On Characterising and Identifying Mismatches in
Scientific Workflows

Khalid Belhajjame, Suzanne M. Embury, and Norman W. Paton

School of Computer Science
University of Manchester
Oxford Road, Manchester, UK
{khal idb, embury, paton}@cs .man.ac.uk

Abstract. Workflows are gaining importance as a means for modelling and en-
acting in silico scientific experiments. A major issue which arises when aggre-
gating a collection of analysis operations within a workflow is the compatibility
of their inputs and outputs: the analysis operations are supplied by independently
developed web services which are likely to have incompatible inputs and outputs.
We use the term mismatch to refer to such incompatibility. This paper charac-
terises the mismatches a scientific workflow may suffer from and specifies map-
pings for their resolution.

1 Introduction

Scientific workflows are gaining considerable momentum as a mechanism for specify-
ing and automating the execution of scientific experiments [[1/10]. During the design of
a scientific workflow, the designer’s focus is on selecting and composing the analysis
operations that will carry out the work of the experiment. Analysis operations are sup-
plied by third parties and as such it is often the case that their inputs and outputs are
incompatible with those of the other operations to which they must be connected. We
use the term mismatch to refer to such incompatibility. In order to resolve a mismatch,
the designer must expend some effort in discovering or implementing special operations
that can be plugged into the workflow at the point of incompatibility, and can transform
the data sets as necessary to resolve it.

Manual detection and correction of such mismatches is time-consuming and unre-
liable, and thus reduces the claimed benefits of scientific workflows in facilitating the
rapid specification of experiments. In this paper, we propose a classification of the kinds
of mismatches that can occur in data-driven workflows and derive the additional infor-
mation that must be captured about workflow operations if potential mismatches are to
be identified automatically. This additional information takes the form of annotations
on web service inputs and outputs, based on three separate ontologies.

The remainder of the paper is organised as follows. First, in Section 2] we formally
define scientific workflows. In Section 3] we describe the three additional ontologies
used for annotating operation inputs and outputs, and use them (in Sectiond)) to present
the mismatch classification and (in Section[3) to specify further annotations for transfor-
mation functions that characterise the kinds of mismatches they can address. Finally we
close the paper by comparing our work against existing works, and drawing conclusions
in Section

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 240-247] 2006.
(© Springer-Verlag Berlin Heidelberg 2006

On Characterising and Identifying Mismatches in Scientific Workflows 241

2 Scientific Workflows

A scientific workflow is a set of operations connected together using data links. For
the purposes of this paper, we define a scientific workflow SWf as SWf = (nameWf, OP,
DL), where nameWf is a unique identifier for the workflow, OP is the set of operations
from which the workflow is composed, and DL is the set of data links connecting the
operations in OP.

Operation. An operation op € OP is defined as op = (nameOp, loc, in, out), where nameOP
is the unique identifier for the operation, loc is the URL of the web service that im-
plements the operation, and in and out are two sets representing the input and output
parameters of the operation, respectively.

Parameter. A parameter provides information on the data type of a given operation
input/output. It is defined by the pair (nameP, type), where nameP is the parameter’s
identifier (unique within the operation) and rype is the parameter’s data type. In our
work, we assume an XML type system, so that parameter data types may be either
simple types, such as xs:string and xs:int, or complex types, built from simple ones.

Data Links. Let IN = U,,cop)op.in be the set of inputs of all the operations comprising
a scientific workflow, and OUT = U(,,co pyop.out be the set of outputs of all its opera-
tions. The set of data links connecting the workflow operations must then satisfy the
following: DL C (OP x OUT) x (OP x IN). A data link relating the output o of the op-
eration opl to the input i of the operation op2 is therefore denoted by the quadruple
(opl,0,0p2,i).

3 Ontologies for Characterising Mismatches

Information on the types of operation parameters is usually easily available to scientific
workflow systems. For example, where operations are actually web services, the data
types can be extracted from the WSDL specification of the service. However, as we
have seen, not all mismatches are visible in the types of the connected parameters. In
order to automatically detect mismatches, the implicit information about the form and
role of operation parameters must be made explicit, just as the information about the
type of the parameter currently is. This additional information concerns the semantics
of the parameter (i.e. the real world entity to which the parameter corresponds), the
representation format used for the parameter over and above any data typing given to
it and the extent of the parameter (i.e. the set of possible values which the parameter
may take). For each of these, we must create an ontology of terms that can be used to
annotate services with the information required to detect mismatches.

