ), prj(P, D), not emp(E,D) ⊃ +emp(E,D) ]

∀(E,D1, D2)[ emp(E,D1), emp(E,D2), D1 �= D2 ⊃ −emp(E,D1) ∨ −emp(E,D2) ]

The first constraint states that every manager E of a project P carried out by a
department D must be an employee of D, whereas the second one says that every
employee must be in only one department. Consider now the database DB =
{mgr(e1, p1), prj(p1, d1), emp(e1, d2)}. There are three repairs for DB: R1 =
{−mgr(e1, p1)}, R2 = {−prj(p1, d1)} and R3 = {+emp(e1, d1), −emp(e1, d2)}.
R3 is the only founded repair as only the update atoms +emp(e1, d1) and
−emp(e1, d2) are derivable from IC. �

Theorem 2. Let DB be a database, IC a set of AICs and R a founded repair
for 〈DB, IC〉. For each ground AIC r = φ ⊃ ψ ∈ Applied(R, DB, IC), let U be
the set of ground update atoms appearing in ψ, then U(DB) �|= φ (i.e. U(DB) |=
St(r)). �

The above theorem states that for each ground applied constraint there must be
among the true update head atoms, at least one atom ±a(y) which makes the
body of the active constraint false with respect to the repaired database, i.e. the
body must contain a literal Comp(±a(y)). Observe that, if for each ground AIC
r = φ ⊃ ψ ∈ ground(IC) the set U of ground update atoms appearing in ψ is
such that U(DB) |= φ (i.e. U(DB) �|= St(r)), no founded repair exists.

Corollary 1. Given a database DB and a set of AICs IC, an update atom
±a(t) can belong to a founded repair only if there exists r ∈ ground(IC) such
that ±a(t) appears in Head(r) and Comp(±a(t)) appears in Body(r). �
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Definition 10. Given a ground AIC r = φ ⊃ ψ, Core(r) denotes the ground
AIC φ ⊃ ψ′, where ψ′ is obtained by deleting from ψ any update atom ±a(t) such
that Comp(±a(t)) does not appear in φ. Given a set IC of AICs, Core(IC) =
{Core(r) | r ∈ ground(IC)}. �

Theorem 3. Given a database DB and a set IC of AICs,

FR(DB, IC) = FR(DB, Core(IC)).

The above results (Theorem 2, Corollary 1 and Theorem 3) state that every
head update atom ±a(t) not repairing the body (i.e. such that the body does
not contain a literal Comp(±a(t))) is useless and can be deleted. This is an
important result suggesting that active rules (with the declarative semantics
here proposed), used to repair databases, should have a specific form: the head
update atoms must repair the database so that the body of the active constraint
is false (i.e. the constraint is satisfied).

Example 6. Consider the database DB = {a, b} and the set IC = {a ⊃ −b, b ⊃
−a} of AICs. The unique repair for 〈DB, IC〉 is R = {−a, −b}, but it is not
founded. Intuitively, if we apply a ⊃ −b, b is deleted from DB, so b ⊃ −a cannot
be applied. If we apply b ⊃ −a, a is deleted from DB, so a ⊃ −b cannot be
applied. �

From the previous results, in the following, only AICs in which for each head
update atom ±a(t), there exists in the body a corresponding complementary
literal Comp(±a(t)), are considered.

Theorem 4. Let DB be a database, IC a set of AICs and R a founded repair
for 〈DB, IC〉. For each ±a(t) ∈ R there exists a ground AIC ρ ∈ Core(IC) s.t.
±a(t) is the unique update atom in R supported by ρ. �

Next example shows how AICs can be used to express classical hard problems.

Example 7. Graph coloring. The following set of constraints IC checks if the
coloring of a (possibly partially colored) graph, defined by means of the relations
node and edge, can be completed by using only the two colors red and blue.

∀(X)[ node(X), not col(X, red), not col(X, blue), not col(X, yellow) ⊃
+col(X, red) ∨ +col(X, blue) ]

∀(X, Y, C)[ edge(X,Y ), col(X, C), col(Y, C) ⊃ −col(X, C) ∨ −col(Y, C) ]

The two constraints state that colored nodes can be (re-)colored with one of two
available colors. �

Observe that in the above example if the head update atoms are removed from
the second constraint, as colored nodes cannot be re-colored, the expressed pro-
blem consists in completing the coloring of the graph. Assuming that the input
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graph is not colored, the classical 3-coloring problem constraints can be defined
by the following constraints:

∀(X)[ node(X), not col(X, red), not col(X, blue), not col(X, yellow) ⊃
+col(X, red) ∨+col(X, blue) ∨ +col(X, yellow) ]

∀(X, Y, C)[ edge(X,Y ), col(X, C), col(Y, C) ⊃ ]

It is worth noting that the same problem cannot be expressed using not founded
repairs as a repair can also be obtained by deleting nodes from the input graph.
The problem with active integrity constraints is that the existence of founded
repairs, in the general case, is not guaranteed. Thus, Section 5 will present a
different semantics where founded repairs can be considered as repairs which
are preferable with respect to the not founded ones as they contain only actions
derived from the active constraints.

4.2 Rewriting into Logic Programs

The technique introduced in [15,16] cannot be applied to AICs. Consider for
instance the database DB = {a, b} and the set IC containing AICs a ⊃ −a
and a, b ⊃ −b. The database DB is inconsistent and the unique repairs is R =
{−a}. Moreover, the program DP(IC) consists of the rules −a ← (a ∨ +a) and
−b ← (a ∨ +a), (b ∨ +b). The program DP(IC) ∪ DB has a unique stable model
M = {−a, −b, a, b} from which we derive the set of updates R(M) = {−a, −b}
which is not a repair.

A different technique will now be shown which generalizes the one proposed
in [15,16] so that repairs can be produced by logic programs derived from rules
defining integrity constraints. It is worth noting that the presence of existentially
quantified variables in negated body literals, does not allow the generation of a
possibly infinite number of repairs as the logic rules derived from the rewriting
of constraints are safe [25].

Given a set {ic1, . . . , icr, . . . , ick} of ground AICs and a ground update atom
+a(t) (resp. −a(t)), we use the following notation:

– a+(t, r) (resp. a−(t, r)) means that the update +a(t) (resp. −a(t)) is per-
formed by icr. We call a+(t, r) (resp. a−(t, r)) a marked update atom.

– a+(t, r) (resp. a−(t, r)) means that the update +a(t) (resp. −a(t)) is per-
formed by a ground AIC different from icr.

Definition 11. Given a database DB, a set IC = {ic1, . . . , ick} of ground AICs,
and a founded repair R = {±a1(t1), . . . ,±an(tn)} for 〈DB, IC〉,

– a marked founded repair derived from R is a set of marked update atoms
MR = {a±

1 (t1, r1), . . . , a±
n (tn, rn)} s.t.

• ∀ a±
i (ti, rj) ∈ MR, ±ai(ti) is supported by icj,

• ri �= rj for i, j ∈ [1..n] and i �= j.
– the mapping between R and the set of marked founded repairs derived from

R is defined by means of a (multivalued) marking function γ. �
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Thus, γ(R) denotes the set of marked founded repairs derived from R (it is here
assumed that the database and the active integrity constraints are understood).
We define the set of marked founded repairs for 〈DB, IC〉: MFR(DB, IC) =⋃

R∈FR(DB,IC) γ(R).

Example 8. Consider the database DB = {a, b} and the set {ic1, ic2} = {a ⊃
−a, a ∧ b ⊃ −a} of AICs. There exists only the founded repair R = {−a}. As
the update atom −a is supported by both AICs, there are two possible marked
founded repairs derived from R: MR1 = {a−(1)} and MR2 = {a−(2)} stating,
respectively, that the deletion of the atom a is associated with the first and
second constraints. �

The existence of at least a marked founded repair for each founded repair is
guaranteed by the following corollary.

Corollary 2. Given a database DB and a set IC of ground AICs, for each
founded repair R, γ(R) �= ∅. �

The following definition shows how active integrity constraints are rewritten into
Datalog programs.

Definition 12. Let IC be a set of AICs and {ic1, . . . , icr, . . . , ick} its ground
version w.r.t. a database DB, where

icr =
m∧

j=1

bj(xj),
n∧

j=m+1

not bj(xj), ϕ(x0) ⊃
p∨

i=1

±ai(yi).

We define Rew(icr) = Rew0(icr) ∪ Rew1(icr) ∪ Rew2(icr), where Rew0(icr) is
the set of rules

r.1 :
∨p

i=1 a±
i (yi, r) ←

∧m
j=1 b̃j(xj , r),

∧n
j=m+1 not b̃j(xj , r), ϕ(x0)

r.2.j : b̃j(xj , r) ← (bj(xj), not b−
j (xj , r)) ∨ b+

j (xj , r) j ∈ [1..n]
r.3.i : a±

i (yi, l) ← a±
i (yi, r), 1 ≤ l ≤ k, r �= l i ∈ [1..p]

Rew1(icr) is the set of rules

r.4 : ←
∧m

j=1 b̂j(xj),
∧n

j=m+1 not b̂j(xj), ϕ(x0)
r.5.j : b̂j(xj) ← (bj(xj), not − bj(xj)) ∨ +bj(xj) j ∈ [1..n]

and Rew2(icr) is the set of rules

r.6.i : ±ai(yi) ← a±
i (yi, r) i ∈ [1..p]

r.7.i : ← +ai(yi), −ai(yi) i ∈ [1..p].

We define Rewu(IC) =
⋃k

i=1 Rewu(ici), with u ∈ {0, 1, 2}, and Rew(IC) =⋃k
i=1 Rew(ici). �

The rules in Rew0(IC) are used to compute stable models corresponding to
sets of updates, whereas the rules in Rew1(IC) and in Rew2(IC) check that
the stable models of Rew0(IC) define (consistent) database repairs. Intuitively,
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the atom b̃j(xj , r) states that the atom bj(xj) is present in the database if icr

doesn’t perform any update actions, whereas the atom b̂j(xj) expresses the fact
that the atom bj(xj) is present in the database after all update action have been
performed. Rule r.1 declares that if the constraint St(icr) is violated before any
update actions is performed by icr, icr has to perform an update action. The
denial r.4 (the original integrity constraint defined over the updated database)
is added in order to guarantee that the updated database satisfies icr.

Proposition 1. Given a database DB, a set IC of AICs, a model M of DB ∪
Rew(IC) and an atom a±(t, r) ∈ M, M does not contain any atom a±(t, l) with
r �= l. �

Definition 13. Given an interpretation M, we denote as UpdateAtoms(M) the
set of update atoms in M and as MarkedUpdateAtoms(M) the set of marked up-
date atoms in M. Given a set S of interpretations, we define UpdateAtoms(S) =
{UpdateAtoms(M) | M ∈ S} and MarkedUpdateAtoms(S) =
{MarkedUpdateAtoms(M) | M ∈ S}. �

Next theorem shows the equivalence between (marked) founded repairs and sta-
ble models, restricted to (marked) update atoms.

Theorem 5. Given a database DB and a set IC of AICs
1. MFR(DB, IC) = MarkedUpdateAtoms(SM(Rew(IC) ∪ DB)),
2. FR(DB, IC) = UpdateAtoms(SM(Rew(IC) ∪ DB)). �

It is worth noting that given a stable model M of Rew(IC) ∪ DB and a marked
update atom a±(t, r) ∈ M, M does not contain any other atom b±(v, r) different
from a±(t, r). In fact, a±(t, r) and b±(v, r) can be inferred only by the rule r.1,
and M is not minimal if it contains both atoms. From this observation it follows
that rule r.1 can be rewritten using exclusive disjunction in the head, i.e.

r.1 :
p⊕

i=1

a±
i (yi, r) ←

m∧
j=1

b̃j(xj , r),
n∧

j=m+1

not b̃j(xj , r), ϕ(x0)

Data Complexity

Theorem 6. Let DB be a database and IC a set of active integrity constraints. The
problem of checking if there exists a founded repair R for DB is Σp

2 -complete. �

The consistent founded answer to a relational query Q = (g, P) over a database
DB with active constraints IC (denoted by Q(DB, IC)), is obtained by first
computing the set FR(DB, IC) of founded repairs for DB and, then, considering
the intersection

⋂
R∈FR(DB,IC) Q(R(DB)).

Theorem 7. Let DB be a database and IC a set of active integrity constraints.
The problem of checking whether a ground atom g belongs to all repaired
databases obtained by means of founded repairs is Πp

2 -complete. �

For single head active integrity constraints the complexity is in the first level of
the polynomial hierarchy.
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5 Preferred Repairs and Answers
In this section we define an approach that always permits us to obtain a con-
sistent repaired database. In particular, we interpret the actions in the head of
constraints as indication of the operations the user prefers to perform to make
the database consistent.

Definition 14. Let DB be a database, IC a set of active integrity constraints
and R1, R2 two repairs for DB. Then, R1 is preferable to R2 (R1 � R2) w.r.t.
IC, if Unfounded(R1, DB, IC) ⊂ Unfounded(R2, DB, IC). Moreover, R1 � R2
if R1 � R2 and R2 �� R1. A repair R is said to be preferred w.r.t. IC if there is
no repair R′ such that R′ � R. �

Example 9. Consider the integrity constraint of Example 2 with the database
DB = {mgr(john, b, 1000), mgr(frank, b, 2000), mgr(mary, c, 1000), mgr(rosy,
c, 2000)}. There are four repairs R1 = {−mgr(john, b, 1000), −mgr(mary, c,
1000)}, R2 = {−mgr(john, b, 1000), −mgr(rosy, c, 2000)}, R3 ={−mgr(frank,
b, 2000), −mgr(mary, c, 1000)} and R4 = {−mgr(frank, b, 2000), −mgr(rosy,
c, 2000)}. The order relation is R2 � R1, R3 � R1, R4 � R2 and R4 � R3.
Therefore, we have only one preferred model which is also founded (namely R4).
Assume now to also have the constraint

not mgr(rosy, c, 2000 ) ⊃
declaring that the tuple mgr(rosy, c, 2000) must be in DB. In such a case we
have only the two repairs R1 and R3 and the preferred one is R3 which is not
founded. �

The relation � is a partial order as it is irreflexive, asymmetric and transitive.
The set of preferred repairs for a database DB and a set of active integrity
constraints IC is denoted by PR(DB, IC). Clearly, the relation between pre-
ferred, founded and standard repairs is as follows: FR(DB, IC) ⊆ PR(DB,
IC) ⊆ R(DB, IC). The next theorem states the precise relation between pre-
ferred, founded and general repairs.

Theorem 8. Let DB be a database and IC a set of active integrity constraints,
then

PR(DB, IC)
{

= FR(DB, IC) if FR(DB, IC) �= ∅
⊆ R(DB, IC) if FR(DB, IC) = ∅ �

Obviously, as the existence of repairs is guaranteed, the existence of a preferred
repair is guaranteed too. We conclude by presenting a result on the computa-
tional complexity of computing preferred repairs and answers.

Theorem 9. Let DB be a database and IC a set of active integrity constraints

1. checking if there exists a preferred founded repair R for DB is Σp
2 -complete;

2. checking whether a ground atom belongs to all preferred repairs is Πp
2 -

complete. �

The above theorem states that computing preferred repairs and answers is not
harder than computing standard or founded repairs and answers.
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Abstract. Module systems are an essential feature of programming lan-
guages as they facilitate the re-use of existing code and the development
of general purpose libraries. Unfortunately, there has been no consensual
module system for Prolog, hence no strong development of libraries, in
sharp contrast to what exists in Java for instance. One difficulty comes
from the call predicate which interferes with the protection of the code,
an essential task of a module system. By distinguishing the called mod-
ule code protection from the calling module code protection, we review
the existing syntactic module systems for Prolog. We show that no mod-
ule system ensures both forms of code protection, with the noticeable
exceptions of Ciao-Prolog and XSB. We then present a formal module
system for logic programs with calls and closures, define its operational
semantics and formally prove the code protection property. Interestingly,
we also provide an equivalent logical semantics of modular logic pro-
grams without calls nor closures, which shows how they can be trans-
lated into constraint logic programs over a simple module constraint
system.

1 Introduction

Module systems are an essential feature of programming languages as they facili-
tate the re-use of existing code and the development of general purpose libraries.
Unfortunately, there has been no consensual module system for Prolog, hence
no strong development of libraries, in sharp contrast to what exists in Java for
instance.

One difficulty in Prolog comes from the call predicate which interferes with
the protection of the code, an essential task of a module system. There has
been therefore several proposals of module systems realizing different trade-offs
between code protection and the preservation of meta-programming facilities.

In order to enforce the proper segmentation of the code, and to guarantee the
semantics of the predicates defined in a library, a module system has however to
strictly prevent any predicate execution not allowed by the programmer. This
means that it should be possible to restrict the access to the code of a module (by
predicate calls, dynamic calls, dynamic asserts or retracts, syntax modifications,
global variable assignments, etc.) from extra-modular code. This property is
called code protection.

The relationship between the calling module and the called module is how-
ever asymmetric. The called module code protection ensures that only the visible
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predicates of a module can be called from outside. The calling module code pro-
tection should ensure that the called module does not call any predicate of the
calling module, as they are not visible. The following example illustrates however
the need to provide an exception to this rule with a mechanism for executing a
predicate in the calling environment, which we will call a closure.

Example 1. The list iterator predicate forall/2 defined below in ISO-Prolog
[13], checks that every element of a list, passed in the first argument, satisfies a
given property, passed as a unary predicate in the second argument:

forall([], _).
forall([H|T], P):- G=..[P,H], call(G), forall(T, P).

Such a predicate forall cannot be defined in a library (for lists as it should)
without violating the calling module code protection, as the intended meaning
of the predicate is indeed to call the predicate passed as argument in the calling
module environment.

Most module systems for Prolog solve the difficulty either by abandoning any
form of code protection, or by introducing ad-hoc mechanisms to escape from
the code protection rules. Our proposal here is to keep a strict code protection
discipline but distinguish closures from dynamic calls, closures being executed
in the environment where they are created. From a functional perspective, a
closure here is basically a lambda expression with only one parameter, i.e., that
closure(X,G,C) ) is somehow equivalent to C = (λX.G) and apply(C,X) to
C.X . This makes it possible to define a module for lists which exports a forall
predicate taking a closure from outside as argument.

Example 2. :- module(lists, [forall/2, ...]).
forall([], C).
forall([X|T], C) :- apply(C, [X]), forall(T, C).

That definition of forall using closures instead of dynamic calls can be used
from any module importing the list module, by passing to it a closure constructed
from a unary predicate like var/1 for instance:

:- module(foo, ...).
:- use_module(lists).
all_variables(L) :- closure([X],var(X),C), forall(L,C).

In this paper, we first review the main module systems for Prolog in the light
of the two forms of module code protection. We show that no module system
ensures both forms of code protection, with the noticeable exceptions of Ciao-
Prolog and XSB.

Then we give a formal presentation of a safe module system with calls and
closures. We precisely define its operational semantics and show the full code
protection property.

We also provide an equivalent logical semantics for modular logic programs
without calls nor closures. That semantics, obtained by translating modular logic
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programs into constraint logic programs over a simple constraint module system,
shows how the module system can be compiled into a constraint logic program.

We then conclude on the relevance of these results to an on-going implementa-
tion of a fully bootstrapped constraint programming language, from which this
work originated.

Related Work

Modularity in the context of Logic Programming has been considerably studied,
and there has been some standardization attempts for ISO-Prolog [14]. Different
approaches can be distinguished however.

The syntactic approach mainly deals with the alphabet of symbols, as a mean
to partitionate large programs, safely re-use existing code and develop general
purpose libraries. This approach is often chosen for its simplicity and compati-
bility with existing code. For instance, a constraint solver like OEFAI CLP(q,r)
[12], or a Prolog implementation of the Constraint Handling Rules language
CHR [24], should be portable as libraries in a modular Prolog system. Most of
the current modular Prolog systems, such as SICStus [25], SWI [29], ECLiPSe
[2], XSB [22], Ciao [4,7,6] for instance, fall into this category. We will focus on
this approach in this paper, together with the object-oriented approach [19,20]
which is somewhat similar.

The algebraic approach defines module calculi with operations over sets of
program clauses [21,5,23]. They are somehow more general than the object-
oriented extensions of Prolog, as they consider a great variety of operations on
predicate definitions, like overriding, merging, etc. On the other hand, the greater
versatility does not facilitate reasoning on large programs, and this approach has
not been widely adopted.

The logical approach to module systems extends the underlying logic of pro-
grams. One can cite extensions with nested implications [16,17], meta-logic [3]
or second order predicates [9]. Such logical modules can be created dynamically,
similarly to other approaches such as Contextual Logic Programming [18,1].
Perhaps because their poor compatibility with existing code, they are also not
widely used however, and will not be considered in this paper.

2 Review of Existing Syntactic Module Systems

In this section, we analyze the main syntactic module systems developed for
Prolog. A reference example will be used to illustrate their peculiarities, and
classify them according to the two previously introduced properties: the called
module code protection and the calling module code protection.

Following ISO Prolog terminology [14], a module is a set of Prolog clauses as-
sociated to a unique identifier, the module name. The calling context – or simply
context – is the name of the module from where a call is made. A qualified goal
M:G is a classical Prolog goal G prefixed by a module name M in which it must be
interpreted. A predicate is visible from some context if it can be called from this
particular context without any qualification. A predicate is accessible from some
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context if it can be called from this particular context with or without qualifica-
tion. A meta-predicate is a predicate that handles arguments to be interpreted
as goals. Those arguments are called meta-arguments.

2.1 A Basic Module System

We first consider a basic module system from which the syntactic module systems
of Prolog can be derived through different extensions.

In this basic system, the predicates that are visible in a module are either
defined in the module, or imported from another module. In order to ensure
the protection of the called module code, only the predicates explicitly exported
in the defining module can be imported by other modules. Furthermore, the
qualification of predicates is not allowed.

The basic module system thus trivially satisfies both forms of code protection
properties, but is not able to modularize the predicate forall of example 1.

2.2 SICStus Prolog

The modules of SICStus Prolog [25] make accessible any predicate, by using
qualifications. The list iterator forall can thus be modularized, and used sim-
ply by passing to it goals qualified with the calling module. As a consequence
however, this versatile module system does not ensure any form of module code
protection.

It is also possible to explicitly declare meta-predicates and meta-arguments.
In that case, the non-qualified meta-arguments are qualified dynamically with
the calling context of the meta-predicate. With this feature, the called module
is thus able to manipulate explicitly the name of the calling module and call any
predicate in the calling module.

Example 3. This example, that will be also used in the following, tests the ca-
pabilities of calling private predicates in modules.

:-module(library, [mycall/1]).

p :-
write(’library:p/0 ’).

:-meta_predicate(mycall(:)).
mycall(M:G):-
M:p, call(M:G).

:- module(using, [test/0]).
:- use_module(library).

p :-
write(’using:p/0 ’).

q :-
write(’using:q/0 ’).

test :-
library:p, mycall(q).

| ?- using:test.
library:p/0 using:p/0 using:q/0
yes
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The private predicate p of the library is called from the using module, the library
correctly calls the predicate q of the calling module, but is also able to call the
private predicate p of the calling module.

This module system is similar to the ones of Quintus Prolog [26] and Yap Pro-
log [27]. The standardization attempt of ISO-Prolog [14] is also very close in
spirit, but the accessibility rules of qualified predicates have been left to the
implementation.

2.3 ECLiPSe

ECLiPSe [2] introduces two mechanisms to call non visible predicates. The first
is the qualified call, where only the exported predicates are accessible. The sec-
ond one, which uses the construct call(Goal)@Module, makes any predicate
accessible as with a qualified goal Module:Goal in SICStus Prolog. This system
provides also a directive tool/2 for adding the calling context as an extra ar-
gument to the meta-predicate. This solution has the advantage of limiting the
unauthorized calls made in a unconscious way.

Example 4.

:- module(library, [mycall/1]).

p :-
write(’library:p/0 ’).

:- tool(mycall/1,mycall/2).
mycall(G, M):-
call(p)@M, call(G)@M.

:- module(using, [test/0]).
:- use_module(library).

p :-
write(’using:p/0 ’).

q :-
write(’using:q/0 ’).

test :-
call(p)@library, mycall(q).

[eclipse 2]: using:test.
library:p/0 using:p/0 using:q/0
Yes

As beforehand, the system does not ensure module code protection.

2.4 SWI Prolog

For compatibility reasons, SWI accepts qualified predicates and uses the same
policy as SICStus Prolog. Hence the complete system does not ensure the called
module code protection. Meta-programming in SWI Prolog [29] has a slightly dif-
ferent semantics. For a meta-call made in the clause of a meta-predicate declared
with the directive module transparent/1, the calling context is the calling con-
text of the goal that invoked the meta-predicate. Hence, by declaring the list
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iterator forall/2 as a module transparent predicate, one obtains the expected
behavior, since the meta-call to G is invoked in the module that called forall,
i.e. in the calling module.

Nonetheless, this choice has two main disadvantages:

Example 5.

:-module(library, [mycall/1]).

p :-
write(’library:p/0 ’).

:-module_transparent(mycall/1).
mycall(G):-
p, call(p), call(G).

:- module(using, [test/0]).
:- use_module(library).

p :-
write(’using:p/0 ’).

q :-
write(’using:q/0 ’).

test :-
mycall(q).

?- using:test.
library:p/0 using:p/0 using:q/0
Yes

First, a dynamic call call(p(x)) does not behave as the static one p(x). Second,
the conventions for meta-predicates break the protection of the calling module
code.

2.5 Logtalk

Logtalk [19,20] is not really a syntactic module system but an object-oriented
extension of Prolog. Nonetheless by restricting its syntax – by forbidding para-
meterized objects and inheritance – one obtains a module system close to the
ones studied here.

The object/1 directive can be read as a module/2 directive, where the public
predicates are the exported predicates. Then, message sending plays the role of
goal qualification. Indeed, sending the message P to the object M – which is
denoted by M::P instead of M:P – calls the predicate P defined in the module M,
only if P have been declared public in M. Therefore this module system ensures
the protection of the called module code.

In order to deal with meta-predicates, Logtalk provides its own version of
the meta predicate/1 directive, which can be used in a similar way to the
SICStus one, with :: used instead of : for declaring meta-argument. As SWI,
Logtalk does not realize a module name expansion of the meta-arguments, but
realize dynamic calls in a context which may be different from a static call. In
this system, the dynamic context is the module (i.e. object) that sent the last
message. Since the non qualified calls are not considered as messages however,
it is possible to call any predicate of the calling module.
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Example 6.

:- object(library).
:- public(mycall/1).

p :-
write(’library:p/0 ’).

mycall(G) :- mycall(G,p).
:-metapredicate(mycall(::,::)).
mycall(G1,G2) :-
call(G1), call(G2).

:-end_object.

:- object(using).
:- public(test/0).

p :-
write(’using:p/0 ’).

q :-
write(’using:q/0 ’).

test :-
library::mycall(q).

:- end_object.

| ?- using::test.
using:q/0 using:p/0
yes

That module system does not ensure the calling module protection.

2.6 Ciao Prolog

The module system of Ciao Prolog [4] satisfies the two forms of code protection.
Only exported predicates are accessible for outside a module, and this property
is checked for qualified goals. The manipulation of meta-data through the module
system is possible through an advancedversion of themeta predicate/1directive.

Before calling the meta-predicates, the system dynamically translates the
meta-arguments into an internal representation containing the goal and the con-
text in which the goal must be called. Since this translation is done before calling
the meta-predicate, the system correctly selects the context in which the meta-
data must be called. As far as the system does not document any predicate
able to create or manipulate the internal data, the protection of the code is pre-
served. In this sense, Ciao Prolog does make a distinction between terms and
higher-order data (i.e. goals manipulated as terms) [8].

Example 7.

:-module(library, [mycall/1]).

p :- write(’library:p/0 ’).

:-meta_predicate(mycall(:)).
mycall(G):-
writeq(G), write(’ ’), call(G).

:- module(using, [test/0]).
:- use_module(library).

p :- write(’using:p/0 ’).

test :- mycall(p).

?- using:test.
$:(’using:p’) using:p/0
yes
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The program realizes the expected behavior without compromising the called
module protection, nor the calling module protection.

2.7 XSB

The module system of XSB [22] is an atom-based, rather than predicate-based,
syntactic module system. This means that function symbols, as well as predicate
symbols, are modularized in XSB. Similar terms constructed in different mod-
ules may thus not unify. In a module, it is possible however to import public
symbols from another module, with the effect that the modules share the same
symbols.

Then, the semantics of the call/1 predicate is very simple: the meta-call of
a term corresponds to the call of the predicate of the same symbol and arity as
the module where the term has been created. The system fully satisfies the code
protection property.

Example 8.

:-export mycall/1.

p(_) :-
write(’library:p/1 ’).

mycall(G):-
call(G).

:- export test/1.
:- import mycall/1 from library.

p(_) :-
write(’using:p/0 ’).

test(_) :-
mycall(p(_)).

| ?- test(_).
using:p/0
yes

On the other hand, the problem of defining the visibility rules for meta-
programming predicates is moved to the construction of the terms. Indeed, in
XSB, the terms constructed with =../2, functor/2 and read/1 belong
to the module user. As a consequence, in a module different from user, the
goal (functor(X,q,1), X=q( )) fails, whereas (X=q( ), functor(X,q,1))
succeeds.

3 A Safe Module System with Calls and Closures

In this section, we define a formal module system with calls and closures. We
present the operational semantics of modular logic programs, and formally prove
that they satisfy both forms of module code protection.
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3.1 Syntax of Modular Logic Programs

For the sake of simplicity of the presentation, the following conventions are
adopted. First, a simple form of closures, that abstract only one argument in
an atom, is considered. Second, the syntax of constraint logic programs is cho-
sen with some syntactic conventions to distinguish between the constraints, the
closures and the other atoms within goals. Third, all goals are assumed to be ex-
plicitly qualified, thereby eliminating the need to describe the conventions used
for automatically prefixing the non-qualified atoms in a clause or a goal. Fourth,
all public predicates in a module are assumed to be accessible from outside, with
no consideration of directives such as use module.

The following disjoint alphabets of symbols given with their arity are
considered:

– V a countable set of variables (of arity 0) denoted by x, y . . . ;
– ΣF a set of constant (of arity 0) and function symbols;
– ΣC a set of constraint predicate symbols containing = /2 and true/0;
– ΣP a set of program predicate symbols containing call/2, closure/3 and

apply/2 ;
– ΣM a set of module names (of arity 0), noted μ, ν . . .

Furthermore, in order to interpret calls and closures, two coercion relations,
P∼: ΣF × ΣP and M∼: ΣF × ΣM , are assumed to interpret function symbols
as predicate symbols and module names respectively. It is worth noting that
in classical Prolog systems, where function symbols are not distinguished from
predicate symbols, these relations are just the identity, while here they formally
relate disjoint sets.

The sets of terms, formed over V and ΣF , of atomic constraints, formed with
predicate symbols in ΣC and terms, and of atoms, formed with predicate symbols
in ΣP and terms, are defined as usual. In addition, atoms qualified by a module
name are noted μ :A. The call predicate has two arguments, the first being the
module name qualifying the second argument.

A closure closure(x, μ :A, z) associates to the variable z a qualified atom μ :A
(the meta-argument) in which the variable x is abstracted. The meta-argument
in a closure must be a qualified atom, i.e. not a variable as in a call.

Definition 1. A closure is an atom of the form closure(x, μ : A, z) where x
and z are variables, μ : A is a qualified atom. The application of a closure
associated to a variable z to an argument x is the atom apply(z, x).

Definition 2. A modular clause is a formula of the form

A0 ← c1, . . . , cl|κ1, . . . , κn|μ1 :A1, . . . , μm :Am.

where the ci’s are atomic constraints, the κi’s are closures, and the μi : Ai’s are
qualified atoms.
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Definition 3. A module is a tuple (μ, Dμ, Iμ) where μ ∈ ΣM is the name of
the module, Dμ is a set of clauses, called the implementation of the module, and
Iμ ⊂ ΣP is the set of public predicates, called the interface of the module. The
predicates not in Iμ are called private in μ. A modular program P is a set of
modules with distinct names.

Definition 4. A modular goal is a formula

c| 〈ν1 − κ1〉 , . . . , 〈νn − κn〉 | 〈ν′
1 − μ1 :A1〉 , . . . , 〈ν′

m − μm :Am〉

where c is a set of atomic constraints, the κi’s are closures, the (μi : Ai)’s are
prefixed atoms and both the νi’s and the ν′

i’s are module names called calling
contexts.

In the following, the construct 〈ν − (κ1, . . . , κn)〉 denotes the sequence of closures
(〈ν − κ1〉 , . . . , 〈ν − κn〉) and similarly for sequence of atoms with context.

3.2 Operational Semantics

Let P be a program defined over some constraint system X . The transition
relation −→ on goals is defined as the least relation satisfying the rules in table
1, where θ is a renaming substitution with fresh variables. A successful derivation
for a goal G is a finite sequence of transitions from G which ends with a goal
containing only constraints (the computed answer) and closures.

Table 1. Transition relation for goals with calls and closures

Modular
CSLD

(μ, Dμ, Iμ)∈P (ν =μ)∨(p ∈ Iμ)
(p(s)←c′|k|β)θ∈Dμ X |= ∃(c ∧ s=t ∧ c′)

(c|K|γ, 〈ν − μ :p(t)〉 , γ′) −→ (c, s=t, c′|K, 〈μ − k〉 |γ, 〈μ − β〉 , γ′)

Call X |= c ⇒ (s=g ∧ t=f(x)) g M∼μ f P∼p

(c|K|γ, 〈ν − ν :call(s, t)〉 , γ′) −→ (c, s=g, t=f(x)|K|γ, 〈ν − μ :p(x)〉 , γ′)

Apply
X |= c ⇒ z=y

(c|κ1, 〈μ − closure(x, μ′ :A, z)〉 , κ2|γ, 〈ν − ν :apply(y, t)〉 , γ′) −→
(c|κ1, 〈μ − closure(x, μ′ :A, z)〉 , κ2|γ, 〈μ − μ′ :A[x\t]〉 , γ′)

The modular CSLD resolution rule is a restriction of the classical CSLD rule
for CLP [15]. The additional condition (ν = μ) ∨ (p ∈ Iμ) imposes that μ : p(t)
can be executed only if, either the call is made from inside the module (i.e. from
the calling context μ), or the predicate p is a public predicate in μ. Moreover,
this rule propagates the new calling context to the closures and atoms of the
selected clause body.
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The call rule defines the operational semantics of meta-calls. It is worth noting
that this transition rule does not change the calling context ν. This property
is necessary to guarantee the calling module code protection. For the sake of
simplicity, a call goal with a free variable as meta-argument has no transition.
Similarly, the call rule does not handle the meta-call of conjunctions of atoms or
constraints. Those meta-calls can nevertheless be easily emulated, by supposing
(’,’/2 P∼ and/2) and by adding the clause (and(x, y) ← μ : call(x), μ : call(y)) to
the implementation of any module μ.

The apply rule allows the invocation of a closure collected by a previous pred-
icate call, as expected for instance in the example 2 for the definition of forall.
In practice, the apply rule looks for the closure associated to the closure variable
(formally checks the equality of variables z = y), and applies the closure to the
argument in the closure context.

3.3 Module Code Protection

Intuitively, the called module code protection property states that only the public
predicates of a module μ can be called from outside, and produce subgoals in
context μ. The calling module code protection property states that the goal of
a closure can only be executed in the context of creation of the closure. These
properties can be formalized as follows:

Definition 5. The operational semantics of programs satisfies the called mod-
ule code protection if the reduction of a qualified atom μ : p(t) in a context
ν produces qualified atoms and closures in the context μ only, and either p is
public in μ or μ = ν.

Definition 6. The operational semantics of programs satisfies the calling
module code protection property if the application of a closure created in
context ν produces atoms and closures in the context ν only.

Proposition 1. The operational semantics of modular logic programs satisfies
the called and calling module code protection properties.

Proof. For the called module code protection property, let us consider the re-
duction of a qualified atom μ : p(t) in context ν. Only a modular CSLD or a call
transition can apply, producing a goal in context μ′. In the former case, we have
μ′ = μ and either μ = ν or p public in μ. In the latter case, we have trivially
μ = ν = ν′.

For the calling module code protection property, we first remark that the
transition rules do not change the context of closures, which thus remain in
their context of creation. Given an application of a closure created in context
ν, the transition Apply is the only applicable rule, and produces a goal in
context ν.
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4 Logical Semantics

Syntactic module systems have been criticized for their lack of logical semantics
[21,23]. Here we provide modular (constraint) logic programs without calls nor
closures (abbreviated MCLP), with a logical semantics based on their trans-
lation into constraint logic programs. In course, that translation describes an
implementation of the module system.

To a given MCLP program P , one can associate a simple module constraint
system M, in which the constraint allow(ν, μ, p) that states that the predicate
p of module μ can be called in module ν, is defined by the following axiom
schemas:

ν ∈ ΣM p ∈ ΣP

M |= allow(ν, ν, p)
ν, μ ∈ ΣM (μ, Dμ, Iμ) ∈ P p ∈ Iμ

M |= allow(ν, μ, p)

This constraint system depends solely on the interface of the different modules
that composes the program P , and not on its implementation.

Then, MCLP programs can be given a logical semantics equivalent to their
operational semantics, obtained by a simple translation of pure MCLP(X ) pro-
grams into ordinary CLP(M, X ) programs. This translation can be used for the
implementation, and shows that the module system can be viewed as simple
syntactic sugar. The alphabet Σ̇P of the associated CLP(M, X ) program, is
constructed by associating one and only one predicate symbol ṗ ∈ Σ̇P of arity
n + 2 to each predicate symbol p ∈ ΣP of arity n.

Let Π be the translation of MCLP programs and goals into CLP programs
over M, defined in table 2.

Table 2. Formal translation of MCLP(X ) into CLP(M, X )

Π ( {(μ, Dμ, Iμ)}) = {Πμ(Dμ)}
Π (γ, γ′) = Π (γ) , Π (γ′)
Π (〈ν − μ :p(t)〉) = ṗ(ν, μ, t)

Πμ ( {(A ← c|α)}) = {Πμ(A ← c|α)}
Πμ p0(t) ← c|α = ṗ0(y, μ, t) ← allow(μ, y, p0), c|Πμ(α)
Πμ(A,A′) = Πμ(A),Πμ(A′)
Πμ(ν :p(t)) = ṗ(μ, ν, t)

This translation basically adds two arguments to each predicate. The first
argument is the calling context and the second is the qualification. The constraint
allow realizes a dynamic check of accessibility. It is worth noting that for a
qualified atom, the contexts are known at compile-time and the accessibility
check can be done statically, thereby eliminating any overhead due to the added
constraints and to the module system. On the other hand, for the call predicate
not considered in this section, the allow predicate implements a dynamic check,
hence with an overhead due to the added constraints.



Modules for Prolog Revisited 53

Proposition 2 (Soundness). Let P and (c|γ) be a pure MCLP program and
a pure MCLP goal

if
(

(c|γ) P−−−−→
MCLP

(d|γ′)
)

then

(
(c|Π(γ)) Π(P)−−−→

CLP
(d, allow(y, μ, p), y = ν|Π(γ′))

)
for some ν, μ, p and some y is not free in d.

Proof. Let us suppose ((c|γ) P−−−−→
MCLP

(d|γ′)). Let 〈ν − μ :p(t)〉 be the selected

atom in γ. Then γ is of the form (γ1, 〈ν − μ :p(t)〉 , γ2) for some γ1 and γ2.
Hence we have Π(γ)= (Π(γ1), ṗ(ν, μ, t), Π(γ2)). Now let (p(s) ← c′|α)θ be the
selected clause in module μ. In such a case whe have, in the translation of P ,
the clause (ṗ(y, μ, s)) ← c, allow(y, μ, p)|Πμ(α)) θ. We also have d = (c, t=s, c′),
X |= ∃(d) and (ν = μ) ∨ (p ∈ I). As (ν = μ) ∨ (p ∈ I) is true, the constraint
allow(ν, μ, p) is true in M, hence we have X , M |= ∃d′ with d′ = (c, (ν, μ, t)=
(y, μ, s), c′, allow(y, μ, p)). Therefore we have ((c|Π(γ)) Π(P)−−−→

CLP
(d′|Π(γ′))).

Lemma 1. The functions Πμ, and Π on goals, are injective.

Proof. As it is the composition of injective functions, the function Π on goals
is injective. For the same reason, the function Πμ on prefixed atoms, atom se-
quences and clauses is injective. As Πμ on modules is the pointwise extension of
the injective function Πμ on clauses, it is injective too.

Proposition 3 (Completeness). Let P and (c|γ) be pure MCLP program and
goal

if

(
(c|Π(γ′))

Π(P)−−−→
CLP

(d|α)
)

then

(
(c|γ) P−−−−→

MCLP
(d′|γ′′)

)
where Π(γ′′)=γ′ and d′=(d, allow(y, μ, p), y=ν) for some ν, μ, p and such that
y is not free in d.

Proof. Because Πμ and Π are injective, we can use their respective inverses
Πμ

−1 and Π−1. Let us suppose that ((c|Π(γ)) Π(P)−−−→
CLP

(d|γ′)). The constraint c

does not contain any allow/3 constraint since (c|γ) is a MCLP goal. Let q(t)
be the selected atom, Π(γ) is of the form (γ1, q(t), γ2) for some γ1 and γ2.
Hence we have γ = Π−1(γ1), p(ν, μ, t′), Π−1(γ2) with q = ṗ and t = (ν, μ, t′).
Let q(s) ← c′|β be the selected clause. We have p(s′) ← c′′|Πμ′−1(β) in the
implementation of some module μ′, with s=(y, μ′, s′) and c′′=c′, allow(y, μ′, p)
where y is fresh. We have d = (c, c′′, allow(y, μ′, p), (ν, μ, t′) = (y, μ′, s′)) and
X , M |= ∃(d). Hence for d′ = (c, c′′, t′ = s′), we have X , M |= ∃(d′). Therefore,
for α = (Π−1(γ1), Π−1(β), Π−1(γ2)), we conclude that (c|γ) can be reduced by
a clause of P to (d′|γ′′) with Π(γ′′) = γ′.

5 Conclusion

In a paper of D.H.D. Warren [28], the higher-order extensions of Prolog were
questioned as they do not really provide more expressive power than meta-
programming predicates. We have shown here that the situation is different in
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the context of modular logic programming, and that module code protection
issues necessitate to distinguish between calls and closures.

The module system we propose is close to the one of Ciao Prolog in its imple-
mentation. We gave an operational semantics for modular logic programs with
calls and closures , and used it to formally prove the full module code protec-
tion property. Furthermore, an equivalent logical semantics for modular logic
programs without calls nor closures has been provided, showing a translation of
modular logic programs into constraint logic programs. The logical semantics of
modular calls and closures is currently under investigation in the framework of
linear logic concurrent constraint (LCC) programming [10].

This module system has been implemented in GNU-Prolog, and has been used
to port some existing code as libraries. The modularization of the Constraint
Handling Rules language CHR obtained by porting a Prolog implementation
[24] as a library, provides an interesting example of intensive use of the module
system, as it allows the development of several layers of constraint solvers in
CHR. New libraries are also developed with this module system for making a
fully bootstrapped implementation of the LCC language SiLCC [11].
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Abstract. This paper considers the problem of efficient incremental maintenance
of memo tables in a tabled logic programming system. Most existing techniques
for this problem consider insertion and deletion of facts as primitive changes, and
treat update as deletion of the old version followed by insertion of the new version.
They handle insertion and deletion using independent algorithms, consequently
performing many redundant computations when processing updates. In this pa-
per, we present a local algorithm for handling updates to facts. The key idea is
to interleave the propagation of deletion and insertion operations generated by the
updates through a dynamic (and potentially cyclic) dependency graph. The depen-
dency graph used in our algorithm is more general than that used in algorithms pre-
viously proposed for incremental evaluation of attribute grammars and functional
programs. Nevertheless, our algorithm’s complexity matches that of the most effi-
cient algorithms built for these specialized cases. We demonstrate the effectiveness
of our algorithm using data-flow analysis and parsing examples.

1 Introduction

Tabled resolution [4, 6, 29] and its implementations have enabled the development of
applications in areas ranging from program analysis and verification [8, 20, e.g.], to
object-oriented knowledge bases [32, e.g.]. Since results of computations are cached,
tabling also offers the potential to incrementally compute the changes to the results
when a rule or fact in the program changes. Incremental evaluation of tabled logic
programs will enable us to directly derive incremental versions of different applications.

The Driving Problem. The problem of incremental evaluation of logic programs is
closely related to the view maintenance problem which has been extensively researched,
especially in the context of deductive databases [11, 12, e.g.]. Most of these works, in-
cluding our earlier algorithms [22–24] consider changes to the program only in terms of
addition and deletion of facts. An update of a fact is treated as the deletion of the old ver-
sion followed by the addition of the new version, which may lead to several unnecessary
evaluation steps. In contrast, techniques originally from incremental attribute-grammar
evaluation [9, 21], treat update as in-place change, and propagate this change. This ap-
proach is very restrictive for logic programs, since an update may lead to additions or
deletions in general. In-place update techniques for logic programs work only with non-
recursive programs, and restrict the changes to “non-key attributes” [27]: i.e. the control
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:- table r/2.
r(X,Y) :- e(X,Y).
r(X,Y) :- e(X,Z), r(Z,Y).

e(1,2).
e(2,3).
e(3,4).
e(4,3).

Calls Answers
r(1,A) r(1,2), r(1,3), r(1,4)
r(2,A) r(2,3), r(2,4)
r(3,A) r(3,4), r(3,3)
r(4,A) r(4,3), r(4,4)

(a) (b)

Fig. 1. Example tabled logic program (a), and its call and answer tables (b)

behavior of the program cannot change. However, these update propagation algorithms
are optimal when the restrictive conditions are met.

The interesting problem then is to devise an incremental technique for processing
additions, deletions as well as updates, which applies to a large class of logic pro-
grams, and yet is optimal for the class of programs handled by the in-place update
algorithms. We present such a technique in this paper. We give an incremental algo-
rithm that interleaves the processing of additions and deletions. When the conditions
of in-place update algorithms are met, our algorithm generates matching pairs of addi-
tions and deletions which result in optimal change propagation. Our incremental algo-
rithm naturally generalizes those for attribute evaluation [21] and functional program
evaluation [1].

An Illustrative Example. Consider the evaluation of queryr(1,A) over the program
in Figure 1(a). In the program, r/2 defines the reachability relation over a directed
graph, whose edge relation is given by e/2. The calls and answers computed by tabled
resolution for this query are given in Figure 1(b).

Now consider the effect of changing fact e(2,3) to e(2,4) and treating this
change as the deletion of e(2,3) followed by the addition of e(2,4). First, when
e(2,3) is deleted, nodes 3 and 4 are no longer reachable from 1 or 2. Thus the
answers r(2,3), r(2,4), r(1,3) and r(1,4) are deleted. Subsequently, the ad-
dition of e(2,4) makes nodes 3 and 4 again reachable from 1 and 2. Incremen-
tal processing of this addition introduces answers r(2,4), r(2,3), r(1,4) and
r(1,3).

Updates may lead to deletions or additions in general making in-place update algo-
rithms restrictive. For instance, in the above example, if fact e(2,3) is changed to
e(3,2), node 2 becomes reachable from 3 and 4, and nodes 3 and 4 are no longer
reachable from 1 or 2. However, a judicious interleaving of additions and deletions
can simulate the effect of in-place update wherever possible. For instance, consider
the above example again when e(2,3) is changed to e(2,4). Since e(2,3) is
changed, we first inspect r(2,X)’s answer table and recalculate results. If we process
all changes to r(2,X) first, we will stop the propagation there since there is no net
change in r(2,X)’s answers. Hence r(1,3) and r(1,4) will not even be deleted.

Salient Features of Our Approach. We consider definite logic programs where facts
as well as rules may be changed between two query evaluation runs. We consider an
update as a delete and an insert, but select the order in which they will be processed
based on the dependencies between and among the queries and computed answers. We
describe data structures and algorithms to process additions bottom-up while using the
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information about the original queries. Section 2 introduces the data structures used for
incremental processing of additions and deletions. Interleaving between the two oper-
ations is achieved by decomposing the processing of an addition or deletion into finer-
grained operations, and assigning priorities to these operations. Section 3 describes the
assignment of priorities and a scheduler to perform the operations in order.

The order in which the operations are performed generalizes the call-graph based
orders used in previous incremental algorithms [13, e.g.] where changes are evaluated
from topologically lower strongly connected components (SCCs) to higher SCCs in
the call graph. As a result, our algorithm inspects the same number of answers in tables
(which is a good measure of an incremental algorithm’s performance) as algorithms that
perform in-place updates. In particular, for non-recursive programs, the order in which
operations are performed coincide with the topological order of the call dependencies.
Hence our algorithm is optimal for the cases for which optimal update algorithms are
known. Moreover the algorithm handles inserts, deletes and updates efficiently, even
when the changes affect the control behavior of the program. We explain how our al-
gorithm naturally generalizes incremental evaluation of attribute grammars [21] and
functional programs [1] in Section 4. We also present experimental results showing the
effectiveness of the algorithm in that section.

In a more general setting when the dependencies may be recursive, our algorithm
interleaves insertion and deletion operations even within an SCC in the call graph. It can
be shown that our schedule of operations is uniformly better than inserts-first or deletes-
first schedules. Our approach is closely related to those used in several incremental
program analysis techniques where change propagation is controlled by considering
SCCs in a dependency graph. A detailed discussion relating this algorithm to previous
work appears in Section 5. Extensions and optimizations of our technique are discussed
in Section 6. A more detailed version of this paper with formal aspects of the local
algorithm is available as a technical report [26].

2 Data Structures for Incremental Evaluation

We restrict our main technical development to definite logic programs. In Section 6 we
describe how to extend these results to general logic programs evaluated under the well-
founded semantics. We assume that definitions of only those predicates that are marked
as volatile may be changed (i.e. with additions, deletions or updates).

In SLG resolution [6], derivations are captured as a proof forest, called SLG for-
est [5]. The SLG forest constructed when evaluating goal r(1,X) over the program in
Figure 2(a) is given in Figure 2(e). Each tree in the forest corresponds to a call in the
call table. For a given tree of a call, each node corresponds to a step in the derivation
of the call. Each edge in the SLG forest arises due to program or answer clause reso-
lution. The leaves of a complete SLG forest of the form G0 :− G1, . . . , Gn represent a
failed derivation; the other leaves represent successful derivations of answers. For pro-
gram given in Figure 2(a) with facts in (b), the tabled call and answers are given in
Figure 2(c); and the SLG forest in Figures 2(d) and (e).

Each tree in the SLG forest corresponds to a generator; the call associated with the
root of a tree is said to be the call of that generator (denoted by p.call where p is the
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generator). Each non-root node in the SLG forest whose selected literal is either tabled
or volatile corresponds to a consumer, defined formally as follows:

Definition 1 (Consumer). Let P be a definite logic program, and F be the SLG forest
constructed when evaluating a query Γ over P . Then c = 〈p, G0, G1, [G2, . . . , Gn]〉
for some n ≥ 0 is a consumer iff the SLG tree of generator p in F has a non-root node
G0 :− G1, G2, . . . , Gn. The set of all consumers in F is denoted by CF .

Note that a consumer carries more information than its corresponding non-root node in
the SLG forest. For the rest of this paper we refer to the ‘non-root nodes’ in the SLG
forest and its corresponding ‘consumer’ interchangeably.

For each edge (n1, n2) in the forest, n1, as well as the clause or an-
swer used in that resolution step are called the premises of n2. For instance,
r(1,X):-r(1,Z),e(Z,X) (node c2) and the answer r(1,2) are premises to
e(2,X) (node c3).

Definition 2 (Support). A consumer c ∈ CF corresponding to a leaf of the SLG forest
(i.e. c = 〈 , h, true, []〉) representing a successful derivation of an answer a (i.e. h is
a variant of a) is called a support of the answer a, denoted as a = c.answer and
c ∈ a.supports.

In Figure 2 (e), the nodes corresponding to the supports are shown as si. The various
dependencies between the elements of SLG forests are defined below.

Generator-consumer dependencies: If p is a generator and c = 〈 , , g, 〉 ∈ CF is
a consumer such that p is a variant of g, we say p is the generator of the consumer c,
denoted by p = c.generator and c ∈ p.consumers.
Consumer-consumer dependencies: For two consumers c, c′ ∈ CF such that c is a
premise of c′ we say that c′ ∈ c.next consumer and c = c′.prev consumer.
Answer-consumer dependencies: If an answer a is a premise of a consumer c ∈
CF we say that a immediately affects c (c ∈ a.imm affects) and c depends on a
(c.depends on = a). For example, s6 depends on f4 and f4 immediately affects s6.

We assume that the set of all consumers CF is indexed on its third (goal) component
and for constant time access the above defined relations such as consumers, generator,
etc., are maintained explicitly.

Incremental changes to the facts/rules modify the SLG forest as follows. For in-
stance, consider the insertion of fact e(4,6). Since the goal field of consumer c5
unifies with this fact, we can add in the SLG forest a child to c5, say s8: a support for
answer r(1,6). This is a new answer to generator p1, which gets forwarded to its
consumer c2 [c2 ∈ p1.consumers]. The consumption of this answer by c2 creates a
child of c2, say c8 = r(1,A) :- e(6,A). No further resolution steps are possible
and the evaluation stops. Note that we perform only those operations that are needed to
change the original forest to include the new fact and its effects.

Now consider the deletion of fact e(3,4) (f4) from the program in Figure 2. Since
the node s6 in the SLG forest depends on f4, that node should be deleted. Moreover,
we now need to check if the corresponding answer a3 (r(1,4)) is derivable using a
different support independent of a3. The Delete-Rederive (DRed) algorithm proposed
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:- table r/2.
r(X,Y) :- e(X,Y). % rule 1
r(X,Y) :- r(X,Z), e(Z,Y). % rule 2
r(X,Y) :- d(X,Z), r(Z,Y). % rule 3

(a)

e(1,2). % f1
e(1,3). % f2
e(2,3). % f3
e(3,4). % f4
e(2,4). % f5
e(4,2). % f6
e(2,5). % f7

Call: r(1,Y)
Answers: r(1,2) [a1]

r(1,3) [a2]
r(1,4) [a3]
r(1,5) [a4]

(b) (c)

[p1] r(1,A) :- r(1,A).
[c1] r(1,A) :- e(1,A).
[c2] r(1,A) :- r(1,B), e(B,A).
[c3] r(1,A) :- e(2,A).
[c4] r(1,A) :- e(3,A).
[c5] r(1,A) :- e(4,A).
[c6] r(1,A) :- e(5,A).
[c7] r(1,A) :- d(1,B), r(B,A).

[s1] r(1,2).
[s2] r(1,3).
[s3] r(1,3).
[s4] r(1,4).
[s5] r(1,5).
[s6] r(1,4).
[s7] r(1,2).

(d)
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Fig. 2. Example program (a), facts (b), calls and answers (c), nodes in SLG forest (d), and SLG
forest (e)

for view maintenance in deductive databases [12] computes the changes in two phases.
In the first phase, answers that are derivable from the deleted fact are marked. In the
second phase the marked answers that are derivable using only unmarked answers and
facts are rederived and the marks on such answers are removed. This strategy is also
used in incremental analysis such as model checking [28], pointer analysis [33], MOD
analysis [34], and data-flow analysis [18]. Following this approach, we mark the sup-
port s6 and hence the answer a3. In the next step, node c5 is marked since it depends on
a3. The mark on c5 propagates to s7, hence to answer a1 (r(1,2)), ultimately mark-
ing nodes c3–c6, s3–s7 and answers a1–a4. In the second phase, since s1 and s2 are
unmarked, we remove the marks on answers a1 and a2, and consequently nodes c3–c6,
s3–s5, s7 and answers a3 and a4.

Note that when a support is marked, the answer may still have other independent
derivations. We can significantly reduce the number of markings by identifying acyclic
supports: the nodes whose existence is independent of the answer it supports. Using
acyclic supports, we can mark an answer a only when all its acyclic supports are
marked. Note that the first support for an answer constructed by tabled resolution is
acyclic; we call this as the primary support. We can significantly improve on the DRed
strategy using primary supports, as illustrated by the following example. Let us again
consider the deletion of fact e(3,4) (f4) from the program in Figure 2. Deletion of f4
marks s6. Note that supports in the figure are listed in chronological order. Marking of
s6 does not lead to marking a3 since its primary support s4 is still unmarked.

The effectiveness of this heuristic can be improved if we can identify acyclic sup-
ports other than the primary support. In [23] we used derivation lengths to determine
the acyclicity of supports. In this paper we refine and generalize this measure. First, we
maintain a call graph that captures the dependencies between the generators in an SLG
forest, and identify strongly connected components (SCCs) in the graph. If p1 is inde-
pendent of p2 in the call graph (i.e. p1 does not call p2), then consumers and answers of
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p1 are independent of those of p2. We number the SCCs in a topological order so that
the independence of two generators can be determined based on their SCC numbers,
denoted by p.scc when p is a generator. This permits us to quickly identify independent
consumers and answers irrespective of their derivation lengths. Consider again the ex-
ample given in Figure 1. The call graph SCC consists of two trivial SCCs - r(1,A)
and r(2,A) and a non-trivial SCC consists of calls r(3,A) and r(4,A) with SCC
r(2,A) topologically lower than SCC r(1,A). This means that call r(2,A) is in-
dependent of call r(1,A) and hence we can process changes to r(2,A) before prop-
agating any changes to r(1,A). Note that in this example there is no net change in
the answers of r(2,A) and thus we do not even process the call r(1,A). Call-graph
SCCs have been used before for localizing change propagation, and serve the same
purpose in our algorithm.

Although processing changes within an SCC before propagating its net changes to
topologically higher SCCs seems to be fruitful in some cases, it is clearly ineffective
for change propagation within an SCC. To order change propagation within an SCC,
we also associate an ordinal with all consumers (analogous to the derivation length) in
the evaluation graph. The ordinal and SCC number attributes (ord and scc, resp.) are
defined as follows:

Entity (X) SCC number (X.scc) Ordinal (X.ord)

Answer (a)
p.scc where a is an answer of
p.call, where p is a generator

{s.ord | s is the primary support of a}+1

Consumer (c) p.scc where c = 〈p, h, g, G〉
max{c′.ord, Ord, 0}, where

c′ = c.prev consumer, a = c.depends on and
Ord = a.ord if a.scc = c.scc and 0 o.w.

A support s of an answer a is acyclic if s.ord < a.ord.
The ordinal and SCC numbers are used not only to control the propagation of mark-

ings during deletion, but also to interleave operations arising from addition of facts/rules
with those from deletion. This is described in detail in the next section.

3 The Local Algorithm

In this section we present the algorithm for maintaining the SLG forest incrementally
when facts/rules are added, deleted or updated. The goal of our algorithm is to confine
the processing as closely as possible to the part of the SLG forest that is modified by
the change. We will measure an algorithm’s cost as the total number of answers taken
up for processing. Updates are still treated as simultaneous deletes and inserts, but the
algorithm interleaves the deletion phase of marking answers and processing of insertion
such that it reduces (a) the number of answers marked for deletion and (b) the number
of new answers computed only to be subsequently deleted. We illustrate some of the
key features of the algorithm using the example given in Figure 2.

Comparison of Inserts-first, Deletes-first Methods. We notice that neither inserts-
first nor deletes-first strategies is uniformly better than the other. Consider the program
in Figure 2 after updating fact e(1,2) (f1) to e(1,5). This is treated as deleting
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f1 and inserting a new fact f8 =e(1,5). If we process deletion before insertion, we
would do the following: (i) mark a1 and a4 in the deletion phase; (ii) rederive a1 and
a4; and finally (iii) generate a4 that can again be derived based on the inserted fact. On
the other hand, if we process insertion before deletion we will (i) generate a new acyclic
support for a4 (derivation based on the inserted fact is shorter than the earlier derivation
of a4) (ii) mark a1 but not mark a4 due to presence of the new acyclic support. Thus
processing insertion first is better than processing deletion first for this example.

Now consider a different change to the program in Figure 2: deleting e(1,2) (f1)
and adding e(2,6) (f9). Processing insertion before deletion, we will (i) derive a new
answer r(1,6) based on r(1,2) and e(2,6); (ii) mark this new answer along with
answers a1 and a4 in the deletion phase (due to deletion of e(1,2)); (iii) rederive all
three answers since r(1,2) has an alternative derivation. Processing deletion before
insertion will mark answers a1 and a4, and rederive both. Insertion of e(2,6) will
generate a new answer r(1,6). For this example, processing deletions first results in
fewer operations than processing insertions first.

The above examples indicate that interleaving the deletion and insertion may be bet-
ter. In fact, if we delete f1 and insert f8 and f9, it is easy to see that the best change
propagation strategy will be to process the insertion of f8 first, deletion of f1 next and
insertion of f9 last. This key idea is encoded in our algorithm, where the ordering of
operations is driven by associating events with each operation and priorities with each
event, and processing the events in the order of their priorities.

The Event Model. Our algorithm is based on the event model where processing in-
sertion of facts/answers is done using the event consume and processing deletion of
facts is done using three events called mark, may rederive and rederive. We maintain
two priority queues— ready queue and delay queue for processing events. Events are
scheduled only from the ready queue in increasing order of their SCC numbers; thus all
events of an SCC are scheduled before processing events of topologically higher SCC.
This ensures that change propagation is processed from topologically lower to higher
SCCs. The delay queue consists of events that were originally scheduled but later dis-
covered to be needed only under certain conditions; events in the delay queue may be
moved back into the ready queue when these conditions are satisfied.

Within an SCC, mark and consume events have higher priority that rederive and
may rederive regardless of their ordinals. We process mark and consume events in as-
cending order of their ordinals. Among events with the same ordinal, a mark event has
higher priority over a consume event.

Before getting into more detailed description of our algorithm we provide here the
key intuition behind interleaving of mark and consume events. Note that a mark event
overapproximates the actual answers that need to be deleted, and a consume event can
generate a support for a new/old answer. Marking of an answer can be avoided if we can
generate an acyclic support for the answer using inserted and existed answers, provided
the used answers are never going to be marked. The following two requirements guide
the design of our local algorithm and choice of ordinals of events and entities.

Requirement 1. The answers used in generating a new answer or a new support
should not be marked in the same incremental phase.
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process event(e=consume(a,c))
1 c=〈p,h,g,G〉
2 θ=mgu(a,g)
3 g’=head(Gθ) // g’=true if G is empty
4 G’=tail(Gθ) // G’=null if G is empty
5 a’= hθ //answer generated
6 c’=〈p,a’,g’,G’〉 // new consumer
7 add c’ in c.next consumer, c’.prev consumer=c
8 add c’ in a.imm affects, c.depends on=a
9 if(!is empty(G)) // last subgoal of a clause
10 resolve goal(c’)
11 else
12 is newanswer=chk ins ans(p,a’)
//checks if a’ is in p.answer table,if not inserts a’

12 is newanswer=chk ins ans(p,a’)
13 if(is newanswer)
14 a’.ord=c’.ord+1;
15 ∀c”∈p.consumer
16 if(!marked(c”))
17 create event(consume(a’,c”))
18 else
19 delay event(consume(a’,c”))
20 else
21 if(∀c”∈(a’.supports−{c’})

(c”.ord<a’.ord→marked(c”)))
22 if ((c’.ord<a’.ord) &&

(e.ord<a’.ord))
23 delete from readyQ(mark(a’))
24 else
25 create event(may rederive(a’))

(a)

process event(mark(a))
1 a.marked=true
2 ∀c’, same scc(a,c’),
3 move to delay(consume(a,c’))
4 ∀c∈ a.affected ∧ same scc(a,c)
5 if(justmarked(c))
6 ∀a’, move to delay(consume(a’,c))
7 if(is leaf(c) ∧ c.ord<c.answer.ord)

// acyclic support
8 if(∀c’∈ c.answer.supports−{c}
9 (c’.ord< c.answer.ord→ marked(c’)))

// all other acyclic supports are marked
10 create event(mark(c.answer))
11 create event(may rederive(c.answer))

event loop()
1 while((SC=next scc(CallSCC Q))

!=NULL)
2 while(!empty(READY Q,SC))
3 event=next event(READY Q,SC);
4 process event(event)
5 ∀a such that a.scc=SC
6 if(a.marked)

/* do same operation as in mark
event but for different scc */

(b) (c)

process event(rederive(a))
1 a.marked=false
2 ∀c, s.t. !marked(c)
3 move to ready(consume(a,c))
4 ∀c∈a.affected, same scc(a,c) ∧ !marked(c)
5 ∀a’ s.t. !a’.marked,
6 move to ready(consume(a’,c))
7 ∀c ∈ a.affected, same scc(a,c)
8 c.ord = max(c.ord, a.ord)

// update ordinal of consumers

process event(may rederive(a))
1 if(∃c∈a.support s.t. !marked(c))
2 if(∀c’∈ a.support

(c’.ord<a.ord→ marked(c’)))
3 a.ord=max{c”.ord | c”∈

a.supports,!marked(c”)}+1
4 create event(rederive(a))

(d) (e)

Fig. 3. Algorithms for processing Consumer Answer (a), Mark (b), Main (c), Rederive (d), May
Rederive (e) events
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Requirement 2. Marking and propagation of marking of an answer should be avoided
if an acyclic support of the answer is generated due to insertion of facts.

Insertion. Generation of a new answer or insertion of a fact/rule generates consume
events. For instance, when an answer a is added to p’s table, we generate a consume
event for each consumer c of p. The event handler consume(a, c) does the work needed
to extend the SLG forest when an answer or a fact (a) is consumed by a consumer
(c) (Figure 3(a)). If the consumer corresponds to the last subgoal of a rule, the con-
sumption of the answer can generate a new answer (lines 1–9, 12–19), or a new sup-
port for an existing answer (lines 1–9, 12, 13, 20–25). Otherwise (i.e. the consumer
has a non-empty continuation) it generates a new consumer for the next literal of the
clause.

The algorithm in Figure 4 describes processing of the new consumer. The function
call check insert(g) returns the generator of g, creating a generator if one does not al-
ready exist. If a new generator were created, we perform program clause resolution by
iterating through all the clauses of the program (lines 1–5). Otherwise we iterate through
all answers in answer table of g, creating consume events for each of them (lines 7–11).

resolve goal(c=〈p,h,g,G〉)
1 p’=call check insert(g)
2 if(is newgenerator(p’)) //g is a new call
3 ∀ rules α:-β1, β2 . . . , βn s.t. (θ=mgu(g,α)!=φ)
4 c’=〈p’,gθ,β1θ,[β2θ, . . . , βnθ]〉

// new consumer
5 resolve goal(c’)
6 else
7 ∀a∈p’.answer table
8 if(!a.marked)
9 create event(consume(a,c))
10 else
11 delay event(consume(a,c))
12 add c in p’.consumer, p’=c.generator
13 calculate call graph incrementally

Fig. 4. Algorithm for function resolve goal

For example, insertion of fact
e(1,5) [f8] generates the event
consume(f8, c1) which when
processed produces a new acyclic
support for the already existing
answer a4 (lines 1–9, 11–13, 21–
25 of Figure 3(a)). On the other
hand, insertion of d(1,1) [f9]
is consumed by the consumer
c7 to generate a new consumer
〈p1,r(1,Y),r(1,Y), []〉
[c8] (lines 1–10). Processing
of consumer c8 by the func-
tion resolve goal creates four
consume events for c8 and each
of the answers a1, a2, a3, and a4
in generator p1’s answer table.

Most of the steps of consume
are common to traditional SLG
resolution. The interesting aspects are the interaction between the effects of insertion
and (possibly scheduled) deletion. For instance, when a new acyclic support c′ is gener-
ated for an answer a′ (line 22, first condition) whose other acyclic supports are already
marked (line 21) and mark(a’) event has been scheduled (line 22, second condition) we
remove the mark(a′) from the ready queue since a′ cannot be deleted due to c′, meeting
Requirement 2.

Mark. The mark event for an answer marks a given answer and propagates the effect
of marking (Figure 3(b)). If an answer is marked we move all consume events (in the
same SCC) which would consume the answer from the ready queue to the delay queue
(lines 2–3). This is due to the fact that if the consumer corresponding to a consume
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event is dependent on a deleted answer then it should not be scheduled (following Re-
quirement 1). The following definitions are used in the marking algorithm:

Definition 3 (Affected set of an answer). A consumer c is said to be affected by an
answer a (denoted by c ∈ a.affected) if c.depends on = a, or c.prev consumer is
affected by a.

Definition 4 (Marked consumer). A consumer c is marked (denoted by marked(c))
if either of its premises is marked. A consumer is just marked (denoted by
justmarked(c)) if there exists one and only one answer ‘a’ such that a is marked
and c ∈ a.affected.

The consumers in an affected set of an answer are created due to the presence of the
answer. Thus, when an answer is deleted, all its affected consumers must be deleted
too. Thus when an answer a is marked we move any consume event associated with an
affected consumer c (in the same call graph component as a) from the ready queue to
the delay queue (lines 4–6). When the last acyclic support of an answer gets marked, we
mark the answer and place a may rederive event for it in the ready queue (lines 7–11).

Scheduling of Events. We now describe the assignment of event ordinals. Based on
Requirement 1, we process a consume(a, c) only after processing all mark(a′) events
which can affect the consumer c. To ensure this we make the ordinal of consume event
no less than the ordinal of its consumer. Additionally we need to ensure that a consumer
does not consume an answer which can be potentially marked later on. Firstly, if an an-
swer belongs to topologically lower SCC than its consumer’s SCC, the above condition
is satisfied as we process all events in components according to their increasing SCC
numbering. Secondly, we ensure that a new answer generated can never be marked in
the same incremental phase. The only remaining case is when the answer a in the same
SCC existed before the incremental phase (function resolve goal, lines 8–11), in which
case it can be potentially marked. We ensure that the event is processed after a’s mark-
ing is processed by making the ordinal of consume(a, c) event no less than a.ord. The
SCC number of consume(a,c) is same as c.scc and its ordinal is given by{

max{c.ord, a.ord} if (same scc(a,c)∧ existed answer(a))
c.ord otherwise

Moreover, each of mark(a), may rederive(a), and rederive(a) events have SCC number
of a.scc and an ordinal of a.ord. This assignment of ordinals is critical for the following
two properties of the algorithm.

Property 1. If consume(a, c) is a scheduled event, then a is never marked in the same
incremental phase.

Property 2. If a′ is a new answer and s is a support for an unmarked answer generated
while processing consume(a, c) (lines 14 and 21, Figure 3(a)) then a′ and s are never
marked in the same incremental phase.

The correctness of our local algorithm is based on the above two properties. Formal
proofs of these properties and the correctness of the local algorithm are in [26].
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Consider deleting f1 =e(1,2), and inserting f9 =e(2,6) and f10 =d(1,1)
to the example in Figure 2. This generates events e1 = consume(f10, c7), e2 =
consume(f9, c3), e3 = mark(a1), and e4 = may rederive(a1). Although we can
process event e1 before processing any other event (since c7 is not dependent on any
answer), we cannot process event e2 before processing the mark event e3. This is be-
cause c3 depends on answer a1 which may be marked when e3 is processed. We ensure
this by making a consumer’s ordinal no less than that of any answer that affects it.

In the above example, using these ordinal assignments we get e1.ord = c7.ord =
0, e2.ord = c3.ord = a1.ord = 1, and e3.ord = e4.ord = a1.ord = 1. As all
four events belong to the same SCC we process e1 first which generates four events
e5 = consume(a1, c8), e6 = consume(a2, c8), e7 = consume(a3, c8), and e8 =
consume(a4, c8). Processing the next event e3 moves event e2 and e5 in the delay
queue and generates events e9 = mark(a4) and e10 = may rederive(a4). Event e6 is
processed next without any effect. Event e9 is processed next (since it has the lowest
priority with ordinal 2) which moves event e8 to the delay queue, followed by event
e7. The ready queue now contains two may rederive events (e4 and e10) and the delay
queue contains e2, e5, and e8.

Rederivation. When processing a may rederive(a) event, we first check whether the
answer a has any unmarked supports left. Subsequently, we make all existing unmarked
supports acyclic by raising the ordinal of the answer a to the maximum ordinal of its
unmarked supports (Figure 3(e)). We then create rederive(a) event which rederives
a and propagates this further. The rederivation of a moves all consume(a, c) events
with an unmarked c from the delay queue to ready queue, thereby undoing the effect of
marking in a’s call-graph component. Furthermore, if any consumer c (in the same SCC
as that of a) got unmarked due to rederivation of a then all consume(a′, c) events are
moved from the delay queue to the ready queue provided a′ is unmarked (Figure 3(e)).
Rederivation of answer a also updates the ordinal of the support that contains a and
belongs to the same call graph SCC as that of a.

In the above example, processing the next highest priority event e4 creates an event
e11 = rederive(a1) as the answer a1 has an unmarked support s7 which is made acyclic
by updating the ordinal of a1 to that of s7.ord + 1 = 3. Processing the next event e11
rederives a1, moves the events e2 and e5 to the ready queue, updates the ordinals of
supports s3, s4, and s5 to 3. Subsequent processing of remaining events does not reveal
any other interesting property of the algorithm and is not discussed here.

Figure 3(c) shows the pseudo code for the scheduling of events. After all events of a
component are processed, we propagate the effect of marked answers in the component
to topologically higher components. Note that the call graph can change during the
evaluation. In our algorithm call graph edges are never deleted. Hence only two types
of changes in the call graph are possible: (i) the topological order of components are
changed without changes in any component (Example 4.3, [26]); and (ii) components
are merged into larger components (Example 4.4, [26]). We employ incremental SCC
maintenance algorithm of [3, 17] to maintain the call graph SCCs. The correctness of
our algorithm depends on the maintenance of an invariant between ordinal numbers of
answers and supports within an SCC: that the ordinal of the primary support for an
answer is lower than that of the answer itself. Note that it is possible to have an answer
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a1 whose ordinal is lower than that of its premise answer a2 if a2 belongs to lower
topological component than a1. Thus when multiple SCCs are merged, the ordinals of
the answers and the supports needs to be redistributed within the merged component
(details are omitted; see Example 4.4, [26]).

4 Results

In this section we describe the optimality of the local algorithm for incremental attribute
evaluation and incremental functional program evaluation, and present experimental
results on its effectiveness.

Optimal Incremental Attribute Grammar Evaluation. In [21] Reps presented an
optimal algorithm for evaluation of non-circular attribute grammars. The dependency
between attribute instances are maintained using an acyclic dependency graph which
remains static during the change propagation. In such cases, evaluation based on topo-
logical order is optimal: i.e. the number of evaluated attributes is of the order of number
of changed attributes. The local algorithm presented in this paper shows the same op-
timal behavior for non-circular attribute grammar evaluation. In this case each update
to an attribute instance is performed using a pair of consume and mark event. When
the (acyclic) dependency between attribute instances is represented by the call graph,
topological evaluation of call graph SCCs produces optimal change propagation. Oth-
erwise, if the call graph is cyclic (e.g., for left-recursive grammars), the dependencies
between answers represent attribute dependencies. In this case topological scheduling
of consume and mark events allows us to obtain the desired optimal behavior.

Optimal Incremental Evaluation of Functional Programs. We now discuss the op-
timality of our algorithm when the call graph is acyclic but dynamic. We encounter
such graphs when evaluating functional programs (hence non-recursive dependen-
cies) incrementally [1]. We can build an incremental functional program evaluator
by writing an interpreter for pure functional programs and evaluating it using our
incremental algorithm. Since the call graph is acyclic, evaluation based on topologi-
cal order suffices. However, since the graph may change over time (due to different
outcomes for the conditionals), [1] employs an optimal dynamic topological order
maintenance algorithm [10]. When the call graph is acyclic, our incremental topo-
logical SCC maintenance algorithm converges to dynamic topological graph mainte-
nance [1]. Thus we obtain the optimal change propagation algorithm for functional
programs.

The complexity of the local algorithm for interpreting a pure functional program is
no worse than the complexity of the algorithm given in [1]. A formal statement and
proof about the correspondence between the local algorithm and functional program
evaluation is beyond the scope of this paper. However, we formally state and prove this
correspondence in [26].

Experimental Results. We now present results of experiments aimed at measuring
the effectiveness of the local algorithm as well as its overheads. The local algorithm
was implemented by extending the XSB logic programming system [31] (ver. 2.7.1).
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Fig. 5. Reaching Definition Analysis; Time comparison (a); Change comparison (b)

Our implementation, experimental setup, benchmark characteristics, and detailed ex-
perimental results on parsing and pointer analysis are available in [26].

We evaluated the effectiveness of the local algorithm by performing reaching defin-
ition analysis [2] of C programs which can be easily encoded as a logic program. The
incremental change used in these experiments is the deletion of a statement from the C
program source. In the data-flow graph, this translates to deletion of all incoming and
outgoing edges from the deleted statement, and addition of flow edges from the state-
ment’s predecessors to its successors. The local algorithm is expected to perform well
in this case, by confining the changes to reaching definitions to the affected region of the
graph. We compare the performance of the local algorithm with the that of from-scratch
evaluation and that of deletes-first strategy. The deletes-first strategy first performs all
marking and rederivations due to deletion before processing insertions. Marking and
rederivation phases are performed in each strongly connected component of the call-
graph (in topological order) before their effect is propagated to other components in the
call graph. Thus comparison of the local and the deletes-first strategy demonstrates the
effectiveness of interleaving the processing of deletions and insertions.

For each benchmark we deleted 250 randomly chosen assignment statements from
the source. The ratios of the average time taken and the average number of answers
processed by the local algorithm and the deletes-first strategy, compared to the from-
scratch strategy is shown in Figure 5. Note that the number of inserted and deleted
answers is considerably less (8–20 times) for local algorithm compared to deletes-
first strategy. Despite the extra overhead of maintaining event priority queues, our pre-
liminary implementation achieves 50–70% reduction in time compared to deletes-first
strategy.

In cases where deletes-first strategy is extremely fast, such as flow-insensitive pointer
analysis, we notice a maximum run-time overhead of 70% for the local algorithm com-
pared to deletes-first strategy. The local algorithm is optimal for incremental evaluation
of parsing problems. In the parsing problem, the time taken for incremental evaluation
depends on the position where change occurs in the input string, and some changes
may require the entire parse tree to be regenerated. In such cases, when from-scratch
evaluation is optimal, we observe that the local algorithm incurs a time overhead of 5%
compared to from-scratch evaluation.
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5 Related Work

The problem of incremental evaluation of table logic program is closely related to the
problem of materialized view maintenance which has been extensively researched (see,
e.g. [11, 15] for surveys) in database community. Most of the works in recursive view
maintenance generate rules that are similar in spirit to those of DRed [12] and are sub-
sumed by DRed (as compared in [11]). As described in Section 2, DRed marks an an-
swer if any of its support is deleted, thereby over-propagating the effects of a deletion.
We significantly reduce the deletion progagation by first using primary supports [22],
and later, their generalization to acyclic supports [23]. The space overhead due to the
support graphs is mitigated by representing them symbolically [24]. The local algorithm
presented in this paper further optimizes and extends the deletion mark propagation: (i)
using the effect of insertion of new facts and answers which is very useful in updates
where insertion and deletion occur hand-in-hand; and (ii) by scheduling rederivation of
answers in each call graph component, ensuring that topologically lower components
are stabilized before the effects are propagated to a higher component. In our earlier
works, incremental insertion was done by evaluating difference rules [16] (obtained by
program transformation) which are evaluated top-down. In contrast, in this paper we
presented a combined bottom-up algorithm to handle both insertions and deletions.

Recently, we developed an algorithm for incremental evaluation for arbitrary tabled
Prolog programs including those that use Prolog built-ins, cuts, aggregation and non-
stratified negation [25]. That algorithm maintained a much coarser dependency struc-
ture based on calls. The algorithm presented in this paper maintains finer grained
dependency structures based on answers. The results of [25] show that answer-based
approaches perform significantly better, but cannot be easily extended beyond pure pro-
grams. Moreover, as this paper shows, fine-grained dependencies are needed to achieve
or at least approach optimal performance for incremental evaluation. Integrating the
fine-grained local algorithm so that it can be deployed wherever applicable within the
more general setting of [25] is an interesting open problem.

The idea of using SCC-reduced dependency graphs to optimize propagation
of changes has been seen in various past works [7, 13, 14, 19, 30]. Among these,
Hermenegildo et. al.’s works [13, 19] on re-analyzing (constraint) logic programs are
closest to our work. Our event based description for modeling the main aspects of mem-
oized logic program has been inspired by their work. These papers consider one answer
pattern per call, and propagation is controlled based on the call graph. In [19] insertion
events are processed in such a way that lower components are stabilized before their
effect is propagated to higher ones without explicitly computing the SCCs. However,
since the SCCs are themselves dynamic, the event ordering only approximates the SCC
ordering. In our approach we maintain call graph SCCs explicitly, similar to [13]. How-
ever, we use event ordering to control propagation of changes within an SCC, leading
to finer-grained interleaving between insertion and deletion operations.

6 Concluding Remarks

We presented an efficient algorithm for incrementally evaluating definite logic programs
with the rules/facts of the program being changed: added, deleted, or updated. The key
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to the algorithm is the interleaving of insertion and deletion operations based on an
order that generalizes those based on call dependency graphs. The algorithm naturally
generalizes techniques that were developed in settings where dependencies are non-
recursive (e.g. attribute grammars, functional programs).

The bottom-up propagation of insertions and deletions enables us to adapt our algo-
rithm to handle programs with stratified negation, processing one stratum at a time, and
processing lower strata completely before propagating its effects to the higher ones. We
can also extend our technique to handle programs with non-stratified negation under
the well-founded semantics as follows. With each consumer, we can keep the delay list
containing negative literals [5], mark a negative literal if an answer is added to its cor-
responding positive literal and resolve the negated literal if all answers are deleted from
the positive literal. Note that interleaving of insertion and mark propagation is essential
to handle programs with non-stratified negation.

Our algorithm maintains extensive dependency information for propagation of
changes. We believe that the space problem due to this can be solved by using tech-
niques such as those used in symbolic support graphs [24].
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Abstract. Two Constraint Handling Rules compiler optimizations that
drastically reduce the memory footprint of CHR programs are intro-
duced. The reduction is the result of reusing suspension terms, the in-
ternal CHR constraint representation, and avoiding the overhead of con-
straint removal followed by insertion. The optimizations are defined for-
mally and their correctness is proved. Both optimizations were imple-
mented in the K.U.Leuven CHR system. Significant memory savings and
speedups were measured on classical and well-known benchmarks.

1 Introduction

Constraint Handling Rules (CHR) [4] is a high-level programming language ex-
tension based on multi-headed committed-choice rules. Originally designed for
writing constraint solvers, it is increasingly used as a general-purpose program-
ming language. We assume the reader to be familiar with CHR [4,5,8].

Recently, we have argued [10] that every algorithm can be implemented in
CHR with the best-known asymptotic time and space complexity. The proof
sketch of the complexity result of [10] contains the claim that in the RAM ma-
chine simulator written in CHR, space can be reused when updating a constraint
representing a RAM memory cell. In the current CHR systems this kind of space
reuse is not implemented. Instead, new space is allocated for a new memory cell
constraint at every update. In this paper, we present two optimizations inspired
by compile-time garbage collection techniques. Both optimizations affect a large
class of CHR programs, including typical constraint solvers and logical algo-
rithms. They drastically reduce the memory footprint — and hence the task of
the garbage collector. As a side effect we get considerable speedups because less
instructions are executed and because a lower memory footprint improves the
locality of low-level memory accesses, allowing more effective hardware caching.

Section 2 describes the space usage issue and informally explains our new op-
timizations that tackle it. In Section 3 we present an abstract formal framework
that captures the essence of both optimizations, and we prove their correctness.
Section 4 discusses implementation choices. Experimental results are presented
and explained in Section 5 and we conclude in Section 6.
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2 Motivating Examples and Basic Ideas

Repeatedly replacing a constraint with a new one is one typical pattern that, in
current CHR implementations, does not have the space complexity one might
expect. The extra space can be reclaimed using garbage collection, but this comes
at a cost in execution time. Indeed, CHR programmers often see that more than
half of the runtime is spent on garbage collection.

Example 1. Consider the following rules, which show a frequently used pattern
to implement imperative variables which can be updated destructively.

update(Key,NewValue), item(Key,_) <=> item(Key,NewValue).
update(_,_) <=> write(’Error: key not found’), fail.

Internally, the following happens: if the update/2 constraint finds the corre-
sponding ‘old’ item/2 constraint, the internal representation of that constraint
(which is called the (constraint) suspension) is marked ‘removed’ and it is re-
moved from the constraint store (the suspension becomes garbage), and then
a new suspension for the ‘new’ item/2 constraint is constructed and the ‘new’
constraint is inserted into the constraint store. As a result, the space complexity
of performing n update operations on one item is not constant as one might
hope for, but O(n). The constraint store overhead and the construction of a new
suspension can be avoided by performing the updates in-place. This results in
a speedup and a smaller memory footprint. The above program uses only O(1)
space when the updates are performed in-place.

2.1 In-Place Updates

Rules representing updates have the following form:

C1 \ C2, c(ā), C3 <=> G | B1, c(b̄), B2.

When the rule is applied, we do not need to remove c(ā) from the constraint
store and insert c(b̄) into the constraint store. Instead, we can do a direct update
on the suspension representing c(ā), updating the constraint arguments in-place.

However, we have to be careful if there are indexes on some argument po-
sition(s) for efficient lookups. If all indexed argument positions are the same
in ā and b̄, we can avoid all constraint store overhead. Otherwise we have to
remove and reinsert the constraint from the indexes on modified argument po-
sitions. In many cases, a constraint is indexed on more than one argument, i.e.
when different lookup patterns are used. It pays off to do the remove/insert
only on the affected indexes — without the in-place update optimization, a full
remove/insert would be done.

In many programs, the updates are not as direct as in the above example.

Example 2. Consider the classical primes program:

candidate(1) <=> true.
candidate(N) <=> N>1 | M is N-1, prime(N), candidate(M).
prime(I) \ prime(J) <=> J mod I =:= 0 | true.
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In this case, the in-place update optimization is ineffective, since there is no direct
update: the second rule inserts prime/1 constraints which can cause removal of
other prime/1 constraints by the third rule. In general there can be an arbitrary
amount of intermediate computations between the removal and the insertion.
To tackle this, we propose a generalization of the in-place update optimization,
called suspension reuse.

2.2 Suspension Reuse

The suspension reuse optimization avoids constructing a new suspension for
the new item/2 constraint by maintaining a cache of old suspensions which
can be reused. The time and space gains are typically smaller than in the first
optimization, but this optimization has a wider applicability. It works as follows:

When a constraint is removed, its suspension is added to the cache, but it is
not (yet) removed from the constraint store. The suspension is marked so it can
be skipped when found later in a partner constraint lookup.

When a new constraint is added and a suspension has to be created, an old
suspension is extracted from from the cache and its arguments are updated to

Fig. 1. Without (top) and with (bottom) the suspension reuse optimization. The mem-
ory configurations shown are: initial situation → deletion → addition of new constraint.
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those of the new constraint. A remove/insert is done only on the indexes that are
affected by modified arguments, saving some (or all) constraint-store overhead.
Only when the cache is empty, a new term has to be created and a full insert
has to be done. Note that it makes sense to restrict the maximum size of the
cache. The mechanism is illustrated schematically in Figure 1.

3 Formal Framework

In this section we extend the operational semantics of CHR to capture the reuse
of removed constraints in general (Section 3.2). By showing that this extension
is equivalent to the original semantics (Section 3.3), and by formulation our
optimizations as particular instances of the extension (Section 3.4), correctness
follows trivially. But first we briefly recall the refined operational semantics.

3.1 The Call-Based Refined Operational Semantics ωc

The call-based refined operational semantics ωc [9] is one of the equivalent for-
mulations of the refined operational semantics of CHR [3] that allows us to easily
express our extension. Formally, the execution state of the ωc semantics is the
tuple 〈G, A, S, B, T 〉n where G, A, S, B, T , and n represent (respectively) the
goal, call stack, CHR store, built-in store, propagation history, and next free
identity number. We use σ, σ0, σ1, . . . to denote execution states. An identified
CHR constraint c#i is a CHR constraint c associated with some unique integer
i. This number serves to differentiate among copies of the same constraint. We
introduce functions chr (c#i) = c and id(c#i) = i, and extend them to sequences
and sets of identified CHR constraints in the obvious manner. An occurrenced
identified CHR constraint c#i :j indicates the identified CHR constraint is being
considered for matches at occurrence j of constraint c.

The goal G is a sequence of CHR constraints and built-in constraints. We use
� to denote the empty sequence, and write it as true in programs. The execution
stack A is a sequence of occurrenced identified CHR constraints. The CHR store
S is a set of identified CHR constraints. The built-in constraint store B contains
any built-in constraint that has been passed to the underlying solver. We assume
D is the constraint theory for the underlying solver. The propagation history T
is a set of sequences, each recording the identities of the CHR constraints which
fired a rule, and the name of the rule itself. This is necessary to prevent trivial
non-termination for propagation rules. Finally, the next free identity n represents
the next integer which can be used to number a CHR constraint. Given an initial
goal G, the initial state is 〈G, �, ∅, ∅, ∅〉1 .

Transition Rules of ωc. Execution proceeds by exhaustively applying tran-
sitions to the initial execution state until the built-in solver state is unsatisfiable
or no transitions are applicable. We define transitions from state σ0 to σ1 as
σ0 �N σ1 where N is the (shorthand) name of the transition. We let �∗ be
the reflexive transitive closure of � (for all names N). We let � denote multiset
union and ++ denote sequence concatenation. Let vars(o) be the variables in
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Table 1. The call-based refined operational semantics (ωc) of CHR

1. Solve: 〈c, A, S, B, T 〉n �So 〈�, A, S ′, B′, T ′〉n′ where c is a built-in constraint. If
D |= ¬∃̄∅(c ∧ B), then S′ = S, B′ = c ∧ B, n′ = n. Otherwise (D |= ∃̄∅(c ∧ B)), where
〈S1, A, S, c∧B, T 〉n �∗ 〈�, A, S ′, B′, T ′〉n′ and S1 = wakeup policy(S, B, c) is a subset
of S. The exact definition of the wakeup policy depends on the host-language and the
specifics of the implementation. It is not important for this paper.

2a. Activate: 〈c, A, S, B, T 〉n �A 〈c#n :1, A, {c#n}�S, B, T 〉(n+1) where c is a CHR
constraint which has never been active.

2b. Reactivate: 〈c#i, A, S, B, T 〉n �R 〈c#i : 1, A, S, B, T 〉n where c#i is a CHR
constraint in the store (back in the queue through Solve).

3. Drop: 〈c#i : j, A, S, B, T 〉n �Dp 〈�, A, S, B, T 〉n where c#i : j is an occurrenced
active constraint and there is no such occurrence j in P .

4. Simplify 〈c#i :j, A, {c#i}�H1�H2�H3�S, B, T 〉n �Si 〈�, A, S ′, B′, T ′′〉n′ where
〈θ(C), A, H1 � S, θ ∧ B, T ′〉n �∗ 〈�, A, S ′, B′, T ′′〉n′ where the jth occurrence of CHR
constraint c is dj in rule r ∈ P of the form H ′

1 \ H ′
2, dj , H

′
3 ⇐⇒ g | C and there exists

a matching substitution θ such that c = θ(dj), chr(Hx) = θ(H ′
x) for x ∈ {1, 2, 3}, and

D |= B → ∃̄vars(r)(θ ∧ g), and the tuple h = (id(H1) ++ [i] ++ id(H2) ++ id(H3) ++
[r]) �∈ T . The substitution θ must also rename apart all variables appearing only in
g and C. In the intermediate transition sequence T ′ = T ∪ {h}. If no such matching
substitution exists then 〈c#i :j, A, S, B, T 〉n �Si 〈c#i :j + 1, A, S, B, T 〉n

5. Propagate 〈c#i : j, A, {c#i} � S, B0, T0〉n0 �P 〈G, A, Sk, Bk, Tk〉nk
where the jth

occurrence of c is dj in rule r ∈ P of the form H ′
1, dj , H

′
2 \ H ′

3 ⇐⇒ g | C.
Let S0 = S � {c#i}. Now assume, for 1 ≤ l ≤ k and k ≥ 0, we have subderivations

〈Cl, [c#i :j|A], H1l � {c#i} � H2l � Rl, Bl−1, Tl−1 ∪ {tl}〉nl−1

�∗ 〈�, [c#i :j|A], Sl, Bl, Tl〉nl

where {c#i} � H1l � H2l � H3l � Rl = Sl−1 and there exists a matching substitution
θl such that c = θl(dj), Cl = θl(C), chr(Hxl) = θl(H ′

x) for x ∈ {1, 2, 3}, D |= Bl−1 →
∃̄vars(θl(r))θl(g), and tl = id(H1l) ++ [i] ++ id(H2l) ++ id(H3l) ++ [r] �∈ Tl−1 where θl

renames apart all variables only appearing in g and C (separately for each l). Further-
more, for k + 1 no such transition is possible. The resulting goal G is either G = � if
D |= ¬∃̄∅Bk (i.e. failure occurred) or G = c#i :j + 1 otherwise.

6. Goal 〈[c|C], A, S, B, T 〉n �G 〈G, A, S′, B′, T ′〉n′ where [c|C] is a sequence of built-
in and CHR constraints and 〈c, A, S, B, T 〉n �∗ 〈�, A, S ′, B′, T ′〉n′ and G = � if
D |= ∃̄∅(¬B′) (i.e. calling c caused failure) or G = C otherwise.

object o. We use ∃{v1,...,vn} to mean ∃v1 · · · ∃vn. We use ∃̄V F to mean ∃vars(F )\V ,
that is quantifying all variables not in V . Table 1 lists the transitions.

The ωc semantics allows different execution strategies: many transitions may
be applicable and transitions may have different results, e.g. depending on the
order in which the combinations of partner constraints are tried.

We also allow the following transition to remove redundant history tuples:
Applying this transition clearly does not affect a derivation.
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7. CleanHistory: 〈G,A, S,B, T ∪ {t}〉n �CH 〈G,A, S,B, T 〉n if there is an
identifier in t which is not the identifier of any constraint in S.

Note that the execution strategy implemented in the K.U.Leuven CHR system
is an instance of the above semantics: In our CHR implementation, the propa-
gation history is only checked and updated when applying a propagation rule.
Simplification rules and simpagation rules cannot be applied twice to the exact
same constraints, since at least one of the head constraints is removed after the
first application. We can simulate this behavior by applying the CleanHistory
transition after every constraint-removing rule. Also, in our implementation, the
propagation history is maintained in a distributed way: suspensions contain his-
tory tuples added when the constraint they represent was active. As a result,
when a constraint is removed and its suspension becomes garbage, the corre-
sponding tuples are automatically removed from the propagation history. This
corresponds to applying CleanHistory a number of times.

3.2 The Extended Call-Based Refined Operational Semantics ω′
c

We now allow the store to contain dead constraints, which are removed and
cannot be used to match the head constraints of a rule. A dead constraint c with
identifier i is denoted as †c#i. When X is a set of (non-dead) constraints, we
write †X to denote {†x | x ∈ X}. The extended call-based refined operational
semantics ω′

c is obtained by extending ωc with the transitions listed in Table 2.

3.3 Equivalence of ωc and ω′
c

It is clear that every ωc derivation is also a valid ω′
c derivation, since ω′

c is an
extension of ωc. We will now prove that every ω′

c derivation (denoted with �∗
c′)

can be mapped to an ωc derivation (denoted with �∗
c).

Definition 1. Given an execution state σ = 〈G,A, Sl � †Sd, B, T 〉n where Sl

contains no dead constraints. The visible part of σ is Ψ(σ) = 〈chr (Sl), B〉.

Definition 2. Two execution states σ1 and σ2 are indistinguishable if and only
if Ψ(σ1) = Ψ(σ2). We denote this by σ1 ∼= σ2.

Theorem 1. Suppose σ0 is an initial execution state. If σ0 �∗
c′ σ1, then a σ2

exists such that σ0 �∗
c σ2 and σ1 ∼= σ2.

Proof. If the ReuseID transition is not used in the ω′
c derivation, we can de-

rive σ2 from σ0 in ωc by replacing every Reuse by a corresponding Activate,
Simplify’ by a corresponding Simplify, Propagate’ by a corresponding Prop-
agate and removing all RemoveDead transitions from the original σ0 �∗

c′ σ1
derivation. The only difference between σ1 and σ2 is in their CHR stores S1 and
S2: it is easy to see that S2 ⊆ S1 and that S1 \S2 contains only dead constraints.
Hence the result trivially holds in this case.



78 J. Sneyers, T. Schrijvers, and B. Demoen

Table 2. The additional transitions of ω′
c

2c. Reuse: 〈c, A, {†c′#i} � S, B, T 〉n �R 〈c#n : 1, A, {c#n} � S, B, T 〉(n+1) where c

is a CHR constraint which has never been active.

2d. ReuseID: 〈c, A, {†c′#i} � S, B, T 〉n �Rid 〈c#i : 1, A, {c#i} � S, B, T 〉n where c

is a CHR constraint which has never been active and ∀t ∈ T : i �∈ t.

4b. Simplify’: 〈c#i :j, A, {c#i} � H1 � H2 � H3 � S, B, T 〉n �Si 〈�, A, S ′, B′, T ′′〉n′

where 〈θ(C), A, H1 � †({c#i} � H1 � H2) � S, θ ∧ B, T ′〉n �∗ 〈�, A, S ′, B′, T ′′〉n′ and
with the other conditions as in the usual Solve transition.

5b. Propagate’: Defined exactly as the usual Propagate transition, except that
the series of subderivations is now

〈Cl, [c#i :j|A], H1l � {c#i} � H2l � †H3l � Rl, Bl−1, Tl−1 ∪ {tl}〉nl−1

�∗ 〈�, [c#i :j|A], Sl, Bl, Tl〉nl

8. RemoveDead: 〈G, A, {†c#i} � S, B, T 〉n �RD 〈G, A, S, B, T 〉n

If the ReuseID transition is used r times, we compute an identifier permu-
tation μ = μr as follows. Let μ0 be the identical permutation. We look at every
ReuseID transition in the ω′

c derivation from σ0 to σ1, in order. If the k-th
ReuseID transition is 〈c, A, {†c′#i} � S,B〉n �Rid 〈c#i : 1, A, {c#i} � S,B〉n,
we let μk(m) = μk−1(m) for all m < n and m �= i, μk(i) = μk−1(n), and
μk(m) = μk−1(m + 1) for all m ≥ n. Since the reused identifier i does not oc-
cur in the propagation history (by definition of the transition), it will uniquely
identify the activated constraint just like the fresh identifier n. Hence, replacing
the ReuseID transition by a Reuse transition does not affect the rest of the
derivation. By applying the previous case on σ0 �∗

c′ μ(σ1), we get a σ2 such
that σ0 �∗

c σ2 and σ2 ∼= μ(σ1). From σ2 ∼= μ(σ1) and μ(σ1) ∼= σ1 (identifier
permutations clearly do not affect the visible part) we can conclude σ1 ∼= σ2. 
�

3.4 Defining the Optimizations

Definition 3 (Suspension reuse). Suspension reuse with maximum cache size
n corresponds to the following ω′

c execution strategy: always perform the Sim-
plify’ and Propagate’ transitions (instead of Simplify and Propagate), fol-
lowed by RemoveDead transitions until there are no more than n dead con-
straints with the same predicate name in the store. Furthermore, the Activate
transition is only applied when Reuse or ReuseID are not applicable.

Definition 4 (In-place updates). Performing an updates in-place corresponds
to the following ω′

c execution strategy: if the goal is an occurrenced constraint and
the corresponding rule is of the form “C1 \ C2, c(ā), C3 <=> G | B1, c(b̄), B2.” (as
in Section 2.1), then perform the Simplify’ and Propagate’ transitions (not the
Simplify and Propagate transitions). In the subderivation for the rule body (as-
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suming the rule fired), the removed constraint c(ā) is reused in a Reuse or Reu-
seID transition when the goal is c(b̄).

Both optimizations are defined as an execution strategy which instantiates the
ω′

c semantics. Because of Theorem 1, this implies that the optimizations are
correct with respect to the visible part of CHR.

4 Implementation

In this section we describe our implementation of the new optimizations in the
K.U.Leuven CHR system [1] for hProlog [2] and discuss some of the implemen-
tation choices and complications. More information on the compilation schema
used in the reference CHR system [5], on which the K.U.Leuven CHR system
was based, can be found in [8] (in particular: Chapters 2, 4, 5 and 6). We intend
to port the optimizations to the K.U.Leuven CHR system for SWI-Prolog.

4.1 Constraint Representation

The following internal representation is used for a constraint:

suspension(ID,MState,Continuation,MHistory,C,X1,...,Xn)

The representation is a term with functor suspension and a number of fields
(or arguments). Note that its arity depends on the arity of the constraint it
represents. This term representation is called constraint suspension or suspension
for short. The meaning of the fields is listed in Table 3.

Table 3. Meaning of the constraint suspension fields

ID The unique constraint identifier. In practice it is an integer.
MState The state of the suspension. It takes one of three values:

not stored The constraint is not yet stored. (this value is used
for the late storage optimization)

stored The constraint is stored in the CHR constraint store.
removed The constraint is removed from the store.
limbo The constraint is removed, but still in the store. (this

value is used for the new optimizations)
Continuation The continuation goal to be executed during a ReActivate tran-

sition. This calls the code for the first occurrence.
MHistory Part of the propagation history.

C The constraint functor.
X1,...,Xn The arguments of the constraint.

Some of the fields in the term are mutable; this is indicated with the initial
capital M in their name. The other fields remain constant during the lifetime of
a constraint, although we may have to update all fields when the suspension
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is reused. It is possible that a constraint is removed while somewhere in the
execution stack, its suspension occurs in the iterator returned by a universal
lookup. To prevent such a removed constraint from being used later on as a
partner constraint, the MState field in the suspension is updated to removed
when a constraint is removed, and only suspensions with the field set to stored
are accepted as candidate partner constraints.

4.2 Suspension Reuse

In our implementation we use cache size 1, which allows easy and efficient cache
manipulation and minimal space overhead. For every constraint we maintain a
global variable, which is initialized to an atom representing an empty cache.
When a constraint is removed, the variable is checked: if it is empty, it is over-
written with the suspension term; otherwise, the usual remove is performed. In
both cases, the suspension state is set to removed. When a suspension term is
constructed for some constraint, the global variable is checked: if it is empty, the
usual term construction is done; otherwise the suspension in the global variable
is reused and the global variable is updated to the empty atom.

To reuse a suspension term, the fields for the constraint arguments must be
updated. The constraint functor field can be left untouched. There may be other
fields that have to be overwritten. We use the backtrackable hProlog built-in
setarg/3 (modifies one argument of a term) to update suspension term fields and
b setval/2 (modifies a global variable) to implement the cache. Although CHR
rules are committed-choice, choice-points can be left by host-language predicates
that are called in the rule bodies or that call CHR constraints, so it is important
to use backtrackable versions of those destructive update built-ins.

Fields to Overwrite. Note that in general it requires an inspection of the
entire constraint store — which is very expensive — to check whether keeping
the old identifier is safe. For this reason our implementation uses the following
approximation: If the constraint occurs in a multi-headed propagation rule with
at least one (other) active head, the identifier field is always overwritten with a
fresh identifier (this corresponds to applying the Reuse transition). Otherwise,
the propagation history tuples in which the old identifier occurs are all stored
in the cached (dead) suspension. If the suspension term field storing the partial
history is updated in any part of the generated code, we overwrite it with a term
representing an empty partial history (corresponding to a (series of) CleanHis-
tory transition). We can reuse the old identifier (the ReuseID transition), since
it no longer occurs in the propagation history.

One final subtle implementation issue is the following. If the constraint has
an active kept occurrence in a rule with a body which might cause the removal
and reuse of the active constraint, we have to make sure that we detect this at
the return from the body, so we can avoid incorrectly calling the continuation
of a removed constraint. If the active constraint is removed, but not reused, it
suffices to check the state field before calling the continuation. However, if it
is reused after removal, the state field will have reverted, rendering that check
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ineffective. To solve this issue, we also check after executing the body whether
the constraint identifier is unmodified. To make sure the test is effective, we
never use the ReuseID transition for such constraints.

4.3 In-Place Updates

If all occurrences of the in-place updated constraint are passive, it suffices to
update the suspension term as above and update the affected parts of the con-
straint store. The potentially modified arguments are determined statically by
comparing the arguments of the removed head constraint and the arguments of
the constraint call in the body. For every potentially affected index, we test at
run-time whether the index position has changed and do a remove and reinsert
from that index if it has. If the part of the body before the insertion (B1 in
Section 2.1) does not observe the removal of the updated constraint (e.g. if it
is empty or a conjunction of safe host-language built-ins), then we do not have
to set the MState field of the suspension to removed before executing B1 and
restore it to stored afterwards. This is related to observation analysis [9].

If there are non-passive occurrences of the updated constraint, we call the
predicate for the first occurrence after the updates are performed.

There is a choice in how to do the updates if there is more than one removed
head constraints or more than one body constraint with the same functor and ar-
ity. In our current implementation we simply match the i-th removed constraint
with the i-th inserted constraint, which is a simple but suboptimal strategy.
Consider the rule “a(A,C) \ b(A,B), b(C,D) <=> b(C,C), b(A,A).” where
the constraint b/2 is indexed on its first argument. If b(A,B) is updated to
b(A,A) and b(C,D) is updated to b(C,C), no index is affected and only two
arguments have to be updated, which clearly is optimal. The simple matching
strategy has two affected indexes and four arguments to be updated.

4.4 Interference with Late Storage

The late storage optimization [9] may delay the creation of a suspension term and
the insertion into the constraint store, so overhead is avoided if the constraint is
removed before the suspension creation or before the constraint store insertion.

Late Storage and Suspension Reuse. For the suspension reuse optimiza-
tion, we want to maintain the invariant that cached suspensions are in the data
structure implementing the constraint store. Hence, if a constraint is removed
after its suspension term has been created but before it has been inserted into
the data structure, we do not put it in the cache.

To cooperate with the late storage optimization, we delay the constraint store
update until the late insertion program point. If that point is at a later oc-
currence than the suspension creation, we need to distinguish between a fresh
suspension (which needs a full insert) and a reused suspension (which needs an
in-place store update). This is done by adding a new suspension state “limbo”,
which mostly acts like not stored, except at insertion and early removal. The
constraint arguments are not yet updated at the point of suspension reuse, but
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the reused suspension’s state is set to limbo. At insertion, we still have the old
arguments in the suspension term, so we can compare them to the new argu-
ments to do an in-place store update. If the constraint is removed early, i.e.
before the insertion point, we have to remove the old suspension from the store.

Late Storage and In-Place Updates. Late storage also interferes with the
in-place update optimization. If the suspension is not created before the first
occurrence, we can not simply call the predicate for the first occurrence. The
reason is that at some point in that subcomputation, a suspension might be
created and the constraint might be stored again, which would duplicate the
constraint. To solve that problem, we generate additional clauses with a dif-
ferent predicate name. In the additional clauses, the late storage optimization
is disabled, preventing a second suspension creation and constraint insertion.
Note that adding clauses can almost double the code size, which may have some
negative effect on the runtime because it may affect hardware caching.

When an in-place update is performed, the old suspension is updated and the
stores are updated. Without in-place updates we would remove the old constraint
and call the new one. If the new constraint is removed before it is stored, the
overhead of insertion and removal is avoided by late storage. Hence, without
in-place updates we only do one full remove in this case. With in-place updates,
we do an in-place store update (a partial remove and partial insert) followed by
a full remove (of the new constraint). As a result, when late storage is involved,
there is only a performance gain if the new constraint is not removed early.

5 Experimental Results

We now present an evaluation of the optimizations introduced in the previous
sections. All tests were performed on a Pentium 4 (1.7 GHz) with 512 MB RAM
(cpu cache size: 256 KB) running Debian GNU/Linux (kernel version 2.6.8)
with a low load. We used the K.U.Leuven CHR system in hProlog 2.4.23. The
benchmarks can be downloaded at [1] and some are discussed in more detail
in [11]. We used a sufficiently large initial heap size so no garbage collection is
performed, allowing accurate memory usage statistics. Note that in a realistic
setting, a reduction in memory use implies less garbage collection, which results
in further speedups. Table 4 lists the results.

We can drastically improve performance of the generated code by inlining and
specializing calls to the auxiliary predicates for suspension term construction,
removal, and lookup. This saves time and space, for reasons explained in [11]. We
evaluate the new optimizations with inlining enabled, which means it is harder
for them to look good since much of the overhead avoided by the optimizations
is reduced by inlining.

5.1 Suspension Reuse

Suspension reuse introduces some runtime overhead for maintaining the suspen-
sion cache. If the dynamic behavior of the program is such that the cache is
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Table 4. Benchmark results. The first column shows the benchmark name and prob-
lem size. Columns two, three and four indicate which optimizations were enabled: the
abbreviations denote respectively Inlining, Suspension reuse, and In-place updates. The
fifth column shows the relative ratio of suspension cache hits at suspension creation
(only applies when suspension reuse is enabled). The next four columns list the run-
time (in seconds), the total amount of (heap+trail) memory used (in 4-byte cells), and
percentages indicating relative time and memory use. The last column contains some
comments on case-specific properties of the optimizations: whether the (most impor-
tant) in-place updated constraint has active occurrences (“active occs”) for which addi-
tional clauses had to be generated (“new clauses”), the number of potentially modified
indexed arguments (“index-args”), the number of in-place updates in the generated
code (“inpl. upd.”), and whether the propagation history (“history reset”) and the
constraint identifier (“new identifier”) suspension fields need to be updated.

Benchmark Inl SR IU Hits Runtime Memory %time %mem Notes

bool chain 20.78 1756826 233.7% 101.6%
(1000)

√
8.89 1728326 100.0% 100.0%√ √

0% 9.93 1726263 111.7% 99.9%
fib heap 7.16 61992261 141.2% 198.3%
(dijkstra)

√
5.07 31256958 100.0% 100.0% active occs

(65536)
√ √

78% 5.39 24064894 106.3% 77.0% new clauses√ √
5.22 29730416 103.0% 95.1% 3 index-args√ √ √

72% 5.60 24111191 110.5% 77.1% (4 inpl. upd.)
inference 0.111 160057 111.0% 111.3% history reset√

0.100 143831 100.0% 100.0% new identifier√ √
14% 0.105 139958 105.0% 97.3% active occs√ √

0.100 143161 100.0% 99.5% 25 index-args√ √ √
9% 0.104 140427 104.0% 97.6% (17 inpl. upd.)

primes 21.23 40924601 129.5% 100.5%
(10000)

√
16.39 40734620 100.0% 100.0%√ √

50% 6.73 16138562 41.1% 39.6%
ram simul 12.41 88003112 149.7% 293.3%
(1000000)

√
8.29 30002947 100.0% 100.0%√ √

100% 6.19 6002961 74.7% 20.0% no active occs√ √
5.13 2961 61.9% 0.0% no index-args√ √ √

0% 5.23 2961 63.1% 0.0% (8 inpl. upd.)
sudoku 130.28 112483 118.9% 121.8%
(283576

√
109.60 92387 100.0% 100.0%

solutions,
√ √

100% 107.42 23329 98.0% 25.3% no active occs
27 givens)

√ √
60.89 20515 55.6% 22.2% no index-args√ √ √

0% 63.65 20187 58.1% 21.9% (3 inpl. upd.)
union-find 8.85 66611812 132.9% 154.9% new identifier
(200000)

√
6.66 43013248 100.0% 100.0% active occs√ √

52% 5.94 32302433 89.2% 75.1% new clauses√ √
5.14 29064918 77.2% 67.6% 3 index-args√ √ √

0% 5.41 28664915 81.2% 66.6% (8 inpl. upd.)
zebra 0.181 41904 116.0% 131.8%√

0.156 31798 100.0% 100.0%√ √
97% 0.148 26407 94.9% 83.0% active occs√ √

0.131 24915 84.0% 78.4% no index-args√ √ √
38% 0.136 24625 87.2% 77.4% (2 inpl. upd.)
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(almost) always empty at suspension creation, i.e. if there are few cache hits
and many cache misses, we do not get time or memory benefits. Examples like
bool chain and inference show that the time overhead can be more than 10%.
Although there are many cache hits in the fib heap benchmark, the runtime still
increases. This seems to be because the constraint stores used in fib heap (the
singleton store and the array store) provide very cheap insertion and removal.
The overhead of maintaining the suspension cache and dynamically checking for
affected indexes is simply higher than the cost of the avoided store operations.
In the other benchmarks, suspension reuse results in a net gain in both time and
space. The speedup is typically between 5 and 25 percent, but can be as high as
59%. The space reduction is more than 60% in some benchmarks.

5.2 In-Place Updates

In-place updates are not always applicable: the bool chain and primes pro-
grams do not contain any rule of the required form. However, when they are,
the time and space gains are quite impressive. In the ram simul benchmark, all
space usage is eliminated from the main loop, reducing the space complexity
from linear to constant. In other examples, space gains are typically between 20
and 30 percent. Speedups are typically between 15 and 40 percent. There are
more gains if the updated constraint has no active occurrences and if there are
few indexes that are affected by the update. For example, compare the sudoku
and ram simul benchmarks to the fib heap and inference benchmarks. In the
former, no indexes are affected and there are no active occurrences, resulting in a
40% speedup and a 80% memory reduction (100% in the case of ram simul). In
the latter, there is a small slowdown and only a marginal reduction in memory
use. Because of the active occurrences, the effect of the late storage optimization
is largely lost. If almost all indexes are affected, the update that replaces the
remove and insert can be as expensive as a full remove and insert.

When combining in-place updates and suspension reuse, the number of cache
hits drops: many in-place updates ‘steal’ a hit. As a consequence, the overhead of
suspension reuse often outweighs the gains if (many) in-place updates are done.
A simple heuristic could be added to avoid this.

The operational CHR semantics leaves the order in which partner constraints
are tried unspecified. Programs should not depend crucially on the order used
in some specific CHR system. Both suspension reuse and in-place updates can
affect this order. For some programs, the impact on the search space results in
unexpected performance differences. An example is the sudoku benchmark with
a different initial board setup (2 solutions, 16 givens), where in-place updates re-
sult in a slowdown of 46%, while suspension reuse results in a speedup of 64% —
both effects are mostly caused by the different order. The new order can in prin-
ciple be arbitrarily better or worse than the original one. Of all programs listed in
Table 4, only sudoku and inference are affected. For the query instances listed
in the table, the search space is unchanged or slightly bigger when the partner
constraint order is modified by the optimizations. Sophisticated analyses and/or
heuristics could be conceived to improve the order.
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6 Conclusion

As far as we know, this is the first paper that proposes techniques specifically
aimed at improving the memory footprint of CHR programs. By inlining and
specializing some crucial parts of the generated code we already achieved a dra-
matic improvement in both time and space. However, our main contribution is
twofold: we have provided a general formal framework that allows us to formu-
late and reason about reuse of removed constraints at an abstract level, and we
have introduced two new optimizations, in-place updates and suspension reuse,
and proved their correctness. We have implemented both optimizations in the
K.U.Leuven CHR system, which revealed that they interfere with the existing
late storage optimization. This interference complicates the implementation and
it also decreases the effect of in-place updates. Experimental results indicate
that both optimizations can cause small slowdowns in some benchmarks and
big speedups in others. The memory footprint is improved in all benchmarks —
sometimes only marginally, often significantly.

Related Work. This work is somewhat related to compile-time garbage col-
lection (CTGC) [6,7]. In-place updates are related to direct structure reuse as
defined in Chapter 9 of [6] (in the context of Mercury compilation), while sus-
pension term reuse is related to indirect structure reuse. The analysis required
for CTGC on arbitrary Mercury (or Prolog) programs is quite involved. Luck-
ily, we only had to consider the particular code of the compilation schema
used in the CHR compiler so we could manually specialize the CTGC liveness
and reuse analyses to relatively simple conditions on the CHR program to be
compiled.

In SICStus CHR, the option already in heads (which also exist as a pragma)
is offered. When a body constraint is identical to one of the removed head con-
straints, the removal and reinsert is avoided. This roughly corresponds to the
in-place update optimization, restricted to the case where none of the arguments
are modified. However, the already in heads option may affect the behavior of
the CHR program. The CHR programmer is responsible for verifying whether
the operational semantics are preserved by the option.

Future Work. There are many possibilities to improve and extend the current
implementation. For example, bigger suspension cache sizes could increase the
number of cache hits. Also suspension terms could be reused even if the con-
straint functor is different (not only when the arity is the same). In rules with
two or more in-place updates we could compute the optimal matching between
removed head constraints and inserted body constraints, minimizing the number
of affected indexes. It would also be interesting to investigate the impact of mod-
ifying the order in which partner constraint are tried, and perhaps mechanisms
can be conceived to control and improve that order. Finally, some heuristics
could be added to decide when to enable what optimizations.
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Abstract. Functional logic languages extendpurely functional languages
with two features: operations defined by overlapping rules and logic vari-
ables in both defining rules and expressions to evaluate. In this paper, we
show that only one of these features is sufficient in a core language. On the
one hand, overlapping rules can be eliminated by introducing logic vari-
ables in rules. On the other hand, logic variables can be eliminated by in-
troducing operations defined by overlapping rules. The proposed transfor-
mations between different classes of programs not only give a better under-
standing of the features of functional logic programs but also may simplify
implementations of functional logic languages.

1 Motivation

Functional logic languages [20] integrate the best features of functional and logic
languages in order to provide a variety of programming concepts. For instance,
the concepts of demand-driven evaluation and higher-order functions from func-
tional programming can be combined with logic programming features like com-
puting with partial information (logic variables), constraint solving, and non-
deterministic search for solutions. In contrast to purely functional languages,
functional logic languages allow computations with overlapping rules (i.e., more
than one rule can be applied to evaluate a function call) and logic variables (i.e.,
unbound variables occurring in the initial expression and/or rules, also called ex-
tra variables). Operationally, these features are supported by nondeterministic
computation steps.

Functional logic languages are modeled by constructor-based term rewriting
systems (TRS) with narrowing as the evaluation mechanism. A crucial choice in
the design of a language, both at the source level and the implementation level, is
the class of rewrite systems used to model the programs. Early languages (e.g.,
Babel [28] and K-Leaf [19]) were modeled by weakly orthogonal, constructor-
based TRSs. Larger classes are more expressive, i.e., programs in larger classes
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are textually shorter and/or conceptually simpler. Thus, modern languages, such
as Curry [21,23] and T OY [26], are modeled by the whole class of the constructor-
based rewrite systems with extra variables. However, the implementation of a
language modeled by a smaller class is likely to be simpler and/or more efficient.

For the above reason, program transformation among different classes of TRSs
is an interesting research subject. The goal is to transform a program in the
source language into an equivalent program in a language, referred to as the core
language, that is conceptually simpler or could be implemented more efficiently.
For example, the results of [5] show that any conditional constructor-based TRS
can be transformed into an unconditional overlapping inductively sequential TRS
[4]. The target class is a proper subclass of the source class, a situation that
leads to conceptual and practial benefits. This paper studies two transformations
similar to that described in [5] and with the same intent.

The first transformation maps the overlapping inductively sequential TRS
with or without extra variables into the inductively sequential TRS with extra
variables. This shows that if a language allows extra variables, then, at the core
level, overlapping is not necessary. Of course, at the source level overlapping is
a feature that contributes to the expressiveness of a language and therefore is
desirable.

The second transformation eliminates logic variables from computations
within the overlapping inductively sequential TRS. By “logic variables” we mean
extra variables in rewrite rules and variables, which are free or unbound, in ex-
pressions to evaluate. A somewhat unexpected, though immediate, consequence
of this transformation is that the power of narrowing computations can be ob-
tained by mere rewriting. As for the previous transformation, at the source level
logic variables contribute to the expressiveness of a language and therefore are
desirable.

Loosely speaking, these results can be understood as the possibility to trade
in a core language logic variables for a rather disciplined form of rule overlapping
and vice versa. Section 2 reviews concepts and notations used in this paper. Sec-
tion 3 defines the transformation that replaces overlapping with extra variables
and states its correctness. Section 4 defines the transformation that replaces
logic variables with overlapping and states its correctness. Section 5 offers our
conclusion. The proofs of the results presented in this paper can be found in the
full version of the paper [8].

2 Preliminaries

In this section we review some term rewriting [11,18] notations and functional
logic programming [20] concepts used in the remaining of this paper.

We consider a many-sorted signature Σ partitioned into a set C of constructors
and a set F of (defined) functions or operations. We write c/n ∈ C and f/n ∈ F
for n-ary constructor and operation symbols, respectively. Given a set of sorted
variables X , the set of well-sorted terms and constructor terms are denoted by
T (Σ,X ) and T (C,X ), respectively. We write Var(t) for the set of all the variables
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occurring in a term t. A term t is ground if Var(t) = ∅. A term is linear if it
does not contain multiple occurrences of a variable. A term is operation-rooted
(constructor-rooted) if its root symbol is an operation (constructor). We write
ok for a sequence of objects o1, . . . , ok.

Example 1. In the following, we write datatype declarations in Curry syntax
[23], i.e., a sort S is defined by enumerating its constructors in the form

data S = C1 s11 . . . s1a1 | . . . | Cn sn1 . . . snan

Thus, Ci is a constructor of sort S and arity ai with argument sorts si1, . . . , siai .
For instance, the sorts of Boolean values and natural numbers in Peano’s notation
are defined as

data Bool = True | False
data Nat = O | S Nat �

A pattern is a linear term of the form f(t1, . . . , tn) where f/n ∈ F is an operation
symbol and t1, . . . , tn are constructor terms. A constructor-based rewrite system
is a set of pairs of terms or rewrite rules of the form

l → r

where l is a pattern and l and r are of the same sort. An operation f is defined
by all the rewrite rules whose left-hand side is rooted by f . A functional logic
program is a constructor-based rewrite system. Traditionally, term rewriting sys-
tems have the additional requirement Var(r) ⊆ Var(l). However, in functional
logic programming variables occurring in Var(r) but not in Var(l), called extra
variables, are often useful. Therefore, we allow rewrite rules with extra variables
in functional logic programs. We denote the set of extra variables of a rewrite
rule l → r, defined as Var(r)\Var(l), with Evar(l → r).