An ontology is commonly defined as an explicit specification of a conceptualisa-
tion [4]. Formally, an ontology 6 can be defined as a set of concepts, 6 = {cI,....cn}. We
use the following ontologies to annotate service parameters for mismatch detection.

Domain Ontology, 04omain- This ontology captures information about the application
domains covered by the operations, and enables us to describe the real world concepts to
which each parameter corresponds. An example of such an ontology is that developed

242 K. Belhajjame, S.M. Embury, and N.W. Paton

by the ™ Grid project describing the domain of molecular biology [9]. Typical concepts
from this ontology are ProteinSequence and MolecularWeight.

For the identification of mismatches, we assume the existence of a function domain(),
the signature of which is presented below. Given an operation and an input/output pa-
rameter, the function domain() returns the corresponding concept from the domain on-
tology.

domain: OP x (INU OUT) — 04omain

Representation Ontology, Orepresent. As in many other application areas, a variety of
different formats have been defined for representing the same kind of biological data
(i.e. data corresponding to the same domain concept). For example, a protein sequence
can be represented using Fasta format or Unipror format or any of several other similar
formats. These formats can be represented using complex data types but at present it
is much more common for workflow operations to treat them as simple string objects
and to ignore their internal structuring. This is partly due to legacy design (since many
of the more popular biological web services were implemented before the development
of XML and its associated programming tools) and partly because current workflow
systems do not always have very rich type systems.

In order to detect mismatches in representation format as well as data type mis-
matches, it is necessary for services to be annotated according to the formats expected
and produced by their inputs and outputs. We therefore require an ontology of terms for
describing data formats. Such an ontology has already been designed by the ™ Grid
project [9].

We therefore assume the existence of a function represent(), with the signature pre-
sented below. Given an operation and an input or output parameter, the function repre-
sent() returns the corresponding concept from the representation ontology.

represent: OP X (IN U OUT) — Orepresent

In order to compare two representation concepts for mismatch identification, we need
an additional binary comparison operator for concepts in 0ycpresent. We use the con-
tains() function, the signature of which is presented below, to describe the relationship
between these formats. Given two formats x and y, the function contains(x,y) is true if x
contains all the data content needed for creating an instance of y, and false otherwise.

contains: (Orepresent X Orepresent) — Boolean

Extent Ontology, 0..tent- The concepts of this ontology define the scope of possible
values of a given operation parameter. Although in general it is not possible to accu-
rately describe the extent of a parameter, it is the case that the relationships between the
extents of some web services is known in advance and can be used in detecting mis-
matches. For example, the TTEMBL databaseﬂ is known to be a superset of SwissProt,
whereas the various species specific gene databases are known not to overlap.

No ontologies currently exist for describing the extent of biological data sets, and we
have therefore constructed one ourselves. We assume the existence of a function extent()
for retrieving the extent of input/output parameters, with the signature:

! http://www.ebi.ac.uk/trembl/

On Characterising and Identifying Mismatches in Scientific Workflows 243
extent: OP x (IN U OUT) — Ocptent

In order to be able to compare extents, we use the function coveredBy(), the signature
of which is presented below. Given two concepts from the extent ontology, e/ and e2,
coveredBy(el,e2) is true if the space of values designated by e/ is a subset of the space of
values designated by ¢2 and false otherwise.

coveredBYy: (Oextent X Oextent) — Boolean

4 Characterising Mismatches

Using annotations of the form described in the previous section, we can automatically
detect a variety of forms of mismatch that go beyond simple data type mismatches.
We now present a classification of these mismatch types and define the criteria for
identifying each one.

Type Mismatch. refers to incompatibility in terms of data type between connected pa-
rameters. In order to be compatible, the data type of the output parameter must be the
same as or a subtype of the data type required by the input parameter. Formally, a data
link (opl,0,0p2,i) € DL suffers from a type mismatch iff:

o.type A i.type

Cardinality Mismatch. is a particular kind of type mismatch. For example, assuming a
type system in which the only means of forming collection types is an array constructor,
we can say that a data link (op1,0,0p2,i) € DL suffers from a cardinality mismatch iff:

(o.type = ArrayOf (i.type)) or
(i.type = ArrayOf (o.type))

ArrayOf{t) is a type. An instance of ArrayOf{t) is an array whose elements are instances.

Domain Mismatch. refers to incompatibility in terms of semantic domain between con-
nected output and input parameters. In order to be compatible, the domain of the output
must be the same as or a sub-concept of the domain of the subsequent input. Specifi-
cally, a data link (opl,0,0p2,i) € DL suffers from a domain mismatch iff:

domain(opl,0) € domain(op2,i)

For example, consider a data link (opl,0,0p2,i) such that domain(opl,0) = DNA sequence
and domain(op2,i) = Protein sequence. According to the molecular biology ontology men-
tioned earlier [9)], DNA sequence & Protein sequence, therefore, (opl,0,0p2,i) suffers from
a domain mismatch.

2 The symbol # stands for not a sub-type of.
3 The symbol ¢ stands for not a sub-concept of.

244 K. Belhajjame, S.M. Embury, and N.W. Paton

Representation Mismatch. Two operation parameters, which belong to compatible se-
mantic domains, can be represented using different data formats. Representation mis-
match refers to the difference in terms of format between connected input and output
parameters, which are domain compatible. Specifically, a data link (opl,0,0p2,i) € DL
suffers from a representation mismatch iff:

(domain(opl,0) C domain(op2,i)) and
(represent(opl,0) # represent(op2,i))

For example, suppose that domain(op1,0) = domain(op2,i) = Protein record, represent(opl,0)
= Uniprot record, and represent(op2,i) = Fasta record. The output and the input parameters
have the same semantic domain. However, they adopt different representations. We con-
clude that the data link suffers from a representation mismatch.

Content Mismatch. is a particular kind of representation mismatch, in which the for-
mats conflict in terms of data scope as well as in terms of pure representation—that
is, the format of the output carries less data content than is required by the format of
the subsequent input. Formally, a data link (opl,0,0p2,i) € DL suffers from a content

mismatch iff:
(domain(opl,0) C domain(op2,i)) and
(represent(opl,0) # represent(op2,i)) and
(contains(represent(opl,0),represent(op2,i)) = false)

This situation is distinguished because it represents a particularly serious form of rep-
resentation mismatch. Even if we can find a web service that can perform the transfor-
mation between the two mismatched data formats, there may still be a problem with the
workflow, since the transformed output may not contain all the information expected by
succeeding operations. Note that we say there “may” be a problem with the workflow. It
is possible that the succeeding operation will only access those parts of the transformed
data structure that are contained within the initial data format, in which case there will
be no problem.

As an example of this, consider the data link (GerFusta,o,GetSequence,i). Here, rep-
resent(GetFasta,0) = Fasta record, and represent(GetSequence,i) = Uniprot record. This data
link suffers from a content mismatch, since a Fasta record does not contains all the
elements required for creating a Uniprot record instance: contains(Fasta record, Uniprot

record) = false. However, in reality, the GerSequence operation will only read the pro-
tein sequence parts of the Unipror record supplied as its input, and therefore a simple
transformation between formats is sufficient to resolve the mismatch.
Extent Mismatch. refers to incompatibility in terms of the space of possible values be-
tween two connected output and input parameters. Specifically, a data link (op1,0,0p2,i)
suffers from an extent mismatch if it does not suffer from a type mismatch, a domain
mismatch or a representation mismatch, but the extent of the input i does not cover the
extent of the output o. Formally, a data link (opl,0,0p2,i) € DL suffers from an extent
mismatch iff:

(o.type = i.type) and
(represent(opl,0) = represent(op2,i)) and
(domain(opl,0) C domain(op2,i)) and
(coveredBy(extent(opl,0),extent(op2,i)) = false)

On Characterising and Identifying Mismatches in Scientific Workflows 245

For example, consider a data link (op1,0,0p2,i) such that domain(op1,0) = domain(op2,i)
= ORF. ORF stands for open reading frame. Suppose now that extent(opl,0) = FlyBase
and extent(op2,i) = SGD. FlyBase is a database that stores information on the genet-
ics and molecular biology of Drosophila. SGD is a scientific database of the molec-
ular biology and genetics of the yeast Saccharomyces cerevisiae. The two databases
are non-overlapping: none of the ORFs found in FlyBase are present in SGD (i.e. cov-
eredBy(FlyBase,SGD) = false). Therefore, (opl,0,0p2,i) suffers from an extent mismatch.
Even though the parameters appear to match exactly in terms of domain, data type and
representation format, the workflow will still not be able to produce a result.