To formally define computations w.r.t. a given program, additional notions
are necessary. A position p in a term t is represented by a sequence of natural
numbers. Positions are used to identify specific subterms. Thus, t|p denotes the
subterm of t at position p, and t[s]p denotes the result of replacing the subterm
t|p with the term s (see [18] for details). A substitution is an idempotent mapping
σ : X → T (Σ,X ) such that its domain Dom(σ) = {x | σ(x) �= x} is finite and
x and σ(x) are of the same sort for all variables x. We denote a substitution
σ by the finite set {x 
→ σ(x) | x ∈ Dom(σ)}. In particular, ∅ denotes the
identity substitution. We denote by σ|V the restriction of a substitution σ to
a set of variables V . A (ground) constructor substitution σ has the property
that σ(x) is a (ground) constructor term for all x ∈ Dom(σ). The composition
σ ◦ η of two substitutions is defined by (σ ◦ η)(x) = η(σ(x)) for all variables
x. Substitutions are extended to morphisms on terms in the obvious way. The
subsumption ordering is a binary relation on terms defined by u ≤ v if there is
a substitution σ with σ(u) = v. In this case, v is also called an instance of u.
If, in addition, v is a (ground) constructor term, we call it (ground) constructor
instance. If u ≤ v and v ≤ u, then u and v differ only for a renaming of variables.
We write u < v if u ≤ v and v �≤ u. A unifier of two terms s and t is a substitution
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σ such that σ(s) = σ(t). The unifier σ is most general if for any other unifier σ′

there exists a substitution η with σ′ = σ ◦ η. Furthermore, we denote by s� t
the most general unifier of s and t restricted to Var(s).

A rewrite step t→p,l→r,η t
′ w.r.t. a given rewrite system R is defined if there

are a position p in t, a rule l→ r ∈ R with fresh variables, and a substitution η
with t|p = η(l) such that t′ = t[η(r)]p. We impose the condition on the freshness
of the variables since we allow extra variables in rewrite rules. The indices in the
notation of a rewrite step are omitted when inconsequential. +→ and ∗→ denote
the transitive and reflexive-transitive closure of the relation →, respectively.

Functional logic languages compute solutions of free variables occurring in
expressions by instantiating these variables to constructor terms so that a rewrite
step becomes applicable. The combination of variable instantiation and rewriting
is called narrowing. Formally, t �σ t′ is a narrowing step if σ(t)→p,l→r,η t

′ where
σ is a substitution, t|p is not a variable, and Dom(η) ⊆ Var(l). We denote by
t0

∗
�σ tn a sequence of narrowing steps t0 �σ1 . . . �σn tn with σ = σ1◦· · ·◦σn (if

n = 0 then σ = ∅). We omit the substitution in the notation of both narrowing
steps and sequences when irrelevant to the discussion.

The requirement thatDom(η) ⊆ Var(l), as in [5], ensures that no extra variable
in a rule is instantiated during a narrowing step. An extra variable in a rewrite rule
is generally intended as a place holder for any term, e.g., see [12] where extra vari-
ables are allowed in the conditions of rewrite rules. In constructor-based rewrite
systems, a more suitable convention should allow an extra variable to stand only
for constructor terms, since terms that cannot be reduced to a constructor term are
intended as errors. By contrast, requiring that extra variables remain uninstanti-
ated in a rewrite step appears as treating extra variables as constants, thus fore-
going the computational power that they provide. However, when computations
are performed by narrowing, particularly using an efficient strategy, it seems most
sensible to avoid instantiating extra variables in the step that introduces them.
The reason is that these variables become logic variables in subsequent steps and
therefore may be narrowed. The advantage of instantiating them in a narrowing
step after they are introduced, as opposed to instantiating them in the step that
introduces them, is that the latter would have no information on choosing useful
instantiations, whereas the former could instantiate them with choices useful to
perform a step. In particular, efficient strategies such as [4,7] will instantiate logic
variables only as far as necessary to perform needed steps. This level of specializa-
tion seems impossible to achieve at the time extra variables are introduced, unless
the step introducing them performs some kind of lookahead.

For an example of the expressiveness of code using extra variables, consider
the following definition (in Curry syntax) of an operation that computes the last
element of a list:

last l | l =:= x++[e] = e where x,e free

where “++” denotes the concatenation of lists. Narrowing instantiates the extra
variables x and e to satisfy the equation. The instantiation of e is the result of
the computation.
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Narrowing is implemented by a strategy intended to limit the steps of an ex-
pression to a small set that suffices to ensure the completeness of the results. An
important narrowing strategy, needed narrowing [7], is defined on the subclass
of the inductively sequential TRSs. This class can be characterized by defini-
tional trees [3] that are also useful to formalize and implement demand-driven
narrowing strategies. Since only the left-hand sides of rules are important for
the applicability of needed narrowing, the following formulation of definitional
trees [4] considers patterns partially ordered by subsumption.

A definitional tree of an operation f is a non-empty set T of linear patterns
partially ordered by subsumption having the following properties:

Leaves property: The maximal elements of T , called the leaves, are exactly the
(variants of) the left-hand sides of the rules defining f . Non-maximal ele-
ments are also called branches.

Root property: T has a minimum element, called the root, of the form f(x1, . . . ,
xn) where x1, . . . , xn are pairwise distinct variables.

Parent property: If π ∈ T is a pattern different from the root, there exists a
unique π′ ∈ T , called the parent of π (and π is called a child of π′), such
that π′ < π and there is no other pattern π′′ ∈ T (Σ,X ) with π′ < π′′ < π.

Induction property: All the children of a pattern π differ from each other only
at a common position, called the inductive position, which is the position of
a variable in π.1

An operation is called inductively sequential if it has a definitional tree. Tradi-
tionally, it is also required that the rules do not contain extra variables [7]. Here,
we relax this requirement: A TRS is inductively sequential with extra variables
(ISX ) if all its defined operations are inductively sequential. Purely functional
programs and the vast majority of functions in functional logic programs are
inductively sequential.

Example 2. The following operations are inductively sequential w.r.t. the data-
type declarations of Example 1:

leq(O,x) → True
leq(S(x),O) → False
leq(S(x),S(y)) → leq(x,y)

cond(True,x) → x

nine → S(S(S(S(S(S(S(S(S(0)))))))))

The operation smallnum denotes a number less than ten and is defined by an
ISX rule containing an extra variable x:

smallnum → cond(leq(x,nine),x) �

Functional logic languages extend purely functional languages by allowing over-
lapping rules. We are interested only in a disciplined form of overlapping. Two
1 There might exist distinct definitional trees of an operation. In this case one can use

any tree for computing a needed narrowing step of a term since the need of the step
does not depend on the selected tree.
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distinct rewrite rules l1 → r1 and l2 → r2 are called overlapping if the left-hand
sides l1 and l2 are variants of each other, i.e., they are equal by subsumption.
We denote the set of all rules with the same left-hand side l by the single (meta)
rule l → r1 ? · · · ? rk, where “?” is a meta symbol and r1, . . . , rk are the right-
hand sides. A TRS is overlapping inductively sequential (OIS ) if all its defined
operations are inductively sequential when overlapping rules with identical left-
hand sides are joined into a single rule as above. The purpose of this paper is to
show that an ISX program executed by narrowing can be transformed into an
OIS program executed by rewriting and vice versa, i.e., the classes ISX and OIS
loosely speaking have the same expressiveness.

Next, we define the needed narrowing strategy on inductively sequential
rewrite systems.

Definition 1. Let R be an inductively sequential TRS where each function
symbol has a uniquely associated definitional tree. We define the function λ
from operation-rooted terms to sets of triples (position, rule, substitution) as
follows. Let t = f(t1, . . . , tn) be an operation-rooted term, T the definitional
tree associated to f , and π a maximal pattern of T that unifies with t. Then
λ(t) is the least set satisfying

λ(t) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Λ, π → r, t� π) if π is a leaf of T and π → r
is a variant of a rewrite rule

(q · p,R, η ◦ σ) if π is a branch of T ,
where q is the inductive position of π,
η = t� π, and (p,R, σ) ∈ λ(η(t|q)) �

In each recursive step during the computation of λ, a position and a substitution
is composed with the results computed by the recursive call. Thus, each needed
narrowing step can be represented as (p1 · · · pk, R, σ1 ◦ · · · ◦ σk), where pk = Λ,
pj is an inductive position for all j ∈ {1, . . . , k − 1}, and σj a most general
unifier restricted to the term variables computed in each recursive call for all j ∈
{1, . . . , k}. This representation of a needed narrowing step is called its canonical
decomposition.

Proposition 1 ([4]). Let R be an overlapping inductively sequential TRS and
t an operation-rooted term. If (p, l → r, σ) ∈ λ(t), then t �p,l→r,σ σ(t[r]p) is a
needed narrowing step, also denoted by t

NN
�p,l→r,σ σ(t[r]p).

The need of the step computed by λ in Proposition 1 is modulo the nonde-
terministic choice of the right-hand side. The term t cannot be narrowed to a
constructor term without a step at p with a rule l → r′. However, it may be
possible that r �= r′.

3 Eliminating Overlapping Rules

In this section we show that using rules with multiple right-hand sides does
not increase the expressiveness of a functional logic language already providing
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inductively sequential rewrite systems with extra variables. For this purpose, we
introduce a transformation from OIS into ISX systems and prove that needed
narrowing computes the same results on the original and the transformed system.

Definition 2 (Transformation from OIS into ISX). We define a transfor-
mation OE (Overlapping Elimination) on TRSs. Non-overlapping rewrite rules
are not changed. Overlapping rewrite rules of the form f(tn)→ r1 ? · · · ? rk are
replaced by a single rule f(tn) → f ′(y, xl) where Var(tn) = {x1, . . . , xl}, y is a
new free variable, and f ′ is a new function symbol defined by the new rules

f ′(I1, xl) → r1
...
f ′(Ik, xl)→ rk

The constants Ij are the elements of a new index type defined by

data Ix = I1 | · · · | Ik

In practice, one can use the same index type (e.g., natural numbers) for all the
rules. �

The transformation only adds new function and constructor symbols. Thus, ev-
ery term w.r.t. the original signature is also a term w.r.t. the transformed sig-
nature. In the following, we denote the original TRS by R and the transformed
TRS by R′ = OE(R).

Example 3. Consider an operation parent that nondeterministically returns ei-
ther the mother or the father of the argument:

parent(x) → mother(x) ? father(x)

The OE transformed program is:

data Iparent = I0 | I1

parent(x) → parent’(y,x)
parent’(IO,x) → mother(x)
parent’(I1,x) → father(x) �

Proposition 2. IfR is overlapping inductively sequential, then the transformed
system R′ is inductively sequential with extra variables.

The transformation is correct if, loosely speaking, any result computed by the
original program can be computed by the transformed program and vice versa.
This concept is formulated by the next theorem. The soundness is based on
the fact that any narrowing step in the original system can be simulated in
the transformed system by either the same step or two consecutive steps using
the introduced rules. The completeness is based on the fact that every needed
narrowing step in the transformed system that introduces a function symbol not
occurring in the signature of the original system is immediately followed by a
needed narrowing step that removes that symbol.
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Theorem 1 (Correctness of OE). Let R be a OIS TRS, R′ = OE(R), and
t, s terms of R. The following claims hold.

Soundness. If t NN *
�σ′ s w.r.t. R′, then there exists a derivation t

NN *
�σ s w.r.t.

R such that σ =Var(t) σ
′.

Completeness. If t NN *
�σ s w.r.t. R, then there exists a derivation t

NN *
�σ′ s

w.r.t. R′ such that σ =Var(t) σ
′.

4 Eliminating Logic Variables

In the previous section, we have shown that the class of the inductively sequential
TRSs with extra variables, ISX, is at least as expressive as the class of the
overlapping inductively sequential TRSs, OIS. This result is interesting because
it enables us to trade in the implementation of a language the complications
of overlapping, or multiple right-hand sides, for the presence of extra variables.
Since we already allow extra variables in the OIS programs, we simply eliminate
overlapping in the transformation.

In this section, we present a somewhat complementary result. We show that
the overlapping inductively sequential TRSs, without extra variables, denoted
OIS−, are at least as expressive as the ISX programs. We use a transformation
that eliminates unbound variables entirely, i.e., also from the “top-level” or initial
term being evaluated. Therefore, a computation in the OIS− programs is by
rewriting, not narrowing. This result is interesting because it enables us to trade
in the implementation of a language the complications of narrowing, in particular
the use of substitutions, for the presence of multiple right-hand sides in the
program rules.

As for the OE transformation, a functional logic program is an overlapping in-
ductively sequential, many sorted, constructor-based TRSs with extra variables.
This time, though, our goal is to eliminate extra variables, instead of overlap-
pings. Thus, we denote with XE , extra variable elimination, this transformation.
For any sort S, we consider a constant operation, instanceOfS, that enumerates
the values of the sort S. We call this operation a generator of S.

Definition 3 (instanceOf). Let S be a sort defined by a datatype declaration
of the form

data S = C1 t11 . . . t1a1 | . . . | Cn tn1 . . . tnan

The operation instanceOfS is defined by the overlapping rules

instanceOfS → C1(instanceOft11,. . .,instanceOft1a1)
? . . .
? Cn(instanceOftn1,. . .,instanceOftnan) �

If S is a primitive or builtin sort, e.g., integers or characters, then we will assume
that the operation instanceOfS is primitive or builtin as well. However, the
following example shows that generators of primitive sorts, even infinite ones,
can be coded by ordinary rules.
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Example 4. Suppose that a sort “tree of integers” is defined by

data TreeInt = Leaf | Branch Int TreeInt TreeInt

the generator of TreeInt is

instanceOfTreeInt
→ Leaf
? Branch(instanceOfInt,instanceOfTreeInt,instanceOfTreeInt)

Below are two plausible ordinary definitions of the generator of the integers:

instanceOfInt → 0 ? genNeg ? genPos
genNeg → -1 ? genNeg - 1
genPos → 1 ? genPos + 1

or also

instanceOfInt → gen(0)
gen(x) → if x >= 0 then x ? gen(-(x+1))

else x ? gen(-x) �

In the following, we consider only ordinary rewrite systems over algebraic
datatypes. For such systems, Definition 3 immediately implies the following prop-
erty of instanceOf.

Lemma 1 (Completeness of generators). For every ground constructor
term t of sort S, there exists a rewrite sequence of instanceOfS to t.

The XE transformation replaces any free variable v in a term with an opera-
tion that evaluates to any value that could instantiate the variable v during a
computation.

Definition 4 (Extra variable elimination). Let V be a set of (sorted) vari-
ables. Then the instantiation substitution IOV is defined as

IOV = {x 
→ instanceOfsx | x ∈ V has sort sx}
For every term t we define

XE (t) = IOVar(t)(t) �

The following lemma extends Lemma 1 to terms with variables.

Lemma 2. For every variable x and constructor term u of the same sort,
XE (x) ∗→ XE (u).

Definition 5 (Transformation from OIS into OIS−). Let R be an OIS
program. We define XE (R) = R′∪I, where I defines a fresh symbol instanceOfS
for every sort S in the signature ofR, and l→ r′ is a rule ofR′ iff l → r is a rule of
R and r′ = IOEvar(l→r)(r). �

Proposition 3. If R is an overlapping inductively sequential TRSs, then
XE (R) is an overlapping inductively sequential TRSs without extra variables.
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To claim the correctness of the XE transformation, we need to show that, un-
der appropriate conditions and qualifications, every computation in the original
system has a corresponding computation in the transformed system and vice
versa. First, we discuss the completeness of XE . We state the completeness for
narrowing derivations that compute constructor substitutions.

Lemma 3 (Completeness of XE derivations). Let R an OIS program.
For any term t and constructor term u, if t ∗

� u w.r.t. R where the substitu-
tion of each narrowing step is a constructor substitution, then for any ground
constructor instance v of u, XE (t) ∗→ v w.r.t. XE (R).

The evaluation of expressions with free variables, particularly in the tradition
of logic programming, produces variable bindings. These bindings are lost by
the XE transformation. We will discuss how to recover this information after
introducing new concepts that simplify the problem.

For narrowing derivations with arbitrary substitutions, the proof of Lemma 3
fails since instanceOf rewrites only to constructor terms. To extend the proof
to obtain a more general result, we need to consider a variation of instanceOf
defined as follows:

instanceOfS → s1(instanceOft11,. . .,instanceOft1a1)
? . . .
? sn(instanceOftn1,. . .,instanceOftnan)

where {s1, . . . , sn} are all the signature symbols of sort S and the arguments of
si have sorts ti1, . . . , tiai . However, this extension is not relevant in practice since
narrowing strategies used in functional logic languages compute only constructor
substitutions [6,7].

In general, the transformation XE is not sound, i.e., there are rewrite deriva-
tions in the transformed system that have no correspondence in the original
system.

Example 5. Consider the following program defining an operation that evaluates
to an arbitrary even number:

even → x+x

Applying XE to this program yields:

even → instanceOfInt + instanceOfInt

Consequently, the term even can be evaluated as follows:

even → instanceOfInt + instanceOfInt
+→ 0 + 1 → 1 �

This examples shows that all the occurrences of an instanceOf operation origi-
nating from the same variable should be reduced to the same value. Derivations
where this condition is satisfied are called admissible. We will show that the XE
transformation is sound for admissible derivations.

The problem in the previous example would be eliminated by having only
one occurrence of instanceOfInt. Therefore, we introduce a notation of terms
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where only one occurrence is represented so that the derivation above is no
longer possible. Our notation uses pairs 〈t, χ〉 of a term t and a substitution χ
which represents the term χ(t). The substitution χ will be defined as IOVar(t)
so that it contains a single occurrence of an instanceOf operation for each free
variable of t. An example of this representation, using the familiar let notation
for defining substitutions, is shown in Display (1). We define rewrite steps on this
representation. A redex may occur in either t or χ. Rewriting in t corresponds to
standard rewriting, whereas a rewrite step in χ may correspond to a multistep
[24] in χ(t) if the bound variable has several occurrences in t.

Definition 6 (Transformation to term/substitution pairs). For every
term t we define XEP(t) = 〈t, IOVar(t)〉. For every OIS program R we define
XEP(R) = R′ ∪ I, where I is as in Definition 5, and l → r′ is a rule of R′ iff
l→ r is a rule of R and r′ = 〈r, IOEvar(l→r)〉. �

Definition 7 (Rewriting on term/substitution pairs). Let R be an OIS
program and XEP(R) = R′ ∪ I. Let t be a term and XEP(t) = 〈t, χ〉. We define
a rewrite step on XEP(t) as follows. 〈t, χ〉 → 〈t′, χ′〉 if one of the following
conditions holds:

(type-1 step) there exist a position p in t, a variant l→ 〈r, ψ〉 with fresh variables
of a rule in R′, a substitution σ such that Dom(σ) ⊆ Var(l), σ(l) = t|p,
t′ = t[σ(r)]p, and χ′ = χ|Var(t′) ∪ ψ

(type-2 step) there exist a variable v ∈ Dom(χ) with χ(v) = instanceOfS and
a rule

instanceOfS → c(instanceOfS1, . . . , instanceOfSk)

according to Definition 3 such that t′ = {v 
→ c(v1, . . . , vk)}(t), χ′ = (χ\{v 
→
instanceOfS}) ∪ {vi 
→ instanceOfSi | i = 1, . . . , k} where v1, . . . , vk are
fresh variables. �

The term/substitution representation is an appealing formalism for this problem
because it can be directly mapped to let binding constructs available in many
programming languages. For instance, the transformed program of Example 5
can be coded in Curry [23] with a let binding as

even = let x = instanceOfInt in x+x (1)

The semantics of the let binding construct is defined in such a way that all
occurrences of let bound variables are replaced by the same replacement [1,25]
(efficiently implemented by sharing). Our notion of rewriting is a natural adap-
tation of this semantics.

Theorem 2 (Correctness of XEP). Let R be a OIS TRS, R′ = XEP(R),
t, s terms of R, and t′ = XEP(t). Then the following claims hold.

Soundness. If t′ ∗→ 〈v, ν〉 is a derivation w.r.t.R′, then there exists a narrowing
derivation t ∗

� u w.r.t.R with u ≤ ν(v). In particular, if ν(v) is a constructor
term, then ν = ∅ and u is a constructor term.
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Completeness. If t ∗
� s w.r.t. R, then there exists a derivation t′

∗→ s′ w.r.t.
R′ such that s′ = XEP(s). In particular, if s is a constructor term, then
there exists a derivation t′

∗→ 〈v,∅〉 w.r.t. R′ for any ground constructor
instance v of s.

The proof of this theorem relies on a commutativity property of reductions
and transformations. More precisely, given an ordinary term t, the result of
transforming t into a term/substitution pair and reducing it is equivalent to
computing some reduction sequence of t and transforming the final reduct into
a term/substitution pair.

The above results show that, loosely speaking, variables and overlapping rules
have the same computational power in a functional logic language. To keep
track of the binding of logic variables replaced by the XEP transformation, we
transform the initial term t of a computation into a tuple (t, x1, . . . , xn) where
x1, . . . , xn are the variables of t. The evaluation of the tuple will be (e, b1, . . . , bn)
where e is the computed value and b1, . . . , bn constitute the computed answer.
A remaining obstacle is that bindings may contain variables whereas in our
approach b1, . . . , bn are ground. To overcome this obstacle, one may adopt the
convention that an occurrence of instanceOf is only evaluated if its value is nec-
essary to perform a type-1 step. Observe that type-1 steps are never performed
in b1, . . . , bn.

The size of search space of a computation is roughly the same in both sys-
tems. In XEP(R) an occurrence of an instanceOf operation is evaluated only
when demanded by its context. This evaluation corresponds to a step in which
some variable v is instantiated in R. There is a small difference in favor of
R, though, which is difficult to quantify. If the evaluation of an occurrence of
instanceOf is demanded by an incompletely defined operation, some replace-
ment of instanceOf may have no corresponding binding for v.

5 Conclusion

We have presented two transformations on functional logic programs. The first
transformation eliminates overlapping rules by introducing auxiliary functions
and extra variables. Together with the results of [5], this transformation shows
that any functional logic program can be mapped into an inductively sequential
TRS with extra variables so that it can be executed by needed narrowing. Hence,
the class ISX is a reasonable core language for functional logic programming. The
second transformation completely eliminates logic variables from functional logic
computations by replacing them with operations defined by overlapping rules.
The correctness of this transformation requires the consistent evaluation of these
new operations w.r.t. the logic variable occurrences. This can be achieved by
sharing which is usually available in lazy languages.

The results presented in this paper provide a better understanding of the
features of functional logic languages and their interactions. Although the source
level of such languages extend purely functional languages by overlapping rules
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and extra variables, our results show that only one of these alternative concepts
is enough for a core language.

Apart from these theoretical considerations, our results have also a practical
interest since a simplified core language can reduce the implementation effort it
requires. For instance, typical implementations of core languages are based on
abstract machines that bridge the gap between the source level and the hardware
(e.g., [9,22,27]). Usually, these machines provide instructions and data structures
to support the implementation of both overlapping rules and logic variables. Our
results enable the simplification of these abstract machines. For instance, spe-
cific instructions to handle computations that use overlapping rules need not be
considered in an abstract machine if the OE transformation is applied in the
compilation process. This is done in the implementations described in [15,30],
although without any formal justification. Likewise, the handling of logic vari-
ables (e.g., data structures such as binding arrays and binding instructions) can
be removed if the XEP transformation is applied. Which of the two alterna-
tives is more convenient depends on the concrete architecture of the machine.
A simplified core language can also reduce the effort to build tools for func-
tional logic languages. For instance, recent tools for debugging functional logic
programs (e.g., tracers [14], profilers [13], slicers [29]) or program optimization
(e.g., partial evaluation [2]) are based on a core language that supports both
overlapping rules and logic variables which could be simplified using our results.
The effects that each transformation may have on the efficiency of the execution
of a program are a subject for future investigation.

After submitting this paper, we received from Paco López-Fraguas a draft [17]
describing a transformation substantially identical to our XEP . They prove the-
oretical results very similar to ours but within the framework of CRWL, and
present some benchmarks that show that eliminating logic variables does not
incur any substantial efficiency loss.

Finally, the XEP transformation also sheds some new light on the role of
logic variables in declarative programming. It has been sometimes argued (in
the functional programming community) that the instantiation of a logic vari-
able during a computation is similar to a side effect due to its global visibility.
For instance, this has led to the modeling of logic variables as references in
Haskell [16]. However, our results show that the binding of a logic variable can
be also interpreted as the stepwise evaluation of an operation so that the power
of narrowing computations can be obtained by rewriting.

We have presented our results for a first-order many-sorted functional logic
language. The extension, with standard approaches (e.g., see [10,31]), to higher-
order programs presents no difficulties. The extension to polymorphically typed
languages is not so obvious since the XEP transformation assumes that the
type of each logic variable is known at compile time. This information is always
available in a many-sorted TRS but could be difficult to obtain in a polymorphic
functional logic language where logic variables might have an arbitrary type. In
this case, one could define a specific “polymorphic” instanceOf operation that
evaluates to values of all possible types. However, this is not practical due to
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an increase of the search space size and the possibility of ill-typed expressions
during a computation. An appropriate solution to this problem is a topic for
future research.
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Abstract. Constraint propagation algorithms implement logical infer-
ence. For efficiency, it is essential to control whether and in what order
basic inference steps are taken. We provide a high-level framework that
clearly differentiates between information needed for controlling propa-
gation versus that needed for the logical semantics of complex constraints
composed from primitive ones. We argue for the appropriateness of our
controlled propagation framework by showing that it captures the un-
derlying principles of manually designed propagation algorithms, such
as literal watching for unit clause propagation and the lexicographic or-
dering constraint. We provide an implementation and benchmark results
that demonstrate the practicality and efficiency of our framework.

1 Introduction

Constraint programming solves combinatorial problems by combining search and
logical inference. The latter, constraint propagation, aims at reducing the search
space. Its applicability and usefulness relies on the availability of efficiently ex-
ecutable propagation algorithms.

It is well understood how primitive constraints, e. g. indexical constraints,
and also their reified versions, are best propagated. We also call such primi-
tive constraints pre-defined, because efficient, special-purpose propagation algo-
rithms exist for them and many constraint solving systems provide implemen-
tations. However, when modelling problems, one often wants to make use of
more complex constraints whose semantics can best be described as a combina-
tion of pre-defined constraints using logical operators (i. e. conjunction, disjunc-
tion, negation). Examples are constraints for breaking symmetries [FHK+02]
and channelling constraints [CCLW99].

Complex constraints are beneficial in two aspects. Firstly, from a reasoning
perspective, complex constraints give a more direct and understandable high-
level problem model. Secondly, from a propagation perspective, the more more
global scope of such constraints can allow stronger inference. While elaborate
special-purpose propagation algorithms are known for many specific complex
constraints (the classic example is the alldifferent constraint discussed in [Rég94]),
the diversity of combinatorial problems tackled with constraint programming in
practice implies that more diverse and rich constraint languages are needed.

Complex constraints which are defined by logical combinations of primitive
constraints can always be decomposed into their primitive constituents and

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, pp. 102–116, 2006.
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Boolean constraints, for which propagation methods exist. However, decompos-
ing in this way may

(A) cause redundant propagation, as well as
(B) limit possible propagation.

This is due to the loss of a global view: information between the constituents of
a decomposition is only exchanged via shared constrained variables.

As an example, consider the implication constraint x = 5 → y �= 8 during
constructive search. First, once the domain of x does not contain 5 any more,
the conclusion y �= 8 is irrelevant for the remainder of the search. Second, only
an instantiation of y is relevant as non-instantiating reductions of the domain of
y do not allow any conclusions on x. These properties are lost if the implication
is decomposed into the reified constraints (x = 5) ≡ b1, (y �= 8) ≡ b2 and the
Boolean constraints not(b1, b′1), or(b′1, b2).

Our focus is point (A). We show how shared control information allows a
constraint to signal others what sort of information is relevant to its propagation
or that any future propagation on their part has become irrelevant to it. We
address (B) to an extent by considering implied constraints in the decomposition.
Such constraints may be logically redundant but not operationally so. Control
flags connecting them to their respective antecedents allow us to keep track of
the special status of implied constraint, so as to avoid redundant propagation
steps. Our proposed control framework is naturally applicable not only to the
usual tree-structure decomposition but also to those with a more complex DAG
structure, which permits stronger propagation.

Our objective is to capture the essence of manually designed propagation
algorithms, which implicitly merge the separate aspects of logic and control.
We summarise this by Propagation = Logic + Control in the spirit of [Kow79].
The ultimate goal of our approach is a fully automated treatment of arbitrary
complex constraints specified in a logic-based constraint definition language. We
envisage such a language to be analogous to CLP but focused on propagation.
Our framework would allow users lacking the expertise in or the time for the de-
velopment of specialised propagation to rapidly prototype and refine propagation
algorithms for complex constraints.

Preliminaries
Consider a finite sequence of different variables X = x1, . . . , xm with respective
domains D(x1), . . . , D(xm). A constraint C on X is a pair 〈S,X〉. The set
S is an m-ary relation and a subset of the Cartesian product of the domains,
that is, S ⊆ D(x1) × . . . ×D(xm). The elements of S are the solutions of the
constraint, and m is its arity. We assume m � 1. We sometimes write C(X) for
the constraint and often identify C with S.

We distinguish pre-defined, primitive constraints, such as x = y, x � y,
and complex constraints, constructed from the primitive constraints and the
logical operators ∨,∧,¬ etc. For each logical operator there is a corresponding
Boolean constraint. For example, the satisfying assignments of x∨y = z are the
solutions of the constraint or(x, y, z). The reified version of a constraint C(X)
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is a constraint on X and an additional Boolean variable b reflecting the truth
of C(X); we write it as C(X) ≡ b. Complex constraints can be decomposed
into a set of reified primitive constraints and Boolean constraints, whereby new
Boolean variables are introduced. For example, the first step in decomposing
C1 ∨ C2 may result in the three constraints C1 ≡ b1, C2 ≡ b2, and or(b1, b2, 1).

Constraint propagation aims at inferring new constraints from given con-
straints. In its most common form, a single constraint is considered, and the
domains of its variables are reduced without eliminating any solution of the con-
straint. If every domain is maximally reduced and none is empty, the constraint
is said to be domain-consistent (DC). For instance, x < y with D(x) = {1, 2},
D(y) = {1, 2, 3} can be made domain-consistent by inferring the constraint
y �= 1, leading to the smaller domain D(y) = {2, 3}.

Decomposing a complex constraint may hinder propagation. For example,
DC-establishing propagation is guaranteed to result in the same domain reduc-
tions on a constraint and its decomposition only if the constraint graph of the
decomposition is a tree [Fre82]. For instance, the constraints of the decomposi-
tion of the constraint (x > y) ∧ (x < y) considered in isolation do not indicate
its inconsistency.

2 Logic and Control Information

A complex constraint expressed as a logical combination of primitive constraints
can be decomposed into its primitive parts. However, such a naive decomposition
has the disadvantage that it assigns equal relevance to every constraint. This may
cause redundant reasoning to take place for the individual primitive constraints
and connecting Boolean constraints. We prevent this by maintaining fine-grained
control information on whether the truth or falsity of individual constraints
matters. We say that a truth status of a constraint is relevant if it entails the
truth status of some other constraint.

We focus on the disjunction operator first.

Proposition 1. Suppose C is the disjunctive constraint C1 ∨ C2. Consider the
truth status of C in terms of the respective truth statuses of the individual con-
straints C1, C2.

– If the falsity of C is asserted then the falsity of C1 and C2 can be asserted.
– If the truth of C is asserted then the falsity of C1 and C2 is relevant, but not

their truth.
– If the truth of C is queried then the truth of C1 and C2 is relevant, but not

their falsity.
– If the falsity of C is queried then the falsity of only one of C1 or C2 is

relevant, but not the their truth.

Proof. Let the reified version of C be (C1∨C2) ≡ b and its partial decomposition
be C1 ≡ b1, C2 ≡ b2, or(b1, b2, b). The following cases can occur when asserting
or querying C.
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Fig. 1. Control flow through a disjunction

Case b = 0. Then C1 and C2 must both be asserted to be false.
Case b = 1

– Suppose C1 is found to be true. This means that both the truth and the
falsity of C2, hence C2 itself, have become irrelevant for the remainder
of the current search. Although this simplifies the representation of C to
C1, it does not lead to any inference on it. In this sense, the truth of C1
is useless information.
The case of C2 being true is analogous.

– Suppose C1 is found to be false. This is useful information as we now
must assert the truth of C2, which may cause further inference in C2.
The case of C2 being false is analogous.

Only falsity of C1 or C2 is information that may cause propagation. Their
truth is irrelevant in this respect.

Case b unknown. We now assume that we know what aspect of the truth
status of C is relevant: its truth or its falsity. If neither is relevant then we
need not consider C, i. e. C1 and C2, at all. If both the truth and falsity of
C are relevant, the union of the individual cases applies.
Truth of C is queried

– Suppose C1 or C2 is found to be true. This means that C is true,
and knowing either case is therefore useful information.

– Suppose C1 is found to be false. Then the truth of C depends on the
truth of C2. The reasoning for C2 being false is analogous.

The truth of both C1 and C2 matters, but not their falsity.
Falsity of C is queried

– Suppose C1 or C2 is found to be true. While this means that C is
true, this is not relevant since its falsity is queried.

– Suppose C1 is found to be false. Then the falsity of C depends on the
falsity of C2. Now suppose otherwise that C1 is queried for falsity
but not found to be false. If C1 is not false then C cannot be false.
It is important to realise that this reasoning is independent of C2.
The reasoning for C2 being false is symmetric.

In summary, to determine the falsity of C, it suffices to query the falsity
of just one of C1 or C2. 
�

Fig. 1 shows the flow of control information through a disjunction. There, and
throughout the rest of this paper, we denote a truth query by chk-true and a
falsity query by chk-false.

Analogous studies on control flow can be conducted for all other Boolean oper-
ators. The case of a negated constraint is straightforward: truth and falsity swap
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their roles. Conjunction is entirely symmetric to disjunction due to De Morgan’s
law. For example, a query for falsity of the conjunction propagates to both con-
juncts while a query for truth need only be propagated to one conjunct. We remark
thatone canapply suchananalysis to other kinds of operators includingnon-logical
ones.Thus, the cardinality constraint [HD91] canbe handledwithin this framework.

2.1 Controlled Propagation

Irrelevant inference can be prevented by distinguishing whether the truth or
the falsity of a constraint matters. This control information arises from truth
information and is propagated similarly. By controlled propagation we mean
constraint propagation that (1) conducts inference according to truth and falsity
information and (2) propagates such information.

We now characterise controlled propagation for a complex constraint in de-
composition. We are interested in the effective propagation, i. e. newly inferred
constraints (such as smaller domains) on the original variables rather than on
auxiliary Boolean variables. We assume that only individual constraints are prop-
agated1. This is the usual case in practice.

Theorem 1 (Controlled Propagation). Controlled and uncontrolled propa-
gation of the constraints of the decomposition of a constraint C are equivalent
with respect to the variables of C if only single constraints are propagated. 
�

Proof. Proposition 1 and analogous propositions for the other Boolean operators.

In the following, we explain a formal framework for maintaining and reacting to
control information.

Control Store. Constraints communicate truth information by shared Boolean
variables. Similarly, we think of control information being communicated be-
tween constraints by shared sets of control flags. As control flags we consider the
truth status queries chk-true, chk-false and the additional flag irrelevant sig-
nalling permanent irrelevance . In this context, ‘permanently’ refers to sub-
sidiary parts of the search, that is, until the next back-tracking. Note that the
temporary absence of truth and falsity queries on a constraint is not the same
as its irrelevance. We write

C with FS

to mean that the constraint C can read and update the sequence of control flag
sets FS. One difference between logic and control information communication
is that control flows only one way, from a producer to a consumer.

Propagating Control. A set of control flags F is updated by adding or deleting
flags. We abbreviate the adding operation F := F ∪ {f } as F ∪= f . We denote
by F1 � F2 that from now on permanently changes to the control flags in F1
are reflected in corresponding changes to F2; e. g. an addition of f to F1 leads
to an addition of f to F2.
1 E. g., path-consistency enforcing propagation considers two constraints at a time.
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We employ rules to specify how control information is attached to the constit-
uents of a decomposed complex constraint, and how it propagates.The ruleA⇒ B
denotes that the conditions in A, consisting of constraints and associated control
information, entail the constraints and the updates of control information specified
inB. We use delete statements in the conclusion to explicitly remove a constraint
from the constraint store once it is solved or became permanently irrelevant.

Relevance. At the core of controlled propagation is the principle that reasoning
effort should be made only if it is relevant to do so, that is, if the truth or falsity
of the constraint at hand is asserted or queried. We reflect this condition in the
predicate

is relevant(b,F) := b = 1 or chk-true ∈ F or
b = 0 or chk-false ∈ F .

(is rel)

It applies to constraints in the form C ≡ b with F . We show later that this
principle can be applied to primitive constraints.

2.2 Boolean Constraints

We again focus on disjunctive constraints. The following rule decomposes the
constraint (C1 ∨ C2) ≡ b only if the relevance test is passed. In this case the
shared control sets are initialised.

is relevant(b,F) ⇒ or(b, b1, b2) with 〈F ,F1,F2〉,
C1 ≡ b1 with F1,F1 := ∅,

C2 ≡ b2 with F2,F2 := ∅.

(ordec)

The following rules specify how control information propagates through this
disjunctive constraint in accordance with Proposition 1:

b = 1 ⇒ F1 ∪= chk-false,F2 ∪= chk-false;
b1 = 0 ⇒ F � F2, delete or(b, b1, b2);
b2 = 0 ⇒ F � F1, delete or(b, b1, b2);
b1 = 1 ⇒ F2 ∪= irrelevant, delete or(b, b1, b2);
b2 = 1 ⇒ F1 ∪= irrelevant, delete or(b, b1, b2);

chk-false ∈ F ⇒ F1 ∪= chk-false; (orcf)
chk-true ∈ F ⇒ F1 ∪= chk-true,F2 ∪= chk-true;

irrelevant ∈ F ⇒ F1 ∪= irrelevant,F2 ∪= irrelevant, delete or(b, b1, b2).

In rule (orcf), we arbitrarily select the first disjunct to receive chk-false. For
comparison and completeness, here are the rules propagating truth information:

b1 = 0 ⇒ b = b2; b1 = 1 ⇒ b = 1;
b2 = 0 ⇒ b = b1; b2 = 1 ⇒ b = 1;
b = 0 ⇒ b1 = 0, b2 = 0.
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Control propagation for the negation constraint not(b, bN ) with 〈F ,FN 〉 is stra-
ightforward:

b = 1 or b = 0 or bN = 1 or bN = 0 ⇒ delete not(b, bN);
chk-false ∈ F ⇒ FN ∪= chk-true;
chk-true ∈ F ⇒ FN ∪= chk-false;

irrelevant ∈ F ⇒ FN ∪= irrelevant.

The rules for other Boolean operators are analogous. Note that a move from
binary to n-ary conjunctions or disjunctions does not affect the control flow in
principle, in the same way that the logic is unaffected.

Both chk-true and chk-false can be in the control set of a constraint at the
same time, as it might be in a both positive and negative context. An example
is the condition of an if-then-else. On the other hand, if for instance a constraint
is not in a negated context, chk-false cannot arise.

2.3 Primitive Constraints

Asserting and querying other primitive constraints can be controlled similarly
to Boolean constraints. In particular, the relevance condition (is rel) must be
satisfied before inspecting a constraint. We furthermore deal with irrelevant ∈ F
as expected, by not asserting the primitive constraint or by deleting it from the
set of currently queried or asserted constraints.

When a query on a primitive constraint is inconclusive, it is re-evaluated
whenever useful. This can be when elements from a variable domain are removed
or when a bound changes. We rely on the constraint solving environment to signal
such changes.

Deciding the truth or the falsity of a constraint in general is an expensive
operation that requires the evaluation of every variable domain. A primitive
C(X) is guaranteed to be true if and only if C(X) ⊆ D(X) and C(X) is non-
empty. C is guaranteed to be false if and only if C(X)∩D(X) = ∅, where X =
x1, . . . , xn and D(X) = D(x1)× . . .×D(xn). For some primitive constraints we
can give complete but simpler evaluation criteria, similarly to indexicals [CD96];
see Tab. 1.

Practical constraint solving systems usually maintain domain bounds explic-
itly. This makes answering the truth query for equality constraints and the

Table 1. Primitive constraint queries (S is a constant set, a is a constant value)

Constraint true if false if

x ∈ S D(x) ⊆ S D(x) ∩ S = ∅

x = a |D(x)| = 1, D(x) = {a} a /∈ D(x)
x = y |D(x)| = |D(y)| = 1, D(x) = D(y) D(x) ∩ D(y) = ∅

x � y max(D(x)) � min(D(y)) min(D(x)) > max(D(y))
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queries for ordering constraints very efficient. Furthermore, the re-evaluation
of a query can be better controlled: only changes of the respective bounds are
an event that makes a re-evaluation worthwhile.

3 Implied Constraints

Appropriate handling of implied constraints fits naturally into the control prop-
agation framework. Suppose the disjunctive constraint C1 ∨C2 implies C�; that
is, (C1 ∨ C2) → C� is always true. Logically, C� is redundant. In terms of
constraint propagation, it may not be, however.

Consider the disjunction (x = y) ∨ (x < y), which implies x � y. Assume the
domains are D(x) = {4, 5}, D(y) = {3, 4, 5}. Since the individual disjuncts are
not false, there is no propagation from the decomposition. In order to conclude
x � y and thus D(y) = {4, 5} we associate the constraint with its implied
constraint.

We write a disjunctive constraint annotated with an implied constraint as

C1 ∨ C2 � C�.

To benefit from the propagation of C�, we could represent this constraint as
(C1 ∨ C2) ∧ C�. However, this representation has the shortcoming that it leads
to redundant propagation in some circumstances. Once one disjunct, say, C1,
is known to be false, the other disjunct, C2, can be imposed. The propagation
of C� is then still executed, however, while it is subsumed by that of C2. It
is desirable to recognise that C� is operationally redundant at this point. We
capture this situation by enhancing the decomposition rule (ordec) as follows:

(C1 ∨ C2 � C�) ≡ b with F ⇒ or�(b, b1, b2, b�) with 〈F ,F1,F2,F�〉,
C1 ≡ b1 with F1,F1 := ∅,

C2 ≡ b2 with F2,F2 := ∅,

C� ≡ b� with F�,F� := ∅.

Additionally to the control rules for regular disjunctive constraints shown earlier,
we now also use the following four rules:

b� = 0 ⇒ b = 0; b1 = 0 ⇒ F� ∪= irrelevant, delete or�(b, b1, b2, b�);
b = 1 ⇒ b� = 1; b2 = 0 ⇒ F� ∪= irrelevant, delete or�(b, b1, b2, b�).

We envisage the automated discovery of implied constraints, but for now we
assume manual annotation.

4 Subconstraint Sharing: From Trees to DAGs

The straightforward decomposition of complex constraints can contain unneces-
sary copies of the same subconstraint in different contexts. The dual constraint
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graph (whose vertices are the constraints and whose edges are the variables) is
a tree, while often a directed acyclic graph (DAG) gives a logically equivalent
but more compact representation. See, for example, CDDs [CY05].

We can apply controlled propagation to complex constraints represented in
DAG form. We need to account for the multiplicity of a constraint when handling
queries on it: the set of control flags now becomes a multiset, and in effect, we
maintain reference counters for subconstraints. Control flags need to be properly
subtracted from the control set of a constraint. For the sake of a simple example,
consider the constraint (C ∨C1) ∧ (C ∨C2). Fig. 2 shows a decomposition of it.

chk-false

and

or
chk-false

C
chk-false

C1

or
chk-false

C
chk-false

C2

chk-false

and

or
chk-false

C
chk-false

2

C1

or
chk-false

C2

Fig. 2. Left: no sharing. Right: sharing with reference counting.

Another example is the condition in an if-then-else constraint. Opportunities
for shared structures arise frequently when constraints are defined in terms of
subconstraints that in turn are constructed by recursive definitions.

5 Case Studies

We examine several constraints studied in the literature and show that their
decomposition benefits from controlled propagation.

Literal Watching. The DPLL procedure for solving the SAT problem uses
a combination of search and inference and can be viewed as a special case of
constraint programming. Many SAT solvers based on DPLL employ unit propa-
gation with 2-literal watching, e. g. Chaff [MMZ+01]. At any time, only changes
to two literals per clause are tracked, and consideration of other literals is post-
poned.

Let us view a propositional clause as a Boolean constraint. We define

clause(x1, . . . , xn) := x1 = 1 ∨ clause(x2, . . . , xn)

and show in Fig. 3 the decomposition of clause(x1, . . . , xn) as a graph for con-
trolled and uncontrolled propagation (where D(xi) = {0, 1} for all xi). Both
propagation variants enforce domain-consistency if the primitive equality con-
straints do and the variables are pairwise different. This corresponds to unit
propagation.

Uncontrolled decomposition expands fully into n − 1 Boolean or constraints
and n primitive constraints xi = 1. Controlled decomposition only expands into
two or constraints and the first two primitive constraints x1 = 1, x2 = 1. The
leaf node marked clause(x3, . . . , xn) is initially not expanded as neither assertion
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Fig. 3. Uncontrolled versus controlled decomposition of clause

nor query information is passed to it. The essence is that the first or constraint
results in two chk-false queries to the subordinate or constraint which passes this
query on to just one disjunct. This structure is maintained with respect to new
information such as variable instantiations. No more than two primitive equality
constraints are ever queried at a time. A reduction of inference effort as well as
of space usage results.

Controlled propagation here corresponds precisely to 2-literal watching.

Disequality of Tuples. Finite domain constraint programming generally fo-
cuses on variables over the integers. Sometimes, higher-structured variable types,
such as sets of integers, are more appropriate for modelling. Many complex con-
straints studied in the constraint community are on a sequence of variables and
can thus naturally be viewed as constraining a variable whose type is tuple-of-
integers. The recent study [QW05] examines how some known constraint prop-
agation algorithms for integer variables can be lifted to higher-structured vari-
ables. One of the constraints examined is alldifferent on tuples, which requires
a sequence of variables of type tuple-of-integers to be pairwise different. Its
straightforward definition is

alldifferent tp(〈X1, . . . , Xn〉) :=
∧

i,j∈1,...,n, i<j

different tp(Xi, Xj),

where

different tp(〈x1, . . . , xm〉, 〈y1, . . . , ym〉) :=
∨

i∈1,...,m

xi �= yi.

Let us examine these constraints with respect to controlled propagation. The
different tp constraint is a large disjunction, and it behaves thus like the clause
constraint studied in the previous section – at most two disjuncts xi �= yi are
queried for falsity at any time.

Deciding the falsity of a disequality constraint is particularly efficient when
the primitive constraints in Tab. 1 are used, i. e. falsity of disequality when the
domains are singletons. If the domains are not singletons, re-evaluation of the
query is only necessary once that is the case. In contrast, a truth query for
a disequality is (more) expensive as the domains must be intersected, and, if
inconclusive, should be re-evaluated whenever any domain change occurred.
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The alldifferent tp constraint is a conjunction of
(
n
2

)
different tp constraints.

Therefore, controlled propagation queries at most n(n − 1) disequality con-
straints for falsity at a time. Uncontrolled propagation asserts all n(n − 1)m/2
reified disequality constraints and in essence queries truth and falsity of each.
Using controlled rather than uncontrolled decomposition-based propagation for
alldifferent tp saves substantial effort without loss of effective propagation.

We remark that a specialised, stronger but non-trivial propagation algorithm
for this case has been studied in [QW05]. The controlled propagation framework
is then useful when specialised algorithms are not readily available, for example
due to a lack of expertise or resources in the design and implementation of
propagation algorithms.

Lexicographic Ordering Constraint. It is often desirable to prevent symme-
tries in constraint problems. One way is to add symmetry-breaking constraints
such as the lexicographic ordering constraint [FHK+02]. A straightforward def-
inition is as follows:

lex(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) := x1 < y1
∨
x1 = y1 ∧ lex(〈x2, . . . , xn〉, 〈y2, . . . , yn〉)
∨
n = 0

With this definition, propagation of the decomposition does not always enforce
domain-consistency. Consider lex(〈x1, x2〉, 〈y1, y2〉) with the domains D(x1) =
D(x2) = D(y2) = {3..5} and D(y1) = {0..5}. Controlled decomposition results
in the reified versions of x1 < y1, x1 = y1, x2 < y2 connected by Boolean
constraints. None of these primitive constraints is true or false. Yet we should
be able to conclude x1 � y1, hence D(y1) = {3..5}, from the definition of lex.

The difficulty is that the naive decomposition is weaker than the logical defi-
nition because it only reasons on the individual primitive constraints. However,
it is easy to see that x1 � y1 is an implied constraint in the sense of Section 3,
and we can annotate the definition of lex accordingly:

lex(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) := x1 < y1
∨
x1 = y1 ∧ lex(〈x2, . . . , xn〉, 〈y2, . . . , yn〉)
� x1 � y1
∨
n = 0

We state without proof that propagation of the constraints of the decomposition
enforces domain-consistency on lex if the annotated definition is used.

Tab. 2 represents a trace of lex on the example used in [FHK+02], showing
the lazy decomposing due to controlled propagation. We collapse several atomic
inference steps and omit the Boolean constraints, and we write vi..j to abbrevi-
ate vi, . . . , vj . Observe how the implied constraints xi � yi are asserted, made
irrelevant and then deleted. The derivation ends with no constraints other than
x3 < y3 queried or asserted.
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Table 2. An example of controlled propagation of the lex constraint

Asserted Set of constraints queried for Variable domains
falsity x1 x2 x3 x4 x5

y1 y2 y3 x4 y5

lex(〈x1..5〉,
〈y1..5〉)

{2} {1, 3, 4} {1..5} {1..2} {3..5}
{0..2} {1} {0..4} {0..1} {0..2}

x1 � y1 x1 < y1, x1 = y1, x2 < y2

{2} {1, 3, 4} {1..5} {1..2} {3..5}
{2} {1} {0..4} {0..1} {0..2}

x2 � y2 x2 < y2, x2 = y2, x3 < y3

{2} {1} {1..5} {1..2} {3..5}
{2} {1} {0..4} {0..1} {0..2}

x3 � y3 x3 < y3, x3 = y3, x4 < y4

{2} {1} {1..4} {1..2} {3..5}
{2} {1} {1..4} {0..1} {0..2}

x3 � y3 x3 < y3, x3 = y3, x4 = y4, x5 < y5

{2} {1} {1..4} {1..2} {3..5}
{2} {1} {1..4} {0..1} {0..2}

x3 � y3 x3 < y3, x3 = y3, x4 = y4, x5 = y5

{2} {1} {1..4} {1..2} {3..5}
{2} {1} {1..4} {0..1} {0..2}

x3 < y3

{2} {1} {1..3} {1..2} {3..5}
{2} {1} {2..4} {0..1} {0..2}

6 Implementation and Benchmarks

We implemented a prototype of the controlled propagation framework in the
CLP system ECLiPSe [WNS97], using its predicate suspension features and at-
tributed variables to handle control information. The implementation provides
controlled propagation for the basic Boolean and primitive constraints, and it
handles implied constraints. Structure-sharing by a DAG-structured decompo-
sition is not supported.

We conducted several simple benchmarks to compare controlled and uncon-
trolled propagation on constraint decompositions, using the clause, different tp,
alldifferent tp and lex constraints. A benchmark consisted of finding a solution
to a single constraint. For the uncontrolled propagation benchmark, the con-
straint was simply decomposed into built-in Boolean and primitive constraints
of ECLiPSe , and implied constraints (in lex) were conjunctively added to their
respective premise.

The number of variables in the respective tuple(s) was varied between five and
50. For the alldifferent tp benchmark, we chose 20 tuples. The variables ranged
over the interval {1..10} (except for clause). Solutions to the constraints were
searched by randomly selecting a variable and a value in its domain. This value
was either assigned or excluded from its domain; this choice was also random. To
obtain meaningful averages, every individual solution search was run a sufficient
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Table 3. Benchmark results: controlled propagation (uncontrolled prop. = 100%)

clause different tp alldifferent tp lex

nb. of variables 5 10 20 50 5 10 20 50 5 10 20 50 5 10 20 50
runtime (%) 100 69 50 38 88 84 67 62 66 38 23 11 138 92 69 54

number of times (typically a few 10000) so that the total computation time was
roughly 15 s. Each of these runs used a new initialisation of the pseudo-random
number generator resulting in a possibly different solution, while the benchmark
versions (controlled vs. uncontrolled propagation) used the same initial value
to obtain identical search trees. Every experiment was repeated five times. In
Tab. 3, we give the relative solving time with controlled propagation, based on
the corresponding uncontrolled propagation benchmark taken to be 100%.

The benchmarks show that controlling propagation can reduce the propaga-
tion time. The reduction is especially substantial for high-arity constraints. For
low-arity constraints, the extra cost of maintaining control information in our
implementation can outweigh the saving due to less propagation. While we have
not measured the space usage of the two propagation approaches, it follows from
the analyses in Section 5 that using controlled propagation for the considered
constraints often also requires less space, since constraints are decomposed only
when required.

We remark that efficiency was a minor concern in our high-level, proof-of-
concept implementation; consequently we expect that it can be improved con-
siderably. For example, for constraints that are in negation normal form (all
constraints in our benchmark), the control flag chk-true is never created. A
simpler subset of the control propagation rules can then be used.

7 Final Remarks

Related Work. In terms of foundations, the controlled propagation framework
can be described as a refined instance of the CLP scheme (see [JM94]), by a
subdivision of the set of active constraints according to their associated truth
and falsity queries. Concurrent constraint programming (CCP) [Sar93], based on
asserting and querying constraints, is closely related; our propagation framework
can be viewed as an extension in which control is explicitly addressed and dealt
with in a fine-grained way. A practical CCP-based language such as CHR [Frü98]
would lend itself well to an implementation. For example, control propagation
rules with delete statements can be implemented as simplification rules.

A number of approaches address the issue of propagation of complex con-
straints. The proposal of [BW05] is to view a constraint as an expression from
which sets of inconsistent or valid variable assignments (in extension) can be
computed. It focuses more on the complexity issues of achieving certain kinds
of local consistencies. The work [BCP04] studies semi-automatic construction
of propagation mechanisms for constraints defined by extended finite automata.
An automaton is captured by signature (automaton input) constraints and state
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transition constraints. Signature constraints represent groups of reified primi-
tive constraints and are considered pre-defined. They communicate with state
transition constraints via constrained variables, which correspond to tuples of
Boolean variables of the reified constraints in the signature constraints. Simi-
larly to propagating the constraint in decomposition, all automata constraints
are propagated independently of each other.

Controlled propagation is similar to techniques used in NoClause, a SAT
solver for propositional non-CNF formulas [TBW04], which in turn lifts tech-
niques such as 2-literal watching from CNF to non-CNF solvers. We describe
here these techniques in a formal, abstract framework and integrate non-Boolean
primitive constraints and implied constraints, thus making them usable for con-
straint propagation.

8 Conclusion

We have proposed a new framework for propagating arbitrary complex con-
straints. It is characterised by viewing logic and control as separate concerns.
We have shown that the controlled propagation framework explains and gen-
eralises some of the principles on which efficient manually devised propagation
algorithms for complex constraints are based. By discussing an implementation
and benchmarks, we have demonstrated feasibility and efficiency. The practi-
cal benefits of the controlled propagation framework are that it provides au-
tomatic constraint propagation for arbitrary logical combinations of primitive
constraints. Depending on the constraint, controlling the propagation can result
in substantially reduced usage of time as well as space.

Our focus in this paper has been on reducing unnecessary inference steps. The
complementary task of automatically identifying and enabling useful inference
steps in our framework deserves to be addressed. It would be interesting to
investigate if automatic reasoning methods can be used to strengthen constraint
definitions, for instance by automatically deriving implied constraints.
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Abstract. In this paper we introduce Associative Commutative Dis-
tributive Term Rewriting (ACDTR), a rewriting language for rewriting
logical formulae. ACDTR extends AC term rewriting by adding distribu-
tion of conjunction over other operators. Conjunction is vital for expres-
sive term rewriting systems since it allows us to require that multiple
conditions hold for a term rewriting rule to be used. ACDTR uses the
notion of a “conjunctive context”, which is the conjunction of constraints
that must hold in the context of a term, to enable the programmer to
write very expressive and targeted rewriting rules. ACDTR can be seen
as a general logic programming language that extends Constraint Han-
dling Rules and AC term rewriting. In this paper we define the semantics
of ACDTR and describe our prototype implementation.

1 Introduction

Term rewriting is a powerful instrument to specify computational processes. It is
the basis of functional languages; it is used to define the semantics of languages
and it is applied in automated theorem proving, to name only a few application
areas.

One difficulty faced by users of term rewriting systems is that term rewrite
rules are local, that is, the term to be rewritten occurs in a single place. This
means in order to write precise rewrite rules we need to gather all relevant
information in a single place.

Example 1. Imagine we wish to “program” an overloaded ordering relation for
integers variables, real variables and pair variables. In order to write this the
“type” of the variable must be encoded in the term1 as in:

int(x) ≤ int(y) → intleq(int(x), int(y))
real(x) ≤ real(y) → realleq(real(x), real(y))

pair(x1, x2) ≤ pair(y1, y2) → x1 ≤ y1 ∨ x1 = y1 ∧ x2 ≤ y2

In a more standard language, the type information for variables (and other
information) would be kept separate and “looked up” when required. 
�
1 Operator precedences used throughout this paper are: ∧ binds tighter than ∨, and

all other operators, e.g. ¬, =, bind tighter than ∧.

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, pp. 117–131, 2006.
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Term rewriting systems such as constraint handling rules (CHRs) [5] and
associative commutative (AC) term rewriting [3] allow “look up” to be managed
straightforwardly for a single conjunction.

Example 2. In AC term rewriting the above example could be expressed as:

int(x) ∧ int(y) ∧ x ≤ y → int(x) ∧ int(y) ∧ intleq(x, y)
real(x) ∧ real(y) ∧ x ≤ y → real(x) ∧ real(y) ∧ realleq(x, y)

pair (x, x1, x2) ∧ pair (y, y1, y2) ∧ x ≤ y → pair (x, x1, x2) ∧ pair (y, y1, y2)∧
(x1 ≤ y1 ∨ x1 = y1 ∧ x2 ≤ y2)

where each rule replaces the x ≤ y by an appropriate specialised version, in the
conjunction of constraints. The associativity and commutativity of ∧ is used to
easily collect the required type information from a conjunction. 
�

One difficulty remains with both AC term rewriting and CHRs. The “look up”
is restricted to be over a single large conjunction.

Example 3. Given the term int(x1) ∧ int(y1) ∧ pair (x, x1, x2) ∧ pair (y, y1, y2) ∧
x ≤ y. Then after rewriting x ≤ y to (x1 ≤ y1 ∨ x1 = y1 ∧ x2 ≤ y2) we could not
rewrite x1 ≤ y1 since the types for x1, y1 appear in a different level.

In order to push the type information inside the disjunction we need to dis-
tribute conjunction over disjunction. 
�

Simply adding distribution rules like

A ∧ (B ∨ C) → A ∧B ∨A ∧ C (1)
A ∧B ∨A ∧ C → A ∧ (B ∨C) (2)

does not solve the problem. Rule (1) creates two copies of termA, which increases
the size of the term being rewritten. Adding Rule (2) to counter this effect results
in a non-terminating rewriting system.

1.1 Conjunctive Context

We address the non-termination vs. size explosion problem due to distributivity
rewrite rules in a similar way to how commutativity is dealt with: by handling
distributivity on the language level. We restrict ourselves to dealing with ex-
panding distributivity of conjunction ∧ over any other operator, and we account
for idempotence of conjunction.2 Thus we are concerned with distribution rules
of the form

P ∧ f(Q1, . . . , Qn) → P ∧ f(P ∧Q1, . . . , P ∧Qn). (3)

Let us introduce the conjunctive context of a term and its use in rewrite
rules, informally for now. Consider a term T and the conjunction C ∧ T modulo
2 This means that conjunction is distributive over any function f in presence of a

redundant copy of P , i.e. P ∧ (P ∧ f(Q1, . . . , Qn)) → P ∧ f(P ∧ Q1, . . . , P ∧ Qn).
We use idempotence to simplify the RHS and derive (3).
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idempotence of ∧ that would result from exhaustive application of rule (3) to
the superterm of T . By the conjunctive context of T we mean the conjunction C.

Example 4. The conjunctive context of the boxed occurrence of x in the term

(x = 3) ∧ (x2 > y ∨ ( x = 4) ∧ U ∨ V ) ∧W,

is (x = 3) ∧ U ∧W . 
�
We allow a rewrite rule P → T to refer to the conjunctive context C of the rule
head P . We use the following notation:

C \ P ⇐⇒ T.

This facility provides ∧-distributivity without the undesirable effects of rule (3)
on the term size.

Example 5. We can express that an equality can be used anywhere “in its scope”
by viewing the equality as a conjunctive context:

x = a \ x⇐⇒ a.

Using this rule on the term of Example 4 results in

(x = 3) ∧ (32 > y ∨ (3 = 4) ∧ U ∨ V ) ∧W

without dissolving the disjunction. 
�

1.2 Motivation and Applications

Constraint Model Simplification. Our concrete motivation behind asso-
ciative commutative distributive term rewriting (ACDTR) is constraint model
mapping as part of the G12 project [7]. A key aim of G12 is the mapping of solver
independent models to efficient solver dependent models. We see ACDTR as
the basis for writing these mappings. Since models are not flat conjunctions of
constraints we need to go beyond AC term rewriting or CHRs.

Example 6. Consider the following simple constraint model inspired by the So-
cial Golfers problem. For two groups g1 and g2 playing in the same week there
can be no overlap in players: maxOverlap(g1, g2, 0) The aim is to maximise the
number of times the overlap between two groups is less than 2; in other words
minimise the number of times two players play together in a group.

constraint
∧

∀w∈Weeks
∀g1,g2∈weeks[w]

g1<g2

maxOverlap(g1, g2, 0)

maximise
∑

∀w1,w2∈Weeks
∀g1∈weeks[w1]
∀g2∈weeks[w2]

g1<g2

holds(maxOverlap(g1, g2, 1))
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Consider the following ACDTR program for optimising this constraint model.

maxOverlap(a, b, c1) \maxOverlap(a, b, c2)⇐⇒ c2 ≥ c1 | true
holds(true)⇐⇒ 1
holds(false)⇐⇒ 0

The first rule removes redundant maxOverlap constraints. The next two rules
implement partial evaluation of the holds auxiliary function which coerces a
Boolean to an integer.

By representing the constraint model as a giant term, we can optimise the
model by applying the ACDTR program. For example, consider the trivial case
with one week and two groups G1 and G2. The model becomes

maxOverlap(G1, G2, 0) ∧maximise(holds(maxOverlap(G1, G2, 1))).

The subterm holds(maxOverlap(G1, G2, 1)) simplifies to 1 using the conjunctive
context maxOverlap(G1, G2, 0). 
�

It is clear that pure CHRs are insufficient for constraint model mapping for at
least two reasons, namely

– a constraint model, e.g. Example 6, is typically not a flattened conjunction;
– some rules rewrite functions, e.g. rules (2) and (3) rewriting function holds ,

which is outside the scope of CHRs (which rewrite constraints only).

Global Definitions. As we have seen conjunctive context matching provides
a natural mechanism for making global information available. In a constraint
model, structured data and constraint definitions are typically global, i.e. on the
top level, while access to the data and the use of a defined constraint is local, e.g.
the type information from Example 1. Another example is partial evaluation.

Example 7. The solver independent modelling language has support for arrays.
Take a model having an array a of given values. It could be represented as the
top-level term array(a, [3, 1, 4, 1, 5, 9, 2, 7]). Deeper inside the model, accesses to
the array a occur, such as in the constraint x > y + lookup(a, 3). The following
rules expand such an array lookup:

array(A,Array) \ lookup(A, Index )⇐⇒ list element(Array , Index )
list element([X |Xs], 0)⇐⇒ X

list element([X |Xs], N)⇐⇒ N > 0 | list element(Xs, N − 1)

Referring to the respective array of the lookup expression via its conjunctive
context allows us to ignore the direct context of the lookup, i.e. the concrete
constraint or expression in which it occurs. 
�

Propagation Rules. When processing a logical formula, it is often useful to
be able to specify that a new formula Q can be derived from an existing formula
P without consuming P . In basic term rewriting, the obvious rule P ⇐⇒ P ∧Q
causes trivial non-termination. This issue is recognised in CHRs, which provide
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support for inference or propagation rules. We account for this fact and use rules
of the form P =⇒ Q to express such circumstances.

Example 8. The following is the classic CHR leq program reimplemented for
ACD term rewriting (we omit the basic rules for logical connectives):

leq(X,X)⇐⇒ true (reflexivity)
leq(X,Y ) \ leq(Y,X)⇐⇒ X = Y (antisymmetry)
leq(X,Y ) \ leq(X,Y )⇐⇒ true (idempotence)
leq(X,Y ) ∧ leq(Y, Z) =⇒ leq(X,Z) (transitivity)

These rules are almost the same as the CHR version, with the exception of
the second and third rule (antisymmetry and idempotence) which generalise its
original by using conjunctive context matching. 
�

Propagation rules are also used for adding redundant information during model
mapping.

The rest of the paper is organised as follows. Section 2 covers the standard
syntax and notation of term rewriting. Section 3 defines the declarative and op-
erational semantics of ACDTR. Section 4 describes a prototype implementation
of ACDTR as part of the G12 project. Section 5 compares ACDTR with related
languages. Finally, in Section 6 we conclude.

2 Preliminaries

In this section we briefly introduce the notation and terminology used in this
paper. Much of this is borrowed from term rewriting [3].

We use T (Σ,X) to represent the set of all terms constructed from a set of
function symbols Σ and set of variables X (assumed to be countably infinite).
We use Σ(n) ⊆ Σ to represent the set of function symbols of arity n.

A position is a string (sequence) of integers that uniquely determines a sub-
term of a term T , where ε represents the empty string. We define function T |p,
which returns the subterm of T at position p as

T |ε = T
f(T1, . . . , Ti, . . . , Tn)|ip = Ti|p

We similarly define a function T [S]p which replaces the subterm of T at position
p with term S. We define the set Pos(T ) to represent the set of all positions of
subterms in T .

An identity is a pair (s, t) ∈ T (Σ,X)× T (Σ,X), which is usually written as
s ≈ t. Given a set of identities E, we define ≈E to be the set of identities closed
under the axioms of equational logic [3], i.e. symmetry, transitivity, etc.

We define the congruence class [T ]≈E = {S ∈ T (Σ,X)|S ≈E T } as the set of
terms equal to T with respect to E.

Finally, we define function vars(T ) to return the set of variables in T .
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3 Syntax and Semantics

The syntax of ACDTR closely resembles that of CHRs. There are three types of
rules of the following form:

(simplification) r @ H ⇐⇒ g | B
(propagation) r @ H =⇒ g | B
(simpagation) r @ C \ H ⇐⇒ g | B

where r is a rule identifier, and head H , conjunctive context C, guard g and body
B are arbitrary terms. The rule identifier is assumed to uniquely determine the
rule. A program P is a set of rules.

We assume that vars(g) ⊆ vars(H) or vars(g) ⊆ vars(H) ∪ vars(C) (for
simpagation rules). The rule identifier can be omitted. If g = true then the
guard can be omitted.

We present the declarative semantics of ACDTR based on equational logic.
First we define the set of operators that ACDTR treats specially.

Definition 1 (Operators). We define the set of associate commutative oper-
ators as AC. The set AC must satisfy AC ⊆ Σ(2) and (∧) ∈ AC.

For our examples we assume that AC = {∧,∨,+,×}. We also treat the operator
∧ as distributive as explained below.

ACDTR supports a simple form of guards.

Definition 2 (Guards). A guard is a term. We denote the set of all “true”
guards as G, i.e. a guard g is said to hold iff g ∈ G. We assume that true ∈ G
and false �∈ G.

We can now define the declarative semantics for ACDTR. In order to do so
we employ a special binary operator where to explicitly attach a conjunctive
context to a term. Intuitively, the meaning of T where C is equivalent to that of
T provided C is true, otherwise the meaning of T where C is unconstrained. For
Boolean expressions, it is useful to interpret where as conjunction ∧, therefore
where-distribution, i.e. identity (6) below, becomes equivalent to ∧-distribution
(3). The advantage of distinguishing where and ∧ is that we are not forced to
extend the definition of ∧ to arbitrary (non-Boolean) functions.

We denote by B the following set of built-in identities:

A ◦B ≈ B ◦A (1)
(A ◦B) ◦ C ≈ A ◦ (B ◦ C) (2)

T ≈ (T where true) (3)
A ∧B ≈ (A where B) ∧B (4)

T where (W1 ∧W2) ≈ (T where W1) where W2 (5)
f(A1, ..., Ai, ..., An) where W ≈ f(A1, ..., Ai where W, ..., An) where W (6)

for all ◦ ∈ AC, functions f ∈ Σ(n), and i ∈ {1, . . . , n}.
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Definition 3 (Declarative Semantics for ACDTR). The declarative se-
mantics for an ACDTR program P (represented as a multiset of rules) is given
by the function �� defined as follows:

�P � = {�θ(R)� | ∀R, θ . R ∈ P ∧ θ(guard(R)) ∈ G} ∪ B
�H ⇐⇒ g | B� = ∃vars(B)−vars(H)(H ≈ B)
�C \H ⇐⇒ g | B� = ∃vars(B)−vars(C,H)(H where C ≈ B where C)
�H =⇒ g | B� = ∃vars(B)−vars(H)(H ≈ H ∧B)

where function guard(R) returns the guard of a rule.

The function �� maps ACDTR rules to identities between the head and the
body terms, where body-only variables are existentially quantified.3 Note that
there is a new identity for each possible binding of guard(R) that holds in G.
A propagation rule is equivalent to a simplification rule that (re)introduces the
head H (in conjunction with the body B) in the RHS. This is analogous to
propagation rules under CHRs.

A simpagation rule is equivalent to a simplification rule provided the conjunc-
tive context is satisfied.

The built-in rules B from Definition 3 contain identities for cre-
ating/destroying (3) and (4), combining/splitting (5), and distributing down-
wards/upwards (6) a conjunctive context in terms of the where operator.

The set B also contains identities (1) and (2) for the associative/commutative
properties of the AC operators.

Example 9. Consider the following ACDTR rule and the corresponding identity.

�X = Y \X ⇐⇒ Y � = (Y where X = Y ) ≈ (X where X = Y ) (7)

Under this identity and using the rules in B, we can show that f(A)∧(A = B) ≈
f(B) ∧ (A = B), as follows.

f(A) ∧ (A = B) ≈(4)
(f(A) where (A = B)) ∧ (A = B) ≈(6)
(f(A where (A = B)) where (A = B)) ∧ (A = B) ≈(7)
(f(B where (A = B)) where (A = B)) ∧ (A = B) ≈(6)
(f(B) where (A = B)) ∧ (A = B) ≈(4)
f(B) ∧ (A = B)

3.1 Operational Semantics

In this section we describe the operational semantics of ACDTR. It is based
on the theoretical operational semantics of CHRs [1,4]. This includes support
for identifiers and propagation histories, and conjunctive context matching for
simpagation rules.
3 All other variables are implicitly universally quantified, where the universal quanti-

fiers appear outside the existential ones.
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Propagation History. The CHR concept of a propagation history, which pre-
vents trivial non-termination of propagation rules, needs to be generalised over
arbitrary terms for ACDTR. A propagation history is essentially a record of all
propagation rule applications, which is checked to ensure a propagation rule is
not applied twice to the same (sub)term.

In CHRs, each constraint is associated with a unique identifier. If multiple
copies of the same constraint appear in the CHR store, then each copy is assigned
a different identifier. We extend the notion of identifiers to arbitrary terms.

Definition 4 (Identifiers). An identifier is an integer associated with each
(sub)term. We use the notation T#i to indicate that term T has been associated
with identifier i. A term T is annotated if T and all subterms of T are associated
with an identifier. We also define function ids(T ) to return the set of identifiers
in T , and term(T ) to return the non-annotated version of T .

For example, T = f(a#1, b#2)#3 is an annotated term, where ids(T ) = {1, 2, 3}
and term(T ) = f(a, b).

Identifiers are considered separate from the term.We could be more precise
by separating the two, i.e. explicitly maintain a map between Pos(T ) and the
identifiers for T . We do not use this approach for space reasons. We extend
and overload all of the standard operations over terms (e.g. from Section 2) to
annotated terms in the obvious manner. For example, the subterm relation T |p
over annotated terms returns the annotated term at position p. The exception
are elements of the congruence class [T ]≈AC , formed by the AC relation ≈AC ,
which we assume satisfies the following constraints.

A#i ◦B#j ≈AC B#j ◦A#i
A#i ◦ (B#j ◦ C#k) ≈AC (A#i ◦B#j) ◦ C#k

We have neglected to mention the identifiers overAC operators. These identifiers
will be ignored later, so we leave them unconstrained.

A propagation history is a set of entries defined as follows.

Definition 5 (Entries). A propagation history entry is of the form (r @ E),
where r is a propagation rule identifier, and E is a string of identifiers. We
define function entry(r, T ) to return the propagation history entry of rule r for
annotated term T as follows.

entry(r, T ) = (r @ entry(T ))
entry(T1 ◦ T2) = entry(T1) entry(T2) ◦ ∈ AC
entry(f(T1, ..., Tn)#i) = i entry(T1) ... entry(Tn) otherwise

This definition means that propagation history entries are unaffected by asso-
ciativity, but are effected by commutativity.

Example 10. Consider the annotated term T = f((a#1 ∧ b#2)#3)#4. We have
that T ∈ [T ]≈AC and T ′ = f((b#2 ∧ a#1)#3)#4 ∈ [T ]≈AC . Although T
and T ′ belong to [T ]≈AC they have different propagation history entries, e.g.
entry(r, T ) = (r @ (4 1 2)) while entry(r, T ′) = (r @ (4 2 1)). 
�
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When a (sub)term is rewritten into another, the new term is assigned a set of
new unique identifiers. We define the auxiliary function annotate(P , T ) = Ta to
map a set of identifiers P and un-annotated term T to an annotated term Ta

such that ids(Ta)∩P = ∅ and |ids(Ta)| = |Pos(T )|. These conditions ensure that
all identifiers are new and unique.

When a rule is applied the propagation history must be updated accordingly
to reflect which terms are copied from the matching. For example, the rule
f(X) ⇐⇒ g(X,X) essentially clones the term matching X . The identifiers,
however, are not cloned. If a term is cloned, we expect that both copies will
inherit the propagation history of the original. Likewise, terms can be merged,
e.g. g(X,X) ⇐⇒ f(X) merges two instances of the term matching X . In this
case, the propagation histories of the copies are also merged.

To achieve this we duplicate entries in the propagation history for each oc-
currence of a variable in the body that also appeared in the head.

Definition 6 (Updating History). Define function

update(H,Ha, B,Ba, T0) = T1

where H and B are un-annotated terms, Ha and Ba are annotated terms, and T0
and T1 are propagation histories. T1 is a minimal propagation history satisfying
the following conditions:

– T0 ⊆ T1;
– ∀p ∈ Pos(H) such that H |p = V ∈ X (where X is the set of variables), and
∃q ∈ Pos(B) such that B|q = V , then define identifier renaming ρ such that
ρ(Ha|p) and Ba|q are identical annotated terms. Then if E ∈ T0 we have
that ρ(E) ∈ T1.

Example 11. Consider rewriting the term Ha = f((a#1 ∧ b#2)#3)#4 with a
propagation history of T0 = {(r @ (1 2))} using the rule f(X) ⇐⇒ g(X,X).
The resulting term is Ba = g((a#5∧b#6)#7), (a#8∧b#9)#10#11 and the new
propagation history is T1 = {(r @ (1 2)), (r @ (5 6)), (r @ (8 9))}.

Conjunctive Context. According to the declarative semantics, a term T with
conjunctive context C is represented as (T where C). Operationally, we will
never explicitly build a term containing a where clause. Instead we use the
following function to compute the conjunctive context of a subterm on demand.

Definition 7 (Conjunctive Context). Given an (annotated) term T and a
position p ∈ Pos(T ), we define function cc(T, p) to return the conjunctive context
at position p as follows.

cc(T, ε) = true
cc(A ∧B, 1p) = B ∧ cc(A, p)
cc(A ∧B, 2p) = A ∧ cc(B, p)
cc(f(T1, . . . , Ti, . . . , Tn), ip) = cc(Ti, p) (f �= ∧)
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States and Transitions. The operational semantics are defined as a set of
transitions on execution states.

Definition 8 (Execution States). An execution state is a tuple of the form
〈G, T,V ,P〉, where G is a term (the goal), T is the propagation history, V is
the set of variables appearing in the initial goal and P is a set of identifiers.

We also define initial and final states as follows.

Definition 9 (Initial and Final States). Given an initial goal G for program
P , the initial state of G is

〈Ga, ∅, vars(G), ids(Ga)〉

where Ga = annotate(∅, G). A final state is a state where no more rules are
applicable to the goal G.

We can now define the operational semantics of ACDTR as follows.

Definition 10 (Operational Semantics)

〈G0, T0,V ,P0〉� 〈G1, T1,V ,P1〉

1. Simplify: There exists a (renamed) rule from P

H ⇐⇒ g | B

such that there exists a matching substitution θ and a term G′
0 such that

– G0 ≈AC G′
0

– ∃p ∈ Pos(G′
0) . G

′
0|p = θ(H)

– θ(g) ∈ G
– Ba = annotate(P0, θ(B))

Then G1 = G′
0[Ba]p, P1 = P0 ∪ ids(G1) and T1 = update(H,G′

0|p, B,Ba, T0).

2. Propagate: There exists a (renamed) rule from P

r @ H =⇒ g | B

such that there exists a matching substitution θ and a term G′
0 such that

– G0 ≈AC G′
0

– ∃p ∈ Pos(G′
0) . G

′
0|p = θ(H)

– θ(g) ∈ G
– entry(r,G′

0|p) �∈ T0
– Ba = annotate(P0, θ(B))

Then G1 = G′
0[G′

0|p ∧Ba]p, T1 = update(H,G′
0|p, B,Ba, T0) ∪ {entry(r,G′

0|p)}
and P1 = P0 ∪ ids(G1).

3. Simpagate: There exists a (renamed) rule from P

C \ H ⇐⇒ g | B
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〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧8 ¬9leq(X10, Z11)12), ∅〉 �trans

〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧13 leq(X15, Z16)14 ∧8 ¬9leq(X10, Z11)12), T 〉 �idemp

〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧13 leq(X15, Z16)14 ∧8 ¬9true17), T 〉 �simplify

〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧13 leq(X15, Z16)14 ∧8 false18), T 〉 �simplify

〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧13 false19), T 〉 �simplify

〈(leq(X1, Y2)3 ∧4 false20), T 〉 �simplify

〈(false21), T 〉

Fig. 1. Example derivation for the leq program

such that there exists a matching substitution θ and a term G′
0 such that

– G0 ≈AC G′
0

– ∃p ∈ Pos(G′
0) . G

′
0|p = θ(H)

– ∃D.θ(C) ∧D ≈AC cc(G′
0, p)

– θ(g) ∈ G
– Ba = annotate(P0, θ(B))

Then G1 = G′
0[Ba]p, T1 = update(H,G′

0|p, B,Ba, T0) and P1 = P0 ∪ ids(G1).

Example. Consider the leq program from Example 8 with the goal

leq(X,Y ) ∧ leq(Y, Z) ∧ ¬leq(X,Z)

Figure 1 shows one possible derivation of this goal to the final state representing
false. For brevity, we omit the V and P fields, and represent identifiers as sub-
scripts, i.e. T#i = Ti. Also we substitute T = {transitivity @ (3 2 1 7 5 6)}.

We can state a soundness result for ACDTR.

Theorem 1 (Soundness). If 〈G0, T0,V ,P〉�∗ 〈G′, T ′,V ,P〉 with respect to a
program P , then �P � |= ∃vars(G′)−V G0 ≈ G′

This means that for all algebras A that satisfy �P �, G0 and G′ are equivalent
for some assignment of the fresh variables in G′.

4 Implementation

We have implemented a prototype version of ACDTR as part of the mapping
language of the G12 project, called Cadmium. In this section we give an overview
of the implementation details. In particular, we will focus on the implementation
of conjunctive context matching, which is the main contribution of this paper.

Cadmium constructs normalised terms from the bottom up. Here, a nor-
malised term is one that cannot be reduced further by an application of a rule.
Given a goal f(t1, ..., tn), we first must recursively normalise all of t1, ..., tn (to
say s1, ..., sn), and then attempt to find a rule that can be applied to the top-level
of f(s1, ..., sn). This is the standard execution algorithm used by many TRSs
implementations.
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This approach of normalising terms bottom up is complicated by the consid-
eration of conjunctive context matching. This is because the conjunctive context
of the current term appears “higher up” in the overall goal term. Thus conjunc-
tive context must be passed top down, yet we are normalising bottom up. This
means there is no guarantee that the conjunctive context is normalised.

Example 12. Consider the following ACDTR program that uses conjunctive con-
text matching.

X = V \X ⇐⇒ var(X) ∧ nonvar(V ) | V.
one(X)⇐⇒ X = 1.

not one(1)⇐⇒ false.

Consider the goal not one(A)∧one(A), which we expect should be normalised to
false. Assume that the sub-term not one(A) is selected for normalisation first.
The conjunctive context for not one(A) (and its subterm A) is one(A). No rule
is applicable, so not one(A) is not reduced.

Next the subterm one(A) is reduced. The second rule will fire resulting in the
new term A = 1. Now the conjunctive context for the first term not one(A) has
changed to A = 1, so we expect that A should be rewritten to the number 1.
However not one(A) has already being considered for normalisation. 
�
The current Cadmium prototype solves this problem by re-normalising terms
when and if the conjunctive context “changes”. For example, when the conjunc-
tive context one(A) changes to A = 1, the term not one(X) will be renormalised
to not one(1) by the first rule.

The general execution algorithm for Cadmium is shown in Figure 2. Func-
tion normalise takes a term T , a substitution θ, a conjunctive context CC and
a Boolean value Ch which keeps track of when the conjunctive context of the
current subterm has changed. If Ch = true, then we can assume the substitu-
tion θ maps variables to normalised terms. For the initial goal, we assume θ is
empty, otherwise if we are executing a body of a rule, then θ is the matching
substitution.

Operationally, normalise splits into three cases depending on what T is. If T
is a variable, and the conjunctive context has changed (i.e. Ch = true), then
θ(T ) is no longer guaranteed to be normalised. In this case we return the result
of renormalising θ(T ) with respect to CC. Otherwise if Ch = false, we simply
return θ(T ) which must be already normalised. If T is a conjunction T1 ∧T2, we
repeatedly call normalise on each conjunct with the other added to the conjunc-
tive context. This is repeated until a fixed point (i.e. further normalisation does
not result in either conjunct changing) is reached, and then return the result
of apply rule on the which we will discuss below. This fixed point calculation
accounts for the case where the conjunctive context of a term changes, as shown
in Example 12. Otherwise, if T is any other term of the form f(T1, ..., Tn), con-
struct the new term T ′ by normalising each argument. Finally we return the
result of apply rule applied to T ′.

The function call apply rule(T ′,CC) will attempt to apply a rule to normalised
term T ′ with respect to conjunctive context CC. If a matching rule is found,
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normalise(T ,θ,CC,Ch)
if is var(T )

if Ch
return normalise(θ(T ),θ,CC,false)

else
return θ(T )

else if T = T1 ∧ T2

do
T ′

1 := T1

T ′
2 := T2

T1 := normalise(T ′
1,θ,T ′

2 ∧ CC,true)
T2 := normalise(T ′

2,θ,T ′
1 ∧ CC,true)

while T1 �= T ′
1 ∧ T2 �= T ′

2

return apply rule(T ′
1 ∧ T ′

2,CC)
else

T = f(T1, ..., Tn)
T ′ := f(normalise(T1,θ,CC,Ch), ..., normalise(Tn,θ,CC,Ch))

return apply rule(T ′,CC)

Fig. 2. Pseudo code of the Cadmium execution algorithm

then the result of normalise(B,θ,CC,false) is returned, where B is the (re-
named) rule body and θ is the matching substitution. Otherwise, T ′ is simply
returned.

5 Related Work

ACDTR is closely related to both TRS and CHRs, and in this section we compare
the three languages.

5.1 AC Term Rewriting Systems

The problem of dealing with associative commutative operators in TRS is well
studied. A popular solution is to perform the rewriting modulo some permutation
of the AC operators. Although this complicates the matching algorithm, the
problem of trivial non-termination (e.g. by continually rewriting with respect to
commutativity) is solved.

ACDTR subsumes ACTRS (Associative Commutative TRS) in that we have
introduced distributivity (via simpagation rules), and added some “CHR-style”
concepts such as identifiers and propagation rules.

Given an ACTRS program, we can map it to an equivalent ACDTR program
by interpreting each ACTRS rule H → B as the ACDTR rule H ⇐⇒ B. We
can now state the theorem relating ACTRS and ACDTR.

Theorem 2. Let P be an ACTRS program and T a ground term, then T →∗ S
under P iff 〈Ta, ∅, ∅, ids(Ta)〉�∗ 〈Sa, ∅, ∅,P〉 under α(P ) (where Ta = annotate
(∅, T )) for some P and term(Sa) = S.
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5.2 CHRs and CHR∨

ACDTR has been deliberately designed to be an extension of CHRs. Several
CHR concepts, e.g. propagation rules, etc., have been adapted.

There are differences between CHRs and ACDTR. The main difference is that
ACDTR does not have a “built-in” or “underlying” solver, i.e. ACDTR is not
a constraint programming language. However it is possible to encode solvers di-
rectly as rules, e.g. the simple leq solver from Example 8. Another important
difference is that CHRs is based on predicate logic, where there exists a distinc-
tion between predicate symbols (i.e. the names of the constraints) and functions
(used to construct terms). ACDTR is based on equational logic between terms,
hence there is no distinction between predicates and functions (a predicate is
just a Boolean function). To overcome this, we assume the existence of a set
Pred, which contains the set of function symbols that are Boolean functions.
We assume that AC ∩ Pred = {∧(2)}.

The mapping between a CHR program and an ACDTR program is simply
α(P ) = P ∪ {X ∧ true⇐⇒ X}. 4 However, we assume program P is restricted
as follows:

– rules have no guards apart from implicit equality guards; and
– the only built-in constraint is true

and the initial goal G is also restricted:

– G must be of the form G0 ∧ ... ∧Gn for n > 0;
– Each Gi is of the form fi(A0, ..., Am) for m ≥ 0 and fi ∈ Pred;
– For all p ∈ Pos(Aj), 0 ≤ j ≤ m we have that if Aj |p = g(B0, ..., Bq) then
g(q) �∈ AC and g(q) �∈ Pred.

These conditions disallow predicate symbols from appearing as arguments in
CHR constraints.

Theorem 3. Let P be a CHR program, and G an initial goal both satisfying
the above conditions, then 〈G, ∅, true, ∅〉V1 � 〈∅, S, true, T 〉Vi (for some T , i
and V = vars(G)) under the theoretical operational semantics [4] for CHRs
iff 〈Ga, ∅,V , ids(Ga)〉 � 〈Sa, T

′,V ,P〉 (for some T ′, P) under ACDTR, where
term(Sa) = S1∧...∧Sn and S = {S1#i1, ..., Sn#in} for some identifiers i1, ..., in.

We believe that Theorem 3 could be extended to include CHR programs that
extend an underlying solver, provided the rules for handling tell constraints are
added to the ACDTR program. For example, we can combine rules for rational
tree unification with the leq program from Example 8 to get a program equivalent
to the traditional leq program under CHRs.

ACDTR generalises CHRs by allowing other operators besides conjunction
inside the head or body of rules. One such extension of CHRs has been studied
before, namely CHR∨ [2] which allows disjunction in the body. Unlike ACDTR,
4 There is one slight difference in syntax: CHRs use ‘,’ to represent conjunction,

whereas ACDTR uses ‘∧’.
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which manipulates disjunction syntactically, CHR∨typically finds solutions using
backtracking search.

One notable implementation of CHR∨is [6], which has an operational seman-
tics described as an and/or (∧/∨) tree rewriting system. A limited form of con-
junctive context matching is used, similar to that used by ACDTR, based on the
knowledge that conjunction ∧ distributes over disjunction ∨. ACDTR generalises
this by distributing over all functions.

6 Future Work and Conclusions

We have presented a powerful new rule-based programming language, ACDTR,
that naturally extends both AC term rewriting and CHRs. The main contribu-
tion is the ability to match a rule against the conjunctive context of a (sub)term,
taking advantage of the distributive property of conjunction over all possible
functions. We have shown this is a natural way of expressing some problems,
and by building the distributive property into the matching algorithm, we avoid
non-termination issues that arise from naively implementing distribution (e.g.
as rewrite rules).

We intend that ACDTR will become the theoretical basis for the Cadmium
constraint mapping language as part of the G12 project [7]. Work on ACDTR
and Cadmium is ongoing, and there is a wide scope for future work, such as
confluence, termination and implementation/optimisation issues.
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Abstract. In program development it is useful to know that a call to a
Prolog program will not inadvertently leave a choice-point on the stack.
Determinacy inference has been proposed for solving this problem yet the
analysis was found to be wanting in that it could not infer determinacy
conditions for programs that contained cuts or applied certain tests to
select a clause. This paper shows how to remedy these serious deficiencies.
It also addresses the problem of identifying those predicates which can
be rewritten in a more deterministic fashion. To this end, a radically new
form of determinacy inference is introduced, which is founded on ideas
in ccp, that is capable of reasoning about the way bindings imposed by
a rightmost goal can make a leftmost goal deterministic.

1 Introduction

Understanding the determinacy behaviour of a logic program is important in pro-
gramdevelopment.To this end, determinacy inference [13] has been proposed as an
analysis for inferring conditions on goals that are sufficient to assure determinacy.
The key difference between determinacy checking [12,14,16] and determinacy in-
ference is that the former verifies that a given goal will generate at most one answer
at most once (if it yields any at all) whereas the latter infers, in a single application
of the analysis, a class of goals that are deterministic. In addition to ensuring the
determinacy of the initial goal, the conditions inferred by [13] ensure the determi-
nacy of each intermediate atomic sub-goal that is invoked whilst solving the initial
goal. Therefore, any call that satisfies its determinacy condition cannot (uninten-
tionally) leave a choice-point on the stack.

Determinacy inference is most insightful when it infers a class of calls that
differs from what the programmer expects. If the class is smaller than expected,
then either the predicate is unintentionally non-deterministic (i.e. buggy), or the
analysis is insufficiently precise. If the class is larger than anticipated, then either
the predicate possesses properties that the programmer overlooked (i.e. subtle
sub-goal interactions that induce determinacy), or it has been coded incorrectly.
Alas, determinacy inference was found to be insufficiently precise for programs
which used the cut to enforce determinacy. This is because determinacy condi-
tions are derived from conditions, known as mutual exclusion conditions, that
are sufficient to ensure that at most one clause of a predicate can derive an
answer to a call. These conditions are derived by analysing the constraints that
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arise in the different clauses of a predicate. Cuts are often introduced so as to
avoid applying a test in a clause whose outcome is predetermined by a test in
an earlier clause. The absence of such a test prevented a mutual exclusion con-
dition from being inferred. This paper shows that, although this problem may
appear insurmountable, that determinacy inference can be elegantly extended
to support cuts. The paper also reports how the machinery used to infer mutual
exclusion conditions can be refined so as to reason about tests that operate, not
on the arguments of a clause, but sub-terms of the arguments. This is also key
to inferring accurate mutual exclusion conditions for realistic programs.

As well as enhancing an existing analysis, the paper introduces a new form of
determinacy inference. To illustrate the contribution, consider the database:

q(a). q(b). r(a).

and compound goal q(X), r(X) which is not dissimilar to a number of goals
that we have found in existing programs [19]. The compound goal generates at
most one answer, no matter how it is called, due to the way the bindings gener-
ated by the rightmost sub-goal constrain the leftmost sub-goal. The analysis of
[13] would only infer that the goal is deterministic if called with X ground. Yet
the vacuous groundness condition of true is sufficient for the goal to be determi-
nate (even though it employs backtracking). The value in knowing that the goal
is actually determinate is that it alerts the programmer to where the program
can be improved. If the programmer can verify that the determinacy conditions
hold (which is often straightforward) then the goal can be executed under a
once meta-call without compromising correctness. Equivalently, the goal could
be replaced with q(X), r(X), !. Either approach would remove any choice-
points that remain unexplored and thereby eliminate a performance bug. Alter-
natively, the programmer might observe that the goal can be reordered to obtain
r(X), q(X) which will not generate any choice-points at all (though such a re-
ordering might compromise termination).

The new form of determinacy inference reported in this paper can locate
these opportunities for optimisation when it is used in conjunction with the
existing analysis [13]. The new form of analysis can detect determinacy in the
presence of right-to-left flow of bindings; the existing analysis cannot. Hence,
any discrepancy between the results of the two analyses identifies a goal that
is deterministic, yet could possibly leave choice-points on the stack. Such goals
warrant particularly close scrutiny. Without this form of pinpointing, it would
be necessary to manually inspect large numbers of non-deterministic predicates.

One technical contribution is in the way the new analysis is realised using sus-
pension inference [4]. The intuition is to add delay declarations to the program
so that a goal can only be selected if no more than one clause in the match-
ing predicate can generate an answer. The sub-goals r(X) and q(X) are thus
selected when, respectively, the groundness conditions of true and X are satis-
fied. Suspension inference then deduces that the condition true is sufficient for
the compound goal not to suspend. A correctness result reported in the paper
shows that non-suspension conditions can then be reinterpreted as determinacy
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conditions. In addition to its use in debugging, the analysis has application in
the burgeoning area of semi-offline program specialisation (see the discussion in
section 6). The paper is organised as follows. Section 2 presents a worked ex-
ample that illustrates the new form of determinacy inference. Section 3 explains
the main correctness result. (The proofs and all the supporting lemmata are all
given in [6]). Sections 4 and 5 explain how to support cuts and tests between
the sub-terms of arguments. Sections 6 surveys the related work.

2 Worked Example

Since the correctness argument is necessarily theoretical, this section illustrates
the key ideas in the new approach to determinacy inference by way of an example:

(1) rev([],[]).
(2) rev([X|Xs],Ys) :- rev(Xs,Zs), app(Zs,[X],Ys).

(3) app([],X,X).
(4) app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

2.1 The Common Ground

The chief novelty in the previous approach to determinacy inference [13] was in
the way success patterns for the individual clauses of a predicate were used to
infer mutual exclusion conditions for a call to that predicate. The new analysis
builds on these mutual exclusion conditions. Such a condition, when satisfied
by a call, ensures that no more than one clause of the matching predicate can
lead to a successful derivation. To illustrate, consider characterising the success
patterns with an argument-size analysis in which size is measured as list-length:

(1) rev(x1, x2) :- x1 = 0, x2 = 0.
(2) rev(x1, x2) :- x1 ≥ 1, x1 = x2.

(3) app(x1, x2, x3) :- x1 = 0, x2 ≥ 0, x2 = x3.
(4) app(x1, x2, x3) :- x1 ≥ 1, x2 ≥ 0, x1 + x2 = x3.

An algorithm that takes, as input, success patterns and produces, as output,
mutual exclusion conditions is detailed in our previous paper [13]. Rather than
repeating the algorithm, we give the intuition of how rigidity relates to mutual
exclusion. If a call rev(x1, x2) succeeds with x1 bound to a rigid list, then so
does a new call rev(x1, x2) to the new version of the predicate in which x1
is bound to the length of the list. Hence, if the original clause succeeds with
the original clause (1), then so does the new call to the new version of that
clause. The presence of the constraint x1 = 0 in the new clause implies that
the argument x1 of the new call was initially zero. The new clause (2) cannot
then also succeed because of the constraint x1 ≥ 1. Hence the original clause
(2) cannot also succeed with the original call. The argument follows in the other
direction, hence the rigidity condition x1 on the original call is sufficient for
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mutual exclusion. By similar reasoning, the rigidity of x2 is also sufficient hence
the combined condition x1 ∨ x2 is also a mutual exclusion condition. Repeating
this argument for app(x1, x2, x3) yields x1 ∨ (x2 ∧ x3) [13].

2.2 The Problem

The value of mutual exclusion conditions is that if all sub-goals encountered
whilst solving a goal satisfy their conditions, then the goal is deterministic [13].
This motivates the application of backward analysis [5] which infers conditions
on goals which ensure that a given set of assertions are not violated. By adding
assertions that check calls meet their mutual exclusion conditions, the backward
analysis will infer conditions on goals that assure determinacy. To illustrate
backward analysis, consider clause (2) on the previous page. Since [X] is rigid,
it is enough for d2 = Zs ∨ Ys to hold for app(Zs,[X],Ys) to satisfy its condi-
tion. By inspecting the success patterns of rev it follows that after the sub-goal
rev(Xs,Zs) the rigidity property f1 = Xs ∧ Zs holds. Thus, if the condition
f1 → d2 holds before the sub-goal, then (f1 → d2)∧f1, hence d2, holds after the
sub-goal, and thus the mutual exclusion condition for app(Zs,[X],Ys) is satis-
fied. Since d1 = Xs ∨ Zs is the mutual exclusion condition for the rev(Xs,Zs),
d1 ∧ (f1 → d2) = (Xs ∨ Zs) guarantees that both sub-goals of the body satisfy
their conditions when encountered. To satisfy this condition, it is enough for
[X|Xs] to be rigid, that is, for rev to be called with a rigid first argument.

The astute reader will notice that rev is determinate when called with a rigid
second argument. To see this, observe that each answer to rev(Xs, Zs) will in-
stantiate Zs to a list of different size. Now consider executing the compound goal
app(Zs,[X],Ys), rev(Xs, Zs) with Ys rigid. The rigidity of Ys ensures that
app(Zs,[X],Ys) is deterministic and thus Zs has at most one solution of fixed
size. This, in turn, guarantees that rev(Xs, Zs) can yield at most one answer,
hence the compound goal is deterministic. (Actually, rev gives one answer and
then loops in this mode, though this does not compromise determinacy and such
goals can always be executed under once without compromising correctness). It
is therefore disappointing that [13] only discovers one deterministic mode.

2.3 The Solution

The two deterministic modes stem from different flows of bindings between the
sub-goals. This motivates an analysis that considers different schedulings of sub-
goals and selects a sub-goal only when its mutual exclusion condition is satisfied.
In effect, mutual exclusion conditions are interpreted as delay conditions like so:

delay rev(X, Y) until rigid list(X) ; rigid list(Y).
rev([],[]).
rev([X|Xs],Ys) :- rev(Xs,Zs), app(Zs,[X],Ys).
delay app(X, Y, Z) until rigid list(X) ; (rigid list(Y) , rigid list(Z)).
app([],X,X).
app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).
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The delay declarations, which are reminiscent of Gödel syntax, block rev and
app goals until combinations of their arguments are bound to rigid lists. Suspen-
sion inference [4] (which can be considered to be a black-box) is then applicable
to this transformation of the original program and, for this derived program, can
infer classes of initial goals which cannot lead to suspending states. For these
initial goals, the program cannot reduce to a state that only contains suspend-
ing sub-goals, that is, sub-goals which violate their mutual exclusion conditions.
Since each sub-goal satisfies its condition when executed, the computation is
deterministic. Furthermore, executing any such initial goal under left-to-right
selection (and we conjecture any selection) will also generate at most one an-
swer [6] — it may not terminate but again this will not undermine determinacy.
Applying suspension inference [4] to the above program yields the rigidity condi-
tions of x1∨x2 and x1∨(x2∧x3) for rev(x1, x2) and app(x1, x2, x3) respectively,
as desired. Note that the delay conditions are not left in the program after anal-
ysis; they are only introduced for the purpose of applying suspension inference.

3 The Semantics and the Transformation

This section builds toward stating a result which explains how suspension infer-
ence can be applied to realise determinacy inference. Rather unusually, the result
relates three different semantics. Firstly, a semantics that maps a single call to a
Prolog program to a multiset of possible answers. This semantics is rich enough
to observe non-determinacy. Secondly, a semantics for success patterns which
can express the concept of a mutual exclusion condition. Thirdly, a semantics
for ccp that is rich enough for observing non-suspension. In order to express the
transformation of a Prolog program, all three semantics have been formulated
in terms of a common language syntax and a common computational domain of
constraints. This domain is detailed in section 3.1. The semantics (which them-
selves possess a number of novel features) are presented in sections 3.2 and 3.3.
Finally the transformation and the result itself is presented in section 3.4.

3.1 Computational Domain of Constraints

The computational domain is a set of constraints Con that is ordered by an
entailment (implication) relation |=. The set Con is assumed to contain equality
constraints of the form x = y where x and y are vectors of variables. Syntac-
tically different constraints may entail one another and therefore a relation ≡
is introduced to express equivalence which is defined by θ1 ≡ θ2 iff θ1 |= θ2
and θ2 |= θ1. Since we do not wish to distinguish between constraints that are
semantically equivalent but syntactically different, we base our semantics on a
domain of equivalence classes Con/≡ in which a class is denoted by [θ]≡ where θ
is a representative member of the class. This domain is ordered by [θ1]≡ |= [θ2]≡
iff θ1 |= θ2. The domain is assumed to come equipped with a conjunction op-
eration [θ1]≡ ∧ [θ2]≡ and a projection operation ∃x([θ]≡) where x is a vector of
variables, both of which are assumed to posses normal algebraic properties [18].
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The former conjoins constraints whereas the latter hides information in [θ]≡ that
pertains to variables not contained within x.

Equality constraints such as x = y provide a way of connecting the actual
arguments x of a call with the formal arguments y of the matching proce-
dure. However, equality is doubly useful since, when combined with projection,
it provides a way of renaming constraints — an action which is inextricably
linked with parameter passing. To systematically substitute each variable in x
with its corresponding variable in y within the constraint [θ]≡ it is sufficient
to compute ∃y(∃x([θ]≡) ∧ [x = y]≡) provided that var(x) ∩ var(y) = ∅. Since
renaming is commonplace, we introduce an abbreviation — ρx,y([θ]≡) — which
is defined ρx,y([θ]≡) = ∃y(∃x([θ]≡) ∧ [x = y]≡) if var(x) ∩ var(y) = ∅ and
ρx,y([θ]≡) = ρz,y(ρx,z([θ]≡)) otherwise, where z is a vector of fresh variables.
Note that ρx,y([θ]≡) removes any variables that are not renamed.

Although the domain of equivalence classes Con/≡ and its associated operators
is adequate for the purposes of constructing the three semantics, it is actually
simpler to work within a domain of sets of constraints where each set is closed
under implication [18]. This domain is ℘↓(Con) = {Θ ⊆ Con |↓Θ = Θ} where
↓Θ = {θ1 ∈ Con | ∃θ2 ∈ Θ.θ1 |= θ2}. The crucial point is that operations over
Con/≡ can be simulated within ℘↓(Con) which has a less complicated structure.
For example, consider the conjunction [θ1]≡ ∧ [θ2]≡ for some θ1, θ2 ∈ Con. If
Θi =↓{θi} for i = 1, 2 then the conjunction can be modeled by just Θ1 ∩ Θ2
since [θ1]≡∧ [θ2]≡ = [θ]≡ iff θ ∈ Θ1∩Θ2. The projection and renaming operators
straightforwardly lift to closed sets of constraints by ∃x(Θ) = ↓{∃x([θ]≡) | θ ∈
Θ} and ρx,y(Θ) = ↓{ρx,y([θ]≡) | θ ∈ Θ}.

3.2 Multiset and Success Set Semantics for Prolog Programs

To express the transformation that maps a Prolog program into a concurrent pro-
gram, it is helpful to express both classes of program within the same language.
Thus we adopt concurrent constraint programming (ccp) [18] style in which a
program P takes the form P ::= ε|p(x) :− A|P1.P2 where A is an agent that is
defined by A ::= ask(Θ)→ A|tell(Θ)|A1, A2|

∑n
i=1 Ai|p(x) and Θ ∈ ℘↓(Con) and

throughout x denotes a vector of distinct variable arguments. A Prolog program
is merely a program devoid of agents of the form ask(Θ)→ A. In the concur-
rent setting, ask(Θ)→ A blocks A until the constraint store Φ entails the ask
constraint Θ, that is, Φ ⊆ Θ. In both settings, the agent tell(Θ) updates the
store from Φ to Φ ∩Θ by imposing the constraints Θ. In a Prolog program, the
composition operator “,” is interpreted as a sequencing operator which induces
left-to-right control, whereas in a concurrent program, the same operator is in-
terpreted as parallel composition. For both classes of program

∑n
i=1 Ai is an

explicit choice operator which systematically searches all Ai agents for answers.
This represents the most radical departure from classic Prolog but it is a useful
construction because, without loss of generality, all predicates can be assumed
to be defined with exactly one definition of the form p(x) :− A.

The rationale of the multiset semantics is to capture whether an answer does
not occur, occurs exactly once or occurs multiply to a given query. In order to
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make the semantics as simple as possible, the semantics maps a call, not to an
arbitrary multiset of answers, but to a restricted class of multisets in which no
element occurs more than twice. This restriction still enables non-determinacy
to be observed but assures that the equations that define the multiset semantics
have a least solution and therefore that the semantics is well-defined.

Before we proceed to the semantics, we need to clarify what is meant by a
multiset of answers and how such multisets can be manipulated and written.
A multiset of answers is an element in the space ℘↓(Con) → {0, 1, 2}, that is,
a map which details how many times, if any, that an answer can arise. Hence-
forth we shall let Ĉon abbreviate this set of maps. Multiset union over Ĉon
is defined by M1∪̂M2 = λΘ.min(M1(Θ) + M2(Θ), 2). Thus if an element oc-
curs singly in both M1 and M2 then it occurs twice in M1∪̂M2. However,
if it occurs singly in M1 and twice in M2 then it occurs twice in M1∪̂M2.
Henceforth, to simplify the presentation, we write �� for the multiset λΘ.0
and �Ψ, Φ, Φ�, for instance, for λΘ.if Θ = Ψ then 1 else (if Θ = Φ then 2 else 0).
Furthermore, we adopt multiset comprehensions with the interpretation that
the predicate Θ∈̂M succeeds once/twice iff Θ occurs once/twice in M .
For example, if M ′ = �Θ,Θ,Φ� then �Ψ ∪ Ω | Ω∈̂M ′� = �Ψ ∪ Θ,Ψ ∪ Θ,
Ψ ∪ Φ�.

The multiset semantics is a mapping of type AgeP → ℘↓(Con)→ Ĉon where
AgeP denotes the set of agents that can be constructed from calls to predicates
defined within P . The intuition is that, for a given agent A ∈ AgeP , the multiset
semantics maps a closed set Φ to a multiset of closed sets that detail all the
possible answers to A given the input Φ.

Definition 1. The mappingMP : AgeP → ℘↓(Con)→ Ĉon is the least solution
to the following system of recursive equations:

MP [[tell(Φ)]](Θ) = if Φ ∩Θ = ∅ then �� else �Φ ∩Θ�
MP [[A1, A2]](Θ) = ∪̂�MP [[A2]](Φ) | Φ∈̂MP [[A1]](Θ)�
MP [[

∑n
i=1 Ai]](Θ) = ∪̂�MP [[Ai]](Θ)�n

i=1
MP [[p(x)]](Θ) = �Θ ∩ ρy,x(Φ) | Φ ∈MP [[A]](ρx,y(Θ))� where p(y) :−A∈P

Example 1. Let Θa = ↓{x = a} and Θb = ↓{x = b} and consider the program
P = {q(x) :−

∑3
i=1 Ai, r(x) :− tell(Θa), p(x) :− q(x), r(x)} where A1 = tell(Θa)

and A2 = A3 = tell(Θb) which builds on the example in the introduction. The
closed set Con can be used to express unconstrained input, hence:

MP [[p(x)]](Con)= �Θa�
MP [[q(x)]](Con)= �Θa, Θb, Θb�
MP [[r(x)]](Con)= �Θa�

MP [[p(x)]](Θa)= �Θa�
MP [[q(x)]](Θa)= �Θa�
MP [[r(x)]](Θa)= �Θa�

MP [[p(x)]](Θb)= ��
MP [[q(x)]](Θb)= �Θb, Θb�
MP [[r(x)]](Θb)= ��

Although the multiset semantics applies the left-to-right goal selection, it does
not apply the top-down clause selection. This does not mean that it cannot
observe non-determinacy because, in general, if a call has n ≥ 2 answers for
some input in Prolog then it has at least m ≥ n answers for the same input in
the multiset semantics as is illustrated below.
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Example 2. Consider a program consisting of the clause p(x) :− x = [ |y], p(y)
followed by p(x) :− x = []. Because of top-down clause selection, p(x) will loop in
Prolog, ie. return no answers, if invoked with x unconstrained. In our presenta-
tion, the Prolog program as rendered as a program P consisting of one definition
p(x) :−

∑2
i=1 Ai where A1 = tell(↓{x = [ |y]}), p(y) and A2 = tell(↓{x = []}).

Then MP [[p(x)]](Con) = �Θi | i ≥ 0� where Θi = ↓{x = [x1, . . . , xi]} and the
semantics observes that p(x) is not determinate when x is unconstrained.

The following success set semantics is the most conventional. It pins down the
meaning of a success pattern which underlies the concept of mutual exclusion.

Definition 2. The mapping SP : AgeP → ℘↓(Con) is the least solution to the
following system of recursive equations:

SP [[tell(Φ)]] = Φ
SP [[A1, A2]] = SP [[A1]] ∩ SP [[A2]]
SP [[

∑n
i=1 Ai]] = ∪{SP [[Ai]]}ni=1
SP [[p(x)]] = ρy,x(SP [[A]]) where p(y) :− A ∈ P

3.3 Concurrency Semantics for ccp Programs

To state the key correctness result, it is necessary to introduce a concurrency
semantics for verifying the absence of suspending agents. Whether suspensions
manifest themselves or not depends on the quiescent (resting) state of the store,
which motivates the following semantics that was inspired by the elegant quies-
cent state semantics that has been advocated for ccp [18].

Definition 3. The mapping QP :AgeP→℘(℘↓(Con)×{0,1}) is the least solution
to the following system of recursive equations:

QP [[ask(Φ)→A]] = {〈Θ, 1〉 |↓Θ = Θ ∧Θ �⊆ Φ} ∪ {〈Θ, b〉 ∈ QP [[A]] | Θ ⊆ Φ}
QP [[tell(Φ)]] = {〈Θ, 0〉 |↓Θ = Θ ∧Θ ⊆ Φ}
QP [[A1, A2]] = {〈Θ, b1 ∨ b2〉 | 〈Θ, bi〉 ∈ QP [[Ai]]}
QP [[

∑n
i=1 Ai]] = ∪{QP [[Ai]]}ni=1

QP [[p(x)]] = {〈Θ, b〉 |↓Θ = Θ ∧ 〈Φ, b〉 ∈ QP [[A]] ∧ ρy,x(Φ) = ∃x(Θ)}
where p(y) :− A ∈ P

Since quiescent state semantics are not as well known as perhaps they should
be within the world of program analysis, we provide some commentary on the
recursive equations. The semantics expresses the resting points of an agent [18]
and tags each constraint set with either 1 or 0 to indicate whether or not an agent
contains a suspending sub-agent (in the latter case the agent has successfully
terminated). Consider, for instance, the agent ask(Φ)→ A and the closed set
Θ. If Θ �⊆ Φ then the agent suspends in Θ, and hence quiesces, and thus the
pair 〈Θ, 1〉 is included in the set of quiescent states of the agent. Otherwise, if
Θ ⊆ Φ and 〈Θ, b〉 is a quiescent state of A then 〈Θ, b〉 is also a quiescent state
of ask(Φ)→A. Any set Θ such that Θ ⊆ Φ is a succeeding quiescent state of the
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agent tell(Φ). A compound agent A1, A2 quiesces under Θ iff Θ is a quiescent
set of both A1 and A2. The set Θ is tagged as suspending iff either A1 or A2
suspend in Θ. The branching agent

∑n
i=1 Ai inherits quiescent states from each

of its sub-agents. Finally, an agent p(x) that invokes an agent A via a definition
p(y) :− A inherits quiescent states from A by the application of projection and
renaming. The intuition is that the variables x and y act as windows on the
sets of constraints associated with p(x) and A in that they hide information
not pertaining to x and y respectively. If these projected sets coincide under
renaming and the set for A is quiescent, then the set for p(x) is also quiescent.

Example 3. Continuing with the agents A1, A2 and A3 introduced in example 1:

QP [[
∑3

i=1 Ai]] = {〈Θ, 0〉 | Θ ⊆ Θa ∨Θ ⊆ Θb}
QP [[ask(Θa)→

∑3
i=1 Ai]] = {〈Θ, 1〉 | Θ �⊆ Θa} ∪ {〈Θ, 0〉 | Θ ⊆ Θa}

The second agent can either suspend with Θ �⊆ Θa or succeed with Θ ⊆ Θa.

3.4 Transforming a Prolog Program into a ccp Program

Recall that the transformation introduces delay declarations to predicates which
suspend a call until its mutual exclusion condition is satisfied. This idea is
expressed in a transformation that maps each call p(x) to a guarded version
ask(Θ)→ p(x) where Θ is set of constraints that enforce mutual exclusion. Re-
call too that the mutual exclusion conditions are derived from success patterns;
the success set semantics provides a multiset of possible answers �Θ1, . . . , Θn�
for each call p(x) and the mutual exclusion analysis then derives a condition for
p(x) — a constraint Φ — which, if satisfiable with one Θi, is not satisfiable with
any another Θj . This mutual exclusion property is expressed by the function
mux : Ĉon → ℘↓(Con) which represents the analysis component that derives the
mutual exclusion conditions from the success patterns. With these concepts in
place, the transformation is defined thus:

Definition 4. Let SP [[Ai]] ⊆ Θi and suppose mux satisfies the property that if
mux(�Θi�

n
i=1) = Φ and Φ ∩Θi �= ∅ then Φ ∩Θj = ∅ for all i �= j. Then

T [[P1.P2]] = T [[P1]].T [[P2]]
T [[p(x) :− A]] = p(x) :− T [[A]]

T [[tell(Φ)]] = tell(Φ)
T [[A1, A2]] = T [[A1]], T [[A2]]

T [[
∑n

i=1 Ai]]=ask(mux(�Θi�
n
i=1))→

∑n
i=1 T [[Ai]]

T [[p(x)]] = p(x)

The key result is stated below. It asserts that if p(x) is invoked in the transformed
program with the constraint Ω imposed, and p(x) cannot reduce to a suspending
state, then calling p(x) in the original program — again with Ω imposed — will
produce at most one answer and generate that answer at most once.

Theorem 1. Suppose 〈Π, 1〉 �∈ QT [[P ]][[tell(Ω), p(x)]] for all Π ∈ ℘↓(Con).
Then |MP [[p(x)]](Ω)| ≤ 1.
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4 The Cut, Non-monotonicity and Incorrectness

The technique for inferring mutual exclusion conditions [13] is not sensitive to
the clause ordering. This does not compromise correctness but, due to the pres-
ence of cut, the inferred conditions may be overly strong. To avoid refining the
semantics and deriving a new analysis, this section shows how the procedure
which computes the mutual exclusion conditions can be refined to accommodate
this pruning operator.

The correctness of the analysis is founded on theorem 1 which, in turn, is a
consequence of a series of monotonicity results that follows from the definition
of the multiset semantics. Alas, the cut is a source of non-monotonicity as is
illustrated by the r predicate:

r(X, Y) :- X = a, !, Y = b.
r(X, Y) :- atomic(X).

p(X, Y) :- q(X), r(X, Y).
q(a).
q(b).

If r(X, Y) is called under the binding {X 
→ b} then the downward closure of
the set of computed answers is Θ1 =↓{X = b}. However, if r(X, Y) is called with
a more general binding – the empty substitution – the downward closure of the
set of answers is Θ2 =↓{X = a, Y = b}. The predicate is non-monotonic because
Θ1 �⊆ Θ2. The predicate p illustrates the significance of monotonicity in that it
shows how non-monotonicity can undermine correctness. To see this, consider
applying suspension inference in which the r(X, Y) goals are never delayed but
q(X) goals are only selected when X is ground. Suspension inference [4] would
infer the vacuous condition of true for p(X, Y) since the compound goal q(X),
r(X, Y) can be scheduled in right-to-left order without incurring a suspension.
However, this inference is unsafe, since the call p(X, Y) yields two answers.

One may think that the problem of non-monotonicity is insurmountable but
correctness can be recovered by ensuring that the mutual exclusion conditions
enforce monotonicity. The observation is that the occurrence of a cut in a clause
cannot compromise monotonicity if any calls (typically tests) that arise before
the cut are invoked with ground arguments. The idea is thus to strengthen
the condition so as to ensure this. For example, r(X, Y) is monotonic if X is
ground. The justification of this tactic is that in top-down clause selection, if
a clause containing a cut succeeds, then any following clause is not considered.
This behaviour can be modelled by adding negated calls to each clause that
follows the cut (which is sound due to groundness [11]). Consider, for example,
the following predicate:

part([], , [], []).
part([X | Xs], M, [X | L], G) :- X =< M, !, part(Xs, M, L, G).
part([X | Xs], M, L, [X | G]) :- part(Xs, M, L, G).

For the sake of inferring mutual exclusion conditions, observe that the negation
of X =< M can be inserted into the last clause since this clause is reached only
if the test fails. Then, due to the negated test, the second and third clauses are
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mutually exclusive if the groundness condition x1 ∧ x2 holds where xi describes
the groundness of the i’th argument. It is not necessary to reason about cut to
deduce that the first and second clauses are mutually exclusive if x1 ∨ x3 holds.
Likewise, a mutual exclusion condition for the first and third clause is x1 ∨ x4.
The cumulative mutual exclusion condition for the whole predicate is therefore
(x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x1 ∧ x2) = x1 ∧ x2. Finally, note that when mechanising
this approach, it is not actually necessary to insert the negated calls to deduce
the grounding requirements; the negated tests were introduced merely to justify
the tactic. Finally, applying this technique to r yields the condition x1.

5 Experimental Results

An analyser has been constructed in SICStus 3.10.0 in order to assess the scal-
ability of determinacy inference, study precision issues and investigate whether
suspension inference can actually discover bugs. The analyser can be used thro-
ugh a web interface located at http://www.cs.kent.ac.uk/∼amk/detweb.html.
The analyser is composed of five components: (1) an argument-size analysis and
(2) a depth-k analysis both of which infer success patterns for each clause; (3)
an analysis which infers mutual exclusion conditions from the success patterns;
(4) a suspension inference which computes determinacy conditions; and (5) a
backward analysis [13] that infers determinacy conditions by only considering
the left-to-right flow of bindings.

Table 1 summarises the results of four analysis experiments on a range of Pro-
log programs. The S column is the size of the program measured in the number
of predicates. The A, B, C and D columns present the number of deterministic
modes inferred for four different types of analysis. To compare against previ-
ous work [13], column A details the number of modes inferred using a form of
inference that only considers the left-to-right flow of bindings [13] and mutual
exclusion conditions derived without consideration of the cut, using a classic
depth-k analysis. Column B details the number of deterministic modes inferred
using suspension inference [4]. Column C refines this analysis by considering cut
in the inference of the mutual exclusion conditions. Column D applies a more
refined form of depth-k success pattern analysis to further upgrade the mutual
exclusion conditions. The entries marked with a + indicate that the analysis im-
proves on its predecessor in either inferring more modes or inferring more refined
modes. Note that a predicate that will contribute 2, say, to the mode count if
it is deterministic in 2 modes where both modes do not include the other; this
explains why the number of modes can exceed the number of predicates.

The + entries in the B column indicate at least one moding improvement that
follows from basing determinacy inference on suspension inference. By scanning
the outputs of the analyses for a predicate whose modes differ between the two
runs, the programmer can locate a suspicious predicate, ie., a predicate that
could silently leave a choice-point on the stack. Such a predicate is determinate,
but it is only determinate for some mode because of the way the bindings imposed
by a goal on the right constrain a goal on the left. If this were not so, then left-to-
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file S T A B C D %
aircraft 237 2240 241 241 +241 +241 47
asm 45 160 45 45 +45 +45 57
boyer 26 40 33 33 +33 33 19
browse 16 20 16 16 +16 16 62
bryant 32 140 33 33 33 +33 75
btree 10 10 10 +10 +14 +18 0
chat-80 435 9710 588 588 588 +592 51
cp 158 730 239 239 239 +240 50
circuit 5 10 8 +9 9 9 0
conman 32 130 32 32 +32 32 78
c2 8 0 8 8 +8 8 25
cr 6 0 9 +9 9 9 0
cw 11 20 13 13 +13 13 9
cs-r 36 370 36 36 36 36 75
dcg 15 20 21 +21 21 21 6
dialog 30 20 33 33 +33 +33 33
disj-r 31 50 31 31 31 31 48
ili 58 220 62 62 +63 63 46
im 24 50 33 33 +33 33 41
inorder 2 0 2 +2 2 2 0
kalah 45 70 46 46 46 +46 46

file S T A B C D %
lee-route 13 20 14 14 +14 +14 69
life 11 20 11 11 +11 11 72
nand 93 400 93 93 93 +93 60
nbody 48 120 48 48 +48 +49 35
neural 39 50 50 +52 52 52 43
peep 21 120 24 24 24 24 71
press 51 150 56 56 56 +56 64
qplan 44 230 51 51 +52 52 31
queens 16 20 16 16 +16 +17 37
read 42 130 43 43 43 +43 52
reducer 41 140 42 42 +42 +43 26
robot 26 30 29 +29 +30 +30 38
scc1 17 150 17 17 17 17 88
sdda 33 70 33 +33 +33 +34 60
serialize 7 20 9 9 +9 +9 0
sieve 6 10 6 6 +6 6 0
sim 103 960 103 103 103 +105 64
sv 125 2280 131 131 +131 131 60
sa 71 120 72 72 +72 72 33
trs 35 3800 35 35 +35 35 57
tsp 23 10 23 +23 +27 27 21

Fig. 1. Relative precision experiments: (A) using [13]; (B) using suspension inference;
(C) adding cut logic to (B); and (D) adding decorated depth-k to (C) using the
following name abbreviations c2 = connected2, cp = chat-parser, cr = courses-rules,
cw = crypt-wamcc, im = ime-v2-2-1, sa = simple-analyzer and sv = sim-v5-2

right form of determinacy inference [13] would have also deduced this mode. Such
a predicate could either be rewritten or executed under once for this particular
mode. Note that to apply this form of debugging it is not necessary for the
programmer to appreciate how the analysis works; the analysers collaborate and
merely suggest where the programmer should focus their effort.

The columns C and D quantify how techniques for synthesising the mutual
exclusion conditions impact on the overall precision. The + entries in column C
confirm that reasoning about cut is important. TheD column assesses the impact
of applying an enriched form of depth-k analysis in the success pattern analysis
that underpins the inference of the mutual exclusion conditions. To illustrate the
refinement, consider the merge predicate that arises within mergesort program
that can again be found at the above URL. If depth-1 analysis is enriched to
track constraints between the variables in a truncated term, then the following
success patterns are obtained for the three recursive clauses of merge:

merge([A|B],[C|D],[A|E]) :- A < C
merge([A|B],[C|D],[A|E]) :- A = C
merge([A|B],[C|D],[C|E]) :- A > C
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From these success patterns, it can be deduced that the groundness of the first
and second arguments is sufficient for mutual exclusion. This condition cannot
be inferred unless the depth-k analysis additionally tracks constraints. The +
entries in the D column suggest that this refinement is generally useful. Such
improvements may appear incremental, but our work suggests that it is only by
combining all these techniques that determinacy inference becomes truly useful.

The T column is a comment on performance since it records the time re-
quired to perform all components of an analysis on a 1.4 GHz PC equipped with
640 MByte of memory, running Linux 2.6.15-2. Little variance was observed be-
tween the running times of the four analyses — even between A and B which
employ different fixpoint engines. The column marked % represents the propor-
tion of the predicates in the program for which a determinacy mode could not
be inferred using analysis D. Further investigation is required to determine what
fraction of these are actually non-determinate.

Space does not permit us to fully report our work on enhancing argument size
analysis for determinacy inference, except to note that techniques devised in ter-
mination analysis for inferring norms [2,7] permit more general mutual exclusion
conditions to be inferred. Consider, for example, a predicate that succeeds when
its single argument is a list of lists. Such a predicate (named traverse) can be
found at the above URL. This predicate traverses the outer list, calling an auxil-
iary predicate to check that each element is also a list. By using an argument size
analysis based on the term-size norm, it is possible to show that the predicate is
deterministic if called with a ground argument. When the program is decorated
with types, however, type-based norms enable this determinacy condition to be
relaxed to a rigid list of rigid lists.

Finally, a number of anomalies were discovered during the experimental eval-
uation. For example, the exp(N,X,Y) predicate [19, Figure 3.5] which realises
the function that binds Y to X raised to the power of N, is non-deterministic for
N > 0 and X = 0. These bugs were found by scanning programs for predicates
that attempted to realise functions for which no modes could be inferred.

6 Related Work

The new analysis reported in this paper also has applications in the new area
of semi-online program specialisation [10]. In this scheme, the usual static ver-
sus dynamic classification that is used within classic binding-time analysis is
refined by adding an additional binding-type semi. As well as always unfolding
a static call and never unfolding a dynamic call, the unfolding decision for a
semi call is postponed until specialisation time. Determinacy inference fits into
this scheme because it provides a way of annotating calls with lightweight un-
folding conditions, ie., determinacy conditions. Furthermore, it is not difficult to
refine determinacy inference so as to annotate semi calls with conditions that
select the clause with which to unfold the call. The net result is more aggressive
unfolding. Determinacy inference might also have a role in parallelisation since
determinacy can be used as the basis for exploiting a form of and-parallelism
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[17]. Any discrepancy in the modes inferred with the two forms of determinacy
inference pinpoints a predicate that is a good candidate for being rewritten, pos-
sibly by reordering goals, so that each call to the atoms in body of the clauses
is deterministic, irrespective of the bindings imposed by the other calls. This
would open up more opportunities for parallelisation.

Dawson et al. [3] extract determinacy information from a logic program by
applying a program transformation that simultaneously describes both success
pattern constraints and constraints from the calling context. These constraints
are then added to each clause without compromising the correctness of the pro-
gram, so as to reduce backtracking. The authors state that “if the clause con-
ditions of a predicate are pairwise non-unifiable, we infer that the predicate is
determinate whenever the input arguments are sufficiently ground”. However, to
assure determinacy, it is also necessary to ensure that any calls invoked within
the body of a clause are themselves deterministic. Ensuring this property leads
onto the consideration of various computation rules, and the topic of this paper.

Goal-dependent analysis can be used to ensure that each sub-goal of a given
goal cannot succeed with more than one clause of a predicate [12]. The key
step is to detect whether two different clauses for a predicate are mutually ex-
clusive with respect to the calling patterns of the predicate. Work on determi-
nacy checking (rather determinacy inference) that is of particular note is that
by Braem et al. [1] who present an analysis that given a calling mode for a
predicate, infers bounds on the number of solutions that can be produced by a
call in a given mode. In the context of partial evaluation, Sahlin [16] presents
a determinacy analysis that can detect whether if a given goal fail, succeeds
once, twice or more times, or whether it possibly loops. Mogensen [14] provides
a semantically justified reconstruction of the work of Sahlin [16] based on a
denotational semantics for Prolog programs with cut. Quite independently, Le
Charlier et al. [8] developed a denotational sequence-based abstract interpre-
tation framework for Prolog that can, among other things, be instantiated to
obtain Sahlin’s [16] determinacy analysis. Interestingly, in partial evaluation,
delay declarations are sometimes used to postpone the unfolding of goals until
they become sufficiently deterministic [9] which hints at the transformation at
the heart of this paper. Further afield, Mercury supports a rich class of deter-
minism categories — det, semidet, multi, nondet and failure — which are used
to categorise how many times each mode to a predicate or function can succeed.
Signature declarations can also be used in PAN [15] to detect unintended back-
tracking. Finally, the early literature on functional dependencies is reviewed in
[20, Chapter 5].

7 Conclusions

This paper has shown how determinacy inference can be improved by transform-
ing the problem to an analysis problem in concurrency. The paper shows that
this approach is flexible enough to handle the cut and accurate enough to locate
non-determinacy problems in existing programs.
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Abstract. A description in the Jacobs and Langen domain is a set of
sharing groups where each sharing group is a set of program variables.
The presence of a sharing group in a description indicates that all the
variables in the group can be bound to terms that contain a common
variable. The expressiveness of the domain, alas, is compromised by its
intractability. Not only are descriptions potentially exponential in size,
but abstract unification is formulated in terms of an operation, called
closure under union, that is also exponential. This paper shows how
abstract unification can be reformulated so that closures can be col-
lapsed in two senses. Firstly, one closure operation can be folded into
another so as to reduce the total number of closures that need to be
computed. Secondly, the remaining closures can be applied to smaller
descriptions. Therefore, although the operation remains exponential, the
overhead of closure calculation is reduced. Experimental evaluation sug-
gests that the cost of analysis can be substantially reduced by collapsing
closures.

1 Introduction

The philosophy of abstract interpretation is to simulate the behaviour of a pro-
gram without actually running it. This is accomplished by replacing each opera-
tion in the program with an abstract analogue that operates, not on the concrete
data, but a description of the data. The methodology applied in abstract inter-
pretation is first to focus on the data, that is, pin down the relationship between
the concrete data and a description, and then devise abstract operations that
preserve this relationship. This amounts to showing that if the input to the ab-
stract operation describes the input to the concrete operation, then the output of
the abstract operation faithfully describes the output of the concrete operation.
When this methodology is applied in logic programming, the focus is usually on
the operation of abstract unification since this is arguably the most complicated
domain operation. The projection operation, that merely removes information
from a description, is rarely a major concern.

In this paper, we revisit the projection operation of the classic set-sharing
domain and we argue that the complexity of the abstract unification (amgu)
operation can be curbed by the careful application of a reformulated projection
operation. The computational problem at the heart of amgu is the closure under
union operation [14] that operates on sharing abstractions which are constructed
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from sets of sharing groups. Each sharing group is, in turn, a set of program vari-
ables. Closure under union operation repeatedly unions together sets of sharing
groups, drawn from a given sharing abstraction, until no new sharing group
can be obtained. This operation is inherently exponential, hence the interest in
different, and possibly more tractable, encodings of set-sharing [8,10]. However,
even the most creative and beautiful set-sharing encoding proposed thus far [8],
does not entirely finesse the complexity of closure under union; closure under
union simply manifests itself in the form of a different (and equally non-trivial)
closure operator [18].

Our work was motivated by the observation that often a set-sharing analysis
will calculate a series of closures that involve variables that appear in the body
of a clause, only for these variables to be later eliminated when the resulting set-
sharing description is restricted to those variables that occur in the head. It seems
somewhat unsatisfactory that information — which is often expensive to derive
— is simply thrown away. Ideally, closure operations should only be applied to
variables that appear within the head of a clause. This paper shows that this ideal
can be realised by reformulating abstract unification so that it can be applied in
a two stage process: a phase that precedes projection (of quadratic complexity)
and a phase that is applied after projection (of exponential complexity). This
tactic collapses closure calculations in two important respects. Firstly, it reduces
the number of variables that participate in closure calculations since there are
typically fewer variables in the head of the clause than the whole of the clause.
This is important because the cost of closure is related to the number of sharing
groups that it operates over and this, in turn, is exponential in the number of
variables in scope. Secondly, it turns out that when closure calculation is applied
after projection, then the closures that arise from different unifications in the
body of a clause, frequently collapse to a single closure operation. Thus, not
only is the complexity of each closure operation lessened, but the total number
of closure operations is also reduced.

The paper is structured as follows: Section 2 introduces the key ideas with
a familiar example. Section 3 reports the main correctness results (the proofs
themselves are given in the technical report [15]). Section 4 details the exper-
imental evaluation. Section 5 reviews the related work and finally Section 6
concludes.

2 Motivating Example

This section illustrates the basic ideas behind the analysis in relation to a familiar
example — the append program that is listed below:

append(Xs,Ys,Zs) :- Xs = [], Ys = Zs.
append(Xs,Ys,Zs) :- Xs = [X|Vs], Zs = [X|Ws], append(Vs,Ys,Ws).

The behaviour of the program can be captured with a T -operator that is sensitive
to aliasing between the arguments of atoms [4,11]. Such an operator can be
iteratively applied to obtain the following series of interpretations:
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I0 = ∅
I1 = {append(Xs, Y s, Zs) :- θ1} where θ1 = {Xs 
→ [], Y s 
→ Zs}
I2 = {append(Xs, Y s, Zs) :- θ2} ∪ I1 where θ2 = {Xs 
→ [X ], Zs 
→ [X |Y s]}
I3 = {append(Xs, Y s, Zs) :- θ3} ∪ I2 where

θ3 = {Xs 
→ [X,Y ], Zs 
→ [X,Y |Y s]}
...

Ii = {append(Xs, Y s, Zs) :- θi} ∪ Ii−1 where
θi = {Xs 
→ [X1, . . . , Xi−1], Zs 
→ [X1, . . . , Xi−1|Y s]}

Each interpretation Ii is a set of atoms each of which is constrained by a sub-
stitution. The limit of the sequence (and the least fixpoint of the T opera-
tor) is the interpretation I = {append(Xs, Y s, Zs) :- θi | i ∈ N} which is an in-
finite set. It therefore follows that I cannot be finitely computed by applying
iteration.

2.1 Set-Sharing Abstract Domain

The analysis problem is to finitely compute a set-sharing abstraction of the
limit I. To apply abstract interpretation to this problem, it is necessary to de-
tail how a substitution, and more generally a set of substitutions, can be de-
scribed by a set-sharing abstraction. A set-sharing abstraction for a substitution
θ is constructed from a set of sharing groups: one sharing group occ(θ, y) for
each variable y ∈ V drawn from the universe of variables V . The sharing group
occ(θ, y) is defined by occ(θ, y) = {x ∈ V | y ∈ var(θ(x))} and therefore contains
exactly those variables which are bound by θ to terms that contain the variable
y. In the particular case of θ3 it follows that:

occ(θ3, Xs) = ∅
occ(θ3, Y s) = {Y s, Zs}
occ(θ3, Zs ) = ∅

occ(θ3, X) = {X,Xs, Zs}
occ(θ3, Y ) = {Y,Xs, Zs}
occ(θ3, y ) = {y} where y �∈ {Xs, Y s, Zs,X, Y }

Since the number of sharing groups for any θ is itself infinite, the abstraction
map αX (θ) is parameterised by a set of program variables X and defined so that
αX (θ) = {occ(θ, y) ∩ X | y ∈ V}. If X is finite, it follows that αX (θ) is finite.
For example, if X = {Xs, Y s, Zs} then αX (θ3) = {∅, {Xs,Zs}, {Y s, Zs}}. The
abstraction map αX (θ3) still records useful information: it shows that Xs and
Zs can share, and similarly that Y s and Zs can share.

The domain construction is completed by lifting αX to subsets of Sub where
Sub is the computational domain of substitutions. This is achieved by defin-
ing αX : ℘(Sub) → SharingX where SharingX = ℘(℘(X )) and αX (Θ) =
∪θ∈ΘαX (θ). The concretisation map γX : SharingX → ℘(Sub) specifies which
substitutions are represented by a set-sharing abstraction and is defined thus
γX (S) = {θ ∈ Sub | αX (θ) ⊆ S}. (Note that an alternative definition for this
domain is SharingX = {S | ∅ ∈ S ∧ S ⊆ ℘(X )} since for any θ ∈ Sub there
always exists y ∈ V such that occ(θ, y) ∩ X = ∅, whence ∅ ∈ αX (θ).)
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2.2 Set-Sharing Domain Operations

The concretisation mapping γX pins down the meaning of a set-sharing ab-
straction and thereby provides a criteria for constructing and then judging the
correctness of an abstract version of the T operator. Successive interpretations
Ji generated by this operator are deemed to be correct iff for each constrained
atom append(Xs, Y s, Zs) :- θ ∈ Ii there exists append(Xs, Y s, Zs) :-S ∈ Ji

such that θ ∈ γX (S). To illustrate the problems of tractability in this operator
(that stem from closure under union), the discussion focusses on the computation
of the interpretation J3; the preceding iterates are listed below:

J0 = ∅
J1 = {append(Xs, Y s, Zs) :-SJ1} where SJ1 = {∅, {Y s, Zs}}
J2 = {append(Xs, Y s, Zs) :-SJ2} ∪ J1 where

SJ2 = {∅, {Xs,Zs}, {Xs, Y s, Zs}, {Y s, Zs}}
J3 = J2

Note that {Xs, Y s, Zs} ∈ SJ2 but {Xs, Y s, Zs} �∈ αX (θi) for any i ∈ N. This is
symptomatic of the imprecision incurred by working in an abstract rather than
the concrete setting. Notice too that the absence of the sharing group {Xs, Y s}
from SJ2 asserts that Xs and Y s can only share if there is sharing between Xs
and Zs and likewise sharing between Y s and Zs.

A single application of the abstract T operator takes, as input, an inter-
pretation Ji and produces, as output, an interpretation Ji+1. Ji+1 is obtained
as the union of the two interpretations: one interpretation generated by each
clause in the program acting on Ji. Applying the first and second clauses to
J2 yield {append(Xs, Y s, Zs) :-SJ1} and {append(Xs, Y s, Zs) :-SJ2} respec-
tively which, when combined, give J3 = J2. To illustrate how these interpreta-
tions are computed, consider the application of the second clause.

Computation is initiated with a set-sharing abstraction for the identity sub-
stitution ε with X assigned to the variables of the clause X = {V s, Ws, X , Xs,
Y s, Zs}. This initial description is S0 = αX (ε) = {∅, {V s}, {Ws}, {X}, {Xs},
{Y s}, {Zs}}. Next, S0 is progressively instantiated by firstly, simulating the uni-
fication Xs = [X |V s] with input S0 to obtain output S1; then secondly, solving
Zs = [X |Ws] in the presence of S1 to give S2; then thirdly, adding the bindings
imposed by the body atom append(V s, Y s,Ws) to S2 to obtain a description
that characterises the whole clause. Each of these steps is outlined below:

– The abstract unification operation S1 = amgu(Xs, [X |V s], S0) of Jacobs
and Langen [14] provides a way of simulating concrete unification with set-
sharing abstractions. The algorithm satisfies the correctness criteria that if
θ0 ∈ γX (S0) and δ ∈ mgu(θ0(X), θ0([X |V s])) then θ1 = δ ◦ θ0 ∈ γX (S1)
where mgu(t1, t2) denotes the set of most general unifiers for the terms t1
and t2. The algorithm is formulated in terms of three auxiliary operations:
relevance operation rel(o, S) where o is any syntactic object, the cross union
T1 � T2 of two descriptions T1 and T2, and closure under union cl(S). The
relevance mapping is defined by rel(o, S) = {G ∈ S | var(o) ∩ G �= ∅}
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where var(o) is the set of variables contained in the syntactic object o. The
mapping rel(o, S) thus returns those sharing groups G of S which share a
variable with o. Cross union is defined by T1 � T2 = {G ∪H | G ∈ T1 ∧H ∈
T2} and thus computes the union of all the pairs of sharing groups in the
cross-product T1 × T2. The closure cl(S) is defined as the least superset
of S satisfies the closure property that if G ∈ cl(S) and H ∈ cl(S) then
G ∪H ∈ cl(S). With these operations in place, abstract unification can be
defined thus amgu(t1, t2, S) = (S\(T1∪T2))∪cl(T1�T2) where Ti = rel(ti, S).
(This definition is actually a reformulation [10] of the classic definition [14]
that is better suited to illustrate our purposes). In the particular case of
S1 = amgu(Xs, [X |V s], S0) it follows that:

T1 = rel(Xs, S0) = {{Xs}}
T2 = rel([X |V s], S0) = {{V s}, {X}}

T1 � T2 = {{V s,Xs}, {X,Xs}}
cl(T1 � T2) = {{V s,Xs}, {V s,X,Xs}, {X,Xs}}

and hence S1 = {∅, {V s,Xs}, {V s,X,Xs}, {Ws}, {X,Xs}, {Ys}, {Zs}}.
– Repeating this process for S2 = amgu(Zs, [X |Ws], S1) yields S2 = {∅,
{V s,Ws,X,Xs, Zs}, {V s,X,Xs, Zs}, {V s,Xs}, {Ws,X,Xs, Zs},
{Ws,Zs}, {X,Xs, Zs}, {Y s}}.

– Next, the bindings imposed by the body atom append(V s, Y s,Ws) need to
be added to S2. The technical problem is that these bindings are recorded in
J2, not in terms of append(V s, Y s,Ws), but in terms of a renaming of the
atom, that is, append(Xs, Y s, Zs). (This problem manifests itself because,
in theory, interpretations are defined as sets of constrained atoms where each
constrained atom represents a set of constrained atoms that are equivalent
under variable renaming [4,11].) This problem is resolved, in practise, by
extending S2 to give S3 = S2 ∪ {{Xs,Zs}, {Y s, Zs}, {Xs, Y s, Zs}} where
Xs, Y s and Zs are fresh variables. Then a series of abstract unifications
are applied which are interleaved with projection operations to incremen-
tally remove the freshly introduced variables. This strategy proceeds thus:
S4 = amgu(V s,Xs, S3), S5 = S4 	 (X \ {Xs}), S6 = amgu(Y s, Y s, S5),
S7 = S6 	 (X \ {Y s}), S8 = amgu(Ws,Zs, S7) and S9 = S8 	 (X \ {Zs}).
The projection operation 	 is defined S 	 Y = {G ∩ Y | G ∈ S} and
eliminates all variables from S other than those drawn from Y . Projection
preserves correctness since γX (S) ⊆ γX (S 	 Y ). This strategy computes the
following descriptions for S4, . . . , S9:

S4 = {∅, {Xs, Y s, Zs, V s,Ws,X,Xs, Zs}, {Xs, Y s, Zs, V s,X,Xs, Zs},
{Xs, Y s, Zs, V s,Xs}, {Xs,Zs, V s,Ws,X,Xs, Zs},
{Xs,Zs, V s,X,Xs, Zs}, {Xs,Zs, V s,Xs}, {Y s, Zs},
{Ws,X,Xs, Zs}, {Ws,Zs}, {X,Xs, Zs}, {Ys}}

S5 = {∅, {Y s, Zs, V s,Ws,X,Xs, Zs}, {Y s, Zs, V s,X,Xs, Zs},
{Y s, Zs, V s, xs}, {Zs, V s,Ws,X,Xs, Zs}
{Zs, V s,X,Xs, Zs}, {Zs, V s,Xs}, {Y s, Zs},
{Ws,X,Xs, Zs}, {Ws,Zs}, {X,Xs, Zs}, {Ys}}
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...
S8 = {∅, {Zs, V s,Ws,X,Xs, Y s, Zs}, {Zs, V s,Ws,Xs, Y s, Zs},

{Zs, V s,Ws,X,Xs, Zs}, {Zs, V s,Ws,Xs, Zs},
{Zs,Ws,X,Xs, Y s, Zs}, {Zs,Ws, Y s, Zs}, {X,Xs, Zs}}

S9 = {∅, {V s,Ws,X,Xs, Y s, Zs}, {V s,Ws,Xs, Y s, Zs},
{V s,Ws,X,Xs, Zs}, {V s,Ws,Xs, Zs},
{Ws,X,Xs, Y s, Zs}, {Ws, Y s, Zs}, {X,Xs, Zs}}

It should be noted that in these steps, abstract matching can be substi-
tuted for abstract unification. This can improve both the precision and the
efficiency [13] but does not reduce the overall number of closures.

The description S9 expresses the bindings imposed on the variables of the
whole clause as a result of the unification and the body atom. The restriction
S10 = S9 	 {Xs, Y s, Zs} = {∅, {Xs,Zs}, {Xs, Y s, Zs}, {Y s, Zs}} then de-
scribes these bindings solely in term of the variables in the head. Since S10
coincides with SJ2 it follows that a fixpoint has been reached and therefore J2
faithfully describes the limit interpretation I. The observation that motivated
this work is that this application of the abstract T operator alone, requires 5
closure calculations to compute S1, S2, S4, S6 and S8 each of which are non-
trivial descriptions that are defined over at least 6 variables. Yet the objective
is merely to compute S10 which is necessarily defined over just 3 variables.

2.3 Reformulating Set-Sharing Domain Operations

One solution to the problem of calculating closures is to not compute them imme-
diately, but defer evaluation until a more propitious moment, that is, when the
descriptions contain less variables. Consider again the definition amgu(t1, t2, S)=
(S\(T1∪T2))∪cl(T1�T2). Instead of computing cl(T1�T2), the strategy is to tag
all the groups within T1�T2 with an identifier — a unique number — that iden-
tifies those groups that participate in a particular closure. The tags are retained
until head projection whereupon they are used to activate closure calculation.
Then the tags are discarded. This idea leads to an abstract unification operator
that is defined amgu′(t1, t2, n, S) = (S\(T1∪T2))∪tag(T1�′T2, n) where the de-
scriptions S, T1, T2 are enriched with tagging information and n is a new tag that
distinguishes those groups generated from T1 �′ T2. Formally, descriptions are
drawn from a domain Sharing′X = ℘(℘(X ) × ℘(N)) since, in general, a sharing
group can own several tags. (Elements of this domain are only used for inter-
mediate calculations and the infinite nature of Sharing′X does not compromise
termination.) The tagging operation tag(S, n) inserts a tag n into each group in
S and thus tag(S, n) = {〈G,N∪{n}〉 | 〈G,N〉 ∈ S}. Over this new domain, cross
union is redefined T1 �′ T2 = {〈G ∪ H,N ∪M〉 | 〈G,N〉 ∈ T1 ∧ 〈H,M〉 ∈ T2}.
Note that rel can be used without adaption.

Now reconsider the computation of J3 using the second clause. The initial
description is again S′

0 = {∅, {V s}, {Ws}, {X}, {Xs}, {Y s}, {Zs}} but with
the interpretation that an untagged group G is actually syntactic sugar for a
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pair 〈G, ∅〉 that is equipped with an empty set of tags. Then S′
0 ∈ Sharing′X .

Each application of abstract unification is required to introduce a fresh identifier
and these are chosen to be 1 and 2 when computing S′

1 and S′
2. Computation

unfolds as follows:

– Applying S′
1 = amgu′(Xs, [X |V s], 1, S′

0) it follows that:

T1 = rel(Xs, S′
0) = {{Xs}}

T2 = rel([X |V s], S′
0) = {{V s}, {X}}

T1 �′ T2 = {{V s,Xs}, {X,Xs}}
tag(T1 �′ T2, 1) = {〈{V s,Xs}, {1}〉, 〈{X,Xs}, {1}〉}

hence S′
1 = {∅, 〈{V s,Xs}, {1}〉, {Ws}, 〈{X,Xs}, {1}〉, {Ys}, {Zs}}.

– Repeating this strategy for S′
2 = amgu′(Zs, [X |Ws], 2, S′

1) yields:

T1 = rel(Zs, S′
1) = {{Zs}}

T2 = rel([X |Ws], S′
1) = {{Ws}, 〈{X,Xs}, {1}〉}

T1 �′ T2 = {{Ws,Zs}, 〈{X,Xs, Zs}, {1}〉}
tag(T1 �′ T2, 2) = {〈{Ws,Zs}, {2}〉, 〈{X,Xs, Zs}, {1, 2}〉}

thus S′
2 = {∅, 〈{V s,Xs}, {1}〉, 〈{Ws,Zs}, {2}〉, 〈{X,Xs, Zs}, {1, 2}〉, {Ys}}.

The identifiers 1 and 2 indicate which groups participate in which closures.
The group {X,Xs, Zs} is tagged with {1, 2} since it is involved in both
closures. Note that, unlike before, |S′

2| < |S′
1| < |S′

0|.
– The bindings from the body atom are added by again extending S′

2 to
S′

3 = S′
2 ∪ {{Xs,Zs}, {Y s, Zs}, {Xs, Y s, Zs}}. The interwoven unifica-

tion and projection steps are modified by introducing fresh identifers and
by redefining projection so that S 	′ Y = {〈G ∩ Y,N〉 | 〈G,N〉 ∈ S}. Hence
S′

4 = amgu′(V s,Xs, 3, S′
3), S

′
5 = S′

4 	′ (X \Xs), S′
6 = amgu(Y s, Y s, 4, S′

5),
S′

7 = S′
6 	′ (X \ Y s), S′

8 = amgu′(Ws,Zs, 5, S′
7) and S′

9 = S′
8 	′ (X \ Zs)

which generates the following sequence of descriptions:

S′
4 = {∅, 〈{Xs,Zs, V s,Xs}, {1, 3}〉, 〈{Xs, Y s, Zs, V s,Xs}, {1, 3}〉,
{Y s, Zs}, 〈{Ws,Zs}, {2}〉, 〈{X,Xs, Zs}, {1, 2}〉, {Ys}}

S′
5 = {∅, 〈{Zs, V s,Xs}, {1, 3}〉, 〈{Y s, Zs, V s,Xs}, {1, 3}〉,
{Y s, Zs}, 〈{Ws,Zs}, {2}〉, 〈{X,Xs, Zs}, {1, 2}〉, {Ys}}

S′
6 = {∅, 〈{Zs, V s,Xs}, {1, 3}〉, 〈{Y s, Zs, V s,Xs, Y s}, {1, 3, 4}〉,
〈{Y s, Zs, Y s}, {4}〉, 〈{Ws,Zs}, {2}〉, 〈{X,Xs, Zs}, {1, 2}〉}

S′
7 = {∅, 〈{Zs, V s,Xs}, {1, 3}〉, 〈{Zs, V s,Xs, Y s}, {1, 3, 4}〉,
〈{Zs, Y s}, {4}〉, 〈{Ws,Zs}, {2}〉, 〈{X,Xs, Zs}, {1, 2}〉}

S′
8 = {∅, 〈{Zs, V s,Xs,Ws, Zs}, {1, 2, 3, 5}〉, 〈{Zs, Y s,Ws, Zs}, {2, 4, 5}〉,
〈{Zs, V s,Xs, Y s,Ws, Zs}, {1, 2, 3, 4, 5}〉, 〈{X,Xs, Zs}, {1, 2}〉}

S′
9 = {∅, 〈{V s,Xs,Ws, Zs}, {1, 2, 3, 5}〉, 〈{Ys,Ws, Zs}, {2, 4, 5}〉,
〈{V s,Xs, Y s,Ws, Zs}, {1, 2, 3, 4, 5}〉, 〈{X,Xs, Zs}, {1, 2}〉}

Computing S′
10 = S′

9 	′ X \ {Xs, Y s, Zs} restricts S′
9 to those variables in the

head of the clause which yields the description S′
10 = {∅, 〈{Xs,Zs}, {1, 2, 3, 5}〉,

〈{Xs,Zs}, {1, 2, 3, 4, 5}〉, 〈{Y s, Zs}, {2, 4, 5}〉, 〈{Xs,Zs}, {1, 2}〉}. Now, only the
pending closures remain to be evaluated.
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2.4 Evaluating Pending Closures

The pending closures can be activated by applying a closure operation cl(S, i)
for each identifier i contained within S. The operation cl(S, i) is a form of closure
under union that is sensitive to i in the sense that it only merges two pairs 〈G, I〉
and 〈H, J〉 when both I and J contain the identifier i. The merge of these pairs is
defined as 〈G∪H, I∪J〉 so that merge combines both the sharing groups and the
tagging sets. Like classic closure, cl(S, i) performs repeatedly merging until no
new element can be generated. To express this process, cl(S, i) is formulated in
terms of clK(S) = S∪{〈G∪H, I∪J〉 | {〈G, I〉, 〈H, J〉} ⊆ S∧I∩J∩K �= ∅} where
K ⊆ N. Then cl(S, i) can be defined as the limit of a sequence cl(S, i) = ∪∞j=0Sj

where S0 = S, Sj = cl{i}(Sj−1). For instance, continuing with the example
S′

10 = {∅, 〈{Xs,Zs}, {1, 2, 3, 5}〉, 〈{Xs,Zs}, {1, 2, 3, 4, 5}〉, 〈{Y s, Zs}, {2, 4, 5}〉,
〈{Xs,Zs}, {1, 2}〉}, then cl{4}(S′

10) = S′
10 ∪ {〈{Xs, Y s, Zs}, {1, 2, 3, 4, 5}〉}. In

fact, in this case, no further applications of cl{4} are required for before conver-
gence is obtained and cl(S′

10, 4) = cl{4}(S′
10). In general, cl(S, i) will only need

to be applied a finite number of times before convergence is reached.
Applying the closure operator cl(S, i) is sufficient to evaluate the closure that

is delimited by i; a single application of cl(S, i) is not sufficient to active all the
pending closures. Therefore cl(S, i) is itself iteratively applied by computing the
sequence of descriptions T0 = S and Ti = cl(Ti−1, i) that culminates in Tn where
n is understood to be the maximal identifier of S. Henceforth, let cl′(S) = Tn.
Returning to the running example, cl′(S′

10) = {∅, 〈{Xs, Y s, Zs}, {1, 2, 4, 5}〉,
{Xs, Y s, Zs}, {1, 2, 3, 4, 5}〉, 〈{Xs,Zs}, {1, 2, 3, 5}〉, 〈{Xs,Zs}, {1, 2, 3, 4, 5}〉,
〈{Y s, Zs}, {2, 4, 5}〉, 〈{Xs,Zs}, {1, 2}〉}.

2.5 Collapsing Closures: The Duplicated Group Rule

The remaining tags can be eliminated with untag(S) = {G | 〈G,N〉 ∈ S}. Com-
posing and then applying these two operations to S′

10 gives untag(cl′(S′
10)) =

{{Xs, Y s, Zs}, {Xs,Zs}, {Y s, Zs}} as desired. Although this is an advance —
closure calculations have been collapsed to range over the variables of the head
rather than the clause — it does not exploit the fact that the closure calculations
for different identifiers can be collapsed into a single computation.

To see this, observe that S′
10 contains three pairs 〈G,N1〉, 〈G,N2〉 and 〈G,N3〉

where G = {Xs,Zs}, N1 = {1, 2}, N2 = {1, 2, 3, 5} and N2 = {1, 2, 3, 4, 5}. The
pairs 〈G,N1〉 and 〈G,N2〉 are redundant since N1 ⊆ N3 and N2 ⊆ N3. Remov-
ing these pairs from S′

10 yields the description S′
11 = {∅, 〈{Xs,Zs}, {1, 2, 3, 4, 5}〉,

〈{Y s, Zs}, {2, 4, 5}〉} which compromises neither correctness nor precision since
untag(cl′(S′

10)) = untag(cl′(S′
11)). Actually, the underlying principle is not that

of eliminating a pair that shares a common group with another pair whose identi-
fiers subsume it, but rather that all pairs which share a common group can merged
into single pair. In this particular case of S′

10, the three pairs can be combined into
the single pair 〈G,N1 ∪ N2 ∪ N3〉 that subsumes them all; S′

10 merely illustrates
the special case of when N1 ∪N2 ∪N3 = N3. In general, if {〈G,N〉, 〈G,M〉} ⊆ S,
N ∩M �= ∅ and S′ = (S \{〈G,N〉, 〈G,M〉})∪{〈G,N∪M〉} then untag(cl′(S)) =
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untag(cl′(S′)). Henceforth this equivalence will be referred to as the duplicated
group rule.

2.6 Collapsing Closures: The Uniqueness Rule

Further reductions can be applied. Since the identifiers 1 and 3 occur in just one
pair, it follows that these identifiers can be immediately removed from S′

11 to
obtain S′

12 = {∅, 〈{Xs,Zs}, {2, 4, 5}〉, 〈{Ys, Zs}, {2, 4, 5}〉} whilst preserving the
relationship untag(cl′(S′

10)) = untag(cl′(S′
12)). This strategy of removing those

identifiers that occur singly will henceforth be called the uniqueness rule.

2.7 Collapsing Closures: The Covering Rule

Moreover, identifier 2 always occurs within a set of identifiers that also contains
4. In this sense 4 is said to cover 2. The value of this concept is that if one
identifier is covered by another, then the first identifier is redundant. Since 5
covers both 2 and 4, then both 2 and 4 are redundant and can be removed from
S′

12 to obtain S′
13 = {∅, 〈{Xs,Zs}, {5}〉, 〈{Y s, Zs}, {5}〉} whilst again preserv-

ing untag(cl′(S′
10)) = untag(cl′(S′

13)). This form of reduction will be called the
covering rule. The key point is that by applying these three rules S′

10 can be sim-
plified to S′

13 which only requires one application cl(S′
13, 5) followed by untag to

evaluate the remaining closure. This results in untag(cl(S′
13, 5)) = {∅, {Xs,Zs},

{Y s, Zs}, {Xs, Y s, Zs}} as required; the same result as classic set-sharing is
derived but with a significant reduction in closure calculation.

3 Equivalence Results

This section reports some new equivalence results which show that neither clo-
sure collapsing nor delaying closure evaluation incur a precision loss over classic
set-sharing. The results are summarised in sections 3.1 and 3.2 respectively.

3.1 Equivalence Rules for Collapsing Closures

The closure operator cl′(S) applies cl(S, i) for each identifier i to evaluate each
pending closure in turn. This offers a sequential model for computing cl′(S). The
following result provides an alternative parallel model for closure evaluation.

Proposition 1. cl′(S) = ∪∞i=0Si where S0 = S and Si+1 = clN(Si).

The force of this result is twofold. Firstly, it can save passing over S multiply,
once for each identifier. Secondly, it provides a way for arguing correctness of the
three collapsing rules. For pedagogical reasons, these rules were introduced in
terms of the sequential model of cl′(S) evaluation, yet they are still applicable in
the parallel setting. This is because the cost of closure calculation is dominated
by the cost of the underlying set operations and therefore any reduction in the
number or size of these sets is useful. For completeness, the rules are formally
stated below, complete with a counter-example which illustrates the need for the
M ∩N �= ∅ condition in the duplicated group rule.
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Proposition 2 (duplicated group rule). Suppose 〈G,M〉 ∈ S, 〈G,N〉 ∈ S
and M ∩N �= ∅. Then untag(cl′(S)) = untag(cl′(S′)) where:

S′ = (S \ {〈G,M〉, 〈G,N〉}) ∪ {〈G,M ∪N〉}

Example 1. The following values of S and S′ illustrate the necessity of the
N ∩M �= ∅ condition in the duplicated group rule. This condition bars the pairs
〈{y}, {1}〉 and 〈{y}, {2}〉 within S from being merged to obtain S′. Merging
looses equivalence since {x, y, z} ∈ untag(cl′(S′

3)) but {x, y, z} �∈ untag(cl′(S3)).

S = {〈{x}, {1}〉, 〈{y}, {1}〉, 〈{y}, {2}〉, 〈{z}, {2}〉}
S1 = cl(S, 1) = {〈{x}, {1}〉, 〈{x, y}, {1}〉, 〈{y}, {1}〉, 〈{y}, {2}〉, 〈{z}, {2}〉}
S2 = cl(S1, 2) = {〈{x}, {1}〉, 〈{x, y}, {1}〉, 〈{y}, {1}〉, 〈{y}, {2}〉, 〈{y, z}, {2}〉,

〈{z}, {2}〉}
S3 = untag(S2) = {{x}, {x, y}, {y}, {y, z}, {z}}

S′ = {〈{x}, {1}〉, 〈{y}, {1, 2}〉, 〈{z}, {2}〉}
S′

1 = cl(S′, 1) = {〈{x}, {1}〉, 〈{x, y}, {1, 2}〉, 〈{y}, {1, 2}〉, 〈{z}, {2}〉}
S′

2 = cl(S′
2, 2) = {〈{x}, {1}〉, 〈{x, y}, {1, 2}〉, 〈{x, y, z}, {1, 2}〉, 〈{y}, {1, 2}〉,

〈{y, z}, {1, 2}〉, 〈{z}, {2}〉}
S′

3 = untag(S′
2) = {{x}, {x, y}, {x, y, z}, {y}, {y, z}, {z}}

Proposition 3 (uniqueness rule). Suppose 〈G,N〉 is the only element of S
for which n ∈ N . Then untag(cl′(S)) = untag(cl′(S′)) where:

S′ = (S \ {〈G,N〉}) ∪ {〈G,N \ {n}〉}

Proposition 4 (covering rule). Suppose that n �= m and that if n ∈ N and
〈G,N〉 ∈ S then m ∈ N . Then untag(cl′(S)) = untag(cl′(S′)) where:

S′ = {〈G,N \ {n}〉 | 〈G,N〉 ∈ S}

3.2 Equivalence of Pending Closures

This paper proposes the general strategy of delaying closure evaluation until
a time when the pending closures can be evaluated over fewer variables. This
technique of procrastination is founded on lemma 1. The first result stated in the
lemma explains how amgu′ is basically a reformulation of amgu that postpones
the closure calculation (providing its input is closed); in the amgu closure arises
within the operator whereas in the amgu′ closure is applied after the operator.
The second result states a circumstance in which a closure can be avoided; that
it is not necessary to apply amgu′ to an S′ that is closed, ie. it is not necessary
to compute cl′(S′), providing that the result of the amgu′ is then closed. The
strength of these two results is that they can be composed to show that only one
single closure need be applied at the end of a sequence of amgu′ applications.
This leads to the main result — theorem 1 — which is stated immediately after
the lemma. The condition in the lemma on i asserts that i is a fresh tag.
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Lemma 1. Suppose that i �∈ I for all 〈G, I〉 ∈ S′. Then

– if cl′(S′) = S′ then untag(cl(amgu′(s, t, i, S′), i)) = amgu(s, t, untag(S′))
– cl′(amgu′(s, t, i, S′)) = cl′(amgu′(s, t, i, cl′(S′)))

Example 2. Let t = f(y, z) and S′ = {〈{v}, {1}〉, 〈{x}, ∅〉, 〈{y}, {1}〉, 〈{z}, ∅〉}.
Then cl′(S′) = {〈{v}, {1}〉, 〈{v, y}, {1}〉, 〈{x}, ∅〉, 〈{y}, {1}〉, 〈{z}, ∅〉} and

amgu(x, t, untag(cl′(S′))) = {{v}, {v, x, y}, {v, x, y, z}, {x, y}, {x, y, z}, {x, z}}
amgu′(x, t, 2, cl′(S′)) = {〈{v}, {1}〉, 〈{v, x, y}, {1, 2}〉,

〈{x, y}, {1, 2}〉, 〈{x, z}, {2}〉}
cl(amgu′(x, t, 2, cl′(S′)), 2) = {〈{v}, {1}〉, 〈{v, x, y}, {1, 2}〉, 〈{v, x, y, z}, {1, 2}〉,

〈{x, y}, {1, 2}〉, 〈{x, y, z}, {1, 2}〉, 〈{x, z}, {2}〉}
cl′(amgu′(x, t, 2, cl′(S′))) = {〈{v}, {1}〉, 〈{v, x, y}, {1, 2}〉, 〈{v, x, y, z}, {1, 2}〉,

〈{x, y}, {1, 2}〉, 〈{x, y, z}, {1, 2}〉, 〈{x, z}, {2}〉}
amgu′(x, t, 2, S′) = {〈{v}, {1}〉, 〈{x, y}, {1, 2}〉, 〈{x, z}, {2}〉}

cl′(amgu′(x, t, 2, S′)) = {〈{v}, {1}〉, 〈{v, x, y}, {1, 2}〉, 〈{v, x, y, z}, {1, 2}〉,
〈{x, y}, {1, 2}〉, 〈{x, y, z}, {1, 2}〉, 〈{x, z}, {2}〉}

Theorem 1. Let s1 = t1, . . . , sn = tn be a sequence of syntactic equations and

S0 = S Si = amgu(si, ti, Si−1)
S′

0 = {〈G, ∅〉 | G ∈ S} S′
i = amgu′(si, ti, i, S

′
i−1)

Then untag(cl′(S′
n)) = Sn.

Example 3. Consider the equations s1 = t1 and s2 = t2 where (s1 = t1) =
(w = f(x, y)) and (s2 = t2) = (x = z), S0 = αX (ε) and X = {w, x, y, z}. Then

S0 = {{w}, {x}, {y}, {z}} S′
0 = {〈{w},∅〉, 〈{x},∅〉, 〈{y},∅〉, 〈{z},∅〉}

S1 = {{w, x}, {w, y}, {w, x, y}, {z}} S′
1 = {〈{w, x},{1}〉, 〈{w, y},{1}〉, 〈{z},∅〉}

S2 = {{w, x, y, z}, {w, x, z}, {w, y}} S′
2 = {〈{w, x, z},{1, 2}〉, 〈{w, y},{1}〉}

Therefore cl′(S′
2) = {〈{w, x, y, z}, {1, 2}〉, 〈{w, x, z}, {1, 2}〉, 〈{w, y}, {1}〉} and

untag(cl′(S′
2)) = {{w, x, y, z}, {w, x, z}, {w, y}} = S2 as theorem 1 predicts.

Theorem 1 can be taken further to obtain corollary 1 by exploiting the property
that projection 	′ distributes over closure cl′. The force of this result — that is
formally stated in proposition 5 — is that if the set of variables Y is smaller
than var(S′) then cl′(S′ 	′ Y ) is cheaper to compute than cl′(S′) 	 Y .

Proposition 5. cl′(S′) 	′ Y = cl′(S′ 	′ Y ) where Y ⊆ V
Corollary 1. Let s1 = t1, . . . , sn = tn be a sequence of syntactic equations and

S0 = S Si = amgu(si, ti, Si−1)
S′

0 = {〈G, ∅〉 | G ∈ S} S′
i = amgu′(si, ti, i, S

′
i−1)

Then untag(cl′(S′
n 	′ Y ′)) = Sn 	 Y .

Example 4. Continuing with example 3, suppose that the objective is to compute
S2 	 Y where Y = {x, y}. The corollary asserts S2 	 Y = untag(cl′(S′

2 	′ Y )) and
cl′({〈{x},{1, 2}〉, 〈{y},{1}〉}) = {〈{x},{1, 2}〉, 〈{x, y},{1, 2}〉, 〈{y},{1}〉} whence
untag(cl′(S′

2 	′ Y )) = {{x}, {x, y}, {y}}. Indeed, from example 3 it can be seen
that S2 	 Y = {{x}, {x, y}, {y}}.
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4 Implementation

In order to assess the usefulness of collapsing closures, both classic set-sharing
[14] and set-sharing with closure collapsing have been implemented in Sics-
tus 3.8.6. To obtain a credible comparison, both techniques were implemented,
wherever possible, with the same data-structures and code. Both forms of set-
sharing were integrated into a goal-independent (bottom-up) fixpoint engine
and a goal-dependent (bottom-up) analyser that applied a magic transform [12]
to collect call and answer patterns. Both frameworks track set-sharing alone,
ie., they do not trace sharing as one component of a product domain [9]. This
was partly to isolate the impact of collapsing on set-sharing from the effect
of other domains (quantifying these interactions even for more conventional
forms of sharing is a long study within itself [3]) and partly as an experiment
in worst-case sharing. The rationale was that if closure collapsing had little
impact in this scenario, then it would not warrant investigating how the tech-
nique can be composed with other domains. Both frameworks also computed
strongly connected components (SCCs) of the call-graph so as to stratify the
fixpoint into a series of fixpoints that stabilise on one SCC before moving onto
another [12].

Table 1 summaries the four analysis combinations — goal-dependent versus
goal-independent and classic set-sharing versus set-sharing with collapsing —
for the series of common benchmark programs. As a sanity check of the theory,
success patterns derived by two forms of goal-independent analysis were verified
to be equivalent; likewise the call and answer patterns computed with collaps-
ing coincided exactly with those generated by classic set-sharing. The column
labeled T indicates the time in milliseconds required to compute the fixpoint
on 2.4 GHz PC equipped with 512 MBytes running Windows XP. The variance
in timings between different runs of all analyses was found to be negligible. For
set-sharing with collapsing, the timings were generated using sequential closure
evaluation. The dashed columns indicate that a timeout was exceeded. The col-
umn labeled N records the total number of closure operations that were required
(closures over one group are counted as zero). The column labeled S reports the
average number of sharing groups that participate in a closure calculation and
the column labeled M gives the maximal number of groups that participated in
a closure.

The T columns suggest that collapsing closures is potentially useful, though
actual speedup will depend on the actual implementation, the overarching fix-
point framework and the underlying machine. The N , S and M columns present
a more abstract view of closure collapsing and suggest that the speedup stems
from reduced sharing groups manipulation; both the number of closures are re-
duced (due to the three simplification rules) and the complexity of each closure
is reduced (closures are applied to fewer and smaller sharing groups). Interest-
ingly, collapsing is not uniformly faster as is witnessed, by browse and conman,
for goal-independent and goal-dependent analysis. This is because S is very small
for these programs (2 or 3) even without collapsing. Therefore the overhead of
manipulating data-structures that are sets of pairs of sets (rather than merely
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Table 1. Classic set-sharing versus set-sharing with collapsing

goal-independent goal-dependent
collapsed classic collapsed classic

file T N S M T N S M T N S M T N S M
8puzzle 47 31 7 12 2281 77 83 255 78 1 2 2 78 3 2 2

ann 2734 200 6 69 11661 806 14 336 5564 615 3 12 5812 2916 7 33
asm 172 247 2 9 140 563 4 42 937 500 5 148 20701 2299 10 484

boyer 31 110 2 7 47 233 3 64 218 251 4 27 453 740 5 112
browse 32 43 2 4 16 132 2 7 62 52 3 7 31 206 3 8

conman 1187 32 2 3 1235 136 3 8 1906 93 2 4 1813 326 2 16
crip 438 132 8 113 6766 946 15 216 5093 560 8 258 25483 3917 14 304

cry mult 5907 39 4 13 6219 201 6 32 12500 48 2 7 13016 460 9 32
cs r 2687 149 25 274 – – – – 516 32 2 8 3250 204 37 240

disj r 110 45 9 25 8500 321 24 240 219 16 2 3 94 105 2 6
dnf 2 0 0 0 2 28 2 3 31 6 2 2 16 44 2 3

draw 78 28 2 5 281 192 2 6 172 9 2 2 78 25 2 3
ga 203 47 11 50 672 141 12 187 1422 105 12 212 11966 348 15 580

gauss 16 13 3 7 15 81 3 26 47 27 5 17 94 190 5 88
kalah 78 62 3 11 250 204 8 84 141 7 2 6 109 25 7 63

life 516 33 3 7 547 114 6 32 1532 18 3 9 1500 77 3 14
lookup 2 7 2 4 2 34 4 8 15 8 3 4 2 52 3 8
matrix 8 12 2 5 3 54 2 12 63 67 3 21 63 265 4 48
math 31 45 3 6 31 216 3 12 46 43 3 10 31 210 3 24
maze 10 9 2 3 8 14 2 3 31 1 2 2 15 3 2 2

nbody 938 93 3 18 7344 267 18 1022 5641 489 6 94 – – – –
peep 125 333 3 15 329 619 5 108 5077 1576 6 44 17174 3752 10 704
peg 16 7 3 5 63 62 10 75 15 2 4 5 31 49 8 24

plan 62 73 4 26 300 193 8 108 249 178 4 18 499 769 6 112
press 266 293 5 28 641 801 7 70 1937 1184 5 45 6156 4137 8 168
qsort 15 2 3 4 16 12 2 6 16 1 2 2 16 42 2 5

queens 2 2 3 4 2 18 2 6 16 0 0 0 16 0 0 0
robot 63 49 2 10 63 179 4 24 265 203 4 19 281 669 5 32
ronp 47 35 7 31 640 185 13 87 297 137 10 32 2438 660 15 96

rotate 2 4 3 4 2 18 2 6 16 19 5 8 16 82 4 16
shape 31 8 9 14 328 77 28 64 63 32 6 14 672 220 21 64

tictactoe 63 54 6 9 12796 96 100 510 94 1 2 2 62 2 2 2
treeorder 32 28 6 17 469 102 11 120 734 154 8 87 14157 628 17 360

tsp 219 76 3 68 1156 239 10 88 407 253 2 18 187 628 3 28
yasmm 4614 9 3 8 – – – – 19716 40 9 24 – – – –

sets of sets) is not repaid by a commensurate reduction in closure calculation.
However, if S is large — which happens more often in goal-independent analysis
— then the speedup from collapsing closures can be considerable. For exam-
ple, collapsing requires only 63 milliseconds for tictactoe for goal-independent
analysis. Although these results are promising, they are not conclusive and fu-
ture work will quantify the impact of parallel closure evaluation and investigate
collapsing in the context of combined domains [9] and other frameworks [5,7].
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5 Related Work

Independence information has many applications in logic programming that in-
clude occurs-check reduction [19], automatic parallelisation [17] and finite-tree
analysis [1]. Set-sharing analysis [14], as opposed to pair-sharing analysis [19],
has particularly attracted much attention. This is because researchers have been
repeatedly drawn to the algebraic properties of the domain since these offer
tantalising opportunities for implementation. For example, Bagnara et al. [2]
observe that set-sharing is redundant when the objective is to detect pairs of
independent variables. A sharing group G is redundant with respect to a set-
sharing abstraction S iff S contains the pair sharing information that G encodes.
The value of redundancy is that it reduces the complexity of abstract unification
to a quadratic operation. As a response to this work, Bueno et al. [6] argue that
the redundancy assumption is not always valid. Our work adds to this debate
by showing the closures are not always as expensive as one might expect.

Another thread of promising work is in representing set-sharing with Boolean
functions [10]. In this approach, closure under union is reformulated as a closure
operator that maps one function to the smallest function that contains it which
can be represented as conjunction of propositional Horn clauses. This operator,
though elegant, is non-trivial [18]. Nevertheless, this encoding is advantageous
since ROBDDs [18] provide a canonical representation for Boolean functions
which enables memoisation to be applied to avoid repeated closure calculation.

The most commonly deployed tactic for reducing the number of closure cal-
culations is to combine set-sharing with other abstract domains [3,9] that can
be used to determine whether closure calculation is actually unnecessary. This
is not merely a computational tactic, but also a way to improve precision. Al-
though it seems straightforward to integrate groundness with closure collapsing,
future work will address the issue of how to fuse linearity [3,9] with this tactic.

The work reported in this paper is hinted at by a recent paper of the au-
thors [16] that endeavors to compute closures in an entirely lazy fashion. Each
unevaluated closure is represented by a clique — a set of program variables —
that augments a standard set-sharing abstractions. Alas, the advantage of this
approach is compromised by the way cliques interact with projection operation
to loose precision. By way of contrast, this paper shows that projection is a
catalyst for collapsing closures which leads to a simpler tactic for avoiding work.

6 Conclusions

Two issues govern the efficiency of set-sharing analysis: the number of sharing
groups that participate in each closure operation and the total number of closures
that are applied. This paper proposes a new tactic for reducing the overhead
of closure calculation based on postponing closures until a propitious moment
when they can be applied on less variables. This collapses the size of closures
whilst collapsing one closure calculation into another. The resulting analysis is
as precise as classic set-sharing analysis.
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Abstract. Abstraction-Carrying Code (ACC) has recently been pro-
posed as a framework for mobile code safety in which the code supplier
provides a program together with an abstraction whose validity entails
compliance with a predefined safety policy. The abstraction plays thus
the role of safety certificate and its generation is carried out automat-
ically by a fixed-point analyzer. The advantage of providing a (fixed-
point) abstraction to the code consumer is that its validity is checked in
a single pass of an abstract interpretation-based checker. A main chal-
lenge is to reduce the size of certificates as much as possible while at
the same time not increasing checking time. We introduce the notion
of reduced certificate which characterizes the subset of the abstraction
which a checker needs in order to validate (and re-construct) the full
certificate in a single pass. Based on this notion, we instrument a generic
analysis algorithm with the necessary extensions in order to identify the
information relevant to the checker. We also provide a correct checking
algorithm together with sufficient conditions for ensuring its complete-
ness. The experimental results within the CiaoPP system show that our
proposal is able to greatly reduce the size of certificates in practice.

1 Introduction

Proof-Carrying Code (PCC) [16] is a general framework for mobile code safety
which proposes to associate safety information in the form of a certificate to
programs. The certificate (or proof) is created at compile time by the certifier
on the code supplier side, and it is packaged along with the code. The consumer
which receives or downloads the (untrusted) code+certificate package can then
run a checker which by an efficient inspection of the code and the certificate can
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verify the validity of the certificate and thus compliance with the safety policy.
The key benefit of this approach is that the task of the consumer is reduced
to checking, a procedure that should be much simpler, efficient, and automatic
than generating the original certificate. Abstraction-Carrying Code (ACC) [2]
has been recently proposed as an enabling technology for PCC in which an
abstraction (or abstract model of the program) plays the role of certificate. An
important feature of ACC is that not only the checking, but also the generation of
the abstraction is carried out automatically, by a fixed-point analyzer. Both the
analysis and checking algorithms are always parametric on the abstract domain,
with the resulting genericity. This allows proving a wide variety of properties by
using the large set of abstract domains that are available, well understood, and
with already developed proofs for the correctness of the corresponding abstract
operations. This is one of the fundamental advantages of ACC.1

In this paper, we consider analyzers which construct a program analysis graph
which is an abstraction of the (possibly infinite) set of states explored by the
concrete execution. To capture the different graph traversal strategies used in
different fixed-point algorithms we use the generic description of [10], which
generalizes the algorithms used in state-of-the-art analysis engines. Essentially,
the certification/analysis carried out by the supplier is an iterative process which
repeatedly traverses the analysis graph until a fixpoint is reached. The analysis
information inferred for each call is stored in the answer table [10]. In the original
ACC framework, the final full answer table constitutes the certificate. Since this
certificate contains the fixpoint, a single pass over the analysis graph is sufficient
to validate it on the consumer side. It should be noted that while the ACC
framework and our work here are applied at the source-level, and in existing PCC
frameworks the code supplier typically packages the certificate with the object
code rather than with the source code (both are untrusted), this is without loss
of generality because both the ideas in the ACC approach and in our current
proposal can also be applied to bytecode.

One of the main challenges for the practical uptake of ACC (and related
methods) is to produce certificates which are reasonably small. This is important
since the certificate is transmitted together with the untrusted code and, hence,
reducing its size will presumably contribute to a smaller transmission time. Also,
this reduces the storage cost for the certificate. Nevertheless, a main concern
when reducing the size of the certificate is that checking time is not increased as
a consequence. In principle, the consumer could use an analyzer for the purpose of
generating the whole fixpoint from scratch, which is still feasible since analysis is
automatic. However, this would defeat one of the main purposes of ACC, which
is to reduce checking time. The objective of this paper is to characterize the
smallest subset of the abstraction which must be sent within a certificate –and

1 The coexistence of several abstract domains in our framework is somewhat related to
the notion of models to capture the security-relevant properties of code, as addressed
in the work on Model-Carrying Code [22].However, their combination has not been
studied which differs from our idea of using combinations of (high-level) abstract
domains, which is already well understood.
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which still guarantees a single pass checking process– and to design an ACC
scheme which generates and validates such reduced certificates.

Fixpoint compression is being used in different contexts and tools. For instance,
in the Astrée analyzer [8], only one abstract element by head of loop is kept for
memory usage purposes. In the PCC scheme, the basic idea in order to compress a
certificate is to store only the analysis information which the checker is not able to
reproduce by itself [12]. With this purpose, Necula and Lee [17] designed a variant
of LF, called LFi, in which certificates discard all the information that is redundant
or that can be easily synthesized. Also, Oracle-based PCC [18] aims at minimiz-
ing the size of certificates by providing the checker with the minimal information
it requires to perform a proof. Tactic-based PCC [3] aims at minimizing the size of
certificates by relying on large reasoning steps, or tactics, that are understood by
the checker. Finally, this general idea has also been deployed in lightweight byte-
code verification [20] where the certificate, rather than being the whole set of frame
types (FT) associated to each program point is reduced by omitting those (local)
programpoint FTs which correspond to instructions without branchingand which
are lesser than the final FT (fixpoint). Our proposal for ACC is at the same time
more general (because of the parametricity of the ACC approach) and carries the
reduction further because it includes only in the certificate those calls in the anal-
ysis graph (including both branching an non branching instructions) required by
the checker to re-generate the certificate in one pass.

2 A General View of Abstraction-Carrying Code

We assume the reader is familiar with abstract interpretation (see [7]) and (Con-
straint) Logic Programming (C)LP (see, e.g., [14] and [13]). A certifier is a
function certifier : Prog × ADom × AInt 
→ ACert which for a given program
P ∈ Prog , an abstract domain Dα ∈ ADom and a safety policy Iα ∈ AInt
generates a certificate Certα ∈ ACert , by using an abstract interpreter for Dα,
which entails that P satisfies Iα. In the following, we denote that Iα and Certα
are specifications given as abstract semantic values of Dα by using the same α.
The basics for defining such certifiers (and their corresponding checkers) in ACC
are summarized in the following six points and Equations:

Approximation. We consider an abstract domain 〈Dα,�〉 and its corresponding
concrete domain 〈2D,⊆〉, both with a complete lattice structure. Abstract values
and sets of concrete values are related by an abstraction function α : 2D → Dα,
and a concretization function γ : Dα → 2D. An abstract value y ∈ Dα is a
safe approximation of a concrete value x ∈ D iff x ∈ γ(y). The concrete and
abstract domains must be related in such a way that the following holds [7]
∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general � is induced
by ⊆ and α. Similarly, the operations of least upper bound (�) and greatest lower
bound (
) mimic those of 2D in a precise sense.

Analysis. We consider the class of fixed-point semantics in which a (mono-
tonic) semantic operator, SP , is associated to each program P . The meaning of
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the program, [[P ]], is defined as the least fixed point of the SP operator, i.e.,
[[P ]] = lfp(SP ). If SP is continuous, the least fixed point is the limit of an iter-
ative process involving at most ω applications of SP starting from the bottom
element of the lattice. Using abstract interpretation, we can usually only com-
pute [[P ]]α, as [[P ]]α = lfp(Sα

P ). The operator Sα
P is the abstract counterpart

of SP .
analyzer(P,Dα) = lfp(Sα

P ) = [[P ]]α (1)

Correctness of analysis ensures that [[P ]] ∈ γ([[P ]]α).

Verification Condition. Let Certα be a safe approximation of P . If an ab-
stract safety specification Iα can be proved w.r.t. Certα, then P satisfies the
safety policy and Certα is a valid certificate:

Certα is a valid certificate for P w.r.t. Iα if Certα � Iα (2)

Certifier. Together, equations (1) and (2) define a certifier which provides pro-
gram fixpoints, [[P ]]α, as certificates which entail a given safety policy, i.e., by
taking Certα = [[P ]]α.

Checking. A checker is a function checker : Prog×ADom×ACert 
→ bool which
for a program P ∈ Prog , an abstract domain Dα ∈ ADom and a certificate
Certα ∈ ACert checks whether Certα is a fixpoint of Sα

P or not:

checker(P,Dα, Certα) returns true iff (Sα
P (Certα) ≡ Certα) (3)

Verification Condition Regeneration. To retain the safety guarantees, the
consumer must regenerate a trustworthy verification condition –Equation 2– and
use the incoming certificate to test for adherence of the safety policy.

P is trusted iff Certα � Iα (4)

A fundamental idea in ACC is that, while analysis –equation (1)– is an iterative
process, checking –equation (3)– is guaranteed to be done in a single pass over
the abstraction.

3 Generation of Certificates in ACC

This section recalls ACC and the notion of full certificate in the context of (C)LP
[2]. For concreteness, we build on the algorithms of CiaoPP [9].

Algorithm 1 has been presented in [10] as a generic description of a fixed-point
algorithm which generalizes those used in state-of-the-art analysis engines, such
as the one in CiaoPP [9]. In order to analyze a program, traditional (goal de-
pendent) abstract interpreters for (C)LP programs receive as input, in addition
to the program P and the abstract domain Dα, a set Sα ∈ AAtom of Abstract
Atoms (or call patterns). Such call patterns are pairs of the form A : CP where
A is a procedure descriptor and CP is an abstract substitution (i.e., a condition
of the run-time bindings) of A expressed as CP ∈ Dα. For brevity, we sometimes
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Algorithm 1. Generic Analyzer for Abstraction-Carrying Code
1: function Analyze f(S, Ω)
2: for A : CP ∈ S do
3: add event(newcall(A : CP), Ω)
4: while E := next event(Ω) do
5: if E := newcall(A : CP) then new call pattern(A : CP, Ω)
6: else if E := updated(A : CP) then add dependent rules(A : CP, Ω)
7: else if E := arc(R) then process arc(R, Ω)
8: return answer table
9: procedure new call pattern(A : CP, Ω)

10: for all rule Ak : −Bk,1, . . . , Bk,nk
do

11: CP0 :=Aextend(CP, vars(. . . , Bk,i, . . .)); CP1 := Arestrict(CP0, vars(Bk,1))
12: add event(arc(Ak : CP ⇒ [CP0] Bk,1 : CP1),Ω)
13: add A : CP �→ ⊥ to answer table
14: procedure process arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2,Ω)
15: if Bk,i is not a constraint then
16: add Hk : CP0 ⇒ [CP1] Bk,i : CP2 to dependency arc table
17: W := vars(Ak, Bk,1, . . . , Bk,nk

); CP3 := get answer(Bk,i : CP2,CP1, W,Ω)
18: if CP3 �= ⊥ and i �= nk then
19: CP4 := Arestrict(CP3, vars(Bk,i+1));
20: add event( arc(Hk : CP0 ⇒ [CP3] Bk,i+1 : CP4),Ω)
21: else if CP3 �= ⊥ and i = nk then
22: AP1 := Arestrict(CP3, vars(Hk)); insert answer info(H : CP0 �→ AP1, Ω)
23: function get answer(L : CP2,CP1, W,Ω)
24: if L is a constraint then return Aadd(L,CP1)
25: else AP0 := lookup answer(L : CP2, Ω); AP1 := Aextend(AP0, W )
26: return Aconj(CP1,AP1)
27: function lookup answer(A : CP, Ω)
28: if there exists a renaming σ s.t.σ(A : CP) �→ AP in answer table then
29: return σ−1(AP)
30: else add event(newcall(σ(A : CP)), Ω) where σ is renaming s.t. σ(A) in base

form; return ⊥
31: procedure insert answer info(H : CP �→ AP, Ω)
32: AP0 := lookup answer(H : CP); AP1 := Alub(AP,AP0)
33: if AP0 �= AP1 then
34: add (H : CP �→ AP1) to answer table ;
35: add event(updated(H : CP), Ω)
36: procedure add dependent rules(A : CP, Ω)
37: for all arc of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2 in graph where there

exists renaming σ s.t. A : CP = (Bk,i : CP2)σ do
38: add event(arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2), Ω)

omit the subscript α in the algorithms. The analyzer of Algorithm 1 constructs
an and–or graph [4] (or analysis graph) for Sα which is an abstraction of the
(possibly infinite) set of (possibly infinite) execution paths (and-or trees) ex-
plored by the concrete execution of initial the calls described by Sα in P . The
program analysis graph is implicitly represented in the algorithm by means of
two global data structures, the answer table and the dependency arc table, both
initially empty.
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– The answer table contains entries of the form A : CP 
→ AP where A is
always a base form.2 Informally, its entries should be interpreted as “the
answer pattern for calls to A satisfying precondition (or call pattern) CP
meets postcondition (or answer pattern), AP.”

– A dependency arc is of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2. This is
interpreted as follows: if the rule with Hk as head is called with description
CP0 then this causes the i-th literal Bk,i to be called with description CP2.
The remaining part CP1 is the program annotation just beforeBk,i is reached
and contains information about all variables in rule k.

Intuitively, the analysis algorithm is a graph traversal algorithm which places
entries in the answer table and dependency arc table as new nodes and arcs
in the program analysis graph are encountered. To capture the different graph
traversal strategies used in different fixed-point algorithms, a prioritized event
queue is used. We use Ω ∈ QHS to refer to a Queue Handling Strategy which a
particular instance of the generic algorithm may use. Events are of three forms:

– newcall(A : CP ) which indicates that a new call pattern for literal A with
description CP has been encountered.

– arc(Hk : ⇒ [ ] Bk,i : ) which indicates that the rule with Hk as head needs
to be (re)computed from the position k, i.

– updated(A : CP ) which indicates that the answer description to call pattern
A with description CP has been changed.

The functions add event and next event respectively push an event to the priority
queue and pop the event of highest priority, according to Ω. The algorithm is
defined in terms of four abstract operations on the domain Dα:

– Arestrict(CP,V) performs the abstract restriction of a description CP to the
set of variables in the set V , denoted vars(V );

– Aextend(CP,V) extends the description CP to the variables in the set V ;
– Aadd(C,CP) performs the abstract operation of conjoining the actual con-

straint C with the description CP;
– Aconj(CP1,CP2) performs the abstract conjunction of two descriptions;
– Alub(CP1,CP2) performs the abstract disjunction of two descriptions.

More details on the algorithm can be found in [10,19]. Let us briefly explain its
main procedures. The algorithm centers around the processing of events on the
priority queue, which repeatedly removes the highest priority event (Line 4) and
calls the appropriate event-handling function (L5-7). The function new call pat-
tern initiates processing of all the rules for the definition of the internal literal
A, by adding arc events for each of the first literals of these rules (L12). Initially,

2 Program rules are assumed to be normalized: only distinct variables are allowed
to occur as arguments to atoms. Furthermore, we require that each rule defining
a predicate p has identical sequence of variables xp1 , . . . xpn in the head atom, i.e.,
p(xp1 , . . . xpn). We call this the base form of p.
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the answer for the call pattern is set to ⊥ (L13). The procedure process arc
performs the core of the analysis. It performs a single step of the left-to-right
traversal of a rule body. If the literal Bk,i is not a constraint (L15), the arc
is added to the dependency arc table (L16). Atoms are processed by function
get answer. Constraints are simply added to the current description (L24). In
the case of literals, the function lookup answer first looks up an answer for the
given call pattern in the answer table (L28) and if it is not found, it places a
newcall event (L30). When it finds one, then this answer is extended to the
variables in the rule the literal occurs in (L25) and conjoined with the current
description (L26). The resulting answer (L17) is either used to generate a new
arc event to process the next literal in the rule, if Bk,i is not the last one (L18);
otherwise, the new answer is computed by insert answer info. This is the part of
the algorithm more relevant to the generation of reduced certificates. The new
answer for the rule is combined with the current answer in the table (L32). If the
fixpoint for such call has not been reached, then the answer table entry is updated
with the combined answer (L34) and an updated event is added to the queue
(L35). The purpose of such an update is that the function add dependent rules
(re)processes those calls which depend on the call pattern A : CP whose answer
has been updated (L37). This effect is achieved by adding the arc events for each
of its dependencies (L38). Note that dependency arcs are used for efficiency:
they allow us to start the reprocessing of a rule from the body atom which
actually needs to be recomputed due to an update rather than from the leftmost
atom.

The following definition corresponds to the essential idea in the ACC frame-
work –equations (1) and (2)– of using a static analyzer to generate the certifi-
cates. The analyzer corresponds to Algorithm 1 and the certificate is the full
answer table.

Definition 1 (full certificate). We define function Certifier f:Prog ×
ADom ×AAtom × AInt × QHS 
→ ACert which takes P ∈ Prog, Dα ∈ ADom,
Sα ∈ AAtom, Iα ∈ AInt,Ω ∈ QHS and returns as full certificate, FCert ∈ ACert,
the answer table computed by Analyze f(Sα, Ω) for P in Dα if FCert � Iα.

4 Abstraction-Carrying Code with Reduced Certificates

The key observation in order to reduce the size of certificates is that certain en-
tries in a certificate may be irrelevant, in the sense that the checker is able
to reproduce them by itself in a single pass. The notion of relevance is di-
rectly related to the idea of recomputation in the program analysis graph. Intu-
itively, given an entry in the answer table A : CP 
→ AP , its fixpoint may have
been computed in several iterations from ⊥, AP0, AP1, . . . until AP . For each
change in the answer, an event updated(A : CP) is generated during the anal-
ysis. The above entry is relevant in a certificate (under some strategy) when
its updates force the recomputation of other arcs in the graph which depend
on A : CP (i.e., there is a dependency from it in the table). Thus, unless
A : CP 
→ AP is included in the (reduced) certificate, a single-pass checker which
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uses the same strategy as the code producer will not be able to validate the
certificate.

4.1 The Notion of Reduced Certificate

According to the above intuition, we are interested in determining when an entry
in the answer table has been “updated” during the analysis and such changes
affect other entries. However, there are two special types of updated events which
can be considered “irrelevant”. The first one is called a redundant update and
corresponds to the kind of updates which force a redundant computation. We
write DAT |A:CP to denote the set of arcs of the form H : CP0 ⇒ [CP1 ]B : CP2

in the current dependency arc table such that they depend on A : CP with
A : CP = (B : CP2 )σ for some renaming σ.

Definition 2 (redundant update). Let P ∈ Prog, Sα ∈ AAtom and Ω ∈
QHS. We say that an event updated(A : CP) which appears in the event queue
during the analysis of P for Sα is redundant w.r.t. Ω if, when it is generated,
DAT |A:CP = ∅.

In the following section we propose a slight modification to the analysis algorithm
in which redundant updates are never introduced in the priority queue, and thus
they never enforce redundant recomputation. The proof of correctness for this
modification can be found in [1].

The second type of updates which can be considered irrelevant are initial
updates which, under certain circumstances, are generated in the first pass over
an arc. In particular, we do not take into account updated events which are
generated when the answer table contains ⊥ for the updated entry. Note that
this case still corresponds to the first traversal of any arc and should not be
considered as a reprocessing.

Definition 3 (initial update). In the conditions of Def. 2, we say that an
event updated(A : CP) which appears in the event queue during the analysis
of P for Sα is initial for Ω if, when it is generated, the answer table contains
A : CP 
→ ⊥.

Initial updates do not occur in certain very optimized algorithms, like the one
in [19]. However, they are necessary in order to model generic graph traversal
strategies. In particular, they are intended to resume arcs whose evaluation has
been suspended.

Definition 4 (relevant update). In the conditions of Def. 2, we say that an
event updated(A : CP) is relevant iff it is not initial nor redundant.

The key idea is that those answer patterns whose computation has introduced
relevant updates should be available in the certificate.

Definition 5 (relevant entry). In the conditions of Def. 2 we say that the
entry A : CP 
→ AP in the answer table is relevant for Ω iff there has been at
least one relevant event updated(A : CP) during the analysis of P for Sα.
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The notion of reduced certificate allows us to remove irrelevant entries from the
answer table and produce a smaller certificate which can still be validated in one
pass.

Definition 6 (reduced certificate). In the conditions of Def. 2, let FCert=
Analyze f(Sα, Ω) for P and Sα. We define the reduced certificate, RCert, as
the set of relevant entries in FCert for Ω.

Example 1. Consider the Ciao version of procedure rectoy, taken from [21]:

rectoy(N,M) :- N = 0, M = 0.
rectoy(N,M) :- N1 is N-1, rectoy(N1,R), M is N1+R.

Assume the call pattern rectoy(N, M) : {N/int} which indicates that external
calls to rectoy are performed with an integer value, int, in the first argument
N. It holds that FCert = rectoy(N, M) : {N/int} 
→ {N/int, M/int} (the steps per-
formed by Analyze f are detailed in [1]). Assume now that we use a strategy
Ω ∈ QHS which assigns the highest priority to redundant updates and selects
the rules for rectoy in the textual order. For this strategy, the unique entry in
FCert is not relevant as there has been no relevant updated event in the queue.
Therefore, the reduced certificate for our example is empty (and, with the tech-
niques of the next section, our checker is able to reconstruct the fixpoint in a
single pass from this empty certificate). In contrast, lightweight bytecode verifi-
cation [21] sends, together with the program, the reduced non-empty certificate
cert = ({30 
→ (ε, rectoy ·int ·int ·int ·⊥)}, ε), which states that at program point
30 the stack does not contain information (first occurrence of ε),3 and variables
N , M and R have type int, int and ⊥. The need for sending this information
is because rectoy, implemented in Java, contains an if -branch (equivalent to
the branching for selecting one of our two clauses for rectoy). Thus cert has to
inform the checker that it is possible for variable R at point 30 to be undefined,
if the if condition does not hold. Note that this program is therefore an example
of how our approach improves on state-of-the-art PCC techniques by reducing
the certificate further while still keeping the checking process one-pass. �

4.2 Generation of Certificates Without Irrelevant Entries

In this section, we proceed to instrument the analyzer of Algorithm 1 with the
extensions necessary for producing reduced certificates, as defined in Def. 6. The
resulting analyzer Analyze r is presented in Algorithm 2. It uses the same
procedures of Algorithm 1 except for the new definitions of add dependent rules
and insert answer info. The differences with respect to the original definition are:

1. We count the number of relevant updates for each call pattern. To do this,
we associate with each entry in the answer table a new field “u” whose
purpose is to identify relevant entries. Concretely, u indicates the number of

3 The second occurrence of ε indicates that there are no backwards jumps.
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Algorithm 2. Analyze r: Analyzer instrumented for Certificate Reduction
1: procedure add dependent rules(A : CP, Ω)
2: (AP, u) =get from answer table(A : CP )
3: set in answer table(A(u + 1) : CP �→ AP )
4: for all arc of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2 in graph where there

exists renaming σ s.t. A : CP = (Bk,i : CP2)σ do
5: add event(arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2), Ω)
6: procedure insert answer info(H : CP �→ AP, Ω)
7: AP0 := lookup answer(H : CP, Ω)
8: AP1 := Alub(AP,AP0)
9: if AP0 �= AP1 then % updated required

10: if AP0 = ⊥ then
11: if DAT |H :CP �= ∅ then u = 0 % non redundant initial update

12: else u = 1 % redundant initial update

13: else (u, )=get from answer table(H : CP ) % not initial update

14: if DAT |H :CP �= ∅ then add event(updated(H : CP ))
15: set in answer table(H(u) : CP �→ AP1)

updated events processed for the entry. u is initialized when the (unique and
first) initial updated event occurs for a call pattern. The initialization of u
is different for redundant and initial updates as explained in the next point.
When the analysis finishes, if u > 1, we know that at least one reprocessing
has occurred and the entry is thus relevant. The essential point to note is
that u has to be increased when the event is actually extracted from the
queue (L3) and not when it is introduced in it (L14). The reason for this
is that when a non-redundant, updated event is introduced, if the priority
queue contains an identical event, then the processing is performed only
once. Therefore, our counter must not be increased.

2. We do not generate redundant updates. Our algorithm does not introduce
redundant updated events (L14). However, if they are initial (and redundant)
they have to be counted as if they had been introduced and processed and,
thus, the next update over them has to be considered always relevant. This
effect is achieved by initializing the u-value with a higher value (“1” in L12)
than for initial updates (“0” in L11). Indeed, the value “0” just indicates
that the initial updated event has been introduced in the priority queue but
not yet processed. It will be increased to “1” once it is extracted from the
queue. Therefore, in both cases the next updated event over the call pattern
will increase the counter to “2” and will be relevant.

In Algorithm 2, a call (u,AP )=get from answer table(A : CP) looks up in the
answer table the entry for A : CP and returns its u-value and its answer AP .
A call set in answer table(A(u) : CP 
→ AP ) replaces the entry for A : CP with
the new one A(u) : CP 
→ AP .

Proposition 1. Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Ω ∈ QHS. Let
FCert be the answer table computed by Analyze r(Sα, Ω) for P in Dα. Then,
an entry A(u) : CPA 
→ AP ∈ FCert is relevant iff u > 1.
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Note that, except for the control of relevant entries, Analyze f(Sα, Ω) and
Analyze r(Sα, Ω) have the same behavior and they compute the same answer
table (see [1] for details). We use function remove irrelevant answers which takes
a set of answers of the form A(u) : CP 
→ AP ∈ FCert and returns the set of
answers A : CP 
→ AP such that u > 1.

Definition 7 (certifier). Wedefine the function Certifier r:Prog×ADom×
AAtom×AInt ×QHS 
→ ACert, which takes P ∈ Prog,Dα ∈ ADom, Sα ∈ AA-
tom, Iα ∈ AInt, Ω ∈ QHS. It returns as certificate, RCert=remove irrelevant ans-
wers(FCert), where FCert=Analyze r(Sα, Ω), if FCert � Iα.

5 Checking Reduced Certificates

In the ACC framework for full certificates the checking algorithm [2] uses a
specific graph traversal strategy, say ΩC . This checker has been shown to be
very efficient but in turn its design is not generic with respect to this issue
(in contrast to the analysis design). This is not problematic in the context of
full certificates since, even if the certifier uses a strategy ΩA which is differ-
ent from ΩC , it is ensured that all valid certificates get validated in one pass
by that specific checker. This result does not hold any more in the case of re-
duced certificates. In particular, completeness of checking is not guaranteed if
ΩA �= ΩC . This occurs because though the answer table is identical for all strate-
gies, the subset of redundant entries depends on the particular strategy used.
The problem is that, if there is an entry A : CP 
→ AP in FCert such that
it is relevant w.r.t. ΩC but it is not w.r.t. ΩA, then a single pass checker will
fail to validate the RCert generated using ΩA. Therefore, it is essential in this
context to design generic checkers which are not tied to a particular graph traver-
sal strategy. Upon agreeing on the appropriate parameters,4 the consumer uses
the particular instance of the generic checker resulting from application of such
parameters.

It should be noted that the design of generic checkers is also relevant in light
of current trends in verified analyzers (e.g., [11,6]), which could be transferred di-
rectly to the checking end. In particular, since the design of the checking process
is generic, it becomes feasible in ACC to use automatic program transformers to
specialize a certified (specific) analysis algorithm in order to obtain a certified
checker with the same strategy while preserving correctness and completeness.

The following definition presents a generic checker for validating reduced cer-
tificates. In addition to the genericity issue discussed above, an important dif-
ference with the checker for full certificates [2] is that there are certain entries
which are not available in the certificate and that we want to reconstruct and
output in checking. The reason for this is that the safety policy has to be tested

4 In a particular application of our framework, we expect that the graph traversal
strategy is agreed a priori between consumer and producer. But, if necessary (e.g.,
the consumer does not implement this strategy), then it could be sent along with
the transmitted package.
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Algorithm 3. Generic Checker for Reduced Certificates Checking r
1: procedure insert answer info(H : CP �→ AP, Ω)
2: AP0 := lookup answer(H : CP, Ω); AP1 := Alub(AP,AP0)
3: (IsIn,AP ′)=look fixpoint(H : CP ,RCert)
4: if IsIn and Alub(AP,AP′) �= AP ′ then return Error % error of type a)

5: if AP0 �= AP1 then % updated required

6: if AP0 = ⊥ then
7: if DAT |H :CP �= ∅ then u = 0; add event(updated(H : CP ), Ω)
8: else u = 1
9: else (u, )=get from answer table(H : CP )

10: if DAT |H :CP �= ∅ and u = 1 then return Error % error of type b)

11: if IsIn and AP0 = ⊥ then AP1 = AP ′
12: set in answer table(H(u) : CP �→ AP1)

13: function look fixpoint(A : CP ,RCert)
14: if ∃ a renaming σ such that σ(A : CP �→ AP ) ∈ RCert then
15: return (True,σ−1(AP ))
16: else return (False,⊥)

w.r.t. the full answer table –Equation (2). Therefore, the checker must recon-
struct, from RCert, the answer table returned by Analyze f, FCert, in order to
test for adherence to the safety policy –Equation (4). Note that reconstructing
the answer table does not add any additional cost compared to the checker in
[2], since the full answer table also has to be created in [2].

Definition 8 (checker for reduced certificates). Function Checking r is
defined as function Analyze r with the following modifications:

1. It receives RCert as an additional input parameter.
2. It may fail to produce an answer table. In that case it issues an Error.
3. Function insert answer info is replaced by the new one in Algorithm 3.

Function Checker r takes P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Ω ∈
QHS, RCert ∈ ACert and returns the result of Checking r(Sα, Ω,RCert) for P
in Dα.

Let us briefly explain the differences between Algorithms 2 and 3. First, the
checker has to detect (and issue) two sources of errors:

a) The answer in the certificate is more precise than the one obtained by the
checker (L4). This is the traditional error in ACC and means that the cer-
tificate and program at hand do not correspond to each other.

b) Recomputation is required. This should not occur during checking, i.e., only
initial updates should be generated (L7) by the checker.5 This second type of
error corresponds to situations in which a relevant update is needed in order
to obtain an answer (it cannot be obtained in one pass). This is detected in
L10 prior to introducing the (non redundant) update if u is already 1.

5 Initial updates are not needed in the particular instance of the checker of [2] because
the strategy is fixed. They are needed to model a generic checker though.
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The second difference is that the entries A : CP 
→ AP ′ stored in RCert have to
be added to the answer table, after the initial updated event for A : CP occurs,
in order to detect errors of type a) above. In particular, L11 and L12 add the
fixpoint AP ′ stored in RCert to the answer table together with the corresponding
u-value (same value as in Algorithm 2).

The following theorem ensures that if Checker r validates a certificate (i.e.,
it does not return Error), then the re-constructed answer table is a fixpoint. This
implies that any certificate which gets validated by the checker is indeed a valid
one.

Theorem 1 (correctness). Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom,
Iα ∈ AInt and ΩA, ΩC ∈ QHS. Let FCert= Certifier f(P,Dα, Sα, Iα, ΩA) and
RCert= Certifier r(P,Dα, Sα, Iα, ΩA). If Checker r(P,Dα, Sα, Iα, RCert,
ΩC) does not issue an Error, then it returns FCert.

The following theorem (completeness) provides sufficient conditions under which
a checker is guaranteed to validate reduced certificates which are actually valid.

Theorem 2 (completeness). Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom,
Iα ∈ AInt and ΩA ∈ QHS. Let FCert= Certifier f(P,Dα, Sα, Iα, ΩA) and
RCertΩA = Certifier r(P,Dα, Sα, Iα, ΩA). LetΩC ∈ QHS be such that RCertΩC

= Certifier r(P,Dα, Sα, Iα, ΩC) and RCertΩA ⊇ RCertΩC . Then, Checker r
(P, Dα, Sα, Iα, RCertΩA , ΩC) returns FCert and does not issue an Error.

Obviously, if ΩC = ΩA then the checker is guaranteed to be complete. Addition-
ally, a checker using a different strategy ΩC is also guaranteed to be complete as
long as the certificate reduced w.r.t ΩC is equal to or smaller than the certificate
reduced w.r.t ΩA. Furthermore, if the certificate used is full, the checker is com-
plete for any strategy. Note that if RCertΩA �⊇ RCertΩC , Checker r with the
strategy ΩC may fail to validate RCertΩA , which is indeed valid for the program
under ΩA.

6 Discussion and Experimental Evaluation

As we have illustrated throughout the paper, the gain of the reduction is di-
rectly related to the number of updates (or iterations) performed during analy-
sis. Clearly, depending on the graph traversal strategy used, different instances
of the generic analyzer will generate reduced certificates of different sizes. Sig-
nificant and successful efforts have been made during recent years towards im-
proving the efficiency of analysis. The most optimized analyzers actually aim at
reducing the number of updates necessary to reach the final fixpoint [19]. Inter-
estingly, our framework greatly benefits from all these advances, since the more
efficient analysis is, the smaller the corresponding reduced certificates are. We
have implemented a generator and a checker of reduced certificates in CiaoPP.
Both the analysis and checker use the optimized depth-first new-calling QHS
of [19].
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Table 1. Size of Reduced Certificates and Checking Time

Size Certificate Size Checking Time
Program Source FCert RCert F/R CF CR CF/CR

aiakl 1555 3090 1616 1.912 85 86 0.991
bid 4945 5939 883 6.726 46 49 0.943
browse 2589 1661 941 1.765 18 20 0.929
deriv 957 288 288 1.000 50 28 1.806
grammar 1598 1259 40 31.475 15 14 1.042
hanoiapp 1172 2325 880 2.642 30 28 1.049
occur 1367 1098 666 1.649 20 19 1.085
progeom 1619 2148 40 53.700 20 15 1.351
qsortapp 664 2355 650 3.623 20 21 0.990
query 2090 531 40 13.275 18 12 1.436
rdtok 13704 6533 2659 2.457 57 58 0.986
rectoy 154 167 40 4.175 8 8 1.079
serialize 987 1779 1129 1.576 27 27 1.022
zebra 2284 4058 40 101.450 123 125 0.979
Overall 3.35 1.06

In Table 1 we study two crucial points for the practicality of our proposal:
the size of the reduced vs. full certificates and the relative efficiency of checking
reduced certificates. As mentioned before, the algorithms are parametric w.r.t.
the abstract domain. In our experiments we use the sharing+freeness [15] ab-
stract domain, that is very useful for reasoning about instantiation errors, a
crucial aspect for the safety of logic programs. The system is implemented in
Ciao 1.13 [5] with compilation to bytecode. The experiments have been per-
formed on a Pentium 4 (Xeon) at 2 Ghz and 4 Gb RAM, running GNU Linux
FC-2, 2.6.9.

The set of benchmarks used is the same as in [10,2], where they are de-
scribed in more detail. The column Source shows the size in bytes of the source
code. The size in bytes of the certificates is showed in the next set of columns.
FCert and RCert contain the size of the full and reduced certificate, respec-
tively, for each benchmark and they are compared in column (F/R). Our re-
sults show that the reduction in size is very significant in all cases. It ranges
from 101.45 in zebra (RCert is indeed empty –the size of an empty certificate is,
in this case, 40 bytes since it includes information about the abstract domain
used for generating the certificate– whereas FCert is 4058) to 1 for deriv (both
certificates have the same size). The final part of the table compares the check-
ing time both when full and reduced certificates are used. Execution times are
given in milliseconds and measure runtime. They are computed as the arithmetic
mean of five runs. For each benchmark, CF and CR are the times for executing
Checker f and Checker r, respectively. The column CF /CR compares both
checking times. It can be seen that the efficiency of Checker r is very similar
to that of Checker f in most cases. The last row (Overall) summarizes the
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results for the different benchmarks using a weighted mean, where the weight is
the actual checking time for each benchmark. Overall, certificates are reduced
by a factor of 3.35 and the checker for reduced certificates is slightly faster, with
an overall speedup of 1.06.
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Abstract. We propose a method for proving first order properties of
constraint logic programs which manipulate finite lists of real numbers.
Constraints are linear equations and inequations over reals. Our method
consists in converting any given first order formula into a stratified con-
straint logic program and then applying a suitable unfold/fold transfor-
mation strategy that preserves the perfect model. Our strategy is based
on the elimination of existential variables, that is, variables which occur
in the body of a clause and not in its head. Since, in general, the first or-
der properties of the class of programs we consider are undecidable, our
strategy is necessarily incomplete. However, experiments show that it is
powerful enough to prove several non-trivial program properties.

1 Introduction

It has been long recognized that program transformation can be used as a means
of proving program properties. In particular, it has been shown that unfold/fold
transformations introduced in [4,20] can be used to prove several kinds of pro-
gram properties, such as equivalences of functions defined by recursive equation
programs [5,9], equivalences of predicates defined by logic programs [14], first
order properties of predicates defined by stratified logic programs [15], and tem-
poral properties of concurrent systems [7,19]. In this paper we consider stratified
logic programs with constraints and we propose a method based on unfold/fold
transformations to prove first order properties of these programs.

The main reason that motivates our method is that transformation techniques
may serve as a way of eliminating existential variables (that is, variables which
occur in the body of a clause and not in its head) and the consequent quantifier
elimination can be exploited to prove first order formulas. Quantifier elimination
is a well established technique for theorem proving in first order logic [18] and
one of its applications is Tarski’s decision procedure for the theory of the field
of reals. However, no quantifier elimination method has been developed so far to
prove formulas within theories defined by constraint logic programs, where the
constraints are themselves formulas of the theory of reals. Consider, for instance,
the following constraint logic program which defines the membership relation for
finite lists of reals:
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Member : member (X, [Y |L])← X=Y member(X, [Y |L])← member(X,L)
Suppose we want to show that every finite list of reals has an upper bound, i.e.,

ϕ : ∀L ∃U ∀X (member(X,L)→ X ≤ U)

Tarski’s quantifier elimination method cannot help in this case, because the
membership relation is not defined in the language of the theory of reals. The
transformational technique we propose in this paper, proves the formula ϕ in two
steps. In the first step we transform ϕ into clause form by applying a variant of
the Lloyd-Topor transformation [11], thereby deriving the following clauses:

Prop1: 1. prop ← ¬p 3. q(L)← list(L) ∧ ¬r(L,U)
2. p← list(L) ∧ ¬q(L) 4. r(L,U)←X>U ∧ list(L) ∧member(X,L)

where list(L) holds iff L is a finite list of reals. The predicate prop is equivalent
to ϕ in the sense that M(Member) |= ϕ iff M(Member ∪ Prop1) |= prop, where
M(P ) denotes the perfect model of a stratified constraint logic program P . In
the second step, we eliminate the existential variables by extending to constraint
logic programs the techniques presented in [16] in the case of definite logic pro-
grams. For instance, the existential variableX occurring in the body of the above
clause 4, is eliminated by applying the unfolding and folding rules and trans-
forming that clause into the following two clauses: r([X |L], U)← X>U ∧ list(L)
and r([X |L], U) ← r(L,U). By iterating the transformation process, we elimi-
nate all existential variables and we derive the following program which defines
the predicate prop:

Prop2: 1. prop ← ¬p 2′. p← p1 3′. p1 ← p1

Now, Prop2 is a propositional program and has a finite perfect model, which is
{prop}. Since all transformations we have made can be shown to preserve the
perfect model, we have that M(Member ) |= ϕ iff M(Prop2) |= prop and, thus,
we have completed the proof of ϕ.

The main contribution of this paper is the proposal of a proof method for
showing that a closed first order formula ϕ holds in the perfect model of a
stratified constraint logic program P , that is, M(P ) |= ϕ. Our proof method is
based on program transformations which eliminate existential variables.

The paper is organized as follows. In Section 2 we consider a class of con-
straint logic programs, called lr-programs (lr stands for lists of reals), which
is Turing complete and for which our proof method is fully automatic. Those
programs manipulate finite lists of reals with constraints which are linear equa-
tions and inequations over reals. In Section 3 we present the transformation
strategy which defines our proof method and we prove its soundness. Due to
the undecidability of the first order properties of lr-programs, our proof method
is necessarily incomplete. Some experimental results obtained by using a pro-
totype implementation are presented in Section 5. Finally, in Section 6 we
discuss related work in the field of program transformation and theorem
proving.
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2 Constraint Logic Programs over Lists of Reals

We assume that the reals are defined by the usual structure R = 〈R, 0, 1,+, ·,≤〉.
In order to specify programs and formulas, we use a typed first order language [11]
with two types: (i) real, denoting the set of reals, and (ii) list of reals (or list, for
short), denoting the set of finite lists of reals.

We assume that every element of R is a constant of type real. A term p
of type real is defined as: p ::= a | X | p1 + p2 | a ·X , where a is
a real number and X is a variable of type real. We also write aX , instead of
a ·X . A term of type real will also be called a linear polynomial. An atomic
constraint is a formula of the form: p1 = p2, or p1 < p2, or p1 ≤ p2, where p1
and p2 are linear polynomials. We also write p1 > p2 and p1 ≥ p2, instead of
p2 <p1 and p2≤ p1, respectively. A constraint is a finite conjunction of atomic
constraints. A first order formula over reals is a first order formula constructed
out of atomic constraints by using the usual connectives and quantifiers (i.e.,
¬,∧,∨,→, ∃, ∀). By FR we will denote the set of first order formulas over reals.
A term l of type list is defined as: l ::= L | [ ] | [ p | l ], where L is a
variable of type list and p is a linear polynomial. A term of type list will also
be called a list. An atom is a formula of the form r(t1, . . . , tn) where r is an
n-ary predicate symbol (with n ≥ 0 and r �∈ {=, <,≤}) and, for i = 1, . . . , n,
ti is either a linear polynomial or a list. An atom is linear if each variable
occurs in it at most once. A literal is either an atom (i.e., a positive literal) or
a negated atom (i.e., a negative literal). A clause C is a formula of the form:
A ← c ∧ L1 ∧ . . . ∧ Lm, where: (i) A is an atom, (ii) c is a constraint, and
(iii) L1, . . . , Lm are literals. A is called the head of the clause, denoted hd(C), and
c∧L1∧. . .∧Lm is called the body of the clause, denoted bd(C). A constraint logic
program over lists of reals, or simply a program, is a set of clauses. A program
is stratified if no predicate depends negatively on itself [2]. Given a term or a
formula f , vars(f) denotes the set of variables occurring in f . Given a clause
C, a variable V is said to be an existential variable of C if V ∈ vars(bd(C))−
vars(hd(C)).

The definition of a predicate p in a program P , denoted by Def (p, P ), is the
set of the clauses of P whose head predicate is p. The extended definition of p in
P , denoted by Def ∗(p, P ), is the union of the definition of p and the definitions
of all predicates in P on which p depends (positively or negatively). A program
is propositional if every predicate occurring in the program is 0-ary. Obviously, if
P is a propositional program then, for every predicate p, M(P ) |= p is decidable.

Definition 1 (lr-program). Let X denote a variable of type real, L a variable
of type list, p a linear polynomial, r1 and r2 two predicate symbols, and c a
constraint. An lr-clause is a clause defined as follows:
head term: h ::= X | [ ] | [X |L]
body term: b ::= p | L
lr-clause: C ::= r1(h1, . . . , hk)← c

| r1(h1, . . . , hk)← c ∧ r2(b1, . . . , bm)
| r1(h1, . . . , hk)← c ∧ ¬r2(b1, . . . , bm)
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where: (i) vars(p) �= ∅, (ii) r1(h1, . . . , hk) is a linear atom, and (iii) clause C has
no existential variables. An lr-program is a finite set of lr-clauses. �

We assume that the following lr-clauses belong to every lr-program (but we will
omit them when writing lr-programs):

list([ ])← list([X |L])← list(L)

The specific syntactic form of lr-programs is required for the automation of the
transformation strategy we will introduce in Section 3. Here is an lr-program:

P1: sumlist([ ], Y )← Y =0
sumlist([X |L], Y )← sumlist(L, Y −X)
haspositive([X |L])← X>0
haspositive([X |L])← haspositive(L)

The following definition introduces the class of programs and formulas which
can be given in input to our proof method.

Definition 2 (Admissible Pair). Let P be an lr-program and ϕ a closed first
order formula with no other connectives and quantifiers besides ¬,∧, and ∃. We
say that 〈P, ϕ〉 is an admissible pair if: (i) every predicate symbol occurring in ϕ
and different from ≤, <,=, also occurs in P , (ii) every predicate of arity n (>0)
occurring in P and different from ≤, <,=, has at least one argument of type list,
and (iii) for every proper subformula σ of ϕ, if σ is of the form ¬ψ, then either
σ is a formula in FR or σ has a free occurrence of a variable of type list. �

Conditions (ii) and (iii) of Definition 2 are needed to guarantee the soundness
of our proof method (see Theorem 3).

Example 1. Let us consider the above program P1 defining the predicates sumlist
and haspositive , and the formula
π : ∀L ∀Y ((sumlist(L, Y ) ∧ Y >0)→ haspositive(L))

which expresses the fact that if the sum of the elements of a list is positive then
the list has at least one positive member. This formula can be rewritten as:
π1 : ¬∃L ∃Y (sumlist(L, Y ) ∧ Y >0 ∧ ¬haspositive(L))

The pair 〈P1, π1〉 is admissible. Indeed, the only proper subformula of π1 of the
form ¬ψ is ¬haspositive(L) and the free variable L is of type list. �

In order to define the semantics of our logic programs we consider LR-interpre-
tations where: (i) the type real is mapped to the set of reals, (ii) the type list is
mapped to the set of lists of reals, and (iii) the symbols +, ·, =, <, ≤, [ ], and
[_|_] are mapped to the usual corresponding operations and relations on reals
and lists of reals. The semantics of a stratified logic program P is assumed to
be its perfect LR-model M(P ), which is defined similarly to the perfect model
of a stratified logic program [2,12,17] by considering LR-interpretations, instead
of Herbrand interpretations. Note that for every formula ϕ ∈ FR, we have that
R |= ϕ iff for any LR-interpretation I, I |= ϕ.

Now we present a transformation, called Clause Form Transformation, that
allows us to derive stratified logic programs starting from formulas, called state-



Proving Properties of Constraint Logic Programs 183

ments, of the form: A← β, where A is an atom and β is a typed first order for-
mula. Our transformation is a variant of the transformation proposed by Lloyd
and Topor in [11]. When applying the Clause Form Transformation, we will use
the following well known property which guarantees that existential quantifica-
tion and negation can always be eliminated from first order formulas on reals.

Lemma 1 (Variable Elimination). For any formula ϕ ∈ FR there exist n
(≥ 0) constraints c1, . . . , cn such that: (i) R |= ∀(ϕ ↔ (c1 ∨ . . . ∨ cn)), and
(ii) every variable in vars(c1 ∨ . . . ∨ cn) occurs free in ϕ.

In what follows we write C[γ] to denote a formula where the subformula γ occurs
as an outermost conjunct, that is, C[γ] = γ1∧γ ∧γ2 for some (possibly empty)
conjunctions γ1 and γ2.

Clause Form Transformation
Input : A statement S whose body has no other connectives and quantifiers
besides ¬,∧, and ∃. Output : A set of clauses denoted CFT (S).
(Step A) Starting from S, repeatedly apply the following rules A.1–A.5 until a
set of clauses is generated.
(A.1) If γ ∈ FR and γ is not a constraint, then replace A← C[γ] by the n state-
ments A← C[c1], . . . , A← C[cn], where c1∨ . . .∨ cn, with n≥0, is a disjunction
of constraints which is equivalent to γ. (The existence of such a disjunction is
guaranteed by Lemma 1 above.)
(A.2) If γ �∈ FR then replace A← C[¬¬γ] by A← C[γ].
(A.3) If γ∧δ �∈ FR then replace the statement A ← C[¬(γ∧δ)] by the two
statements A← C[¬newp(V1, . . . ,Vk)] and newp(V1, . . . ,Vk)← γ∧δ, where newp
is a new predicate and V1, . . . ,Vk are the variables which occur free in γ ∧ δ.
(A.4) If γ �∈ FR then replace the statement A← C[¬∃V γ] by the two statements
A ← C[¬newp(V1, . . . , Vk)] and newp(V1, . . . , Vk) ← γ, where newp is a new
predicate and V1, . . . , Vk are the variables which occur free in ∃V γ.
(A.5) If γ �∈ FR then replace A ← C[∃V γ] by A ← C[γ{V/V1}], where V1 is a
new variable.
(Step B) For every clause A ← c ∧ G such that L1, . . . , Lk are the variables of
type list occurring in G, replace A← c∧G by A← c∧ list(L1)∧. . .∧ list(Lk)∧G.

Example 2. The set CFT (prop1 ← π1), where π1 is the formula given in Exam-
ple 1, consists of the following two clauses:
D2 : prop1 ← ¬new1
D1 : new1 ← Y >0 ∧ list(L) ∧ sumlist(L, Y ) ∧ ¬haspositive(L)

(The subscripts of the names of these clauses follow the bottom-up order in
which they will be processed by the UFlr strategy we will introduce below.) �
By construction, we have that if 〈P, ϕ〉 is an admissible pair and prop is a new
predicate symbol, then P ∪CFT (prop ← ϕ) is a stratified program. The Clause
Form Transformation is correct with respect to the perfect LR-model semantics,
as stated by the following theorem.
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Theorem 1 (Correctness of CFT). Let 〈P, ϕ〉 be an admissible pair. Then,
M(P ) |= ϕ iff M(P ∪ CFT (prop ← ϕ)) |= prop.

In general, a clause in CFT (prop ← ϕ) is not an lr-clause because, indeed,
existential variables may occur in its body. The clauses of CFT (prop ← ϕ) are
called typed-definitions. They are defined as follows.

Definition 3 (Typed-Definition, Hierarchy). A typed-definition is a clause
of the form: r(V1, . . . , Vn)← c∧list(L1)∧. . .∧list(Lk)∧G where: (i) V1, . . . , Vn

are distinct variables of type real or list, and (ii) L1, . . . , Lk are the variables of
type list that occur in G. A sequence 〈D1, . . . , Dn〉 of typed-definitions is said
to be a hierarchy if for i= 1, . . . , n, the predicate of hd(Di) does not occur in
{bd(D1), . . . , bd(Di)}. �

One can show that given a closed formula ϕ, the set CFT (prop ← ϕ) of
clauses can be ordered as a hierarchy 〈D1, . . . , Dn〉 of typed-definitions such
that Def (prop, {D1, . . . , Dn})={Dk, Dk+1, . . . , Dn}, for some k with 1≤k≤n.

3 The Unfold/Fold Proof Method

In this section we present the transformation strategy, called UFlr (Unfold/Fold
strategy for lr-programs), which defines our proof method for proving properties
of lr-programs. Our strategy applies in an automatic way the transformation
rules for stratified constraint logic programs presented in [8]. In particular, the
UFlr strategy makes use of the definition introduction, (positive and negative)
unfolding, (positive) folding, and constraint replacement rules. (These rules ex-
tend the ones proposed in [6,12] where the unfolding of a clause with respect to
a negative literal is not permitted.)

Given an admissible pair 〈P, ϕ〉, let us consider the stratified program P ∪
CFT (prop ← ϕ). The goal of our UFlr strategy is to derive a program TransfP
such that Def ∗(prop,TransfP) is propositional and, thus, M(TransfP) |= prop
is decidable. We observe that, in order to achieve this goal, it is enough that the
derived program TransfP is an lr-program, as stated by the following lemma,
which follows directly from Definition 1.

Lemma 2. Let P be an lr-program and p be a predicate occurring in P . If p is
0-ary then Def ∗(p, P ) is a propositional program.

As already said, the clauses in CFT (prop ← ϕ) form a hierarchy 〈D1, . . . , Dn〉 of
typed-definitions. The UFlr strategy consists in transforming, for i = 1, . . . , n,
clause Di into a set of lr-clauses. The transformation of Di is performed by
applying the following three substrategies, in this order: (i) unfold , which un-
folds Di with respect to the positive and negative literals occurring in its body,
thereby deriving a set Cs of clauses, (ii) replace-constraints, which replaces the
constraints appearing in the clauses of Cs by equivalent ones, thereby deriving a
new set Es of clauses, and (iii) define-fold , which introduces a set NewDefs of new
typed-definitions (which are not necessarily lr-clauses) and folds all clauses in
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Es, thereby deriving a set Fs of lr-clauses. Then each new definition in NewDefs
is transformed by applying the above three substrategies, and the whole UFlr

strategy terminates when no new definitions are introduced. The substrategies
unfold , replace-constraints, and define-fold will be described in detail below.

The UFlr Transformation Strategy
Input: An lr-program P and a hierarchy 〈D1, . . . , Dn〉 of typed-definitions.
Output: A set Defs of typed-definitions including D1, . . . , Dn, and an lr-program
TransfP such that M(P ∪Defs) = M(TransfP).

TransfP := P ; Defs := {D1, . . . , Dn};
for i = 1, . . . , n do InDefs := {Di};

while InDefs �=∅do unfold(InDefs ,TransfP ,Cs); replace-constraints(Cs ,Es);
define-fold (Es ,Defs ,NewDefs ,Fs);
TransfP := TransfP ∪ Fs ; Defs := Defs ∪ NewDefs ; InDefs := NewDefs ;
end-while;
eval-props: for each predicate p such thatDef ∗(p,TransfP) is propositional,
if M(TransfP) |= p then TransfP := (TransfP−Def (p,TransfP)) ∪ {p←}

else TransfP := (TransfP−Def (p,TransfP))
end-for

Our assumption that 〈D1,. . . ,Dn〉 is a hierarchy ensures that, when transforming
clause Di, for i= 1,. . . ,n, we only need the clauses obtained after the transfor-
mation of D1, . . . , Di−1. These clauses are those of the current value of TransfP .

The following unfold substrategy transforms a set InDefs of typed-definitions
by first applying the unfolding rule with respect to each positive literal in the
body of a clause and then applying the unfolding rule with respect to each neg-
ative literal in the body of a clause. In the sequel, we will assume that the con-
junction operator ∧ is associative, commutative, idempotent, and with neutral
element true. In particular, the order of the conjuncts will not be significant.

The unfold Substrategy
Input : An lr-program Prog and a set InDefs of typed-definitions.
Output : A set Cs of clauses.
Initially, no literal in the body of a clause of InDefs is marked as ‘unfolded’.
Positive Unfolding : while there exists a clause C in InDefs of the form
H←c∧GL∧A∧GR, where A is an atom which is not marked as ‘unfolded’ do
Let C1: K1 ← c1 ∧B1, . . . , Cm: Km ← cm ∧Bm be all clauses of program Prog
(where we assume vars(Prog)∩vars(C) = ∅) such that, for i=1, . . . ,m, (i) there
exists a most general unifier ϑi of A and Ki, and (ii) the constraint (c ∧ ci)ϑi is
satisfiable. Let U be the following set of clauses:

U = {(H ← c∧ c1 ∧GL ∧B1 ∧GR)ϑ1, . . . , (H ← c∧ cm ∧GL ∧Bm ∧GR)ϑm}
Let W be the set of clauses derived from U by removing all clauses of the form
H ← c ∧GL ∧A ∧ ¬A ∧GR
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Inherit the markings of the literals in the body of the clauses of W from those
of C, and mark as ‘unfolded’ the literals B1ϑ1, . . . , Bmϑm;
InDefs := (InDefs − {C}) ∪W ;
end-while;
Negative Unfolding : while there exists a clause C in InDefs of the form
H←c∧GL∧¬A∧GR, where¬A is a literal which is not marked as ‘unfolded’ do
Let C1: K1 ← c1 ∧B1, . . . , Cm: Km ← cm ∧ Bm be all clauses of program Prog
(where we assume that vars(Prog)∩vars(C)=∅) such that, for i=1, . . . ,m, there
exists a most general unifier ϑi of A and Ki. By our assumptions on Prog and
on the initial value of InDefs, and as a result of the previous Positive Unfolding
phase, we have that, for i=1, . . . ,m, Bi is either the empty conjunction true or
a literal and A=Kiϑi. Let U be the following set of statements:
U = {H ← c ∧ d1ϑ1 ∧ . . . ∧ dmϑm ∧GL ∧ L1ϑ1 ∧ . . . ∧ Lmϑm ∧GR |
(i) for i=1, . . . ,m, either (di =ci and Li =¬Bi) or (di =¬ci andLi = true),
and (ii) c ∧ d1ϑ1 ∧ . . . ∧ dmϑm is satisfiable}

Let W be the set of clauses derived from U by applying as long as possible the
following rules:
• remove H ← c ∧GL ∧ ¬true ∧GR and H ← c ∧GL ∧A ∧ ¬A ∧GR

• replace ¬¬A by A, ¬(p1 ≤ p2) by p2 < p1, and ¬(p1 < p2) by p2 ≤ p1
• replace H ← c1 ∧ ¬(p1 = p2) ∧ c2 ∧G by H ← c1 ∧ p1 < p2 ∧ c2 ∧G

H ← c1 ∧ p2 < p1 ∧ c2 ∧G
Inherit the markings of the literals in the body of the clauses of W from those
of C, and mark as ‘unfolded’ the literals L1ϑ1, . . . , Lmϑm;
InDefs := (InDefs − {C}) ∪W ;
end-while;
Cs := InDefs .

Negative Unfolding is best explained through an example. Let us consider a
program consisting of the clauses C: H ← c∧¬A, A← c1∧B1, and A← c2∧B2.
The negative unfolding of C w.r.t. ¬A gives us the following four clauses:

H ← c ∧ ¬c1 ∧ ¬c2 H ← c ∧ ¬c1 ∧ c2 ∧ ¬B2
H ← c ∧ c1 ∧ ¬c2 ∧ ¬B1 H ← c ∧ c1 ∧ c2 ∧ ¬B1 ∧ ¬B2

whose conjunction is equivalent to H ← c ∧ ¬((c1 ∧B1) ∨ (c2 ∧B2)).

Example 3. Let us consider the program-property pair 〈P1, π1〉 of Example 1. In
order to prove that M(P1) |= π1, we apply the UFlr strategy starting from the
hierarchy 〈D1, D2〉 of typed-definitions of Example 2. During the first execution
of the body of the for-loop of that strategy, the unfold substrategy is applied, as
we now indicate, by using as input the program P1 and the set {D1} of clauses.

Positive Unfolding. By unfolding clause D1 w.r.t. list(L) and then unfolding the
resulting clauses w.r.t. sumlist(L, Y ), we get:

C1: new1 ← Y >0 ∧ list(L) ∧ sumlist(L, Y −X) ∧ ¬haspositive([X |L])

Negative Unfolding. By unfolding clause C1 w.r.t. ¬haspositive([X |L]), we get:

C2: new1 ← Y >0 ∧X≤0 ∧ list(L) ∧ sumlist(L, Y −X) ∧ ¬haspositive(L) �
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The correctness of the unfold substrategy follows from the fact that the positive
and negative unfoldings are performed according to the rules presented in [8].
The termination of that substrategy is due to the fact that the number of literals
which are not marked as ‘unfolded’ and which occur in the body of a clause,
decreases when that clause is unfolded. Thus, we have the following result.

Lemma 3. Let Prog be an lr-program and let InDefs be a set of typed-definitions
such that the head predicates of the clauses of InDefs do not occur in Prog . Then,
given the inputs Prog and InDefs, the unfold substrategy terminates and returns
a set Cs of clauses such that M(Prog ∪ InDefs) = M(Prog ∪ Cs).

The replace-constraints substrategy derives from a set Cs of clauses a new set Es
of clauses by applying equivalences between existentially quantified disjunctions
of constraints. We use the following two rules: project and clause split.

Given a clause H ← c∧G, the project rule eliminates all variables that occur
in c and do not occur elsewhere in the clause. Thus, project returns a new clause
H ← d ∧ G such that R |= ∀((∃X1 . . .∃Xk c) ↔ d), where: (i) {X1, . . . , Xk} =
vars(c) − vars({H,G}), and (ii) vars(d) ⊆ vars(c) − {X1, . . . , Xk}. In our pro-
totype theorem prover (see Section 5), the project rule is implemented by using
a variant of the Fourier-Motzkin Elimination algorithm [1].

The clause split rule replaces a clause C by two clauses C1 and C2 such
that, for i = 1, 2, the number of occurrences of existential variables in Ci is less
than the number of occurrences of existential variables in C. The clause split
rule applies the following property, which expresses the fact that 〈R,≤〉 is a
linear order: R |= ∀X ∀Y (X <Y ∨ Y ≤X). For instance, a clause of the form
H ← Z ≤X ∧ Z ≤ Y ∧ G, where Z is an existential variable occurring in the
conjunction G of literals and X and Y are not existential variables, is replaced
by the two clauses H ← Z ≤X∧X <Y ∧G and H ← Z ≤ Y ∧Y ≤X∧G. The
decrease of the number of occurrences of existential variables guarantees that we
can apply the clause split rule a finite number of times only.

The replace-constraints Substrategy
Input: A set Cs of clauses. Output: A set Es of clauses.
• Introduce Equations. (A) From Cs we derive a new set R1 of clauses by applying
as long as possible the following two rules, where p denotes a linear polynomial
which is not a variable, and Z denotes a fresh new variable:
(R.1) H ← c ∧GL ∧ r(. . . , p, . . .) ∧GR is replaced by

H ← c ∧ Z=p ∧GL ∧ r(. . . , Z, . . .) ∧GR
(R.2) H ← c ∧GL ∧ ¬r(. . . , p, . . .) ∧GR is replaced by

H ← c ∧ Z=p ∧GL ∧ ¬r(. . . , Z, . . .) ∧GR

(B) From R1 we derive a new set R2 of clauses by applying to every clause
C in R1 the following rule. Let C be of the form H ← c ∧ G. Suppose that
R |= ∀ (c ↔ (X1=p1 ∧Xn=pn ∧ d)), where: (i)X1, . . . , Xn are existential vari-
ables of C, (ii) vars(X1 =p1 ∧ . . . ∧Xn =pn ∧ d) ⊆ vars(c), (iii) {X1, . . . , Xn} ∩
vars({p1, . . . , pn, d})=∅. Then we replaceC by H←X1=p1∧ . . . ∧Xn =pn∧d∧G.
• Project. We derive a new set R3 of clauses by applying to every clause in R2
the project rule.
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• Clause Split. From R3 we derive a new set R4 of clauses by applying as long
as possible the following rule. Let C be a clause of the form H ← c1 ∧ c2 ∧ c∧G
(modulo commutativity of ∧). Let E be the set of existential variables of C.
Let X ∈ E and let d1 and d2 be two inequations such that R |= ∀ ((c1 ∧ c2) ↔
(d1 ∧ d2)). Suppose that: (i) d1 ∧ d2 is of one of the following six forms:

X≤p1 ∧X≤p2 X≤p1 ∧X<p2 X<p1 ∧X<p2
p1≤X ∧ p2≤X p1≤X ∧ p2<X p1<X ∧ p2<X

and (ii) (vars(p1) ∪ vars(p2)) ∩ E = ∅.
Then C is replaced by the following two clauses: C1: H ← d1 ∧ p1 <p2 ∧ c ∧ G
and C2: H ← d2 ∧ p2 ≤ p1 ∧ c ∧ G, and then each clause in {C1, C2} with an
unsatisfiable constraint in its body is removed.
• Eliminate Equations. From R4 we derive the new set Es of clauses by applying
to every clause C in R4 the following rule. If C is of the form H ← X1 = p1
∧ . . .∧Xn =pn ∧ d∧G where {X1, . . . , Xn}∩ vars({p1, . . . pn, d}) = ∅, then C is
replaced by (H ← d ∧G){X1/p1, . . . , Xn/pn}.

The transformation described at Point (A) of Introduce Equations allows us
to treat all polynomials occurring in the body of a clause in a uniform way as
arguments of constraints. The transformation described at Point (B) of Introduce
Equations identifies those existential variables which can be eliminated during
the final Eliminate Equations transformation. That elimination is performed by
substituting, for i=1, . . . , n, the variable Xi by the polynomial pi.

Example 4. By applying the replace-constraints substrategy, clause C2 of Exam-
ple 3 is transformed as follows. By introducing equations we get:
C3: new1 ← Y >0∧X≤0∧Z=Y−X∧ list(L)∧sumlist(L,Z)∧¬haspositive(L)
Then, by applying the project transformation, we get:
C4: new1 ← Z>0 ∧ list(L) ∧ sumlist(L,Z) ∧ ¬haspositive(L) �

The correctness of the replace-constraints substrategy is a straightforward con-
sequence of the fact that the Introduce Equations, Project, Clause Split, and
Eliminate Equations transformations are performed by using the rule of replace-
ment based on laws presented in [8]. The termination of Introduce Equations
and Eliminate Equations is obvious. The termination of Project is based on
the termination of the specific algorithm used for variable elimination (e.g.,
Fourier-Motzkin algorithm). As already mentioned, the termination of Clause
Split is due to the fact that at each application of this transformation the num-
ber of occurrences of existential variables decreases. Thus, we get the following
lemma.

Lemma 4. For any program Prog and set Cs ⊆ Prog of clauses, the replace-
constraints substrategy with input Cs terminates and returns a set Es of clauses
such that M(Prog) = M((Prog − Cs) ∪ Es).

The define-fold substrategy eliminates all existential variables in the clauses
of the set Es obtained after the unfold and replace-constraints substrategies.
This elimination is done by folding all clauses in Es that contain existential
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variables. In order to make these folding steps we use the typed-definitions in
Defs and, if necessary, we introduce new typed-definitions which we add to the
set NewDefs.

The define-fold Substrategy.
Input: A set Es of clauses and a set Defs of typed-definitions.
Output: A set NewDefs of typed-definitions and a set Fs of lr-clauses.

Initially, both NewDefs and Fs are empty.
for each clause C: H ← c ∧G in Es do
if C is an lr-clause then Fs := Fs ∪ {C} else
• Define. Let E be the set of existential variables of C. We consider a clause
NewD of the form newp(V1, . . . , Vm)← d ∧B constructed as follows:
(1) let c be of the form c1 ∧ c2, where vars(c1) ∩ E = ∅ and for every atomic
constraint a occurring in c2, vars(a) ∩ E �= ∅; let d ∧ B be the most general
(modulo variants) conjunction of constraints and literals such that there exists
a substitution ϑ with the following properties: (i) (d ∧B)ϑ = c2 ∧G, and (ii) for
each binding V/p in ϑ, V is a variable not occurring in C, vars(p) �= ∅, and
vars(p) ∩ E = ∅;
(2) newp is a new predicate symbol;
(3) {V1, . . . , Vm} = vars(d ∧B)−E.
NewD is added to NewDefs, unless in Defs there exists a typed-definition D
which is equal to NewD , modulo the name of the head predicate, the names of
variables, equivalence of constraints, and the order and multiplicity of literals in
the body. If such a clause D belongs to Defs and no other clause in Defs has the
same head predicate as D, then we assume that NewD =D.
• Fold. Clause C is folded using clause NewD as follows:
Fs := Fs ∪ {H ← c1 ∧ newp(V1, . . . , Vm)ϑ}.
end-for

Example 5. Let us consider the clause C4 derived at the end of Example 4.
The Define phase produces a typed-definition which is a variant of the typed-
definition D1 introduced at the beginning of the application of the strategy (see
Example 2). Thus, C4 is folded using clause D1, and we get the clause:

C5: new1 ← new1

Let us now describe how the proof of M(P1) |= π1 proceeds. The program
TransfP derived so far consists of clause C5 together with the clauses defining
the predicates list, sumlist, and haspositive. Thus, Def ∗(new1,TransfP) consists
of clause C5 only, which is propositional and, by eval-props, we remove C5 from
TransfP becauseM(TransfP) �|= new1. The strategy continues by considering the
typed definition D2 (see Example 2). By unfolding D2 with respect to ¬new1 we
get the final program TransfP, which consists of the clause prop1 ← together
with the clauses for list, sumlist, and haspositive. Thus, M(TransfP) |= prop1
and, therefore, M(P1) |= π1. �
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The proof of correctness for the define-fold substrategy is more complex than
the proofs for the other substrategies. The correctness results for the unfold/fold
transformations presented in [8] guarantee the correctness of a folding transfor-
mation if each typed-definition used for folding is unfolded w.r.t. a positive lit-
eral during the application of the UFlr transformation strategy. The fulfillment
of this condition is ensured by the following two facts: (1) by the definition of an
admissible pair and by the definition of the Clause Form Transformation, each
typed-definition has at least one positive literal in its body (indeed, by Condi-
tion (iii) of Definition 2 each negative literal in the body of a typed-definition
has at least one variable of type list and, therefore, the body of the typed-
definition has at least one list atom), and (2) in the Positive Unfolding phase
of the unfold substrategy, each typed-definition is unfolded w.r.t. all positive
literals.

Note that the set Fs of clauses derived by the define-fold substrategy is a set
of lr-clauses. Indeed, by the unfold and replace-constraints substrategies, we de-
rive a set Es of clauses of the form r(h1, . . . , hk) ← c ∧ G, where h1, . . . , hk

are head terms (see Definition 1). By folding we derive clauses of the form
r(h1, . . . , hk)← c1 ∧ newp(V1, . . . , Vm)ϑ, where vars(c1 ∧ newp(V1, . . . , Vm)ϑ) ⊆
vars(r(h1, . . . , hk)), and for i = 1, . . . ,m, vars(Viϑ) �= ∅ (by the conditions at
Points (1)–(3) of the Define phase). Hence, all clauses in Fs are lr-clauses.

The termination of the define-fold substrategy is obvious, as each clause is
folded at most once. Thus, we have the following result.

Lemma 5. During the UFlr strategy, if the define-fold substrategy takes as in-
puts the set Es of clauses and the set Defs of typed-definitions, then this substrat-
egy terminates and returns a set NewDefs of typed-definitions and a set Fs of
lr-clauses such that M(TransfP ∪Es ∪NewDefs) = M(TransfP ∪Fs ∪NewDefs).

By using Lemmata 3, 4, and 5 we get the following correctness result for the
UFlr strategy.

Theorem 2. Let P be an lr-program and 〈D1, . . . , Dn〉 a hierarchy of typed-
definitions. Suppose that the UFlr strategy with inputs P and 〈D1, . . . , Dn〉 ter-
minates and returns a set Defs of typed-definitions and a program TransfP . Then:
(i) TransfP is an lr-program and (ii) M(P ∪Defs) = M(TransfP).

Now, we are able to prove the soundness of the unfold/fold proof method.