5 Annotation of Parameter Mapping Operations

The same ontologies that allow us to create annotations for identifying mismatches can
also support the annotation of transformation functions that can resolve them. In our
context, we refer to such functions as mappings, since they map from one parameter
type to another. In order to compare the available mappings with the identified mis-
matches, we annotate the mappings. Given a data link (op1,0,0p2,i), which suffers from
a mismatch, a mapping is used for transforming the data produced by o to meet the
requirements of the input i. Formally, a mapping is defined as follows:

<T], TZ; Clrepresent; Czrepresent, Cldomainy Czdomainy 'map>

where 71 and 72 are data types, Cl epresent aNd C2represent are formats from the repre-
sentation ontology, and C!4omain and C24omain are concepts from the domain ontology.
Smap: T1 — T2 is a function. Given an instance ¢/ of T/ that follows the format C1,cpresent
and belongs to the domain C1 4omain, fmap (11) returns an instance 2 of 72, which follows
the format C2;cpresent and belongs to the domain C240mq:n. The extent of the mapping
function fnap () is specified by a pair (e1,e2), where e1, e2 € Oextent; €1 designates the
extent of the domain of f,,.,, and e2 designates the extent of its range.

The above annotation system can be used for locating the appropriate mappings for
correcting the identified mismatches. It is possible that none of the existing mappings
can be used for correcting a given mismatch. Instead of building a new mapping, there
are cases in which the desired mapping can be obtained by composing in sequence two
or more existing mappings.

6 Related Work and Concluding Remarks

Several problem solving environments (PSEs) have been proposed to support the de-
sign and enactment of scientific workflows [[10]. Generally, they do not provide means
for identifying and correcting mismatches. Taverna, for example, allows the designer
to connect any two operations regardless of whether the connected outputs and inputs
are compatible. Some PSEs are able to identify type mismatches. In Triana [8], data
links are checked at design time and a warning message is displayed whenever two
connected parameters have incompatible data types. In terms of parameter mapping,
Kepler [3] is, to our knowledge, the only system which supports the mapping of op-
eration parameters that have type mismatches. Note, however, that parameter mapping

246 K. Belhajjame, S.M. Embury, and N.W. Paton

is a work in progress that is not supported by the current distribution of Kepler. The
semantic domain of the operation inputs and outputs are described using an ontology.
Whenever two connected parameters belong to compatible domains but have incompat-
ible data types, a mapping is generated to transform the output parameter structure into
the structure of the succeeding input parameter [2]]. Incompatibilities due to differences
in representation format, content and extent are not handled by this proposal.

In this paper, we have characterised a range of mismatches that can occur in scientific
workflows. Our categorisation goes beyond existing work in this area by identifying the
need for additional parameter annotations describing representation formats and ex-
tents, and in showing how they interact with the more familiar notions of domain and
data type annotations. The categorisation can be used to implement mismatch detection
and resolution services that allow workflow designers to concentrate their attention first
on the core aspects of workflow semantics, and to consider the necessary data transfor-
mations afterwards. For complex workflows, this opens up the possibility for domain
experts to rapidly specify abstract workflows, which they then pass to staff with techni-
cal expertise in managing data mapping and transformation to resolve any gaps in the
workflow.