Theorem 3 (Soundness of the Unfold/Fold Proof Method). Let 〈P, ϕ〉
be an admissible pair and let 〈D1, . . . , Dn〉 be the hierarchy of typed-definitions
obtained from prop ← ϕ by the Clause Form Transformation. If the UFlr strategy
with inputs P and 〈D1, . . . , Dn〉 terminates and returns a program TransfP, then:

M(P ) |= ϕ iff (prop ←) ∈ TransfP

Proof. By Theorem 1 and Point (ii) of Theorem 2, we have that M(P ) |= ϕ iff
M(TransfP) |= prop. By Point (i) of Theorem 2 and Lemma 2 we have that
Def ∗(prop,TransfP) is propositional. Since the last step of the UFlr strategy is
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an application of the eval-props transformation, we have that Def ∗(prop,TransfP)
is either the singleton {prop ←}, if M(TransfP) |= prop, or the empty set, if
M(TransfP) �|= prop. �

4 A Complete Example

As an example of application of our transformation strategy for proving prop-
erties of constraint logic programs we consider the lr-program Member and the
property ϕ given in the Introduction. The formula ϕ is rewritten as follows:

ϕ1 : ¬∃L¬∃U ¬∃X (X>U ∧member(X,L))

The pair 〈Member , ϕ1〉 is admissible. By applying the Clause Form Transforma-
tion starting from the statement prop ← ϕ1, we get the following clauses:

D4: prop ← ¬p D2: q(L)← list(L) ∧ ¬r(L,U)
D3: p← list(L) ∧ ¬q(L) D1: r(L,U)← X>U ∧ list(L) ∧member(X,L)

where 〈D1, D2, D3, D4〉 is a hierarchy of typed-definitions. Note that the three
nested negations in ϕ1 generate the three atoms p, q(L), and r(L,U) with their
typed-definitions D3, D2, and D1, respectively. The arguments of p, q, and r are
the free variables of the corresponding subformulas of ϕ1. For instance, r(L,U)
corresponds to the subformula ∃X (X > U ∧ member(X,L)) which has L and
U as free variables. Now we apply the UFlr strategy starting from the program
Member and the hierarchy 〈D1, D2, D3, D4〉.
• Execution of the for-loop with i= 1. We have: InDefs = {D1}. By unfolding
clause D1 w.r.t. the atoms list(L) and member(X,L) we get:

1.1 r([X |T ], U)← X>U ∧ list(T )
1.2 r([X |T ], U)← Y >U ∧ list(T ) ∧member(Y, T )

No replacement of constraints is performed. Then, by folding clause 1.2 using
D1, we get:

1.3 r([X |T ], U)← r(T, U)

After the define-fold substrategy the set Fs of clauses is {1.1, 1.3}, and at this
point the program TransfP is Member ∪ {1.1, 1.3}. No new definitions are in-
troduced and, thus, InDefs = ∅ and the while-loop terminates. eval-props is not
performed because the predicate r is not propositional.
• Execution of the for-loop with i = 2. We have: InDefs = {D2}. We unfold
clause D2 w.r.t. list(L) and ¬r(L,U). Then we introduce the new definition:

2.1 q1(X,T )← X≤U ∧ list(T ) ∧ ¬r(T, U)
and we fold using clause 2.1 (no constraint replacement is performed). We get:

2.2 q([ ])←
2.3 q([X |T ])← q1(X,T )

Since NewDefs = InDefs = {2.1} we execute again the body of the while-loop.
By unfolding clause 2.1 w.r.t. list(T ) and ¬r(T, U), we get:
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2.4 q1(X, [ ])←
2.5 q1(X, [Y |T ])← X≤U ∧ Y ≤U ∧ list(T ) ∧ ¬r(T, U)

By applying replace-constraints, clause 2.5 generates the following two clauses:

2.5.1 q1(X, [Y |T ])← X>Y ∧X≤U ∧ list(T ) ∧ ¬r(T, U)
2.5.2 q1(X, [Y |T ])← X≤Y ∧ Y ≤U ∧ list(T ) ∧ ¬r(T, U)

By folding clauses 2.5.1 and 2.5.2 using clause 2.1, we get:

2.6 q1(X, [Y |T ])← X>Y ∧ q1(X,T )
2.7 q1(X, [Y |T ])← X≤Y ∧ q1(Y, T )

At this point the program TransfP is Member ∪{1.1, 1.3, 2.2, 2.3, 2.4, 2.6, 2.7}.
No new definitions are introduced and, thus, the while-loop terminates. eval-
props is not performed because the predicates q and q1 are not propositional.
• Execution of the for-loop with i= 3. We have: InDefs = {D3}. By unfolding
clause D3 w.r.t. list(L) and ¬q(L), we get:

3.1 p ← list(T ) ∧ ¬q1(X,T )

No replacement of constraints is performed. The following new definition:

3.2 p1 ← list(T ) ∧ ¬q1(X,T )

is introduced. Then by folding clause 3.1 using clause 3.2, we get:

3.3 p← p1

Since NewDefs = InDefs = {3.2} we execute again the body of the while-loop.
By unfolding clause 3.2 w.r.t. list(T ) and ¬q1(X,T ), we get:

3.4 p1 ← X>Y ∧ list(T ) ∧ ¬q1(X,T )
3.5 p1 ← X≤Y ∧ list(T ) ∧ ¬q1(Y, T )

Since the variable Y occurring in the constraints X>Y and X≤Y is existential,
we apply the project rule to clauses 3.4 and 3.5 and we get the following clause:

3.6 p1 ← list(T ) ∧ ¬q1(X,T )

This clause can be folded using clause 3.2, thereby deriving the following clause:

3.7 p1 ← p1

Clauses 3.3 and 3.7 are added to TransfP . Since the predicates p and p1 are
both propositional, we execute eval-props. We have that: (i) M(TransfP) �|= p1
and (ii) M(TransfP) �|= p. Thus, clauses 3.3 and 3.7 are removed from TransfP .
Hence, TransfP = Member ∪ {1.1, 1.3, 2.2, 2.3, 2.4, 2.6, 2.7}.
• Execution of the for-loop with i= 4. We have: InDefs = {D4}. By unfolding
clause D4 w.r.t. ¬p, we get the clause: prop ←
This clause shows that, as expected, property ϕ holds for any finite list of reals.



Proving Properties of Constraint Logic Programs 193

5 Experimental Results

We have implemented our proof method by using the MAP transformation sys-
tem [13] running under SICStus Prolog on a 900MHz Power PC. Constraint sat-
isfaction and entailment were performed using the clp(r) module of SICStus. Our
prototype has automatically proved the properties listed in the following table,
where the predicates member , sumlist , and haspositive are defined as shown in
Sections 1 and 2, and the other predicates have the following meanings: (i) ord(L)
holds iff L is a list of the form [a1, . . . , an] and for i = 1, . . . , n−1, ai ≤ ai+1,
(ii) sumzip(L,M,N) holds iff L, M , and N are lists of the form [a1, . . . , an],
[b1, . . . , bn], and [a1 +b1, . . . , an +bn], respectively, and (iii) leqlist(L,M) holds
iff L and M are lists of the form [a1, . . . , an] and [b1, . . . , bn], respectively, and
for i= 1, . . . , n, ai≤ bi. We do not write here the lr-programs which define the
predicates ord(L), sumzip(L,M,N), and leqlist(L,M).

Property Time
∀L ∃M ∀Y (member(Y, L) → Y ≤M) 140 ms
∀L ∀Y ((sumlist(L, Y ) ∧ Y >0) → haspositive(L)) 170 ms
∀L ∀Y ((sumlist(L, Y ) ∧ Y >0) → ∃X(member(X,L) ∧ X>0)) 160 ms
∀L ∀M ∀N ((ord(L) ∧ ord(M) ∧ sumzip(L,M,N)) → ord(N)) 160 ms
∀L ∀M ((leqlist(L,M) ∧ sumlist(L,X) ∧ sumlist(M,Y )) → X≤Y ) 50 ms

6 Related Work and Conclusions

We have presented a method for proving first order properties of constraint
logic programs based on unfold/fold program transformations, and we have
shown that the ability of unfold/fold transformations to eliminate existential
variables [16] can be turned into a useful theorem proving method. We have pro-
vided a fully automatic strategy for the class of lr-programs, which are programs
acting on reals and finite lists of reals, with constraints as linear equations and
inequations over reals. The choice of lists is actually a simplifying assumption we
have made and we believe that the extension of our method to any finitely gen-
erated data structure is quite straightforward. However, the use of constraints
over the reals is an essential feature of our method, because quantifier elimination
from constraints is a crucial subprocedure of our transformation strategy.

The first order properties of lr-programs are undecidable (and not even semi-
decidable), because one can encode every partial recursive function as an
lr-program without list arguments. As a consequence our proof method is nec-
essarily incomplete. We have implemented the proof method based of program
transformation and we have proved some simple, yet non-trivial, properties. As
the experiments show, the performance of our method is encouraging.

Our method is an extension of the method presented in [15] which considers
logic programs without constraints. The addition of constraints is a very relevant
feature, because it provides more expressive power and, as already mentioned,
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we may use special purpose theorem provers for checking constraint satisfaction
and for quantifier elimination. Our method can also be viewed as an extension of
other techniques based on unfold/fold transformations for proving equivalences
of predicates [14,19], and indeed, our method can deal with a class of first order
formulas which properly includes equivalences.

Some papers have proposed transformational techniques to prove proposi-
tional temporal properties of finite and/or infinite state systems (see, for in-
stance, [7,10,19]). Since propositional temporal logic can be encoded in first
order logic, in principle these techniques can be viewed as instances of the un-
fold/fold proof method presented here. However, it should be noted that the
techniques described in [7,10,19] have their own peculiarities because they are
tailored to the specific problem of verifying concurrent systems.

Finally, we think that a direct comparison of the power of our proof method
with that of traditional theorem provers is somewhat inappropriate. The tech-
niques used in those provers are very effective and are the result of a well es-
tablished line of research (see, for instance, [3] for a survey on the automation
of mathematical induction). However, our approach has its novelty and is based
on principles which have not been explored in the field of theorem proving. In
particular, the idea of making inductive proofs by unfold/fold transformations
for eliminating quantifiers, has not yet been investigated within the theorem
proving community.
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Abstract. The paper introduces the notion of off-line justification for Answer
Set Programming (ASP). Justifications provide a graph-based explanation of the
truth value of an atom w.r.t. a given answer set. The notion of justification ac-
counts for the specifics of answer set semantics. The paper extends also this no-
tion to provide justification of atoms during the computation of an answer set
(on-line justification), and presents an integration of on-line justifications within
the computation model of SMODELS. Justifications offer a basic data structure to
support methodologies and tools for debugging answer set programs. A prelimi-
nary implementation has been developed in ASP − PROLOG.

1 Introduction

Answer set programming (ASP) is a programming paradigm [13,19] based on logic
programming under answer set semantics [9]. ASP is highly declarative; to solve a
problem P , we specify it as a logic program π(P ) whose answer sets correspond one-
to-one to solutions of P , and can be computed using an answer set solver. ASP is also
attractive because of its numerous building block results (see, e.g., [4]).

A source of difficulties in ASP lies in the lack of methodologies for program un-
derstanding and debugging. The declarative and the hands-off execution style of ASP
leave a programmer with nothing that helps in explaining the behavior of the programs,
especially for unexpected outcomes of the computation (e.g., incorrect answer sets).

Although ASP is syntactically close to Prolog, the execution model and the semantics
are sufficiently different to make debugging techniques developed for Prolog impracti-
cal. E.g., traditional trace-based debuggers [17] (e.g., Prolog four-port debuggers), used
to trace the entire proof search tree (paired with execution control mechanisms, like spy
points and step execution), are cumbersome in ASP, since:

• Trace-based debuggers provide the entire search sequence, including failed paths,
which are irrelevant in understanding specific elements of an answer set.
• The process of computing answer sets is bottom-up, and the determination of the

truth value of one atom is intermixed with the computation of other atoms; a direct
tracing makes it hard to focus on what is relevant to one particular atom.
• Tracing repeats previously performed executions, degrading debugging performance.

In this paper, we address these issues by elaborating the concept of off-line justification
for ASP. This notion is an evolution of the concept of justification, proposed to justify
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truth values in tabled Prolog [17,14]. Intuitively, an off-line justification of an atom w.r.t.
an answer set is a graph encoding the reasons for the atom’s truth value. This notion can
be used to explain the presence or absence of an atom in an answer set, and provides
the basis for building a justifier for answer set solvers.

The notion of off-line justification is helpful when investigating the content of one
(or more) answer sets. When the program does not have answer sets, a different type
of justification is needed. We believe it is impractical to rely on a single justification
structure to tackle this issue; we prefer, instead, to provide the programmer with a dy-
namic data structure that will help him/her discover the sources of inconsistencies. The
data structure we propose is called on-line justification, and it provides justifications
with respect to a partial and/or inconsistent interpretation. The intuition is to allow the
programmer to interrupt the computation (e.g., at the occurrence of certain events, such
as assignment of a truth value to a given atom) and to use the on-line justification to ex-
plore the motivations behind the content of the partial interpretation (e.g., why a given
atom is receiving conflicting truth values). We describe a generic model of on-line jus-
tification and a version specialized to the execution model of SMODELS [19]. The latter
has been implemented in ASP− PROLOG [8].

Related work: Various approaches to logic program debugging have been investigated
(a thorough comparison is beyond the limited space of this paper). As discussed in
[14], 3 main phases can be considered in understanding/debugging a logic program.
(1) Program instrumentation and execution: assertion-based debugging (e.g., [16]) and
algorithmic debugging [18] are examples of approaches focused on this first phase. (2)
Data Collection: focuses on extracting from the execution data necessary to understand
it, as in event-based debugging [3] and explanation-based debugging [7,12]. (3) Data
Analysis: focuses on reasoning on data collected during the execution. The proposals
dealing with automated debugging (e.g., [3]) and execution visualization are approaches
focusing on this phase of program understanding.

The notion of Justification has been introduced in [17,14,20] to support understand-
ing and debugging of Prolog programs. Justification is the process of generating evi-
dence, in terms of high-level proofs based on the answers (or models) produced during
the computation. Justification plays an important role in manual and automatic verifi-
cation, by providing a proof description if a given property holds; otherwise, it gener-
ates a counter-example, showing where the violation/conflict occurs in the system. The
justification-based approach focuses on the last two phases of debugging—collecting
data from the execution and presenting them in a meaningful manner. Justifications are
focused only on parts of the computation relevant to the justified item. Justifications are
fully automated and do not require user interaction (as in declarative debugging).

Our work shares some similarities with the proposals that employ graph structures
to guide computation of answer sets (e.g., [1,6]), although they use graphs for program
representation, instead of using graphs to justify an execution.

2 Preliminary Definitions

In this paper, we focus on a logic programming language with negation as failure—e.g.,
the language of SMODELS without weight constraints [19].
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The Language: Let ΣP = 〈F , Π〉 be a signature, where F is a finite set of constants
and Π is a finite set of predicate symbols. In particular, we assume that " (stands for
true) and ⊥ (stands for false) are zero-ary predicates in Π . A term is a constant of F .
An atom is of the form p(t1, . . . , tn) where p ∈ Π , and t1, . . . , tn are terms. In this
paper, we deal with normal logic programs, i.e., logic programs that can make use of
both positive and negation-as-failure literals. A literal is either an atom (Positive Literal)
or not a where a is an atom (NAF Literal). We will identify withA the set of all atoms,
and with L the set of all literals. Our focus is on ground programs, as current ASP
engines operate on ground programs. Nevertheless, programmers can write non-ground
programs, and each rule represents the set of its ground instances.

A rule is of the form h :− b1, . . . , bn where h is an atom and {b1, . . . , bn} ⊆ L.
Given a rule r, we denote h with head(r) and we use body(r) to denote {b1, . . . , bn}.
We denote with pos(r) = body(r) ∩ A and with neg(r) = {a | (not a) ∈ body(r)}.
NANT (P ) denotes the atoms which appear in NAF literals in P—i.e., NANT (P ) =
{a ∈ A | ∃r ∈ P. a ∈ neg(r)}.

Answer Set Semantics and Well-Founded Semantics: A possible interpretation (or
p-interpretation) I is a pair 〈I+, I−〉, where I+ ∪ I− ⊆ A. For a p-interpretation
I , we will use the notation I+ and I− to denote its two components. A (three-valued)
interpretation I is a possible interpretation 〈I+, I−〉where I+∩I− = ∅. I is a complete
interpretation if I+ ∪ I− = A. For two p-interpretations I and J , I � J iff I+ ⊆ J+

and I− ⊆ J−. A positive literal a is satisfied by I (I |= a) if a ∈ I+. A NAF literal
not a is satisfied by I (I |= not a) if a ∈ I−. A set of literals S is satisfied by I
(I |= S) if I satisfies each literal in S. The notion of satisfaction is extended to rules
and programs as usual.

For an interpretation I and a program P , the reduct of P w.r.t. I (P I) is the program
obtained from P by deleting (i) each rule r such that neg(r)∩ I+ �= ∅, and (ii) all NAF
literals in the bodies of the remaining clauses. A complete interpretation I is an answer
set [9] of P if I+ is the least Herbrand model of P I [2].

We will denote with WFP = 〈WF+
P ,WF−

P 〉 the (unique) well-founded model [2]
of program P (we omit its definition for lack of space).

Interpretations and Explanations: Let P be a program and I be an interpretation. An
atom a is true (false, or unknown) in I if a ∈ I+, (a ∈ I−, or a �∈ I+ ∪ I−). not a
is true (false, unknown) in I if a ∈ I−, (a ∈ I+, a �∈ I+ ∪ I−). We will denote with
atom(�) the atom on which the literal � is constructed.

We will now introduce some notations that we will use in the rest of the paper. The
graphs used to explain will refer to the truth value assigned to an atom; furthermore, as
we will see later, we wish to encompass those cases where an atom may appear as being
both true and false (e.g., a conflict during construction of an answer set). For an atom
a, we write a+ to denote the fact that the atom is true, and a− to denote the the fact that
a is false. We will call a+ and a− the annotated versions of a; furthermore, we will
define atom(a+) = a and atom(a−) = a. For a set of atoms S, Sp = {a+ | a ∈ S},
Sn = {a− | a ∈ S}, and not S = { not a | a ∈ S}. In building the notion of
justification, we will deal with labeled, directed graphs, called e-graphs.
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Definition 1 (Explanation Graph). For a programP , a labeled, directed graph (N,E)
is called an Explanation Graph (or e-graph) if

• N ⊆ Ap ∪ An ∪ {assume,",⊥} and
• E is a set of tuples of the form (p, q, s), with p, q ∈ N and s ∈ {+,−};
• the only sinks in the graph are: assume,", and ⊥;
• for every b ∈ N ∩ Ap, (b, assume,−) �∈ E and (b,⊥,−) �∈ E;
• for every b ∈ N ∩ An, (b, assume,+) �∈ E and (b,",+) �∈ E;
• for every b ∈ N , if (b, l, s) ∈ E for some l ∈ {assume,",⊥} and s ∈ {+,−}

then (b, l, s) is the only outgoing edge originating from b.

Edges labeled ′+′ are called positive edges, while those labeled ′−′ are called negative
edges. A path in an e-graph is positive if it contains only positive edges, while a path is
negative if it contains at least one negative edge. We will denote with (n1, n2) ∈ E∗,+

the fact that there is a positive path from n1 to n2 in the given e-graph. The above
definition allows us to define the notion of a support set of a node in an e-graph.

Definition 2. Given an e-graph G = (N,E) and a node b ∈ N ∩ (Ap ∪ An),
• support(b,G) = {atom(c) | (b, c,+) ∈ E} ∪ { not atom(c) | (b, c,−) ∈ E}, if

for every � ∈ {assume,",⊥} and s ∈ {+,−}, (b, �, s) �∈ E;
• support(b,G) = {�} if (b, �, s) ∈ E if � ∈ {assume,",⊥} and s ∈ {+,−}.

The local consistent explanation describes one step of justification for a literal. Note
that our notion of local consistent explanation is similar in spirit, but different in practice
from the analogous definition used in [17,14]. It describes the possible local reasons for
the truth/falsity of a literal. If a is true, the explanation contains those bodies of the rules
for a that are satisfied by I . If a is false, the explanation contains sets of literals that are
false in I and they falsify all rules for a.

Definition 3 (Local Consistent Explanation). Let b be an atom, J a possible inter-
pretation, A a set of atoms (assumptions), and S ⊆ A ∪ not A ∪ {assume,",⊥} a
set of literals. We say that

− S is a local consistent explanation (LCE) of b+ w.r.t. (J,A), if S ∩ A ⊆ J+ and
{c | not c ∈ S} ⊆ J− ∪A, b ∈ J+, and
• S = {assume}, or
• there is a rule r in P such that head(r) = b and S = body(r); for convenience,

we write S = {"} to denote the case where body(r) = ∅.
− S is a local consistent explanation of b− w.r.t. (J,A) if S ∩ A ⊆ J− ∪ A and
{c | not c ∈ S} ⊆ J+, b ∈ J− ∪A, and
• S = {assume}; or
• S is a minimal set of literals such that for every rule r ∈ P , if head(r) = b,

then pos(r) ∩ S �= ∅ or neg(r) ∩ {c | not c ∈ S} �= ∅; for convenience, we
write S = {⊥} to denote the case S = ∅.

We will denote with LCEp
P (b, J, A) the set of all the LCEs of b+ w.r.t. (J,A), and with

LCEn
P (b, J, A) the set of all the LCEs of b− w.r.t. (J,A).
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Example 1. Let P be the program:

a :− f, not b. b :− e, not a. e :− .
f :− e. d :− c, e. c :− d, f.

This program has the answer sets M1 = 〈{f, e, b}, {a, c, d}〉 and M2 =
〈{f, e, a}, {c, b, d}〉. We have: LCEn

P (a,M1, ∅) = {{ not b}}, LCEp
P (b,M1, ∅) =

{{e, not a}}, LCEp
P (e,M1, ∅) = {"}, LCEp

P (f,M1, ∅) = {{e}},
LCEn

P (d,M1, ∅) = {{c}}, LCEn
P (c,M1, ∅) = {{d}}. �

An e-graph is a general structure that can be used to explain the truth value of a, i.e., a
positive (negative) e-graph represents a possible explanation for a being true (false). To
select an e-graph as an acceptable explanation, we need two additional components: the
current interpretation (J) and the collection (A) of elements that have been introduced
in the interpretation without any “supporting evidence”. An e-graph based on (J,A) is
defined next.

Definition 4 ((J,A)-Based Explanation Graph). Let P be a program, J a possible
interpretation,A a set of atoms, and b an element inAp ∪An. A (J,A)-based explana-
tion graph G = (N,E) of b is an e-graph such that

• every node c ∈ N is reachable from b;
• for every c ∈ N \ {assume,",⊥}, support(c,G) is an LCE of c w.r.t. (J,A).

Definition 5. A (J,A)-based e-graph (N,E) is safe if ∀b+ ∈ N , (b+, b+) �∈ E∗,+.

Example 2. Consider the e-graphs in Figure 1, for the program of Example 1. We have
that none of the e-graphs of a+ ((i) and (ii)) is a (M1, {c, d})-based e-graph of a+

but both are (M2, {b, c, d})-based e-graph of a+. On the other hand, the e-graph of c+

(iii) is neither a (M1, {c, d})-based nor (M2, {b, c, d})-based e-graph of c+, while the
e-graph of c− (iv) is an a (M1, {c, d})-based and a (M2, {b, c, d})-based e-graph of c−.
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Fig. 1. Sample (J, A)-based Explanation Graphs

3 Off-Line Justifications for ASP

Off-line justifications are employed to motivate the truth value of an atom w.r.t. a given
(complete) answer set. If M is an answer set and WFP the well-founded model of P ,
then it is known that, WF+

P ⊆ M+ and WF−
P ⊆ M− [2]. Furthermore, we observe
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that the content of M is uniquely determined by the truth values assigned to certain
atoms in V = NANT (P )\(WF+

P ∪WF−
P ), i.e., atoms that appear in negative literals

and are not determined by the well-founded model. In particular, we are interested in
those subsets of V with the following property: if all the elements in the subset are
assumed to be false, then the truth value of all other atoms inA is uniquely determined.
We call these subsets the assumptions of the answer set.

Definition 6 (Pre-Assumptions). Let P be a program and M be an answer set of P .
The pre-assumptions of P w.r.t. M (denoted by PAP (M)) are defined as:

PAP (M) = {a | a ∈ NANT (P ) ∧ a ∈M− ∧ a �∈ (WF+
P ∪WF−

P )}

The negative reduct of a program P w.r.t. a set of atoms A is a program obtained from
P by forcing all the atoms in A to be false.

Definition 7 (Negative Reduct). Let P be a program, M an answer set of P , and
A ⊆ PAP (M) a set of atoms. The negative reduct of P w.r.t. A, denoted byNR(P,A),
is the set of rules: P \ { r | head(r) ∈ A}.

Definition 8 (Assumptions). Let P be a program and M an answer set of P . An as-
sumption w.r.t. M is a set of atoms A such that: (1) A ⊆ PAP (M), and (2) the
well-founded model of NR(P,A) is equal to M—i.e., WFNR(P,A) = M . We will de-
note with Ass(P,M) the set of all assumptions of P w.r.t. M . A minimal assumption is
an assumption that is minimal w.r.t. properties (1) and (2).

We can observe that the set Ass(P,M) is not empty, since PAP (M) is an assumption.

Proposition 1. Given an answer set M of P , the well-founded model of NR(P,PAP

(M)) is equal to M .

We will now specialize e-graphs to the case of answer sets, where only false elements
can be used as assumptions.

Definition 9 (Off-line Explanation Graph). Let P be a program, J a partial inter-
pretation, A a set of atoms, and b an element in Ap ∪ An. An off-line explanation
graph G = (N,E) of b w.r.t. J and A is a (J,A)-based e-graph of b satisfying the
following conditions: there exists no p+ ∈ N such that (p+, assume,+) ∈ E, and if
(p−, assume,−) ∈ E then p ∈ A. E(b, J, A) denotes the set of all off-line explanation
graphs of b w.r.t. J and A.

Definition 10 (Off-line Justification). Let P be a program, M an answer set, A ∈
Ass(P,M), and a ∈ Ap∪An. An off-line justification of a w.r.t.M andA is an element
(N,E) of E(a,M,A) which is safe. JP (a,M,A) contains all off-line justifications of
a w.r.t. M and A.

If M is an answer set and a ∈ M+ (a ∈ M−), then G is an off-line justification of a
w.r.t. M,A iff G is an off-line justification of a+ (a−) w.r.t. M,A.

Justifications are built by assembling items from the LCEs of the various atoms and
avoiding the creation of positive cycles in the justification of true atoms. Also, the jus-
tification is built on a chosen set of assumptions (A), whose elements are all assumed
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false. In general, an atom may admit multiple justifications, even w.r.t. the same as-
sumptions. The following lemma shows that elements in WFP can be justified without
negative cycles and assumptions.

Lemma 1. Let P be a program, M an answer set, and WFP the well-founded model
of P . Each atom has an off-line justification w.r.t. M and ∅ without negative cycles.

From the definition of assumption and from the previous lemma we can infer that a
justification free of negative cycles can be built for every atom.

Proposition 2. Let P be a program and M an answer set. For each atom a, there is an
off-line justification w.r.t. M and M− \WF−

P which does not contain negative cycles.

Proposition 2 underlines an important property—the fact that all true elements can be
justified in a non-cyclic fashion. This makes the justification more natural, reflecting
the non-cyclic process employed in constructing the minimal answer set (e.g., using the
iterations of TP ) and the well-founded model (e.g., using the characterization in [5]).
This also gracefully extends a similar nice property satisfied by the justifications under
well-founded semantics used in [17]. Note that the only cycles possibly present in the
justifications are positive cycles associated to (mutually dependent) false elements—
this is an unavoidable situation due the semantic characterization in well-founded and
answer set semantics (e.g., unfounded sets [2]).

Example 3. Let us consider the program in Example 1. We have that NANT (P ) =
{b, a}. The assumptions for this program are:Ass(P,M1) = {{a}} andAss(P,M2) =
{{b}}. The off-line justifications for atoms in M1 w.r.t.M1 and {a} are shown in Fig. 2.
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Fig. 2. Off-line Justifications w.r.t. M1 and {a} for b, f , e, c and a (left to right)

4 On-Line Justifications for ASP

In this section, we introduce the concept of on-line justification, which is generated dur-
ing the computation of an answer set and allows us to justify atoms w.r.t. an incomplete
interpretation (an intermediate step in the construction of the answer set). The concept
of on-line justification is applicable to computation models that construct answer sets in
an incremental fashion (e.g., [19,11,1])—where we can view the computation as a se-
quence of steps, each associated to a partial interpretation. We will focus, in particular,
on computation models where the progress towards the answer set is monotonic.

Definition 11 (General Computation). Let P be a program. A general computation
is a sequence M0,M1, . . . ,Mk, such that (i) M0 = 〈∅, ∅〉, (ii) M0, . . . ,Mk−1 are
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partial interpretations, and (iii) Mi � Mi+1 for i = 0, . . . , k − 1. A general complete
computation is a computation M0, . . . ,Mk such that Mk is an answer set of P .

We do not require Mk to be a partial interpretation, as we wish to model computations
that can also fail (i.e., M+

k ∩M
−
k �= ∅).

Our objective is to associate some form of justification to each intermediate step Mi

of a general computation. Ideally, we would like the justifications associated to eachMi

to explain truth values in the “same way” as in the final off-line justification. Since the
computation model might rely on “guessing” some truth values, Mi might not contain
sufficient information to develop a valid justification for each element in Mi. We will
identify those atoms for which a justification can be constructed givenMi. These atoms
describe a p-interpretation Di � Mi. The computation of Di is defined based on the
two operators Γ and Δ, which will respectively compute D+

i and D−
i .

Let us start with some preliminary definitions. Let P be a program and I be a p-
interpretation. A set of atoms S is called a cycle w.r.t. I if for every a ∈ S and r ∈ P such
that head(r) = a, we have that pos(r)∩I− �= ∅ or neg(r)∩I+ �= ∅ or pos(r)∩S �= ∅.
We can prove that, if I is an interpretation, S is a cycle w.r.t. I and M is an answer set
with I �M then S ⊆M−. The set of cycles w.r.t. I is denoted by cycles(I). For every
element e ∈ Ap ∪ An, let PE(e, I) be the set of LCEs of e w.r.t. I and ∅.

Let P be a program and I � J be two p-interpretations. We define

ΓI(J) = I+ ∪ {head(r) ∈ J+ | I |= body(r)}
ΔI(J) = I− ∪ {a ∈ J− | PE(a−, I) �= ∅} ∪

⋃
{S | S ∈ cycles(I), S ⊆ J−}

Intuitively, for I � J , we have that ΓI(J) (resp. ΔI(J)) is a set of atoms that have
to be true (resp. false) in every answer set extending J , if J is a partial interpretation.
In particular, if I is the set of “justifiable” literals (literals for which we can construct
a justification) and J is the result of the current computation step, then we have that
〈ΓI(J), ΔI(J)〉 is a new interpretation, I � 〈ΓI(J), ΔI(J)〉 � J , whose elements are
all “justifiable”. Observe that it is not necessarily true that ΓI(J) = J+ and ΔI(J) =
J−. This reflects the practice of guessing literals and propagating these guesses in the
computation of answer sets, implemented by several solvers.

We are now ready to specify how the set Di is computed. Let J be a p-interpretation.

Γ 0(J) = Γ∅(J) Δ0(J) = PAP (J) ∪Δ∅(J)
Γ i+1(J) = ΓIi(J) Δi+1(J) = ΔIi (J) where Ii =〈Γ i(J), Δi(J)〉

Let

Γ (J) =
∞⋃

i=0

Γ i(J) and Δ(J) =
∞⋃

i=0

Δi(J)

Because Γ i(J) ⊆ Γ i+1(J) ⊆ J+ and Δi(J) ⊆ Δi+1(J) ⊆ J− (recall that I � J),
we know that both Γ (J) and Δ(J) are well-defined. We can prove the following:

Proposition 3. For a program P , we have that:

• Γ and Δ maintain the consistency of J , i.e., if J is an interpretation, then 〈Γ (J),
Δ(J)〉 is also an interpretation;
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• Γ and Δ are monotone w.r.t the argument J , i.e., if J � J ′ then Γ (J) ⊆ Γ (J ′)
and Δ(J) ⊆ Δ(J ′);
• Γ (WFP ) = WF+

P and Δ(WFP ) = WF−
P ; and

• if M is an answer set of P , then Γ (M) = M+ and Δ(M) = M−.

Definition 12 (On-line Explanation Graph). Let P be a program, A a set of atoms,
J a p-interpretation, and a ∈ Ap ∪An. An on-line explanation graph G = (N,E) of a
w.r.t. J and A is a (J,A)-based e-graph of a.

Observe that, if J is an answer set and A a set of assumption, then any off-line e-graph
of a w.r.t. J and A is also an on-line e-graph of a w.r.t. J and A.

Observe that Γ 0(J) contains the facts of P that belong to J+ and Δ0(J) con-
tains the atoms without defining rules and atoms belonging to positive cycles of P .
As such, it is easy to see that for each atom a in 〈Γ 0(J), Δ0(J)〉, we can construct an
e-graph for a+ or a− whose nodes belong to (Γ 0(J))p ∪ (Δ0(J))n. Moreover, if a ∈
Γ i+1(J)\Γ i(J), an e-graph with nodes (except a+) belonging to (Γ i(J))p∪(Δi(J))n

can be constructed; and if a ∈ Δi+1(J) \Δi(J), an e-graph with nodes belonging to
(Γ i+1(J))p ∪ (Δi+1(J))n can be constructed. This leads to the following lemma.

Lemma 2. Let P be a program, J a p-interpretation, and A = PAP (J). It holds that

◦ for each atom a ∈ Γ (J) (resp. a ∈ Δ(J)), there exists a safe off-line e-graph of
a+ (resp. a−) w.r.t. J and A;
◦ for each atom a ∈ J+ \ Γ (J) (resp. a ∈ J− \ Δ(J)) there exists an on-line

e-graph of a+ (resp. a−) w.r.t. J and A.

Let us show how the above proposition can be used in defining a notion called on-line
justification. To this end, we associate to each partial interpretation J a snapshot S(J):

Definition 13. Given a p-interpretation J , a snapshot of J is a tuple S(J) =
〈Off(J), On(J), 〈Γ (J), Δ(J)〉〉, where

• for each a in Γ (J) (resp. a in Δ(J)), Off(J) contains exactly one safe positive
(negative) off-line e-graph of a+ (resp. a−) w.r.t. J and PAP (J);
• for each a ∈ J+ \Γ (J) (resp. a ∈ J− \Δ(J)), On(J) contains exactly one on-line

e-graph of a+ (resp. a−) w.r.t. J and PAP (J).

Definition 14. (On-line Justification) Given a computation M0, . . . , Mk, an on-line
justification of the computation is a sequence of snapshotsS(M0), S(M1), . . . , S(Mk).

Remark 1. Observe that the monotonicity of the computation allows us to avoid re-
computing Γ and Δ from scratch at every step. In particular, when computing the fix-
point we can start the iterations from Γ〈Γ (Mi),Δ(Mi)〉 and Δ〈Γ (Mi),Δ(Mi)〉 and looking
only at the elements of 〈M+

i+1 \ Γ (Mi),M−
i+1 \ Δ(Mi)〉. Similarly, the computation

of Off(Mi+1) can be made incremental, by simply adding to Off(Mi+1) the off-line
e-graphs for the elements in Γ (Mi+1) \ Γ (Mi) and Δ(Mi+1) \ Δ(Mi). Note that
these new off-line graphs can be constructed reusing the off-line graphs already in
Off(Mi).



Justifications for Logic Programs Under Answer Set Semantics 205

Example 4. Let us consider the program P containing

s :− a, not t. a :− f, not b. b :− e, not a. e :− f :− e.

Two possible general computations of P are

M1
0 = 〈{e, s}, ∅〉 M1

1 = 〈{e, s, a}, {t}〉 M1
2 = 〈{e, s, a, f}, {t, b}〉

M2
0 = 〈{e, f}, ∅〉 M2

1 = 〈{e, f}, {t}〉 M2
2 = 〈{e, f, b, a}, {t, a, b, s}〉

The first computation is a complete computation leading to an answer set of P while
the second one is not. An on-line justification for the first computation is given next:

S(M1
0 ) = 〈X0, Y0, 〈{e}, ∅〉〉

S(M1
1 ) = 〈X0 ∪X1, Y0 ∪ Y1, 〈{e}, {t}〉〉

S(M1
2 ) = 〈X0 ∪X1 ∪X3, ∅,M2

1 〉

where X0={({e+,"}, {(e+,",+)})}, Y0={({s+, assume}, {(s+, assume,+)})},
X1={({t−,⊥}, {(t−,⊥,−)})}, Y1={{a+, assume}, {(a+, assume,+)})}, and X3
is a set of off-line justifications for s, a, f , and b (omitted due to lack of space). �

We can relate the on-line justifications and off-line justifications as follows.

Lemma 3. Let P be a program, J an interpretation, and M an answer set such that
J � M . For each atom a, if (N,E) is a safe off-line e-graph of a+ (a−) w.r.t. J and
J− ∩ PAP (M) then it is an off-line justification of a+ (a−) w.r.t. M and PAP (M).

Proposition 4. Let M0, . . ., Mk be a general complete computation and S(M0), . . .,
S(Mk) be an on-line justification of the computation. Then, for each atom a ∈ M+

k

(resp. a ∈ M−
k ), the e-graph of a+ (resp. a−) in S(Mk) is an off-line justification of

a+ (resp. a−) w.r.t. Mk and PAP (M).

5 SMODELS On-Line Justifications

The notion of on-line justification presented in the previous section is very general, to fit
the needs of different models of computation. In this section, we specialize the notion of
on-line justification to a specific computation model—the one used in SMODELS [19].
This allows us to define an incremental version of on-line justification—where the steps
performed by SMODELS are used to guide the construction of the justification.

We begin with an overview of the algorithms employed by SMODELS. The choice
of SMODELS was dictated by availability of its source code and its elegant design.
The following description has been adapted from [10,19]; although more abstract than
the concrete implementation, and without various optimizations (e.g., heuristics, looka-
head), it is sufficiently faithful to capture the spirit of our approach, and to guide the
implementation (see Sect. 5.3).

5.1 An Overview of SMODELS’ Computation

We propose a description of the SMODELS algorithms based on a composition of state-
transformation operators. In the following, we say that an interpretation I does not
satisfy the body of a rule r (or body(r) is false in I) if (pos(r)∩I−)∪(neg(r)∩I+) �= ∅.
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ATLEAST Operator: The AtLeast operator is used to expand a partial interpretation
I in such a way that each answer set M of P that “agrees” with I (i.e., the elements in
I have the same truth value in M ) also agrees with the expanded interpretation.

Given a program P and a partial interpretation I , we define the following operators
AL1

P , . . . , AL
4
P :

Case 1. if r ∈ P , head(r) /∈ I+, pos(P ) ⊆ I+ and neg(P ) ⊆ I− then
AL1

P (I)+ = I+ ∪ {head(r)} and AL1
P (I)− = I−.

Case 2. if a /∈ I+ ∪ I− and ∀r ∈ P.(head(r) = a⇒ body(r) is false in I), then
AL2

P (I)+ = I+ and AL2
P (I)− = I− ∪ {a}.

Case 3. if a ∈ I+ and r is the only rule in P with head(r) = a and whose body is not
false in I then, AL3

P (I)+ = I+ ∪ pos(r) and AL3
P (I)− = I− ∪ neg(r).

Case 4. if a ∈ I−, head(r) = a, and (pos(r) \ I+) ∪ (neg(r) \ I−) = {b} then,
AL4

P (I)+ = I+ ∪ {b} and AL4
P (I)− = I− if b ∈ neg(r)

AL4
P (I)− = I− ∪ {b} and AL4

P (I)+ = I+ if b ∈ pos(r).

Given a program P and an interpretation I , ALP (I) = ALi
P (I) if ALi

P (I) �= I and
∀j < i. ALj

P (I) = I (1 ≤ i ≤ 4); otherwise, ALP (I) = I .

ATMOST Operator: The AtMostP operator recognizes atoms that are defined ex-
clusively as mutual positive dependences (i.e., “positive loops”)—and falsifies them.
Given a set of atoms S, the operatorAMP is defined as AMP (S) = S∪{head(r) |r ∈
P ∧ pos(r) ⊆ S}.

Given an interpretation I , the AtMostP (I) operator is defined as AtMostP (I) =
〈I+, I− ∪ {p ∈ A | p �∈

⋃
i≥0 Si}〉 where S0 = I+ and Si+1 = AMP (Si).

CHOOSE Operator: This operator is used to randomly select an atom that is unknown
in a given interpretation. Given a partial interpretation I , chooseP returns an atom ofA
such that chooseP (I) �∈ I+ ∪ I− and chooseP (I) ∈ NANT (P ) \ (WF+

P ∪WF−
P ).

SMODELS COMPUTATION: Given an interpretation I , we define the transitions:

I 
→ALc I ′ If I ′ = ALc
P (I), c ∈ {1, 2, 3, 4}

I 
→atmost I
′ If I ′ = AtMostP (I)

I 
→choice I ′ If I ′ = 〈I+ ∪ {chooseP (I)}, I−〉 or I ′ = 〈I+, I− ∪ {chooseP (I)}〉

We use the notation I 
→ I ′ to indicate that there is an α ∈ {AL1, AL2, AL3, AL4,
atmost, choice} such that I 
→α I ′. A SMODELS computation is a general computation
M0,M1, . . . ,Mk such that Mi 
→Mi+1.

The SMODELS system imposes constraints on the order of application of the transi-
tions. Intuitively, the SMODELS computation is shown in the algorithms of Figs. 3-4.

Example 5. Consider the program of Example 1. A possible computation of M1 is:1

〈∅, ∅〉 
→AL1 〈{e}, ∅〉 
→AL1 〈{e, f}, ∅〉 
→atmost

〈{e, f}, {c, d}〉 
→choice 〈{e, f, b}, {c, d}〉 
→AL2 〈{e, f, b}, {c, d, a}〉

1 We omit the steps that do not change the interpretation.
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function smodels(P ):
S = 〈∅, ∅〉;
loop

S = expand(P , S);
if (S+ ∩ S− �= ∅) then

fail;
if (S+ ∪ S− = A) then

success(S);
pick either % non-deterministic choice

S+ = S+ ∪ {choose(S)} or
S− = S− ∪ {choose(S)}

endloop;

Fig. 3. Sketch of smodels

function expand(P , S):
loop

S′ = S;
repeat

S = ALP (S);
until (S = ALP (S));
S = AtMost(P , S);
if (S′ = S) then return (S);

endloop;

Fig. 4. Sketch of expand

5.2 Constructing On-Line Justifications in SMODELS

We can use knowledge of the specific steps performed by SMODELS to guide the
construction of an on-line justification. Let us consider the step Mi 
→α Mi+1
and let us consider the possible 
→α. Let S(Mi) = 〈E1, E2, D〉 and S(Mi+1) =
〈E′

1, E
′
2, D

′〉. Obviously, S(Mi+1) can always be computed by computing D′ =
〈Γ (Mi+1), Δ(Mi+1)〉 and updating E1 and E2. As discussed in Remark 1, D′ can
be done incrementally. Regarding E′

1 and E′
2, observe that the e-graphs for elements

in 〈Γ k(Mi+1), Δk(Mi+1)〉 can be constructed using the e-graphs constructed for el-
ements in 〈Γ k−1(Mi+1), Δk−1(Mi+1)〉 and the rules involved in the computation of
〈Γ k(Mi+1), Δk(Mi+1)〉. Thus, we only need to updateE′

1 with e-graphs of elements of
〈Γ k(Mi+1), Δk(Mi+1)〉 which do not belong to 〈Γ k−1(Mi+1), Δk−1(Mi+1)〉. Also,
E′

2 is obtained from E2 by removing the e-graphs of atoms that “move” into D′ and
adding the e-graph (a+, assume,+) (resp. (a−, assume,−)) for a ∈ M+

i+1 (resp.
a ∈M−

i+1) not belonging to D′.

◦ α ≡ choice: let p be the atom chosen in this step. If p is chosen to be true, then
we can use the graph Gp = ({a+, assume}, {(a+, assume,+)}) and the resulting
snapshot is S(Mi+1) = 〈E1, E2 ∪ {Gp}, D〉—D is unchanged, since the structure
of the computation (in particular the fact that an expand has been done before the
choice) ensures that p will not appear in the computation of D. If p is chosen to be
false, then we will need to add p toD−, computeΓ (Mi+1) andΔ(Mi+1) (using the
optimization as discussed in Remark 1), and update E1 and E2 correspondingly; in
particular, p belongs to Δ(Mi+1) and Gp = ({a−, assume}, {(a−, assume,−)}) is
added to E1.
◦ α ≡ atmost: in this case, Mi+1 = 〈M+

i ,M
−
i ∪ AtMost(P,Mi)〉. The com-

putation of S(Mi+1) is performed as from definition. In particular, observe that if
∀c ∈ AtMost(P,Mi) we have that LCEn

P (c−, D, ∅) �= ∅ then the computation
can be started from Γ (Mi) and Δ(Mi) ∪AtMost(P,Mi).

◦ α ≡ AL1: let p be the atom dealt with in this step and let r be the rule employed.
We have that Mi+1 = 〈M+

i ∪ {p},M−
i 〉. If D |= body(r) then S(Mi+1) can
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be computed from the definition (and starting from Γ (Mi) ∪ {p} and Δ(Mi)); in
particular, an off-line graph for p+, Gp, will be added to E1 and such graph will
be constructed using the rule r and the e-graphs in E1. Otherwise, S(Mi+1) =
〈E1, E2 ∪ {G+(p, r,Σ)}, D〉, where G+(p, r,Σ) is the e-graph of p+ constructed
using rule r and using the e-graphs in Σ = E1 ∪ E2 (note that all elements in
body(r) have an e-graph in E1 ∪ E2).

◦ α ≡ AL2: let p be the atom dealt with in this step. In this caseMi+1=〈M+
i ,M

−
i ∪

{p}〉. If there exists γ ∈ LCEn
P (p,D, ∅) then S(Mi+1) can be computed from the

definition (starting from Γ (Mi) andΔ(Mi)∪{p}; observe that the graph of p− can
be constructed starting with {(p−, a−,+) | a ∈ γ} ∪ {(p−, b+,−) | not b ∈ γ}).
Otherwise, given an arbitrary ψ ∈ LCEn

P (p,Mi, ∅), we can build an e-graph Gp

for p− such that ψ = support(b,Gp) and the graphs E1 ∪ E2 are used to describe
the elements of γ, and S(Mi+1) = 〈E1, E2 ∪ {Gp}, D〉.
◦ α ≡ AL3: let r be the rule used in this step and let p = head(r). Then Mi+1 =
〈M+

i ∪pos(r),M−
i ∪neg(r)〉 andS(Mi+1) is computed according to the definition.

Observe that the e-graph Gp for p+ (added to E1 or E2) for S(Mi+1) will be
constructed using body(r) as support(p,Gp), and using the e-graphs inE1∪E2∪Σ
for some Σ ⊆ {(a+, assume,+) | a ∈ pos(r)}∪{(a−, assume,−) | a ∈ neg(r)}.
◦ α ≡ AL4: let r be the rule processed and let b the atom detected in the body.

If b ∈ pos(r), then Mi+1 = 〈M+
i ,M

−
i ∪ {p}〉 and S(Mi+1) is computed using

the definition. Analogously, if b ∈ neg(r) then Mi+1 = 〈M+
i ∪ {b},M−

i 〉 and
S(Mi+1) is computed using the definition.

Example 6. Let us consider the computation of Example 5. A sequence of snapshots is
(we provide only the edges of the graphs and combine e-graphs of different atoms):

E1 E2 D
S(M0) ∅ ∅ ∅
S(M1) {(e+,",+)} ∅ 〈{e}, ∅〉
S(M2) {(e+,",+), (f+, e+,+)} ∅ 〈{e, f}, ∅〉

S(M3)
{

(e+,",+), {f+, e+,+)
(d−, c−,+), (c−, d−,+)

}
∅ 〈{e, f}, {c, d}〉

S(M4)
{

(e+,",+), {f+, e+,+)
(d−, c−,+), (c−, d−,+)

}
{(b+, assume,+)} 〈{e, f}, {c, d}〉

S(M5)

⎧⎪⎪⎨
⎪⎪⎩

(e+,",+), {f+, e+,+),
(d−, c−,+), (c−, d−,+),

(a−, assume,−),
(b+, e+,+), (b+, a−,−)

⎫⎪⎪⎬
⎪⎪⎭ ∅ 〈{e, f, b}, {c, d, a}〉

5.3 Discussion

The description of SMODELS on-line justifications we proposed is clearly more abstract
than the concrete implementation—e.g., we did not address the use of lookahead, the
use of heuristics, and other optimizations introduced in SMODELS. We also did not ad-
dress the extensions available in SMODELS (e.g., choice rules). All these elements can



Justifications for Logic Programs Under Answer Set Semantics 209

be handled in the same spirit of what described here, and they would require more space
than available in this paper; all these elements have been addressed in the implementa-
tion of SMODELS on-line justification.

The notions of justification proposed here is meant to represent the basic data struc-
ture on which debugging strategies for ASP can be developed. We have implemented
both the off-line and the on-line justifications within the ASP− PROLOG system [8].
ASP− PROLOG allows the construction of Prolog programs (in CIAO Prolog) which
include modules written in ASP (the SMODELS flavor of ASP). The SMODELS en-
gine has been modified to extract, during the computation, a compact footprint of the
execution, i.e., a trace of the key events (corresponding to the transitions described
in Sect. 5) with links to the atoms and rules involved. The modifications of the trace
are trailed to support backtracking. Parts of the justification are built on the fly, while
others (e.g., certain cases of AL3 and AL4) are delayed until the justification is
requested.

To avoid imposing the overhead of justification construction on every computation,
the programmer has to specify what ASP modules require justifications, using an addi-
tional argument (justify) in the module import declaration:

:- use asp(〈module name〉, 〈file name〉, 〈parameters〉 [,justify]).

On-line justifications are integrated in the ASP debugging facilities of
ASP− PROLOG—which provide predicates to set breakpoints on the execu-
tion of an ASP module (e.g., triggered by assignments of a truth value to a certain
atom) and to step through execution. Off-line justifications are always available.

ASP− PROLOG provides the predicate model/1 to retrieve answer sets of an
ASP module—it retrieves them in the order they are computed by SMODELS, and it re-
turns the current one if the computation is still in progress. The main predicate to access
the justification is justify/1 which retrieves a CIAO Prolog object [15] containing
the justification; i.e., ?- my asp:model(Q), Q:justify(J). will assign to J
the object containing the justification relative to the answer set Q of the ASP module
my asp. Each justification object provides the following predicates: node/1 which
succeeds if the argument is one of the nodes in the justification graph, edge/3 which
succeeds if the arguments correspond to the components of one of the edges in the
graph, and draw/1 which will generate a graphical drawing of the justification for the
given atom (using the uDrawGraph application). For example,

?- my asp:model(Q),Q:justify(J),findall(e(X,Y),J:edge(p,X,Y),L).

will collect in L all the edges supporting p in the justification graph (for answer set Q).

6 Conclusion

In this paper we provided a generalization of the notion of justification (originally de-
signed for Prolog with SLG-resolution [17]), to suit the needs of ASP. The notion,
named off-line justification, offers a way to understand the motivations for the truth
value of an atom within a specific answer set, thus making it easy to analyze answer
sets for program understanding and debugging. We also introduced on-line justifica-
tions, which are meant to justify atoms during the computation of an answer set. The
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structure of an on-line justification is tied to the specific steps performed by a computa-
tional model for ASP (specifically, the computation model adopted by SMODELS). An
on-line justification allows a programmer to inspect the reasons for the truth value of an
atom at the moment such value is determined while constructing an answer set. These
data structures provide a foundation for the construction of tools to debug ASP.

The process of computing and presenting justifications has been embedded in the
ASP-Prolog system [8], thus making justifications a first-class citizen of the language.
This allows the programmer to use Prolog to manipulate justifications as standard Pro-
log terms. A preliminary implementation can be found at www.cs.nmsu.edu/∼

okhatib/asp prolog.html.
As future work, we propose to complete the implementation, refine the definition

of on-line justification to better take advantage of SMODELS, and develop a complete
debugging and visualization environment for ASP based on these data structures.
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Abstract. This paper studies generality relations on logic programs.
Intuitively, a program P1 is more general than another program P2 if P1

gives us more information than P2. In this paper, we define various kinds
of generality relations over nonmonotonic programs in the context of an-
swer set programming. The semantic properties of generality relations are
investigated based on domain theory, and both a minimal upper bound
and a maximal lower bound are constructed for any pair of logic pro-
grams. We also introduce the concept of strong generality between logic
programs and investigate its relationships to strong equivalence. These
results provide a basic theory to compare the degree of incompleteness
between nonmonotonic logic programs, and also have important appli-
cations to inductive logic programming and multi-agent systems.

1 Introduction

Nonmonotonic logic programs, or logic programs with negation as failure and/or
disjunctions, are useful for representing incomplete knowledge and partial infor-
mation. To judge whether two logic programs represent the same knowledge,
the notion of equivalence has recently become important in logic programming
[7,6]. Another useful measure to compare the amount of information brought
by logic programs is the concept of generality. Intuitively, a logic program P1
is considered more general than another logic program P2 if P1 gives us more
information than P2.

The generality notion is important in the field of inductive logic programming,
and basic studies have been done in this context [10,8,9] for monotonic logic
programs, which can be defined as subsets of first-order clausal theories. Model
theoretically, given two monotonic programs P1 and P2, the situation that P1 is
more general than P2 is represented as P1 |= P2, that is, P1 entails P2, which
means that every model of P1 is also a model of P2. For instance, the program
{ p← } is more general than the program { p← q }.

In the context of nonmonotonic logic programs, however, relatively little at-
tention is given to generality relations although the equivalence notion has been

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, pp. 211–225, 2006.
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studied in depth. Let us intuitively define that, for two nonmonotonic programs
P1 and P2, P1 is more general than P2 if P1 entails more information than P2
under the canonical model semantics (e.g., answer set semantics [3]). Unfortu-
nately, there is a difficulty in this definition such that a nonmonotonic program
generally has multiple canonical models. This is contrasted to a monotonic pro-
gram that has a unique canonical model or an “extension” as the logical conse-
quences of the program. For instance, consider two nonmonotonic programs:

P1 : p← not q ,

P2 : p← not q ,

q ← not p .

Here, P1 has the single answer set {p} and P2 has two answer sets {p} and
{q}. If we reason skeptically and draw conclusions from the intersection of all
answer sets, P1 entails p but P2 entails nothing. As a result, P1 is considered
more informative and more general than P2. By contrast, if we reason credulously
and draw conclusions from the union of all answer sets, P2 is considered more
informative than P1. Thus, the result depends on the type of inference.

In this paper, we study a theory to compare the degree of incomplete informa-
tion brought by nonmonotonic logic programs in the framework of answer set pro-
gramming. By the above discussion, it is more appropriate to focus on the whole
collection of answer sets of a program than on the set of literals entailed from it.
Then, to compare the infomation contents of two logic programs, it is natural to di-
rectly compare the collections of answer sets of the two programs.For this purpose,
domain theory [11,16,4], which studies orderings over the powerset of a domain,
is particularly convenient. There are at least two reasonable philosophies to judge
that one description is more informative than another description in domain the-
ory. Suppose, for example, that there are three descriptions about the contents of
a bag, which are represented by the following logic programs:

P1 : red fruit ; yellow fruit ← ,

P2 : cherry ; strawberry ← ,

red fruit ← cherry ,
red fruit ← strawberry ,

P3 : cherry ; banana ; purple fruit ← ,

red fruit ← cherry ,
yellow fruit ← banana .

Then, P2 is more informative than P1 in the sense that both cherry and straw-
berry provide further restrictions on the contents by ruling out the possibility of
yellow fruit as well as other red fruit like apple, for example. We will represent
this situation as P2 |=� P1 meaning that, for each answer set S of P2, there is
an answer set T of P1 such that T ⊆ S. The relation |=� is called the Smyth
ordering. On the other hand, P3 is more informative than P1 in the sense that P3
provides a further enumeration of positive assertions which does not rule out the
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possibility of purple fruit like grape, for example. We will represent this situation
as P3 |=� P1 meaning that, for each answer set T of P1, there is an answer set
S of P3 such that T ⊆ S. The relation |=� is called the Hoare ordering. Then,
both a minimal upper bound and a maximal lower bound are constructed for
any pair of logic programs with respect to each generality ordering. We will also
relate these two generality orderings with the generality relations with respect
to skeptical and credulous entailment, respectively. Furthermore, we will intro-
duce the concept of strong generality between logic programs and investigate its
relationship to strong equivalence [6].

The rest of this paper is organized as follows. After introducing basic concepts
of answer set programming and domain theory, Section 2 presents a theory of
generality in logic programs. Section 3 examines minimal upper and maximal
lower bounds of logic programs with respect to generality orderings, and discusses
how to compute logic programs whose answer sets exactly correspond to those
bounds. Section 4 relates the generality relations with skeptical and credulous
entailment in answer set programming. Section 5 defines the notion of strong
generality and relates it with strong equivalence of logic programs. Section 6
discusses applications of generality relations to inductive logic programming and
multi-agent systems as well as related work.

2 Generality Relations over Answer Sets

2.1 Extended Disjunctive Programs

A program considered in this paper is an extended disjunctive program (EDP)
which is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ m ≥ l ≥ 0) (1)

where each Li is a literal, not is negation as failure (NAF), and “;” represents
disjunction. The left-hand side of a rule is the head , and the right-hand side is
the body. A rule is disjunctive if its head contains more than one literal. A rule
is an integrity constraint if its head is empty, and is a fact if its body is empty.
An EDP is called an extended logic program (ELP) if l ≤ 1 for each rule (1). A
program is NAF-free if every rule contains no not, i.e., m = n for each rule (1). A
program with variables is semantically identified with its ground instantiation.

In this paper, we consider the answer set semantics for EDPs [3]. Let Lit be
the set of all ground literals in the language of programs. A set S (⊆ Lit) satisfies
a ground rule of the form (1) if {Ll+1, . . . , Lm} ⊆ S and {Lm+1, . . . , Ln}∩S = ∅
imply Li ∈ S for some i (1 ≤ i ≤ l). Let P be an NAF-free EDP. Then, a set
S(⊆ Lit) is an answer set of P if S is a minimal set such that

1. S satisfies every rule from the ground instantiation of P ,
2. S = Lit if S contains a pair of complementary literals, L and ¬L.

Next, let P be any EDP and S ⊆ Lit . For every rule of the form (1) in the
ground instantiation of P , the rule L1; · · · ;Ll ← Ll+1, . . . , Lm is included in the
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NAF-free program PS iff {Lm+1, . . . , Ln} ∩ S = ∅. Then, S is an answer set of
P if S is an answer set of PS . The set of all answer sets of P is written as A(P ).
An answer set is consistent if it is not Lit . A program P is consistent if it has a
consistent answer set; otherwise, P is inconsistent. An inconsistent program is
called contradictory if it has the single answer set Lit , and is called incoherent
if it has no answer set.

We will see that the following two notions of equivalence are important to
develop a theory of generality in answer set programming.

Definition 2.1. Let P and Q be programs. P and Q are weakly equivalent if
A(P ) = A(Q) holds. On the other hand, P and Q are strongly equivalent [6] if
for any logic program R, A(P ∪R) = A(Q ∪R) holds.

For example, P = { p ← not q, q ← not p } and Q = { p; q ← } are weakly
equivalent, but not strongly equivalent.

2.2 Ordering on Powersets

We first recall some mathematical definitions about domains [4]. A pre-order �
is a binary relation which is reflexive and transitive. A pre-order � is a partial
order if it is also anti-symmetric. A pre-ordered set (resp. partially ordered set ;
poset) is a set D with a pre-order (resp. partial order) � on D.

For any pre-ordered set 〈D,�〉, a poset is induced over the equivalence classes
of D. That is, for any element X ∈ D, define the equivalence class as

[X ] = { Y ∈ D | Y � X, X � Y }.
The equivalence relation partitions D into a set of disjoint equivalence classes.
Introducing the relation # on the set of these equivalence classes as:

[X ] # [Y ] if X � Y,

the relation # becomes a partial order on the set.
For any set D, let P(D) be the powerset of D. Given a poset 〈D,�〉 and

X,Y ∈ P(D), the Smyth order is defined as

X |=� Y iff ∀x∈X ∃y∈Y. y � x ,

and the Hoare order is defined as

X |=� Y iff ∀y∈Y ∃x∈X. y � x .

The relations |=� and |=� are pre-orders on P(D). Note that the orderings |=�

and |=� are slightly different from the standard ones: we allow the empty set
∅ (∈ P(D)) as the top element "� in 〈P(D), |=�〉 and the bottom element ⊥�

in 〈P(D), |=�〉. This is because we will associate ∅ with the class of incoherent
programs so that we enable comparison of all classes of EDPs.

Example 2.1. Consider the poset 〈P({p, q}),⊆〉. Then, we have {{p, q}} |=�

{{p}} and {{p}} |=� {{p}, {q}}, and hence {{p, q}} |=� {{p}, {q}}. On the
other hand, {{p, q}} |=� {{p}, {q}} but {{p}, {q}} |=� {{p}}. Note that both
{∅, {p}} |=� {∅, {q}} and {∅, {q}} |=� {∅, {p}} hold, indicating that |=� is not a
partial order.
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In the following, we assume a poset 〈D,�〉 such that the domain D = P(Lit)
is the family of subsets of Lit , i.e., the class of sets of literals in the language
and the partial-order � is the subset relation ⊆. Then, the Smyth and Hoare
orderings are defined on P(P(Lit)), which enables us to order sets of literals or
sets of answer sets. In particular, both 〈P(P(Lit)), |=�〉 and 〈P(P(Lit)), |=�〉 are
pre-ordered sets. Moreover, if we associate an EDP P with its set of answer sets
A(P ), the ordering on the EDPs becomes possible as follows.

Definition 2.2. Given the poset 〈P(Lit),⊆〉 and two programs P,Q that are
constructed in the same language with Lit , we define:

P |=� Q if A(P ) |=� A(Q),
P |=� Q if A(P ) |=� A(Q).

We say that P is more �-general (resp. more �-general) than Q if P |=� Q (resp.
P |=� Q).

Intuitively, �-generality and �-generality reflect the following situations. P |=� Q
means that any answer set of P is more (or equally) informative than some
answer set of Q. On the other hand, P |=� Q means that any answer set of Q
is less (or equally) informative than some answer set of P . When both P and
Q have single answer sets, it is obvious that P |=� Q iff P |=� Q. The notion
of �-generality has been introduced in [5] such that Q is defined to be weaker
than P if P |=� Q, although properties of this ordering have never been deeply
investigated so far.

Both �-generality and �-generality are naturally connected to the notion of
weak equivalence in answer set programming.

Theorem 2.1. Let P and Q be EDPs. Then, the following three are equivalent:

(1) P |=� Q and Q |=� P ;
(2) P |=� Q and Q |=� P ;
(3) P and Q are weakly equivalent.

Proof. We prove (1)⇔(3) but (2)⇔(3) can be proved in the same way.
P |=� Q and Q |=� P

iff ∀S∈A(P )∃T ∈A(Q). T ⊆ S and ∀T ∈A(Q)∃S∈A(P ). S ⊆ T
iff ∀S∈A(P )∃T ∈A(Q)∃S′∈A(P ). S′ ⊆ T ⊆ S and ∀T ∈A(Q)∃S∈A(P )∃T ′∈
A(Q). T ′ ⊆ S ⊆ T
iff ∀S ∈A(P )∃T ∈A(Q). T = S and ∀T ∈A(Q)∃S∈A(P ). S = T (because for
any two answer sets S, T ∈ A(P ), S ⊆ T implies S = T by the fact that A(P ) is
an anti-chain on the poset 〈P(Lit),⊆〉)
iff ∀S∈A(P ). S ∈ A(Q) and ∀T ∈A(Q). T ∈ A(P )
iff A(P ) ⊆ A(Q) and A(Q) ⊆ A(P ) iff A(P ) = A(Q). 
�

By Theorem 2.1, for any EDP P , every EDP in the equivalence class [P ] induced
by the pre-order |=� or |=� is weakly equivalent to P .
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Example 2.2. Consider the following programs:

P1 : p← not q,

P2 : p← not q,

q ← not p,

P3 : p ; q ← ,

P4 : p ; q ← ,

p← q,

q ← p.

Then, P4 |=� P1 |=� P2, and P4 |=� P2 |=� P1 (see Example 2.1). P2 and P3 are
weakly equivalent, and thus P2 |=� P3 |=� P2 and P2 |=� P3 |=� P2.

3 Minimal Upper and Maximal Lower Bounds

In this section, we show that both a minimal upper bound and a maximal lower
bound of any pair of logic programs exist with respect to generality orderings,
and discuss how to compute logic programs whose answer sets exactly correspond
to those bounds. Those bounds are important in the theory of generalization and
specialization in inductive logic programming [10]. In the following, let EDP be
the class of all EDPs which can be constructed in the language.

Proposition 3.1. Both 〈EDP , |=�〉 and 〈EDP , |=�〉 are pre-ordered sets.

For notational convenience, we denote the �- or �-generality relation as |=�/� when
distinction between �- and �-general orderings is not important. In what follows,
we consider the problem to find a minimal upper bound (mub) and a maximal
lower bound (mlb) of given two programs P1 and P2. Because 〈EDP , |=�/�〉 is
only a pre-ordered set, there is no unique minimal/maximal bound in general.
In Section 3.2, however, it is shown that the least upper bound (lub) and the
greatest lower bound (glb) can be constructed for the equivalence classes [P1]
and [P2] under these orderings.

3.1 Mub and Mlb in Smyth and Hoare Orderings

In this section, we suppose that P1, P2 ∈ EDP .

Definition 3.1. A program Q ∈ EDP is an upper bound of P1 and P2 in
〈EDP , |=�/�〉 if Q |=�/� P1 and Q |=�/� P2. An upper bound Q is an mub of P1
and P2 in 〈EDP , |=�/�〉 if for any upper bound Q′, Q |=�/� Q′ implies Q′ |=�/� Q.

On the other hand, Q ∈ EDP is a lower bound of P1 and P2 in 〈EDP , |=�/�〉
if P1 |=�/� Q and P2 |=�/� Q. A lower bound Q is an mlb of P1 and P2 in
〈EDP , |=�/�〉 if for any lower bound Q′, Q′ |=�/� Q implies Q |=�/� Q′.

In the following, for any set X , let min(X) = { x ∈ X | ¬∃y ∈X. y ⊂ x } and
max(X) = { x ∈ X | ¬∃y∈X.x ⊂ y }. We often denote minX and maxX by
omitting (). For two sets of literals S, T ⊆ Lit , we define
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S � T =
{
S ∪ T , if S ∪ T does not contain a pair of complementary literals;
Lit , otherwise.

Theorem 3.1. (1) An EDP Q is an mub of P1 and P2 in 〈EDP , |=�〉 iff

A(Q) = min{S � T | S ∈ A(P1), T ∈ A(P2) }.

(2) An EDP Q is an mlb of P1 and P2 in 〈EDP , |=�〉 iff

A(Q) = min(A(P1) ∪A(P2)).

(3) An EDP Q is an mub of P1 and P2 in 〈EDP , |=�〉 iff

A(Q) = max(A(P1) ∪A(P2)).

(4) An EDP Q is an mlb of P1 and P2 in 〈EDP , |=�〉 iff

A(Q) = max{S ∩ T | S ∈ A(P1), T ∈ A(P2) }.

Proof. Because of the space limitation, we prove (1) and (2) only, but the proof of
(3) and (4) can be constructed in a similar way to that of (2) and (1), respectively.

(1) Q is an upper bound of P1 and P2 in 〈EDP , |=�〉 iff Q |=� P1 and Q |=� P2
iff ∀S∈A(Q)∃T1∈A(P1). T1 ⊆ S and ∀S∈A(Q)∃T2∈A(P2). T2 ⊆ S
iff ∀S∈A(Q)∃T1∈A(P1)∃T2∈A(P2). T1 ∪ T2 ⊆ S. (*)

Now, suppose that A(Q) is given as min{T1 � T2 | T1 ∈ A(P1), T2 ∈ A(P2)}.
This Q is an upper bound of P1 and P2 because (*) is satisfied. If Q is contra-
dictory, then A(Q) = {Lit}. Then, for any T1 ∈ A(P1) and any T2 ∈ A(P2),
T1 � T2 = Lit , that is, T1 ∪ T2 is inconsistent. In this case, Q is an mub. Else if
Q is incoherent, then A(Q) = ∅. Then, for any T1 ∈ A(P1) and any T2 ∈ A(P2),
T1 �T2 is undefined, and thus, A(P1) = ∅ or A(P2) = ∅. That is, either P1 or P2
is incoherent. In this case, Q is an mub too.

Next, consider the case that Q is consistent. Suppose further that Q is not an
mub. Then, there is Q′ ∈ EDP such that (i) Q′ is an upper bound of P1 and P2,
(ii) Q |=� Q′, and (iii) Q′ �|=� Q. Here, (ii) and (iii) imply that A(Q) �= A(Q′)
by Theorem 2.1. Because A(Q) �= {Lit}, it holds that, for any S ∈ A(Q), S =
T1 � T2 = T1 ∪ T2 for some T1 ∈ A(P1) and T2 ∈ A(P2). For this S, there is an
answer set S′ ∈ A(Q′) such that S′ ⊆ S by (ii) and that S′ = T3 ∪ T4 for some
T3 ∈ A(P1) and T4 ∈ A(P2) by (i) and (*). Hence, T3 ∪ T4 ⊆ T1 ∪ T2. By the
minimality of A(Q) with respect to the operation min, it must be T3 ∪ T4 =
T1 ∪ T2, and thus S′ = S. Hence, A(Q) ⊆ A(Q′). By A(Q) �= A(Q′), there is
U ∈ A(Q′) such that U �∈ A(Q). Again, U = T ′ ∪ T ′′ for some T ′ ∈ A(P1) and
T ′′ ∈ A(P2) by (i) and (*). However, there must be some V ∈ A(Q) such that
V ⊆ U by the construction of A(Q) and the minimality of A(Q) with respect
to the operation min. Because U �∈ A(Q), V ⊂ U holds. However, by Q |=� Q′,
there is U ′ ∈ A(Q′) such that U ′ ⊆ V and hence U ′ ⊂ U . This contradicts the
fact that A(Q′) is an anti-chain. Therefore, Q is an mub of P1 and P2.

(2) Q is a lower bound of P1 and P2 in 〈EDP , |=�〉 iff P1 |=� Q and P2 |=� Q
iff ∀S∈A(P1)∃T ∈A(Q). T ⊆ S and ∀S∈A(P2)∃T ∈A(Q). T ⊆ S
iff ∀S∈A(P1) ∪A(P2)∃T ∈A(Q). T ⊆ S. (**)
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Now, suppose that A(Q) = min(A(P1) ∪ A(P2)). This Q is a lower bound of
P1 and P2 because (**) is satisfied. If Q is contradictory, then A(Q) = {Lit} and
both P1 and P2 are contradictory. In this case,Q is an mlb. Else ifQ is incoherent,
then A(Q) = ∅ and both P1 and P2 are incoherent. In this case, Q is an mlb too.
Else if Q is consistent, suppose further that Q is not an mlb. Then, there is a
lower bound Q′ ∈ EDP of P1 and P2 such that Q′ |=� Q and A(Q) �= A(Q′) by
the same argument as the proof of (1). By Q′ |=� Q, for any T ′ ∈ A(Q′), there is
T ∈ A(Q) such that T ⊆ T ′. By this and the fact that Q′ is a lower bound of P1
and P2, we have that ∀S∈A(P1)∪A(P2)∃T ′∈A(Q′)∃T ∈A(Q). T ⊆ T ′ ⊆ S. By
the minimality of A(Q) with respect to the operation min, it must be T ′ = T ,
and thus A(Q′) ⊆ A(Q). By A(Q) �= A(Q′), there is V ∈ A(Q) such that
V �∈ A(Q′). Since V ∈ A(P1) ∪ A(P2) by the construction of A(Q), there must
be some U ∈ A(Q′) such that U ⊆ V by (**). Because V �∈ A(Q′), U ⊂ V holds.
However, by Q′ |=� Q, there is V ′ ∈ A(Q) such that V ′ ⊆ U and thus V ′ ⊂ V .
This contradicts the fact that A(Q) is an anti-chain. Therefore, Q is an mlb of
P1 and P2. 
�

Example 3.1. Consider P1, P2 and P4 in Example 2.2, where A(P1) = {{p}},
A(P2) = {{p}, {q}} and A(P4) = {{p, q}}. Because P4 |=� P2, an mub (resp.
mlb) of P2 and P4 in 〈EDP , |=�〉 is P4 (resp. P2). Correspondingly, min{T1�T2 |
T1 ∈ A(P2), T2 ∈ A(P4)} = min{{p, q}} = A(P4) and min(A(P2) ∪ A(P4)) =
min{{p}, {q}, {p, q}}= {{p}, {q}} = A(P2). Similarly, an mub (resp. mlb) of P2
and P4 in 〈EDP , |=�〉 is P4 (resp. P2). Correspondingly, max(A(P2) ∪A(P4)) =
max{{p}, {q}, {p, q}} = {{p, q}} = A(P4) and max{T1 ∩ T2 | T1 ∈ A(P2), T2 ∈
A(P4)} = max{{q}, {p}} = A(P2).

Consider further the program P5 = { q ← not p }, where A(P5) = {{q}}. Then,
P4 is an mub of P1 and P5 in 〈EDP , |=�〉 because min{T1�T2 | T1 ∈ A(P1), T2 ∈
A(P5)} = min{{p, q}} = A(P4). Also, P2 is an mlb of P1 and P5 in 〈EDP , |=�〉
and is an mub of P1 and P5 in 〈EDP , |=�〉 because min(A(P1) ∪ A(P5)) =
max(A(P1) ∪A(P5)) = {{p}, {q}} = A(P2). Finally, P6 = ∅ is an mlb of P1 and
P5 in 〈EDP , |=�〉 because max{T1 ∩ T2 | T1 ∈ A(P1), T2 ∈ A(P5)} = max{∅} =
A(P6).

Note that any contradictory program Q is an mub of { p← } and {¬p← }
because A(Q) = min{T1 � T2 | T1 = {p}, T2 = {¬p}} = min{Lit} = {Lit}.

3.2 Lub and Glb on Equivalence Classes

Now, we can construct a poset from the pre-order set 〈EDP , |=�/�〉 in the usual
way as follows. For any program P ∈ EDP , consider the equivalence class:

[P ] = {Q ∈ EDP | A(Q) = A(P ) },

and then define the relation &� as:

[P ] &� [Q] if P |=� Q.

We denote the equivalence classes from 〈EDP , |=�〉 as P�. The relation &� and
the equivalence classes P� are defined in the same way, and we write &�/� and
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P�/� to represent two cases together. Then, the relation &�/� is a partial order
on P�/�.

Proposition 3.2. The poset 〈P�/�,&�/�〉 constitutes a complete lattice.

Proof. We prove for 〈P�,&�〉. For EDPs P1 and P2, consider an EDP P3 such
that A(P3) = min{S � T | S ∈ A(P1), T ∈ A(P2)}. Then, [P3] becomes the lub
of [P1] and [P2] by Theorem 3.1 (1). On the other hand, let P4 be an EDP such
that A(P4) = min(A(P1) ∪A(P2)). Then, [P4] becomes the glb of [P1] and [P2]
by Theorem 3.1 (2). The top element "� of 〈P�,&�〉 is the class of incoherent
EDPs and the bottom element ⊥� of 〈P�,&�〉 is [∅].

The result for 〈P�,&�〉 can be shown in a similar manner except that the
top element "� of 〈P�,&�〉 is the class of contradictory EDPs and the bottom
element ⊥� of 〈P�,&�〉 is the class of incoherent EDPs. 
�

3.3 Computing Mubs and Mlbs

Theorem 3.1 presents that, given two EDPs P1 and P2, there are mubs and mlbs
of P1 and P2 in 〈EDP , |=�/�〉. We briefly discuss how to actually construct those
EDPs whose answer sets are given as such in a finite domain.

Incidentally, composing programs corresponding to the four cases in Theo-
rem 3.1 has been studied in a series of work by Sakama and Inoue [13,14,15].
In [13], both a program Q such that A(Q) = A(P1) ∪ A(P2) and a program R
such that A(R) = A(P1) ∩A(P2) have been composed, where Q is called gener-
ous coordination of P1 and P2 and R is called rigorous coordination of P1 and
P2. Thus, Theorem 3.1 (2) and (3) correspond to generous coordination. On the
other hand, [14] produces composition of P1 and P2, which is a program Q whose
answer sets are exactly given as min{T1�T2 | T1 ∈ A(P1), T2 ∈ A(P2)} in The-
orem 3.1 (1). The final case (4) in Theorem 3.1 is considered in [15] as maximal
consensus among P1 and P2. The algorithms in [13,14,15] compose such EDPs
in time polynomial to the numbers of answer sets and rules in two programs.

There is also a direct and exponential-time algorithm to construct a program
that has exactly the given collection of answer sets. Given a set of answer sets
{S1, . . . , Sm}, first compute the disjunctive normal form (DNF) S1 ∨ · · · ∨ Sm,
then convert it into the conjunctive normal form (CNF) R1 ∧ · · · ∧Rn. The set
of facts {R1 ← , . . . , Rn ← } then has the answer sets {S1, . . . , Sm}. This DNF-
CNF transformation produces disjunctive facts only. This is the case even that
the given two programs are ELPs, i.e., programs with no disjunction. Technically,
the resulting program P is head-cycle-free, that is, it contains no positive cycle
through disjuncts appearing in the head of a disjunctive rule [1]. Then, P can
be converted to an ELP by shifting disjuncts in the head of a rule to the body
as NAF-literals in every possible way as leaving one in the head.

4 Generality Relations Relative to Entailment

In traditional studies on generality in first-order clausal theories, the amount
of information brought by a program has been measured by the set of logical
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formulas entailed by the program. That is, given two monotonic programs P
and Q, P is considered more general than Q if P logically entails more formulas
than Q [8]. On the other hand, we have defined the two notions of general-
ity for nonmonotonic programs in terms of answer sets. Here, we will connect
the generality relations over answer sets with skeptical and credulous entail-
ment in answer set programming. As a result, we will see that our notions of
two generality orderings are also reasonable from the viewpoint of entailment
relations.

We first review skeptical and credulous entailment in answer set programming.

Definition 4.1. Let P be a program and L a literal. Then, L is a skeptical
consequence of P if L is included in every answer set of P . L is a credulous
consequence of P if L is included in some answer set of P . The set of skeptical
(resp. credulous) consequences of P is denoted as skp(P ) (resp. crd(P )).

Proposition 4.1. If P is a consistent program, then

skp(P ) =
⋂

S∈A(P )

S, crd(P ) =
⋃

S∈A(P )

S.

If P is incoherent, then skp(P ) = Lit and crd(P ) = ∅. If P is contradictory,
then skp(P ) = crd(P ) = Lit.

Example 4.1. Consider P2 and P4 in Example 2.2, where A(P2) = {{p}, {q}} and
A(P4) = {{p, q}}.Then, crd(P2) = crd(P4) = skp(P4) = {p, q}, and skp(P2) = ∅.

The orderings relative to skeptical and credulous entailment relations between
two programs are defined as follows.

Definition 4.2. Let P and Q be EDPs. Then, we write:

P |=skp Q if skp(Q) ⊆ skp(P ),
P |=crd Q if crd(Q) ⊆ crd(P ).

We say P is more general than Q under skeptical entailment if P |=skp Q.
Likewise, P is more general than Q under credulous entailment if P |=crd Q.

For notational convenience, we write P |=s/c Q when distinction between skep-
tical and credulous entailment is not important.

Proposition 4.2. The relation |=s/c is a pre-order on EDP.

As in the case of �/�-generality relations, the pre-order set 〈EDP , |=s/c〉 is turned
into a poset as follows. For any program P ∈ EDP and the equivalence class

[P ]s = {Q ∈ EDP | P |=skp Q, Q |=skp P },

we define
[P ]s &skp [Q]s if P |=skp Q,
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and denote the equivalence classes from 〈EDP , |=skp〉 as Pskp. The relation &crd

and the equivalence classes Pcrd are defined in the same way, and we write &s/c

and Ps/c to represent two cases together. Then, the relation &s/c is a partial
order on Ps/c.

Proposition 4.3. The poset 〈Ps/c,&s/c〉 constitutes a complete lattice.

Proof. We prove for 〈Pskp,&skp〉. The result for 〈Pcrd,&crd〉 is shown in a similar
manner. For programs P1 and P2, there is a program P3 such that skp(P3) =
skp(P1) ∪ skp(P2). (An instance of such a program is P3 = {L ← | L ∈
skp(P1) ∪ skp(P2) }.) Then, [P3]s becomes the lub of [P1]s and [P2]s. On the
other hand, for programs P1 and P2, there is a program P4 such that skp(P4) =
skp(P1) ∩ skp(P2). Then, [P4]s becomes the glb of [P1]s and [P2]s. The top
element of 〈Pskp,&skp〉 is the class of incoherent EDPs and the bottom element
of 〈Pskp,&skp〉 is [∅]. 
�

Now, we relate the �- and �-generality relations with the generality relations
under skeptical and credulous entailment.

Theorem 4.1. Let P and Q be EDPs. Then, the following two hold.

(1) If P |=� Q then P |=skp Q.
(2) If P |=� Q then P |=crd Q.

Proof. (1) Assume that P |=� Q. If P is inconsistent, then skp(P ) = Lit and
thus P |=skp Q. Suppose that P is consistent and L ∈ skp(Q). Then, L ∈ T for
every answer set T ∈ A(Q). By P |=� Q, for any S ∈ A(P ), there is an answer
set T ′ ∈ A(Q) such that T ′ ⊆ S. Since L ∈ T ′, L ∈ S too. That is, L ∈ skp(P ).
Hence, P |=skp Q.

(2) Assume that P |=� Q. If P is incoherent, then P is in the bottom element
of 〈P�,&�〉, and hence Q is too. Then, crd(P ) = crd(Q) = ∅ and thus P |=crd Q.
Else if P is contradictory, then crd(P ) = Lit and thus P |=crd Q. Suppose that
P is consistent and L ∈ crd(Q). Then, L ∈ T for some answer set T ∈ A(Q). By
P |=� Q, there is an answer set S ∈ A(P ) such that T ⊆ S. Hence, L ∈ S and
thus L ∈ crd(P ). That is, P |=crd Q. 
�

Theorem 4.1 tells us that, (1) the more �-general a program is, the more it entails
skeptically, and that (2) the more �-general a program is, the more it entails
credulously. That is, the Smyth and Hoare orderings over programs reflect the
amount of information by skeptical and credulous entailment, respectively. The
converse of each property in Theorem 4.1 does not hold in general.

Example 4.2. For Example 4.1, P4 |=� P2 and P4 |=� P2. Correspondingly,
skp(P2) ⊂ skp(P4) and crd(P2) = crd(P4), which verify Theorem 4.1.

On the other hand, crd(P2) = crd(P4) also implies P2 |=crd P4, but P2 �|=� P4.
Similarly, for the program P6 = ∅, we have skp(P6) = ∅ = skp(P2). Then,
P6 |=skp P2, but P6 �|=� P2.
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By Theorem 4.1, the relation |=�/� is a refinement of the relation |=s/c, re-
spectively. Comparing these two kinds of ordering relations, we claim that |=�/�

is more useful than |=s/c as generality criteria. This is because each equiva-
lence class [P ] ∈ P�/� is the set of programs which are weakly equivalent to
P (Theorem 2.1), although there is no such a simple property for the equiva-
lence classes Ps/c. For Example 4.2, crd(P2) = crd(P4) but A(P2) �= A(P4), and
skp(P2) = skp(P6) but A(P2) �= A(P6).

The next theorem presents interesting relationships between mubs/mlbs under
the generality |=�/� and skeptical/credulous entailment.

Lemma 4.1. Let P1 and P2 be EDPs.

(1) If Q is an mub of P1 and P2 in 〈EDP , |=�〉 then skp(Q) = skp(P1)�skp(P2).
(2) If Q is an mlb of P1 and P2 in 〈EDP , |=�〉 then skp(Q) = skp(P1)∩skp(P2).
(3) If Q is an mub of P1 and P2 in 〈EDP , |=�〉 then crd(Q) = crd(P1)∪crd(P2).
(4) If Q is an mlb of P1 and P2 in 〈EDP , |=�〉 then crd(Q) = crd(P1)∩ crd(P2).

Proof. An mub/mlb of two programs under each ordering is given by Theo-
rem 3.1. Then, (1) can be proved by [14, Proposition 3.5(2)], (2) can be proved
by [13, Proposition 3.1-1(b)], (3) can be proved by [13, Proposition 3.1-1(a)],
and (4) can be proved by [15, Proposition 5(3)]. 
�

Theorem 4.2. Let P1 and P2 be EDPs.

(1) An mub of P1 and P2 in 〈EDP , |=�〉 is an mub of P1 and P2 in 〈EDP , |=skp〉.
(2) An mlb of P1 and P2 in 〈EDP , |=�〉 is an mlb of P1 and P2 in 〈EDP , |=skp〉.
(3) An mub of P1 and P2 in 〈EDP , |=�〉 is an mub of P1 and P2 in 〈EDP , |=crd〉.
(4) An mlb of P1 and P2 in 〈EDP , |=�〉 is an mlb of P1 and P2 in 〈EDP , |=crd〉.

Proof. Each mub/mlb of P1 and P2 in 〈EDP , |=s/c〉 satisfies each equation (1)
to (4) in Lemma 4.1. Then each property holds by Lemma 4.1. 
�

5 Strong Generality Relations over Logic Programs

In the previous sections, we have seen that the relation |=�/� is useful for de-
termining the degree of generality of EDPs. However, because �/�-generality is
determined solely by the answer sets of each program, sometimes the criteria is
not suitable for applications in dynamic domains. For example, for ELPs P =
{ p← not q } and Q = { p← q }, we have P |=� Q. Then, adding R = { q ← } to
both programs makes the results in reverse order, i.e., Q ∪ R |=� P ∪R. In this
section, we will thus introduce context-sensitive notions of generality.

Definition 5.1. Let P and Q be programs. P is strongly more �-general than Q
(written P �� Q) if P ∪R |=� Q∪R for any program R. Similarly, P is strongly
more �-general than Q (written P �� Q) if P ∪R |=� Q ∪R for any program R.

We write ��/� to represent both �� and �� together. It is easy to see that strong
�/�-generality implies �/�-generality.
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Proposition 5.1. Let P and Q be EDPs. If P ��/� Q then P |=�/� Q.

Strong �/�-generality can be contrasted with the notion of strong equivalence
[6] in answer set programming. In fact, we have the following correspondence
between strong generality and strong equivalence.

Theorem 5.1. Let P and Q be EDPs. Then, the following three are equivalent:

(1) P �� Q and Q�� P ;
(2) P �� Q and Q�� P ;
(3) P and Q are strongly equivalent.

Proof. P ��/� Q and Q��/� P
iff P ∪R |=�/� Q ∪R and Q ∪R |=�/� P ∪R for any program R
iff P ∪R and Q∪R are weakly equivalent for any program R (by Theorem 2.1)
iff P and Q are strongly equivalent. 
�

Example 5.1. Consider the four EDPs in Example 2.2. Then, P1 �� P2 �� P3
holds. However, P4 �� �P1 (take R = { q ← p } then P1 ∪ R is incoherent while
P4 ∪ R = P4, hence P4 ∪ R �|=� P1 ∪ R), P4 �� �P2 (take R′ = { q ← p, p ← q }
then P2 ∪ R′ is incoherent while P4 ∪ R′ = P4, hence P4 ∪ R′ �|=� P2 ∪ R′),
P3 �� �P2 (take R′ above then P2 ∪ R′ is incoherent while P3 ∪ R′ is consistent,
hence P3∪R′ �|=� P2∪R′), and P4 �� �P3 (take R′′ = { ← not p, ← not q } then
P3 ∪R′′ is incoherent while P4 ∪R′′ is consistent, hence P4 ∪R′′ �|=� P3 ∪R′′).

On the other hand, P3 �� P2 �� P1 holds under the relation ��.

In Example 5.1, the two weakly equivalent programs P2 and P3 are not strongly
equivalent, and thenP2�

�P3 butP3 �� �P2. This fact canbe intuitively explained as
follows. P2 = { p← not q, q ← not p } is more informative than P3 = { p; q ← }
in the sense that the derivation of p (or q) depends on the absence of q (or p) in P2.
However, no such information is obtained in P3 so that we have a chance to extend
the contents by adding R′ = { q ← p, p ← q } to P3, which is impossible for P2.
On the other hand, under the relation ��, we have P3 �� P2 but P2 �� �P3. This is
because any incoherent program becomes a top element "� under ��, while it is a
bottom element⊥� under ��. In this regard, the next proposition gives a necessary
condition for strong generality.

Proposition 5.2. Let P and Q be EDPs.

(1) If P �� Q then A(Q ∪R) = ∅ implies A(P ∪R) = ∅ for any EDP R.
(2) If P �� Q then A(P ∪R) = ∅ implies A(Q ∪R) = ∅ for any EDP R.

Proposition 5.3. Both 〈EDP ,��〉 and 〈EDP ,��〉 are pre-ordered sets.

As in the case of �/�-generality relations, from the pre-order set 〈EDP ,��/�〉,
a poset can be induced over the equivalence classes as usual. This poset also
constitutes a complete lattice, but we omit the detail in this paper.
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6 Discussion

Theories of generality relations over first-order clauses have been studied in the
field of inductive logic programming [8,9,10]. These studies mainly focus on the
generality relationship between two individual clauses and a generality order is
introduced over a set of clauses. By contrast, we considered generality relations
between programs. Moreover, the main contribution of this paper is a theory of
generality relations in nonmonotonic logic programs, which contain incomplete
information. The generality theory developed in this paper is useful for compar-
ing the amount of information between such programs. To our best knowledge,
there has never been a study on generality relations over nonmonotonic logic
programs except [12]. Sakama [12] introduces an ordering over default theories
and nonmonotonic logic programs. He orders ELPs based on a ten-valued logic,
which is different from the domain-theoretic appraoch in this paper.

Computing mubs and mlbs of two programs in this paper is closely related
to coordination, composition and consensus in multi-agent systems, which have
been studied by Sakama and Inoue [13,14,15] (see Section 3.3). Coordination [13]
is realized by accomodating different beliefs of individual agents. This is done
by collecting answer sets of each program. On the other hand, composition [14]
is realized by merging different answer sets of each programs, and consensus
[15] is realized by extracting common beliefs from different answer sets of each
program. The results of this paper indicate that our generalization theory can
serve as a theoretical ground for formalizing social behavior of multiple agents.

The Smyth and Hoare orderings were proposed in domain theory, which is
concerned with mathematical structures to formalize the denotational seman-
tics of programming languages [11,16,4]. The recursive, concurrent and non-
deterministic nature of programming constructs have been modeled on these
order-theoretic powerdomains. In this viewpoint, answer set programming also
imposes non-determinism, and we thus regard that domain theory is suitable to
analyze structural properties of answer sets. However, there is only a few work on
domain-theoretic foundations on logic programming, and in particular, no one
has proposed a domain-theoretic method to compare the amount of information
brought by a logic program. Zhang and Rounds [17] represent the semantics of
disjunctive logic programs on Scott’s information systems using Smyth power-
domain. In contrast to our work, Zhang and Rounds are concerned with the
semantics of individual programs, and do not consider comparison of multiple
programs in powerdomains. Eiter et al. [2] have proposed a framework for com-
paring programs with respect to binary relations on powersets of the projected
answer sets of the programs, but relations in their framework are limited to
equivalence and inclusion, and generality is not taken into account.

Finally, it should be noted that our framework to compare programs in Sec-
tion 2.2 is farily general, so that its applicability is not only limited to answer
set programming. In fact, A(P ) for a program P in Definition 2.2 can be given
by any semantics of P as long as it is defined as a subset of Lit .

Several issues are left open. Because we have developed the theory of gener-
ality relations from the semantical viewpoint, exploring the syntactical counter-
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part is an important future topic. For example, construction of a more (or less)
(strongly) �/�-general program of a given program by a syntactical manipulation
is useful for generalizing or specializing a program in inductive logic program-
ming. For another issue, strong generality in the current form seems too strong,
and it must be meaningful to relax its context-dependent generality condition
from one with respect to all EDPs to one with respect to a subclass of EDPs.
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Abstract. We present a formalism for logic program cooperation based on the
answer set semantics. The system consists of independent logic programs that
are connected via a sequential communication channel. When presented with an
input set of literals from its predecessor, a logic program computes its output as
an answer set of itself, enriched with the input.

It turns out that the communication strategy makes the system quite expres-
sive: essentially a sequence of a fixed number of programs n captures the com-
plexity class ΣP

n , i.e. the n-th level of the polynomial hierarchy. On the other
hand, unbounded sequences capture the polynomial hierarchy PH. These results
make the formalism suitable for complex applications such as hierarchical de-
cision making and preference-based diagnosis on ordered theories. In addition,
such systems can be realized by implementing an appropriate control strategy
on top of existing solvers such as DLV or SMODELS, possibly in a distributed
environment.

1 Introduction

In answer set programming (see e.g. [2]) a logic program is used to describe the require-
ments, that must be fulfilled by the solutions to a problem. The models (answer sets)
of the program, usually defined through (a variant of) the stable model semantics [18],
then correspond to the solutions of the problem. This technique has been successfully
applied in problem areas such as planning [20], configuration and verification [23], di-
agnosis [9], . . .

In this paper we use the answer set semantics to formalize a framework in which
programs cooperate to obtain a solution that is acceptable to all and cannot unilater-
ally be improved upon. E.g., when a company has to make up an emergency evacua-
tion plan for a building, one of the employees will make up a strategy that could be
implemented for that building. However, as she is probably not aware of all current
regulations about such strategies, her solution is forwarded to the emergency services,
e.g. the police or the fire brigade, who will try to improve her plan so it conforms
to all legal requirements. This adapted, legal version of the received starting plan is
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then send back to the employee who verifies its feasibility. If the verification fails, the
communication starts all over again by the employee sending a new possible plan to
the emergency services. In the other case, i.e. the adapted plan is successfully veri-
fied by the employee, it is presented to the firm’s management which will try to im-
prove it to obtain e.g. a cheaper one. Again, this cheaper alternative is sent back to the
emergency services for verification, and eventually also to the employee, to check its
feasibility.

We develop a framework of cooperating programs that is capable of modeling hi-
erarchical decision problems like the one above. To this end, we consider a sequence
of programs 〈Pi〉i=1,...n. Intuitively, a program Pi communicates the solutions it finds
acceptable to the next program Pi+1 in the hierarchy. For such a Pi-acceptable solution
S, the program Pi+1 computes a number of solutions that it thinks improve on S. If
one of these Pi+1 improvementsS′ of S is also acceptable to Pi, i.e. S′ can be success-
fully verified by Pi, the original S is rejected as an acceptable solution by the program
Pi+1. On the other hand, if Pi+1 has no improvements for S, or none of them are also
acceptable to Pi, S is accepted by Pi+1. It follows that a solution that is acceptable to
all programs must have been proposed by the starting program P1.

It turns out that such sequences of programs are rather expressive. More specifically,
we show not only that arbitrary complete problems of the polynomial hierarchy can
be solved by such systems, but that such systems can capture the complete polynomial
hierarchy, the latter making them suitable for complex applications.

Problems located at the first level of the polynomial hierarchy can be directly solved
using answer set solvers such as DLV [16] or SMODELS [22]. On the second level,
only DLV is left to perform the job directly. However, by using a “guess and check”
fixpoint procedure, SMODELS can indirectly be used to solve problems at the second
level [4, 15]. Beyond the second level, there are still some interesting problems. E.g.,
the most expressive forms of diagnostic reasoning, i.e. subset-minimal diagnosis on
disjunctive system descriptions [13] or preference-based diagnosis on ordered theo-
ries [27], are located at the third level of the polynomial hierarchy, as are programs that
support sequences of weak constraints1 on disjunctive programs. For these problems,
and problems located even higher in the polynomial hierarchy, the framework presented
in this paper provides a means to effectively compute solutions for such problems, us-
ing SMODELS or DLV for each program in the sequence to compute better solutions.
E.g., to solve the problems mentioned before on the third level, it suffices to write three
well-chosen programs and to set up an appropriate control structure implementing the
communication protocol sketched above.

The remainder of the paper is organized as follows. In Section 2, we review the
answer set semantics and present the definitions for cooperating program systems. Fur-
ther, we illustrate how such systems can be used to elegantly express common problems.
Section 3 discusses the complexity and expressiveness of the proposed semantics, while
Section 4 compares it with related approaches from the literature. Finally, we conclude
and give some directions for further research in Section 5. Due to space restrictions,
proofs have been omitted, but they can be found in [25].

1 A weak constraint is a constraint that is “desirable” but may be violated if there are no other
options.
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2 Cooperating Programs

We give some preliminaries concerning the answer set semantics for logic programs [2].
A literal is an atom a or a negated atom ¬a. For a set of literals X , we use ¬X to denote
{¬l | l ∈ X }where¬¬a = a. WhenX∩¬X = ∅we say X is consistent. An extended
literal is a literal or a naf-literal of the form not l where l is a literal. The latter form
denotes negation as failure. For a set of extended literals Y , we use Y − to denote the set
of ordinary literals underlying the naf-literals in Y , i.e. Y − = {l | not l ∈ Y }. Further,
we use not X to denote the set {not l | l ∈ X }. An extended literal l is true w.r.t. X ,
denoted X |= l if l ∈ X in case l is ordinary, or a �∈ X if l = not a for some ordinary
literal a. As usual, X |= Y iff ∀l ∈ Y ·X |= l.

A rule is of the form α ← β where2 α is a finite set of literals, β is a finite set of
extended literals and |α| ≤ 1. Thus the head of a rule is either an atom or empty. A
countable set of rules is called a (logic) program. The Herbrand base BP of a program
P contains all atoms appearing in P . The set of all literals that can be formed with the
atoms in P , denoted by LP , is defined by LP = BP ∪ ¬BP . Any consistent subset
I ⊆ LP is called an interpretation of P .

A rule r = α ← β is satisfied by an interpretation I , denoted I |= r, if I |= α
and α �= ∅, whenever I |= β, i.e. if r is applicable (I |= β), then it must be applied
(I |= α ∪ β ∧ α �= ∅). Note that this implies that a constraint, i.e. a rule with empty
head (α = ∅), can only be satisfied if it is not applicable (I �|= β). For a program P , an
interpretation I is called a model of P if ∀r ∈ P · I |= r, i.e. I satisfies all rules in P .
It is a minimal model of P if there is no model J of P such that J ⊂ I .

A simple program is a program without negation as failure. For simple programs
P , we define an answer set of P as a minimal model of P . On the other hand, for a
program P , i.e. a program containing negation as failure, we define the GL-reduct [18]
for P w.r.t. I , denoted P I , as the program consisting of those rules α ← (β\not β−)
where α← β is in P and I |= not β−. Note that all rules in P I are free from negation
as failure, i.e. P I is a simple program. An interpretation I is then an answer set of P
iff I is a minimal model of the GL-reduct P I .

Example 1. Consider the following program P about diabetes.

diabetes ← thirsty ← ¬sugar ← diabetes
cola light ← thirsty, not cola cola ← thirsty, not ¬sugar , not cola light

One can check that P has I = {diabetes , thirsty,¬sugar , cola light} as its single
answer set. Indeed, the rule cola ← thirsty, not ¬sugar , not cola light is removed to
obtain the reduct P I of P as ¬sugar ∈ I , i.e. the rule can never become applicable.
Further, the rule cola light ← thirsty, not cola is kept as cola light ← thirsty in P I .
Clearly, the reduct P I so obtained has I as its minimal model.

In the present framework, it is assumed that all programs “communicate using the same
language”, i.e. the Herbrand bases of the programs are all subsets of some set of atoms
PL (andLPL = PL∪¬PL). Because programs will receive input from other programs

2 As usual, we assume that programs have already been grounded.
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that influence their reasoning, we do not want any unintentional implicit interferences
between the input of the program and the produced output. E.g., a program should be
able to compute for an input containing a, an output containing¬a or containing neither
a nor ¬a. For this purpose, we will also use a mirror language PL′ of PL, where we
use l′ ∈ LPL′ to denote the mirror version of a literal l ∈ LPL and we have that
l′′ = l ∈ LPL. The notation is extended to sets, i.e. X ′ = {l ′ | l ∈ X }.

Intuitively, a program will receive input in the language LPL, do some reasoning
with a program over LPL ∪ LPL′ and it will only communicate the part over LPL′

to the other programs, i.e. an input literal l ∈ LPL can only appear in the output as
l′ ∈ LPL′ if the program explicitly provides rules for this purpose.

Definition 1. For a language PL, a cooperating program P is a program such that
BP ⊆ PL ∪ PL′. For such a program P and a set of literals I ⊆ LPL, called the
input, we use P (I) to denote the program P ∪ {l ← | l ∈ I }.

An interpretation S ⊆ LPL is called an output w.r.t. the input I , or an improvement
by P of I , iff there exists an answer set M of P (I) such that S = (M ∩ LPL′)′.

We use AS(P, I) to denote the set of all outputs of P w.r.t. input I .

Example 2. Take PL = {sugar , cola, cola light , hypoglycemia, diabetes , thirsty}
and consider the following program P , where we use the notation keep {a1 , . . . , an},
to denote the set of rules {a′

i ← ai | 1 ≤ i ≤ n}, i.e. to denote that part of the input
that can be literally copied to the output,

keep {thirsty, hypoglycemia, diabetes}
cola light ′ ← thirsty, not sugar ′, not cola′

cola′ ← thirsty, not ¬sugar ′, not cola light ′

¬sugar ′ ← diabetes , not hypoglycemia
sugar ′ ← hypoglycemia

Intuitively, the above program only copies the part of the input concerning hypo-
glycemia, diabetes and thirsty, because these are the only possible non-critical input
literals. Other possible input literals, like e.g. cola or cola light , will be recomputed in
function of the availability (or not) of certain input literals.

Let I1 = ∅, I2 = {thirsty, hypoglycemia} and I3 = {thirsty, diabetes , cola} be
three inputs. One can check that P has only one output S1 = ∅ w.r.t. I1. For both I2
and I3 there is an improvement S2 = I2 ∪ {sugar , cola} and S3 = {thirsty, diabetes ,
¬sugar , cola light}, respectively. Note the necessity of the mirror language to obtain
the latter result.

A single cooperating program is not a very powerful instrument. However, connecting
a number of such programs together reveals their real capabilities. To keep things sim-
ple we will use, in what follows, cooperating program systems of linearly connected
programs.

Formally, a cooperating program system is a linear sequence of cooperating pro-
grams P1, . . . , Pn, where P1 is the source program, i.e. the program that starts all com-
munication. Solutions for such systems are inductively defined by the notion of accep-
tance. Intuitively, a solution S is accepted by the source program P1 if it recognizes S
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as an improvement of the empty input; and a successor program Pi, 1 < i ≤ n, accepts
S if it has no improvement on S that can be verified by the previous program Pi−1 to
be acceptable to it.

Definition 2. Let PL be a language. A cooperating program system is a sequence
〈Pi〉i=1,...n of n cooperating programs over PL.

The set of acceptable interpretations AC(Pi) for a cooperating program Pi,
1 ≤ i ≤ n, is inductively defined as follows:

– AC(P1) = AS(P1, ∅)
– for i > 1,

AC(Pi) = {S ∈ AC(Pi−1) | ∀T ∈ AS(Pi, S) · T �= S ⇒ T �∈ AC(Pi−1)}

An interpretation S ⊆ LPL that is acceptable to Pn, i.e. S ∈ AC(Pn), is called a
global answer set for the cooperating program system.

Note that the above definition allows for an output interpretation S of Pi−1 to be ac-
cepted by a program Pi even if Pi ∪ S has no answer sets. This fits the intuition that
the answer sets of Pi ∪ S are to be considered as improvements upon S. Hence, if Pi

cannot be used to provide such an improvement, Pi ∪ S should not have any answer
sets, and S should be accepted by Pi.

Example 3. Consider the job selection procedure of a company. The first cooperating
programP1 establishes the possible profiles of the applicants together with a rule stating
the belief that inexperienced employees are ambitious. Thus, each answer set3 of the
program below corresponds with a possible applicant’s profile.

male′ ⊕ female′ ← old ′ ⊕ young ′ ←
experienced ′ ⊕ inexperienced ′ ← ambitious ′ ← inexperienced ′

The decision on which applicant gets the job goes through a chain of decision mak-
ers. First, the human resources department constructs a cooperating programP2 that im-
plements company policy which stipulates that experienced persons should be preferred
upon inexperienced ones. Therefore, the program passes through all of its input, except
when it encounters a profile containing inexperienced, which it changes to experienced,
intuitively implementing that an applicant with the same profile but experienced instead
of inexperienced, would be preferable. Further, as we tend to prefer experienced peo-
ple, for which nothing about being ambitious is known, we do not have any rule in P2
containing ambitious , such that the literal is dropped from the input if present.

keep {male, female, old , young, experienced}
experienced ′ ← inexperienced

On the next level of the decision chain, the financial department reviews the remaining
candidates. As young and inexperienced persons tend to cost less, it has a strong desire
to hire such candidates, which is implemented in the following cooperating programP3.

3 In the rest of the paper we will use rules of the form a ⊕ b ← to denote the set of rules
{a ← not b ; b ← not a}.
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keep {male, female, young, inexperienced}
ambitious ′ ← inexperienced ′

inexperienced ′ ← young, experienced
young ′ ← old , inexperienced
young ′ ← old , experienced , not old ′

old ′ ← old , experienced , not young ′

inexperienced ′ ← old , experienced , not experienced ′

experienced ′ ← old , experienced , not inexperienced ′

← old ′, experienced ′

Intuitively, this program handles the four possible cases: when the input profile is
from a young and inexperienced person, the input is passed without modification indi-
cating that this cannot be improved upon. On the other hand, if only one of the properties
is not as desired, e.g. young and experienced, then the only improvement would be a
profile containing both young and inexperienced. Finally, a profile containing old and
experienced has three possible improvements: the last 5 rules ensure that the improve-
ments proposed by P3 will contain young or inexperienced, or both.

Finally, the management has the final call in the selection procedure. As the current
team of employees is largely male, the management prefers the new worker to be a
woman, as described by the next program P4, which is similar to P2.

keep {female, old , young, experienced , inexperienced , ambitious}
female′ ← male

One can check that P1 has eight answer sets (improvements on ∅), that are thus
acceptable to it. However, only four of these are acceptable to P2, i.e.

M1 = {experienced ,male, young} ,

M2 = {experienced ,male, old} ,

M3 = {experienced , female, young} ,

M4 = {experienced , female, old} ,

which fits the company policy to drop inexperienced ambitious people. E.g., feeding
M5 = {inexperienced , female, young, ambitious} as input to P2 yields one answer
setM3, which is also acceptable to P1 makingM5 unacceptable for P2. Similarly, when
P3 is taken into account, only M1 and M3 are acceptable. Considering the last program
P4 yields a single global answer set, i.e. M3, which fits our intuition that, if possible, a
woman should get the job.

Note that rearranging the programs gives, in general, different results. E.g., inter-
changing P2 with P3 yields M5 as the only global answer set.

3 Complexity

We briefly recall some relevant notions of complexity theory (see e.g. [2] for a nice in-
troduction). The class P (NP) represents the problems that are deterministically (non-
deterministically) decidable in polynomial time, while coNP contains the problems
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whose complements are inNP . The polynomial hierarchy, denotedPH, is made up of
three classes of problems, i.e. ΔP

k , ΣP
k and ΠP

k , k ≥ 0, which are defined as follows:

1. ΔP
0 = ΣP

0 = ΠP
0 = P ; and

2. ΔP
k+1 = PΣP

k , ΣP
k+1 = NPΣP

k , ΠP
k+1 = coΣP

k+1 .

The class PΣP
k (NPΣP

k ) represents the problems decidable in deterministic (nonde-
terministic) polynomial time using an oracle for problems in ΣP

k . The class PH is
defined by PH =

⋃∞
k=0 Σ

P
k . Finally, the class PSPACE contains the problems that

can be solved deterministically by using a polynomial amount of memory and unlimited
time.

To prove hardness for the above complexity classes4, we will use validity checking
of quantified boolean formulas. A quantified boolean formula (QBF) is an expression
of the form Q1X1Q2X2 . . . QkXk · G, where k ≥ 1, G is a Boolean expression over
the atoms of the pairwise nonempty disjoint sets of variables X1, . . . , Xk and the Qi’s,
for i = 1, . . . , k are alternating quantifiers from {∃, ∀}. When Q1 = ∃, the QBF is k-
existential, whenQ1 = ∀ we say it is k-universal. We use QBF k,∃ (QBF k,∀) to denote
the set of all valid k-existential (k-universal) QBFs. Deciding, for a given k-existential
(k-universal) QBF φ, whether φ ∈ QBF k,∃ (φ ∈ QBF k,∀) is a ΣP

k -complete (ΠP
k -

complete) problem. When we drop the bound k on the number of quantifiers, i.e. con-
sidering QBF∃ =

⋃
i∈N

QBF i,∃, we have a hard problem for PSPACE .
The following results shed some light on the complexity of the global answer set

semantics for linear combinations of cooperating programs.
First, we consider the case where the length of the sequence of cooperating programs

is fixed by some number n.

Theorem 1. Given a cooperating program system 〈Pi〉i=1,...,n, with n fixed, and a lit-
eral l ∈ LPL, the problem of deciding whether there exists a global answer set con-
taining l is ΣP

n -complete. On the other hand, deciding whether every global answer set
contains l is ΠP

n -complete.

Proof Sketch. MembershipΣP
n : It is shown, by induction, in [25] that checking whether

an interpretation S ⊆ LPL is not acceptable to Pn, i.e. S �∈ AC(Pn), is in ΣP
n−1. The

main result follows by

– guessing an interpretation S ⊆ LPL such that S � l; and
– checking that it is not the case that S �∈ AC(Pn).

As the latter is in ΣP
n−1, the problem itself can be done by an NPΣP

n−1 algorithm, i.e.
the problem is in ΣP

n .
Hardness ΣP

n : To prove hardness, we provide a reduction of deciding validity of
QBFs by means of a cooperating program system. Let φ = ∃X1∀X2 . . .QXn · G ∈
QBFn,∃, where Q = ∀ if n is even and Q = ∃ otherwise. We assume, without loss
of generality [24], that G is in disjunctive normal form, i.e. G = ∨c∈Cc where C is
a set of sets of literals over X1 ∪ . . . ∪ Xn and each c ∈ C has to be interpreted as a
conjunction.

4 Note that this does not hold for the class PH for which no complete, and thus hard, problem
is known unless P = NP .
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In what follows, we use P i to denote the set rules

– keep {x , ¬x | x ∈ Xj ∧ 1 ≤ j < i} ,
– {x ′ ← not ¬x ′ ; ¬x ′ ← not x ′ | x ∈ Xj ∧ i ≤ j ≤ n} , and
– {sat ′ ← c′ | c ∈ C } .

Further, we useP i
∀ andP i

∃ to denote the programsP i
∀ = P i∪{ ← sat ′ ; ← not sat}

and P i
∃ = P i ∪ { ← not sat ′ ; ← sat} respectively.

The cooperating program system 〈Pi〉i=1,...,n corresponding to φ is defined as:

– P1 contains the rules {x ′ ← not ¬x ′ ; ¬x ′ ← not x ′ | x ∈ Xj ∧ 1 ≤ j ≤ n} and
{sat ′ ← c′ | c ∈ C };

– if n is even, then Pi = Pn+2−i
∀ when i even and Pi = Pn+2−i

∃ when i > 1 odd;
– if n is odd, then Pi = Pn+2−i

∃ when i even and Pi = Pn+2−i
∀ when i > 1 odd.

Obviously, the above construction can be done in polynomial time. Intuitively, P1
has answer sets for every possible combination of the Xi’s and if such a combina-
tion makes G valid, then the corresponding answer set also contains the atom sat.
The intuition behind the program P i

∀ is that it tries to disprove, for the received in-
put, the validity of the corresponding ∀, i.e. for a given input combination over the
Xj’s making G satisfied, the program P i

∀ will try to find a combination, keeping the
Xj’s with j < i fixed, making G false. On the other hand, the program P i

∃ will try to
prove the validity of the corresponding ∃, i.e. for a given combination making G false
it will try to compute a combination, keeping the Xj’s with j < i fixed, making G
satisfied.

Instead of giving the formal proof for the above construction, we give a feel on how
the construction works by means of an example and refer the reader to [25] for the
actual proof.

Consider
φ = ∃x · ∀y · ∃z · (x ∧ ¬y ∧ z) ∨ (y ∧ ¬z) .

The cooperating program P1 contains the rules

x ′ ← not ¬x ′ ¬x ′ ← not x ′ y ′ ← not ¬y ′ ¬y ′ ← not y ′

z ′ ← not ¬z ′ ¬z ′ ← not z ′ sat ′ ← x ′,¬y ′, z ′ sat ′ ← y ′,¬z ′

We have 8 possible outputs for P1(∅), i.e. I1 = {x , y, z}, I2 = {x , y,¬z , sat}, I3 =
{x ,¬y, z , sat}, I4 = {x ,¬y,¬z}, I5 = {¬x , y, z}, I6 = {¬x , y,¬z , sat}, I7 =
{¬x ,¬y, z} and I8 = {¬x ,¬y,¬z}. Clearly, these are all acceptable interpretations
for P1.

The second cooperating program P2 is defined by P 3
∃ and thus contains the rules

keep({x ,¬x , y,¬y})← z ′ ← not ¬z ′ ¬z ′ ← not z ′ sat ′ ← x ′,¬y ′, z ′

← sat ← not sat ′ sat ′ ← y ′,¬z ′

Feeding I1 to P2 yields I2 as the single output. As I2 is an acceptable interpretation
to P1, I1 cannot be acceptable to P2, i.e. I1 �∈ AC(P2). On the other hand, for the input
I2, the programP2 has no outputs, as the input contains sat, which makes the constraint
← sat unsatisfied. As a result, I2 is acceptable to P2, i.e. I2 ∈ AC(P2). In case of the
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input I7, P2 is not able to derive sat′ with the given input, yielding that ← not sat ′

can never be satisfied and thus P2 will not produce any outputs for I7, again yielding
that I7 will be acceptable to P2.

One can check in similar ways thatAC(P2) contains 5 interpretations, i.e.AC(P2) =
{I2 , I3 , I6 , I7 , I8}. It is not difficult to see that for each of these acceptable solutions it
holds that ∃z · (x ∧ ¬y ∧ z) ∨ (y ∧ ¬z) when x and y are taken as in the interpretation
iff the literal sat is contained in that interpretation.

The third and final cooperating program P3 is given by P 2
∀ and contains the rules

keep({x ,¬x})←
y ′ ← not ¬y ′ ¬y ′ ← not y ′ ← not sat sat ′ ← x ′,¬y ′, z ′

z ′ ← not ¬z ′ ¬z ′ ← not z ′ ← sat ′ sat ′ ← y ′,¬z ′

When providing P3 with the input I2, we have two outputs, i.e. I1 and I4. However,
neither I1 ∈ AC(P2) nor I2 ∈ AC(P2), yielding that I2 is an acceptable solution to P3.
Intuitively,P3 accepts the input I2 as it cannot disprove ∀y·∃z ·(x∧¬y∧z)∨(y∧¬z) for
the chosen truth value of x in I2. In a similar way one can check that also I3 ∈ AC(P3).

On the other hand, feeding P3 with I6, we get the outputs {I5 , I7 , I8}. This time,
both I7 ∈ AC(P2) and I8 ∈ AC(P2), implying that I6 is not acceptable to P3. Further,
using I7 or I8 as an input to P3, results in no outputs, making them both acceptable to
P3. As a result,AC(P3) = {I1 , I3 , I7 , I8}, which are also the global answer sets of the
system.

Now, one can check that for each global answer set in AC(P3) it holds that ∀y · ∃z ·
(x∧¬y∧z)∨ (y∧¬z) for x taken as in the interpretation iff the literal sat is contained
in that global answer set. From this it follows that φ is valid iff there exists a global
answer set I ∈ AC(P3) such that sat ∈ I . In our example, I2 is such a global answer
set and one can check that φ holds when we assume x is true.
ΠP

n -completeness: To show this result, we consider in [25] the complement decision
problem and show that it is ΣP

n -complete, from which the result follows. 
�
While the previous result handles the cases where the number of programs in the se-
quence is fixed, we can generalize the results to arbitrary sequences.

Theorem 2. Given a cooperating program system 〈Pi〉i=1,...,n∈N
and a literal l ∈

LPL, the problem of deciding whether there exists a global answer set containing l
is PSPACE -complete.

Proof Sketch. Membership PSPACE : Intuitively, each program in the sequence needs
the space to represent a single answer set, while the system itself needs the space to
represent a global answer set. Now, the algorithm will place a possible solution in the
latter allocated space, and will use the former allocated space to check acceptability
for the different programs in the sequence. Thus, an algorithm for a sequence of n
programs, needs maximum n + 1 times the space to represent an answer set, which is
clearly polynomial in space, from which membership to PSPACE follows.

Hardness PSPACE : Clearly, the hardness proof of Theorem 1 can be generalized to
validity checking of arbitrary quantified boolean formula, from which hardness readily
follows. 
�
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While the previous results describe the complexity of reasoning with the presented
framework, they don’t give a clear picture on the expressiveness of the system, i.e.
whether each problem that belongs to a certain complexity class can be expressed in
the framework. The reason therefore is that a formalism F being complete for a partic-
ular class only implies that each instance of a problem in that class can be reduced in
polynomial time to an instance of F such that the yes/no answer is preserved. However,
completeness does not imply that the polynomial time reduction itself from an instance
of the problem to an instance in F is expressible in F 5.

In this context, one says that a formalism captures a certain complexity class iff
the formalism is in the class and every problem in that class can be expressed in the
formalism. The latter part is normally proved by taking an arbitrary expression in a
normal (or general) form6 for the particular complexity class and by showing that it can
be expressed in the formalism.

By using the results from [14, 12], the following normal form for the complexity
class ΣP

k , with k ≥ 2, can be obtained. First, we have to consider a signature σ =
(O,F, P ), with O finite and F = ∅, i.e. we do not allow function symbols. A finite
database over σ is any finite subset of the Herbrand Base over σ. Secondly, we have
three predicates that do not occur in P , i.e. succ, first and last. Enumeration literals are
literals over the signature (O, ∅, {succ,first , last}) that satisfy the conditions:

– succ describes an enumeration of the elements in O; and
– first and last contain the first and last element in the enumeration respectively.

Intuitively, succ is a binary predicate such that succ(x, y) means that y is the successor
of x. Further, first and last are unary predicates.

A collection S of finite databases over the signature σ = (O, ∅, P ) is in ΣP
k iff there

is a second order formula of the form

φ = Q1U
1
1,...,m1

Q2U
2
1,...,m2

. . . QkU
k
1,...,mk

∃x · θ1(x) ∨ · · · ∨ θl(x) ,

where Qi = ∃ if i is odd, Qi = ∀ if i is even, U i
1,...,mi

(1 ≤ i ≤ k) are finite sets
of predicate symbols and θi(x) (1 ≤ i ≤ l) are conjunctions of enumeration literals
or literals involving predicates in P ∪{U 1

1 ,...,m1
,U 2

1 ,...,m2
, . . . ,U k

1 ,...,mk
} such that for

any finite database w over σ, w ∈ S iff w satisfies φ.
Again, we first consider the case in which the number of programs in the sequence

is fixed by a number n ∈ N.

Theorem 3. The global answer set semantics for cooperating program systems with a
fixed number n of programs captures ΣP

n .

Proof Sketch. Membership ΣP
n : The result follows directly from the membership part

of the proof of Theorem 1.

5 A good example of this fact is the query class fixpoint, which is PTIME-complete but cannot
express the simple query even(R) to check if |R| is even. See e.g. [7, 2] for a more detailed
explanation on the difference between completeness and expressiveness (or capturing).

6 A normal (or general) form of a complexity class is a form in which every problem in the class
can be expressed. Note that not every complexity class necessarily has a general form.
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Capture ΣP
n : This proof is a generalization of the technique used in the hardness

proof of Theorem 1. Further, the construction of the programs, especially the first pro-
gram, is based on the proof of Theorem 6.3.2. in [2], where it is shown that disjunctive
logic programming under the brave semantics captures ΣP

2 .
However, we first have to consider the case where n = 1 separately, as the general

form discussed above only holds for n ≥ 2. It is easy to see that the global answer set
semantics for cooperating systems of a single program coincides with the classical an-
swer set semantics, for which capturing ofΣP

1 = NP is already proven in the literature
(e.g. in [2]).

To prove that any problem of ΣP
n , with n ≥ 2, can be expressed in a cooperating

program system of n programs under the global answer set semantics, we have to show
a construction of such a system 〈Pi〉i=1,...,n such that a finite database w satisfies the
formula

φ = ∃U1
1,...,m1

∀U2
1,...,m2

. . . QnU
n
1,...,mn

∃x · θ1(x) ∨ · · · ∨ θl(x) ,

with everything defined as in the general form for ΣP
n described before, iff 〈Pi〉i=1,...,n

has a global answer set containing sat.
The first program7 P1 in the sequence contains, beside the facts that introduce the

database w (as w′), the following rules:

– For the enumeration of the predicatesU1
1,...,m1

, U2
1,...,m2

, . . . , Un
1,...,mn

, we have the
rules:

U i
k
′(w i

k )← not ¬U i
k
′(w i

k ) ¬U i
k
′(w i

k )← not U i
k
′(w i

k )

for 1 ≤ i ≤ n and 1 ≤ k ≤ mi.
– To introduce the linear ordering, we need a set of rules similar to the ones used in

Section 2.1.13. of [2] (see the technical report [25] for a detailed description). This
set of rules has the property that when a linear ordering is established, the literal
linear ′ is derived.

– To check satisfiability, we use the rules

sat ′ ← θi
′(x), linear ′

for 1 ≤ i ≤ l.

The other programs of the sequence are defined, similar to the hardness proof of
Theorem 1, by using two skeletons P i

∀ and P i
∃. First, both skeletons have the following

set of rules P i in common

– keep {U j
k (w j

k ) , ¬U j
k (w j

k ) | (1 ≤ j < i) ∧ (1 ≤ k ≤ mi)} ,
– keep {facts of the linear ordering} ,
– keep w ,

– {U j
k
′
(w j

k )← not ¬U j
k
′
(w j

k ) ; ¬U j
k
′
(w j

k )← not U j
k
′
(w j

k ) |
(i ≤ j ≤ n) ∧ (1 ≤ k ≤ mi)} , and

7 For clarity, we will use non-grounded rules, but we assume that the reader is familiar with
obtaining the grounded versions of non-grounded rules.
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– {sat ′ ← θi
′(x ), linear ′ | 1 ≤ i ≤ l} .

Now, we define the programs P i
∀ and P i

∃ as P i
∀ = P i ∪ { ← sat ′ ; ← not sat} and

P i
∃ = P i ∪ { ← not sat ′ ; ← sat} respectively.
Besides P1, the remaining programs in the sequence are defined by:

– if n is even, then Pi = Pn+2−i
∀ when i even and Pi = Pn+2−i

∃ when i > 1 odd;
– if n is odd, then Pi = Pn+2−i

∃ when i even and Pi = Pn+2−i
∀ when i > 1 odd.

It is not difficult to see (similar to the hardness proof of Theorem 1) that the above
constructed program will only generate, for a given input database w, global answer
sets that contain sat iff φ is satisfied. 
�
When we drop the fixed length of the sequence, the above result can be easily general-
ized to arbitrary cooperating program systems.

Corollary 1. The global answer set semantics for cooperating program systems cap-
tures8 PH, i.e. the polynomial hierarchy.

The above result yields that the presented framework is able to encode each problem in
the polynomial hierarchy in a modular way, making the framework useful for complex
knowledge reasoning tasks, e.g. involving multiple optimization steps.

4 Relationships to Other Approaches

In [5], answer set optimization (ASO) programs are presented. Such ASO programs
consist of a generator program and a sequence of optimizing programs. To perform the
optimization, the latter programs use rules similar to ordered disjunction [3], i.e. rules
of the form c1 < · · · < cn ← β which intuitively read: when β is true, making c1
true is the most preferred option and only when c1 cannot be made true, the next best
option is to make c2 true, ... Solutions of the generator program that are optimal w.r.t.
the first optimizing program and, among those, are optimal w.r.t. the second optimizing
program, and so on, are called preferred solutions for the ASO program.

The framework of ASO programming looks very similar to our approach, i.e. just
consider the generator program as program P1 and the optimizing programs as pro-
grams P2, . . . , Pn. However, ASO programs are far more limited w.r.t. their expressive-
ness, due to the syntactical and semantical restrictions of the optimizing programs in
comparison to our approach where arbitrary programs can be used to do the optimiza-
tion. It turns out that the expressiveness of an ASO program does not depend on the
length of the sequence of optimizing programs: it is always ΣP

2 -complete. Hence ASO
programs can be captured by the presented cooperating program systems in this pa-
per using a pair of programs. The construction of these two programs simulating ASO
programs is subject to further research.

Weak constraints were introduced in [6] as a relaxation of the concept of a constraint.
Intuitively, a weak constraint is allowed to be violated, but only as a last resort, meaning
that one tries to minimize the number of violated constraints. Additionally, weak con-
straints are allowed to be hierarchically layered by means of a sequence of sets of weak

8 Note that while the semantics captures PH, it can never be complete for it as the hierarchy
would than collapse.
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constraints. Intuitively, one first chooses the answer sets that minimize the number of
violated constraints in the first set of weak constraints in the sequence, and then, among
those, one chooses the answer sets that minimize the number of violated constraints in
the second set, etc.

Again, this approach can be seen as a kind of cooperating programming system. The
complexity of such a system, independent of the number of sets of weak constraints,
is at most ΔP

3 -complete. Thus, using the presented cooperating programming system
from Section 2, a sequence of three programs suffice to capture the most expressive
form of that formalism.

The framework developed in this paper can be seen as a more general version of
the idea presented in [15], where a guess and a check program are combined into a
single disjunctive program such that the answer sets of this program coincide with the
solutions that can be obtained from the guess program and successfully checked by the
check program. The approach in this paper allows to combine a guess program and mul-
tiple check programs, which each have to be applied in turn, into a single cooperating
system such that the global answer sets correspond to solutions that can be guessed by
the guess program and subsequently verified by the check programs.

In [26, 19], hierarchies of preferences on a single program are presented. The prefer-
ences are expressible on both the literals and the rules in that program. It is shown that
for a sequence of n preference relations the complexity of the system isΣP

n+1-complete.
The semantics proposed in Section 2 is a generalization of that approach: instead of us-
ing one global program with a sequence of preferences expressed on that program, we
use a sequence of, in general, different programs, thus allowing a separate optimizing
strategy for each individual program. To capture a hierarchy of n preference relations,
we need n+ 1 cooperating programs: the first one will correspond with the global pro-
gram, while the rest will correspond to the n preference relations. The system described
in Example 3 can be seen as a translation of such a preference hierarchy. Intuitively, the
program P2 describes the preference relation experienced < inexperienced , while P3
implements the relation young < old ; inexperienced < experienced . Finally, P4 cor-
responds to the single preference female < male. This also suggests that the present
framework may be useful to encode, in a unified way, sequential communication be-
tween programs supporting different higher level language constructs such as prefer-
ence orders.

Updates of logic programs [1, 10] can be seen as a form of sequential communica-
tion. However, the approaches presented in the literature are limited to solving problems
located in the first or second level of the polynomial hierarchy.

[21] presents composition of logic programs as a way to solve decision making in
agent systems. Intuitively, for two programs P1 and P2 the system tries to compute a
programP such that each answer set S of P is of the formS = S1∪S2 (or S = S1∩S2),
where S1 and S2 are answer sets of P1 and P2 respectively. Clearly, this approach can
be extended to sequences of programs, but it is different from the one presented in
this paper in the sense that we apply each program in the sequence in turn, while all
programs in the former approach are applied at once in the composed program P ′. This
explains why the complexity of the former semantics remains the same as that of the
underlying answer set semantics.
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Finally, the concept of cooperation for decision making is also used in other areas
than answer set programming, e.g. in the context of concurrent or distributed theorem-
proving [8, 17]. In [17], the idea is to split up and distribute a set of axioms and a theory
among a number of agents that each derive new knowledge to prove the theory (using
only the part of the knowledge they received) and who communicate their newly derived
knowledge to the other agents in the system. [8] handles the same problem in a different
way, i.e. each agent has its own strategy to prove the theory and after an amount of time
the results of the cooperating agents are evaluated. If an agent scored badly during this
evaluation, the system can decide to replace it with a new agent having another proof
strategy. In the end, one wants to obtain a team of agents that performs best to solve the
given problem.

5 Conclusions and Directions for Further Research

We presented a framework suitable for solving hierarchical decision problems using
logic programs that cooperate via a sequential communication channel. The resulting
semantics turns out to be rather expressive, as it essentially covers the polynomial hi-
erarchy, thus enabling further complex applications. E.g., the framework could be used
to develop implementations for diagnostic systems at the third level of the polynomial
hierarchy [11, 13, 27].

Future work comprises the development of a dedicated implementation of the ap-
proach, using existing answer set solvers, e.g. DLV [16] or SMODELS [22], possibly
in a distributed environment. Such an implementation will use a control structure that
communicates candidate solutions between consecutive programs. When a program Pi

receives a solution S from Pi−1, it attempts to compute an improvement S′. If no such
S′ exists, S is acceptable to Pi and is communicated to Pi+1. Otherwise, S′ is send
back to Pi−1, who verifies its acceptability (for Pi−1). If it is, Pi starts over to check
if it can (or cannot) improve upon S′. On the other hand, when S′ is not acceptable
to Pi−1, Pi generates another improvement and starts over again. For efficiency, each
program can hold some kind of success- and failure list containing solutions that have
already been tested for acceptability and were either accepted or rejected.

In the context of an implementation, it is also interesting to investigate which con-
ditions a program has to fulfill in order for it not to lift the complexity up with one
level in the polynomial hierarchy, yielding possible optimizations of the computation
and communication process.

Finally, we plan to look into a broader class of communication structures, e.g. a tree
or, more generally, a (strict) partial ordering of programs, or even cyclic structures.
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Abstract. This paper studies the transformation of “predicate intro-
duction”: replacing a complex formula in an existing logic program by a
newly defined predicate. From a knowledge representation perspective,
such transformations can be used to eliminate redundancy or to simplify
a theory. From a more practical point of view, they can also be used to
transform a theory into a normal form imposed by certain inference pro-
grams or theorems, e.g., through the elimination of universal quantifiers.
In this paper, we study when predicate introduction is equivalence pre-
serving under the stable and well-founded semantics. We do this in the
algebraic framework of “approximation theory”; this is a fixpoint theory
for non-monotone operators that generalizes all main semantics of var-
ious non-monotone logics, including Logic Programming, Default Logic
and Autoepistemic Logic. We prove an abstract, algebraic equivalence
result and then instantiate this abstract theorem to Logic Programming
under the stable and well-founded semantics.

1 Introduction

This paper studies the transformation of “predicate introduction” for Logic Pro-
gramming. By this, we mean the introduction of a new predicate in order to be
able to simplify the expressions in the bodies of certain rules. To motivate our
interest in this transformation, we consider a simplified version of a program
that occurs in [1]. In this paper, a logic program (under the stable semantics)
is constructed to capture the meaning of theories in the action language AL. In
particular, static causal laws of the following form are considered: “P is caused
if P1, . . . , PN”. Here, P , P1,. . . , PN are propositional symbols. In its Logic Pro-
gramming translation, such a causal law R is represented by the following set
of facts: {Head(R,P ), P rec(R, 1, P1), . . . , Prec(R,N, PN ), NbOfPrec(R,N)}.
(Throughout this paper, we use the notational convention that predicates, func-
tions, and constant symbols start with an upper case letter, while variables are
all lower case.).

Now, the meaning in AL of such a law is that whenever all of P1, . . . , PN hold,
then so must P . Using the predicate Holds/1 to describe which propositions
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hold, this can be captured by the following rule (we use⇐ to represent material
implication and ← for the “rule construct” of Logic Programming):

∀p Holds(p)← ∃r Head(r, p) ∧ ∀i∀q Prec(r, i, q)⇒ Holds(q). (1)

This rule contains universal quantifiers in its body. Even though it is possible to
define both stable and well-founded semantics for such programs, current model
generation systems such as assat, SModels or DLV cannot handle this kind of
rules. As such, we would like to eliminate this quantifier. The well-known Lloyd-
Topor transformation [12] suggests introducing a new predicate, BodyNotSat/1,
to represent the negation of the subformula φ = ∀i∀q Prec(r, i, q) ⇒ Holds(q).
Because ¬φ = ∃i∃q Prec(r, i, q) ∧ ¬Holds(q), we would then get:

∀p, r Holds(p)← Head(r, p) ∧ ¬BodyNotSat(r).
∀r, i, q BodyNotSat(r)← Prec(r, i, q) ∧ ¬Holds(q).

(2)

This transformation preserves equivalence under the (two-valued) completion
semantics [12]. However, for stable or well-founded semantics, this is not the case.
For instance, consider the AL theory A = {P is caused if Q; Q is caused if P}.
In the original translation (1), neither P nor Q holds; in the second version (2),
however, we obtain (ignoring the Head/2 and Prec/3 atoms for clarity):

Holds(P )← ¬BodyNotSat(R1).
BodyNotSat(R1)← ¬Holds(Q).

Holds(Q)← ¬BodyNotSat(R2).
BodyNotSat(R2)← ¬Holds(P ).

(3)

Under the stable semantics, this program has two models: {Holds(P ), Holds(Q)}
and {BodyNotSat(R1), BodyNotSat(R2)}. As such, even though it might look
reasonable at first, the Lloyd-Topor transformation does not preserve stable (or
well-founded) models in this case.

Predicate introduction under the stable and well-founded semantics was con-
sidered by Van Gelder [15]. That paper, however, imposes strong restrictions on
how newly introduced predicates can be defined. In particular, recursive defini-
tions of such a new predicate are not allowed. However, the ability to introduce
recursively defined new predicates can be very useful; indeed, it is precisely in
this way that [1] manages to eliminate the universal quantifier in (1). Concretely,
a predicate AllPrecHold(r) is introduced to replace φ in (1), resulting in:

∀r, p Holds(p)← Head(r, p) ∧AllPrecHold(r). (4)

This predicate is then defined in terms of another new predicate, AllFrom(r, i),
that means that the preconditions i, i+ 1, . . . , n of a rule r with n preconditions
are satisfied. We then define this predicate by the following recursion:

∀r, n AllPrecHold(r)← AllFrom(r, 1).
∀r, n, q AllFrom(r, n)← Prec(r, n, q) ∧Holds(q) ∧AllFrom(r, n+ 1).
∀r, n, q AllFrom(r, n)← Prec(r, n, q) ∧Holds(q) ∧NbOfPrec(r, n).

(5)
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In this paper, we prove a generalization of Van Gelder’s result, that shows
that this translation is indeed equivalence preserving.

We can easily prove this result in a general form, by using the algebraic frame-
work of approximation theory [3] (see also Section 2.1). This is a fixpoint theory
for arbitrary (non-monotone) operators that generalizes all main semantics of
various non-monotone logics, including Logic Programming, Default Logic and
Autoepistemic Logic. It allows properties of these different semantics for all of
these logics to be studied in a uniform way. The central result of this paper (Sec-
tion 3) is an abstract, algebraic fixpoint theorem, that allows us to relate the
stable and well-founded models of an original theory to those of the transformed
theory. In Section 4, we instantiate this result to Logic Programming under the
well-founded and stable model semantics, thereby generalizing the earlier result
by Van Gelder [15]. In particular, our result also applies to recursively defined
new predicates. In Section 5, we discuss some applications of this result, includ-
ing a general way of eliminating universal quantifiers by introducing recursively
defined predicates. This offers an alternative for the corresponding step from the
Lloyd-Topor transformation, which is only valid under completion semantics.

2 Preliminaries

In this section, we introduce some important concepts from approximation the-
ory and show how these can be used to capture the stable and well-founded
semantics for several Logic Programming variants.

2.1 Approximation Theory

We use the following notations. Let 〈L,≤〉 be a complete lattice. A fixpoint
of an operator O : L → L on L is an element x ∈ L for which x = O(x); a
prefixpoint of O is an x such that x ≥ O(x). If O is monotone, then it has a
unique least fixpoint x, which is also its unique least prefixpoint. We denote this
x by lfp(O).

Our presentation of approximation theory is based on [3,5]. We consider the
square L2 of the domain of some lattice L. We will denote such an element
as (x y). We introduce the following projection functions: for a tuple (x y), we
denote by [(x y)| the first element x of this pair and by |(x y)] the second element
y. The obvious point-wise extension of ≤ to L2 is called the product order on L2,
which we also denote by ≤: i.e., for all (x y), (x′ y′) ∈ L2, (x y) ≤ (x′ y′) iff x ≤ x′

and y ≤ y′. An element (x y) of L2 can be seen as approximating certain elements
of L, namely those in the (possibly empty) interval [x, y] = {z ∈ L | x ≤ z and
z ≤ y}. Using this intuition, we can derive a second order, the precision order
≤p, on L2: for each (x y), (x′ y′) ∈ L2, (x y) ≤p (x′ y′) iff x ≤ x′ and y′ ≤ y.
Indeed, if (x y) ≤p (x′ y′), then [x, y] ⊇ [x′, y′], i.e., (x′ y′) approximates fewer
elements than (x y). It can easily be seen that 〈L2,≤p〉 is also a lattice. The
structure 〈L2,≤,≤p〉 is the bilattice corresponding to L. If 〈L,≤〉 is complete,
then so are 〈L2,≤〉 and 〈L2,≤p〉. Elements (x x) of L2 are called exact. The set
of exact elements forms a natural embedding of L in L2.
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Approximation theory is based on the study of operators which are monotone
w.r.t.≤p. Such operators are called approximations. An approximationA approx-
imates an operatorO on L if for each x ∈ L, A(x x) contains O(x), i.e. [A(x x)| ≤
O(x) ≤ |A(x x)]. An exact approximation is one which maps exact elements to
exact elements, i.e., for all x ∈ L, [A(x x)| = |A(x x)]. Each exact approxima-
tion A approximates a unique operator O on L, namely the one that maps each
x ∈ L to [A(x x)| = |A(x x)]. An approximationA is symmetric if ∀(x y) ∈ L2, if
A(x y) = (x′ y′) then A(y x) = (y′ x′). A symmetric approximation is exact.

For an approximation A on L2, we define the operator [A(· y)| on L that
maps an element x ∈ L to [A(x y)|, i.e. [A(· y)| = λx.[A(x y)|, and |A(x ·)] that
maps an element y ∈ L to |A(x y)]. These operators are monotone. We define an
operator C↓

A on L, called the lower stable operator of A, as C↓
A(y) = lfp([A(· y)|).

We also define the upper stable operator C↑
A of A as C↑

A(x) = lfp(|A(x ·)]). Note
that if A is symmetric, both operators are identical. We define the stable operator
CA : L2 
→ L2 of A by CA(x y) = (C↓

A(y) C↑
A(x)). Because both C↓

A and C↑
A are

anti-monotone, CA is ≤p-monotone.
An approximation A defines a number of different fixpoints: the least fixpoint

of A is called its Kripke-Kleene fixpoint, fixpoints of its stable operator CA are
stable fixpoints and the least fixpoint of CA is called the well-founded fixpoint
of A. In [3,5], it was shown that all main semantics of Logic Programming,
Autoepistemic Logic and Default Logic can be characterized in terms of these
fixpoints. In the next section, the case of Logic Programming is recalled.

2.2 Rule Sets and Logic Programming Semantics

We define a logical formalism generalizing Logic Programming and several of
its extensions. An alphabet Σ consists of a set Σo of object symbols, a set Σf

of function symbols, and a set Σp of predicate symbols. Note that we make no
formal distinction between variables and constants; both will simply be called
object symbols. The formalism considered here in this paper is that of rule sets
Δ. A rule set consists of rules of the form:

∀xP (t)← φ.

Here, P is a predicate symbol, x a tuple of variables, t a tuple of terms, and
φ a first-order logic formula. We say that Δ is a rule set over alphabet Σ if Σ
contains all symbols occurring free in Δ. For a rule r of the above form, the atom
P (t) is called the head of r, while φ is known as its body. Predicates that appear
in the head of a rule are defined by Δ; the other ones are open. We denote the
set of defined predicates by Def(Δ) and that of all open ones by Op(Δ).

We now define a class of semantics for such rule sets. We interpret an alphabet
Σ by a Σ-structure or Σ-interpretation. Such a Σ-interpretation I consists of a
domain dom(I), an interpretation of the object symbols c of Σ by domain ele-
ments, an interpretation of each function symbol f/n of Σ by an n-ary function
on D, and an interpretation of each predicate symbol P/n by an n-ary relation
on dom(I). A pre-interpretation of Σ is an interpretation of Σo ∪ Σf . If the
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alphabet Σ is clear from the context, we often omit this from our notation. For
any symbol σ ∈ Σ, we denote by σI the interpretation of σ by I. Similarly, for a
term t we denote the interpretation of t by tI and we also extend this notation
to tuples t of terms. For a structure I, an object symbol x, and a d ∈ dom(I), we
denote by I[x/d] the interpretation J with the same domain as I, that interprets
x by d and coincides with I on everything else. We also extend this notation to
tuples x and d. We define a truth order ≤ on Σ-interpretations by I ≤ J if I and
J coincide on all object and function symbols and P I ⊆ P J for each P ∈ Σp.

A feature of stable and well-founded semantics of Logic Programming is that
positive and negative occurrences of atoms in rule bodies are treated very dif-
ferently. The following non-standard truth evaluation function captures this.

Definition 1. Let φ be a formula. Let I and J be structures, which coincide on
their domain D and their interpretation of both the object and function symbols.
We now define when a formula φ is satisfied in the pair (I J), denoted (I J) |= φ,
by induction over the size of φ:

– (I J) |= P (t) iff I |= P (t), i.e., tI ∈ P I ;
– (I J) |= ¬φ iff (J I) �|= φ;
– (I J) |= φ ∨ ψ iff (I J) |= φ or (I J) |= ψ;
– (I J) |= ∃x φ(x) iff there is a d ∈ dom(I), such that (I[x/d] J [x/d]) |= φ(x).

Observe that evaluating the negation connective ¬ switches the roles of I and
J . Hence, this is the standard evaluation except that positively occurring atoms
in φ are interpreted by I, while negatively occurring atoms in φ are interpreted
by J . This evaluation function has a natural explanation when we view a pair
(I J) as an approximation, i.e., when I is seen as a lower estimate and J as
an upper estimate of some interpretation I ′. When I ≤ I ′ ≤ J , positive oc-
currences of atoms are underestimated by using I and negative occurrences of
atoms are overestimated by using J . It follows that (I J) |= φ implies I ′ |= φ.
Or, if (I J) |= φ, then φ is certainly true in every approximated interpretation,
while if (I J) �|= φ, then φ is possibly false. Vice versa, when computing whether
(J I) |= φ, positively occurring atoms are overestimated and negatively occur-
ring ones are underestimated. Hence, if (J I) �|= φ, then φ is certainly false in
approximated interpretations. Combining both observations, φ is certainly true
in any structure in [I, J ] if (I J) |= φ, certainly false if (J I) �|= φ and possibly
true, possibly false if (I J) �|= φ and (J I) |= φ. There is a strong link with
four-valued logic. Indeed, pairs (I J) (sharing domains and interpretations of
object and function symbols) correspond to four-valued interpretations, and the
above non-standard truth evaluation is equivalent to standard four-valued truth
evaluation. More precisely, the four-valued valuation φ(I J) of a formula φ is:

φ(I J) = t iff (I J) |= φ and (J I) |= φ; φ(I J) = f iff (I J) �|= φ and (J I) �|= φ;
φ(I J) = u iff (I J) �|= φ and (J I) |= φ; φ(I J) = i iff (I J) |= φ and (J I) �|= φ.

From now on, for a formula φ(x) and a tuple d of domain elements, we will
write (I J) |= φ(d) instead of (I[x/d] J [x/d]) |= φ(x).
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Given a set of predicates P , the class of all (Σo ∪ Σf ∪ P )-structures that
extend some fixed pre-interpretation F is denoted as LF

P . For the order ≤, LF
P

is a complete lattice. Given a pair of interpretations for the open predicates
(O1 O2) in (LF

Op(Δ))
2, we will now define an immediate consequence operator

T (O1 O2)
Δ on pairs of interpretations of the defined predicates, i.e., on (LF

Def(Δ))
2.

The definition below is an alternative formalization of the standard four-valued
immediate consequence operator [9].

Definition 2. Let Δ be a rule set and (O1, O2) ∈ (LF
Op(Δ))

2. We define a func-

tion U
(O1 O2)
Δ from (LF

Def(Δ))
2 to LF

Def(Δ) as: U (O1 O2)
Δ (I J) = I ′, where for

each defined predicate P/n, for each d ∈ dom(F )n, d ∈ P I′
iff there exists a

rule (∀x P (t) ← φ(x)) ∈ Δ and an a ∈ dom(F )n, such that ((O1 ∪ I) (O2 ∪
J)) |= φ(a) and tF [x/a] = d. We define the operator T (O1 O2)

Δ on (LF
Def(Δ))

2 as

T (O1 O2)
Δ (I J) =

(
U

(O1 O2)
Δ (I J) U

(O2 O1)
Δ (J I)

)
.

It can be shown that every T (O1 O2)
Δ is an approximation of the well-known 2-

valued immediate consequence operator TO
Δ , which can be defined as TO

Δ (I) =
[T (O O)

Δ (I I)|. Because T (O1 O2)
Δ is an approximation, it has a stable operator

CT (O1 O2)
Δ

. The well-founded model (W1 W2) of Δ given (O1 O2) is the least

fixpoint of this stable operator. Similarly, a structure S ∈ LF
Def(Δ) is a stable

model of Δ given (O1 O2) iff S is a fixpoint of this stable operator. If Δ is a
logic program, then Op(Δ) = ∅ and O1, O2 coincide with the Herbrand pre-
interpretation F . In this case CTΔ

is symmetric and the upper and lower stable
operators are identical to the well-known Gelfond-Lifschitz operator GLΔ [10].

A rule set Δ is monotone iff every T (O1 O2)
Δ is a monotone operator (w.r.t. the

product order ≤). For such rule sets, the well-founded model of Δ given some
(O1 O2) can be shown to coincide with lfp(T (O1 O2)

Δ ), which is also the unique
stable model for Δ given (O1 O2). A rule set Δ is positive iff no defined predicate
appears negatively in a rule body of Δ. Such rule sets are always monotone.

We now introduce the following notions of the models of a rule set. In this
definition, we use the notation (I J)|Π where Π is a set of predicate symbols,
to indicate the restriction of I and J to the symbols in Π .

Definition 3. Let Δ be a rule set and F a pre-interpretation. Let S1, S2,W1,W2
be Σ-structures that extend F . The pair (W1 W2) is a model of Δ under the
well-founded semantics, denoted (W1 W2) |=w Δ iff (W1 W2)|Def(Δ) is the well-
founded model of Δ under (W1 W2)|Op(Δ). The pair (S1 S2) is a model of Δ un-
der the stable model semantics, denoted (S1 S2) |=s Δ iff S1|Def(Δ) = S2|Def(Δ)
and S1|Def(Δ) is a stable model of Δ under (S1 S2)|Op(Δ).

Using the above definitions, we can now characterize stable and well-founded
semantics of the following extensions of Logic Programming:

– Normal Logic Programming: bodies are conjunctions of literals, no open
predicates, F is the Herbrand pre-interpretation.
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– Abductive Logic Programming: the same, except that abducible predicates
are open, and their interpretation is arbitrary.

– Deductive Databases, and its extension AFP [15]: intensional predicates are
defined, extensional database predicates are open but interpreted by the
database O.

– LP-functions [11]: rule bodies are conjunctions of literals, open and defined
predicates, interpretation of open predicates is arbitrary.

– ID-logic [6]: a model of a definition Δ is any 2-valued well-founded model
of Δ.

The results of the following sections are applicable to all these formalisms.

3 Fixpoint Extension

We want to study the following transformation. We start out with a rule set Δ
in some alphabet Σ and then introduce a set of new symbols Σn, e.g., the two
predicates AllPrecHold and AllFrom from the example in the introduction.
We then use these new predicates to form a new definition Δ′ over alphabet
Σ′ = Σ ∪ Σn. In order to study such transformations in an algebraic setting,
we will assume two complete lattices 〈L1,≤1〉 and 〈L2,≤2〉. Here, L1 can be
thought of as consisting of the interpretations for the original alphabet Σ, while
L2 represents the interpretations for the additional new alphabet Σn. We will
need to prove a result concerning the stable and well-founded models ofΔ′, which
means that we will need to work with pairs of interpretations of Σ′. As such, in
our algebraic setting, we consider the square (L1×L2)2 of the Cartesian product
L1 × L2, which is isomorphic to the Cartesian product L2

1 × L2
2 of the squares

of these lattices. We denote pairs P = ((x u) (y v)) of this latter Cartesian
product by

(
x
y

u
v

)
, where (x u) ∈ L2

1 and (y v) ∈ L2
2. We introduce the following

projection functions: by [P | we denote the pair
(
x
y

)
, by |P ] the pair

(
u
v

)
, by (P )

the pair (x u), by *P + the pair (y v), by *P | the element y, by (P | the element
x, by |P ) the element u, and by |P + the element v.

Now, we want relate the stable and well-founded fixpoints of the operator TΔ

of the original definition Δ to those of the new operator TΔ′ . Algebraically, we
consider an approximation A on the square L2

1 of the original lattice L1 and
an approximation B on the extended lattice L2

1 × L2
2. We now impose some

conditions to ensure a correspondence between the stable fixpoints of A and B.
The main idea behind these conditions is the following. By introducing a new

predicate into our original definition Δ, we have added an additional “indirec-
tion”. For instance, in the original version Δ of our example, we had the formula
∀i, q Prec(r, i, q)⇒ Holds(q), that could be evaluated in order to check whether
all preconditions q of rule r were satisfied. This could be done by the TΔ-operator
in a single step. In our new definition Δ′, however, every application of TΔ′ only
checks whether a single precondition is satisfied. Intuitively, to match the effect
of a single application of TΔ to some pair (X,Y ) of interpretations of the al-
phabet of Δ, we have to iterate TΔ′ long enough for the truth assignments of
(X,Y ) to propagate throughout all of the new symbols of Δ′. Nevertheless, the
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end result of this iteration of TΔ′ should coincide with the result of the single
application of TΔ. We need some more notation to formalize this intuition.

Given the operator B on L2
1 × L2

2 and a pair (x u) ∈ L2
1, we define the

operator B(x u) on L2
2 as λ(y v).

⌊
B
(
x
y

u
v

)⌋
. Conversely, given a pair (y v) ∈ L2

2,
we define the operator B(y v) on L2

1 as λ(x u).
⌈
B
(
x
y

u
v

)⌉
. We say that B is L2-

monotone iff for each (x u) ∈ L2
1 and (y v) ≤ (y′ v′) ∈ L2

2, B
(
x
y

u
v

)
≤ B

(
x
y′ u

v′
)
. If

B is L2-monotone, then every operator B(x u) is monotone. The least fixpoint
lfp(B(x u)) of such an operator is now an important concept. Indeed, if we are
extending a definition Δ with some new predicates Σn, then this least fixpoint
will tell us what can be obtained by iteratively applying (only) the rules for Σn.

Definition 4 (Fixpoint extension). Let B be an approximation on L2
1 × L2

2
and A an approximation on L2

1. B is a fixpoint extension of A iff

– B is L2-monotone;
– For all x, u ∈ L1, Blfp(B(x u))(x u) = A(x u).

The main algebraic result of this paper is that fixpoint extension preserves both
stable and well-founded fixpoints.

Theorem 1 (Fixpoint extension). Let B be a fixpoint extension of A.
(
x
y

u
v

)
is a fixpoint of the stable operator CB iff (x u) is a fixpoint of the stable operator
CA and (y v) = lfp(B(x u)). Moreover, if (x u) is the well-founded fixpoint of A
and (y v) = lfp(B(x u)), then the well-founded fixpoint of B is precisely

(
x
y

u
v

)
.

To prove this theorem, we first study some of the properties of B and lfp(B(x u)).
First, we establish that B(x u) can be split in two independent parts.

Lemma 1. Let B be L2-monotone. Then for all y, v ∈ L2, B(x u)(y v) =
(B(x u)

1 (y) B(x u))
2 (v)), where the operators B(x u)

1 and B
(x u)
2 on L2 are defined

as B(x u)
1 (y) = [B(x u)(y ")| and B

(x u)
2 (v) = |B(x u)(" v)].

Proof. For B
(x u)
1 , it suffices to show that, for all y, v ∈ L2, B(x u)(y v) and

B(x u)(y ") agree on the first component of the result, i.e.,
⌊
B
(
x
y

u
v

)∣∣ =
⌊
B
(
x
y

u
�
)∣∣.

Similarly, for B2 there must be agreement on the second component, i.e., for all
y, v ∈ L2:

∣∣B(
x
y

u
v

)⌋
=

∣∣B(
x
�

u
v

)⌋
. We will only prove the equality for B(x u)

1 ; the
proof of the second equality is analogous.

First, we note that
(
x
y

u
v

)
≥p

(
x
y

u
�
)
. By ≤p-monotonicity of B, this implies

that
⌊
B
(
x
y

u
v

)∣∣ ≥ ⌊
B
(

x
y

u
�
)∣∣. Secondly, we also note that

(
x
y

u
v

)
≤

(
x
y

u
�
)
. By L2-

monotonicity of B, this implies that
⌊
B
(
x
y

u
v

)∣∣ ≤ ⌊
B
(

x
y

u
�
)∣∣. Combining these two

inequalities gives the desired result.

The stable operator CB of an approximation B is defined in terms of its lower
and upper stable operators C↓

B and C↑
B. We show the following relation between

these operators and the operators B(x u)
1 and B

(x u)
2 from Lemma 1.

Lemma 2. If
(

x
y

)
= C↓

B

(
u
v

)
, then y = lfp(B(x u)

1 ). If
(
u
v

)
= C↑

B

(
x
y

)
, then v =

lfp(B(x u)
2 ).
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Proof. We only prove the first implication; the proof of the second one is anal-
ogous. Let z = lfp(B(x u)

1 ). We will show that y = z. We start by showing that
z ≤ y. By definition of CB,

(
x
y

)
=

[
B
(
x
y

u
v

)∣∣. In particular, y = B
(x u)
1 (y), i.e.,

y is a fixpoint of B(x u)
1 . Because z was chosen to be the least fixpoint of this

operator, z ≤ y. Now, we prove that y ≤ z. Because z ≤ y, it is the case that(
x
z

u
v

)
≤

(
x
y

u
v

)
. By L2-monotonicity of B, this implies that B

(
x
z

u
v

)
≤ B

(
x
y

u
v

)
and, in particular,

⌈
B
(

x
z

u
v

)∣∣ ≤ ⌈
B
(
x
y

u
v

)∣∣ = x. Because z is a fixpoint of B(x u)
1 ,

we also have that
⌊
B
(
x
z

u
v

)∣∣ = z. As such,
[
B
(

x
z

u
v

)∣∣ ≤ (
x
z

)
or, in other words,

(
x
z

)
is a prefixpoint of

[
B
(·
·

u
v

)∣∣. Because the least fixpoint
(
x
y

)
of this operator is also

its least prefixpoint,
(
x
y

)
≤

(
x
z

)
; in particular, y ≤ z.

In order to prove the correspondence between well-founded fixpoints, we will
also need to take the precision order into account.

Lemma 3. ∀x, x′, u, u′ ∈ L1, (x u) ≤p (x′ u′) iff
(x u

lfp(B(x u))

)
≤p

(x′ u′

lfp(B(x′ u′))

)
.

Proof. It is clear that the right hand side of this equivalence directly implies
the left. Let x, x′, u, u′ be as above and let (y v) = lfp(B(x u)) and (y′ v′) =
lfp(B(x′ u′)). It suffices to show that (y v) ≤p (y′ v′). We first show that y ≤ y′.
By Lemma 1, y = lfp(B(x u)

1 ). Because this implies that y is also the least
prefixpoint of B(x u)

1 , it now suffices to show that y′ is a prefixpoint of B(x u)
1

as well, i.e., that y′ ≥ B
(x u)
1 (y′). Because for any w,

(
x′
y′ u′

w

)
≥p

(
x
y′ u

w

)
, we have

that y′ =
⌊
B
(
x′
y′ u′

w

)∣∣ ≥ ⌊
B
(
x
y′ u

w

)∣∣ = B
(x u)
1 (y′).

We now show that v ≥ v′. By Lemma 1, v′ = lfp(B(x′ u′)
2 ). This implies that

v′ is also the least prefixpoint of B(x′ u′)
2 and, therefore, it suffices to show that

v ≥ B
(x′ u′)
2 (v). Because for any z,

(
x′
z

u′
v

)
≥p

(
x
z

u
v

)
, we have that: B(x′ u′)

2 (v) =∣∣B(
x′
z

u′
v

)⌋
≤

∣∣B(
x
z

u
v

)⌋
= v.

Proof (of Theorem 1). We first show that if
(
x
y

u
v

)
is a fixpoint of CB, then (x u)

is a fixpoint of CA and (y v) is lfp(B(x u)). By definition,
(
x
y

u
v

)
is a fixpoint of

CB iff
(
x
y

)
= C↓

B

(
u
v

)
and

(
u
v

)
= C↑

B

(
x
y

)
. By Lemma 2, if this is the case, then

y = lfp(B(x u)
1 ) and v = lfp(B(u x)

2 ). As such (y v) = lfp(B(x u)). Because B is
an extension of A, we now have that

⌈
B
(
x
y

u
v

)⌉
= A(x u).

To prove the other direction, let (x u) = CA(x u) and let (y v) be lfp(B(x u)).
We need to show that

(
x
y

u
v

)
is a fixpoint of CB, i.e., that

(
x
y

)
= C↓

B

(
u
v

)
and(

u
v

)
= C↑

B

(
x
y

)
. We only show that

(
x
y

)
= C↓

B

(
u
v

)
; the proof of the other equality is

analogous. First, note that
⌈
B
(
x
y

u
v

)∣∣ = [A(x u)| = x and
⌊
B
(
x
y

u
v

)∣∣ = B
(x u)
1 (y) =

y. Hence,
[
B
(
x
y

u
v

)∣∣ =
(
x
y

)
, i.e.,

(
x
y

)
is a fixpoint of

[
B
(·
·

u
v

)∣∣. It now suffices to show
that

(
x
y

)
is the least such fixpoint. Assume that

(
a
b

)
is such that

[
B
(
a
b

u
v

)∣∣ =
(

a
b

)
and

(
a
b

)
≤

(
x
y

)
. We show that

(
a
b

)
≥

(
x
y

)
. Let (b′ c) = lfp(B(a u)). Because b is a

fixpoint of B(a u)
1 , b′ ≤ b and therefore

(
a
b′

u
c

)
≤p

(
a
b

u
c

)
.
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By Lemma 3, the fact that a ≤ x implies that c ≥ v. Consequently, we have that(
a
b

u
c

)
≤p

(
a
b

u
v

)
and, therefore, by ≤p-monotonicity of B:

[A(a u)| =
⌈
B
(
a
b′

u
c

)∣∣ ≤ ⌈
B
(
a
b

u
c

)∣∣ ≤ ⌈
B
(
a
b

u
v

)∣∣ = a

Hence, a is a prefixpoint of [A(· u)|. Because x is the least such prefixpoint,
x ≤ a and, therefore, x = a. As such, by Lemma 2, we now have that y =
lfp(B(x u)

1 ) = lfp(B(a u)
1 ) and, because b is a fixpoint of B(a u)

1 , y ≤ b. As we
already have that b ≤ y, this implies that b = y.

The fact that
(
u
v

)
= C↑

B

(
x
y

)
can be shown in the same way.

Given this one-to-one correspondence between stable fixpoints of A and those
of B, the correspondence between the well-founded fixpoint of A and that of B
follows directly from Lemma 3.

4 Application to Rule Sets

In this section, we use the algebraic results of Section 3 to derive a concrete
equivalence theorem for rule sets. Recall that we are interested in transformations
from some original rule set Δ over an alphabet Σ into a new rule set Δ′ over
an alphabet Σ′ ⊇ Σ. More concretely, Δ′ is the result of replacing a subformula
φ(x) of some rule of Δ by a new predicate P (x) and adding a new rule set
δ to Δ to define this new predicate P . We will denote the result of replacing
(some fixed set of occurrences of) φ(x) in Δ by P (x) as Δ[φ(x)/P (x)], i.e.,
Δ′ = Δ[φ(x)/P (x)] ∪ δ. We will assume that Σ ∩Def(δ) is empty. Note that
Δ′ may contain new open atoms.

We now impose some criteria to ensure that, for certain interpretations O of
the open predicates of Δ′, the operator T (O O)

Δ′ is a fixpoint extension of T (O O)
Δ .

We state our theorem for the set C of all structures that extend O to Σ′.

Theorem 2 (Predicate introduction). Let Δ be a rule set and let Δ′ be the
result of replacing some positive occurrences of φ(x) by P (x) defined in δ, as
outlined above. If the following conditions are satisfied:

1. δ is a monotone rule set;
2. for all I, J ∈ C such that (I J) |=s δ: ∀a ∈ Dn, P (a)(I J) = φ(a)(I J);

then for all I, J in C, (I I)|Σ |=s Δ iff (I I) |=s Δ′ and (I J)|Σ |=w Δ iff
(I J) |=w Δ′.

Observe that because δ is monotone, we could have equivalently used |=w in-
stead of |=s in condition 2. To see that this theorem applies to our example
from the introduction, let δ be the rules given in (5). Clearly, δ is positive. Now,
if we restrict our attention to those interpretations O for Open(Δ′) that actu-
ally correspond to AL-rules1, then it is easy to see that for all r ∈ dom(O),
AllPrecHold(r)(I J) iff φ(r)(I J). As such, Condition 2 is satisfied.
1 More specifically, for every r there should be a unique n such that (r, n) ∈

NbOfPrecO and for every 1 ≤ i ≤ n there should a unique q such that (r, i, q) ∈
PrecO.
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Proof (of Theorem 2). Let L = {I|Def(Δ) | I ∈ C} and L′ = {I|Def(δ) | I ∈ C}.
Now, C is isomorphic to L × L′. Let T be T (O O)

Δ : L2 → L2 and T ′ be T (O O)
Δ′ :

(L×L′)2 → (L×L′)2. It suffices to prove that T ′ is a fixpoint extension of T , i.e.,
that (1) T ′ is L′-monotone and (2)

⌈
T ′

lfp(T ′(I J))(I J)
⌉

= T (I J) for any I, J ∈ L.

We first show (1). Let (I J) ∈ L2 and (I ′1 J ′
1) ≤ (I ′2 J ′

2) ∈ L′2. We have
to prove the inequality T ′(I

I′
1

J
J′
1

)
≤ T ′(I

I′
2

J
J′
2

)
. By the monotonicity of δ, we

have
⌊
T ′(I

I′
1

J
J′
1

)⌋
= T (I J)

δ (I ′1 J
′
1) ≤ T

(I J)
δ (I ′2 J

′
2) =

⌊
T ′(I

I′
2

J
J′
2

)⌋
. For a predicate

Q ∈ Def(Δ) and domain elements a, such that
[
T ′(I

I′
1

J
J′
1

)∣∣ |= Q(a), there exist

a rule ∀x Q(t) ← ψ(x) and domain elements d such that tO[x/d] = a. Then(
I
I′
1

J
J′
1

)
|= ψ(d). Since P only occurs positively in ψ, this implies

(
I
I′
2

J
J′
2

)
|= ψ(d).

Hence, also in this case Q(a) ∈
[
T ′(I

I′
2

J
J′
2

)∣∣. For Q(a) such that
∣∣T ′(I

I′
1

J
J′
1

)]
|=

Q(a), an analogous proof can be given to complete our proof of L′-monotonicity.
We now show (2). Let (I ′ J ′) = lfp(T ′(I J)). Then (I ′ J ′) = lfp(T (I∪O J∪O)

δ ),
and, therefore, by the monotonicity of δ,

(
I
I′ J

J′
)
|=s δ. Denoting I2 =

(
I
I′
)

and
J2 =

(
J
J′
)
, we then have by condition 2 that ∀c ∈ Dn P (c)(I2 J2) = φ(c)(I2 J2),

hence (I2 J2) |= P (c) iff (I2 J2) |= φ(c).
We also have that

[
T (I J)

∣∣ |= Q(a) iff Δ contains a rule ∀x Q(t) ← ψ(x)
and domain elements d exist such that tO[x/d] = a and (I J) |= ψ(d). The
corresponding rule in Δ′ is ∀x Q(t) ← ψ′(x). Consequently, (I2 J2) |= ψ(d) iff
(I2 J2) |= ψ′(d). The proof for a Q(a) such that

∣∣T (I J)
]
|= Q(a) is analogous.

Condition 2 of Theorem 2 requires us to check a four-valued equivalence between
P (x) as defined by δ and the original formula φ(x). One might wonder whether
this is really necessary, i.e., whether it would suffice to check only the following
two-valued equivalence:

For all I ∈ C such that (I I) |=s δ : ∀a ∈ Dn, I |= P (a) iff I |= φ(a). (6)

In general, this is not the case. For instance, consider an attempt to replace in
Δ = {R ← Q ∨ ¬Q. Q← ¬Q.} the formula φ = Q ∨ ¬Q by a new predicate P ,
defined by a definition δ = {P.}. The above equivalence and all other conditions
of Theorem 2 would then be satisfied, but the well-founded model of Δ′ = {R←
P. P. Q← ¬Q.} is ({R,P} {R,P,Q}), while that of Δ is ({} {R,Q}).

The four-valued way of interpreting formulas is an integral part of both stable
and well-founded semantics. Therefore, it makes sense that, as the above example
shows, a four-valued equivalence is required in order to preserve either of these
semantics. In practice, however, this should not pose too much of a problem,
since most common transformations from classical logic, e.g. the De Morgan
and distributivity laws, are still equivalence preserving in the four-valued case.

5 Applications and Related Work

The kind of transformations considered in this paper have a long history in Logic
Programming. In particular, we consider three related investigations:
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– Lloyd and Topor [12] introduced transformations that preserve equivalence
under the 2-valued completion semantics. It is well-known that these trans-
formations do not preserve equivalence under the well-founded or stable
model semantics. As such, our result can be seen as an attempt to provide
Lloyd-Topor-like transformations for these semantics.

– Van Gelder [15] presented a logic of alternating fixpoints to generalize the
well-founded semantics to arbitrary rule bodies. In the same paper, he es-
tablished the result given below as Theorem 3. We discuss the relation of
our work with this result in Section 5.1

– The “Principle of Partial Evaluation” (PPE) was introduced by Dix in a
study of properties for classifying Logic Programming semantics [7]. As we
discuss in Section 5.2, this principle has a strong relation with our work.

More recently, there has been a lot of work in Answer Set Programming on the
topic of strong equivalence. In general, the transformations we considered here
do not preserve strong equivalence, because they are specific to a particular rule
set. To illustrate, our result shows that Δ = {P ← ¬Q. Q ← Q.} is equivalent
to Δ′ = {P ← R. R ← ¬Q. Q ← Q.}. However, Δ and Δ′ are not strongly
equivalent. For instance, if we consider the additional rule Q← ¬R, it is easy to
see that the stable models of Δ∪{Q← ¬R.} and Δ′ ∪{Q← ¬R.} are different.

5.1 Predicate Extraction and Eliminating ∀
The following result is due to Van Gelder:

Theorem 3 ([15]). Let Δ be a rule set containing a rule r = ∀x P (t) ← ψ.
Let φ(y) be an existentially quantified conjunction of literals, and let Q be a
new predicate symbol. If φ(y) is a positive subformula of ψ, then Δ is equivalent
under the stable and well-founded semantics to the rule set Δ′, that results from
replacing φ(y) in r by Q(y) and adding the rule ∀y Q(y)← φ(y) to Δ.

Because the rule set δ = {∀y Q(y) ← φ(y).} clearly satisfies the conditions of
Theorem 2, Van Gelder’s theorem follows directly from ours. This result provides
a theoretical justification for the common programming practice of predicate ex-
traction: replacing a subformula that occurs in multiple rules by a new predicate
to make the program more concise and more readable. In [14], predicate extrac-
tion is considered to be an important refactoring operation (i.e., an equivalence
preserving transformation to improve maintainability) for Logic Programming.

Our result extends Van Gelder’s theorem by allowing the new predicate Q
to be defined by an additional rule set δ, instead of allowing only the definition
{∀y Q(y) ← φ(y).}. In particular, recursive definitions of Q are also allowed.
This significantly increases the applicability of the theorem. Indeed, as we al-
ready illustrated in the introduction, it allows us to eliminate certain universal
quantifiers. The general idea behind this method is that we can replace a uni-
versal quantifier by a recursion over some total order on the domain.

Definition 5 (Domain iterator). Let C be a set of Σ-structures with do-
main D. Let First/1, Next/2 and Last/1 be predicate symbols of Σ. The triple
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〈First,Next, Last〉 is a domain iterator in C iff for each structure S ∈ C:
NextS is a total order on D, with a minimal element f and a maximal element
l such that FirstS = {f} and LastS = {l}.

Given such a domain iterator It = 〈First,Next, Last〉, we can introduce the
following rule set δIt

φ to define a new predicate Forall(x) as a replacement for
some φ(x) = ∀y ψ(x, y):

∀x, y Forall(x)← First(y) ∧AllFrom(x, y).
∀x, y, y′ AllFrom(x, y)← ψ(x, y) ∧Next(y, y′) ∧AllFrom(x, y′).
∀x, y AllFrom(x, y)← ψ(x, y) ∧ Last(y).

(7)

The following result is obtained from Theorem 2. Due to space limitations,
we omit a formal proof.

Theorem 4 (∀ elimination). Let Δ be a rule set and φ(x) be a formula of
the form ∀y ψ(x, y), that appears only positively in the bodies of rules of Δ.
For a set of structures C with finite domain, if It is a domain iterator, then
Δ[φ/Forall] ∪ δIt

φ is equivalent to Δ under stable and well-founded semantics.

In this theorem, we assume a total order on the entire domain and this same
order can be used to eliminate all universally quantified formulas, that satisfy
the condition of the theorem. This is not precisely what happened in our ex-
ample. Indeed, there, the universally quantified formula φ(x) was of the form:
∀y Ψ1(x,y) ⇒ Ψ2(x,y). Using the above theorem, we would replace φ(x) by
a recursion that says that the implication Ψ1(x) ⇒ Ψ2(x) must hold for every
element in the domain. However, in our original version of this example, we ac-
tually replaced φ(x) by a recursion which says that for all y that satisfy Ψ1(x,y)
(i.e., for all i, q such that Prec(r, i, q)) the consequent Ψ2(x,y) (i.e., Holds(q))
is satisfied. This is a more fine-grained approach, which we can also prove in
general. A restricted iterator for y of ψ1(x,y) in a structure I is a triple of
predicates 〈First(x,y), Next(x,y,y′), Last(x,y)〉, such that for every tuple d
of elements of the domain D of I, 〈First(d,y), Next(d,y,y′), Last(d,y)〉 is an
iterator over {e ∈ Dn | I |= Ψ1(d, e)}.

Given such a restricted iterator, we can define the following replacement
Forall(x) for φ(x):

∀x,y Forall(x)← First(x,y) ∧AllFrom(x,y).
∀x,y,y′ AllFrom(x,y)← Ψ2(x,y) ∧Next(x,y,y′) ∧AllFrom(x,y′).
∀x,y AllFrom(x,y)← Ψ2(x,y) ∧ Last(x,y).

Again, Theorem 2 can be used to show that φ(x) can be replaced by Forall(x).

5.2 Principle of Partial Evaluation

In a series of papers that gave properties by which major Logic Programming se-
mantics could be classified, Dix introduced the “Principle of Partial Evaluation”
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(PPE) [7]. The PPE basically states that a positive occurrence of P can be “un-
folded”, i.e., replaced by the definition ofP . Here, we recall the weak version of this
property.

Definition 6 (Weak PPE [7]). Let Δ be a ground rule set, and let an atom
P occur only positively in Δ. Let P ← ϕ1, ..., P ← ϕN be all the rules with
head P , and assume that none of the ϕi contains P . We denote by ΔP the rule
set obtained from Δ by deleting all rules with head P and replacing each rule
“Head← P ∧ ψ” containing P by the rules:

Head← ϕ1 ∧ ψ. . . . Head← ϕN ∧ ψ. (8)

The weak principle of partial evaluation states that there is a 1-1 correspondence
between models of ΔP and models of Δ (with removal of {P,¬P}).

Using Theorem 2, we can show that the stable and well-founded semantics ex-
hibit this property: we rewrite (8) as “Head ← (ϕ1 ∨ · · · ∨ ϕN ) ∧ ψ”. The
replacement δ = {P ← ϕ1∨· · ·∨ϕN .} then satisfies all conditions of Theorem 2.

In the (non-weak) PPE, P can occur recursively, but then its definition has
to be present both before and after the transformation (i.e., the rules with
head P are not deleted), making the precise relation with our result unclear.
The Generalized PPE is obtained from the PPE by allowing P to have ar-
bitrary occurrences in Δ, and not forcing every occurrence of P to be re-
placed. It is shown in [8] that the stable and well-founded semantics satisfy
(G)PPE.

6 Conclusion and Future Work

In this paper, we have only considered the application of Theorem 1 to Logic
Programming. However, due to the general, algebraic nature of this result, it can
easily be more widely applied. Indeed, all of the main semantics for Autoepis-
temic Logic and Default Logic can also be given a natural characterization in
terms of approximation theory [4]. As such, Theorem 1 can directly be applied
to prove similar equivalences for these logics. There, too, such results are useful.
For instance, [13] already stresses the importance of being able to replace certain
modal subformulas in Autoepistemic Logic by new propositional symbols. Even
though Autoepistemic Logic is beyond the scope of this paper, Theorem 1 could
be used to prove the correctness of such transformations.

This paper is part of a larger research effort to develop a general “toolkit”
of useful theorems in approximation theory. The aim of this project is to iso-
late important properties of knowledge representation logics and try to char-
acterize these in the framework of approximation theory. In this paper, we
have done this for predicate introduction. In [17], we did the same for certain
modularity properties, proving an algebraic theorem that generalizes a number
of known theorems for Logic Programming, Autoepistemic Logic, and Default
Logic.
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Abstract. Part 1 of the ISO Prolog standard (ISO/IEC 13211) pub-
lished in 1995 covers the core of Prolog, including syntax, operational
semantics, streams and some built-in predicates. Libraries, DCGs, and
global mutables are current standardization topics. Most Prolog imple-
mentations provide an ISO mode in which they adhere to the standard.

Our goal is to improve parts of the Prolog standard already published
by finding and fixing ambiguities and missing details. To do so, we have
compiled a suite of more than 1000 test cases covering part 1, and ran
it on several free and commercial Prolog implementations. In this study
we summarize the reasons of the test case failures, and discuss which of
these indicate possible flaws in the standard.

We also discuss test framework and test case development issues spe-
cific to Prolog, as well as some portability issues encountered.

1 Introduction

This paper describes work on testing standards compliance of several Prolog
implementations. Part 1 of the Prolog standard [9] and a related textbook [3]
have been available for about ten years. By now all major implementations
declare that they are standards compliant. In spite of this we have found that
there are lots of minor and medium importance details that are interpreted
differently by the implementations tested. In a few cases this is due to ambiguities
in the standard, in lots of other cases there is a clear deviation from the standard.
We believe that even minor discrepancies can make porting Prolog programs very
difficult, and to advocate full adherence we have developed an appropriate test
framework, described in this paper.

The main goal of this work is to improve interoperability of Prolog code,
by clarifying standards compliance of major implementations and pinpointing
sources of non-conformance. Even if the implementations remain unchanged,
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these results can help in developing compatibility layers to support interoper-
ability. In long term we hope that our test framework will contribute to the
wider and more precise acceptance of the standard.

The paper is structured as follows. Section 2 gives an overview of the Prolog
implementations used and tested in this work. Section 3 describes the architec-
ture of the test framework. In section 4 we present the results of the testing,
including some basic statistics, a brief analysis of common failures and propos-
als for standard improvement. Section 5 discusses related work, while in Section
6 we present some conclusions and plans for future work.

2 Implementations Tested

It was our goal to test many different implementations, in order to identify
as many problems as possible. Although we focused on free implementations,
we included a commercial one (SICStus) as well. All the implementations are in
active use today (and most of them are under active development), save aprolog.
We did not want to test new or experimental implementations, the first versions
of all of those we tested appeared at least 9 years ago.

These are the implementations we have run the tests on:

SICStus 3.12.3. The original test suite and framework was developed at SICS
in an effort to make SICStus [8] ISO-compliant, so it was natural to keep it
included as well. We have run the tests in the ISO mode of SICStus – the
other, legacy mode is going to be dropped in version 4, anyway. Development
of SICStus started in 1984, more than 10 years before the Prolog standard
was published.

SWI-Prolog 5.4.7. SWI-Prolog [11,12] is one of most popular, actively devel-
oped, free Prolog implementations. It also has an ISO and a legacy mode
– the tests have been run in ISO mode. We had to turn garbage collection
off, because otherwise the application aborted because of a failed assertion
in the middle of the tests. SWI-Prolog exists since about 1990.

YAP 5.0.1. YAP [10] is also an actively developed free implementation. It also
has an ISO mode, but we rather disabled it, because the application crashes
when we try to consult a new source file in ISO mode. YAP has been available
since 1989.

gprolog 1.2.16. GNU Prolog [5,6] is also a free, WAM-based implementation
with a native code compiler. Although the latest release is from September
2002, there is still activity on the mailing list. GNU Prolog appeared in 1996,
one year after the standard.

Ciao-Prolog 1.10p6. Ciao [2] is a free implementation actively developed by
researchers, with a lot of advanced static analysis tools (e.g. type checking,
instantiation analysis and partial evaluation) integrated. Ciao-Prolog was
released in 1995.

aprolog 1.22. aprolog is an unpublished, minimalistic, very slow standard Pro-
log implementation by Miklós Szeredi for educational purposes only. It lacks
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a module system, a WAM implementation, a garbage collector, cyclic term
unification, line number reporting for exceptions and unbounded integer
arithmetics. The reason we use it is that it has been developed with standards
in mind – only ISO Prolog, nothing more. And it is also a demonstration that
even simple implementations can be standards compliant. Although aprolog
was written in 1997, some of the built-in predicate implementations date
back to as far as 1984 – 11 years before the standard came out.

When we tried to port the framework to XSB (version 2.7.1), we faced the
need too many registers error when trying to assert a fact with too complicated
arguments (i.e. try asserta(t([a(b),a(b),...,a(b)])) with a list of more
than 260 elements). A major rewrite might thus be necessary for an XSB port.

We are not planning to port the framework to other implementations by
hand, but we are designing a generic approach, that autodetects as much as
possible about the new Prolog system, thus adding the correct port to a new
implementation (or a new version) will be easier and faster.

3 Test Suite and Framework

This section describes the structure of the software. We first deal with the test
cases and then give an outline of the framework.

3.1 Test Suite Design

Our test suite consists of 1012 test cases, each corresponding to a section in the
standard. Each test case has the following properties:

meta-information. Identifier (series : number), author, relevant section num-
ber of the ISO standard, dangerousness indication, irrelevancy conditions;

goal. To be executed;
environment. In which the goal is executed: files to create, Prolog source files

to load, Prolog flags to alter, cleanup code after running goal;
expectations. Which determine whether the test run is OK or not. The follow-

ing outcomes can be expected: success (with possible constraints on variable
substitutions of each solution), failure, exception (with possible constraints
on the exception term). There is a macro expansion facility in the expecta-
tions, so they can be written to be more compact and consistent.

Here is an example test case:

test_case(strprop:2, iso_doc, %8.11.8.4 % meta-information
stream_property(S, output), % goal
{[S <-- FOut ], [S <-- COut], ...}, % expectations
[ pre((open(bar, write, FOut), % environ-
current_output(COut))), clean(bar)]). % ment

The meaning of test case strprop:2 is the following. This is a test case whose
goal is taken from the ISO standard section 8.11.8.4. The test case verifies that
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if we open an output stream (FOut), then stream property/2 has to enumer-
ate it as well as the current output stream. The curly braces signify that the
enumeration order is not significant, and ... signifies that there might be more
solutions. It is possible to prescribe an order using square brackets instead of
curly braces.

Some of the tests are dangerous: they hang the process (i.e. they cause seg-
mentation violation, infinite loop or infinite memory allocation) in some imple-
mentations, but work fine in others. The reason of the hanging is clear in some
cases (e.g. the unification X=f(X) can hang a Prolog implementation if it does
not support unification of STO (“subject to occurs-check”) terms), but some-
times there is a bug in the Prolog implementation, and the process hangs for
no apparent reason. (Testing halt/1 is also dangerous, because halt/1 aborts
the whole Prolog process, including the framework.) When the standards al-
lows a hang in a particular case, we call the test case irrelevant, otherwise we
call the test case dangerous. The test case can also be irrelevant if it does not
hang the process, but it can be skipped for other reasons; for example, integers
are bounded in some implementations, but unbounded in others, and tests that
check for an int overflow error must be skipped in unbounded implementations.

The framework accepts implementation aspect declarations, based on which
the framework can decide whether a test is irrelevant with respect to an im-
plementation. And even when a test is relevant, its expectations can be made
dependent on the declarations. Currently declarations are not used as much as
they could be: for example, a lot of tests fail, because predicate indicators in
exceptions are not module qualified the same way in all Prolog implementations
– and the test suite expects the SICStus way. The solution would be to introduce
a new declaration for this aspect, and make the corresponding test cases use it.
Declarations could also be used to have dangerous tests skipped; currently they
have to be commented out by hand in the test suite.

The test contains tests from various sources:

iso doc. These test cases come directly from the standard [9]. The descrip-
tion of each built-in predicate contains an Examples section with goals and
a natural language expectation for each goal, which describes what should
happen when the goal is called. We kept the original goals, and formalized
the expectations so the test case can be automatically validated. In addition
to these, the informal examples and tables in the chapters about syntax and
control constructs were also converted to test cases.

eddbali. The executable specification of Prolog ([4], see below) has some test
cases included. We have added them in our test suite, except for those having
equivalent counterparts in the iso doc part.

sics. The test cases here were added by the authors during the development of
the ISO mode of SICStus Prolog.

pts. We added these recently, after we have run the test suite on 6 Prolog im-
plementations.
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3.2 Test Framework Architecture

The test framework, which runs in the same Prolog process as the tests them-
selves, considers test cases in the test suite in the order they are defined, and
computes the test result for each of them. Possible test results are dangerous,
irrelevant, failed and OK. Test results are logged, and the log file is later pro-
cessed by a Perl script for statistics generation and validation of whether all test
cases were considered. If some of the test cases were missing, this could be a
sign that the Prolog process crashed in the middle.

Tests declared dangerous are ignored. If the irrelevancy condition of the test
case with respect to the Prolog implementation is met, the test is considered
irrelevant and it is skipped. Otherwise, the environment of the test is prepared,
the test goal is run, the expectations are checked, the cleanup code is run. The
test is considered OK if the expectations are fulfilled, otherwise it has failed. For
failed tests, the outcome expected and the outcome received are also logged.

The test cases, the contents of all files and Prolog programs needed by the
tests and the macro definitions are collected in a single Prolog source file as facts.
The implementation language of the test framework is also Prolog: there is a big
system-independent part (in standard Prolog), and there are helper files for each
system: the main file, which loads all other files, contains the implementation
aspect declarations, and provides some nonstandard functionality (such as abol-
ish static/1) using implementation-specific predicates; and the utils file, which
implements a compatibility layer providing some utility predicates (such as ap-
pend/3 and term variables/2). If possible, the utility predicates are loaded from
a built-in module. Other software components are the Perl script that creates
the statistics from the log files, and a Makefile that invokes the implementations
with the appropriate arguments to run the tests.

The software, including our test framework and test suite can be obtained
from http://www.inf.bme.hu/~pts/stdprolog/ . Currently it needs a UNIX
system with Perl, GNU Make and the Prolog implementations installed.

4 Test Results

We have run the test suite on the implementations, getting a log file for each
run. The log files contained detailed information about each test case, including
the description of the failures. In this chapter we present the statistics resulting
from the log file, and the conclusions we made from from the failures, including
improvement possibilities for the both the standard and its implementations.

4.1 Statistics and Evaluation Concerns

The statistics depicted on Table 1 were generated by a script from the test results
log file. The number of failed tests, however, should not be used as a quantitative
measure for the standards conformance of the implementation. That is because
multiple failures can be caused by a single reason. It is also obvious why SICStus
passes almost all the tests: the ISO mode of SICStus and the original version of
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the test suite have been developed by the same team. It is also not a surprise
that aprolog fails in a few cases only: aprolog has been written from the ground
up to be ISO compliant. The other implementations have quite a lot of failed
test cases. That’s quite reasonable, because they have not been designed with
the standard in mind, but they have been patched after the standard came out.

Table 1. ISO compliance test statistics of 1012 test cases

system version #OK #failed #dangerous #irrelevant

SICStus 3.12.3 1010 1 0 1
aprolog 1.22 996 7 0 9
gprolog 1.2.16 929 67 7 9
SWI-Prolog 5.4.7 816 158 8 30
YAP 5.0.1 632 363 7 10
Ciao-Prolog 1.10p6 541 454 7 10

Many implementations (SICStus, SWI-Prolog, YAP, gprolog and Ciao-Prolog)
have two modes: an ISO mode and a backwards compatible mode. In the ISO
mode, they try to follow the ISO standard as much as possible, while backwards
compatible mode violates the ISO standard if necessary in order to run legacy
Prolog programs. We ran our test suite with ISO mode enabled, if possible.
gprolog has ISO mode only.

We do not know of any Prolog implementations that provide a strict ISO mode
in which they disable non-ISO built-in predicates, and refuse all extensions, i.e.
constructs forbidden by the standard. For example [1], the standard requires that
an operator atom can be operand only if enclosed in parentheses, e.g. “X= <”
should be changed to “X=(<)”. Many Prolog implementations, including SICStus
and aprolog allow both constructs. This can be considered a syntactical extension
to the standard. We accept both in our test cases. Another example: section
6.3.4.3 of the standard forbids an infix and a postfix operator to have the same
name. On the other hand, some Prolog implementations allow this, which can
also be considered as an extension. However, when the standard explicitly says
that a specific error must be thrown in a specific case, implementations must
respect this, and our test cases validate each of these error conditions.

There is an Errors section for each built-in predicate in the standard. The
standard does not specify the order in which these are checked (see section 7.12),
so our test cases accept any error if more than one is appropriate.

4.2 Errors and Other Flaws Found in the Standard

We will present typos and inconsistencies and ambiguity in the standard, re-
vealed by the failed test cases.

Sometimes the standard itself is inconsistent. For example, the expression
evaluation Examples in 9.1.7 have error terms which are missing from section
7.9.2c (which enumerates all possible errors during expression evaluation). Our
test cases respect 7.9.2c and expect type_error(evaluable, F/N).
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The Examples in 9.1.7 contain several other errors and typos, for example they
expect 0 is 7/35 to be true – which is presumably a typo, and the intended
call is 0 is 7//35. We have fixed those test cases in our test suite.

Section 7.8.3.4 has a bad example, too. It expects call((write(3),3)) to
emit a 3, which contradicts the specification of call/1, which clearly states that
an error should be thrown because (write(3),3) is not callable.

Section 8.14.2.4 is not clear enough whether write_canonical(.) and write
_canonical([1]) must put single quotes around their dots (currently some
implementations do, others do not). The general rule states that the output
must be able to be read back unambiguously, but in this case the ambiguity
depends on the context, i.e. the the writing of layout characters after the dot in
the future.

The standard does not specify what to do with non-ASCII characters in the
Prolog code. For example, should it be possible to load a Prolog source file
containing X = á ? A straightforward solution would be to adopt Unicode, and
to make the byte ↔ character transformation of a text stream specifiable in
Prolog (e.g. using stream flags).

4.3 Suggested Additions to the Standard

Part 1 of the standard [9] leaves a lot of features open, while part 2 deals with
modules. The standardization of libraries, DCGs, and global mutables is un-
derway. There are other features in existing Prolog implementations to be con-
sidered, for example tabling and coroutines using call blocking/freezing. Most
Prolog systems today, however, provide an implementation of these features, but
since there is no definitive standard to do them in a uniform way, each system
implements them differently. In this subsection we will present the nonstandard
features we used in our test framework.

We believe that more power should be granted to the programmer when
querying and manipulating the predicate database. This includes a decent predi-
cate property/2 built-in, which can report whether a predicate is built-in, static,
private etc. There should also be a way to unload a Prolog source file, including
the ability to abolish the static predicates defined in it (abolish static/1).

There should also be a set of standard modules (such as lists and terms). As
of now, many Prolog systems already have these, but with a different syntax.

Although modules are documented in part 2 of the standard, most imple-
mentations ignore that. When a predicate indicator is reported in an error (e.g.
type error), its module qualification is not consistent. This should be clarified
in the new standard.

The standard should also specify how to assert, query and retract predicates
in modules other than the current one.

If the behaviour of the toplevel had been specified in the standard, testing
would have been much easier and safer, because we could treat the Prolog im-
plementation as a black box, and implement the testing framework in a different
process, or we could have run the tests and the framework in a different Prolog
implementation.
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As of now, most Prolog systems provide an ISO mode in which they fol-
low the ISO standard more precisely, but there is no standard way to activate
this mode with a single call. Moreover, some implementations crash soon after
ISO mode has been activated. Others just change the set of visible predicates,
but they do not adjust the semantics of the predicates to make them ISO con-
forming. In some implementations, Prolog flags must be adjusted one-by-one to
make the implementation more ISO-compatible. As a solution to this, a new
Prolog flag should be defined which controls whether the system runs in ISO
mode or not. For example, the iso flag with the true value, or the language
flag with the iso value. If the standard introduced a strict ISO mode, a flag
should be defined for this, too. For the Prolog implementations with a command
line interface, the standard should prescribe a command line option (such as
--iso) which enables ISO mode at startup. Activating ISO mode would have
the following effects: all ISO predicates would be made visible, the semantics
of some predicates would be changed to be ISO conforming, existing predicates
would be forced to detect error conditions according to ISO, and to throw ISO
conforming exception terms, Prolog flags would be reset to their ISO default
values etc.

Section 7.8.9.4 could clarify what to do when an uncaught exception is en-
countered and thus a “system error” happens. We suggest printing the original
exception to user error, and then returning control to the toplevel, or – if no
interactive toplevel exists – exiting from the Prolog process.

Since the primary goal of Prolog standardization is to make Prolog pro-
grams more portable across implementations, a standard library should be de-
fined. There are many features (such as the lists and terms modules, predicates
for manipulating the file system, predicates for TCP/IP communication, cap-
turing stream output to a string, timeouts, blackboard/flag predicates, predi-
cate mode and/or type declarations, suspended execution with coroutines and
CLP(FD)) already present in multiple Prolog implementations, but because of
the small differences in the load and invocation syntaxes and in the semantics,
it not possible to write a portable Prolog program using these widely avail-
able features, without inserting implementation-specific code for each supported
implementation.

In order to help the work of adding these common features to the stan-
dard (and also to help Prolog programmers write portable code), a compatibil-
ity library could be developed, which provides an implementation-independent
interface for these features, and maps all its publicly available predicates to
implementation-specific calls.

4.4 Common Failures in Implementations

We will discuss the typical reasons that made multiple test cases fail. The dis-
cussion covers the areas in which implementations should be improved, without
going into details about which test case failed in which implementation. These
details can be found in the test results log available from the web page of our
software.
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Some Prolog implementations still use the old, Edinburgh semantics of the
caret, i.e., they look for the caret in the middle of the 2nd argument of setof/3
and bagof/3.

There are problems with stream properties returned by stream property/2.
It is common that standard properties are missing or the default values for
user_output etc. are not compliant.

Some implementations do not make a proper distinction between the end-of-
stream and past-end-of-stream states. Some of them even allow reading the EOF
indicator after the past-end-of-stream.

There are also some typos in error terms, e.g. type_error(atom,...) is re-
ported instead of type_error(atomic,...).

It is a common mistake in some implementations that they mix throwing
existence error and domain error when an invalid stream term is passed to them.
Sometimes stream and stream or alias are confused in the error term. The stan-
dard is always clear, however, about what and when should be thrown.

In some implementations it is possible to open inherently unrepositionable
files (such as UNIX character devices) with reposition(true).

In some implementations stream property/2 returns the alias user input,
which is not a stream-term, in its first argument. A similar problem is that
current predicate/1 returns built-in predicates.

When a stream error is reported, the stream term associated with the call is
not copied properly, e.g. 42 is indicated instead of ’$stream’(42).

Some implementations confuse character code lists (codes) and character atom
lists (chars), e.g. atom codes/2 returns an atom list instead of a code list.

The standard is always clear about what culprit should be reported in type
error messages. For example, call((true,3))must report type_error(callab
le, (true,3)) instead of type_error(callable, 3). But some implementa-
tions prefer to report the latter, more specific culprit. Our test suite has an
implementation aspect declaration for this. There is a similar problem of report-
ing a type error when the tail of the 2nd argument of write term/2 is not a list.
Another similar case is that myop should not be part of the error triggered by
op(100,xfx,[myop,’,’]).

Some Prolog flags or flag values are missing in some implementations, e.g.
the flag unknown cannot have value warning. Sometimes the default value of
the flag does not match the defaults prescribed in section 7.11 of the standard.
Sometimes they have false instead of off etc.

There are a lot of problems in arithmetic error reporting. Some implemen-
tations make +inf is 1/0, nan is sqrt(-1) or -inf is log(0) true – all of
which must have thrown an evaluation error according to the standard. Some-
times an implementation fails to report an int overflow, and the addition of two
large integers succeed.

The result of X is 7//-3 depends on the rounding function used (see in sec-
tion 9.1.3.1) and thus it is implementation-specific: X becomes either −2 or −4.
On the contrary, the semantics of the operations mod and rem are unambiguous,
but some implementations get the sign of the result wrong.
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All integer operations must throw an error if they do not receive integer
arguments (e.g. X is 1.0>>2). However, sometimes they just convert the float
they receive to an integer.

Most arithmetic operations can return either an integer or a float – but round-
ing operations such as float and truncate have a specific return type (defined in
section 9.1.6). Some implementations, however, do not respect this, and have
7.0 is floor(7.4) instead of 7 is floor(7.4).

Although this is not a validity but a reliability issue, we have to mention the
dangerous tests here: those that hang particular Prolog implementations. We
have found segmentation violations, infinite loops and infinite memory alloca-
tions, none of which should ever happen when running Prolog code. Sometimes
we could not even identify a specific test case or set of test cases which created
the danger, for example when the Prolog process died with a failed assertion
in the middle of the garbage collection. But most of the time, the problem
was caused by a single test case, which we found and declared dangerous in
that implementation. For example, atom_concat(A,A,AA) triggered a bug in
the native-language code of atom concat/3 in one of the implementations when
A was an atom already of maximum length, and the bug caused the process
to emit a segmentation violation. In another case, we could identify that test-
ing abolish/1 causes instability, but none of the individual test cases made the
process crash.

We have found many similar fundamental flaws (dangerous or not) in the
error handling code of the built-in predicates in many implementations. Section
7.12.1 is perfectly clear about what to do when an error happens: the call has to
be replaced by an appropriate call to throw/1. On the contrary implementations
tend to throw the wrong error, just fail, print an error message and then fail, or
even crash – none of which is conforming.

Although full stop (.) marks the end of a term only if it is followed by a
layout character, the layout character must not be consumed by read/1 (see
section 8.14.1.4). Some implementations do consume it, however.

There are many problems with read/1, e.g. some implementations cannot
read write(0’\’) or quoted atoms as structure names such as ’is’(1,2) .
Some implementations have problems reading terms when char conversion/2 is
in effect.

The standard expects read/1 to throw a representation error when a limit
(such as maximum atom length) is exceeded. However, some implementations
throw syntax error instead.

Some implementations allow an atom to contain zero-coded characters (e.g.
’\000\’), and they can even read those from text streams.

number chars/2 in some implementations has problems ignoring whitespace
in the beginning of the number.

clause/2 in some implementations returns a preprocessed predicate body
for dynamic predicates. Not only calls get module qualification, but calls to
built-in predicates are also replaced to calls to implementation-specific, hidden
predicates.
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5 Related Work

We have gathered tests from various sources when compiling our test suite,
see Subsection 3.1 for the details. The ISO working group X3J17 dedicated to
improve the Prolog standard has also published a test suite [7] of 570 test cases.
Most of them are directly copied from the standard, similarly as our 675 iso doc
test cases.

[1] suggested that the ISO Prolog standard was not taken seriously, and most
implementations were not compliant. We believe that a test suite like ours, which
works in multiple Prolog implementations can reveal many specific problems,
which implementors can focus on if they strive for standards compliance. We
are planning to publish a detailed technical report and notify the implementors
about the failures we have found.

The standard has a formal semantics in its appendix. This semantics is for-
malized such a way that the specification can be executed – thus we can get a
completely compliant implementation. The text of the appendix, the executable
specification and an executor implementation in Prolog is available separately
[4]. The executable specification, as it is now, is very inefficient, and it also has
some limitations and bugs, see section 2.5 of [4].

6 Conclusion and Future Work

A good programming language standard makes writing portable programs pos-
sible – provided that the standard covers all the features used by the program,
and that implementations conform to the standard. Validation tests can reveal
weak spots of the standard and also problems in the implementations. We have
written a test framework and compiled a test suite in order to explore the areas
in which the Prolog standard and its implementations can be improved. We have
analyzed the test results, classified the reasons why some cases failed, identified
common problems and even some weaknesses of the Prolog standard. It was not
our goal to fix the problems, but to attract attention of the implementors and
the creators of the standard to them.

Our test suite covers most other test collections available ([9,4,7]), and our
test framework has been ported to several Prolog implementations, thus it can
be considered general.

It is our primary goal to cooperate with the standard designers and Prolog
implementors. We are planning to improve and extend the test suite, and port
the test framework to as many implementations as possible. But in order to
get others involved into our work, first we have to polish the framework and
document it properly. First we are planning to publish a technical report for the
implementors, with the failed tests documented in detail, so they can start fixing
the problems.

Currently it is hard to port the framework to a new Prolog implementation:
the programmer has to adjust a lot of settings and write helper predicates after
a careful study of the Prolog implementation – and they do not get proper
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feedback if they do it wrong. To help this, we are working on an autodetection
mechanism similar to GNU autoconf, and we’re also writing a porting tutorial.

More implementation aspect declarations should be added instead of com-
menting out test cases. It is important to have as many declarations as possible,
because they can eliminate a lot of false non-compliance messages at once, and
they can also reduce the risk of dangerous test cases. Most declarations should
be auto-detected instead of being specified manually.

The handling of dangerous tests should be improved. It should be possible
to declare an implementation-specific danger level for each test case, and the
framework would skip that test or run it in a separated process time- and
memory-constrained if necessary. (This would also make the effect of an un-
caught exception testable.) Semi-automatic tools should be developed to help
the programmer find the dangerous test cases.

The test framework ignores module qualification when it validates dynamic
clause bodies or error culprits. However, in some cases this is not precise enough,
for example in the example of section 8.9.3.4, the call to retract((foo(A) :-
A,call(A)))might have to be replaced by retract((foo(A) :- A,call(user:
A))) in order to succeed when the clause foo(X) :- call(X), call(X) is as-
serted. That’s because asserting involves module qualification, which transforms
the clause to foo(X) :- call(user:X), call(user:X) .

The effects of some tests are hard to describe in the current framework (e.g.
when both cyclic terms and module qualification is involved). This should be
improved.

Some Prolog implementations have problems parsing the test suite, even when
it is in functional notation, e.g. some of them cannot parse 0’\’ as an integer
constant. To help this, the framework should have its own, standard compliant
reimplementation of read/2, and it should use this to read the test case clauses.

As the standard develops, and possibly new parts get added, the test suite
has to be extended correspondingly. It would be useful if the standard itself had
a formal test suite in its appendix, in addition to the informal Examples for each
built-in predicate.
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Abstract. Answer set programming (ASP) is a form of declarative programming
particularly suited to difficult combinatorial search problems. However, it has
yet to be used for more than a handful of large-scale applications, which are
needed to demonstrate the strengths of ASP and to motivate the development of
tools and methodology. This paper describes such a large-scale application, the
TOAST (Total Optimisation using Answer Set Technology) system, which seeks
to generate optimal machine code for simple, acyclic functions using a technique
known as superoptimisation. ASP is used as a scalable computational engine to
handle searching over complex, non-regular search spaces, with the experimental
results suggesting that this is a viable approach to the optimisation problem and
demonstrates the scalability of a variety of solvers.

1 Introduction

Answer set programming (ASP) is a relative new technology, with the first computation
tools only appearing in the late 1990s [1,2]. Initial studies have demonstrated [3] that it
has potential in many areas, including automatic diagnostics [4,5], agent behaviour and
communication [6], security engineering [7] and information integration [8]. However,
larger production-scale applications are comparatively scarce. One of the few examples
of such a system is the USA-Advisor decision support system [5] for the NASA Space
Shuttle. It modelled a complex domain in a concise way; although of great significance
to the field it is, in computational terms, relatively small. The only large and difficult
programs most answer set solvers have been tested on are synthetic benchmarks; thus
it is not yet known how well these algorithms and implementations scale.

This paper investigates the possibility of using ASP technology to generate optimal
machine code for simple functions. Modern compilers only provide code improvements
via a range of approximations rather than generating truly optimal code; none of these
existing techniques, or approaches to creating new techniques, are likely to change the
current state of play.

An approach to generating optimal code sequences is called superoptimisation [9].
One of the main bottlenecks in this process is the size of the space of possible instruction
sequences, with most superoptimising implementations relying on brute force searches
to locate candidate sequences and then approximate equivalence verification.

From an ASP perspective, the TOAST project provides a large-scale, real-world ap-
plication, with certain programs containing more than a million ground rules. From a
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compiler perspective, it might be a step towards tools that can generate truly optimal
code, which could have an impact on many areas, especially resource-critical environ-
ments such as embedded systems and high performance computing.

This paper presents the results of the first phase of the TOAST project, with the
infrastructure complete and three machine architectures implemented. At present, off-
the-shelf solvers are used without any domain-specific optimisations, so the results we
present provide not only useful benchmarks for TOAST, but also for the answer set
solvers themselves.

2 The Problem Domain

Before describing the TOAST system and how it uses answer set technology, it is im-
portant to consider the problem that it seeks to solves and how this fits into the larger
field of compiler design.

2.1 Compilers and Optimisation

Optimisation, as commonly used in the field of compiler research and implementation,
is something of a misnomer. A typical compiler targeting assembly language or ma-
chine code will include an array of code improvement techniques, from the relatively
cheap and simple (such as identification of common sub-expressions and constant fold-
ing) [10] to the costly and esoteric (such as auto-vectorisation and inter-function regis-
ter allocation) [11]. However, none of these generate optimal code; the code that they
output is only improved (though often to a significant degree). All of these techniques
identify and remove specific inefficiencies, but it is impossible to guarantee that the
code could not be further improved.

Further confusion between code improvement and the generation of optimal code is
created by complications in defining optimality. In the linear case, a shorter instruction
sequence is quite clearly better1. However, if the code branches, but is acyclic, a number
of definitions are possible: shortest average path, shortest over all sequences, etc. For
code containing cycles, it is not possible to define optimality in the general case. To do
so would require calculating how many times the body of the loop would be executed
– a problem equivalent to the halting problem. To avoid this and other problem areas,
such as equivalence of floating point operations, this paper only considers optimality in
terms of the number of instructions used in acyclic, integer-based code.

It is also important to consider the scale of savings that are likely to be achieved. The
effect of improvements in code generation for an average program have been estimated
as a 4% speed increase per year2 [12]. In this context, a saving of just one or two

1 Although the TOAST approach could be easily generalised to handle them, this paper ignores
complications such as pipelining, caching, pre-fetching, variable-instruction latency and super-
scalar execution.

2 This may seem very low in comparison with the increase in processing power created by ad-
vances in processor manufacture. However, it is wise to consider the huge disparity in research
spending in the two areas, as well as the link between them: most modern processors would
not achieve such drastic improvements without advanced compilers to generate efficient code
for them.
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instructions is significant, particularly if the technique is widely applicable or can be
used to target ‘hot spots’, CPU-intensive sections of code.

2.2 Superoptimisation

Superoptimisation is a radically different approach to code generation, first described
by Massalin [9]. Rather than starting with crudely generated code and improving it, a
superoptimiser starts with the specification of a function and performs an exhaustive
search for a sequence of instructions that meets this specification. Clearly, as the length
of the sequence increases, the search space potentially increases at an exponential rate.
This makes the technique unsuitable for use in normal compiler toolchains, though for
improving the code generators of compilers and for targeting key sections of perfor-
mance critical functions, the results can be impressive.

A good example of superoptimisation is demonstrated by the sign function [9], which
returns the sign of a binary integer, or zero if the input is zero:

int signum(int x)
{

if (x > 0) return 1;
else if (x < 0) return -1;
else return 0;

}

A simple compilation of this function would generate ten or so instructions, including
at least two conditional branch instructions. A skilled assembler programmer might
manage to implement it in four instructions with only one conditional branch. Current
state of the art compilers can normally achieve the same. However, superoptimisation
of this function (here for the SPARC-V7 architecture) gives the following sequence of
three instructions:

! input in %i0
addcc %i0 %i0 %l1
subxcc %i0 %l1 %l2
addx %l2 %i0 %o1
! output in %o1

Not only is this sequence shorter, it does not require any conditional branches, a signif-
icant saving on modern pipelined processors. This example shows another interesting
property of code produced by superoptimisation: it is not obvious that this computes the
sign of a number or how it does so. The pattern of addition and subtraction ‘cancels out’,
with the actual computation being done by how the carry flag is set and used by each
instruction (instructions whose names include cc set the carry flag, likewise x denotes
instructions that use the carry flag). Such inventive uses of the processor’s features are
common in superoptimised sequences; when the GNU Superoptimizer (GSO) [13] was
used to superoptimise sequences for the GCC port to the POWER architecture, it pro-
duced a number of sequences that were shorter than the processor’s designers thought
possible!

Despite significant potential, superoptimisation has received relatively little atten-
tion within the field of compiler research. Following Massalin’s work, the next su-
peroptimising implementation was GSO, a portable superoptimiser developed to im-
prove the GCC toolchain. It advanced on Massalin’s search strategy by attempting
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to apply constraints while generating elements of the search space, rather than gen-
erating all possible sequences and then skipping those that were marked as clearly
redundant. The most recent work on superoptimisation have been from the Denali
project [14,15]. Their approach was much closer to that of the TOAST project, us-
ing automatic theorem proving technology as an ‘intelligent’ approach to handling the
large search spaces.

2.3 Analysis of Problem Domain

Superoptimisation naturally decomposes into two sub-problems: searching for sequ-
ences that meet some limited criteria and then verifying which of these candidates are
fully equivalent to the input function.

The search space of possible sequences of a given length is very large, at least the
number of instructions available to the power of the length of the sequences (thus grow-
ing at least exponentially as the length rises). However, a number of constraints exist
that reduce the amount of the space that has to be searched. For example, if a sub-
sequence is known to be non-optimal, then anything that includes it will also be non-
optimal and thus can be discarded. Handling the size and complexity of this space is the
current limit on superoptimiser performance.

Verifying that two code sequences are equivalent also involves a large space of pos-
sibilities (for a sequence with a single input it is 2w, where w is the word length (the
number of bits per register) of the machine architecture). However, it is a space that
shows a number of unusual properties. Firstly, the process is a reasonably simple task
for human experts, suggesting there may be a set of strong heuristics. Secondly, se-
quences of instructions that are equivalent on a reasonably small subset of the space of
possible inputs tend to be equivalent on all of it. Both Massalin’s superoptimiser and
GSO handled verification by testing the new sequence for correctness on a represen-
tative set of inputs and declaring it equivalent if it passed. Although non-rigorous, this
approach seemed to work in practise [9,13].

Due to the problems in producing accurate, formal models of the search space of
instruction sequences the complexity of superoptimisation is currently unknown.

3 Answer Set Programming

Answer set programming is a form of declarative programming oriented towards solv-
ing difficult combinatorial search problems, which has emerged from research on the
semantics of logic programming languages and non-monotonic reasoning [16,17]. The
answer set semantics have developed into an intuitive system for ‘real-world reason-
ing’. For reasons of compactness, this paper only includes a brief summary of answer
set semantics, though a more in-depth description can be found in [18].

Answer set semantics are defined with respect to programs, sets of Horn clause-style
rules composed of literals. Two forms of negation are described: negation as failure and
explicit (or classical) negation. The first (denoted as not) is interpreted as not knowing
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that the literal is true, while the second (denoted as ¬) is knowing that the literal is not
true. For example:

a← b, not c.
¬b← not a.

is interpreted as “a is known to be true if b is known to be true and c is not known to
be true. b is known to be not true if a is not known to be true” (the precise declarative
meaning is an area of ongoing work, see [19] for a further discussion). Constraints are
also supported, which allow conjunctions of literals to be deemed inconsistent. Answer
sets are sets of literals that are consistent (i.e. do not contain both a or ¬a), not con-
strained (do not contain the bodies of any constraints) and supported (every literal has
at least one acyclic way of concluding its truth). A given program may have zero or
more answer sets.

Answer set programming is describing a problem as a program under the answer set
semantics in such a way that the answer sets of the program correspond to the solutions
of the problem. In many cases, this is simply a case of encoding the description of the
problem domain and the description of what constitutes a solution. Thus, solving the
problem is reduced to computing the answer sets of the program.

Computing an answer set of a program is an NP-complete task, but there are a num-
ber of sophisticated tools (known as answer set solvers) that can perform this computa-
tion. The first generation of efficient solvers (such as SMODELS [1] and DLV [20]) use
a DPLL-style [21] algorithm. Before computation, the answer set program is grounded
(an instantiation process that creates copies of the rules for each usable value of each
variable) by using tools such as LPARSE [22], to remove variables. The answer sets
are then computed using a backtracking algorithm; at each stage the sets of literals
that are known to be true and not known to be true are expanded according to sim-
ple rules (similar to unit propagation in DPLL), then a branching literal is chosen
according to heuristics and both possible branches (asserting the literal to be known
to be true or not) are explored. An alternative approach is to use a SAT solver to
generate candidate answer sets and then check whether these meet all criteria. This
is the approach used by CMODELS [23] and ASSAT [24]. More recent work has
investigated using ‘Beowulf’-style parallel systems to explore possible models in
parallel [25].

4 Total Optimisation Using Answer Set Technology

The TOAST system consists of a number of components that generate answer set pro-
grams and parse answer sets, with a ‘front end’ which uses these components to produce
a superoptimised version of an input function. Data is passed between components ei-
ther as fragments of answer set programs or in an architecture-independent, assembly
language-like format. An answer set solver is then used as a ‘black box’ tool (currently
any solver that supports LPARSE syntax).

ASP was chosen because the structure of the rules simplifies the modelling of the bit-
wise operation of instructions, while also allowing the modelling of complex constraints.



TOAST: Applying Answer Set Programming to Superoptimisation 275

4.1 System Components

Four key components provide most of the functionality of the TOAST system:

pickVectors
input: variable specification
output: ASP vectors
Given the specification of the inputs to an instruction sequence, a representative set
of inputs (known as input vectors) are generated in ASP.

execute
input: ASP vectors, program
output: ASP constraints
Takes the input vectors (as generated by pickVectors or verify) and emulates run-
ning an instruction sequence with that input, giving constraints on the instruction
sequence’s outputs.

search
input: search space, ASP vectors, ASP constraints
output: program fragments
Takes ASP fragments giving ‘start’ and ‘end’ values (from pickVectors/verify and
execute respectively) and searches for all instruction sequences of a given length
(the search space) that produce the correct output with the described input.

verify
input: program, program
output: boolean
Takes two instruction sequences with the same input specification and tests if they
are equivalent. If they are not, an input vector on which they differ can be output,
in a suitable form for execute and search.

The TOAST system is fully architecture independent. Architecture-specific informa-
tion is stored in a description file which provides meta-information about the architec-
ture, as well as which operations from the library of instructions are available. At the
time of writing, TOAST supports the following architectures: MIPS [26], SPARC-V7
and SPARC-V8 [27]. Porting to a new architecture is simple and takes between a few
hours and a week, depending on how many of the instructions used have already been
modelled.

4.2 System Architecture

The key observation underlying the design of the TOAST system is that any super-
optimised sequence will necessarily be returned by using search on the appropriate
instruction length. However, not everything that search returns is necessarily a correct
answer. Thus, to generate superoptimised sequences the front end uses pickVector and
execute on the input instruction sequence to create criteria for search. Instruction se-
quence lengths from one, up to one less than the length of the input sequence, are then
searched sequentially. If any answers are given, another criteria set is created and the
same length searched again. The two sets are then intersected, as any correct answer
must appear in both. This process is repeated until either the intersection is empty, in
which case the search moves on to the next length, or until the intersection stops getting
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any smaller. verify can then be used to check members of this set for equivalence to the
original input program.

4.3 The Answer Set Programs

All of the answer sets programs created in the system consist of a number of basic
components.

Flow control rules define which instruction will be ‘executed’ at a given time step by
controlling the pc (program counter) literal. An example set of flow control rules are
given in Figure 1. The rules are fairly self-explanatory, for example, an instruction that
asserts jump(C,T,J), moves the program’s execution on J instructions, otherwise it
will just move forward by one. As ASP programs may need to simultaneously model
multiple independent code streams (for example, when trying to verify their equiva-
lence), all literals are ‘tagged’ with an abstract property called colour. The inclusion
of the colour(C) literal in each rule then allows copies to be created for each code
stream during instantiation. In most cases, when only one code stream is used, only one
value of colour is defined and only one copy of each set of rules is produced; the
overhead involved is negligible.

haveJumped(C,T) :- jump(C,T,J), jumpSize(C,J),
time(C,T), colour(C).

pc(C,PCV+J,T+1) :- pc(C,PCV,T), jump(C,T,J), jumpSize(C,J),
time(C,T), colour(C), position(C,PCV).

pc(C,PCV+1,T+1) :- pc(C,PCV,T), not haveJumped(C,T),
time(C,T), colour(C), position(C,PCV).

pc(C,1,1).

Fig. 1. Flow Control Rules in ASP

Flag control rules model the setting and maintenance of processor flags such as carry,
overflow, zero and negative. Although generally only used for controlling conditional
branches and multi-word arithmetic, these flags are a source of many superoptimised
sequences and are thus of prime importance when modelling a processor.

value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
value(C,R1,B), -value(C,R2,B),
register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
-value(C,R1,B), value(C,R2,B),
register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

-value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
not value(C,T,B), register(R1), register(R2),
colour(C), position(C,P), time(C,T), bit(B).

symmetricInstruction(lxor).

Fig. 2. Modelling of a Logical XOR Instruction in ASP
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The instruction sequence itself is represented as a series of facts, or in the case of
search, a set of choice rules (choice rules are a syntactic extension to ASP, see [1]).
These literals are then used by the instruction definitions to control the value literals
that give the value of various registers within the processor. If the literal is in the answer
set, the given bit is taken to be a 1, if the classically-negated version of the literal is in the
answer set then it is a 0. An example instruction definition, for a logical XOR (exclusive
or) between registers, is given in Figure 2. Note the use of negation as failure to reduce
the number of rules needed and the declaration that lxor is symmetric, which is used
to reduce the search space.

Input vectors and output constraints are the program fragments created by pickVec-
tors and execute respectively. None of the ASP programs generated require disjunction,
aggregates or any other non-syntactic extensions to answer set semantics.

5 Testing

In this section we present preliminary results on using ASP as a tool for superoptimisa-
tion, also showing some interesting properties of the different answer set solvers used
in the tests.

5.1 System and Solvers

Tests were run on a Beowulf-style cluster of sixteen 800MHz Intel Celeron, 512MB
RAM machines connected by 100Mb Ethernet, running SuSE Linux 9.2. Results are
given for SMODELS-2.28 (denoted s), SURYA [28] (denoted u), NOMORE++ 1.4 [29]
(denoted m) and the MPI version of PLATYPUS running on n nodes (denoted p/n).
CMODELS, ASSAT and LPSM were also tested, though concerns over their stability
and correctness means the results are not presented. DLV has yet to be tested, as the
difference in syntax would require extensive alterations to the input programs. It is
hoped that we will soon be able to publish results for these solvers. LPARSE-1.0.17
was used to ground the programs. Times for the sequential solvers were recorded using
the system time command, while the MPI wall time was used for PLATYPUS (both
given in seconds).

5.2 Test Programs

Three suites of programs were used in the tests. In the first, search was used to generate
programs that searched the space of SPARC-V7 instructions for candidate optimisations
for the following instruction sequence:

! input in %i0, %i1
and %i0 %i1 %l1
add %i0 %l1 %l2
add %i0 %l2 %l3
sub 0 %l3 %o1
! output in %o1

This sequence was selected as a ‘worst case’, an example of a sequence that cannot
be superoptimised, giving an approximate ceiling on the performance of the system.
Programs s1 to s4 are searches over the spaces of 1 to 4 instructions respectively.
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The remaining two test suites give different approaches to testing verify. In the first
case, an older encoding of the search space using choice rules (and thus limiting it to
SMODELS and PLATYPUS) was used. The test was to verify the equivalence of:

! input in %i0
add %i0 %i0 %o1
! output in %o1

! input in %i0
umult %i0 2 %o1
! output in %o1

using the SPARC-V83 architecture, but varying the processor word length (the number
of bits per register). This pair of programs were chosen because, although they are
clearly equivalent, the modelling and reasoning required to show this is non-trivial.
Programs v8 to v24 are variants with word lengths of 8 to 24 bits respectively.

The final test suite for verify uses two instruction sequences that differed only on one
input, thus creating a program with a single answer set. The size of the search space
was altered by simply fixing the value of some of the bits (programs w8 to w24 test for
equivalence over 8 to 24 bits). The instruction sequences were:

! input in %i0
sra %i1 31 %l1
orcc %l1 %l1 %o1
bne 2
add %l1 1 %o1
! output in %o1

! input in %i0
addcc %i0 %i0 %l1
subxcc %i0 %l1 %l2
addx %l2 %i0 %o1
! output in %o1

The programs used in these tests are available online4 and will be contributed to the
Asparagus benchmark collection [30].

5.3 Results

Figure 3 gives the number of atoms, answer sets and rules, along with the sizes of the
search spaces, for the programs used in the tests. Timing results for the search tests are
given in Figure 4, while the results for the two verify tests are given in Figures 5 and
7 and graphed in Figures 6 and 8 respectively. Not all tests could be completed due to
time constraints, with entries marked > n aborted after n seconds and those marked−
not attempted due to estimated compute times. Results for PLATYPUS on a single node
are not presented, due to limitations in the current MPI implementation.

5.4 Analysis

The results presented suggest a number of interesting conclusions. Firstly, answer set
solvers are capable of handling non-trivial, real-world problems and attempting to solve
the problem of generating optimal code with them is viable. Although the compute time
for the space of four instructions is prohibitively high, it is worth noting that this is
without even obvious constraints (such as the output of each instruction apart from the

3 SPARC-V8 is an later, minimal extension of SPARC-V7 with the addition of the umult
instruction.

4 http://www.bath.ac.uk/∼mjb/toast/
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Program Atoms Rules Raw search space Program Atoms Rules Raw search space
v8 975 1755 w8 2296 12892
v9 1099 2063 w9 2296 12894
v10 1235 2402 w10 2296 12896
v11 1383 2772 w11 2296 12898
v12 1543 3173 w12 2296 12900
v13 1715 3605 w13 2296 12902
v14 1899 4068 w14 2296 12904
v15 2095 4562 w15 2296 12906
v16 2303 5087 w16 2296 12908
v17 2527 5645 w17 2296 12910
v18 2763 6234 w18 2296 12912
v19 3011 6854 w19 2296 12914
v20 3271 7505 w20 2296 12916
v21 3543 8187 w21 2296 12918
v22 3827 8900 w22 2296 12920
v23 4123 9644 w23 2296 12922
v24 4431 10419 w24 2296 12924
s1 6873 1197185 129
s2 6873 1197184 35862
s3 6873 1197183 15241350
s4 6873 1197182 9190534050

Fig. 3. Program Sizes

Program
s1 42.93 1736.11 60.95 140.327 141.824 139.167 141.167
s2 214.31 66357.55 235.08 256.68 397.393 410.122 461.69
s3 74777.67 304401.98 407556.46 51580 19523.7 9758.36 7503.68
s4 237337.35 - - - - - -

Fig. 4. Search Test Times (secs)

Program
v8 0.153 0.497732 0.560709 0.633932 0.721136
v9 0.306 0.866704 0.70772 0.808055 0.935053
v10 0.675 1.61512 1.2337 1.16333 1.39326
v11 1.537 3.42153 1.97181 1.93191 2.2948
v12 3.597 7.46042 4.28284 3.53243 3.38788
v13 8.505 15.8174 8.86814 6.25371 6.22179
v14 17.795 34.4004 19.5743 12.38 9.52772
v15 39.651 77.0911 41.1235 27.2365 15.3818
v16 93.141 167.222 71.3785 46.6144 35.3159
v17 217.162 372.57 146.603 99.3623 72.3708
v18 463.025 815.373 384.237 189.690 122.038
v19 1002.696 1738.02 681.673 421.681 262.611
v20 2146.941 3790.84 1514.80 896.705 566.040
v21 4826.837 8206.4 3438.71 1874.36 1244.95
v22 11168.818 17974.8 6683.06 3850.71 2296.87
v23 23547.807 38870.5 15047 7947.95 4833.66
v24 52681.498 83405.1 32561.2 16165.4 10580.4

Fig. 5. First Verify Test (secs)
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Program s u m p/2 p/4 p/8 p/16
w8 0.63 10.939 3.05 3.90092 5.31244 5.24863 5.6869
w9 0.75 20.077 4.78 5.18021 5.65978 7.06414 6.04698
w10 1.02 35.487 8.03 6.67866 6.64935 7.29748 7.87806
w11 1.67 72.561 13.83 10.2767 10.0379 10.7023 9.45804
w12 2.79 129.669 25.67 17.4263 15.9894 15.3256 14.996
w13 5.03 248.974 45.83 32.1642 27.4496 27.4135 22.0735
w14 8.99 541.228 88.23 60.5059 54.06 47.4698 40.7822
w15 18.46 1019.908 161.95 118.506 102.141 77.1823 68.1758
w16 32.55 1854.699 303.69 232.18 189.572 174.96 136.873
w17 69.06 3918.655 554.62 460.882 386.886 357.874 252.538
w18 128.03 7245.888 1034.30 910.266 774.498 653.251 467.091
w19 254.43 14235.360 1898.05 1815.91 1602.51 1311.38 885.655
w20 526.03 27028.049 3576.83 3647.52 3012.45 2558.88 1527.01
w21 1035.09 60064.824 6418.55 7306.26 6061.85 4715.55 3378.42
w22 2552.65 109205.951 11910.02 14813.1 11279.8 9499.05 6788.65
w23 4091.70 238583.922 22766.03 - 23948.4 18912.2 11793.5
w24 8730.61 - 43161.32 - 47673.3 37630.4 23156.8

Fig. 7. Second Verify Test (secs)

last must be used, no instruction or argument pair should be repeated, etc), let alone
some of the more sophisticated constraints (such as removing all non-optimal pairs and
triples). Thus implementing search using ASP seems eminently possible. The results
for verify are less encouraging and suggest that attempting to verify sequences using
greater than 32 bits of input is likely to require significant resources given current solver
technology.
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The results also suggest a number of interesting points related to solver design
and implementation. Firstly, clearly implementation does matter. SURYA implements
a slight refinement of the algorithm used in SMODELS, but performs significantly worse
in almost all cases. How serious these implementation differences are is not known,
but clearly for any solver that is intended to be competitive, implementation details do
matter. Another, more subtle issue suggested by these results is the cost of lookahead.
In the first verify test, the times increase significantly faster that doubling, despite the
search space itself only doubling. In the second test, the rate of increase is much closer
to doubling. In the first case, the increasing number of atoms, and thus the rising cost
of lookahead is thought to cause this disparity. This fits with other experiments that
have been run using the TOAST programs and explains why NOMORE++ is gener-
ally slower than SMODELS. Interestingly, the second verify test also has NOMORE++’s
times increasing by less than a factor of two as the search space doubles, suggesting
that, although more costly, its branching heuristic is indeed ‘smarter’. Again this fits
with other tests, which have found degenerate verify programs where NOMORE++’s
branching heuristic has performed significantly better than any other solver.

Finally, the results suggest some interesting possibilities in the field of distributed
solver development. The performance of PLATYPUS on s3 and v16 to v24 demon-
strates the power of the technique and that, especially for larger programs, near-linear
speed up is possible. However, the performance on s1, s2 and v8 to v15 also shows
that, unsurprisingly, on smaller programs the overhead of distribution outweighs the
benefits. Why PLATYPUS takes longer than SMODELS on w8 to w24 is not known.
Potentially, the smaller number of atoms meant the program’s balance between expand,
lookahead and branching were not of the right form to demonstrate the value of distribu-
tion or problems with the delegation policy. Parallel solvers are clearly a very powerful
advance in solver technology, but one that must be used carefully.
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6 Future Development

One of the key targets in the next stage of TOAST development is to reduce the amount
of time required in searching. Doing so will also increase the length of instruction se-
quence that can be found. This requires improving both the programs that are generated
and the tools used to solve them.

A key improvement to the generated programs will be to remove all short sequences
that are known to be non-optimal. A slight modification to search allows it to generate
all possible instruction sequences of a given length. By superoptimising each one of
these for the smaller lengths, it is then possible to build a set of equivalence classes of
instructions. Only the shortest member of each class needs to be in the search space
and thus a set of constraints can be added to the programs that search generates. This
process only ever needs to be done once for each processor architecture the TOAST
system is ported to and will give significant improvements in terms of search times.
The equivalence classes generated may also be useful to augment verify.

The other developments needed to reduce the search time are in the tools used. Ad-
dressing the amount of memory consumed by LPARSE and attempting to improve the
scaling of the SMODELS algorithm are both high priorities.

The performance of verify also raises some interesting questions. In its current form,
it is usable for some of the smaller, embedded processors, though it is unlikely to scale
to high end, 64 bit processors. A number of alternative approaches are being considered,
such as attempting to prove equivalence results about the ASP program generated, re-
ducing the instructions to a minimal/pseudo-normal form (an approach first used by
Massalin), using some form of algebraic theorem proving (as the Denali project used)
or attempting to use the observation that sequences equivalent on a small set of points
tend to be equivalent on all of them.

Using the TOAST system to improve the code generated by toolchains such as GCC
is also a key target for the project. By implementing tools that translate between the
TOAST internal format and processor-specific assembly language, it will be possible to
check the output of GCC for sequences that can be superoptimised. Patterns that occur
regularly could be added to the instruction generation phase of GCC. The code gener-
ators used by JIT (Just In Time) compilers and performance critical system libraries,
such as GMP (GNU Multiple Precision Arithmetic Library) could also be application
areas.

It is hoped that it will not only prove useful as a tool for optimising sections of
performance-critical code, but that the ASP programs could be used as benchmarks
for solver performance and the basis of other applications which reason about machine
code.

7 Conclusion

This paper suggests that ASP can be used to solve large-scale, real-world problems.
Future work will hopefully demonstrate this is also a powerful approach to superopti-
misation and thus, perhaps even a ‘killer application’ for ASP.

However, it is not without challenges. Although savings to both the size of the ASP
programs used and their search spaces are possible, this will remain a ‘high end’ ap-
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plication for answer set solvers. Some of the features it requires, such as the handling
of large, sparse search spaces and efficiency in producing all possible answer sets (or
traversing the search space of programs without answer sets) are not key targets of
current solver development.

The TOAST project demonstrates that answer set technology is ready to be used in
large-scale applications, although more work needs to be done to make it competitive.

References
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Abstract. We describe an approach to modelling biological networks by action
languages via answer set programming. To this end, we propose an action lan-
guage for modelling biological networks, building on previous work by Baral et
al. We introduce its syntax and semantics along with a translation into answer
set programming. Finally, we describe one of its applications, namely, the sulfur
starvation response-pathway of the model plant Arabidopsis thaliana and sketch
the functionality of our system and its usage.

1 Introduction

Molecular biology has seen a technological revolution with the establishment of high-
throughput methods in the last years. These methods allow for gathering multiple orders
of magnitude more data than was procurable before. For turning such huge amounts of
data into knowledge, one needs appropriate and powerful knowledge representation
tools that allow for modelling complex biological systems and their behaviour. Of par-
ticular interest are qualitative tools that allow for dealing with biological and biochem-
ical networks. Since these networks are very large, a biologist can manually deal with
a small part of it at once. Among the more traditional qualitative formalisms, we find
e.g. Petri Nets [1,2], Flux Balance Analysis [3] or Boolean Networks [4]. As detailed
in [5], these approaches lack sufficiently expressive reasoning capacities.

Groundbreaking work addressing this deficiency was recently done by Chitta Baral
and colleagues who developed a first action language for representing and reasoning
about biological networks [6,5]. Action languages were introduced in the 1990s by
Gelfond and Lifschitz (cf. [7]). By now, there exists a large variety of action languages,
like the most basic language A and its extensions [8] as well as more expressive ac-
tion languages like C [9] or K [10]. Traditionally, action languages are designed for
applications in autonomous agents, planning, diagnosis, etc, in which the explicit ap-
plicability of actions plays a dominant role. This is slightly different in biological sys-
tems where reactions are a major concern. For instance, while an agent usually has the
choice to execute an action or not, a biological reaction is often simply triggered by
its application conditions. This is addressed in [5] by proposing trigger and inhibition
rules as an addition to the basic action language A; the resulting language is referred
to as A0

T . A further extension, allowing knowledge about event ordering, is introduced
in [11].
� Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.
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The advantages of action languages for modelling biological systems are manifold:

– We get a simplified model. It is not necessary to have any kinetic parameters. The
approach can thus already be used in a very early state to verify whether the pro-
posed model of the biological system can or cannot hold.

– Different kinds of reasoning can be used to plan and support experiments. This
helps to reduce the number of expensive experiments.

– Further reasoning modes allow for prediction of consequences and explanation of
observations.

– The usage of static causal laws allows to easily include background knowledge like
environmental conditions, which play an important role for the development of a
biological system but are usually difficult to include in the model.

– The approach is elaboration tolerant because it allows to easily extend the model
without requiring to change the rest of the model.

We start by introducing our action language CTAID by building on languageA0
T [5]

and C [9]. CTAID extends C by adding biologically relevant concepts fromA0
T such as

triggers and it augmentsA0
T by providing static causal laws for modelling background

knowledge. Moreover, fluents are no longer inertial by definition and the concurrent
execution of actions can be restricted. A feature distinguishing CTAID from its prede-
cessors is its concept of allowance, which was motivated by our biological applications.
The corresponding allowance rules let us express that an action can occur under cer-
tain conditions but does not have to occur. In fact, biological systems are characterised
by a high degree of incomplete knowledge about the dependencies among different
component and the actual reasons for their interaction. If the dependencies are well un-
derstood, they can be expressed using triggering rules. However, if the dependencies are
only partly known or not part of the model, e.g. environmental conditions, they cannot
be expressed appropriately using triggering rules. The concept of allowance permits
actions to take place or not, as long as they are allowed (and not inhibited). This in-
troduces a certain non-determinism that is used to model alternative paths, actions for
which the preconditions are not yet fully understood, and low reaction rates. Of course,
such a non-deterministic construct increases the number of solutions. However, this is
a desired feature since we pursue an exploratory approach to bioinformatics that allows
the biologist to browse through the possible models of its application.

We introduce the syntax and semantics of CTAID and give a soundness and com-
pleteness result, proved in [12]. For implementing CTAID, we compile specifications
in CTAID into logic programs under answer set semantics [13]. This has been imple-
mented in Java and was used meanwhile in ten different application scenarios at the
Max-Planck Institute for Molecular Plant Physiology for modelling metabolic as well as
signal transduction networks. Among them we present the smallest application, namely
the sulfur starvation response-pathway of the model plant Arabidopsis thaliana.

2 Action Language CTAID

The alphabet of our action language CTAID consists of two nonempty disjoint sets of
symbols: a set of actions A and a set of fluents F . Informally, fluents describe chang-
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ing properties of a world and actions can influence fluents. We deal with propositional
fluents that are either true or false. A fluent literal is a fluent f possibly preceded by ¬.

We distinguish three sublanguages of CTAID: The action description language is
used to describe the general knowledge about the system, the action observation lan-
guage is used to express knowledge about particular points of time and the action query
language is used to reason about the described system.

Action Description Language. To begin with, we fix the syntax of CTAID’s action
description language:

Definition 1. A domain description D(A,F ) in CTAID consists of expressions of the
following form:

(a causes f1, . . . , fn if g1, . . . , gm) (1)

(f1, . . . , fn if g1, . . . , gm) (2)

(f1, . . . , fn triggers a) (3)

(f1, . . . , fn allows a) (4)

(f1, . . . , fn inhibits a) (5)

(noconcurrency a1, . . . , an) (6)

(default f) (7)

where a, a1, . . . , an are actions and f, f1, . . . , fn, g1, . . . , gm are fluent literals.

Note that A0
T consists of expressions of form (1), (3), and (5) only.

A dynamic causal law is a rule of form (1), stating that f1, . . . , fn hold after the
occurrence of action a if g1, . . . , gm hold when a occurs. If there are no preconditions
of the form g1, . . . , gm, the if-part can be omitted. Rule (2) is a static causal law, used
to express immediate dependencies between fluents; it guarantees that f1, . . . , fn hold
whenever g1, . . . , gm hold. Rules (3) to (6) can be used to express whether and when an
action can or cannot occur. A triggering rule (3) is used to state that action a occurs im-
mediately if the preconditions f1, . . . , fn hold, unless it is inhibited. An allowance rule
of form (4) states that action a can but need not occur if the preconditions f1, . . . , fn

hold. An action for which triggering or allowance rules are specified can only occur if
one of its triggering or allowance rules, resp., is satisfied. An inhibition rule of form
(5) can be used to express that action a cannot occur if f1, . . . , fn hold. A rule of the
form (6) is a no-concurrency constraint. Actions included in such a constraint cannot
occur at the same time. Rule (7) is a default rule, which is used to define a default value
for a fluent. This makes us distinguish two kinds of fluents: inertial and non-inertial
fluents. Inertial fluent change their value only if they are affected by dynamic or static
causal laws. Non-inertial fluents on the other hand have the value, specified by a default
rule, unless they are affected by a dynamic or static causal law. Every fluent that has
no default value is regarded to be inertial. Additionally, we distinguish three groups of
actions depending on the rules defined for them. An action can either be a triggered,
an allowed or an exogenous action. That means, for one action there can be several
triggering or several allowance rules but not both.

As usual, the semantics of a domain description D(A,F ) is defined in terms of
transition systems. An interpretation I of F is a complete and consistent set of fluents.

Definition 2 (State). A state s ∈ S of the domain description D(A,F ) is an interpre-
tation of F such that for every static causal law (f1, . . . , fn if g1, . . . , gn) ∈ D(A,F ),
we have {f1, . . . , fn} ⊆ s whenever {g1, . . . , gn} ⊆ s.
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Hence, we are only interested in sets of fluents satisfying all static causal laws, i.e. cor-
rectly model the dependencies between the fluents.

Depending on the state, it is possible to decide which actions can or cannot occur.
Therefore we define the notion of active, passive and applicable rules.

Definition 3. Let D(A,F ) be a domain description and s a state of D(A,F ).

1. An inhibition rule ( f1, . . ., fn inhibits a) is active in s, if s |= f1 ∧ . . . ∧ fn, oth-
erwise the inhibition rule is passive. The set AI(s) is the set of actions for which
there exists at least one active inhibition rule in s.

2. A triggering rule ( f1, . . ., fn triggers a) is active in s, if s |= f1 ∧ . . . ∧ fn and all
inhibition rules of action a are passive in s, otherwise the triggering rule is passive
in s. The set AT (s) is the set of actions for which there exists at least one active
triggering rule in s. The set AT (s) is the set of actions for which there exists at
least one triggering rule and all triggering rules are passive in s.

3. An allowance rule ( f1, . . ., fn allows a) is active in s, if s |= f1 ∧ . . . ∧ fn and all
inhibition rules of action a are passive in s, otherwise the allowance rule is passive
in s. The set AA(s) is the set of actions for which there exists at least one active
allowance rule in s. The set AA(s) is the set of actions for which there exists at
least one allowance rule and all allowance rules are passive in s.

4. A dynamic causal law (a causes f1, . . ., fn if g1, . . ., gn) is applicable in s, if s |=
g1 ∧ . . . ∧ gn.

5. A static causal law ( f1, . . ., fn if g1, . . ., gn) is applicable in s, if s |= g1∧ . . .∧gn.

Observe that point two and three of the definition express that an action has to occur or
may occur as long as there is one active triggering or allowance rule respectively. An
action cannot occur if either an inhibition rule for the action is active or if all triggering
or allowance rules for the action are passive.

The effects of an action are determined by the applicable dynamic causal laws de-
fined for this action. Following [8], the effects of an action a in a state s of domain
description D(A,F ) are defined as follows:

E(a, s) = {f1, . . . , fn | (a causes f1, . . . , fn if g1, . . . , gm) is applicable in s}

The effects of a set of actions A is defined as the union of the effects of the single
actions: E(A, s) =

⋃
a∈AE(a, s). Besides the direct effects of actions, a domain de-

scription also defines the consequences of static relationships between fluents. For a set
of static causal laws in a domain description D(A,F ) and a state s, the set

L(s) = {f1, . . . , fn | (f1, . . . , fn if g1, . . . , gm) is applicable in s}

contains the heads of all static causal laws whose preconditions hold in s.
Finally, the way the world evolves according to a domain description is captured by

a transition relation; it defines to which state the execution of a set of actions leads.

Definition 4. Let D(A,F ) be a domain description and S be the set of states of
D(A,F ). Then, the transition relation Φ ⊆ S × 2A × S determines the resulting state
s′ ∈ S after executing all actions B ⊆ A in state s ∈ S as follows:
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(s,B, s′) ∈ Φ for s′ = {(s ∩ s′) ∪E(B, s) ∪ L(s′) ∪Δ(s′)}

where Δ(s′) = { f | (default f) ∈ D(A,F ),¬f /∈ E(B, s) ∪ L(s′)}
∪ {¬f | (default ¬f) ∈ D(A,F ), f /∈ E(B, s) ∪ L(s′)}

Even if no actions are performed, there can nevertheless be a change of state due to the
default values defined by the domain description. Intuitively, if actions occur, the next
state is determined by taking all effects of the applicable dynamic and static causal laws
and adding the default values of fluents not affected by these actions. The values of all
fluents that are not affected by these actions or by default values remain unchanged.

The transition relation determines the resulting state when an action is executed,
but it cannot be used to decide whether the action happens at all, since it does not
consider triggering, allowance or inhibition rules. This is accomplished by the concept
of a trajectory, which is a sequence of states and actions that takes all rules in the
domain description into account.

Definition 5 (Trajectory). Let D(A,F ) be a domain description.
A trajectory s0, A1, s1, . . . , An, sn of D(A,F ) is a sequence of actions Ai ⊆ A and

states si satisfying the following conditions for 0 ≤ i < n:

1. (si, A, si+1) ∈ Φ
2. AT (si) ⊆ Ai+1
3. AT (si) ∩Ai+1 = ∅

4. AA(si) ∩Ai+1 = ∅
5. AI(si) ∩Ai+1 = ∅
6. |Ai ∩B| ≤ 1

for all (noconcurrency B) ∈ D(A,F ).

A trajectory assures that there is a reason why an action occurs or why it does not
occur. The second and third point of the definition make sure that the actions of all
active triggering rules are included in the set of actions and that no action for which all
triggering rules are passive is included in the set of actions. Point four and five assure
that no actions for which all allowance rules are passive and no inhibited actions are
included in the set of actions. 1 The definition does not include assertions about the
active allowance rules, because they can be, but not necessarily have to be, included in
the set of actions. (As detailed above, this is motivated by our biological application.)
Point two to four imply that for an action there can either be only triggering rules or only
allowance rules defined. The last point of the definition assures that all no-concurrency
constraints are correctly applied.

Action Observation Language. The action observation language provides expressions
to describe particular states and occurrences of actions:

(f at ti) (a occurs at ti) (8)

where f is a fluent literal, a is an action and ti is a point of time. The initial point of time
is t0. For a set of actions A′ = {a1, . . . , ak} we write (A′ occurs at ti) to abbreviate
(a1 occurs at ti), . . ., (ak occurs at ti). Intuitively, an expression of form (f at ti) is

1 Allowance rules can be rewritten as inhibition rules, if the corresponding action is declared
to be exogenous. But this is inadequate in view of our biological application and results in a
significant blow-up in the number of rules obtained after compilation.



290 S. Grell, T. Schaub, and J. Selbig

used to state that a fluent f is true or present at time ti. If the fluent f is preceded by ¬
it states that f is false at ti. An observation of form (a occurs at ti) says that action a
occurs at time ti. It is possible that action a is preceded by ¬ to express that a does not
occur at time ti.

A domain description specifies how the system can evolve over time. By including
observations the possibilities of this evolution are restricted. So only when all infor-
mation, the domain description and the observations, is taken into account, we get an
appropriate picture of the world. The combination of domain description and observa-
tions is called an action theory.

Definition 6 (Action theory). Let D be a domain description and O be a set of obser-
vations. The pair (D,O) is called an action theory.

Intuitively, trajectories specify possible evolutions of the system with respect to the
given domain description. However, not all trajectories satisfy the observations given
by an action theory. Trajectories satisfying both, the domain description as well as given
observations, are called trajectory models:

Definition 7 (Trajectory model). Let (D,O) be an action theory.
A trajectory s0, A1, s1, A2, . . . , An, sn of D is a trajectory model of (D,O), if it

satisfies all observations in O in the following way:

– if ( f at t ) ∈ O, then f ∈ st

– if (a occurs at t ) ∈ O, then a ∈ At+1.

The problem that arises here is to find biologically meaningful models. Obviously, such
trajectory models often include redundant information, but since this is a common phe-
nomena of biological systems it is not possible to simply exclude such trajectory mod-
els. Often, only the minimal trajectories are considered to be of interest, but this is not
appropriate for biological systems, since we are not only interested in the shortest path
through the transition system, but also in, possibly longer, alternative paths and just as
well in models which include the concurrent execution of actions. To decide which ac-
tions are redundant is thus a rather difficult problem and the question whether a model
is biologically meaningful can only be answered by a biologist, not by an automated
reasoner. One way to include additional information which may be derived from data
on measurement could be the use of preferences, which is subject to future work.

A question we can already answer is that abut logical consequence of observations.

Definition 8. Let (D,O) be an action theory. Then,

– (D,O) entails fluent observation (f at ti), written (D,O) |= (f at ti), if f ∈ si

for all trajectory models s0, A1, . . . , si, Ai+1, . . . , An, sn of (D,O),
– (D,O) entails action observation (a occurs at ti), written

(D,O) |= (a occurs at ti), if a ∈ Ai+1 for all trajectory models
s0, A1, . . . , si, Ai+1, . . . , An, sn of (D,O).

Action Query Language. Queries are about the evolution of the biological system,
i.e. about trajectories. In general, a query is of the form:

(f1, . . . , fn after A1 occurs at t1, . . . , Am occurs at tm) (9)
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where f1, ..., fn are fluent literals, A1, ..., Am sets of actions, and t1, ..., tm time points.
For queries the most prominent question is the notion of logical consequence. Under

which circumstances entails an action theory or a single trajectory model a query.

Definition 9. Let (D,O) be an action theory and Q be a query of form (9).2 Then,

– Q is cautiously entailed by (D,O), written (D,O) |=c Q, if every trajectory model
s0, A

′
1, s1, A

′
2, . . . , A

′
p, sp of (D,O) satisfies Ai ⊆ A′

i for 0 < i ≤ m ≤ p and
sp |= f1 ∧ . . . ∧ fn.