We have developed a prototype that implements the proposed framework as an exten-
sion of the Taverna workbench [7]]. Using the prototype, we have conducted a prelimi-
nary evaluation of our mismatch categorisation. Real scale trials are not yet a practical
possibility, due to the lack of rich service and annotation mappings. The Feta registry we
are currently using, for example, contains the descriptions of around 30 service opera-
tions, though more extensive annotations are planned. However, we wished to gain some
insight into the degree to which the mismatches we have identified occur in practice.
To this end, we collected together a sample set of 14 bioinformatics workflows, which
were designed in the context of e-science projects such as ISPIDERH, ™Y Grid and Pe-
gasys{g. We then examined the operations contained within the workflows and made a
judgement as to whether the operation was part of the core semantics of the workflow
or whether its role in the workflow was to resolve incompatibilities between core oper-
ation parameters. We also attempted to classify the mismatches we found based on the
categorisation presented in this paper.

The results of this small study showed that the most commonly occurring types of
mismatches are the representation and domain mismatches. The majority of the work-
flows that we analysed suffered from these kind of incompatibilities, with the next
most common kind being cardinality and extent mismatches. In fact, most of the type
mismatches we identified were actually cardinality mismatches; non-cardinality-based
type mismatches appear to be rare, if our small sample set is a reliable guide. This
can be explained by the following two observations. First, the inputs and outputs of
most bioinformatics analysis operations are weakly typed [3]]. In most cases, parame-
ters are either defined as strings or arrays of strings, regardless of the complexity of
the data values actually being communicated. The second reason for the comparative
rarity of non-cardinality-based type mismatch is that, for the time being, most of the

4 http://www.ispider.man.ac.uk
> http://www.mygrid.org.uk
® http://bioinformatics.ubc.ca/pegasys/

On Characterising and Identifying Mismatches in Scientific Workflows 247

available scientific workflow systems are not able to process complex types. Thus the
work of parsing and constructing such data values is pushed down into the operations
themselves.

Clearly, open questions remain regarding the best approaches to identify candidate
mappings for identified mismatches. We are currently investigating the possibility of
using mapping quality as a search criterion during mismatch resolution. This refers to
the non-functional properties of mappings that may help the designer to select the best
mapping for a given context [6]. Examples of such properties include the information
and computational resources used for performing the mapping.

Acknowledgements

The work presented in this paper was funded by a grant from the BBSRC. We are also
grateful to Duncan Hull and Robert Stevens, and our colleagues in the ISPIDER project,
for useful discussions on mismatches in scientific workflows.

References

1. K. Belhajjame, S. M. Embury, H. Fan, C. A. Goble, H. Hermjakob, S. J. Hubbard, D. Jones,
P. Jones, N. Martin, S. Oliver, C. Orengo, N. W. Paton, A. Poulovassilis, J. Siepen, R. Stevens,
C. Taylor, N. Vinod, L. Zamboulis, and W. Zhu. Proteome data integration: Characteristics
and challenges. In UK All Hands Meeting, 2005.

2. Sh. Bowers and B. Ludischer. An ontology-driven framework for data transformation in
scientific workflows. In DILS, pages 1-16, 2004.

3. Sh. Bowers and B. Ludischer. Actor-oriented design of scientific workflows. In ER,
pages 369-384, 2005.

4. T. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisi-
tion, 5(2):199-220, 1993.

5. D. Hull, R. Stevens, P. Lord, C. Wroe, and C. Goble. Treating shimantic web syndrome with
ontologies. In First Advanced Knowledge Technologies workshop on Semantic Web Services
(AKT-SWS04), 2004.

6. E. M. Maximilien and M. P. Singh. A framework and ontology for dynamic web services
selection. IEEE Internet Computing, 8(5):84-93, 2004.

7. Th. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics, 20(17):3045-3054, 2004.

8. I.J. Taylor, M. S. Shields, I. Wang, and O. F. Rana. Triana applications within grid computing
and peer to peer environments. J. Grid Comput., 1(2):199-217, 2003.

9. Ch. Wroe, R. Stevens, C. A. Goble, A. Roberts, and R. M. Greenwood. A suite of daml+oil
ontologies to describe bioinformatics web services and data. Int. J. Cooperative Inf. Syst.,
12(2):197-224, 2003.

10. J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing.
SIGMOD Record, 34(3):44-49, 2005.

	Introduction
	Scientific Workflows
	Ontologies for Characterising Mismatches
	Characterising Mismatches
	Annotation of Parameter Mapping Operations
	Related Work and Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