– Q is bravely entailed by (D,O), written (D,O) |=b Q, if some trajectory model
s0, A

′
1, s1, A

′
2, . . . , A

′
p, sp of (D,O) satisfies Ai ⊆ A′

i for 0 < i ≤ m ≤ p and
sp |= f1 ∧ . . . ∧ fn.

While cautiously entailed queries are supported by all models, bravely entailed queries
can be used for checking the possible hypotheses.

We want to use the knowledge given as an action theory to reason about the cor-
responding biological system. Reasoning includes explaining observed behaviour, but
also predicting the future development of the system or how the system may be influ-
enced in a particular way. The above notion of entailment is used to verify the different
queries introduced in the next sections.

Planning. In planning, we try to find possibilities to influence a system in a certain
way. Neither the initial state nor the goal state have to be completely specified by fluent
observations. A plan is thus a sequence of actions starting from one possible initial
state and ending at one possible goal state. There are usually several plans, taking into
account different paths but also different initial and goal states.

Definition 10 (Plan). Let (D,Oinit) be an a action theory such that Oinit contains
only fluent observations about the initial state and let Q be a query of form (9).

If (D,Oinit) |=b Q, then P = {(A1 occurs at t1), . . . , (Am occurs at tm)} is a
plan for f1, . . . , fn.

Note that a plan is always derived from the corresponding trajectory model.
Explanation. Usually, there are not only observations about the initial state but also

about other time points and we are more interested in understanding the observed
behaviour of a system than in finding a plan to cause certain behaviour of the system.

Definition 11 (Explanation). Let (D,O) be an action theory and let Q be a query of
form (9) where f1 ∧ . . . ∧ fn ≡ true.

If (D,O) |=b Q, then E = {(A1 occurs at t1), . . . , (Am occurs at tm)} is an
explanation for the set of observations O.

When explaining observed behaviour it is neither necessary to completely define the
initial state, nor the final state. The less information is provided the more possible ex-
planation there are, because an explanation is one path from one possible initial state
to one possible final state, via some possible intermediate partially defined states given
by the observations. The initial state and the explanation are induced by the underlying
trajectory model.

2 Parameters m and n are taken as defined in (9).
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Prediction is mainly used to determine the influence of actions on the system; it
tries to answer questions about the possible evolution of the system. A query answers
the question whether, starting at the current state and executing a given sequence of
actions, fluents will hold or not hold after a certain time.

Definition 12 (Prediction). Let (D,O) be an action theory and let Q be a query of
form (9).

– If (D,O) |=c Q, then f1, . . . , fn are cautiously predicted,
– If (D,O) |=b Q, then f1, . . . , fn are bravely predicted.

All of the above reasoning modes are implemented in our tool and used in our biological
applications. Before describing its usage, we first detail how it is implemented.

3 Compilation

We implemented our action language by means of a compiler mapping CTAID onto
logic programs under answer set semantics (cf. [14,13]). This semantics associates with
a logic program a set of distinguished models, referred to as answer sets. This model-
based approach to logic programming is different from the traditional one, like Prolog,
insofar as solutions are read off issuing answer sets rather than proofs of posed queries.
Our compiler uses efficient off-the-self answer set solvers as a back-end, whose purpose
is to compute answer sets from the result of our compilation. Since we do not elabo-
rate upon theoretical aspects of this, we refer the reader to the literature for a formal
introduction to answer set programming (cf. [14,13]).

Our translation builds upon and extends the one in [6]. We adapt the translation of
the language A0

T to include new language constructs and we extend the compilation
of A0

T in order to capture the semantics of static causal laws, allowance and default
rules, and of no-concurrency constraints. In what follows, we stick to the syntax of the
smodels system [15].

Action Description Language. The expressions defined in a domain description
D(A,F ) have to be composed of symbols from A an F . When constructing the logic
program for D(A,F ), we first have to define the alphabet. We declare every fluent
f ∈ F and action a ∈ A, resp., by adding a fact of the form fluent(f), and
action(a). We use continuously a variable T, representing a time point where 0 ≤
T≤ tmax. This range is encoded by the smodels construct time(0..tmax), standing
for the facts time(0), . . . ,time(tmax). Furthermore, it is necessary to add constraints
expressing that f and ¬f are contradictory.

:- holds(f,T), holds(neg(f),T), fluent(f), time(T).

Whenever clear from the context, we only give translations for positive fluent literals
f ∈ F and omit the dual rule for the negative fluent, viz. ¬f represented as neg(f).

For each inertial fluent f ∈ F , we include rules expressing that f has the same value
at ti+1 as at ti, unless it is known otherwise:

holds(f,T+1) :- holds(f,T),not holds(neg(f,T+1)),not default(f),
fluent(f),time(T),time(T+1).
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For each non-inertial fluent f ∈ F , we add the fact default(f) and include for the
default value true:

holds(f,T) :- not holds(neg(f),T), fluent(f), time(T).

For each dynamic causal law (1) in D(A,F ) and each fluent fi ∈ F , we include:

holds(fi,T+1) :- holds(occurs(a),T),holds(g1,T),. . .,holds(gn,T),
fluent(g1),. . .,fluent(gn),fluent(fi),action(a),time(T;T+1).

For each static causal law (2) in D(A,F ) and each fluent fi ∈ F , we include:

holds(fi,T) :- holds(g1,T),. . .,holds(gn,T),
fluent(g1), . . ., fluent(gn),fluent(fi), time(T).

Every triggering rule (3) in D(A,F ) is translated as:

holds(occurs(a),T) :- not holds(ab(occurs(a)),T),
holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),action(a),time(T).

For each allowance rule (4) in D(A,F ), we include:

holds(allow(occurs(a)),T) :- not holds(ab(occurs(a)),T),
holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),action(a),time(T).

For every exogenous action a ∈ A, the translation includes a rule, stating that this
action can always occur.

holds(allow(occurs(a)),T) :- action(a), time(T).

Every inhibition rule (5) in D(A,F ) is translated as:

holds(ab(occurs(a)),T) :- holds(f1,T),. . .,holds(fn,T),
action(a),fluent(f1),. . .,fluent(fn), time(T).

For each no-concurrency constraint (6) in D(A,F ), we include an integrity con-
straint assuring that at most one of the respective actions can hold at time t:

:- time(T), 2 {holds(occurs(a1),T):action(a1),. . .,
holds(occurs(an),T):action(an)}.

Action Observation Language. There are two different kinds of fluent observations.
Those about the initial state, ( f at t0), and the fluent observations about all other states,
( f at ti) for i > 0. Fluent observations about the initial state are simply translated as
facts: holds(f,0). Because they are just assumed to be true and need no further
justification. All other fluent observations however need a justification. Due to this,
fluent observations about all states except the initial state are translated into integrity
constraints of the form: :- not holds(f,T),fluent(f),time(T).

The initial state can be partially specified by fluent observations. In fact, only the
translation of the (initial) fluent observations must be given. All possible completions
of the initial state are then generated by adding for every fluent f ∈ F the rules:

holds(f,0):- not holds(neg(f),0).
holds(neg(f),0):- not holds(f,0).

(10)
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When translating action observations of form (8) the different kinds of actions have
to be considered. Exogenous actions can always occur and need no further justification.
Such an exogenous action observation is translated as a fact: holds(occurs(a),T).
Unlike this, observations about triggered or allowed actions must have a reason, e.g. an
active triggering or allowance rule, to occur. To assure this justification, the action ob-
servation is translated using constraints of the form:

:- holds(neg(occurs(a)),T),action(a),time(T).

assuring that every answer set must satisfy the observation (a occurs at ti).
Apart from planning (see below), we also have to generate possible combinations of

occurrences of actions, for all states. To this effect, the translation includes two rules
for every exogenous and allowed action.

holds(occurs(a),T) :- holds(allow(occurs(a)),T),
not holds(ab(occurs(a)),T), not

holds(neg(occurs(a)),T),
action(a), time(T), T<tmax.

holds(neg(occurs(a)),T) :- not holds(occurs(a),T),
action(a), time(T), T<tmax.

(11)

Basic correctness and completeness result. The following result provides a basic cor-
rectness and completeness result; corresponding results for the specific reasoning
modes are either obtained as corollaries or adaptions of its proof.

Theorem 1. Let (D,Oinit) be an action theory such that Oinit contains only fluent
observations about the initial state. Let Q be a query as in (9) and let

AQ = {(a occurs at ti) | a ∈ Ai, 1 ≤ i ≤ m} .

Let T denote the translation of CTAID into logic programs, described above.
Then, we have the following results.

1. If s0, A1, s1, A2, . . . , Am, sm is a trajectory model of (D,Oinit ∪AQ),
then there is an answer set X of logic program T (D,Oinit ∪ AQ) such that we
have for all f ∈ F and 0 ≤ k ≤ m
(a) holds(f,k)∈ X , if sk |= f and
(b) holds(neg(f),k)∈ X , if sk |= ¬f .

2. If X is an answer set of logic program T (D,Oinit ∪AQ) and for 0 ≤ k ≤ m

sk = {f | holds(f,k) ∈ X} ∪ {¬f | holds(neg(f),k) ∈ X}

then there is a trajectory model s0, A1, s1, A2, . . . , Am, sm of (D,Oinit ∪AQ).

Action Query Language. In the following tmax is the upper time bound, which has to
be provided when the answer sets are computed.

Planning. Recall that the initial state can be partially specified; it is then completed by
the rules in (10) for taking into account all possible initial states. A plan for f1, . . . , fn

(cf. Definition 10) is translated using the predicate “achieved”. It ensures that the goal
holds in the final state of every answer set for the query.
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:- not achieved.
achieved :- achieved(0).
achieved :- achieved(T+1),not achieved(T),time(T),time(T+1).
achieved(T) :- holds(f1,T),. . .,holds(fn,T),

achieved(T+1),fluent(f1),. . .,fluent(fn),time(T),time(T+1).
achieved(n) :- holds(f1,T),. . .,holds(fn,T),

fluent(f1),. . .,fluent(fn),T = tmax.

Constant tmax is the maximum number of steps in which the goals f1, . . . , fn should be
achieved. The proposition achieved(T) represents the earliest point of time T at which
the plan is successfully achieved. Once the query is satisfied only triggered actions can
occur, all other actions should not occur since that might invalidate the plan. That is
why achieved(T) occurs in the translation of every allowed and exogenous action.

holds(occurs(a),T) :- holds(allow(occurs(a)),T),not achieved(T),
not holds(ab(occurs(a)),T), not holds(neg(occurs(a)),T),
action(a),time(T).

holds(neg(occurs(a)),T) :- not holds(occurs(a),T),
action(a),time(T).

These rules are used to generate all possible combinations of occurrences of non-
triggered actions. Such actions can only occur as long as the goal is not yet achieved
and if they are not inhibited. If there is an answer set X for the planning prob-
lem, then we have for a plan P (cf. Definition 10) that (a occurs at ti) ∈ P if
holds(occurs(a),i)∈ X .

Explanation. The translation of an explanation contains the translation of all action and
fluent observations in O, as described above. Since the observations about the initial
state are often incomplete the translation contains the rules in (10) to generate all initial
states which do not contradict the observations. Also, we have to generate possible com-
binations of occurrences of actions for all states. To this effect, the translation includes
for every exogenous and allowed action the rules in (11). If there exists an answer set
X for the explanation problem, then for an explanation E as in Definition 11 we have
(a occurs at ti) ∈ E if holds(occurs(a),i)∈ X .

Prediction. The translation includes all fluent and action observations inO, as described
above. As in explanation, we have to fill in missing information, which is necessary to
justify the observed behaviour. That means we have to include for every fluent f two
rules of form (10) to generate possible initial states. Moreover the translation includes
for every non-triggered action two rules similar to those of an explanation of form (11).
The actual prediction for f1, . . . , fn (cf. Definition 12) is translated as:

predicted :- holds(f1,T), . . ., holds(fn,T),
fluent(f1),. . .,fluent(fn),time(T),T >= i.

where i is the time of the latest observation. If the atom predicted is included in all
(some) answer sets, it is a cautious (brave) prediction.

4 Application

Meanwhile, we have used CTAID in several different application scenarios at the Max-
Planck Institute for Molecular Plant Physiology for modelling metabolic as well as
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signal transduction networks. For illustration, we describe below the smallest such ap-
plication, namely the sulfur starvation response-pathway of the model plant Arabidopsis
thaliana. Sulfur is essential for the plant. If the amount of sulfur it can access is not suf-
ficient to allow a normal development of the plant, the plant follows a complex strategy.
First the plant forms additional lateral roots to access additional sources of sulfur and
to normalise its sulfur level. However, if this strategy is not successful the plant uses its
remaining resources to form seeds.

Normally, the amount of sulfur in a plant is sufficient, but due to external, e.g. envi-
ronmental conditions, the amount of sulfur can be reduced. A problem, when modelling
this network are such environmental conditions, which are not and cannot be part of a
model and which might or might not lead to the reduction of sulfur. Once the level
of sulfur in the plant is decreased, complex interactions of different compounds are
triggered. Genes are activated, which induce the generation of auxin, a plant hormone,
playing a key role as a signal in coordinating the development of the plant. This even-
tually leads to the formation of additional lateral roots. Since this consumes the scarce
resources, the development should be stopped, when it becomes apparent that it is not
successful (i.e. it takes too long and consumes too many of the plant’s resources). This
“emergency stop” is triggered by complex interactions that lead, via a surplus of the
auxin flux, to the expression of IAA28, a gene which is subject to current research. If
IAA28 is expressed and the sulfur level is still low, other processes result in a different
physiological endpoint, the production of seeds.

We now show how this biological network can be represented as a domain descrip-
tion D(A,F ) in CTAID.

A = {sulfur depletion, sulfur repletion, enhanced lateral root formation,

iaa28 expression, rapid seed production}
F = {normal sulfur, depleted sulfur, enhanced lateral roots, expressed iaa28, seeds}

The biologist’s knowledge about the biological system, gives rise to the following dy-
namic causal laws.

( sulfur depletion causes depleted sulfur if normal sulfur )
( enhanced lateral root formation causes enhanced lateral roots )
( sulfur repletion causes normal sulfur )
( iaa28 expression causes expressed iaa28 )
( rapid seed production causes seeds)

Additionally, two static causal laws specify the relationship between normal sulfur and
depleted sulfur. They assure that at most one of the fluents is true at all times.

(¬normal sulfur if depleted sulfur )
(¬depleted sulfur if normal sulfur )

For two of the actions, we know all the preconditions that have to be satisfied for the
actions to occur.

( depleted sulfur triggers enhanced lateral root formation )
( expressed iaa28 , depleted sulfur triggers rapid seed production )
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For the remaining three actions, it is more difficult to decide whether and when they
occur. Whether the action sulfur depletion occurs depends on environmental conditions
being outside the model. The same holds for the action sulfur repletion, which might or
might not be successful, depending on the environmental conditions. For the occurrence
of action iaa28 expression the question is not whether it occurs but when it occurs. The
longer it is delayed, the more resources are used to form additional lateral roots.

( normal sulfur allows sulfur depletion )
( depleted sulfur allows iaa28 expression )
( enhanced lateral roots allows sulfur repletion )

There is only one inhibition relation in this example.

( expressed iaa28 inhibits enhanced root formation )

But only if we add a default value for the fluent enhanced lateral roots, the inhibition
relation has the desired effect of stopping the formation of additional lateral roots.

(default¬enhanced lateral roots)

The knowledge that the plant either forms additional lateral roots or produces seeds can
be expressed by the following no-concurrency constraint:

(noconcurrency enhanced lateral roots formation , rapid seed production )

After defining the domain description, let us define a set of observations O. The initial
state, where we still have a normal level of sulfur can be described by the following
fluent observations:

O = {( normal sulfur at 0) , (¬ enhanced lateral roots at 0) ,
(¬ expressed iaa28 at 0) , (¬ seeds at 0)}

Now that we defined our action theory (D,O), we can start to reason about it. Let us
first find an explanation for the observed behaviour:

O1 = O ∪ {(sulfur depletion occurs at 0) , ( normal sulfur at 3)}
For a time bound of tmax = 3 there are already 4 possible explanations. They all have
in common that sulfur depletion occurs at time point 0, the formation of lateral roots
is triggered at time point 1 and the action sulfur repletion occurs at time point 2. The
explanations differ in whether and when the action iaa28 expression and the action
rapid seed production occurs. One explanation is:

(D,O1) |=b (true after sulfur depletion occurs at 0,
enhanced lateral root formation occurs at 1,
enhanced lateral root formation occurs at 2, sulfur repletion occurs at 2 )

A second explanation is:

(D,O1) |=b (true after sulfur depletion occurs at 0,
enhanced lateral root formation occurs at 1,
enhanced lateral root formation occurs at 2,
sulfur repletion occurs at 2, iaa28 expression occurs at 2 )

Our next question is whether the given observations are sufficient to predict a certain
behaviour of the plant.
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(D,O)|=c (seeds after sulfur depletion occurs at 0, iaa28 expression occurs at 1)
(D,O)|=b (normal sulfur after sulfur depletion occurs at 0, iaa28 expression

occurs at 1)

Using these predictions, we can say that when sulfur is depleted and IAA28 is expressed
the plant grows seeds, but it is still possible that it also stabilises its sulfur level.

Finally, we want to find a plan for the action theory (D,O) that results in the pro-
duction of seeds. For time bound tmax = 3, there are 4 plans. One possible plan is:

(D,O) |=b (seeds after sulfur depletion occurs at 0,
iaa28 expression occurs at 1, enhanced lateral root formation occurs at 1,
rapid seed production occurs at 2, rapid seed production occurs at 3)

The number of plans and explanations depend on the number of allowance rules,
since the different possibilities for the occurrence of such an allowed action is reflected
by different answer sets.

5 Discussion

We proposed the action language CTAID and showed how it can be used to represent
and reason about biological networks. CTAID is based on the action language A0

T in-
troduced in [6]. The latter language provides only minimal features to define dynamic
causal laws, triggering and inhibition rules, which turn to be a fruitful basis but insuf-
ficient for modelling our biological applications. Moreover, our exploratory approach
made us propose the concept of allowance that enables the experimenter to investigate
alternative models “in silico”. As a consequence, we extendedA0

T by static causal laws,
allowance rules, default rules and no-concurrency constraint which furnish a more ap-
propriate representation of our biological networks. Especially static causal laws and
default rules can be used to include background knowledge and other dependencies like
environmental conditions which influence the biological system, but are not part of the
actual model. Allowance rules are mainly used to express incomplete knowledge about
the reasons why an action occurs. This missing information is a common problem for
biologists due to the immanent complexity of biological systems.

We fixed the semantics of CTAID in the standard way by means of transition rela-
tions, trajectories and trajectory models. In contrast to A0

T , for example, default values
can enable state changes without the occurrence of an action. Also, Baral et al. guaran-
tee a unique trajectory model and a unique answer set, if the initial state is completely
defined by a set of observations. This is not the case in CTAID because of the non-
determinism introduced by allowance rules that may yield multiple answer sets.

We implemented our action language by means of a compiler mapping CTAID onto
logic programs under answer set semantics. Our translation builds upon and extends
the one given in [6]. The resulting tool is implemented in Java and freely available
at [16]. Meanwhile, it has been used in ten different application scenarios at the Max-
Planck Institute for Molecular Plant Physiology for modelling metabolic as well as signal
transduction networks. For illustration, we described the smallest such application,
namely, a part of the sulfur starvation response-pathway of model plant Arabidopsis
thaliana.
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Beyond the traditional approaches mentioned in the introductory section, further
logic-based approaches using rule-based languages have emerged recently: Closely re-
lated work has been conducted in abductive logic programming where abduction was
used in [17] as the principal mode of inference for modelling gene relations from micro-
array data. A very sophisticated and much more advanced automated reasoning tool
for systems biology can be found in the area of constraint programming, namely the
BIOCHAM [18] system. BIOCHAM relies on CTL [19] and is thus particularly strong
in modelling temporal aspects of systems biology. Unlike our abstract approach, the
constraint-based approach offers fine-grained capacities for modelling biochemical pro-
cesses, including kinetics and reactions.
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Abstract. Life-long learning is more and more playing a key role for
economical, personal and social success. Therefore the management and
development of skills and knowledge is of premier importance in industry
and, on the other hand, a major expense factor. So called examination
management systems assist teachers and trainers through an automatic
compilation of documents, in particular assessment tests, based on user
defined requirements and constraints and thus help reduce costs.

In this paper we present and discuss a solution of the underlying
general problem using Answer Set Programming and show the power
and advantages of our approach.

1 Introduction

In industry and service enterprises like financial services and consulting firms the
employee training plays an important role. Many companies rely at least partly
on electronic support for their qualification programs.

Assessment tests and examinations are a customary way to check the knowl-
edge of applicants and employees. Generally, these tests are compiled from a pool
of questions and have to satisfy a number of requirements. These constraints can
concern the difficulty level, the coverage of important topics, the distribution of
difficulty levels and others.

The development of new media has its influence in education and training, too.
Meanwhile some companies use only electronic media in employee qualification.
As a consequence, the questions from which assessments can be built are now
represented by digital documents. Principally, the generation of a test from a
question pool can be supported by a so-called examination management system
(e. g. IFIS Assessment Suite [12], Exam Builder [8]).

However, today there is no general solution yet to the difficult problem of
compiling an assessment test from the available questions in a way that all user
defined requirements are respected. Industrial solutions suffer from restrictions
and are mostly not satisfying. Depending on the method applied, number restric-
tions, hierarchical value spaces, transitive relationships, and a multi-dimensional
solution space are hard to deal with.

From the general situation described above the use case of our investigation
has been derived.
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In this paper we show that and how Answer Set Programming [9,14] can
be used to support the automatic compilation of an electronic examination or
assessment test under constraints. It turns out that the representation is very
natural and therefore adequate from the modeling point of view. The implemen-
tation is immediate and shows a good performance over a wide range of runtime
parameters.

In Section 3 we describe the use case informally and present the main com-
ponents of an adequate abstract model. Subsequently, the transformation of the
abstract model into the language of the ASP-Solver Smodels is presented in Sec-
tion 4. Finally, in Section 5 we discuss our approach with respect to desirables
and principles of software engineering like performance, scalability, adequacy,
maintainability and usability. Moreover we outline future perspectives of our
approach w.r.t. other application areas like education management systems.

2 Related Work

2.1 Answer Set Programming

The Answer Set Semantics for logic programs has its roots in nonmonotonic
logics and the stable model semantics of normal logic programs [10] where rules
are of the form

H ← A1, ..., An, notB1, ..., notBm

with atomic formulas (atoms) H , A1,. . . , An, B1,. . . , Bm (n,m ≥ 0). A literal
is an atom A (positive literal) or its negation notA (negative literal) where the
operator not denotes the default negation.

There are a lot of publications showing the basic ideas and principles of the
Answer Set Programming (ASP) paradigm (among others [9,14]). ASP repre-
sents a promising approach to declarative problem solving and knowledge rep-
resentation. An important feature is the advanced capability of dealing with
incomplete information and defaults. The underlying idea in programming with
ASP is to represent a problem to be solved in an ASP-program in such way that
the solutions of the problem are the stable models (answer sets) of the program.

Several ASP-systems are available; among the most important are Smodels
[17] and DLV [2].

[16,20] propose an extension of the basic ASP-syntax by cardinality and weight
constraints: Allowing constraint-, weight- and conditional literals in rules leads
to weight constraint rules, choice rules and constraint rules. Weight constraint
rules are of the form

C0 ← C1, ..., Cn

with n ≥ 0 and weight or constraint literals Ci, 0 ≤ i ≤ n, with the restriction
that C0 does not contain default negation. The associated semantics is an ex-
tension of the stable model semantics. For example, to express that at least one
and at most three of the questions
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question(q1). question(q2). question(q3). question(q4).

are to be selected (predicate draw/1) we can use the constraint literal

1 {draw(q1), draw(q2), draw(q3), draw(q4)} 3.

or in combination with the shorter conditional literal

1 {draw(X) : question(X)} 3.

Similarly, a weight literal can be used to constrain the sum of weights assigned
to some literals. By

#weight drawDuration(X,Y) = Y.

we express that drawDuration/2 assigns weights to some questions (in our use
case: available time to work on). The weight literal

5 [drawDuration(X,Y) : questionDuration(X,Y)] 13.

then restricts the total weight, i.e., total time available, to at least 5 and at most
13 units.

The language of the Smodels system, here denoted by smodels , allows only
so called ω-restricted rules in order to guarantee decidability. This means, that
every variable in a rule has to occur in a positive domain literal of the body.

In addition to the language extension mentioned above, there are a lot of
others providing an increased declarativity, expressiveness and usability of ASP.
It should also be mentioned that there are also attempts to integrate answer set
generation and constraint solving [1].

Among the great number of applications of Answer Set Programming [6] in
the fields of planning [5,15], verification, model checking, configuration [19] as
well as diagnostic systems and inconsistency management [4], especially some
industrial and innovative application areas [7,11,18] have to be mentioned.

2.2 Application to our Use Case

Our use case – we call it ”Generating Examinations under Constraints” – has
its origin in an industrial application. In [11] a similar use case is studied. The
authors describe the assessment test generation engine of the ”EXAM portal”,
give a system overview and present the internal and formal specification of the
underlying problem. They use the ASP system DLV to represent the logical
rules. We believe and will try to show that our approach is more general –
we present an in-depth investigation of the possible structural preconditions of
the use case, define a specification formalism and show how a given problem
can be translated into smodels programs. With our specification formalism we
can formulate a user-friendly description of a problem instance independent of a
special engine. Moreover because of the generality of our approach we can specify
and solve a wider class of problem instances of the ”Generating Examinations
under Constraints”-problem.
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3 The Use Case “Generating Examinations Under
Constraints” and Its Abstract Model

Many organisations in industry and education take advantage from e-learning
services. Examination management systems such as [3,8,12] support the compi-
lation and execution of exercises and examinations and assessment tests.

3.1 The Use Case “Generating Examinations Under Constraints”

In the following we give an overview of the main components of the kernel of
an examination management system. Figure 1 illustrates the specification-based
generation of an examination.

database

ontologies
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dimensions of 
search

questions

database

ontologies
structuring
search

dimensions

questions

test

requirements,
constraints

testtest

generated
examination

requirements,
constraints
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Fig. 1. Automatic Generation of an Examination

As shown in figure 1 the kernel of an examination management system con-
tains a repository which stores and manages a large collection of questions (ques-
tion pool/question catalogue) in an ”intelligent” way, some framework for
the specification of the desired result, and a mechanism that selects suitable
questions and compiles the result, i.e., a set of exercises, an examination, or an
assessment test, according to the constraints imposed by the specification.

The representation of a question, e.g. in some XML-format, comprises a unique
identifier, the question text itself, and all possible answers. For our further inves-
tigation, the question text and the answers are not important and will therefore
mostly be ignored in the following.

Metadata describe relevant properties of questions. The metadata categories
– later also called search dimensions – are described by attributes such as topic
and duration. The corresponding attribute values such as robotics, medicine and
1, 5, respectively, provide the individual description of a single question. To each
question at least one vector of metadata has to be attached. It is also possible to
use formalized ontologies, for instance a hierarchy of topics, to give the metadata
more structure.
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Typically, the result, i.e. the collection of questions (examination), to be
compiled from the pool of available questions has to satisfy certain user defined
requirements. As an example, a minimal duration of the entire examination
could be specified. Or, quite commonly, a maximum number of questions about
a specific topic could be defined.

Remark 1 (Valid examination and choice). Each collection of questions – note,
that in general there is more than one – selected from the question pool and
satisfying the given constraints is a so-called ”valid” examination. Normally, from
the set of valid examinations only one arbitrarily chosen is needed. Sometimes
we call the questions contained in a valid examination the ”drawn questions”.
In this context we speak also about ”drawing questions”.

Now, based on the description above we explain the main components of an
abstract model of our use case. Due to space limitations we have to omit from
some of the details.

3.2 An Abstract Model

The rest of this section is devoted to the development of an an abstract model
of our use case. The model we present is abstract in the sense that it does not
make any assumptions about the representation formalism.

Question Pool and Metadata. From now on we assume that a question
is represented by its identifier q and that we can abstract from its specific in-
stance values such as text or possible answers. Moreover, concerning the possible
structure of a search dimension, i.e., a metadata category, we will restrict our
investigation to tree-shaped hierarchies instead of general ontologies.

Definition 1 (Question Pool, Attributes, Attribute Values, Subordi-
nate Relation). A question pool is a finite set Q = {qi | i ≤ n, n ∈ N} of ques-
tions. It has attached a finite sequence of attributes Aord = A1, . . . Am,m ∈ N

which we also consider as the dimensions of our search space.
The domain domain(Aj) of an attribute Aj is the set of possible values that

can be associated directly or indirectly with a question w.r.t. this attribute. The
range range(Aj) ⊆ domain(Aj) of attribute Aj is the set of those values that
can be associated directly with a question w.r.t. this attribute.

In case of a flat attribute domain we have range(Aj) = domain(Aj), i.e.,
the elements of range(Aj) are the only Aj-values that can be associated with a
question. However, if the domain of attribute Aj is structured by a generalization
hierarchy there may be additional attribute values that are indirectly associated
with a question by inheritance.

Let attribute Aj have a domain structured by a generalization hierarchy which
in turn is represented by a (directed) tree-shaped graph Hj = (Vj , Ej) with
Vj finite. The set hierVal(Aj) of hierarchical attribute values is defined as
domain(Aj) \ range(Aj). Therefore the set of vertices of the hierarchy Hj is the
disjoint union Vj = range(Aj) ∪ hierVal(Aj) and hierVal(Aj) = ∅ if Aj is not
hierarchical.
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Fig. 2. The hierarchical (and multivalued) attribute topic

Based on the hierarchy Hj and the relation Ej , respectively, we define the
relation subordinatej , subordinatej ⊆ domain(Aj) × hierVal(Aj), as fol-
lows: (u, v) ∈ subordinatej iff there exist a path from v to u in Hj . Therefore
subordinatej is the transitive closure of E−1

j .

Example 1 (Hierarchical attribute and subordinatej). As an example of a hierar-
chical attribute consider the attribute topic shown in figure 2. Assume that the
specification of the desired examination prescribes that a certain topic, say tA,
has to be covered by a question. When a question q for this topic tA is selected,
q covers also the supertopic (tX) and all ancestor-topics up the hierarchy. In this
sense q ”counts” for these more general topics as well. In our example we have
(tA, tX), (tX, tZ), (tA, tZ) ∈ subordinate1.

The definition of metadata, i.e., the assignment of attribute values to the indi-
vidual questions, is described by relations.

Definition 2 (Relation meta and Relation matches). The relation meta⊆
Q×

∏m
j=1 range(Aj) formalizes the assignment of direct attribute values to the

elements of the question pool Q.
However, in the hierarchical case we wish to take into account also the ”in-

herited” attribute values from higher levels in the value hierarchy. Moreover,
sometimes it is useful not to specify all attribute values but to insert a ”joker”
matching any value of a certain attribute. Therefore we extend the relation meta
to the relation matches as follows:

matches ⊆ Q×
m∏

j=1

(domain(Aj) ∪ {∗}) ,

(q, v1, . . . , vm) ∈ matches :⇔ ∃(q, w1, . . . , wm) ∈ meta : ∀j = 1..m :
(vj = ∗) ∨ (wj = vj) ∨
((wj , vj) ∈ subordinatej(wj , vj)).

Example 2 (Attributes and Metadata). As a sample attribute sequence with re-
lated ranges let
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Aord = topic, duration;
range(topic) = {tA, tB, tC, tD}, range(duration) = {1,5,10}.

Let us assume that the attribute topic is structured by the hierarchy of figure
2 and that question q is about the topic tA as well as tB and the duration is 5
(minutes). The metadata assignment is given by the tuples

(q, tA, 5), (q, tB, 5) ∈ meta.

Therefore, in matches among others we have the following elements

(q, tA, 5), (q, tX, 5), (q, tZ, ∗), (q, ∗, ∗) ∈ matches .

Remark 2 (Different interpretations of a question in an examination in the case
of multivalued attributes). Due to multivalued attributes for a single question
q there may exist more than one meta-tuple meaning that this question can
assume different ”roles”. There are two possibilities to interpret this situation in
an examination:

– The question q plays all the roles in the examination that the relation meta
assigns. (Consider example 2: if q is chosen for an examination, q covers
topics tA and tB.)

– The question q appears in only one role in the examination. In this case
it must be decided which of the possible meta-tuples shall be considered
relevant for q and therefore has to be chosen. (Consider example 2: if q is
chosen for an examination, q covers either topic tA or topic tB.)

Remark 3 (Our Assumption). For our further investigation we adopt the second
assumption of remark 2, that is, we assume that in an examination a question
appears in only one role.

Therefore we define the set of all ”singlevalued” metadata based on meta.

Definition 3 (The “Singlevalued” Metadata: metas and matchess). Given
a relation meta we define1

Mmeta = {metas ⊆ meta | π1 ◦metas = π1 ◦meta ∧
(q, v1, . . . , vm), (q, u1, . . . , um) ∈ metas ⇒ vi = ui, i = 1..m}

If there is no multivalued attribute defining the relation meta it holds:Mmeta =
{meta}. For each metas ∈ Mmeta we define the relation matchesmetas

or
simply relation matchess in an analogous way – by replacing meta with metas

in the definition of matches .

User Defined Requirements. The user can specify requirements about the
set D ⊆ Q of questions to be drawn and their attribute values. In this case D
must satisfy the conjunction of all requirements. In the following we describe the
requirements underlying our implementation. User requirements can be specified

1 π1 means the projection onto the first component.
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with the help of relations. Due to space limitations we only sketch these relations
and do not give a formal definition.

– Restriction of the Absolute Number
Let A1, . . . Am = Aord be the fixed attribute sequence (see Def. 1). The re-
quirement absConstr (v1, . . . , vm, Nmin, Nmax) specifies that for the number
N of questions from D matching the attribute values v1, . . . , vm it must hold
that Nmin ≤ N ≤ Nmax. (Recall that matching should be understood in the
sense of remark 3 and definition 3.) For an illustration consider example 2: The
user requirement absConstr(∗, 5, 3,∞) expresses that in the result examina-
tion there have to be ”at least 3 questions with a duration of 5 minutes”.

– Restriction of the Weighted Sum
Let A be a real-valued attribute A which is neither multivalued nor hi-
erarchical. The requirement weightedSumConstr (A,Wmin,Wmax) expresses
that for the total sum S of values of A taken over all questions in D
it must hold that Wmin ≤ S ≤ Wmax. In the situation of example 2
weightedSumConstr (duration, 20, 25) expresses that the total ”duration of
the examination has to lie between 20 and 25 minutes”.

– Requirements concerning Percentage
Restrict the percentage of certain attribute values of an attribute.

– Exclusion of Questions:
Specify questions that are not allowed in the result examination.

– Optimization of a Goal Function:
The requirement optimize(v1, . . . , vm, opt) with opt ∈ {min,max} prescribes
the number of questions having the given attribute values should be minimized
or maximized.

One has to keep in mind that the user expects at least one valid examination
that satisfies all requirements. However, there are several reasons, why it might
be impossible to find a set of questions that satisfies all requirements:

– Inconsistent set of requirements;
– Instance based inconsistency, i.e., the question pool does not contain enough

questions with required attribute values.

4 Implementation

4.1 Main Components of the smodels-Program

The logical program implemented in Smodels consists of three files:

– Question pool (data.pl) with facts representing the association of at-
tribute values to questions (metadata).

– General rules modeling the drawing of questions (draw.lp). These
rules constitute the invariant core of the implementation.

– Rules modeling the user defined requirements (constraint.lp).
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The 5 main components of our smodels-based system core implement the
following functionality:

– provide metadata describing the questions;
– draw the required number of questions;
– for each question drawn determine the coverage;
– formalize and store the requirements each represented by one rule;
– compute the answer sets.

Now, we will show in a step by step fashion how the problem ”Generating Exam-
ination under Constraints” can be translated into smodels programs. For details
of the problem description see section 3.

4.2 Question Pool and Metadata

Because we do not need knowledge about the specific attribute names we only need
to state that there is a sequence of abstract attributes Aord = A1, . . . , Am which
can be represented by m facts attribute(1). . . . attribute(m). or shorter by
the fact attribute(1..m).For each tuple (q, v1, . . . , vj , . . . , vm) ∈ meta we define
a rulequestion prop(q, v1, . . . , vj , . . . , vm).The information thatAj is hierarchi-
cal canbe expressedby a facthier attr(j).. In this case each edge (v1, v2) ∈ Ej of
the hierarchy graphHj is represented by a fact direct subord(j,v2,v1).. Rules
computing the transitive closure (subord/3) of the direct subord/3-facts repre-
sent the information given by the relation subordinatej .

The direct and hierarchical attribute values of an attribute Aj are represented
by atoms attr val(j,V) and the following rules:

attr val(j,Vj) :- question prop(Q,V1,...,Vj,...,Vm),
attr val(A,V) :- direct subord(A,X,V),
attr val(A,V) :- direct subord(A,V,X).

4.3 User Defined Requirements

Exclusion of Questions. For each ”forbidden” question qu we add a fact
used(qu).

Allowed Questions. Allowed questions are those that are not explicitly for-
bidden:

question(Q) :- question_prop(Q,V1,...,Vm).
allowed(Q) :- question(Q), not used(Q).

Question Drawing. The selection of at leastNmin and at mostNmax questions
from the set of allowed questions is formalized by the constraint literal

Nmin { draw(Q) : allowed(Q) } Nmax.

This rule represents the user defined requirement absConstr (∗,. . .,∗, Nmin, Nmax).
In case that none such requirement exists, Nmin and Nmax are omitted in the
constraint literal above. If Nmax =∞ only Nmax is omitted in the rule.
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Determining the Coverage. As mentioned in remark 2 each selected question
appears in exactly one role in the examination. This general setting can be
modeled with an additional predicate: We define that exactly one sequence of
direct attribute values should be assigned to each question q drawn by

1 {draw_prop(Q,V1,...,Vm) : question_prop(Q,V1,...,Vm)} 1 :-
draw(Q), allowed(Q).

Absolute Number Requirements. We have to distinguish between hierar-
chical and non-hierarchical attribute values when representing the user defined
requirement absConstr(v1, . . . , vm, Nmin, Nmax).

The non-hierarchical case: If none of the attributes is hierarchical we can use
the following rules:

cons(i) :- Nmin { draw_prop(Q,v1,...,vm)
: question_prop(Q,v1,...,vm) } Nmax.

active_rule(i).

By “active rule(i).” the i-th rule is set “active”, i.e. switched on. Note, that
a wildcard vj = ∗ is substituted by a “fresh” variable Vj.

The hierarchical case: If v1, . . . , vm contains at least one hierarchical attribute
value we need further auxiliary rules. In the following we assume that only
attribute A1 is hierarchical. The rules

trans_prop_1(Q,V1,...,Vm) :- question_prop(Q,V1,...,Vm).
trans_prop_1(Q,V1H,V2,...,Vm) :- question_prop(Q,V1,V2,...,Vm),

subord(A,V1,V1H), hier_attr(A).

define the transitive closure of the question properties. These properties are
“applied” to the questions drawn by

draw_trans_prop_1(Q,V1H,...,Vm) :- draw_prop(Q,V1,...,Vm),
trans_prop_1(Q,V1H,V2,...,Vm), subord(A,V1,V1H).

The constraint can be asserted – analogously to the non-hierarchical case – by:

cons(i) :- Nmin { draw_trans_prop_1(Q,v1,...,vm)
: question_trans_prop(Q,v1,...,vm) } Nmax.

active_rule(i).

Weighted Sum Requirements. We must take into account that Smodels
operates with integers. The requirement weightedSumConstr (Aj ,Wmin,Wmax)
with range(Aj) ⊂ N can be directly translated into smodels programs as shown
below.

If only one (direct) attribute’s sum is restricted we can use the following rules.
First, we assign a weight to draw prop by

#weight draw_prop(Q,V1,...,Vm) = Vj.
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Then we formalize the restriction of the sum by

cons(i) :- Wmin [ draw_prop(Q,V1,...,Vm)
: question_prop(Q,V1,...,Vm) ] Wmax.

active_rule(i).

If we want to restrict the weighted sum for more than one attribute, we need
two additional rules:

question_prop(Q,j,Vj) :- question_prop(Q,V1,...,Vm).
draw_prop(Q,j,Vj) :- question_prop(Q,V1,...,Vm),

draw_prop(Q,V1,...,Vm).

In an analogous way as above, we can formulate the weight-assignment and the
restriction to the sum.

Percentage Requirements. The basic idea is to reduce this problem to the
case of the restriction of the number of questions with certain properties. The
procedure is similar to those we have already explained.

Optimization of a Goal Function. The optimization of a goal function is
only possible in a restricted way in Smodels. The commands #minimize and
#maximize optimize the number of atoms with certain properties [21, p.48f], but
their semantics is not very intuitive.

Combining the User Defined Requirements. All rules for user defined
requirements that have been “activated” by a fact “active rule(i).” are com-
bined using the following three rules:

incons(R) :- not cons(R), active_rule(R).
someincons :- incons(R), active_rule(R).
allcons :- not someincons.

We ensure that the atom allcons/0 is true only in stable models satisfying the
active requirements. The command to compute n stable models is

#compute n { allcons }.

For n = 0 all stable models are computed. If the requirements cannot be satisfied,
no stable models containing the atom allcons will be found. In this case it is
desired to get an indication of what caused the error.

Checking Inconsistency. If inconsistency is to be checked Smodels tries to
maximize the number of ”valid requirements” (cons/1-atoms).

#maximize { cons(R) : active_rule(R) }.
#compute 0 { }.

If the last stable model contains the atom allcons/0, then all user defined
requirements are satisfied. Otherwise the incons/1-atoms represent the require-
ments causing the inconsistency. Applying this method it is not possible to check
the consistency of the user defined requirements without a question pool.
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5 Discussion

5.1 Adequacy

In section 4 we have shown that it is straightforward to translate the specifica-
tion (section 3) into smodels-rules. To a certain extend the system is generic:
The core implementation using Smodels corresponds closely to the intuition
behind question drawing. No knowledge is necessary about the specific attribute
names and domains. Solely, in case of hierarchical attributes the generalization
hierarchy, i.e. the underlying ontology, has to be specified. The entire system is
specialized to a particular application via the user requirements as described in
section 3.2. As could be seen in section 4 the user requirements can be directly
translated into corresponding smodels-rules.

5.2 Extensibility and Maintainability

Assuming that the system core, i.e. question drawing, is stable the extensibility
and maintainability of the system is rather good because only local changes are
required in all important cases. Extensions to the specification of valid exami-
nations can be obtained by simply adding further requirements (cf. section 3.2).
Equally well, requirements can be dropped if not needed any longer. Mandatory
questions can be specified by adding appropriate facts or computing the stable
models with the mandatory questions as an input. It should be mentioned that
as few as about 100 lines of code are necessary for our moderately complex use
case. The size of the code is linear in the number of requirements.

5.3 Usability

The system kernel as presented in this paper is certainly not suitable for the av-
erage end-user. A separate presentation layer is required to provide user-friendly
interaction and support the convenient specification of requirements. However,
this task can be performed without too much effort. In case of an inconsis-
tent set of requirements Smodels will not find a stable model. With the cur-
rent Smodels-implementation it is not possible to check the consistency of the
user defined requirements without a question pool. Therefore we verify only the
instance-based consistency (see section 3.2). Errors can be localized and error
messages can be forwarded to the user. But in some cases this could cost per-
formance because numerous stable models have to be computed (see section 4).
A small change in the program allows to compute those models that maximize
the number of requirements satisfied. In this variant the stable models contain
the identifiers of the requirements that could not be satisfied. Note that this
modification causes longer runtime.

5.4 Performance and Scalability

In this paper we can show only a few results of our runtime tests. To allow for
comparison with another logic-based state-of-the-art implementation we com-
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Table 1. Asymptotic runtime complexity w.r.t. a variety of parameters

Parameter Smodels ECLiPSe
Question pool size |Q| exponential linear
Num. of questions to draw |D| slight dependency slight dependency
Num. of attributes |A| linear exponential
Num. of attribute values hier.: exponential mval.: exponential

|range(A1)| non-hier: linear non-mval.: no dependency
Num. of mval attr. values linear binomial distrib.
Size of hierarchy linear exponential
Num. of abs. constr. linear decr./incr. slight dependency
Num. of perc. constr. linear slight dependency

pare the Smodels-implementation with an implementation based on the con-
straint logic programming system ECLiPSe. Clearly, the absolute runtime re-
sults may depend on the chosen implementations.

While the runtimes of the Smodels-implementation behave rather well for
most parameters, the size of the question pool, i.e. the number of questions is
critical. Runtimes increase exponentially depending on the number of questions.
Nevertheless, the absolute times (not shown here) suggest that Smodels can be
used in practice. However, ”just-in-time”-applications, for instance designing an
examination ”online” by trial and error, should be avoided. Realistic industrial
question pools contain about 2000 or 3000 questions. Academic question pools
tend to be smaller but more specific. Larger question pools can often be separated
into smaller disjoint subsets or pre-filtered according to the specific requirements.

For a question pool containing 3000 questions the absolute runtimes range
from a few seconds in the case of only singlevalued non-hierarchical attributes
to a few minutes in the case of multivalued hierarchical attributes. In any case,
the time needed to prepare an examination could be significantly reduced as
compared to the usual manual preparation by human trainers.

5.5 New Applications

Academic education becomes more and more international today. Also, quite a
number of bachelor and master programs with rather complex regulations and
manifold interrelationships between course modules have emerged. In this situ-
ation students are often left alone with their course planning and need better
assistance. In the course of their ongoing efforts towards service quality improve-
ment universities try to build a better personal and technical infrastructure for
student assistance and advisory services. However, facing exploding costs, the
number of human advisors is limited and therefore additional instruments have
to be developed. In particular, a computer-aided advisory system and a means
for checking the adequacy of regulations in terms of consistency and applicability
are desirable. Actually, these goals are part of the mission of a major ongoing
project [13] which aims at developing a state-of-the-art campus management
system.
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A first investigation revealed that the essential requirements as formulated in
the official regulations governing the bachelor and master programs can easily be
represented using the smodels language. Some requirements are rather similar
to those of our use case ”Generating Examinations under Constraints”. As an
example consider the typical requirement ”from the module group B one has
to take 5 to 7 courses with a sum of at least 37 credit points”. The models,
i.e. the answer sets, of the ASP program representing the regulations contain
just the courses and exams a student has to take and pass to pursue a regular
course of study as prescribed by the regulations. Once the regulations or at least
the course plan has been represented it is also possible to give a student highly
personalized advice, e.g. about the courses recommended for the next semester.

Of course, a lot of work remains to be done. However, we are very optimistic
that Answer Set Programming is a good choice for implementing the ”automatic
validation of study regulations” and the ”automatic student advisory” problems.
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for the Procedural Interpretation of Logic
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Abstract. Semantics of logic programs has been given by proof theory,
model theory and by fixpoint of the immediate-consequence operator.
If clausal logic is a programming language, then it should also have a
compositional semantics. Compositional semantics for programming lan-
guages follows the abstract syntax of programs, composing the meaning
of a unit by a mathematical operation on the meanings of its constituent
units. The procedural interpretation of logic has only yielded an incom-
plete abstract syntax for logic programs. We complete it and use the
result as basis of a compositional semantics. We present for comparison
Tarski’s algebraization of first-order predicate logic, which is in substance
the compositional semantics for his choice of syntax. We characterize our
semantics by equivalence with the immediate-consequence operator.

1 Introduction

This paper concerns the semantics of the part of Prolog that remains when the
built-in predicates have been removed and when unification is enhanced by the
occurs check. Let us call this part “pure Prolog”. It can be regarded as the result
of Kowalski’s procedural interpretation of positive Horn clauses [14,13,8]. The
semantics of pure Prolog has been given by proof theory, by model-theory, and
by a fixpoint method [22,16,1]. All three approaches follow the syntax of clausal
form. As a result, the procedural interpretation has been ignored. The purpose
of the present paper is to remedy this defect.

One of the symptoms of the current deficiency in the semantics of Prolog is that
procedures can only be recognized in an informal way. As it stands, the procedural
interpretation does not provide procedure-valued expressions that can be substi-
tuted for the procedure symbol in a procedure call. Procedures are not “first-class
citizens” the way functions can be in functional programming [20].

Compositional semantics does provide this possibility. According to this
method, programs are expressions, consisting, if composite, of an operation and
its operand(s). The value of the composite expression is the result of the opera-
tion on the values of its operands. The method is taken for granted when doing
school-room sums: the value of (4÷ 2)× (1 + 1) is 4 because the value of 4 ÷ 2
and 1 + 1 are both 2 and because 2× 2 = 4. In the late sixties Landin [15] and
Scott and Strachey [19] applied the method to expressions that are programs.
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In logic programming, compositional semantics seems to have been used only
for elucidating how the union of two logic programs affects the definition of a
predicate [6,4]. In this paper we identify the compositions that occur within a
clause and give a compositional semantics for these.

There are several advantages to a compositional semantics for a program-
ming language. One is that it guides implementation. In fact, “syntax-directed
compilation” [12], a widely used implementation technique, is compositional se-
mantics avant la lettre. The compositional semantics presented here decomposes
logic programs down to single procedure symbols, which take relations as value.
This accommodates relations that are not defined in the logic program itself.

Another advantage of compositional semantics is that it forces a language to
be modular. For example, in a functional language with compositional semantics
E0E1 is the result of applying the value of E0, which must be a function, to the
value ofE1, which may or may not be a function. The result can be a function, but
need not be.

Compositionality requires that the value of E0E1 does not change when E0 is
replaced by a different expression with the same value. This forces modularity
in the sense that names of auxiliary functions occurring in E0 do not affect
its value, hence are local. Compositional semantics endows logic programs with
the same property. The value of a procedure call p(t0, . . . , tn−1) is obtained
by an operation on the value of p (which is a relation) and the argument tuple
〈t0, . . . , tn−1〉. Again, the result depends on the value of the relational expression
substituted for p, not on the expression itself.

Contributions of this paper. When one attempts a compositional semantics for
the procedural interpretation of logic, it becomes apparent that it needs devel-
opment beyond Kowalski’s original formulation. This is done in Section 3.

Section 4 contains no contributions. It needs to be included because cylin-
dric set algebras are a compositional semantics for first-order predicate logic
and hence are a candidate for compositional semantics for the procedural inter-
pretation of logic. This section includes enough to show why these algebras are
not suitable. We do find, however, an interesting connection between the tables
introduced here and the cylinders of Tarski (see Theorem 2).

Tables, their operations and some of their properties are described in Sec-
tion 5. This is the basis on which the compositional semantics of Section 6 rests.
Implications for modularity are discussed in Section 7.

2 Notation and Terminology

In this section we collect terminology and notation that may differ between
authors.

2.1 General Terminology

Definition 1 (tuple, function, index set, type, restriction, subtuple).
– A tuple is a function t that maps every index i to t(i), which is called the

tuple’s component at i.
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– A function is a triple consisting of a set that is its domain, a set that is its
co-domain, and a mapping that associates with every element of the domain
a unique element of the co-domain.

– If the function is a tuple, then the domain is usually called “index set”.
– The set of all functions with domain S and co-domain T is denoted S → T .

This set is often referred to as the type of the functions belonging to it.
– Let f be a function in S → T and let S′ be a subset of S. f ↓ S′ is the

restriction of f to S′. It has S′ as domain, T as co-domain and its mapping
associates f(x) ∈ T with every x ∈ S′.

– If t is a tuple with index set I and if I ′ is a subset of I, then t ↓ I ′ is the
subtuple of t defined by I ′.

Definition 2 (relation). A relation with index set I and co-domain T is a set
of tuples that have I as index set and T as co-domain. An n-ary relation is a
relation that has as index set the set {0, . . . , n− 1} of integers.

Note that a relation need not be an n-ary relation. Indeed, any set can be the
index set of a relation.

Definition 3 (projection, cylindrification). Let r be a relation that has I
as index set. Let I ′ be a subset of I. The projection πI′(r) of r on I ′ is {t ↓ I ′ |
t ∈ r}.

The cylinder in I on a relation r′ with index set I ′ is denoted π−1
I (r′) and is

the greatest relation with index set I and co-domain T that has r′ as its projection
on I ′; that is

π−1
I (r′) = ∪{ρ | πI′(ρ) = r′ and ρ has index set I and co-domain T }.

2.2 Mathematical Objects Arising in Connection with the
Semantics of Logic Programs

To serve as semantic objects, three basic objects are defined independently of
another; all three are mutually disjoint sets:

– H, an Herbrand universe
– V , a set of variables
– P , a set of predicate symbols, also called “procedure symbols”

From the three basic objects the following are derived:

– TV , the set of terms that contain no function symbols or constants other
than those occurring in H and no variables other than those occurring in a
subset V of V . We write T for TV .

– Substitutions, each of which is a tuple of type V → TV , for some subset V
of V . If θ is a substitution and θ(x) = t, then we say that θ substitutes t
for x. We may equate θ with the set {x = t | θ(x) = t and x ∈ V } of term
equations.
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– Term equations are equations of the form t0 = t1, where t0 and t1 are
terms belonging to T . A set of term equations is said to be in solved form
if every left-hand side is a variable, and if all these variables are different,
and if all variables in the right-hand sides also occur as a left-hand side.
If a set of term equations has a solution, then it has a solution in solved
form.
We will not distinguish between term equations in solved form, substitutions,
and tuples of elements of T with a subset of V as index set.

– Relations consisting of tuples of elements ofH that are indexed by {0, . . . , n−
1}. To distinguish these from the next item, we refer to them as integer-
indexed relations.

– Relations consisting of tuples of elements of H that are indexed by a subset
V of V that is characteristic of the relation. We refer to these as variable-
indexed relations.

– The Herbrand base, which is the set of ground atoms.
– Herbrand interpretations, which are subsets of the Herbrand base.
– Relational interpretations, which are tuples of integer-indexed relations in-

dexed by P .

2.3 Compositional Semantics

Compositional semantics assigns the value M(E) to the expression E. We are
interested in expressions that are programs. In this case the value is the behaviour
of the program. As “value” and “behaviour” do not match very well, we often
use “meaning” instead of “value” as a more neutral term. It also happens to fit
well with “semantics”.

Compositionality of the semantics means that if E is composed of subex-
pressions E0 and E1, then M(E) is the result of an operation on M(E0) and
M(E1). A well-known example illustrates the compositional semantics of bi-
nary numerals. It specifies how integers are assigned as meanings to binary
numerals:

M(0) = 0;M(1) = 1;M(N0) = 2M(N);M(N1) = 2M(N) + 1

3 The Procedural Interpretation of Positive Horn Clauses

3.1 The Original Procedural Interpretation

Kowalski [14] gives the procedural interpretation of positive Horn clauses as
follows:

“A Horn clause B ← A1, . . . , Am, with m ≥ 0, is interpreted as a proce-
dure whose body {A1, . . . , Am} is a set of procedure calls Ai. Top-down
derivations are computations. Generation of a new goal statement from
an old one by matching the selected procedure call with the name B of
a procedure B ← A1, . . . , Am is a procedure invocation.
A logic program consists of a set of Horn clause procedures and is acti-
vated by an initial goal statement.”
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Its semantics can be given by the fact that a ground substitution θ is included
in a result of activating program P with goalG iff P∪{Gθ} is false in all Herbrand
interpretations. A more general characterization exists.

3.2 A Complete Procedural Interpretation

The procedural interpretation of logic can be formalized by expressing it as an
abstract procedural syntax. Kowalski proposed, in effect, B ← A0, . . . , Am−1 as an
alternative syntax in the form of a decomposition of {B,¬A0, . . . ,¬Am−1} into
a procedure heading and a procedure body. This omits several decomposition
steps: (1) the clause may be but one of several several that can respond to the
same procedure call, so it is really a partial procedure, (2) a body needs to
be decomposed into calls, and (3) each call needs to be decomposed into its
predicate symbol and its argument tuple. To make the procedural interpretation
not only formal, but also to complete it, we propose Definition 4 as the abstract
syntax needed for compositional semantics.

Definition 4 (procedural program)

1. A procedural program is a tuple of procedures with index set P1.
2. A n-ary procedure is a set of n-ary clauses.
3. An n-ary clause is a pair consisting of a parameter tuple of order n and a

procedure body.
4. A procedure body is a set of procedure calls.
5. A procedure call is a pair consisting of an n-ary procedure symbol and an

argument tuple of order n.
6. A parameter tuple of order n and an argument tuple of order n are both

n-tuples of terms.

Let us consider as example a set P = {app,mem} of procedure symbols and the
procedural program in Figure 1; let us call it p. As p is a tuple with P as index
set, and as a tuple is a function, p can be specified by

p(app) = {(nil,y,y) :- {}, (u.x,y,u.z) :- {app(x,y,z)}}
p(mem) = {(x,y) :- {app(u,x.v,y)}}

By itself, Definition 4 defines some procedural language. It is only of interest
in so far as it is related to clausal logic. Similarly, the relational interpretations
for procedural programs need to be related to Herbrand interpretations. Hence
the following definition.

Definition 5 (correspondence between logic and procedural programs).
An Herbrand interpretation I and a relational interpretation R correspond to
each other (I ∼ R) iff the following holds:

R(p) = {〈a0, . . . , an−1〉 | p(a0, . . . , an−1) ∈ I} for all p ∈ P and
I = {p(a0, . . . , an−1) | p ∈ P and 〈a0, . . . , an−1〉 ∈ R(p)}
1 The procedure symbols in P index only one procedure. This differs from Prolog

where predicate symbols include an arity.
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app(nil,y,y). {app{(nil,y,y) :- {}
app(u.x,y,u.z) :- app(x,y,z). ,(u.x,y,u.z) :- {app(x,y,z)}

}
mem(x,y) :- app(u,x.v,y). ,mem{(x,y) :- {app(u,x.v,y)}}

}

Fig. 1. A Prolog program (left) and an equivalent procedural program (right)

Let S be a sentence consisting of positive Horn clauses (for which we assume
Kowalski’s notation). Let P be a procedural program. S and P correspond to
each other (S ∼ P ) iff the following holds:

P (p) = {partuple :- body | p(partuple)← body ∈ S} for all p ∈ P and
S = {p(partuple)← body | ∃p ∈ P such that partuple :- body ∈ P (p)}.

Each of the syntactical rules of Definition 4 specifies that a certain type of
expression is composed of sub-expressions. Compositional semantics then assigns
to each of syntactical rules a semantical rule that specifies the corresponding
operation on meanings of the constituent sub-expressions.

The next section introduces the mathematical objects that are suitable mean-
ings. Section 6 describes the semantical rules.

Before starting on this we give an informal idea of what is involved. Let us
work through the items in Definition 4, starting at the bottom.

Rule 5. Consider the atoms p(x, v, w) and p(u,w, y). Although both involve the
same relation p, they are different calls and typically have different
meanings. These meanings are the result of a binary operation with
the relation p and the tuple of arguments as operands.

The meaning of the entire call can be viewed as a selection from
the tuples that constitute relation p. The selection is specified by the
argument tuple, and selects the tuples from the relation that match the
argument tuple. Each such match takes the form of a substitution for the
variables in the argument tuple. Therefore the result of the operation,
which we call filtering, is a set of such substitutions.

As such sets are best presented in tabular form, we call the result of
the filtering operation on a relation and an argument tuple a table (see
Definition 6).

Rule 4. We define the product operation on tables (see Definition 8) by means
of which procedure bodies obtain values. These values are tables. The-
orem 2 shows how product is related to the semantic counterpart of
conjunction in Tarski’s cylindric set algebra.

Rule 3. The meaning of a clause is the n-ary relation that results from an opera-
tion on the meanings of the constituents of the clause: the parameter tuple
and the body. As a parameter tuple has itself as meaning, we define an op-
eration, which we call projection, on a parameter tuple of order n and a
table (see Definition 11). The operation yields an n-ary relation.
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This completes the preview of the novel semantic operations: filtering, prod-
uct, and projection. The remaining operations, those arising from Rules 1 and
2, will not require any explanation beyond the following few lines. In Rule 2, a
procedure symbol is combined with a set of clauses. As the meaning of a clause is
an n-ary relation, a set of such clauses denotes the union of these relations, that
is, an n-ary relation again. Rule 2 merely creates a pair consisting of a procedure
symbol and a relation.

Rule 1 combines into a set a number of procedures, each of which is a pair
of a procedure symbol and a relation. The semantic object corresponding to a
program is therefore a tuple of procedures indexed by P , the set of procedure
symbols.

4 Compositional Semantics for Logic

Though there does not seem to exist any compositional semantics for the pro-
cedural interpretation of logic, one does exist for logic that is parsed in the
conventional way. It is called algebraic logic, which would be called composi-
tional semantics if it would concern a programming language. It is therefore a
good starting point for a compositional semantics of logic programs.

Algebraic logic assigns elements of an algebra as meanings to formulas of logic; it
assigns operations of the algebra asmeaning to the connectives that compose logical
formulas. The more widely known approach to algebraic is based on the cylindric
set algebras of Tarski [9,21] of which we give a brief sketch here. Tarski’s approach
is based on the algebraic interpretation of propositional logic due to Boole [2].

4.1 Propositional Logic and Boolean Algebra

In general, a Boolean algebra is any algebra that satisfies certain defining axioms.
A Boolean set algebra is a special case. It is described as the tuple 〈S,∪,∩,∼
, ∅, U〉 where S is a set of subsets of U that contains ∅ and U and is closed under
union, intersection, and complementation (here denoted as ∼).

A special case of a Boolean set algebra is the one whereU is the Cartesian prod-
uct Dn, for some given non-empty set D. Recall that the Cartesian product Dn is
the set of all n-tuples of elements of D. We can further specify the Boolean set al-
gebra by choosing U = D0 = {〈〉} and S = {{}, {〈〉}}. As a result, the algebra has
two elements: {} and {〈〉}. Boolean addition, multiplication, and complementation
then become set union, set intersection, and set complement, respectively. LetM
be the mapping from propositional formulas to the elements of the Boolean alge-
bra. We have thatM(p0 ∨ p1) =M(p0)∪M(p1),M(p0 ∧ p1) =M(p0)∩M(p1),
andM(¬p) = ∼M(p) when we defineM(true) = {〈〉} andM(false) = {}.

4.2 Predicate Logic and Cylindric Set Algebra

Tarski sought an algebra that would do for first-order predicate logic what
Boolean algebra does for propositional logic. The result was cylindric set al-
gebra [21,9].
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In model theory, formulas correspond to relations. If this intuitively attractive
feature is to be retained, a puzzle needs to be solved. Consider M(p(x, y) ∧
p(y, z)). As the formula has three free variables, this should be a ternary relation.
As conjunction means the same in predicate logic as in propositional logic, this
ternary relation should be the result of set intersection. But the arguments of
the set intersection are derived from binary predicates.

Another part of the puzzle is that p(x, y) and p(y, z) should both denote
binary relations, but these should be different and cannot both be the relation
denoted by p.

Tarski solved these conundrums by mapping every formula to a relation con-
sisting tuples indexed by all the variables in the language. He assumed a count-
able infinity of variables in the language, in a given order. In this way he could
identify each variable with a natural number. Thus this meaning algebra has as
elements relations that are subsets of the Cartesian product Dω.

The choice of the two 0-ary relations on D for the two elements of the Boolean
algebra for propositional logic is now clear: the number of variables in a propo-
sitional formula is 0.

A first-order predicate logic formula without free variables is either true or
false. It is mapped accordingly to the full or empty ω-ary relation over D; that is,
to Dω or ∅. At first sight it might seem right to map a formula F [x0, . . . , xn−1]
with free variables x0, . . . , xn−1 to the relation that consists of all the tuples
〈a0, . . . , an−1〉 such that F [a0, . . . , an−1] is true. By mapping instead this formula
to the cylinder on this relation with respect to all variables, Tarski ensured that
M(p0 ∨ p1) =M(p0)∪M(p1) andM(p0 ∧ p1) =M(p0)∩M(p1), just as in the
case of propositional logic.

Going back to the above puzzle, we see that M(p(x, y)) and M(p(y, z)) are
not binary relations but ω-ary relations that are cylinders on a binary relation.
Though the binary relation denoted by p in these formulas is the same, the
cylinders on M(p(x, y)) and M(p(y, z)) are different. In this way M(p(x, y)) ∩
M(p(y, z)) is a cylinder on a ternary relation.

Thus Tarski devised a compositional semantics for first-order predicate logic.
He simplified the language to contain as connectives only conjunction, disjunc-
tion, and negation. The presence of the negation connective makes it possible to
do with a single quantifier, the existential one. There are no function symbols.
An atomic formula can be of the form x = y.

For this language a suitable algebra for a compositional semantics is the cylin-
dric set algebra 〈S,∪,∩,∼, ∅, Dω, Ck, δi,j〉 for all natural numbers i, j, and k.
This algebra is a Boolean algebra (for the first six items). In addition, there
are δi,j , the (i, j) diagonal relations: the subsets of Dω consisting of the tuples
where the elements indexed by i and j are equal. The specification of cylindric
set algebras also includes for all k ∈ ω the cylindrification operations Ck, which
are defined by Ckr being the subset of Dω consisting of the tuples that differ
from a tuple in r in at most the k-th component.
S is the set that contains ∅, Dω, as well as all the diagonal relations δi,j and

that is closed under the Boolean operations as well as under Ck.
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4.3 Cylindric Set Algebra for the Compositional Semantics
of Procedural Programs?

Cylindric set algebra interprets formulas as relations; relations are a suitable
model for the procedures of a procedure-oriented language. These facts might
suggest that cylindric set algebras be used for a compositional semantics for the
procedural interpretation of logic.

The following are reasons not to do so.

– Tarski’s choice of language for first-order predicate logic is no more procedure-
oriented than clausal form is.

– Tarski’s semantics does not specify by what operation, for example, the binary
relationM(p(x, y, x)) arises from the ternary relation p and the argument tu-
ple 〈x, y, x〉. That is, his compositionality stops short of the atomic formula.

Accordingly, we create an independent alternative, centered around the concept
of table. Surprisingly, one of the operations on tables reflects the way Tarski uses
cylinders to algebraize the logical connectives.

5 Tables

Some of the semantic objects for the procedural programs of Definition 4 are
familiar; they have been introduced in Section 2. This section is devoted to the
one novel type of semantic object.

Definition 6 (table). A table on a subset V of V is a set of tuples each of
which has type V → TV . If the set of tuples is empty, then we have the null
table, which we write as ⊥. If V is empty and the set of tuples is not, then the
table is the unit table, which we write as ".

As there is only one function of type {} → TV for any subset V of V , we have
that " = {〈〉}.

To every table there corresponds a unique variable-indexed relation, which we
call the result of grounding the table.

Definition 7 (grounding, table equivalence). Let t be a table with tuples
of type V → TV . Γ (t), the result of grounding t, is the variable-indexed relation
consisting of the tuples of type V → H each of which is a ground instance of a
tuple in t.

Tables t0 and t1 are equivalent if Γ (t0) = Γ (t1).

In this section we define and discuss the product, filtering, and projection opera-
tions. These operations are adapted from [10], where filtering is called
“application”.

5.1 Product

As we will see, compositional semantics assigns tables as values to the calls in a
procedure body as well as to the body itself. The co-occurrence of calls in a body
corresponds to the product operation of the corresponding tables. An example
will be given in Section 6.1.
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Definition 8 (product). Let τ0 and τ1 be tables consisting of tuples with index
sets V0 and V1, respectively. The product τ0 ∗ τ1 of these tables is defined as a
table with V0 ∪V1 as index set. The product table τ0 ∗ τ1 contains a tuple t if and
only if there is a tuple t0 in τ0 and a tuple t1 in τ1 such that the set of equations
t0 ∪ t1 is solvable and has t as solved form.

Theorem 1. – Product is commutative and associative.
– The null table ⊥ is an absorbing element: ⊥∗ τ = τ ∗⊥ = ⊥ for all tables τ .
– The top table " is a unit: " ∗ τ = τ ∗ " = τ for all tables t.
– τ ∗ τ and τ are equivalent.

Commutativity and associativity give the obvious meaning to ∗S, where S is a
set of tables, assuming that ∗{} = ".

Definition 9 (cylinder on table). The cylinder π−1(T ) on a table T with
index set V ∈ V is a table where V is the index set and where every tuple t′

is obtained from a tuple t in T by defining t′(v) = t(v) for every v ∈ V and
t′(v) = v for every v ∈ V \ V .

This definition of “cylinder” is independent of Tarski’s notion, which is the one
in Definition 3. The two notions are connected as follows.

Lemma 1. Let T be a table with index set V , a subset of V. We have that
Γ (π−1(T )) = π−1(Γ (T )). The first occurrence of π−1 is the cylindrification on
tables from Definition 9; the second one is the cylindrification on relations in
Definition 3.

The distinguishing feature of Tarski’s use of cylindric set algebra as semantics
for first-order predicate logic is that conjunction in logic simply translates to
intersection in the algebra. And this is the case even though the conjunction
may be between two formulas with sets V0 and V1 of free variables. There is
no restriction on these sets: they may be disjoint, one may be a subset of the
other, or neither may be the case. Tarski’s device works because the intersection
is not between relations with V0 and V1 as index sets, but between cylinders
on these relations in the set of all variables. This crucial idea reappears in the
product of tables defined here. The connection is made apparent by the following
theorem.

Theorem 2. Let τi be a table with set Vi of variables, for i ∈ {0, 1}. Γ (τ0∗τ1) =
πV0∪V1(π

−1
V (Γ (τ0)) ∩ π−1

V (Γ (τ1))).

5.2 Filtering: From Relations to Tables

Just as in a functional programming language a function is applied to the n-tuple
of its arguments, we think of the combination of a procedure symbol with its
argument tuple as a binary operation. Consider therefore a call consisting of a
procedure symbol and an argument tuple of order n. The procedure symbol has
as value an integer-indexed relation of order n. It combines with the argument
tuple to produce a table. This is the operation we call filtering. An example of
this operation can be found in Section 6.1.
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Definition 10 (filtering). Let p be an integer-indexed relation of order n and
let t be an n-tuple of terms with V as set of variables. The result of the filtering p :
t is a table where V is the index set of the tuples. For every tuple 〈a0, . . . , an−1〉
in p for which the set {t0 = a0, . . . , tn−1 = an−1} of equations is solvable, the
table contains a tuple that is the solved form of these equations.

In functional programming, an expression E0E1 denotes function application.
Here E0 is an expression that evaluates to a function, and it is this function that
is applied. Filtering is the relational counterpart: in p : t the first operand p has
a relation as value; it is filtered by the tuple t; the result is a table.

5.3 Projection: From Tables to Integer-Indexed Relations

Finally, a clause is a contribution to a procedure, which is an integer-indexed
relation of order n. This relation, which is the clause’s value, is somehow pro-
duced by a combination of the parameter tuple of the clause and the table that
is the value of its body. We call this operation projection. An example of this
operation can be found in Section 6.1.

Definition 11 (projection). Let T be a table consisting of tuples whose index
set is a subset V of V . The result of projecting T on an n-tuple of terms,
denoted 〈t0, . . . , tn−1〉/T , is an integer-indexed relation consisting of n-tuples of
ground terms. The relation contains such a tuple if and only if it is a ground
instance of 〈t0θ, . . . , tn−1θ〉, for some θ in T .

6 Compositional Semantics

The operations of product, filtering, and projection are intended to be the se-
mantical counterparts of the way in which procedural programs are put together
syntactically. But so far only the intention exists.

The definition below formalizes this intention. It defines the meaning M(P )
of a procedural program P , where P is regarded as a tuple with index set P of
integer-indexed relations. This meaning depends on a relational interpretation I
(Definition 5) that assigns relations to the procedure symbols in P . We indicate
this dependence by a subscript, as inMI .

Definition 12 gives the compositional semantics for procedural programs. As
Definition 5 shows, a procedural program is just another way of writing a set of
positive Horn clauses. The semantics of these has been defined in three equivalent
ways: model-theoretically, proof-theoretically, and by means of fixpoints. The
main theorem (3) of this paper relates the compositional semantics of procedural
programs to the established semantics of the corresponding clausal sentences.

Definition 12. 1. For every procedural program prog, MI(prog) is the tuple
with index set P such that for every prsym ∈ P the prsym-component is
MI(prog(prsym)).

2. For every procedure proc, MI(proc) = ∪{MI(clause) | clause ∈ proc}
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3. For every clause with pars as parameter tuple and B as body,
MI(pars :- B) = pars/MI(B) (use of projection)

4. For every procedure body B, we have MI(B) = ∗{MI(call) | call ∈ B} (use
of product)

5. For every call with prsym as procedure symbol and args as argument tuple,
MI(prsym args) =MI(prsym) : args (use of filtering)

6. For every prsym ∈ P we have that MI(prsym) = I(prsym)

Here the numbering follows that of the syntactical rules of Definition 4.

Theorem 3. Let I be a relational interpretation and I ′ the corresponding (Def-
inition 5) Herbrand interpretation. Let P be a procedural program and P ′ the
corresponding (Definition 5) set of positive Horn clauses. We have

TP ′(I ′) ∼MI(P ),

where T is the immediate-consequence operator for logic programs.

We only know a cumbersome, though straightforward, proof of this theorem.
T has a unique least fixpoint [22,16,1]. The partial order among Herbrand in-

terpretations (set inclusion) translates according to the correspondence in Def-
inition 5 to a partial order among relational interpretations (component-wise
inclusion). Hence there is, for each procedural program P , a unique least rela-
tional interpretation I such that I =MI(P ).

Definition 13. M(P ) =MIm(P ) where Im is the least relational interpretation
I such that I =MI(P ).

Theorem 4. Let P ′ be a logic program and let P be the corresponding procedural
program. Then we have lfp(TP ′) ∼M(P ).

This relates the compositional semantics of procedural programs to the mutually
equivalent least fixpoint, proof-theoretical, and model-theoretical semantics of
logic programs.

6.1 An Example

Consider the procedural program clause (f(y), z) :- {p(x, f(y)), p(f(x), z)}.
Here M(p) is an integer-indexed relation with {0, 1} as index set. Let us as-

sume that M(p) =
0 a f(a) f(a) f(b)
1 f(b) b f(b) f(a)

. Here the four 2-tuples, indexed by

{0, 1}, are displayed vertically.
The value of a call is a table; that is, a variable-indexed relation.

M(p(x, f(y))) =M(p) : 〈x, f(y)〉 =
x a f(a) f(b)
y b b a

.

Similarly, M(p(f(x), z)) =M(p) : 〈f(x), z〉 = x a a b
z b f(b) f(a)

.



Compositional Semantics for the Procedural Interpretation of Logic 327

The value of the body is the product of the above two tables:

M(p(x, f(y)), p(f(x), z)) =M(p(x, f(y))) ∗M(p(f(x), z)) =
x a a
y b b
z b f(b)

.

Finally, the meaning of the entire clause

(f(y), z) :- p(x, f(y)), p(f(x), z) is obtained by projection:

〈f(y), z〉/M(p(x, f(y)), p(f(x), z)) =
0 f(b) f(b)
1 b f(b)

.

7 Implications for Modularity

Suppose P and P ′ are procedural programs with the same Herbrand universe.
If p(t0, . . . , tn−1) is a call in P , then the meaning of p is (M(P ))(p). But p is a
special case of an expression that has an n-ary integer-indexed relation as value.
Such an expression could also be (M(P ′))(p′) if p′ is a procedure symbol in P ′

paired with an n-ary procedure. The value of this expression is a set of n-tuples
of ground terms. This value is independent of the procedure symbols occurring
in P ′. Hence these symbols are “encapsulated” in the expression (M(P ′))(p′).

This only addresses the semantics of a module mechanisms. It leaves open
the syntax that indicates which set of clauses is a module and which procedure
symbol is exported.

8 Related Work

Modules for logic programs can be obtained via proof theory [18,17] or via
higher-order logic [5]. A different approach is to base it on decompositions of
the immediate-consequence operator as done by Brogi et al. [3]. It is baffling
that the various approaches to modularity are so difficult to relate. Several more
are mentioned by Brogi et al. [3], who also seem at a loss in relating them to
their own work.

Additional details about the operations on tables and relations, there called
“table-relation algebra”, can be found in [10,11].

9 Concluding Remarks

The procedural programs of Definition 4 are the result of the desire to give a
procedural interpretation not only of an entire clause, but also of the composition
of head and body within a clause as well as of the compositions that can be
recognized in the body. Thus procedural programs are but another way of parsing
a set of positive Horn clauses.

But suppose that in 1972 one had never heard of clausal logic and that the
motivation was to characterize in what way languages with procedures, such as
Algol, are of a higher level than their predecessors. A higher level of programming
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in such languages is achieved by using procedure calls as much as possible. That
suggests the ultimate altitude in level of programming: procedure bodies contain
procedure calls only.

What about data structures for a pure procedural language? Just as Lisp
simplified by standardizing all data structures to lists, one could make a similar
choice by standardizing on trees. In this way a pure procedure-oriented language
would arise that coincides with the procedural programs of Definition 4.

Functional programming languages have an obvious semantics in the form of
functions as defined in mathematics. The semantics of Algol-like languages is
defined in terms of transitions between computational states. These transitions
are specified directly or indirectly in terms of assignments. In this way one might
think that procedure-oriented programming languages are of inherently lower
level than functional programming languages.

It is not necessary to specify procedures in terms of state transitions. A pro-
cedure is more directly specified as the set of all possible combinations of values
of the arguments of a call. That is, as a set of tuples of the same arity, which is
a relation.

In this way the procedural programs of Definition 4 become as high-level as
functional programs and obtain a semantics that is as mathematical.

One might argue that this gives procedural programs a significance that ex-
tends beyond logic programming. For example, they may be a way to describe
Colmerauer’s view [7] that Prolog is not necessarily a logic programming lan-
guage. In the procedural interpretation described here, the Herbrand universe
can be replaced by a sufficiently similar data structure, such as the rational
trees.
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Abstract. We extend logic programming’s semantics with the semantic
dual of traditional Herbrand semantics by using greatest fixed-points in
place of least fixed-points. Executing a logic program then involves using
coinduction to check inclusion in the greatest fixed-point. The result-
ing coinductive logic programming language is syntactically identical to,
yet semantically subsumes logic programming with rational terms and
lazy evaluation. We present a novel formal operational semantics that is
based on synthesizing a coinductive hypothesis for this coinductive logic
programming language. We prove that this new operational semantics is
equivalent to the declarative semantics. Our operational semantics lends
itself to an elegant and efficient goal directed proof search in the presence
of rational terms and proofs. We describe a prototype implementation
of this operational semantics along with applications of coinductive logic
programming.

But look! What was that? One of the snakes had seized hold of its own tail,
and the form whirled mockingly before my eyes.

—Friedrich A. Kekule, 1864

1 Introduction

The traditional declarative and operational semantics for logic programming
(LP) is inadequate for various programming practices such as programming with
infinite data structures and corecursion [2]. While such programs are theoreti-
cally interesting, their practical applications include improved modularization of
programs as seen in lazy functional programming languages, rational terms, and
applications to model checking as discussed in section 5. For example, we would
like programs such as the following program, which describes infinite binary
streams, to be semantically meaningful and finitely derivable.

bit(0).
bit(1).
bitstream([H | T]) :- bit(H), bitstream(T).
| ?- X = [0, 1, 1, 0 | X], bitstream(X).

We would like the above query to return a positive answer in finite time, however,
aside from the bit predicate, the least fixed-point (lfp) semantics of the above
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program is null, and no finite SLD derivation exists for the query. Hence the
problems are two-fold. The Herbrand universe does not allow for infinite terms
such as X and the least Herbrand model does not allow for infinite proofs, such
as the proof of bitstream(X). However, the traditional declarative semantics
of LP can be extended in order to give declarative semantics to such infinite
structures and properties, as seen in numerous accounts of rational terms and
infinite derivations [14,10,12,11]. Furthermore, the operational semantics must
be extended, so as to be able to finitely represent an otherwise infinite derivation.
This paper proposes such an operational semantics which is based on synthesiz-
ing a coinductive hypothesis, and discusses its implementation and applications.
We refer to this variation of logic programming as “coinductive logic program-
ming”.1 The work reported in this paper is a culmination of authors’ previous
work [18,5,13,6,7]. The novel contribution of our work is the development of an
efficient top-down operational semantics for computing the greatest fixed-point
of a logic program.

2 Syntax and Semantics

Traditionally, declarative semantics for LP has been given using the notions
of Herbrand universe, Herbrand base, and minimal model [12]. Each is defined
as a least fixed-point, and the set is manifested in traditional set theory. The
declarative semantics of coinductive LP, on the other hand, takes the dual of
each of these notions, in hyperset theory with the axiom of plenitude [2]. This
variation of the declarative semantics of a logic program has appeared before
[14,10,12,11] in order to describe rational trees and infinite SLD derivations.
However, here it is used to finitely describe potentially infinite derivations in our
new operational semantics, which we call co-SLD in section 2.4.

2.1 Induction and Coinduction

A naive attempt to prove a property of the natural numbers involves demonstrat-
ing the property for 0, 1, 2, . . . . In order for such a proof to be comprehensive, it
must be infinite. However, since an explicitly infinite proof cannot written, the
principle of proof by induction can be used to represent such an infinite proof
in a finite form. This is precisely what the operational semantics of coinductive
LP does as well. That is, coinductive LP uses the principle of proof by coinduc-
tion for representing infinite proofs or derivations in a finite form. The difference
between induction and coinduction will be made more obvious later.

Following the account given in Barwise [2] and Pierce [15], we briefly review
the set theoretic notions of induction and coinduction, which are defined in
terms of monotonic functions on sets and least and greatest fixed-points, which
1 Note that coinductive LP defined in this paper is not at all related to inductive

LP which is the common term used to refer to LP systems for learning rules. In
fact, sometimes we’ll use the term inductive LP itself to refer to traditional SLD (or
OLDT) resolution-based LP.
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exist and are unique according to Theorem 1. For the remaining discussion, it is
assumed that all objects such as elements, sets, and functions are taken from the
universe of hypersets with the axiom of plenitude. Details can be found in [2].

Definition 1. A function Γ on sets is monotonic if S ⊆ T implies Γ (S) ⊆
Γ (T ). Such functions are called generating functions.

Generating functions can be thought of as a definition for creating objects, such
as terms and proofs. The following example demonstrates one such definition.

Example 1. Let ΓN be a function on sets: ΓN (S) = {0} ∪ {succ(x) | x ∈ S}.
Obviously, ΓN is a monotonic function, and intuitively, it defines the set of
natural numbers, as will be demonstrated below.

Definition 2. Let S be a set.

1. S is Γ -closed if Γ (S) ⊆ S; S is Γ -justified if S ⊆ Γ (S).
2. S is a fixed-point of Γ if S is both Γ -closed and justified.

A set S is Γ -closed when every object created by the generator Γ is already in
S. Similarly, a set S is Γ -justified when every object in S is created or justified
by the generator. Theorem 1 shows that a generating function Γ can be used
for giving a precise definition of a set of objects in terms of the least or greatest
fixed-point of Γ , as these fixed-points are guaranteed to exist, and are unique.

Theorem 1. (Knaster-Tarski) Let Γ be a generating function. The least fixed-
point of Γ is the intersection of all Γ -closed sets. The greatest fixed-point (gfp)
of Γ is the union of all Γ -justified sets.

Since these fixed-points always exist and are unique, it is customary to define
unary operators μ and ν for manifesting either of these fixed-points.

Definition 3. μΓ denotes the lfp of Γ , and νΓ denotes the gfp.

Example 2. Let ΓN be defined as in example 1. The definition of the natural
numbers N can now be unambiguously invoked via theorem 1, as N = μΓN ,
which is guaranteed to exist and be unique. Note that this definition is equivalent
to the standard “inductive” definition of the natural numbers, which is written:
Let N be the smallest set such that 0 ∈ N and if x ∈ N , then x+ 1 ∈ N .

Hence what is sometimes referred to as an inductive definition, is subsumed by
definition via least fixed-point. This is further generalized by creating the dual
notion of a definition by greatest fixed-point, termed a coinductive definition.

Example 3. ΓN from example 1 also unambiguously defines another set, that is,
N ′ = νΓN = N ∪ {ω}, where ω = succ(ω), that is, ω = succ(succ(succ(...))) an
infinite application of succ.

Corollary 1. The principle of induction states that if S is Γ -closed, then μΓ ⊆
S, and the principle of coinduction states that if S is Γ -justified, then S ⊆ νΓ .
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Definition 4. Let Q(x) be a property. Proof by induction demonstrates that the
characteristic set S = {x | Q(x)} is Γ -closed, and then invokes the principle of
induction to prove that every element x of μΓ has the property Q(x).

Similarly, proof by coinduction demonstrates that the characteristic set S is
Γ -justified, and then invokes the principle of coinduction to prove that every
element x that has property Q(x) is also an element of νΓ .

Example 4. The familiar proof by induction can be instantiated with regards
to the set N defined in the previous example. Let Q(x) be some property, and
let S = {x | Q(x)}. In order to show that every element x in N has property
Q(x), by induction it is sufficient to show that ΓN (S) ⊆ S, which is equivalent
to showing that 0 ∈ S, and if x ∈ S, then succ(x) ∈ S.

Proof by coinduction is used in many areas of computer science. e.g., bisimilarity
proofs for process algebras such as the π-calculus. Our soundness proof of the
operational semantics of coinductive LP also relies on coinduction [20].

2.2 Syntax

A coinductive logic program is syntactically identical to a traditional logic pro-
gram, i.e., a coinductive logic program is a finite set of definite clauses. Syntactic
terms and atoms have their traditional inductive definitions. However, coinduc-
tive LP also makes use of infinite terms and atoms in its semantics. These gener-
alizations of syntactic terms and atoms have a straightforward definition as the
greatest fixed-points of the same respective generating functions used to define
syntactic terms and atoms. Finally, we assume that there is at least one constant
and one unary function symbol in a coinductive logic program.

2.3 Declarative Semantics

The declarative semantics of a coinductive logic program is the “across the board”
dual of the traditional minimal model Herbrand semantics [12,1], i.e., the model
of a coinductive logic program P , written M co(P ), is the maximal infinitary
Herbrand model of a program P . The maximal infinitary Herbrand model is the
greatest fixed-point of TP with atoms ranging over the infinitary Herbrand base.
The details can be found in [14,10,12]. As demonstrated in [14,10,12,11], this
allows the universe of terms, called the infinitary Herbrand universe, to contain
infinite terms, in addition to the traditional finite terms, and similarly for the
infinitary Herbrand base, which contains finite and infinite atoms. It also allows
for the model to contain ground goals that have either finite or infinite proofs.
The difference here is that we define such goals as true, and in the next section
we provide a new operational semantics that yields finite derivations for goals
with an infinite (rational) proof.

Definition 5. A possibly infinite atom A is true in program P iff the set of all
groundings of A, with substitutions ranging over the infinitary Herbrand uni-
verse, is a subset of M co(P ).
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Example 5. Let P1 be the following program.

from(N, [N|T]) :- from(s(N), T).
| ?- from(0, _).

The coinductive semantics are derived as follows. The infinitary Herbrand uni-
verse is U co(P1) ⊇ N∪Ω∪LwhereN = {0, s(0), s(s(0)), . . .},Ω = {s(s(s(. . .)))},
and L is the set of all finite and infinite lists of elements in N , Ω, L. Therefore the
maximal infinitary Herbrand model M co(P1) = {from(t, [t, s(t), s(s(t)), . . .]) |
t ∈ U co(P1)}, which is the meaning of the program and obviously not null, as
was the case with traditional LP. Furthermore from(0, [0, s(0), s(s(0)), . . .]) ∈
M co(P1) implies that the query returns “yes”.

The model characterizes semantics in terms of truth, that is, the set of ground
atoms that are true. This set is defined via a generator TP , and in section 2.6,
we discuss the way in which the generator is applied in order to include an atom
in the model. For example, the generator is only allowed to be applied a finite
number of times for any given atom in the minimal model, while it can be applied
an infinite number of times for an atom in the maximal infinitary Herbrand
model. We characterize this by recording the application of the generator in the
elements of a new fixed-point. We call these elements “idealized proofs”.

Definition 6. Let node(A,L) be a constructor of a tree with root A and subtrees
L, where A is an atom and L is a list of trees. Let Gco(P ) be the set of ground
instances of clauses of a program P . The set of idealized proofs for program P
is νΣP , where

ΣP (S) = {node(C, [T1, . . . , Tn]) |
C ← D1, . . . , Dn ∈ Gco(P ) ∧ the root of Ti ∈ S is Di}

Again, this is nothing more than a reformulation of the maximal infinitary Her-
brand model, which records the applications of the generator in the elements of
the fixed-point itself, as the following theorem demonstrates.

Theorem 2. Let S = {A | ∃T ∈ νΣP .A is the root of T }, then S = M co(P ).

Hence any element in the model has an idealized proof and anything that has an
idealized proof is in the model. A similar theorem exists, equating the minimal
model with the least fixed-point of ΣP restricted to finite terms, i.e., the mini-
mal model consists of all ground atoms that have a finite idealized proof. This
formulation of the declarative semantics in terms of idealized proofs will be used
in section 2.6.

2.4 Operational Semantics

This section defines the operational semantics for coinductive logic programming.
This requires some infinite tree theory. However, this section only states a few
definitions and theorems without proof. Details can be found in [4].

The operational semantics given for coinductive LP is defined in a manner
similar to SLD, and is therefore called co-SLD. Where SLD uses sets of syntactic
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atoms and syntactic term substitutions for states, co-SLD uses finite trees of
syntactic atoms along with systems of equations. Of course, the traditional goals
of SLD can be extracted from these trees, as the goal of a tree is simply the set
of leaves of the tree. Furthermore, where SLD only allows program clauses as
state transition rules, co-SLD also allows an implicit coinductive hypothesis rule
for providing atoms that have an infinite proof, with a finite derivation. As is
the case with SLD, it is up to the underlying search strategy to find a sequence
of transition rules that prove the original query.

Definition 7. A tree is rational if the cardinality of the set of all its subtrees is
finite. An object such as a term, atom, or idealized proof is said to be rational if
it is modeled as a rational tree.

Definition 8. A substitution is a finite mapping of variables to terms. A sub-
stitution is syntactic if it only substitutes syntactic terms for variables. A sub-
stitution is said to be rational if it only substitutes rational terms for variables.

Definition 9. A term unification problem is a finite set of equations between
terms. A unifier for a term unification problem is a substitution that satisfies
every equation in the problem. σ is a most general unifier (mgu) for a term
unification problem, if any other solution σ′ can be defined as the composition
σ′′ ◦ σ.

Note that terms are possibly infinite. So it is possible for a unification problem
to lack a syntactic unifier, while at the same time the problem has a solution: a
rational unifier. However, objects of an operational semantics should be finite.
Hence we define a standard finite representation of rational substitutions called
a system of equations.

Definition 10. A system of equations E is a term unification problem where
each equation is of the form X = t, s.t. X is a variable and t a syntactic term.

Theorem 3. (Courcelle) Every system of equations has a mgu that is rational.

Theorem 4. (Courcelle) For every rational substitution σ with domain V , there
is a system of equations E, such that the mgu σ′ of E is equal to σ when restricted
to the domain V .

Without loss of generality, the previous two theorems allow for a solution to a
term unification problem to be simultaneously a substitution as well as a system
of equations. Note that given a substitution specified as a system of equations
E, and a term A, the term E(A) denotes the result of applying the substitution
E to A.

Now the operational semantics can be defined. The semantics implicitly de-
fines a state transition system. Systems of equations are used to model part of
the state of coinductive LP’s semantics. They effectively denote the current state
of unification of terms. The current state of the pending goals is modeled using
a finite tree of atoms, as it is necessary to recognize cycles in the sequence of
pending goals, that is, the ancestors of a goal are memo-ed in order to recognize
a cycle in the proof.
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Definition 11. A state S is a pair (T,E), where T is a finite tree with nodes
labeled with syntactic atoms, and E is a system of equations.

Note that the states of the operational semantics only allow for rational terms
in any given state, while the declarative semantics allows for irrational terms,
i.e., infinite terms that are not rational. This is due to the fact that at any
given state of the computation, a term must be finitely representable. In the
current operational semantics, irrational terms only exist "in the limit" of an
infinite derivation. Future work involves extending the operational semantics
presented in this paper so that subgoals that cannot fail can be suspended and
resumed via coroutining, which will allow for a finite representation of irrational
terms in a manner similar to functional programming’s lazy data structures.
This discrepancy manifests in the completeness proof, which must be restricted
to atoms that have a rational idealized proof, as atoms with irrational idealized
proofs do not necessarily have finite co-SLD derivations.

Definition 12. A transition rule R of a coinductive logic program P is an in-
stance of a clause in P , with variables standardized apart, i.e., consistently re-
named for freshness, or R is a coinductive hypothesis rule of the form ν(n)
(defined below), where n is a natural number.

Definition 13. A state (T,E) transitions to another state (T ′, E′) by transition
rule R of program P whenever:

1. R is a definite clause of the form p(t′1, . . . , t
′
n) ← B1, . . . , Bm and E′ is the

mgu for {t1 = t′1, . . . , tn = t′n} ∪ E, and T ′ is obtained from T according to
the following case analysis of m:
(a) m = 0 implies T ′ is obtained from T by removing a leaf labeled

p(t1, . . . , tn) and the maximum number of its ancestors, such that the
result is still a tree.

(b) m > 0 implies T ′ is obtained from T by adding children B1, . . . , Bm to
a leaf labeled with p(t1, . . . , tn).

2. R is of the form ν(m), a leaf N in T is labeled with p(t1, . . . , tn), the proper
ancestor of N at depth m is labeled with p(t′1, . . . , t

′
n), E′ is the mgu for

{t1 = t′1, . . . , tn = t′n} ∪ E, then T ′ is obtained from T by removing N and
the maximum number of its ancestors, such that the result is still a tree.

The part of the previous definition that removes a leaf and a maximum number
of its ancestors can be thought of as a successful call returning and therefore
deallocating memo-ed calls on the call stack. This involves successively removing
ancestor nodes of the leaf until an ancestor is reached, which still has other
children, and so removing any more ancestors would cause the result to no longer
be a tree, as children would be orphaned. Hence the depth of the tree is bounded
by the depth of the call stack.

Definition 14. A transition sequence in program P consists of a sequence of
states S1, S2, . . . and a sequence of transition rules R1, R2 . . ., such that Si tran-
sitions to Si+1 by rule Ri of program P .
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A transition sequence denotes the trace of an execution. Execution halts when
it reaches a terminal state: either all goals have been proved or the execution
path has reached a dead-end.

Definition 15. The following are two distinguished terminal states:

1. An accepting state is of the form (∅, E), where ∅ denotes an empty tree.
2. A failure state is a non-accepting state lacking any outgoing edges.

Without loss of generality, we restrict queries to be single syntactic atoms. A
query containing multiple atoms can be modeled by adding a new predicate with
one clause to the program. Finally we can define the execution of a query as a
transition sequence through the state transition system induced by the input
program, with the start state consisting of the initial query.

Definition 16. A co-SLD derivation of a state (T,E) in program P is a state
transition sequence with the first state equal to (T,E). A derivation is successful
if it ends in an accepting state, and a derivation has failed if it reaches a failure
state. We say that a syntactic atom A has a successful derivation in program P ,
if (A, ∅) has a successful derivation in P .

2.5 Examples

In addition to allowing infinite terms, the operational semantics allows for an
execution to succeed when it encounters a goal that unifies with an ancestor
goal. While this is somewhat similar to tabled LP in that called atoms are
recorded so as to avoid unnecessary redundant computation, the difference is
that coinductive LP’s memo-ed atoms represent a coinductive hypothesis, while
tabled logic programming’s table represents a list of results for each called goal
in the traditional inductive semantics. Hence we call the memo-ed atoms the
dynamic coinductive hypothesis. An example that demonstrates the distinction
is the following program.

p :- p.
| ?- p.

Execution starts by checking the dynamic coinductive hypothesis for an atom
that unifies with p, which does not exist, so p is added to the hypothesis. Next,
the body of the goal is executed. Again, the hypothesis is checked for an atom
that unifies with p, which is now already included in the hypothesis, so the
most recent call succeeds and then since no remaining goals exist, the original
query succeeds. Hence, according to the operational semantics of coinductive LP,
the query has a successful derivation, and hence returns “yes”, while traditional
(tabled) LP returns “no”.

Now for a more complicated example involving function symbols. Consider
the execution of the following program, which defines a predicate that recognizes
infinite streams of natural numbers and ω, that is, infinity.
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stream([H | T]) :- number(H), stream(T).
number(0).
number(s(N)) :- number(N).
| ?- stream([0, s(0), s(s(0)) | T ]).

The following is an execution trace, for the above query, of the memoization and
unmemoization of calls by the operational semantics:

1. MEMO: stream( [ 0, s(0), s(s(0)) | T ] )
2. MEMO: number( 0 )
3. UNMEMO: number( 0 )
4. MEMO: stream( [ s(0), s(s(0)) | T ] )
5. MEMO: number( s(0) )
6. MEMO: number( 0 )
7. UNMEMO: number( 0 )
8. UNMEMO: number( s(0) )
9. MEMO: stream( [ s(s(0)) | T ] )

10. MEMO: number( s(s(0)) )
11. MEMO: number( s(0) )
12. MEMO: number( 0 )
13. UNMEMO: number( 0 )
14. UNMEMO: number( s(0) )
15. UNMEMO: number( s(s(0)) )

The next goal call is stream( T ), which unifies with memo-ed ancestor (1),
and therefore immediately succeeds. Hence the original query succeeds with

T = [ 0, s(0), s(s(0)) | T ]

The user could force a failure here, which would cause the goal to be unified
with the next matching memo-ed ancestor, if such an element exists, otherwise
the goal is memo-ed and the process repeats—generating additional results (T =
[0, s(0), s(s(0)) | R], R = [0 | R], etc.). Note that excluding the occurs
check is necessary as such structures have a greatest fixed-point interpretation
and are in the infinitary Herbrand universe. We will see that this is in fact one of
the benefits of coinductive LP. Traditional LP’s least Herbrand model semantics
requires SLD resolution to unify with occurs check (or lack soundness), which
adversely affects performance in the common case. Coinductive LP, on the other
hand, has a declarative semantics that allows unification without doing occurs
check in an efficient manner as seen in rational tree unification, and in addition,
coinductive LP allows for programs to reason about rational terms generated
by rational tree unification in a manner that is impossible in traditional LP, as
traditional LP would diverge into an infinite derivation, where coinductive LP
would yield a finite derivation thanks to the dynamic synthesis of a coinductive
hypothesis via memoization.
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2.6 Correctness

We next prove the correctness of the operational semantics by demonstrating
its correspondence with the declarative semantics via soundness and complete-
ness theorems. Completeness, however, must be restricted to atoms that have a
rational proof. Section 6 discusses an extension of the operational semantics, so
as to improve its completeness. The soundness and completeness theorems are
stated below, their proofs are omitted and can be found elsewhere [20].

Theorem 5. (soundness) If atom A has a successful co-SLD derivation in pro-
gram P , then E(A) is true in program P , where E is the resulting variable
bindings for the derivation.

Theorem 6. (completeness) If A ∈M co(P ) has a rational idealized proof, then
A has a successful co-SLD derivation in program P .

3 Related Work

Most of the work in the past has been focused on allowing for infinite data
structures in LP, or it has dealt with mathematically describing infinite deriva-
tions. However, these stop short of providing both a declarative semantics as
well as finite derivations for atoms that have infinite idealized proofs. Logic pro-
gramming with rational trees [3,10] allows for finite terms as well as infinite
terms that are rational trees, that is, terms that have finitely many distinct
subterms. Coinductive LP as defined in Section 2, on the other hand, allows
for finite terms, rational infinite terms, but unlike LP with rational trees, the
declarative semantics of coinductive LP also allows for irrational infinite terms.
Furthermore, the declarative semantics of LP with rational trees corresponds to
the minimal infinitary Herbrand model. On the other hand, coinductive LP’s
declarative semantics is the maximal infinitary Herbrand model. Also, the op-
erational semantics of LP with rational trees is simply SLD extended with ra-
tional term unification, while the operational semantics of coinductive LP cor-
responds to SLD only via the fact that both are implicitly defined in terms of
state transition. Thus, LP with rational trees does not allow for finite deriva-
tions of atoms that have infinite idealized proofs, while coinductive LP does.
Finally, LP with rational trees can only create infinite terms via unification
(without occurs check), while coinductive LP can create infinite terms via unifi-
cation (without occurs check) as well as via user-defined coinductively recursive
(or corecursive) predicates, as demonstrated by the bit stream example in the
introduction.

It is also well known that atoms with infinite SLD derivations are contained in
the maximal model [14,10,12,11]. However, the novel contribution of coinductive
LP is co-SLD’s use of memoization for synthesizing a coinductive hypothesis,
which allows for the invocation of co-SLD’s coinductive hypothesis rule for rec-
ognizing atoms that have an infinite idealized proof. For example, the work of
[14,10,12,11] doesn’t provide an effective means, i.e., an operational semantics,
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for answering the bit stream query in the introduction. In their operational se-
mantics, such a query would simply not terminate, while in coinductive logic
programming such a query terminates in finite time because it has a successful,
finite co-SLD derivation.

Jaffar et al’s coinductive tabling proof method [9] uses coinduction as a means
of proving infinitary properties in model checking, as opposed to using it in defin-
ing the semantics of a new declarative programming language, as is the case with
coinductive LP presented in this paper. Jaffar et al’s coinductive tabling proof
method is not assigned any declarative, model-theoretic semantics, as is the
case with coinductive logic programming presented in this paper, which has a
declarative semantics, operational semantics, and a correctness proof showing
the correspondence between the two. Coinductive logic programming, when ex-
tended with constraints, can be used for the same applications as Jaffar et al’s
coinductive tabling proof method (see [20]).

Lazy functional LP (e.g., [8]) also allows for infinite data structures, but it
encodes predicates as Boolean functions, while in comparison, coinductive LP
defines predicates via Horn clauses; the difference in the semantics of the two is
quite pronounced.

4 Implementation

A prototype implementation of coinductive LP is being realized by modifying
the YAP Prolog system [17]. The general operational semantics described above
allows for a coinductively recursive call to terminate (coinductively succeed) if it
unifies with a call that has been seen earlier. However, in the current prototype,
a coinductive call terminates only if it is a variant of an ancestor call.

The implementation of coinductive LP is reasonably straightforward, and is
based on the machinery used in the YAP system for realizing OLDT style tabling
[17]. Predicates have to be declared coinductive via the directive:

:- coinductive p/n.

where p is the predicate name and n its arity. When a coinductive call is encoun-
tered for the first time, it is recorded in the memo-table that YAPTAB [17] uses
for implementing standard tabled LP. The call is recorded again in the table af-
ter head unification, but this time it is saved as a solution to the tabled call. The
variables in the recorded solution are interpreted w.r.t. the environment of the
coinductive call (so effectively the closure of the call is saved). When a variant
call is encountered later, it is unified with the solution saved in the table and
made to succeed. Note that everything recorded in the memo-table for a specific
coinductive predicate p will be deleted, when execution backtracks over the first
call of p. Consider the example program:

:- coinductive p/1.
p(f(X)) :- p(X).
| ?- p(Y).
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When the call p(Y) is made, it is first copied (say as p(A)) in the table as a
coinductive call. Next, a matching rule is found and head unification performed
(Y is bound to f(X)). Next, p(Y) (i.e., p(f(X))) is recorded as a solution to the
call p(A). The variable X in the solution refers to the X in the rule matching the
coinductive call (i.e., it points to the variable X in the environment allocated on
the stack). When the coinductive call p(X) is encountered in the body of the
rule, it is determined to be a variant of the call p(A) stored in the memo-table,
and unified with the solution p(f(X)). This results in X being bound to f(X),
i.e., X = f(X), producing the desired solution fω(..).

5 Applications

Coinductive LP augments traditional logic programming with rational terms
and rational proofs. These concepts generalize the notions of rational trees and
lazy predicates. Coinductive LP has practical applications in concurrent LP,
bisimilarity, model checking, and many other areas. Furthermore, it appears
that the concept of ancestors in the co-SLD semantics can be used to give a
top-down operational semantics to a restricted form of ASP programs (work is
in progress). Coinductive LP also allows type inference algorithms in functional
programming to be implemented directly and elegantly.

Infinite Terms and Properties: As previously stated, coinductive LP sub-
sumes logic programming with rational trees of Jaffar et al [10] and Colmer-
auer [3]. However, because LP with rational trees has semantics ascribed by
the minimal infinitary Herbrand model, applying predicates to infinite trees is
rather limited. Doing so typically results in nontermination. Coinductive LP
removes this limitation by ascribing the semantics in terms of maximal infini-
tary Herbrand model and it provides an operational semantics that provides
finite derivations for atoms with infinite idealized proofs. This is demonstrated
by the traditional definition of append, which, when executed with coinductive
logic programming’s semantics, allows for calling the predicate with infinite ar-
guments. This is illustrated below. As an aside, note that irrational lists also
make it possible to directly represent an infinite precision irrational real number
as an infinite list of natural numbers.

append( [], X, X ).
append( [H|T], Y, [H|Z] ) :- append( T, Y, Z ).

Not only can the above definition append two finite input lists, as well as split
a finite list into two lists in the reverse direction, it can also append infinite lists
under coinductive execution. It can even split an infinite list into two lists that
when appended, equal the original infinite list. For example:

| ?- Y = [4, 5, 6, | Y], append([1, 2, 3], Y, Z).
Answer: Z = [1, 2, 3 | Y], Y = [4, 5, 6, | Y]

More generally, the coinductive append has interesting algebraic properties.
When the first argument is infinite, it doesn’t matter what the value of the second
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argument is, as the third argument is always equal to the first. However, when
the second argument is infinite, the value of the third argument still depends on
the value of the first. This is illustrated below:

| ?- X = [1, 2, 3, | X], Y = [3, 4 | Y], append(X, Y, Z).
Answer: Z = [1, 2, 3 | Z]

| ?- Z = [1, 2 | Z], append(X, Y, Z).
Answers: X = [], Y = [1, 2 | Z]; Z = [1, 2 | Z]

X = [1], Y = [2 | Z]; Z = [1, 2 | Z]
X = [1, 2], Y = Z; Z = [1, 2 | Z]

Lazy Evaluation of Logic Programs: Coinductive LP also allows for lazy
evaluation to be elegantly incorporated into Prolog. Lazy evaluation allows for
manipulation of, and reasoning about, cyclic and infinite data structures and
properties. In the presence of coinductive LP, if the infinite terms involved are
rational, then given the goal p(X), q(X) with coinductive predicates p/1 and
q/1, then p(X) can coinductively succeed and terminate, and then pass the
resulting X to q(X). If X is bound to an infinite irrational term during the com-
putation, then p and q must be executed in a coroutined manner to produce
answers. That is, one of the goals must be declared the producer of X and the
other the consumer of X, and the consumer goal must not be allowed to bind X.
Consider the (coinductive) lazy logic program for the sieve of Eratosthenes:

:- coinductive sieve/2, filter/3, member/2.
primes(X) :- generate_infinite_list(I), sieve(I,L), member(X, L).
sieve([H|T], [H|R]) :- filter(H,T,F), sieve(F,R).
filter(H,[],[]).
filter(H,[K|T],[K|T1]) :- R is K mod H, R > 0,filter(H,T,T1).
filter(H,[K|T],T1) :- 0 is K mod H, filter(H,T,T1).

In the above program filter/3 removes all multiples of the first element in
the list, and then passes the filtered list recursively to sieve/2. If the predicate
generate_infinite_list(I) binds I to a rational list (e.g., X = [2, .., 20 |
X], then filter can be completely processed in each call to sieve/2. However,
in contrast, if I is bound to an irrational infinite list as in:

:- coinductive int/2.
int(X, [X|Y]) :- X1 is X+1, int(X1, Y).
generate_infinite_list(I) :- int(2,I).

then in the primes/1 predicate, the calls generate_infinite_list/1, sieve/2
and member/2 should be co-routined, and, likewise, in the sieve/2 predicate,
the calls filter/3 and the recursive call sieve/2 must be coroutined.

Model Checking and Verification: Model checking is a popular technique
used for verifying hardware and software systems. It works by constructing a
model of the system defined in terms of a finite state Kripke structure and then
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determining if the model satisfies various properties specified as temporal logic
formula. The verification is performed by means of systematically searching the
state space of the Kripke structure for a counter-example that falsifies the given
property. The vast majority of properties that are to be verified can be classified
into safety properties and liveness properties. Intuitively, safety properties are
those which assert that ‘nothing bad will happen’ while liveness properties are
those that assert that ‘something good will eventually happen.’

s0 s1

s2s3

a

b

c

d
e

Fig. 1. Example Automata

An important application of coinductive LP is in directly representing and
verifying properties of Kripke structures and ω-automata (automata that ac-
cept infinite strings). Just as automata that accept finite strings can be directly
programmed using standard LP, automata that accept infinite strings can be di-
rectly represented using coinductive LP (one merely has to drop the base case).
Consider the automata (over finite strings) shown in Figure 1 which is repre-
sented by the logic program below.

automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).
automata([], St) :- final(St).
trans(s0, a, s1). trans(s1, b, s2).
trans(s2, c, s3). trans(s3, d, s0).
trans(s2, e, s0). final(s2).

A call to | ?- automata(X, s0). in a standard LP system will generate
all finite strings accepted by this automata. Now suppose we want to turn this
automata into an ω-automata, i.e., it accepts infinite strings (an infinite string
is accepted if states designated as final state are traversed infinite number of
times), then the (coinductive) logic program that simulates this automata can
be obtained by simply dropping the base case.2

automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).

Under coinductive semantics, posing the query | ?- automata(X, s0). will
yield the solutions:
2 We’ll ignore the requirement that final-designated states occur infinitely often; this

can be checked by introducing a coinductive definition of member/2 and checking
that member(s2, X) holds for all accepting strings.
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X = [a, b, c, d | X];
X = [a, b, e | X];

This feature of coinductive LP can be leveraged to directly verify liveness proper-
ties in model checking, multi-valued model checking, for modeling and verifying
properties of timed ω-automata, checking for bisimilarity, etc.

Verifying Liveness Properties: It is well known that safety properties can be
verified by reachability analysis, i.e, if a counter-example to the property exists, it
can be finitely determined by enumerating all the reachable states of the Kripke
structure. Verification of safety properties amounts to computing least fixed-
points and thus is elegantly handled by standard LP systems extended with
tabling [16]. Verification of liveness properties under such tabled LP systems
is however problematic. This is because counterexamples to liveness properties
take the form of infinite traces, which are semantically expressed as greatest
fixed-points. Tabled LP systems [16] work around this problem by transforming
the temporal formula denoting the property into a semantically equivalent least
fixed-point formula, which can then be executed as a tabled logic program. This
transformation is quite complex as it uses a sequence of nested negations.

In contrast, coinductive LP can be directly used to verify liveness properties.
Liveness verification merely becomes the dual of safety verification. Coinductive
LP can directly compute counterexamples using greatest fixed-point temporal
formulae without requiring any transformation. Intuitively, a state is not live if
it can be reached via an infinite loop (cycle). Liveness counterexamples can be
found by (coinductively) enumerating all possible states that can be reached via
infinite loops and then by determining if any of these states constitutes a valid
counterexample.

This direct approach to verifying liveness properties also applies to multi-
valued model checking of the μ-calculus [13]. Coinductive LP can also be used to
check for bisimilarity. Bisimilarity is reduced to coinductively checking if two ω-
automata accept the same set of rational infinite strings. We do not give details
due to lack of space.

Verifying Properties of Timed Automata: Timed automata are simple ex-
tensions of ω-automata with stopwatches, and are easily modeled as coinductive
logic programs with CLP(R) [6]. Timed automata can be modeled with coin-
ductive logic programs together with constraints over reals for modeling clock
constraints. The system can be queried to enumerate all the infinite strings that
will be accepted by the automata and that meet the time constraints. Safety
and liveness properties can be checked by negating those properties, and check-
ing that they fail for each string accepted by the automata with the help of
coinductively defined member/2, append/3 predicates (similar to [6]; see [20]).

6 Conclusions and Future Work

In this paper we presented a comprehensive theory of coinductive LP,
demonstrated its practical applications as well as reported on its preliminary
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implementation on top of YAP Prolog. Current work involves obtaining an im-
plementation of full coinductive LP that works both for infinite outputs as well
as infinite inputs. Current work [19] also involves extending coinductive logic
programming to allow for finite derivations in the presence of irrational terms
and proofs, that is, infinite terms and proofs that do not have finitely many
distinct subtrees. Our current approach is to allow the programmer to annotate
predicate definitions with pragmas, which can be used to decide at run-time
when a semantic cycle in the proof search has occurred, however, in the future
we intend to infer these annotations by using static analysis.

Acknowledgments. We are grateful to Vítor Santos Costa and Richardo Rocha
for help with YAP, and Srividya Kona for comments.
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Abstract. In [4] a nonmonotonic formalism called partial equilibrium
logic (PEL) was proposed as a logical foundation for the well-founded
semantics (WFS) of logic programs. PEL consists in defining a class
of minimal models, called partial equilibrium (p-equilibrium), inside a
non-classical logic called HT 2. In [4] it was shown that, on normal logic
programs, p-equilibrium models coincide with Przymusinki’s partial sta-
ble (p-stable) models. This paper begins showing that this coincidence
still holds for the more general class of disjunctive programs, so that
PEL can be seen as a way to extend WFS and p-stable semantics to ar-
bitrary propositional theories. We also study here the problem of strong
equivalence for various subclasses of p-equilibrium models, investigate
transformation rules and nonmonotonic inference, and consider a reduc-
tion of PEL to equilibrium logic. In addition we examine the behaviour
of PEL on nested logic programs and its complexity in the general case.

1 Introduction

Of the various proposals for dealing with default negation in logic programming
the well-founded semantics (WFS) of Van Gelder, Ross and Schlipf [20] has
proved to be one of the most attractive and resilient. Particularly its favourable
computational properties have made it popular among system developers and the
well-known implementation XSB-Prolog1 is now extensively used in AI problem
solving and applications in knowledge representation and reasoning.

Closely related to WFS is the semantics of partial stable models due to Przy-
musinski [15]. Partial stable (henceforth p-stable) models provide a natural gen-
eralisation of stable models [8] to a multi-valued setting and on normal logic
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programs capture the well-founded model as a special (minimal model) case. Al-
though the newly developing area of answer set programming (ASP) has focused
mainly on (2-valued) stable models, there has also been a steady stream of inter-
est in the characterisation and computation of p-stable models, eg [17,18,6,7,9].

Recently [4] proposed a solution to the following long-standing problem in
the foundations of WFS: which (non-modal) logic can be considered adequate
for WFS in the sense that its minimal models (appropriately defined) coincide
with the p-stable models of a logic program? This problem is tackled in a sim-
ilar spirit to the way in which the so-called logic of here-and-there, HT , has
been used to capture ordinary stable models and led to the development of a
general nonmonotonic formalism called equilibrium logic, [13]. While 2-valued
stable models can be characterised using the 3-valued Kripke frames of HT , for
p-stable models one requires a more complex notion of frame of a kind studied
by Routley [16]. These are generalisations of HT frames, referred to as HT 2

frames, and characterised by a 6-valued logic, whose negation is different from
that of intuitionistic and minimal logic. To capture p-stable models in this set-
ting a suitable notion of minimal, total HT 2 model is defined, which for obvious
reasons can be called partial equilibrium (p-equilibrium) model. On normal logic
programs, these models were shown [4] to coincide with p-stable models and so
the resulting partial equilibrium logic (PEL) was proposed as a logical founda-
tion for WFS and p-stable semantics. In addition [4] axiomatises the logic of
HT 2-models and proves that it captures the strong equivalence of theories PEL.

The aim of the present paper is to extend the work of [4] beyond the area of
normal programs treated previously. In particular we examine the case of dis-
junctive logic programs and show that also here p-equilibrium models coincide
with p-stable models. Thus PEL can be seen also as yielding a suitable foun-
dation for p-stable semantics and as a natural means to extend it beyond the
syntax of disjunctive programs, eg to so-called nested logic programs or to ar-
bitrary propositional theories. In summary, we shall treat the following topics.
§2 describes the basic logic, HT 2, and defines partial equilibrium models. We
review the main results of [4] and show that PEL captures p-stable semantics
for disjunctive programs. In §3 we extend previous results on the strong equiva-
lence of theories to special subclasses of models: the well-founded models defined
in [4] and the classes of L-stable and M-stable models studied in [7]. §4 looks
briefly at some of the general properties of PEL as a nonmonotonic inference
relation, while §5 considers syntactic transformations of disjunctive programs,
distinguishing between those preserving equivalence and those preserving strong
equivalence. §6 considers the transformation technique of [9] that captures p-
stable models via stable models and extends this method to PEL in general. §7
studies the behaviour of nested logic programs under PEL and some valid un-
folding techniques. Finally, §8 studies the main complexity classes for PEL over
propositional theories, showing that complexity is the same as that of p-stable
semantics for disjunctive programs [7], while §9 concludes the paper with some
open problems for future study.
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2 Logical Preliminaries: The Logics HT 2 and PEL

We introduce the logic HT 2 and its semantics, given in terms of HT 2 frames,
and we define partial equilibrium logic (PEL) in terms of minimal HT 2 models.
Formulas of HT 2 are built-up in the usual way using atoms from a given propo-
sitional signature At and the standard logical constants: ∧, ∨, →, ¬. A set of
HT 2 formulae is called a theory. The axiomatic system for HT 2 is described in
two stages. In the first stage we include the following inference rules:

α, α→ β

β
(Modus Ponens)

α→ β

¬β → ¬α
plus the axiom schemata of positive logic together with:

A1. ¬α ∧ ¬β → ¬(α ∨ β) A2. ¬(α→ α)→ β A3. ¬(α ∧ β)→ ¬α ∨ ¬β

Thus, both De Morgan laws are provable in HT 2. Moreover, axiom A2 allows
us to define intuitionistic negation, ‘−’, in HT 2 as: −α := α→ ¬(p0 → p0).
In a second stage, we further include the rule α∨(β∧¬β)

α and the axioms schemata:

A4. −α ∨ −− α
A5. −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
A6.

∧2
i=0((αi →

∨
j �=i αj)→

∨
j �=i αj)→

∨2
i=0 αi

A7. α→ ¬¬α
A8. α ∧ ¬α→ ¬β ∨ ¬¬β
A9. ¬α ∧ ¬(α→ β)→ ¬¬α
A10. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)
A11. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α)

HT 2 is determined by the above inference rules and the schemata A1-A11.

Definition 1. A (Routley) frame is a triple 〈W,≤, ∗〉, where W is a set, ≤
a partial order on W and ∗ : W → W is such that x ≤ y iff y∗ ≤ x∗. A
(Routley) model is a Routley frame together with a valuation V ie. a function
from At×W −→ {0, 1} satisfying:

V (p, u) = 1 & u ≤ w ⇒ V (p, w) = 1 (1)

The valuation V is extended to all formulas via the usual rules for intuition-
istic (Kripke) frames for the positive connectives ∧, ∨, → where the latter is
interpreted via the ≤ order:

V (ϕ→ ψ,w)=1 iff for all w′ such that w ≤ w′, V (ϕ,w′) = 1⇒ V (ψ,w′) = 1

The main difference with respect to intuitionistic frames is the presence of
the ∗ operator that is used for interpreting negation via the following condition:

V (¬ϕ,w) = 1 iff V (ϕ,w∗) = 0.
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A proposition ϕ is said to be true in a model M = 〈W,≤, ∗, V 〉, if V (ϕ, v) = 1,
for all v ∈ W . A formula ϕ is valid, in symbols |= ϕ, if it is true in every model.
It is easy to prove by induction that condition (1) above holds for any formula
ϕ, ie

V (ϕ, u) = 1 & u ≤ w ⇒ V (ϕ,w) = 1. (2)

Definition 2 (HT 2 model). An HT 2 model is a Routley model M = 〈W,≤,
R, V 〉 such that (i) W comprises 4 worlds denoted by h, h′, t, t′, (ii) ≤ is a partial
ordering on W satisfying h ≤ t, h ≤ h′, h′ ≤ t′ and t ≤ t′, (iii) the ∗ operation
is determined by h∗ = t∗ = t′, (h′)∗ = (t′)∗ = t, (iv) V is a-valuation.

The diagram on the right depicts the ≤-ordering among worlds
(a strictly higher location means ≥) and the action of the
∗-mapping using arrows:

Truth and validity for HT 2 models are defined analogously
to the previous case and from now on we let |= denote the truth
(validity) relation for HT 2 models. One of the main results of
[4] is the following completeness theorem2:

t′��

����
�
�
�

t h′��

h

��

Theorem 1 ([4]). HT 2 is complete for HT 2 models, ie |= ϕ iff ϕ is a theorem
of HT 2.

2.1 Minimal Models and Relation to Logic Programs

Now, consider an HT 2 modelM = 〈W,≤,∗ , V 〉 and let us denote by H,H ′, T, T ′

the four sets of atoms respectively verified at each corresponding point or world
h, h′, t, t′. More succinctly, we can represent M as the pair 〈H,T〉 so that we
group each pair of unprimed/primed worlds as H = (H,H ′) and T = (T, T ′).
Notice that H ⊆ H ′ and T ⊆ T ′ by construction ofM and, as a result, both H
and T can be seen as 3-valued interpretations. Although the representation as
a (consistent) set of literals is perhaps more frequent in the logic programming
literature, a 3-valued interpretation I can be alternatively described by a pair of
sets of atoms I ⊆ I ′ with I containing the true atoms and I ′ the non-false ones.
Let us use the set {0, 1, 2} to respectively denote the possible values of atom p:
false (p �∈ I ′), undefined (p ∈ I ′ \ I) and true (p ∈ I). As we have two 3-valued
interpretations 〈H,T〉 we could define the possible “situations” of a formula in
HT 2 by using a pair of values xy with x, y ∈ {0, 1, 2}. Condition (2) restricts
the number of these situations to the following six 00 := ∅, 01 := {t′}, 11 :=
{h′, t′}, 02 := {t, t′}, 12 := {h′, t, t′}, 22 := W where each set shows the worlds
at which the formula is satisfied. Thus, an alternative way of describing HT 2 is
by providing its logical matrix (see [4]) in terms of a 6-valued logic.

The truth-ordering relation among 3-valued interpretations I1 ≤ I2 is defined
so that I1 contains less true atoms and more false ones (wrt set inclusion) than
I2. Note that by the semantics, if 〈H,T〉 is a model then necessarily H ≤ T,
2 The first stage alone defines a logic complete for the general Routley frames.
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since it is easy to check that this condition is equivalent to H ⊆ T and H ′ ⊆ T ′.
Moreover, for any theory Π note that if 〈H,T〉 |= Π then also 〈T,T〉 |= Π .

The ordering ≤ is extended to a partial ordering � among models as follows.
We set 〈H1,T1〉 � 〈H2,T2〉 if (i) T1 = T2; (ii) H1 ≤ H2. A model 〈H,T〉 in
which H = T is said to be total. Note that the term total model does not refer
to the absence of undefined atoms. To represent this, we further say that a total
partial equilibrium model is complete if T has the form (T, T ).

We are interested here in a special kind of minimal model that we call a partial
equilibrium (or p-equilibrium) model. Let Π be a theory.

Definition 3 (Partial equilibrium model). A model M of Π is said to be
a partial equilibrium model of Π if (i) M is total; (ii) M is minimal among
models of Π under the ordering �.

In other words a p-equilibrium model of Π has the form 〈T,T〉 and is such that
if 〈H,T〉 is any model of Π with H ≤ T, then H = T. Partial equilibrium logic
(PEL) is the logic determined by truth in all p-equilibrium models of a theory.
Formally we can define a nonmonotonic relation of PEL-inference as follows.

Definition 4 (entailment). Let Π be a theory, ϕ a formula and PEM(Π) the
collection of all p-equilibrium models of Π. We say that Π entails ϕ in PEL, in
symbols Π |∼ ϕ, if either (i) or (ii) holds: (i) PEM(Π) �= ∅ and M |= ϕ for
everyM ∈ PEM(Π); (ii) PEM(Π) = ∅ and ϕ is true in all HT 2-models of Π.

In this definition, therefore, we consider the skeptical or cautious entailment
relation; a credulous variant is easily given if needed. Clause (ii) is needed since,
as Theorem 2 below makes clear, not all consistent theories have p-equilibrium
models. Again (ii) represents one possible route to understanding entailment in
the absence of intended models; other possibilities may be considered depending
on context.

We turn to the relation between PEL and logic programs. A disjunctive logic
program is a set of formulas (also called rules) of the form

a1 ∧ . . . ∧ am ∧ ¬b1 ∧ . . . ∧ ¬bn → c1 ∨ . . . ∨ ck (3)

where m, n, k ≥ 0. For simplicity, given any rule r like (3) above, we will fre-
quently use the names B+(r), B−(r) and Hd(r) to denote the corresponding sets
{a1, . . . , am}, {b1, . . . , bn} and {c1, . . . , ck}, respectively. By abuse of notation,
we will also understand B+(r) as the conjunction of its atoms, whereas B−(r)
and Hd(r) are understood as the respective disjunctions of their atoms (remem-
ber de Morgan laws hold for negation). As usual, an empty disjunction (resp.
conjunction) is understood as the constant ⊥ (resp. "). As a result, when r has
the form (3) it can be represented more compactly as B+(r)∧¬B−(r)→ Hd(r).
Additionally, the body of a rule r is defined as B(r) := B+(r) ∧ ¬B−(r).

The definition of the p-stable models of a disjunctive logic program Π is given
as follows. Given a 3-valued interpretation I = (I, I ′), Przymusinski’s valuation3

3 We have just directly adapted the original definitions to the current representation
of 3-valued interpretations.
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of formulas consists in interpreting conjunction as the minimum, disjunction as
the maximum, and negation and implication as:

I(¬ϕ) := 2− I(ϕ) I(ϕ→ ψ) :=
{

2 if I(ϕ) ≤ I(ψ)
0 otherwise

The constants ⊥, u and " are respectively valuated as 0, 1 and 2. We say that
I is a 3-valued model of a formula ϕ, written I |=3 ϕ, when I(ϕ) = 2. The reduct
of a program Π wrt I, denoted as ΠI, consists in replacing each negative literal
¬b in Π by the constant corresponding to I(¬b). A 3-valued interpretation I is
a p-stable model of Π if I is a ≤ −minimal model of ΠI.

By inspection of HT 2 and Przymusinski’s interpretations of disjunctive rules
it is relatively simple to check that:

Lemma 1. For any disjunctive program Π and any HT 2 interpretation 〈H,T〉:
〈H,T〉 |= Π iff H |=3 ΠT and T |=3 ΠT.

Theorem 2. A total HT 2 model 〈T,T〉 is a p-equilibrium model of a disjunc-
tive4 program Π iff the 3-valued interpretation T is a p-stable model of Π.

Proof. Let 〈T,T〉 be a p-equilibrium model of Π . Suppose T is not p-stable. By
Lemma 1, T |= ΠT, and so there must exist a smaller H < T such that H |=3
ΠT. But then 〈H,T〉 forms an HT 2 interpretation and, again by Lemma 1,
〈H,T〉 |= Π , contradicting that 〈T,T〉 is in p-equilibrium. Now, let T be a
p-stable model of Π . Then T |= ΠT and is minimal. From Lemma 1 on 〈T,T〉
we conclude 〈T,T〉 |= Π . Assume there exists a model 〈H,T〉 of Π such that
H < T. By Lemma 1, H |=3 ΠT contradicting the minimality of T. 
�

We define a further partial ordering on total models by 〈T1,T1〉 # 〈T2,T2〉 if
both T1 ⊆ T2 and T ′

2 ⊆ T ′
1. Then we say that a total HT 2 model that is #-

minimal among the p-equilibrium models of a theory Γ is a well-founded model
of Γ . This terminology is justified by:

Theorem 3 ([4]). If Π is a normal logic program, the unique #-minimal p-
equilibrium model of Π coincides with the well-founded model of Π in the sense
of [20].

3 Strong Equivalence of Theories wrt Different Classes
of Partial Equilibrium Models

The notion of strong equivalence (SE) is important both conceptually and as a
potential tool for simplifying nonmonotonic programs and theories and optimis-
ing their computation. For stable semantics strong equivalence can be completely
captured in the logic HT [10] and in ASP this fact has given rise to a lively pro-
gramme of research into defining and computing different equivalence concepts

4 For normal programs the theorem is proved in [4].
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[5,22]. In the case of WFS and p-stable semantics, however, until recently there
have been no studies of strong equivalence and related notions.

Here we recall the main result of [4] on strong equivalence in PEL and then
consider several special classes of models. Specifically, we look at strong equiv-
alence wrt the class of well-founded models, defined above, and the classes of
L-stable and M-stable models as described by [7]. Later on we shall see that, as
in the case of stable and equilibrium models, the problem of checking SE in PEL
is computationally simpler than that of checking ordinary equivalence.

In the present context we say that two propositional theories Γ1 and Γ2 are
equivalent, in symbols Γ1 ≡ Γ2, if they have the same p-equilibrium models and
strongly equivalent, in symbols Γ1 ≡s Γ2, if for any theory Γ , theories Γ1 ∪ Γ
and Γ2 ∪ Γ have the same p-equilibrium models.

Theorem 4 ([4]). Theories Γ1 and Γ2 are strongly equivalent iff Γ1 and Γ2 are
equivalent as HT 2 theories.

Recall that a total model 〈T,T〉 is a well-founded model of Γ if it is # minimal
in the class of all p-equilibrium models of Γ .

Definition 5. Two HT 2 theories Γ1 and Γ2 are WF equivalent if for any HT 2

theory Γ , each well founded model of Γ1 ∪ Γ is a well founded model of Γ2 ∪ Γ
and vice versa.

Theorem 5. Theories Γ1 and Γ2 are WF equivalent iff Γ1 and Γ2 are equivalent
as HT 2 theories.

The ‘if’ direction is easy. For the non-trivial converse direction we use

Lemma 2. If theories Γ1 and Γ2 have different classes of p-equilibrium models,
then there is a theory Γ such that theories Γ1 ∪ Γ and Γ2 ∪ Γ have different
classes of well founded models. 
�

Corollary 1 (of Lemma 2). For every HT 2 theory Γ , there is an extension
Γ1 having at least one well founded model.

We then use Lemma 2 as follows. Assume that Γ1 and Γ2 are not equivalent as
HT 2 theories. The latter means by Theorem 4 that there is a theory Γ such
that Γ1 ∪ Γ and Γ2 ∪ Γ have different classes of p-equilibrium models. Now we
can apply Lemma 2 to obtain a theory Γ ′ such that Γ1 ∪Γ ∪Γ ′ and Γ2 ∪Γ ∪Γ ′

have different classes of well founded models.
Some other classes of partial stable model different from # minimal stable

models were considered in the literature. We define the corresponding classes of
p-equilibrium models.

Definition 6. Let Γ be an HT 2 theory and M = 〈T,T〉 a p-equilibrium model
of Γ . Then (i)M is said to be an M -equilibrium model of Γ if it is # maximal in
the class of all p-equilibrium models of Γ ; (ii)M is said to be an L -equilibrium
model of Γ if for any p-equilibrium model 〈T1,T1〉 of Γ the inclusion T ′

1 \ T1 ⊆
T ′ \ T implies the equality T ′

1 \ T1 = T ′ \ T .
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Since the difference T ′ \ T is a measure of indefiniteness of a model 〈T,T〉,
L-equilibrium models are minimal in the class of p-equilibrium models wrt in-
definiteness. Taking into account the equivalence of p-equilibrium and p-stable
models of disjunctive logic programs (see Theorem ??) we immediately obtain

Proposition 1. Let Π be a disjunctive logic program and 〈T,T〉 a model of Π.
Then 〈T,T〉 is an M (L)-equilibrium model of Π iff T is an M (L)-stable model
of Π in the sense of [7].

For additional motivation for L-stable and M-stable models, see [7]. The latter
for example coincide on normal programs with the regular models of [23].

Definition 7. Two HT 2 theories Γ1 and Γ2 are M(L)-equivalent if for any
HT 2 theory Γ , each M(L)-equilibrium model of Γ1 ∪Γ is an M(L)- equilibrium
model of Γ2 ∪ Γ and vice versa.

Theorem 6. Theories Γ1 and Γ2 are M(L)-equivalent iff Γ1 and Γ2 are equiv-
alent as HT 2 theories.

As before the proofs of these propositions rely on the following lemma:

Lemma 3. If theories Γ1 and Γ2 have different classes of p-equilibrium models,
then (i) there is a theory Γ such that theories Γ1 ∪ Γ and Γ2 ∪ Γ have different
classes of M -equilibrium models; (ii) there is a theory Γ ′ such that theories
Γ1 ∪ Γ ′ and Γ2 ∪ Γ ′ have different classes of L-equilibrium models.

4 Some Properties of Partial Equilibrium Inference

We consider some of the properties of |∼ as a nonmonotonic inference relation.
Generally speaking the behaviour of PEL entailment is fairly similar to that
of equilibrium logic or stable model inference; however |∼ fails some properties
preserved by stable inference. Consider the following properties of inference:

ϕ ∈ Π ⇒ Π |∼ ϕ reflexivity
∀i ∈ I, Π |∼ ψi, Π ∪ {ψi : i ∈ I} |∼ ϕ⇒ Π |∼ ϕ cut

Π |∼ ϕ, Π |∼ ψ ⇒ Π ∪ ϕ |∼ ψ cautious monotony
Π ∪ ϕ |∼ α, Π ∪ ψ |∼ α⇒ Π ∪ (ϕ ∨ ψ) |∼ α disj. in antecedent

Π ∪ ϕ |∼ α, Π ∪ ¬ϕ |∼ α⇒ Π |∼ α truth by cases
Π ∪ ϕ |∼ ψ ⇒ Π |∼ ϕ→ ψ conditionalisation

Π |∼ ψ, Π ∪ ϕ |∼/ ψ ⇒ Π |∼ ¬ϕ rationality
Π |∼ ψ, Π ∪ ϕ |∼ ¬ψ ⇒ Π |∼ ¬ϕ weak rationality

Π |∼ ϕ→ ψ, Π |∼ ¬ψ ⇒ Π |∼ ¬ϕ modus tollens

Proposition 2. Partial equilibrium inference fails cautious monotony, truth by
cases, conditionalisation, rationality and weak rationality.

For the first condition we do however have a special case:

Proposition 3 (cautious monotony for negated formulas). For any the-
ory Γ , if Γ |∼ ¬ϕ then Γ and Γ ∪{¬ϕ} have the same partial equilibrium models.
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Proposition 4. Partial equilibrium inference satisfies reflexivity, cut, disjunc-
tion in the antecedent and modus tollens.

5 Syntactic Transformation Rules for Disjunctive
Programs

Following Brass and Dix [3], there has been considerable discussion of syntactic
transformations rules that preserve the semantics of programs. For example it is
well-known that while the disjunctive semantics D-WFS of [3] preserves the rule
of unfolding or GPPE (see below), p-stable semantics does not. More recently
[12,5] have studied for (2-valued) stable semantics the difference between trans-
formation rules that lead to equivalent programs and those that lead to strongly
equivalent (or even uniformly equivalent) programs. With the help of HT 2 and
PEL, this distinction can also be made for p-stable (p-equilibrium) semantics
over disjunctive programs, or for WFS over normal programs as a special case.
We consider here the situation with respect to the principal rules considered
in [5]. In table 2, equivalence and strong equivalence are denoted as before by
by ≡, ≡s. The rules themselves are summarised in Table 1. In addition to the
rules normally studied for p-stable semantics, we consider also the weaker form
of unfolding, WGPPE, discussed in [5] and the rule S-IMP of Wang and Zhou
[21] whose meaning is explained below.

We first give an example to show that although p-stable semantics does not
obey the GPPE rule, it is not actually weaker than D-WFS.

Example 1 (from [21]). Consider the program Π comprising two rules ¬p→ b∨l
and p∨l. Neither b nor ¬b can be derived from Π under D-WFS and the STATIC
semantics. The p-equilibrium models are 〈{l}, {l}〉 and 〈{p}, {p}〉 and so Π |∼ ¬b.
In fact, D-WFS just allows one to derive the minimal pure disjunction l ∨ p,
whereas p-equilibrium models further derive ¬b. So, in this example, PEL is
strictly stronger than D-WFS. From this and the well-known behaviour of p-
stable semantics wrt GPPE, we conclude the following.

Proposition 5. D-WFS and PEL are not comparable (even when restricted to
pure disjunctions).

Proposition 6. Transformation WGPPE preserves strong equivalence, ≡s. In
fact: {(p ∧A→ B), (C → p ∨D)} . A ∧ C → B ∨D.

We turn now to the rule S-IMP, due to [21] and discussed in [5]. As in the case of
NONMIN this is a kind of subsumption rule allowing one to eliminate a rule that
is less specific than another rule belonging to the program. By definition, r stands
in the S-IMP relation to r′, in symbols r � r′, iff there exists a set A ⊆ B−(r′)
such that (i) Hd(r) ⊆ Hd(r′)∪A; (ii) B−(r) ⊆ B−(r′)\A; (iii) B+(r) ⊆ B+(r′).
For stable or equilibrium inference S-IMP is a valid rule, even preserving strong
equivalence [5]. This is not so for PEL. Another rule, CONTRA, valid for stable
inference, also fails in PEL.
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Table 1. Syntactic transformation rules from [5].

Name Condition Transformation
TAUT Hd(r) ∩ B+(r) �= ∅ P ′ = P \ {r}
RED+ a ∈ B−(r1), � ∃r2 ∈ P : a ∈ Hd(r2) P ′ = P \ {r1} ∪ {r′}†
RED− Hd(r2) ⊆ B−(r1), B(r2) = ∅ P ′ = P \ {r1}
NONMIN Hd(r2) ⊆ Hd(r1), B(r2) ⊆ B(r1) P ′ = P \ {r1}
GPPE a ∈ B+(r1), Ga �= ∅, for Ga = {r2 ∈ P | a ∈ Hd(r2)} P ′ = P \ {r1} ∪ G′

a
‡

WGPPE same condition as for GPPE P ′ = P ∪ G′
a
‡

CONTRA B+(r) ∩ B−(r) �= ∅ P ′ = P \ {r}
S-IMP r, r′ ∈ P , r � r′ P ′ = P \ {r′}
† r′ : Hd(r1) ← B+(r1) ∪ not (B−(r1) \ {a}).
‡ G′

a = {Hd(r1) ∪ (Hd(r2) \ {a}) ← (B+(r1) \ {a}) ∪ not B−(r1) ∪ B(r2) | r2 ∈ Ga}.

Table 2. Syntactic transformations preserving equivalence

Eq. TAUT RED+ RED− NONMIN GPPE WGPPE CONTRA S-IMP
≡ yes yes yes yes no yes no no

≡s yes no yes yes no yes no no

Proposition 7. The rules S-IMP and CONTRA are not sound for p-stable
(p-equilibrium) inference.

6 Translating Partiality by Atoms Replication

A promising approach to implementating p-stable models for disjunctive pro-
grams has been developed by Janhunen et al [9]. They provide a method to
capture p-stable models by (2-valued) stable models using a linear-time transfor-
mation of the program. We show here that their transformation can be extended
to arbitrary propositional theories such that PEL can be reduced to ordinary
equilibrium logic. Furthermore it provides an encoding of the underlying logics,
of HT 2 into HT . This offers the possibility to check strong equivalence of arbi-
trary PEL theories by applying first this transformation, and using afterwards
a satisfiability checker for arbitrary HT theories like [19].

The translation of a theory Γ , denoted Tr(Γ ), consists of a formula p → p′

where p′ is a new atom per each atom p occurring in Γ plus, for each α ∈ Γ , the
formula [α] recursively defined as follows:

[ϕ→ ψ] :=
(
[ϕ]→ [ψ]

)
∧ [ϕ→ ψ]′ [ϕ→ ψ]′ := [ϕ]′ → [ψ]′

[¬ϕ] := ¬ [ϕ]′ [¬ϕ]′ := ¬ [ϕ]
[ϕ⊕ ψ] := [ϕ]⊕ [ψ] [ϕ⊕ ψ]′ := [ϕ]′ ⊕ [ψ]′

[p] := p [p]′ := p′

[ε] := ε [ε]′ := ε

where ⊕ ∈ {∧,∨} and ε ∈ {",⊥}.



356 P. Cabalar et al.

Example 2. The translation ϕ = ¬(a → ¬b) → c consists of the formulas a →
a′, b→ b′, c→ c′ and ¬(a′ → ¬b)→ c

)
∧
(
¬((a→ ¬b′) ∧ (a′ → ¬b))→ c′. 
�

It is quite easy to see that for any disjunctive rule r like (3), its translation [r]
has the form (a1 ∧ . . . ∧ am ∧ ¬b′1 ∧ . . . ∧ ¬b′n → c1 ∨ . . . ∨ ck)∧
(a′

1 ∧ . . . ∧ a′
m ∧ ¬b1 ∧ . . . ∧ ¬bn → c′1 ∨ . . . ∨ c′k) so that Tr(Π) amounts to

Janhunen et al’s transformation [9] when Π is a disjunctive logic program.
We prove next that the present generalisation of Janhunen et al’s transforma-

tion works not only for representing PEL into equilibrium logic, but is actually
correct at the monotonic level, i.e., it allows encoding HT 2 into HT . Let us
extend first the [·]′ notation to any set of atoms S so that [S]′ := {p′ | p ∈ S}.

Proposition 8. An HT 2 interpretation M1 = 〈(H, H ′), (T, T ′)〉 is an HT 2

model of Γ iff M2 = 〈H ∪ [H ′]′ , T ∪ [T ′]′〉 is an HT model of Tr(Γ ).

Proposition 9. A total HT 2 interpretation 〈(T, T ′), (T, T ′)〉 is a partial equi-
librium model of Γ iff 〈T ∪ [T ′]′ , T ∪ [T ′]′〉 is an equilibrium model of Tr(Γ ).

7 Nested Logic Programs

The term nested logic program refers to the possibility of nesting default nega-
tion, conjunction and disjunction, both in the heads and bodies of the program
rules. At least in what refers to rule bodies, this feature is, in fact, quite com-
mon in most Prolog interpreters, including XSB which relies on well-founded
semantics. In this way, for instance, a possible XSB piece of code could look like
a :- \+ (b; c, \+ (d, \+ e)) or using logical notation:

¬(b ∨ c ∧ ¬(d ∧ ¬e))→ a (4)

The semantics for nested expressions under stable models was first described
in [11]. In that paper, it was also shown that nested expressions can actually be
unfolded until obtaining a non-nested program (allowing negation and disjunc-
tion in the head) by applying the following HT -valid equivalences:

(i) F ∧G↔ G ∧ F and F ∨G↔ G ∨ F .
(ii) (F ∧G) ∧H ↔ F ∧ (G ∧H) and (F ∨G) ∨H ↔ F ∨ (G ∨H).
(iii) F ∧ (G∨H) ↔ (F ∧G)∨ (F ∧H) and F ∨ (G∧H) ↔ (F ∨G)∧ (F ∨H).
(iv) ¬(F ∨G)↔ ¬F ∧ ¬G and ¬(F ∧G)↔ ¬F ∨ ¬G.
(v) ¬¬¬F ↔ ¬F .
(vi) F ∧ " ↔ F and F ∨ " ↔ ".
(vii) F ∧ ⊥ ↔ ⊥ and F ∨⊥ ↔ F .
(viii) ¬" ↔ ⊥ and ¬⊥ ↔ ".
(ix) (F ∧G← H)↔ (F ← H) ∧ (G← H).
(x) (F ← G ∨H)↔ (F ← G) ∧ (F ← H).
(xi) (F ← G ∧ ¬¬H)↔ (F ∨ ¬H ← G).
(xii) (F ∨ ¬¬G← H)↔ (F ← ¬G ∧H).
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Proposition 10. The formulas (i)-(x) are valid in HT 2.

Transformations (xi) and (xii), however, are not valid in HT 2. As a result the
occurrence of double negation cannot be reduced in the general case to a dis-
junctive logic program format as shown by:

Proposition 11. The theory {¬¬p→ p} is not HT 2-equivalent to any disjunc-
tive logic program Π (even allowing negation in the head) for signature {p}.
One might object that this behaviour is peculiar to HT 2 and not the expected
one for a well-founded semantics for nested expressions. Consider, however, the
following example due to V. Lifschitz. Take the programs Π1 = {¬¬p → p}
and Π2 = {p ∨ ¬p} which, by (xi) are HT -equivalent. Intuitively, if we could
not use double negation or negation in the head, we could replace ¬p by an
auxiliary atom p and “define” this atom with a rule like p ← ¬p. As a result,
Π1 would become Π ′

1 = {(¬p → p), (¬p → p)} whereas Π2 would be now
Π ′

2 = {(p∨ p), (¬p→ p)}. The normal program Π ′
1 is a typical example where p

and p should become undefined in WFS. On the other hand, for Π ′
2 one would

expect two complete models, one with p true and p false, and the symmetric
one. If we remove the auxiliary atom, these two different behaviours agree, in
fact, with the results in PEL for Π1 and Π2.

Although Proposition 11 observes that we cannot generally get rid of double
negation without extending the signature, we show next that the auxiliary atom
technique used in the example is in fact general enough for dealing with double
negation in rule bodies, and so, thanks to transformations (i)-(x), provides a
method for unfolding bodies with nested expressions.

A disjunctive logic program with double negation is a set of rules of the form:

a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm ∧ ¬¬c1 ∧ · · · ∧ ¬¬cs → d1 ∨ · · · ∨ dt (5)

with m, n, s, t ≥ 0. We extend the previously defined notation so that, given a
rule r like (5) B−−(r) denotes the set of atoms {c1, . . . , cs} or, when understood
as a formula, their conjunction.

Proposition 12. Let Π be a disjunctive logic program with double negation for
alphabet V . We define the disjunctive program Π ′ consisting of a rule

¬c→ c (6)

for each double-negated literal ¬¬c occurring in Π, where c is a new atom, plus
a rule r′ for each rule r ∈ Π where: B+(r′) := B+(r), B−(r′) := B−(r) ∪
{c | c ∈ B−−(r)} and Hd(r′) := Hd(r). Then Π and Π ′ are strongly equivalent
modulo the original alphabet At, that is, Π ∪Γ and Π ′∪Γ have the same partial
equilibrium models for any theory Γ for alphabet At. 
�
Example 3. Take the program consisting of rule (4). Applying transformations
(i)-(x) we get that it is strongly equivalent to the pair of rules ¬b ∧ ¬c→ a and
¬b ∧ ¬¬d ∧ ¬e→ a which by Proposition 12 are strongly equivalent to

¬d→ d ¬b ∧ ¬c→ a ¬b ∧ ¬d ∧ ¬e→ a

modulo the original alphabet.
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8 Complexity Results for HT 2 and PEL

We denote by SATCL and V ALCL the classes of satisfiable formulas and valid
formulas respectively in Classical Logic, and SATHT 2 and V ALHT 2 the classes
of satisfiable formulas and valid formulas respectively in HT 2 logic.

Theorem 7. SATHT 2 is NP-complete and V ALHT 2 is coNP-complete.

For finite-valued logics it is straightforward that the satisfiability and validity
problems are at most NP-hard and coNP-hard respectively. Let ϕ be a formula
over {¬,→,∧,∨} and consider the formula ϕ′ obtained by replacing every vari-
able p in ϕ by ¬(p → ¬p). The formula ϕ′ has the following properties: every
HT 2-assignment, V , verifies that V (ϕ) ∈ {00, 22}; if ϕ is satisfiable, then it has
a model satisfying V (p) ∈ {00, 22} for every variable p in ϕ′; if W (ϕ) = 00 for
some assignment W , then there exists an assignment V such that V (ϕ) = 00
and V (p) ∈ {00, 22} for every variable p in ϕ′. Finally, we have also: ϕ ∈ SATCL

if and only if ϕ′ ∈ SATHT 2 and ϕ �∈ V ALCL if and only if ϕ′ �∈ V ALHT 2 . Thus,
the polynomial transformation of ϕ in ϕ′ reduce the satisfiability and validity in
classical logic to the corresponding problems in HT 2 and therefore SATHT 2 is
NP-complete and V ALHT 2 is coNP-complete.

Corollary 2. The problem of checking the strong equivalence of theories is
coNP-complete.

Theorem 8. The problem of deciding whether a formula in HT 2 has partial
equilibrium models, partial equilibrium consistency, is ΣP

2 -hard.

It is straightforward from the finite-valued semantics of HT 2 that the complexity
is at most ΣP

2 . To prove that the complexity is in fact ΣP
2 we use that the

equilibrium consistency is ΣP
2 -hard. Given a formula ϕ in HT , we define

ϕ′ = ϕ ∧
∧

p occurs in ϕ

(¬p ∨ ¬¬p)

The formula ϕ′ has the following properties: any HT 2-model of ϕ′, V , verifies
V (p) ∈ {00, 02, 12, 22} for every variable p in ϕ; if V is a model of ϕ such
that V (p) ∈ {00, 02, 12, 22}, then the assignment V ′ defined as follows is also
a model of ϕ: V ′(p) = 12 if V (p) = 02 and V ′(p) = V (p) otherwise (this fact
can be proved easily by inspection of the truth tables). So, for the formula
ϕ′, we can “forget” the value 02 and the bijection 00 ↔ 0, 12 ↔ 1, 22 ↔ 2
lets us conclude that ϕ has equilibrium models if and only if ϕ′ has partial
equilibrium models. Thus, the polynomial transformation of ϕ in ϕ′ reduces the
equilibrium consistency to partial-equilibrium consistency and so this problem
is ΣP

2 -hard.

Corollary 3. The decision problem for equilibrium entailment is ΠP
2 -hard.
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9 Conclusions and Future Work

Until recently, the well-founded and p-stable semantics have lacked a firm log-
ical foundation of the kind that the logic of here-and-there provides for stable
semantics and ASP5. Partial equilibrium logic supplies such a foundation and
opens the way to extending these semantics beyond the syntax of normal and
disjunctive programs. Here we have seen that PEL captures p-stable semantics
for disjunctive programs and we have examined its behaviour on nested logic
programs. An open problem for future work is whether this semantics agrees
with implementations of WFS such as XSB-Prolog which allow nested expres-
sions in rule bodies. We have also seen here how various special classes of p-stable
(p-equilibrium) models, including the L-stable and M-stable models, possess a
strong equivalence theorem. Moreover our complexity results for HT 2 and PEL
show that testing strong equivalence in the general case (ie. PEL over theories)
is computationally simpler than testing ordinary equivalence. In this respect
there is agreement with the case of stable models. A major open problem is the
question of strong equivalence for normal and disjunctive programs. Clearly if
such programs are equivalent in HT 2 they are strongly equivalent; but, if not, it
remains to be seen whether in general the addition of new formulas in the form
of program rules is sufficient to establish non-strong equivalence.

The technique of [9] for capturing p-stable semantics over disjunctive programs
via a reduction to ordinary stable models has been shown here to extend to
arbitrary formulas and thus provide a reduction of PEL to equilibrium logic. We
have seen however that nonmonotonic inference in PEL lacks several properties
enjoyed by ordinary stable inference. Similarly we observed that some of the
equivalence-preserving syntactic transformations applicable in ASP are no longer
sound for PEL. Our results here show that PEL, like p-stable semantics, is non-
comparable with extensions of WFS such as D-WFS and STATIC. However the
situation wrt to the semantics WFDS of [21] is still unclear: PEL is evidently
not stronger (since S-IMP fails in it), but is not yet proven to be weaker.

We hope to have shown here how PEL can provide a conceptual foundation
as well as a practical tool for investigating extensions of WFS and p-stable
semantics. Future work will explore the above open questions besides further
issues such as how to add strong or explicit negation to PEL (and capture the
WFSX semantics [14]) and how to construct a complete proof theory.
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Abstract. Nominal logic programming is a form of logic programming with
“concrete” names and binding, based on nominal logic, a theory of α-equivalence
founded on swapping and freshness constraints. Previous papers have employed
diverse characterizations of the semantics of nominal logic programs, including
operational, denotational, and proof-theoretic characterizations; however, the for-
mal properties and relationships among them have not been fully investigated. In
this paper we give a uniform and improved presentation of these characteriza-
tions and prove appropriate soundness and completeness results. We also give
some applications of these results.

1 Introduction

Nominal logic is an extension of first-order logic that provides support for program-
ming with abstract syntax with names and binding modulo α-equivalence. It is similar
in spirit to higher-order logic programming languages and logical frameworks that pro-
vide higher-order abstract syntax facilities for encoding variables and binding in ob-
ject languages; however, nominal logic is semantically much closer to first-order logic.
Nominal logic axiomatizes α-equivalence in terms of an invertible renaming operation
(“name-swapping”) and the freshness (or “not-free-in”) relation; it also includes a novel
self-dual nominal quantifier Nwhich quantifies over “fresh” names.

In previous work, Cheney and Urban [1] have presented αProlog, a logic program-
ming language inspired by nominal logic, which employs a simple backchaining proof
search technique like that of Prolog, but uses Urban, Pitts, and Gabbay’s nominal uni-
fication [16] algorithm instead of first-order (that is, purely syntactic) unification. In
addition, αProlog permits the N-quantifier in both goal formulas and clauses. The N-
quantifier can be used to write some programs more easily than in higher-order abstract
syntax, specifically programs that involve inequalities among names (for example, clo-
sure conversion).

This paper is concerned with establishing the relationships among operational, proof-
theoretic, and denotational semantics of nominal logic programs. Because nominal
logic involves both equality and freshness constraints, constraint logic programming
(CLP) provides an appropriate and well-understood starting point. Nominal logic can
be presented as a theory of first-order logic [15]; indeed, the N-quantifier can be de-
fined in terms of the existential (or equivalently universal) quantifiers and the freshness
relation (#):

Na.φ(a, X) ⇐⇒ ∃A.A # X ∧ φ(A, X) ⇐⇒ ∀A.A # X ⊃ φ(A, X)

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, pp. 361–375, 2006.
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Moreover, as shown in a separate paper [4], nominal logic has a well-behaved Herbrand
model theory and nominal terms form a well-behaved constraint domain. Consequently,
we can view Horn clause nominal logic programming as an instance of the Constraint
Logic Programming Scheme [9], by translating N-quantified goal subformulas to equiv-
alent existential formulas and N-quantified program clauses to universal formulas.

While this approach suffices to define a semantics for nominal logic programs, it
is unsatisfactory in some respects. First, the syntactic translation that removes Nmay
increase the size of the program by a quadratic factor, impeding analyses formulated in
terms of the semantics of CLP. Second, from prior work on the proof theory of nominal
logic [8,3], we know that both N-goals and program clauses can be read as a proof
search operation “generate a fresh name and proceed to solve goal G (or refine clause
D)”. However, the translation of Nobscures this proof-search reading. Finally, nominal
constraint solving is NP-complete [2], whereas Urban, Pitts, and Gabbay’s nominal
unification algorithm solves a polynomial time special case. This algorithm relies on
the use of “atoms” (special name-constants which correspond to N-quantified names in
nominal logic programs). Translating atoms to ordinary first-order variables precludes
the use of this efficient constraint solving algorithm. We believe that these facts justify
the investigation of more direct approaches to the semantics of nominal logic programs.

Several such direct semantics have been presented in previous papers on nominal
logic and αProlog, including an operational semantics [1], a denotational semantics [5,
Chapter 6] and two proof-theoretic semantics [8,17]. In [5], soundness, algebraic com-
pleteness, and logical completeness results for the denotational and operational seman-
tics paralleling Jaffar, Maher, Marriott, and Stuckey’s semantics of constraint logic pro-
gramming [9] were developed. However, except for this work, the relationships among
the approaches have not been studied carefully.

The purpose of this paper is to fill this gap, by giving a uniform presentation of
the denotational, proof-theoretic, and operational semantics and proving appropriate
soundness and completeness theorems among them. Section 2 reviews nominal logic
and nominal Horn clause programs. Section 3 presents the denotational semantics; Sec-
tion 4 the proof-theoretic semantics; and Section 5 the operational semantics. Appropri-
ate soundness and completeness theorems are proved along the way. Section 6 sketches
two applications of these results, and Sections 7 and 8 discuss related and future work
and conclude.

2 Background

The syntax of nominal logic types σ, contexts Σ, terms t, constraints C, and formulas
φ is shown in Figure 1. We assume fixed countable sets V of variables X, Y, Z, . . . and
A of names a, b, c, . . . (also known as atoms [16]). A language L consists of a set of
data types δ, name types ν, constants c : δ, function symbols f : σ → δ, and relation
symbols p : σ → o (where o is the type of propositions). The novel term construc-
tors include names a ∈ A, name-abstractions 〈a〉t denoting α-equivalence classes, and
name-swapping applications (a b) · t. The atomic formula a # t is called freshness, and
intuitively means that the name a is not free in the term t. Well-formed terms and atomic
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(Types) σ ::= ν | δ | 〈ν〉σ
(Contexts) Σ ::= · | Σ, X:σ | Σ#a:ν
(Terms) t ::= a | c | f(t) | x | (a b) · t | 〈a〉t
(Constraints) C ::= t ≈ u | a # t | C ∧ C′ | ∃X:σ.C | Na:σ.C
(Formulas) φ ::= � | ⊥ | p(t) | C | φ ⊃ ψ | φ ∧ ψ | φ ∨ ψ | ∀X:σ.φ | ∃X:σ.φ | Na:ν.φ

Fig. 1. Syntax of nominal logic

a : ν ∈ Σ
Σ 
 a : ν

x : σ ∈ Σ
Σ 
 x : σ

c : δ ∈ L
Σ 
 c : δ

f : σ → δ ∈ L Σ 
 t : σ

Σ 
 f(t) : δ
Σ 
 a : ν Σ 
 t : σ

Σ 
 〈a〉t : 〈ν〉σ
Σ 
 a : ν Σ 
 b : ν Σ 
 t : σ

Σ 
 (a b) · t : σ

Σ 
 t, u : σ

Σ 
 t ≈ u : o
Σ 
 a : ν Σ 
 t : σ

Σ 
 a # t : o

Σ 
 �, ⊥ : o

Σ 
 φ, ψ : o

Σ 
 φ ∧ ψ, φ ∨ ψ, φ ⊃ ψ : o

Σ, X:σ 
 φ : o

Σ 
 ∀X:σ.φ, ∃X:σ.φ : o

Σ#a:ν 
 φ : o

Σ 
 Na:ν.φ : o

Fig. 2. Well-formedness for nominal terms and formulas

(a b) · a = b
(a b) · b = a
(a b) · a′ = a′ (a �= a′ �= b)

(a b) · c = c
(a b) · f(t) = f((a b) · t)
(a b) · 〈a′〉t = 〈(a b) · a′〉(a b) · t

(a �= b)

 a # b 
 a # c

∧n
i=1 
 a # ti


 a # f(tn
1 )


 a # b 
 a # t


 a # 〈b〉t 
 a # 〈a〉t


 a ≈ a 
 c ≈ c

∧n
i=1 
 ti ≈ ui


 f(tn
1 ) ≈ f(un

1 )

 t ≈ u


 〈a〉t ≈ 〈a〉u

 a # u 
 t ≈ (a b) · u


 〈a〉t ≈ 〈b〉u

Fig. 3. Swapping, freshness, and equality for ground nominal terms

formulas are defined in Figure 2. Contexts include ordinary typed variables Σ, X :σ and
name-typed names Σ#a:ν. Quantification over types mentioning o is not allowed.

Figure 3 defines the swapping, freshness, and equality operations on ground terms.
Swapping exchanges two syntactic occurrences of a name in a term (including occur-
rences such as a in 〈a〉t.) The freshness relation defines what it means for a name to
be “not free in” (or fresh for) a term. Intuitively, a name a is fresh for a term t (that
is, a # t) if every occurrence of a in t is enclosed in an abstraction of a. Finally, the
equality relation on nominal terms is defined using freshness and swapping. The only
interesting cases are for abstractions; the second rule for abstractions is equivalent to
more standard forms of α-renaming, as has been shown elsewhere [15].

We sometimes refer to the set of “free” names of a term supp(t)=A− {a | a # t}
as its support. Also, swapping and support are extended to formulas by setting (a b) ·
QX.φ[X ]=QX.(a b)·φ[X ] for Q∈{∀, ∃} and (a b)· Na′.φ= Na′.(a b)·φ, provided a′ �∈
{a, b}; thus, using α-renaming, we have (a b)·∀X. Na.p(a, b, X)= Na′.∀X.p(a′, a, X).
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H 
 �
H �
 ⊥
H 
 A ⇐⇒ A ∈ H
H 
 t ≈ u ⇐⇒ 
 t ≈ u
H 
 a # u ⇐⇒ 
 a # u
H 
 φ ∧ ψ ⇐⇒ H 
 φ and H 
 ψ

H 
 φ ∨ ψ ⇐⇒ H 
 φ or H 
 ψ
H 
 φ ⊃ ψ ⇐⇒ H 
 φ implies H 
 ψ
H 
 ∀X:σ.φ ⇐⇒ for all t : σ, H 
 φ[t/X]
H 
 ∃X:σ.φ ⇐⇒ for some t : σ, H 
 φ[t/X]
H 
 Na:ν.φ ⇐⇒ for fresh b : ν �∈ supp( Na:ν.φ),

H 
 (b a) · φ.

Fig. 4. Term model semantics of nominal logic

Likewise, swapping can be extended to sets of terms or formulas by setting (a b) · S =
{(a b) · t | t ∈ S}.

For the purposes of this paper, it suffices to restrict attention to term models of nom-
inal logic in which the domain elements are nominal terms with equality and freshness
defined as in Figure 3. We write BL for the Herbrand base, that is, the set of all non-
constraint atomic formulas. We view an Herbrand model H as a subset of BL that is
equivariant, or closed under swapping (that is, H ⊆ (a b) · H for any a, b.) The se-
mantics of nominal logic formulas over term models is defined as shown in Figure 4.
The only nonstandard case is that for N; it is shown in [4] that this definition of the
semantics of N-quantified formulas is correct for term models.

We generalize the satisfiability judgments as follows. Given sets of closed formulas
Γ, Δ, we write H 
 Γ to indicate that H 
 φ for each φ ∈ Γ , and Γ 
 Δ to indicate
that H 
 Γ implies H 
 Δ. We define ground substitutions θ as functions from V to
ground terms. Given a context Σ, we say that a ground substitution θ satisfies Σ (and
write θ : Σ) when θ(x) : Σ(x) for all x ∈ Σ, and a # σ(x) for every subcontext
Σ′#a and every x ∈ Σ′. For example, [X 
→ a, Y 
→ b] satisfies Σ = a, X#b, Y
but not X, Y #a#b. We write Σ : θ 
 φ or Γ, θ 
 Δ as shorthand for θ : Σ and

 θ(φ) or θ(Γ ) 
 θ(Δ), respectively. Moreover, we write Σ : Γ 
 Δ to indicate
that Σ : Γ, θ 
 Δ for every θ : Σ. Note that, for example, X#a : · 
 a # X but
a, X : · �
 a # X .

We define the nominal Horn goal formulas G and nominal Horn program clauses D
as follows:

G ::= " | A | C | G ∧G′ | G ∨G′ | ∃X.G | Na.G

D ::= " | A | D ∧D′ | G ⊃ D | ∀X.D | Na.D

2.1 Examples

We now present two relations definable using nominal logic programs but not easily
definable in some other formalisms. For more examples of nominal logic programs,
see [1] or [5, Chapter 2]. We use the convention that a formula A :− B abbreviates

Na.∀X.
∧

B ⊃ A, where {a} = supp(A, B) and {X} = FV (A, B).

Example 1. The first example, tc in Figure 5, performs typechecking for the simply-
typed λ-calculus. (The built-in predicate mem(A, L) holds when A is an element of list
L). This relation is tricky to implement correctly and declaratively in Prolog because
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tc(Ctx, var(X), T ) :− mem((X,T ), Ctx).
tc(Ctx, app(E1, E2), U) :− tc(Ctx,E1, fn ty(T, U)), tc(Ctx,E2, T ).
tc(Ctx, lam(〈x〉E), fn ty(T,U)) :− x # Ctx, tc([(x, T )|Ctx], E,U)

qlist(mono ty(T ), [], T ). qlist(all ty(〈a〉P ), [a|L], T ) :− a # L, qlist(P, L, T ).

Fig. 5. Example programs

it lacks support for programming modulo α-equivalence. Nominal logic programming
provides approximately the same level of convenience and expressiveness as higher-
order logic programming for this example.

Example 2. The second example, qlist in Figure 5, performs an important step in the
implementation of ML-style type inference. It relates a “polytype” ∀α.τ to a suitably
α-renamed list of its bound variables and underlying “monotype” τ . It can be run in the
forward direction to strip the quantifiers off of a polytype, or in the backward direction
to build a closed polytype from monotype and its list of free variables. This relation is
difficult to implement in Prolog because of the lack of built-in support for α-renaming,
and difficult for higher-order languages because it involves manipulating expressions
with unknown numbers of free variables. There are other ways of implementing ML-
style type inference in higher-order logic programming, but they are very different from
what is usually implemented.

These examples highlight a subtle implementation issue: the impact of using the N-
quantifier as a D-formula on the complexity of constraint solving. For example, tc can
be rewritten to avoid clausal use of N. As we shall see in Section 6, the simplistic, but
efficient proof search performed by αProlog is complete for such programs. However,
qlist relies essentially on clausal use of N, so executing it appears to require solving
intractable nominal constraints. At present, αProlog does not support full nominal con-
straint solving, so proof search is incomplete for programs such as qlist.

3 Denotational Semantics

In this section we define the denotational semantics of nominal logic programs. We
show that least Herbrand models exist for nominal Horn clause programs and that the
least Herbrand model is the least fixed point of an appropriate continuous one-step de-
duction operator, following Lloyd’s exposition [11]. This section also relies on standard
definitions and concepts from lattice theory [7].

3.1 Least Herbrand Models

It is a well-known fact that least Herbrand models exist for Horn clause theories in
first-order logic. Building on a previous development of Herbrand models for nominal
logic [4], we now show that nominal logic programs also have least Herbrand models.

Theorem 1 (Nominal Herbrand models). A collection of nominal Horn program
clauses is satisfiable in nominal logic if and only if it has an Herbrand model.
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Proof. We note without proof that we can prenex-normalize all ∃ and Nquantifiers in
goals in D-formulas out to the top level as ∀ and Nquantifiers respectively. The result
forms a N∀-theory in the sense of [4], so has a model iff it has an Herbrand model.

Lemma 1. Let Δ be a set of closed program clauses andM a nonempty set of Her-
brand models of Δ. ThenH =

⋂
M is also an Herbrand model of Δ.

Proof. We first note that the intersection of a collection of equivariant sets is still equiv-
ariant, soH is an Herbrand model. To prove it models Δ, we show by mutual induction
that

1. For any program clause D, if ∀M ∈ M.M 
 D thenH 
 D; and
2. For any goal formula G, if H 
 G then ∀M ∈ M.M 
 G.

All the cases are standard except for Na.G and Na.D. If ∀M ∈M.M 
 Na.D then for
each M , M 
 (b a) · D for any fresh b not in supp( Na.D). Without loss of generality
we can choose a b �∈ supp( Na.D) such that ∀M ∈ M.M 
 (b a) ·D. Appealing to the
induction hypothesis, we obtainH 
 (b a) · D, whenceH 
 Na.D. The case for Na.G
is similar.

An immediate consequence is that a ⊆-least Herbrand model HΔ =
⋂
{H | H 
 Δ}

exists for any nominal Horn theory Δ. Moreover, HΔ consists of all ground atoms
entailed by Δ, as we now show.

Theorem 2. Let Δ be a set of program clauses. ThenHΔ = {A ∈ BL | Δ 
 A}.
Proof. If A ∈ HΔ, then A is valid in every Herbrand model of Δ, so by Theorem 1,
A is valid in every model of Δ. Conversely, if Δ 
 A then since HΔ 
 Δ we have
HΔ 
 A; thus A ∈ HΔ.

3.2 Fixed Point Semantics

Classical fixed point theorems assert the existence of a fixed point. However, to ensure
that the fixed point of an operator on Herbrand models is still an Herbrand model we
need an additional constraint: we require that the operator is also equivariant, in the
following sense.

Definition 1. A set operator τ : P(BL)→ P(BL) is called equivariant if (a b)·τ(S) =
τ((a b) · S).

Theorem 3. Suppose τ : P(BL)→ P(BL) is equivariant and monotone. Then lfp(τ)
=

⋂
{S ∈ P(BL) | τ(S) ⊆ S} is the least fixed point of τ and is equivariant. If, in

addition, τ is continuous, then lfp(τ) = τω =
⋃ω

i=0 τ i(∅).

Proof. By the Knaster-Tarski fixed-point theorem, lfp(τ) is the least fixed point of τ .
To show that lfp(τ) is equivariant, it suffices to show that A ∈ lfp(τ) =⇒ (a b) ·
A ∈ lfp(τ). Let a, b be given and assume A ∈ lfp(τ). Then for any pre-fixed point
S of τ (satisfying τ(S) ⊆ S), we have A ∈ S. Let such an S be given. Note that
τ((a b) · S) = (a b) · τ(S) ⊆ (a b) · S, so (a b) · S is also a pre-fixed point of τ . Hence
A ∈ (a b) · S so (a b) · A ∈ (a b) · (a b) · S = S. Since S was an arbitrary pre-fixed
point, it follows that (a b) · A ∈ lfp(τ), so A ∈ (a b) · lfp(τ).

The second part follows immediately from Kleene’s fixed point theorem.
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Definition 2. Let S be an Herbrand interpretation and D a program clause. The one-
step deduction operator τD : P(BL)→ P(BL) is defined as follows:

τ�(S) = S
τD1∧D2(S) = τD1(S) ∪ τD2(S)

τG⊃D(S) =
{

τD(S) if S 
 G
S otherwise

τA(S) = S ∪ A
τ∀X:σ.D(S) =

⋃
t:σ τD[t/X](S)

τ Na:ν.D(S) =
⋃

b:ν �∈supp( Na.D) τ(a b)·D(S)

We define τΔ as τD1∧···∧Dn provided Δ = {D1, . . . , Dn} and each Di is closed.

Lemma 2. For any program Δ, τΔ is monotone and continuous.

Proof. We prove by induction on the structure of D that τD has the above properties.
Monotonicity is straightforward. For continuity, the cases for ",∧, ∀, N, and atomic
formulas are straightforward. For G ⊃ D, let S0, S1, . . . , be an ω-chain of subsets
of BL. Suppose that A ∈ τG⊃D(

⋃
i Si). If

⋃
i Si 
 G then A ∈ τD(

⋃
i Si), and by

induction A ∈
⋃

i(τD(Si)) =
⋃

i τG⊃D(Si). Otherwise, A ∈
⋃

i(Si) =
⋃

i τG⊃D(Si).
This shows that τG⊃D(

⋃
i Si) ⊆

⋃
i τG⊃D(Si). For the reverse direction, suppose A ∈⋃

i τG⊃D(Si). Then for some i, A ∈ τG⊃D(Si). There are two cases. If Si 
 G, then
A ∈ τD(Si) = τG⊃D(Si) ⊆ τG⊃D(

⋃
i(Si)). Otherwise, A ∈ Si = τG⊃D(Si) ⊆

τG⊃D(
⋃

i(Si)).

Lemma 3. For any a, b ∈ A, (a b) · τD(S) = τ(a b)·D((a b) · S). In particular, if Δ is
a closed program with FV (Δ) = supp(Δ) = ∅, then τΔ is equivariant.

Proof. The proof is by induction on the structure of D. The cases for ", A,∧ are
straightforward; for ⊃ we need the easy observation that S 
 G ⇐⇒ (a b) · S 

(a b)·G. For ∀X :σ.D formulas, the proof is straightforward once we observe that (a b)·⋃

t:σ τD[t/X](S) =
⋃

t:σ τ((a b)·D)[(a b)·t/X]((a b) · S) =
⋃

u:σ τ((a b)·D)[u/X]((a b) ·
S) = τ(a b)·∀X.D((a b) · S). For N, the argument is similar.

Theorem 4. HΔ = lfp(τΔ) = τω
Δ.

Proof. Clearly τω
Δ =lfp(τΔ) by Theorem 3. We show thatHΔ⊆τω

Δ and lfp(τΔ)⊆HΔ.
ForHΔ ⊆ τω

Δ, it suffices to show that τω
Δ is a model of Δ. We prove by induction on

D that if τD(M) =M thenM 
 D; from this it follows that τω
Δ 
 D for each D ∈ Δ.

Cases D = ", A, D1 ∧D2, ∀X :σ.D are straightforward. For D = Na:ν.D′, note that
M = τ Na.D(M) =

⋃
b:ν �∈supp( Na.D) τ(a b)·D′(M) implies τ(a b)·D′(M) = M for

every fresh b. Hence by the induction hypothesisM 
 (a b) · D′ for every fresh b;
consequentlyM 
 Na.D′.

For lfp(τΔ) ⊆ HΔ, it suffices to show that HΔ is a pre-fixed point of τΔ, that is,
τΔ(HΔ) ⊆ HΔ. We prove that for any D, if HΔ 
 D then τD(HΔ) ⊆ HΔ, by
induction on the structure of D. Cases D = ", A, D1 ∧ D2, ∀X :σ.D are straightfor-
ward. For Na:ν.D, by induction τ(a b)·D(HΔ) ⊆ HΔ for any b �∈ supp( Na.D) so⋃

b:ν �∈supp( Na.D) τ(a b)·D(HΔ) ⊆ HΔ.
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4 Proof-Theoretic Semantics

In proof-theoretic semantics, an approach due to Miller, Nadathur, Scedrov, and Pfen-
ning [14], we characterize well-behaved logic programming languages as those for
which goal-directed proof search is complete. Goal-directed, or uniform, proofs are se-
quent calculus proofs in which right-decomposition rules are always used to decompose
the goal to an atomic formula before any other proof rules are considered. An abstract
logic programming language is then defined as a collection of terms, goal formulas and
program clauses for which uniform proof search is complete. Proof-theoretic semantics
has been extended to a variety of settings; most relevant here is work on constraint logic
programming in a proof theoretic setting [6,10].

A uniform proof-theoretic approach to nominal logic programming was investigated
by Gabbay and Cheney [8]. However, this approach was unsatisfactory in some re-
spects. First, the underlying sequent calculus suggested an approach to proof-search for

N-formulas quite unlike the intuitive “generate a fresh name and proceed” approach
employed in αProlog. Second, the freshness rule in NLSeq , corresponding to the nom-
inal logic axiom ∀X.∃A.A # X , is not goal-directed but cannot be delayed past the
∃R and ∀L rules. Instead, it was necessary to weaken the definition of uniform proof in
order to permit applications of the freshness principle before these rules.

The first problem has been addressed by an alternative sequent calculus for nominal
logic called NL⇒ [3], in which the N-quantifier rules take a simpler form. We adopt
a variation on the NL⇒ approach that also addresses the second problem: specifically,
we define an “amalgamated” proof system that separates the term-level constraint-based
reasoning (including the freshness rule) from logical reasoning and proof search. This
technique was employed by Darlington and Guo [6] and further developed by Leach et
al. [10] in studying the semantics of constraint logic programs.

In this section we introduce the amalgamated proof system and relate it to the model-
theoretic semantics in the previous section. This system is sound with respect to (intu-
itionistic) nominal logic; we believe it to be complete for nominal Horn clause programs
relative to intuitionistic NL⇒ but have not yet proved this carefully. We also introduce
a second residuated proof system that explicates the process of reducing a goal to an
answer constraint; this system forms an important link between the proof theory and
the operational semantics in the next section. Residuated proof search corresponds to
ordinary proof search in a natural way. Here and elsewhere, we use Γ for a set of goal
formulas, Δ for a set of program clauses, and∇ for a set of constraints.

The proof rules in Figure 6 describe a proof system that first proceeds by decompos-
ing the goal to an atomic formula, which is then solved by refining a program clause.
This system reflects the behavior of an interpreter for nominal logic programs, such as
αProlog. The uniform proof judgment Σ : Δ;∇ =⇒ G indicates that G is derivable

from Δ and ∇ in context Σ, while the focused proof judgment Σ : Δ;∇ D−→ A indi-
cates that atomic goal A is derivable from Δ and ∇ by refining the program clause D
(using Δ to help solve any residual goals). The judgment Σ : ∇ 
 C is the ordinary
satisfaction relation defined in Section 2.

These rules are unusual in several important respects. First, the hyp rule requires
solving a constraint of the form A ∼ B, which we define as “there exists a permu-
tation π such that π · A ≈ B”. In contrast usually the hypothesis rule requires only
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Σ : ∇ 
 C
Σ : Δ; ∇ =⇒ C

con
Σ : Δ; ∇ =⇒ G1 Σ : Δ; ∇ =⇒ G2

Σ : Δ; ∇ =⇒ G1 ∧ G2
∧R

Σ : Δ; ∇ =⇒ Gi

Σ : Δ; ∇ =⇒ G1 ∨ G2
∨Ri

Σ : ∇ 
 ∃X.C Σ, X : Δ; ∇, C =⇒ G

Σ : Δ; ∇ =⇒ ∃X:σ.G
∃R

Σ : ∇ 
 Na.C Σ#a : Δ; ∇, C =⇒ G

Σ : Δ; ∇ =⇒ Na.G NR
Σ : Δ; ∇ D−→ A D ∈ Δ

Σ : Δ; ∇ =⇒ A
sel

Σ : ∇ 
 A′ ∼ A

Σ : Δ; ∇ A′
−→ A

hyp
Σ : Δ; ∇ Di−−→ A

Σ : Δ; ∇ D1∧D2−−−−−→ A
∧Li

Σ : Δ; ∇ D−→ A Σ : Δ; ∇ =⇒ G

Σ : Δ; ∇ G⊃D−−−→ A
⊃L

Σ : ∇ 
 ∃X.C Σ, X : Δ; ∇, C
D−→ A

Σ : Δ; ∇ ∀X:σ.D−−−−−→ A
∀L

Σ : ∇ 
 Na.C Σ#a : Δ; ∇, C
D−→ A

Σ : Δ; ∇ Na.D−−−→ A
NL

Fig. 6. Uniform/focused proof search for intuitionistic nominal logic

that A ≈ A′. Our rule accounts for the fact that equivalent atomic formulas may not
be syntactically equal as nominal terms, but only equal modulo a permutation. Sec-
ond, the proof system treats constraints specially, separating them into a context ∇.
This is necessary because the role of constraints is quite different from that of pro-
gram clauses: the former are used exclusively for constraint solving whereas the latter
are used in backchaining. Third, the NR, NL,∃R and ∀L rules are permitted to intro-
duce a constraint on the witness name a or variable X rather than providing a wit-
ness term. This constraint-based treatment makes it possible to compartmentalize all
reasoning about the constraint domain (including the freshness rule) in the judgment
Σ : ∇ 
 C.

For example, the goal Na.∃X.a # X has the following uniform derivation:

Σ#a : ∇ 
 Na.�
Σ#a : ∇, � 
 ∃X.a # X Σ#a, X : Δ; ∇, �, a # X =⇒ a # X

Σ#a : Δ; ∇, � =⇒ ∃X.a # X
∃R

Σ : Δ; ∇ =⇒ Na.∃X.a # X
NR

where Σ#a : ∇ 
 ∃X.a # X is clearly valid for any ∇ (take X to be any ground
name besides a). In contrast, in previous proof-theoretic approaches, proof search for

Na.∃X.a # X requires using a freshness rule before ∃R.
We first show (by induction on derivations) that the restricted system is sound with

respect to the denotational semantics.

Theorem 5 (Soundness). If Σ : Δ;∇ =⇒ G is derivable then Σ : Δ,∇ 
 G. Simi-

larly, if Σ : Δ;∇ D−→ G is derivable then Σ : Δ, D,∇ 
 G.

We next show a restricted, “algebraic” form of completeness [9]. Since the denotational
semantics is classical while the proof theory is constructive, it is too much to expect
that classical completeness holds. For example, A, B : · 
 A ≈ B ∨ A # B is valid,
but A, B : ·; · =⇒ A ≈ B ∨ A # B is not derivable (and indeed not intuitionistically
valid). Instead, however, we can prove that any valuation θ that satisfies G also satisfies
a constraint which entails G.
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Σ : Δ =⇒ C \ C
con

Σ : Δ =⇒ G1 \ C1 Σ : Δ =⇒ G2 \ C2

Σ : Δ =⇒ G1 ∧ G2 \ C1 ∧ C2
∧R

Σ : Δ =⇒ Gi \ C

Σ : Δ =⇒ G1 ∨ G2 \ C
∨Ri

Σ, X : Δ =⇒ G \ C

Σ : Δ =⇒ ∃X:σ.G \ ∃X.C
∃R

Σ#a : Δ =⇒ G \ C

Σ : Δ =⇒ Na.G \ Na.C
NR

Σ : Δ
D−→ A \ G (D ∈ Δ) Σ : Δ =⇒ G \ C

Σ : Δ =⇒ A \ C
back

Σ : Δ
A′
−→ A \ A ∼ A′

hyp
Σ : Δ

Di−−→ A \ G

Σ : Δ
D1∧D2−−−−−→ A \ G

∧Li

Σ : Δ
D−→ A \ G′

Σ : Δ
G⊃D−−−→ A \ G ∧ G′

⊃L

Σ, X : Δ
D−→ A \ G

Σ : Δ
∀X:σ.D−−−−−→ A \ ∃X.G

∀L
Σ#a : Δ

D−→ A \ G

Σ : Δ
Na.D−−−→ A \ Na.G

NL

Fig. 7. Residuated uniform/focused proof search

Proposition 1. For any Σ, Δ, G, D ∈ Δ, i ≥ 0:

1. If Σ : τ i
Δ, θ 
 G then for some∇, we have Σ : θ 
 ∇ and Σ : Δ;∇ =⇒ G.

2. If Σ : τD(τ i
Δ), θ 
 A but Σ : τ i

Δ, θ �
 A then for some ∇, Σ : θ 
 ∇ and

Σ : Δ;∇ D−→ A.

Proof. For the first part, proof is by induction on i and G; most cases are straightfor-
ward. For atomic goals A, i must be > 0, and if Σ : τ i−1

Δ ; θ 
 A then we use part (1)
of the induction hypothesis with i− 1; otherwise Σ : τ i−1

Δ ; θ �
 A so we unwind τ i
Δ to

τD(τ i−1
Δ ) for some D ∈ Δ, apply part (2), and use rule sel. Similarly, the second part

follows by induction on i and D, unwinding the definition of τD in each case.

Theorem 6 (Algebraic Completeness). If Σ : Δ, θ 
 G then there exists a constraint
∇ such that Σ : Δ, θ 
 ∇ and Σ : Δ;∇ =⇒ G is derivable.

Proof. If Σ : Δ, θ 
 G, then there is some n such that Σ : τn
Δ, θ 
 G, so Proposition 1

applies.

We can also extend this to a “logical” completeness result [9], namely that if an an-
swer ∇ classically implies G, then there is a finite set of constraints which prove G
individually and whose disjunction covers∇.

Theorem 7 (Logical Completeness). If Σ : Δ,∇ 
 G then there exists a finite
set of constraints C1, . . . , Cn such that Σ : ∇ 
 C1 ∨ · · · ∨ Cn and for each i,
Σ : Δ; Ci =⇒ G.

The rules in Figure 6 have the potential disadvantage that an arbitrary constraint C is
allowed in the rules ∃R, ∀R, NL, NR. Figure 7 shows a residuated proof system that
avoids this nondeterminism. Specifically, the judgment Σ : Δ =⇒ G \ C means
that given context Σ and program Δ, goal G reduces to constraint C; similarly, Σ :
Δ

D−→ A \ G means that goal formula G suffices to prove A from D. We state without
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(B) Σ〈A, Γ | ∇〉 −→ Σ〈G, Γ | ∇〉 (if ∃D ∈ Δ.Σ : Δ
D−→ A \ G)

(C) Σ〈C, Γ | ∇〉 −→ Σ〈Γ | ∇, C〉 (∇, C consistent)

(�) Σ〈�, Γ | ∇〉 −→ Σ〈Γ | ∇〉 smallskip
(∧) Σ〈G1 ∧ G2, Γ | ∇〉 −→ Σ〈G1, G2, Γ | ∇〉
(∨i) Σ〈G1 ∨ G2, Γ | ∇〉 −→ Σ〈Gi, Γ | ∇〉
(∃) Σ〈∃X:σ.G, Γ | ∇〉 −→ Σ, X:σ〈G, Γ | ∇〉
( N) Σ〈 Na:ν.G, Γ | ∇〉 −→ Σ#a:ν〈G, Γ | ∇〉

Fig. 8. Operational semantics transitions for nominal logic programs

proof the following appropriate soundness and completeness properties; their proofs are
straightforward inductions.

Theorem 8 (Residuated Soundness)

1. If Σ : Δ =⇒ G \ C then Σ : Δ; C =⇒ G.

2. If Σ : Δ;∇ =⇒ G and Σ : Δ
D−→ A \ G then Σ : Δ;∇ D−→ A.

Theorem 9 (Residuated Completeness)

1. If Σ : Δ;∇ =⇒ G then there exists a constraint C such that Σ : Δ =⇒ G \ C
and Σ : ∇ 
 C.

2. If Σ : Δ;∇ D−→ A then there exists goal G and constraint C such that Σ : Δ
D−→

A \ G and Σ : Δ =⇒ G \ C and Σ : ∇ 
 C.

5 Operational Semantics

We now give a CLP-style operational semantics for nominal logic programs. The rules
of the operational semantics are shown in Figure 8. A program state is a triple of the
form Σ〈Γ | ∇〉. The backchaining step is defined in terms of residuated focused proof.

We now state the operational soundness and completeness properties. The proofs
are straightforward by cases or induction, so omitted. To simplify notation, we write
Σ : Δ =⇒ Γ \ C where Γ = {G1, . . . , Gn} and C = {C1, . . . , Cn} to abbreviate
Σ : Δ =⇒ G1 \ C1, . . . , Σ : Δ =⇒ Gn \ Cn; also, if Σ〈G | ∅〉 −→∗ Σ; Σ′〈∅ | C〉,
then we abbreviate this as Σ〈G〉 ⇓ ∃Σ′[C].

Proposition 2 amounts to showing that each operational transition corresponds to
a valid manipulation on (multisets of) residuated proofs. Its corollary summarizes the
soundness results relating the operational semantics to the others.

Proposition 2 (Transition Soundness). If Σ〈Γ | ∇〉 −→ Σ′〈Γ ′ | ∇′〉 and Σ′ :
Δ =⇒ Γ ′ \ C′ then there exist C such that Σ : Δ =⇒ Γ \ C and Σ′ : ∇′, C′ 
 ∇, C.

Corollary 1 (Operational Soundness). If Σ〈G〉 ⇓ ∇ then:

1. there exists C such that Σ : ∇ 
 C and Σ : Δ =⇒ G \ C;
2. Σ : Δ;∇ =⇒ G; and
3. Σ : Δ,∇ 
 G.
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The transition completeness property (Proposition 3) states that for any configuration
Σ〈Γ | ∇〉 such that the goals Γ have appropriate derivations in the residuated proof
system, there is an operational transition step to a new state with appropriately modified
derivations. This property can be used to relate the operational semantics to the other
approaches, as shown in Corollary 2.

Proposition 3 (Transition Completeness). For any nonempty Γ and satisfiable∇, C,
if Σ : Δ =⇒ Γ \ C then for some Σ′,∇′, and C′ we have Σ〈Γ | ∇〉 −→ Σ′〈Γ ′ | ∇′〉,
Σ′ : Δ =⇒ Γ ′ \ C′, and Σ′ : ∇, C 
 ∇′, C′.

Corollary 2 (Operational Completeness)

1. If Σ : Δ =⇒ G \ C and C is satisfiable then for some∇, we have Σ〈G〉 ⇓ ∇ and
Σ : C 
 ∇.

2. If Σ : Δ;∇ =⇒ G and∇ is satisfiable then for some∇′, we have Σ〈G〉 ⇓ ∇′ and
Σ : ∇ 
 ∇′.

3. If Σ : Δ, θ 
 G then for some∇, we have Σ〈G〉 ⇓ ∇ and Σ : θ 
 ∇.
4. If Σ : Δ, C 
 G then for some∇, we have Σ〈G〉 ⇓ ∇ and Σ : C 
 ∇1∨· · ·∨∇n.

6 Applications

Correctness of Elaboration. In an implementation, program clauses are often elabo-
rated into a normal form ∀Σ[G ⊃ A] which is easier to manipulate. The elaboration of
a program clause or program is defined as its normal form with respect to the rules:

G ⊃ G′ ⊃ D � G ∧ G′ ⊃ D G ⊃ D ∧ D′ � (G ⊃ D) ∧ (G ⊃ D′)
G⊃∀X.D � ∀X.(G⊃D) (X �∈FV (G)) G⊃ Na.D � Na.(G⊃D) (a �∈supp(G))

∀X.(D ∧ D′) � ∀X.D ∧ ∀X.D′ Na.(D ∧ D′) � Na.D ∧ Na.D′

G ⊃ � � � D ∧ � � D � ∧ D � D
∀X.� � � Na.� � � Δ, D ∧ D′ � Δ, D, D′ Δ, � � Δ

It is straightforward to show that this system is terminating and confluent (up to α-
and multiset-equality) and that elaborated programs consist only of closed formulas
Q1 · · ·Qn[G ⊃ A] or Q1 · · ·Qn[A], where Q is a sequence of ∀- or N-quantifiers.
Moreover, this translation preserves the meaning of the program:

Theorem 10. 1. If Δ � Δ′ then Σ : Δ;∇ =⇒ G iff Σ : Δ′;∇ =⇒ G.

2. If Δ � Δ′ then Σ : Δ;∇ D−→ A iff Σ : Δ′, D;∇ =⇒ A.

3. If D � D′ then Σ : Δ;∇ D−→ A iff Σ : Δ, D′;∇ =⇒ A.

A sublanguage with Tractable Constraints. In general, nominal constraint solving
is intractable [2]. However, Urban, Pitts, and Gabbay’s nominal unification algorithm
(which forms the basis of the αProlog implementation) solves a tractable special case:

Definition 3. A term, constraint, or formula is simple if in every subterm of the form
a # t, 〈a〉t, or (a b) · t, the terms a and b are ground names.
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For example, 〈a〉X and (a b) ·Y are simple, while 〈A〉X and ((A B) ·C (A C) ·B) ·C
are not. Constraint solving for simple problems involving only ≈ and # is decidable
in polynomial time [16]. Moreover, it is easy to see that the residuated and operational
semantics reduce any satisfiable goal to a simple constraint.

Unfortunately, because atomic formulas are equivalent if they are equal modulo a
permutation in nominal logic, this is not enough to ensure that simple nominal logic
programs can be executed efficiently, because constraint solving is NP-complete even
for simple constraints A ∼ B. Therefore, it is tempting to replace the hyp rule with

hyp≈, in which Σ : ∇ 
 A ≈ B is required to to conclude Σ : Δ;∇ A−→ B. We

write Σ : Δ;∇ =⇒≈ G and Σ : Δ;∇ D−→≈ A for uniform or focused proofs in
which hyp≈ is used instead of hyp, and call such proofs ≈-backchaining. The current
implementation of αProlog implements ≈-backchaining over simple programs.

Such proofs only require solving tractable simple constraints involving ≈ or #.
However, proof search is incomplete for this system. For example, there is no proof
of Σ : Na.p(a);∇ =⇒≈ Na.p(a). There are, however, sublanguages of simple nom-
inal Horn clauses for which αProlog’s ≈-backchaining is complete. One interesting
example identified by Urban and Cheney [17]. In this language, Nis forbidden in goal
formulas and program clauses are required to satisfy a well-formedness condition which
ensures that every derivation using hyp can be transformed to one using hyp≈.

We now identify an alternative sublanguage for which αProlog’s proof search is
complete. We say that a program clause is N-clause-free if it contains no D-formula
of the form Na.D. However, N-quantified goals Na.G are allowed. All the programs
considered well-formed according to Urban and Cheney’s definition appear equivalent
to N-clause-free programs and vice versa; investigating this relationship is future work.

Example 3. Although the tc program of Figure 5 is not N-clause-free, its third clause
can be replaced by the N-clause-free formula

tc(Ctx, lam(F ), fn ty(T, U)) :− Nx.F = 〈x〉E, tc([(x, T )|Ctx], E, U).

To prove≈-backchaining complete for N-clause-free programs, we first show:

Lemma 4. Let π be a type-preserving permutation of names in Σ.

1. If Σ : Δ;∇ =⇒≈ G then Σ : Δ;∇ =⇒≈ π · G.

2. If Σ : Δ;∇ D−→≈ A then Σ : Δ;∇ π·D−−→≈ π · A.

Proof. By induction on derivations. The cases for quantifiers require some care; for
example, in the case for ∀X.G[X ], we have subderivation Σ, X : Δ;∇, C[X ] =⇒≈
π·G[π·X ] where Σ : ∇ 
 ∃X.C[X ]. Since π is invertible, we can substitute Y = π·X
to obtain Σ, X : Δ;∇, C[π−1 · Y ] =⇒≈ π · G[Y ]; moreover, clearly, Σ : ∇ 

∃Y.C[π−1 · Y ], so we can conclude Σ : Δ;∇ =⇒≈ π · ∀X.G[X ].

Theorem 11. If Δ is N-clause-free then

1. If Σ : Δ;∇ =⇒ G is derivable, Σ : Δ;∇ =⇒≈ G is derivable.

2. If Σ : Δ;∇ D−→ A is derivable, then Σ : Δ;∇ π·D−−→≈ A is derivable for some π.
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Proof. The proof is by induction on derivations. The most interesting cases are hyp and

sel. For hyp, from Σ : Δ;∇ π·A−−→ A′ we have Σ : ∇ 
 A′ ∼ A, which by definition

means there exists a π such that Σ : ∇ 
 π · A′ ≈ A, so Σ : Δ;∇ π·A−−→≈ A′. For

sel, from Σ : Δ;∇ =⇒ A we obtain Σ : Δ;∇ D−→ A for some closed D ∈ Δ. By

induction, for some π, Σ : Δ;∇ π·D−−→≈ A. However, since D is closed, π ·D = D ∈ Δ
so we may conclude Σ : Δ;∇ =⇒≈ A using the sel rule again. Other cases follow by
arguments similar to those for Lemma 4. The case for NL is vacuously true: no instance
of NL can occur in a N-clause-free program derivation.

Note that Theorem 11 fails if NL is allowed: specifically, given an instance of NL

deriving Σ : Δ;∇ Na.D−−−→ A from Σ#a : Δ;∇ D−→ A, we can obtain a derivation of

Σ#a : Δ;∇ π·D−−→≈ A by induction, but since π may mention a, it is not possible in

general to conclude Σ : Δ;∇ π· Na.D−−−−→≈ A.

7 Related and Future Work

Basic results relating the denotational and operational semantics similar to those of
Jaffar et al. [9] were first proved in [5, Chapter 6]. Although many of the basic ideas
are the same, we believe the definitions and proofs in this paper are cleaner and more
extensible. For example, extending the proof-theoretic semantics to hereditary Harrop
programs (following [10]), supporting negation-as-failure, or extending the constraint
domain to include traditional classes of constraints or additional binding constructs ap-
pears straightforward. Another interesting direction to pursue is the possibility of com-
piling nominal logic programs to ordinary CLP programs with an appropriate nominal
constraint solver written using constraint handling rules.

Nominal logic programming is similar in expressive power to restricted forms of
higher-order logic programming, such as Miller’s Lλ [13], in which all subterms are
required to be higher-order patterns. The unification problems for nominal terms and
higher-order patterns are similar [16], although their syntactic form and semantic moti-
vations appear quite different. The N-clause-free fragment seems similar in expressive
power to Lλ, except for minor differences such as that goal formulas can be passed as
arguments in Lλ. Thus, nominal logic may constitute a logical foundation for Lλ.

8 Conclusions

Nominal logic is an interesting extension of ordinary first-order logic with a constraint
and equality theory describing terms with bound names up to α-equivalence. In this pa-
per, we have given three semantics for nominal logic programs: a classical, denotational
semantics (based on nominal Herbrand models), a constructive, proof-theoretic seman-
tics, and an operational semantics. Moreover, we have proved appropriate soundness
and completeness theorems relating the semantics. These results provide a solid logical
foundation for nominal logic programming, provide criteria for judging the correctness
and completeness of implementations, and suggest that nominal logic programming can
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be provided as simply another constraint domain within a full CLP system. In addition,
we used the proof-theoretic semantics to prove the correctness of program elaboration
and to provide a new characterization of programs for which αProlog-style proof search
is complete.
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Abstract. Currently, most knowledge representation using logic programming
with answer set semantics (AnsProlog) is ‘flat’. In this paper we elaborate on our
thoughts about a modular structure for knowledge representation and declarative
problem solving formalism using AnsProlog. We present language constructs that
allow defining of modules and calling of such modules from programs. This al-
lows one to write large knowledge bases or declarative problem solving programs
by reusing existing modules instead of writing everything from scratch. We report
on an implementation that allows such constructs. Our ultimate aim is to facilitate
the creation and use of a repository of modules that can be used by knowledge en-
gineers without having to re-implement basic knowledge representation concepts
from scratch.

1 Introduction

Currently, most knowledge representation languages are ‘flat’. In other words, for the
most part they are non-modular. (It is often mentioned that CYC’s language [Guha 1990]
allows the use of modules. But this is not well published outside CYC.) Our focus in this
paper is the knowledge representation language AnsProlog [Gelfond & Lifschitz 1988,
Baral 2003] (logic programming with answer set semantics), where most programs are
a collection of AnsProlog rules. Although sets of AnsProlog rules in these programs
are often grouped together with comments that describe the purpose of those rules, the
existing syntax does not allow one to construct libraries of modules that can be used
in different programs. Such libraries are commonplace in many of the programming
languages such as C++ and Java and recently in domains such as natural language
[Miller et al. 1990]. The presence of such libraries makes it easier to write large programs
without always starting from scratch, by referring and using already written pieces of
code (modules, methods, subroutines etc.).

There are many other advantages of using libraries of modules. For example, having
higher level modules available enforces code standardization. A module repository also
has the benefit of being proven over the years and hence deemed reliable. In addition,
modules may be built using multiple languages which lends to an overall application
architecture where strengths of a language are fully exploited without having to find a
work-around.

There are several ways to introduce modularity into answer set programming. Some
of the ways to do that include:

S. Etalle and M. Truszczyński (Eds.): ICLP 2006, LNCS 4079, pp. 376–390, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(1) Macros: Modules are defined as macros or templates. A macro-call would be re-
placed by a collection of AnsProlog rules as specified by a semantics of the macro
call. Such an approach with focus on aggregates is used in [Calimeri et al. 2004].

(2) Procedure/method calls: A module is an AnsProlog program with well defined input
and output predicates. Other programs can include calls to such a module with a
specification of the input and a specification of the output. Such an approach is used
in [Tari, Baral, & Anwar 2005].

(3) Procedure/method calls with a specified engine: Here a module is also an AnsProlog
program with not only well-defined input and output predicates, but also with an as-
sociated inference engine. For example, the associated engine could be a top-down
engine such as Prolog or Constraint logic programming, or an answer set enumer-
ator such as Smodels or DLV. Such an approach with respect to constraint logic
programming can be built on the recent work [Baselice, Bonatti, & Gelfond 2005]
where answer set programming is combined with constraint logic programming.

In this paper, we will focus on the first way to represent knowledge in a modular way.
In our approach there is an initial macro-expansion phase during which macro calls are
appropriately replaced by AnsProlog code. The result of the macro-expansion phase is
an AnsProlog program which can then be used by an appropriate interpreter. In this
paper we will use the Smodels [Niemelä & Simons 1997] interpreter for illustration
purposes. The organization of the rest of the paper is as follows. We will first present a
simple example of our approach, then we will present the syntax and semantics for our
language constructs and then introduce a detailed illustration with respect to planning
and reasoning about actions. Finally, we will conclude and discuss related work.

2 A Simple Example: Transitive Closure

Let us consider the simple example of transitive closure. We will illustrate how a simple
transitive closure module can be defined once and can then be used in many different
ways. A transitive closure module of a binary predicate p is computed by the binary
predicate q, and is given as follows.

Module_name: Transitive_closure.
Parameters(Input: p(X,Y); Output: q(X,Y);). Types: Z = type X.
Body: q(X,Y) :- p(X,Y).

q(X,Y) :- p(X,Z), q(Z,Y).

Now, if in a program we want to say that anc 1 is the transitive closure of par 2 then we
can have the following macro call in that program:

CallMacro Transitive closure(Replace: p by par, q by anc, X by U, Y by V ;).
Our semantics of the macro call will be defined in such a way that during the macro-

expansion phase the above call will be replaced by the following rules, together with
type information about the variable Z .

1 anc(a, b) means that b is an ancestor of a.
2 par(a, b) means b is a parent of a.
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anc(U,V) :- par(U,V).
anc(U,V) :- par(U,Z), anc(Z,V).

Now suppose in another program we would like to define descendants of a, where
descendant(a, b) means that a is a descendant of b, then one can include one of the
following macro calls:

CallMacro Transitive closure(Replace: p by par, q by descendant, Y by a; Unchanged:
X;).
CallMacro Transitive closure(Replace: p by par, q by descendant; Specialize: Y = a;
Unchanged: X;).

Our semantics of the macro call will be defined in such a way that during the macro-
expansion phase the above calls will be replaced by the following rules and type infor-
mation about Z .

descendant(X,a) :- par(X,a).
descendant(X,a) :- par(X,Z), descendant(Z,a).

descendant(X,Y) :- par(X,Y), Y = a.
descendant(X,Y) :- par(X,Z), descendant(Z,Y), Y = a.

A similar example is given in [McCarthy 1993]. There McCarthy gave a context in
which above(x,y) is the transitive closure of on(x,y) and wrote lifting rules to connect
this theory to a blocks world theory with on(x,y,s) and above(x,y,s).

3 Syntax and Semantics of Modules and Macro Calls

We now present the syntax and semantics of modules and macro calls. We start with the
alphabet. Our alphabet has module names, predicate names, variable names, function
names and the following set of keywords ‘Module name’, ‘Parameters’, ‘#domain’,
‘Input’, ‘Output’, ‘Types’, ‘type’, ‘Body’, ‘Callmacro’, ‘specializes’, ‘generalizes’,
‘variant of’, ‘Specialize’, ‘Generalize’, ‘Unchanged’, ‘Replace’, ‘by’, ‘Add’, ‘to’,
‘Remove’ and ‘from’. We use the terminology of atoms, literals, naf-literals etc. from
[Baral 2003]. Recall that naf-literal is either an atom or an atom preceded by the symbol
‘not’. Besides that, if p is a predicate of arity k, and V1, . . . , Vk are terms, then we
refer to p(V1, . . . , Vk) as a predicate schema. Furthermore, we define a variable domain
statement to be of the form #domain p(V ), which says that the variable V is of type
p. For example #domain fluent(F ) means that the variable F is of the type fluent.

3.1 Syntax

We start with the syntax of a call-macro statement and then define a module.
Definition 1. A call-macro statement is of the following form:

Callmacro Mname( Replace: p1 by p′1, . . . , pk by p′k, v1 by v′1, . . . , vl by v′l; Add:
u1 to q1, . . . , ur to qr; Remove: w1 from q′1, . . . , ws from q′s; Specialize: S1, . . . , Sm;
Generalize: G1, . . . , Gn; Unchanged: x1, . . . , xt;)
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where Mname is a module name, p1, . . . , pk, p′1, . . . , p
′
k, q1, . . . , qr and q′1, . . . , q

′
r

are predicate names; v1, . . . , vl, v′1, . . . , v
′
l are terms; u1, . . . , ur are sets of terms;

w1, . . . , ws are sets of variables; x1 to xt are variables or predicates; Sis and Gjs are
naf-literals; {S1, . . . , Sm} ∩ {G1, . . . , Gn} = ∅. Any of k, l, r, s, m, n or t could be 0.
Also, the order in which we specify the keywords does not matter. �

Definition 2. A module is of the form:

Module Name: Mname sg Mname′.
Parameters(P1 . . . Pt; Input: I1, . . . , Ik; Output: O1, . . . , Ol;).
Types: D0, . . . Dj , L1 = type V1, . . . Lo = type Vo.
Body: r1 . . . rm.

c1 . . . cn.

where, Mname, and Mname′ are module names; sg is either the keyword ‘special-
izes’, the keyword ‘generalizes’ or the keyword ‘variant of’; Pis, Iis and Ois are pred-
icate schemas; ris are AnsProlog rules (we also allow for Smodels constructs such as
’#const’ etc.); cjs are call-macro statements; L1, . . . , Lo and V1, . . . , Vo are variables;
and D0, . . . , Dj are variable domain statements. Mname′ is optional and in its absence
we do not have the sg part.

But if Mname′ is there and sg is equal to ‘specialize’ or ’generalize’, then m = 0,
n = 1 and only sg appears in c1. In other words, if sg is equal to specialize, then there is
exactly one call to the module Mname′using specialize and not generalize (similarly for
generalize), and there are no other rules or macro calls. The idea of specifying specialize,
generalize and variant between modules is to show the connection between the modules
and if one is familiar with a module then it becomes easier for him/her to grasp the
meaning of a specialization, generalization or variant of that module.

Additionally, we specify the parameters of the module, e.g. predicates and variables
that are passed in and out from the module. We may define those in general, or further
specify them to be input or output predicates or variables. The input and output labeling
is optional, but are useful to express more information about the module. As shown in the
upcoming examples, specifying inputs and outputs helps with understanding and usage
of the particular module. In cases where k = 0 (l = 0) we may omit the Input (Output)
keyword. However, if input or output is present, we require the following conditions to
hold:

(i) If p is an input predicate, then there must be a rule ri whose body has p, or there
must be a call-macro statement cj with p in it.

(ii) If p is an output predicate, then there must be a rule ri whose head has p, or there
must be a call-macro statement cj with p in it. �

The above conditions ensure that the input and output predicates play their intended
role in a module. Intuitively, a module takes in facts of a set of input predicates and
reasons with them to produce a set of facts about output predicates. This is similar to
the interpretation of logic programs as lp-functions in [Gelfond & Gabaldon 1997]. The
first condition above requires that each of the specified inputs is actually used within
the module, while the second one ensures that the module really computes each of the
specified outputs.
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Let us now take a closer look at the variables in a module and their domains. First,
we say a variable is local, if it does not appear in any parameter statement of the module.
Otherwise, we say the variable is global. Our syntax allows for defining the domain of a
variable either using ’#domain’ statement, or by type constraints of the form V = type
V ′ meaning that the type of variable V is the same as the type of V ′. We require that
domains be only defined for local variables, as global variables get their domain from the
macro calls. For example in the transitive closure module, defined in previous section,
we do not want to specify the types of X and Y , as X and Y can be person, number, etc.
The local variables must have a well-defined type, which is formally defined as follows:

A local variable V has a well-defined type if one of the following holds:

1. The definition of the module Mname contains a statement #domain p(V ).
2. The definition of the module Mname contains a statement V = type V ′ where V ′

is a global variable.
3. The definition of the module Mname contains a statement V = type V ′ where V ′

has a well-defined type.

In addition, we require the following condition to hold for any macro call:

(iii) If X is a predicate or variable in any parameter schema of Mname, then any macro
call to the module Mname must contain either a replace, remove, generalize or
unchanged statement involving X . Furthermore, a macro call to a module can not
refer to any local variable of that module. Finally, although we do not require it, it
is advisable to make sure that any variable that is introduced (by the ui notation of
the Add statements) by a macro call to a module is either different from existing
variable in that module or if same, has a reason behind it. (In our implementation
we will flag such variables.).

3.2 Macro Expansion Semantics

To characterize the expansion of modules we need to consider not just a single module
but a collection of modules, as a module may include call-macro statements that call
other modules. Given a set of modules S we define the dependency graph GS of the
set as follows: There is an edge from M1 to M2 if the body of M1 has a call-macro
statement that calls M2. In the following we only consider the sets of modules whose
dependency graph does not have cycles.

Now given a set of modules its macro expansion semantics is a mapping λ from module
names to AnsProlog programs. We define this mapping inductively as follows:

1. If M is a module with no macro calls then λ(M) = {r1, . . . , rm}.
2. If c is a call-macro statement in module Mname of the form

Callmacro Mname( Replace: p1 by p′1, . . . , pk by p′k, v1 by v′1, . . . , vl by v′l;
Add: u1 to q1, . . . , ur to qr; Remove: w1 from q′1, . . . , ws from q′s; Specialize:
S1, . . . , Sm; Generalize: G1, . . . , Gn; Unchanged: x1, . . . , xt;)
such that λ(M) is defined, then λ(c) is defined as follows:
(a) Each rule r in λ(M) is replaced by a rule r′ constructed from r by applying all

of the following(if applicable) changes to r:
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i. (Replace) Let pi ∈ r, i = 1, ..., k. Then pi is replaced by it’s respective
predicate p′i in r′. Similarly, any of the terms v1 to vl in any predicate p ∈ r
is replaced by it’s respective term v′1 to v′l.

ii. (Add) Let p(t1, ..., ti) be a predicate of r with it’s respective terms. If
for any j, p = qj and uj = {t′1, ..., t′i′}, then p(t1, ..., ti) is replaced by
p(t1, ..., ti, t′1, ..., t

′
i′) in r′.

Example 1. Let p be the atom q(Z, Y ) of a rule r. Let the call contain the
following: Replace: q by occurs; Add: {A,neq(B)} to q; Following the
above cases, q(Z, Y ) will be replaced by occurs(Z, Y, A, neg(B)) in r′. �

iii. (Remove) Let w be any variable in term ti from the set wj for some j. Let
q′j be any predicate of the form q′j(t1, ..., ti, ...ta) in r (notice that ti may be
equal to w). Then q′j is replaced by q′j(t1, ..., ti−1, ti+1...ta) in r′ assuming
t−1 ≥ 1 and t+ q ≤ a Otherwise the respective ti−1 or ti+1 is not present
in p.

iv. (Unchanged) For any predicate or variable xi, no change or substitution is
performed.

v. If there exists i, j such that pi = pj and p′i �= p′j , or vi = vj and v′i �= v′j
then we say that the set of substitutions is conflicting. If that is the case, we
say that the semantics of the call c, λ(c) is undefined.

(b) (Specialize, Generalize) S1, ..., Sm is added to and G1, . . . , Gn, if present, are
removed from the body of each of the rules of the module.

(c) (Local variables types) For each local variable L of Mname, it’s type is assigned
as follows. The type of L is assigned according to the #domain p(L) statement
(if present in Mname) or type constraint L = type V for some variable V with
already defined type (i.e. a global or well-defined local variable). Notice that
our syntax requires each local variable to be well-defined. Then, in the first case,
the type of L is p, while in the latter case type of L is the same as type of V ,
where V is a global variable or a well-defined local variable.

(d) If S1, ..., Sm include evaluable predicates or equality predicates then appropriate
simplification is done.

3. For a module M , such that λ(c1), . . . , λ(cn) are already defined λ(M) is defined
as follows:

λ(M) = {r1, . . . , rm} ∪ λ(c1) ∪ . . . ∪ λ(cn)

Definition 3. Let S be a set of modules. Two modules M and M ′ are said to be rule-set
equivalent (in S)3 if λ(M) and λ(M ′) have the same set of rules modulo changes in the
ordering of naf-literals in the body of a rule. �

4 Examples of Simple Specialization and Generalization

In this section we illustrate some simple examples of specialization and generalization.
We start with a simple module of inertial reasoning which says if F is true in the index
T then it must be true in the index T ′.

3 When the context is clear we do not mention S explicitly.
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Module_Name: Inertia.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: holds(F,T’) :- holds(F,T).

Consider the following call-macro statement.

CallMacro Inertia(Replace: F by G, T’ by res(A, T); Unchanged: holds, T;).

When the above call-macro statement is expanded we obtain the following:

holds(G,res(A,T)) :- holds(G,T).

Consider a different call-macro statement.

CallMacro Inertia(Replace: F by G, T’ by (T+1); Unchanged: holds, T;).

When the above call-macro statement is expanded we obtain the following:

holds(G,T+1) :- holds(G,T).

Now let us define some modules that specialize the module ‘Inertia’.

(i) Inertia1

Module_Name: Inertia1 specializes Inertia.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: Callmacro Inertia(Unchanged: holds, F, T, T’;

Specialize: not ˜holds(F,T’), not ab(F,T,T’);).

Proposition 1. The module Inertia1 is rule-set equivalent to Inertia1’ below. �

Module_Name: Inertia1’.
Parameters(Input: holds(F,T), ab(F,T,T’);Output: holds(F,T’);).
Body: holds(F,T’) :- holds(F,T), not ˜holds(F,T’),

not ab(F,T,T’).

(ii) Inertia2

Module_Name: Inertia2 variant_of Inertia.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: Callmacro Inertia(Unchanged: holds, F, T, T’;

Specialize: not ˜holds(F,T’);).
Callmacro Inertia(Replace: holds by ˜holds;
Unchanged: F, T, T’; Specialize: not holds(F,T’);).

Note that in the above module we say ‘variant of’ instead of ‘specialize’. That is because
the body of the above module has two macro calls and when using ‘specialize’ we only
allow for one macro call.

Proposition 2. The module Inertia2 is rule-set equivalent to Inertia2’ below. �

Module_Name: Inertia2’.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: holds(F,T’) :- holds(F,T), not ˜holds(F,T’).

˜holds(F,T’) :- ˜holds(F,T), not holds(F,T’).



Macros, Macro Calls and Use of Ensembles in Modular Answer Set Programming 383

(iii) Inertia3

Module_Name: Inertia3 specializes Inertia.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: Callmacro Inertia(Unchanged: holds, F, T, T’;

Specialize: not ab(F,T,T’);).

Proposition 3. The module Inertia3 is rule-set equivalent to Inertia3’ below. �

Module_Name: Inertia3’.
Parameters(Input: holds(F,T), ab(F,T,T’);Output: holds(F,T’);).
Body: holds(F,T’) :- holds(F,T), not ab(F,T,T’).

(iv) Inertia4

Module_Name: Inertia4 generalizes Inertia3.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: Callmacro Inertia3(Unchanged: holds, F, T, T’;

Generalize: not ab(F,T,T’);).

Proposition 4. The module Inertia4 is rule-set equivalent to the module Inertia. �

The above modules show how one can define new modules using previously defined
modules by generalizing or specializing them. This is similar to class-subclass defini-
tions used in object oriented programming languages. A specialization is analogous to a
subclass while a generalization is analogous to a superclass. Now let us consider several
call-macro statements involving the above modules.

(a) The statement “CallMacro Inertia2(Replace: F by G, T by X, T’ by X+1;
Unchanged: holds;)”, when expanded 4, gives us the following rules:

holds(G,X+1) :- holds(G,X), not ˜holds(G,X+1).
˜holds(G,X+1) :- ˜holds(G,X), not holds(G,X+1).

(b) Similarly, the statement “CallMacro Inertia2(Replace: F by G, T by X, T’ by
res(A,X); Unchanged: holds;)” when expanded will result in the following rules:

holds(G,res(A,X)) :- holds(G,X), not ˜holds(G,res(A,X)).
˜holds(G,res(A,X)) :- ˜holds(G,X), not holds(G,res(A,X)).

The above illustrates how the same module Inertia2 can be used by different knowledge
bases. The first call-macro statement is appropriate to reason about inertia in a narrative
while the second is appropriate to reason about inertia with respect to hypothetical
situations.

5 Modules for Planning and Reasoning About Actions

In this section we present several modules that we will later use in planning and reasoning
about actions. In the process, we will show how certain modules can be used through
appropriate macro calls in different ways.

4 All such statements in the rest of this paper can be thought of as formal results. But since their
proofs are straight forward we refrain from adding a whole bunch of propositions.
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5.1 Forall

We start with a module called ‘Forall’ defined as follows:

Module_Name: Forall.
Parameters(Input: in(X,S), p(X,T); Output: all(S,T);).
Body: ˜all(S,T) :- in(X,S), not p(X,T).

˜all(S,T) :- in(neg(X),S), not ˜p(X,T).
all(S,T) :- not ˜all(S,T).

Intuitively, the above module defines when all elements of S (positive or negative fluents)
satisfy the property p at time point T . Now let us consider call-macro statements that
call the above module.

• The statement “CallMacro Forall(Replace: X by F, p by holds, all by holds set;
Unchanged: S, T, in;)” when expanded will result in the following rules:

˜holds_set(S,T) :- in(F,S), not holds(F,T).
˜holds_set(S,T) :- in(neg(F),S), not ˜holds(F,T).
holds_set(S,T) :- not ˜holds_set(S,T).

• The statement “CallMacro Forall(Replace: X by F, in by finally, p by
holds;Remove: {S} from all, {S} from in, {S} from p; Unchanged: all, T;)” when
expanded will result in the following rule:

˜all(T) :- finally(F), not holds(F,T).
˜all(T) :- finally(neg(F)), not ˜holds(F,T).
all(T) :- not ˜all(T).

The above rules define when all goal fluents (given by the predicate ‘finally’) are true at
a time point T . Although the module specification of ‘Forall’ has an extra variable S,
when the above macro call is expanded, S is removed.

5.2 Dynamic Causal Laws

Now let us consider a module that reasons about the effect of an action. The effect of an
action is encoded using causes(a, f, s), where a is an action, f is a fluent literal and s
is a set of fluent literals. Intuitively, causes(a, f, s) means that a will make f true in the
‘next’ situation if all literals in s hold in the situation where a is executed or a is to be
executed.

Module_name: Dynamic1.
Parameters(Input: causes(A,F,S), holds_set(S,T);

Output: holds(F,T’);).
Body: holds(F,T’) :- causes(A,F,S), holds_set(S,T).

˜holds(F,T’) :- causes(A,neg(F),S), holds_set(S,T).

Now let us consider call-macro statements that call the above module.
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• The statement “CallMacro Dynamic1(Replace: F by G, T by X, T’ by X+1;
Specialize: occurs(A,X); Unchanged: A, S, holds, causes, holds set;)” when ex-

panded will result in the following rules:

holds(G,X+1) :- occurs(A,X), causes(A,G,S), holds_set(S,X).
˜holds(G,X+1) :- occurs(A,X), causes(A,neg(G),S),

holds_set(S,X).

• The statement “CallMacro Dynamic1(Replace: F by G, T by X, T’ by res(A,X);
Unchanged: A, S, holds, causes, holds set;)” when expanded will result in the

following rules:

holds(G,res(A,X)) :- causes(A,G,S), holds_set(S,X).
˜holds(G,res(A,X)) :- causes(A,neg(G),S),holds_set(S,X).

• The statement “CallMacro Dynamic1(Replace: F by G, T by X, T’ by
X+D; Specialize: occurs(A,X), duration(A,D); Unchanged: A, S, holds, causes,

holds set;)” when expanded will result in the following rules:

holds(G,X+D) :- causes(A,G,S), holds_set(S,X),
occurs(A,X), duration(A,D).

˜holds(G,X+D) :- causes(A,neg(G),S), holds_set(S,X),
occurs(A,X), duration(A,D).

The above illustrates how the module Dynamic1 can be used in three different ways:
when reasoning about narratives where each action has a unit duration, when reasoning
about hypothetical execution of actions, and when reasoning about narratives where each
action has a duration that is given.

5.3 Enumeration

Module_Name: Enumerate1.
Parameters(Input: r(X), s(Y);Output: q(X,Y);). Types:Z=type X.
Body: ˜q(X,Y) :- q(Z,Y), X!=Z, s(Y).

q(X,Y) :- r(X), s(Y), not ˜q(X,Y).

The statement “CallMacro Enumerate1(Replace: r by action, s by time, q by occurs, X
by A, Y by T ;)” when expanded will result in the following rules:

˜occurs(A,T) :- occurs(Z,T), A!=Z, time(T).
occurs(A,T) :- action(A), time(T), not ˜occurs(A,T).

5.4 Initialize

Module_Name: Initialize.
Parameters(Input: initially(F); Output: holds(F,0);).
Body: holds(F,0) :- initially(F).

˜holds(F,0) :- initially(neg(F)).
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6 Planning

In this section we show how we can specify a planning program (and also a planning
module) using call-macro statements to modules defined in the previous section.

6.1 An AnsProlog Planning Program in Smodels Syntax

We start with a program that does planning. In the following program we have two
actions a and b, and two fluents f and p. The action a makes f true if p is true when it
is executed, while the action b makes p false if f is true when it is executed. Initially p
is true and f is false and the goal is to make f true and p false.

initially(neg(f)). initially(p). causes(a,f,s).
in(p,s). set(s). causes(b, neg(p), ss).
in(f,ss). set(ss). action(a).
action(b). fluent(p). fluent(f).
finally(f). finally(neg(p)). #const length = 1.
time(0..length). #domain fluent(F).#domain set(S).
#domain action(A). #domain time(T). #show holds(X,Y).
#show occurs(X,Y).

holds(F,0) :- initially(F).
˜holds(F,0) :- initially(neg(F)).
holds(F, T+1) :- holds(F,T), not ˜holds(F,T+1).
˜holds(F, T+1) :- ˜holds(F,T), not holds(F,T+1).
holds(F,T+1) :- occurs(A,T), causes(A,F,S), holds_set(S,T).
˜holds(F,T+1) :- occurs(A,T),causes(A,neg(F),S),holds_set(S,T).
˜holds_set(S,T) :- in(F,S), not holds(F,T).
˜holds_set(S,T) :- in(neg(F),S), not ˜holds(F,T).
holds_set(S,T) :- not ˜holds_set(S,T).
o_occurs(A,T) :- occurs(Z,T), A!=Z, time(T).
occurs(A,T) :- action(A), time(T), not o_occurs(A,T).
˜allgoal :- finally(F), not holds(F,length+1).
˜allgoal :- finally(neg(F)), not ˜holds(F,length+1).
allgoal :- not ˜allgoal.

:- not allgoal.

6.2 A Planning Module That Calls Several Macros

We now define a planning module that has many call-macro statements calling macros
defined in the previous section.

Module_name: Simple_Planning.
Parameters(Input: initially(F), causes(A,F,S), finally(F),
in(F,S), action(A), length, holds(F, T), holds_set(S, T),
time(T); Output: occurs(A,T), allgoal;).

Body: Callmacro Initialize(Unchanged: initially, holds, F;).
Callmacro Inertia2(Replace: T’ by T+1;

Unchanged: holds, F, T;).
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Callmacro Dynamic1(Replace: T’ by T+1;
Specialize: occurs(A,X);

Unchanged: causes, holds_set, holds, A, F, S, T;).
Callmacro Forall(Replace: X by F, p by holds, all by holds_set;

Unchanged: in, S, T).
Callmacro Enumerate1(Replace: X by A, Y by T, r by action,

s by time, q by occurs;).
Callmacro Forall(Replace: X by F, in by finally, p by holds,

all by allgoal; Remove: {S, T} from all,
{S} from in, {T} from p; Add: {length+1} to p;).

:- not allgoal.

6.3 A Planning Program That Calls the Planning Module

A planning program that calls the planning module in Section 6.2 and which when
expanded results in the planning program in will consist of the declaration (first 9 lines)
of the module in Section 6.1 and the following call:

Callmacro Simple_Planning(Unchanged: F, S, initially, causes,
finally, in, action, length, holds, holds_set, time, occurs,
allgoal;).

7 Ensembles and Associated Modules

So far in this paper we have focused on macros and macro expansions. To take the
reuse and independent development of modules in an object-oriented manner further
we propose that modules be grouped together under a “heading”. This is analogous to
object-oriented languages such as Java where methods that operate on the objects of a
class are grouped under that class. In other words the “headings” in Java are class names
under which methods are grouped.

Before we elaborate on what we propose as “headings” for our purpose here,
we first consider some examples from Java. A typical class in Java (from Chapter
3 of [Horstman 2005]) is BankAccount. Associated with this class are the methods
deposit, withdraw and getBalance. A subclass of BankAccount (from Chapter 13 of
[Horstman 2005]) is the class SavingsAccount. In Java, in the SavingsAccount class
definition one only specifies new methods as it automatically inherits all methods from
the BankAccount class. An example of a new method for the class SavingsAccount
is addInterest.

The questions we would now like to address are: How are modules, as defined in this
paper, organized? If they are grouped, how are they grouped and under what “headings”?
If they are grouped, how do inheritance and polymorphism manifest themselves?

We propose that the modules be grouped under “headings”. That allows one to locate
a module more easily, compare modules that are similar, notice duplicate modules, etc.
In regards to what “headings” we should use for grouping the modules, we notice that a
module has predicates specified in its parameters and each positions of these predicates
have an associate class. Thus we define a notion of an ensemble as a pair consisting
of a set of classes S and a set of relation schemas R and propose to use ensembles as
“headings” under which modules are grouped.
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An example of an ensemble is a set S = {action, f luent, time} and
R = {initially(fluent-literals), causes(action, f luent-literals, set of fluent
literals), finally(fluent-literals)}. Associated with each ensemble are a set of mod-
ules about those classes and relation schemas.

Similar to the notion of classes and sub-classes in Java we define the notion of sub-
ensembles as follows. Let E = (S, R) be an ensemble and E′ = (S′, R′) be another
ensemble. We say E′ is a sub-ensemble of E if there is a total one-to-one function f
from S to S′ such that for all class c ∈ S, f(c) is a sub-class of c and R ⊆ R′.

By F (S) we denote the subset of S given by {f(c) | c ∈ S}. Let us assume S and
S′ are of the same cardinality and R = R′. In that case E′ basically has specialized
subclasses for the various classes in E. Thus E′ inherits the original modules (in the
absence of overriding) that are in E and it may have special modules. For example S′may
have the class move actions which are a sub-class of actions [Lifschitz & Ren 2006]
and thus E′ may have additional modules about such a sub-class of actions.

The above definition allows more relation schemas in E′ than E. On the surface of it
this may be counter-intuitive, but the intuition becomes clear when we assume S = S′.
In that case E′ has more relation schemas, so it can have more modules than in E. Thus
E′ can inherit all modules that correspond to E and can have more modules. In addition
E′ may have some module of the same name as E. In that case when one is in E′ the
module definition there overrides the module of the same name in E. E′ can also have
more classes than E and the intuition behind it is similar to the above and becomes clear
when one assumes S ⊆ S′.

Macro calls can be used inside modules. When calling modules one then needs to
specify the ensemble name from where the module comes from. This is analogous to
class.methods calls in Java.

When developing a large knowledge base we will have an ensemble which will
consist of a set of class names and a set of relation schemas. It will have its own modules.
This ensemble will automatically inherit (when not overridden by its own modules) from
various of its super-ensembles. One needs to deal with the case when an ensemble has
say two super-ensembles each of which have a module of the same name.

For a knowledge base, exactly one of its module will be the “main” module. This is
analogous to the “main” method in Java. This module may contain rules as well as macro
calls to other modules that are defined or inherited. The set of rules of this module, after
macro expansion will be the program that will be run to obtain answer sets or used to
answer queries.

8 Conclusion, Related Work and Software Availability

In this paper we have introduced language constructs – syntax and semantics, that al-
lows one to specify reusable modules for answer set programming. We illustrate our
approach with respect to the planning example, and present several modules that can
be called from a planning program. We also hint at how some of those modules, such
as inertia, can be used by a program that does hypothetical reasoning about actions. In
particular, while the statement “CallMacro Inertia2(Replace: F by G, T by X, T’ by
X+1; Unchanged: holds;)” can be used in a planning program or a program that rea-
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sons with narratives the statement “CallMacro Inertia2(Replace: F by G, T by X, T’
by res(A,X); Unchanged: holds;)” can be used for hypothetical reasoning about actions.
Note that both of them call the same module Inertia2. This is what we earlier referred
to as reuse of code.

Among other works, our work is close to [Calimeri et al. 2004], [Gelfond 2006],
[Lifschitz & Ren 2006]. In [Calimeri et al. 2004] ‘templates’ are used to quickly intro-
duce new predefined constructs and to deal with compound data structures. The approach
in [Gelfond 2006] is similar to us, and in [Lifschitz & Ren 2006] modular action theo-
ries are considered. Our use of “Replace” and the resulting simpler parameter matching
– than in our earlier version of the paper in AAAI’06 spring symposium, is inspired
by [Lifschitz & Ren 2006], which was also presented in the same symposium. Ear-
lier, Chen et al. [Chen, Kifer, & Warren 1993] proposed the language of Hi-log that
allows specification similar to our transitive closure modules. Other works in logic
programming that discuss modularity include [Bugliesi et al. 1994, Eiter et al. 1997,
Etalle & Gabbrielli 1996] and [Maher 1993].

Besides the above and CYC [Guha 1990] most recent efforts on resources
for large scale knowledge base development and integration have focused on is-
sues such as ontologies [Niles & Pease 2001], ontology languages [Dean et al. 2002],
[Horrocks et al. 2003], [rul 2005], [Boley et al. 2004], [Grosof et al. 2003], and inter-
change formats [Genesereth & Fikes 1992, com]. Those issues are complementary to
the issue we touch upon on this paper.

An initial implementation of an interface and interpreter of modules and macro calls
is available at http://www.baral.us/modules/. As this is being written, we are still fine
tuning the implementation.
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Abstract. Rule-based specifications in Datalog are used in a number of applica-
tion areas, such as configuration management, access control and trust manage-
ment, decision making, etc. However, rules sets are typically hard to maintain;
the rules often interact in subtle ways, making them difficult to understand and
reason about. This has impeded the wide-spread adoption of rule-based comput-
ing. This paper describes the design and implementation of XcelLog, a deductive
spreadsheet system (DSS), that permits users to specify and maintain Datalog
rules using the popular and easy-to-use spreadsheet interface. The driving idea
underlying the system is to treat sets as the fundamental data type and rules as
specifying relationships among sets, and use the spreadsheet metaphor to create
and view the materialized sets. The fundamental feature that makes XcelLog suit-
able even for non-programmers is that the user mainly sees the effect of the rules;
when rules or basic facts change, the user sees the impact of the change immedi-
ately. This enables the user to gain confidence in the rules and their modification,
and also experiment with what-if scenarios without any programming. XcelLog
is implemented as an add-in to Excel with XSB serving as the rule engine for
evaluating Datalog specifications. Preliminary experience with using XcelLog
indicates that it is indeed feasible to combine the power of rule-based computing
and the elegance and simplicity of the spreadsheet metaphor, so that end users
can encode and maintain rule bases with little or no programming.

1 Introduction

The defining problem: Rule-based specifications are used in a wide variety of appli-
cations. Examples include business rules (e.g. [19]), authorization rules for scalable
access control and distributed trust management (e.g. [11, 16]), and configuration man-
agement of complex systems (e.g. system administration [2], security policy configu-
ration [14], and vulnerability analysis [17, 18]). Also automated support for decision
making is by and large based on rule-based systems. Usually Datalog [3, 25] and exten-
sions of Datalog are used for rule specifications. However, a major factor that hampers
their large-scale adoption is the difficulty of developing, understanding and modifying
the (rule-based) specifications. In general, it is not easy to infer the effect of a rule from
the way in which it is written. Rule systems need a “programmer” to specify the rules
and additional tools to analyze the rules in order to convince the users of their soundness
and completeness; a case in point is the SELinux security policies [14] and the variety
of tools that have been developed to analyze these policies [6, 7, 23]. This raises the
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question: How can we simplify the creation of rule-based applications and their main-
tenance? More interestingly can we empower end-users to develop such applications
with very little or better still with no programming?

Deductive Spreadsheets: The electronic spreadsheet, as exemplified by Excel R©, is a
spectacularly popular application program that is widely used by the masses. Every
spreadsheet user effectively creates a program to process data without having to be
trained as a programmer. The large-scale adoption of spreadsheets as a programming
tool by the masses (albeit for particular classes of problems) is mainly because compu-
tations are specified by examples. A user specifies an instance of a computation (e.g.
sum of two cells in a row); subsequently by copying and filling, the user specifies that
the other cells (the destination of the filling gesture) are computed in a “similar” man-
ner. This allows the user to not have to think about abstractions and general parameter-
ized operations, but instead concentrate on multiple concrete operations. Moreover, the
spreadsheet user interface shows the results of the computation directly and changes the
results whenever the underlying data changes. This direct interaction with data elimi-
nates the line between code development and testing.

The idea of deductive spreadsheets (DSS) is to bring the power of rules-driven com-
puting within the familiar paradigm of spreadsheets — specifically empower end users,
particularly non-programmers to write and maintain rules, not in an ad hoc language,
but in terms of the effect of the rules on an underlying sample of data using the classic
2-D graphical spreadsheet metaphor.

An Example: We illustrate the idea of DSS using a simple example from Trust Man-
agement (following [12]).

1. A publisher, PUB, wants to give a discount to their member, which is anyone who
is both a student and a preferred customer.

2. PUB delegates the authority over the identification of preferred customers to its
parent organization ORG.

3. ORG has a policy of treating IEEE members as preferred customers.
4. PUB also delegates the authority over the identification of students to accredited

universities.
5. The identification of accredited universities, in turn, is based on credentials issued

by the University Accreditation Board, UAB.

These rules, which form a deductive system, have been traditionally written in a
special syntax specific to the trust management system; the meaning of the rules is
usually given in terms of the set of all logical inferences that can be drawn from these
rules. Using a DSS, the same rules can be specified and their impact can be more directly
visualized as in Figure 1.

Following traditional spreadsheets, a DSS is a two dimensional array of cells. How-
ever, columns and rows in a DSS are labeled by symbolic values. For instance, rows in
the DSS shown in Figure 1, labeled PUB, ORG, ..., represent entities referenced in the
example. Columns correspond to properties of these entities. The value in a cell at row
r and column c (denoted by r.c, or in a functional notation (c r)) represents the value of
property c of entity r. For instance, the cell “IEEE.member” represents the set of IEEE
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member preferred student univ
PUB.preferred ORG.preferred PUB.univ.student UAB.member

&&
PUB PUB.student

/* Rule 1 */ /* Rule 2 */ /* Rule 4 */ /* Rule 5 */
{Amy} {Amy, Joe} {Amy, Bob} {ESU, USB}

IEEE.member
ORG /* Rule 3 */

{Amy, Joe}
IEEE {Amy, Joe}
UAB {ESU, USB}
ESU {Amy}
USB {Bob}

Fig. 1. Deductive Spreadsheet for Discount Eligibility

members; and the cell “UAB.member” represents the set of universities accredited by
UAB. To manipulate multiple interrelated DSSs, we use the notation s!r.c to denote the
cell r.c in sheet s.

Note that, unlike in a traditional spreadsheet (and indeed in other logical spread-
sheets, e.g. [5, 10]), each DSS cell contains a set of values. Cell references correspond
to expressions that evaluate to a set. In the figure, expressions (called intensions) are
shown in italics and their values (called extensions) are shown in teletype. In the
figure the cell expressions and comments (enclosed between “/*” and “*/”) are shown
for illustration only. Following traditional spreadsheets, the user specifies only the in-
tensions; the DSS system computes the extensions, shows only the extensions in the
cells, and recomputes them whenever cell values change.

Now consider the encoding of Rule 3 of the example above, which states that every
IEEE member is a preferred customer of ORG. This is specified in DSS using a cell
reference: the cell ORG.preferred contains a reference to another cell IEEE.member,
indicating that whatever occurs in IEEE.member must also occur in ORG.preferred.
This is analogous to the idea in traditional spreadsheets of referring in one cell to the
numeric value in another cell. Rules 2 and 5 can be similarly encoded. Rule 4 states
that PUB delegates the identification of students to recognized universities. Note that
PUB.univ contains the set of all universities recognized by PUB and hence u.student ⊆
PUB.student whenever u ∈ PUB.univ. This (rather complex) rule can be specified
by “lifting” the dot notation to sets: for example, a.b.c represents

⋃
y.c for every y

in a.b. In the example, the cell PUB.student contains the expression PUB.univ.student.
Finally, Rule 1 states that Pub.member consists of entities that are in both PUB.preferred
and PUB.student.

These two ideas: (1) allowing cells to contain multiple values and (2) permitting cell
references that make the statement that a cell must contain all the elements of another
cell, bring the power of deduction into a simple spreadsheet framework. Thus they
provide the foundation for our vision of DSS.

As a natural consequence of set-valued cells, DSS permits a cell a.b to contain mul-
tiple cell references: the meaning of such an expression is that the value of a.b is a
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set that contains the union of all the values of the referred cells. Moreover, the cell
references may be recursive in general. The meaning of recursive references is given
in terms of least fixed points [13]. Set-valued cells and recursive definitions provide a
powerful platform for encoding complex problems involving deduction. Nevertheless,
from an end-user’s perspective, these are relatively simple extensions to the traditional
spreadsheet paradigm, thereby adding the power of deduction without compromising
the simplicity of defining and using spreadsheets. The interesting problem now is to
realize a functional DSS system based on the above ideas.

The rest of this paper describes our technical approach to the design and implemen-
tation of the DSS system envisioned above. A fundamental design decision was to con-
struct a DSS system as a conservative extension of a traditional spreadsheet system. We
thus inherit the advantages of traditional spreadsheets, such as the extensive user base
and the availability of data visualization tools. We inherit some of the disadvantages as
well: while a spreadsheet is easy to develop using the various intuitive gestures, since
the interface shows mainly the intensions, it is usually difficult to comprehend a spread-
sheet after it is fully developed. Nevertheless, the enormous popularity of traditional
spreadsheet systems indicates that the advantages far outweigh the disadvantages.

The starting point of our technical development is the design of the DSS expression
language and intuitive gestures for specifying contents of cells and relationships be-
tween them (see Section 2). In general DSS expressions can involve circular references
as is typical when computing with logical relations. We give least-model semantics [13]
to DSS expressions by translating them into Datalog programs. In Section 3 we describe
the implementation of XcelLog, our prototype DSS system, with Excel as it’s front-end
and our XSB tabled logic programming system as the backend deduction machine [21].
We have encoded problems drawn from a number of application domains including lo-
gistics and combinatorial optimization in XcelLog. We illustrate the encoding of one
such problem in Section 4. There have been a large number of proposals to combine
logic with the spreadsheet metaphor; our approach differs in a fundamental way from
the others by supporting set-valued cells and meaningful recursive definitions. In Sec-
tion 5 we describe related work in more detail. Discussion appears in Section 6.

2 The Deductive Spreadsheet Language

The primary design criterion for the DSS language was simplicity: the users should
be able to construct and manipulate deductive spreadsheets with gestures, operators
and expressions that are easy to learn and intuitive to use. Abstraction is one of the
fundamental aspects of programming, and also one of the most difficult aspects to learn
and master. User-level programming in spreadsheets cleverly circumvent this problem
by letting the user program by examples (e.g. specifying an expression in a specific cell)
and then generalize the program (e.g. by filling cells with expression from another cell).
Thus users never deal directly with the notion of variables. We have followed the same
philosophy by designing an expression language without variables. The following is a
brief summary of the salient aspects of the language.

A deductive spreadsheet contains a grid of cells, each of which contains a set of ele-
ments. A spreadsheet may also refer to an external database table. Thus tables, spread-
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sheets, cells, and elements are the four classes of entities that will be defined and ma-
nipulated by our language. We classify the operators based on the entities they produce,
as follows:

1. Element operators: Elements can be atomic values (strings, integers, etc.) or formed
using tuple construction, tuple projection, arithmetic, aggregation (such as SUM,
MIN, MAX, etc.) and conditional operators. The tuple construction and projection
operations offer a way to create and access data structures.

2. Cell operators: Cell expressions evaluate to sets of elements. The contents of a
cell may be specified by explicitly listing a set of elements, and/or by expressions
constructed using cell reference, selection, difference and lifted operators that lift
tuple construction, tuple projection, aggregation and conditionals to sets.

3. Sheet operators to construct a sheet from other sheets or from database tables.
4. Abstraction operators: Copy and paste gestures, extended from those present in

traditional spreadsheets, permit the user to first specify a computation on concrete
instances, then copy the specification and “fill” other cells, which causes similar
specifications to be generated for the destination cells. In particular a user in DSS
can bulk copy a subset of cells and paste it into a target cell.

These operators are relationally complete. We will illustrate their use in the encoding
exercises later on (in Section 4). As is the case with traditional spreadsheets DSS users
also type in simple expressions either in the cells directly or in the function box fx.
More complex expressions get created by gestures such as copy, paste and fill.

Semantics: The semantics of a DSS expression is given by translation to Datalog pro-
grams, i.e., Prolog programs without function symbols [15]. A Prolog program consists
of rules of the form head :- body where head is a literal and body is a conjunct of lit-
erals. The head is true whenever the body is true. A head with an empty body is a fact
that is unconditionally true.

A set of spreadsheets defines a 4-ary relation:sheet(Name,Row,Column,Contents),
where sheet(Sht, Ro, Co, Ent) is true iff Ent is in the cell at the intersection of the row
Ro and column Co in sheet Sht. For example, the upper left cell in the DSS table named
say ’discount’ in Figure 1, is defined by the Prolog rule:

sheet(discount,’PUB’,discount,X) :-
sheet(discount,’PUB’,preferred,X),
sheet(discount,’PUB’,student,X).

The meaning of the spreadsheet is the least fixed point of the Datalog program de-
fined in this way. The language does include negation (in set difference and in the
aggregation operators), and we require that all uses of negation be stratified.

3 The XcelLog DSS System

A deductive engine becomes a core computational infrastructure component for imple-
menting a DSS system that is predicated on translating DSS expressions into Datalog.
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A key requirement for such an engine is that it completely and efficiently evaluate Dat-
alog programs. The XSB Tabled Logic Programming system is well suited for this
purpose [21]. It is a high-performance deductive engine that uses tabling to implement
a more complete version of resolution-based query answering. In contrast a standard
Prolog system would loop infinitely when given cyclic definitions.

We implemented XcelLog, the prototype DSS system, with an Excel front end and
XSB with its tabling machinery as the backend deductive engine to correctly and finitely
compute the DSS semantics. Below we provide an overview of the XcelLog system.
It was engineered as an Excel “add-in”, i.e. the implementation of deductive spread-
sheets was encapsulated within the Excel environment. This way XcelLog users would
continue getting the benefits of traditional Excel along with the added power of
deduction.

The architectural schematic of our XcelLog prototype for evaluating DSS expres-
sions is shown in Figure 2. Notice that Excel and the XSB Tabled LP system are the
two main components making up the XcelLog Deductive Spreadsheet System. In this
architecture users see only the Excel front end. They interact with the system via Excel’s
familiar interface.

Cells in XcelLog are of two types: traditional Excel cells and DSS (deductive spread-
sheet) cells. Deduction expressions are specified only within DSS cells. All DSS expres-
sions are enclosed within “[ ]”. E.g. the DSS expression, using functional notation for a
cell reference, corresponding to the (intensional) Rule 2 is: [preferred ORG] while the
(extensional) set of values computed by this expression in cell at row PUB and column
preferred is the DSS expression: [Amy,Joe]. DSS cell contents of the form [...] are au-
tomatically translated for Excel as =DSS("..."). So a DSS expression in Excel’s func-
tion box fx is enclosed within “=DSS( )”. These correspond to the intensional view
of rules associated with DSS cells. The cells themselves display materialized views of
the effect of the rules, as in Excel. Note the flexibility afforded by this system combin-
ing traditional Excel-style computing (embodied within Excel cells) intermixed with
deduction specified in DSS cells.

Fig. 2. The XcelLog DSS System
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Evaluation of a DSS program in XcelLog requires bi-directional communication be-
tween Excel and XSB. This is facilitated via the XLL-Add-in component. The XLL-
Add-in component is set up to recognize certain events such as when a cell’s con-
tent is changed, when DSS expressions are entered into a cell, etc. Whenever such an
event occurs, control is passed to XSB via this component, using sheet changed, paste,
=DSS operations in Figure 2 (among others). XSB does the needed processing, per-
haps using call-back functions that Excel provides (e.g. getFormulaAt, setFormulaAt,
getValueAt operations in the figure), and then returns control back to Excel. In the ba-
sic operation of materializing a DSS cell, XSB parses the cell expression, translates
it to a Prolog goal, and then simply uses call/1 to invoke the XSB query evalua-
tor to evaluate the goal and produce the extensional values. These are the materialized
sets that get displayed in the cells. For example the materialized set corresponding to
Rule 1 in Figure 1 (row PUB) and column member) that is computed by XcelLog is
{Amy}. Note that in our XcelLog implementation we use the functional notation for
cell references so as to be consistent with Excel. So for example “PUB.preferred”
in functional notation is “preferred PUB”. More details of the implementation now
follows.

3.1 DSS Prototype Implementation in XSB

The DSS prototype is implemented as an addin to Microsoft Excel. The main function-
ality is provided through 1) a set XSB predicates that are invoked by Excel, and 2) a set
of functions that XSB invokes to exchange information with Excel.

The major XSB predicates invoked by Excel are sheet changed and dss.
sheet changed is called when the formula value of a cell (or set of cells) in the Excel
spreadsheet is changed. dss is called by Excel to evaluate the user-registered function
=DSS. sheet changed performs two functions: it allows a user to enter a DSS expres-
sion in square brackets instead of requiring it to be entered in an =DSS("...") context,
and it notifies Excel to re-evaluate those cells whose values might have changed as a
result of the change to this cell. So if the entered value is enclosed in square brackets,
Excel is called to replace the cell formula value by a call to the user function =DSS,
passing the bracketed string. If the formula value is changed, its value is computed
incrementally by XSB using the technique described in [22]. The incremental evalua-
tion procedure maintains dependency information between the cell values. When a cell
value is changed, only those cells which depend on the changed value are recomputed.

The other main entry point to the XSB code is through the registered user function
=DSS. When =DSS(“dss expression”) is the formula value of a cell whose (extensional)
value Excel needs, it calls XSB passing the string argument and XSB returns the value.
All the main work of DSS is done in this XSB predicate, dss. The string represent-
ing the DSS expression is parsed and translated into a pair consisting of a goal and a
variable. The goal is called and all instantiations of the variable are accumulated, trans-
lated to a display string form, and that string is returned to Excel. During the evaluation
of such a goal, access may be required to the values of other cells in the spreadsheet.
This is managed by the XSB predicate getXSBValueAt. getXSBValueAt calls Excel
to get the formula value of the desired cell, translates it to a goal and variable, calls
the goal and returns the values of the variable. A key point is that getXSBValueAt is
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tabled. This allows XSB’s tabling mechanism to minimize communication with Excel
and to properly handle recursive spreadsheets, i.e. those with cyclic dependencies.

XSB’s tabling mechanism transparently handles recursive definitions. The real data
dependencies had to be hidden from Excel, since Excel refuses to allow any form of
cyclic dependency. From Excel’s point of view, the DSS expression passed as a string
argument to the =DSS function is opaque.

4 Encoding Exercises in XcelLog

We have encoded a number of problems, drawn from varied areas such as logistics,
combinatorial optimization and network security, in XcelLog. Here we illustrate two
such problems to demonstrate its deductive power and versatility. The first example
deals with directed graphs, and determines, for each node in the graph, the set of all
nodes reachable from it. This example shows the need for recursive definitions, and
the naturalness of the least fixed point semantics. It also illustrates the example-based
mechanism for defining new relations. The second example is a more complex one, of
finding optimal purchase strategy in a supply chain. This example illustrates features
of XcelLog that were described but not illustrated before: (a) the use of tuple values
in cells, (b) aggregation operations over cell values, and (c) abstraction. Moreover, this
example also shows the power of XcelLog to encode complex problems of this nature
with few relatively simple gestures.

(1) The reachability problem in graphs: The problem here is to compute the set of
reachable nodes from every node in the graph in Figure 3(a). This is the canonical
transitive closure example that is used for illustrating deduction through recursive rules.

Figure 3(b) depicts a fragment of the encoding in XcelLog. The rows represent the
4 nodes in the graph. The edge column for a row contains the set of nodes directly
reachable from that node through some edge. The fx box associated with a cell show
the DSS definitions of the cell contents and the cell itself shows its computed contents
of these definitions. In Figure 3(b), the DSS expression =DSS(“a,d”) in the fx box is
associated with the highlighted cell in row b and column edge. This expression indicates
that nodes a and d are targets of edges from node b. The fx box in Figure 3(c) is the
DSS expression associated with the reach cell in row b. The =DSS(“edge b, edge reach
b”) cell expression indicates that there are two ways to get an entry in this highlighted
cell: “edge b” indicates that every entry in the cell at column edge and row b must be in
this cell; “edge reach b” indicates that we take each entry in the cell at column reach and
row b (a node reachable from b), and using that value as the row indicator in column
edge, we add the entries in that cell to the current cell (i.e. those reachable by taking
one more edge). This is an example of a cyclic specification: the reach column of row
b contains a cell expression that refers to itself.

The user sees the effect of the rules (which are the materialized sets) rather than the
rule itself. In addition when the rules or base facts change the user can immediately see
their effect. For example, if we remove the edge from b to a in Figure 3(a) and add the
edge from b to c instead, then XcelLog recomputes the new set of reachable nodes (see
Figure 3(d)). Thus it provides immediate feedback to “what-if” scenarios.



Deductive Spreadsheets Using Tabled Logic Programming 399

 a 

c d 

b 

3(a) 3(b)

3(c) 3(d)

Fig. 3. Reachability problem

It is noteworthy pointing out how the user creates this DSS. First he types in all the
entries into the edge column. These are the direct edges between nodes (see the edge
column in Figure 3(b)). Next he creates the reach expression for a cell say in row b and
column reach (see the fx box in Figure 3(c)). Then he copies this expression (using DSS
copy) and fills (using the DSS paste operation) all the cells in the reach column with the
copied expression. The system automatically inserts the appropriate row number into
the expression for the corresponding reach cell in that row. This is similar in terms of
user experience with traditional spreadsheets. However the idea of allowing set valued
cell expressions and cyclic references as illustrated in this example, has enabled the user
to perform more complex computations.

The DSS expression in the reach column in Figure 3(c) gets translated to the follow-
ing left-recursive Datalog rules:

graph(b,’reach’,X) :- graph(b,’edge’,X).
graph(b,’reach’,X) :- graph(b,’reach’,Y), graph(Y,’edge’,X).

The XSB system evaluates the recursive rules and passes the computed result (in this
case, the set {a, b, d} of reachable nodes) to Excel for displaying at that cell. Note
that traditional Prolog systems will go into an infinite loop on this example. XSB’s
tabling machinery ensures termination in the presence of such recursive definitions.

(2) A complex logistics example: the supply chain problem. The supply chain of a
manufacturer is a complex network of suppliers, retailers, distributors, transporters and
storage facilities that participate in the sale, delivery and production of finished goods.
Analysis of the behavior of the supply chain provides important information to the
manufacturer for contingency planning, resource optimization, etc. Such an analysis
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(a) base costs

(b) computing acquisition costs

Fig. 4. Supply chain problem

can be facilitated by specifying the rules governing the supply chain parameters and
relationships in DSS as illustrated below. A switch assembly consists of two major
components: a limit switch and an actuator subassembly; the actuator in turn is made
up of a sensor and a transmitter. Each part can either be bought off the shelf or, if
a composite part, can be acquired by assembling it from its components. Figure 4(a)
shows the DSSs that contain data about (a) the cost of buying a part off the shelf from
different vendors (the “supply costs” sheet); (b) the cost of assembling a part (given its
components) at different manufacturing sites (“assembly costs” sheet); (c) the cost of
shipping a part from one site to another (“ship” sheet); and the composition of a part
(“subpart of” sheet).

The purchase policy is to acquire a part from the cheapest source: either off-the-
shelf, or by custom assembly. In order to compute the least cost, we create a new sheet
(the “acquire” sheet shown in Figure 4(b)) with the different vendors and assemblers
as rows, and the parts as columns. The value of a cell dest.part in this sheet represents,
for a given part and the destination where it should be shipped to, the best price and
a supplier that provides the given part at that price. That is, it is a pair (v, p) where p
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is the price that dest has to pay to acquire the part part from vendor v. We now describe
how the values in this sheet are calculated.

Consider the purchase of the switch assembly from acme: this part can either be (i)
bought from dunrite and shipped to acme; or (ii) its parts can be bought, shipped to
one of the assemblers (precision or allied), and the final assembly shipped to acme.
In order to encode this complex decision process, we create an intermediate sheet
“ acq acmeswitch” to represent the different ways of getting the switch assembly
to acme. The basic idea behind an intermediate sheet is to specify, step by step, a com-
plex expression that defines a single selected cell’s value. In the above example, we use
the sheet “ acq acmeswitch” to define the cell acme.switch assm in the acquire sheet.

The rows of “ acq acmeswitch” represent all the possible sources and the columns
correspond to different kinds of costs. The cells in row gyro in this sheet represent the
following. The cell at column buy represents the cost of purchasing the switch assembly
off the shelf from gyro. The value of this cell is the sum of the price at which gyro sells
switch assemblies (i.e. the value at gyro.switch assm cell in the “supply costs” sheet)
and the cost to ship from gyro to acme (i.e. the value at gyro.acme in the “ship” sheet).
Note in this case the cell is empty since gyro does not sell switch assemblies. For every
row R, the value of R.buy is given by the expression supply costs!R.switch assm +
ship!R.acme. This “rule” is specified in XcelLog by first specifying an instance for
gyro, and then filling all the cells in the buy column with the expression in gyro.buy.

The cell at column get comp represents the cost of acquiring and sending the compo-
nents of the switch assembly to Gyro. This cell has a more complex definition. We first
need to find all the components of the switch assembly. That is given by the value in the
cell switch assm.part of in the “subpart of” sheet. For each such part P, the best way to
get that part to gyro is in the cell gyro.P in the “acquire” sheet. Hence the expression:
“acquire!gyro.(subpart of!switch assm.part of)” represents a set of values: each ele-
ment in the set represents the best way to get some subpart of switch assembly to gyro..
Summing over all elements of this set therefore gives the best way to get all the com-
ponents of the switch assembly. This is done by applying an aggregation operation to
reduce a set to a single element (in this case, sum).

The cell at build adds the cost of assembly at gyro to the cost of acquiring the compo-
nents (it is empty in this row since gyro does not assemble switch assemblies). Finally,
the cell at total cost represents the sum of all costs of costs for acme to get the switch
assembly from gyro.

Observe that the values in column total cost in “ acq acmeswitch” sheet repre-
sent the best ways of obtaining a switch assembly to Acme from different vendors. The
minimum over all these values is therefore the best way for Acme to acquire a switch
assembly. This is specified in XcelLog by selecting the column values and “filling” the
cell acme.swiTch assm in the “acquire” sheet (see the arrow denoting this operation in
Figure 4(b)). Note that in traditional spreadsheets, the destination of a “fill” operation
must be at least as large as the source. In XcelLog, an entire column (more generally,
any rectangular area in a sheet) can be used to fill a single cell. The meaning of this op-
eration is to set the destination cell’s value to the union of all the contents of the source
cells. In this example, we modify this default meaning by selecting an aggregation op-
eration — minimum — to apply to this union.
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Consider a cell r.c filled with values from a column, say cells r1.c
′, r2.c

′, . . . , r2.c
′.

Instead of generating [r1.c
′, r2.c

′, . . . , rn.c′] as the expression for r.c, we generate a
more abstract expression [exists(R, R.c′)] where R is a variable that ranges over rows,
i.e. the set {r1, r2, . . . , rn}. This abstraction is useful in two contexts. First of all, when
the rows of a sheet change (e.g. when a new row is added), the abstraction remains
unchanged but still retains the original intention of the user: that the cell shall contain
all values in column c′. Note that without the abstraction, the user will have to change
the expression of r.c to add the new row. Secondly, the abstraction permits us to have
non-materialized sheets. For instance, the sheet “ acq acmeswitch” is used to com-
pute the values of acme.switch assm in the “acquire” sheet, but there is no such sheet
corresponding to the other cells of the “acquire” sheet. Using abstractions with inlining
(where a cell reference r.c is replaced by the cell expression at r.c ) we can compute
the values at the other cells of the “acquire” sheet without explicitly creating the corre-
sponding intermediate sheets.

Observe from the above examples that the spreadsheet metaphor was used to create
the rules without the user having to specify any expression with variables. The tradi-
tional copy and fill gestures are used to abstract “rules” from one instance and to apply
them to other instances. In this example, the only cells whose intensions were entered
explicitly and not by filling (other than the four base tables) were the four cells in the
gyro row of the acq acmeswitch table. The abstractions may introduce variables into
DSS expressions but the user never needs to deal with them directly. Complex rule sys-
tems can be constructed with relatively simple interactions. We have thus introduced
deduction into spreadsheets without compromising on its basic simplicity and ease-of-
use from the end user perspective.

A noteworthy feature is that cell references can be recursive (unlike traditional
spreadsheets); this enables the user to specify dynamic programming solutions. In this
example, the cheapest cost of a part is defined in terms of the cheapest costs of its sub-
parts. Indeed shortest path in a cyclic graph (with nonnegative edge weights) can be
specified easily in a DSS. The specification is example based and yet at a high level:
specifying only how the different cell values are related. Moreover, numeric and sym-
bolic computations are seamlessly combined. Finally, the user sees the effect of the
specifications directly and immediately; a change in a component’s price, for example,
would immediately propagate to all the dependent cells (as in a traditional spreadsheet.)
This permits the user to experiment with what-if scenarios: e.g. the impact of a supplier
ceasing to sell a particular part.

5 Related Work

Spreadsheets based on Logic: There have been a great many proposals for
combining the spreadsheet metaphor with logic. A recent survey is available at
http://www.ainewsletter.com/newsletters/aix 0505.htm. We will de-
scribe in more detail recent approaches that are most similar to ours.

Knowledge-sheet [5] and PrediCalc [10] extend traditional spreadsheets by allow-
ing the user to specify constraints on the values of cells. Cells are still required
to contain unique values, but those values may be partially (or totally) determined
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by constraints. In Knowledgesheet finite-domain constraints are associated with cells
and specify combinatorial problems. On user request, the system converts these con-
straints into a CLP(FD) program, executes it, and returns the solution as cell values.
In PrediCalc the constraint-solving engine is more integrated into spreadsheet interac-
tion, and issues addressed include how to handle over-specified (or inconsistent) val-
ues and under-specified values. PrediCalc is similar to our model in that rows and
columns of spreadsheets are given names and individual cells are referenced by pro-
viding the sheet name, the row name, and the column name. Our approach differs from
these in a fundamental way in that these approaches maintain the functional aspect
of traditional spreadsheets, in that each cell contains a unique value. We allow cells
to contain sets of values, and cell references specify subset constraints. This means
that recursively defined cells don’t make sense in their functional framework but are
perfectly meaningful in our relational one. This is what really allows our spread-
sheets to support full deduction. These approaches add constraints to the functional
framework, which as they have shown can be very useful, and constraints can also
be added to our relational framework. Another interesting combination of rules and
spreadsheets is ARulesXL (http://www.arulesxl.com/). ARulesXL allows users
to define WHEN rules that specify cell contents using defined variables. The use of
logic is interesting, but it retains the functional aspects of traditional spreadsheets and
does not support recursive definitions. Deductive spreadsheets can be understood as
specifying subset relationships among sets. There have been several proposals for pro-
gramming languages that support such set specifications [8, 24]. Our DSS might be
viewed as a visual interface to a language like that of [8], however the other language
is much more powerful than ours; we can define only Datalog programs, whereas
the other language is Turing complete. Our focus is less on the power of the under-
lying language and more on its presentation and usability in the tabular spreadsheet
form.

Visual Programming: There are a number of research as well as commercial systems
that call themselves “Visual Prolog” or “visual logic programming” systems. We can
distinguish these works into two broad categories. The first one describes technologies
and systems, mainly commercial ones, which provide an integrated programming envi-
ronment to develop and debug Prolog programs very much akin to Forte which provides
a development environment for Java programming. An example of such a system is in
http://www.visual-prolog.com. The second group of works focuses on graphi-
cal interfaces to create logic programs. Examples include [1], which provides graphical
symbols via which one can create Prolog terms, Prolog clauses and Prolog programs.
These kinds of work are more along the lines of visual programming languages. How-
ever unlike the vision espoused in DSS, users of such systems are required to be knowl-
edgeable of logic programming. Finally we point out a recent work that describes ex-
tensions to the Excel spreadsheet that integrate user-defined (non-recursive) functions
into the spreadsheet grid, rather than treating them as a “bolt-on” [9]. What they have
achieved is a way to specify user defined functions visually with a spreadsheet. But each
cell still possesses a unique value. We can lift these point-wise user-defined functions
to work over cells representing sets of values as in XcelLog.
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6 Discussion

The synergy between spreadsheets and rule-based computing has the potential to put
into the hands of end users (ranging from novices to power users) technology to cre-
ate and manage their own automated decision support applications with the same ease
with which they are currently able to create financial applications of varying complexity
with traditional spreadsheets. Our XcelLog system demonstrates that technology to cre-
ate rules-driven applications with the spreadsheet metaphor is feasible. Nevertheless our
experience with using XcelLog suggests that there is considerable scope for further re-
search and development. The most immediate one concerns generating and visualizing
explanations of the computational behavior of DSS expressions. This is useful not only
for debugging the application but also for analyzing “what if scenarios”. Our work on
generating explanations for deduction [4, 20] and Excel’s color-coded outlines denoting
cell dependencies offers a suitable starting point for this problem. Another interesting
and useful problem that has emerged from our XcelLog encoding exercises is to develop
a DSS methodology that will aid end users to conceptualize, and systematically develop
DSS encodings for their problems. On the computing infrastructure side efficiency can
be improved by using incremental algorithms for (re)evaluating DSS expressions when
cell content is changed. We have implemented and integrated incremental algorithms
for logic program evaluation [22] for this purpose. Progress on these fronts has the
potential to make DSS a practical and easy-to-use tool for rule-based programming.
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Abstract. We present a natural language question/answering system
to interface the University of Évora databases that uses clarification di-
alogs in order to clarify user questions. It was developed in an integrated
logic programming framework, based on constraint logic programming
using the GnuProlog(-cx) language [2,11] and the ISCO framework [1].
The use of this LP framework allows the integration of Prolog-like in-
ference mechanisms with classes and inheritance, constraint solving al-
gorithms and provides the connection with relational databases, such as
PostgreSQL. This system focus on the questions’ pragmatic analysis, to
handle ambiguity, and on an efficient dialogue mechanism, which is able
to place relevant questions to clarify the user intentions in a straightfor-
ward manner. Proper Nouns resolution and the pp-attachment problem
are also handled.

This paper briefly presents this innovative system focusing on its
ability to correctly determine the user intention through its dialogue
capability.

Keywords: Natural Language, Logic Programming, Information Sys-
tems, Dialog Management, Databases.

1 Overview

IIS-UE (Universidade de Évora Integrated Information System) gathers all kinds
of information, relevant for students (enrolled courses, grades, class summaries,
etc.), for teachers ( courses information, projects, students evaluation, personal
data, etc.) and staff ( data management, statistics, personal data, etc.). Several
applications were built around IIS-UE to “deliver” information to the school
community, but sometimes that’s not enough. To use these applications one
must know how they work. A student may know what information he wants but
he doesn’t know how to get it from the existent applications.
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Fig. 1. NL-Ue Architecture

To solve these problems a natural language querying application (NL-Ue) was
developed over IIS-UE 1. Its practical aim is to give to our school community
an easy way for retrieving stored information [3] [13].

The information is stored in Postgresql relational databases [10]. To access
this data, NL must map the user question to a database query language so that
the resulting pragmatic interpretations can be evaluated in the databases.

NL-Ue implementation is based on constraint logic programming using the
GnuProlog(-cx) language [11] and the ISCO framework [1].

The system architecture is simple and module-based. The system has five
distinct modules which are connected through well defined API’s [Fig. 1]. A
more detailed description of the system can be found in [18] [17].

In this paper we discuss how pragmatic interpretation is handled by NL-Ue,
but the focus will be on its dialog capabilities and how this system is able to
clarify the user intentions with effective and precise questions.

Next (section 2) some related work is presented to enhance this application
relevance on the dialogue and natural language development context.

In section 3 the pragmatic interpreter is described along with the strategy
that was used to generate the pragmatic evaluation rules (which control the flow
and the behaviour of the pragmatic interpreter).

Then (section 4) the dialogue mechanism is shown recurring to practical ex-
amples and finally some conclusions and future work are presented (section 6).

2 Related Work

Some systems can be found along the last years that touch the problem of
relational database querying and clarification dialog. Most of them, as the Precise
system, directly generate SQL queries to access relational databases.
1 The system is built for the Portuguese language only interpreting qa and wh-

questions.
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The Precise System by Etzioni, Kautz and Popescu [20] maps simple en-
glish natural language sentences to SQL with graph analysis techniques. Tokens
(manually defined - low portability) represent directly attributes of database
elements and relations between them. Precise uses a tokenizer to identify all
possible complete tokenizations of the question, converting them to SQL with
a simple syntactic parser. The system is limited to a restricted set of types of
questions. In turn, other systems as Androutsopoulos’ Masque/SQL uses an in-
termediate representation before generating the SQL. This approach is similar
to our own, although different in the followed methodology. Androutsopoulos’
Masque/SQL [5] [6] system is based on the previous Masque [4] implementation,
which in turn was based on Fernando Pereira’s CHAT-80 [22].

While Masque maps an english natural language question into Prolog to query
a declarative database, Masque/SQL extends it by interfacing directly with re-
lational databases. To do that, Masque/SQL needs some meta-data which has
to be reconfigured each time there is a change of working domain. To manage
this meta-data Masque/SQL has a domain editor where: (1) the domain entities
(represented on the databases) are described (2) the set of “expected words” to
appear in the questions and it’s logical meaning - Prolog predicates - are de-
scribes (3) the connection between each predicate and a database table, view
or select is explicitly represented. Once again, portability is one of the main
problems of this system.

Although benefiting from the RDBMS SQL optimization, Masque/SQL may
sometimes generate redundant SQL queries, decreasing it’s efficiency.

Other systems use external integration tools for accessing information repos-
itories. One of them is Katz’s START [16] which uses Omnibase [15], a system
for heterogeneous database access which uses natural language annotations to
describe the data and the kind of questions that can be answered. This system
uses the “object-property-value” data model and only works for direct questions
about object properties. These annotations are manually built which makes the
system’s portability difficult.

While the mentioned applications are simple question/answering systems
that do not identify wrong interpretations, NL-Ue intends to go a step further
adding a clarification dialog capability. Clarification dialogue theory was vastly
analyzed by several authors[12] [8] and some works can be found where clarifi-
cation is applied to open domain or more narrowed domain question answering
systems [21].

NL-Ue can be seen as a question/answering dialogue system, identifying er-
roneous interpretations by means of a clarification dialogue with the user.

3 Pragmatic Interpretation

Syntactic and semantic analysis of this system are generically treated by the
VISL parser [7] (syntax) and by an internally built semantic parser to gener-
ate DRS structures [14] through first-order logic predicates. At this stage, after
syntactic and semantic analysis, the resulting first-order logic predicate (LPO)
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representation (as seen in Fig. 2) will reach as an input for the pragmatic module.
Contextual information is added at this stage.

NL-Ue application context is not only the IIS-UE data but also its structure.
This information is added to the interpretation mechanism through a set of prag-
matic control rules. To generate these rules, NL-Ue uses ISCO, a logical tool and
development framework that enables relational database schema representation
and full access to the stored data. This generation is automatic and must be
done previously so that the rules are available at interpretation time (runtime).

3.1 Database Representation/Access Framework

ISCO [1] is a logic-based development framework with its roots in the GnuProlog
language [11] and is being developed in Universidade de Évora Computer Engi-
neering department. Its use in NL-Ue’s pragmatic interpretation adds the system
the ability to internally represent and access the IIS-UE relational databases in
a logic-based environment.

Figs. 3 and 4 show a fragment of one of IIS-UE’s relational databases in
entity/relation and SQL representation. It presents the action of “teaching” (lec-
ciona) which relates a teacher (individuo), a course (disciplina) and a curriculum
(curso).

The process of pragmatic interpretation needs to know these and other rela-
tions structures so that it can “talk” about them. It must also be able to query
them to access the stored data and answer to the user question.

The equivalent ISCO representation (Fig. 5) maps each relation/table to a
class that can then be accessed through ISCO predicates. Although NL-Ue only
uses “select” predicates, ISCO also supports “inserts”, “updates” and “deletes” [1].

This declarative description of the relational database schemas is automati-
cally generated. Based on this class description, ISCO (also) automatically gen-
erates predicates to access the stored data. These issues increases decisively the
portability level of NL-Ue.
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Fig. 3. ER fragment representation

create table "person" (
"id" integer default (nextval (’is__entity_id’))

primary key,
"name" text,
"gender" integer references "gender" ("id"));

create table "teaches" (
"course" integer references "course" ("id"),
"year" integer,
"teacher" integer references "person" ("id"),
"curriculum" integer references "curriculum" ("id"));

create table "course" (
"id" integer default (nextval (’is__course_id’))

primary key,
"name" text,
"code" text);

create table "curriculm" (
"id" integer default (nextval (’is__curriculum_id’))

primary key,
"code" integer unique,
"name" text,);

Fig. 4. SQL fragment representation

The goal of the pragmatic interpreter is to map the LPO predicates to these
ISCO goals so that IIS-UE databases can be directly queried. For example:

person(PERSON, PERSON_NAME, _),
teaches(COURSE, 2005, PERSON, _),
course(333, COURSE_NAME, _).

collects all persons (teachers) that teach the course with id 333 in the year of
2005.

NL-Ue also benefits the advantages of the contextual branch of GnuProlog:
GnuProlog-cx. This is the context-based variant of the well known GnuPro-
log language which besides all the base features, also enables contextual goal
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class person.
id: serial. key.
name: text.
gender: gender.id.

class teaches.
course: course.id. index.
year: int. index.
teacher: person.id. index.
course: course.id. index.

class course.
id: serial. key.
name: text.
code: text.

class curriculum.
id: serial. key.
code: int. unique.
name: text.

Fig. 5. ISCO fragment representation

for each CLASS
build evaluation unit with:
entity access rules,
proper nouns rules,
number rules,
relation rules
external domain rules

end build
end for

Fig. 6. Control rules generation algorithm

evaluation [2]. While GnuProlog has a flat predicate namespace, it’s contextual
variant overrides this problem by defining evaluation units. Each unit has it’s
own namespace which makes possible to have the same goal definition in distinct
units. Contextual goals can be called from other units by means of an explicit
contextual call.

This feature is essential for controlling the pragmatic interpretation process be-
cause there are numerous interpretation possibilities to consider. Contextual eval-
uation will restrict these possibilities making the process lighter and more efficient.

3.2 Control Rules

Pragmatic interpretation is guided by a set of control rules. These rules are
based on the ISCO description of the IIS-UE repositories, adding contextual
information to the user question analysis. ISCO classes, as we’ve already seen,
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name(A, PATTERN, []) :-
check_class_domain(person) :> item(A),
check_domain(text, PATTERN) :> item(A),
add_to_context([person(A, _, _)]).

collects in A all teachers which have the string PATTERN in its name. This
rule is applied in sentences like: “the teacher John...”

Fig. 7. Control rule example for proper nouns: class person

represent entities and/or relations. Each one of them will have distinct kinds of
control rules.

Each rule abducts a set of ISCO goals and incrementally builds the evalua-
tion context of the remaining pragmatic interpretation. The final set of abducted
ISCO goals will then be evaluated so that a solution can be found for the user
sentence/question. One evaluation unit is generated for each class (IIS-UE rela-
tion). Within these units five distinct types of rules can be found:

– entity access rules - one rule is generated so that the stored data can be
accessed by NL-Ue for classes that represent entities 2

– proper noun rules - validate the existence of entities with a specific name in
a particular context of evaluation [Fig. 7]

– number rules - identify entities that have a property with a specific number
– relation rules - These rules establish wider connections between referents.

Typically they are the most numerous and they are the main responsible
for the complexity of pragmatic interpretation. They are also responsible for
fixing the pp-attachment problem [19] [9]. There are four kinds of such rules:

• Self relation rules - generated only for entities, they intend to relate two
referents that refer the same type of entity.
• Entity relation rules - For each entity (only), these rules associate its pri-

mary key with each one of its domain restricted arguments (foreign keys).
• Argument relation rules - Generates a rule for each pair of domain re-

stricted arguments, considering their relation as a possible interpretation.
• External relation rules - Establish wider relations not directly within a

class but mentioning other classes that refer the first one as foreign key.

– External domain rules - For each argument of class C1 that refers a class C2 as
foreign key, a set of rules for C1 interpretation is added to its evaluation unit.

These rules definition is generic (for any application context), not only for the
IIS-UE domain. Evaluation follows the pragmatic interpretation. After deter-
mining the ISCO representation(s) of the user question, they are evaluated by
directly querying IIS-UE’s databases. This evaluation will restrain the sentence
referents to the possible instantiations.
2 A class represents an entity if it has a simple primary key.
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4 Clarification Mechanism

The sentence pragmatic interpretation may lead to multiple results, reflecting
the sentence ambiguity and/or the database structure ambiguity. In this case the
system needs to clarify the user intentions by means of a (clarification) dialog.

To show NL-Ue’s usage and focus on it’s dialogue/clarification mechanism,
let’s see an example question 3 [Fig. 8].

Que docentes leccionam a disciplina de Gestão?
(Which teachers lecture the Management course?)

Fig. 8. Example question

This sentence has one semantic interpretation and one pragmatic interpreta-
tion [Fig. 9] which associates all possible teachers of some management course
with all possible management courses (that exist within IIS-UE) 4.

Semantics:

teacher(A), teaches(A, B), course(B), rel(B, C),
name(’Management’,C)

Pragmatic instantiation:

A in [47105..47787] - male/female - plural
B in [188:194:247:259:346:352:486:550:558:835:1053:1108:1210:1270:

1287:1293:1320:1355:1412:1414:1423..1424:1466:1487:1657:1659:
1688..1689:1752:1781:1849:1868:1908:1999:2010:2069:2151:2191:
2249..2252:2441:2479:2525:2534:2588:2598:2698:2754:3107:3134:
3152:3161:3189:3257:3331:3393:3502:3584:3593:3696:3865:3886:
3918:3928:4013] - female - singular

C = B

Fig. 9. Semantic/Pragmatic interpretation results

Referent A is instantiated with all possible teachers (that exist in IIS-UE)
because no other restriction was made to it, while referent B is instantiated with
all courses that contain the name Management.

The evaluation module will define a set of possible answers. If no ambiguity is
found the dialogue manager will directly answer the user with the (only) answer

3 The system was developed for the portuguese language but questions will be trans-
lated to english for easier understanding.

4 This sentence has more pragmatic interpretations , some of them a little bit awk-
ward (at least within the portuguese language). To simplify and because pragmatic
disambiguation is not the aim of this paper, we will consider just this one.
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while not a terminal condition:
collects properties for each referent
proceeds with heuristic evaluation
chooses the best property
questions the user / receives the answer
restrains solutions to the question result

end while

Fig. 10. Dialogue Manager: clarification algorithm

name(’Control Management’), name(’Computer Management’),
name(’Personal Management’), belongs_to(’Sociology department’),
belongs_to(’Economics department’), lectured_hours(3.5),
lectured_to(Computer Engineering curriculum’), etc.

Fig. 11. Properties Set

found. But if more than one possible answer is found, then the dialogue manager
enters in a clarification process [Fig. 10].

A terminal condition will be reached if only one answer is achieved.
After the evaluation process, possible solutions will be grouped by referent

(in our example we have three, referring to teachers, Management and course).
This grouping is done to collect the properties of each referent. The best property
will be chosen to make a new question.

In wh-questions (which is the case) the referent which is target of the user
question (in this case, referent A) is excluded from the set of referents to analyze.
It makes no sense to make questions referring to what the user wants to know.
For each (relevant) referent, different kinds of properties will be collected:

– Class properties: identifies as a referent property its type/class within the
scope of IIS-UE - a referent may be a course, a teacher, a student, etc.

– Direct properties: identifies as referent properties direct attributes of its class
- if a referent refers to a student, it may have properties as its name, its
student number, its gender, etc.

– Indirect properties: identifies as referent properties, attributes of classes that
refer the referent class as a foreign key - if a teacher lectures a specific course,
then the act of teaching it may be considered as a property of the teacher
referent.

After collecting the referent properties [Fig. 11] they will be evaluated with
the aim to find the “better one”. Heuristic evaluation is used to weight the quality
of each property found. The evaluation of a property is a linear sum of three
distinct criteria [Fig. 12].
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∀ properties p: weight(p) = w1(p) + w2(p) + w3(p)
where

– w1(p) - evaluates the ability that the property has to split equally the
referents set based on the total number of referents (Rt) and the number
of those which have the property (Rp): w1(p) = 1 - Rp/Rt.

– w2(p) - evaluates the semantic potential of the property preferring textual
(T(p)) to numeric ones: If T(p) then w2(p) = 0.5 else w2(p) = 0.1.

– w3(p) - evaluates the probability that the user knows this kind of property,
preferring more generic properties. It assumes the user has more knowledge
of conceptual properties (C(p)), than specific ones: If C(p) then w3(p)
= 0.5 else w3(p) = 0.1.

Fig. 12. Properties weight heuristics

weight(belongs_to(’Management department’), 0.987),
weight(lectured_hours(2), 0.987), weight(belongs_to(’Economics
department’), 0.696), weight(belongs_to(Mathematics department’),
0.696), etc.

Fig. 13. Properties evaluation

After the properties evaluation, each one of them is associated with a specific
weight that reflects its potential to generate a relevant question [Fig. 13].5

For example the properties belongs_to(’Management department’) and
belongs_to(’Mathematics department’) are semantically equal (weight 2)
and refer to the same concept - department (weight 3) but the first one as a
greater ability to split the referents set which gives it a larger weight. While
the property belongs_to(’Management department’) is semantically richer
(weight 2), the property lectured_hours(2) has a greater ability to split the
referent sets, making both properties to have the same weight.

Having weighted the quality of the properties, they are grouped by type
(belongs_to, lectured_hours, name, lectured_to, etc.). Each group in-
herits the best weight of its members and the best group is chosen to build
the question (and the possible answers). Properties are grouped because the
clarification process consists of questions with alternative answers, being the
alternatives the elements of the chosen group. If the number of alternatives ex-
ceeds a previously determined limit, this property is ignored and the system
recursively gets the next one. In our example the chosen group is composed by
all the belongs_to properties [Fig. 15].

Besides specifying one of the possible alternatives, the user has only one other
possibility which is to say “?” meaning “I don’t know”. In this case the system
will recursively get the next “best property” and make a new question.
5 The heuristics shown and the relation between them (relative weights) were incre-

mentally built and based on a set of examples and their evaluation results.
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"Management course" belongs to:

1) Education department
2) Sociology department
3) Agricultural department
4) Management department

USER: 3

Fig. 14. Clarification #1

"Management course" is lectured:

1) 2 hours/week
2) 3 hours/week

USER: ?

"Management course" is lectured to:

1) Biophysics curriculum
2) Agriculture Engineering curriculum
3) Computer Engineering curriculum

USER: 2

Answer
Teacher: Francisco João Santos Silva
Course: Water resources management

Fig. 15. Clarification #2

If the user answers one of the alternatives (1-6) the system will restrain and
re-evaluate the possible solutions (according to the users answer) and the clari-
fication algorithm returns to its beginning. After re-evaluating the possible solu-
tions, the chosen property referred to the number of lectured hours. As the user
didn’t knew the answer, the system recurred to the next “best property” and
tried to clarify using the curriculums to which the course is lectured, leading to
a final solution according to the user additional information.

5 Evaluation

A dialogue/clarification system to query integrated databases in Natural Lan-
guage should be evaluated from different aspects:



Using a Logic Programming Framework 417

Table 1. Results

– Portuguese language coverage: The syntactic analysis is done using VISL [7]
which is one of the best portuguese full parsers for portuguese. The semantic
coverage is restraint by the databases vocabulary (tables, attributes names
and entity names) and a synonym dictionary that can be updated by the
users. The dialogue system is able to answer Yes/No and Wh questions.

– The pertinence of the user question pragmatic interpretation: This aspect
is reflected in the system clarification dialogues and answers. Our system
enables the inference of some relations that clearly natural language for-
bids due to the rules for pragmatic interpretation of pp-sentences. How-
ever, we can state that normally this does not constitutes a problem for our
users, since on the average they are able to obtain their answer in 3 dialogue
steps.

– The heuristic function quality for choosing the question to clarify user sen-
tence: The evaluation of this aspect must be done using the results of a
group test, which isn’t done yet. Probably the use of some other heuris-
tics may be more efficient. This is an aspect that must be analyzed in the
future.

– The efficiency of the system: How long does the system takes to answer a
question? Some results are shown in this section.

The dialog/clarification mechanism is not fully tested but this set of heuristic
functions lead the system in 70% of the questions to reach an answer after 3
questions/answers or less.

The results presented in table 1 refer to tests made with the IIS-UE main rela-
tional repository, which contains 159 tables with an average of 2281 rows/table.
The previously built control rules ascend to the number of 1400 which makes
an average of 8 rules for each class. Results are based on distinct sentences6
representative of possible questions to NL-Ue. No specific treatment is given to
questions asked multiple times with slight variations in its structure.7

6 Sentences in english may not present the same structure or complexity than in
portuguese.

7 Possible future development which would require the recording of the sentences anal-
ysis for future reference.
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Times shown (in seconds) refer to the time the system takes from the input of
the user to the answer (or to the first clarification question8). Further evaluation
must be done considering real tests because its conditioned to the clarification
process and to the users subjectivity.

Each sentence was tested with and without contextual evaluation. Its use -
with GnuProlog-cx - is relevant in the pragmatic interpretation module, mini-
mizing its complexity by reducing the search space. It leads to a gain of efficiency
in the order of 80% in more complex sentences and 50% in more simpler ones -
cpu time. Yes/no questions (second and third) have a lower cpu processing time
than wh. Clarification was needed in three of the sentences.

6 Conclusions and Future Work

Our system aims to be a natural language interpretation system that uses specific
tools for increasing efficiency and getting results in real time.

This paper shows how pragmatic interpretation of complex sentences can be
handled through a set of contextual control rules which guide the process of
interpretation, increasing it’s efficiency and without the loss of any results.

The use of the ISCO development framework gives NL-Ue a high level of
portability in accessing and querying different sets of databases.

The contextual evaluation strategy (available through the use of Gnuprolog-
cx) is applied in the control rule generation and usage, making the pragmatic
evaluation process practical and more efficient once the search space is smaller.

NL-Ue is a question/answering system capable of a clarification dialog when
needed. It is able to identify the users needs and to extract the desired informa-
tion from relational databases.

The use of a dedicated development framework and its ability to describe
and access distinct data sources in a homogeneous way increased the systems
portability rate.

Contextual evaluation gives pragmatic interpretation a more linear and simple
treatment decreasing its computational complexity, which can be decisive in
systems with large information repositories.

NL-Ue supports yes/no and wh-questions. Besides, it includes a clarification
mechanism in which the system dialogues with the user when the desired infor-
mation is ambiguous.

The clarification/dialogue module uses referent properties to find relevant
questions trying to reach an answer the faster it cans. Heuristic evaluation is
used to ensure the quality of the questions.
8 This includes: syntactic and semantic analysis; the pragmatic interpretation (each

sentence may have more than one interpretation) and finally the evaluation of each
sentence interpretation. During this the evaluation, the discourse referents that are
constraint variables restrained to a set of database entities, are validated by testing
the truth value of the sentence conditions, that are database relations. This way,
the process time of a query sentence will depend on the number of database entities
associated to each discourse referent. This fact explains why sentence 2 (which has
more pragmatic interpretations then sentence 3) takes less time then sentence 3.



Using a Logic Programming Framework 419

Having developed the core mechanism, the next steps will be to confirm the
correctness of the followed methodology. For that, the system must be evaluated
considering:

– its usefulness (for the users)
– the correctness of pragmatic rules generation
– the types of questions treated
– the heuristic function quality

The system will be available to the public through Universidade de Évora:
http://www.uevora.pt
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Debugging tools are a practical need for diagnosing the causes of erroneous com-
putations. Declarative programming paradigms involving complex operational
details, such as constraint solving and lazy evaluation, do not fit well to tradi-
tional debugging techniques relying on the inspection of low-level computation
traces. As a solution to this problem, declarative diagnosis uses Computation
Trees (shortly, CTs) in place of traces. CTs are built a posteriori to represent
the structure of a computation whose top level outcome is regarded as an error
symptom by the user. Each node in a CT represents the computation of some
observable result, depending on the results of its children nodes. Declarative
diagnosis explores a CT looking for a so-called buggy node which computes an
incorrect result from children whose results are correct; such a node must point
to an incorrect program fragment. The search for a buggy node can be imple-
mented with the help of an external oracle (usually the user with some semi-
automatic support) who has a reliable declarative knowledge of the expected
program semantics, the so-called intended interpretation.

The generic description of declarative diagnosis in the previous paragraph
follows [8]. Declarative diagnosis was first proposed in the field of logic pro-
gramming [10], and it has been successfully extended to other declarative pro-
gramming paradigms, including lazy functional programming [9], constraint logic
programming [11,4] and functional logic programming [2,3]. In contrast to recent
approaches to error diagnosis using abstract interpretation [5], declarative diag-
nosis often involves complex queries to the user. This problem has been tackled
by means of various techniques, such as user-given partial specifications of the
program’s semantics [3], safe inference of information from answers previously
given by the user [2], or CTs tailored to the needs of a particular debugging
problem over a particular computation domain [4]. Current research in declara-
tive diagnosis has still to face many challenges regarding both the foundations
and the development of practical tools.

The aim of this work is to present a declarative method for diagnosing wrong
computed answers in CFLP (D), a newly proposed generic programming scheme
which can be instantiated by any constraint domain D given as parameter, and
supports a powerful combination of functional and constraint logic programming
over D [6]. Borrowing ideas from CFLP (D) declarative semantics we obtain a
� The authors have been partially supported by the Spanish National Projects
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suitable notion of intended interpretation, as well as a convenient definition of
proof tree with a sound logical meaning to play the role of CTs. Our aim is
to achieve a natural combination of previous approaches that were separately
developed for the CLP (D) scheme [11] and for lazy functional logic languages
[2]. We have proved theoretical results showing that the proposed debugging
method is logically correct for any sound CFLP (D)-system [12] whose com-
puted answers are logical consequences of the program in the sense of CFLP (D)
semantics. We have implemented a debugging tool called DDT , developed as
an extension of previously existing but less powerful tools [1,3] and available
at http://toy.sourceforge.net. DDT implements the proposed diagnosis
method for CFLP (R)-programming in the T OY system [7] using the domain
R of arithmetic constraints over the real numbers. Moreover, DDT provides
some facilities for navigating proof trees and avoiding redundant queries to the
user. As future work, we plan to develop a formal framework for the declarative
diagnosis of missing answers in CFLP (D) and we plan several improvements
of DDT , such as enabling the diagnosis of missing answers, supporting finite
domain constraints, and providing new facilities for simplifying the presentation
of queries to the user.
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2 LIF, Parc scientifique et technologique de Luminy. 13288 Marseille, France

Abstract. We describe in this paper a general algorithm for solving
first-order constraints in the theory T of the evaluated trees which is
a combination of the theory of finite or infinite trees and the theory of
the rational numbers with addition, subtraction and a linear dense order
relation. It transforms a first-order formula ϕ, which can possibly contain
free variables, into a disjunction φ of solved formulas which is equivalent
in T , without new free variables and such that φ is either true or false or
a formula having at least one free variable and being equivalent neither
to true nor to false in T .

1 Introduction

The theory of finite or infinite trees plays a fundamental role in computer sci-
ence. There exists algorithms for eliminating quantifiers which can decide the
validity of propositions in these theories [7,3]. We have extended this theory by
giving a complete first-order axiomatization T of the evaluated trees [6] which
are combination of finite or infinite trees with construction operations and the
rational numbers with addition, subtraction and a linear dense order relation.
This theory reflects essentially to Prolog III and IV which have been modeled
using combination of trees, rational numbers, booleans and intervals [2,1]. In this
paper we describe a general algorithm for solving first-order constraints in T ,
i.e. in all models of T . Our aim is not only to decide the validity of the proposi-
tions, but to be able to express solutions of constraints in T , which can possibly
contain free variables, in a simple and explicit way.

2 Description of the Algorithm

The algorithm is not simply a combination of an algorithm over trees with one
over rational numbers, but a powerful mechanism which is able to solve any first-
order constraint containing typed/untyped variables and presents the solutions
on the free variables in a clear and explicit way. One of the major difficulty
resides in the fact that the theory of trees does not accept full elimination of
quantifiers and the function symbols + and − of T have two different behaviors
whether they are applied on trees or on rational numbers. The main points of
the algorithm are (full description of the algorithm can be found in [5]):
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– We define basic formulas, which are conjunctions of formulas of the forms
true, false, num x, tree x, x = y, x = fy1...yn, Σn

i=1aixi = a01, Σn
i=1aixi <

a01, with xi, yj variables and ai ∈ Z and give a mechanism to derive typing
constraints in basic formulas.

– We define blocks, which are basic formulas where all the variables are typed
and where there is no type conflict and define solved blocks.

– We give the definition of working formulas, which are formulas written by
using only existentially quantified blocks and their negation. To be able to
control the rewriting rules, which are the heart of the algorithm, we give
to each negation symbol ¬ a number, which will present properties of the
corresponding working formula. Using these number, we define initial, final
working formulas, and solving formulas.

– We give a set of 28 rewriting rules, which transform an initial working for-
mula into a conjunction of final working formulas, which can be directly
transformed into a disjunction of solving formulas, which is either true or
false or a formula ϕ having at least one free variable such that neither T |= ϕ
nor T |= ¬ϕ. These rules make top-down local solvings and propagations and
bottom-up quantifier eliminations and distributions. We show that these
rules are correct and terminating.

3 Conclusion

The non-elementarity of the decision in the theory of trees is known [8], i.e the
complexity of the decision cannot be bounded by a tower of powers of 2’s with a
fixed height. Thus our algorithm must not escape this kind of complexity in the
worst case. We have programmed a similar algorithm on the theory of trees and
nevertheless could be able to solve formulas of winning positions in two partner
games, having 160 nested quantifiers [4]. Actually we try to extend our algorithm
to any combination of a theory T with the theory of finite or infinite trees.
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Traditional constraint logic programming (CLP) specifies an optimization prob-
lem by using a set of constraints and an objective function. In many applications,
optimal solutions may be difficult or impossible to obtain, and hence we are in-
terested in finding suboptimal solutions, by either relaxing the constraints or the
objective function. Hierarchical constraint logic programming (HCLP) [1] is such
a strategy by extending CLP to support required as well as relaxable constraints.
HCLP proposed preferences on constraints indicating the relative importance of
constraints and organizing them into a hierarchy. Essentially, the solutions of
interest must satisfy the required constraints but need not satisfy the relaxable
constraints. HCLP has proven to be useful tool in solving the over-constrained
applications.

In this paper, we focus on the relaxation problem in preference logic program-
ming (PLP) [2], where an optimization predicate is specified in a declarative way
by separating its general definition from its solution preferences. For instance,
a PLP for finding the shortest path may be defined as Example 1, where the
optimization predicate path/4 contains a general definition, clauses (1-3), and a
solution preference (4), which tells that the path with a shorter distance is pre-
ferred. The PLP paradigm is particularly suited to those optimization problems
requiring comparison and selection among alternative solutions. Relaxation on
optimization predicates in PLP can be achieved in two different ways, by either
relaxing the constraints or relaxing the objective function such as a query to an
optimization predicate.

Example 1 (Shortest path problem).
path(X,X,0,[]) ←. (1)

path(X,Y,D,[(X,Y)]) ← edge(X,Y,D). (2)

path(X,Y,D1+D2,[(X,Z)|P]) ← edge(X,Z,D1), path(Z,Y,D2,P). (3)

path(X,Y,D1,_) ≺ path(X,Y,D2,_) ← C2 < C1. (4)

First, relaxable constraints can be properly expressed in solution preferences.
Similar to the hierarchy constraints in HCLP, we classify the constraints into
required and relaxable ones, and relaxable constraints can be further organized
into a constraint hierarchy according to their strengths. Required constraints
for an optimization predicate can be specified directly in its general definition,
while the constraint hierarchy can be used to compare and order alternative
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solutions by determining how well they satisfy the relaxable constraints, which
is consistent to the purpose of solution preferences.

A constraint hierarchy H can be represented as a list H = [H1, H2, · · · , Hn],
where H1, H2, · · · , Hn are the constraints in a decreasing strength order. Given
a solution S and a constraint hierarchy H = [H1, H2, · · · , Hn], an evaluation
predicate val(S, H, V ) returns a binary number V = B1B2 · · ·Bn with at most
n bits, where the ith bit Bi (1 ≤ i ≤ n) is 0 if the solution S satisfies the
constraint Hi and 1 otherwise. Thus, we can introduce the following solution
preference pattern for the alternative solution S1 and S2 with respect to a given
constraint hierarchy H :

S1 ≺ S2 ← val(S1,H,V1), val(S2,H,V2), V2 < V1.

Secondly, a relaxable query can be expressed in the following form:

← RELAX p(t) WRT c(u).

where p is an optimization predicate and c is a normal predicate (not an opti-
mization predicate). If the optimal solutions to p(t) satisfy c(u), then those are
the intended solutions for the relaxable query. Otherwise, the intended solutions
are obtained by restricting the feasible solution space of p(t) using c(u) as an
additional constraint and choosing the best among these solutions.

Consider Example 1. What if we want to find the shortest path P from a to
b without going through e (expressed as notin(e,P))? We may not query the
system with “← path(a,b,C,P), notin(e,P)” because if all of the shortest
paths from a to b go through e, this query returns no solution. Instead, we
ought to use a relaxable query:

← RELAX path(a,b,C,P) WRT notin(e,P).

whose purpose is to treat notin(e,P) as an extra required constraint for the opti-
mization predicate path(a,b,C,P). We use an automatic transformation scheme
to properly embed the required constraint into the definition of optimization
predicate. Example 2 shows the transformed program, which has successfully
captured the semantics of the relaxation query.

Example 2 (Relaxed shortest path problem).
relaxed_path(a,b,C,P) ← path1(a,b,C,P), notin(e,P).

relaxed_path(X,Y,C,P) ← (X=/=a; Y=/=b), path1(X,Y,C,P).

relaxed_path(X,Y,C1,_) ≺ relaxed_path(X,Y,C2,_) ← C2 < C1.

path1(X,Y,C,[(X,Y)]) ← edge(X,Y,C).

path1(X,Y,C1+C2,[(X,Z)|P]) ← edge(X,Z,C1), relaxed_path(Z,Y,C2,P).
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Most of the recent proposals in tabling technology were designed as a means to
improve the performance of particular applications in key aspects of tabled eval-
uation like re-computation and scheduling. The discussion we address in this
work was also motivated by our recent attempt [1] of applying tabling to In-
ductive Logic Programming (ILP) [2]. ILP applications are very interesting for
tabling because they have huge search spaces and do a lot of re-computation.
Moreover, we found that they are an excellent case study to improve some prac-
tical limitations of current tabling execution models. In particular, we next focus
on the table space and how to efficiently handle incomplete and complete tables.

Tabling is about storing answers for subgoals so that they can be reused when
a repeated call appears. On the other hand, most ILP algorithms are interested
in example satisfiability, not in the answers: query evaluation stops as soon as
an answer is found. This is usually implemented by pruning at the Prolog level.
Unfortunately, pruning over tabled computations results in incomplete tables : we
may have found several answers but not the complete set. Thus, usually, when
a repeated call appears we cannot simply trust the answers from an incomplete
table because we may loose part of the computation. The simplest approach,
and the one that has been implemented in most tabling systems, is to throw
away incomplete tables, and restart the evaluation from scratch.

In this work, we propose a more aggressive approach where, by default, we
keep incomplete tables around. Whenever a call for an incomplete table appears,
we first consume the answers from the table. If the table is exhausted, then we
will restart the evaluation from the beginning. Later, if the subgoal is pruned
again, then the same process is repeated until eventually the subgoal is com-
pletely evaluated. The main goal of this proposal is to avoid re-computation
when the already stored answers are enough to evaluate a repeated call. This
idea is closer to the spirit of the just enough tabling (JET) proposal of Sagonas
and Stuckey [3]. Our approach works well in the ILP setting, where queries are
often very similar, and thus already stored answers are enough to evaluate a

� This work has been partially supported by Myddas (POSC/EIA/59154/2004) and
by funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundação para a Ciência e Tecnologia and Programa POSC. We are very thankful
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repeated call. When this is not the case, we may not benefit from having kept
an incomplete table, but we do not pay any cost either.

On the other hand, complete tables can also be a problem. When we use
tabling for applications that build very many queries or that store a huge number
of answers, we can build arbitrarily very many or very large tables, quickly
running out of memory space. In general, we will have no choice but to throw
away some of the tables (ideally, the least likely to be used next). A common
control implemented in most tabling systems is to have a set of tabling primitives
that the programmer can use to dynamically abolish some of the tables. However,
this can be hard to implement and difficult to decide what are the potentially
useless tables that should be deleted.

In order to allow useful deletion without compromising efficiency, we propose
a more suitable approach for large dynamic searches, a memory management
strategy based on a least recently used algorithm, that dynamically recovers space
from the least recently used tables when the system runs out of memory. With
our approach, the programmer can still force the deletion of particular tables,
but can also rely on the effectiveness of the memory management algorithm to
completely avoid the problem of deciding what potentially useless tables should
be deleted.

Both proposals have been implemented in the YapTab tabling system [4] with
minor changes to the original design. To the best of our knowledge, YapTab
is the first tabling system that implements support to handle incomplete and
complete tables as discussed above. Preliminaries results using the April ILP
system [5] showed very substantial performance gains and a substantial increase
of the size of the problems that can be solved by combining ILP with tabling.
Despite the fact that we used ILP as the motivation for this work, our proposals
are not restricted to ILP applications and can be generalised and applied to any
other applications.
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In previous work [1], we have presented a proposal to combine the power of
tabling with the Extended Andorra Model (EAM) in order to produce an execu-
tion model with advanced control strategies that guarantees termination, avoids
looping, reduces the search space, and is less sensitive to goal ordering.

To address the integration between tabling and the EAM, through the BEAM
system [2], we have identified several tasks [1]. In particular, to study how tabling
interacts with the BEAM, we proposed the ability to use an external module
for implementing tabling primitives that provide direct control over the search
strategy. This approach may compromise efficiency, if compared to systems that
implement tabling support at the low-level engine, but allows tabling to be easily
incorporated into any Prolog system. For our work, it will serve as the basis to
study and detect in advance the potential integration problems before extending
the BEAM system to support tabling running within the EAM environment.

In the past years several alternative mechanisms for tabling have been pro-
posed and implemented in systems like XSB, Yap, B-Prolog, ALS-Prolog and
Mercury. In these implementations, we can distinguish two main categories of
tabling mechanisms: delaying-based tabling mechanisms in the sense that the
computation state of suspended tabled subgoal calls has to be preserved, ei-
ther by freezing the whole stacks or by copying the execution stacks to separate
storage; and linear tabling mechanisms where a new call always extends the lat-
est one, therefore maintaining only a single SLD tree in the execution stacks.
Delaying-based mechanisms can be considered more complicated to implement
but obtain better results. The weakness of the linear mechanisms is the necessity
of re-computation for computing fix-points.

Implementing tabling through an external module restrict us to linear tabling
mechanisms, because external modules cannot directly interact with the execu-
tion stacks. Therefore, we have decided to design a module that implements the
two available mechanisms that, to the best of our knowledge, implement linear
tabling: the SLDT strategy of Zhou et al. [3]; and the DRA technique of Guo
and Gupta [4]. The key idea of the SLDT strategy is to let a tabled subgoal call
� This work has been partially supported by Myddas (POSC/EIA/59154/2004) and
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execute from the backtracking point of a former variant call if such a call exists.
When there are available answers in the table space, the variant call consumes
them; otherwise, it uses the predicate clauses to produce answers. Meanwhile, if
a call that is a variant of some former call occurs, it takes the remaining clauses
from the former call and tries to produce new answers by using them. The vari-
ant call is then repeatedly re-executed, until all the available answers and clauses
have been exhausted, that is, until a fix-point is reached. The DRA technique is
based on dynamic reordering of alternatives with variant calls. This technique
tables not only the answers to tabled subgoals, but also the alternatives leading
to variant calls, the looping alternatives. It then uses the looping alternatives to
repeatedly recompute them until a fix-point is reached.

Currently, we have already a preliminary implementation of both approaches
in our external module. The module uses the C language interface of the Yap Pro-
log system to implement external tabling primitives that provide direct control
over the search strategies for a transformed program. According to the tabling
mechanism to be used, a tabled logic program is first transformed to include
the tabling primitives through source level transformations and only then, the
resulting program is compiled. Our module is independent from the Yap Prolog’s
engine which makes it easily portable to other Prolog systems with a C language
interface. To implement the table space data structures we use tries as originally
implemented in the XSB Prolog system [5].

Preliminaries results, on a set of common benchmarks for tabled execution,
allows us to make a first and fair comparison between the SLDT and the DRA
mechanisms and, therefore, better understand the advantages and weaknesses of
each. Starting from these results, we are now working on a new proposal that
tries to combine the best features of both in order to produce a more robust and
efficient linear tabling mechanism to experiment with the BEAM.
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Motivation. Predicting statically the running time of programs has many ap-
plications ranging from task scheduling in parallel execution to proving the abil-
ity of a program to meet strict time constraints. A starting point in order to
attack this problem is to infer the computational complexity of such programs
(or fragments thereof). This is one of the reasons why the development of static
analysis techniques for inferring cost-related properties of programs (usually up-
per and/or lower bounds of actual costs) has received considerable attention.

In most cases such cost properties are expressed using platform-independent
metrics: e.g., the number of resolution steps that a procedure will execute as a
function of the size of its input data [2, 3]. Although platform-independent costs
have been shown to be useful in various applications [4, 6], in distributed execu-
tion and mobile/pervasive computation scenarios involving hosts with different
computational power, it becomes necessary to express costs in a way that can be
instantiated later to different architectures, to accurately reflect execution time.

Approach. With this objective in mind, we have developed a framework which
combines cost analysis with profiling techniques in order to infer functions which
yield bounds on platform-dependent execution times of procedures [7]. In this
framework, platform-independent cost functions, parameterized by a certain
number of constants, are inferred for each procedure in a given program. These
parameters aim at capturing the execution time of certain low-level operations on
each platform which is assumed to be independent from data size. Their selection
is, obviously, critical. For each execution platform, the value of such constants is
determined experimentally by running a set of synthetic benchmarks and mea-
suring their execution time with a profiling toolkit developed in-house. Once such
constants are determined, they are substituted into the parametric cost functions
to make it possible to predict, with a certain accuracy, actual execution times.
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Each selection of parameters for the cost functions determines a cost model.
We have implemented this approach in the CiaoPP system [5], and studied a
number of cost models in order to determine experimentally which one is more
precise. In doing this we have taken into account the trade-off between sim-
plicity of the cost model (which affects the efficiency of the cost analysis and
the complexity of the profiling) and the precision of their results. The results
achieved show that the combined framework predicts the execution times of pro-
grams with a reasonable degree of accuracy and paves the way for more accurate
analyses by including additional parameters. We believe this is an encouraging
result, since using a one-time profiling for estimating execution times of other,
unrelated programs is clearly appealing.

Further Applications. Deducing the expected execution time of programs
in a fully automatic way has applications besides the already mentioned, more
classical ones. For example, in a Proof-Carrying Code (PCC) framework, pro-
ducers can send a certificate which includes a platform-independent cost func-
tion. The consumer can then, using a calibrating program, compute the values
for the constants appearing in the parametric cost functions to obtain certified
platform-dependent cost functions. Another application is found in resource-
oriented specialization, where refined cost models can be used to help in guiding
specialization by taking into account not only the size of the resulting program,
but also its expected execution time (and maybe other low-level implementation
factors). In particular, they can be used to perform self-tuning specialization in
order to compare different specialized versions according to their costs [1].
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Logic programming systems build the terms on the heap. Then automatic mem-
ory management for the heap relies on backtracking and runtime garbage col-
lection to reclaim space on the heap. While efficient implementations of garbage
collectors for logic programming languages can reuse more than 90% of the
heap space, they introduce performance overhead to the execution of a
program.

To remedy this shortcoming there has been a lot of research on compile-time
memory management techniques, which derive the memory behaviour of a pro-
gram when compiling and enhance the program with instructions to reuse mem-
ory. This static method generally follows two approaches: region-based memory
management (RBMM) and compile-time garbage collection (CTGC). The ba-
sic idea of RBMM is to divide the heap memory into different regions. The
dynamically created terms and their subterms have to be distributed over the
regions in such a way that at a certain point in the execution of the program
all terms in a region are dead and the region can be removed. RBMM has
long been a topic of intensive research for functional programming languages
[8, 1, 4] and for procedural languages [3, 2]. For logic programming languages,
there has been only one attempt to make RBMM work for Prolog [6, 5]. CTGC
detects when allocated memory cells are no longer used and instructs the pro-
gram to reuse those cells for constructing new terms, reducing memory con-
sumption and in some cases achieving faster code. This idea has been used to
reuse memory cells locally in the procedures of the logic programming language
Mercury [7].

The ultimate goal of our research is to investigate the possibility and practi-
cality of a hybrid static memory management technique, which combines RBMM
and CTGC.

The contribution of our work here is to develop an automated system based
on program analysis that adds region annotations to deterministic Mercury pro-
grams. The algorithm consists of three phases. First, a region points-to anal-
ysis detects the region structure of the memory used by a procedure and rep-
resents this information in terms of region points-to graph. Then, live region
analysis uses the region points-to graph of each procedure to precisely detect
� This work is supported by the project GOA/2003/08 and by FWO Vlaanderen.
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the lifetime of regions. Finally, based on the information about the lifetime
of regions the transformation inserts instructions to create and remove regions
into the input program. A prototype analysis has been implemented in Mel-
bourne Mercury Compiler version 0.12.0. The experimental results show that
the memory behaviour is promising for several programs and the analysis time
is tractable.

Our region analysis and transformation work correctly for deterministic pro-
grams in which the condition of if-then-else constructs, if any, can only be a goal
that does not require creating or removing any regions inside itself. Note that
such a deterministic program can still have different execution paths. There are
2 reasons for these restrictions. Firstly, the region liveness analysis only takes
into account forward execution. Therefore the removal and creation of regions
are only correct w.r.t. forward execution as we have in deterministic programs.
Secondly, even with a deterministic program, we need to be sure that when an
execution path of the program is taken all the region instructions on that path
are actually executed. A canfail goal could cause problems such as created re-
gions would never be removed or a region would be created or removed more
than once, and so on. In deterministic programs such canfail goals can only
appear in the condition of if-then-elses. Therefore, the condition goal of if-then-
elses is restricted so that no region instructions occur in this non-deterministic
context.

Our approach is a valid starting point for RBMM for general Mercury pro-
grams. The authors in [5, 6] describe an enhanced runtime for Prolog with
RBMM, which provide the support for nondeterministic goals. The idea of that
enhanced runtime is that backtracking is made transparent to the algorithm for
deterministic programs by providing a mechanism to undo changes to the heap
memory, restoring the heap memory to the previous state at the point to which
the program backtracks. We believe that a similar approach can be applied to
Mercury and with the runtime support the algorithm presented here can be used
unchanged to support full Mercury programs. In future work we will investigate
whether static analysis can lessen the support needed at run-time by exploiting
the determinism information available to Mercury compiler.

The precision of the current region points-to analysis can be improved and the
whole algorithm can be extended to support separate compilation in the context
of modules.
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1 Introduction

Contextual Logic Programming was proposed by Monteiro and Porto [4] as a
means of bringing modularity to the Prolog language. It was improved upon as a
practical extension in a high performance Prolog system by Abreu and Diaz [1],
providing a program structuring mechanism as well as fulfilling some of Prolog’s
shortcomings when used for programming in-the-large, namely by enabling an
object-oriented programming style without relinquishing the expressiveness and
semantic robustness of Logic Programs.

For their dynamically configurable structure, contexts clearly subsume the
base mechanisms of most module systems, this being particularly true of the
ISO/IEC Prolog Modules standard proposal [2]. This strength is also a weak-
ness: the dynamic nature of a context leads to difficulties in predicting their
structure, at compile time, this is particularly true when taking a separate com-
pilation approach. We address these issues by presenting an approach whereby
contexts are restricted to statically predictable forms and illustrate the proposal
by applying it to implement ISO modules.

2 Structured Contexts

The most obstructive limitation is that a Prolog compilation unit (a CxLP unit)
is not self-sufficient for specifying the available set of predicates and their defin-
ing clauses. A CxLP program cannot easily be analyzed following a “separate
compilation” approach: only a form of inter-unit analysis could be effective to
extract properties for a given program.

W.r.t. the proposal of [1] we opt for a different focus on the use of context
primitives: we make the context switch operation the default, while still provid-
ing the extension operation. This shift promotes the use of explicit contexts over
the implicit ones associated with the context extension mechanism. The notation
is also revised to provide an easier reading. Moreover, contexts are now speci-
fied with the possibility of imposing restrictions on their runtime structure; in
particular this can be used to cast ISO modules into CxLP, as briefly discussed
in the next section.
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3 Modules Done with Contexts

Consider the proposed ISO/IEC Prolog standard, part 2, which specifies the
module system to be used in compliant implementations. It is feasible to imple-
ment the standard using CxLP, by means of a simple preprocessor. Consider ex-
ample 6.2.6.1 from [2], which defines a utilitiesmodule that exports length/2
and reverse/2. An equivalent CxLP program can be constructed with two units:

– One called utilities, as above, standing for the interface unit, i.e. the one
in which the publicly accessible predicates reside. This unit will only contain
stubs for the “exported” predicates. These will be simple chain rules which
resort to a homonym predicate, residing in a private associated unit.

– Another one called utilities private, which will play the role of an im-
plementation unit. This unit will contain all the effective program text found
in the module definition above.

The essentials of the equivalent CxLP program are:

:- unit(utilities).
length(A, B) :- utilities_private.length(A, B).
reverse(A, B) :- utilities_private.reverse(A, B).

The content of unit utilities private is identical to the module body from
the ISO Prolog example.

Other aspects such as dealing with operator definitions and meta-predicate
declarations are also addressed. The calling context as per the ISO definition is
interpreted as the topmost unit of the CxLP calling context, i.e. it relies on the
unary :> operation from [1].

4 Related Work

Although contexts originated as a means of program structuring in terms of
composite theories, we prefer to stress the OO reading, as it allows for useful
forms of program development.

Several Logic Programming languages include module systems which may
relate to contexts. One language which includes a module system with features
close to those provided by CxLP is λProlog [3]. CxLP is a language with a
purpose very different from that of λProlog, nevertheless, the unit composition
mechanism provided by contexts is close to that which would be obtained with
the “import” directive of λProlog, as opposed to “accumulate”.
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Abstract. Contextual Logic Programming [3] (CxLP) is a simple and
powerful language that extends logic programming with mechanisms for
modularization. The importance of temporal representation and reason-
ing is well known not only in the database community but also in the
artificial intelligence one. In this paper we propose a language called Tem-
poral Contextual Logic Programming. Besides giving a brief description
of its operational semantics we also present a real-world application.

1 Introduction and Motivation

Contextual Logic Programming [3] (CxLP) is a simple and powerful language
that extends logic programming with mechanisms for modularization. Recent
work not only presented a revised specification of CxLP together with a new im-
plementation for it but also explained how this language could be seen as a shift
into the Object-Oriented Programming paradigm [1]. Finally, CxLP was shown
to be a powerful language in which to design and implement Organizational
Information Systems [2].

Temporal representation and reasoning is a central part of many Artificial In-
telligence areas such as planning, scheduling and natural language understand-
ing. Also in the database community we can see that this is a growing field of
research. Although both communities have several proposals for working with
time, it seems that we have two types of approaches: one, although very ex-
pressive has few connections to practical situations; the other approach is too
practical, i.e. only allow us to deal with a particular temporal domain.

It is our belief that adding a temporal dimension to CxLP results in a language
that besides having all the expressiveness acknowledged to logic programming,
easily allow us to establish connections to the real world because of its contex-
tual structure. In this article we will introduce the language Temporal Contextual
Logic Programming (TCxLP), with a brief description of its operational seman-
tics; we also discuss it in a real–world application: the Portuguese vaccination
program.

2 Temporal CxLP

The main point of CxLP is that programs are structured as sets of predicates,
units, that can be combined in an execution attribute called a context. Temporal
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Contextual Logic Programming is a two–sorted CxLP. A temporal context is any
list of unit designator term1, term of the temporal sort or a pair formed by the
two elements above.

In an informal way we can say that the time represented by a context is its
“first” or topmost temporal term. Moreover, if the context doesn’t contains any
temporal term, then its time is the current time.

2.1 Operational Semantics

Due to the nature of this paper we won’t present the complete operational seman-
tics but describe just the main difference towards the semantics of the CxLP, and
this happens when the top of the context is a temporally qualified unit, i.e. a unit
whose application depends of the time of the context. For that consider the deriva-
tion of a goalG in the context (u, t).C, where u is a unit designator and t a temporal
term. When the time of the context C is unifiable with t and unit u has a rule for
goal G, we derive G in the context u.C otherwise we derive it in the context C.

3 Application: Portuguese Vaccination Program

In Portugal, a new National Vaccination Program (PNV) was introduced in
2006. Several changes regarding the previous program (PNV 2000) where made.
Although we are going to report our example to the Portuguese case, the reader
should notice that not only the vaccination program, but also changes are rep-
resentative of what happens in other countries. One can easily translate a vacci-
nation program to a TCxLP unit that specify when one given vaccine should be
inoculated. For space restrictions we will omit such translation and consider that
besides unit pnv 2006 we have a unit person to represent some basic facts about
patients. To query, when and what should the next vaccine of patient whose
id is 3 we could have: ?- person(3) :> (item, pnv_2006 :> next(V, D))..
Please, remember that since there is no explicit mention to time, we assume that
we are referring to the present time. As mentioned above this program is a substi-
tute for the one of 2000. Unit pnv 2000 and pnv 2006 have different applicability
periods: we are going to consider that the former is valid during [2000/1/1,
2005/12/31] and the later after 2006/1/1. Let us see when and what should be
the next vaccine of person 1, assuming that the time is 2005/12/20:

| ?- date(2005, 12, 20) :> person(1) :> ( item,
(pnv_2000, [date(2000, 1, 1), date(2005, 12, 31)]) :>

(pnv_2006, [date(2006, 1, 1), infty])) :> next(V, D)).

In this case, we have that the pnv 2000 unit is the one to be considered. If
we remove the temporal term date(2005, 12, 20) (i.e. if we are talking about
the present time) then unit pnv 2006 is considered instead.
1 A unit designator is any instance of the term u(v1, . . . , vn) (n ≥ 0), where u is the

unit name and v1, . . . , vn are distinct variables called unit’s parameters.
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4 Conclusions and Future Work

In this paper we presented a temporal extension of CxLP that can be regarded as
a two–sorted CxLP. Although we aimed that such extension could be as minimal
as possible we also wanted to be as expressive as possible, leading to the notion
of units whose applicability depends of the time of the context, i.e. temporally
qualified units. Howbeit we presented the operational semantics, we consider that
to obtain a more solid foundation there is still need for a declarative approach
together with its soundness and completeness proof.

To our understanding the best way to prove the usefullness of this language
is by means of a real–world application, and for that purpose we chose the
Portuguese vaccination program. Besides this example, we are currently applying
this language to the legislation field, namely to represent and reason about the
evolution of laws. Finally, it is our goal to show that this language can act as the
backbone for construction and maintenance of temporal information systems.
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Abstract. We present Semantic Property Grammars, designed to ex-
tract concepts and relations from biomedical texts. The implementation
adapts a CHRG parser we designed for Property Grammars [1], which
views linguistic constraints as properties between sets of categories and
solves them by constraint satisfaction, can handle incomplete or erro-
neous text, and extract phrases of interest selectively. We endow it with
concept and relation extraction abilities as well.

1 Semantic Property Grammars (SPGs) – An
Introduction

Property Grammars (PGs) [2] linguistically characterize sentences not in terms
of an explicit, complete parse tree but in terms of seven simple properties be-
tween pairs of constituents, for instance, linearity (e.g., a determiner must pre-
cede a noun) or unicity (e.g., a noun can only have one determiner). A directly
executable specification of PGs was developed by Dahl and Blache [3], which
uses CHRG [4] to combine pairs of constituents according to whether proper-
ties between them are satisfied. SPGs are based on an adaptation of this parser
which enhances it with concepts and relations gleaned from the substring being
parsed. In the example below, for instance, the output gathers in a cat/6 symbol:
the phrase’s category (noun phrase), its syntactic features (singular, masculine),
the parse tree (not needed by the theory, but built for convenience), and the
lists of satisfied and unsatisfied properties within this phrase, e.g, prec(prep, np)
indicates that the preposition does precede its noun phrase in the embedded
prepositional phrase (pp), since it appears in the list of satisfied properties. The
unsatisfied property list is empty, since there are no property violations in this
np. Finally, the semantic concept list contains the relationship induced by this
noun phrase, as well as the concepts its parts intervene in, obtained in consul-
tation with a biomedical ontology.

gy
Input The activation of NF-kappa-B via CD-28
Output cat(np,[sing,masc],np(det(the),n(activation),pp(prep(of),np(n(’NF-kappa-B’),

pp(prep(via))),np(n(’CD-28’)))),[prec(prep,sn),unicity(prep),prec(n,pp),
unicity(n),exclude(name,n),prec(det,n),unicity(det)],[ ],[protein(’NF-kappa-B’),
gene(’CD-28’),activation(’NF-kappa-B’,’CD-28’)])
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2 Extracting Semantic Information

Extracting Concepts and Relations. The above example shows the simplest
and most needed application of our parser to biomedical information extraction,
namely, to glean concepts and relations from noun phrases. As shown in the output,
we obtain more information than other noun phrase chunkers/parsersavailable for
this task, which only output a parse tree. In addition, we provide semantic output
which can further be combined with that of other parts of the sentence, as we shall
see below. Although noun phrases are the most common source of wanted concept
extraction, we can directly apply the same methodology to extract verb-induced
relations, as in the sentence “The retinoblastoma protein negatively regulates tran-
scriptional activation”, where the verb regulate marks a relation between two con-
cepts retinoblastoma protein and transcriptional activation. To deal with this type
of relation, we extract both concepts from their noun phrases, and link them to-
gether into the relationship induced by the verb.

Relating Indirectly Connected Concepts. Once concepts and relations have
been extracted from the input, we can infer further concepts by consulting a
biomedical ontology (there are several available). This is useful to:

– disambiguate in function of context. For instance, usually binding site refers
to a DNA domain or region, while sometimes it refers to a protein domain or
region. Catching the latter meaning is not trivial since both c-Myc and G28-
5 are protein molecules. However, our parser looks for semantic clues from
surrounding words in order to disambiguate: in sentence 1) below, promoters
points to the DNA region binding site, whereas in sentence 2), ligands points
to the protein meaning of binding site.

– assess a general theme in the (sub)text: since the parser retrieves the seman-
tic classes of objects and relations as it goes along (as shown in section 1),
it is a simple matter to assume them as themes. Consuming them when in
doubt as to the main theme can assist in further disambiguation as well as
in other semantic interpretation tasks.

1 Transcription factors USF1 and USF2 up-regulate gene expression via interaction with
an E box on their target promoters, which is also a binding site for c-Myc.

2 The functional activity of ligands built from the binding site of G28-5 is dependent on
the size and physical properties of the molecule both in solution and on the cell surfaces.
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Abstract. We describe a Prolog implementation of the sequent calculus
for the type theory Nabla that can make syntactical and semantical
analyses of a fragment of natural language using combinators.

1 Introduction

The multi-dimensional type theory Nabla [3] is a linguistic system based on
categorial grammars [1] and with so-called lexical and logical combinators [4,5,6].
We describe a prototype system implemented in Prolog [2].

We here consider only the following logical combinators: Q̇ ≡ λxy(x = y),
Ṅ ≡ λa(¬a), Ċ ≡ λab(a∧b), Ȯ ≡ λtu∃x(tx∧ux) (overlap), İ ≡ λtu∀x(tx⇒ ux)
(inclusion), and Ṗ ≡ λab(a⇒ b) (preservation). See the references for more.

We use the basic category S for sentences, N for proper nouns and G for
common nouns with the following lexical category assignments with \ and / for
the left- and right-looking type operators (• is the top category for a text):

John Nick Gloria Victoria : N
man woman thief unicorn : G
popular quick : G/G
be : (N\S)/N Multiple categories with
be : (N\S)/(G/G) different semantics.
a every : (S/(N\S))/G ((S/N)\S)/G Multiple categories with
also : S\(S/S) same semantics.
so : S\(•/S)

The following corresponding lexical combinator definitions give the semantics:

John Nick Gloria Victoria ≡ ◦ | J N G V
man woman thief unicorn ≡ λx(◦x) | M W T U
popular quick ≡ λtx(©(◦x)(tx)) | Ċ | P Q
be ≡ λyx(©xy) | Q̇
be′ ≡ λfx(fλy(©xy)x) | Q̇ © is place-holder for
a every ≡ λtu(©tu) | Ȯ İ logical combinators.

� Erasmus student at Computer Science, Roskilde University, 2005. jfo@lycos.es
�� Corresponding author, now at IMM/DTU. jv@imm.dtu.dk Sponsored by the IT
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also ≡ λab(©ab) | Ċ ◦ is place-holder for
so ≡ λab(©ab) | Ṗ (predicate) constant.

The combinators and constants to be inserted are shown after the | above.

2 From Syntax to Semantics Using Combinators

As a tiny example we consider the following text [2] (i.e. a valid argument):

Every woman is popular. Gloria is a woman. So Gloria is popular.

� so
(also (every woman (be′ popular)) (a woman λx(be x Gloria)))
(be′ popular Gloria)

� Ṗ
(Ċ (İ λx(Wx) λx(Ċ (Px) (Q̇xx))) (Ȯ λx(Wx) λx(Q̇xG)))
(Ċ (PG) (Q̇GG))

� ∀x(Wx⇒ Px) ∧WG⇒ PG Which is a valid formula as expected.

The implementation [2] can search for proofs in the sequent calculus:

?- analyze([every,woman,be,popular,also,gloria,be,a,woman,
so,gloria,be,popular],RULES,FORMULA).

FORMULA =
app(app(v(so),app(app(v(also),
app(app(v(every),v(woman)),app(v(be),v(popular)))),
app(app(v(a),v(woman)),abs(x,app(app(v(be),v(x)),v(gloria)))))),
app(app(v(be),v(popular)),v(gloria))),

RULES =
lvL(lvL(rvL(eq,rvL(eq,rvL(eq,eq))),rvL(rvL(eq,lvL(rvR(rvL(eq,
lvL(eq,eq))),eq)),eq)),rvL(rvL(eq,lvL(eq,eq)),eq))

FORMULA yields the combinator expression above and RULES is the proof struc-
ture. For a more substantial natural language fragment with propositional atti-
tudes [4] the combinators change, e.g. P ≡ λpq∀i(pi ⇒ qi), but the program is
unchanged.
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Semantic parsing is the process of mapping a natural language input into some
structure representing its meaning. Even though this process is natural and
smooth for human beings, it constitutes a huge problem for a machine. Se-
mantic parsing is a challenging and interesting problem that has been severely
understudied. Most of the research in natural language understanding has fo-
cused on shallow semantic analysis (i.e. word sense disambiguation, case-role
analysis, etc). Previous approaches to semantic parsing are not robust enough
or are limited in its applicability because they are applied to simple domains
where semantic parsing reduces to filling slots on a frame.

The main problem with semantic parsing is the lack of a universal seman-
tic representation. Formal semantic representations can range from shallow (i.e.
case-role analysis) to deeper semantic analysis (i.e. predicate logic, Montague
style). Constructing a semantic parser usually involves hand-crafting expert
knowledge represented as rules. However, hand-crafted semantic parsers exhibit
problems with robustness and incompleteness even for domain specific appli-
cations. As the task scales up in size, hand-crafting becomes more and more
difficult; this results in applications that are time-consuming and difficult to
build and yet perform poorly.

The ultimate goal of this work is to develop a novel constraint handling rule
(CHR [1]) approach to learn semantic parsers for mapping natural language
sentences to any kind of compositional formal representation. The algorithm
will learn a semantic parser given a set of natural language sentences annotated
with their correct meaning representations. We assume that the parse tree of
each sample sentence is either part of the training data or could be obtained
from an unambiguous context-free grammar available for the target meaning-
representation language. The only restriction imposed to the semantic represen-
tation given in the training data is compositionality: the semantic representation
of a sentence can be obtained from the semantic representation of its parts.

As a first step, this work shows how to learn one new semantic rule without
going through the process of leaning again the set of known semantic rules. Even
though this seems fairly easy, most of the previous work on semantic parsing does
not consider a work in progress (an incomplete semantic parser) as input. Also,
the final result of previous approaches is some obscure system that can not be
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easily read by an untrained eye. On the other hand, the output of our system is
a CHR parser, where each rule is enriched with some self-explanatory actions.

CHR has the advantage of building every single piece of information that can
be constructed given the incomplete semantic parser. Even if a semantic rule
is missing CHR will not fail and the set of already constructed semantic con-
straints will be stored for later use (when the semantic parser is completed).
Some extensions of CHR, such as Hyprolog, allow the use of assumptions and
abductions, which are very useful to build hypothetical scenarios. Another ad-
vantage of CHR is its ability to explore all paths without losing information
about previously explored paths (all the constraints generated will be stored).

The proposed approach uses CHR and assumptions (Hyprolog [2]) to examine
the actual state and the desired state of the semantic representation of a sentence.
A series of actions will be inferred to transform the former into the latter:

– Same variable: two or more constituents refer to the same variable.
– Replace variable: the semantic representation of a constituent is embedded

in another constituent. The embedded element could also be a combination
of two or more constituents (with or without additional words).

– Output variable: a variable not used in the construction of the desired con-
stituent (it usually refers to an upper syntactic category).

– Main category: the syntactic category that commands the representation.

Even though the generation of the set of actions will be guided by the input
data, the algorithm can explore alternate or additional scenarios. In the event
of ambiguities or inconsistencies in the training data, probabilistic CHR will be
used. The algorithm is general enough to handle any type of compositional for-
mal semantic representation language, even those with nested structures. Other
important features are: the immediate use of the training data as a guide; avoid-
ing generation of spurious answers; avoiding the exhaustive generation of addi-
tional examples; allowing the inclusion of additional words when two or more
constituents are combined; generating a clear and concise semantic parser as out-
put; and handling noisy training data. Future work includes allowing the system
to learn more than one rule at a time. The automatic acquisition of the semantic
lexicon will be the last step towards a complete system that learns a semantic
parser from examples.
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Motivation. Due to technological advances such as the Internet and mobile comput-
ing, Security has become a serious challenge involving several disciplines of Computer
Science. In recent years, there has been a growing interest in the analysis of security
protocols and one promising approach is the development of formalisms that model
communicating processes, in particular Process Calculi. The results are so far encour-
aging although most remains to be done.

Concurrent Constraint Programming (CCP) is a well-established formalism which
generalizes Logic Programming [Sar93]. In CCP processes interact with each other by
telling and asking information represented as constraints in a medium, a so-called store.
One of the most appealing and distinct features of CCP is that it combines the traditional
operational view of process calculi with a declarative one of processes based upon
logic. This combination allows CCP to benefit from the large body of techniques of
both process calculi and logic. Over the last decade, several reasoning techniques and
implementations for CCP have been developed: E.g., denotational models [SRP91],
specification logics and proof systems [NPV02], Petri Net interpretations [RM94], and
CCP-based programming languages [Smo95].

Remarkably, most process calculi for security have strong similarities with CCP. For
instance, SPL [CW01], the Spi calculus variants in [ALV03, FA01], and the calculus in
[BB02] are all operationally defined in terms of configurations containing information
which can only increase during evolution. Such a monotonic evolution of information
is akin to the notion of monotonic store, which is central to CCP and a source of its
simplicity. Also, the calculi in [ALV03, BB02, FA01] are parametric in the underlying
logic much like CCP is parametric an underlying constraint system. Also, the assertion
of (protocol) properties [ALV03] can be formalized as CCP processes imposing con-
straints. Furthermore, the notion of unification, which has been shown useful in [FA01]
for the symbolic execution of protocols, is primitive (and more general) in CCP.

Description. Our project Secure CCP (SCCP) aims at advancing both the theory and
tools of CCP for analyzing and programming security protocols. The main goal is to de-
velop a CCP-based framework for security protocols. The novelty is the combination in
one unique formalism of behavioral and logical techniques. In fact, to our best knowl-
edge, there is no work on Security that takes advantage of the reasoning techniques of
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CCP such as its denotational models, temporal and intuitionistic logics, or Petri Net
interpretations. The expected outcome is two-fold. We will advance the CCP theory to
deal with new challenging concepts from Security and produce a specification language
and tools to model and automatically verify security protocols.

Approach. The approach of the project will be to give a CCP account of a representa-
tive calculus for security protocols. We will use CCP constraint systems to represent a
logic to reason about the information an attacker can deduce from the information ac-
cumulated in the monotonic store. The CCP linear-time temporal logic and associated
complete inference system in [NPV02] and the verification results in [Val05] can be
used to specify and prove safety properties of protocol runs.

Now, most security protocols use mechanisms to allow generation of nonces (or
names). Therefore, we shall need to provide CCP with such mechanisms which have
been far too little considered in CCP. One approach to this problem will be to use con-
straint systems based on Nominal Logic [Pit01], a modern logic to reason about name
freshness. Another possibility is to extend CCP with an operation that provides name
generation. To keep the dual operational and declarative view of CCP, the extended lan-
guage should also have a logic interpretation. In fact, we have recently studied the issue
of name generation in [PSVV06] where we proved that existential quantification can
replace name generation in a meaningful process calculus.
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Abstract. We propose an approach to combining logic programming
and knowledge representation paradigms. This approach is based on the
conception of description terms. LP and KR are integrated in such a
way that their underlying logics are carefully separated. A core idea
here is to push the KR techniques on the functional level. On the LP
level the knowledge base is considered as a constraint store, in which
special propagation methods are ruling. A constraint logic programming
language based on this idea is outlined.

The amalgamation of KR and LP looks promising for many reasons and attracts
serious attention. KR formalisms are mostly based on description logics (DLs)
[1], which offer flexible tools for knowledge representation. Both DLs and LP are
based on constructive logical systems. But since they came from the different
subsets of the first order logic, their constructive properties have different origins.
Thus an attempt to mix up LP and DLs within a generalized logical system can
make us sacrifice a lot [2].

In [3] we have introduced an approach to knowledge representation, which is
based on the notion of a description term. The main idea behind description
terms is to move knowledge representation techniques from the logical level to
the functional level of terms and objects. As for integration of LP and DL styles,
this idea allows us not to mix up the two styles within a joined logical formalism,
but keep them separated while preserving tight interconnections between them.

Let Δ be a knowledge domain. A description term t is a term of a special form,
which is interpreted as a description of objects d ∈ Δ. This description includes
information about classes (concepts) and properties (rôles), which characterize
d. A description can be incomplete, if it contains only partial data about d.
Moreover, one term can describe many objects (for instance, if a term says only
that the person’s name is John, this term describes all Johns in Δ). Thus, t
must be interpreted as the set of those objects d ∈ Δ, which t describes, that is
tI ⊆ Δ, or more precisely tI = {d | t4d, d ∈ Δ}. Here I is an interpretation, t4d
means that d is described by t. Since data in terms is incomplete, it is useful to
be able to compare them. We say that t1 is approximated by t2 (t1 5 t2) if all
information in t2 is contained also in t1. Note that if t1 5 t2 then tI1 ⊆ tI2, that
is, the more precise information t1 has, the less number of objects it describes.

To incorporate description terms we substitute the standard LP rule with

(LPd)
p(t1, . . . , tk), p2, . . . , pn p(t′1, . . . , t

′
k) :- r1, . . . , rm.

(r1, . . . , rm, p2, . . . , pn)Θ
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if tiΘ 5 t′iΘ for i = 1, k. Here ti and t′i are description terms, the left premise
is the goal, the right premise is a rule, ri and pi are atoms. In LPd description
terms can be parameterized with standard logical variables, and Θ is used to
handle them.

The next thing we should do is to establish in our system the knowledge base
(KB), which keeps knowledge about the domain Δ. We organize KB in the form
of a constraint store, which consists of naming constraints. A naming constraint
is an expression of the form id :: t where id is the name (identifier) of an object
in Δ, and t is its description. This constraint means that an object d of Δ named
id is described by t. id :: t is true in an interpretation I, if idI ∈ tI .

We also need to incorporate axioms, which describe the knowledge domain
as a whole. In description logics axioms have the form of inclusions or equiva-
lences, which are satisfied by any element of Δ. The dual nature of description
terms helps us to introduce axioms in our scheme. On the one hand, in naming
constraints description terms describe single objects. On the other hand, since
description terms are interpreted as subsets of Δ, we can use them to describe
also the sets of objects. So, as axioms we use those description terms, which
describe all objects of Δ, that is, tI = Δ.

Application of axioms depends on the inference system and propagation
strategies in the naming constraint store. In the general scheme this inference
system is not specified, since different entailments can play this role. For instance,
it is possible to exploit modifications of tableau algorithms [1].

Now starting with the standard logic programming scheme we (i) substitute
ordinary terms by description terms; (ii) replace the standard inference LP-rule
with LPd; (iii) establish the constraint store containing axioms and naming con-
straints, and introduce a propagation scheme based on DL algorithms; (iv) intro-
duce two new built-ins: axiom/1 (posting an axiom in the constraint store) and
::/2 (posting a naming constraint); (v) introduce special built-ins for retrieval
and retraction of information in the constraint store.

Thus we obtain a constraint logic programming language working in knowl-
edge domains. In this language the underling logics of LP and KR do not affect
each other. The further steps include investigation of some theoretical problems
concerning the inference system and strategies working in the naming constraint
store. Also an implementation of the scheme and the design of the corresponding
constraint logic programming language are being developed.
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Abstract. STEP is an international standard for modeling information
used in manufacturing activities; Part 21 is a STEP component that
standardizes the exchange of this information through text files. We are
working on applying logic programming techniques to processing STEP
data models. The STEP standard specifies the entities, attributes, con-
sistency rules, and functions used for describing and validating manu-
facturing information. Most STEP entities and data types are organized
into hierarchies, making an object-oriented approach the most straight-
forward implementation solution. Our work uses Logtalk, an object ori-
ented extension to Prolog, as the primary implementation tool.

Introduction. Our initial work [1] focus on the STEP Application Protocol
(AP) 203 — configuration control design schema [2,3], which has become a suc-
cessful vendor neutral file standard for the exchange of Computer Aided Design
(CAD) data models, supported by many commercial CAD applications [4]. The
conformance validation of data models complements the testing of the geometric
validity of design models [5] and is a form of quality control important for the
interoperability of CAD and related applications.

Implementing STEP Application Protocols and Data Models. Logtalk
[6] provides a flexible object model with a set of features, such as multiple inher-
itance and multiple instantiation, which are essential for a one-to-one mapping
of AP entities and data objects as specified by STEP Part 21. In addition, other
Logtalk features, such as support for both classes and prototypes, reflection, and
parametric objects, contribute to an easier implementation of AP concepts and
application code when compared with other OOP languages.

The Logtalk validation application is divided into three code tiers. The top
tier includes the Logtalk compiler and its standard libraries, a library defin-
ing a set of meta-classes for AP entities, and a set of prototypes implementing
AP-specific data types. The meta-classes provide support for easy validation
of a single object, all descendant objects of an AP entity, or all objects on a
data-model. The second tier consists of a Logtalk class hierarchy implementing
the AP schema entities. Entity attributes are translated into logical predicates:
simple facts for explicit attributes and rules for evaluating derived and inverse
� Work partially funded by the Instituto de Telecomunicações, Portugal.
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attributes and for conducting entity data consistency tests. This second tier also
includes implementations of the AP schema functions. Our practice shows that
the techniques of logic programming and the facilities of Logtalk allow the im-
plementation of consistency tests and functions to be more concise and readable
than the procedural code used in the AP schema specifications. The code in
this second tier is generated by a combination of automated parsing of the AP
schema files (using Python scripts) and manual code generation. The third tier
corresponds to the data models under processing, specified as instances of the
classes defined in the second tier. Instance attributes are defined as ground pred-
icates. This code is automatically generated from a STEP data model file by an
open source command-line application written in C++.

Validating STEP Data Models. Validation of a STEP data model is per-
formed by loading the logic model, as defined in the three tiers described above,
and then presenting a logical goal to be satisfied. The validation goal leads to
a succession of goals testing the validity of the data model at three levels: (1)
checking that individual attribute values are valid; (2) checking consistency of
each instance as a whole; (3) checking global properties such as the uniqueness
of attributes values, constraints involving connections among several data in-
stances, and the acyclicity of hierarchies as specified in the AP schemas. It is
worth noting that AP schemas often describe hundreds of entities and that a sin-
gle data model can contain thousands of objects. To this we must add hundreds
of functions and consistency rules used in the validation tests.

Current and Future Work. Current work includes completing the implemen-
tation of entity consistency rules and functions, testing our Logtalk implemen-
tation across a larger number of data models, and improving validation reports.
The tools and techniques developed here are readily extensible to other APs
developed under ISO 10303 [2] covering other manufacturing activities such as
AP 238 (cnc machining) or AP 210 (electronic printed circuit assembly, design,
and manufacturing). Future work will include development of implementation
guidelines for coding other AP schemas. In addition, we are planning a web-
server version of our validation application that will allow users to upload and
validate data model files.
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Abstract. We present OWL-log, which is an implementation of the
AL-log hybrid knowledge representation system where the Description
Logics component is extended to the Web Ontology Language OWL DL.
We implemented an OWL-log reasoner coupled to the OWL reasoner
Pellet and explored different query-answering strategies. We conducted
an experimental study using a modified version of the LUBM benchmark
in order to evaluate and compare the efficiency of the strategies. Also,
to validate OWL-log’s usefulness we developed a prototype based on the
Web ontology browsing and editing tool Swoop.

1 The OWL-Log System

OWL-log is an implementation of the hybrid knowledge representation system
AL-log [5] that combines Description Logics (DL) and Datalog components.
OWL-log restricts the Datalog atoms to be unary or binary, and the DL com-
ponent is extended to the Web Ontology Language OWL DL. A constrained
OWL-log clause is an axiom in which only OWL DL Class and Datatype predi-
cates are allowed in the antecedent of the rules as constraints. Datalog predicates
in an OWL-log clause are limited to being OWL DL classes and properties that
are not being used in any of the axioms that belong to the DL component (we
define these concepts as Atomic). Our approach is to evolve the Web Ontology
Language OWL DL toward the Semantic Web Rule Language (SWRL) while
retaining practical decidability.

An important application for a system like OWL-log can be Web policies. For
instance, we may write a policy rule to specify permissions on a set of services:

hasPermission(P, S) :-
relatedTo(S,K), participates(O,K), memberOf(P, O),
& K:JointProject, S:Service, P :Person,O:Organization.

Note that to comply with the OWL-log rule definition, the predicates relatedTo,
participates and memberOf , will be Atomic concepts (Datalog predicates). On
the other hand JointProject is a defined class in the DL component:

JointProject ≡ Project � ≥ 2 organizedBy.
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Our work differs from other systems that rely on translating the DL and
rules components to a common logical language [2,3] and using rule engines for
inferencing. OWL-log is a combined approach where both components are kept
separately but with an interface handled through the DL atoms in the rules
component, and its decision procedure is based on a combination of DL and
Datalog reasoners.

2 Implementation and Evaluation

We have developed two different query-answering strategies: Dynamic and Pre-
compilation. In Dynamic, the method used for answering a query is based on the
notions of constrained SLD-derivation and constrained SLD-refutation [5]. The
key idea of Precompilation is to pre-process all of the DL atoms that appear in
the Datalog rules, and include them as facts in the Datalog subsystem; once the
pre-processing is done, queries can be answered by the Datalog component using
any of the known techniques for Datalog query evaluation.

According to [5], constrained SLD-resolution is complete and correct. Thus,
Dynamic is a complete and correct procedure. Precompilation is a complete
query-answering procedure only for DL-safe rules, that is rules in which each
variable is bound to individuals that are explicit in the ABox [4].

We conducted an experimental study to compare the performance of the Dy-
namic and Precompilation query-answering strategies. Our test case of choice
was a modified version of the LUBM benchmark [1] with one university and
increasing ABox sizes. The performance evaluation results show that Precompi-
lation performs better than Dynamic for queries where there is a large number of
results (valid bindings) because in Dynamic, the query-answering time depends
on the number of constrained empty clauses. On the other hand, Precompila-
tion does worse than Dynamic when a large number of intermediate predicates
are inferred in the Datalog component. Future work includes improving this
time with query optimization techniques that include cost-based join-ordering
strategies and Magic-Sets rewriting.
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LMNtal (pronounced “elemental”) is a simple language model based on hierarchical
graph rewriting. It features and supports

– rule-based multiset rewriting,
– connectivity of nodes represented using logical variables,
– hierarchy of nodes represented using membranes,
– locality of rewrite rules,
– dynamic migration of processes (= hierarchical graphs) and rewrite rules,
– uniform treatment of processes and data,
– graphical view of computation,

and so on. Figure 1 shows examples of computation that can be encoded into LMNtal
straightforwardly.

LMNtal is an outcome of the attempt to unify constraint-based concurrency (also
known as concurrent constraint programming) and CHR, but its goal is now much
broader: It is intended to be a substrate language of various computational models,
especially those addressing concurrency, mobility and multiset rewriting.

Another important goal of LMNtal has been to put hierarchical graph rewriting into
practice and demonstrate its versatility. We have given practical considerations to LM-
Ntal, and made it into a full-fledged, monolithic programming language, which is avail-
able on the web with a number of sample programs.

Language Features. We refer the readers to [1] on LMNtal as a computational model
(i.e., the core language). Building on the core, we have made the following extensions:

– term notation for concise description of constants, lists, and trees,
– system rulesets (including arithmetics) that can be extended by programmers,
– guards and typed process contexts for capturing graph structures of specific shapes

and/or comparing them,
– randomization of redex and rule selection strategies,
– construct for avoiding infinite application of the same rule to the same subgraph,
– nondeterministic execution mode (exhaustive search),
– modules and foreign-language interface to Java,
– read-eval-print loop (interactive mode),
– visualizer.
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Fig. 1. Diagrammatic representation of computation

Implementation Overview. The current LMNtal system consists of 27,000 lines of Java
code. The system compiles an LMNtal source file into intermediate code, and (unless
invoked in the interactive mode) translates the intermediate code into a Java program,
which in turn is compiled into Java bytecode and packaged into a Java archive file.

LMNtal is a fine-grained concurrent language, but how to implement it correctly and
efficiently turns out to be far from obvious because (i) links and membranes may cross
each other and (ii) rulesets belonging to different membranes in a lineal relation may
attempt to rewrite the same process competitively. We have designed and implemented
an execution algorithm that allows asynchronous graph rewriting by multiple tasks.
Proper treatment of asynchrony is essential also for interfacing LMNtal with Java’s
multithreading and GUI.

Examples and Future Directions. We have encoded into LMNtal a wide range of
computational models, including the pure and call-by-name lambda calculi, the asyn-
chronous pi-calculus, the ambient calculus, the sequent calculus, all tested on our LMN-
tal system and ready for demonstration. Some don’t use membranes at all, while others
make extensive use of membranes for protection, localization, and first-class multisets.
Moreover, many (concurrent) logic programs run as LMNtal programs without or with
very minor modifications. On a practical side, LMNtal is being applied to declarative
graphics, parallel and distributed processing, and verification.

LMNtal has particularly close connections to Bigraphs, Interaction Nets, and CHR.
LMNtal and CHR exhibit both commonalities and differences in many respects, in-
cluding language constructs and intended applications. Clarifying their relationship and
promoting cross-fertilization is an important research topic.
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Abstract. My dissertation will make the case that answer set semantics
can form the basis of powerful, logical NP problem solving tools. The
argument is made in two steps. Firstly a logical programming language,
AnsPrologCE is proposed and an efficient, parallel implementation is
described. This language is then used to solve a variety of diverse real
world problems, demonstrating the power and flexibility of this approach.

Answer set semantics [1] are a formal semantic for logic programs. For a given
program, answer sets can be seen as minimal (with respect to deductive closure)
sets of literals that are consistent with the program. A summary of the semantics
can be found in [2]. Answer set programming (ASP) is a problem solving tech-
nique in which a problem is represented as (modelling) a logic program under
answer set semantics such that when the answer sets are computed (solving)
they can be mapped to the solutions (interpretation).

Within the community of answer set semantics research it is widely believed
that ASP is the application / justification of the theoretical research but there
has been relatively little work done on it. There are a few [3,4] large scale appli-
cations and some comparison [5] and benchmarking [6] works but the case is yet
to be made outside of the answer set semantics community. For example, there
are questions of use: “What is ASP used for?”, “Why not create a procedural
solution?” as well as practicality “Roughly how long will this program take to
run?” and “How should I develop a program?” that remain difficult to answer.

My thesis should help provide some of the answers to these questions and serve
as a bridge from the community of answer set semantics to (and from) the wider
community of software developers. The focus of the work is on practicality over,
but not at expense of, theory. It is not a finished, ‘user friendly’ tool, it is proof
of concept technology that moves towards this goal. I believe that work of this
nature must be conducted to apply the existing research in answer set semantics
as well as to uncover the next generation of challenges in solver implementation,
program analysis and ultimately the underlying theory.

As a general purpose tool, an answer set solver is unlikely to compute solutions
faster than well tuned implementation in a procedural language. So the concept
of time to solution (the time elapsed between a problem being posed and it
being solved) is introduced, evidence is then presented to suggest that ASP has
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a lower time to solution than other problem solving tools, for some problems.
To show that complex problems can be modelled simply and quickly a variety
of case studies are presented. If the problem in question requires parallelism to
provide sufficient compute power, the time saved in development may be very
significant, exceeding the cost of the extra hardware required to make the ASP
solution run just as quickly as a procedural one. Then all that remains is to
show it is possible to create an implementation that is ‘good enough’ for this
advantage to be significant. (This argument is analogous to the argument for
compilers versus assembler; assembler runs faster but the time to solution with
compiled languages is less). The first part of my thesis present a tool which
is ‘good enough’ is this sense, the second presents a variety of case studies to
support it’s design, it’s performance versus a variety of other logic programming
tools and the expressivity and simplicity of ASP.

First a logical programming language, AnsPrologCE is proposed and given a
semantics using a mapping to answer set semantics. Unlike previous solver lan-
guages, the constructs and limitations are based on implementation rather than
theory. Preliminary results on complexity and the case studies show that these
restrictions are not a significant problem. A powerful, parallel implementation
is then described – aimed specifically at programs with large search spaces with
few, or no answer sets. These are the hardest cases for current solvers and thus
provide a good indication of whether solver performance is good enough.

The second part of my thesis then uses the new tools to solve a wide variety of
problems demonstrating the scalability, flexibility and versatility of answer set
programming. The first set of case studies are simple examples: puzzles such as
Su-Doku and Rubik Cube. These help ground some of the theory and have proved
to be effective tools for communicating answer set programming. The largest case
study is the TOAST (Total Optimisation using Answer Set Technology) project.
This is an attempt to generate truly optimal machine code for simple, acyclic
functions. This requires extensive modelling of parts of the core of a variety of
processors and has already generated some significant and interesting problems.
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5. Hietalahti, M., Massacci, F., Niemelä, I.: Des: A challenge problem for nonmonotonic
reasoning systems. In: Proceedings of (NMR’00). (2000)

6. Borchert, P., Anger, C., Schaub, T., Truszczynski, M.: Towards systematic bench-
marking in answer set programming : The dagstuhl initiative. LNCS 2923 (2003)



The Design and Implementation of the YAP
Compiler: An Optimizing Compiler for Logic

Programming Languages

Anderson Faustino da Silva and Vı́tor Santos Costa

Department of Computing and Systems Engineering
Federal University of Rio de Janeiro

Caixa Postal: 68511 – 21941-972 Rio de Janeiro, RJ, Brazil
{faustino, vitor}@cos.ufrj.br

Programming language designers have always searched for programming lan-
guages and features that ease the programming process and improve program-
mer productivity. One promising approach is logic programming. Logic program-
ming languages, such as Prolog, provide programmers with powerful techniques
for writing programs quickly and easily.

Aggressive compiler optimization [1] can reduce the overhead imposed by
Prolog [2] features. However, the long compilation times introduced by opti-
mizing compilers delay the programming environment’s responses to changes in
the program. Furthermore, optimization also conflicts with source-level debug-
ging. Thus, programmers have to choose between abstraction and efficiency, and
between responsive programming environments and efficiency.

This research proposes to reconcile these seemingly contradictory goals by us-
ing dynamic optimization to perform optimizations lazily. Three techniques work
together to achieve high performance and high responsiveness in Prolog programs:

1. Type feedback[3] achieves high performance by allowing the compiler to
compile only the executed path based on information extracted from the run-
time system. The main implementation problems of languages that support
some form of late binding arise from the paucity of information statically
available at compile time. That is, the exact meaning of some operations
cannot be determined statically but is dependent on dynamic (i.e., runtime)
information. Therefore, it is hard to optimize these late-bound operations
statically, based on the program text alone. This problem is solved moving
additional runtime information to the compiler. Type feedback works in this
manner. The key idea of type feedback is to extract type information from
the runtime system and feed it back to the compiler.

2. Dynamic deoptimization[4] shields the programmer from the complexity
of debugging optimized code by transparently recreating non-optimized code
as needed. Dynamic deoptimization shields the debugger from
optimizations performed by the compiler by dynamically deoptimizing code
on demand. Deoptimization requires the compiler to supply debugging
information at discrete interrupt points. Then, the compiler can still per-
form extensive optimizations between interrupt points without affectingde-
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buggability. Dynamic deoptimization transforms old compiled code into new
versions reflecting the current source-level state.

3. Adaptive optimization [5] achieves high responsiveness without sacrificing
performance by using a emulator to interpret initial code while automatically
compiling heavily used parts of the program with an optimizing compiler.
This technique allows that small pieces of code are compiled quickly, and
thus small changes to a program can be handled quickly. Using adaptive
optimization, the debugging system makes it possible to integrate an opti-
mizing compiler into an exploratory programming environment.

In this research we propose precisely such an approach: we implemented
a compilation from Prolog to native code, using dynamic compilation. Our
starting point is develop a dynamic optimizing compiler, essentially an high-
performance emulator-based system. This facilitates mixing emulated and na-
tive code. This new system simultaneously improves execution and compilation
speed. The progress made in implementing our system will encourage others to
find even better solutions to the implementation challenges posed by logic lan-
guages. Our research will contribute to make logic programming environments
more popular, as in the past, such systems have often suffered from performance
problems that have limited their acceptance.

Our immediate goal is to build an efficient, usable implementation of Pro-
log. However, we are not willing to compromise Prolog’s language semantics
and other expressive features. We want to preserve the illusion of the system
directly executing the program as the programmer wrote it, with no user-visible
optimizations. Our main objective is excellent run-time performance. We wish
to make Prolog with similar powerful features competitive in performance with
traditional imperative languages such as C and Pascal.

Of course, we do not only wish to implement Prolog efficiently, but also a larger
class of logic languages. Fortunately, the techniques used are not specific to the
Prolog language. They were applied in languages such as SELF, C++ and Java. In
our research we demonstrate how this techniques can be used in logic languages.
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Abstract. We present a novel Description Logic reasoning approach,
which focuses on solving the ABox instance retrieval problem when huge
amounts of underlying data are expected. In such cases, traditional de-
scription logic theorem proving techniques cannot be used due to per-
formance problems. Our approach is to transform the description logic
knowledge base into a set of Horn-clauses forming a Prolog program.

1 Introduction and Problem Description

Description Horn Logic and the related Description Logic Programming (DLP)
are a very interesting combination of Logic Programming (LP) and Description
Logics (DL) [2]. This hybrid knowledge representation formalism has several
advantages over only using DL or LP alone. For example, DLP offers the pos-
sibility for the DL based ontology builders to use rules, something which has
been a well known shortcoming so far. What is equally important, efficient LP
inference algorithms can be used for instance reasoning in DLP.

The motivation for this research comes from our involvement in the develop-
ment of a knowledge management system for the integration of heterogeneous
information sources, using methods and tools based on constraints and logic
programming [1]. The main idea is to collect and manage meta-information (i.e
models) on the sources to be integrated. Such models are based on the tradi-
tional object oriented paradigm as well as on description logics constructs. The
models can be used to answer complex queries involving several data sources.

Because of this, we have to query DL concepts where the actual data (the
so called ABox) is stored in the underlying databases. We found it practically
impossible to use existing DL inference systems for this task. On one hand, these
systems are not capable of handling ABoxes stored externally. On the other
hand, the existing algorithms are unacceptably inefficient when dealing with
huge amounts of data, which is usually the case during information integration.1

These performance problems are not because of poor implementation tech-
niques, but the fundamental properties of the algorithms these systems use.
Namely, they have to examine the whole content of the ABox to answer a query,
which is more or less equivalent of enumerating everything in the databases.
1 Similar problems occur in other important areas where description logic based on-

tologies are used, for example in the Semantic Web.
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2 Goals and Current Stage of the Research

In order to do efficient description logic reasoning on large ABoxes we separate
the inference algorithm from the actual data storage, e.g. delegate as much work
as possible to the database systems. We also execute the queries using Prolog’s
top down evaluation, which normally means that we access the content of the
databases in a focused way.

In our solution the inference algorithm is divided into two phases. First, from
a DL concept to be queried, we create a query-plan, as a set of Prolog clauses.
Second, data is accessed dynamically during the normal Prolog execution of the
generated program. With this technique only those pieces of data are accessed
which are indeed important for answering the query, i.e. we solve the original
problem in a database friendly way.

The first step of our research resulted in a resolution-based transformation
of ABox reasoning problems to Prolog [4]. This algorithm is able to answer
instance-check and instance-retrieval queries over the DL language ALC and an
empty TBox.

In [4] we have handled the problems due to the so called open world assumption.
At the same time, we have shown that the Prolog program produced can be viewed
as the result of an ABox-independent part of a generic resolution proof. We have
also carried out some simple performance analysis, showing that our approach can
be several magnitudes faster than the traditional, tableau-based approach.

In paper[3], we examined how ABox reasoning services can be provided with
respect to slightly restricted non-empty TBox. We generalized the transforma-
tion of [2] to include e.g disjunctions. We have written an interpreter which
performs the resolution-based proof belonging to instance-check and instance-
retrieval queries.

We view the current results as a first step. We plan to extend our algorithm
to more elaborate DL languages (such as SHIQ) and to allow full TBox axioms
as well. We also work on the optimization of the query plan, considering the use
of target language specific elements (like cut, indexing, etc. in Prolog) to make
the execution of the query plan more efficient.
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Introduction. Logic programming (LP) languages aim to free programmers
from procedural details such as memory management tasks. One classical, au-
tomatic memory management technique in logic programming is to use a heap
memory for all the structured terms and rely on backtracking and on a runtime
garbage collector to reclaim memory. While efficient implementation of garbage
collectors for LP languages can reuse more than 90% heap space, they introduce
performance penalties to the execution of a program because the collectors need
to temporarily stop the main program to do their job.

Background Literature. To remedy this shortcoming there has been a lot
of research on compile-time memory management techniques, which automati-
cally enhance programs with instructions to reuse memory. This static method
generally follows two approaches: region-based memory management (RBMM)
and compile-time garbage collection (CTGC). The basic idea of RBMM is to
divide the heap memory into different regions. The dynamically created terms
and their subterms have to be distributed over the regions in such a way that
at a certain point in the execution of the program all terms in a region are dead
and the region can be removed. CTGC detects when allocated memory cells are
no longer used and instructs the program to reuse those cells to construct new
terms, reducing memory consumption and in some cases achieving faster code.
RBMM has long been a topic of intensive research for functional programming
languages [7, 1, 4] and more recently also for procedural languages [3, 2]. For LP
languages, there has been only one attempt to make RBMM work for Prolog [5].
The idea of CTGC has been used to reuse memory cells locally in the procedures
of the LP language Mercury [6].

Goal of the Research. RBMM achieves competitive memory consumption for
many programs due to timely removal of dead regions and memory management
operations are time bound. CTGC can exploit many reuse opportunities. Taking
those advantages to have a system in which reusable memory can be reused and
non-reusable dead memory can be deallocated timely is the motivation for our
current research. The ultimate research goal is to investigate the possibility and
practicality of a hybrid static memory management technique, which combines
RBMM and CTGC.
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Current Status. Developing an algorithm that combines the nontrivial program
analyses of CTGC in [6] and the type-based region inference in [5] has not been
straightforward. Its main difficulty comes from the fact that those analyses were
developed for different programming languages. The CTGC system is for Mercury,
while the RBMM system is originally designed for a first-order subset of ML and
extended to work in XSB Prolog. More recently an analysis and transformation
algorithm for RBMM, which relies on region points-to graphs and region lifetime
analysis,has been reported for Java [2]. We found several similarities in terms ofde-
sign and the basic concepts used between the algorithm and the analyses in CTGC.
This makes it feasible to reformulate the algorithm to work for Mercury and to in-
tegrate it later on with CTGC analyses. In the initial step towards the research
goal, we have developed an extensible RBMM analysis and transformation algo-
rithm in the context of deterministic Mercury programs. Currently we are working
on improving the precision of the algorithm and also on integrating the algorithm
into a working Mercury compiler and extending the Mercury runtime to support
regions. After having both RBMM and CTGC systems in the context of Mercury
the idea of integrating them will have the necessary background to be developed.

Open Issues and Expected Achievements. There are several issues that need
further investigation, such as supporting modular region analysis, both the the-
ory and practice of the operation of CTGC when memory is organised in terms
of regions, and the interaction of RBMM, CTGC and runtime garbage collection.
The combination ofRBMM and CTGC may lead to the “reuse inside regions” tech-
nique, which is useful when in a program there are procedures containing cells that
die but cannot be reused locally by CTGC. We expect that dead, reusable cells can
be allocated in separate regions from the regions of dead, non-reusable cells, which
can be reclaimed timely by RBMM when they cease to be live.
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1 Research Context and Previous Work

The area of integrating or coupling a database with LP systems in order to ob-
tain a Deductive Database System (DDS) is still of interest and poses many re-
search problems. In particular, the basis for my work is the MySQL Yap Deduc-
tive DAtabase System (MYDDAS) [3] which couples the Yap system with the
MySQL Relational Database Management System. The connection between these
two platforms is achieved by the C foreign language interface that both systems
provide.

Fig. 1 shows the three main blocks of the current implementation of MYD-
DAS: the Yap Prolog compiler, the MYDDAS Interface and the database storage
engine. The current effort on the MYDDAS Interface is put on the MySQL C
interface rather than on the ODBC C interface. SQL queries are generated by
using the generic Prolog to SQL compiler done by Christoph Draxler [1].
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Fig. 1. MYDDAS blueprint

An important drawback of most current Prolog based DDS implementations
is the impossibility to declare an action when a cut operation occurs. Due to
the cut operation semantics, these operations are discouraged when pruning
database imported predicates. The problem is that SQL queries result sets are
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stored on memory, outside the WAM data structures, therefore needing specific
actions to be deallocated when a cut occurs. To solve this problem we have
recently proposed a new approach where the cut operation can execute a generic
action associated with a given predicate that is being pruned. In a DDS context
we use this mechanism to deallocate the result sets associated with database
predicates in a efficient manner [4,5].

We are also working on new applications to DDS. Recently, we have started
to integrate MYDDAS with Inductive Logic Programming (ILP), and in par-
ticular with the APRIL ILP System [2]. The main goal of ILP is to obtain an
intensional representation (theory) given an extensional representation of data
(facts). Currently, the complexity of ILP algorithms is very high, making these
systems quite slow, especially when computating the coverage of hyphotesis. Pre-
liminary performance results showed that by using a DDS such MYDDAS we
are able to significantly reduce the execution time of ILP Systems, and therefore
allowing a substantial increase of the size of the problems that can be solved
with ILP.

2 Direction and Goal of This Research

The main goal of this research is to improve of the state of the art of current
DDS by developing a new DDS which takes advantage of the advanced fea-
tures of the OPTYAP system. The system should be able to explore tabling
and parallelism taking advantage of the or-parallel tabling engine of OPTYap,
including the parallel evaluation of recursive queries. We also plan to implement
the translation from Prolog to SQL as an automated compilation step, based
on program analysis, which takes into account factors such as the size of data,
database indexing information and complexity of queries. We aim to use these
new evaluation methods to study the advantages of this type of paradigm in
several real-world problems.
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Introduction. Many domains that we wish to model and reason about are
subject to change due to the execution of actions. Representing and reasoning
about dynamic domains play an important role in AI because they serve as
a fundamental basis for many applications, including planning, diagnosis, and
modelling. Research in the field focuses on the development of formalisms for
reasoning about action and change (RAC). Such a formalism normally consists
of two components: a representation language and a reasoning mechanism. It has
been well known in the field that two criteria for the success of a formalism are its
expressiveness and efficiency. The former means that the representation language
is rich enough to describe complicated domains; the latter implies the reasoning
mechanism is computationally efficient, making it possible to be implemented
on a machine. Besides, in daily life, we have to face the absence of complete
information and thus any formalism should take this matter into account.

Most of the existing work on RAC relies on the possible world approach [6].
The main weakness of this approach is its high complexity. It was proved in [1], in
conformant setting, e.g., the problem of finding a (polynomial length) conformant
plan using this approach is ΣP

2 -complete. An alternative is the approximation-
based approach, adopted by the authors in [4,7]. The main advantage of the
approximation-based approach is its lower complexity in reasoning and planning
tasks in comparison with the possible world approach as shown in [1]. The price
that one has to pay when using an approximation is its incompleteness (w.r.t.
the possible world approach). Another limitation of the existing approximations
[7,4] is that they do not allow for domain constraints or just allow for a limited
class of domain constraints. In a recent paper [10], it is shown that directly
handling domain constraints in a planner can indeed improve its performance.

Planning is an important application of RAC. Basically, a planning problem
is the problem of finding a structure of actions, called plan, that leads to the goal
from the initial state. In the absence of complete information, a plan normally
exists in two forms: conformant plan and contingent plan. The former is simply
a sequence of actions that leads to the goal from any possible initial state, while
the latter is a more sophisticated structure (see [5]). Most of the existing confor-
mant/contingent planners are written in imperative programming languages and
their representation languages are somewhat limited – they either do not allow
for state constraints or just allow for a limited class of state constraints. There
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has been a very limited effort [2,8] in adding preferences of a plan to planning
systems and none of them deals with incomplete information.

Goal of the Research. This research is aimed at developing approximations for
action theories in the presence of incomplete information and domain constraints,
and building a family of conditional and conformant planners based on the pro-
posed aprpoximations, taking into account preferences and domain knowledge.
The approximations may be incomplete but are expected to be strong enough to
solve most of the benchmarks in the literature. Logic programming is chosen for
the development of planners because of its declarativeness and expressiveness,
making it easy to add modules for handling user preferences and exploiting the
knowledge of the domain.

Current Results. In [9], we study the completeness of the 0-approximation [7]
for action theories with incomplete information and propose a sufficient condition
for which an action theory under the 0-approximation semantics is complete.
We then suggest a method to modify an action theory in such a way that the
modified theory under the 0-approximation is complete with the original theory.
This method was implemented in a conformant planner. The planner is sound
and complete and our experimental results show that its performance can be
competitive with other state-of-the-art conformant planners.

Ongoing and Future Work. Theframework in[9],however, isonly foractionthe-
ories without domain constraints. At present, I have an initial proposal for approx-
imations of action theories with domain constraints but there are still open issues:
are they strong enough?underwhat circumstances are they complete? canwemod-
ify them so as to be complete? In addition, I am investigating the use of constraint
logic programming and constraint handling rules [3] to implement the planners.
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1 Problem Description and Goals

Consider an agent endowed with a logic program which is able to respond to
certain questions about the logic program. We would like to answer the question:
to what extent can we deduce the logic program from the agent’s answers, and
how can we do this?

For example, suppose the agent has a logic program with the unique answer
set {p, q}. Supposing that we are only allowed to ask whether a given literal is in
an answer set, we may guess that the logic program is {p←, q ←}. It is clear that
this is unlikely to be the actual logic program, however we cannot distinguish
between this program and the actual program with only the questions allowed.
On the other end of the scale, suppose we are allowed to ask the agent to tell us
their logic program. Then it is trivial to determine exactly the logic program of
the agent.

Therefore one aspect of the problem that can be investigated is the theoretical
limits of this process of deducing logic programs. We would like to know how close
we can get to the original logic program, given that we are only allowed questions
from a certain class. This can be linked to a notion of “equivalence” of logic
programs where two logic programs are considered equivalent if they cannot be
distinguished under the class of questions being considered. My research involves
a study of the different types of equivalences that arise under the various classes
of questions.

Another aspect of the problem is the actual algorithms which can be used for
deducing logic programs from answers to questions. For trivial examples such
as the one above, it is easy to produce an algorithm which deduces the logic
program up to equivalence. For different classes of questions which give rise to
finer equivalence classes, the problem may be intractable or may even be com-
putationally impossible. Therefore my research includes exploring the existence
of such algorithms relative to the various question classes, with a focus on iden-
tifying the question classes for which the problem is tractable, and constructing
algorithms to solve the problem in those cases.

My research will be mainly in the context of extended logic programs with
answer set semantics [1], however I may also consider other classes of logic pro-
grams, such as disjunctive logic programs and nested logic programs [2]. I will
also consider situations where we have background knowledge about the agent’s
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logic program. This can be incorporated into the framework as an additional
class of questions which can be asked.

2 Related Work

There appears to be little existing work on the topic of deducing logic programs
through question-and-answer.

The area of inductive logic programming [3,4] (ILP) appears to have superficial
similarities to my area of research. Inductive logic programming is about inferring
a logic program from a given collection of facts and background knowledge such
that the resulting logic program “explains” the given facts. This differs from
my research in that ILP is mainly concerned with the facts that can be derived
from the logic program, whereas my research is about recovering an agent’s logic
program, which includes more information than just the facts that can be derived
from it. My work is also in a sense broader than ILP, since the questions are not
restricted to asking the truth or falsity of certain literals.

3 Research Status and Plan

My research is still at a very early stage. I have settled on my research direction
and finalised my thesis proposal, however I have only recently started on the
research. The preliminary work that I’ve done thus far consists of exploring
equivalences of extended logic programs under various classes of questions.

The first stage of the project is to define various classes of questions that can be
used. I intend to investigate the links between these classes and existing notions
of equivalence on logic programs. For each of these classes of questions, I will
investigate the existence of syntactical properties of programs which cannot be
distinguished under the question class under consideration. This will hopefully
result in a way to identify the “simplest” program in each equivalence class.
I will consider this on a computational level, with a focus on identifying the
classes of questions for which the problem is tractable. Finally, I intend to look
at the application of this work to agent negotiation and machine learning. This
may involve applying the results obtained in this work to developing negotiation
protocols for agents which use logic programs to encode preferences.
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